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ABSTRACT
In recent years, we have seen increased interest in applyingmachine
learning to system problems. For example, there has been work on
applying machine learning to improve query optimization, index-
ing, storage layouts, scheduling, log-structured merge trees, sorting,
compression, and sketches, among many other data management
tasks. Arguably, the ideas behind these techniques are similar: ma-
chine learning is used to model the data and/or workload in order to
derive a more efficient algorithm or data structure. Ultimately, these
techniques will allow us to build “instance-optimized” systems: that
is, systems that self-adjust to a given workload and data distribution
to provide unprecedented performance without the need for tun-
ing by an administrator. While many of these techniques promise
orders-of-magnitude better performance in lab settings, there is
still general skepticism about how practical the current techniques
really are.

The following is intended as a progress report on ML for Systems
and its readiness for real-world deployments, with a focus on our
projects done as part of the Data Systems and AI Lab (DSAIL) at MIT.
By no means is it a comprehensive overview of all existing work,
which has been steadily growing over the past several years not
only in the database community but also in the systems, networking,
theory, PL, and many other adjacent communities.
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1 INTRODUCTION
Database systems have a long history of carefully selecting efficient
algorithms, e.g., a merge vs a hash-join, based on data statistics. Yet,
most databases are general-purpose systems that are not purpose-
built for a specific workload or data distribution. For this reason,
the architects and developers of a database system have to make
compromises when building the system. They have to decide the
type of index structures to implement, what scheduling algorithms
to use, how to organize data on disk as well as in-memory, and so
on. All of these decisions come with their own trade-offs, which
they try to balance. As a result, the final system will likely perform
well but not achieve the best possible performance for any given
application.
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In contrast, if they would design a system from scratch in C++ for
just one particular application for one single customer and maybe
even just one single situation, such as the transaction processing
for Walmart’s online shop during Black Friday, they would prob-
ably design the system very differently than a general purpose
transactional database system. Unfortunately, building a system
like a database is very time-consuming and expensive and involves
hundreds of engineers, making it impossible to design a system for
every application and user from scratch.

But what if the system could automatically self-adjust to the
data and workload, to provide near-optimal performance? This is
the core idea behind a range of recently proposed techniques to
automatically adjust the system for a given application without
human intervention. Here we refer to this idea as an instance-
optimized system in analogy to instance-optimal algorithms [32].
Machine learning plays an important role in this area, as it provides
well-known techniques to “learn” something about the (expected)
data, workload, or hardware behavior, which can then be used
to optimize the system. However, instance-optimizations might
not require machine learning; often more traditional optimization
techniques suffice. This article outlines three different degrees of
instance-optimization and their readiness for industry.

2 KNOB AND DESIGN TUNING
The simplest form of instance-optimization automatically tunes
system parameters. Many systems provide a range of parameters,
i.e., knobs, to tune the system, mostly in order to achieve better
performance for a particular application or hardware. For example,
the buffer pool size is often an important parameter in database
systems, which should be tuned depending on the available mem-
ory and workload. Similarly, database systems offer a range of
design options, such as indexes or materialized views, which can
significantly reduce the data-processing time.

Traditionally, an administrator would tune the parameters of a
system and create indexes or materialized views. Unfortunately, this
in itself can be a time-consuming task and not every organization
can afford to pay a skilled database administrator. Moreover, work-
loads tend to change, making the tuning process a never-ending
task.

Not surprisingly, there is a long history of research to auto-
mate this process [2, 3, 13–15, 20, 30, 40, 67, 98, 109] and several
techniques have been successfully deployed into production by
Microsoft [15] and Oracle [21], among many others. Tradition-
ally, these techniques require a (representative) training work-
load provided by an administrator and address only one prob-
lem (e.g., index selection) at a time. More recent techniques in
this area often use modern machine learning techniques, such
as reinforcement learning, to be more proactive, make changes
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more quickly (online), and/or address the problem more holistically
[4, 5, 22, 41, 60, 61, 61, 62, 94, 94, 101].

Yet, the goal of knob and design tuning is to assist, and sometimes
replace, the database administrator while not making fundamental
changes to the database system itself. Hence, the tuning potential is
restricted to the knobs and design choices the systems have today.
This leads to the next category of instance-optimized components,
which go beyond the more traditional algorithms and often deeply
embed a model in the algorithm itself. Thus, for the purpose of
this paper, we consider a reinforcement-learning-based schedul-
ing algorithm to be an instance-optimized component, whereas a
reinforcement-leaning-based model to select the best indexes is
considered a knob and design tuning technique.

