
MIT Open Access Articles

Theoretically Efficient Parallel Graph
Algorithms Can Be Fast and Scalable

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Dhulipala, Laxman, Blelloch, Guy E and Shun, Julian. 2021. "Theoretically Efficient
Parallel Graph Algorithms Can Be Fast and Scalable." ACM Transactions on Parallel Computing,
8 (1).

As Published: 10.1145/3434393

Publisher: Association for Computing Machinery (ACM)

Persistent URL: https://hdl.handle.net/1721.1/143885

Version: Author's final manuscript: final author's manuscript post peer review, without
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/143885
http://creativecommons.org/licenses/by-nc-sa/4.0/

Theoretically Efficient Parallel Graph Algorithms

Can Be Fast and Scalable
∗

LAXMAN DHULIPALA,MIT CSAIL

GUY E. BLELLOCH, Carnegie Mellon University

JULIAN SHUN,MIT CSAIL

There has been significant recent interest in parallel graph processing due to the need to quickly analyze

the large graphs available today. Many graph codes have been designed for distributed memory or external

memory. However, today even the largest publicly-available real-world graph (the Hyperlink Web graph with

over 3.5 billion vertices and 128 billion edges) can fit in the memory of a single commodity multicore server.

Nevertheless, most experimental work in the literature report results on much smaller graphs, and the ones

for the Hyperlink graph use distributed or external memory. Therefore, it is natural to ask whether we can

efficiently solve a broad class of graph problems on this graph in memory.

This paper shows that theoretically-efficient parallel graph algorithms can scale to the largest publicly-

available graphs using a single machine with a terabyte of RAM, processing them in minutes. We give

implementations of theoretically-efficient parallel algorithms for 20 important graph problems. We also

present the interfaces, optimizations, and graph processing techniques that we used in our implementations,

which were crucial in enabling us to process these large graphs quickly. We show that the running times of

our implementations outperform existing state-of-the-art implementations on the largest real-world graphs.

For many of the problems that we consider, this is the first time they have been solved on graphs at this scale.

We have made the implementations developed in this work publicly-available as the Graph Based Benchmark

Suite (GBBS).

CCS Concepts: • Computing methodologies→ Shared memory algorithms.

Additional Key Words and Phrases: parallel graph algorithms, parallel graph processing

1 INTRODUCTION

Today, the largest publicly-available graph, the Hyperlink Web graph, consists of over 3.5 billion

vertices and 128 billion edges [107]. This graph presents a significant computational challenge

for both distributed and shared memory systems. Indeed, very few algorithms have been applied

to this graph, and those that have often take hours to run [85, 99, 154], with the fastest times

requiring between 1–6 minutes using a supercomputer [145, 146]. In this paper, we show that a

wide range of fundamental graph problems can be solved quickly on this graph, often in minutes,

on a single commodity shared-memory machine with a terabyte of RAM.
1
For example, our 𝑘-core

implementation takes under 3.5 minutes on 72 cores, whereas Slota et al. [146] report a running

∗
A conference version of this paper appeared in the 30th Symposium on Parallelism in Algorithms and Architectures

(2018) [53]; in this version we give significantly more detail on the interface and algorithms.

1
These machines are roughly the size of a workstation and can be easily rented in the cloud (e.g., on Amazon EC2).

Authors’ addresses: Laxman Dhulipala, MIT CSAIL, USA, laxman@mit.edu; Guy E. Blelloch, Carnegie Mellon University,

USA, guyb@cs.cmu.edu; Julian Shun, MIT CSAIL, USA, jshun@mit.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2020 Association for Computing Machinery.

1539-9087/2020/1-ART $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article . Publication date: January 2020.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

2 Laxman Dhulipala, Guy E. Blelloch, and Julian Shun

Problem (1) (72h) (SU) Alg. Model Work Depth

Breadth-First Search (BFS) 576 8.44 68 – BF 𝑂 (𝑚) 𝑂 (diam(𝐺) log𝑛)
Integral-Weight SSSP (weighted BFS) 3770 58.1 64 [52] PW-BF 𝑂 (𝑚)† 𝑂 (diam(𝐺) log𝑛)‡
General-Weight SSSP (Bellman-Ford) 4010 59.4 67 [49] PW-BF 𝑂 (diam(𝐺)𝑚) 𝑂 (diam(𝐺) log𝑛)
Single-Source Widest Path (Bellman-Ford) 3210 48.4 66 [49] PW-BF 𝑂 (diam(𝐺)𝑚) 𝑂 (diam(𝐺) log𝑛)
Single-Source Betweenness Centrality (BC) 2260 37.1 60 [41] BF 𝑂 (𝑚) 𝑂 (diam(𝐺) log𝑛)
𝑂 (𝑘)-Spanner 2390 36.5 65 [110] BF 𝑂 (𝑚) 𝑂 (𝑘 log𝑛)‡
Low-Diameter Decomposition (LDD) 980 16.6 59 [111] BF 𝑂 (𝑚) 𝑂 (log2 𝑛)‡
Connectivity 1640 25.0 65 [140] BF 𝑂 (𝑚)† 𝑂 (log3 𝑛)‡
Spanning Forest 2420 35.8 67 [140] BF 𝑂 (𝑚)† 𝑂 (log3 𝑛)‡
Biconnectivity 9860 165 59 [148] FA-BF 𝑂 (𝑚)† 𝑂 (diam(𝐺) log𝑛 + log3 𝑛)‡
Strongly Connected Components (SCC)* 8130 185 43 [33] PW-BF 𝑂 (𝑚 log𝑛)† 𝑂 (diam(𝐺) log𝑛)‡
Minimum Spanning Forest (MSF) 9520 187 50 [155] PW-BF 𝑂 (𝑚 log𝑛) 𝑂 (log2 𝑛)‡
Maximal Independent Set (MIS) 2190 32.2 68 [32] FA-BF 𝑂 (𝑚) 𝑂 (log2 𝑛)‡
Maximal Matching (MM) 7150 108 66 [32] PW-BF 𝑂 (𝑚)† 𝑂 (log2𝑚)‡
Graph Coloring 8920 158 56 [77] FA-BF 𝑂 (𝑚) 𝑂 (log𝑛 + 𝐿 logΔ)
Approximate Set Cover 5320 90.4 58 [36] PW-BF 𝑂 (𝑚)† 𝑂 (log3 𝑛)‡
𝑘-core 8515 184 46 [52] FA-BF 𝑂 (𝑚)† 𝑂 (𝜌 log𝑛)‡
Approximate Densest Subgraph 3780 51.4 73 [18] FA-BF 𝑂 (𝑚) 𝑂 (log2 𝑛)
Triangle Counting (TC) — 1168 — [142] BF 𝑂 (𝑚3/2) 𝑂 (log𝑛)
PageRank Iteration 973 13.1 74 [42] FA-BF 𝑂 (𝑛 +𝑚) 𝑂 (log𝑛)

Table 1. Running times (in seconds) of our algorithms on the symmetrized Hyperlink2012 graph where (1) is the single-

thread time, (72h) is the 72-core time using hyper-threading, and (SU) is the parallel speedup. Theoretical bounds for the

algorithms and the variant of the binary-forking model used are shown in the last three columns. Section 3.3 provides more

details about the binary-forking model. We mark times that did not finish in 5 hours with —. *SCC was run on the directed

version of the graph.
†
denotes that a bound holds in expectation, and

‡
denotes that a bound holds with high probability.

We say that an algorithm has𝑂 (𝑓 (𝑛)) cost with high probability (whp) if it has𝑂 (𝑘 · 𝑓 (𝑛)) cost with probability at

least 1 − 1/𝑛𝑘 . We assume𝑚 = Ω (𝑛) .

time of about 6 minutes for approximate 𝑘-core on a supercomputer with over 8000 cores. They

also report that they can identify the largest connected component on this graph in 63 seconds,

whereas we can identify all connected components in just 25 seconds. Another recent result by

Stergiou et al. [147] solves connectivity on the Hyperlink 2012 graph in 341 seconds on a 1000

node cluster with 12000 cores and 128TB of RAM. Compared to this result, our implementation is

13.6x faster on a system with 128x less memory and 166x fewer cores. However, we note that they

are able to process a significantly larger private graph that we would not be able to fit into our

memory footprint. A more complete comparison between our work and existing work, including

both distributed and disk-based systems [51, 78, 85, 99, 154], is given in Section 8.

Importantly, all of our implementations have strong theoretical bounds on their work and depth.

There are several reasons that algorithms with good theoretical guarantees are desirable. For one,

they are robust as even adversarially-chosen inputs will not cause them to perform extremely

poorly. Furthermore, they can be designed on pen-and-paper by exploiting properties of the problem

instead of tailoring solutions to the particular dataset at hand. Theoretical guarantees also make

it likely that the algorithm will continue to perform well even if the underlying data changes.

