
MIT Open Access Articles

Work-Efficient Parallel Algorithms for 
Accurate Floating-Point Prefix Sums

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Fraser, Sean, Xu, Helen and Leiserson, Charles E. 2020. "Work-Efficient Parallel 
Algorithms for Accurate Floating-Point Prefix Sums." 2020 IEEE High Performance Extreme 
Computing Conference, HPEC 2020.

As Published: 10.1109/HPEC43674.2020.9286240

Publisher: Institute of Electrical and Electronics Engineers (IEEE)

Persistent URL: https://hdl.handle.net/1721.1/143740

Version: Author's final manuscript: final author's manuscript post peer review, without 
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/143740
http://creativecommons.org/licenses/by-nc-sa/4.0/


Work-Efficient Parallel Algorithms
for Accurate Floating-Point Prefix Sums

Sean Fraser
Computer Science and

Artificial Intelligence Laboratory
MIT

Cambridge, MA
sfraser@mit.edu

Helen Xu
Computer Science and

Artificial Intelligence Laboratory
MIT

Cambridge, MA
hjxu@mit.edu

Charles E. Leiserson
Computer Science and

Artificial Intelligence Laboratory
MIT

Cambridge, MA
cel@mit.edu

Abstract—Existing work-efficient parallel algorithms for
floating-point prefix sums exhibit either good performance
or good numerical accuracy, but not both. Consequently,
prefix-sum algorithms cannot easily be used in scientific-
computing applications that require both high performance
and accuracy. We have designed and implemented two new
algorithms, called CAST_BLK and PAIR_BLK, whose accuracy
is significantly higher than that of the high-performing
prefix-sum algorithm from the Problem Based Benchmark
Suite, while running with comparable performance on mod-
ern multicore machines. Specifically, the root mean squared
error of the PBBS code on a large array of uniformly
distributed 64-bit floating-point numbers is 8 times higher
than that of CAST_BLK and 5.8 times higher than that
of PAIR_BLK. These two codes employ the PBBS three-
stage strategy for performance, but they are designed to
achieve high accuracy, both theoretically and in practice. A
vectorization enhancement to these two scalar codes trades
off a small amount of accuracy to match or outperform
the PBBS code while still maintaining lower error.

Index Terms—floating-point arithmetic, parallel algo-
rithms, parallelism, prefix sums, span, summation, sum-
depth, vectorization, work.

I. INTRODUCTION

The prefix sum (also known as scan [2]) is a fundamen-
tal algorithmic building block for parallel computing, and
consequently, it is often targeted for efficient implementa-
tion [2], [11]. In this paper, we shall study floating-point
prefix sums, which underlie applications in scientific
computing including summed-area table generation [7]
and the fast multipole method [4]. For many floating-
point calculations, numerical accuracy is as important,
or often more important, than absolute performance. In

This research was sponsored in part by NSF Grant 1533644 and by
the United States Air Force Research Laboratory and was accomplished
under Cooperative Agreement Number FA8750-19-2-1000. The views
and conclusions contained in this document are those of the authors
and should not be interpreted as representing the official policies,
either expressed or implied, of the United States Air Force or the
U.S. Government. The U.S. Government is authorized to reproduce
and distribute reprints for Government purposes notwithstanding any
copyright notation herein.

the summed-area table problem, for example, practition-
ers sacrifice performance for accuracy [26]. Although
floating-point prefix sums require both accuracy and
high performance [8], traditional summation methods are
usually optimized for performance. At the other extreme,
compensated-summation algorithms significantly reduce
round-off error by accounting for its propagation, but they
tend to be unreasonably computationally expensive [1],
[9], [14]. This paper presents algorithms for computing
prefix sums of floating-point values that offer both
accuracy and performance.

The prefix-sums operation computes the “running sum”
of an array of 𝑛 numbers.

Definition 1 (Prefix-sums operation): The prefix-
sums operation takes an array 𝑥 = [𝑥0, 𝑥1, . . . , 𝑥𝑛−1]
of 𝑛 elements and returns the “running sum” 𝑦 =
[𝑦0, 𝑦1, . . . , 𝑦𝑛−1] , where

𝑦𝑘 =

{︂
𝑥0 if 𝑘 = 0,
𝑥𝑘 + 𝑦𝑘−1 if 𝑘 ≥ 1 .