Still, it should be pointed out that Pavlo et al. argue in [94] that
in order to create “self-driving” database systems, one also needs
to reconsider many of the traditional design choices. In particular,
the authors argue that we require a new system design that allows
configuration to be changed much more quickly without requir-
ing a restart of the database and potentially also to provide more
“knobs” for automization. This ultimately blurs the line between
knob/design tuning and what we refer to as instance-optimized
systems, as discussed further below.

3 INSTANCE-OPTIMIZED COMPONENTS
More recently a wide range of learning-enhanced algorithms and
data structures to build instance-optimized components have been
proposed. These techniques go far beyond knob tuning by deeply
embedding models or optimization into the algorithms, data struc-
tures, or entire component designs. In “The Three Pillars of Machine
Programming” [39] these techniques fall mainly under the inven-
tion and adaptation pillar. In the following, we highlight research
results on only two instance-optimized database components, in-
dexing and query optimization, with a focus on techniques out
of DSAIL [26] at MIT. However, many other components have
been “instance-optimized,” including scheduling [72, 73, 103], sort-
ing [58, 59], joins [38], and compression [12, 51] (see [28] for a more
comprehensive list of papers).

3.1 Building Instance-Optimized Components
Generally, we identify three different ways to develop instance-
optimized data structures, algorithms, and components.

Design continuum: The first approach is to use a model to
synthesize or configure a traditional algorithm. For example, in
[48] Stratos et al. proposed a design continuum that unifies major
distinct data structures/algorithms under the same model. The core
idea is that every data structure consists of a few fundamental de-
sign concepts and that different optimization techniques can be used
to compose several of these concepts into an instance-optimized
data structure for a given data set and workload [50]. However, so
far these design concepts consist entirely of traditional techniques.
Moreover, making all the design concepts compatible with each
other—including ways to transition between them—presents an
immense research and engineering effort.

ML-enhanced algorithms: Another approach to building inst-
ance-optimized algorithms, data structures, and components is by

means of an oracle. That is, the algorithm assumes an oracle, typi-
cally a machine learning model, that is capable of making a predic-
tion that is imperfect but relevant to the problem; this prediction is
then used to derive a more efficient algorithm. Key to this approach
is the model’s ability to capture something about the problem more
efficiently than a data agnostic approach would. For example, a
model that predicts the position of a key inside a sorted array can
be used to improve the efficiency of a range index [56] and sorting
algorithm [58]. In contrast, a model that predicts whether a key is in
a given set can be used to improve Bloom filters [56], and a model
that predicts the frequency of an item in a set can improve the
estimation quality of counting sketches [29, 47], whereas a model
that predicts the job execution time can be used to derive a more
efficient scheduling algorithm [81, 82]. Here we can distinguish
between two cases: oracles that predict something about the future
(e.g., the job arrival or execution time ) and oracles that “predict” (or
estimate) something about known data (e.g., a empirical CDF model
to predict the rank of an item). Interestingly, while it is generally
important that prediction-based models generalize, overfitting can
be a good thing if the model only needs to capture something about
the known data more compactly.

The general category of ML-enhanced algorithms is also some-
times referred to as algorithms with predictions [82], oracle-based
algorithms, learning-enhanced algorithms, or learned algorithms.
Moreover, the idea of embedding models to improve existing algo-
rithms opens up a whole new range of interesting opportunities
and research challenges for a wide range of existing problems [82].

Full-model replacement: For some restricted problems it is
possible to entirely replace an algorithm or data structure through a
model. This is most often the case if the original algorithm is already
a heuristic to solve an NP-hard problem and does not require strict
guarantees (e.g., a guarantee to find the best solution). Examples
include cardinality estimation and scheduling algorithms, among
other problems.

Interestingly, these three approaches are not exclusive to each
other. For example, one could consider oracle-based approaches
as part of a design continuum. Similarly, oracle-based algorithms
often already use code synthesis to build more efficient models.
For example, in [56] the authors propose combining traditional
B-trees with regression models to achieve better CDF estimates. It
still remains to be shown whether it is better to include a design
continuum as part of a single dominant oracle-based algorithm or
if oracle-based ideas are better as a part of a design continuum.

3.2 Learned Indexes
In our SIGMOD 2018 paper “The Case for Learned Index Structures”
[55, 56], we showed that traditional algorithms and data structures,
particularly B-trees, hash-maps, and Bloom filters, can be enhanced
by learned models with significant space and performance benefits
while providing the exact same semantic guarantees. To make this
possible, we invented ways to combine probabilistic models with
traditional data structures and algorithms and a new type of model
structure, called the recursive model index (RMI), which can have
nano-second inference time.

