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Analysis and Interventions in Large Network Games
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Abstract

We review classic results and recent progress on equilibrium analysis, dynamics, and
optimal interventions in network games with both continuous and discrete strategy sets. We
study strategic interactions in deterministic networks as well as networks generated from a
stochastic network formation model. For the former case, we review a unifying framework
for analysis based on the theory of variational inequalities. For the latter case, we highlight
how knowledge of the stochastic network formation model can be used by a central planner
to design interventions for large networks in a computationally efficient manner when exact
network data is not available.

1 INTRODUCTION

In many social or economic settings, decisions of individuals are affected by the actions of their
friends, colleagues, peers, or competitors. For example, the decision of an individual to buy a
new product, adopt new ideas or innovations, commit a crime, find a job, or contribute to a
public good is influenced by the choice of his friends or acquaintances. Network games have
emerged as a powerful framework for the formal analysis of such interactions by providing a
model for settings where a large number of agents interact with each other according to an
underlying network represented by a graph. The restriction with respect to a general game
formulation is that in a network game, a player’s payoff does not depend on the strategy of
all other players, but only on the aggregated actions of the agents in his neighborhood. Such
a framework is general enough to nest many setups of practical interest and allows for diverse
heterogeneities in the way agents interact with each other.

In this chapter we provide a systematic review and unified analysis of network games for
both deterministic and stochastic networks. In each case, we characterize the equilibrium, study
dynamics and provide results on targeted interventions from the literature. We focus on games
with both continuous and discrete strategy sets and show that their analysis requires different
methodologies and tools.

Specifically, we begin the chapter by reviewing some classical network game models and their
connections to well known dynamics over deterministic networks. After presenting some widely
used models with specific structure from the literature,1 we discuss a unifying framework based
on the theory of variational inequalities. Such a framework enables the analysis of a broader
class of network games with vector strategies and mixed strategic interactions.

We then turn to analysis of interactions in very large networks. In this scenario two problems
emerge from the perspective of a central planner. First collecting data about the exact network

∗F.P is with the Department of Electrical and Computer Engineering, Cornell University, Ithaca, USA; email:
fp264@cornell.edu, A.O. is with the Department of Electrical Engineering and Computer Science, MIT, Cam-
bridge, USA; email: asuman@mit.edu

1More details on games with special structure, either in terms of payoff or strategic interactions with mono-
tonicity properties, can be found in Jackson (2010); Easley et al. (2010); Jackson and Zenou (2014); Bramoullé
and Kranton (2016); Bullo (2019).

1

Electronic copy available at: https://ssrn.com/abstract=3692826



of interactions becomes very expensive or not at all possible because of privacy and proprietary
concerns. Second, methods for designing optimal interventions that rely on the exact network
structure typically do not scale well with the population size. To obviate these issues, we
consider networks generated from a stochastic network formation model, which we assumed
is known to the central planner. By discussing several results from the literature that use
such a framework, we emphasize how models based on stochastic networks provide an effective
framework for policy intervention by a central planner that has limited information about exact
network interactions and we stress the computational advantages of policy analysis in stochastic
network environments.

2 DETERMINISTIC NETWORKS

In this section we consider games where there is a fixed number of agents N which interact
according to a given network of interactions. From here on we denote with P ∈ RN×N the
adjacency matrix of such a network, with the interpretation that Pij ∈ [0, 1] denotes the influence
that agent j has on agent i. We assume no self loops, hence Pii = 0 for all i, we denote by
N i := {j | Pij 6= 0} the set of neighbors of agent i and by di :=

∑
j Pij his degree. We say that

the network is undirected if Pij = Pji for all i, j, otherwise it is directed.
Each agent has a strategy space Si, which could be either a finite set or a subset of a

Euclidean space (we discuss both cases in the next subsections). The objective of each agent is
to select a feasible (pure) strategy si ∈ Si to maximize a payoff function2

U i(si, zi(s)) (1)

which depends on the strategy of agent i and the network aggregate

zi(s) =

N∑
j=1

Pijs
j ,

where s = [s1; . . . ; sN ]. Note that the payoff of each agent depends on the choices of the other
agents, hence each agent aims at computing his best response to others actions3

Bi(zi(s)) := arg max
si∈Si

U i(si, zi(s)), (2)

where we recall that zi(s) does not depend on si since Pii = 0. A set of strategies where each
agent is playing a best response to others agents’ strategies is a Nash equilibrium.

Definition 1 (Nash equilibrium) A set of strategies {s̄i}Ni=1 is a Nash equilibrium if for all
i ∈ {1, . . . , N}, s̄i ∈ Si and U i(s̄i, zi(s̄)) ≥ U i(si, zi(s̄)) for all si ∈ Si.

Intuitively, a Nash equilibrium is a strategy profile where no agent has a unilateral profitable
deviation. To motivate our analysis, we next introduce two examples of network games.

Example 1 (Local public good game) Consider a game where each agent needs to decide
how much effort to invest in a local public good. This could represent for example a consumer’s
research into new products, farmer investments in new agricultural techniques or research and
development efforts in industry. Following Bramoullé and Kranton (2007), we assume that each
agent selects a non-negative effort level si, so that Si = R≥0, and has a constant marginal cost
which we denote by b. We also assume that effort from an agent is perfectly substitutable with
efforts from his neighbors, so that Pij = 1 for all j ∈ N i and the return on investment depends
on si + zi(s). Each agent’s payoff is then U i(si, zi(s)) = f(si + zi(s))− bsi where f is a return
of investment function, typically strictly increasing and concave.

2In this chapter we focus always on pure strategies, therefore from here on we refer to pure strategies simply
as strategies.

3We use the term strategy and action interchangeably.
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Example 2 (Homogeneous coordination game) Consider a game where P ∈ {0, 1}N×N
and each agent needs to select among two strategies, so that Si = {0, 1}.
This framework could model settings where an agent needs to decide
whether to adopt a certain innovation or behavior, buy a certain product
or participate in a certain activity. We assume that neighboring agents
have an incentive to match their strategies. Specifically, neighbors i, j
play a coordination game according to the payoff matrix on the right,
for some a, b > 0.

i
1 0

j
1 a,a 0,0
0 0,0 b,b

Note that zi =
∑

j Pijs
j in this case corresponds to the number of neighbors of i playing strat-

egy 1. The overall payoff experienced by agent i is then U i(si, zi) = siazi + (1 − si)b(di − zi),
where we recall that di denotes agent i’s degree. Agent i’s best response is then to choose strategy
1 if and only if U i(1, zi) ≥ U i(0, zi) leading to

azi ≥ b(di − zi) ⇔ zi

di
≥ b

a+b =: θ (3)

In other words, the best response of an agent is a threshold policy: agent i selects strategy 1 if
and only if at least θ fraction of his neighbors select strategy 1.

Note that in Example 1 each agent selects a strategy from the Euclidean set R≥0, while in
Example 2 each agent selects a strategy from the discrete set {0, 1}. We show how we can
analyze network games with continuous and discrete strategies in the next two subsections.
Before focusing on network games, we review in Sidebar 1 two widely used structural properties
for generic games that enable tractable equilibrium analysis, we refer to Dubey et al. (2006);
Jackson and Zenou (2014); Menache and Ozdaglar (2011); Marden and Shamma (2018) for more
details.

2.1 Continuous strategies

We first consider “linear-quadratic” network games where each agent has a payoff that is
quadratic in his own strategy and linear in the network aggregate.4 Indeed, this simple para-
metric form enables an explicit characterization of equilibrium strategies and allows a tractable
analysis of the impact of network structure. The public good game in Example 1 with quadratic
return function is a special case of such games.

Linear quadratic games:

Consider a network game where each agent chooses a scalar non-negative strategy si ∈ Si = R≥0

(representing for instance how much effort he exerts on a specific activity) to maximize the linear
quadratic payoff function

U i(si, zi(s)) = −1

2
(si)2 + [aizi(s) + bi]si, (4)

where ai ∈ R captures the impact of the network aggregate zi(s) on the payoff of agent i and
bi ∈ R is the standalone marginal return. For these games, the best response of agent i is given
by a (truncated) affine function of the network aggregate zi(s):

Bi(zi(s)) := max{0, aizi(s) + bi}. (5)

An interesting class of games is obtained when the sign of the payoff parameters {ai}Ni=1 is posi-
tive (or negative), since in this case the game exhibits increasing (decreasing) payoff differences,
as discussed in Sidebar 1, and the best response is a monotone increasing (decreasing) function

4We here present a selection of results needed to build intuition: A more detailed survey can be found in
Jackson and Zenou (2014); Bramoullé and Kranton (2016).
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SIDEBAR 1: GAMES WITH SPECIAL STRUCTURE

In this sidebar we consider generic games (not necessarily network games) hence we
consider payoffs of the form U i(si, s−i), where s−i denotes the strategies of all agents
except for agent i, instead of U i(si, zi(s)).

Supermodular games

When the strategy sets are lattices, one can study properties of equilibria by using
lattice theory and monotonicity results in lattice programming, as discussed in detail in
Vives (2005). We quickly review such a framework for the case of scalar strategies so
that Si is a subset of R. To this end, we introduce the following monotonicity property
of the payoff function.

Definition 2 (Increasing (decreasing) differences) A game exhibits increasing (de-
creasing) payoff differences if for all i ∈ {1, . . . , N}, s̃i ≥ si and s̃−i ≥ s−i it holds

U i(s̃i, s̃−i)− U i(si, s̃−i) ≥ (≤) U i(s̃i, s−i)− U i(si, s−i),

that is, an increase in the strategies of the other players raises (decreases) the desirability
of playing a higher strategy for player i.

If U i is twice continuously differentiable an equivalent condition for increasing payoff

differences is ∂2U i(si,s−i)
∂si,sj

≥ 0. Games that exhibit increasing (decreasing) payoff

differences are also termed games of strategic complements (substitutes) and, in
the scalar case, are supermodular (submodular) games. Note that Example 1 is a
game of strategic substitutes, while Example 2 is a game of strategic complements.

