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Interacting many-body quantum systems show a rich array of physical phenomena and dynamical
properties, but are notoriously difficult to study: they are challenging analytically and exponen-
tially difficult to simulate on classical computers. Small-scale quantum information processors hold
the promise to efficiently emulate these systems, but characterizing their dynamics is experimen-
tally challenging, requiring probes beyond simple correlation functions and multi-body tomographic
methods. Here, we demonstrate the measurement of out-of-time-ordered correlators (OTOCs), one
of the most effective tools for studying quantum system evolution and processes like quantum ther-
malization. We implement a 3x3 two-dimensional hard-core Bose-Hubbard lattice with a supercon-
ducting circuit, study its time-reversibility by performing a Loschmidt echo, and measure OTOCs
that enable us to observe the propagation of quantum information. A central requirement for our
experiments is the ability to coherently reverse time evolution, which we achieve with a digital-
analog simulation scheme. In the presence of frequency disorder, we observe that localization can
partially be overcome with more particles present, a possible signature of many-body localization
in two dimensions.

I. INTRODUCTION

Interacting quantum systems in the absence of strong
disorder obey the eigenstate thermalization hypothesis:
the system evolves towards a local thermal equilibrium
state [1–4]. During this process, information about any
initial local perturbation is dispersed throughout the
non-local degrees of freedom of the entire system [4–6],
a process referred to as information scrambling [7, 8].

For a sufficiently long time evolution Û(t), the informa-

tion about an initial perturbation V̂ is seemingly lost
when probing the resulting state with local measure-
ments (Fig. 1A, left panel). One way to retrieve the
information hidden in the non-local degrees of freedom
is to rewind the time evolution, such that the initial per-
turbation re-materializes, effectively reviving the original
state Û(9t)Û(t)V̂ |ψ〉 = V̂ |ψ〉. This sequence of consecu-
tive forward and backward time evolution steps is called
a Loschmidt echo [9, 10] (Fig. 1, second panel).

An extension of the Loschmidt echo sequence can be
used to study the propagation of quantum information in
the system. As the system evolves, the perturbation V̂
spreads into the lattice, with its ‘lattice reach’ given by a
light cone, signifying the portion of the system in causal
connection with V̂ [11]. This is the quantum analog of
the light cone in general relativity, defining the speed of
light. If the system is additionally perturbed at time t

∗ jbraum@mit.edu

(prior to the time reversal step) by a local operator Ŵ ,

the reversibility of the time evolution is disturbed if Ŵ
falls within the light cone (Fig. 1A, right panels). For two

Hermitian, unitary local operators V̂ , Ŵ , this operator
growth – the spreading of the operator’s impact to an
increasing number of lattice sites – is quantified by the
expectation value of the squared commutator [11, 12]

C (t) = 〈[Ŵ (t), V̂ ]†[Ŵ (t), V̂ ]〉 = 2− 2Re [F (t)] , (1)

where F (t) = 〈Ŵ (t)V̂ Ŵ (t)V̂ 〉 is called the ‘out-of-time-
ordered correlator’ (OTOC). Intuitively, the OTOC mea-

sures the extent to which information about V̂ has
reached the lattice site where the perturbation Ŵ is ap-
plied at time t; if it is within the light cone indicated in
Fig. 1A, the commutator is non-zero, while it approxi-
mately vanishes when Ŵ is outside the light cone. The
OTOC cannot be obtained from a measurement of lo-
cal operators, since the time arguments in F (t) are not
time-ordered. Moreover, time-ordered correlators such as
〈Ŵ (t)V̂ 〉 decay rapidly in time for thermalizing systems
and are therefore not suitable for characterizing operator
growth [11].

We study the propagation of information in a strongly
interacting two-dimensional (2d) many-body quantum
system by experimentally demonstrating the Loschmidt
echo and accessing OTOCs for local Pauli operators.
The quantum system is implemented with a lattice of
coupled superconducting qubits [13], where qubit ex-
citations correspond to particles in the quantum sys-
tem. OTOCs have been recently measured with a 1d
chain of trapped ions [14], in 1d and spin-environment
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FIG. 1. Experimental concept (A) Schematic time evolution of a quantum system. From left to right: information about

some initial perturbation V̂ to the equilibrium state is scrambled into non-local lattice degrees of freedom. The original state
V̂ |ψ〉 re-materializes in a Loschmidt echo, after reversing time evolution. If the system is additionally perturbed by Ŵ prior

to rewinding time, temporal reversibility is impeded if Ŵ falls within the light cone of V̂ (purple), captured by the squared
commutator C . The horizontal axis in the schematic represents some abstract spatial coordinate. (B) Schematic device diagram
of the 2d lattice used in our experiment. To study system dynamics, we use the indicated Manhattan distance (norm-1), which
is the minimum number of sites traversed by a particle moving between lattice sites. (C) Photograph of the superconducting
circuit used in experiment. The capacitor pads of the transmon qubits are highlighted in blue. (D) Digital-analog circuit
diagram used to experimentally access OTOCs.

nuclear magnetic resonance systems [15–17], and with
a 2d lattice of superconducting qubits using a purely
gate-based approach [6]. In contrast, our scheme ex-
ploits one of the key strengths of superconducting cir-
cuits relative to other qubit platforms, namely the com-
bination of resource-efficient analog quantum simulation
steps with high-fidelity single- and two-qubit gates. This
digital-analog simulation scheme [18] enables us to engi-
neer Hamiltonians and thereby to implement a reverse
time evolution – the central building block to observe
a Loschmidt echo and measure OTOCs. In addition,
superconducting circuits provide unique advantages for
studying OTOCs and the dynamics of many-body quan-
tum physics in comparison to atomic qubit platforms:
they offer high experimental fidelity in simultaneous, site-
selective state preparation, control, and readout as well
as state and process tomography. Furthermore, super-
conducting qubit lattices can be readily fabricated with
a native 2d connectivity.

Our method is not limited to the single-particle sce-
nario, where information propagation can be inferred by
recording the particle distribution within the lattice as
a function of time, but enables us to study many-body
effects in interacting lattices. Furthermore, we demon-
strate that the method extends to disordered lattices,

such that it can be used to probe violations of the eigen-
state thermalization hypothesis and the breakdown of
ergodic behavior [19] in strongly interacting many-body
systems. This regime was coined many-body localiza-
tion [16, 20–27] and has so far been predicted and ob-
served for disordered, interacting many-body systems in
1d as an extension of Anderson’s original localization
phenomenon [28] in non-interacting systems.

II. EXPERIMENTAL SYSTEM

In our experiments, we use a 2d lattice of nine capac-
itively coupled, superconducting transmon qubits [29],
as schematically depicted in Fig. 1B. The circuit imple-
ments the 2d Bose-Hubbard model [13, 30], described in
the laboratory frame by

ĤBH/~ = −
∑

〈i,j〉
Jij â

†
i âj +

∑

i

[
ωin̂i +

Ui
2
n̂i(ni − 1)

]

(2)

where â†i (âi) is the creation (annihilation) operator for

a boson at site i, and n̂i = â†i âi is the respective parti-
cle number operator. The first term describes the hop-
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ping interaction between neighboring lattice sites with
strength Jij , with particle non-conserving terms omitted
in a rotating wave approximation (Jij � ωi). The sec-
ond term represents the on-site energies ωi, which are
given by the transmon transition frequencies. The last
term accounts for the anharmonicities Ui of the transmon
qubits, representing the energy cost for multiple particles
to occupy the same site. A micrograph of the sample
used in our experiment is shown in Fig. 1C. The nearest
neighbor coupling rates and qubit anharmonicities have
minor deviations from their respectively uniform target
values J/2π = 8.1 MHz and U/2π = −0.244 GHz. While
they are fixed through sample design and remain con-
stant in all our experiments, we can individually tune
the on-site energies in a range 3 GHz . ωi/2π . 5.5 GHz
on a timescale much shorter than 1/J and the coherence
time of our circuit [31]. This degree of control enables us
to dynamically switch the time evolution of the system
on and off, and allows for the application of single and
two-qubit gates. Furthermore, our experimental setup
features site-resolved, multiplexed single-shot dispersive
qubit readout [32, 33] with an average qubit state assign-
ment fidelity of 94% [31].

Since J � |U | in our circuit, the system always re-
mains in the qubit manifold. This yields the hard-core
Bose-Hubbard model, where each lattice site can either
be empty or occupied by a single particle [30]. The ef-
fective system Hamiltonian in the frame rotating at the
common reference frequency ωq/2π = 5.3 GHz becomes

Ĥ/~ = −
∑

〈i,j〉
Jij σ̂

+
i σ̂
−
j +

∑

i

∆ωi
2
σ̂zi (3)

where σ̂+
i (σ̂−i ) is the raising (lowering) operator for

a qubit on site i and σ̂zi is the Pauli-Z matrix. We
have also defined the rotating frame qubit frequencies
∆ωi = ωi − ωq. While the on-site interaction term is
does not appear in Eq. 3, this does not imply the system
is non-interacting. The finite on-site interaction term is
replaced with a ‘hard-core’ constraint – lattice sites can
be occupied by a single particle at most. The hard-core
Bose-Hubbard model is non-integrable in 2d, and there-
fore signatures of many-body localization are expected
even in the absence of a finite on-site interaction term.

III. REWINDING TIME

The key challenge in our experiments is the realiza-
tion of both forward Û(t) and backward Û(9t) continuous
time evolution, a prerequisite for studying time reversibil-
ity with a Loschmidt echo and for accessing OTOCs. For-
ward time evolution is straightforwardly implemented by
bringing all qubits on or close to resonance such that the
natural time evolution of our quantum system leads to
the emulation of Û(t) = exp[−iĤt].

