
MIT Open Access Articles

Polygrammar: Grammar for Digital
Polymer Representation and Generation

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Guo, Minghao, Shou, Wan, Makatura, Liane, Erps, Timothy, Foshey, Michael et al.
2022. "Polygrammar: Grammar for Digital Polymer Representation and Generation." Advanced
Science.

As Published: 10.1002/advs.202101864

Publisher: Wiley

Persistent URL: https://hdl.handle.net/1721.1/143799

Version: Final published version: final published article, as it appeared in a journal, conference
proceedings, or other formally published context

Terms of use: Creative Commons Attribution 4.0 International license

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/143799
https://creativecommons.org/licenses/by/4.0/

RESEARCH ARTICLE
www.advancedscience.com

Polygrammar: Grammar for Digital Polymer Representation
and Generation

Minghao Guo, Wan Shou, Liane Makatura, Timothy Erps, Michael Foshey,
and Wojciech Matusik*

Polymers are widely studied materials with diverse properties and
applications determined by molecular structures. It is essential to represent
these structures clearly and explore the full space of achievable chemical
designs. However, existing approaches cannot offer comprehensive design
models for polymers because of their inherent scale and structural complexity.
Here, a parametric, context-sensitive grammar designed specifically for
polymers (PolyGrammar) is proposed. Using the symbolic hypergraph
representation and 14 simple production rules, PolyGrammar can represent
and generate all valid polyurethane structures. An algorithm is presented to
translate any polyurethane structure from the popular Simplified
Molecular-Input Line-entry System (SMILES) string format into the
PolyGrammar representation. The representative power of PolyGrammar is
tested by translating a dataset of over 600 polyurethane samples collected
from the literature. Furthermore, it is shown that PolyGrammar can be easily
extended to other copolymers and homopolymers. By offering a complete,
explicit representation scheme and an explainable generative model with
validity guarantees, PolyGrammar takes an essential step toward a more
comprehensive and practical system for polymer discovery and exploration.
As the first bridge between formal languages and chemistry, PolyGrammar
also serves as a critical blueprint to inform the design of similar grammars for
other chemistries, including organic and inorganic molecules.

1. Introduction

Polymers are important materials with diverse structure varia-
tions and applications. To facilitate customized applications and

M. Guo, W. Shou, L. Makatura, T. Erps, M. Foshey, W. Matusik
Computer Science and Artificial Intelligence Lab
Massachusetts Institute of Technology
Cambridge, MA 02139, USA
E-mail: wojciech@csail.mit.edu
M. Guo
CUHK Multimedia Lab
The Chinese University of Hong Kong
Sha Tin, Hong Kong

The ORCID identification number(s) for the author(s) of this article
can be found under https://doi.org/10.1002/advs.202101864

© 2022 The Authors. Advanced Science published by Wiley-VCH GmbH.
This is an open access article under the terms of the Creative Commons
Attribution License, which permits use, distribution and reproduction in
any medium, provided the original work is properly cited.

DOI: 10.1002/advs.202101864

deepen the fundamental understanding,
it is extremely beneficial to character-
ize, enumerate, and explore the entire
space of achievable polymer structures.
Such a large (ideally exhaustive) collection
of polymers would be particularly power-
ful in conjunction with machine learning
and numerical simulation techniques, as
a way to facilitate complicated tasks like
human-guided molecular exploration,[1–12]

property prediction,[13–17,69,70,71,72] and retro-
synthesis.[18,19] Computational approaches
based on chemical representations and gen-
erated data[20–27] have also tremendously re-
duced the time, cost, and resources spent
on physical synthesis in the chemistry
lab.[28–31]

Ideally, a chemical design model would
include three components: 1) a well-defined
representation capable of capturing known
structures, 2) a generative model capable
of enumerating all structures in a given
class, and 3) an inverse modeling proce-
dure capable of translating known molec-
ular structures into the representation.
For a given class of molecules, an ideal
chemical design model should satisfy the

following five criteria: i) Complete: representation is able to en-
code all possible structures in the given class. ii) Explicit: rep-
resentation directly specifies the molecular structure. iii) Valid:
every generated output is a physically valid chemical structure
in the given class. iv) Explainable: the generation process is un-
derstandable to the user. v) Invertible: the inverse procedure
can translate molecular structures into the given representation.
However, designing a chemical model that meets all these crite-
ria is challenging, especially for structurally complex molecules.
Most existing approaches are limited to small, simple chemical
structures.[32–36] Even with this limited scope, the design is labor-
intensive: the representation language is typically developed first,
then extended for generation and inverse modeling. In particular,
there have been many systems for molecular line notations[32,33]

and fragment-level description,[34,35] which were then used as the
basis for generative and inverse schemes.[5–8]

Yet, a comprehensive chemical design model for large poly-
mers remains elusive due to the polymers’ inherent complexity.
We present a detailed account for each property, including
polymer-specific challenges and the performance of existing
methods (see Table 1). Since most methods only focus on one

Adv. Sci. 2022, 2101864 © 2022 The Authors. Advanced Science published by Wiley-VCH GmbH2101864 (1 of 14)

http://crossmark.crossref.org/dialog/?doi=10.1002%2Fadvs.202101864&domain=pdf&date_stamp=2022-06-09

www.advancedsciencenews.com www.advancedscience.com

Table 1. Comparison with related chemical design models. Our PolyGrammar is the only approach that satisfies all five properties, simultaneously
covering both representation and generative modeling.

Design Models Representation Generative Modeling Inverse Modeling

Complete Explicit Valid Explainable Translation from SMILES

Chemical Language SMILES[28] √ √ − − √

BigSMILES[33] √ × − − √

SELFIES[74] √ × − − √

Generation Bayesian Framework[76] (based on SMILES) × × √

GAN[9–12] × × √

Auto-Encoders[5–8,36] × × √

STONED[75] (based on SELFIES) √ √ √

Ours PolyGrammar √ √ √ √ √

aspect of the chemical design model, i.e. either representa-
tion or generative modeling, we separate existing methods
into two categories: chemical language and generation. For
chemical language, we compare commonly used SMILES[28]

and BigSMILES[33] together with a newly invented string-based
representation SELFIES.[74] For generation, our comparison
covers popular machine learning-based algorithms includ-
ing Bayesian framework,[76] generative adversarial network
(GAN),[9–12] and auto-encoders (AE).[5–8,36] We also list here the
STONED algorithm[75] which generates molecules based on
interpolation of SELFIES representation. After exploring the
state of the art for all five properties, we give an overview of our
proposed approach.

1.1. Complete

Polymers are intrinsically stochastic molecules constructed from
some distribution of chemical sub-units. Thus, given a partic-
ular set of reactants, the synthesized polymers are not unique;
instead, there is wide variation in the resulting structures. For
example, consider the polyurethanes synthesized by a 1:1 ratio
of two distinct components: methylene bis(phenyl isocyanate)
(MDI) and poly(oxytetramethylene) diol (PTMO). Consider one
possible outcome of chain length 6, where chain length is de-
fined as the sum of MDI and PTMO units. Disregarding more
nuanced chemical restrictions (which are beyond the scope of
this paper), any arrangement of the 3 MDI and 3 PTMO units
is equally valid. Thus, for a chain of length 20, the component

permutations can result in more than
(

20
10

)
≈ 105 possible struc-

tures. This vast set of structures makes it challenging to design
a complete and concise polymer representation. Some existing
line notations,[28-34,74] including SMILES[28] (designed for general
molecules), BigSMILES[33] (specifically designed for large poly-
mers), and SELFIES[74] are complete representations since they
can convert any given polymer structure instance into the form of
strings. However, schemes relying on machine learning are not
guaranteed to satisfy this property since the learned representa-
tion spaces (numeric vectors called latent variables) may exclude
polymer structures that do not exist in training data.