Supermodular games are of particular interest because, under suitable continuity as-
sumptions, existence of a pure strategy equilibrium can be obtained without requiring
the quasi-concavity of the payoff functions, the equilibrium set is a lattice with a smallest
and a largest element and the best response has underlying monotonicity properties that
enable sharp comparative statics results, see Milgrom and Roberts (1994); Milgrom and
Shannon (1994). While we here considered the scalar case, we quickly note that such a
theory can be extended to vector strategies (under the assumption that Si is a complete
lattice). In this case to define a supermodular game one needs to also guarantee com-
plementarity among components of an agent strategy, see (Fudenberg and Tirole, 1991,
Section 12.3), Topkis (2011).

Potential games

A game admits an exact potential if there exists a function Φ(s) such that U i(si, s−i)−
U i(s̃i, s−i) = Φ(si, s−i)−Φ(s̃i, s−i) for all i ∈ {1, . . . , N}, si, s̃i ∈ Si and s−i ∈ S−i. In this
case, one can connect Nash equilibria to the stationary points of the potential function
and use optimization theory results to study equilibria and dynamics. For example, the
Nash equilibrium exists and is unique if the Si are non-empty, closed and convex and Φ
is strongly concave, since in this case Φ has a unique stationary point (the maximum).
We refer the interested reader to Monderer and Shapley (1996) for more details.
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of other agents actions. Much of the literature has exploited such monotonicity properties to
study equilibrium properties and dynamics as a function of the network structure. We next re-
view results specific to network games with linear quadratic structure. We focus for simplicity
on homogeneous games for which ai = a, bi = b for all i ∈ {1, . . . , N}.

Linear quadratic network games of strategic complements (a > 0) have been studied for
example by Ballester et al. (2006). A key result of this work is that under strategic complements
and if b > 0, the equilibrium is internal, that is, s̄i > 0 for all i ∈ {1, . . . , N}. It then follows
from (5) that s̄i = azi(s̄) + bi and the equilibrium condition can be expressed in matrix form
as s̄ = aP s̄ + b1N or equivalently, (I − aP )s̄ = b1N , where 1N ∈ RN is the vector of all ones.
Under the assumption

aλmax(P ) < 1, (6)

(I − aP ) is invertible and we obtain s̄ = b(I − aP )−11N , that is the unique Nash equilibrium
is proportional to the vector of Bonacich centralities, see Bonacich (1987), which is defined as
c̄ := (I − aP )−11N and is a measure of importance of a node in a network in terms of number
and (discounted) length of outgoing walks. To see this connection, note that under (6) the
Bonacich centrality of agent i can be expressed as

c̄i =
N∑
j=1

∞∑
k=0

(akP k)ij

and P kij is the weight of walks from i to j of length k. This is thus a simple case where the
network position determines equilibrium play.

Linear quadratic network games of strategic substitutes (a < 0) have been studied for
example by Bramoullé et al. (2014), using the theory of potential games, see Sidebar 1. As
derived in Monderer and Shapley (1996), a necessary condition for the existence of an exact
potential function is

∂2U i(si, s−i)

∂sisj
=
∂2U j(sj , s−j)

∂sjsi
. (7)

For linear quadratic homogeneous network games, this amounts to the restriction that Pij = Pji,
which holds if and only if the network is undirected. Under this assumption Bramoullé et al.
(2014), show that if

|a||λmin(P )| < 1 (8)

the potential function Φ(s) = − s>(I−aP )s
2 + bs is strongly concave, guaranteeing existence and

uniqueness of the Nash equilibrium. We note that condition (8) is less restrictive than condition
(6) since by Perron-Frobenious theorem |λmin(P )| < λmax(P ).

The results discussed so far focused on games with affine best responses. A few recent
papers extended these results to games with nonlinear best responses while maintaining the
assumption of strategic complements, see e.g., Belhaj and Deröıan (2014); Acemoglu et al.
(2015), or strategic substitutes, see e.g., Allouch (2015). In the following subsections, we instead
review a general approach based on the theory of variational inequalities, that enables the
analysis of more general network games with nonlinear best responses, vector strategies and
mixed strategic effects. We divide the exposition into three main sections: analysis of equilibria,
dynamics and interventions.

2.1.1 Equilibria

We start our discussion with two motivating examples. First we describe a variation of the
linear quadratic model that features a non monotone best response.
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Example 3 (Races and tournaments) Consider a network game where each player has a
scalar strategy si ∈ [sL, sH ] (with 0 < sL < sH) and a nonlinear best response

Bi(zi(s)) = min{sL + φ(zi(s)), sH},

with φ(0) = 0 and φ(zi) ≥ 0. Special cases of this
model have been considered in the literature for ex-
ample in Belhaj and Deröıan (2014) with the addi-
tional assumption φ′ ≥ 0 (so that the best response
is increasing in other agents actions) or in Allouch
(2015) with φ′ ≤ 0 (so that the best response is de-
creasing in other agents actions).

0 1 2 3 4 5
1

2

3

4

5

Network aggregate zi

B
es
t
re
sp
on
se

γ=1/4

γ=1/2

γ=3/4
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Figure 1: φ(zi) = γzi(sH − zi), sL =
1, sH = 5 and different values of γ.

We instead do not impose any monotonicity assumption on φ and focus on cases where the sign
of φ′ may change. For example one could consider φ as in Figure 1. The corresponding best
response function is non-monotone and can be used to model races and tournaments: In the
initial phase, when zi ≤ sH

2 , the player’s increasing effort motivates a neck-to-neck race which
is then followed by a second phase, when zi ≥ sH

2 , where agent’s effort level declines capturing a
discouragement effect. This is an example of network games with mixed strategic interactions.

In the examples discussed so far agents had scalar strategies. Our second motivating example
features agents that engage in multiple activities, as studied in Chen et al. (2018); Belhaj and
Deröıan (2014).

Example 4 (Multiple activities in networks) Consider a network game where each player
i has a strategy vector si = [siA, s

i
B] ∈ R2

≥0 with siA, s
i
B representing his level of engagement in

two interdependent activities A and B, such as crime and education. Each agent selects his
level of engagement in activities A and B to maximize the following payoff

biAs
i
A −

1

2
(siA)2 + δsiAz

i
A(s)︸ ︷︷ ︸

net proceeds from activity A

+ biBs
i
B −

1

2
(siB)2 + δsiBz

i
B(s)︸ ︷︷ ︸

net proceeds from activity B

+µsiAz
i
B(s) + µsiBz

i
A(s)− βisiAsiB︸ ︷︷ ︸

interdependence of activities

,

where the parameter δ represents the effect of the network aggregate within each activity, µ
represents the effect of the network aggregate across different activities and βi captures the
interdependence of the two activities for each agent i. Chen et al. (2018), focus on the case
δ > 0 so that the effort of each agent and his neighbors are strategic complements within each
activity, while βi ∈ (−1, 1) can be negative (modeling two complementary activities such as crime
and drug use) or positive (modeling two substitutable activities such as crime and education).

To study these more general interactions a number of recent papers suggested the use of
variational inequalities (see e.g., Ui (2016); Melo (2017); Naghizadeh and Liu (2017) which apply
this approach to special classes of network games). We here review the unifying framework
presented in Parise and Ozdaglar (2019b) under the following assumption.

Assumption 1 The strategy set Si ⊆ Rn is nonempty, closed and convex for all i ∈ {1 . . . , N}.
The function U i(si, zi(s)) is continuously differentiable and concave in si for all i ∈ {1 . . . , N}
and for all sj ∈ Sj, j ∈ N i. Moreover, U i(si, zi) is twice differentiable in [si; zi] and
∇siU i(si, zi) is Lipschitz in [si; zi].

At a high level variational inequalities can be used to capture simultaneously a set of op-
timization problems belonging to multiple agents through their optimality conditions. To see
this, consider the optimization problem faced by each agent at a Nash equilibrium:

s̄i = arg max
si∈Si

U i(si, zi(s̄)). (9)
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If U i is concave in si, using first order optimality conditions, (9) is equivalent to

F i(s̄)>(si − s̄i) ≥ 0, ∀si ∈ Si

where we defined F i(s) := −∇siU i(si, zi(s)). These conditions can be aggregated over all agents
and admit the following compact representation:

F (s̄)>(s− s̄) ≥ 0, ∀s ∈ S, (10)

where F (s) := [F 1(s); . . . ;FN (s)] is the so-called Game Jacobian and S := S1 × . . . × SN is
the cartesian product of the strategy sets. As detailed in Sidebar 2, condition (10) is equivalent
to requiring that the vector s̄ solves the variational inequality VI(S, F ). Under Assumption 1
this is a well known equivalent characterization of a Nash equilibrium , see e.g., Scutari et al.
(2010).

Before delving into equilibrium analysis, it is interesting to highlight a connection between
variational inequalities and the potential game approach highlighted in Sidebar 1. To this end,
note that if F (s) is integrable, that is, if there exists Θ(s) such that −∇sΘ(s) = F (s), then
according to (10), under Assumption 1, s̄ is a Nash equilibrium if and only if −∇sΘ(s̄)>(s− s̄) ≥
0 for all s ∈ S, equivalently s̄ is a stationary point of the potential Θ(s). The variational
approach can therefore be seen as a generalization of potential games to cases when the game
jacobian F (s) is not integrable.

We mentioned in Sidebar 1 that, for potential games, a sufficient condition for existence and
uniqueness of equilibria is the potential function being strongly concave (i.e., there exists α > 0
such that −∇2

sΘ(s) � αI or equivalently ∇sF (s) � αI). The extension of such a condition to
variational inequalities is that the game jacobian is strongly monotone, as detailed in Sidebar 2.