We achieve the reverse time evolution by constructing
a Hamiltonian with inverted sign, a technique that was

similarly proposed to experimentally access OTOCs [34]
and used in nuclear magnetic resonance experiments [15,
35]. For this, we sandwich a forward time evolution step

Û ′(t), under the Hamiltonian Ĥ ′, between two sets of

single qubit gates Σ̂z = Πi∈blackσ̂
z
i , which are Pauli-

Z gates applied to every other qubit in the lattice in
both dimensions (i.e. to all black qubits in a checker-

board pattern [31]). The Hamiltonian Ĥ ′ is identical to

Ĥ, but with flipped disorder frequencies, ∆ωi → 9∆ωi.
In the hard-core Bose-Hubbard model (Eq. 3), we find

Σ̂zσ̂
+
i σ̂
−
j Σ̂z = −σ+

i σ̂
−
j for any pair of adjacent qubits

〈i, j〉, and therefore

Σ̂zĤ
′Σ̂z/~ =

∑

〈i,j〉
Jij σ̂

+
i σ̂
−
j +

∑

i

9∆ωi
2

σ̂zi = −Ĥ/~. (4)

The natural time evolution now yields

Σ̂zÛ
′(t)Σ̂z = Σ̂ze

−iĤ′tΣ̂z = e9i(9Ĥ)t = Û(9t), (5)

realizing the required time-reversed evolution [31].
The circuit diagram for implementing

Ŵj(t) = Û(9t)ŴjÛ(t) is depicted in Fig. 1D. After

a forward time evolution Û(t), we apply the local per-

turbation Ŵj to lattice site j, followed by a backwards

time evolution Û(9t). In the context of OTOCs, Ŵj is
called the butterfly operator, reminiscent of the classical
butterfly effect in chaos theory, where the state of
non-linear systems can be highly sensitive on a small
local change [36].

IV. LOSCHMIDT ECHO

We first investigate the time reversibility of our lattice
by performing a quantum Loschmidt echo [37]: the in-
formation in a sub-system first disperses throughout the
rest of the lattice, which now can be considered as its
bath, and then is recovered after reversing the time evo-
lution of the system. We initially prepare the entangled
state

∣∣Ψ74
〉

=
1√
2

(
|e〉7 |g〉4 + eiφ |g〉7 |e〉4

)
⊗
∏

i6=4,7

|g〉i , (6)

where |g〉i (|e〉i) denotes the ground state (excited state)
of qubit i. The two-qubit sub-system consisting of qubits
seven and four (yellow frame in Fig. 1B) is prepared in
a Bell state up to a phase φ that we control during state
preparation via a rotation gate Rzφ, see the pulse sequence
in Fig. 2A. We then apply a forward time evolution step
Û(t), immediately followed by a backward time evolu-

tion step Û(9t). The latter is realized according to the

construction given in Fig. 1D, with the final Σ̂z opera-
tion applied as virtual Z-gates [38] by absorbing them
into the subsequent tomography pulses. Finally, we re-
construct the density matrix ρ̂ of the final state after
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FIG. 2. Loschmidt echo (A) Pulse sequence used in the Loschmidt echo experiment. (B) Overlap fidelity F of the extracted
density matrix ρ̂ after varying Loschmidt echo times t with the ideal entangled state σ̂ =

∣∣Ψ74
〉 〈

Ψ74
∣∣ (bright blue), and with

the prepared entangled state ρ̂0 (dark blue) as measured immediately after state preparation. The coherence limit on F(ρ̂, ρ̂0)
due to qubit dephasing is plotted as a dashed line, based on a net T2,eff = 0.88 µs [31]. We also show the concurrence of
the measured state after a Loschmidt echo (pink) and for comparison without the time-reversal operator in the middle, but

with two successive forward time evolution steps |Ψ(t)〉 = Û(t)Û(t)
∣∣Ψ74

〉
(gray). (C) Reconstructed density matrix of the

experimentally prepared state ρ̂0, F(ρ̂0, σ̂) = 95.3%. (D) Reconstructed density matrix of the measured state ρ̂(t = 70 ns),
F(ρ̂, ρ̂0) = 91.5%. (E) Concurrence of the initially entangled subspace after a sequence with the reverse evolution time offset

by τ , |Ψ(τ)〉 = Û(970 ns − τ)Û(70 ns)
∣∣Ψ74

〉
. We observe an entanglement revival after a Loschmidt echo with τ = 0. The

additional revival at τ = T reveals the lattice periodicity. (F) Line-cuts from the data set in E.

varying Loschmidt echo times via two-qubit tomography
in the initially entangled subspace. In Fig. 2B, we show
the overlap fidelity

F(ρ̂, σ̂) =

[
Tr

√√
ρ̂σ̂
√
ρ̂

]2

(7)

between ρ̂ and the density matrix of the ideal entangled
state, σ̂ =

∣∣Ψ74
〉 〈

Ψ74
∣∣ (Eq. 6). We also plot the overlap

fidelity F(ρ̂, ρ̂0) with the density matrix of our experi-
mentally prepared state ρ̂0 = ρ̂(t = 0), with F(ρ̂0, σ̂) =
95.3% (Fig. 2C). Since the qubits are mutually detuned
during state tomography, they acquire single-qubit phase
rotations. We therefore find the optimum relative phase
in the measured ρ̂(t) prior to calculating the overlap fi-
delities [31]. From representative tomography data taken
after a Loschmidt echo with t = 70 ns (Fig. 2D), we find
F(ρ̂, ρ̂0) = 91.5%. The observed degradation in F(ρ̂, ρ̂0)
is in agreement with the coherence limit in our circuit
(dashed line in Fig. 2B), which we calculate based on a
net dephasing time T2,eff = 0.88 µs, as extracted from
OTOC data in Fig. 3 [31]. In addition, we calculate the
concurrence C(ρ̂) for the measured states in the two-qubit
subspace after the Loschmidt echo. The concurrence is

an entanglement metric defined for a mixed state of two
qubits and is therefore independent of single-qubit rota-
tions of ρ̂ [31, 39]. In Fig. 2B we observe the slow decrease
of the concurrence for increasing Loschmidt echo times.
In contrast, the concurrence sharply drops to almost zero
if we instead apply a sequence yielding two successive for-
ward time evolution steps Û(t)Û(t)

∣∣Ψ74
〉

= Û(2t)
∣∣Ψ74

〉
.

The periodic peaks in this concurrence trace at integer
multiples of T/2 reflect the period T ≈ 90 ns of the quan-
tum random walk in our 2d lattice (see Fig. 3).

In order to further demonstrate the reversibility of
quantum evolution, we observe the revival of entan-
glement in the two-qubit subspace after a successful
Loschmidt echo. In Fig. 2E we vary the backwards evo-
lution time t + τ after a fixed forward evolution time
t = 70 ns. Entanglement is restored for τ = 0 with
sub-structure in the line shape dependent on the phase
φ of the prepared state (Eq. 6). The second revival at
τ = T again reveals the periodicity of the quantum ran-
dom walk in our lattice. Line cuts for prepared states
with φ = 0, π/2 (Fig. 2F) show that all features in the ob-
served entanglement revival are in good agreement with
theory.
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FIG. 3. Quantum random walk and information propagation via OTOC measurements (A) Quantum random walk
with a single particle injected at a corner qubit (QB7). We observe a linear light cone and periodic particle propagation. (B)
OTOC measurements for varying number of additional particles (purple) in the lattice, with the linear light cones persisting
independent of the number of particles present. We plot the constructed squared commutator C = 2 + C− + C+, corrected for
dephasing [31]. (C) Corresponding numerical simulations of C based on Eq. 3 and in the absence of decoherence.

V. PROBING INFORMATION PROPAGATION
WITH OTOCS

In a lattice with only one particle present, the prop-
agation of information corresponds to the propagation
of that particle. We measure its quantum random walk
(Fig. 3A) in the absence of lattice disorder (∆ωi = 0)
after injecting a single particle at a corner of our lattice
(qubit seven in Fig. 1B). Since the propagation in the 2d
lattice is along its diagonal symmetry axis (red arrow in
Fig. 1B), we plot the sum of populations in all qubits at a
given Manhattan distance from the origin of the random
walk. We find a linear light cone, consistent with ballistic
particle propagation, and a periodicity of T ≈ 90 ns, dic-
tated by the coupling strength J and the boundary con-
ditions of the lattice. Due to symmetry, our 2d random
walk is qualitatively similar to a 1d random walk [40, 41]
in a chain of length five, however we observe a quadratic
increase in the number of traversed lattice sites [42, 43],
a unique signature in 2d. We find excellent agreement
with numerical simulations by assuming the same net de-
phasing time as in Fig. 2B. While the coupling-induced
flatness of qubit spectra with respect to any noise vari-
able leads to the protection effect known from small-gap
qubits [44], we observe only a moderate increase of the
effective dephasing times in our multi-qubit experiment.

This approach of equating information propagation
with particle propagation fails in an interacting lattice
with more than one particle present, due to the indistin-

guishability of bosons. A generic method for probing the
propagation of information and other properties of inter-
acting lattices in any dimension is provided by measuring
suitable OTOCs [11]. In our experiments, we use

F (t) = 〈σ̂zj (t)σ̂xi σ̂
z
j (t)σ̂xi 〉 (8)

to probe the information light cone irrespective of the
number of particles present. The full information about
F is contained in the squared commutator C , which is
Hermitian by construction (Eq. 1) and is therefore an
experimental observable. Since C is itself out-of-time or-
dered, we construct it according to C = 2 +C−−C+ [31]
from two successive measurements yielding C± with ini-
tial perturbations (1± σ̂xi )/

√
2, respectively, and the but-

terfly operation Ŵj = σ̂zj applied at time t. The pulse se-

quences are shown in Fig. 1D, with V̂i = σ̂xi and Ŵj = σ̂zj .
The observables C± contain time-ordered operator se-
quences, however they still include the non-unitary oper-
ation (1±σ̂xi )/

√
2. We realize this with a unitary rotation

gate by restricting the initial state of qubit i to its ground
state [31].

