
MIT Open Access Articles

Refinement driven processing of aggregation Constrained queries

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Vartak, M, Raghavan, V, Rundensteiner, E and Madden, S. 2016. "Refinement driven
processing of aggregation Constrained queries." Advances in Database Technology - EDBT,
2016-March.

As Published: 10.5441/002/edbt.2016.12

Persistent URL: https://hdl.handle.net/1721.1/143768

Version: Final published version: final published article, as it appeared in a journal, conference
proceedings, or other formally published context

Terms of use: Creative Commons Attribution-NonCommercial-NoDerivs License

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/143768
http://creativecommons.org/licenses/by-nc-nd/4.0/

Refinement Driven Processing of Aggregation Constrained
Queries

Manasi Vartak 1,a, Venkatesh Raghavan2,b, Elke Rundensteiner3,c, Samuel Madden4,a

aMassachusetts Institute of Technology, bPivotal Inc., cWorcester Polytechnic Institute
1mvartak@mit.edu, 2vraghavan@pivotal.io, 3rundenst@cs.wpi.edu, 4madden@csail.mit.edu

ABSTRACT
Although existing database systems provide users an efficient means
to select tuples based on attribute criteria, they however provide lit-
tle means to select tuples based on whether they meet aggregate
requirements. For instance, a requirement may be that the cardi-
nality of the query result must be 1000 or the sum of a particular
attribute must be < $5000. In this work, we term such queries
as “Aggregation Constrained Queries” (ACQs). Aggregation con-
strained queries are crucial in many decision support applications
to maintain a product’s competitive edge in this fast moving field of
data processing. The challenge in processing ACQs is the unfamil-
iarity of the underlying data that results in queries being either too
strict or too broad. Due to the lack of support of ACQs, users have
to resort to a frustrating trial-and-error query refinement process. In
this paper, we introduce and define the semantics of ACQs. We pro-
pose a refinement-based approach, called ACQUIRE, to efficiently
process a range of ACQs. Lastly, in our experimental analysis we
demonstrate the superiority of our technique over extensions of ex-
isting algorithms. More specifically, ACQUIRE runs up to 2 orders
of magnitude faster than compared techniques while producing a
2X reduction in the amount of refinement made to the input queries.

1. INTRODUCTION
Databases provide a number of ways to efficiently select tuples

of interest to the user by constraining attributes of individual tuples,
for instance, return tuples that meet the criteria price < $50, join
results between tuples in table A and table B that match on attribute
“id," etc. However, little effort has been focused on a means of se-
lecting tuples based on whether they satisfy aggregate constraints.
For instance, select tuples with average price < $10, number of
tuples = 1000, etc. The ability to apply aggregate constraints along
with constraints on tuples’ individual attribute values is important
in many applications as illustrated below.

• In advertising campaigns (such as Example 1), the budget
restricts the number of users that can be reached [4]; as a re-
sult, the campaign manager must select users based not only
on demographics but also whether the total number of users
(i.e. the COUNT) is within the budget limit.

c©2016, Copyright is with the authors. Published in Proc. 19th Inter-
national Conference on Extending Database Technology (EDBT), March
15-18, 2016 - Bordeaux, France: ISBN 978-3-89318-070-7, on OpenPro-
ceedings.org. Distribution of this paper is permitted under the terms of the
Creative Commons license CC-by-nc-nd 4.0

• In a supply chain application, a requirement on the total num-
ber of parts to be ordered from suppliers translates to a con-
straint on the sum of the number of parts available with each
supplier (Example 2). As a result, queries must place con-
straints not only on part specifications but also the SUM of
the parts available.

• When analyzing large data sets through aggregates [15], users
often want to identify what input tuples produced outliers in
aggregate values (e.g. select patients who had extremely high
average cost). In this case, the user would like to place con-
straints on the AVG aggregate.

Example 1. HighStyle Designers would like to run a Facebook
1 ad campaign to get more users to “like” their page. The cam-
paign budget of $10, 000 will allow HighStyle to reach 1 million
customers. Therefore, when the campaign manager, Alice, selects
target users, she must not only constrain her search based on cus-
tomer demographics but also based on the total number of cus-
tomers who must be reached. This situation thus calls for an “Ag-
gregation Constrained Query” (ACQ).

Figure 1: Facebook Ad Creation Interface: Allows specifying
demographic criteria and view estimate of audience size.

Figure 1 shows the Facebook’s Advertising Interface2 that allows
campaign manager Alice to select target users for her ad. In terms
of SQL, Alice has to run the following query:

Q1: SELECT * FROM Users
WHERE location in (’Boston’, ’New York’,
’Seattle’, ’Miami’, ’Austin’) AND
(gender = ’Women’) AND (25 <= age <= 35)
AND (education = ’CollegeGrad’)

1http://www.facebook.com
2https://www.facebook.com/ads/create/

Series ISSN: 2367-2005 101 10.5441/002/edbt.2016.12

http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2016.12

AND (relationshipStatus = ’Single’)
AND (interests IN {’Retail’, ’Shopping’})

Need for Query Refinement. For Alice’s above query, Face-
book estimates the reach to be 393,980 users, i.e. only 40% of the
required 1 million users. While the results of query Q1 precisely
satisfy Alice’s selection predicates, they are far from meeting her
aggregate constraints. In fact, selection and aggregation constraints
are orthogonal in most cases. As a result, we need to refine various
query predicates in order to meet the aggregate constraints.

Current Approach. In existing systems Alice has to manually
alter her criteria to encompass more users while ensuring that the
semantics of her query are not altered. While some selection cri-
teria (e.g. gender and shopping interest) may be fixed, Alice can
try potentially infinite refinements of her predicates such as target
consumers in additional cities; alter age range; relax relationship
status; or any combination of the above. Repeatedly altering the
original query and having its size estimated is not only inefficient
for the backend, but the process is tedious and frustrating for Alice.

Desired User Experience. A much better user experience can
be provided if Alice was allowed to specify her (1) demographic
criteria (query), and (2) aggregate constraints, and the database en-
gine can then execute variations of the input query such that the
aggregate constraints are met. The output of such a search would
be a set of refined queries that change Q1 as little as possible while
meeting the aggregate constraints (in our case the audience size).
Alice would then simply pick the query that best meets her selec-
tion criteria.

In this paper, we encode ACQs by introducing two SQL key-
words CONSTRAINT and NOREFINE, where CONSTRAINT cap-
tures the aggregate constraint and NOREFINE specifies whether
the predicate should not be refined. The encoded Query Q1 is:

Q1’: SELECT * FROM Users
CONSTRAINT COUNT(*)=1M
WHERE location in (’Boston’, ’New York’,
’Seattle’, ’Miami’, ’Austin’) AND
(gender = ’Women’) NOREFINE AND (25 <=age<=35)
AND (education = ’CollegeGrad’)
AND (relationshipStatus = ’Single’) AND
(interests IN {’Retail’, ’Shopping’}) NOREFINE;

Running Q1’ will automatically generate alternate queries that
produce 1M customers and alter Q1 as little as possible.

Example 2. HybridCars Co. would like to place an order for
100,000 units of a burnished steel part having specific size, whole-
sale price less than $1000, and from suppliers who have a low ac-
count balance. On the TPC-H benchmark, HybridCars runs query
Q2 to find the suppliers with whom to place the order.

Q2: SELECT * FROM supplier, part, partsupp
WHERE (s_suppkey = ps_suppkey) AND
(p_partkey = ps_partkey) AND
(s_acctbal < 2000)
AND (p_retailprice < 1000) AND (p_size = 10)
AND (p_type = ’SMALL BURNISHED STEEL’)

As in Example 1, this situation calls for an ACQ as we would
like to constrain the total number of available parts, i.e. sum of the
number of parts available per supplier (i.e. SUM(ps_availqty)) in
addition the select predicates. We can encode the ACQ as Q2’ to
produce alternate refined queries. As before, the NOREFINE key-
word associated with p_type and p_size indicate that these predi-
cates cannot be altered.

Q2’: SELECT * FROM supplier, part, partsupp
CONSTRAINT SUM(ps_availqty) >= 0.1M
WHERE (s_suppkey = ps_suppkey) NOREFINE AND
(p_partkey = ps_partkey) NOREFINE AND
(p_retailprice < 1000) AND (s_acctbal < 2000)
AND (p_size = 10) NOREFINE AND
(p_type = ’SMALL BURNISHED STEEL’) NOREFINE

Building a system to execute ACQs is challenging because the
number of possible refined queries is exponential in the number
of predicates. Hence an exhaustive search of all possible queries
is prohibitively expensive. Moreover even for aggregates such as
COUNT, finding a query that meets its constraint is an NP-Hard
problem [1]. In this paper, we limit ourselves to ACQs with nu-
merical select and join predicates, and aggregates that satisfy the
optimal substructure property (Section 2). Additionally, we focus
on the problem of expanding predicates to meet constraints, rather
than the inverse problem of shrinking queries returning too many
tuples.