(1)

Although our codes handle arbitrary 𝑛, to simplify our
analysis, we shall generally assume that 𝑛 is an exact
power of 2.

Three fundamental prefix-sum algorithms, illustrated
in Figure 1, have appeared in the literature. The naive
FWD_SCAN algorithm directly implements the recursion
in (1) and is illustrated in Figure 1(a). Although FWD_SCAN
is serial and has low accuracy, it runs fast in practice,
because it performs only 𝑛−1 floating-point additions, the
minimum possible, and it takes advantage of architectural
features, such as prefetching [25]. In contrast, the canon-
ical pairwise prefix sum, shown in Figure 1(b), which
we will call PAIR_SCAN, is parallelizable and achieves
better accuracy, but it requires 2𝑛− lg 𝑛− 2 additions, a
constant-factor more overhead [2]. Moreover, its structure
matches modern architectural features less well. Finally,
the Kogge-Stone algorithm [15], shown in Figure 1(c),
which we will call KS_SCAN (also described by Hillis and
Steele [10]), achieves even higher accuracy than pairwise
ordering requiring 𝑛 lg 𝑛− 𝑛+ 1 = Θ(𝑛 lg 𝑛) additions.

1



+

+

+

+

+

+

+

+ + + +

+

+

+

+

+++

+ + + + + + +

+ + + + + +

+ + + +

(a) (b) (c)
x0 x1 x2 x3 x4 x5 x6 x7

y0 y1 y2 y3 y4 y5 y6 y7

x0 x1 x2 x3 x4 x5 x6 x7

y0 y1 y2 y3 y4 y5 y6 y7

x0 x1 x2 x3 x4 x5 x6 x7

y0 y1 y2 y3 y4 y5 y6 y7

Figure 1: The canonical prefix-sum algorithms: (a) FWD_SCAN,
(b) PAIR_SCAN, and (c) KS_SCAN. Each circle with a plus sign
represents an addition operation taking as inputs two values
below and outputting their sum above.

Prefix sums are so ubiquitous that they have been in-
cluded as primitives in some languages such as C++ [24],
and more recently have been considered as a primitive for
GPU computations in CUDA [6]. The fastest prefix sum
on a CPU for large inputs is implemented in the Problem-
Based Benchmark Suite (PBBS) Library [23]. The scan
in PBBS, which we will call FWD_BLK due to its structure,
achieves good performance but was not optimized for ac-
curacy. The performance of the compensated-summation
algorithm, which we call COMP_SCAN, is sufficiently slow
that it is rarely used in practice, even though it has great
accuracy (although COMP_SCAN is a useful benchmark
for accuracy). In this paper, we introduce prefix-sum
algorithms with comparable performance to FWD_BLK but
with significantly better accuracy, although generally not
attaining the levels of COMP_SCAN.

Analysis strategy

We shall analyze our prefix-sum algorithms using the
work-span model [3, Chapter 27] for performance and the
“sum-depth” which provides a useful proxy for accuracy.
The work is the total time to execute the entire algorithm
on a given input on one processor. We say that a parallel
algorithm is (asymptotically) work-efficient if its work
is within a constant factor of the work of the best serial
algorithm for the problem. The span1 is the longest serial
chain of dependencies in the computation (or the runtime
on an ideal computer with no scheduling overhead and
an infinite number of processors). The parallelism of an
algorithm on a given input is the work divided by the
span. Given a summation algorithm (e.g. reduction, prefix
sum), the sum-depth is the longest chain of additions
along any path from the inputs to the output(s). The
worst-case backward error bound of a sum calculation is
proportional to its sum-depth [1], [5], [8].