Since an equivalent condition for strong monotonicity is ∇sF (s)+∇sF (s)>

2 � αI, strongly convex
potential games are a special case of strongly monotone games (recall that F (s) is symmetric
when the game is potential due to condition (7)). In the case of network games, ∇sF (s) can be
rewritten as

∇sF (s) = D(s) +K(s)T, (13)

where T := P ⊗ In,

D(s) := blkd[Di(s)]Ni=1 := −blkd[∇2
sisiU

i(si, zi) |zi=zi(s)]Ni=1

K(s) := blkd[Ki(s)]Ni=1 := −blkd[∇2
siziU

i(si, zi) |zi=zi(s)]Ni=1.

Let us define κ1 := mini mins λmin(Di(s)), κ2 := maxi maxs ‖Ki(s)‖2. For a linear quadratic
game as in (4), we obtain Di(s) = 1, Ki(s) = −ai for all i ∈ {1, . . . , N}, κ1 = 1 and κ2 =
maxi |ai|.

Using the gradient structure highlighted in (13) and the equivalent condition for strong
monotonicity of F given in Sidebar 2, one obtains that for network games

∇sF (s) +∇sF (s)>

2
= D(s) +

K(s)T + T>K(s)>

2
� λmin(D(s))I +

K(s)T + T>K(s)>

2
. (14)

It is shown in Parise and Ozdaglar (2019b) that the right hand side of (14) can be further lower
bounded by (κ1 − κ2‖P‖2)I. Together with the results of Sidebar 2, this leads to the following
theorem.

Theorem 1.A Suppose Assumption 1 holds and

κ1 − κ2‖P‖2 > 0 (Assumption 2a)

then the game Jacobian is strongly monotone and satisfies the PΥ condition (as detailed in
Sidebar 2). Consequently, there exists a unique Nash equilibrium.
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SIDEBAR 2: VARIATIONAL INEQUALITIES

A vector x̄ ∈ Rd solves the variational inequality VI(X , F ) with set X ⊆ Rd and operator
F : X → Rd if and only if

F (x̄)>(x− x̄) ≥ 0, for all x ∈ X .

There is a vast literature on properties of variational inequalities and their applications
to game theory, we refer the interested reader to Facchinei and Pang (2003) and Scutari
et al. (2010). We here comment on two results that will be useful for network game
analysis. Suppose that F is continuously differentiable and X is nonempty, closed and
convex. Then VI(X , F ) admits a unique solution under any of the following:

1. The operator F is strongly monotone, that is, there exists α > 0 such that

(F (x)− F (y))>(x− y) ≥ α‖x− y‖22 for all x, y ∈ X . (11)

2. The set X is a cartesian product X 1× . . .×XN and F is a uniform block P-function
with respect to the same partition, that is, there exists η > 0 such that

max
i

[F i(x)− F i(y)]>[xi − yi] ≥ η‖x− y‖22 for all x, y ∈ X . (12)

As discussed in (Facchinei and Pang, 2003, Proposition 2.3.2(c)), an equivalent condition
for (11) is

∇xF (x) +∇xF (x)>

2
� αI for all x ∈ X .

Following (Scutari et al., 2014, Proposition 5(e)), a sufficient condition for (12) can be
obtained by constructing an auxiliary matrix Υ as follows

Υ :=


κ1,1 −κ1,2 . . . −κ1,N

−κ2,1 κ2,2 . . . −κ2,N
...

...
. . .

...
−κN,1 −κN,2 . . . κN,N

 where

{
κi,j = supx∈X ‖∇xixjF (x)‖2 if i 6= j,

κi,i = infx∈X λmin(∇2
xiF (x)) otherwise

We say that F satisfies the PΥ condition if Υ is a P-matrix (see Fiedler and Ptak (1962)).
This is a sufficient (but not necessary) condition for (12) to hold.
The way the two uniqueness results above are proven is by exploiting an equivalent
reformulation of the variational inequality into a fixed point problem: x̄ solves VI(X , F )
if and only if x̄ = ΠX (x̄ − τ∇xF (x̄)), for some τ > 0, where ΠX denotes the projection
into the set X . The way uniqueness is proven is by showing that ΠX (x − τ∇xF (x))
is a contraction when F is strongly monotone and a block-contraction when F satisfies
the PΥ condition. The conclusion then follows from standard fixed point arguments, see
Bertsekas and Tsitsiklis (1997). We finally note that there is an interesting connection
between monotonicity and incremental passivity of the static map y = F (u), as discussed
e.g. in Gadjov and Pavel (2018) in the context of gradient dynamics.
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It is interesting to note the relation of this theorem to results on linear quadratic games. If
the network is undirected, by Perron-Frobenious theorem, ‖P‖2 = λmax(P ). Recalling that for
homogeneous linear quadratic games κ1 = 1, κ2 = |a| it is easy to see that Theorem 1.A is a
generalization of the result in Ballester et al. (2006). Moreover, in the previous subsection we
showed that for linear quadratic games of strategic substitutes, uniqueness conditions may be
refined in terms of λmin(P ) instead of λmax(P ). It is proven in Parise and Ozdaglar (2019b)
that a similar argument can be extended also to games with nonlinear best responses and scalar
strategies or games with linear best responses but vector strategies. Whether this result can be
extended to games with both nonlinear best responses and vector strategies is an open problem.

Theorem 1.B Suppose that Assumption 1 holds, P = P>,

κ1 − κ2|λmin(P )| > 0, (Assumption 2b)

and either: i) n = 1 and Ki(s) > 0 for all s or ii) n ≥ 1, Ki(s) = K̃i for all i, s with
K̃ + K̃> � 0, then there exists a unique Nash equilibrium.

Finally, in Parise and Ozdaglar (2019b) a third condition in terms of ‖P‖∞ is discussed.
Recall that ‖P‖∞ is the maximum row sum of P , hence this condition has an interpretation
in terms of the maximum aggregate influence that the neighbors have on each agent. One can
show uniqueness of the Nash equilibrium, in this case by using the PΥ condition discussed in
Sidebar 2.

Theorem 1.C Suppose Assumption 1 holds and

κ1 − κ2‖P‖∞ > 0, (Assumption 2c)

then the game Jacobian satisfies the PΥ condition and there exists a unique Nash equilibrium.

It is important to note that the while the condition in terms of λmin(P ) is always less
restrictive than the condition in terms of ‖P‖2, conditions in terms of ‖P‖2 and ‖P‖∞ provide
results for different sets of directed networks (instead if the network is undirected, then ‖P‖2 ≤
‖P‖∞).

To illustrate the results above we consider again the multi-activity game in Example 4. For
such a game, Assumptions 2a/2b/2c can be reformulated as mini(1− |βi|)− (|δ|+ |µ|)η(P ) > 0
for η(P ) = ‖P‖2, |λmin(P )|, ‖P‖∞ respectively. One can then see that Theorem 1.A and 1.B
admit as special cases results in Chen et al. (2018), Bramoullé et al. (2014) and Ballester et al.
(2006), as detailed in the following table. Theorem 1.C leads to novel conditions in terms of
‖P‖∞.

Complements Substitutes
(δ > 0) (δ < 0)

Single activity ‖P‖2 < 1
δ

|λmin(P )| < 1
|δ|

(β = 0) Ballester et al. (2006) Bramoullé et al. (2014)

Multiple activities ‖P‖2 < 1−|β|
δ

|λmin(P )| < 1−|β|
|δ|

(β 6= 0) Chen et al. (2018) Parise and Ozdaglar (2019b)

Table 1: Sufficient conditions for uniqueness for different linear quadratic games, seen as special
cases of Example 4 for µ = 0, βi = β, P = P> and Si = R2

≥0.
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2.1.2 Dynamics

Establishing a connection between the network and properties of the game Jacobian is useful
not only for deducing existence and uniqueness of the Nash equilibrium, but also for studying
convergence of learning dynamics. In the following we focus on the Best Response (BR) dy-
namics where agents update their strategies iteratively by taking a best response (as defined in
(5)) to the current actions of their neighbors.5 We organize our exposition based on whether
agents update their strategies continuously or at discrete instants of time.

Continuous BR dynamics:

For continuous time we consider the scheme introduced in Bramoullé et al. (2014) and reported
in Algorithm 1.

Algorithm 1 Continuous best response dynamics

Set: si(0) ∈ Si, zi(0) =
∑N

j=1 Pijs
j(0)

Dynamics:

ṡi(t) = Bi(zi(t))− si(t) =

[
arg max

si∈Si
U i(si, zi(t))

]
− si(t) ∀i ∈ {1, . . . , N}.

It is well known that if the game has a strongly convex potential then the continuous BR
dynamics globally converge to the unique Nash equilibrium, see e.g., Monderer and Shapley
(1996) and (Sandholm, 2010, Theorem 7.1.3). The intuition behind this result is simple: since
each strategy update leads to an increase of the potential function, the BR dynamics must
converge to the unique maximum of such potential which is the unique Nash equilibrium. We
have already established that strongly convex potential games are a subclass of strongly mono-
tone games. This motivates the question of whether the preceding convergence result can be
generalized to strongly monotone games that are not potential.

Note that, in a potential game, the potential function Θ(x) acts as a Lyapunov function
(Sandholm, 2010, Section 7.1.1). In fact let B(s) be the vector of best responses to the strategy
vector s (i.e., [B(s)]i = Bi(zi(s))) and define d(s) := B(s)− s, then

Θ̇(s(t)) = ∇sΘ(s(t))>ṡ(t) = −F (s(t))>d(s(t))

and it follows from the definition of best response, see e.g., (Parise and Ozdaglar, 2019b, Lemma
E.1), that for any s ∈ S

F (s)>d(s) ≤ −κ1‖d(s)‖22. (15)

In other words, d(s) is an ascent direction for the potential function Θ(s).
If the game is not potential then F (s) cannot be seen as a gradient of any function. Hence

while (15) still holds, the interpretation of d(s) as an ascent direction is lost. In Parise and
Ozdaglar (2019b) it is shown, however, that if F (s) is strongly monotone and the payoff function
has the following form (covering many cases of economic and engineering interest)

U i(si, zi) := −1

2
(si)>Qisi − f i(zi)>si (16)

for Qi = (Qi)> � 0 and f i : Rn → Rn, then a similar argument can be made by using the
Lyapunov function Θ̃(s) := −F (s)>(s−B(s))+ 1

2(s−B(s))>Q(s−B(s)) where Q := blkd[Qi]Ni=1,
leading to the following result, see Parise and Ozdaglar (2019b).