Finally, careful implementations of algorithms that are nearly work-efficient can perform much

less work in practice than work-inefficient algorithms. This reduction in work often translates to

faster running times on the same number of cores [52]. We note that most running times that have

been reported in the literature on the Hyperlink Web graph use parallel algorithms that are not

theoretically-efficient.

In this paper, we present implementations of parallel algorithmswith strong theoretical bounds on

their work and depth for connectivity, biconnectivity, strongly connected components, low-diameter

decomposition, graph spanners, maximal independent set, maximal matching, graph coloring,

breadth-first search, single-source shortest paths, widest (bottleneck) path, betweenness centrality,

PageRank, spanning forest, minimum spanning forest, 𝑘-core decomposition, approximate set cover,

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article . Publication date: January 2020.

3

approximate densest subgraph, and triangle counting. We describe the programming interfaces,

techniques, and optimizations used to achieve good performance on graphs with billions of vertices

and hundreds of billions of edges and share experimental results for the Hyperlink 2012 and

Hyperlink 2014 Web crawls, the largest and second largest publicly-available graphs, as well as

several smaller real-world graphs at various scales. Some of the algorithms we describe are based

on previous results from Ligra, Ligra+, and Julienne [52, 136, 141], and other papers on efficient

parallel graph algorithms [32, 77, 142]. However, most existing implementations were changed

significantly in order to be more memory efficient. Several algorithm implementations for problems

like strongly connected components, minimum spanning forest, and biconnectivity are new, and

required implementation techniques to scale that we believe are of independent interest. We also

had to extend the compressed representation from Ligra+ [141] to ensure that our graph primitives

for mapping, filtering, reducing and packing the neighbors of a vertex were theoretically-efficient.

We note that using compression techniques is crucial for representing the symmetrized Hyperlink

2012 graph in 1TB of RAM, as storing this graph in an uncompressed format would require over

900GB to store the edges alone, whereas the graph requires 330GB in our compressed format (less

than 1.5 bytes per edge). We show the running times of our algorithms on the Hyperlink 2012 graph

as well as their work and depth bounds in Table 1. To make it easy to build upon or compare to

our work in the future, we describe the Graph Based Benchmark Suite (GBBS), a benchmark suite

containing our problems with clear I/O specifications, which we have made publicly-available.
2

We present an experimental evaluation of all of our implementations, and in almost all cases, the

numbers we report are faster than any previous performance numbers for any machines, even much

larger supercomputers. We are also able to apply our algorithms to the largest publicly-available

graph, in many cases for the first time in the literature, using a reasonably modest machine. Most

importantly, our implementations are based on reasonably simple algorithms with strong bounds

on their work and depth. We believe that our implementations are likely to scale to larger graphs

and lead to efficient algorithms for related problems.

2 RELATEDWORK

Parallel Graph Algorithms. Parallel graph algorithms have received significant attention since

the start of parallel computing, and many elegant algorithms with good theoretical bounds have

been developed over the decades (e.g., [5, 25, 45, 63, 84, 89, 98, 109, 111, 112, 121, 125, 135, 148]). A

major goal in parallel graph algorithm design is to find work-efficient algorithms with polylogarith-

mic depth. While many suspect that work-efficient algorithms may not exist for all parallelizable

graph problems, as inefficiency may be inevitable for problems that depend on transitive closure,

many problems that are of practical importance do admit work-efficient algorithms [88]. For these

problems, which include connectivity, biconnectivity, minimum spanning forest, maximal indepen-

dent set, maximal matching, and triangle counting, giving theoretically-efficient implementations

that are simple and practical is important, as the amount of parallelism available on modern sys-

tems is still modest enough that reducing the amount of work done is critical for achieving good

performance. Aside from intellectual curiosity, investigating whether theoretically-efficient graph

algorithms also perform well in practice is important, as theoretically-efficient algorithms are less

vulnerable to adversarial inputs than ad-hoc algorithms that happen to work well in practice.

Unfortunately, some problems that are not known to admit work-efficient parallel algorithms

due to the transitive-closure bottleneck [88], such as strongly connected components (SCC) and

single-source shortest paths (SSSP) are still important in practice. One method for circumventing

the bottleneck is to give work-efficient algorithms for these problems that run in depth proportional

2
https://github.com/ParAlg/gbbs

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article . Publication date: January 2020.

https://github.com/ParAlg/gbbs

4 Laxman Dhulipala, Guy E. Blelloch, and Julian Shun

to the diameter of the graph—as real-world graphs have low diameter, and theoretical models of

real-world graphs predict a logarithmic diameter, these algorithms offer theoretical guarantees in

practice [33, 131]. Other problems, like 𝑘-core are P-complete [7], which rules out polylogarithmic-

depth algorithms for them unless P = NC [73]. However, even 𝑘-core admits an algorithm with

strong theoretical guarantees on its work that is efficient in practice [52].

Parallel Graph Processing Frameworks.Motivated by the need to process very large graphs,

there have been many graph processing frameworks developed in the literature (e.g., [71, 97, 101,

115, 136] among many others). We refer the reader to [105, 152] for surveys of existing frameworks.

Several recent graph processing systems evaluate the scalability of their implementations by solving

problems on massive graphs [52, 85, 99, 145, 147, 154]. All of these systems report running times

either on the Hyperlink 2012 graph or Hyperlink 2014 graphs, two web crawls released by the

WebDataCommons that are the largest and second largest publicly-available graphs respectively.

We describe these recent systems and give a detailed comparison of how our implementations

compare to these existing solutions in Section 8.

Benchmarking Parallel Graph Algorithms. There are a surprising number of existing bench-

marks of parallel graph algorithms. SSCA [15] specifies four graph kernels, which include generating

graphs in adjacency list format, subgraph extraction, and graph clustering. The Problem Based

Benchmark Suite (PBBS) [139] is a general benchmark of parallel algorithms that includes 6 prob-

lems on graphs: BFS, spanning forest, minimum spanning forest, maximal independent set, maximal

matching, and graph separators. The PBBS benchmarks are problem-based in that they are defined

only in terms of the input and output without any specification of the algorithm used to solve the

problem. We follow the style of PBBS in this paper of defining the input and output requirements

for each problem. The Graph Algorithm Platform (GAP) Benchmark Suite [22] specifies 6 kernels:

BFS, SSSP, PageRank, connectivity, betweenness centrality, and triangle counting.

Several recent benchmarks characterize the architectural properties of parallel graph algorithms.

GraphBIG [113] describes 12 applications, including several problems that we consider, like 𝑘-

core and graph coloring (using the Jones-Plassmann algorithm), but also problems like depth-

first search, which are difficult to parallelize, as well as dynamic graph operations. CRONO [4]

implements 10 graph algorithms, including all-pairs shortest paths, exact betweenness centrality,

traveling salesman, and depth-first search. LDBC [81] is an industry-driven benchmark that selects

6 algorithms that are considered representative of graph processing including BFS, and several

algorithms based on label propagation.

Unfortunately, all of the existing graph algorithm benchmarks we are aware of restrict their

evaluation to small graphs, often on the order of tens or hundreds of millions of edges, with

the largest graphs in the benchmarks having about two billion edges. As real-world graphs are

frequently several orders of magnitude larger than this, evaluation on such small graphs makes it

hard to judge whether the algorithms or results from a benchmark scale to terabyte-scale graphs.

This paper provides a problem-based benchmark in the style of PBBS for fundamental graph

problems, and evaluates theoretically-efficient parallel algorithms for these problems on the largest

real-world graphs, which contain hundreds of billions of edges.

3 PRELIMINARIES

3.1 Graph Notation

We denote an unweighted graph by𝐺 (𝑉 , 𝐸), where 𝑉 is the set of vertices and 𝐸 is the set of edges

in the graph. A weighted graph is denoted by 𝐺 = (𝑉 , 𝐸,𝑤), where𝑤 is a function which maps an

edge to a real value (its weight). The number of vertices in a graph is 𝑛 = |𝑉 |, and the number of

edges is𝑚 = |𝐸 |. Vertices are assumed to be indexed from 0 to 𝑛 − 1. We call these unique integer

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article . Publication date: January 2020.

5

identifiers for vertices vertex IDs. For undirected graphs we use 𝑁 (𝑣) to denote the neighbors of
vertex 𝑣 and 𝑑 (𝑣) to denote its degree. For directed graphs, we use 𝑁 − (𝑣) and 𝑁 + (𝑣) to denote the

in and out-neighbors of a vertex 𝑣 , and 𝑑− (𝑣) and 𝑑+ (𝑣) to denote its in and out-degree, respectively.

