
MIT Open Access Articles

Partition-Merge: Distributed Inference and Modularity Optimization

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Blondel, Vincent, Jung, Kyomin, Kohli, Pushmeet, Shah, Devavrat and Won, Seungpil.
2021. "Partition-Merge: Distributed Inference and Modularity Optimization." IEEE Access, 9.

As Published: 10.1109/ACCESS.2021.3070490

Publisher: Institute of Electrical and Electronics Engineers (IEEE)

Persistent URL: https://hdl.handle.net/1721.1/143875

Version: Final published version: final published article, as it appeared in a journal, conference
proceedings, or other formally published context

Terms of use: Creative Commons Attribution 4.0 International license

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/143875
https://creativecommons.org/licenses/by/4.0/

Received February 5, 2021, accepted March 22, 2021, date of publication April 1, 2021, date of current version April 13, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3070490

Partition-Merge: Distributed Inference
and Modularity Optimization
VINCENT BLONDEL1, KYOMIN JUNG2,5, (Member, IEEE), PUSHMEET KOHLI3,
DEVAVRAT SHAH 4, (Senior Member, IEEE), AND SEUNGPIL WON 2,5
1Applied Mathematics, Université catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
2Department of Electrical and Computer Engineering, Seoul National University, Gwanak-gu 08826, South Korea
3DeepMind, London N1C 4AG, U.K.
4MIT, Cambridge, MA 1239, USA
5Automation and Systems Research Institute, Seoul National University, Seoul 08826, South Korea

Corresponding author: Kyomin Jung (kjung@snu.ac.kr)

This work was supported in part by the Army Research Office through MURI under Award 58153-MA-MUR, in part by ARO MURI under
Grant 133668-5079809, in part by NSF under Grant CMMI-1462158, in part by the Basic Science Research Program through the National
Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology under Grant 2012032786, in part by
the Brain Korea 21 (BK21) FOUR Program of the Education and Research Program for Future Information and Communication
Technology (ICT) Pioneers, Seoul National University, in 2021, and in part by the Automation and Systems Research Institute (ASRI),
Seoul National University.

ABSTRACT This paper presents a novel meta-algorithm, Partition-Merge (PM), which takes existing
centralized algorithms for graph computation andmakes them distributed and faster. In a nutshell, PMdivides
the graph into small subgraphs using our novel randomized partitioning scheme, runs the centralized
algorithm on each partition separately, and then stitches the resulting solutions to produce a global solution.
We demonstrate the efficiency of the PM algorithm on two popular problems: computation of Maximum
A Posteriori (MAP) assignment in an arbitrary pairwise Markov Random Field (MRF) and modularity
optimization for community detection. We show that the resulting distributed algorithms for these problems
become fast, which run in time linear in the number of nodes in the graph. Furthermore, PM leads to
performance comparable – or even better – to that of the centralized algorithms as long as the graph has
polynomial growth property. More precisely, if the centralized algorithm is a C−factor approximation with
constant C ≥ 1, the resulting distributed algorithm is a (C+δ)-factor approximation for any small δ > 0; and
even if the centralized algorithm is a non-constant (e.g., logarithmic) factor approximation, then the resulting
distributed algorithm becomes a constant factor approximation. For general graphs, we compute explicit
bounds on the loss of performance of the resulting distributed algorithm with respect to the centralized
algorithm. To show the efficiency of our algorithm, we conducted extensive experiments both on real-world
networks and on synthetic networks. The experiments demonstrate that the PM algorithm provides a good
trade-off between accuracy and running time.

INDEX TERMS Approximate MAP, graphical model, modularity optimization, partition.

I. INTRODUCTION
Graphical representation for data has become central to mod-
ern large-scale data processing applications. For many of
these applications, large-scale data computation boils down
to solving problems defined over massive graphs. While
the theory of centralized algorithms for graph problems is
getting reasonably well developed, their distributed (as well
as parallel) counterparts are still poorly understood [2]–[5].

The associate editor coordinating the review of this manuscript and

approving it for publication was Yu-Da Lin .

These studies remain very active areas of the current investi-
gation, along with graph partitioning [6]–[9].

A. SUMMARY OF RESULTS
In this paper, we take an important step towards this
challenge. Specifically, we present a meta-algorithm,
Partition-Merge (PM), that makes existing centralized (exact
or approximate) algorithms for graph computation distributed
and faster without loss of performance, and in some cases,
even improving performance. The PM meta-algorithm is
based on our novel partitioning of the graph into small
disjoint subgraphs. In a nutshell, PM partitions the graph

54032 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0003-0737-3259
https://orcid.org/0000-0002-3557-4157
https://orcid.org/0000-0001-5100-6072

V. Blondel et al.: PM: Distributed Inference and Modularity Optimization

into small subgraphs, runs the centralized algorithm on each
partition separately (which can be done in a distributed or
parallel manner), and finally stitches the resulting solutions to
produce a global solution. We apply the PM algorithm to two
representative classes of problems: the MAP computation in
a pairwise MRF and modularity optimization-based graph
clustering.

The paper establishes that for any graph that satisfies
the polynomial growth property, the resulting distributed
PM-based implementation of the original centralized algo-
rithm is a (C+δ)-approximation algorithm whenever the cen-
tralized algorithm is a C-approximation algorithm for some
constant C ≥ 1. In this expression, δ is a small number
that depends on a tunable parameter of the algorithm that
affects the size of the induced subgraphs in the partition;
the larger the subgraph size, the smaller the δ. More gen-
erally, if the centralized algorithm is an α(n)-approximation
(with α(n) = o(n)) for a graph of size n, the resulting
distributed algorithm becomes a constant factor approxima-
tion for graphs with geometric structure! The computational
complexity of the algorithm scales linearly in n. Thus, our
meta-algorithm can make centralized algorithms faster, dis-
tributed and improve their performance.

The algorithm applies to any graph structure, but
strong guarantees on performance, as stated above, require
geometric structure.1 However, it is indeed possible to
explicitly evaluate the loss of performance induced by the
distributed implementation compared to the centralized algo-
rithm, as stated in Section IV-B.
A cautionary remark is in order. Indeed, by no means,

this algorithm means to answer all problems in distributed
computation. Specifically, for dense graphs, this algorithm
is likely to exhibit poor performances, and definitely such
graph structure would require a very different approach. Our
meta-algorithm requires that the underlying graph problem is
decomposable orMarkovian in a sense. Not all problems have
this structure, and therefore these problems require a different
way to think about them.

To verify the validity of the PM algorithm, we have
applied it both on real-world networks and on synthetic
graphs of various sizes, comparing it with the original
centralized algorithms. For MAP inference, we used the
sequential tree-reweighted max-product message passing
(TRW-S) [10] with the energy function defined
in Section V-B. For modularity optimization, we selected
three different algorithms from the old-fashioned way
to state-of-the-art: Girvan-Newman (GN) [11], Clauset-
Newman-Moore (CNM) [12], and Louvain-Method (LM)
[13]. Overall, as long as the network is decomposable like
grid graphs, PM considerably reduces the running time while
maintaining the performance of the original centralized algo-
rithm. In the case of a comparatively dense network, such

1Roughly speaking, a graph is said to have geometric structures or poly-
nomial growth property when the number of nodes within distance r of any
given node grows no faster than a polynomial function of r .

as the Barabási-Albert model, PM produces a decent result,
although the efficiency of PM is relatively low.

In our experiments, PM particularly performs better when
applied on well-distributed regular networks and when the
centralized algorithm has high complexity.Moreover, the per-
formance with respect to MAP inference on graphs with
a high average degree is outstanding; PM achieves similar
performance to the centralized algorithm in less than half
the time. Besides, we researched what value of partition
radius offers better efficiency for our algorithm. We used a
fixed partition radius to understand the performance of PM
according to its value, and it leads to the conclusion that
PM generally operates to its best efficiency when a partition
radius is close to the average distance between a pair of nodes
in the network.

B. RELATED WORK AND OUR CONTRIBUTIONS
The results of this paper, on the one hand, are related to a
long list of works on designing distributed algorithms for
decomposable problems. On the other hand, the applications
of our method to MAP inference in pairwise MRFs and
clustering relate our work to a large number of results in these
two respective problems. We will only be able to discuss very
closely related work here.

We start with the most closely related work on the use
of graph partitioning for distributed algorithm design. Such
an approach is quite old; see, e.g., [14], [15] and [16]
for a detailed account of the approach until 2000. More
recently, such decompositions have found a wide variety of
applications, including local-property testing [17]. All such
decompositions are useful for homogeneous problems, e.g.,
finding maximum-size matching or independent set rather
than the heterogenous maximum-weight variants of it.
To overcome this limitation, Jung and Shah [18] introduced a
different (somewhat stronger) notion of decomposition, built
upon [15], for minor-excluded graphs. All of these results
effectively partition the graph into small subgraphs and then
solve the problem inside each small subgraph using exact
(dynamic programming) algorithms. While this results in
a (1 + ε)-approximation algorithm for any ε > 0 with
computation scaling essentially linearly in the graph size
(n), the computation constant depends super-exponentially
on 1/ε. Therefore, even with ε = 0.1, the algorithms become
unmanageable in practice.

As the main contribution of this paper, we first propose a
novel graph decomposition scheme for graphs with geometry
or polynomial growth structure. Then we establish that uti-
lizing this decomposition scheme along with any centralized
algorithm (instead of dynamic programming) for solving the
problem inside the partition leads to performance comparable
(or better) to that of the centralized algorithm for a graph
with polynomial growth. Unlike the dynamic programming
approach, the resulting distributed algorithm becomes very
fast in practice if the centralized algorithm inside the partition
runs fast. We verify the effectiveness of the PM algorithm
through experiments, finding that this decomposition scheme

VOLUME 9, 2021 54033

V. Blondel et al.: PM: Distributed Inference and Modularity Optimization

actually produces a similar performance (better in some
cases) to that of the centralized algorithm in a very short time.
As mentioned above, the result is established for both MAP
in pair-wiseMRF andmodularity optimization-based cluster-
ing. Similar guarantees can be obtained for minor-excluded
graphs as well using the scheme utilized in [18].

In this work, we focus our attention on two questions,
as mentioned above. However, the method suggested here can
be applied broadly to generic ‘‘optimization’’ when (i) the
constraints are represented through graph structure over vari-
able nodes, (ii) there is a notion of ‘‘default’’ assignment to
variables that satisfies all the constraints. Indeed, problems
such as the maximum weight independent set, vertex cover,
orMAP inference in generic pair-wiseMarkov Random Field
are instances of this. And these are instances of NP-complete
problems.

C. MAP INFERENCE
Computing the exact Maximum a Posteriori (MAP) solu-
tion in a general probabilistic model is an NP-hard prob-
lem. Several algorithmic approaches have been developed
to obtain approximate solutions for these problems. Most
of these methods work by making ‘‘local updates’’ to the
assignment of the variables. Starting from an initial solution,
the algorithms search the space of all possible local changes
that can be made to the current solution (also called move
space) and choose the best amongst them.