5As noted in Ghaderi and Srikant (2014), the best response dynamics of network games with payoff U i(si, zi) =
− 1

2

[
(1− η)(si − zi)2 + η(si − si0)2

]
coincide with the Friedkin-Johnsen model of opinion dynamics, which for

η = 0 reduces to the consensus dynamics introduced in DeGroot (1974). We refer to Bullo (2019) for a detailed
analysis of opinion dynamics models.
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Theorem 2 Consider a network game satisfying Assumption 1 and with agent payoff functions
as in (16). Suppose that F is strongly monotone. Then for any s0 ∈ S, the sequence {s(t)}t≥0

generated by Algorithm 1 converges to the unique Nash equilibrium.

Discrete BR dynamics:

For the case of discrete dynamics, we index by k ∈ N the time instants at which at least one agent
is updating his strategy and we denote by Ti ⊆ N the subset of time instants at which agent
i updates his strategy. In Algorithm 2 we consider two variants of the discrete BR dynamics
depending on whether the agents update their strategies simultaneously or sequentially.

Algorithm 2 Discrete best response dynamics

Set: k = 0, si0 ∈ Si, zi0 =
∑N

j=1 Pijs
j
0. Set either Ti = N for all i (simultaneous BR dynamics)

or Ti = N(N− 1) + i for all i (sequential BR dynamics).
Iterate:

sik+1 =

{
Bi(zik) = arg maxsi∈Si U

i(si, zik), if k ∈ Ti
sik, otherwise

∀i ∈ N[1, N ].

An interesting fact to note is that strong monotonicity is not sufficient to guarantee conver-
gence of the discrete BR dynamics. To see this, note that, when the cost function is as in (16),
the discrete BR dynamics coincide with the projection algorithm

sk+1 = ΠQ
S [sk − τQ−1F (sk)]

for the step choice τ = 1. If F is strongly monotone the projection algorithm converges when
τ is small but not necessarily for τ = 1, see e.g., Facchinei and Pang (2003).

In (Scutari et al., 2014, Theorem 10) it is shown that convergence of the discrete simultaneous
BR dynamics can instead be guaranteed by using the PΥ property introduced in Sidebar 2. The
reason why this result holds is fundamentally different from the argument used in potential
games. In fact it is not based on the existence of a Lyapunov function, but convergence is
instead guaranteed by showing that the best response mapping is a block-contraction. The
latter property indeed guarantees that the conditions of the asynchronous convergence theorem
in Bertsekas and Tsitsiklis (1997) are satisfied.

Theorem 3 Consider a network game satisfying Assumption 1 and suppose that F (x) satisfies
the PΥ condition. Then for any s0, the sequence {s(t)}t≥0 generated by Algorithm 1 and the
sequence {sk}∞k=0 generated by Algorithm 2 converge to the unique Nash equilibrium.

We note that convergence of the discrete BR dynamics follows immediately from (Scutari
et al., 2014, Theorem 10) where convergence is proven for general games (i.e., not necessarily
network games) and for both simultaneous and sequential updates (in fact, also random updates
with delays can be considered, see (Scutari et al., 2014, Algorithm 1)). The result on convergence
of the continuous BR dynamics under the PΥ condition is proven in Parise and Ozdaglar (2019b).

2.1.3 Interventions

From the perspective of a central planner (CP) it is often of interest to exploit the characteri-
zation of equilibria developed above to understand how to best intervene to optimize a system
level objective. As an example, we here focus on the model of targeted interventions in linear
quadratic games studied by Galeotti et al. (2017).

The goal of the CP in this case is to maximize the social welfare (defined as the sum of
the agents payoffs at equilibrium) through interventions that directly modify the standalone
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marginal return for an arbitrary agent i from bi to bi + b̂i, leading to the modified payoff
function

U(si, zi; b̂i) = −1

2
(si)2 + si[azi + bi + b̂i], (17)

where we assume for simplicity that ai = a for all i ∈ {1, . . . , N}.
The planner has a budget constraint which penalizes interventions in a convex form (to

capture the fact that interventions are increasingly costly), leading to
∑N

i=1(b̂i)2 ≤ C. By using

the characterization of equilibrium in linear quadratic games,6 i.e., s̄i = az̄i + bi + b̂i with
z̄i =

∑
j Pij s̄

j , the objective function of the central planner can be rewritten as

T (b̂) :=
N∑
i=1

U(s̄i, z̄i; b̂i)=
N∑
i=1

(
−1

2
(s̄i)2 + s̄i[az̄i + bi + b̂i]

)
=

1

2

N∑
i=1

(s̄i)2 =
1

2
‖s̄‖2

where b̂ := [b̂i]Ni=1. This leads to the following optimization problem

Topt := max
b̂∈RN

1

2
‖s̄‖2,

s.t. s̄ = (I − aP )−1(b+ b̂),

‖b̂‖2 ≤ C.

(18)

Solving (18) is in general not computationally tractable for large populations.7 It is however
shown in Galeotti et al. (2017) that, under some regularity assumptions, one can approximate
its solution by exploiting a decomposition of interventions into the principal components of the
network. Let us assume that P is symmetric and its eigenvalues are distinct so that P = ΨΛΨ>

where Λ is a diagonal matrix of eigenvalues of P (ordered from greatest to smallest: λ1 > λ2 >
· · · > λN ) and Ψ is an orthogonal matrix whose lth column, ψl, is the eigenvector of P associated
to the eigenvalue λl and normalized so that ‖ψl‖ = 1. Let b̂∗ be an optimizer of (18) and define

the similarity ratio r∗l := ρ(b̂∗,ψl)
ρ(b,ψl)

, where ρ(z, y) = z>y
‖z‖‖y‖ is the cosine similarity of two nonzero

vectors y, z. The following theorem is proven in Galeotti et al. (2017).

Theorem 4 Suppose that P = P>, all eigenvalues of P are distinct and |a| < 1
λmax(P ) . Then

the similarity ratio r∗l is proportional to 0.5αl
µ−0.5αl

with µ solution to
∑

l

(
0.5αl

µ−0.5αl

)2
bl

2 = C, where

αl = 1
(1−aλl)2

and bl is the projection of b onto ψl. Moreover, the following hold:

1. As C → 0: for any l, l′,
r∗l
r∗
l′
→ αl

αl′
;

2. As C →∞: (a) If a > 0 then ρ(b̂∗, ψ1)→ 1; (b) If a < 0 then ρ(b̂∗, ψN )→ 1.

Hence if C is large, an almost optimal intervention can be obtained by allocating the budget
according to the principal component ψ1 (i.e., the dominant eigenvector of P ) for games of
strategic complements (a > 0) and ψN for substitutes (a < 0). The intuition is simple, recall
that in linear quadratic games the equilibrium after the intervention is (I − aP )−1(b + b̂) and
note that (I−aP )−1 has eigenvectors ψl with corresponding eigenvalue 1

1−aλl . For large budget
the status-quo marginal return b is irrelevant and one should intuitively maximize the norm of
(I − aP )−1b̂, recalling that the dominant eigenvector is the vector that is most amplified by the
network, it is then clear that one should allocate the budget proportionally to the dominant
eigenvector of (I − aP )−1, which is ψ1 for game of strategic complements and ψN for game of
strategic substitutes. More details and extensions are given in Galeotti et al. (2017).

6For simplicity we assume here that Si = R instead of R≥0, see Galeotti et al. (2017) for more details.
7Problem (18) can be reformulated as an SDP with two variables and an inequality constraint involving a

matrix of dimension N + 1, see Galeotti et al. (2017) and (Boyd and Vandenberghe, 2004, Appendix B.1).
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While we here focused on one specific type of intervention, we want to highlight that many
different types of interventions have been considered in the network game literature. To mention
just a few, Ballester et al. (2006), showed that to reduce overall activity levels the central
planner should remove the agent with highest key player centrality, while Candogan et al.
(2012), suggested an optimal pricing scheme for a monopolist selling a good subject to network
externalities based on a variation of Bonacich centrality. These are just some examples, we
remark that the problem of relating optimal interventions to network centrality measures is a
very active and interesting area of research.

2.2 Discrete strategies

In this section we consider games in which each agent needs to select a strategy among a finite set
of actions. Our focus will be on pure strategy Nash equilibria, as described in Definition 1. The
two classic approaches used to study properties of pure strategy Nash equilibria are to assume
that the game posseses either a supermodular or potential structure, as defined in Sidebar 1.
Instead, we here focus on a generalization of Example 2 to heterogenous settings and we review
results specific to this class of games.

Example 5 (Coordination games) Consider a generalization of Example 2 where agents
need to select a strategy in Si = {0, 1} and their best response is given by equation (3) with
heterogeneous thresholds. In particular agent i selects strategy 1 if and only if at least θi fraction
of his neighbors do so.

Coordination games are pervasive and model a wide range of economic and social behaviors,
including the choice of conforming to a social norm, buying a new product or adopting a certain
innovation or technology. Moreover, as we illustrate next, the best response dynamics of such
games coincide with a well studied model of contagion, further motivating our interest in this
class of games.

2.2.1 Equilibria

To study equilibria of the coordination game in Example 5, it is useful to introduce the notion
of a cohesive set.

Definition 3 (Cohesive set) A set S ⊆ {1, . . . , N} is θ-cohesive if |N
i∩S|
di
≥ θi, ∀i ∈ S.