We use dist𝐺 (𝑢, 𝑣) to refer to the shortest path distance between 𝑢 and 𝑣 in 𝐺 . We use diam(𝐺) to
refer to the diameter of the graph, or the longest shortest path distance between any vertex 𝑠 and

any vertex 𝑣 reachable from 𝑠 . Given an undirected graph 𝐺 = (𝑉 , 𝐸) the density of a set 𝑆 ⊆ 𝑉 , or
D(𝑆), is equal to |𝐸 (𝑆) ||𝑆 | where 𝐸 (𝑆) are the edges in the induced subgraph on 𝑆 . Δ is used to denote

the maximum degree of the graph. We assume that there are no self-edges or duplicate edges in

the graph. We refer to graphs stored as a list of edges as being stored in the edgelist format and

the compressed-sparse column and compressed-sparse row formats as CSC and CSR respectively.

3.2 Atomic Primitives

We use three common atomic primitives in our algorithms and implementations: testAndSet

(TS), fetchAndAdd (FA), and priorityWrite (PW). A testAndSet(&𝑥) checks if 𝑥 is false,

and if so atomically sets it to true and returns true; otherwise it returns false. A fetchAndAdd

(&𝑥) atomically returns the current value of 𝑥 and then increments 𝑥 . A priorityWrite(&𝑥, 𝑣, 𝑝)
atomically compares 𝑣 with the current value of 𝑥 using the priority function 𝑝 , and if 𝑣 has higher

priority than the value of 𝑥 according to 𝑝 it sets 𝑥 to 𝑣 and returns true; otherwise it returns false.

3.3 Parallel Model and Cost

In the analysis of algorithms in this paper we use a work-depth model which is closely related to

the PRAM but better models current machines and programming paradigms that are asynchronous

and allow dynamic forking. We can simulate this model on the CRCW PRAM equipped with the

same operations with an additional 𝑂 (log∗ 𝑛) factor in the depth whp due to load-balancing [31].

Furthermore, a PRAM algorithm using 𝑃 processors and𝑇 time can be simulated in our model with

𝑃𝑇 work and 𝑇 depth.

TheBinary-ForkingModel [28, 31] consists of a set of threads that share an unboundedmemory.

Each thread is basically equivalent to a Random Access Machine—it works on a program stored in

memory, has a constant number of registers, and has standard RAM instructions (including an end
to finish the computation). The binary-forking model extends the RAM with a fork instruction
that forks 2 new child threads. Each child thread receives a unique integer in the range [1, 2] in
its first register and otherwise has the identical state as the parent, which has a 0 in that register.

They all start by running the next instruction. When a thread performs a fork, it is suspended
until both of its children terminate (execute an end instruction). A computation starts with a single

root thread and finishes when that root thread ends. Processes can perform reads and writes to the

shared memory, as well as the testAndSet instruction. This model supports what is often referred

to as nested parallelism. If the root thread never does a fork, it is a standard sequential program.

A computation can be viewed as a series-parallel DAG in which each instruction is a vertex,

sequential instructions are composed in series, and the forked threads are composed in parallel.

The work of a computation is the number of vertices and the depth is the length of the longest

path in the DAG. As is standard with the RAM model, we assume that the memory locations and

registers have at most 𝑂 (log𝑀) bits, where𝑀 is the total size of the memory used.

Model Variants. We augment the binary-forking model described above with two atomic instruc-

tions that are used by our algorithms: fetchAndAdd and priorityWrite and discuss the model

with these instruction as the FA-BF, and PW-BF variants of the binary-forking model, respectively.

We abbreviate the basic binary-forking model with only the testAndSet instruction as the BF

model. Note that the basic binary-forking model includes a testAndSet, as this instruction is

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article . Publication date: January 2020.

6 Laxman Dhulipala, Guy E. Blelloch, and Julian Shun

BucketingVertexSubset

Section 4.2 Section 4.3 Section 4.4 Section 4.5

GraphVertex

ParlayLib

Runtime parallel scheduler (e.g., Cilk, OpenMP, TBB, Homegrown)

parallel primitives and datatypes, e.g., sequences, map,
reduce, prefix-sum (scan), random shuffle, sorting, and others

represent subsets
of vertices

primitives on
incident edges,
e.g., map, reduce,
filter, intersect, ...

dynamic mapping
from IDs to set of
ordered buckets

graph parallel
operators, e.g.,
edgeMap, graph
contraction, ...

Graph Formats

Section 4.1

low-level access to CSR graph formats (uncompressed and
compressed graph representations)

Fig. 1. System architecture of GBBS. The core interfaces are the vertexSubset (Section 4.2), bucketing (Sec-

tion 4.3), vertex (Section 4.4), and graph interfaces (Section 4.5). These interfaces utilize parallel primitives and

routines from ParlayLib [27]. Parallelism is implemented using a parallel runtime system—Cilk, OpenMP, TBB,

or a homegrown scheduler based on the Arora-Blumofe-Plaxton deque [10] that we implemented ourselves—

and can be swapped using a command line argument. The vertex and graph interfaces use a compression

library that mediates access to the underlying graph, which can either be compressed or uncompressed (see

Section 4.1).

necessary to implement joining tasks in a parallel schedulers (see for example [9, 38]), and since all

modern multicore architectures include the testAndSet instruction.

3.4 Parallel Primitives

The following parallel procedures are used throughout the paper. Amonoid over a type E is an

object consisting of an associative function ⊕ : E × E → E, and an identity element ⊥ : E. A

monoid is specified as a pair, (⊥, ⊕). Scan takes as input an array 𝐴 of length 𝑛, and a monoid

(⊥, ⊕) and returns the array (⊥,⊥ ⊕𝐴[0],⊥ ⊕𝐴[0] ⊕𝐴[1], . . . ,⊥ ⊕𝑛−2𝑖=0 𝐴[𝑖]) as well as the overall
sum, ⊥ ⊕𝑛−1𝑖=0 𝐴[𝑖]. Scan can be done in 𝑂 (𝑛) work and 𝑂 (log𝑛) depth (assuming ⊕ takes 𝑂 (1)
work) [84]. Reduce takes an array 𝐴 and a monoid (⊥, ⊕) and returns the sum of the elements in

𝐴 with respect to the monoid, ⊥ ⊕𝑛−1𝑖=0 𝐴[𝑖]. Filter takes an array 𝐴 and a predicate 𝑓 and returns

a new array containing 𝑎 ∈ 𝐴 for which 𝑓 (𝑎) is true, in the same order as in 𝐴. Reduce and filter

can both be done in 𝑂 (𝑛) work and 𝑂 (log𝑛) depth (assuming ⊕ and 𝑓 take 𝑂 (1) work). Finally,
the PointerJump primitive takes an array 𝑃 of parent pointers which represent a directed rooted

forest (i.e., 𝑃 [𝑣] is the parent of vertex 𝑣) and returns an array 𝑅 where 𝑅 [𝑣] is the root of the
directed tree containing 𝑣 . This primitive can be implemented in 𝑂 (𝑛) work, and 𝑂 (log𝑛) depth
whp in the BF model [31].

4 INTERFACE

In this section we describe the high-level graph processing interface used by our algorithm imple-

mentations in GBBS, and explain how the interface is integrated into our overall system architecture.

The interface is written in C++ and extends the Ligra, Ligra+, and Julienne frameworks [52, 136, 141]

with additional functional primitives over graphs and vertices that are parallel by default. In what

follows, we provide descriptions of these functional primitives, as well as the parallel cost bounds

obtained by our implementations.

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article . Publication date: January 2020.

7

Type Name Definition Found In

unit An empty tuple indicating a trivial value (similar to void in languages like C) —

E option Either a value of type E (Some(𝑒 : E)) or no value (None) —

E monoid A pair of an identity element, ⊥ : E, and an associative function, ⊕ : E × E→ E Section 3.4

E sequence A parallel sequence containing values of type E Section 3.4

A→ B A function with arguments of type A with results of type B —

vtxid A vertex ID (unique integer identifiers for vertices) Section 3.1

vertexSubset Data type representing a subset of vertex IDs Section 4.2

E vertexSubset An augmented vertexSubset (each vertex ID has an associated value of type E) Section 4.2

vset Abbreviation for a vertexSubset Section 4.2

identifier A unique integer representing a bucketed object Section 4.3

bktid A unique integer for each bucket Section 4.3

bktorder The order to traverse buckets in (increasing or decreasing) Section 4.3

bktdest Type representing which bucket an identifier is moving to Section 4.3

edge A tuple representing an edge in the graph —

nghlist Data type representing the neighbors of a vertex Section 4.4

graph Data type representing a collection of vertices and edges Section 4.5

Table 2. Type names used in the interface, and their definitions. The third column provides a reference to

where the type is defined in the text (if applicable).