Contributions. We propose a technique to efficiently execute
ACQs and our contributions are summarized as follows:

• We introduce and define semantics of a new class of queries
called an Aggregation Constrained Query (ACQ). These
special purpose queries are of value in real-world applica-
tions and are amenable to clever execution techniques.

• We propose a technique called ACQUIRE to execute ACQs
via query refinement. ACQUIRE auto-generates alternative
refined queries that minimize changes to the original query
while meeting aggregate constraints.

• We combine the building blocks of breadth-first-search and
dynamic programming in a novel way to elegantly and effi-
ciently re-use query results. We call this Incremental Aggre-
gate Computation (Section 5).

• We propose sensible default query refinement scoring and
aggregate error functions. The design principle of ACQUIRE
is general and therefore we allow user defined predicate re-
finement scoring and aggregate error functions. The func-
tions used in this work are merely sensible defaults.

• Our experimental analysis on TPC-H dataset demonstrates
that ACQUIRE consistently out-performs extensions to cur-
rent techniques by up to 2 orders of magnitude. Moreover,
queries recommended by ACQUIRE are on average closer to
the original query by a factor of 2X more than the compared
techniques (Section 8).

2. PRELIMINARIES

2.1 SQL extension for ACQs
We propose to capture ACQs by using two keywords: CON-

STRAINT to describe the aggregate constraint and NOREFINE to
indicate that a predicate should not be refined. By default, we as-
sume that all predicates can be refined.

SELECT * FROM Table1, Table2 ...
CONSTRAINT AGG(attribute) Op X
WHERE Predicate1 AND Predicate2 ...
AND Predicate_i NOREFINE AND Predicate_j
AND ...Predicate_n NOREFINE

102

The aggregate constraint is of the form AGG(attribute) Op
X , where AGG is a standard (COUNT, SUM, MIN, MAX, AVG)
or user defined aggregate function, X is a positive number and Op
is a comparison operator (=,≤, <,≥, and >). In this work, we
focus on the problem of expanding predicates to meet constraints,
rather than the inverse problem of shrinking queries returning too
many tuples, we therefore limit the comparison operation to =,≥
, and >. Henceforth for illustrative purposes only we assume that
the aggregate constraint has an equality condition.

2.2 Query Representation
In this work, we focus on queries with numeric select, project

and join predicates of the form Q = P1 ∧ . . . ∧ Pd, where Pi’s is
a predicates on relations R1. . .Rk. To illustrate consider query Q3
with one select and one join predicate.

Q3: SELECT * FROM A, B
WHERE A.x=B.x AND B.y < 50

For a given query Q, we divide each predicate Pi into two parts:
the predicate function (PiF) and the predicate interval (PiI). PiF

is a monotonic function on attributes of relations R1. . .Rk while
Pi
I denotes the interval of acceptable values forPiF , that is, PiI =

(mini
I ,maxi

I). To illustrate, if the minimum value of B.y is 0,
the predicate (B.y < 50), in Q3 is decomposed into PiF = B.y
and PiI = (0, 50). Range predicates like (10 < B.y < 50) are
rewritten as two one-sided predicates, (B.y > 10) ∧ (B.y < 50).
This enables the refinement of one or both sides of the range pred-
icate. For equi-joins (A.x = B.x) and non-equi joins (2 ∗ A.x
< 3 ∗ B.x), the form of PiI is unchanged; however, PiF takes
the form ∆((Pi

F)1, (Pi
F)2), where (Pi

F)1 and (Pi
F)2 are sep-

arate predicate functions and ∆ is the function measuring distance
between them. Therefore, join predicate A.x = B.x in Q3 is de-
composed into (Pi

F)1 = A.x and (Pi
F)2 = B.x. PiI = (0, 0)

signifies that values of the two functions must match exactly. For
each predicate Pi, we also store a boolean value indicating whether
the predicate can be refined. Recall that ACQ’s contain an aggre-
gate function that specifies the target value of an aggregate over the
output result. We denote the target, or expected, aggregate value as
Aexp and actual aggregate value returned by the query as Aactual.

2.3 Measuring Query Refinement Quality
We define a query refinement score to measure the change that

has been made to the original query to obtain the refined query.
A query Q=(P1 ∧ . . . ∧ Pd) is refined to Q′ by refining one or
more predicates Pi ∈ Q to predicates Pi′ ∈ Q′. The refine-
ment of Q′ along Pi, called the predicate refinement score, de-
noted as PScorei(Q,Q′), is measured as the percent departure of
(Pi
I)
′

from Pi
I (Equation 1). Note that if (Pi

I)min = (Pi
I)max,

PScorei(Q,Q
′) = 0. For equality join predicates, the denomina-

tor is set to 100. Measuring relative change as opposed to absolute
change in predicate intervals, compensates for the differing scales
of query attributes. While percent refinement is the default pred-
icate refinement metric used in this work, a user can override the
metric with custom (monotonic) functions without changes to our
algorithm. By computing the refinement score for each query pred-
icate, a refined queryQ′ can be represented as a d-dimensional vec-
tor of predicate refinement scores, called the predicate refinement
vector or PScore(Q,Q′) (Equation 2).

PScorei(Q,Q
′) =

|(PiI)min − (Pi
I)
′
min|+ |(Pi

I)max − (Pi
I)
′
max|

|(PiI)max − (Pi
I)min|

· 100 (1)

PScore(Q,Q′) = (PScore1(Q,Q′) . . . PScored(Q,Q
′)) (2)

The query refinement score of Q′, denoted by QScore(Q,Q′)
is defined as a monotonic function f : Rd → R used to measure
the magnitude of PScore(Q,Q′). We use the popular weighted
vector p-norms [7] to calculate QScore(Q,Q′). Equation 3 shows
the calculation of QScore(Q,Q′) using the default L1 norm.

L1 : QScore(Q,Q′) =
(d∑
i=1

PScorei(Q,Q
′)
)

(3)

Example 3. Consider the following refinement to Q3.

Q3’: SELECT * FROM A,B
WHERE A.x = B.x AND B.y < 60

The refined query Q3′ expands the range of acceptable values
for B.y from (0, 50) to (0, 60). Therefore, Q3′ is represented as
PScore(Q3, Q3′)= (0, 60−50

50−0
·100) and hasQScore(Q3, Q3′)=20

for the L1 norm.

2.4 Refining Join Predicates
The advantage of representing predicates as functions (Pi

F) and
intervals (Pi

I), and defining refinement as the change in the predi-
cate interval, is that join refinement can be expressed and operated
on in the same way as select predicates. For instance, a query with
PScore(Q3, Q3′′)= (10, 20) indicates that the join predicate in
Q3 has been refined by 10 to become ‖A.x−B.x‖ ≤ 10 and that
theB.y predicate has been refined by 10 units. Thus, the algorithm
can be applied unchanged for select as well as join queries.

2.5 Measuring Aggregate Error
To measure the difference between the expected aggregate value

Aexp and the actual aggregate valueAactual, we use a relative error
measure defined as:

ErrA =
‖Aexp −Aactual‖

Aexp
(4)

This measure is appropriate for aggregates such as COUNT or
AVG; however, a hinge-function that only penalizes errors on one
side is appropriate for SUM, MIN and MAX.

ErrA =

{
(Aexp −Aactual) if Aexp > Aactual

0 otherwise

2.6 Optimal Substructure Property
In this work, we limit ourselves to aggregate functions that ei-

ther (a) have the optimal substructure property (OSP), or (b) can be
broken down into functions that satisfy the OSP. Consider any two
queries Q1 and Q2 such that all the results of query Q2 are also re-
sults of query Q1 (Q1 contains Q2). An aggregate is said to satisfy
the OSP if the value of the aggregate for the results of Q1 can be
computed without re-executing part or whole of the query Q2.

For instance, the COUNT aggregate is said to satisfy the OSP
because given queries Q1 and Q2 as defined above, the value of
COUNT for Q1 can be computed by adding the value of COUNT
for Q2 to the value of COUNT for the query (Q1-Q2). SUM, MIN

103

and MAX similarly satisfy the OSP, and can be addressed by our
technique. AVG, another common aggregate, can be broken down
into two aggregates SUM and COUNT which have the optimal sub-
structure property in turn, and therefore AVG can also be addressed
by our technique. STDDEV, on the other hand, does not satisfy the
OSP because even if the STDDEV for Q2’s results are known, the
results of Q2 must be re-analyzed to compute STDDEV for Q1.