One such algorithm (which has been rediscovered mul-
tiple times) is called Iterated Conditional Modes, or ICM
for short. Its local update involves selecting (randomly or
deterministically) a variable of the problem. ICM assigns a
value to the selected variable keeping all other variables fixed,
which results in a solution with the maximum probability.
This process is repeated by selecting other variables until the
probability cannot be increased further. The local step of the
algorithm can be seen as performing inference in the smallest
decomposed subgraph possible.

Another family of methods is related to max-product belief
propagation (cf. [19] and [20]). In recent years, a sequence
of results suggests an intimate relationship between the
max-product algorithm and a natural linear programming
relaxation – for example, see [21]–[25]. Many of these meth-
ods can be seen as making local updates to partitions of the
dual problem [26], [27].

We also note that the Swendsen-Wang algorithm (SW)
[28], a local flipping algorithm, has a philosophy similar
to ours in that it repeats a process of randomly partitioning
the graph and computing an assignment. However, the graph
partitioning of SW is fundamentally different from ours, and
there is no known guarantee for the error bound of SW.

In summary, all the approaches thus far with provable
guarantees for the local update-based algorithm are primarily
for linear or, more generally, convex optimization setup.

D. MODULARITY OPTIMIZATION FOR CLUSTERING
The notion of modularity optimization was introduced by
Newmann [29] to identify the communities or clusters in a

network structure. Since then, it has become quite popular as
a metric to find communities or clusters in various networked
data cf. [13], [30], [31]. The major challenge has been design-
ing an approximation algorithm for modularity optimization
(which is computationally hard in general) that can operate
in a distributed manner and provide performance guarantees.
Such algorithms with provable performance guarantees are
known only for few cases, notably logarithmic approximation
of [32] via a centralized solution.

Our contribution in the context of modularity optimization
lies in showing that indeed it is a decomposable problem
and therefore admits a distributed and fast approximation
algorithm through our approach.

E. ORGANIZATION
The rest of the paper is organized as follows. Section II
describes the problem statement and preliminaries. Section III
describes our main algorithms, and Section IV presents anal-
yses of our algorithms. The proofs of our main theorems are
given in the Appendix (Section VII-A and Section VII-B).
Section V and Section VI present the setup and results of
an experiment, respectively, and Section VII presents the
conclusion.

II. SETUP
A. GRAPHS
Our interest is in processing networked data represented
through an undirected graph G = (V ,E) with n = |V |
vertices and E being the edge set. Let m = |E| be the
number of edges. Graphs can be classified structurally in
many different ways: trees, planar, minor-excluded, geomet-
ric, expanding, and so on.We shall establish results for graphs
with geometric structure or polynomial growth, which we
define next. A graph G = (V ,E) induces a natural ‘‘graph
metric’’ on vertices V , denoted by dG : V × V → R+ with
dG(i, j) given by the length of the shortest path between i
and j; defined as∞ if there is no path between them.
Definition 1 (Graph With Polynomial Growth): We say

that a graph G (or a collection of graphs) has polynomial
growth of degree (or growth rate) ρ, if for any i ∈ V
and r ∈ N,

|BG(i, r)| ≤ C · rρ,

where C > 0 is a universal constant and BG(i, r) = {j ∈
V | dG(i, j) < r}.

Note that interesting values of C, ρ are integral between
{0, 1, . . . , n}, and it is easy to compute in O(mn) time.
Therefore we will assume knowledge of C, ρ for algorithm
design. A large class of graph model naturally fall into the
graphs with polynomial growth. To begin with, the standard
d-dimensional regular grid graphs have polynomial growth
rate d . More generally, in recent years, in the context of com-
putational geometry and metric embedding, the graphs with
finite doubling dimensions have become a popular object
of study [33]. It can be checked that a graph with doubling
dimension ρ is also a graph with polynomial growth rate ρ.

54034 VOLUME 9, 2021

V. Blondel et al.: PM: Distributed Inference and Modularity Optimization

Finally, the popular geometric graph model, where nodes
are placed arbitrarily in some Euclidean space with some
minimum distance separation, and two nodes have an edge
between them if they are within a certain finite distance, has
a finite polynomial growth rate [34].

B. PAIR-WISE GRAPHICAL MODEL AND MAP
For a pair-wise Markov Random Filed (MRF) model defined
on a graphG = (V ,E), each vertex i ∈ V is associated with a
random variable Xi which we shall assume to be taking value
from a finite alphabet6; the edge (i, j) ∈ E represents a form
of ‘‘dependence’’ between Xi and Xj. More precisely, the joint
distribution is given by

P
(
X = x

)
∝

∏
i∈V

φi(xi) ·
∏

(i,j)∈E

ψij(xi, xj) (1)

where φi : 6→ R+ and ψij : 62
→ R+ are called node and

edge potential functions.2 The question of interest is to find
the maximum a posteriori (MAP) assignment x∗ ∈ 6n, i.e.

x∗ ∈ arg max
x∈6n

P[X = x].

Equivalently, from the optimization point of view, we wish
to find an optimal assignment of the problem

maximize H(x) over x ∈ 6n, where

H(x) =
∑
i∈V

lnφi(xi)+
∑

(i,j)∈E

lnψij(xi, xj).

For completeness and simplicity of exposition, we assume
that the function H is finitely valued over 6n. However,
the results of this paper extend for hard constrained problems
such as the hardcore or independent set model. We call an
algorithm α approximation for α ≥ 1 if it always produces
assignment x̂ such that

1
α
H(x∗) ≤ H(̂x) ≤ H(x∗).

C. SOCIAL DATA AND CLUSTERING/COMMUNITY
DETECTION
Alternatively, in a social setting, vertices of graph G can
represent individuals, and edges represent some form of inter-
action between them. For example, consider a cultural show
organized by students at a university with various acts. Let
there be n students in total who have participated in one
or more acts. Place an edge between two students if they
participated in at least one act together. Then the resulting
graph represents the interaction between students in terms of
acting together.

Based on this observed network, the goal is to identify the
set of all acts performed and its ‘‘core’’ participants. The true
answer, which classifies each student/node into the acts in
which s/he performed, would lead to partitions of nodes in
which a node may belong to multiple partitions. Our interest
is in identifying disjoint partitions, which would, in this

2For simplicity of the analysis we assume strict positivity of φi’s andψij’s.

example, roughly mean identification of ‘‘core’’ members of
acts.

In general, it is not clear what is the appropriate criteria
to select a disjoint partition of V given G. Newman [29]
proposed the notion of modularity as a criterion. The intuition
behind it is that a cluster or community should be as distinct as
possible from being ‘‘random’’. The modularity of a partition
of nodes is defined as the fraction of the edges that fall within
the disjoint partitions minus the expected such fraction if
edges were distributed at random with the same node degree
sequences. Formally, the modularity of a subset S ⊂ V is
defined as

M (S) =
∑
i,j∈S

(
Aij −

didj
2m

)
, (2)

where Aij = 1 iff (i, j) ∈ E and 0 otherwise, di = |{k ∈
V : (i, k) ∈ E}| is the degree of node i ∈ V , and m = |E|
represents the total number of edges in G. More generally,
the modularity of a partition of V , V = S1∪· · ·∪S` for some
1 ≤ ` ≤ n with Si ∩ Sj = ∅ for i 6= j, is given by

M(S1, . . . , S`) =
1
2m

(∑̀
i=1

M (Si)
)
. (3)

The modularity optimization approach [29] proposes to
identify the community structure as the disjoint partitions
of V that maximizes the total modularity, defined as per (3),
among all possible disjoint partitions of V with ties broken
arbitrarily. The resulting clustering of nodes is the desired
answer.

We shall think of clustering as assigning colors to nodes.
Specifically, given a coloring χ : V → {1, . . . , n}, two
nodes i and j are part of the same cluster (partition) iff χ (i) =
χ (j). With this notation, any clustering of V can be repre-
sented by some such coloring χ and vice versa. Therefore,
modularity optimization is equivalent to finding a coloring χ
such that its modularityM(χ) is maximized, where

M(χ) =
1
2m

∑
i,j∈V

1{χ (i)=χ(j)}
(
Aij −

didj
2m

)
.

Here 1{·} is the indicator function with 1{ true} = 1 and
1
{ false} = 0. Let χ∗ be a clustering that maximizes
the modularity. Then, as before, an algorithm will be said
α-approximate if it produces χ̂ such that

1
α
M(χ∗) ≤M(χ̂) ≤M(χ∗). (4)

III. PARTITION-MERGE ALGORITHM
We describe a parametric meta-algorithm for solving
the MAP inference and modularity optimization. The
meta-algorithm uses two parameters; a large constant K ≥ 1
and a small real number ε ∈ (0, 1) to produce a partition of
V = V1 ∪ · · · ∪ Vp so that each partition Vj, 1 ≤ j ≤ p is
small. We will specify the values of K and ε in Section IV.
The meta-algorithm uses an existing centralized algorithm to

VOLUME 9, 2021 54035

V. Blondel et al.: PM: Distributed Inference and Modularity Optimization

solve the original problem on each of these partitioned sub-
graphsGj = (Vj,Ej) independently where Ej = (Vj×Vj)∩E .
The resulting assignment leads to a candidate solution for the
problem on the entire graph. As we establish in Section IV,
this becomes a pretty good solution. Next, we describe the
algorithm in detail.
Step 1 (Partition): We wish to create a partition of V =

V1∪ · · ·∪Vp for some p with Vi∩Vj = ∅ for i 6= j so that the
number of edges crossing partitions are small. The algorithm
for such partitioning is iterative. Initially, no node is part of
any partition. Order the n nodes arbitrarily, say i1, . . . , in.
In iteration k ≤ n, choose node ik as the pivot. If ik belongs
to ∪k−1`=1V`, then set Vk = ∅, and move to the next iteration
if k < n or else the algorithm concludes. If ik /∈ ∪k−1`=1V`,
choose a radius Rk ≤ K at random with distribution

P
(
Rk = `

)
=

{
ε(1− ε)`−1 for 1 ≤ ` < K
(1− ε)K−1, for ` = K .

(5)

Let Vk be the set of all nodes in V that are within distance
Rk of ik , but that are not part of V1 ∪ · · · ∪ Vk−1. Since we
execute this step only if ik /∈ ∪

k−1
`=1V` and Rk ≥ 1, Vk will be

non-empty. At the end of the n iterations, we have a partition
of V with at most n non-empty partitions. Let the non-empty
partitions of V be denoted as V = V1 ∪ · · · ∪ Vp for some
p ≤ n. A caricature of an iteration is described in Figure 1.

FIGURE 1. A pictorial description of an iteration of the graph partitioning.

Step 2 [Merge (Solving the Problem)]: Given the partition
V = V1 ∪ · · · ∪ Vp, consider the graphs Gk = (Vk ,Ek)
with Ek = (Vk × Vk) ∩ E for 1 ≤ k ≤ p. We shall apply
a centralized algorithm for each of these graph G1, . . . ,Gk
separately. Specifically, let A be an algorithm for MAP or
clustering: the algorithm may be exact (e.g., one solving
a problem by exhaustive search over all possible options,
or dynamic programming), or it may be an approximation
algorithm (e.g., α-approximate for any graph). We apply A
for each subgraph separately.
◦ For MAP inference, this results in an assignment to all

variables since in each partition each node is assigned
some value and collectively all nodes are covered by the
partition. Declare resulting global assignment, say x̂ as
the solution for MAP.