We can compare the three algorithms in terms of
work, span, parallelism, and sum-depth in a task-parallel
model, such as that which Cilk [12] provides. We gener-
ally analyze work, span, and parallelism asymptotically,
because constant factors in these measures are often

1Sometimes called critical-path length or computational depth.

dominated by machine overheads. We express the sum-
depth exactly, however, because accuracy is not influenced
by machine performance. FWD_SCAN requires Θ(𝑛) work,
Θ(𝑛) span, Θ(1) parallelism, and 𝑛 − 1 sum-depth.
PAIR_SCAN can be implemented by a divide-and-conquer
strategy involving Θ(𝑛) work, Θ(lg 𝑛) span, Θ(𝑛/lg 𝑛)
parallelism, and 2 lg 𝑛− 2 sum-depth (assuming, as we
have mentioned, that 𝑛 is an exact power of 2). Thus,
it is work-efficient, as it is within a factor of 2 of the
best-possible implementation. KS_SCAN requires Θ(𝑛 lg 𝑛)
work, Θ(𝑙𝑔2𝑛) span, Θ(𝑛/lg 𝑛) parallelism, and lg 𝑛 sum-
depth. The reason that the span of KS_SCAN is Θ(lg2 𝑛)
rather than Θ(lg 𝑛) is that its implementation involves
Θ(lg 𝑛) nested parallel loops over 𝑛 iterations, and in the
Cilk model, each parallel loop has span Θ(lg 𝑛), resulting
in a total span of Θ(lg2 𝑛). The costs of these parallel
prefix-sum algorithms are summarized in Table I.

When it comes to engineering a good parallel al-
gorithm for prefix sum, constants matter. The parallel
PAIR_SCAN algorithm, which has much better sum-depth
(and hence accuracy) than FWD_SCAN, performs only
double the number of floating-point additions and it
can perform many of those operations in parallel. But
a naive implementation of PAIR_SCAN is slower than
FWD_SCAN in practice, because there are many other
considerations, such as coping with limited memory
bandwidth and processor-pipeline overheads. The PBBS
implementation of FWD_BLK manages to overcome the
performance limitations of the serial FWD_SCAN algorithm,
and its sum-depth is a bit better, but it was not designed
to minimize numerical round-off, making it unsuitable
for use in numerical codes that require high accuracy.

Contributions

Our main contributions are two new algorithm imple-
mentations for floating-point prefix sum, called CAST_BLK
and PAIR_BLK. These two algorithms achieve perfor-
mance by adopting PBBS’s three-stage blocked strategy,
but within the stages, they are designed to be much more
accurate, both in theory and in practice. Both CAST_BLK
and PAIR_BLK are theoretically work-efficient and have
small sum-depth. In practice, they both run fast on a
modern multicore computer and exhibit high accuracy,
achieving a good balance between the two concerns.

Figure 2 summarizes the accuracy and performance of
the two algorithms. As shown in the figure, CAST_BLK and
PAIR_BLK dominate FWD_BLK on medium-sized inputs.
On large inputs (Figure 2(c)), FWD_BLK exhibits the
best performance, but CAST_BLK and PAIR_BLK perform
competitively and are much more accurate.

To be specific, our contributions are as follows:
∙ The design and Cilk [12] implementation of two low-

sum-depth, high-performance algorithms for prefix
sums, called CAST_BLK and PAIR_BLK.

2



Figure 2: A comparison of the numerical accuracy and performance of PAIR_BLK and CAST_BLK with five other prefix-sum
algorithm implementations. All algorithms were run on three different input sizes of 64-bit floating-point values (doubles)
uniformly distributed on the interval [0, 1] using the multicore computer described in Section IV. The horizontal axis in each
graph shows the ratio of the running time of each algorithm to the naive FWD_SCAN algorithm (right is better). The vertical axis
shows the reciprocal root mean square relative error of the output (up is better).

∙ An experimental study of CAST_BLK and PAIR_BLK
and five other prefix-sum algorithms that demon-
strates that high performance and numerical accuracy
can be achieved simultaneously.

∙ A vectorization enhancement to CAST_BLK, called
CAST_BLK_SIMD, and a corresponding vectorization
enhancement to PAIR_BLK, called PAIR_BLK_SIMD,
which trades off a small amount of accuracy for
improvements in performance, especially for small
input sizes.

Outline

The rest of the paper is organized as follows. Section II
provides a taxonomy of building blocks for prefix sum
algorithms that we will use to exactly specify the more
complicated optimized prefix sums in this paper. Sec-
tion III describes and analyzes CAST_BLK and PAIR_BLK.
Section IV presents an experimental evaluation of prefix-
sum algorithms. Section V describes how to further
optimize the two prefix-sum algorithms with vectorization.
Finally, we provide concluding remarks in Section VI.