In simple terms, a set is cohesive if each agent has at least θi fraction of his neighbors within
the set. For example, if θi = θ for all i ∈ {1, . . . , N}, the blue and magenta sets in the third
plot of Figure 2 are cohesive sets for any θ ≤ 2

3 .
Let S∗ be the set of agents that select strategy 1 at equilibrium. If the thresholds are

homogeneous (i.e., θi = θ for all i ∈ {1, . . . , N}) then clearly it must be that each agent in S∗

has at least a fraction θ of neighbors selecting strategy 1, while each agent outside S∗ has less
than θ fraction of neighbors selecting strategy 1, leading to the following result from Morris
(2000).

Proposition 1 Consider a coordination game as in Example (2), with homogeneous threshold
θ ∈ [0, 1]. There exists an equilibrium where strategy 1 is played by agents in S∗ and 0 by agents
in {1, . . . , N}\S∗ if and only if S∗ is θ-cohesive and (S∗)c is (1− θ)-cohesive.

Note that any coordination game has multiple equilibria (also referred to as conventions).
For example all agents playing strategy 1 or all agents playing strategy 0 are both equilibria
(see first two plots in Figure 2). It is then interesting to understand if there are sets of agents
that play the same strategy in any such equilibria.
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Figure 2: The first three figures show some of the equilibria of a homogeneous coordination
games with threshold θ = 0.4. The last figure shows the corresponding partition in atoms.

Definition 4 (Atoms) Let C(θ, P ) denote the σ-algebra generated by all the subsets of {1, . . . , N}
that represent equilibria of a coordination game with homogeneous threshold θ as introduced in
Example 2 (i.e., in the equilibrium all agents of the subset play strategy one and all other agents
play zero). The atoms of C(θ, P ) (i.e., the nonempty sets on C(θ, P ) that do not contain any
other nonempty set of C(θ, P )) exist and form a partition of the set of nodes. Agents within the
same atom play the same action in any equilibrium.

Such an atom partition can be used to represent the concept of “behavioral community” as
a set of agents who behave identically in any equilibrium, as detailed in Jackson and Storms
(2019) (see Figure 2, right).

2.2.2 Dynamics

The best response dynamics of the coordination game in Example 5 are particularly interesting,
as they lead to a well-known model of contagion dynamics over networks called the linear
threshold model, Granovetter (1978). In the following we consider two variants of such best
response dynamics; alternative models of contagion are discussed in Sidebar 3.

Multiple switches:

Consider a setting where initially all agents have selected strategy 0 except for an initial set S0

of agents playing strategy 1. The set S0 is called the seed set and represents early adopters (e.g.,
first adopters of a new product or innovation, initial bank failures, etc.). At every iterative step
k each agent takes a best response action according to the coordination game in Example 5 and
therefore selects strategy 1 if at least a fraction θi of his neighbors have selected strategy 1 at
step k − 1 and 0 otherwise, see Algorithm 3.

Algorithm 3 Best response dynamics for the coordination game: Multiple switches

Set: k = 0, Initialize si0 = 1 for all i ∈ S0 and si0 = 0, otherwise.
Iterate:

sik+1 =

{
1 if zi

di
≥ θi

0 otherwise
∀i ∈ {1, . . . , N}.

These dynamics are studied for example in Adam et al. (2012), which shows that agent
behavior may cycle among different actions in the limit. Limit cycles consist of at most two
action profiles for any network and any threshold distribution. Hence either each agent sticks
with one strategy in the limit or he switches action at every time step. Moreover, the limiting
cycle is reached in at most 2N steps. Noisy versions of Algorithm 3 have also been considered
in the literature, see e.g., Young (2006); Montanari and Saberi (2010); Liggett (2012); Durrett
(1988).
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One switch:

In Algorithm 3 an agent is allowed to switch back from 1 to 0. If we additionally impose that
θi = 0 for all agents in the seed set S0, no agent (including the initial adopters) will ever
switch back from 1 to 0, that is, the sequence |Sk| is non-decreasing. In such one-switch-only
dynamics, sometimes referred to as the progressive linear threshold model, at every iterative
step k an agent selects action 1 if either at least a fraction θi of his neighbors has selected
strategy 1 at step k − 1 or if he was playing action 1 at step k − 1, see Algorithm 4. Let Sk be
the set of adopters at iteration k.

Algorithm 4 Best response dynamics for the coordination game: One switch

Set: k = 0, Initialize si0 = 1 for all i ∈ S0 and si0 = 0, otherwise.
Iterate:

sik+1 =

{
1 if zi

di
> θi or sik = 1

0 otherwise
∀i ∈ {1, . . . , N}.

Contrary to Algorithm 3, Algorithm 4 is guaranteed to converge to a final set S∗ of adopters
in at most N iterations since at every iteration either the set of adopters monotonically increases
by at least one agent or it stops growing from that point onwards. Since there are N agents,
after at most N steps the final set S∗ is reached. A characterization of the limit set S∗ in terms
of network properties is provided in Acemoglu et al. (2011). To present this result we start by
introducing the definition of a fixed point of Algorithm 4.

Definition 5 S̄ is a fixed point of Algorithm 4 if S0 = S̄ implies Sk = S̄ for all k ≥ 0.

Following the same argument as in Morris (2000), it is immediate to see that an adopter set
S̄ is a fixed point if and only if (S̄)c is a (1 − θ)-cohesive set. In this case in fact members of
(S̄)c cannot adopt the innovation unless there exists at least one adopter inside the set itself.
Exploiting these arguments Acemoglu et al. (2011), derive a characterization of the final set of
adopters for any given graph, seed set and threshold values.

Lemma 1 Let {S̄h}Hh=1, H ≥ 1, be the set of fixed points of Algorithm 4 for which S0 ⊆ S̄h.
Then, S∗ = ∩Hh=1S̄h is the final set of adopters.

This result can be used to upper bound the expected number of final adopters when the
initial seed set is a random subset of {1, . . . , N} of fixed cardinality k.

Lemma 2 Let {S̄1, . . . , S̄r} be a partition of {1, . . . , N} made of (1 − θ)-cohesive sets ordered
with descending cardinalities. The expected number of final adopters over all initial seed set of
cardinality k ≤ r is upper bounded by E[|S∗|] ≤

∑k
h=1 |S̄h|.

This result is used by Acemoglu et al. (2011), to argue that highly clustered networks might
have smaller expected number of final adopters, since one can construct cohesive partitions with
sets of smaller size. This is against the classic intuition that innovation spreads faster in highly
connected networks. To understand why this is the case, note that highly cohesive clusters will
adopt quickly the innovation if one of their members is an adopter, but at the same time are
very resistant to influence from outside members.

In the discussion so far we assumed that thresholds are fixed a priori and deterministic.
Following Kempe et al. (2003), Lim et al. (2016) consider an alternative model where instead
thresholds are sampled uniformly at random from [0, 1]. Note that the expected number of final
adopters given the initial seed set S0 is E[|S∗|] =

∑N
i=1 Pi(S0) where Pi(S0) is the probability

that agent i adopts if the initial seed set is S0; Lim et al. (2016) connect this probability
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SIDEBAR 3: CONTAGION MODELS

The linear threshold model described above is one type of contagion model, which can
be derived from the best response dynamics of a coordination game. We here highlight
other contagion models considered in the literature. A commonly studied model is that of
independent cascades, see e.g., Goldenberg et al. (2001); Liggett (2012); Durrett (1988);
Goldenberg et al. (2010). As in the linear threshold model, suppose that there is an
initial set of adopters S0 and that contagion spreads in discrete time steps. However,
whenever an agent i becomes active (i.e., selects strategy 1), he is given a single chance
to activate each currently inactive neighbor j; each of these neighbors is activated with
communication probability pij independently of the others. Contrary to the linear thresh-
old model where an agent needs enough active neighbors to switch, in the independent
cascade model one active neighbor is sufficient to spread contagion. For this reason the
linear threshold model is referred to as a “complex contagion” model, while indepen-
dent cascade is referred to as a model of “simple contagion”, see e.g., Centola and Macy
(2007); Centola (2018); Young (2009). In Acemoglu et al. (2011) an extension of the
linear threshold model is discussed where agents make stochastic decisions of adoption
when activated instead of switching deterministically. Game-theoretic models of diffu-
sion, where agents make strategic decisions on whether to spread information or rumors,
have also been intensively investigated, see e.g., Galeotti and Goyal (2009); Bloch et al.
(2018); Sadler (2020) to mention just a few, as well as competitive contagion models, see
e.g., Goyal et al. (2019); Fazeli and Jadbabaie (2012); Draief et al. (2014); Tzoumas et al.
(2012); Fazeli et al. (2016); Mei and Bullo (2017). Finally, other well studied models of
contagion are epidemic models, as surveyed for example in Nowzari et al. (2016).

to paths in the network. Specifically, given a path p with initial node i0 the degree sequence
product is defined as χp :=

∑
i∈p

di

di0
and Pi(S0) =

∑
j∈S0

∑
p∈P∗ji

1
χp

where P∗ji is the set of paths

beginning at j ∈ S0 and ending at i ∈ {1, . . . , N} \ S0. This result can be used to study the
cascade centrality Ci of a node i, that is, the expected number of final adopters when S0 = {i}
as well as contagion centrality Ki, that is, the probability that the seed set S0 = {i} induces a
cascade reaching every node. For example, Lim et al. (2016) show that if the network P is a
tree, Ci = di + 1 and Ki = 1

Πj 6=idj
, if P is a cycle of order N , Ci = 3− 1

2N−2 and Ki = N
2N−1 , and

for complete graphs limN→∞
Ci√
N

=
√

π
2 and limN→∞NKi = e.