1.2. Explicit

The properties of polymeric material are largely determined by
the structure of the polymer itself, including the identity and ar-
rangement of its constituent monomers.[37–39] Thus, it is useful
to have an explicit representation for polymers, in which spe-
cific structural information is directly expressed and easily un-
derstood. This is challenging because a polymer must be under-
stood on many scales, including the overarching structure of re-
peated units, and the individual molecular and atomic sub-units
that comprise them.

Low-level representations like SMILES are able to depict ex-
plicit polymeric structures, but the strings are typically hard to
parse due to their length. For example, the canonical SMILES
representation for the polyurethane chain of length 30 (5 repeti-
tions of the 6-length chain described above) requires more than
600 characters. By contrast, most representations designed for
large polymers[32–34] are so high-level that they are unable to pro-
vide explicit information about the complete polymer structure.
For example, BigSMILES can express the constituent monomers
and the bonding descriptions between them, but it cannot specify
the detailed arrangement of the polymer’s components. SELFIES
uses a sequence of derivations to generate SMILES strings and
can only be fully understandable after the string is finalized. As
for the machine learning algorithms, the latent variable is an im-
plicit representation and it is impractical to understand the poly-
mer structures merely from the numeric vector.

1.3. Valid

Generative models that build on a well-defined representation
scheme are highly coveted,[40] particularly for their ability to ef-
ficiently build large corpora of example structures. However, the
result is only useful if the examples generated by the model are
guaranteed to be chemically valid. This is challenging to enforce
for polymers, as there are many hard chemical constraints (e.g.,
valency conditions) and other restrictions to account for. The
likelihood of violating these constraints increases as the target
molecules get larger.

STONED[75] operates on the constrained SELFIES string space
and ensure the generated molecules are valid. On the contrary,

Adv. Sci. 2022, 2101864 © 2022 The Authors. Advanced Science published by Wiley-VCH GmbH2101864 (2 of 14)

www.advancedsciencenews.com www.advancedscience.com

machine learning techniques including support vector machines
(SVM),[41] recurrent neural networks (RNN),[1–4] generative ad-
versarial networks (GAN),[9–12] and AE have been used as gener-
ative models for molecules. However, these methods often pro-
duce chemically invalid outputs, even when limited to small
molecules. It is even more challenging for these methods to gen-
erate valid polymers, due to the large number of generation steps
required to realize such large molecules. Although several recent
efforts based on AE[35,36] and reinforcement learning (RL)[42,43]

have been proposed to produce valid polymers, it is not clear how
well they generalize –, i.e., the AE may be unable to ensure valid-
ity when generating polymers that significantly deviate from the
training data.

1.4. Explainable

To ensure confidence in the results of the generative model, the
generation process itself must be fully transparent and under-
standable to chemists. This property is not necessarily more chal-
lenging for large polymers (compared to small molecules), but it
is much more critical to facilitate understanding of the result-
ing polymer structure. Interpretable generation processes also
aid the exploration of possible polymer variations.

AE and other deep learning-based generative models[1–4,9,10,45]

produce structures based on implicit latent variables. These mod-
els are black-box functions that cannot be easily interpreted. By
contrast, the generative model of STONED can be interpreted
since its interpolation happens between known molecule struc-
tures.

1.5. Invertible

When designing a new chemical design model, it is critical to en-
sure compatibility with existing notations. In particular, it should
be possible (via an inverse modeling procedure) to translate any
final representation from an existing scheme into the proposed
representation. This inverse procedure should yield the same
process and final representation as if the structure were created
via the integrated generative model. This is critical for two rea-
sons: i) it makes existing knowledge accessible in the new repre-
sentation, and ii) it confirms the representative power of the new
chemical design model.

To judge invertibility for polymer models, we consider transla-
tion from one of the most popular molecule notations: SMILES.
As shown in Table 1, invertibility is already an important feature
common to many existing methods. For example, the encoder
of a chemical AE takes a SMILES string as input, then outputs
the corresponding latent variable. BigSMILES is built directly
upon SMILES so it can easily covert SMILES strings of polymers
into the BigSMILES representation. When building our own rep-
resentation, we also consider “invertibility” with respect to the
SMILES format. However, in principle, it is possible to design
inverse procedures that translate from other existing representa-
tions schemes as well.

1.6. Our Approach

In this paper, we propose a new chemical design model for
polymers that respects all five of the ideal properties dis-

cussed above. We introduce PolyGrammar, a parametric context-
sensitive grammar for polymers. In formal language theory,
grammar describes how to build strings from a language’s al-
phabet following a set of production rules. PolyGrammar repre-
sents the chain structure as a hypergraph. In particular, each poly-
mer chain is represented as a string of symbols, each of which
refers to a particular molecular fragment of the original chain.
This symbolic hypergraph representation supports explicit de-
scriptions for an infinite amount of diversely structured polymer
chains by changing the form of symbolic strings.

Based on this representation, we establish a set of produc-
tion rules that can effectively generate chemically valid symbolic
strings. The recursive nature of grammar production makes it
possible to generate any polymer in our given class using only
a simple set of production rules. In particular, it is possible for
PolyGrammar to enumerate all valid polymers structures within
a given class.

As a demonstrative example, we focus on a particular class
of polymers: polyurethanes. We choose polyurethanes due to
their wide-ranging applications, including antistatic coating,[46]

foams,[47] elastomers,[48] and drug delivery for cancer therapy.[49]

Consider generating a polyurethane of chain length of 20, using
1 polyol type (e.g., PTMO) and 1 isocyanate type (e.g., MDI). Un-
der these assumptions (which are representative of the average
polyurethane chain[50]), PolyGrammar can generate more than
2 × 106 distinct polyurethane chains using only 14 production
rules. Moreover, we show that PolyGrammar can be easily ex-
tended to the other types of polymers, including both copoly-
mers and homopolymers. We further propose an inverse mod-
eling algorithm that translates a polymer’s SMILES string into
the sequence of production rules used to generate it. More than
600 polyurethanes collected from literature are validated by this
inverse model, demonstrating the representative power of Poly-
Grammar. The schematic of our PolyGrammar is shown in Fig-
ure 1.

2. Hypergraph-Based Symbolic Representation

In this section, we introduce the hypergraph representation of
polyurethane structures and describe how to use symbolic strings
to represent polyurethane chains.