While the results were promising, the paper also excited a lot of
controversy because of its highly unintuitive result that machine
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learning can improve data structures with (sub-)linear complexity.
Most notably, three individual blog posts by Prof. Neumann, Prof.
Mitzenmacher, and a group at Stanford raised the question whether
other more traditional approaches could outperform learned in-
dexes. Moreover, we made several simplifying assumptions (e.g.,
we focused on read-only in-memory workloads) and the paper did
not show how a learned index would impact an end-to-end system.
This in turn raised the question of how significant the impact would
be in real-world systems. The lack of an open-source evaluation
further contributed to the uncertainty.

3.2.1 A progress report. Fortunately, many researchers around the
globe started to expand on our initial results to address many of the
open research questions and limitations (see [28] for a collection of
these papers). For example, in a joint evaluation with TU Munich
[27, 75], we showed that learned indexes are indeed much smaller
while providing better or similar performance than traditional state-
of-the-art indexes [27, 75]. Similar results were also found by other
(independent) research groups [69]1 and several micro experiments
in various follow-up papers (e.g., [24, 36, 107]). We open-sourced all
our implementations and created a public index performance leader-
board [27], allowing for more fair comparisons going forward. Very
exciting is also the theoretical result by Ferragina et al. [33, 34],
which proves why learned indexes are more space efficient under
certain data/workload assumptions.

Note that [27] also contains a comparison against newer index
variants such as the radix-based binary search and the Compact
HisTree (CHT) [16], a highly read-optimized and compressed data
structure. While the author of [16] argues that the Compact HisTree
is not a learned index structure, we do consider it one, as it explic-
itly models the histogram of the data rather than relying solely
on binary decisions to navigate a tree structure. Regardless of its
classification, [27] shows that RBS and CHT are only able to slightly
outperform RMIs on very few datasets and that only at a very large
index size, often surpassing the size of the original dataset, render-
ing its impact on real-world systems more questionable (see below).
This is due to the fact that both approaches require a radix table to
be efficient; in the extreme the radix table would store a pointer for
each possible key in the domain, not just all keys in the data set.

Learned indexes have also been integrated into full disk-based
systems. Interestingly, the evaluations of this work have shown
that the advantage of learned indexes on disk-based systems often
comes through their smaller index size, which can be orders-of-
magnitude smaller, rather than the faster lookup time. For example,
Google integrated learned index structures into their BigTable sys-
tem, where it was able to improve the throughput by up to 2x [1].
This performance benefit can be attributed to the fact that the
smaller index makes it possible to save an IO request and the associ-
ated de-compression cost. Similarly, research work at the University
of Wisconsin showed how learned indexes can improve “lookup
performance by 1.23x-1.78x as compared to state-of-the-art produc-
tion LSMs” [18], in this case due to both the index size and faster
lookup performance.

1Note that the evaluation in [69] uses the same traditional baselines as in [75], but
re-implements the RMI-model-based index instead of using the one from [75], that
seems less tuned than the other variants, with a training technique which is more
sensitive to outliers.

Many of the other previous limitations, such as the lack of update
support, have also been addressed and, to date, we have counted
over 50 new variants of learned indexes (see [28] for a list of papers).
For example, Alex [24], Bourbon [18], and PGM [36] extend the
idea of learned index to support inserts. Interestingly, it has also
been found that while overfitting is often a good property for read-
only workloads, supporting writes might require models that better
generalize and consider potential future updates [42]. Similarly, dif-
ferent learning approaches for the models and cost functions have
been proposed. Whereas our original RMI structure was trained
greedily top-down, FittingTree [37], RadixSpline (RS), and the PGM
index [36] are all trained bottom-up. FittingTree [37] uses linear
splines [89] to approximate the CDF of the data, whereas RS com-
bines the idea of splines with an additional radix-based lookup table
to achieve faster lookup performance. In [31] the authors show that
the right cost function for training should be the log-error, because
of the subsequent exponential or binary search process. There exists
also several extension for learned indexes on string data [104, 110].
Finally, more recent projects explored how to adjust learned in-
dexes for modern hardware, such as multi-core environments [107],
NVM [66], and RDMA [111].