◦ For modularity optimization, nodes in each partition Vj
are clustered. We declare the union of all such clusters
across partitions as the global clustering. Thus two nodes
in different partitions are always in different clusters;
two nodes in the same partition are in different clusters
if the centralized algorithm applied to that partition clus-
ters them differently.

Computation Cost: The computation cost of the partition-
ing scheme scales linearly in the number of edges in the
graph. The computation cost of solving the problem in each
of the components G1, . . . ,Gp depends on component sizes
and on how the computation cost of algorithm A scales with
the size. In particular, if the maximum degree of any node in
G is bounded, say by d , then each partition has at most dK

nodes. Then the overall cost is O(Q(dK)p), where Q(`) is the
computation cost of A for any graph with ` vertices.

IV. MAIN RESULTS
A. GRAPHS WITH POLYNOMIAL GROWTH
We state sharp results for graphs with polynomial growth.
We state results for MAP inference and for modularity opti-
mization under the same theorem statement to avoid repeti-
tion. The proofs, however, will have some differences.
Theorem 1: Let the graph G = (V ,E) have polynomial

growth with degree ρ ≥ 1 and constant C ≥ 1. Then, for a
given δ ∈ (0, 1), select parameters

K =K (ρ,C, δ) =
8ρ
ε

log
(8ρ
ε

)
+

4
ε
logC +

4
ε
log

1
ε
+ 2,

ε= ε(ρ,C, δ)=


δ

2C2ρ
, for MAP

δ

4(2C−1)
, for modularity optimization.

(6)

Then, the following holds for the meta-algorithm described
in Section III.
(a) If A solves the problem (MAP or modularity opti-

mization) exactly, then the solution produced by the
algorithm x̂ and χ̂ for MAP andmodularity optimization
respectively are such that

(1− δ)H(x∗) ≤ E[H(̂x)] ≤ H(x∗)

(1− δ)M(χ∗) ≤ E[M(χ̂)] ≤M(χ∗). (7)

(b) IfA is an α(n) ≥ 1 approximation algorithm for graphs
with n nodes, then(

1

α(K̃)
− δ

)
H(x∗) ≤ E[H(̂x)] ≤ H(x∗),

(1− δ)

α(K̃)
M(χ∗) ≤ E[M(χ̂)] ≤M(χ∗), (8)

where K̃ = CKρ .

B. GENERAL GRAPH
The theorem in the previous section was for graphs with
polynomial growth. We now state results for a general graph.

54036 VOLUME 9, 2021

V. Blondel et al.: PM: Distributed Inference and Modularity Optimization

Our result tells us how to evaluate the ‘‘error bound’’ on
solutions produced by the algorithm for any instantiation of
randomness. The result is stated below for both MAP and
modularity optimization. The ‘‘error function’’ depends on
the problem.
Theorem 2: Given an arbitrary graph G = (V ,E) and our

algorithm operating on it with parameters K ≥ 1, ε ∈ (0, 1)
using a known procedure A, the following holds:
(a) If A solves the problem (MAP or modularity optimiza-

tion) exactly, then the solution produced by the algo-
rithm x̂ and χ̂ for MAP and modularity optimization
respectively are such that (with B = E\ ∪pk=1 Ek),

H(̂x) ≥ H(x∗)−
∑

(i,j)∈B

(
ψU
ij − ψ

L
ij
)
,

M(χ̂) ≥M(χ∗)−
|B|
2m
. (9)

(b) If A is instead an α(n)-approximation for graphs of
size n, then

H(̂x) ≥
1

α(K̃)

(
H(x∗)−

∑
(i,j)∈B

(
ψU
ij − ψ

L
ij
))

M(χ̃) ≥
1

α(K̃)

(
M(χ∗)−

|B|
2m

)
, (10)

where K̃ is the maximum number of nodes that are within
K hops of any single node in V .

In the expression above, ψU
ij , maxσ,σ ′∈6 lnψij(σ, σ ′), and

ψL
ij , minσ,σ ′∈6 lnψij(σ, σ ′).

C. DISCUSSION OF RESULTS
Herewe dissect the implications of the above stated theorems.
To start with, Theorem 1(a) suggests that when graphs have
polynomial growth, there exists a Randomized Polynomial
Time Approximation Scheme (PTAS) for MAP computation
and modularity optimization that has computation time scal-
ing linearly with n.
Theorem 1(b) suggests that if we use an approximation

algorithm instead of the exact procedure for each partition,
the resulting solution almost retains its approximation guar-
antees: if α(n) is a constant, then the resulting approximation
guarantee is essentially the same constant; if α(n) increases
with n (e.g., log n), then the resulting algorithm provides a
constant factor approximation! In either case, even if the
approximation algorithm has superlinear computation time in
the number of nodes (e.g., semi-definite programming), then
our algorithm provides a way to achieve similar performance
but in linear time for polynomially growing graphs.

The algorithm, for general graphs, produces a solution
for which we have approximation guarantees. Specifically,
the error scales with the fraction of edges across partitions
that are induced by our partitioning procedure. This error
depends on parameters K , ε utilized by our partitioning pro-
cedure. For a graph with polynomial growth, we provide
recommendations on what the values should be for these
parameters. However, for general graphs, one may try various

values of K ∈ {1, . . . , n} and ε ∈ (0, 1) and then choose
the best solution. Indeed, a reasonable way to implement
such procedure would be to take values of K that are 2k for
k ∈ {0, . . . , log n} and ε chosen at regular interval with gran-
ularity that an implementor is comfortable with (the smaller
the granularity, the better).

The dependence on ρ and δ in Theorem 1 is inspired by the
worst-case scenario. While they provide theoretically useful
bounds, practically even for moderately small δ, it may be an
exorbitant amount of computation required if we followed the
guidelines of Theorem 1 to implement brute-force/dynamic
programming procedure. However, in practice, a smaller
radius than that suggested by Theorem 1 can lead to better
performance, as observed in experiments.

V. EXPERIMENTAL SETUP
In Sections V and VI, we present the experimental evalua-
tions of our algorithm regarding two questions of interest:
computation of Maximum A Posteriori (MAP) inference in
a pairwise Markov Random Field (MRF), and modularity
optimization for community detection. For our experiments,
we applied PM both on real-world networks and on synthetic
networks to verify its efficiency compared to the original
centralized algorithm. For the MAP inference, we employed
the sequential tree-reweighted max-product message pass-
ing (TRW-S) as the centralized algorithm. For the modular-
ity optimization, Girvan-Newman (GN), Clauset-Newman-
Moore (CNM), and Louvain-Method (LM) have been used
as the centralized algorithm.

In the experiments, we fixed the radius (for every iteration)
by a specific number to simplify and to understand the perfor-
mance of our algorithm according to the radius. Furthermore,
we investigated the value of partition radius as an appropriate
value for our algorithm. All experiments were carried out
using a single core3 of an Intel i7 processor with 256GB of
RAM, and PM was implemented in C++.

A. DATASETS
1) REAL NETWORKS
To cover various aspects of the real-world networks, we con-
ducted experiments on several types of real-world net-
works, such as social networks (Facebook, YouTube, Live
Journal, Twitter, Friendster), citation or collaboration net-
works (ArXiv, DBLP), and web or communication networks
(Email-Enron, Web uk-2005, Web Webbase-2001). Most
of the real-world network datasets were downloaded from
SNAP,4 a web site that offers the information and statis-
tics of the networks. The network statistics are summa-
rized in Table 1. Note that the list below the dashed line is
large-scale networks with more than 10 million nodes. For
a directed real-world network, we used the corresponding
undirected network in our experiments.

3When you apply this method in parallel, you can easily allocate different
graph partitions to different cores/computers. This is because PM algorithm
divides the whole graph into small disjoint subgraphs which can be computed
almost independently.

4SNAP(http://snap.stanford.edu)

VOLUME 9, 2021 54037

V. Blondel et al.: PM: Distributed Inference and Modularity Optimization

TABLE 1. Statistics for real-world networks.

2) SYNTHETIC GRAPHS
We also made use of synthetically generated graphs such as
grid graphs, random k-regular graphs, Watts-Strogatz net-
works, and Barabási-Albert networks.

a: GRID GRAPHS
We tested our algorithm with two types of grid graphs. One is
a simple grid, whose nodes are connected if they are directly
adjacent to each other in either the horizontal or the vertical
direction; the other one is the grid graph with diagonal edges.

b: RANDOM k-REGULAR NETWORKS
A random k-regular network on n nodes, Gn,k , is a random
graph chosen uniformly at random from all the graphs whose
nodes have degree k .

c: WATTS-STROGATZ NETWORKS
To construct Watts-Strogatz, we start from a simple grid of
n nodes. First, each node is connected to the other nodes
within a radius of r , which represents the length of the
shortest path between the locally connected nodes. Next,
we add l long distance edges, one end node of which remains
the same and the other chosen uniformly at random from
among all nodes. This process is repeated for each node in the
network.

d: BARABÁSI-ALBERT NETWORKS
We begin with the Erdös-Rényi model of m0 nodes with
edge probability p, which will be defined below. In other
words, given m0 nodes, each node-pair is connected with
probability p independent of every other node-pair. Then,
the network is developed following an iterative process until
the total number of nodes becomes n. At each discrete time
step, we add a new node, and each new node is connected to
m existing nodes with a probability that is proportional to the
degree of each node. We require m to be m0 times p.

B. CENTRALIZED ALGORITHMS
To facilitate understanding of the effectiveness of our
algorithm, we selected TRW-S for MAP inference and three
popular community detection algorithms for modularity opti-
mization, which are taken as a centralized algorithm for PM.
The algorithms used for our experiments are briefly summa-
rized as follows:

1) MAP INFERENCE
a: SEQUENTIAL TREE-REWEIGHTED MAX PRODUCT
MESSAGE PASSING (TRW-S)
The TRW-S algorithm is used for minimizing energy func-
tions of discrete variables with unary and pairwise terms.
It is the modified version of TRW that is not guaranteed to
increase a lower bound on the energy and does not always
converge. By adding a weak tree agreement (WTA) condi-
tion, TRW-S guarantees to find at least a local maximum of
the bound, and it has a subsequence converging to a vector
satisfying WTA [10].

b: ENERGY FUNCTION
For the MAP inference, we considered an energy function
with binary labels (i.e. 6 = {0, 1}) on a graph G = (V ,E):

E(x) =
∑
i∈V

θixi +
∑

(i,j)∈E

θijxixj, for x ∈ {0, 1}. (11)

We consider the following scenario for choosing param-
eters, where U[a, b] is the uniform distribution over the
interval [a, b]:
1. For each i ∈ V , choose θi independently as per the

distribution U[−1, 1].
2. For each (i, j) ∈ E , choose θij independently from

U[−α, α]. Here, the interaction parameter α is chosen
from {0.25, 1, 4, 16}.