2.1. Polymers as Hypergraphs

It is a common practice[7,12,51,52] to regard the structural for-
mula of a molecule as an ordinary graph, where atoms are
nodes, bonds are edges, and edges connect exactly two nodes.
For polyurethanes, ordinary graph depictions would require
prohibitively many nodes and edges. To address this, we em-
ploy a generalized graph called a hypergraph,[53] which al-
lows individual edges to join more than one node. Any edge
that connects a subset of the nodes in the hypergraph is
called a hyperedge. Consider the product of two monomers
(1,3 bis(isocyanatomethyl)cyclohexane and diethylene glycol) as
shown in Figure 2i. Originally, the graph requires 21 nodes and
21 edges. However, if we construct each hyperedge by selecting
the subset of nodes according to the monomer type, as shown in

Adv. Sci. 2022, 2101864 © 2022 The Authors. Advanced Science published by Wiley-VCH GmbH2101864 (3 of 14)

www.advancedsciencenews.com www.advancedscience.com

Figure 1. Schematic of our chemistry design model, PolyGrammar, which represents molecular chain structure as a string of symbols (center). Poly-
Grammar consists of a set of production rules {pi|i = 1, …, 14} (left). The generation process starts from an initial symbol . At each iteration, each
non-terminal symbol (h, s or) in the current string is replaced by the successor of a production rule whose predecessor matches the symbol. The
generation process concludes when the string does not contain any non-terminal symbols. The resulting symbol string (center) is then translated to a
polymer chain (right) by hypergraph conversion.

Figure 2. The structure produced by reacted by two monomers (1,3-bis(isocyanatomethyl)cyclohexane and diethylene glycol). The standard graph rep-
resentation i) uses 21 nodes and 21 edges, but the hypergraph ii) only requires two hyperedges. Each hyperedge corresponds to the nodes of a given
monomer. Both hyperedges have the urethane group in common. We use line graph iii) to visualize the hypergraph representation in the remaining
figures of the paper for convenience.

Figure 2ii, the hypergraph for this molecule requires only 2 hy-
peredges. This dramatically reduces the representation cost for
large polyurethane chains.

For increased convenience, we will visualize the hypergraph
representations using the line graph[54] form shown in Fig-
ure 2iii. In graph theory, the line graph refers to the duality of
the original graph, where each edge in the original graph corre-
sponds to a unique vertex of the line graph. With regards to the
theory of hypergraph, the line graph contains one vertex for every
hyperedge in the original hypergraph. Two vertices in the line
graph are connected by a line if their corresponding hyperedges
in the original hypergraph have a non-empty intersection. For
the hypergraph in Figure 2ii, since the urethane group is shared

by two hyperedges in the hypergraph, the corresponding line
graph can be visualized as two vertices connected by an edge.
By collapsing the original nodes based on molecular identity,
the line graph form provides a more concise visualization of a
hypergraph.

Complete polyurethane structures can also be represented
in this manner. The molecular fragments corresponding to the
isocyanate and the polyol in the polyurethane chain are repre-
sented as hyperedges, which are visualized as vertices in the line
graph. The urethane groups connecting hard segment (HS) with
soft segment (SS) and the chain extenders connecting two diiso-
cyanates are viewed as intersections between two hyperedges;
thus, they are visualized as edges in the line graph. Two examples

Adv. Sci. 2022, 2101864 © 2022 The Authors. Advanced Science published by Wiley-VCH GmbH2101864 (4 of 14)

www.advancedsciencenews.com www.advancedscience.com

Figure 3. Examples of hypergraph representation. i) Polyurethane chain synthesised by MDI, PTMO, and 1,4-butanediol (BDO); ii) Branched
polyurethane chain synthesized by 4,4’-diisocyanato-methylenedicyclohexane (4,4’-HMDI), poly(caprolactone) diol (PCL), and tri-azine based polyhy-
dric alcohol (3-THA).

of hypergraph representations for polyurethane structures
are shown in Figure 3.

2.2. Symbolic Representation

Given the hypergraph of a polyurethane chain, we construct a
corresponding symbolic string for use in PolyGrammar. In the
symbolic string, the hyperedges corresponding to the isocyanate
(hard segment) are denoted with “” and those corresponding
to the polyol (soft segment) are denoted as “”. The chain exten-
ders are omitted since they can only exist between two adjacent
(or) symbols. For those polyurethanes containing multiple iso-
cyanate or polyol types, we use subscripts i = 1, 2, … to distin-
guish different subtypes of certain hyperedge. For instance, if two
different types of isocyanates are used,[38] we use 1 and 2 to
distinguish the hyperedges corresponding to each hard-segment
type. These rules allow us to represent any polyurethane chain as
a string of symbols. Examples are shown in Figure 4.

We emphasize that our symbolic representation is invertible,
such that a symbolic string can be converted back to the cor-
responding chemical structure if the constituent isocyanate(s),
polyol(s), and chain extender(s) are specified. We call this process
hypergraph conversion. The invertibility of hypergraph represen-
tation ensures our PolyGrammar can simultaneously serve as a
representation and a generative model for polyurethanes.

3. PolyGrammar

In this section, we first present the basic mechanism of grammar
production using an illustrative example. Then, we introduce our

parametric context-sensitive PolyGrammar comprehensively. Fi-
nally, we propose several advanced features based on our basic
PolyGrammar for the representation of polyurethanes, which en-
courage the generation of more general structures.

3.1. Basic PolyGrammar

In formal language theory, a grammar G = (N, Σ, P) is used
to describe a language, where N is a set of non-terminal sym-
bols, Σ is a set of terminal symbols and P is a set of produc-
tion rules, each of which consists of a predecessor and a suc-
cessor separated by a right arrow “ → ”. In the language rep-
resented by the grammar G, each word is a finite-length string
containing both terminal and non-terminal symbols. The non-
terminal symbols in a word can be further replaced and expanded
by invoking one production rule from P at a step. In our Poly-
Grammar, the set of non-terminal symbols N is { , h, s} and
the set of terminal symbols Σ is {,}. Figure 5 shows an il-
lustrative example to demonstrate the process for producing a
string via the grammar G. This example uses four production
rules: P = { → h; h → h; h → s; s → Null}. Starting from
the initial symbol , at each iteration, each non-terminal symbol
in the current string is replaced with the successor of a produc-
tion rule whose predecessor matches the symbol. The process
continues until no non-terminal symbols exist in the string.

According to Chomsky’s classification,[55] the grammar used
in this illustrative example is a Type-2 grammar, also called
context-free grammar, where the predecessor of each production
rule consists of only one single non-terminal symbol. Similar

Adv. Sci. 2022, 2101864 © 2022 The Authors. Advanced Science published by Wiley-VCH GmbH2101864 (5 of 14)

www.advancedsciencenews.com www.advancedscience.com

Figure 4. Symbolic representations for polyurethanes synthesized using: i) MDI, PTMO, and BDO; ii) 1,6-diisocyanatohexane (HDI), and PCL; iii) 4,4’-
dibenzyl diisocyanate (DBDI), MDI, poly(ethylene adipate)diol (PEA), and ethylene glycol (EG). Note that (iii) includes multiple diisocyanates.

paradigms are also utilized in L-systems to model the morphol-
ogy of organisms.[56,57]

3.1.1. Context-Sensitive Grammar

The context-free grammar discussed above is insufficient to
imitate the polyurethane generation process because the sym-
bolic string can only expand along one direction; however,
polyurethanes generally grow along two opposite directions to
form chain structures. To address this, our PolyGrammar uses

context-sensitive grammar. In particular, our PolyGrammar is a
Type-1 grammar, a more general form of Type-2 grammar,[58]

where the production rules also consider the context (i.e., the sur-
rounding symbols) of the given non-terminal symbol within the
string.