3.2.2 Learned Bloom filters and hash-maps. Similarly there has
been exciting follow-up work on the idea of Learned Bloom Fil-
ters. In [80] Prof. Mitzenmacher proposed the Sandwiched Learned
Bloom Filter (SBF) as an improved learned Bloom filter variant
on our original work [56]. It combines two Bloom filters (not just
one) with a model that predicts whether a key is in a given set.
Later, Dai and Shrivastava proposed Adaptive Learned Bloom Filter
(Ada-BF) [19], which leverages the certainty of the prediction to
achieve smaller Bloom filter sizes. In contrast, our most recent work,
Partitioned Learned Bloom Filters (PLBF) [108], can be regarded as
a generalization with provable guarantees of Sandwiched Learned
Bloom Filter (SBF) and Adaptive Learned Bloom Filter (Ada-BF) [19].
However, there has been other work on improving Learned Bloom
Filters, including improvements using meta-learning techniques
[97] or learned Bloom filters for data streams [64]. Moreover, we
also theoretically and experimentally evaluated (RMI) models as
potentially better hash functions for hash-maps [100].

We also addressed the questions raised around learned hash-
maps in [100], which theoretically and experimentally evaluates
when learned models can and cannot outperform hash functions to
build more efficient hash-maps.

3.2.3 Multi-dimensional indexes and storage layouts. One of the
most exciting directions for learned index structures are techniques
to index multi-dimensional data to improve upon index structures
such as R- or KD-trees.With the Flood project [84] we demonstrated
howwe can extend the idea of learned indexes to multi-dimensional
indexes, which outperform alternative general-purpose data struc-
tures by orders of magnitude by automatically adjusting to the
data distribution and workload through models. With Tsunami
[25], we later extended the Flood technique to create the first self-
optimizing in-memory storagemanager, which also takes advantage
of correlation within the data. Interestingly, in order to achieve the
orders-of-magnitude improvement in lookup performance benefits,
both techniques also require optimization of the storage layout;
they both are designed to be clustered indexes rather than being
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used as secondary indexes. Hence, we consider Flood and Tsunami
strongly related to techniques that help to automatically partition
the data based on the workload, such as Schism [17], QD-tree [115],
or MTO [23]. Yet, traditionally automatic data partition algorithms
fall more into the knob tuning category, as they do not fundamen-
tally change the components of the database, whereas Flood and
Tsunami go further and introduce more opportunities for optimiza-
tion (i.e., degrees of freedom) than a traditional system would. In
fact, QD-tree [115] and MTO [23] were explicitly designed to be
used with a traditional data-warehouse database.

3.3 Learned Query Optimization
Query optimization remains one of the most challenging problems
in data management systems. In general, a query optimizer has four
components: (1) a cost model, (2) a cardinality estimation model, (3)
transformation rules, and (4) a search strategy. As the name implies,
the cost model’s goal is to estimate the cost (e.g., latency) for a given
query plan. Here the cost model might depend on the hardware,
the schema, and even the state of the database (e.g., what pages are
in the cache), but is generally independent of the data itself.2 The
cardinality estimation model depends on the data but is otherwise
independent of the workload. The transformation rules and search
strategy are independent of either. The rules define what rewrites
are possible and how they can be combined, whereas the search
strategy determines the way the “best” plan out of all possible plans
is found.

Given the importance and the complexity of the problem, there
have been several attempts to build “learned” query optimizers,
most often focusing on the cardinality estimation component. For
example, one of the earliest applications of learning to improve
the cardinality estimate model was Leo [105], which used succes-
sive runs of similar queries to adjust histogram estimators. More
recent approaches [53, 63, 93, 106, 112] have used deep learning to
learn cardinality estimations or query costs in a supervised fashion.
Other work [7–9] present a query-driven approach to cardinality
estimation, using techniques such as self-organizing maps. Unsu-
pervised approaches, based on Monte Carlo integration, have also
been proposed [116, 117]. In [43], the authors present a scheme
called CRN for estimating cardinalities via query containment rates.

While all of these works demonstrate improved cardinality esti-
mation accuracy (potentially useful in its own right, as in [7–9]),
they do not provide evidence that these improvements lead to bet-
ter query plans. In fact, it is possible that while the cardinality
estimation accuracy (or Q-Error) improves overall, queries become
slower [86, 87]. Ortiz et al. [91] showed that certain learned cardi-
nality estimation techniques may improve mean performance on
certain data sets, but tail latency is not evaluated.

More recent work has tried to address this shortcoming by train-
ing the cardinality estimation model while more fully considering
its impact on the cost model. For example, Negi et al. [88] showed
how prioritizing training on cardinality estimations that have a
large impact on query performance can improve estimation mod-
els. Furthermore, [57, 77] showed that, with sufficient training,
reinforcement learning-based approaches could find plans with

2This might not be true in cases where the data has a lot of variable length attributes
and/or requires complex UDFs.

lower costs (according to the PostgreSQL optimizer). In [86, 87],
we proposed a new loss function, Flow-Loss, that approximates
the optimizer’s cost model, which it uses to optimize explicitly for
better query plans. At the heart of Flow-Loss is a reduction of query
optimization to a flow routing problem on a certain “plan graph”
in which different paths correspond to different query plans. The
result shows that, across different architectures and databases, a
model trained with Flow-Loss improves the plan costs and query
runtimes despite having worse estimation accuracy than a model
trained with Q-Error.