2.7 Problem Definition
Given a query Q and a desired aggregate value Aexp, the prob-

lem of Aggregation Constrained Query Execution consists of
refining Q to produce alternate queries Q′ that produce the aggre-
gate value Aexp while changing Q as little as possible. Formally,
we can state it as follows:

DEFINITION 1. Given database D, query Q, desired aggre-
gate value Aexp, an aggregate error threshold δ, and refinement
threshold γ, ACQ finds a set of refined queries Q’ s.t. (a) the
actual aggregate value for Q’, Aactual, satisfies: ErrA ≤ δ,
and (b) ‖QScore(Q,Qi) − QScoreopt‖ ≤γ, where Qi ∈ Q′,
QScoreopt= min {QScore(Q,Q′j)| ∀ valid query refinements Q′j
s.t. (ErrA ≤ δ)}.

Since the problem of attaining the required aggregate value is
NP-hard, we cannot provide formal guarantees about constraint (a)
in Definition 1. However, as demonstrated in our experiments (Sec-
tion 8), our algorithm ensures that the constraint is met practically
every time. Our proximity-driven refinement technique guarantees
that ACQUIRE will always meet constraint (b) in Definition 1.

We now turn our attention to evaluating these ACQs. As noted
in the introduction, in this paper, our major focus is on queries that
undershoot the aggregate constraint, however, we show in Section
7 how ACQUIRE can be extended to handle queries that overshoot
the constraint. Furthermore, although we use COUNT as the ag-
gregate of choice for all discussions, it is straightforward to support
other aggregates with our technique and we note any changes to the
algorithm that are required for doing so.

3. ACQUIRE: AN OVERVIEW
Given a query, the desired aggregate value, and acceptable re-

sult thresholds, ACQUIRE produces a set of refined queries that
minimize changes to the original query but also satisfy the aggre-
gate constraint. In formulating this set of refined queries, AC-
QUIRE adopts the strategy of Expand and Explore to iteratively
expand the original query and to explore refined queries with
respect to aggregate values. The expand phase ensures that re-
fined queries satisfy the refinement threshold and that queries with
smaller refinements are produced before those with larger refine-
ments. Thus, once ACQUIRE finds a query satisfying the aggregate
constraint, it need not examine queries with larger refinements. The
explore phase on the other hand efficiently computes aggregate
values for refined queries via an incremental aggregate computation
algorithm. We delegate all actual query execution tasks to an evalu-
ation layer, which in this case is Postgres. However, the evaluation
layer is modular and can be replaced with other techniques such
as estimation, and/or sampling. Our incremental aggregate com-
putation algorithm exploits dependencies between refined queries
and the optimal substructure property so that for each query, AC-
QUIRE must only execute a small sub-query and then simply use
our recursive model to combine results from previous queries. To-
gether, these two techniques ensure that once a query Q has been
executed, any query Q’ that contains Q will not have to re-execute
Q. As a result, ACQUIRE can evaluate a large number of refined

queries at a cost that is a fraction of the execution time for a single
query. Figure 2 shows the system architecture described above.

DBMS%(Postgres)%

Expand%

Explore%

Execute%highly%

selec;ve%“Cell%

Query”%

Incrementally%

compute%aggregate%

Iden;fy%new%refined%

queries%to%explore%while%

minimizing%refinement%

If%current%query%

doesn’t%meet%the%

aggregate%constraint,%

expand%further%
2

3

4

5

Input:%Query%Q,%

constraint%Aexp%
Es;mate%Aactual.%%

If%(Aactual!=%Aexp),%

pass%to%ACQUIRE%

1

ACQUIRE(

Figure 2: System Architecture of ACQUIRE

4. PHASE I: EXPAND
As described in the previous section, the Expand phase of AC-

QUIRE is responsible for iteratively generating refined queries that
meet two criteria: (1) they satisfy the proximity threshold, and (2)
their refinement scores (QScore values) are greater or equal to the
scores of previously generated queries.

Q3=(0,0) 1 2 3

1

2

3

y

x

P2 [Y] Refinement

P1 [Join (X)] Refinement

L1-1

L1-2

L1-4

L1-3

L∞-1

L∞-2

L∞-3

Q’3=(0,4)

Figure 3: Refined Space and Generation of Refined Queries

To meet the above query generation goals, ACQUIRE uses an ab-
straction called the Refined Space to represent all refined queries.
Given an original query Q having d predicates, the Refined Space,
denoted henceforth byRS(Q), is a d-dimensional space, where the
origin represents Q and the axes measure individual predicate re-
finement. To illustrate, consider a refined queryQ′ and assume that
the L1 norm is used to compute QScore. Q′ would then be repre-
sented inRS(Q) as (u1, u2, . . . , ud) where ui = (PScorei(Q,Q

′))

∀i = 1, . . . , d, making QScore(Q,Q′) = (
∑d
i=1 ui). Conversely,

every point in the refined space (u1, u2, . . . , ud) corresponds to
some query Q′ with PScorei(Q,Q′) = ui. Therefore, any d-
dimensional hyper-rectangle onRS(Q) also corresponds to a query.

ACQUIRE divides RS(Q) into a multi-dimensional grid with
step-size γ

d
to avoid an exhaustive search of RS(Q) and to stay

within the proximity threshold, as illustrated by Theorem 1. Each
query on the multi-dimensional grid is called a grid query.

104

Theorem 1. Suppose the original query is Q and Qopt is the
optimal query meeting the aggregate constraint and having min-
imum refinement. Let RS(Q) be a multi-dimensional grid with
step-size on each axis equal to γ

d
. Then at least one refined query

Q′ lying on the RS(Q) grid will satisfy the proximity constraint
w.r.t. to Qopt.

Proof: Let Qopt = {u1, u2, . . . , ud} lie in some grid cell G
in RS(Q). Since the refined space grid has step-size γ

d
, any query

Q′ = {u′1, u′2, . . . , u′d} on G satisfies:
|u1p − u′1

p| + |u2p − u′2
p| + . . . + |udp − u′d

p| ≤ γ
d
· d = γ

⇒ |(u1p + u2p + . . .+ ud
p)− (u′1

p + u′2
p + . . .+ u′d

p)| ≤ γ

⇒ |QScore(Qopt, Q)p −QScore(Q′, Q)p| ≤ γ

⇒QScore(Qopt, Q)p −QScore(Q′, Q)p ≤ γ
(assume QScore(Qopt, Q)p ≥QScore(Q′, Q)p)

⇒ (QScore(Qopt, Q) −QScore(Q′, Q)) · (QScore(Qopt, Q)p−1 +
QScore(Qopt, Q)p−2 ·QScore(Q′, Q) + . . .+QScore(Q′, Q)p−1)
≤ γ

⇒(QScore(Qopt, Q)−QScore(Q′, Q)) ≤ γ (γ > 1)

Figure 3 depicts the refined space abstraction for query Q3 as-
suming γ = 10. Since Q3 has two predicates, step-size=5 and
RS(Q3) is a 2-dimensional space with the axes respectively mea-
suring the refinements along the select and join predicates. A re-
fined query like Q3’ having PScore(Q3, Q3′)= (0, 20) is repre-
sented as (0, 4) in RS(Q3).

The second goal of the Expand phase is to generate refined queries
in order of increasing refinement. ACQUIRE achieves this goal by
producing queries close to the origin in RS(Q) before those far
from it. In particular, the Expand phase uses breadth-first search to
generate refined queries in layers where queries in a given query-
layer have the same QScore. Consequently, for all Lp norms ex-
ceptL∞, query-layers take the form of d-dimensional planes corre-
sponding to QScore = k⇒ QScorep = kp⇒ (

∑d
i=1 u

′
i) = kp.

For L∞, however, query-layers are L-shaped and intersect each
axis at kp. Figure 3 shows query-layers for Q3 assuming theL1 and
L∞ norms. Beginning with the query-layer with refinement 0, AC-
QUIRE generates all grid queries in the current query-layer. If no
query from the current layer satisfies the aggregate constraint, AC-
QUIRE proceeds to the next query-layer having QScore increased
by γ

d
. Since this iterative expansion model examines queries in

order of increasing refinement, ACQUIRE can stop immediately
after a query is found to meet the required constraint, thus reduc-
ing the number of queries examined by ACQUIRE. Algorithms 1
and 2 respectively describe the pseudo code for generating queries
using the Lp and L∞ norms. The Lp algorithm generates query-
layers using a breadth-first search while the L∞ norm sequentially
enumerates queries in the given layer.