2.2.3 Interventions

In the previous section we reviewed properties of the final set of adopters for a given seed set.
An important question from the point of view of a central planner is how to select the seed set
that maximizes the number of final adopters given a budget on the seed set cardinality. This
corresponds to the following optimization problem

max
S0

|S∗|

s.t. |S0| = k,
(19)

where S∗ is the set of final adopters when the initial seed set is S0.
This optimization problem is not computationally tractable for large populations. For ex-

ample, when agent’s thresholds are selected from [0, 1] uniformly at random (and one aims at
maximizing the expected size of the final set given the randomness on thresholds) this problem
in NP-hard, as shown by Kempe et al. (2003). In such a setting, it is however possible to obtain

16

Electronic copy available at: https://ssrn.com/abstract=3692826



an approximate solution by exploiting the fact that the optimization problem in (19) has the
following properties.

Definition 6 A function f(S) is monotone if for all sets S1 ⊆ S2, f(S1) ≤ f(S2), that is
larger sets lead to higher function values, and is submodular if for s /∈ S2, f(S1∪{s})−f(S1) ≥
f(S2∪{s})− f(S2), that is, adding element s to a smaller set S1 is more beneficial than adding
it to the larger set S2.

Theorem 5 σ(S0) := E[|S∗|] is a non-negative, monotone, submodular function.

Theorem 5 is proven in Kempe et al. (2003). Therein, using such submodularity property, it
is additionally proven that a set Ŝ0 that approximates the solution of 19 within a factor of
(1−1/e− ε), where e is the base of the natural logarithm and ε is any desired positive number8,
can be computed with a natural hill-climbing greedy algorithm by starting with the empty set
and adding one-by-one the node that best complements the current seed set (i.e., the node that
if added increases E[|S∗|] the most).

Influence maximization problems of this type have been the subject of a large number of
works, we refer to the survey Liu-Thompkins (2012) for a review. Interestingly, for networks
with homogeneous deterministic thresholds, a seeding heuristic based on the concept of atoms, as
introduced in Section 2.2.1, is suggested in Jackson and Storms (2019). Running such heuristic
requires computing the atoms first; an heuristic to do so is provided in Jackson and Storms
(2019).

3 SAMPLED NETWORKS

In the discussion so far we assumed that both the agents and the central planner have perfect
knowledge of the underlying pattern of interactions, that is, they know exactly the network P .
When considering large networks, two problems emerge from the perspective of the central
planner. First, collecting exact network information in large networks is extremely costly and
in many cases not at all possible due to privacy and proprietary data concerns. Second, even
if the central planner has full network information, when the number of agents is very large,
planning optimal interventions may become computationally intractable. We have already
seen for example that the computational requirement for targeted interventions (discussed in
Section 2.1.3) or optimal seeding problems (discussed in Section 2.2.3) do not scale well with
the population size. In this section we illustrate how working with stochastic network formation
models instead of deterministic networks may alleviate both of these problems.

First, while the central planner may not know the exact network, in many cases he may
have a probabilistic description of how agents interact, that is, he might have information
about the stochastic network formation model that generated the network. For example, Breza
et al. Breza et al. (2018) shows that the use of aggregated relational data collected by asking
questions regarding aggregated neighbors’ characteristics (e.g., how many neighbors belong to
a given community or have a certain trait) instead of exact data about all neighbors’ identity
is sufficient to obtain reasonable estimates of many network features of economic interest. In
Parise and Ozdaglar (2019a) and Mele et al. (2019), it is argued that such aggregated data can
be used to recover network formation models such as stochastic block models.

Second, knowledge of the stochastic network formation model can help obtain a robust
analysis of equilibria and computationally efficient planning of interventions. To illustrate this,
we start by introducing the key concept of a sampled network game.

8Note that σ(S0) is an expectation over the random thresholds; for any ε there exists γ > 0 such that if one
uses (1 +γ)-approximate values of σ(·), obtained for example by simulating the random process, the result above
holds.
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Figure 3: Left: The deterministic approach. Analysis and interventions are based on exact
network data. Right: The stochastic approach. Networks are generated from a stochastic
network formation model. Analysis and interventions are conducted based on the probabilistic
model and used to approximate behavior and intervention strategies in the realized network. In
this illustration the deterministic intervention selects the agent with highest degree given the
exact network (green), the stochastic approach selects the agent with highest expected degree
based on the network formation model (dark grey). The two interventions do not necessarily
coincide since the node with highest expected degree might or might not be the node with
highest realized degree. In many cases however one can derive bounds on the performance of
such interventions that improve with the network size.

Definition 7 (Sampled network game) A sampled network game is a network game as de-
fined in the previous section where the network of interactions, denoted by PN to stress the
dependence on the population size N , is sampled from a given stochastic network formation
model.

The difference between the approach based on exact versus stochastic network information
is illustrated in Figure 3. In the next section we review some commonly used stochastic network
formation models, more details and extensions can be found in Bollobás and Béla (2001); Jackson
(2010); Pin and Rogers (2015); Newman et al. (2001); Newman (2010). We then illustrate in
Sections 3.2 and 3.3 how these models have been used to study sampled network games with
continuous and discrete action sets, respectively. We remark that this is a very active area of
research; our objective is to provide some representative examples more than an exhaustive list
of papers adopting this approach.

3.1 A review on stochastic network formation models

Erdös-Rényi model:

One of the first and simplest stochastic network formation model is the Erdös-Rényi model,
Erdős and Rényi (1959). In this model each pair of agents is connected with independent
probability pN ∈ [0, 1], possibly dependent on the population size N . A large literature has
focused on identifying threshold conditions on pN such that the realized network has desirable
properties with probability converging to 1 for N → ∞. For example the realized network
becomes connected when pN is of order greater than log(N)

N (i.e., limN→∞
log(N)/N

pN
= 0), see

Jackson (2010). Let us define a network to be sparse if limN→∞
number of edges

N2 = 0 and dense
otherwise. We then note that if pN ≡ p ∈ [0, 1] is independent on the population size, networks
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generated from a Erdös-Rényi model are dense since each agent has in expectation p(N − 1)
neighbors.

Stochastic block model:

A generalization of the Erdös-Rényi model is obtained by assuming that agents are not com-
pletely homogeneous in how they form connections, but are instead partitioned into H different
communities. Agents in community h and h′ form a link with independent probability pNhh′
that depends on the communities to which they belong to. This model is used often to encode
homophily, that is, the propensity of agents to form more links with agents that are “similar” to
them along various social characteristics (e.g., gender, race or age group) as detailed in McPher-
son et al. (2001); Currarini et al. (2009). Homophily can be modeled in stochastic block models
by assuming pNhh > pNhh′ for all h′ 6= h, see e.g Golub and Jackson (2012).

Configuration model:

In a stochastic block model each agent belonging to the same community has the same expected
degree. Another commonly used stochastic network formation model is the configuration model,
presented in Bender and Canfield (1978); Newman et al. (2001), where one instead can specify
the degree of each node. Specifically given a desired degree vector d ∈ NN (either assigned
deterministically or sampled from a degree distribution), a realized network is obtained by
assigning degree di to each node i. The degrees of the vertices are represented as half-links or
stubs. The algorithm then proceeds by choosing two stubs uniformly at random and connecting
them to form an edge, iteratively until all the stubs are connected into an edge. Conditioned
on the obtained realization being a simple graph (i.e., without self-loops or multi-links), this
procedure generates a uniformly distributed random graph with the given degree sequence,
Janson and Luczak (2009). One important property of configuration models is that, under
suitable assumptions on the degree distribution, they are locally tree-like, see Bordenave (2012).
While this feature simplifies the analysis, networks generated from such configuration models
typically lack the clustering and correlation patterns observed in social networks.

Graphon model:

We finally consider a stochastic network formation model based on the theory of graphons.
Graphons were originally introduced in Lovász and Szegedy (2006); Lovász (2012); Borgs et al.
(2008) as the limit of a sequence of dense networks when the number of nodes tends to infinity.
In this case, one can assume that the set of nodes converges to the continuum interval [0, 1].
Interactions can then be described with a integrable function W : [0, 1]2 → [0, 1], where the value
W (x, y) represents the level of interaction between infinitesimal node x and y. For simplicity,
we focus here on symmetric interactions so that W (x, y) = W (y, x).

Besides their interpretation as the limit of growing networks, graphons can also be used as a
stochastic network formation model: a network with N nodes can be generated by sampling N
labels {ti}Ni=1 uniformly at random from the [0, 1] interval and connecting them with independent
probability W (ti, tj). Note that this procedure generates dense networks. To obtain sparse
networks, Borgs et al. (2019) suggest to connect agents with independent probability ρNW (ti, tj)
where ρN → 0 as N →∞ (but with ρN of order greater than logN

N , similar to the requirement
needed in Erdös-Rényi model for connectedness). In the following when reviewing results for
graphon models we will focus on dense networks, but most of the results discussed can be
generalized to the sparser case just presented.

Finally, it is important to remark that both the Erdös-Rényi model and dense stochastic
block models are special cases of graphons, obtained for W ≡ p for some p ∈ [0, 1] and W
a piecewise constant function. Specifically for the stochastic block model, if we let πh be the
probability that an agent belongs to community h, we can define a partition of [0, 1] in intervals
Ch of measure πh and define W (x, y) = phh′ for all x ∈ Ch, y ∈ Ch′ . Other sampled networks
that can be generated from a graphon are discussed in Borgs et al. (2011).
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3.2 Continuous strategies

3.2.1 Centrality measures

In Section 2.1 we showed that the equilibrium of a linear quadratic game is proportional to
the Bonacich centrality of the agents. It is then interesting to understand whether one can ap-
proximate such a measure of centrality based only on information about the stochastic network
formation model. This question is answer affirmatively in Dasaratha (2017) for sampled net-
works generated from stochastic block models as well as a spatial model and in Avella-Medina
et al. (2018) for sampled networks generated from a graphon.