System Overview. The GBBS library, which underlies our benchmark algorithm implementations

is built as a number of layers, which we illustrate in Figure 1.
3
We use a shared-memory approach

to parallel graph processing in which the entire graph is stored in the main memory of a single

multicoremachine. Our codes exploit nested parallelism using scheduler-agnostic parallel primitives,

such as fork-join and parallel-for loops. Thus, they can easily be compiled to use different parallel

runtimes such as Cilk, OpenMP, TBB, and also a custom work-stealing scheduler implemented by

the authors [27]. Theoretically, our algorithms are implemented and analyzed in the binary-forking

model [31] (see Section 3.3). Our interface makes use of several new types which are defined in

Table 2. We also define these types when they are first used in the text.

4.1 Graph Representations

We first cover the different types of graph representations used in the library. The basic graph

representation stores graphs in the compressed sparse row format (described below). To efficiently

store very large graphs, we also utilize a compressed graph format which encodes sorted neighbor

lists using difference encoding, which we describe below. Finally, our library also supports arbitrary

edge weights, and provides functionality for compressing integer edge weights. As described in

Section 3, in this paper, we deal with graphs where vertices are identified by unique integers

between 0 to 𝑛 − 1. We use the vtxid type to refer to these integer vertex IDs.

Compressed Graphs. Graphs in GBBS are stored in the compressed sparse row (CSR) format.

CSR stores two arrays, 𝐼 and 𝐴, where the vertices are in the range [0, 𝑛 − 1] and incident edges of

a vertex 𝑣 are stored in {𝐴[𝐼 [𝑣]], . . . , 𝐴[𝐼 [𝑣 + 1] − 1]} (with a special case for vertex 𝑛 − 1). The
uncompressed format in GBBS is equivalent to the CSR format. The format assumes that the edges

incident to a vertex are sorted by the neighboring vertex ID. GBBS also supports the compressed
graph formats from the Ligra+ framework [141]. Specifically, we provide support for graphs where

neighbor lists are encoded using byte codes and a parallel generalization of byte codes, which we

describe next.

In the byte format, we store a vertex’s neighbor list by difference encoding consecutive vertex

IDs, with the first difference encoded with respect to the source vertex ID. Decoding is done by

3
A brief version of this interface was presented by the authors and their collaborators in [59].

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article . Publication date: January 2020.

8 Laxman Dhulipala, Guy E. Blelloch, and Julian Shun

VertexSubset Interface

size : unit → int
vertexMap : (vtxid→ unit) → unit
vertexMapVal : (vtxid→ E) → E vset
vertexFilter : (vtxid→ bool) → vset
addToSubset : (vset ∗ vtxid sequence) → unit

Work Depth

}
amortized

Fig. 2. The core primitives in the vertexSubset interface used by GBBS, including the type definition of each

primitive and the cost bounds.We use vset as an abbreviation for vertexSubset in the figure. A vertexSubset is a

representation of a set of vertex IDs, which are unique integer identifiers for vertices. If the input vertexSubset

is augmented, the user-defined functions supplied to vertexMap and vertexFilter take a pair of the vertex ID

and augmented value as input, and the addToSubset primitive takes a sequence of 𝑣𝑒𝑟𝑡𝑒𝑥𝐼𝐷 and augmented

value pairs.

sequentially uncompressing each difference, and summing the differences into a running sum

which gives the vertex ID of the next neighbor. As this process is sequential, graph algorithms

using the byte format that map over the neighbors of a vertex will have poor depth bounds.

We enable parallelism using the parallel-byte format from Ligra+ [141]. This format breaks

the neighbors of a high-degree vertex into blocks, where each block contains a constant number

of neighbors. Each block is difference encoded with respect to the source, and the format stores

the blocks in a neighbor list in sorted order. As each block can have a different size, it also stores

offsets that point to the start of each block. Using the parallel-byte format, the neighbor vertex

IDs of a high-degree vertex can then be decoded in parallel over the blocks. We refer the reader to

Ligra+ [141] for a detailed discussion of the idea. We provide many parallel primitives for processing

neighbor lists compressed in the parallel-byte format in Section 7.4.

Weighted Graphs. The graph and vertex data types used in GBBS are generic over the weight

type of the graph. Graphs with arbitrary edge weights can be represented by simply changing

a template argument to the vertex and graph data types. We treat unweighted graphs as graphs

weighted by an implicit null (0-byte) weight.

Both the byte and parallel-byte schemes above provide support for weighted graphs. If the

graph weight type is E, the encoder simply interleaves the weighted elements of type E with the

differences generated by the byte or parallel byte code. Additionally, GBBS supports compressing

integer weights using variable-length coding, similar to Ligra+ [141].

4.2 VertexSubset Interface

Data Types. One of the primary data types used in GBBS is the vertexSubset data type, which

represents a subset of vertices in the graph. Conceptually, a vertexSubset can either be sparse

(represented as a collection of vertex IDs) or dense (represented as a boolean array or bit-vector

of length 𝑛). A T vertexSubset is a generic vertexSubset, where each vertex is augmented with a

value of type T.

Primitives. We use four primitives defined on vertexSubset, which we illustrate in Figure 2.

vertexMap takes a vertexSubset and applies a user-defined function 𝑓 over each vertex. This

primitive makes it easy to apply user-defined logic over vertices in a subset in parallel without

worrying about the state of the underlying vertexSubset (i.e., whether it is sparse or dense). We

also provide a specialized version of the vertexMap primitive, vertexMapVal through which the

user can create an augmented vertexSubset. vertexFilter takes a vertexSubset and a user-defined

predicate 𝑃 and keeps only vertices satisfying 𝑃 in the output vertexSubset. Finally, addToSubset

takes a vertexSubset and a sequence of unique vertex identifiers not already contained in the subset,

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article . Publication date: January 2020.

9

Bucketing Interface

makeBuckets : int ∗ (identifier → bktid)
∗ bktorder → buckets

getBucket : (bktid ∗ bktid) → bktdest
nextBucket : buckets → (bktid, identifier sequence)
updateBuckets : buckets ∗ (identifier, bktdest) sequence

→ unit

Work Depth

} presented in
Theorem 4.1

Fig. 3. The bucketing interface used by GBBS, including the type definition of each primitive and the cost

bounds. The bucketing structure represents a dynamic mapping between a set of identifiers to a set of buckets.

The total number of identifiers is denoted by 𝑛. † denotes that a bound holds in expectation, and
‡
denotes

that a bound holds whp. We define the semantics of each operation in the text below.

and adds these vertices to the subset. Note that this function mutates the supplied vertexSubset.

This primitive is implemented in𝑂 (1) amortized work by representing a sparse vertexSubset using

a resizable array. The worst case depth of the primitive is𝑂 (log𝑛) since the primitive scans at most

𝑂 (𝑛) vertex IDs in parallel.

4.3 Bucketing Interface

We use the bucketing interface and data structure from Julienne [52], which represents a dynamic

mapping from identifiers to buckets. Each bucket is represented as a vertexSubset, and the interface

allows vertices to dynamically be moved through different buckets as priorities change. The

interface enables priority-based graph algorithms, including integral-weight shortest paths, 𝑘-core

decomposition, and others [52]. Algorithms using the interface iteratively extract the highest

priority bucket, potentially update incident vertex priorities, and repeat until all buckets are empty.

The interface is shown in Figure 3. The interface uses several types that we now define. An

identifier is a unique integer representing a bucketed object. An identifier is mapped to a bktid,

a unique integer for each bucket. The order that buckets are traversed in is given by the bktorder

type. bktdest is an opaque type representing where an identifier is moving inside of the structure.

Once the structure is created, an object of type buckets is returned to the user.

The structure is created by calling makeBuckets and providing 𝑛, the number of identifiers, 𝐷 , a

function which maps identifiers to bktids and 𝑂 , a bktorder. Initially, some identifiers may not be

mapped to a bucket, so we add nullbkt, a special bktid which lets 𝐷 indicate this. Buckets in the

structure are accessed monotonically in the order specified by 𝑂 . After the structure is created, the

nextBucket primitive is used to access the next non-empty bucket in non-decreasing (respectively,

non-increasing) order. The getBucket primitive is how users indicate that an identifier is moving

buckets. It requires supplying both the current bktid and next bktid for the identifier that is moving

buckets, and returns an element with the bktdest type. Lastly, the updateBuckets primitive updates

the bktids for multiple identifiers by supplying the bucket structure and a sequence of identifier

and bktdest pairs.

The costs for using the bucket structure can be summarized by the following theorem from [52]:

Theorem 4.1. When there are𝑛 identifiers,𝑇 total buckets,𝐾 calls to updateBuckets, each of which
updates a set 𝑆𝑖 of identifiers, and 𝐿 calls to nextBucket, parallel bucketing takes𝑂 (𝑛 +𝑇 +∑𝐾

𝑖=0 |𝑆𝑖 |)
expected work and 𝑂 ((𝐾 + 𝐿) log𝑛) depth whp.

We refer to the Julienne paper [52] for more details about the bucketing interface and its

implementation. We note that the implementation is optimized for the case where only a small

number of buckets are processed, which is typically the case in practice.