Algorithm 1 GetNextQuery(Queue queryQue)
1: int[] Qcurr = queryQue.Pop() //Indexed from 1
2: for i = 1, . . . , d do
3: Qnext ← GetNextNeighbor(i) //Increment i-th dimension

of Qcurr by stepsize
4: if (!queryQue.Contains(Qnext)) then
5: queryQue.Push(Qnext)
6: return Qcurr

Algorithm 2 GetNextQuery(Queue queryQue, int currRef)
1: if (!queryQueue.Empty()) then
2: return queryQue.Pop()
3: else
4: Query Qnew = 0
5: for i = 1, . . . , d do
6: Qnew[i] = currRef; queryQue.Push(Qnew)
7: while Qnew != null do
8: IncrementQuery(Qnew, i, currRef) // enumerate

queries with i-th dim fixed at currRef and others< cur-
rRef

9: queryQue.Push(Qnew)

Theorem 2. A grid query Q′i with QScore(Q,Q′i) = k is in-
vestigated after all grid queries with QScore(Q,Q′i) = (k − 1)
have been investigated.

Proof: Consider the refined space to be a directed graph with
the origin as the root and every grid query as a node. Every grid
query is connected to d queries obtained by incrementing one di-
mension by the unit step-size. These connections form the graph’s
edges. ThenGetNextQuery for the Lp norm performs a breadth-
first search on the refined space grid, guaranteeing that all queries
at distance k − 1 from the root are investigated before those at dis-
tance k. The result is trivially true forL∞ norm since our algorithm
explicitly generates queries in each query layer.

Time Complexity. The worst case complexity of the Expand
phase isO(V +E) where V is maximum number of refined queries
in the grid and |E| = d · |V |.

5. PHASE II: EXPLORE
The Explore phase of ACQUIRE is responsible for efficiently

computing the aggregate values of queries produced in the Expand
phase. For this purpose, we introduce a light-weight query execu-
tion methodology based on a novel, efficient incremental query exe-
cution algorithm that exploits dependencies between refined queries
using a specialized recursive model. For each query, our model re-
quires execution of only one sub-query and computes the overall
aggregate by intelligently combining partial results from previous
queries. ACQUIRE guarantees that a query is executed at most
once, irrespective of how many queries contains it.

5.1 Incremental Aggregate Computation
The principle underlying our query execution algorithm is that

refined queries often share results. Therefore, once a query re-
sult has been evaluated it must never be re-evaluated for any other
query.

Query Containment. A refined query Q′=(u′1, u
′
2, . . . , u

′
d) is

said to be contained within another refined queryQ′′=(u′′1 , u
′′
2 , . . . , u

′′
d)

if (u′i≤u′′i) ∀ i = 1 . . . d.

Theorem 3. If refined queryQ′ is contained within refined query
Q′′: (1) all results of Q′ also satisfies Q′′. (2) Q′ is guaranteed to
be generated before Q′′ in the Expand phase.

Proof: Let tuple τ satisfy Q′. (1) By Equation 2:
PScorei(τ,Q) ≤ PScorei(Q′, Q) ∀ i = 1, . . . , d
⇒ PScorei(τ,Q)p ≤ PScorei(Q

′, Q)p = u′i ∀ i = 1, . . . , d
(PScore ≥ 0)
⇒ PScorei(τ,Q)p ≤ u′′i
⇒ PScorei(τ,Q) ≤ PScorei(Q′′, Q).
Consequently, all the query results of Q′ also satisfy Q′′. For

105

!"#"

!"#$%&"#'(&

$"

!"#$%&"#'(&

!"#$)$%&"#')$(&

!"#$%&"#'(&

!*(& !+(& !,(&

!-%-(&!-%&"#')$(&!-%-(& !-%-(&

$"

!"#$%&"#'(&!"#$%&"#')$(&

!-%-(&

#"

!"
!"#$)$%&"#'(&

Figure 4: Sub-queries of a 2-D query

(2), from the definition of contained queries, QScore(Q′, Q) ≤
QScore(Q′′, Q). Therefore, by Theorem 2, the Expand phase will
produce Q′ before Q′′.

Since all contained queries are produced and executed before
those containing them, ACQUIRE can extensively use previously-
generated query results. In particular, ACQUIRE exploits the con-
cept of query containment by constructing contained queries, called
sub-queries henceforth, that are used as units of query execution
and result sharing. We now describe the sub-queries used.

5.1.1 Query Decomposition
Consider query Q′ with d predicates, represented as point (u′1,

. . . , u′d) in the refined space. In addition to Q′, ACQUIRE de-
fines d specialized sub-queries contained within it, giving d + 1
queries in all. Figure 4 shows these queries for a 2-predicate query.
The first sub-query (A) corresponds to the unit square in RS(Q)
with its upper-right corner at Q′=(u′1, u

′
2), the second sub-query

(B) corresponds to a unit-width rectangle in RS(Q) with Q′ at its
upper-right corner, and the third sub-query is the entire query (C).
Similarly, for a 3-predicate query as in Figure 5, the first sub-query
(A) is the unit cube, the second (B) is a unit length and width paral-
lelepiped, the third (C) is a unit width parallelepiped, and the fourth
(D) is the entire query sub-query. For ease of exposition, we refer
to the first sub-query as cell, the second as pillar, the third as wall,
and the fourth as block, respectively.

In a d-dimensional refined space, the d + 1 sub-queries, called
O1, O2,. . . , Od+1, can be formally defined as shown in Equations
5-8. All d + 1 sub-queries have the same upper bound (Q′ =
(u′1, . . . , u

′
d)), but different lower bounds. For instance, the cell

sub-query O1 has a lower bound which is a unit length away from
(u′1, . . . , u

′
d) on all dimensions (Equation 5). The cell sub-query

corresponds to the cell in the refined space grid having (u′1, . . . , u
′
d)

as its upper bound. Similarly, the pillar sub-query has a lower
bound with the first dimension equal to 0 and all remaining dimen-
sions j (j = 2, . . . , d) unit length away from u′j (Equation 6). In
general, the lower bound of the jth sub-queryOj is (0, . . . , 0, u′j−
1, . . . , u′d − 1,). For simplicity, we will refer to an sub-query Oi
corresponding to query (u′1, . . . , u

′
d) as Oi(u′1, . . . , u′d).

O1 = ((u′1 − 1, . . . , u′d − 1), (u′1, . . . , u
′
d)) (5)

O2 = ((0, u′2 − 1, . . . , u′d − 1), (u′1, . . . , u
′
d)) (6)

Oj = ((0, 0, . . . , 0, u′j − 1, . . . , u′d − 1), (u′1, . . . , u
′
d)) (7)

Od+1 = ((0, . . . , 0), (u′1, . . . , u
′
d)) (8)

By decomposing a query into the sub-queries defined above, we
can reuse previously obtained results. To illustrate, consider Figure
6.a where the 2-D query is decomposed into 3 sub-queries. We ob-
serve that sub-queryA is theCell(u′1, u′2),B is thePillar(u′1, u′2−
1), and C is the Wall(u′1 − 1, u′2). Similarly, Figure 6.b shows
the decomposition of a 3-predicate query into the four sub-queries
A, B, C and D which are respectively the Cell(u′1, u′2, u′3), the

!"#"

!"#$%&"#'(&

$"

!"#$%&"#'(&

!"#$)$%&"#')$(&

!"#$%&"#'(&

!*(& !+(& !,(&

!-%-(&!-%&"#')$(&!-%-(& !-%-(&

$"

!"#$%&"#'(&!"#$%&"#')$(&

!-%-(&

#"

!"
!"#$)$%&"#'(&

!"