In order to probe information propagation in our sys-
tem, we perform nine pairs of measurements, applying
the initial perturbation to qubit i = 7, but varying the
site j which receives the butterfly perturbation. We then
sort the measurement results according to their Manhat-
tan distance from i and sum them. We plot OTOC mea-
surements for the degenerate lattice and for different ini-
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FIG. 4. OTOC measurements in disordered lattices (A) Representative OTOC data in a disordered lattice with

〈〈(∆ωi)
2〉〉1/2 = 2.7J and a varying number of particles in the lattice. Light cones (red) are extracted by thresholding measured

OTOC data [31]. The top row shows experimental data that is corrected for the effects of qubit dephasing [31], while the
bottom row shows numerical simulations of our experimental Hamiltonian. If the threshold is not reached within the simulated
100 ns, we assign a time of 300 ns [31]. In the absence of additional particles (left column), we observe that information is
localized: the light cone is cut off and information does not reach sites at distance 4. Localization is slowly overcome in the
presence of more particles. (B) Averaged light cone results for twelve random disorder realizations with identical disorder
strength for experiment (dots) and numerical simulation (shaded regions). By adding particles to the lattice, the propagation
speed increases. Error bars and the width of the shaded regions show the standard deviation of the mean. By performing
numerical simulations for 100 additional random disorder configurations with 〈〈(∆ωi)

2〉〉1/2 = 2.7J , we confirm that the random
realizations used in experiment form a representative set for the observed effect.

tial states with a varying number of additional particles
added to the lattice (Fig. 3B). We observe that the form
of the light cone (red arrows) is independent of the num-
ber of particles. Blurring of the propagation features, in
the presence of additional particles, is in accordance with
numerical simulations of C (t) (Fig. 3C) for the hard-core
Bose-Hubbard Hamiltonian in Eq. 3.

VI. INFORMATION PROPAGATION IN
DISORDERED LATTICES

We have so far demonstrated our OTOC protocol for
a degenerate lattice, with all qubits at the common ref-
erence frequency ωq during time evolution. Next, we ap-
ply our method to investigate lattices in the presence
of frequency disorder, revealing a change in the speed
of information propagation dependent on the number of
particles present. For this, we extract OTOC data for
twelve random disorder realizations {∆ωi}, each with
a mean 〈〈∆ωi〉〉 = 0 and a target standard deviation
〈〈(∆ωi)2〉〉1/2 = 2.7J . We perform OTOC measurements

for a varying number of particles in the lattice and for
each disorder realization individually, and plot our results
for one representative disorder realization in Fig. 4A. We
observe that the presence of disorder hampers the prop-
agation of information: in non-interacting systems, or
equivalently when only a single particle is present, in-
formation remains localized and never reaches a portion
of the lattice at sufficiently strong disorder. This phe-
nomenon, known as Anderson localization [28], is well
understood theoretically, and has been observed in pre-
vious studies of random walks in 1d spin chains [16]. In
our 2d lattice, we find that higher degrees of disorder
are necessary to inhibit transport. Interacting systems
display a more complicated localization behavior, gener-
ally referred to as many-body localization [21]. In the
presence of more than one particle, we observe that in-
formation remains localized at small time scales, but is
more likely to eventually reach all parts of the lattice.

In order to quantify the effects of interaction on the
spread of information, we extract a ‘light cone’ from each
measured OTOC, defined by the time when a threshold
value of 0.6 is first reached at a given Manhattan dis-
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tance [31] (red dots and lines in Fig. 4A). Averaging the
light cone data from all disorder realizations and for each
lattice filling level, respectively, yields a measure for the
speed of information propagation in the disordered lat-
tices (Fig. 4B). We find that this speed of light increases
with increasing number of particles, which we construe
as a signature of many-body localization in our small
2d lattice: as more particles are added, the increased
interactions slowly overcome localization. For the effec-
tively non-interacting lattice (single particle), informa-
tion propagation eventually stalls, however it approaches
a logarithmic time dependence for more particles present
(Fig. 4B). The observed behavior is characteristic of
many-body localized systems [20, 21] and is in quali-
tative agreement with numerical simulations of the 2d
hard-core Bose-Hubbard model [31]. Such ‘interaction-
assisted’ phenomenon that overcomes localization is not
present in 1d [31], where the hard-core Bose-Hubbard
model maps to free fermions [45].

VII. CONCLUSION

We have demonstrated an experimental method to ex-
tract OTOCs in strongly interacting many-body systems,
which can be generalized to lattices of arbitrary dimen-
sion and to various experimental quantum hardware plat-
forms. Our method relies on the application of forward
and backward time evolution steps, which we achieve by
interleaving blocks of unitary time evolution and single-
qubit gates. We have extracted OTOCs that enable us to
study quantum information propagation in lattices with
a various number of particles present. Our technique fur-
ther applies to frequency-disordered lattices, which has
enabled us to observe an increase in the speed of infor-
mation propagation with more particles added – a signa-
ture of many-body localization in the 2d hard-core Bose-
Hubbard model.

Applying the presented technique to larger lattices has
the potential to further our understanding of quantum
thermodynamics and black hole dynamics [46, 47], and
to examine the use of many-body systems for quantum
memories [21]. In addition, experimentally accessing
OTOCs in large quantum circuits may provide a powerful
benchmarking tool to study future quantum processors.
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S1. SAMPLE AND EXPERIMENTAL SETUP

The sample used in our experiments is a 2d lattice of capacitively coupled transmon qubits [S1] with floating
capacitor pads. The capacitor pads each have two coupling fingers attached, facilitating a nearest-neighbor qubit-
qubit interaction with average strength J/2π = (8.1± 0.2) MHz, measured at qubit frequencies of 5.5 GHz. As shown
in Fig. 1C, the transmon capacitor pads share a common symmetry axis spanned from the top left to the bottom
right corner of the chip. This ensures that the coupling phases add up to zero when traversing a closed loop of
qubits, leading to vanishing effective gauge fields. The coupling strength between qubits one and four (see numbering
convention in Fig. 1B) deviates from the mean by 8% due to the crossing of the central qubit’s readout resonator.

The next-nearest neighbor interaction in our qubit lattice is a result of both the direct capacitance between nonad-
jacent qubits, and an effective contribution due to the nearest neighbor couplings in the circuit’s capacitance matrix.
Due to the floating transmon geometry and the equal rotation of the capacitor pads, the effective contribution is
stronger along the top-left to bottom-right corner of our lattice, since next-nearest neighbor qubits couple via the
same capacitor pads of the intermediate qubit, resulting in a anisotropy of the next-nearest neighbor coupling. By
calculating the complete capacitance matrix of our circuit, we find the largest non-nearest neighbor couplings to be
∼ J/75.

Apart from lithographically defined cross-over bridges used for the hopping of signal lines over other circuit elements
and to connect the ground planes, the circuit is realized in a single-chip planar design. Qubit microwave manipulation
(XY control) and multiplexed dispersive state readout is performed through individual capacitively coupled coplanar
resonators, which are in turn coupled to a common single-port Purcell filter. We use λ/4 readout resonators for all
qubits along the edge of the lattice to minimize their footprint on the sample. The central qubit is read out with
an ‘open-terminated’ λ/2 resonator that crosses over one of the corner qubits. In order to minimize their parasitic
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coupling, the crossing is located in the middle of the λ/2 resonator at its voltage node. The Purcell filter is designed
to have a large bandwidth of 0.54 GHz at a resonance frequency of 7.3 GHz, such that the readout resonators can be
distributed over a ∼ 400 MHz band. This non-aggressive design of the Purcell filter enables us to manipulate qubits
through the readout port while limiting Purcell decay to a rate . 1/(500 µs). With effective resonator linewidths in
the range of (1− 3) MHz at the readout frequency, we achieve an average qubit state assignment fidelity of 94% at an
integration time of 800 ns.

Each qubit is coupled to a flux bias line used for both static flux biasing and pulsed flux control (‘fast flux control’
or Z control) with a maximum bandwidth of ∼ 400 MHz. Purcell loss through the flux bias lines limits the T1 times to
≈ 35 µs due to an asymmetry of the flux lines with respect to the transmon capacitor pads. This main loss channel can
be remedied in future sample generations by improving the design of the flux line. The mutual inductance between
the qubits’ SQUID loops and their respective flux bias line is 0.5 pH. Flux cross-talk calibrations for both dc flux
control and fast flux control are provided in Sec. S2 A and Sec. S2 D.

Detailed sample parameters for individually isolated qubits are summarized in Tab. S1.

The samples are fabricated on a silicon substrate by dry etching an MBE grown, 250 nm thick aluminum film in
an optical lithography process, forming all larger circuit elements such as the qubit capacitor pads, and the readout
and control circuitry. The qubit SQUID loops are fabricated with an electron beam lithography process and a double
angle shadow evaporation technique [S2] to form the Josephson junctions. We use a 5 µm wide wire width for the
SQUIDs, which was found to minimize flux noise from local magnetic spin defects on the surfaces and interfaces of
the SQUID [S3].

Our experimental setup is shown in Fig. S1. The sample is cooled down to approximately 20 mK in a dilution
refrigerator. Our readout setup follows the established heterodyne mixing scheme. The reflected microwave signal is
amplified with a travelling wave parametric amplifier (TWPA), which is crucial for our experiment due to its large
bandwidth and high saturation level.

We perform qubit control with a heterodyne mixing scheme [S4] in order to simultaneously address individual qubits
by superimposing different frequency pulses. We calibrate the I and Q quadrature offsets, the gain imbalance, and
the skew of our IQ mixer by minimizing both, the local oscillator (LO) leakage and the signal level of the unwanted
sideband.

The static flux bias components and the fast flux qubit Z control signals travel to the mixing chamber of our cryostat
in twisted-pair dc wires and coaxial cables, respectively. For each qubit, the two signal components are combined into
the respective flux bias line by using an rf-choke, consisting of an inductor in the dc input and a 50Ω shunt capacitor
to ground, but no capacitor.