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article . Publication date: January 2020.

10 Laxman Dhulipala, Guy E. Blelloch, and Julian Shun

Vertex Interface

Vertex-Vertex
operators:

intersection : (nghlist ∗ nghlist) → int
union : (nghlist ∗ nghlist) → int
difference : (nghlist ∗ nghlist) → int

Neighborhood
operators:

map : (edge → unit) → unit
reduce : (edge → R) ∗ R monoid → R
scan : (edge → R) ∗ R monoid → R
count : (edge → bool) → int
filter : (edge → bool) → edge sequence
pack : (edge → bool) → unit
iterate : (edge → bool) → unit
i-th : int → edge
degree : unit → int
getNeighbors : unit → nghlist

}
}
}

Work Depth

Fig. 4. The core vertex interface used by GBBS, including the type definition of each primitive and the

cost bounds for our implementations on uncompressed graphs. Note that for directed graphs, each of the

neighborhood operators has two versions, one for the in-neighbors and one for the out-neighbors of the vertex.

The cost bounds for the primitives on compressed graphs are identical assuming the compression block size

is 𝑂 (log𝑛) (note that for compressed graphs, 𝑖-th has work and depth proportional to the compression block

size of the graph in the worst case). The cost bounds shown here assume that the user-defined functions

supplied to map, reduce, scan, count, filter, pack, and iterate all cost 𝑂 (1) work to evaluate. 𝑑𝑖𝑡 is the

number of times the function supplied to iterate returns true. nghlist is an abstract type for the neighbors of

a vertex, and is used by the vertex-vertex operators. The edge type is a triple (𝑢, 𝑣,𝑤𝑢𝑣) where the first two
entries are the ids of the endpoints, and the last entry is the weight of the edge. 𝑙 and ℎ are the degrees of the

smaller and larger degree vertices supplied to a vertex-vertex operator, respectively.

4.4 Vertex Interface

GBBS provides vertex data types for both symmetric and asymmetric vertices, used for undirected

and directed graphs, respectively. The vertex data type interface (see Figure 4) provides functional

primitives over vertex neighborhoods, such as map, reduce, scan, count (a special case of reduce

over the (0, +) monoid where the map function is a boolean function), as well as primitives to

extract a subset of the neighborhood satisfying a predicate (filter) and an internal primitive to

mutate the vertex neighborhood and delete edges that do not satisfy a given predicate (pack).

Since pack mutates the underlying vertex neighborhood in the graph, which requires updating the

number of edges remaining in the graph, we do not expose it to the user, and instead provide APIs

to pack a graph in-place using the packGraph and (ngh/src)Pack primitives described later. The

interface also provides a sequential iterator that takes as input a function 𝑓 from edges to booleans,

and applies 𝑓 to each successive neighbor, terminating once 𝑓 returns false. Note that for directed

graphs, each of the neighborhood operators has two versions, one for the in-neighbors and one for

the out-neighbors of the vertex.

Finally, the interface provides vertex-vertex operators for computing the intersection, union,

or difference between the set of neighbors of two vertices. We also include natural generalizations

of each vertex-vertex operator that take a user-defined function 𝑓 and apply it to neighbor found in

the intersection (union or difference). Note that the vertex-vertex operators take the abstract nghlist

type, which makes it easy to perform more complex tasks such as intersecting the in-neighbors of

one vertex and the out-neighbors of a different vertex.

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article . Publication date: January 2020.

11

Graph Interface

VertexSubset
operators:

edgeMap : vset ∗ (edge → bool)
∗ (vtxid → bool) → vset

edgeMapVal : vset ∗ (edge → O option)
∗ (vtxid → bool) → O vset

srcReduce : vset ∗ (edge → O) ∗ O monoid
∗ (vtxid → bool) → O vset

srcCount : vset ∗ (edge → bool)
∗ (vtxid → bool) → int vset

srcPack : vset ∗ (edge → bool)
∗ (vtxid → bool) → int vset

nghReduce : vset ∗ (edge → R) ∗ R monoid
∗ (vtxid → bool)
∗ (R → O option) → O vset

nghCount : vset ∗ (edge → bool)
∗ (vtxid → bool)
∗ (int → O option) → O vset

Graph
operators:

numVertices : unit → int
numEdges : unit → int
getVertex : int → vertex
filterGraph : (edge → bool) → graph
packGraph : (edge → bool) → unit
extractEdges : (edge → bool)

→ edge sequence
contractGraph : int sequence → graph

Work Depth

}

}

}
}
}

Fig. 5. The core graph interface used by GBBS, including the type definition of each primitive and the

cost bounds for our implementations on uncompressed graphs. vset is an abbreviation for vertexSubset

when providing a type definition. Note that for directed graphs, the interface provides two versions of each

vertexSubset operator, one for the in-neighbors and one for the out-neighbors of the vertex. The edge type is

a triple (𝑢, 𝑣,𝑤𝑢𝑣) where the first two entries are the ids of the endpoints, and the last entry is the weight of

the edge. The vertexSubset operators can take both unaugmented and augmented vertexSubsets as input, but

ignore the augmented values in the input.𝑈 is the vertexSubset supplied as input to a vertexSubset operator.

For the src-based primitives,𝑈 ′ ⊆ 𝑈 is the set of vertices that are matched by the condition function (see the

text below). The cost bounds for the primitives on compressed graphs are identical assuming the compression

block size is 𝑂 (log𝑛). The cost bounds shown here assume that the user-defined functions supplied to the

vertexSubset operators all cost 𝑂 (1) work to evaluate.
†
denotes that a bound holds in expectation, and

‡

denotes that a bound holds whp.

The cost bounds for the interface are derived by applying known bounds for efficient sequence

primitives (see Section 3). We provide additional details about the implementations of our com-

pressed implementations in Section 7.4.

4.5 Graph Interface

GBBS provides graph data types for both symmetric and asymmetric graphs. Distinguishing between
these graph types is important for statically enforcing arguments to problems and routines that

require a symmetric input (for example, it does not make sense to call connectivity, maximal

independent set, or biconnectivity on a directed input). Aside from standard functions to query the

number of vertices and edges, the core graph interface consists of two types of operators: (i) graph

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article . Publication date: January 2020.

12 Laxman Dhulipala, Guy E. Blelloch, and Julian Shun

operators, which provide information about a graph and enable users to perform graph-parallel

operations, and (ii) vertexSubset operators, which take as input a vertexSubset, apply user-defined

functions on edges incident to the vertexSubset in the graph in parallel and return vertexSubsets

as outputs.

4.5.1 Graph Operators. The graph operators, their types, and the cost bounds provided by our

implementation are shown in the top half of Figure 5. The interface provides primitives for querying

the number of vertices and edges in the graph (numVertices and numEdges), and for fetching the

vertex object for the 𝑖-th vertex (getVertex).

filterGraph. The filterGraph primitive takes as input a graph𝐺 (𝑉 , 𝐸), and a boolean function

𝑃 over edges specifying edges to preserve. filterGraph removes all edges in the graph where

𝑃 (𝑢, 𝑣,𝑤𝑢𝑣) = false, and returns a new graph containing only edges where 𝑃 (𝑢, 𝑣,𝑤𝑢𝑣) = true. The

filterGraph primitive is useful for our triangle counting algorithm, which requires directing the

edges of an undirected graph to reduce overall work.

packGraph. The interface also provides a primitive over edges called packGraph which operates

similarly to filterGraph, but works in-place and mutates the underlying graph. packGraph takes

as input a graph 𝐺 (𝑉 , 𝐸), and a boolean function 𝑃 over the edges specifying edges to preserve.

packGraphmutates the input graph to remove all edges that do not satisfy the predicate. This prim-

itive is used by the biconnectivity (Algorithm 9), strongly connected components (Algorithm 11),

maximal matching (Algorithm 13), and minimum spanning forest (Algorithm 10) algorithms studied

in this paper.

extractEdges. The extractEdges primitive takes as input a graph 𝐺 (𝑉 , 𝐸), and a boolean

function 𝑃 over edges which specifies edges to extract, and returns an array containing all edges

where 𝑃 (𝑢, 𝑣,𝑤𝑢𝑣) = true. This primitive is useful in algorithms studied in this paper such as

maximal matching (Algorithm 13) and minimum spanning forest (Algorithm 10) where it is used to

extract subsets of edges from a CSR representation of the graph, which are then processed using

an algorithm operating over edgelists (edges tuples stored in an array).

contractGraph. Lastly, the contractGraph primitive takes a graph and an integer cluster

labeling 𝐿, i.e., a mapping from vertices to cluster ids, and returns the graph 𝐺 ′ = (𝑉 ′, 𝐸 ′) where
𝐸 ′ = {(𝐿(𝑢), 𝐿(𝑣) | (𝑢, 𝑣) ∈ 𝐸}, with any duplicate edges or self-loops removed. 𝑉 ′ is 𝑉 with

all vertices with no incident edges in 𝐸 ′ removed. This primitive is used by the connectivity

(Algorithm 7) and spanning forest (Algorithm 8) algorithms studied in this paper. The primitive

can naturally be generalized to weighted graphs by specifying how to reweight parallel edges (e.g.,

by averaging, or taking a minimum or maximum), although this generalization is not necessary for

the algorithms studied in this paper.