II. CHARACTERIZING PREFIX-SUM ALGORITHMS

In this section we define building blocks for prefix
sums in order to organize and specify more complicated
algorithms in later sections. The building blocks are com-
posed of the summation kernel (either a scan or reduce)
and the ordering that it follows. As described in Section I,
scan computations can have forward, pairwise, or Kogge-
Stone orderings. Reductions can also have a forward or
pairwise ordering.

We will use S and R to denote scans and reductions,
respectively, and prepend them with f, p, or k for forward,
pairwise, or Kogge-Stone, respectively, to specify an
ordering. For example, the naive forward scan FWD_SCAN
is exactly the building block fS.

Prefix sums in stages

More complex blocked algorithms such as FWD_BLK
may compose these primitives sequentially in stages
by dividing the input into blocks and running kernels
on each block in parallel. A blocked scan may run a
different summation algorithm in each stage, or even
a broadcast (denoted by C). Blocking coarsens parallel
implementations by processing the blocks in parallel but
doing the work of each block in serial. Furthermore,
blocking decreases the sum-depth by decreasing the
length of the longest chain of additions.

We use the building blocks to specify stages of
algorithms by listing the primitive in each stage. For
example, FWD_BLK divides the input into blocks and
executes in three stages. In the first stage, it runs a
forward reduce on each block. In the second stage, it
runs FWD_SCAN on the results of the first stage. In the
third stage, it runs FWD_SCAN to propagate the results of
the the second stage to each block. Therefore, FWD_BLK
is exactly specified with the building blocks fRfSfS.

III. LOW SUM-DEPTH PREFIX SUMS

In this section we will describe CAST_BLK and
PAIR_BLK, two new blocked prefix-sum algorithms opti-
mized for low sum-depth as well as for performance. We
illustrate the difference between CAST_BLK and PAIR_BLK
in Figure 3, specify them according to the building blocks
in Section II and summarize the theoretical bounds on
all discussed algorithms in Table I.

Reducing sum-depth via broadcast

The first algorithm, which we will call CAST_BLK,
reduces the sum-depth by replacing one of the summation
stages in FWD_BLK with a broadcast. Specifically, it
replaces the reduction in stage 1 and the forward scan

3



1

FWD_SCAN

+ + +

FWD_SCAN

(a) FWD_BLK
forward reduce

PAIR_SCAN

+ + +

CAST_BLK

(c) PAIR_BLK
pairwise reduce

(b) CAST_BLK

PAIR_SCAN

broadcast

CAST_BLK

2

3

Figure 3: Blocked prefix-sum algorithms in stages.

in stage 2 with the PAIR_SCAN subroutine. In order
to compute the prefix sum, CAST_BLK only needs to
broadcast the end of each block to every entry in the next
block. In our implementation of CAST_BLK, we replace
stage 1 recursively with a second level of blocking and
run CAST_BLK again, which reduces the sum-depth and
does not affect the asymptotic work and span.

Analysis: CAST_BLK is work-efficient and achieves
lower span and sum-depth than FWD_BLK. Given block
sizes 𝐵,𝐵′ for the first and second level of blocking
(respectively), CAST_BLK has Θ(lg 𝑛) span and 2 lg 𝑛− 4
sum-depth. We omit the proofs of the theoretical bounds
for space, but they are all generated by aggregating the
bounds on the building blocks from Table I.

Pairwise summation

The next algorithm, which we will call PAIR_BLK,
replaces the forward summation subroutines in FWD_BLK
with low sum-depth prefix sums. PAIR_BLK also divides
the input into blocks of size 𝐵 and proceeds in stages.
Specifically, it runs a pairwise reduction in the first stage
and PAIR_SCAN in the second stage. The last stage runs
CAST_BLK on blocks of size 𝐵′ < 𝐵.

The PAIR_BLK algorithm can be parallelized block-
wise in the same way as FWD_BLK.

Analysis: PAIR_BLK is work-efficient and achieves
lower sum-depth than FWD_BLK. Given a first-level block
size 𝐵, PAIR_BLK has Θ(lg 𝑛) span and 2 lg 𝑛+lg𝐵−5
sum-depth.