C. MODULARITY OPTIMIZATION
1) GIRVAN AND NEWMAN (GN)
The GN algorithm is the first known modularity-based
method for community detection. Starting from the original
network, the edges are iteratively removed to uncover the
underlying community structure of the network. This process
is based on the concept of the edge betweenness, which
represents the number of shortest paths between pairs of
nodes that pass through the edge, and it is repeated until no
edges remain. The algorithm is somewhat slow and has a
computational complexity O(N 3) on a sparse network [11].

2) CLAUSET-NEWMAN-MOORE (CNM)
The CNM algorithm, which utilizes efficient data struc-
tures such as a max-heap, is a kind of fast version of
Girvan-Newman algorithm. Every node begins as a single

54038 VOLUME 9, 2021

V. Blondel et al.: PM: Distributed Inference and Modularity Optimization

community of the network. At each time step, the two com-
munities that yield the largest increase of modularity among
all the pairs of communities are combined together. The
algorithm allows analysis of the community structure of large
graphs, up to 106 nodes, with a computational complexity
O(n log2 n) on a sparse network [12].

3) LOUVAIN METHOD (LM)
The LM algorithm is known as one of the best for detecting
community structure. As a state-of-the-art algorithm, it finds
good divisions in terms of modularity even on large networks,
and it reveals a hierarchical community structure that is based
on the two-step sequential processes (local maximization of
the modularity and aggregation of communities). The algo-
rithm is fast enough to be limited in its applicable network
size due to restricted storage capacity rather than restricted
computation time, with a computational complexity that is
essentially linear to network size [13].

VI. EXPERIMENTAL RESULTS
As a measure of performance, we compared (i) energy and
running time for MAP inference, and (ii) modularity and
running time for modularity optimization, calculated by our
algorithm, against those obtained by using the original cen-
tralized algorithms. In addition, we investigated what value of
partition radius can be determined as appropriate for our algo-
rithm, which will be described in Subsection VI-B. We lay
out the experimental results in several changes of the network
factors to determine the conditions under which our algorithm
performs well.

ForMAP inference, the simulation was carried out over the
30 different samples of the same problem. Then, the average
energy was computed over those samples for 100 trials for
each case. While the average value obtained from our setup
is a negative quantity, we report it as a non-negative value
regardless of its sign for the unity of expression. For modular-
ity optimization, the average modularity is simply calculated
for the 100 trials for each case.

This section is organized as follows: Section VI-A presents
the overall result of the experiment. Section VI-B describes
how to obtain the proper partition radius. Sections VI-C
and VI-D present the analyses of the experimental results
on real-world networks and synthetic graphs, respectively.
Section VI-E describes the results and their explanation in
regard to the two problems.
Plot:To be conducive to performance comparison, we used

a ratio of energy/modularity and running time, and these
quantities are plotted as functions of the partition radius.
In other words, the partition radius is plotted on the x-axis,
the ratio of the results of PM algorithm to that of the central-
ized algorithm on the y-axis.

A. OVERALL RESULTS
Overall, PM provides a decent trade-off between high accu-
racy and low complexity, with particularly good efficiency
when a proper partition radius is chosen. That is, our algo-
rithm produces a good approximation in a relatively short

time for most networks. In particular, PM substantially
reduces the running time for the centralized algorithms with
high computational complexity, while energy/modularity
remains at similar levels – even better in some cases – to that
of the centralized algorithms.

To sum up, PM performs better under the following condi-
tions: (i) when applied on well-distributed regular networks;
(ii) when the centralized algorithm has a high complexity;
and (iii) generally when the network has a large size.

In some cases, PM shows different tendencies towards the
two problems we dealt with, even under the same conditions,
which is due to the two problems being different: MAP infer-
ence is based on assignment, and modularity optimization
is based on graph clustering. Furthermore, we empirically
prove that modularity optimization are indeed decomposable
problems as long as the network has geometric structures.

1) ENERGY AND MODULARITY
Energy/Modularity typically tends to increase along with
the partition radius. Our partitioning scheme involves the
removal of the edges that are not included in any parti-
tion. As we have previously proved, the experimental results
demonstrate that the error actually scales with the frac-
tion of edges across partitions. That is, as partition radius
increases, the number of edges crossing partition decreases.
Accordingly, the error is reduced, and we can take into
account the connectivity between more nodes. This leads us
to find better assignment/division, which means an increase
in energy/modularity.

2) RUNNING TIME
As shown in Section III, the overall computation cost
increases as an exponential function of radius. However,
some experimental results show that this is not the only case.
One exceptional case can be observed when large numbers
of partitions are generated due to a small partition radius.
We assume that this situation can cause a great deal of
wall-clock time. The other case is when applying to the
network with hubs (e.g., Barabási-Albert network), the node
with a very high degree. In such cases, each partition has
a large number of nodes even when the partition radius is
small. In exceptional cases, the performance of our algorithm
is relatively poor for modularity optimization, while PM
shows excellent performance for MAP inference. In partic-
ular, for MAP inference, PM produces similar results to the
centralized algorithms in less than half the time, with a small
partition radius. In our experiments, the time required for the
partitioning procedure is just within 0.1–0.2 seconds, even
on the network of 106 nodes, and it is so tiny as to be almost
insignificant in total running time. In addition, it should be
noted that, even if the efficiency of PM decreases, the actual
gain of running time generally increases due to the significant
growth in the running time of the centralized algorithms.

B. PARTITION RADIUS
The primary question of interest: ‘‘what value of partition
radius should we choose?’’ Theoretical results presented

VOLUME 9, 2021 54039

V. Blondel et al.: PM: Distributed Inference and Modularity Optimization

FIGURE 2. Small-scale real-world networks for MAP inference.

earlier in this work provide guidelines. It is definitely worth
following. In addition, practically, we find a simple heuristic
rule works well for ‘‘regular’’ enough graphs. To that end,
define the average distance of a graph as the average shortest
path length between all pairs of nodes. To estimate it, one
can simply sample 1,000 random node pairs and calculate
the average over them. Then the following is a heuristic we
suggest to choose partition radius:

choose dAvg.De or dAvg.De − 1 as the partition radius.

The intuition behind this rule is as follows. If the graph
is ‘‘regular’’ enough, then the pair-wise distance distribution

between nodes is ‘‘uni-modal’’, and in which case the average
distance is precisely that covers good fraction of interactions.
It may make sense to choose a little smaller radius (by 1) if
the graph has few very high degree nodes.

C. ON REAL-WORLD NETWORKS
1) ON SMALL-SCALE NETWORKS
Figures 2 and 3 show the experimental results from apply-
ing our algorithm on the small-scale real-world networks.
In Figures 2(a) and 2(b), on Facebook, PM finds solutions
with higher energy than those obtained by using the original

54040 VOLUME 9, 2021

V. Blondel et al.: PM: Distributed Inference and Modularity Optimization

FIGURE 3. Small-scale real-world networks for modularity optimization. In Figure 3(b), the actual running time (unit: minute) can be read
out from the right y-axis. Note that it takes 22 hours for GN to analyze the ArXiv network.

TRW-S within half the time in regards to MAP inference.
For modularity optimization, on the same network, PM also
achieves similar modularity to the original CNM in a rela-
tively short time, as shown in Figures 3(c) and 3(d). These
particularly good results are due to the very high average
degree (evenly distributed) of Facebook nodes (about 43).
Note that in the case of R(Avg.D) - 1, which is smaller than the
value of general cases, it could be a better choice for the par-
tition radius. ArXiv has an intractable size for GN. Although
it requires a long time to analyze large partitions, solving
the problem inside small partitions brings decent results.

This is possible because the network is well distributed.
Figures 3(a) and 3(b) shows that PM gives around 78%
modularity of GN in about 50 minutes. Considering that it
takes about 22 hours for GN to apply on the entire network,
this is a decent result. On the whole, PM shows good results
on small-scale real-world networks.

2) ON LARGE-SCALE NETWORKS
When applying algorithms to large-scale graphs, PM is
the most necessary moment. To verify our algorithm on
large-scale graphs, we carried out the experiments on four

VOLUME 9, 2021 54041

V. Blondel et al.: PM: Distributed Inference and Modularity Optimization

FIGURE 4. Large-scale real-world networks for MAP inference.

real-world networks with more than 10 million nodes.
We used the TRW-S and LM as the centralized algorithm
forMAP inference andmodularity optimization, respectively.
Note that we present the results centering on the partition
radius we suggested in Section VI-B. As shown in Figure 4,
PM shows outstanding results on MAP inference. When we
choose the partition radius as dAvg.De − 1, PM produces the
same level of results as the centralized algorithm (TRW-S)
in less than half the time. We analyze that these results are
attributable to the high average degree of the network (the
average degree of Web uk-2005 and Twitter is 40 and 58,
respectively). Our algorithm involves the process of erasing
the edges, but in this case, each node still has many edges
that can refer to other nodes. We can see a similar trend on
the Facebook network in Figure 2(a). Moreover, the origi-
nal TRW-S algorithm takes more than 24 hours to compute
the results, but PM makes the application of the algorithm
more practical. For modularity optimization, our algorithm
inevitably causes the loss in that modularity is the metric
to be directly affected by removing the edges. Nevertheless,
PM shows a good trade-off between modularity and running
time, as shown in Figure 5.

D. ON SYNTHETIC GRAPHS
1) ON GRID GRAPHS
PM shows a tremendous performance on the types of
grid graphs stated in Section V-A. For MAP inference,

Figure 6 demonstrates that our algorithm produces a sim-
ilar value of the energy to the original TRW-S in about
1–2 percent of the time on the simple grid of 106 nodes. With
diagonal edges, it takes about 6–7 percent of the time under
the same conditions, as shown in Figure 7. The substantial
decrease in running time underlines the effectiveness of our
algorithm and strongly supports the conclusion that PM per-
forms well on regular networks. In addition, the increase in
the number of neighbor nodes makes networks more com-
plex, which leads to large errors and, thus, a decrease in the
efficiency of PM. As shown in Figures 8 and 9, PM also
yields good results for modularity optimization. Moreover,
PM achieves a better performance on larger graphs.

2) RANDOM K-REGULAR NETWORKS
ForMAP inference, PM shows almost the same efficiency for
a fixed degree, irrespective of the network size. In Figure 10,
the results show that PM gives around 80% of the energy
of TRW-S in about 20% of the time in all cases. On the
other hand, for modularity optimization, PM performs better
as the network size increases, as shown in Figure 12. For
the same size of networks, the increase in degree makes our
algorithm less effective, as shown in Figures 11 and 13. These
results indicate that increasing randomness and complexity
of networks have detrimental effects on our algorithm. As is
the case of grid graphs, PM produces better efficiency on
well-distributed regular networks.

54042 VOLUME 9, 2021

V. Blondel et al.: PM: Distributed Inference and Modularity Optimization

FIGURE 5. Large-scale real-world networks for modularity optimization.