Since the Z control and XY control signals travel through coaxial lines of different length and differing attenuation,
the difference in travel time must be compensated by appropriate delays in signal generation. We calibrate the Z-
delays for each qubit by applying a short flux pulse with a π-pulse of the same length and calibrated for the target
frequency of the qubit during the flux pulse. When the two pulses are aligned, the population of the qubit is maximal.

TABLE S1. Sample parameters. We show the maximum transmon transition frequencies ωmax
q at the upper flux insensitive

point, the qubit anharmonicities U (measured at ωmax
q ), the readout resonator frequencies ωr, the probabilities fij of measuring

the qubit in state i after preparing it in state j, the readout assignment fidelity (fgg + fee)/2, and the average measured T avg
1

at qubit frequencies around the bias point used in experiment.

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9

ωmax
q /2π (GHz) 5.712 5.771 5.788 5.707 5.822 5.626 5.528 5.673 5.722

U/2π (MHz) -238.7 -239.6 -238.2 -240.0 -233.6 -273.8 -244.8 -241.4 -241.1

ωr/2π (GHz) 7.221 7.170 7.121 7.304 6.942 7.324 7.208 7.28 7.155

fgg 0.97 0.98 0.98 0.98 0.98 0.98 0.98 0.94 0.98

fee 0.93 0.93 0.89 0.94 0.93 0.93 0.92 0.89 0.94

Readout assignment fidelity 0.94 0.94 0.93 0.96 0.95 0.96 0.95 0.91 0.96

T avg
1 (µs) 12.4 14.7 13.6 11.6 13.5 11.0 8.5 15.0 12.9
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FIG. S1. Measurement setup

S2. FLUX CROSS-TALK CALIBRATIONS

A central part of our tune-up protocol is the calibration of both the static flux cross-talk and the fast flux cross-talk
in our device. We calibrate static flux cross-talk in a three-step process: we first find the static cross-talk matrix
through qubit spectroscopy, then we use a learning-based optimization procedure of the cross-talk matrix based on a
random sampling of qubit frequency settings, and finally fine-tune the static set qubit frequencies via the measured
spectrum of the slightly degenerate, coupled qubits.

Fast flux cross-talk differs substantially from static flux cross-talk. We find the fast flux cross-talk matrix by first
using a set of Ramsey measurements and subsequently applying the same optimization procedure.

A. Static cross-talk matrix

For our experiments, we use flux-tunable transmon qubits each with a local flux line for independent flux control.
We find an initial static flux cross-talk matrix via qubit spectroscopy of the isolated qubits. The frequency spectrum
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FIG. S2. Flux cross-talk calibration (A) Cross-talk matrix for static flux control after using the learning-based optimization
technique. Numbers represent the voltage V 0

i,j required to tune qubit i on the vertical axis by one full period (corresponding to
applying one flux quantum Φ0) when applying a voltage to qubit j (horizontal axis). (B) Fine-tuning of the qubit frequencies
via spectroscopy. The nine qubits are detuned by 8 MHz from each other, which breaks the degeneracies such that they
appear at individual frequencies. The dashed lines indicate the calculated dressed eigenenergies of the single-photon manifold
of the Bose-Hubbard Hamiltonian, and the blue points show the measured frequencies in spectroscopy. After optimization, we
achieve a frequency standard deviation of about 0.2 MHz in the dressed frame. (C) Cross-talk matrix for fast flux control after
optimization. Numbers represent the voltage response ∂Vi/∂Vj of qubit i in response to a voltage pulse applied to qubit j,
multiplied by 103.

of transmon i in response to voltage biases applied to the flux lines on the chip is given by [S5]

ωi = (ωmax
i + EC,i)


d2

i + (1− d2
i ) cos2


∑

j

π
Vj
V 0
i,j

− φ0
i






1/4

− EC,i. (S1)

Fit parameters are the maximum frequency ωmax
i at the flux insensitive point, the asymmetry parameter

di = [(ωmin
i + EC,i)/(ω

max
i + EC,i)]

2 (S2)

of the transmon’s dc-SQUID, a phase offset φ0
i , the transmon charging energy EC,i, and the voltage V 0

i,j applied to
the flux line of qubit j which is required to tune qubit i by a flux quantum Φ0. These voltages can be translated
into currents with our constant bias resistance of 1.1 kΩ. The measured static flux cross-talk matrix is shown in
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Fig. S2A. The diagonal matrix elements correspond to the designed coupling between each qubit and its local flux
line, respectively, whereas the off-diagonal elements represent the cross-talk between qubits and flux lines attached to
other qubits. We first measure the qubit spectra for i = j and subsequently fix the extracted fit parameters ωmax

i ,
di, and EC,i in the fits of the off-diagonal entries, in order to increase the robustness of the fits. The extracted
phase offsets vary significantly between different thermal cycles of the sample and average around 〈〈|φ0

i |〉〉 = 0.034,
corresponding to a flux offset of ≈ 0.01Φ0.

Using the fitted qubit spectra and the static flux cross-talk matrix, we can calculate the necessary set voltages for
any set of target frequencies by first inverting Eq. S1 to find the diagonal target voltages and then using the inverse
of the cross-talk matrix to calculate the necessary voltages to compensate for the cross-talk.

B. Learning-based cross-talk matrix optimization

The limited voltage range we apply to each flux line results in uncertainty especially in large entries of the cross-
talk matrix (having little cross-talk). We improve the previously found cross-talk matrix by using a learning-based
gradient descent optimization technique.

We start by initializing our qubits to a random set of target frequencies with a minimum mutual frequency distance
of ∼ 2.5J using the initial cross-talk matrix obtained from qubit spectroscopy. This yields a set of applied voltages
~V and a set of measured qubit frequencies ~ωq. Each qubit in the lattice experiences an ac-Stark shift caused by
the interaction with neighboring qubits. We calculate the uncoupled qubit frequencies from the measured dressed
frequencies by using the full Bose-Hubbard Hamiltonian (Eq. 2). Using the qubit spectra, we convert these frequencies

into a set of fluxes ~Φ experienced by each SQUID loop in the system. By repeating this protocol for N ≈ 200 iterations

we obtain a set {~Vi, ~Φi}i=1:N of input voltages and the corresponding measured fluxes experienced by the qubits.

We use this data set {~Vi, ~Φi}i=1:N to train our initial cross-talk matrix M, where Mk,l = 1/V 0
k,l. With the offset

phases ~ϕ, where ~ϕk = φ0
k, the sum of the squared differences between the measured fluxes {~Φi} and the value predicted

by M, ~ϕ, and the set voltages {~Vi} can be used as the cost function for a minimization problem,

c(M, ~ϕ) =
1

N

N∑

i

||~Φi − (M~Vi + ~ϕ)||2 (S3)

Since the system is described by a linear process with a well-defined convex cost landscape, we minimize c(M, ~ϕ) with
a gradient descent-based optimizer.

C. Spectroscopy-based fine-tuning of qubit frequencies

In order to evaluate the accuracy of the optimized static cross-talk matrix and in order to fine-tune the qubit
frequencies, we perform lattice spectroscopy of the almost fully hybridized lattice. Since the 2d resonant tight binding
model has degenerate eigenenergies, we mutually detune the qubits by ≈ 8 MHz in order to lift the degeneracy and
be able to resolve individual peaks. We apply a weak, 40 µs long microwave pulse of varying probe frequency to the
common control line that simultaneously excites all nine qubits. We then far detune the qubits from each other and
measure their states. As an example, we show the normalized populations of the summed measurements in Fig. S2B.
By comparing the measured eigenenergies (blue dots) with the exact eigenenergies of the single-particle manifold of
the Bose-Hubbard Hamiltonian – which takes the form of a tight-binding model – we add small frequency offsets that
optimize the lattice spectrum. Using this method, we achieve a frequency standard deviation of about 0.2 MHz in the
dressed frame.

D. Fast flux cross-talk calibration

In order to calibrate the fast flux cross-talk matrix, we first extract the qubit spectra for biasing the qubits with
short flux pulses. We then individually bias the qubits close to the inflection point of their spectra, where the spectrum
is approximately linear and the flux sensitivity is maximal. We use Ramsey measurements to probe the frequency shift
of qubit i while we apply a fast flux pulse of voltage Vj to the local flux line of qubit j. Using the fast flux transmon
spectrum, we calculate the corresponding voltage Vi, yielding ∂Vi/∂Vj for all qubit pairs, see the complete cross-talk
matrix in Fig. S2C. We further improve the fast flux cross-talk matrix with the same learning-based optimization
technique described in the previous section.
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S3. TRANSIENT CALIBRATION

Fast flux pulses experience distortions as they travel to the sample through various electric components in the
cryostat. By using the qubit as a sensor, we can characterize the distortion in the step response of the flux control
line using Ramsey-type measurements. The step response for the signal generated by the AWG, VAWG(t), the signal
reaching the qubit, Vqubit(t), and the time-dependent distortion, n(t), are related by

Vqubit(t) = VAWG(t)
(
1 + n(t)

)
, (S4)

To characterize n(t), the target qubit is biased to its sweet-spot using static flux, and excited with a Rx(π/2) pulse
followed by a Rz rotation pulse for time t. The dynamic frequency change of the qubit as a response to the fast Rz

pulse can be extracted by measuring both 〈X〉 and 〈Y 〉, denoting the expectation values of the qubit state projected
along the x-axis and y-axis of the Bloch sphere. The phase accumulated by the qubit during the Z pulse can be

described by φ(t) =
∫ t

0
∆(t′)dt′, where ∆(t) = ∆0 + δ(t) is the frequency detuning, consisting of the target detuning

∆0 and and the added frequency distortion δ(t). The 〈X〉 and 〈Y 〉 measurements are used to obtain cosφ(t) and
sinφ(t), respectively, which we use for constructing the phasor eiφ(t). We can then extract the frequency distortion
as δ(t) = d

dt arg(eiφ(t)). By using the qubit spectrum, we map δ(t) to the distortion in the signal reaching the qubit
n(t). In order to obtain an analytical expression, we fit the extracted n(t) with a sum of typically three exponential
damping terms with time constants τi and settling amplitudes Ai:

n(t) =
∑

i

Aie
−t/τi (S5)

In our experiments, we use the analytical expression of n(t) to pre-distort the output signal of the AWG in order to
compensate for the system transients.