IV. EVALUATION

In this section we present an experimental evaluation
of prefix sum algorithms on a CPU in terms of both
performance and accuracy. As we will see, CAST_BLK and
PAIR_BLK achieve competitive performance with FWD_BLK
but are up to an order of magnitude more accurate.

Experimental setup

We used a general-purpose multicore from MIT
Supercloud [20] with 20 physical cores (with 2-way
hyperthreading) and 2 Intel Xeon Gold 6248 @ 2.50GHz
processors.

We implemented all algorithms in C++ using Cilk [12]
for fork-join parallelism. We used the Tapir/LLVM [22]

Figure 4: A comparison of the performance of PAIR_BLK and
CAST_BLK with five other prefix-sum algorithms implementa-
tions on uniformly distributed doubles on the interval [0, 1]. On
this plot, up is better.

branch of the LLVM [16], [17] compiler (version 8) with
the -O3 and -march=native flags.

Our data set consists of IEEE754 double-precision2 64-
bit floats randomly generated with the Mersenne Twister
19937 generator [19].

For the blocked algorithms, we set 𝐵 = 1024 to match
FWD_BLK for the fairest comparison and set 𝐵′ = 16,
although different block sizes may result in lower sum-
depths or better performance in practice.

Performance

Figure 4 shows the speedup3 obtained for the
different algorithms over serial FWD_SCAN. For small
inputs, PAIR_BLK, CAST_BLK, and FWD_BLK exhibit similar
performance. Since FWD_BLK is optimized for larger
inputs4 where memory bandwidth is the bottleneck, it
performs up to 1.4× better than PAIR_BLK and CAST_BLK.

As shown in Figure 4, the speedup for all parallel
prefix sum algorithms is relatively small compared to the
number of physical cores. This limited scalability is due
to the memory bandwidth because the actual computation
involved in a scan (one addition per element) is small
compared to the cost of data movement. Therefore,
prefix sum algorithms are often memory-bound on CPUs
and can experience performance variability due to data
transfer on large inputs.

Accuracy

We measured the numerical error of the prefix sum
algorithms on doubles under distributions from Higham’s
methodology [8]. Specifically, we drew numbers accord-
ing to Unif(0, 1) (the uniform distribution between 0 and

2The results are the same for single-precision floats given no overflow.
3We measured runtime as the median of 7 trials.
4In these experiments, about 4 million doubles fit in cache.

4



Table I: Prefix-sum algorithms, their descriptions according to the taxonomy in Section II, and their theoretical work, span, and
sum-depth on inputs of size 𝑛 ≥ 4. For blocked algorithms, we denote the block size at the first level of blocking with 𝐵, where
𝐵,𝑛/𝐵 ≥ 4.

Algorithm Description Source Work Span Parallelism Sum-Depth

FWD_SCAN fS [8] Θ(𝑛) Θ(𝑛) Θ(1) 𝑛− 1
PAIR_SCAN pS [2] Θ(𝑛) Θ(lg 𝑛) Θ(𝑛/lg 𝑛) 2 lg 𝑛− 2

KS_SCAN kS [15] Θ(𝑛 lg 𝑛) Θ(lg2 𝑛) Θ(𝑛/lg 𝑛) lg 𝑛
FWD_BLK fRfSfS [23] Θ(𝑛) Θ(𝐵 + 𝑛/𝐵) Θ(𝐵 + 𝑛/𝐵) 2𝐵 + 𝑛/𝐵 + 1

CAST_BLK (pSpSC)pSC [this work] Θ(𝑛) Θ(lg 𝑛) Θ(𝑛/lg 𝑛) 2 lg 𝑛− 4
PAIR_BLK pRpS(pSpSC) [this work] Θ(𝑛) Θ(lg 𝑛) Θ(𝑛/lg 𝑛) 2 lg 𝑛+ lg𝐵 − 5

1), Exp(1) (the exponential distribution with 𝜆 = 1), and
Norm(0, 1) (the standard normal distribution).

Since worst-case floating-point rounding error bounds
tend to be pessimistic, we follow the methodology
described by Higham [8]. We experimentally evaluate
the accuracy of summations as follows:

∙ We use higher-precision floating point values5 [21]
as a reference point to compare relative error.