More specifically, Avella-Medina et al. (2018) define several centrality measures for graphons,
including Bonacich centrality, eigenvector centrality, Page-rank and degree centrality (for exam-
ple the degree of the infinitesimal agent x ∈ [0, 1] can be defined as d(x) :=

∫ 1
0 W (x, y)dy). Note

that such centrality measures are functions that map x ∈ [0, 1] to the corresponding centrality.
Centralities in sampled networks are instead vectors in RN . To compare these two objects, one
can define a one-to-one correspondence between vectors and functions using a uniform partition
UN = {UN1 ,UN2 , . . . ,UNN } of [0, 1]. Pairing each agent i with the interval UNi , one can then
define the step function v(x) corresponding to any vector v ∈ RN as v(x) := vi, ∀x ∈ UNi , for
all i ∈ {1, . . . , N}.

Using this correspondence it is shown in Avella-Medina et al. (2018) that, for the centrality
measures mentioned above and under suitable regularity conditions on the graphon, the L2

distance between the step function corresponding to the normalized vector of centralities in
any sampled network and the graphon centrality function can be upper bounded, with high
probability, by a quantity that converges to zero when the population size increases. This result
for example suggests that if the optimal intervention is to target the agent with highest degree
then targeting the agent i for which d(ti) is maximum is asymptotically optimal (recall that
ti ∈ [0, 1] is the label of agent i in the sampled network).

3.2.2 Graphon games

In the previous subsection we focused on Bonacich centrality, which corresponds to the equilib-
rium of a linear quadratic network game. Parise and Ozdaglar (2019a) extend these convergence
results to more general classes of network games.9 To this end, Parise and Ozdaglar (2019a)
introduce a new class of infinite population games, called graphon games, modeling strategic
interactions among a continuum of agents mapped to [0, 1]. As in the finite population case,
agents select their strategies s(x) from a set S(x). For any graphon W , define the local aggregate
experienced by agent x as the “weighted average” of the other agents actions according to the
graphon, that is,

z(x | s) :=

∫ 1

0
W (x, y)s(y)dy.

Note that for graphon games, a strategy profile s : [0, 1] → R is a function. As in network
games, the goal of each agent in a graphon game is to select the strategy s(x) ∈ S(x) that
maximizes his payoff given by

U(s(x), z(x | s), θ(x)), (20)

which depends on his strategy s(x), the local aggregate z(x | s) and on a parameter θ(x)
(modeling heterogeneity in payoffs). Note that such a payoff function has the same structural
form as in network games, see 1. The difference in the two setups is the way in which the local

9We here discuss games with scalar strategies, but the extension to the vector case is immediate.
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aggregate (zi(s) for agent i in network games10 and z(x | s) for agent x in graphon games) is
evaluated. The concept of Nash equilibrium extends easily to graphon games.

Definition 8 (Graphon equilibrium) A function s̄ ∈ L2([0, 1]) with associated local aggre-
gate z̄(x) := z(x | s̄) =

∫ 1
0 W (x, y)s̄(y)dy is a Nash equilibrium if for all x ∈ [0, 1], we have

s̄(x) ∈ S(x) and U(s̄(x), z̄(x), θ(x)) ≥ U(s̃, z̄(x), θ(x)) for all s̃ ∈ S(x).

The key result in Parise and Ozdaglar (2019a) is to relate equilibria in network games
sampled from a graphon to the equilibrium of the corresponding graphon game. To this end,
Parise and Ozdaglar (2019a) proceeds in 2 steps.

First, conditions for existence and uniqueness of the graphon equilibrium are derived by
using a reformulation as fixed point of a best response operator. Such reformulation relies on
the notion of graphon operator, see (Lovász, 2012, Section 7.5).

Definition 9 (Graphon operator) For a given graphon W , we define the associated graphon
operator W as the integral operator W : L2([0, 1]) 7→ L2([0, 1]) given by f(x) 7→ (Wf)(x) =∫ 1

0 W (x, y)f(y)dy.

Note that if W is symmetric then all the eigenvalues of the graphon operator W are real.
We next show that if the maximum eigenvalue λmax(W) is not too large then the best response
operator is a contraction, guaranteeing uniqueness of the graphon equilibrium.

Theorem 6 Suppose that the function U(s, z, θ) in (20) is continuously differentiable and
strongly concave in s with uniform constant αU for each value of z, θ and that ∇sU(s, z, θ)
is uniformly Lipschitz in [z] with constant `U . Moreover, suppose that for each x ∈ [0, 1] the set
S(x) is convex and closed and there exists a compact set S such that S(x) ⊆ S for all x ∈ [0, 1].
Finally, suppose that

`U
αU
· λmax(W) < 1. (21)

Then the graphon equilibrium exists and is unique.

The condition in 21 is similar to Assumption 2a used to obtain uniqueness in finite network
games. The only difference is that while in the network game literature the effect of the network
is captured by the maximum eigenvalue of the finite network PN , in the case of graphon games
the corresponding role is played by the dominant eigenvalue of the graphon operator, that is,
λmax(W).

Second, it is shown in Parise and Ozdaglar (2019a) that under suitable regularity conditions
on the graphons, one can bound with high probability the L2 distance between the step function
corresponding to the Nash equilibrium in any network game sampled from the graphon and the
equilibrium of the corresponding graphon game with a quantity that converges to zero as the
population size increases. An illustration is given in Figure 4.

One can exploit this converge result to study properties of equilibria in sampled network
games by looking at properties of the corresponding graphon equilibrium. This analysis becomes
particularly interesting when turning to interventions. Indeed, in parallel with Galeotti et al.
(2017), one can define a graphon game with payoff function

U(s(x), z(x); b̂(x)) = −1

2
(s(x))2 + s(x)[az(x) + b(x) + b̂(x)], (22)

10In this section we define zi(s) := 1
N

∑N
j=1 P

N
ij s

j , that is, we add a 1
N

normalization to the definition given in
Section 2.1. Since Parise and Ozdaglar (2019a) study the behavior when N changes it is useful to consider this
factor explicitly. A different normalization in terms of agents degree instead of population size is also considered
in Parise and Ozdaglar (2019a).
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Figure 4: Three networks sampled from a stochastic block model with two communities of size
πred = 0.2, πblue = 0.8 with intra-community connection probability 0.8 and inter-community
probability 0.1 for N = 20, 60, 300. Note that the corresponding equilibria in a sampled linear
quadratic network game (with a = 0.8, b = 1) converge to the graphon equilibrium where all
red agents select strategy 1.3 and all blue agents 2.1.

where b(x) is the status-quo marginal return of agent x ∈ [0, 1], b̂(x) is a targeted intervention,
subject to the convex budget constraint ‖b̂‖2L2 ≤ C, and we assume a > 0 for simplicity. Let s̄b̂
be the graphon equilibrium corresponding to intervention b̂(x). A targeted intervention problem
similar to Problem (18) can be defined in the graphon domain as follows:

b̂∗ ∈ arg max
b̂∈L2([0,1])

1

2
‖s̄b̂‖

2
L2 ,

s.t. ‖b̂‖2L2 ≤ C.
(23)

It is shown in Parise and Ozdaglar (2019a) that when the graphon has suitable regularity
properties (e.g., it is of finite rank R) then problem (23) can be solved by solving an optimization
problem with R+ 1 variables (recall that Problem (18) instead depends on N + 1 variables and
requires exact network information). The optimal solution of (23) can be used to define the
sampled graphon intervention

[b̂Ngraphon]i =
b̂∗(ti)

ηN
,

where ηN is a normalization to guarantee that the budget constraint in the sampled network
is met with equality (i.e., 1

N ‖b̂
N
graphon‖2 = C, note that we here assume the budget scales with

the population size). It is proven in Parise and Ozdaglar (2019a) that such graphon based
intervention leads to asymptotically optimal performance for the sampled network.

3.3 Discrete strategies

3.3.1 Independent cascade in Erdos-Renyi models

We discussed in Section 2.2.3 that optimal seeding in large networks may become computation-
ally intractable. Akbarpour et al. (2018) investigate the question of how much gain one would
obtain from computing the optimal seeding strategy versus a much simpler strategy where
agents are seeded randomly. Therein authors found that for simple contagion models such as
the independent cascade model described in Sidebar 3, the advantage is actually marginal. For
example they show that if the network is sampled from a Erdős-Rényi model, it is not too
sparse and the communication probability among agents is not too low, then randomly seeding
a few nodes more leads to a larger cascade than optimal seeding based on detailed network
information. This result holds also for a generalized version of Erdős-Rényi graphs with high
clustering, against the classic intuition that seeding very central agents (e.g., agents with high
degree) should lead to larger gains. The reason for this is that random seeding is likely to
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seed some of the connections of those highly central agents, precisely because such individuals
have many connections. In a simple contagion model, random seeding is therefore sufficient for
central agents to be infected at a later iteration. The assumption of simple contagion is crucial
for the discussion above, complex contagion models (where a fraction of the neighbors needs to
be active for contagion to propagate) require careful placement of the initial seeds even for large
populations, see e.g., Jackson and Storms (2019); Moharrami et al. (2016); Erol et al. (2020).

3.3.2 Behavioral communities in stochastic block models

Jackson and Storms (2019) study homogeneous coordination games and the corresponding linear
threshold dynamics in networks sampled from a stochastic block model. In this case, coming
back to the concept of “behavioral communities”, it is interesting to understand what is the
connection between atoms in the realized network and communities (blocks) as defined by the
stochastic block model.

Jackson and Storms (2019) derive sufficient conditions on the threshold θ for behaviors to
result in atoms that remain within blocks or instead produce atoms that spread across multiple
blocks. For example, when the threshold θ is low, atoms may cover multiple blocks (i.e., different
blocks may behave identically in all equilibria). Under different conditions on θ (which dependen
on link probabilities) one can instead ensure that there will always be equilibria where all agents
in a block adopt the innovation and all agents outside of that block do not, which immediately
implies that atoms will be weakly finer than blocks.