Implementations and Cost Bounds. filterGraph, packGraph, and extractEdges are imple-

mented by invoking filter and pack on each vertex in the graph in parallel. The overall work and

depth comes from the fact that every edge is processed once by each endpoint, and since all vertices

are filtered (packed) in parallel. contractGraph can be implemented in 𝑂 (𝑛 +𝑚) expected work

and𝑂 (log𝑛) depth whp in the BFmodel using semisorting [31, 74]. In practice, contractGraph is

implemented using parallel hashing [137], and we refer the reader to [140] for the implementation

details.

4.5.2 VertexSubset Operators. The second part of the graph interface consists of a set of operators

over vertexSubsets. At a high level, each of these primitives take as input a vertexSubset, apply a

given user-defined function over the edges neighboring the vertexSubset, and output a vertexSubset.

The primitives include the edgeMap primitive from Ligra, as well as several extensions and

generalizations of the edgeMap primitive.

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article . Publication date: January 2020.

13

1

2

1

2

3

srcCount nghCount

(1) (2) (3)

Fig. 6. Illustration of srcCount and nghCount primitives. The input is illustrated in Panel (1), and consists of

a graph and a vertexSubset, with vertices in the vertexSubset illustrated in green. The green edges are edges

for which the user-defined predicate, 𝑃 , returns true. Panel (2) and Panel (3) show the results of applying

srcCount and nghCount, respectively. In Panel (2), the cond function 𝐶 returns true for both vertices in the

input vertexSubset. In Panel (3), the condition function 𝐶 only returns true for 𝑣2, 𝑣4, and 𝑣5, and false for

𝑣0, 𝑣1, 𝑣3, and 𝑣6. The output is an augmented int vertexSubset, illustrated in red, where each source (neighbor)

vertex 𝑣 s.t. 𝐶 (𝑣) = true has an augmented value containing the number of incident edges where 𝑃 returns

true.

edgeMap. The edgeMap primitive takes as input a graph 𝐺 (𝑉 , 𝐸), a vertexSubset 𝑈 , and two

boolean functions 𝐹 and 𝐶 . edgeMap applies 𝐹 to (𝑢, 𝑣) ∈ 𝐸 such that 𝑢 ∈ 𝑈 and 𝐶 (𝑣) = true (call

this subset of edges 𝐸𝑎), and returns a vertexSubset𝑈 ′ where 𝑢 ∈ 𝑈 ′ if and only if (𝑢, 𝑣) ∈ 𝐸𝑎 and
𝐹 (𝑢, 𝑣) = true. Our interface defines the edgeMap primitive identically to Ligra. This primitive is

used in many of the algorithms studied in this paper.

edgeMapData. The edgeMapData primitive works similarly to edgeMap, but returns an aug-

mented vertexSubset. Like edgeMap, it takes as input a graph𝐺 (𝑉 , 𝐸), a vertexSubset𝑈 , a function

𝐹 returning a value of type R option, and a boolean function𝐶 . edgeMapData applies 𝐹 to (𝑢, 𝑣) ∈ 𝐸
such that 𝑢 ∈ 𝑈 and 𝐶 (𝑣) = true (call this subset of edges 𝐸𝑎), and returns a R vertexSubset 𝑈 ′

where (𝑢, 𝑟) ∈ 𝑈 ′ (𝑟 is the augmented value associated with 𝑢) if and only if (𝑢, 𝑣) ∈ 𝐸𝑎 and

𝐹 (𝑢, 𝑣) = Some(𝑟). The primitive is only used in the weighted breadth-first search algorithm in

this paper, where the augmented value is used to store the distance to a vertex at the start of a

computation round (Algorithm 2).

srcReduce and srcCount. The srcReduce primitive takes as input a graph 𝐺 (𝑉 , 𝐸) and a

vertexSubset 𝑈 , a map function 𝑀 over edges returning values of type R, a boolean function 𝐶 ,

and a monoid 𝐴 over values of type R, and returns a R vertexSubset. srcReduce applies𝑀 to each

(𝑢, 𝑣) ∈ 𝐸 s.t. 𝑢 ∈ 𝑈 and𝐶 (𝑢) = true (let𝑀𝑢 be the set of values of type R from applying𝑀 to edges

incident to 𝑢), and returns a R vertexSubset𝑈 ′ containing (𝑢, 𝑟) where 𝑟 is the result of reducing
all values in𝑀𝑢 using the monoid 𝐴.

The srcCount primitive is a specialization of srcReduce, where R = int, the monoid𝐴 is (0, +),
and the map function is specialized to a boolean (predicate) function 𝑃 over edges. This primitive

is useful for building a vertexSubset where the augmented value for each vertex is the number of

incident edges satisfying some condition. srcCount is used in our parallel approximate set cover

algorithm (Algorithm 15).

srcPack. The srcPack primitive is defined similarly to srcCount, but also removes edges that

do not satsify the given predicate. Specifically, it takes as input a graph 𝐺 (𝑉 , 𝐸), a vertexSubset
𝑈 , and two boolean functions, 𝑃 , and 𝐶 . For each 𝑢 ∈ 𝑈 where 𝐶 (𝑢) = true, the function applies

𝑃 to all (𝑢, 𝑣) ∈ 𝐸 and removes edges that do not satisfy 𝑃 . The function returns an augmented

vertexSubset containing all sources (neighbors), 𝑣 , where 𝐶 (𝑣) = true. Each of these vertices is

augmented with an integer value storing the new degree of the vertex after applying the pack.

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article . Publication date: January 2020.

14 Laxman Dhulipala, Guy E. Blelloch, and Julian Shun

nghReduce and nghCount. The nghReduce primitive is defined similarly to srcReduce

above, but aggregates the results for neighbors of the input vertexSubset. It takes as input a graph
𝐺 (𝑉 , 𝐸), a vertexSubset 𝑈 , a map function 𝑀 over edges returning values of type R, a boolean

function𝐶 , a monoid 𝐴 over values of type R, and lastly an update function𝑇 from values of type R

to O option. It returns a O vertexSubset. This function performs the following logic:𝑀 is applied

to each edge (𝑢, 𝑣) where 𝑢 ∈ 𝑈 and 𝐶 (𝑣) = true in parallel (let the resulting values of type R be

𝑀𝑣). Next, the mapped values for each such 𝑣 are reduced in parallel using the monoid 𝐴 to obtain

a single value, 𝑅𝑣 . Finally, 𝑇 is called on the pair (𝑣, 𝑅𝑣) and the vertex and augmented value pair

(𝑣, 𝑜) is emitted to the output vertexSubset if and only if𝑇 returns Some(𝑜). nghReduce is used in
our PageRank algorithm (Algorithm 19).

The nghCount primitive is a specialization of nghReduce, where R = int, the monoid 𝐴 is

(0, +), and the map function is specialized to a boolean (predicate) function 𝑃 over edges. nghCount

is used in our 𝑘-core (Algorithm 16) and approximate densest subgraph (Algorithm 17) algorithms.

Implementations and Cost Bounds. Our implementation of edgeMap in this paper is based on

the edgeMapBlocked primitive introduced in Section 7.2. The same primitive is used to implement

edgeMapData.

The src- primitives (srcReduce, srcCount, and srcPack) are relatively easy to implement.

These implementations work by iterating over the vertices in the input vertexSubset in parallel,

applying the condition function 𝐶 , and then applying a corresponding vertex primitive on the

incident edges. The work for source operators is𝑂 (|𝑈 | +∑𝑢∈𝑈 ′ 𝑑 (𝑢)), where𝑈 ′ ⊆ 𝑈 consists of all

vertices 𝑢 ∈ 𝑈 where 𝐶 (𝑢) = true, and the depth is 𝑂 (log𝑛) assuming that the boolean functions

and monoid cost 𝑂 (1) work to apply.