∙ We draw random inputs from uniform, exponential
and normal distributions.

∙ We use the compensated summation algorithm6

COMP_SCAN [14] as an accuracy benchmark.
∙ We quantify error as the root mean square relative

error.
In floating-point arithmetic, the summation ordering

determines the computed sum. For all 𝑘 = 0, 1, . . . , 𝑛−1,
let 𝑆𝑘 be the real value of the scan at index 𝑘
(𝑆𝑘 =

∑︀𝑘
𝑖=0 𝑥𝑖), and let 𝑆𝑘 be the computed sum.

The relative error of 𝑆𝑘 is defined as 𝐸𝑘 = 𝑆𝑘 − 𝑆𝑘.
Given 𝑛 summation results 𝑆0, . . . , 𝑆𝑛−1 and real values
𝑆0, . . . , 𝑆𝑛−1, the root mean square relative error is as
follows:

RMSE =

(︃
1

𝑛

𝑛−1∑︁
𝑘=0

𝐸2
𝑘

)︃1/2

.

We measure error on the different distributions as the
RMSE. The machine epsilon (𝜖 = 2.22 × 10−16 for
doubles) is an upper bound on the relative error of any
single summation due to rounding [9].

Discussion

As shown in Figure 5, both the CAST_BLK and
PAIR_BLK algorithm exhibit up to 10× more error than
compensated summation. Although the compensated
summation algorithm has the highest accuracy, it is at
about 20× slower than CAST_BLK and PAIR_BLK.

Overall, CAST_BLK and PAIR_BLK are much more
accurate than forward summation-based algorithms such
as FWD_BLK and FWD_SCAN. The CAST_BLK algorithm

5We used 100-digit precision floating-point values via Boost.
6Compensated summation is sometimes called Kahan summation.

achieves up to 8× less error than FWD_BLK and up to
103× less error than FWD_SCAN on large inputs. Similarly,
PAIR_BLK achieves up to 5.8× less error than FWD_BLK
and up to 76× less error than FWD_SCAN. Therefore,
CAST_BLK and PAIR_BLK attain much better accuracy
with comparable performance to FWD_BLK.

V. VECTORIZING PREFIX SUMS

This section describes a vectorized forward scan
algorithm called SCAN_SIMD. We evaluate SCAN_SIMD
as a subroutine in blocked scan algorithms and show
that it strictly improves FWD_BLK. In pairwise blocked
algorithms, vectorization trades off accuracy for improved
performance.

The vectorized prefix-sum subroutine SCAN_SIMD di-
vides the input array into chunks of size vector width 𝑉
(e.g. 256 bits in Intel AVX2 [18]), performs a vectorized
version of KS_SCAN on each chunk, and processes the
chunks serially from left to right. Although KS_SCAN is
not work-efficient, it is well-suited to SIMD operations
because it has high data-level parallelism. Figure 6
contains an example of SCAN_SIMD on one vector. In
general, given a vector width 𝑉 , SCAN_SIMD requires
2 log 𝑉 + 4 vector operations to compute a scan on
one block, while the scalar FWD_SCAN requires 3𝑉 scalar
operations [5].

Evaluation

We implemented SCAN_SIMD with Intel Intrinsics [13]
and use it as a subroutine in FWD_BLK, CAST_BLK,
and PAIR_BLK. We call the resulting algorithms
FWD_BLK_SIMD, CAST_BLK_SIMD, and PAIR_BLK_SIMD,
respectively. All experiments were run on the same setup
from Section IV.

As shown in Figure 7, SCAN_SIMD and FWD_BLK_SIMD
strictly dominate their scalar counterparts FWD_SCAN and
FWD_BLK in both performance and accuracy because
SCAN_SIMD improves the throughput and lowers the sum-
depth over FWD_SCAN. Specifically, SCAN_SIMD is up to
2.2× faster and up to 2.5× more accurate than FWD_SCAN.
Furthermore, FWD_BLK_SIMD is up to 2× faster when

5



Figure 5: A comparison of the numerical error of PAIR_BLK
and CAST_BLK with five other prefix-sum algorithms. On this
plot, down is better.

inputs fit in cache and comparable on larger inputs while
achieving 2× less error than FWD_BLK.