#"

!"#$%"#&%"#'()

!"#$%"#&%"#'*$()

!"#$)%"#&*$%"#'()

!+%+%+()

!"#$*$%"#&%"#'()

$"

%"

(a) (b)

Figure 6: Query Decomposition: (a) 2-D (b) 3-D

Pillar(u′1 − 1, u′2, u
′
3), the Wall(u′1, u

′
2 − 1, u′3), and the Block

(u′1, u
′
2, u
′
3 − 1). In general, a d-predicate query can be decom-

posed into the previously defined (d+ 1) sub-queries:

2− predicate Query : (9)
O3(u′1, u

′
2) = O1(u′1, u

′
2) +O2(u′1 − 1, u′2) +O3(u′1, u

′
2 − 1)

3− predicate Query : (10)
O4(u′1, u

′
2, u
′
3) = O1(u′1, u

′
2, u
′
3) +O2(u′1 − 1, u′3, u

′
3) +

O3(u′1, u
′
2 − 1, u′3) +O4(u′1, u

′
2, u
′
3 − 1)

d− predicate Query : (11)
Od+1(u′1, u

′
2, . . . , u

′
d) = O1(u′1, u

′
2, . . . , u

′
d) +

O2(u′1 − 1, u′2, . . . , u
′
d) +O3(u′1, u

′
2 − 1, u′3, . . . , u

′
d) +

. . .+Od+1(u′1, u
′
2, . . . , u

′
d − 1)

Thus, if the aggregates for the (d + 1) sub-queries have been
pre-computed, the aggregate of query Q′ is the mere addition1 of
these sub-aggregates. We must store only the aggregate values for
the d + 1 sub-queries. The corresponding result tuples can either
be stored in main memory or paged to disk. The above sub-query
decomposition also leads to two crucial observations: (1) The only
part of a query unique to itself is the cell; all remaining parts of
the sub-query are shared with other queries. (2) The d + 1 sub-
queries defined above belong to queries completely contained
in Q′. Therefore, Theorem 3 guarantees that these queries would
have been produced and hence executed before investigating Q′.
As a consequence, ACQUIRE must only execute the cell sub-query
and can directly reuse aggregates of the remaining sub-queries.

5.1.2 Recursive Aggregate Computation
Query decomposition assumes that the aggregates for the d + 1

sub-queries have already been computed. But independently de-
termining aggregates of these sub-queries is redundant. Instead,
we present a recursive strategy to calculate the aggregates of the
sub-queries in constant time. Reconsider Figure 6 focusing now
on the relationship between sub-queries. We observe that for 2-
predicate sub-queries (Figure 6.a) the Pillar(u′1, u′2) is equiva-
lent to Cell(u′1, u′2) and Pillar(u′1-1, u′2) combined. Similarly,
the Wall(u′1, u

′
2), which is the entire query is equal to the sum of

Pillar(u′1, u
′
2) and Wall(u′1, u

′
2 − 1). For the 3-predicate query,

in Figure 6.b, we have three similar recurrences as shown below.

1For aggregates like MIN/MAX, addition is replaced by the corre-
sponding MIN/MAX function, while AVERAGE = SUM/COUNT.
SUM and COUNT aggregates are computed and stored separately.
AVERAGE is computed from these values as required.

106

!"#$%"#&%"#'()

!"#$%"#&%"#'*$()

!"#$)%"#&*$%"#'()

!+%+%+()

!"#$*$%"#&%"#'()

!"

!"#$%"#&%"#'()

!"#$%"#&%"#'*$()

!+%+%+()

!"

!"#$)%"#&*$%"#'()

!"#*$$%"#&%"#'()

!"

!"#$%"#&''%"#()'

!"#$%"#&%"#(*$)'

!+%+%+)'

!"

!"#$%"#&''%"#()'

!"#$%"#&%"#(*$)'

!+%+%+)'

#"

!"#$%"#&'%"#()'

!+%+%+)'

(a) (b) (c) (d)

Figure 5: Sub-queries of a 3-predicate query

2−Recurrences : (12)
Pillar(u′1, u

′
2) = Cell(u′1, u

′
2) + Pillar(u′1 − 1, u′2)

Wall(u′1, u
′
2) = Pillar(u′1, u

′
2) +Wall(u′1, u

′
2 − 1) (13)

3−Recurrences : (14)
Pillar(u′1, u

′
2, u
′
3) = Cell(u′1, u

′
2, u
′
3) + Pillar(u′1 − 1, u′2, u

′
3)

Wall(u′1, u
′
2, u
′
3) = Pillar(u′1, u

′
2, u
′
3) +Wall(u′1, u

′
2 − 1, u′3) (15)

Block(u′1, u
′
2, u
′
3) =Wall(u′1, u

′
2, u
′
3) +Block(u′1, u

′
2, u
′
3 − 1) (16)

In general, this recursion for a d-predicate query is:

Oi(u
′
1, . . . , u

′
d) = Oi−1(u

′
1, . . . , u

′
d) + (17)

Oi(u
′
1, u
′
2, . . . , u

′
i−1 − 1, . . . , u′d) where i = 2, . . . , d+ 1

Since the sub-query O1 has no recurrences, its aggregate must
be computed by executing the query. However, once the aggregate
ofO1 is determined, it takes d (constant) steps to calculate the total
aggregate for query Q′.

5.1.3 Aggregate Computation Algorithm
Algorithm 3 takes as input the query Q′(u′1, . . . , u′d) being in-

vestigated and produces its aggregate. For this, Algorithm 3 first
computes the aggregate of the Cell(u′1, . . . , u′d), and then itera-
tively applies the recurrence in Equation 17 to compute aggregates
of the remaining sub-queries. The function ExecuteCellQuery
is used to compute the aggregate over a single input cell by issuing
a query to the evaluation layer.

Algorithm 3 ComputeAggregate(Query Qcurr , int d)
1: int[d+ 1] Acurr // All arrays are indexed from 1
2: Acurr[1] = ExecuteCellQuery(Qcurr)
3: for i = 2, . . . , d+ 1 do
4: Qprev ← GetPreviousNeighbour(i-1) // decrement the (i −

1)th dimension of Qcurr by stepsize
5: int[] Aprev = GetAllAggregates(Qprev)
6: Acurr[i] = Acurr[i− 1] + Aprev[i]
7: StoreAllAggregates(Qcurr , Acurr)
8: return Acurr[d+ 1]

6. PUTTING IT ALL TOGETHER
Algorithm 4 presents the pseudo code for the ACQUIRE frame-

work. Given an initial queryQ and the refinement threshold γ, AC-
QUIRE begins to iteratively Expand and Explore refined queries,

starting at the origin of the refined space and sequentially traversing
queries in subsequent layers. For each refined query, ACQUIRE
calculates the aggregate using the Incremental Aggregate Compu-
tation technique described in Algorithm 3. Once the aggregate
value Aactual has been determined, it is compared to Aexp. If the
aggregate is within the error threshold δ, the query is stored in the
answer list (A). In this case, query search terminates with the ex-
ploration of all queries in the current layer, i.e., all alternate queries
with the same refinement score. If all queries in a layer undershoot
the constraint by more than δ, ACQUIRE explores the next higher
layer. Lastly, if any query overshoots the expected aggregate value
by more than δ, we repartition the cell corresponding to the given
query and examine queries lying within. We repeat the repartition-
ing process for b iterations, where b is a tunable parameter. If, at
the end of repartitioning, no query is found to satisfy the aggre-
gate constraint, ACQUIRE returns the query attaining the closest
aggregate value.

Algorithm 4 ACQUIRE(QueryQoriginal, doubleAexp, int δ, dou-
ble γ)
1: A =[] // Set of refined Queries
2: Queue queryQueue = [] // Data structure for traversal
3: d← Flexible predicates in Qoriginal
4: int[d] Qcurr = {0,. . . , 0} // Origin represents Qoriginal
5: queryQueue.push(Qcurr)
6: int minRefLayer = MAX_INTEGER_VALUE
7: int currRefLayer = 0
8: while (currRefLayer ≤ minRefLayer) do
9: double Aactual =ComputeAggregate(Qcurr , d) // Algo-

rithm 3
10: if (| Aexp - Aactual | ≤ δ) then
11: A.add(Qcurr)
12: minRefLayer = currRefLayer
13: else if (Aexp > Aactual) then
14: A.add(Repartition(Qcurr))
15: Qcurr = GetNextQuery(queryQueue) // Algorithm 1
16: currRefLayer = QScore(Qcurr)
17: return A

7. EXTENSIONS
In this section, we present extensions to the framework that ac-

commodates some of the limitations of our approach.

7.1 Preferences in Refinement
Along with the NOREFINE keyword used to identify and pre-

serve rigid constraints, ACQUIRE allows users to set preferences

107

on which predicates should be refined. This can be easily done by
specifying a LWp norm which sets appropriate weights on various
predicates. Similarly, users can also supply maximum refinement
limits on predicates. While we provide several avenues for user
control, user intervention is not required and each tunable parame-
ter is provided an appropriate default setting.

7.2 Contracting Queries With Too Many Re-
sults

ACQUIRE with minor modifications handles queries that gen-
erate too many results. This is achieved by constructing a query
Q′min with each predicate of the original query Q set to its mini-
mum value. Since Q′min will produce too few results, we can now
construct a refined space bounded by Q and Q′min. ACQUIRE
now traverses the refined space to find queries that meet the cardi-
nality constraint, this time minimizing refinement with respect to
Q instead of Q′min.

!"##$%&'(! !&#)*&+(,!

!,"+-).&$!

!&#)/0ӏ,).&$)40(&!

5(##2#3"'&!