With Neo [79], we took this even further and used reinforcement
learning to directly improve the query latency by addressing cardi-
nality estimation, cost models, and the search strategy all at once
(Neo still assumes a given set of transformation rules). Thus, Neo
is one if not the first end-to-end learned query optimizer. It uses
a value network based on tree convolution, employs row vectors
to represent query predicates, and applies learning from demon-
stration to shorten Neo’s training time. As a result, Neo could learn
optimization strategies that were competitive with commercial
systems after 24 hours of training. However, none of these tech-
niques are capable of handling changes in schema, data, or query
workload, and database administrators expressed concerns about
robustness and how much they could trust a completely learned
query optimizer.

Motivated by these difficulties, we more recently introduced Bao
(the Bandit optimizer) [76]. Bao takes advantage of the wisdom built
into existing query optimizers by providing per-query optimization
hints. The core idea behind Bao is that we do not try to learn an
optimizer from scratch: instead, we take an existing optimizer (e.g.,
PostgreSQL’s optimizer) and learn when to activate (or deactivate)
some of its features on a query-by-query basis. In other words,
Bao seeks to build learned components on top of existing query
optimizers in order to enhance query optimization, rather than
replacing or discarding traditional query optimizers altogether. This
also allows Bao to be used as an advisor for a database administrator.
In [76], we showed that Bao can offer both reduced costs and better
performance compared with commercial systems deployed in the
cloud.We later informally extended the evaluation in [74] to include
Vertica, Azure Synapse, and Redshift in the evaluation, showing cost
reductions of up to 25%. Finally, in [85], together with Microsoft,
we evaluated the benefits of Bao for Big Data workloads, showing
up to 90% runtime latency savings for complex queries.

3.4 Other Algorithms
Machine learning techniques have been applied to a wide vari-
ety of other problems relevant for database systems. For example,
reinforcement-learning-based techniques were proposed for (job)
scheduling [72, 73, 103], garbage collection [52], and managing
elastic clusters [65, 92] (see also [71, 102]). Similarly, oracle-based
algorithms were suggested for sorting [58], caching [68], count-min
sketching [47], data compression [12, 51], and optimizing the trans-
action execution policy [95], among many other problems. While
there are already too many learning-enhanced algorithms to list
here, the whole area is also evolving quickly. Just to mention two in-
teresting projects out of DSAIL: Vaidya et al. recently proposed the
use of a CDF model to improve the space efficiency of range filters
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(currently under submission), and Kristo et al. recently proposed
a new LearnedSort algorithm [59], which is more robust against
duplicates and outperforms the best sorting algorithms we were
able to find by up to 30% in sorting throughput on a wide range of
data sets, even when the model training time is included.

3.5 Future Research Opportunities
The entire field of instance-optimized or learning-enhanced algo-
rithms is evolving extremely rapidly across various communities.
For example, the idea of the learned index alone has also been ap-
plied to other areas, including network package classification [99],
DNA sequence search [46], longest prefix matches [44], and in-
verted indexes [90, 114], and follow-on has appeared in database
(e.g., VLDB[113]), systems (e.g., OSDI [111]), machine learning (e.g.,
NeurIPS [19]), networking (e.g., SIGCOMM [99]), and theory (e.g.,
Theor. Comput. Sci. [34]) conferences. For an overview the reader
is referred to a recent tutorials [6, 49, 70], surveys [35], and our
collection of papers [28]. However, a lot of interesting research
questions and opportunities remain and it will be exciting to see
how the entire field of ML for Systems will develop.

In the case of learned indexes, there is a range of open opportuni-
ties for study. For example, while [1, 18] show that learned indexes
can improve the performance of large-scale disk-based systems, it
would be exciting to see to what degree learned indexes would im-
pact an in-memory OLTP and HTAP system or embedded database,
like DuckDB [96]. Integrating a learned index into those systems
would also require investigation into more advanced recovery tech-
niques (e.g., is it possible to simplify ARIES [83]) and techniques to
efficiently support range-locks using learned indexes).