By considering the symbol contexts, the production rules of a
context-sensitive grammar can explicitly depict the growing di-
rection of the polyurethane chain. The production rules are as
follows:

p1 : None⟨⟩None → hh
p2 : None⟨⟩None → ss

Adv. Sci. 2022, 2101864 © 2022 The Authors. Advanced Science published by Wiley-VCH GmbH2101864 (6 of 14)

www.advancedsciencenews.com www.advancedscience.com

Figure 5. An illustrative example of grammar production. Starting from the initial symbol , we sequentially invoke four production rules from
P = { → h; h → h; h → s; s → Null}. The process continues until all symbols in the string are terminal symbols. By specifying the constituent
structures, i.e., isophorone diisocyanate (IPDI), polyhexamethylene carbonate glycol (PHA), and EG, the string of the symbols can be translated to the
corresponding polyurethane chain via hypergraph conversion.

p3 : None ⟨h⟩ → h
p4 : None ⟨h⟩ → s
p5 : None ⟨h⟩ → Null
p6 : None ⟨s⟩ → h
p7 : None ⟨s⟩ → s
p8 : None ⟨s⟩ → Null
p9 : ⟨h⟩None → h
p10 : ⟨h⟩None → s
p11 : ⟨h⟩None → Null
p12 : ⟨s⟩None → h
p13 : ⟨s⟩None → s
p14 : ⟨s⟩None → Null
In each production rule, the non-terminal symbol to be re-

placed is inside the angle brackets “< >” of the predecessor. The
contexts are the symbols located at both sides of “< >” in the pre-
decessor (None indicates no constraints). The rule can only be
deployed when both contexts of the symbol have been matched.

Each rule has an intuitive function. Rules p1 and p2 initialize
the start symbol , while p5, p8, p11, and p14 terminate the growth.
Rules p3, p4, p6, and p7 extend the string along the left direction,
and p9, p10, p12 and p13 extend the string along the right direction.
p3 and p9 indicate the reaction between two isocyanates, imitating
the formation of the hard segment, while p7 and p13 indicate the
reaction between two polyols, imitating the formation of the soft
segment. Lastly, p4, p6, p10, and p12 imitate the formation of the
urethane group.

Another important feature of the PolyGrammar is that there
are multiple possible production rules to expand a given symbol.
For instance, p3, p4, and p5 share the same predecessor and ex-
pand the non-terminal symbol h along the left direction. There
are many possible schemes for selecting among these options,
including hand-tuned heuristics or manual intervention to guide
the scheme toward particular results. For simplicity, we have im-
plemented a uniformly random selection technique: at each itera-

tion, we randomly sample one rule from all of the candidate rules
that meet the contexts and apply it to the symbol. An example of
the production process is illustrated in Figure 6.

3.1.2. Parametric Grammar

Although the context-sensitive grammar makes it possible to
generate a variety of polyurethane chain structures, its model-
ing power is still limited. One important problem is that the
total chain length of the generated polyurethanes cannot be
controlled. In practice, the chain length is an essential fac-
tor that influences the physical and chemical properties of
polyurethanes.[50,59] It is non-trivial to control the chain length
of each generated polyurethane merely using the grammar dis-
cussed above due to the stochastic production. In order to address
this problem, we introduce a parameter x associated with each
terminal symbol in the grammar and augment our PolyGram-
mar as a parametric context-sensitive grammar. The proposed
parametric grammar is illustrated as follows,

p1 : None⟨⟩None : None → h(L)h
p2 : None⟨⟩None : None → s(L)s
p3 : None ⟨h⟩(x) : x ≥ 1 → h(x − 1)
p4 : None ⟨h⟩(x) : x ≥ 1 → s(x − 1)
p5 : None ⟨h⟩(x) : x < 1 → Null
p6 : None ⟨s⟩ (x) : x ≥ 1 → h(x − 1)
p7 : None ⟨s⟩ (x) : x ≥ 1 → s(x − 1)
p8 : None ⟨s⟩ (x) : x < 1 → Null
p9 : (x)⟨h⟩None : x ≥ 1 → (x − 1)h
p10 : (x)⟨h⟩None : x ≥ 1 → (x − 1)s
p11 : (x)⟨h⟩None : x < 1 → Null
p12 : (x) ⟨s⟩None : x ≥ 1 → (x − 1)h
p13 : (x) ⟨s⟩None : x ≥ 1 → (x − 1)s
p14 : (x) ⟨s⟩None : x < 1 → Null

Adv. Sci. 2022, 2101864 © 2022 The Authors. Advanced Science published by Wiley-VCH GmbH2101864 (7 of 14)

www.advancedsciencenews.com www.advancedscience.com

Figure 6. Example of context-sensitive grammar. At each production step, only the rules that match the non-terminal symbol’s context are adopted.
Hence, the production process can explicitly depict the growing direction of the polyurethane chain. If there are multiple candidate rules at a given step,
selection can be done manually or randomly. The selected rule is then applied to the symbol to continue production.

The production rules now feature parameters, which are de-
noted with parentheses “()” following terminal symbols. Further-
more, each production rule is augmented with a logical “con-
dition” that determines whether the rule can be invoked or
not (None indicates no constraints). By specifying L (the initial
value of parameter x in production rules p1 and p2), the gram-
mar can produce strings with length 2L + 1, corresponding to
polyurethane chains with length 2L + 1. By varying the value of
L, the chain length of generated polyurethanes can be controlled.
An example of this production process is illustrated in Figure 7.

3.2. Advanced Features

3.2.1. Extensions for Branched Polyurethanes

So far, all of our polyurethanes have featured linear chain
structures. However, it is possible for polyurethanes to have
branched structures,[60] as shown in Figure 3ii. To generate
branched polyurethanes, we augment the parametric context-
sensitive grammar with several rules:

p15 : None ⟨h⟩(x) : x ≥ 1 → h[h](x − 1)
p16 : None ⟨h⟩(x) : x ≥ 1 → s[s](x − 1)

p17 : (x)⟨h⟩None : x ≥ 1 → (x − 1)[h]h
p18 : (x) ⟨s⟩None : x ≥ 1 → (x − 1)[s]s
A branch is delimited by the content inside a pair of square

brackets “[]”. The non-terminal symbols inside the square brack-
ets can also be further expanded using the rules of the basic Poly-
Grammar. In the final string, all the terminal symbols inside a
pair of square brackets together form a sub-branch attached to the
backbone. The above-illustrated rules can generate polyurethane
chains that have up to 2 branches at each bifurcation. The num-
ber of branches at each bifurcation can also exceed 2 by adding
more square-bracket pairs attached to the non-terminal symbols.
Examples are available in Supporting Information.

3.2.2. Extensions for Meta-Ring structures

For now, our PolyGrammar focuses on single-chained molecular
structures. However, synthesized polyurethanes are a mixture of
differently structured chains, where interactions between chains
such as hydrogen bonding and crosslinking may occur.[47,48]

These interactions influence the physical and chemical proper-
ties of the polyurethane, largely determining whether the syn-
thesized polyurethane is thermoset or thermoplastic. We further

Adv. Sci. 2022, 2101864 © 2022 The Authors. Advanced Science published by Wiley-VCH GmbH2101864 (8 of 14)

www.advancedsciencenews.com www.advancedscience.com

Figure 7. Example of parametric grammar. To control the length of generated polyurethane, we introduce parameters, denoted with parentheses “()”
after terminal symbols.

propose a graph grammar[68] based on the initial PolyGrammar
by augmenting the production rules to support interactions be-
tween multiple chains. The key idea is to enable a certain pro-
duction rule to have a simple ring structure at the right-hand
side. This ring structure contains non-terminal symbols, which
can be further expanded using other production rules to form a
larger ring. Since this ring expansion rule can be selected multi-
ple times during the production process, it is possible to have
multiple meta-rings in the final generated symbolic graph. By
properly arranging the symbols, the graph is isomorphic to multi-
ple chains with interactions between each other. We can then per-
form hypergraph conversion by specifying the fragment and in-
teraction type to get the final polymer microstructure, including
hydrogen bonding and crosslinking. Detailed rules and explana-
tions together with an example of the whole production process
for a polymer network[73] formed by cross-linking poly-(4-vinyl
pyridine) (P4VP) with bis-Pd (II) complexes are available in Sup-
porting Information.