S4. CONSTRUCTING OTOCS FROM HERMITIAN VARIABLES

We elaborate here on the experimental process used to access the OTOC defined in Eq. 1, which in our experiment,
for V̂ = σ̂xi and Ŵ = σ̂zj , takes the form

F (t) = 〈ψ| σ̂zj (t)σ̂xi σ̂
z
j (t)σ̂xi |ψ〉 . (S6)

Contrast the form of Eq. S6 with a typical experimental procedure: here, an initial quantum state |ψ〉 is prepared,
then a series of unitary operators U1, U2, . . . are applied with some time intervals t1, t2, . . . between them, and then
finally some Hermitian operator M̂ is measured, yielding, e.g.

O = 〈ψ| Ô |ψ〉 = 〈ψ| Û†1 (t1)Û†2 (t1 + t2)M̂(t1 + t2 + t3)Û2(t1 + t2)Û1(t1) |ψ〉 . (S7)

The forms of O and F differ in two major ways. First, the operators in Ô are evaluated at monotonically increasing
time values as we move inwards, while, as discussed in the main text, the operators in F are out-of-time ordered. This
is resolved by pulse sequences combining forward and backward time evolutions. Second, the complete operator Ô is
itself Hermitian, with each unitary applied on both sides of the measurement operator M̂ . In contrast, the operator
string in F is non-Hermitian.

We note that the quantity we seek to measure, C , is Hermitian, as defined in Eq. 1,

C = 2− 〈ψ| σ̂zj (t)σ̂xi σ̂
z
j (t)σ̂xi + σ̂xi σ̂

z
j (t)σ̂xi σ̂

z
j (t) |ψ〉 . (S8)

However, this sum cannot be directly converted into a set of gates without fully diagonalizing the Hamiltonian [S6].
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A. Linking F to measurement observables

In order to make the squared commutator C accessible in experiment, we use a mathematical equivalence. We
expand

〈ψ| σ̂zj (t)σ̂xi σ̂
z
j (t)σ̂xi |ψ〉 = 〈ψ| σ̂zj (t)σ̂xi σ̂

z
j (t)

1 + σ̂xi
2
|ψ〉 − 〈ψ| σ̂zj (t)σ̂xi σ̂

z
j (t)

1− σ̂xi
2
|ψ〉

= 〈ψ| 1 + σ̂xi
2

σ̂zj (t)σ̂xi σ̂
z
j (t)

1 + σ̂xi
2
|ψ〉 − 〈ψ| 1− σ̂

x
i

2
σ̂zj (t)σ̂xi σ̂

z
j (t)

1− σ̂xi
2
|ψ〉

+ 〈ψ| 1− σ̂
x
i

2
σ̂zj (t)σ̂xi σ̂

z
j (t)

1 + σ̂xi
2
|ψ〉 − 〈ψ| 1 + σ̂xi

2
σ̂zj (t)σ̂xi σ̂

z
j (t)

1− σ̂xi
2
|ψ〉 ,

〈ψ| σ̂xi σ̂zj (t)σ̂xi σ̂
z
j (t) |ψ〉 = 〈ψ| 1 + σ̂xi

2
σ̂zj (t)σ̂xi σ̂

z
j (t)

1 + σ̂xi
2
|ψ〉 − 〈ψ| 1− σ̂

x
i

2
σ̂zj (t)σ̂xi σ̂

z
j (t)

1− σ̂xi
2
|ψ〉

+ 〈ψ| 1 + σ̂xi
2

σ̂zj (t)σ̂xi σ̂
z
j (t)

1− σ̂xi
2
|ψ〉 − 〈ψ| 1− σ̂

x
i

2
σ̂zj (t)σ̂xi σ̂

z
j (t)

1 + σ̂xi
2
|ψ〉 ,

⇒ C = 2− 〈ψ| σ̂zj (t)σ̂xi σ̂
z
j (t)σ̂xi |ψ〉 − 〈ψ| σ̂xi σ̂zj (t)σ̂xi σ̂

z
j (t) |ψ〉 =

2− 2

[
〈ψ| 1 + σ̂xi

2
σ̂zj (t)σ̂xi σ̂

z
j (t)

1 + σ̂xi
2
|ψ〉 − 〈ψ| 1− σ̂

x
i

2
σ̂zj (t)σ̂xi σ̂

z
j (t)

1− σ̂xi
2
|ψ〉
]
.

It follows immediately that

C = 2 + C− − C+ (S9)

where

C± ≡ 〈ψ|
1± σ̂xi√

2
σ̂zj (t)σ̂xi σ̂

z
j (t)

1± σ̂xi√
2
|ψ〉 . (S10)

These new quantities C± are both Hermitian and have the symmetric form of O (Eq. S7), making them experimental
observables.

B. Realizing 1± σ̂x with a restricted initial state

One experimental obstacle which remains is the realization of (1 ± σ̂xi )/
√

2; this is by definition a non-unitary

operator, and cannot be realized with a gate sequence within the qubit manifold. We achieve the effect of (1± σ̂x)/
√

2
by restricting the qubit on site i to its ground state at the beginning of the experiment, using

1± σ̂x√
2
|g〉 =

|g〉 ± |e〉√
2

= R̂y
(
±π

2

)
|g〉 , (S11)

where R̂y denotes a rotation around the y-axis of the qubit Bloch sphere. Thus, C± is realized via the following
sequence:

1. Prepare the initial state, with i in the ground state and the
rest of the system in some arbitrary state

∣∣ψ
〉
ī
,

|ψ〉 = |g〉i ⊗
∣∣ψ
〉
ī

2. Apply the rotation Ryi (±π2 ) to qubit i, |ψ2〉 =
|g〉i±|e〉i√

2
⊗
∣∣ψ
〉
ī

=
1±σ̂x

i√
2
|ψ〉

3. Apply a forward time evolution, a Z-gate to qubit j as the
butterfly operator, and a reverse time evolution, realizing
σ̂zj (t),

|ψ3〉 = Û(9t)σ̂zÛ(t) |ψ2〉 = σzj (t) |ψ2〉
= σzj (t)

1±σ̂x
i√

2
|ψ〉

4. Measure σ̂xi . C± = 〈ψ3| σ̂xi |ψ3〉
= 〈ψ| 1±σ̂x

i√
2
σ̂zj (t)σ̂xi σ̂

z
j (t)

1±σ̂x
i√

2
|ψ〉
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C. Realizing 1± σ̂x via the |f〉 state

The OTOC defined in Eq. S6 can be extracted for an arbitrary initial state |ψ〉 by expanding the non-unitary

operation (1 ± σ̂x)/
√

2 into a unitary operator in the three-level manifold of the transmon, including the second
excited state |f〉. Here, we can realize C± with the sequence as follows:

1. Prepare the arbitrary initial state |ψ〉 for all lattice sites in
the qubit manifold.

2. (a) Apply the rotation Ryi (±π2 ) to qubit i (in its two-level
manifold),

|ψ2a〉 =
[
|g〉 〈g|±〈e|√

2
+ |e〉 〈e|∓〈g|√

2
+ |f〉 〈f|

]
i
|ψ〉

=
[
|g〉 〈g|±〈e|√

2
+ |e〉 〈e|∓〈g|√

2

]
i
|ψ〉

(b) Apply a π-pulse to qubit i at the |e〉 ↔ |f〉 transition
frequency. Note that due to the large anharmonicity, all
subsequent gates in the qubit manifold conserve the |f〉-
level population.

|ψ2b〉 = [|f〉 〈e|+ |e〉 〈f|+ |g〉 〈g|]i |ψ2a〉
=
[
|g〉 〈g|±〈e|√

2
+ |f〉 〈e|∓〈g|√

2

]
i
|ψ〉

(c) Apply the rotation Ryi (∓π2 ) to qubit i, |ψ2c〉 =
[
|g〉 〈g|∓〈e|√

2
+ |e〉 〈e|±〈g|√

2
+ |f〉 〈f|

]
i
|ψ2b〉

=
[
|g〉±〈e|√

2

〈g|±〈e|√
2

+ |f〉 〈e|∓〈g|√
2

]
i
|ψ〉

=
1±σ̂x

i

2 |ψ〉+
[
|f〉 〈e|∓〈g|√

2

]
i
|ψ〉

3. Apply σzj (t), as above. |ψ3〉 = σzj (t) |ψ2c〉

4. (a) Apply the rotation Ryi (−π2 ) to qubit i, |ψ4〉 = Ryi (−π2 ) |ψ3〉

(b) Measure the occupation of all qubits. If any are at |f〉,
assign C± = 0; otherwise assign C± = 2σzi .