FIGURE 6. 1000-by-1000 grid graph for MAP inference.

3) ON WATTS-STROGATZ NETWORKS
Note that a Watts-Strogatz network has an underlying reg-
ular structure with a small amount of randomness. First,
the randomness increases with the number of long-distance
edges. Increasing randomness could have adverse effects
on our algorithm. For both the problems, the experimental
results are better for our algorithm with the small number of
long-distance edges, as shown in Figures 14 and 16. In addi-
tion, long-distance edges reduce distributed processing

capability by making the networks denser, leading to dete-
rioration in the efficiency of our algorithm.

On the other hand, two problems produce slightly different
results regarding the change in the radius. ForMAP inference,
a large radius serves as an advantage for the small partition
radius. This is attributed to the growth in the number of
neighbor nodes, which is proportional to 2rad2. However,
the performance deteriorates rapidly with the increase in
the partition radius. In Figure 15, the results show that our

VOLUME 9, 2021 54043

V. Blondel et al.: PM: Distributed Inference and Modularity Optimization

FIGURE 7. 1000-by-1000 grid graph with diagonal edges for MAP inference.

FIGURE 8. Grid graphs for modularity optimization (LM).

FIGURE 9. Grid graphs with diagonal edges for modularity optimization (LM).

algorithm is very efficient, producing nearly 81% energy
compared to TRW-S within just 2% of the time for very small
partition radii, while the performance is drastically degraded
as the partition radius increases. For modularity optimization,
the increase in radius vastly improves the efficiency of PM,
as shown in Figure 17. The proximity-based connectivity
is reinforced by a larger radius, offsetting the impact of

randomness and thereby promoting the efficiency of clus-
tering. However, as is the case with long-distance edges,
the increasing radius reduces the distributed effects.

4) ON BARABÁSI-ALBERT NETWORKS
For both the problems, as the number of additional
edges at each time step increases, the advantage of our

54044 VOLUME 9, 2021

V. Blondel et al.: PM: Distributed Inference and Modularity Optimization

FIGURE 10. Random k-regular networks for MAP inference (For fixed k = 4, α = 1).

FIGURE 11. Random k-regular networks for MAP inference (For fixed n = 105, α = 1).

FIGURE 12. Random k-regular networks for modularity optimization (For fixed k = 6 / CNM).

algorithm decreases. The results for this case are shown
in Figures 18 and 19. Hubs could exist due to the
generative processes of the Barabási-Albert network. These
hubs significantly shorten the average distance between
two nodes compared to the regular networks, such as grid
graphs. For this reason, Barabási-Albert networks become

more complex and dense, and thus the efficiency of our
algorithm, including the distributed effects, is reduced.
For fixed additional edges, larger networks lead to bet-
ter results. In Figure 20, the results show that increas-
ing network size brings about more efficient distributed
effects.

VOLUME 9, 2021 54045

V. Blondel et al.: PM: Distributed Inference and Modularity Optimization

FIGURE 13. Random k-regular networks for modularity optimization (For fixed n = 106 / LM).

FIGURE 14. Watts-Strogatz networks for MAP inference (For fixed n = 300-by-300, r = 1, α = 1).

FIGURE 15. Watts-Strogatz networks for MAP inference (For fixed n = 250-by-250, l = 1, α = 1).

E. DISCUSSION FOR EACH PROBLEM
1) MAP INFERENCE
a: INTERACTION PARAMETER α
We defined energy functions of discrete variables with
unary and pairwise terms, where parameter α of (11)

determines the strength of the relationship between
pairs of nodes. Accordingly, the increasing value of
α assigns a larger weight to edges, which conse-
quently incurs more errors caused by our partitioning
scheme. Therefore, our algorithm generally yields better

54046 VOLUME 9, 2021

V. Blondel et al.: PM: Distributed Inference and Modularity Optimization

FIGURE 16. Watts-Strogatz networks for modularity optimization (For fixed n = 150-by-150, r = 2 / CNM).

FIGURE 17. Watts-Strogatz networks for modularity optimization (For fixed n = 100-by-100, l = 1 / CNM).

FIGURE 18. Barabási-Albert networks for MAP inference (For fixed n = 50,000, α = 1).

approximation when α has a relatively small value, as shown
in Figure 21.

b: AVERAGE DEGREE
It is observed that MAP inference is more affected by the
average degree than modularity optimization. When parti-
tions are very small, there is a tendency to produce better

approximation as the average degree increases. In particu-
lar, when the average degree is very high, our algorithm
obtains outstanding results even for tiny partitions, such as
in Facebook, Web uk-2005, and Twitter. However, one can-
not always obtain good results with a high average degree.
As you can see throughout the experiments, the increase of
average degree that leads to an increase in randomness can

VOLUME 9, 2021 54047

V. Blondel et al.: PM: Distributed Inference and Modularity Optimization

FIGURE 19. Barabási-Albert networks for modularity optimization (For fixed n = 106 / LM).

FIGURE 20. Barabási-Albert networks for modularity optimization (For fixed m = 5 / LM).

FIGURE 21. Results as the value of α changes. Random k-regular networks for MAP (For fixed n = 105, k = 4).

negatively influence our algorithm. Our algorithm accom-
plishes better efficiency generally when the increase of aver-
age degree improves the regularity. However, in like manner
to α, it requires relatively more time for better assignment
as the partition radius increases when the average degree is
high.

Taken together, the best circumstances for our algorithm in
regards to MAP inference is when α has a small value with a
high average degree. However, our algorithm can only real-
ize positive effects when the increase of the average degree
improves the regularity. In other words, PM shows better
results when applied on well-distributed regular networks

54048 VOLUME 9, 2021

V. Blondel et al.: PM: Distributed Inference and Modularity Optimization

FIGURE 22. The experimental results for Girvan and Newman algorithm.

FIGURE 23. A Comparison on results of three algorithms for modularity optimization.

while taking less consideration of the relationship between
nodes.

2) MODULARITY OPTIMIZATION
Due to its high computational complexity, it is difficult for
GN to analyze networks under several conditions. Accord-
ingly, we present the experimental results of GN separately,
and PM shows a good performance in this case, as shown
in Figure 22. Also, we observe that the three centralized
algorithms we used to extract the community structure show
somewhat different tendencies regarding the change in the
partition radius. Focusing on these differences, we split the
analysis of the experimental results into two parts for closer
examination:

a: MODULARITY
As shown in Figure 23(a), GN produces the largest modu-
larity on the small partitions, followed by CNM and LM in
order. This differs from the results we could get by applying
the original centralized algorithms on the entire network. This
observation indicates that fast approximation algorithms, giv-
ing a good trade-off between high accuracy and low complex-
ity, do not guarantee a good result in this situation. Indeed,
LM finds the smallest number of the communities on the
small partitions out of the three algorithms. By the same

token, GN is likely to reduce the error most rapidly as the
partition radius increases.

b: RUNNING TIME
In Figures 23(b) and 23(c), GN andCNMboth tend to dramat-
ically increase the running time gap between two consecutive
radius steps along with partition radius. Compared to GN and
CNM, LM shows a relatively small change in the gap. When
the algorithm with high computational complexity is taken as
a centralized algorithm, the running time is more profitable
for our algorithm.

Taken together, the experimental results show that GN and
CNM offer better conditions than LM for our algorithm. That
is, they provide better approximations of modularity in a
relatively short time. Furthermore, this brings a new advan-
tage to our algorithm. The algorithms with high complexity,
such as GN, are limited in terms of the size of networks
they can adopt. PM enables them to analyze the networks
considered too large to be tractable, as long as the networks
are well distributed. As demonstrated in the previous section,
PM actually allows them to get an adequate result, although
it is still challenging to tackle large partitions.

VII. CONCLUSION
In recent years, it has become increasingly important
to design distributed high-performance graph computation

VOLUME 9, 2021 54049

V. Blondel et al.: PM: Distributed Inference and Modularity Optimization

algorithms that can deal with large-scale networked data in
a cloud-like distributed computation architecture. Inspired
by this, in this paper, we have introduced Partition-Merge,
a simple meta-algorithm, that takes an existing centralized
algorithm and produces a distributed implementation. With
the underlying graph having polynomial growth property,
the resulting distributed implementation runs in essentially
linear time and is as good as, and sometimes even better
than the centralized algorithm. The experiments demonstrate
the efficiency of the PM algorithm, finding that it actually
produces a similar performance (better in some cases) to that
of the centralized algorithm in a relatively short time.

The algorithm is applicable to any graph in general, and its
computation time as well as performance guarantees depend
on the underlying graph structure – interestingly enough,
we have evaluated the performance guarantees for any graph.
We strongly believe that such an algorithmic approach would
be of great value for developing large-scale cloud-based
graph computation facilities.

APPENDIX
PROOFS OF THEOREMS 1 AND 2
A. MAP INFERENCE
In this Section, we first prove Theorem 1 and Theorem 2 for
MAP inference.
Bound on |E\∪pk=1Ek |:We first state the following lemma

which shows the essential property of the partition scheme.
Lemma 1 and Lemma 2 both for MAP and modularity opti-
mization. The proof of Lemma 1 is stated at the end of this
section.
Lemma 1: Given G = (V ,E) with polynomial growth of

rate ρ ≥ 1 and associated constant C ≥ 1, by choosing
K = K (ρ,C, δ) and ε = ε(ρ,C, δ) = δ

4(2C−1) , the partition
scheme satisfies that for any edge e ∈ E,

P(e ∈ B) ≤ 2ε. (12)

Lower bound on H(x∗): Here we provide a lower bound
on H∗ = H(x∗) that will be useful to obtain multiplicative
approximation property.
Lemma 2: Let H∗ = maxx∈6n H(x) denote the maximum

value ofH for a given pair-wise MRF on a graph G. If G has
maximum vertex degree d∗, then

(d∗ + 1)H(x∗) ≥
∑

(i,j)∈E

(
ψU
ij − ψ

L
ij

)
. (13)

Proof: Assign weight wij = ψU
ij to an edge (i, j) ∈ E .

Since graph G has maximum vertex degree d∗, by Vizing’s
theorem there exists an edge-coloring of the graph using
at most d∗ + 1 colors. Edges with the same color form a
matching of the G. A standard application of Pigeon-hole’s
principle implies that there is a color with weight at least

1
d∗+1 (

∑
(i,j)∈E wij). Let M ⊂ E denote these set of edges.

Then ∑
(i,j)∈M

ψU
ij ≥

1
d∗ + 1

 ∑
(i,j)∈E

ψU
ij

 .