3.2.3. Global Controllable Parameters

We have already discussed the use of parameters for control-
ling the chain length of the generated polyurethanes. However,
it is still difficult for our baseline parametric grammar to achieve
more advanced controllable parameters such as the ratio of hard
segment to soft segment. This is because the context-sensitive
grammar only captures “local” information about the chain dur-
ing the generation process, as the view of each production rule
is limited to the context immediately surrounding the predeces-
sor symbol. When it comes to global constraints, such as spe-
cific ratios of hard versus soft segments, the generative model

needs to be aware of the relevant information (number of hard
segments, chain length) over the whole chain. It is non-trivial to
handle these constraints with the basic PolyGrammar discussed
in previous sections.

To address this issue, we introduce an additional symbol “”
which serves as a message that can collect global information
about the chain. The message is propagated back and forth be-
tween the left and right ends of the string. The propagation is
achieved by switching the message’s position with the adjacent
symbol’s one at a time; this continues along a certain direction
until the message gets to the string end. At each position swap,
the message updates its parameters to collect the information re-
quired for the control setting. When the message reaches the end
of the string, the outcome of the production rule is influenced by
the information contained in the message. The message is then
reset and begins to propagate along the opposite direction, encod-
ing information about the entirety of the structure, continuing
the above process. Since the production rules are only applied at
the end of the chain, this mechanism ensures that the string gen-
eration adheres to all parameter-controlled constraints. Multiple
constraints can be considered simultaneously by adding more pa-
rameters to the message symbol. The full set of the production
rules and an illustration of the message passing mechanism are
shown in Supporting Information.

4. PolyGrammar as a Generative Model

Generative models are critical for the efficient, thorough explo-
ration of possible polymer structures. These models are also par-
ticularly powerful in conjunction with machine learning algo-
rithms, in order to address complicated problems like human-
guided exploration and property prediction. In this section, we

Adv. Sci. 2022, 2101864 © 2022 The Authors. Advanced Science published by Wiley-VCH GmbH2101864 (9 of 14)

www.advancedsciencenews.com www.advancedscience.com

Figure 8. Examples of polyurethane chains generated using PolyGrammar. i) Ordered chain with isophorone diisocyanate (IPDI), polyhexamethylene
(PHA) and EG; ii) Branched chain with MDI, PTMO and 3-THA; iii) Unordered chain with Toluene diisocyanate (TDI), PLA and diethylene glycol (DEG).

discuss how our parametric context-sensitive PolyGrammar can
serve as a generative model.

The generation process of PolyGrammar begins with a sim-
ple string that contains the initial symbol . On each step, we
traverse the symbols in the current string and find the position
of all the non-terminal symbols. For each non-terminal symbol,
we identify a candidate set of production rules. Each candidate
production rule must meet the following conditions: 1) the con-
text in the predecessor clause matches the context of the current
symbol in the string, and 2) the parameters of this symbol’s con-
text meet the logical condition of the production rule. If there are
several candidate rules to expand a given symbol, a single rule
is selected according to the desired scheme (random sampling
scheme, manual intervention, etc.). We apply the selected pro-
duction rule to the appropriate non-terminal symbol, and repeat
this process until no non-terminal symbols remain in the string.
Once the final string is produced, we convert it into an explicit
polyurethane hypergraph by replacing the symbols in the string
with the chemical structures (e.g., MDI and PTMO) correspond-
ing to each hyperedge. This yields a valid, explicit polyurethane
chain, as desired. These structures can be further converted to
other forms of representation such as SMILES.

Using our generative model, it is possible to enumerate all
valid polyurethane structures in a target class (e.g., length 20 with

1 type of polyol and 1 type of isocyanate). In particular, any dis-
tinct sequence of production rules on the start symbol yields a
distinct string, which in turn represents a unique polyurethane
chain. Since the production rules encode all permissible local
configurations of the constituent molecules, it follows that our
grammar is able to generate any valid polyurethane.

To emphasize the volume of achievable molecules, we also
quantitatively analyze the diversity of generated chains for our
PolyGrammar. Given a chain length parameter L and the num-
ber of isocyanate and polyol types (NH and NS, respectively), the
basic PolyGrammar (with 14 production rules) allows the gener-
ation of a total number of

N =
2L+1∑
i=0

(2L + 1)!
i! (2L + 1 − i)!

Ni
HN2L+1−i

S (1)

polyurethane chains with different structures. With L = 10,
NH = 1 , NS = 1, which are representative of an average
polyurethane chain,[50] N is more than 2× 106. This demonstrates
the powerful capacity of our PolyGrammar. Several polyurethane
chains generated using PolyGrammar are shown in Figure 8.
More examples can be found in Supporting Information.

Adv. Sci. 2022, 2101864 © 2022 The Authors. Advanced Science published by Wiley-VCH GmbH2101864 (10 of 14)

www.advancedsciencenews.com www.advancedscience.com

Figure 9. Schematic for translating a polyurethane from a SMILES string into our PolyGrammar representation, which also reveals the complete sequence
of rules required for its generation. The pipeline can be regarded as a search process. Starting from the initial symbol, we iteratively select and invoke
production rules until all symbols in the string are terminal symbols. Then given the component types, we convert the symbolic string into a polyurethane
structure by hypergraph conversion and compare it with the input structure. The total process repeats until the search structure matches the input
structure. Note that the component type is not a necessary input of the total algorithm. It can be replaced by another search process in a monomer
dataset collected from the literature.

5. Translation from SMILES

To complete our chemical design model, we also develop an in-
verse model capable of translating a SMILES string into the corre-
sponding sequence of PolyGrammar production rules. The over-
all pipeline of translation from SMILES can be regarded as a
search process, as shown in Figure 9. Starting from the initial
symbol, we iteratively select and invoke production rules until all
symbols in the string are terminal symbols. Once we have a com-
plete string and the specific component types, we use hypergraph
conversion to convert the symbolic string into a polyurethane
structure. We then compare our results with the input structure;
if they do not match, we restart our search from scratch. The
process repeats until our structure matches the original input.
Note that the component type is not a necessary input of the to-
tal algorithm. It can be replaced by another search process in a
monomer dataset collected from the literature. This monomer
dataset is provided in the Supporting Information.