C± = 〈ψ4| P̂ge2σ̂zi P̂ge |ψ4〉

The condition of finding the states of all lattice sites in the qubit manifold in the final step can be achieved with
the projection operator into the qubit subspace,

P̂ge =
∏

k

[|g〉k 〈g|k + |e〉k 〈e|k] . (S12)

Due to the large anharmonicity, all gates applied to the qubit manifold do not mix the populations in the qubit
manifold and in the |f〉 level, and therefore P̂ge commutes with all gates applied to the qubit manifold. Therefore, one
finds

P̂ge |ψ4〉 = P̂geR
y
i (−π2 )σzj (t)

1± σ̂xi
2
|ψ〉+ P̂geR

y
i (−π2 )σzj (t)

[
|f〉 〈e| ∓ 〈g|√

2

]

i

|ψ〉

= Ryi (−π2 )σzj (t)
1± σ̂xi

2
P̂ge |ψ〉+Ryi (−π2 )σzj (t)P̂ge

[
|f〉 〈e| ∓ 〈g|√

2

]

i

|ψ〉 = Ryi (−π2 )σzj (t)
1± σ̂xi

2
|ψ〉 ,

and so we have

C± = 2 〈ψ4| P̂geσ̂
z
i P̂ge |ψ4〉

= 2 〈ψ| 1± σ̂
x
i

2
σ̂zj (t)Ryi (π2 )σ̂ziR

y
i (−π2 )σzj (t)

1± σ̂xi
2
|ψ〉

= 2 〈ψ| 1± σ̂
x
i

2
σ̂zj (t)σ̂xi σ

z
j (t)

1± σ̂xi
2
|ψ〉

= 〈ψ| 1± σ̂
x
i√

2
σ̂zj (t)σ̂xi σ̂

z
j (t)

1± σ̂xi√
2
|ψ〉 ,

as intended.
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FIG. S3. Realization and calibration of Σ̂z (A) Circuit diagram for the realization of Û(9t). (B) The two possibilities

for realizing Σ̂z, by applying Pauli-Z gates to every other qubit in the lattice in both dimensions, while the remaining qubits
receive an identity gate I. (C) Calibration of the Pauli-Z gates and identity gates I for the Σ̂z operation. The pulse form is
schematically shown at the top: we enclose an odd number n of detuning pulses with amplitudes Ai + ∆Ai within a Ramsey
sequence. Based on the final qubit population we can infer the amplitude offset conditions for the Z and I gate, respectively.

S5. PULSE SEQUENCES

A. Realization and calibration of the time-reversed unitary evolution

One of the key elements in our pulse sequences is the time-reversed unitary evolution Û(9t). Its circuit diagram

is given in Fig. S3A. We sandwich a forward time evolution step Û ′(t), under the Hamiltonian Ĥ ′, between two sets

of single qubit gates Σ̂z = Πi∈blackσ̂
z
i , which are Pauli-Z gates applied to every other qubit in the lattice in both

dimensions. The two possible experimental realizations of Σ̂z are shown in Fig. S3B, where Z denotes the Pauli Z-gate
(which is identical to a Rz(π) rotation up to a global phase), and I denotes the identity gate. The Hamiltonian Ĥ ′

is identical to Ĥ, but with flipped disorder frequencies, ∆ωi → 9∆ωi. In the hard-core Bose-Hubbard model (Eq. 3),

we find Σ̂zσ̂
+
i σ̂
−
j Σ̂z = −σ+

i σ̂
−
j for any pair of adjacent qubits 〈i, j〉 and therefore

Σ̂zĤ
′Σ̂z/~ =

∑

〈i,j〉
Jij σ̂

+
i σ̂j +

∑

i

9∆ωi
2

σ̂zi = −Ĥ/~. (S13)

The natural time evolution now yields

Σ̂zÛ
′(t)Σ̂z = Σ̂ze

−iĤ′tΣ̂z = e9i(9Ĥ)t = Û(9t), (S14)

realizing the required time-reversed evolution under Ĥ. As we show in Fig. S4, we apply the Σ̂z operation as virtual
Z gates [S7], by redefining the coordinate system of the successive tomography pulses. The initial Σ̂z operation at the

beginning of the reverse time evolution step Û(9t) must be executed as physical gates, since the relative single-qubit
phases are relevant for the subsequent unitary time evolution step.

Figure S3C show an example of a calibration measurement that we have performed for calibrating both the Z and
I gates. The fast flux Z control pulses in between forward and backward time evolution steps serve a double purpose.
On the one hand, they are used to switch unitary evolution blocks on and off: if the qubits are tuned on or close to
resonance, then unitary time evolution leads to the analog block U(±t). In order to freeze the lattice dynamics, we
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FIG. S4. Pulse sequence used in OTOC experiments (A) Schematic pulse sequence and circuit diagram for the OTOC
experiments. The circuit diagram at the bottom shows the gates and unitary time evolution blocks that are physically applied
in experiment. (B) Detailed pulse sequence used in experiments. Qubit i, the qubit that receives the initial perturbation and
is read out at the end of the OTOC pulse sequence remains at the common qubit frequency ωq throughout the pulse sequence.
The remaining qubits are tuned out of resonance outside of the time evolution blocks.

mutually detune the qubits, such that neighboring qubits are detuned by & 300 MHz in order to efficiently suppress
time evolution. The effective interaction strength for neighboring qubits detuned by ∆/2π = 300 MHz is

Jfreeze =
−|∆|+

√
∆2 + 4J2

2
≈ 2π × 0.2 MHz. (S15)

On the other hand, the fast flux Z control pulses are used to achieve the correct Z rotations required for realizing
the first Σ̂z prior to the unitary time evolution step. In Fig. S3C, we demonstrate the calibration procedure used for
each qubit separately. On top of the main detuning pulse (blue in the calibration sequence of Fig. S3C), we add a
small additional detuning pulse of amplitude ∆Ai. By sweeping ∆Ai and enclosing a varying number of Z gates in
a Ramsey sequence, we find the conditions for realizing a Z gate and an I gate, respectively, see the the red lines in
Fig. S3C. In order to minimize any distorting effects due to the ac-Stark push of the other qubits, we bias the other
qubits to the frequencies where they are parked in experiment while the unitary evolution is frozen (except for qubit
i, which we have to tune away from the common resonance frequency in order to not interfere with the calibration).

We further optimize the calibrated Z gates with a Loschmidt echo sequence, minimizing the deviation from the
initially prepared state.

B. Detailed pulse sequence for OTOC experiment

Figure S4A shows the schematic pulse sequence used in the OTOC experiments, as well as corresponding circuit
diagrams. In this example, qubit i receives the initial preparation pulse. As detailed above, we realize the operation
(1 ± σ̂xi )/

√
2 with the rotation gate Ryi (±π/2) after preparing the initial state |ψ〉 = |g〉i ⊗

∏
k 6=i |ψ〉k, where qubit

i is initially restricted to be in its groundstate |g〉i. Depending on the lattice site j, where we apply the butterfly

operator σ̂zj , we can merge the butterfly Z gate and the Z gate as part of Σ̂z according to ZZ = I. The final Σ̂z
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FIG. S5. Simulation of the conditional phase accumulation We show a simulation of the conditional phase (CPHASE)
picked up when a neighboring qubit is in |e〉 instead of in |g〉 as a function of the detuning form the CPHASE condition (where
the two-qubit states |gf〉 and |ee〉 are degenerate) and the interaction time. The white line show the duration of the interaction
time in our experiment, which corresponds to the time between the two unitary time evolution blocks in Fig. S4B.

operation is either applied virtually, by absorbing the Z rotation into the final Ry(±π/2) rotation, or omitted since
we only require information on the state of qubit i.

A more detailed pulse sequence for the OTOC experiments is given in Fig. S4B. In order to freeze the system
dynamics most efficiently, we detune the qubits from each other according to a checkerboard pattern, such than
adjacent sites are tuned in different directions. The exception is qubit i, which remains at the common rotating frame
frequency ωq throughout the entire pulse sequence in order to lock its reference phase. For initial state preparation
and qubit readout, we use net-zero Z control pulses [S8] in order to avoid any long-timescale transient distortions.

Pulse amplitude corrections ∆Ai are visible in the central freeze-out and Σ̂z operation, resulting in alternating phase
rotation gates Rz(π) and Rz(0) ≡ I.

In the presence of frequency disorder, we invert the rotating frame disorder frequencies ∆ωi during Û(t′), as

compared to the configuration during Û(t). By observing a Loschmidt echo for a disordered lattice we have confirmed
that this results in an efficient time reversal.

C. Minimization of conditional phase errors

The fast flux pulses applied between the two unitary evolution steps of the OTOC pulse sequence (Fig. S4) freeze

the system dynamics and apply the Pauli-Z gates and identity gates I required for realizing Û(9t) and the butterfly
operation. In this scheme, one possible error mode is the conditional phase (CPHASE) accumulated on the |ee〉 state
of two neighboring qubits as a result of the interaction with the |gf〉 states. This is the interaction used to realize a
CPHASE gate [S4], and is maximized when the states |ee〉 and |gf〉 are degenerate, i.e. when

ωq1
01 + ωq2

01 = ωq1
01 + ωq1

12 (S16)

and therefore

ωq1
12 = ωq1

01 + U = ωq2
01 , (S17)

where ωq
ij is the transition frequency of qubit q between levels i and j, and U is the qubit anharmonicity.

A simulation of this conditional phase accrual is shown in Fig. S5. We suppress this error mode by detuning
neighboring qubits by at least 300 MHz, such that we maintain a 60 MHz clearance from the CPHASE condition (red
dashed lines).

S6. NOTES ON DATA EVALUATION

A. Loschmidt echo

The extracted fidelities and concurrence data at the end of the Loschmidt echo sequence (Fig. 2B) have a small
dependence on the phase φ of the prepared entangled state

∣∣Ψ74
〉
. The reason is that the Bell states (φ = 0, π) are
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eigenstates of iSWAP and are therefore robust against bringing qubits on resonance (or sweeping qubits through their
common resonance). In contrast, the two-qubit states with φ = ±π/2 are not eigenstates of iSWAP and therefore
udnergo free evolution when qubits are tuned on resonance. This effect leads to the slight oscillations visible in fidelity
and concurrence data in Fig. 2B. We have chosen the preparation phase for the prepared state (Fig. 2C) to yield
maximum fidelity and are showing data for the Loschmidt echo with echo time t > 0 and in Fig. 2C for a constant
preparation phase φ where fluctuations are least dominant and overall fidelities are best.