6&'27,0#2&!

8#2+(9)!+&+(3!

:(;)<,0=!

*&#-&>&#!

:(;)<,0=)62+$!?!

?!

?!

?!

?!

@&A)B,1&C,#D.&3(9)E&F,#,G$)E0((!

/&'&7('! H$0,!

*299'(DI&3+(0#!

*(92+(00&#(&#!

H0((=!

J(3+&"0&#+3!

?!

?!

?!

@KA))E&F,#,G$)E0((!

Figure 7: Ontology for Categorical Data

7.3 Non-numeric Predicates
The focus of this work is to handle numeric predicates. Measur-

ing refinement distance between categorical data points is in itself a
challenging problem, requiring the analysis of taxonomy informa-
tion. However, ACQUIRE can be extended to support categorical
predicates by plugging in the appropriate means for measuring the
distance between any two categorical values. For example, Figure
7 depicts sample ontology trees related to food preferences and lo-
cation. The refinement distance between the original query desiring
places that serve Gyro to restaurants that have any Mediterranean
cuisine may be defined based on the relative depths of the two
nodes. In general, the roll-up operation on an ontology tree corre-
sponds to making the predicate less selective, i.e., relaxation. While
the drill down operation translates to query contraction. Given this
meta-information from the ontology tree and a distance metric, the
ACQUIRE framework can be used to refine categorical predicates.

7.4 Exploiting Indexes and Data Distribution
The algorithms discussed so far make no assumptions about the

underlying data distribution or presence of indexes on the data.
Moreover, experiments in Section 8 indicate that ACQUIRE is al-
ready 2 orders of magnitude faster than the state-of-the-art tech-
niques. However, if required, we can further boost the efficiency of
ACQUIRE by employing a specialized bitmap-like index structure
on the tables. To construct this index, we divide each attribute di-
mension into equi-width parts and create a multi-dimensional grid
on the table. We then examine the records in the table to deter-
mine which grid cell each record belongs to. In our index, each
cell is assigned a corresponding bit, which is set to 1 if the cell
contains some tuple and 0 otherwise (storing the number of tuples
may be easier for keeping the index up-to-date but requires more
space). Once constructed, this simple index structure can be used

in the Explore phase to determine if a given cell query is empty
without actually executing the query. If the query is found to be
empty, we can safely skip it and proceed to the next, thus avoiding
unnecessary query execution costs.

8. EXPERIMENTAL EVALUATION

8.1 System Implementation
The ACQUIRE framework is built on top of Postgres. ACQUIRE

sits outside the DBMS where it performs the tasks of exploring the
refinement space, formulating queries and applying our aggregate
computation algorithm. To make ACQUIRE portable across mul-
tiple database systems, and to aid in proper comparison with com-
peting techniques, all query execution tasks are delegated to the
DBMS. We similarly implemented the compared techniques on top
of Postgres.

8.2 Alternative Techniques
We compare ACQUIRE to three extensions of existing techniques

that address the ACQ problem to varying degrees. First, we com-
pare it to Top-k which, although unable to produce refined queries,
is suited to ranking tuples in order of refinement. While it is straight-
forward to translate a COUNT constraint to Top-k, translating other
aggregate constraints (e.g. AVERAGE) is difficult if not impossi-
ble. As a result, we only study Top-k ranking for COUNT con-
straints. We use existing DBMS capabilities of ORDER BY and
LIMIT to implement Top-k, as demonstrated on generic queries (Q
and corresponding Top-k-Q) below.

Q = SELECT COUNT(*) from table1
WHERE x <= 10 and y <= 20;

Top-k-Q = SELECT * FROM table1 ORDER BY
(case when (x <= 10) then 0
else (x - 10)/(x.max - x.min)) +
(case when (y <= 20) then 0
else (y - 20)/(y.max - y.min)) LIMIT A_exp

We also compare ACQUIRE to the TQGen [11] and a simple bi-
nary search (BinSearch) technique [11]. Our experiments uses the
TQGen parameters reported in [11]. To allow for uniform compar-
isons across all methods, we do not employ sampling techniques
for TQGen. However, our experiments demonstrate that our results
hold even for small sample-size datasets (see Figure 10.a). The fi-
nal point to note is that, unlike ACQUIRE, (a) none of the above
techniques addresses aggregates other than COUNT, and (b) even
for COUNT, none of the above techniques are capable of refining
join predicates.

8.3 Methodology
To study the robustness of ACQUIRE we vary (1) dimension-

ality of refinement space, i.e., number of refinable predicates, and
combination of attributes in these predicates, (2) magnitude of ag-
gregate value discrepancy, i.e., ratio Aactual/Aexp between the
actual aggregate value and the desired aggregate value, (3) dataset
size, (4) aggregate types, and (5) data distributions. To study the
efficiency gained by the ACQUIRE system, we evaluated the net
decrease in query execution time for various data sizes and dimen-
sionality. Finally, we evaluated the performance of ACQUIRE un-
der various settings of refinement and aggregate thresholds as well
as presence of join refinement. For each experimental setting, we
measure the time needed to return the set of refined queries, QF ,
amount of refinement (refinement score), and relative aggregate er-
ror = ErrA.

108

0.1 0.3 0.5 0.7 0.9
103

104

105

106

Aggregate ratio
(a)

Ex
ec

ut
io

n
Ti

m
e

(m
s)

ACQIURE
Top−k
TQGen
BinSearch

0.1 0.3 0.5 0.7 0.9
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Aggregate ratio
(b)

R
el

at
iv

e
Ag

gr
eg

at
e

Er
ro

r

ACQIURE
TQGen
BinSearch

0.1 0.3 0.5 0.7 0.9
0

5

10

15

20

25

30

35

Aggregate ratio
(c)

R
ef

in
em

en
t s

co
re

ACQIURE
Top−k
TQGen
BinSearch

Delta = 0.05

0.1 0.3 0.5 0.7 0.9
103

104

105

106

Aggregate ratio
(a)

Ex
ec

ut
io

n
Ti

m
e

(m
s)

ACQIURE
Top−k
TQGen
BinSearch

0.1 0.3 0.5 0.7 0.9
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Aggregate ratio
(b)

R
el

at
iv

e
Ag

gr
eg

at
e

Er
ro

r

ACQIURE
TQGen
BinSearch

0.1 0.3 0.5 0.7 0.9
0

5

10

15

20

25

30

35

Aggregate ratio
(c)

R
ef

in
em

en
t s

co
re

ACQIURE
Top−k
TQGen
BinSearch

Delta = 0.05

0.1 0.3 0.5 0.7 0.9
103

104

105

106

Aggregate ratio
(a)

Ex
ec

ut
io

n
Ti

m
e

(m
s)

ACQIURE
Top−k
TQGen
BinSearch

0.1 0.3 0.5 0.7 0.9
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Aggregate ratio
(b)

R
el

at
iv

e
Ag

gr
eg

at
e

Er
ro

r

ACQIURE
TQGen
BinSearch

0.1 0.3 0.5 0.7 0.9
0

5

10

15

20

25

30

35

Aggregate ratio
(c)

R
ef

in
em

en
t s

co
re

ACQIURE
Top−k
TQGen
BinSearch

Delta = 0.05

Figure 8: Performance Comparison Under Varying Aggregate Ratios: ACQUIRE, Top-k, TQGen and BinSearch

All algorithms were implemented in Java. Measurements were
obtained on AMD 2.6GHz Dual Core CPUs, and Java heap of 2GB.
We utilized the TPC-H datasets of varying sizes (1K - 10M tu-
ples). Since the standard TPC-H data is uniformly distributed (i.e.,
Z = 0), we used [3] to also generate skewed data with Z = 1. Our
test queries are TPC-H queries which have been adapted to include
only numeric range and join predicates. Query Q2 (in Example 2)
provides skeleton query that was used to evaluate the SUM aggre-
gate. For each dataset, query, and ACQUIRE settings, we define
the original aggregate Aactual and the aggregate ratio Aactual

Aexp
.

8.4 Performance Comparisons

8.4.1 Effect of Aactual
Aexp

Ratio
We first examine the effect of aggregate ratio, Aactual

Aexp
, on the

execution time, error rate and refinement scores. A small Aactual
Aexp

ratio implies that the original query is highly selective and needs
large refinements, while a large Aactual

Aexp
implies that the original

query is close to the desired query and needs only small refine-
ments. These experiments were carried out on a 1 million tuple
dataset and a query with 3 flexible predicates. The aggregate ratio
was varied between 0.1 - 0.9.