Algorithm description

Vectorizing scans in CAST_BLK and PAIR_BLK trades
off accuracy for performance. CAST_BLK_SIMD and
PAIR_BLK_SIMD are up to 2× faster than FWD_BLK
when inputs fit in the cache, and they are competi-
tive with FWD_BLK when the inputs are large. Finally,

0 0 0 0

1 2 3 4
+

prev_offset = 0
1

1 2 3 4
=

1 2 3 4

0 1 2 3
+

1 3 5 7
= 1

1 3 5 7

0 0 1 3
+

1 3 6 10
= 2

next_offset

2 3

Figure 6: An example of SCAN_SIMD on one vector (𝑉 = 4).
A solid arrow means a vector shift by the number next to it,
additions are vector adds, and a dotted arrow denotes use of
an output at a previous step as input to the next step.

Figure 7: A comparison of the performance and error between
FWD_SCAN, CAST_BLK, PAIR_BLK, and FWD_BLK and their vec-
torized counterparts.

CAST_BLK_SIMD and PAIR_BLK_SIMD are both about 2×
more accurate than FWD_BLK.

VI. CONCLUSION

In scientific computing, floating-point prefix sums
require both high accuracy and performance. We have
introduced two new algorithms, CAST_BLK and PAIR_BLK,
which achieve competitive performance and much better
accuracy than the state-of-the-art CPU parallel scan.
Furthermore, we showed that augmenting parallel-prefix

6



sums with vectorization improves performance. Since
many applications are implemented on CPUs, a faster
and more accurate prefix-sum library for general-purpose
multicores has the potential to speed up a wide variety
of programs while providing numerical precision. We
conclude with an avenue for future research and a brief
discussion of the role of GPUs in computing scans.

A standard practice for enhancing the precision of dot
products and other computations that involve summing
a large number of floating-point values is to maintain
the internal sums with extended precision. The two fast-
and-accurate algorithms we have studied, CAST_BLK and
PAIR_BLK, would seem to fare differently if intermediate
values can be kept with extended precision. The CAST_BLK
algorithm would require the extended precision values
resulting from the first stage to be maintained until they
can be used in the third stage, whereas the PAIR_BLK
algorithm would require only the intermediate stage to
manage extended precision. Consequently, for situations
where extended precision is available, we believe that
PAIR_BLK would likely show a performance advantage
over CAST_BLK, but we leave this study to future research.

What role might GPUs play in fast-and-accurate scans?
After all, GPUs provide considerably more floating-point
capability than does a typical CPU. Unfortunately, for
general-purpose computations, transferring data from a
multicore to an attached GPU accelerator is so slow
that a computation such as a floating-point scan cannot
avail itself of the faster computational capability. GPUs
can effectively perform scans within a GPU computation
(for example, NVIDIA provides such a library [6]). But
since they are unsuitable for performing scans as a
subroutine within a general-purpose program, multicores
need their own fast-and-accurate parallel algorithms, such
as CAST_BLK and PAIR_BLK.

ACKNOWLEDGMENTS

We would like to thank Guy Blelloch of Carnegie
Mellon, Julian Shun of MIT, and Yan Gu of UC Riverside
for providing technical benchmarks used in this work. We
thank Alexandros-Stavros Iliopoulos of MIT for helpful
discussions and feedback. The MIT Supercloud provided
an invaluable environment for our experiments.

REFERENCES

[1] Pierre Blanchard, Nicholas J. Higham, and Theo Mary. A class
of fast and accurate summation algorithms. SIAM Journal on
Scientific Computing, 42(3):A1541–A1557, 2020.

[2] Guy E. Blelloch. Prefix sums and their applications. Technical
Report CMU-CS-90-190, School of Computer Science, Carnegie
Mellon University, November 1990.

[3] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and
Clifford Stein. Introduction to Algorithms. MIT Press, 3rd edition,
2009.

[4] E. D. Demaine, M. L. Demaine, A. Edelman, C. E. Leiserson,
and P. Persson. Building blocks and excluded sums. SIAM News,
38(4):1–5, 2005.

[5] Sean Fraser. Computing included and excluded sums using parallel
prefix. Master’s thesis, Massachusetts Institute of Technology,
2020.