As [75] shows, learned indexes are not beneficial for all data sets.
In particular, if the data set contains a lot of duplicates, traditional
indexes might be better. Similarly, some models and training meth-
ods are not robust against outliers. Hence, an interesting research
direction is to make learned indexes more robust by considering
outliers and duplicates more closely. Here, CDFShop [78] already
takes a step in the right direction, but many more improvements
are possible. Especially interesting is how to better combine models
with the traditional techniques used in Tries and B-trees and explore
the implications. Similarly, it would be interesting to explore new
end-to-end learning techniques. Current approaches either build
an index bottom-up or top-down, often considering the placement
of data as a secondary optimization goal. However, if we could
consider it as a holistic optimization problem, that co-optimizes
the model structure, model types, and data placement, it can be
assumed that we could achieve faster lookup times while further
reducing the index size.

Yet, to us the most exciting directions are applications of learned
indexes in related fields and for multi-dimensional data. For exam-
ple, our latest results on LISA [46] build on and extend FM-index,
which is the state-of-the-art technique widely deployed in genomics
tools. Experiments with human, animal, and plant genome data sets
indicate that LISA achieves up to 2.2𝑥 and 10.8𝑥 speedups over the
state-of-the-art FM-index-based implementations for exact search
and super-maximal exact match (SMEM) search, respectively. Sim-
ilarly, we believe that we are just at the beginning of rethinking

the way we build multi-dimensional indexes and co-optimize in-
dex structures with storage layouts for an entire workload with
complex access paths.

In the same respect, there are myriads of open research chal-
lenges for learned query optimizers. While Bao [76] provides a
practical approach to improving existing query optimizers, it adds
significant query optimization overhead. For long-running ana-
lytical queries the overhead often plays no important role, but it
certainly would for short-running queries, as found in transactional
workloads. On the other hand, end-to-end learned query optimizers,
such as Neo, still suffer from the long training time and even small
changes in the schema (or index configuration) might require the
entire model to be retrained. A promising recent result by Hilprecht
and Binnig [45] proposes the use of zero-shot learning to improve
upon Neo [79]. This represents a first step toward making it pos-
sible to transfer a learned model from one database configuration
to another. However, the approach still has severe limitations, as
the cost model might still remember cardinality corrections and/or
might not be able to correct wrong cardinalities, depending on the
amount of training data and setup. Moreover, database vendors
usually require that query optimizers are robust rather than having
the best possible performance. For example, a query that ran fast
and suddenly runs significantly slower might result in customer
complaints, regardless of performance. One interesting idea in that
regard is to develop techniques that keep the query latency an-
chored at some reference point, while passing on resource savings
to the cloud provider. Many other related research challenges re-
main, including how to reduce query optimization times or how to
better balance exploration and exploitation in a production setting,
model management, explainability, etc.

Obviously, this only outlines a few selected remaining research
challenges and even does not touch upon other components, such
as scheduling, distributed query processing, among other areas.

4 INSTANCE-OPTIMIZED SYSTEMS
The previous section described how different components of a data-
base management system can be instance-optimized to ultimately
provide better performance. However, it remains an open question
how different learned components can actually be combined to
build an entire instance-optimized system. This is the question we
are exploring with SageDB [54]. While it is still too early to draw
any conclusions about the expected performance benefits on actual
applications and analytic workloads, initial results using real-world
workload traces on our current prototype are promising. Moreover,
they have already revealed some interesting trade-offs and insights
into how different learned components might affect each other.
The following is a brief update on the development of SageDB, as
well as a selected set of early lessons learned and future research
opportunities.

4.1 SageDB
When we started to develop SageDB, the first question we had to
address was if we really wanted to build a database system from
scratch. While building an entire system from the ground up would
give us the greatest flexibility, it would also increase the time before
the system would become stable and feature complete enough that
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Figure 1: Preliminary SageDB results on two workloads. Results include block-layout optimization and automatic replica-
tion, encoding, and partial materialization. However, the workload does NOT include any joins, nor does the system support
(yet) learned query optimization, multi-dimensional indexes, or memory hierarchy optimizations. Hence, there exists a lot of
opportunity for further optimizations.

other users would be willing to try it out. At the same time, we
considered the prospect of early deployments essential to this line
of work.

We thus decided to build SageDB as an accelerator for Post-
greSQL. The core idea is that we leverage the concept of foreign
data wrappers in PostgreSQL, which allows SageDB to take control
of managing the data of one or more tables. Further, external data
wrappers allow us to push down queries, even those containing
joins, to SageDB without changing the code of PostgreSQL. That
way we were able to build a system that not only is fully com-
patible to PostgreSQL but also provides an easier migration path
for existing PostgreSQL deployments. Users are able to explicitly
define which tables should be managed by SageDB vs natively by
PostgreSQL. At the same time, the loose connection between Post-
greSQL and SageDB allows us to build SageDB over time as part of
PostgreSQL until it is ready to stand on its own. The main down-
side is that we will have the PostgreSQL and foreign data wrapper
overhead, forcing us to focus on long-running analytical workloads
for the moment.