As shown in Figure 8.a, the execution time for ACQUIRE in-
creases with decreasing expansion ratio, i.e., the greater the need
to expand the query, longer it takes for ACQUIRE to reach the re-
quired aggregate ratio. While Top-k requires the same execution
time (the ranking function is unchanged and all records need to
be sorted), its execution time however is on average 3.7X more
than ACQUIRE. TQGen and BinSearch both need to explore the
same number of queries each time and hence their execution time
remains constant. ACQUIRE does consistently as well as all the
other methods, and is on average 2X faster than BinSearch and 2
orders of magnitude faster than TQGen (Y-axis is in log scale). Al-
though BinSearch shows promise with respect to execution time,
we show next that it is not robust with respect to aggregate errors.

Figure 8.b shows the relative error (average relative error for Bin-
Search) for each of the queries with changing aggregate ratio. We
do not compare Top-k because a Top-k query explicitly specifies

the number of tuples to return and hence has no aggregate error by
definition. The BinSearch line in the graph shows that BinSearch is
extremely unstable and has high variance in aggregate errors. The
underlying reason is that BinSearch is very sensitive to the order
in which predicates are refined; even a single change to the order
can change the error by a factor of 100. To illustrate, one ordering
of predicate refinement in BinSearch produces a refinement error of
0.19 or 20% whereas another ordering produces an error of 0.002 or
0.2%. Attempting to refine the query by attempting all orderings of
predicates is computationally expensive. ACQUIRE, on the other
hand, not only produces queries consistently within the threshold
(δ = 0.05), but also does so efficiently. TQGen, in fact, produces
lower error rates than ACQUIRE. However, this reduction comes
at the cost of a 100X increase in execution time. Since both error
rates are acceptable, we prefer ACQUIRE. Lastly, in Figure 8.c we
compare the refinement scores obtained by each method. We see
that the refinement score for queries generated by other methods
are 2-3X larger than those from ACQUIRE.

8.4.2 Effects of Dimensionality
Next, we discuss the effects of increasing dimensionality, i.e. in-

crease in the number of query predicates. We used the same dataset
as before, used expansion ratio = 0.3 and varied the number of pred-
icates in the query. In execution time, we see the same trend as be-
fore where the execution time increases with increasing dimension-
ality of the query. However, for ACQUIRE, the increase is largely
linear and not exponential. For Top-k, the execution time remains
largely constant since only the ranking function changes. For TQ-
Gen, we see an exponential increase in the execution time (as num-
ber of queries executed is exponential in number of dimensions)
with the method taking 500X more time than ACQUIRE for high
dimensional queries. Thus, ACQUIRE is a much better alterna-
tive to the state-of-the-art on queries of varying dimensions. Figure
9.b once again demonstrates that BinSearch is extremely unstable
with respect to aggregate error. While some queries obtain an error
rate of 0.6%, some obtain an unacceptable error rate of 45%. This
large variance in error values produced by BinSearch indicates that
the method is unpredictable and not-robust. As a result, it cannot
guarantee any threshold on the error rate.

109

1 2 3 4 5
103

104

105

106

107

108

Number of dimensions
(a)

Ex
ec

ut
io

n
Ti

m
e

(m
s)

ACQIURE
Top−k
TQGen
BinSearch

1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Number of dimensions
(b)

R
el

at
iv

e
Ag

gr
eg

at
e

Er
ro

r

ACQIURE
TQGen
BinSearch

1 2 3 4 5
0

5

10

15

20

25

30

35

Number of dimensions
(c)

R
ef

in
em

en
t s

co
re

ACQIURE
Top−k
TQGen
BinSearch

Delta = 0.05

1 2 3 4 5
103

104

105

106

107

108

Number of dimensions
(a)

Ex
ec

ut
io

n
Ti

m
e

(m
s)

ACQIURE
Top−k
TQGen
BinSearch

1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Number of dimensions
(b)

R
el

at
iv

e
Ag

gr
eg

at
e

Er
ro

r

ACQIURE
TQGen
BinSearch

1 2 3 4 5
0

5

10

15

20

25

30

35

Number of dimensions
(c)

R
ef

in
em

en
t s

co
re

ACQIURE
Top−k
TQGen
BinSearch

Delta = 0.05

1 2 3 4 5
103

104

105

106

107

108

Number of dimensions
(a)

Ex
ec

ut
io

n
Ti

m
e

(m
s)

ACQIURE
Top−k
TQGen
BinSearch

1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Number of dimensions
(b)

R
el

at
iv

e
Ag

gr
eg

at
e

Er
ro

r

ACQIURE
TQGen
BinSearch

1 2 3 4 5
0

5

10

15

20

25

30

35

Number of dimensions
(c)

R
ef

in
em

en
t s

co
re

ACQIURE
Top−k
TQGen
BinSearch

Delta = 0.05

Figure 9: Performance Comparison Under Varying Number of Predicates Ratios: ACQUIRE vs. Top-k vs. TQGen vs. BinSearch

1K 10K 100K 1M
102

103

104

105

106

Table size
(a)

Ex
ec

ut
io

n
Ti

m
e

(m
s)

ACQIURE
Top−k
TQGen
BinSearch

2 4 6 8 10 12
0

1000

2000

3000

4000

5000

6000

7000

Refinement Threshold
(b)

Ex
ec

ut
io

n
tim

e
(m

s)

0.0001 0.001 0.01 0.1
0

1000

2000

3000

4000

5000

6000

7000

Cardinality Threshold
(c)

Ex
ec

ut
io

n
tim

e
(m

s)

ACQUIRE

ACQUIRE
1K 10K 100K 1M

102

103

104

105

106

Table size
(a)

Ex
ec

ut
io

n
Ti

m
e

(m
s)

ACQIURE
Top−k
TQGen
BinSearch

2 4 6 8 10 12
0

1000

2000

3000

4000

5000

6000

7000

Refinement Threshold
(b)

Ex
ec

ut
io

n
tim

e
(m

s)

0.0001 0.001 0.01 0.1
0

1000

2000

3000

4000

5000

6000

7000

Cardinality Threshold
(c)

Ex
ec

ut
io

n
tim

e
(m

s)

ACQUIRE

ACQUIRE
1K 10K 100K 1M

102

103

104

105

106

Table size
(a)

Ex
ec

ut
io

n
Ti

m
e

(m
s)

ACQIURE
Top−k
TQGen
BinSearch

2 4 6 8 10 12
0

1000

2000

3000

4000

5000

6000

7000

Refinement Threshold
(b)

Ex
ec

ut
io

n
tim

e
(m

s)

0.0001 0.001 0.01 0.1
0

1000

2000

3000

4000

5000

6000

7000

Cardinality Threshold
(c)

Ex
ec

ut
io

n
tim

e
(m

s)

ACQUIRE

ACQUIRE

Figure 10: Performance Comparison Under Varying (a) Table Size, (b) Refinement Threshold and (c) Cardinality Threshold

In Figure 8.c exemplifies the trends in query refinement score
seen with all methods. The refinement scores of ACQUIRE are
consistently the lowest across all methods – meaning fewer changes
to the original user query and therefore more desirable. Top-k pro-
duces higher refinement than ACQUIRE. This figure also shows
that TQGen and BinSearch can have high variance in refinement
scores. Since the goal of these techniques is only to meet the ag-
gregate constraint and not to minimize refinement, this is expected.
BinSearch queries have, on average, 4.8X more refinement than
ACQUIRE queries.

8.4.3 Varying Table Size
For datasets of varying size, beginning with a 1k-tuple dataset (to

mimic a sample based approach) to a 1M-tuple dataset. As shown
in Figure 10.a the execution time for ACQUIRE and all compared
techniques increases proportionally to the size of the dataset. Rela-
tive error and refinement scores show the same trends as before.

8.4.4 Effect of Varying Data Distributions

To study the robustness of our method, we re-ran experiments on
data with Zipfian skew = 1. Trends in results were same as above.

8.4.5 ACQUIRE Parameter Studies
In Figure 10.a and Figure 10.c, we report the performance of

ACQUIRE with respect to its internal parameters, namely the ag-
gregate threshold, the number of steps in the grid and the depth
of the search. As expected, a stringent cardinality and refinement
threshold produces proportional increases in the ACQUIRE execu-
tion time as more queries need to be explored.