The ngh- primitives require are somewhat trickier to implement compared to the src- primitives,

since these primitives require performing non-local reductions at the neighboring endpoints of

edges. Both nghReduce and nghCount can be implemented by first writing out all neighbors

of the input vertexSubset satisfying 𝐶 to an array, 𝐴 (along with their augmented values). 𝐴 has

size at most 𝑂 (∑𝑢∈𝑈 𝑑 (𝑢)). The next step applies a work-efficient semisort (e.g., [74]) to store all

pairs of neighbor and value keyed by the same neighbor contiguously. The final step is to apply

a prefix sum over the array, combining values keyed by the same neighbor using the reduction

operation defined by the monoid, and to use a prefix sum and map to build the output vertexSubset,

augmented with the final value in the array for each neighbor. The overall work is proportional to

semisorting and applying prefix-sums on arrays of |𝐴|, which is𝑂 (∑𝑢∈𝑈 𝑑 (𝑢)) work in expectation,

and the depth is 𝑂 (log𝑛) whp [31, 74]. In practice, our implementations use the work-efficient

histogram technique described in Section 7.1 for both nghReduce and nghCount.

Optimizations.We observe that for ngh- operators there is a potential to achieve speedups by

applying the direction-optimization technique proposed by Beamer for the BFS problem [21] and

applied to other problems by Shun and Blelloch [136]. Recall that this technique maps over all

vertices 𝑣 ∈ 𝑉 , and for those where 𝐶 (𝑣) = true, scans over the in-edges (𝑣,𝑢,𝑤𝑣𝑢) applying 𝐹 to

edges where 𝑢 is in the input vertexSubset until 𝐶 (𝑣) is no longer true. We can apply the same

technique for nghReduce and nghCount by performing a reduction over the in-neighbors of all

vertices satisfying 𝐶 (𝑣). This optimization can be applied without an increase in the theoretical

cost of the algorithm whenever the number edges incident to the input vertexSubset is a constant

fraction of𝑚. The advantage is that the direction-optimized version runs in𝑂 (𝑛) space and performs

inexpensive reads over the in-neighbors, whereas the more costly semisort or histogram based

approach runs in 𝑂 (∑𝑢∈𝑈 𝑑 (𝑢)) space and requires performing multiple writes per incident edge.

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article . Publication date: January 2020.

15

5 BENCHMARK

In this section we describe I/O specifications of our benchmark. We discuss related work and

present the theoretically-efficient algorithm implemented for each problem in Section 6. We mark

implementations based on prior workwith a †, although inmany of these cases, the implementations

were still significantly modified to improve scalability on large compressed graphs.

5.1 Shortest Path Problems

Breadth-First Search (BFS)
†

Input: 𝐺 = (𝑉 , 𝐸), an unweighted graph, src ∈ 𝑉 .
Output: 𝐷 , a mapping containing the distance between src and vertex in 𝑉 . Specifically,

• 𝐷 [src] = 0,

• 𝐷 [𝑣] = ∞ if 𝑣 is unreachable from src, and
• 𝐷 [𝑣] = dist𝐺 (src, 𝑣), i.e., the shortest path distance in 𝐺 between src and 𝑣 .

Integral-Weight SSSP (weighted BFS)
†

Input: 𝐺 = (𝑉 , 𝐸,𝑤), a weighted graph with integral edge weights, src ∈ 𝑉 .
Output: 𝐷 , a mapping where 𝐷 [𝑣] is the shortest path distance from src to 𝑣 in 𝐺 . 𝐷 [𝑣] = ∞ if 𝑣

is unreachable.

General-Weight SSSP (Bellman-Ford)
†

Input: 𝐺 = (𝑉 , 𝐸,𝑤), a weighted graph, src ∈ 𝑉 .
Output: 𝐷 , a mapping where 𝐷 [𝑣] is the shortest path distance from src to 𝑣 in 𝐺 . 𝐷 [𝑣] = ∞ if 𝑣

is unreachable. If the graph contains any negative-weight cycles reachable from src, the vertices
of these negative-weight cycles and vertices reachable from them must have a distance of −∞.

Single-Source Betweenness Centrality (BC)

Input: 𝐺 = (𝑉 , 𝐸), an undirected graph, src ∈ 𝑉 .
Output: 𝐷 , a mapping from each vertex 𝑣 to the dependency value of this vertex with respect to

src. Section 6.1 provides the definition of dependency values. 𝐷 [𝑣] = ∞ if 𝑣 is unreachable.

Widest Path (Bottleneck Path)

Input: 𝐺 = (𝑉 , 𝐸,𝑤), a weighted graph with integral edge weights, src ∈ 𝑉 .
Output: 𝐷 , a mapping where 𝐷 [𝑣] is the maximum over all paths between src and 𝑣 in 𝐺 of the

minimum weight edge (bottleneck edge) on the path. 𝐷 [𝑣] = ∞ if 𝑣 is unreachable.

𝑂 (𝑘)-Spanner

Input: 𝐺 = (𝑉 , 𝐸), an undirected, unweighted graph, and an integer stretch factor, 𝑘 .

Output: 𝐻 ⊆ 𝐸, a set of edges such that for every 𝑢, 𝑣 ∈ 𝑉 connected in 𝐺 , dist𝐻 (𝑢, 𝑣) ≤
𝑂 (𝑘) · dist𝐺 (𝑢, 𝑣).

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article . Publication date: January 2020.

16 Laxman Dhulipala, Guy E. Blelloch, and Julian Shun

5.2 Connectivity Problems

Low-Diameter Decomposition
†

Input: 𝐺 = (𝑉 , 𝐸), a directed graph, 0 < 𝛽 < 1.

Output: L, a mapping from each vertex to a cluster ID representing a (𝑂 (𝛽),𝑂 ((log𝑛)/𝛽))
decomposition. A (𝛽, 𝑑)-decomposition partitions 𝑉 into 𝐶1, . . . ,𝐶𝑘 such that:

• The shortest path between two vertices in 𝐶𝑖 using only vertices in 𝐶𝑖 is at most 𝑑 .

• The number of edges (𝑢, 𝑣) where 𝑢 ∈ 𝐶𝑖 , 𝑣 ∈ 𝐶 𝑗 , 𝑗 ≠ 𝑖 is at most 𝛽𝑚.

Connectivity
†

Input: 𝐺 = (𝑉 , 𝐸), an undirected graph.

Output: L, a mapping from each vertex to a unique label for its connected component.

Spanning Forest
†

Input: 𝐺 = (𝑉 , 𝐸), an undirected graph.

Output: 𝑇 , a set of edges representing a spanning forest of 𝐺 .

Biconnectivity

Input: 𝐺 = (𝑉 , 𝐸), an undirected graph.

Output: L, a mapping from each edge to the label of its biconnected component.

Minimum Spanning Forest

Input: 𝐺 = (𝑉 , 𝐸,𝑤), a weighted graph.

Output: 𝑇 , a set of edges representing a minimum spanning forest of 𝐺 .

Strongly Connected Components

Input: 𝐺 (𝑉 , 𝐸), a directed graph.

Output: L, a mapping from each vertex to the label of its strongly connected component.

5.3 Covering Problems

Maximal Independent Set
†

Input: 𝐺 = (𝑉 , 𝐸), an undirected graph.

Output: 𝑈 ⊆ 𝑉 , a set of vertices such that no two vertices in 𝑈 are neighbors and all vertices in

𝑉 \𝑈 have a neighbor in𝑈 .

Maximal Matching
†

Input: 𝐺 = (𝑉 , 𝐸), an undirected graph.

Output: 𝐸 ′ ⊆ 𝐸, a set of edges such that no two edges in 𝐸 ′ share an endpoint and all edges in

𝐸 \ 𝐸 ′ share an endpoint with some edge in 𝐸 ′.

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article . Publication date: January 2020.

17

Graph Coloring
†

Input: 𝐺 = (𝑉 , 𝐸), an undirected graph.

Output: 𝐶 , a mapping from each vertex to a color such that for each edge (𝑢, 𝑣) ∈ 𝐸, 𝐶 (𝑢) ≠ 𝐶 (𝑣),
using at most Δ + 1 colors.

Approximate Set Cover
†

Input: 𝐺 = (𝑉 = (𝑆, 𝐸), 𝐴), an undirected bipartite graph representing an unweighted set cover

instance.

Output: 𝑆 ′ ⊆ 𝑆 , a set of sets such that ∪𝑠∈𝑆′𝑁 (𝑠) = 𝐸, and |𝑆 ′ | is an 𝑂 (log𝑛)-approximation to

the optimal cover.

5.4 Substructure Problems

𝑘-core†

Input: 𝐺 = (𝑉 , 𝐸), an undirected graph.

Output: 𝐷 , a mapping from each vertex to its coreness value. Section 6.4 provides the definition

of 𝑘-cores and coreness values.

Approximate Densest Subgraph

Input: 𝐺 = (𝑉 , 𝐸), an undirected graph, and a parameter 𝜖 .

Output: 𝑈 ⊆ 𝑉 , a set of vertices such that the density of 𝐺𝑈 is a 2(1 + 𝜖) approximation of the

density of the densest subgraph of 𝐺 .

Triangle Counting
†

Input: 𝐺 = (𝑉 , 𝐸), an undirected graph.

Output: 𝑇𝐺 , the total number of triangles in 𝐺 . Each unordered (𝑢, 𝑣,𝑤) triangle is counted once.