Specifically, our inverse model proceeds as follows. Given the
SMILES string of the polyurethane chain, we break it into mul-
tiple molecular fragments by disconnecting all of the urethane
groups, − −NHCO − −O − −. Then we exhaustively enumerate
each molecular fragment and perform a string matching algo-
rithm (KMP matching[63]) to identify the type of it: an isocyanate,
a polyol, or a chain extender. During the enumeration, we also
record the connectivity between each fragment. Based on the
types and the connectivity of the fragments, we can obtain a hy-
pergraph representation of the original SMILES string. The final
step is to convert the hypergraph into the sequence of the pro-
duction rules of PolyGrammar. We traverse the hypergraph us-
ing the breadth-first search (BFS) algorithm, which explores all

of the neighboring hyperedges at the present depth before mov-
ing on to the nodes at the next depth level. BFS starts at the tree
root, which is an arbitrary hyperedge of the hypergraph. Each
step of the exploration returns a tuple of two hyperedges, which
is then matched with a specific production rule in the PolyGram-
mar. Hence, the sequence of the production rules can be obtained
once the entire hypergraph has been explored. The pipeline of
this algorithm is illustrated in Figure 10 and the corresponding
pseudo-code is in Supporting Information.

This pipeline is sufficient for our needs, but it could be im-
proved with a heuristic search such as A* search,[64] best-first
search,[65] or learned heuristic search[66] where a heuristic func-
tion accelerates the search process by directing attention toward
the most promising regions of the search space.

To validate our approach and demonstrate the capacity of our
proposed PolyGrammar, we have collected and inversely mod-
eled over 600 polyurethane structures from the literature. Many
of these polyurethanes are commonly used in synthesis and real-
world fabrication, and they feature a wide range of constituent
molecules. In particular, the dataset features 8 different types
of isocyanates, 11 types of polyols, and 7 types of chain exten-
ders. Additional details about our dataset – including information
about how to add and translate new polyurethane structures –
are described in Section 7. Supporting Information also contains
several examples of polyurethanes from our dataset, which were
successfully converted from SMILES to the PolyGrammar rep-
resentations. Moreover, we emphasize that each of the collected
SMILES strings in our dataset can be successfully converted to a
sequence of production rules in the PolyGrammar. This proves
that our PolyGrammar has a high representative capacity over a
large span of polyurethane structures.

Adv. Sci. 2022, 2101864 © 2022 The Authors. Advanced Science published by Wiley-VCH GmbH2101864 (11 of 14)

www.advancedsciencenews.com www.advancedscience.com

Figure 10. Overview of the algorithm for translation from SMILES. The input SMILES string is first broken into a set of molecular fragments, which are
identified via string matching. Based on the identity and connections of each fragment, we can construct the hypergraph representation of the molecule.
Then, we search for a sequence of PolyGrammar rules that yields the desired result.

6. Generalization to Other Polymers and
Stereochemistry

Our PolyGrammar can also be easily extended to new classes of
polymers. These extensions would use the same framework de-
scribed above, with very few modifications. In the Supporting
Information, we illustrate the extended PolyGrammar for differ-
ent types of copolymers, including alternating copolymers and
block copolymers. Note that our PolyGrammar in the main paper
can already cover random copolymers, branched copolymers, and
graft copolymers. Users only need to add new types of reactants
to the symbolic representation in order to determine the species
of monomer.

For now, PolyGrammar focuses on the backbone structure,
i.e., the arrangement of monomers, which largely determines
the property of copolymers (derived from more than one species
of monomer). The grammar treats the monomer fragment as a
whole and distinguishes different monomer types using differ-
ent symbols. However, there is also a wide range of polymers
consisting of only one single type of repeat unit, i.e., homopoly-
mers, where the backbone structures are not variable and the
functional group (also called functional residue) of the monomer
contributes to the polymer property. To handle this, we aug-
ment our PolyGrammar with an additional set of production
rules focusing on the representation and generation of functional
groups. We also demonstrate the effectiveness of our augmented
PolyGrammar using polyacrylate as an illustrative example. This
functional-group grammar together with the basic PolyGram-
mar (full set of the production rules in Supporting Information)
serves as a hierarchical generative model for polymers, where the
latter one handles the backbone and the former one focuses on
the functional residue of each composed monomer. More exam-
ples are shown in Supporting Information.

We also show in Supporting Information that PolyGrammar
can handle stereochemistry of polymers by adding an additional
parameter “t” as the orientation indicator. We use binary num-
bers “0” and “1” as the parameter to distinguish two different

oriented units. By specifying the logical conditions of each rule,
we can control the final generated polymers to hold different tac-
tics. For example, syndiotactic polymers can be obtained if each
production rule alters the binary parameter, while atactic poly-
mers can be obtained if each production rule randomly samples
the parameter. We show the detailed rules for three common tac-
ticity settings and use polypropylene as an illustrative example
in Supporting Information. A similar binary parameter approach
can be used to represent charged polymer chains, including poly-
electrolytes, where we can use “q = 1” for those fragments with
positive charges and “q = 0” for those with negative charges.

7. Statistical Analysis

We have collected a dataset of polyurethanes from the literature,
including 8 different types of isocyanates, 11 types of polyols, and
7 types of chain extenders. Each sample is illustrated in the form
of BigSMILES (see Supporting Information for details).

By combining 3 types of components, this dataset contains 8
× 11 × 7 = 616 types of polyurethanes that are commonly used
in synthesis and real-world fabrication. The full names of the ab-
breviations in the dataset are listed in Table S5 (Supporting Infor-
mation). These data samples are stored in a “.CSV” file and can
be easily handled using Python code to perform the algorithms
of generative model and translation from SMILES. It is also ca-
pable of adding new structures to this dataset. The only thing to
do is convert the structure to the BigSMILES format and add it
to the “.CSV” file.

8. Discussion

PolyGrammar is an effective chemistry design model that satis-
fies all five desirable properties discussed in the Introduction. In
particular, our symbolic representation can convey all possible
polyurethane structures in an explicit yet concise manner. The
generative model based on this representation is exhaustive (it

Adv. Sci. 2022, 2101864 © 2022 The Authors. Advanced Science published by Wiley-VCH GmbH2101864 (12 of 14)

www.advancedsciencenews.com www.advancedscience.com

is capable of generating any polyurethane) and trustworthy (ev-
ery generated polyurethane is guaranteed to be valid). Moreover,
the generation process is fully transparent and understandable
to the user, as it returns a sequence of meaningful production
rules that yield our model’s result. Lastly, the generation process
is invertible, so molecules can be translated from other popu-
lar representations such as SMILES. These superior properties
make PolyGrammar more comprehensive and practical than ex-
isting representation schemes and generative models. Our full
chemical design model (representation, generative model, and
inverse model) is also efficient and straightforward to use in prac-
tice. For a polyurethane chain of length 20, the average gener-
ation time via PolyGrammar is 4 ms, and its translation from
SMILES costs 11 ms on a PC with an Intel Core i7 CPU. The
main contribution of the total generation time is from the con-
text matching and rule selection at each production step, result-
ing in a linear escalation to the length of the chain. In order to
generate a large number of different chains, one can easily use
multi-processing techniques[67] to generate numerous chains si-
multaneously. The overall generation time can be proportionally
reduced by the number of parallels.

The current generative model of the PolyGrammar also only
imitates the chain-growth polymerization. Although this poly-
merization mechanism has some benefits for the simulation of
polyurethane chains,[61] it would be ideal for our PolyGrammar
to imitate step-growth polymerization as well. More advanced
grammar such as universal grammar[62] will be helpful to achieve
this.

These aforementioned features are intriguing and will be im-
plemented and demonstrated in future work. However, even
without these augmentations, our proposed PolyGrammar takes
an important step toward a more practical and comprehensive
system for polymer discovery and exploration.