Now, consider an assignment xM as follows: for each
(i, j) ∈ M set

(xMi , x
M
j) = arg max

(x,x ′)∈62
ψij(x, x ′),

for remaining i ∈ V , set xMi to some value in 6 arbitrarily.
Note that for above assignment to be possible, we have used
matching property ofM . Therefore, we have

H(xM) =
∑
i∈V

φi(xMi)+
∑

(i,j)∈E

ψij(xMi , x
M
j)

=

∑
i∈V

φi(xMi)+
∑

(i,j)∈E\M

ψij(xMi , x
M
j)

+

∑
(i,j)∈M

ψij(xMi , x
M
j)

(a)
≥

∑
(i,j)∈M

ψij(xMi , x
M
j)

=

∑
(i,j)∈M

ψU
ij

≥
1

d∗ + 1

 ∑
(i,j)∈E

ψU
ij

 . (14)

Here (a) follows because ψij and φi are non-negative valued
functions. Since H(x∗) ≥ H(xM) and ψL

ij ≥ 0 for all (i, j) ∈
E , we prove Lemma 2.
Decomposition of H∗: Here we show that by maximizing

H(·) on a partition of V separately and combining the assign-
ments, the resulting x̂ hasH(·) value as good as that of MAP
with penalty in terms of the edges across partitions.
Lemma 3: For a given MRF defined on G, the algorithm

of the partition scheme produces output x̂ such that

H(̂x) ≥ H(x∗)−

 ∑
(i,j)∈B

(
ψU
ij − ψ

L
ij

) ,
where B = E\ ∪Kk=1 Ek , ψ

U
ij , maxσ,σ ′∈6 lnψij(σ, σ ′), and

ψL
ij , minσ,σ ′∈6 lnψij(σ, σ ′).

Proof: Let x∗ be a MAP assignment of the MRF X
defined on G. Given an assignment x ∈ 6|V | defined on
a graph G = (V ,E) and a subgraph S = (W ,E ′) of G,
let an assignment x′ ∈ 6|W | be called a restriction of x
to S if x′(v) = x(v) for all v ∈ W . Let S1, . . . , SK be the
connected components of G′ = (V ,E −B), and let x∗k be the
restriction of x∗ to the component Sk . LetXk be the restriction
of the MRF X to Gk = (Sk ,Ek), where Ek = {(u,w) ∈
E|u,w ∈ Sk}.
For xk ∈ 6|Sk |, define

Hk (xk) =
∑
i∈Sk

φi(xi)+
∑

(i,j)∈Ek

ψij(xi, xj).

Let x̂ be the output of the partition scheme, and let x̂k be the
restriction of x̂ to the component Sk . Note that since x̂k is a

54050 VOLUME 9, 2021

V. Blondel et al.: PM: Distributed Inference and Modularity Optimization

MAP assignment ofHk (·) by the definition of our algorithm,
for all k = 1, 2, . . .K ,

Hk (̂xk) ≥ Hk (x∗k). (15)

Now, we have

H(̂x)−H(x∗) =
K∑
k=1

[
Hk (̂xk)−Hk (x∗k)

]
+

∑
(i,j)∈B

ψij (̂xi, x̂j)− ψij(x∗i , x
∗
j)

(a)
≥

K∑
k=1

[
Hk (̂xk)−Hk (x∗k)

]
−

∑
(i,j)∈B

(ψU
ij − ψ

L
ij)

(b)
≥ −

∑
(i,j)∈B

(ψU
ij − ψ

L
ij). (16)

Here (a) follows from the definitions of ψU
ij and ψL

ij ,
and (b) follows from (15). This completes the proof
of Lemma 3.
Completing Proof of Theorem 1(a): Recall that the maxi-

mum vertex degree d∗ of G is less than 2ρC by the definition
of polynomially growing graph. Remind our definition ε =
δ

2C2ρ for MAP inference. Now we have that

E[H(̂x)]
(a)
≥ H(x∗)− E

 ∑
(i,j)∈B

(
ψU
ij − ψ

L
ij

) (17)

(b)
≥ H(x∗)− 2ε

 ∑
(i,j)∈E

(
ψU
ij − ψ

L
ij

) (18)

(c)
≥ H(x∗)

(
1− 2ε(d∗ + 1)

)
(19)

(d)
≥ (1− δ)H(x∗). (20)

Here (a) follows from Lemma 3, (b) follows from Lemma 1,
(c) from Lemma 2, and (d) follows from the definition of ε
forMAP inference. This completes the proof of Theorem 1(a)
for MAP inference.
Completing Proof of Theorem 1(b): Suppose that we use

an approximation procedure A to produce an approximate
MAP assignment x̂k on each partition Sk in our algorithm.
Let A be such that the assignment produced satisfies that
Hk (̂xk) has value at least 1/α(n) times the maximum Hk (·)
value for any graph of size n. Now since A is applied to
each partition separately, the approximation is within α(K̃)
where K̃ = CKρ is the bound on the number of nodes in
each partition.

H(̂xk) ≥
1

α(K̃)
M(x∗k). (21)

By the same proof of Lemma 3 together with (21), we have
that

E[H(̂x)] ≥
1

α(K̃)
H(x∗)− E

 ∑
(i,j)∈B

(
ψU
ij − ψ

L
ij

) . (22)
Hence we have that

E[H(̂x)] ≥
1

α(K̃)
H(x∗)− E

 ∑
(i,j)∈B

(
ψU
ij − ψ

L
ij

) (23)

(a)
≥

1

α(K̃)
H(x∗)− 2ε

 ∑
(i,j)∈E

(
ψU
ij − ψ

L
ij

)
(24)

(b)
≥ H(x∗)

(
1

α(K̃)
− 2ε(d∗ + 1)

)
(25)

(c)
≥

(1

α(K̃)
− δ

)
H(x∗). (26)

Here (a) follows from Lemma 1, (b) follows from Lemma 2,
and (c) from the definition of ε for MAP inference. This
completes the proof of Theorem 1(b) for MAP inference.
Completing Proof of Theorem 2: The same arguments as

in the proof Theorem 1 together with Lemma 3 completes
the proof of Theorem 2 for MAP inference.

Proof of Lemma 1: Now we prove Lemma 1. First,
we consider property of the partition scheme applied to a
genericmetric spaceG = (V ,dG), whereV is the set of points
over which metric dG is defined. We state the result below
for any metric space (rather than restricted to a graph) as
it’s necessary to carry out appropriate induction based proof.
Note that the algorithm the partition scheme can be applied
to any metric space (not just graph as well) as it only utilizes
the property of metric in it’s definition. The edge set E of
metric space G is precisely the set of all vertices that are
within distance 1 of each other.
Proposition 1: Consider a metric space G = (V ,dG)

defined over an n point set V , i.e. |V | = n. Let B = E\ ∪pk=1
Ek be the boundary set of the partition scheme applied to G.
Then, for any e ∈ E,

P[e ∈ B] ≤ ε + PK · |B(e,K)|,

where B(e,K) = BG(e,K) is the union of the two balls of
radius K in G with respect to the dG centered around the two
end vertices of e, and PK = (1− ε)K−1.

Proof: The proof is by induction on the number of points
n. When n = 1, the algorithm chooses as the only point the
point u0 in the initial iteration and hence no edge can be part
of the output set B. That is, for any edge, say e,

P[e ∈ B] = 0 ≤ ε + PK |B(e,K)|.

Thus, we have verified the base case for induction (n = 1).
As induction hypothesis, suppose that the Proposition 1

is true for any graph with n nodes with n < N for some
N ≥ 2. As the induction step, we wish to establish

VOLUME 9, 2021 54051

V. Blondel et al.: PM: Distributed Inference and Modularity Optimization

Proposition 1 for any G = (V ,dG) with |V | = N . For
this, consider any v ∈ V . Now consider the last iteration of
the the partition scheme applied to G. The algorithm picks
i1 ∈ V uniformly at random in the first iteration. Given e,
depending on the choice of i1 we consider three different
cases (or events). We will show that in these three cases,

P[e ∈ B] ≤ ε + PK |B(e,K)|

holds.
Case 1. Suppose i1 is such that dG(i1, e) < K , where the

distance of a point and an edge of G is defined as a minimum
distance from the point to one of the two end-points of the
edge. Call this event E1. Further, depending on choice of
random number R1, define the following events

E11 = {dG(i1, e) < R1}, E12 = {dG(i1, e) = R1},

and E13 = {dG(i1, e) > R1}.

By the definition of the partition scheme, when E11 happens,
e can never be a part of B. When E12 happens, e is defi-
nitely a part of B. When E13 happens, it is said to be left
as an element of the set W1. This new vertex set W1 has
points less than N . The original metric dG is still considered
as the metric on the points5 of W1. By its definition, the
partition scheme excluding the first iteration is the same as
the partition scheme applied to (W1,dG). Therefore, we can
invoke induction hypothesis which implies that if event E13
happens then the probability of v ∈ B is bounded above by
ε + PK · |B(e,K)|, where B(e,K) is the ball with respect to
(W1,dG) which has no more than the number of points in
the ball B(e,K) defined with respect to the original metric
space G. Finally, let us relate the P[E11|E2] with P[E12|E1].
Suppose dG(i1, e) = ` < K . By the definition of probability
distribution of Q, we have

P[E12|E1] = ε(1− ε)`−1, (27)

rClP[E11|E1] = (1− ε)K−1 +
K−1∑
j=`+1

ε(1− ε)j−1

= (1− ε)`. (28)

That is,

P[E12|E1] =
ε

1− ε
P[E11|E1].

Let q
4
= P[E11|E1]. Then,

P[e ∈ B|E1] = P[e ∈ B|E11 ∩ E1]P[E11|E1]
+P[e ∈ B|E12 ∩ E1]P[E12|E1]
+P[e ∈ B|E13 ∩ E1]P[E13|E1]

≤ 0× q+ 1×
εq

1− ε

+ (ε + PK |B(e,K)|)
(
1−

q
1− ε

)
5Note the following subtle but crucial point. We are not changing the

metric dG after we remove points from the original set of points.

= ε + PK |B(e,K)|

+
q

1− ε
(ε − ε − PK |B(e,K)|)

= ε + PK |B(e,K)| −
qPK |B(e,K)|

1− ε
≤ ε + PK |B(e,K)|. (29)

Case 2. Now, suppose i1 ∈ V is such that dG(i1, e) = K .
We will call this event E2. Further, define the event E21 =
{R1 = K }. Due to the independence of selection of R1,
P[E21|E2] = PK . Under the event E21 ∩ E2, e ∈ B with
probability 1. Therefore,

P[e ∈ B|E2] = P[e ∈ B|E21 ∩ E2]P[E21|E2]
+P[e ∈ B|Ec21 ∩ E2]P[E

c
21|E2]

= 1× PK + P[e ∈ B|Ec21 ∩ E2](1− PK).
(30)

Under the event Ec21∩E2, we have e ∈W1, and the remaining
metric space (W1,dG). This metric space has < N points.
Further, the ball of radius K around ewith respect to this new
metric space has at most |B(e,K)|−1 points (this ball is with
respect to the original metric space G on N points). Now we
can invoke the induction hypothesis for this new metric space
to obtain

P[e ∈ B|Ec21 ∩ E2] ≤ ε + PK · (|B(e,K)| − 1). (31)

From (30) and (31), we have

P[e ∈ B|E3] ≤ PK + (1− PK)(ε + PK · (|B(e,K)| − 1))

= ε(1− PK)+ PK |B(e,K)|

+P2K (1− |B(e,K)|)

≤ ε + PK |B(e,K)|.