As of July 2021, we have a first prototype of PostgreSQL with
the SageDB accelerator running, which is able to instance-optimize
the data layout of a single table in a multi-dimensional fashion, in-
cluding partial materialization, replication, and encoding selection.
Moreoever, SageDB uses the separation of storage and compute
that we proposed in 2008 [11] for cloud database systems and is
now commonly found in commercial offerings like Snowflake. That
is, the data is stored in large blocks on cloud storage services like
S3 and brought into a SageDB instance on demand. This allows
SageDB to actually work with data, which goes beyond the capacity
of a single compute node, and it is possible to have several SageDB
instances running on the same data for scalability.3 However, in
contrast to current traditional cloud database systems, SageDB au-
tomatically adjusts how the data is stored, indexed, and replicated
in blocks based on the workload and data.

Moreover, the system uses automatically partial materialization,
a concept similar to materialized views but on a finer granularity.
While materialized views “cache” the entire query result, SageDB’s
partial materialization technique is able to build pre-aggregates,
such as running sums, aggregations, and counts, on a block or at an
even more fine-grained level. Then at run-time SageDB determines
for each query what partial materialized results can be used to avoid

3Note that our current prototype does not yet allow a query to be processed in parallel
by several machines. We do plan to add distributed query processing in the future.

scanning certain parts of the data to speed up the query processing
time. Obviously, the benefits of partial materialization care highly
dependent on the workload, available amount of memory, and the
amount of work required to keep them up to date. This is exactly
where instance-optimization comes into play.

Similarly, SageDB provides support to (partial) replicate and reor-
ganize each replica for performance and select the most appropriate
compression technique for the data based on the data and workload.
However, the current prototype does not yet integrate a learned
query optimizer; neither does it currently support joins, nor does
it perform automatic optimization for the entire storage hierarchy
(Cloud storage, SSD, NVM, vs Memory): all these are features on
our roadmap.

Figure 1 shows some preliminary results of SageDB against Post-
greSQL and a commercial cloud datawarehouse (Cloud DB X) for
two workloads. The workloads are derived from real-world data
and traces, but focus entirely on queries over a single table. The
Bitcoin dataset had a size of 500GB; the datewarehouse dataset was
1TB in size. The server in this experiment had 32 vCPUs and 244
GB of RAM. All SageDB data was stored on S3, whereas the Cloud
DB used their own storage, and PostgreSQL local storage. We also
tuned both systems: first, following standard best-practice tuning
technique (standard tuning), and second, more aggressively, using
the workload including creating materialized views and aggressive
indexing. In the case of the commercial cloud database we also had
a professional tuning expert from the cloud vendor help us tune
the system. While our latest prototype already integrates multi-
dimensional indexes and storage, the results here do not include
those optimizations yet.

As Figure 1 shows, SageDB provides speed-ups (latency) of up
to 8x compared to the expert tuned cloud-database and up to two
orders of magnitude improvement compared to PostgreSQL stan-
dard tuned. SageDB achieves these speed-ups by using significantly
less storage overhead compared to the expert-tuned configurations.
Moreover, in the case of SageDB, no administrator was involved
and the system self-optimized the layout, encoding, partial materi-
alization, and replication based on the workload, saving significant
human effort. Finally, we believe these numbers are only a glance
into what might be possible and we actually expect bigger speed-
ups as soon as SageDB fully supports multi-dimensional indexes
and storage layouts as well as joins and partial materialization over
joins.
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4.2 Lessons Learned
While we are still in the process of fully building SageDB, we have
already learned several valuable lessons from our journey. In the
following, we highlight some of them.

Lesson 1: Taking a holistic approach is important. Tradi-
tionally, systems components are developed in isolation. This com-
partmentalization helps to reduce the complexity and allows smaller
teams to work in parallel. However, it often also yields suboptimal
performance, as the components tend to make local decisions rather
than global ones. For example, it is tempting to implement a compo-
nent to store and compress the data and another to index the data.
However, from our work on multi-dimensional indexes [25, 84] we
already know that it is best to co-optimize both together.

Lesson 2: There are exciting new opportunities for cross-
optimization. Interestingly, we found several new optimizations
we hadn’t considered before we started the SageDB project. For
example, traditionally a database would use some partitioning strat-
egy to split the data into blocks or pages and then build a caching
layer on top of it. However, if the data and workload can be fore-
casted, it is also possible to determine which subsets of the data
should be always in the cache. This in turn allows us to optimize
the storage layout in a way that is more beneficial for caching. In
fact, it even allows us to implement the cache entirely differently.
Especially if combined with other optimizations such as partial
materialization and multi-dimensional in-memory indexes, this can
lead to entirely new data layouts and significant speed-ups.