[6] Mark Harris, Shubhabrata Sengupta, and John Owens. Parallel
prefix sum (scan) with CUDA. GPU Gems, 39(39):851–876, 08
2007.

[7] Justin Hensley, Thorsten Scheuermann, Greg Coombe, Montek
Singh, and Anselmo Lastra. Fast summed-area table generation
and its applications. In Computer Graphics Forum, volume 24,
pages 547–555. Wiley Online Library, 2005.

[8] Nicholas J. Higham. The accuracy of floating point summation.
SIAM J. Scientific Computing, 14:783–799, 1993.

[9] Nicholas J. Higham. Accuracy and Stability of Numerical
Algorithms. SIAM, Philadelphia, PA, USA, 2nd edition, 2002.

[10] W. Daniel Hillis and Guy L. Steele, Jr. Data parallel algorithms.
CACM, 29(12):1170–1183, December 1986.

[11] D. Horn. Stream reduction operations for GPGPU applications.
GPU Gems, 2, 01 2005.

[12] Intel Corporation. Intel Cilk Plus Language Specifica-
tion, 2010. Document Number: 324396-001US. Avail-
able at http://software.intel.com/sites/products/cilk-
plus/cilk_plus_language_specification.pdf.

[13] Intel Corporation. Intel Intrinsics Guide. Available
at https://software.intel.com/sites/landingpage/
IntrinsicsGuide/, 2020.

[14] William Kahan. Further remarks on reducing truncation errors.
CACM, 8(1):40, 1965.

[15] Peter M. Kogge and Harold S. Stone. A parallel algorithm for
the efficient solution of a general class of recurrence equations.
IEEE Transactions on Computers, 100(8):786–793, 1973.

[16] Chris Lattner. LLVM: An infrastructure for multi-stage optimiza-
tion. Master’s thesis, Computer Science Dept., University of
Illinois at Urbana-Champaign, Urbana, IL, December 2002.

[17] Chris Lattner and Vikram Adve. LLVM: A compilation framework
for lifelong program analysis & transformation. In International
Symposium on Code Generation and Optimization (CGO), page 75,
Palo Alto, California, March 2004.

[18] Quoc-Thai V Le. How Intel Advanced Vector Extensions 2
improves performance on server applications. Available at https:
//software.intel.com/content/www/us/en/develop/
articles/how-intel-avx2-improves-performance-on-
server-applications.html?language=en, 2014.

[19] Makoto Matsumoto and Takuji Nishimura. Mersenne twister:
a 623-dimensionally equidistributed uniform pseudo-random
number generator. ACM Transactions on Modeling and Computer
Simulation, 8(1):3–30, January 1998.

[20] MIT Supercloud. Available at https://supercloud.mit.edu/,
2020.

[21] Boost Organization. Boost C++ libraries: Multiprecision.
Available at https://www.boost.org/doc/libs/1_66_0/
libs/multiprecision/doc/html/boost_multiprecision/
tut/floats/cpp_bin_float.html, 2020.

[22] Tao B. Schardl, William S. Moses, and Charles E. Leiserson.
Tapir: Embedding fork-join parallelism into LLVM’s intermediate
representation. SIGPLAN Not., 52(8):249–265, January 2017.

[23] Julian Shun, Guy E. Blelloch, Jeremy T. Fineman, Phillip B.
Gibbons, Aapo Kyrola, Harsha Vardhan Simhadri, and Kanat
Tangwongsan. Brief announcement: The Problem Based Bench-
mark Suite. In 24th Annual ACM Symposium on Parallelism in
Algorithms and Architectures (SPAA), page 68–70, New York,
NY, USA, 2012. ACM.

[24] cppreference.com. std::inclusive_scan. Available at https:
//en.cppreference.com/w/cpp/algorithm/inclusive_scan,
2020.

[25] Steven P. Vanderwiel and David J. Lilja. Data prefetch mecha-
nisms. ACM Computing Surveys, 32(2):174–199, 2000.

[26] Gernot Ziegler. Summed area ripmaps. GPU
Technology Conference (talk). Available at https:
//on-demand.gputechconf.com/gtc/2012/presentations/
S0096-Summed-Area-Ripmaps.pdf, 2012.

7