9. Conclusion

In summary, we propose a parametric context-sensitive gram-
mar, called PolyGrammar, for the representation and generation
of polymers. The recursive nature of grammar production en-
ables the generation of any polymer chain using only a simple
set of production rules. We also implement an algorithm that can
transfer a SMILES string of a polymer chain to the sequence of
production rules used to generate it. Capable of reproducing a
large literature-collected dataset, this algorithm demonstrates the
completeness and effectiveness of our PolyGrammar. Our Poly-
Grammar will benefit the polymer community in several ways.
The most immediate contribution is our ability to efficiently gen-
erate an exhaustive collection of polymer samples. This corpus
could be very powerful in conjunction with other methods (e.g.,
machine learning) to guide the synthesis of physical polymers
and facilitate complex tasks like molecular discovery[2–4] and
property optimization.[13,14,17] PolyGrammar is also helpful for
the reverse engineering of polymer design and production. Our
PolyGrammar serves as a blueprint to construct chemical design
models for different classes of chemistries, including both or-
ganic and inorganic molecules. Eventually, PolyGrammar could
improve chemical communication and exploration, by provid-
ing a more efficient and effective representation scheme that is
widely suitable for complicated polymers.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.

Acknowledgements
The authors would like to thank Dr. Xingcai Zhang and Dr. Ming Xiao from
Harvard University, and Dr. Pengfei Zhang from Qingdao University for
their helpful comments.

Conflict of Interest
The authors declare no conflict of interest.

Author Contributions
M.G. developed and implemented the algorithm and conducted the exper-
iments. L.M. contributed to the organization and writing. W.S., T.E., and
M.F. contributed to the development of production rules and polymer ex-
ample collection. All authors edited and commented on the manuscript.
W.M. initiated the original idea and supervised the research.

Data Availability Statement
All data needed to evaluate the conclusions in the paper are present in the
paper and/or the Supporting Information.

Keywords
context-sensitive grammar, generative model, polymer representation

Received: May 5, 2021
Revised: December 4, 2021

Published online:

[1] E. J. Bjerrum, R. Threlfall, Molecular generation with recurrent neural
networks (RNNs), arXiv preprint arXiv:1705.04612 2017.

[2] M. Olivecrona, T. Blaschke, O. Engkvist, H. Chen, J. Cheminf. 2017,
9, 48.

[3] A. Gupta, A. T. Müller, B. J. Huisman, J. A. Fuchs, P. Schneider, G.
Schneider, Mol. Inf. 2018, 37, 1700111.

[4] M. Sumita, X. Yang, S. Ishihara, R. Tamura, K. Tsuda, ACS Cent. Sci.
2018, 4, 1126.

[5] T. Blaschke, M. Olivecrona, O. Engkvist, J. Bajorath, H. Chen, Mol.
Inf. 2018, 37, 1700123.

[6] J. Lim, S. Ryu, J. W. Kim, W. Y. Kim, J. Cheminf. 2018, 10, 31.
[7] W. Jin, R. Barzilay, T. Jaakkola, Junction tree variational autoencoder for

molecular graph generation, arXiv preprint arXiv:1802.04364 2018.
[8] P. B. Jørgensen, M. N. Schmidt, O. Winther, Mol. Inf. 2018, 37,

1700133.
[9] E. Putin, A. Asadulaev, Y. Ivanenkov, V. Aladinskiy, B. Sanchez-

Lengeling, A. Aspuru-Guzik, A. Zhavoronkov, J. Chem. Inf. Model.
2018, 58, 1194.

[10] E. Putin, A. Asadulaev, Q. Vanhaelen, Y. Ivanenkov, A. V. Aladinskaya,
A. Aliper, A. Zhavoronkov, Mol. Pharmaceutics 2018, 15, 4386.

[11] O. Méndez-Lucio, B. Baillif, D.- A. Clevert, D. Rouquié, J. Wichard,
Nat. Commun. 2020, 11, 10.

Adv. Sci. 2022, 2101864 © 2022 The Authors. Advanced Science published by Wiley-VCH GmbH2101864 (13 of 14)

www.advancedsciencenews.com www.advancedscience.com

[12] Ł. Maziarka, A. Pocha, J. Kaczmarczyk, K. Rataj, T. Danel, M. Warchoł,
J. Cheminf. 2020, 12, 2.

[13] F. Napolitano, Y. Zhao, V. M. Moreira, R. Tagliaferri, J. Kere, M.
D’Amato, D. Greco, J. Cheminf. 2013, 5, 30.

[14] G. Montavon, M. Rupp, V. Gobre, A. Vazquez-Mayagoitia, K. Hansen,
A. Tkatchenko, K.-R. Müller, O. A. Von Lilienfeld, New J. Phys. 2013,
15, 095003.

[15] Z. Wu, B. Ramsundar, E. N. Feinberg, J. Gomes, C. Geniesse, A. S.
Pappu, K. Leswing, V. Pande, Chem. Sci. 2018, 9, 513.

[16] C. W. Coley, W. Jin, L. Rogers, T. F. Jamison, T. S. Jaakkola, W. H. Green,
R. Barzilay, K. F. Jensen, Chem. Sci. 2019, 10, 370.

[17] H. Gao, T. J. Struble, C. W. Coley, Y. Wang, W. H. Green, K. F. Jensen,
ACS Cent. Sci. 2018, 4, 1465.

[18] J. S. Schreck, C. W. Coley, K. J. Bishop, ACS Cent. Sci. 2019, 5, 970.
[19] B. Liu, B. Ramsundar, P. Kawthekar, J. Shi, J. Gomes, Q. Luu Nguyen,

S. Ho, J. Sloane, P. Wender, V. Pande, ACS Cent. Sci. 2017, 3, 1103.
[20] K. T. Butler, D. W. Davies, H. Cartwright, O. Isayev, A. Walsh, Nature

2018, 559, 547.
[21] P. Raccuglia, K. C. Elbert, P. D. Adler, C. Falk, M. B. Wenny, A. Mollo,

M. Zeller, S. A. Friedler, J. Schrier, A. J. Norquist, Nature 2016, 533,
73.

[22] B. Barnes, B. Rice, A. Sifain, Bull. Am. Phys. Soc. 2020, 65, 1.
[23] D. Fooshee, A. Mood, E. Gutman, M. Tavakoli, G. Urban, F. Liu, N.

Huynh, D. Van Vranken, P. Baldi, Mol. Syst. Des. Eng. 2018, 3, 442.
[24] P. Schwaller, T. Gaudin, D. Lanyi, C. Bekas, T. Laino, Chem. Sci. 2018,

9, 6091.
[25] M. H. Segler, M. Preuss, M. P. Waller, Nature 2018, 555, 604.
[26] A. B. Henson, P. S. Gromski, L. Cronin, ACS Cent. Sci. 2018, 4, 793.
[27] L. M. Roch, F. Häse, C. Kreisbeck, T. Tamayo-Mendoza, L. P. Yunker,

J. E. Hein, A. Aspuru-Guzik, PLoS One 2020, 15, 0229862.
[28] D. Weininger, J. Chem. Inf. Comput. Sci. 1988, 28, 31.
[29] S. Ash, M. A. Cline, R. W. Homer, T. Hurst, G. B. Smith, J. Chem. Inf.