In above, we have used the fact that |B(e,K)| ≥ 1 (or else,
the bound was trivial to begin with).
Case 3. Finally, let E3 be the event that dG(i1, e) > K .

Then, at the end of the first iteration of the algorithm,
we again have the remaining metric space (W1,dG) such that
|W1| < N . Hence, as before, by induction hypothesis we
have

P[e ∈ B|E3] ≤ ε + PK |B(e,K)|.

Now, the three cases are exhaustive and disjoint. That is,
∪
3
i=1 Ei is the universe. Based on the above discussion,

we obtain the following.

P[e ∈ B] =
3∑
i=1

P[e ∈ B|Ei]P[Ei]

≤

(
3

max
i=1

P[e ∈ B|Ei]
)(3∑

i=1

P[Ei]

)
≤ ε + PK · |B(e,K)|. (32)

This completes the proof of Proposition 1.

54052 VOLUME 9, 2021

V. Blondel et al.: PM: Distributed Inference and Modularity Optimization

Now, we will use Proposition 1 to complete the proof of
Lemma 1. The definition of growth rate implies that,

|B(e,K)| ≤ C · Kρ .

From the definition PK = (1− ε)K−1, we have

PK |B(e,K)| ≤ C(1− ε)K−1Kρ .

Therefore, to show Lemma 1, it is sufficient to show that our
definition of K satisfies the following Lemma.
Lemma 4: We have that

C(1− ε)K−1Kρ ≤ ε.

Proof: We will show the following equivalent inequal-
ity.

(K − 1) log(1− ε)−1 ≥ ρ logK + logC + log
1
ε
. (33)

First, note that for all ε ∈ (0, 1),

log(1− ε)−1 ≥ log(1+ ε) ≥
ε

2
.

Hence to prove (33), it is sufficient to show that

K ≥
2ρ
ε

logK +
2
ε
logC +

2
ε
log

1
ε
+ 1. (34)

Recall that

K = K (ε, ρ) =
8ρ
ε

log
(
8ρ
ε

)
+

4
ε
logC +

4
ε
log

1
ε
+ 2.

From the definition of K , we will show that

K
2
≥

2ρ
ε

logK

and
K
2
≥

2
ε
logC +

2
ε
log

1
ε
+ 1,

which will prove (34). The following is straightforward:

K
2
≥

2
ε
logC +

2
ε
log

1
ε
+ 1. (35)

Now, let K̂ = 8ρ
ε
log

(
8ρ
ε

)
. Then

K̂
2
=

4ρ
ε

log
(
8ρ
ε

)
≥

2ρ
ε

(
log

(
8ρ
ε

)
+ log log

(
8ρ
ε

))
=

2ρ
ε

log K̂ .

That is, K̂2 −
2ρ
ε
log K̂ ≥ 0. Since the function φ(x) = x

2 −
2ρ
ε
log x is an increasing function of x when x ≥ 4ρ

ε
, and from

the fact that K ≥ K̂ ≥ 4ρ
ε
, we have

K
2
≥

2ρ
ε

logK . (36)

From (35) and (36), we have (34), which completes the proof
of Lemma 4.

B. MODULARITY OPTIMIZATION
In this Section, we prove Theorem 1 and Theorem 2 for
modularity optimization.
Lower bound on M∗: Here we provide a lower bound on

M∗ that will be useful to obtain multiplicative approximation
property.
Lemma 5: Let M∗

= maxχ M(χ) denote the maximum
value of modularity for graph G. Then,

M∗
≥

1
2(2C − 1)

(
1−

C2

2m

)
.

Proof: Since the graph has polynomial growth with
degree ρ and associated constantC , it follows that the number
of nodes within one hop of any node i ∈ V (i.e. its immediate
neighbors) is at most C . That is, di ≤ C for all i ∈ V . Given
this bound, it follows that there exists a matching of size at
least m/(2C − 1) in G. Given such a matching, consider the
following clustering (coloring). Each edge in the matching
represent a community of size 2, while all the nodes that
are unmatched lead to community of size 1. By definition,
the individual (unmatched) nodes contribute 0 to the modu-
larity. The nodes that are part of the two node communities,
each contribute at least 1

2m

(
1 − C2

2m

)
since vertex degree of

each node is bounded above byC . Since there arem/(2C−1)
edges in the matching, it follows that the net modularity of
such community assignment is at least 1

2(2C−1)

(
1− C2

2m

)
. This

completes the proof of Lemma 5 (Similar result, with tighter
constant, follows from [35]).
Decomposition ofM∗: Here we show that by maximizing

modularity on a partition of V separately, the resulting clus-
tering has modularity as good as that of optimal partitioning
with penalty in terms of the edges across partitions. To that
end, let V = V1∪· · ·∪Vp be a partition of V , i.e. Vi∩Vj = ∅
for i 6= j. Let Gk = (Vk ,Ek), where Ek = (Vk × Vk) ∩ E ,
denote the subgraph of G for 1 ≤ k ≤ p. Let χk be a
coloring (clustering) ofGk withmaximummodularity. Letχ∗

be a coloring of G with maximum modularity (M∗) and let
χ∗,k be the restriction of χ∗ toGk . Let χ̂ denote the clustering
of G obtained by taking union of clusterings χ1, . . . , χp.
Then we claim the following.
Lemma 6: For any partition V = V1 ∪ · · · ∪ Vp,

M(χ̂) ≥M(χ∗)−
1
2m
|E\ ∪pk=1 Ek |.

Proof: Consider the following:

2mM(χ̂) =
∑
i,j∈V

1{χ̂ (i)=χ̂ (j)}
(
Aij −

didj
2m

)
(a)
=

p∑
k=1

∑
i,j∈Vk

1{χk (i)=χk (j)}
(
Aij −

didj
2m

)
(b)
≥

p∑
k=1

∑
i,j∈Vk

1{χ∗,k (i)=χ∗,k (j)}
(
Aij −

didj
2m

)
=

∑
i,j∈V

1{χ∗(i)=χ∗(j)}
(
Aij −

didj
2m

)
VOLUME 9, 2021 54053

V. Blondel et al.: PM: Distributed Inference and Modularity Optimization

−

∑
(i,j)∈V 2\∪

p
k=1V

2
k

1{χ∗(i)=χ∗(j)}
(
Aij −

didj
2m

)
(37)

≥

∑
i,j∈V

1{χ∗(i)=χ∗(j)}
(
Aij −

didj
2m

)
− |E\ ∪pk=1 Ek |, (38)

where the last inequality follows because the term inside the
summation in (37) is positive only if Aij = 1, i.e. (i, j) ∈
E or else it is negative. Therefore, for the purpose of lower
bound, we only need toworry about (i, j) ∈ E such that (i, j) /∈
∪
p
k=1Vk × Vk . This is precisely equal to E\ ∪pk=1 Ek . The

(a) follows because χ̂ , by definition, assigns nodes in V i and
V j for i 6= j to different clusters. The (b) follows because χk

hasmaximummodularity inGk and hence it is at least as large
(in terms of modularity) as that of the χ∗,k , the restriction of
χ∗ toGk . This completes the proof of Lemma 6 since the first
term in (38) is precisely 2mM(χ∗) = 2mM∗.
Approximation Factor forM(χ̂): Let β = |E\∪pk=1Ek |/m

denote the fraction of edges that are across partitions for a
given partition V = V1 ∪ · · · ∪ Vp. Then, from Lemmas 5
and 6, it follows that for m ≥ C2,

M(χ̂) ≥M(χ∗)
(
1−

β

2M(χ∗)

)
≥M(χ∗)

(
1− 2(2C − 1)β

)
. (39)

Therefore, if 2(2C − 1)β ≤ δ, then M(χ̂) is at least M∗
·

(1− δ). Now from Lemma 1 and the linearity of expectation,
we have

E
[
|E\ ∪pk=1 Ek |

]
≤

δ

2(2C − 1)
m. (40)

Completing Proof of Theorem 1(a): When A produces
exact solution to the modularity optimization for each par-
tition, the resulting solution of our algorithm is χ̂ . Therefore,
from (39) and (40), it follows that

E[M(χ̂)] ≥M(χ∗)(1− δ). (41)

Completing Proof of Theorem 1(b): Suppose we use an
approximation procedure A to produce clustering on each
partition in our algorithm. Let A be such that the clustering
produced has modularity at least 1/α(n) times the optimal
modularity for any graph of size n. Now sinceA is applied to
each partition separately, the approximation is within α(K̃)
where K̃ = CKρ is the bound on the number of nodes in
each partition. Let χ̃1, . . . , χ̃p be the clustering (coloring)
produced by A on graphs G1, . . . ,Gp. Then by the approxi-
mation property of A, we have

M(χ̃k) ≥
1

α(K̃)
M(χk). (42)

Therefore, for the overall clustering χ̃ obtained as union of
χ̃1, . . . , χ̃p, we have

M(χ̃) =
p∑

k=1

M(χ̃k)

≥
1

α(K̃)

p∑
k=1

M(χk)

=
1

α(K̃)
M(χ̂). (43)

Since E[M(χ̂)] is at least (1 − δ)M∗, it follows that
E[M(χ̃)] ≥ (1−δ)

α(K̃)
M∗.

Completing Proof of Theorem 2: Lemma 6 directly proves
Theorem 2(a), and the same arguments as in the proof Theo-
rem 1(b) completes the proof of Theorem 2(b).

ACKNOWLEDGMENT
Part of this work appeared in the preliminary version [1].

REFERENCES
[1] K. Jung, P. Kohli, and D. Shah, ‘‘Local rules for global map: When do

they work?’’ in Proc. Adv. Neural Inf. Process. Syst. (NIPS), vol. 22, 2009,
pp. 871–879.

[2] S. Sarkhel, P. Singla, and V. G. Gogate, ‘‘Fast lifted map inference via
partitioning,’’ in Proc. Annu. Conf. Neural Inf. Process. Syst. (NIPS), 2015,
pp. 3240–3248.

[3] W. Yang, G. Wang, M. Z. A. Bhuiyan, and K.-K.-R. Choo, ‘‘Hypergraph
partitioning for social networks based on information entropy modularity,’’
J. Netw. Comput. Appl., vol. 86, pp. 59–71, May 2017.

[4] D. A. Spielman and S.-H. Teng, ‘‘A local clustering algorithm for massive
graphs and its application to nearly linear time graph partitioning,’’ SIAM
J. Comput., vol. 42, no. 1, pp. 1–26, Jan. 2013.

[5] W. Fan, R. Jin, M. Liu, P. Lu, X. Luo, R. Xu, Q. Yin, W. Yu, and J. Zhou,
‘‘Application driven graph partitioning,’’ inProc. ACM SIGMOD Int. Conf.
Manage. Data, Jun. 2020, pp. 1765–1779.

[6] I. Stanton, ‘‘Streaming balanced graph partitioning algorithms for random
graphs,’’ in Proc. 25th Annu. ACM-SIAM Symp. Discrete Algorithms,
Jan. 2014, pp. 1287–1301.