We extract the dephasing limit (dashed line in Fig. 2B) via first calculating the density matrix of the prepared state
ρ̂0 subject to a net dephasing of the entire lattice with T2,eff = 0.884 µs (see Sec. S6 C) according to

ρ̂0,deph(t) = e−2t/T2,eff ρ̂0 +
(

1− e−2t/T2,eff

)
ρ̂(2q)
∞ , (S18)

where t is the Loschmidt echo time (therefore the factor of 2 in the exponent), ρ̂0 is the density matrix of the prepared

state
∣∣Ψ74

〉
in the two-qubit subsystem of qubits 7 and 4, and ρ̂

(2q)
∞ = Tr{i/∈4,7}ρ̂∞, where ρ̂∞ is the completely random

classical state of the nine-qubit system containing one excitation.
We have verified the validity of our simple model for dephasing by comparing to numerical simulations of the

Lindblad master equation, assuming individual dephasing rates for all qubits.

1. Single-qubit phase accrual in the two-qubit density matrix

Tuning qubit frequencies away from the common reference frequency ωq causes a local phase accrual in each qubit’s
subspace. The effect of this phase is minimized by fixing the qubit that receives the initial perturbation (qubit seven)
at the common reference frequency ωq throughout the pulse sequence and detuning the other qubits to freeze out
the lattice dynamics and realize backward time evolution. However, the accumulated phase needs to be taken into
account when reconstructing the density matrix for the two-qubit subsystem consisting of qubits seven and four, since
qubit four leaves the reference frequency during the sequence. The accumulated phase can by compensated in two
ways: the first method involves applying a virtual Rz(ϕ) gate prior to applying the single-qubit rotations used for
state tomography. Alternatively, we can apply the Rz(ϕ) rotation to qubit four in post-processing after reconstructing
the two-qubit density matrix. In this second scheme, the spin of qubit four is measured along the rotated X and Y
axes, X ′ and Y ′. Using these measurements, the reconstructed density matrix is

ρ̂′4,7 =
∑

i

pi |ψ′i〉 〈ψ′i| , (S19)

where |ψ′i〉 = Rz4(ϕ) |ψi〉 and |ψi〉 is the quantum state in the logical frame of both qubits. ρ̂′4,7 is then transformed to
the density matrix in the logical frame by applying a unitary transformation in post-processing:

ρ̂4,7 = Rz4(−ϕ) ρ̂′4,7 R
z
4(ϕ).

We find the correct phase ϕ for the results in Fig. 2 via the second described method in post-processing.

2. Concurrence

Concurrence is an entanglement monotone used to measure the entanglement between two qubits, ranging from 0
to 1. For a given two-qubit density matrix ρ̂, the concurrence C(ρ̂) is defined as

C(ρ̂) = max(0, λ1 − λ2 − λ3 − λ4) (S20)

where λ1 ≥ λ2 ≥ λ3 ≥ λ4 are the eigenvalues of the Hermitian matrix R̂ =
√√

ρ̂ρ̃
√
ρ̂, measuring the overlap between

ρ̂ and ρ̃ = (σ̂y ⊗ σ̂y)ρ̂∗(σ̂y ⊗ σ̂y), the result of a spin flip transformation on the original density-matrix ρ̂. Using
this framework, the entanglement of formation E(ρ̂) of a bipartite mixed state described by ρ̂ can be related to
concurrence [S9]:

E(ρ̂) = h

(
1 +

√
1− C(ρ̂)2

2

)
(S21)

where h(x) = −x log(x)− (1− x) log(1− x) is the binary entropy function.
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FIG. S6. Extracting the effective dephasing time from measured OTOC data for the no-disorder scenario (A)
We plot the weighted and interpolated distance between the experimental OTOC data (without disorder) and the respective
numerical simulation of the experimental Hamiltonian with varying strengths of qubit dephasing. We plot the effective net
dephaing time T eff

2 . (B) Experimental data (blue), numerical simulations based on the experimental Hamiltonian including
the third transmon levels and the calculated non-nearest neighbor couplings as well as the extracted qubit dephasing (green),
and the numerical simulation based on the ideal hard-core Bose-Hubbard model (Eq. 3, red).

B. OTOC data

To obtain the OTOC data that we show in Fig. 3, 4, we sum the measured quantities C± from all measurements

where the butterfly operator Ŵj(t) is applied at the same Manhattan distance j. We account for small baseline shifts
– which accumulate in this sum – by subtracting the baseline offset in C± for each Manhattan distance individually.

We perform numerical simulations using QuTiP [S10]. To account for the qubit frequency dependence of the
coupling strengths between qubits i and j, we scale the measured coupling strengths at qubit frequencies of 5.5 GHz
according to Jij(ωi, ωj) ∝

√
ω1ω2. The reference operation frequency ωq in Fig. 3, 4 is 5.3 GHz.

C. Compensating for dephasing in OTOC measurements

As described above, our experimental system is subject to decoherence. While the measured T1 times of the qubits
are much larger than our time evolution such that energy relaxation does not significantly impact our results, the
shorter dephasing (T2) times are noticeable. It has been noted in Ref. [S11] that measured OTOC data can be
corrected for dephasing errors.

We calculate the effects of dephasing on our system using a simple model. We assume that the number of excitations

in the system, n̂ex =
∑
i
σ̂z
i +1
2 , is conserved, but within each n̂ex = nex sector, dephasing drives the system towards

an infinite temperature state where all configurations are equally likely. According to the model, the density matrix
of the system subject to dephasing is

ρ(t) = e−t/T
eff
2 ρideal(t) +

(
1− e−t/T eff

2

)∑

nex

Pnex
(t)ρ∞,nex

(S22)

where ρideal(t) is the dephasing-free density matrix, T eff
2 is the effective net dephasing time, Pnex

(t) is the probability
of finding nex excitations in the system, and ρ∞,nex

is the corresponding infinite temperature state. In Eq. S22, t
denotes the total evolution time during an experiment.
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FIG. S7. Overview of OTOC data from disordered lattices Experimental data (blue) and numerical simulations for
OTOC data based on our experimental Hamiltonian including the third transmon levels and the calculated non-nearest neighbor
couplings (green). Experimental data are modified to account for the effects of decoherence with T eff

2 = 0.884 µs. Shaded regions
show the standard deviation of the data for the twelve random disorder realizations, while the solid lines represent the average.
The red line corresponds to the numerical simulation based on the ideal hard-core Bose-Hubbard model (Eq. 3). While corrected
experimental data and the realistic numerical simulation show good agreement, we observe more pronounced deviations between
experiment and the ideal simulation, mainly caused by the always-on ZZ interaction, see Sec. S7.

As described in Sec. S4, our procedure for obtaining the OTOCs uses a final measurement of σ̂xi . In the infinite
temperature state, we find

〈σ̂xi 〉∞ = Tr[ρ̂∞σ̂
x
i ] = 0 (S23)

for any nex and the measured quantities Cmeas
± of Eq. S10 behave simply as

Cmeas
± (t) = e−2t/T eff

2 C ideal
± (t). (S24)

The factor of two in the exponent comes from the fact that the OTOC measurement process involves two time
evolution steps of length t. We can therefore account for the effects of dephasing by assigning

C±(t) = e2t/T eff
2 Cmeas

± (t). (S25)

We evaluate T eff
2 by comparing the numerical simulation of the no-disorder, zero-excitation OTOC to the respective

experimental results and by minimizing their difference, see Fig. S6. We find an effective T eff
2 = 0.884 µs, which is a

net (aggregate) value from all nine qubits.

D. Extracting the light cone from OTOC data of disordered lattices

Experimental data, with compensated effects of dephasing as described above, and numerical simulations of the
OTOC data in the presence of disorder (〈〈(∆ωi)2〉〉1/2 = 2.7J) are given in Fig. S7. We observe good agreement
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FIG. S8. OTOC measurements in disordered lattice in comparison with different numerical simulations (A)

Representative OTOC data in a disordered lattice with 〈〈(∆ωi)
2〉〉1/2 = 2.7J and a varying number of particles in the lattice,

according to Fig. 4A (compensated for dephasing). (B) Numerical simulation for the same disorder realization and based on
our experimental Hamiltonian, including the third transmon levels and the calculated non-nearest neighbor couplings. (C)
Numerical simulation for the same disorder realization based on the hard-core Bose-Hubbard model (Eq. 3).

between experimental data (blue) and numerical simulations of the experimental Hamiltonian including the third
transmon levels and the calculated non-nearest neighbor couplings.

In order to quantify the speed of interaction propagation in the disordered lattice, we extract a ‘light cone’ from
measured OTOC data, defined by the time when a threshold value of 0.6 is first reached at a given Manhattan
distance (red dots and lines in Fig. 4A). If the threshold is not reached before the maximum evolution time in our
data set (100 ns), we assign a time of 300 ns. We note that modifying the post-processing parameters does not alter
our qualitative results.

In Fig. S8, we show OTOC data for the disordered lattice according to Fig. 4 in the main text. We compare exper-
imental data (Fig. S8A) with a numerical simulation of our experimental Hamiltonian including the third transmon
levels, a next-nearest neighbor coupling of J/30, and decoherence (Fig. S8B), and with a numerical simulation for
the ideal hard-core Bose-Hubbard Hamiltonian (Fig. S8C). We observe good agreement between experimental data
and the realistic simulation, with small deviations with respect to the ideal simulation. Experimental data and both
versions of numerical simulations show consistent qualitative results.

In addition, we demonstrate that the twelve random disorder realizations used in our experiment (Fig. 4) are
a representative set by comparing numerical simulations of those twelve realizations with 100 additional random
realizations of the same disorder strength 〈〈(∆ωi)2〉〉1/2 = 2.7J . The results in Fig. S9 are in qualitative agreement,
showing that localization in the 2d hard-core Bose-Hubbard model is partially overcome with more particles present
in the lattice. The small deviations between the two random sets is due to the unstable average of the extracted light
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FIG. S9. Numerical simulations of OTOC in disordered lattice We compare numerical simulations of the twelve random
disorder realizations used in experiment (shaded areas) with 100 additional random realizations of the same disorder strength

〈〈(∆ωi)
2〉〉1/2 = 2.7J . Their qualitative agreement confirms that the twelve realizations used in experiment are a representative

set that show how localization is overcome in the presence of more particles in the lattice. The shaded regions show standard
deviations of the means for the twelve realizations from experiment, while the data points show the average results of the
median 20% of simulation results.

cones, a consequence of the fact that the threshold value for some disorder realizations is never reached (in which case
we assign an evolution time of 300 ns). In order to suppress this effect, we compare the average of the twelve disorder
realizations used in experiment with the average of the median 20% of the additional 100 disorder realizations in
Fig. S9.