Comput. Sci. 1997, 37, 71.
[30] J. J. Vollmer, J. Chem. Educ. 1983, 60, 192.
[31] S. R. Heller, A. McNaught, I. Pletnev, S. Stein, D. Tchekhovskoi, J.

Cheminf. 2015, 7, 23.
[32] A. Drefahl, CurlySMILES: a chemical language to customize and an-

notate encodings of molecular and nanodevice structures. J. Cheminf.
2011, 3, 1.

[33] T-S. Lin, C. W. Coley, H. Mochigase, H. K. Beech, W. Wang, Z. Wang,
E. Woods, S. L. Craig, J. A. Johnson, J. A. Kalow, K. F. Jensen, B. D.
Olsen, ACS Cent. Sci. 2019, 5, 1523.

[34] T. Zhang, H. Li, H. Xi, R. V. Stanton, S. H. Rotstein, J. Chem. Inf. Mod-
ell. 2012, 10, 2796.

[35] H. Kajino, Proc. Int. Conf. on Machine Learning, IEEE, Piscataway, NJ
2019, pp. 3183–3191.

[36] W. Jin, R. Barzilay, T. Jaakkola, Hierarchical Generation of Molecular
Graphs using Structural Motifs, arXiv preprint arXiv:2002.03230 2020.

[37] L. H. Sperling, Introduction to Physical Polymer Science, John Wiley &
Sons, New York 2005.

[38] Z. S. Petrovic, J. Ferguson, Prog. Polym. Sci. 1991, 16, 695.
[39] J. M. G. Cowie, V. Arrighi, Polymers: Chemistry and Physics of Modern

Materials, CRC Press, Boca Raton, FL 2007.
[40] D. C. Elton, Z. Boukouvalas, M. D. Fuge, P. W. Chung, Mol. Syst. Des.

Eng. 2019, 4, 828.
[41] D-S. Cao, J-C. Zhao, Y-N. Yang, C-X. Zhao, J. Yan, S. Liu, Q.- N. Hu,

Q-S. Xu, Y-Z. Liang, SAR QSAR Environ. Res. 2012, 23, 141.
[42] J. You, B. Liu, Z. Ying, V. Pande, J. Leskovec, Proc. 32nd Int. Conf. on

Neural Information Processing Systems, 2018.
[43] Z. Zhou, S. Kearnes, L. Li, R. N. Zare, P. Riley, Sci. Rep. 2019, 9, 10752.
[44] H. Dai, Y. Tian, B. Dai, S. Skiena, L. Song, Syntax-directed variational

autoencoder for structured data, arXiv preprint arXiv:1802.08786 2018.

[45] A. Nouira, N. Sokolovska, J.- C. Crivello. Crystalgan: learning to discover
crystallographic structures with generative adversarial networks, arXiv
preprint arXiv:1810.11203 2018.

[46] Y. Tian, X. Zhang, H-Z. Geng, H-J. Yang, C. Li, S-X. Da, X. Lu, J. Wang,
S-L. Jia, RSC Adv. 2017, 7, 53018.

[47] G. Oertel, L. Abele, Polyurethane Handbook: Chemistry, Raw Materi-
als, Processing, Application, Properties, Hanser Publishers, New York
1994.

[48] H-W. Engels, H-G. Pirkl, R. Albers, R. W. Albach, J. Krause, A. Hoff-
mann, H. Casselmann, J. Dormish, Angew. Chem., Int. Ed. 2013, 52,
9422.

[49] Y. Niu, F. J. Stadler, T. He, X. Zhang, Y. Yu, S. Chen, J. Mater. Chem. B
2017, 5, 9477.

[50] P. Czech, L. Okrasa, F. Méchin, G. Boiteux, J. Ulanski, Polymer 2006,
47, 7207.

[51] Y. Li, O. Vinyals, C. Dyer, R. Pascanu, P. Battaglia, Learning deep gen-
erative models of graphs, arXiv preprint arXiv:1803.03324 2018.

[52] R. Winter, F. Montanari, F. Noé, D-A. Clevert, Chem. Sci. 2019, 10,
1692.

[53] C. Berge, Hypergraphs: Combinatorics of Finite Sets, Vol. 45, Elsevier,
New York 1984.

[54] J-C. Bermond, M-C. Heydemann, D. Sotteau, Discrete Math. 1977, 18,
235.

[55] N. Chomsky, IRE Trans. Info. Theory 1956, 2, 113.
[56] A. Lindenmayer, J. Theor. Biol. 1968, 18, 300.
[57] P. Prusinkiewicz, A. Lindenmayer, The Algorithmic Beauty of Plants,

Springer Science & Business Media, New York 2012.
[58] J. E. Hopcroft, R. Motwani, J. D. Ullman, Acm Sigact News 2001, 32,

60.
[59] E. Gee, G. Liu, H. Hu, J. Wang, Langmuir 2018, 34, 10102.
[60] S. S. Mahapatra, S. K. Yadav, H. J. Yoo, J. W. Cho, J-S. Park, Composites,

Part B 2013, 45, 165.
[61] R. Ghoreishi, G. Suppes, RSC Adv. 2015, 5, 68361.
[62] N. Chomsky, Tool Module: Chomsky’s Universal Grammar 2018.
[63] D. E. Knuth, J. H. Morris, Jr, V. R Pratt, SIAM J. Comput. 1977, 6,

323.
[64] R. E. Korf, Artificial Intelligence Search Algorithms, ACM, New York

1999.
[65] J. Pearl, Intelligent Search Strategies for Computer Problem Solving, Ad-

dision Wesley, Boston 1984.
[66] M. Bhardwaj, S. Choudhury, S. Scherer, Learning heuristic search via

imitation, arXiv preprint arXiv:1707.03034 2017.
[67] J. Hunt, in Multiprocessing, Advanced Guide to Python 3 Programming,

Springer, Cham 2019, p. 363.
[68] G. Rozenberg, Handbook of Graph Grammars and Computing by

Graph Transformation, Vol. 1, World Scientific, Singapore 1997.
[69] H. D. Tran, C. Kim, L. Chen, A. Chandrasekaran, R. Batra, S. Venka-

tram, D. Kamal, J. P. Lightstone, R. Gurnani, P. Shetty, M. Ramprasad,
J. Laws, M. Shelton, R. Ramprasad, J. Appl. Phys. 2020, 128, 171104.

[70] C. Kim, A. Chandrasekaran, T. D. Huan, D. Das, R. Ramprasad, J.
Phys. Chem. C 2018, 122, 31, 17575.

[71] T. D. Huan, A. Mannodi-Kanakkithodi, C. Kim, V. Sharma, G. Pilania,
R. Ramprasad, Sci. Data 2016, 3, 160012.

[72] O. Toshio, M. Yamazaki, “New stage of MatNavi, materials database
at NIMS” 2012.

[73] W. C. Yount, D. M. Loveless, S. L. Craig, J. Am. Chem. Soc. 2005, 127,
14488.

[74] M. Krenn, et al., Machine Learning: Science and Technology 1.4 2020,
045024.

[75] A. K. Nigam, et al., Chemical Science 2021.
[76] H. Ikebata, et al., J. Computer-Aided Molecular Design 31.4 2017,

379.

Adv. Sci. 2022, 2101864 © 2022 The Authors. Advanced Science published by Wiley-VCH GmbH2101864 (14 of 14)