3.3.3 Linear threshold model contagion in configuration models

Several papers looked at linear threshold dynamics in configuration models. Among the first
results of this type are Watts (2002); Amini (2010); Lelarge (2012); Baxter et al. (2010), which
derived conditions for the contagion to spread to a positive fraction of the network (a “global
cascade”) when started from a single node or a fraction of nodes that is sublinear in N . Besides
characterizing the asymptotic behavior; one may be interested also in understanding the path
of contagion. To this point, Rossi et al. (2017) shows that the entire transient of the conta-
gion dynamics on networks sampled from a configuration model with bounded degree can be
approximated with a nonlinear, one-dimensional, recursive equation that depends only on the
distribution of degrees and thresholds. Specifically, define the absolute threshold of a node as
ri := θidi, that is, the minimum number of active neighbors needed for an agent to adopt. Let
pk,r be the fraction of nodes with out-degree k and absolute threshold r and qk,r be the fraction
of edges pointing to agents of out-degree k and absolute threshold r. Rossi et al. (2017) shows
that for all but a vanishingly small (as the network size N grows large) fraction of networks, the
fraction of state-1 adopters in Algorithm 3 can be approximated, to an arbitrary small tolerance
level, by the solution y(t) of the recursion

x(t+ 1) = φ(x(t)), y(t+ 1) = ψ(x(t)) (24)

where φ(x) :=
∑

k≥0

∑
r≥0 qk,rϕk,r(x) and ψ(x) :=

∑
k≥0

∑
r≥0 pk,rϕk,r(x), with ϕk,r(x) :=∑k

u=r

(
k
u

)
xu(1 − x)k−u. Intuitively, y(t) represents the expected fraction of active nodes while

x(t) represents the expected fraction of edges pointing to an active node. To understand equa-
tion (24), suppose that the network is rewired according to the procedure detailed in the con-
figuration model at every iteration. Then at time t + 1 any node with degree k, connects to k
half-links at random and the probability that each of this half-links points to an active agent is
by definition x(t). If the node has absolute threshold r then he will become active at time t+ 1
with probability ϕk,r(x). The fraction of expected active nodes at t+1 is then y(t+1) = ψ(x(t)).
The recursion x(t+1) = φ(x(t)) follows similarly using qk,r instead of pk,r. This intuition is for-
malized in (24), which also discusses an analogous result for the one-switch dynamics discussed
in Algorithm 4.
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Extensions of the results above to generalizations of the configuration model have been
discussed for example in Amini et al. (2016), which considers weighted directed networks in
the context of cascading failures in financial networks, or in Moharrami et al. (2016), which
focuses on the impact of community structure on the cascade dynamics by considering the weak
interconnection of multiple graphs with bounded average degree generated from the configura-
tion model. The paper Sadler (2020) considers diffusion games over standard and multi-type
configuration models.

3.3.4 Linear threshold model contagion in graphon models

Finally, the behavior of linear threshold models over networks sampled from a graphon has been
recently characterized by Erol et al. (2020). Similar to the analysis of graphon games, the first
step is to define a contagion process for the continuum of agents in [0, 1]. Let S0 ⊆ [0, 1] be
the integrable set of initial adopters and let Sk ⊆ [0, 1] be the set of adopters at iteration k.
Contagion proceeds as detailed in Algorithm 5.

Algorithm 5 Linear threshold model with one switch

Set: k = 0, Initialize s0(x) = 1 for all x ∈ S0 ⊆ [0, 1] and s0(x) = 0, otherwise.
Iterate:

sk+1(x) =

1 if

∫
Sk
W (x,y)dy∫ 1

0 W (x,y)dy
> θ(x) or sk(x) = 1

0 otherwise
∀x ∈ [0, 1].

The main objective of Erol et al. (2020) is to show that, under suitable regularity conditions,
the set of asymptotic adopters S∗ := limk→∞ Sk in the graphon contagion process gives, with
high probability, information about the set of final adopters S?N in a large network sampled
from a graphon according to the procedure described in Section 3.1, under the assumption that
the sampled agent i has threshold θ(ti) and the initial seed set is SN0 := {i | ti ∈ S0}. We refer
to Erol et al. (2020) for the exact convergence statement. We instead here comment on how
such a result could be used to plan asymptotically optimal seeding in dense stochastic block
models (recall these are a special case of graphons) when the central planner can select µN
seeds, for some µ ∈ [0, 1].

To this end, we introduce an optimal seeding problem for the graphon process

S∗0 := arg max
S0

|S∗|

s.t. |S0| = µ.
(25)

It is shown in Erol et al. (2020) that solving (25) is equivalent to solving a problem that has
dimension given by the number of blocks, leading to a computationally tractable task even for
large networks. The solution of (25) suggests a heuristic strategy where in any sampled network
the central planner seeds |S∗0 ∩Ch|N agents at random from community h (recall that Ch ⊂ [0, 1]
is the interval associated with community h). It is shown in Erol et al. (2020), via a simulation
example with deterministic homogeneous thresholds, that for large networks such a graphon
intervention can outperform both random and greedy seeding policies.11

4 CONCLUSION

Network games model a wide range of social and economic settings where heterogeneous agent
interactions have significant impact on individual behavior. This chapter present a review of

11Note that the approximation guarantees in Kempe et al. (2003) for the greedy policy only apply when agents
have random uniform thresholds.
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classical results and recent developments that provide a key theoretical underpinning for the
study of network games. We organize our exposition around games over deterministic and
stochastic networks and covered models and methodologies to study games with both contin-
uous and discrete strategy sets. For continuous strategies, we presented a unifying framework
based on variational inequalities to study a broad set of network games with mixed strategic
interactions. For discrete strategies, we focused on network coordination games and the re-
sulting threshold-type dynamics. We reviewed key recent results for both analysis of equilibria
and design of targeted interventions. For stochastic networks we highlighted the informational
and computational gains obtained by a central planner designing intervention policies based on
knowledge of the stochastic network formation model instead of the realized network.

We conclude our exposition by listing several research directions motivated by the presented
framework as well as other important topics in network games that we have not been able to
cover in this chapter.

1. Partial information games: There are several different extensions based on what infor-
mation is available to the agents and the central planner. The first direction relaxes
the assumption that agents have full network and/or payoff information and focuses on
Bayesian Nash equilibria, see e.g., Sadler (2020); Galeotti et al. (2010); Kalai (2004); Eksin
et al. (2013). In particular, it is shown in Parise and Ozdaglar (2019a) that the graphon
equilibrium introduced in Section 3.2 can also be used to approximate the Bayesian Nash
equilibria of an incomplete information version of network games sampled from a graphon.
Another important direction relates to identification of peer effects and involves estimation
of game primitives, in particular payoff parameters, from the perspective of the planner
by using complete or partial network information, see e.g., Bramoullé et al. (2009); Chan-
drasekhar and Lewis (2016); De Paula et al. (2018); Boucher and Houndetoungan (2019);
Lewbel et al. (2019). A final interesting direction in the context of optimal interventions,
in particular seeding, with incomplete information is when the central planner can access
the network through queries, see e.g., Stein et al. (2017); Wilder et al. (2018); Eckles et al.
(2019); Chin et al. (2018); Banerjee et al. (2019).

2. Population, mean field, aggregative and graphical games: Graphon games as described in
Section 3.2 are infinite population games. Other widely used infinite population models
include population games Sandholm (2010); Quijano et al. (2017) and mean field games
Lasry and Lions (2007); Huang et al. (2007). In the context of population games, for
example, asymptotic stability of the Nash equilibrium set has been established for a widely-
used set of protocols and population game classes, such as potential and contractive games,
see Sandholm (2001), Hofbauer and Sandholm (2009). Such results have been extended
to games with dynamically modified payoffs and higher order dynamics by exploiting the
tool of passivity in Fox and Shamma (2013); Gao and Pavel (2020), we refer the interested
reader to Park et al. (2019) for a recent survey. In the context of mean-field games, we
note that graphons have been recently used to suggest extensions of mean-field games to
heterogeneous settings, see e.g., Caines and Huang (2018, 2019); Carmona et al. (2019).

The behavior of infinite but countable populations has also been studied in aggregative
games where each agent is influenced by the same aggregate of the strategies of the rest
of the population, as discussed in Kukushkin (2004); Jensen (2010); Cornes and Hartley
(2012); Jensen (2005); Acemoglu and Jensen (2013); Jensen (2018). Motivated by techno-
logical applications such as demand-response energy markets or communication networks,
several papers have studied distributed dynamics for convergence to the equilibria in ag-
gregative games, see e.g., Ma et al. (2013); Chen et al. (2014); Koshal et al. (2016); Gram-
matico et al. (2016); Paccagnan et al. (2016); Liang et al. (2017); Grammatico (2017a,b);
Paccagnan et al. (2018); De Persis and Grammatico (2019); Parise et al. (2019); Gadjov
and Pavel (2019); Belgioioso et al. (2020); Parise et al. (2020). Finally, we here focused on
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games where the strategies of the neighbors appear in aggregated form, graphical games
allow for more general network dependence, see e.g., Kearns et al. (2001); Kakade et al.
(2004).

3. Network formation and dynamic contagion games: In this chapter, we assumed that the
network is exogenously given. There is a large literature on endogenous network forma-
tion games, where link formation is a strategic decision and agents trade off benefits of
connecting to other agents with the cost of establishing a link, see e.g., Jackson (2010);
Jackson and Zenou (2014); Bala and Goyal (2000); Pagan and Dörfler (2019); Erol (2018);
Chasparis and Shamma (2012, 2013). A related class of games considers strategic de-
cisions related to information or infections traveling through a network via a contagion
process, with each agent or a central planner responding ex-ante or ex-post (i.e., before
contagion starts or dynamically in real time), see e.g., Acemoglu et al. (2016); Blume et al.
(2013); Acemoglu et al. (2017); Eksin et al. (2017); Ajorlou et al. (2018). While almost all
works in this area take the network structure as given, in reality strategic link formation
has a crucial impact on agents’ behavior. These games typically have elements of both
complements and substitutes, see e.g., Acemoglu et al. (2017), hence the tools presented
here may be relevant in these settings.
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