[7] I. Stanton and G. Kliot, ‘‘Streaming graph partitioning for large distributed
graphs,’’ in Proc. 18th ACM SIGKDD Int. Conf. Knowl. Discovery Data
Mining, 2012, pp. 1222–1230.

[8] J. Nishimura and J. Ugander, ‘‘Restreaming graph partitioning: Simple
versatile algorithms for advanced balancing,’’ in Proc. 19th ACM SIGKDD
Int. Conf. Knowl. Discovery Data Mining, Aug. 2013, pp. 1106–1114.

[9] W. Fan, M. Liu, C. Tian, R. Xu, and J. Zhou, ‘‘Incrementalization of
graph partitioning algorithms,’’ Proc. VLDB Endowment, vol. 13, no. 8,
pp. 1261–1274, Apr. 2020.

[10] V. Kolmogorov, ‘‘Convergent tree-reweighted message passing for energy
minimization,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 28, no. 10,
pp. 1568–1583, Oct. 2006.

[11] M. Girvan and M. E. J. Newman, ‘‘Community structure in social
and biological networks,’’ Proc. Nat. Acad. Sci. USA, vol. 99, no. 12,
pp. 7821–7826, Apr. 2002.

[12] A. Clauset, M. E. J. Newman, and C. Moore, ‘‘Finding community struc-
ture in very large networks,’’ Phys. Rev. E, Stat. Phys. Plasmas Fluids
Relat. Interdiscip. Top., vol. 70, Dec. 2004, Art. no. 066111.

[13] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre, ‘‘Fast
unfolding of communities in large networks,’’ J. Stat. Mech., Theory Exp.,
vol. 2008, no. 10, Oct. 2008, Art. no. P10008.

[14] B. Awerbuch, M. Luby, A. V. Goldberg, and S. A. Plotkin, ‘‘Network
decomposition and locality in distributed computation,’’ in Proc. Annu.
IEEE Symp. Found. Comput. Sci., Oct. 1989, pp. 364–369.

[15] P. Klein, S. A. Plotkin, and S. Rao, ‘‘Excluded minors, network decompo-
sition, and multicommodity flow,’’ in Proc. 25th Annu. ACM Symp. Theory
Comput. (STOC), 1993, pp. 682–690.

[16] D. Peleg, Distributed Computing: A Locality-Sensitive Approach, vol. 5.
Philadelphia, PA, USA: Society for Industrial Mathematics, 2000.

[17] A. Hassidim, J. A. Kelner, H. N. Nguyen, and K. Onak, ‘‘Local graph
partitions for approximation and testing,’’ in Proc. Annu. IEEE Symp.
Found. Comput. Sci., Oct. 2009, pp. 22–31.

[18] K. Jung and D. Shah, ‘‘Local algorithms for approximate inference in
minor-excluded graphs,’’ in Proc. Annu. Conf. Neural Inf. Process. Syst.
(NIPS), 2007, pp. 1–12.

54054 VOLUME 9, 2021

V. Blondel et al.: PM: Distributed Inference and Modularity Optimization

[19] S. K. Andersen, ‘‘Probabilistic reasoning in intelligent systems: Networks
of plausible inference,’’Artif. Intell., vol. 48, no. 1, pp. 117–124, Feb. 1991.

[20] J. Yedidia, W. Freeman, and Y. Weiss, ‘‘Generalized belief propagation,’’
Mitsubishi Elect. Res. Lab., Cambridge, MA, USA, Tech. Rep. TR-2000-
26, 2000.

[21] M. J. Wainwright, T. S. Jaakkola, and A. S. Willsky, ‘‘MAP estimation
via agreement on trees: Message-passing and linear programming,’’ IEEE
Trans. Inf. Theory, vol. 51, no. 11, pp. 3697–3717, Nov. 2005.

[22] M. Bayati, D. Shah, and M. Sharma, ‘‘Maximum weight matching
via max-product belief propagation,’’ in Proc. IEEE ISIT, Sep. 2005,
pp. 1763–1767.

[23] M. Bayati, D. Shah, and M. Sharma, ‘‘Max-product for maximum weight
matching: Convergence, correctness, and LP duality,’’ IEEE Trans. Inf.
Theory, vol. 54, no. 3, pp. 1241–1251, Mar. 2008.

[24] B. Huang and T. Jebara, ‘‘Loopy belief propagation for bipartite maxi-
mum weight B-matching,’’ in Proc. Artif. Intell. Statist. (AISTATS), 2007,
pp. 195–202.

[25] S. Sanghavi, D. Shah, and A. Willsky, ‘‘Message passing for maximum
weight independent set,’’ in Proc. Adv. Neural Inf. Process. Syst. (NIPS),
2007, pp. 4822–4834.

[26] D. Sontag and T. Jaakkola, ‘‘Tree block coordinate descent for map in
graphical models,’’ J. Mach. Learn. Res.-Proc. Track, vol. 5, pp. 544–551,
Dec. 2009.

[27] D. L. Tarlow, D. Batra, P. Kohli, and V. Kolmogorov, ‘‘Dynamic tree block
coordinate ascent,’’ in Proc. ICML, 2011, pp. 1–8.

[28] R. H. Swendsen and J.-S.Wang, ‘‘Nonuniversal critical dynamics inMonte
Carlo simulations,’’ Phys. Rev. Lett., vol. 58, no. 2, pp. 86–88, Jan. 1987.

[29] M. E. J. Newman, ‘‘Modularity and community structure in networks,’’
Proc. Nat. Acad. Sci. USA, vol. 103, no. 23, p. 8577, 2006.

[30] V. Blondel, G. Krings, and I. Thomas, ‘‘Regions and borders of
mobile telephony in Belgium and in the Brussels metropolitan
zone,’’ Brussels Stud., vol. 42, no. 4, Oct. 2010. [Online]. Available:
http://journals.openedition.org/brussels/806, doi: 10.4000/brussels.806.

[31] M. E. J. Newman, ‘‘Community detection and graph partitioning,’’ Euro-
phys. Lett., vol. 103, no. 2, p. 28003, Jul. 2013.

[32] B. DasGupta and D. Desai, ‘‘On the complexity of Newman’s com-
munity finding approach for biological and social networks,’’ 2011,
arXiv:1102.0969. [Online]. Available: http://arxiv.org/abs/1102.0969

[33] A. Gupta, R. Krauthgamer, and J. R. Lee, ‘‘Bounded geometries, fractals,
and low-distortion embeddings,’’ in Proc. Annu. Symp. Found. Comput.
Sci. (FOCS), Oct. 2003, pp. 534–543.

[34] R. Gummadi, K. Jung, D. Shah, and R. Sreenivas, ‘‘Computing the capacity
region of a wireless network,’’ in Proc. 28th Conf. Comput. Commun.,
Apr. 2009, pp. 1341–1349.

[35] Y. Han, ‘‘Matching for graphs of bounded degree,’’ in Proc. Int. Workshop
Frontiers Algorithmics, 2008, pp. 171–173.

VINCENT BLONDEL received the degree in engi-
neering and the degree in philosophy from the Uni-
versité catholique de Louvain (UCL), Belgium,
the M.Sc. degree in pure mathematics from Impe-
rial College, London, U.K., and the Ph.D. degree
in applied mathematics from UCL. He is currently
a Professor of applied mathematics and the Presi-
dent of UCL. His major research interests include
mathematical control theory, theoretical computer
science, and network science. He has also com-

pleted a master thesis at the Institut National Polytechnique de Grenoble,
France. For his scientific contributions, he has been awarded the triennial
SIAM prize on Control and Systems Theory, in 2001, the prize Adolphe
Wetrems of the Belgian Royal Academy of Science, in 2006, and the Antonio
Ruberti prize in Systems and Control of the IEEE, in 2006. His recent
work on networks has been widely featured, including in Wired, Technology
Review, Le Monde, La Recherche, Der Spiegel, The Wall Street Journal,
and The New York Times.

KYOMIN JUNG (Member, IEEE) received
the B.S. degree in mathematics from Seoul
National University (SNU), Seoul, South Korea,
in 2003, and the Ph.D. degree in mathematics
from the Massachusetts Institute of Technology,
Cambridge, MA, USA, in 2009. From 2009 to
2013, he was an Assistant Professor with the
Department of Computer Science, KAIST. Since
2016, he has been an Assistant Professor and
an Associate Professor with the Department of

Electrical and Computer Engineering, SNU. He is currently an Adjunct
Professor with the Department ofMathematical Sciences, SNU. His research
interests include natural language processing, deep learning and applications,
data analysis, and web services.

PUSHMEET KOHLI is currently the Head of
Research for Science, Robustness, and Reliabil-
ity with DeepMind. Before joining DeepMind,
he was the Director of Research with the Cog-
nition Group, Microsoft. During his ten years
at Microsoft, he worked with Microsoft Labs in
Seattle, Cambridge, and Bengaluru, and enacted
several roles and responsibilities; including being
a Technical Advisor to Rick Rashid, the Chief
Research Officer of Microsoft. He published in

the fields of machine learning, computer vision, information retrieval, and
game theory. His papers have appeared in computer vision, machine learning,
robotics, and AI conferences. His research interests include intelligent sys-
tems and computational sciences. He has received awards in ICVGIP 2006,
2010, ECCV 2010, ISMAR 2011, TVX 2014, CHI 2014, WWW 2014, and
CVPR 2015. His research has also been the subject of a number of articles in
popular media outlets, such as Forbes, Wired, BBC, New Scientist, and MIT
Technology Review.

DEVAVRAT SHAH (Senior Member, IEEE)
received the B.Tech. degree from IIT Bombay,
in 1999, and the Ph.D. degree from Stanford,
in 2004. He is currently a Professor with the
Department of Electrical Engineering and Com-
puter Science, MIT. He is also the Director of the
Statistics and Data Science Center, Institute for
Data, Systems and Society. He founded machine
learning start-up Celect, in 2013, which is cur-
rently part of Nike, since 2019. His research has

primarily focused on developing practical algorithmic solutions with the-
oretical guarantees for machine learning and statistical inference, social
data processing, and communication networks, including Internet, wireless,
and data centers. His work has been recognized through best publication
awards at NeurIPS, ACM Sigmetrics, IEEE Infocom, INFORMS Applied
Probability Society, INFORMS Operations Management, INFORMS Rev-
enue Management and Pricing, and INFORMS Marketing Science. He has
received the 2010 Erlang Prize for INFORMS Applied Probability Society
and 2008 ACM Sigmetrics Rising Star Award, and the Test of Time Paper
Awards at ACM Sigmetrics 2019 and 2020. He received the President of
India Gold Medal for his B.Tech. degree.

SEUNGPIL WON received the B.S. degree in
electrical and electronic engineering from Yonsei
University, South Korea, in 2015. He is currently
pursuing the Ph.D. degree in electrical and com-
puter engineering with Seoul National University,
South Korea. His research interests focus on the
areas that have benefitted from generative models,
including natural language processing and com-
puter vision.

VOLUME 9, 2021 54055

http://dx.doi.org/10.4000/brussels.806