8.4.6 Varying Aggregate Types
ACQUIRE framework is general and can be applied to different

types of aggregates satisfying the optimal substructure from Sec-
tion 2.6. We tested the technique for other aggregates too. Fig-
ure 11 shows the results for the SUM, COUNT and MAX aggre-
gates. We omit MIN since this can be written as the MAX(-1 *

110

0.1 0.3 0.5 0.7 0.9
103

104

105

Aggregate ratio
(a)

Ex
ec

ut
io

n
Ti

m
e

(m
s)

SUM
COUNT
MAX

0.1 0.3 0.5 0.7 0.9
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Aggregate ratio
(b)

Re
fin

em
en

t s
co

re

SUM
COUNT
MAX

(a)

0.1 0.3 0.5 0.7 0.9
103

104

105

Aggregate ratio
(a)

Ex
ec

ut
io

n
Ti

m
e

(m
s)

SUM
COUNT
MAX

0.1 0.3 0.5 0.7 0.9
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Aggregate ratio
(b)

Re
fin

em
en

t s
co

re

SUM
COUNT
MAX

(b)

Figure 11: ACQUIRE’s Performance on Different Aggregates

attribute). We find that ACQUIRE successfully minimizes refine-
ment and reaches the aggregate thresholds in all the above aggre-
gates.

8.5 Summary of Experimental Conclusions

1. ACQUIRE is consistently 2 orders of magnitude faster than
TQGen and on average 2X faster than BinSearch.

2. In all experimental conditions, ACQUIRE’s aggregate error
is well below the aggregate error threshold. In contrast, Bin-
Search has very high variance in error rates, reaching up to
45% of the expected aggregate value.

3. Although, Top-k can be efficient at small-sized datasets, it
quickly becomes inefficient as data size increases. In general
Top-k is about 3.7 times slower than ACQUIRE.

4. ACQUIRE generates queries that on average have 2X better
refinement scores than a query produced by either TQGen or
BinSearch.

9. RELATED WORK
In this section, we discuss two areas of related work namely, (1)

set-based queries [6, 5, 16, 14, 13] and (2) solving the empty result
problem [9, 1, 11]. Existing set-based query evaluation techniques

differ from our work fundamentally because they are solving a dif-
ferent problem than the one addressed in this work. For instance,
techniques proposed in [13] address the problem of recommending
“satellite items" (e.g., car charger, case) for a given item that the
customer is currently shopping for (e.g. smart phones). Alterna-
tively, [16, 5] solve the generalized the Knapsack problem [6] of
making composite recommendations of a set of items. That is, rec-
ommend the Top-k sets of items with the total cost below a given
budget and preferring the set with higher ratings. In contrast, [14]
focused on finding users (e.g. tourists) sets of results (e.g. a set
of places of interest) given a set of constraints (e.g. budget). This
is identical to the current behavior of the Facebook Ad Creation
Interface [4]. However, this approach is less than desirable (as de-
scribed in Section 1) as it would force Alice to go through hundreds
of iterations to find a meaningful query that meet the aggregate con-
straints. To summarize, techniques for set-based queries focus on
returning tuples or sets of tuples that meet a constraint. In large
scale database systems since the users are mostly unfamiliar with
the characteristics of the underlying data, they usually construct
queries that are either too strict or too broad [9]. In such scenarios,
execution techniques designed for set-based queries could poten-
tially return no results or all tuples in the database.

To the best of our knowledge, we are the first work to address
the question of recommending refined user queries that meets their
aggregate constraints. Existing query refinement techniques can be
classified into two categories namely, (1) tuple-oriented approaches,
and (2) query-oriented approaches. Table I summarizes the key re-
lated work, and whether they support all aggregate constraints and
/ or a proximity criteria.

Techniques Aggregates Proximity Card. Query
Supported

Tuple-Oriented:
Skyline [8], COUNT X X
Top-k [2],

Query-Oriented:
BinSearch [11], COUNT X

IQR [10]
Query-Oriented:

TQGen [11], COUNT X X
Hill-Climbing [1]

COUNT, SUM,
ACQUIRE MIN, MAX, X X X

AVG, UDA2

Table 1: Summary of the Related Work
Tuple-Oriented Techniques. Result refinement techniques [12,

8] focus only on generating the required number of results and ig-
nore the problem of generating refined queries that explain how the
result tuples were selected. The refinement criteria are crucial in
scientific and business applications. Similarly Top-k algorithms,
such as [2], while useful in many instances cannot correctly ad-
dress the ACQ problem since they can only handle COUNT aggre-
gates. To illustrate, consider a query that selects patients based on
income, blood pressure, and the amount of weekly exercise. A Top-
k based approach will obtain the required number of patients, but
these patients will likely be skewed in certain predicate dimensions
and will not be representative of the population. Thus pure Top-
k and its variations are inadequate to address the ACQ problem;
clearly demonstrated in our experiments (see Section 8).

Query-Oriented Approach. More recently in the context of
database testing [1, 11, 10] have started to focus on the problem of

2User Defined Aggregates that either satisfy the optimal substructure property (OSP)
or can be broken into functions that satisfy OSP

111

generating refined predicates. [10] proposed a framework that iter-
atively narrows the bounds on each selection predicate in a query
and asks the user to manually refine the predicate within the con-
strained dimensions. This approach however cannot be extended to
support the refinement of join predicates as ACQUIRE does. For
select-only queries, [11] seeks only to attain the desired cardinality
and disregards proximity. Consequently, it cannot guarantee that
the refined query has the least refinement. The BinSearch algo-
rithm [11] is heavily influenced by the order in which predicates
are refined; some orders produce accurate results whereas others
produce large errors. Unlike ACQUIRE, these techniques don’t
generate a set of alternative refined queries for the user to choose
from. To summarize, ACQUIRE is the first technique to refine se-
lect and join queries to meet the dual constraints of proximity to the
original query and the desired aggregate constraint.

10. CONCLUSION
We introduce Aggregation Constrained Queries that constrain

not only the tuples produced by the query, but also aggregates on
these tuples. We argue that algorithms targeting ACQs must com-
bine efficient query execution and query refinement. We propose
ACQUIRE to tackle ACQs. ACQUIRE adopts the Expand and
Explore strategy where it iteratively expands the original query to
minimize refinement and efficiently explores refined queries via a
novel incremental aggregate computation technique. The general
principle of ACQUIRE allows us to support user defined predicate
refinement scoring and aggregate error functions. ACQUIRE guar-
antees that each query is executed at most once, regardless of the
number of queries it is contained within thereby exploiting work
sharing. This enables ACQUIRE to consistently perform up to 2
orders of magnitude faster and produce queries with 2X smaller
refinement than extensions to existing techniques.

11. REFERENCES
[1] N. Bruno, S. Chaudhuri, and D. Thomas. Generating queries

with cardinality constraints for dbms testing. IEEE TKDE,
18(12):1721–1725, 2006.

[2] S. Chaudhari and L. Gravano. Evaluating top-k selection
queries. In VLDB, pages 397–410, 1999.

[3] S. Chaudhuri and V. Narasayya. Program for tpc-d data
generation with skew.

[4] V. Goel. How facebook sold you krill oil. The New York
Times, August 2014.

[5] S. Guha, D. Gunopulos, N. Koudas, D. Srivastava, and
M. Vlachos. Efficient approximation of optimization queries
under parametric aggregation constraints. In VLDB, pages
778–789, 2003.

[6] H. Kellerer, U. Pferschy, and D. Pisinger. Knapsack
problems. Springer, 2004.

[7] J. Koliha. Metrics, Norms and Integrals: An Introduction to
Contemporary Analysis. World Scientific Publishing
Company, 2008.

[8] N. Koudas, C. Li, A. K. H. Tung, and R. Vernica. Relaxing
join and selection queries. In VLDB, pages 199–210, 2006.

[9] G. Luo. Efficient detection of empty-result queries. In VLDB,
pages 1015–1025, 2006.

[10] C. Mishra and N. Koudas. Interactive query refinement. In
EDBT, pages 862–873, 2009.

[11] C. Mishra, N. Koudas, and C. Zuzarte. Generating targeted
queries for database testing. In SIGMOD, pages 499–510,
2008.

[12] I. Muslea. Online query relaxation. In SIGKDD, pages
246–255, 2004.

[13] S. B. Roy, S. Amer-Yahia, A. Chawla, G. Das, and C. Yu.
Constructing and exploring composite items. In SIGMOD,
pages 843–854, 2010.

[14] Q. T. Tran, C.-Y. Chan, and G. Wang. Evaluation of
set-based queries with aggregation constraints. In CIKM,
pages 1495–1504, 2011.

[15] E. Wu and S. Madden. Scorpion: Explaining away outliers in
aggregate queries. PVLDB, 6(8):553–564, 2013.

[16] M. Xie, L. V. S. Lakshmanan, and P. T. Wood. Breaking out
of the box of recommendations: from items to packages. In
RecSys, pages 151–158, 2010.

112

	Refinement Driven Processing of Aggregation Constrained QueriesManasi Vartak, Venkatesh Raghavan, Elke Rundensteiner, Samuel Madden