Lesson 3: More knobs are often better. In general, database
architects tend to minimize the number of tuning parameters. Every
tuning parameter introduces complexity and database administra-
tors already have a hard time tuning them correctly. Hence, the
trend towards “knobless” systems. In many cases “knobless” sys-
tems are actually just systems where things that obviously should
be knobs have a fixed value that cannot be modified by the user.
It is easy to equate a system that is “knobless” to one that is au-
tonomous, but we should not take the "easy route" of simply gluing
and hiding knobs—this might make the administration easier, but
it won’t improve system performance.

However, if this complexity doesn’t pose an additional burden on
the administrator, increasing the number of knobs can actually be a
good thing. Additional knobs provide additional degrees of freedom
and more ways to better tune a system for a given workload.

Lesson 4: Start small and revisit often. The complexity of
building an instance-optimized systems is significantly higher than
building a traditional database system. On one hand, we want to
have more knobs; on the other hand, we also don’t want to have
abstracted components, which cannot be co-optimized. In addition,
optimizing the system in a timely fashion using techniques like RL
also gets significantly harder as the space of potential optimization
increases. Thus, our approach is to not try to address all possible
optimizations at once, but rather make simplifying assumptions
that we will revisit later. For example, we decided to treat the block-
level data layout optimization separately from the in-memory data
layout optimization, even though ideally we would co-optimize
them.

Lesson 5: Evaluate with real-world workloads.We already
knew from our experience with building instance-optimized compo-
nents that the standard benchmarks, like TPC-H, are actually a bad
way to evaluate any of these components (see also [10]). For exam-
ple, for our Bao and Neo work on query optimization, we observed
that we were not able to achieve meaningful improvements for
TPC-H for any of the commercial database systems. We speculate
that the reason for this is that database vendors make sure that their
query plans for these common workloads are “perfect.” In other
words, the database vendors (manually?) “overfit” their systems
to the benchmarks. Moreover, benchmarks tend to use synthetic
data and workload generators, which do not contain any of the
interesting patterns found in many real-world applications and are
either too easy or sometimes too hard to learn, as they contain too
much randomness. Those are just a few reasons, as outlined in [10],
why standard database benchmarks are not suitable for evaluating
instance-optimized systems. At the same time, getting real-world
data is hard and, to date, we do not have a good solution to the
problem, except our ongoing attempts to get real-world data and
workload traces from industry.

Lesson 6: Robustness will be an issue. Over the course of the
past six months, we had several conversations with cloud vendors
about what it would take to operationalize an instance-optimized
database. One, if not the biggest, concern is robustness and pre-
dictability. In other words, cloud vendors are particularly afraid
that a query will run fast and suddenly slow down. Even more in-
teresting, let’s assume a traditional database runs a complex query
in 100𝑠 and an instance-optimized system runs the same query first
in 5𝑠 but because of re-optimization and the prioritization of other
queries later at 60𝑠 . Even though the entire workload might run
faster after the re-optimization, some cloud vendors would prefer to
have the predictable slower 100𝑠 rather than the variation in latency.
One potential solution to the problem might be to artificially slow
down queries while passing on the resource savings to the cloud
provider. For example, if the reference system has a latency of 100𝑠 ,
the cloud provider might fix the latency at 80𝑠 even though the
query takes only 5𝑠 . However, arguably a 5𝑠 query requires fewer
resources, which would still be beneficial for the cloud provider,
while the user gets a decent but not overwhelming performance
increase. Another alternative technique might be to optimize in a
way that performance degressions are minimized. For example, for
Neo [79] we proposed a weighted loss function, which penalized
performance degressions compared to PostgreSQL.

4.3 Future Work
We are just at the beginning of understanding how instance-optimiz-
ed data management systems should be built and what techniques
are required to do so. Open research questions in that space range
from the right development tools (e.g., how do we efficiently de-
velop systems that have models at the core), debugging (e.g., how do
we debug a system that changes its behavior based on the observed
workload and data), design principles (e.g., how do we reduce the
complexity of building such a system while still being able to do
holistic optimization), benchmarking (e.g., can we build standard-
ized benchmarks for instance-optimized systems [10]), to entirely
new techniques (e.g., the above-mentioned storage optimizations
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for caching). However, if successful, these techniques will provide
an entirely new way to build (database) systems and unleash un-
precedented performance while significantly reducing the cost in
compute and human resources to keep the systems performant
through administrators.
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