S7. LIMITATIONS DUE TO THE TRANSMON LEVEL STRUCTURE

The most significant limitation in our experiment stems from the residual couplings between the qubits that are
not captured by the two level Hamiltonian of Eq. 3. Even though the ratio J/U � 1 is sufficiently small such that the
system can be described by a two-level Hamiltonian, the existence of the neglected |f〉 levels of the transmon qubits
leads to a correction, known as the ‘always-on ZZ interaction’ [S12]. The Hamiltonian for the transmon system is

Ĥexp = Ĥ + εĤZZ, (S26)

where Ĥ is given in Eq. 3 and the correction is

ĤZZ/~ = −
∑

〈i,j〉

1 + σ̂zi σ̂
z
j

2
(S27)

with its strength governed by

ε =
J2

|U | ≈ 2π × 0.54 MHz. (S28)

The ZZ terms are invariant under our time reversal procedure,

Σ̂zĤ
′
expΣ̂z = Σ̂z(Ĥ

′ + εĤZZ)Σ̂z = −Ĥ + εĤZZ (S29)

and so our time evolution operators are not exactly conjugate, but instead have

Û(t) = e−i(Ĥ+εĤZZ)t, Σ̂zÛ
′(t)Σ̂z = ei(Ĥ−εĤZZ)t. (S30)

We estimate the effect of these terms on our experimental results. Using a Trotter expansion [S13], we can rewrite

Û(t) ≈ e−iĤt
(

1− iε
∫ t

0

dτĤZZ(τ)

)
,

Σ̂zÛ
′(t)Σ̂z ≈

(
1− iε

∫ t

0

dτĤZZ(τ)

)
eiĤt,

σ̂zj (t) = Σ̂zÛ
′(t)Σ̂zσ

z
j Û(t) ≈ σ̂zj (t)− iε

∫ t

0

dτ
{
σ̂zj (t), ĤZZ(τ)

}
.
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TABLE S2. Always-on ZZ error estimates.

nex 0 1 2 3 4 5

T
[∣∣∣∆C ≈

√
C
∣∣∣
]

(ns)
∞ ∞ 313 104 52 31 3× 3 lattice

∞ ∞ 467 156 78 47 7-qubit chain

We can then insert this result into the experimental formulation of Eq. S9, S10. To first order in ε, the measured
OTOC is then given by

Cmeas = 2 + C− − C+ ≈ 2− 〈ψ| σ̂xi σ̂zj (t)†σ̂xi σ̂
z
j (t) |ψ〉 − 〈ψ| σ̂zj (t)†σ̂xi σ̂

z
j (t)σ̂xi |ψ〉

= 〈ψ|
[
σ̂xi , σ̂

z
j (t)

]† [
σ̂xi , σ̂

z
j (t)

]
|ψ〉

≈ 〈ψ|
[
σ̂xi , σ̂

z
j (t)

]† [
σ̂xi , σ̂

z
j (t)

]
|ψ〉+ 〈ψ|

[
σ̂xi , σ̂

z
j (t)

]†
[
σ̂xi ,−iε

∫ t

0

dτ
{
σ̂zj (t), ĤZZ(τ)

}]
|ψ〉

+ 〈ψ|
[
σ̂xi ,−iε

∫ t

0

dτ
{
σ̂zj (t), ĤZZ(τ)

}]† [
σ̂xi , σ̂

z
j (t)

]
|ψ〉

= C ideal − iε
∫ t

0

dτ 〈ψ|
(
[
σ̂xi , σ̂

z
j (t)

]† [
σ̂xi ,
{
σ̂zj (t), ĤZZ(τ)

}]
−
[
σ̂xi ,
{
σ̂zj (t), ĤZZ(τ)

}]† [
σ̂xi , σ̂

z
j (t)

]
)
|ψ〉 .

(S31)

The integral term, proportional to ε, is the experimental error induced by the always-on ZZ coupling.
We note this error takes the form of a sum over eight similar terms of the form

∆C = Cmeas − C ideal = iε

∫ t

0

dτ
4∑

α=1

〈ψ|
[
σ̂xi , σ̂

z
j (t)

]† ÛαĤZZ(τ)V̂α |ψ〉 − 〈ψ| V̂†αĤZZ(τ)Û†α
[
σ̂xi , σ̂

z
j (t)

]
|ψ〉 , (S32)

where Ûα, V̂α are unitary operators defined by Eq. S31 (e.g. Û2 = σ̂xi , V̂2 = σ̂zj (t), etc.) Owing to their different forms
and time integration, it is reasonable to treat these terms as uncorrelated errors, and so we find

|∆C |2 ≈ 2 |ε|2
4∑

α=1

∣∣∣∣
∫ t

0

dτ 〈ψ|
[
σ̂xi , σ̂

z
j (t)

]† ÛαĤZZ(τ)V̂α |ψ〉
∣∣∣∣
2

. (S33)

The magnitudes of these terms depend on the likelihood of finding excitations in adjacent lattice sites, averaged over
time. As an approximation, we take this to be the infinite-temperature average, or the average over all configurations
χ at a given excitation number nex:

ÛαĤZZ(τ)V̂α →
[(

9

nex

)]−1∑

χ

〈nex, χ| ĤZZ |nex, χ〉 ≡ 〈〈HZZ〉〉nex
. (S34)

Note that this approximation is specific to the operators we have used in our commutator. Here |nex, χ〉 is the state
with nex excitations arranged in configuration χ. Then,

|∆C |2 ≈ 8 |ε|2
∣∣∣∣
∫ t

0

dτ〈〈HZZ〉〉nex
〈ψ|
[
σ̂xi , σ̂

z
j (t)

]† |ψ〉
∣∣∣∣
2

=
∣∣∣
√

8〈〈HZZ〉〉nex
εt
∣∣∣
2 ∣∣∣〈ψ|

[
σ̂xi , σ̂

z
j (t)

]† |ψ〉
∣∣∣
2

≤
∣∣∣
√

8〈〈HZZ〉〉nexεt
∣∣∣
2

〈ψ|
∣∣[σ̂xi , σ̂zj (t)

]∣∣2 |ψ〉 =
∣∣∣
√

8C 〈〈HZZ〉〉nexεt
∣∣∣
2

.

(S35)

We finally find

|∆C | .
√

8C |〈〈HZZ〉〉nex
| εt. (S36)

We observe that the error is bounded by the commutator as
√

C , and grows linearly in time. We can therefore evaluate
the duration of an experiment before the results become unreliable, where ∆C ≈

√
C , as a function of the number of

particles (excitations) in the lattice. The results are summarized in Tab. S2. We note that the time scales involved
are significantly larger than what is required for our measurements of OTOCs in Fig. 3, 4, where nex ≤ 3.
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FIG. S10. Probing information propagation in the 1d chain via OTOC measurements (A) Experimental data
showing the constructed squared commutator C = 2 + C− − C+ for a varying number of additional particles loaded to the
chain. (B) Numerical simulations based on our experimental Hamiltonian including the third transmon levels. We include the
long-range interaction mediated by the two far-detuned qubits that are not part of the 1d chain. (C) Numerical simulations
for the hard-core Bose-Hubbard model.

S8. PROBING INFORMATION PROPAGATION WITH OTOC IN A 1D CHAIN

We provide a demonstration of the generality and versatility of our technique by probing the propagation of
information in a resonant 1d Bose-Hubbard chain of length seven. For this, we are interested in the same OTOC F as
in the 2d case (Eq. 8) and we again construct the associated squared commutator C = 2 + C−−C+. In Fig. S10A we
show experimental data that we have obtained for applying the initial perturbation to qubit seven at one of the ends
of the chain, and the additional perturbation at time t to sites at a varying distance from qubit seven. We extract
data for a different number of additional particles loaded to the lattice and compare with numerical simulations based
on our experimental Hamiltonian including the third transmon levels (Fig. S10B) and the ideal simulation of the
hard-core Bose-Hubbard model (Fig. S10C). In the realistic simulation (Fig. S10B) we take into account long-range
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FIG. S11. Information propagation in disordered 1d chains for various number of particles Numerical simulations
for three random disorder realizations (rows A, B, C) with disorder strength 〈〈(∆ωi)

2〉〉1/2 = 2J in a seven-site 1d chain. In
contrast to the results in Fig. 4, adding more particles to the chain does not help to overcome localization.

interactions within the chain, mediated by the two qubits that are detuned from the rest of the lattice by ∼ 1.5 GHz.
As in the 2d case, the light cone feature survives independent of the number of added particles, illustrating the
robustness and generality of this technique for studying the propagation of information.

The 2d hard-core Bose-Hubbard model is an interacting many-body model without a known mapping to a com-
putationally trivial model. In contrast, the 1d hard-core Bose-Hubbard model maps to free fermions [S14], which is
computationally trivial. Consequently, the effect of an ‘interaction-assisted’ overcoming of localization, as observed
in Fig. 4, is absent in the 1d hard-core Bose-Hubbard model. This important distinction between the 1d and 2d
models underpins the non-trivial, many-body character of the 2d hard-core Bose-Hubbbard model, investigated in
our experiment. We verify this via numerical simulations of the information propagation in a seven-site 1d chain
subject to random disorder with disorder strength 〈〈(∆ωi)2〉〉1/2 = 2J . In Fig. S11, we show numerical simulation
data for three randomly chosen disorder realizations (rows A, B, C), and we observe that the efficiency of information
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propagation is independent of the number of particles in the lattice, in contrast to our observation in the 2d scenario
(Fig. 4).
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