5.5 Eigenvector Problems

PageRank
†

Input: 𝐺 = (𝑉 , 𝐸), an undirected graph.

Output: P, a mapping from each vertex to its PageRank value after a single iteration of PageRank.

6 ALGORITHMS

In this section, we give self-contained descriptions of all of the theoretically efficient algorithms

implemented in our benchmark and discuss related work. We cite the original papers that our

algorithms are based on in Table 1. We assume𝑚 = Ω(𝑛) when stating cost bounds in this section.

Pseudocode Conventions. The pseudocode for many of the algorithms make use of our graph

processing interface, as well as the atomic primitives testAndSet, fetchAndAdd, and priority-

Write. Our graph processing interface is defined in Section 4 and the atomic primitives are defined

in Section 3. We use _ as a wildcard to bind values that are not used. We use anonymous functions

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article . Publication date: January 2020.

18 Laxman Dhulipala, Guy E. Blelloch, and Julian Shun

in the pseudocode for consciseness, and adopt a syntax similar to how anonymous functions are

defined in the ML language. An anonymous function is introduced using the fn keyword. For

example,

fn (𝑢, 𝑣,𝑤𝑢𝑣) : edge→ return Rank[𝑣]
is an anonymous function taking a triple representing an edge, and returning the Rank of the vertex

𝑣 . We drop type annotations when the argument types are clear from context. The option type,

E option, provides a distinction between some value of type E (Some(𝒆)) and no value (None).

Types used by our algorithms are also summarized in Table 2. We use the array initializer notation

A[0, . . . , 𝑒) = value to denote an array consisting of 𝑒 elements all initialized to value in parallel.

We use standard functional sequence primitives, such as map and filter on arrays. Assuming that

the user-defined map and filter functions cost 𝑂 (1) work to apply, these primitives cost 𝑂 (𝑛) work
and 𝑂 (log𝑛) depth on a sequence of length 𝑛. We use the syntax ∀𝑖 ∈ [𝑠, 𝑒) as shorthand for a

parallel loop over the indices [𝑠, . . . , 𝑒). For example, ∀𝑖 ∈ [0, 𝑒),A[𝑖] = 𝑖 · 𝐴[𝑖] updates the 𝑖-th
value of A[𝑖] to 𝑖 · A[𝑖] in parallel for 0 ≤ 𝑖 < 𝑒 .

6.1 Shortest Path Problems

Although work-efficient polylogarithmic-depth algorithms for single-source shortest paths (SSSP)

type problems are not known due to the transitive-closure bottleneck [88], work-efficient algorithms

that run in depth proportional to the diameter of the graph are known for the special cases

considered in our benchmark. Several work-efficient parallel breadth-first search algorithms are

known [16, 30, 94]. On weighted graphs with integral edge weights, SSSP can be solved in 𝑂 (𝑚)
work and 𝑂 (diam(𝐺) log𝑛) depth [52]. Parallel algorithms also exist for weighted graphs with

positive edge weights [108, 109]. SSSP on graphs with negative integer edge weights can be

solved using Bellman-Ford [49], where the number of iterations depends on the diameter of the

graph. Betweenness centrality from a single source can be computed using two breadth-first

searches [41, 136]. We note that very recently, a breakthrough result of Andoni et al. and Li [8, 95]

show that computing (1 + 𝜖)-approximate SSSP can be done nearly work-efficiently (up to poly-

logarithmic factors) in poly-logarithmic depth. An interesting question for future work is to

understand whether ideas from this line of work can result in practical parallel approximation

algorithms for SSSP.

In this paper, we present implementations of five SSSP problems that are based on graph search.

We also include an algorithm to construct an 𝑂 (𝑘)-spanner which is based on computing low-

diameter decompositions. Our implementations of BFS and Bellman-Ford are based on the imple-

mentations in Ligra [136]. Our betweenness centrality implementation applies the same broad

implementation strategy as the Ligra implementation, but differs significantly in the details, which

we describe below. Our wBFS implementation is based on our earlier work on Julienne [52].

Breadth-First Search (BFS)

The BFS problem is to compute a mapping representing distances between the source vertex, src
and every other vertex. The distances to unreachable vertices should be set to ∞. Algorithm 1

shows pseudocode for our BFS implementation. The BFS procedure takes as input a graph and

a source vertex src, and calls GeneralizedBFS with an initial vertexSubset containing just the

source vertex, src. The GeneralizedBFS procedure is used later in our Bellman-Ford algorithm

(Algorithm 3).

The GeneralizedBFS algorithm (Lines 13–18) computes the distances between vertices in an

input vertexSubset, 𝐹 , and all vertices reachable from vertices in 𝐹 . It first initializes the Distance
and Visited values for each vertex in 𝐹 using a vertexMap (Line 14). Next, while the frontier is not

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article . Publication date: January 2020.

19

Algorithm 1 Breadth-First Search

1: Visited [0, . . . , 𝑛) B false

2: Distance[0, . . . , 𝑛) B ∞
3: curDistance B 0

4: procedure Update(𝑠 , 𝑑)

5: if testAndSet(&Visited [𝑑]) then ⊲ to ensure 𝑑 is only added once to the next frontier

6: Distance[𝑑] B curDistance
7: return true

8: return false

9: procedure Cond(𝑣) return !Visited [𝑣]
10: procedure Init(𝑣)

11: Distance[𝑣] B 0

12: Visited [𝑣] B true

13: procedure GeneralizedBFS(𝐺 (𝑉 , 𝐸), 𝐹) ⊲ 𝐹 is a vertexSubset of seed vertices

14: vertexMap(𝐹, Init) ⊲ set distances to the seed vertices to 0

15: while |𝐹 | > 0 do

16: 𝐹 B edgeMap(𝐺, 𝐹,Update,Cond) ⊲ update 𝐹 to contain all unvisited neighbors

17: curDistance B curDistance + 1
18: return Distance
19: procedure BFS(𝐺 (𝑉 , 𝐸), src)
20: return GeneralizedBFS(𝐺, vertexSubset({src}))

yet empty, the algorithm repeatedly applies the edgeMap operator to generate the next frontier

(Line 16). The condition function supplied to edgeMap checks whether the neighbor has been

visited (Line 9). The map function (Lines 4–8) applies a testAndSet to try and visit the neighbor.

If the testAndSet is successful, the map function returns true, indicating that the neighbor should

be emitted in the output vertexSubset (Line 7), and otherwise returns false (Line 8). Finally, at the

end of a round the algorithm increments the value of the current distance on Line 17.

Both the GeneralizedBFS and BFS algorithms run in 𝑂 (𝑚) work and 𝑂 (diam(𝐺) log𝑛) depth
on the BF model. We note that emitting a shortest-path tree from a subset of vertices instead

of distances can be done using nearly identical code, with the only differences being that (i) the

algorithm will store a Parents array instead of a Distances array, and (ii) the Update function will

set the parent of a vertex 𝑑 to 𝑠 upon a successful testAndSet. The main change we made to

this algorithm compared to the Ligra implementation was to improve the cache-efficiency of the

edgeMap implementation using edgeMapBlocked, the block-based version of edgeMap described

in Section 7.

Integral-Weight SSSP (wBFS)

The integral-weight SSSP problem is to compute the shortest path distances between a source vertex

and all other vertices in a graph with positive integer edge weights. Our implementation implements

the weighted breadth-first search (wBFS) algorithm, a version of Dijkstra’s algorithm that is well

suited for low-diameter graphs with small positive integer edge weights. Our implementation

uses the bucketing interface from Julienne described in Section 4. The idea of our algorithm is to

maintain a bucket for each possible distance, and to process them in order of increasing distance.

Each bucket is like a frontier in BFS, but unlike BFS, when we process a neighbor 𝑢 of a vertex 𝑣 in

the current bucket 𝑖 , we place 𝑢 in bucket 𝑖 +𝑤𝑢𝑣 .
Algorithm 2 shows pseudocode for our weighted BFS implementation from Julienne [52]. Initially,

the distances to all vertices are∞ (Line 1), and the distance to the source vertex, src, is 0 (Line 19).
Next, the algorithm buckets the vertices based on their current distance (Line 20). We note that a

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article . Publication date: January 2020.

20 Laxman Dhulipala, Guy E. Blelloch, and Julian Shun

Algorithm 2 wBFS

1: Distance[0, . . . , 𝑛) B ∞
2: Relaxed [0, . . . , 𝑛) B false

3: procedure GetBucketNum(𝑣) return Distance[𝑣]
4: procedure Cond(𝑣) return true

5: procedure Update(𝑠 , 𝑑 ,𝑤𝑠𝑑)

6: newDist B Distance[𝑠] +𝑤𝑠𝑑
7: oldDist B Distance[𝑑]
8: res B None

9: if newDist < oldDist then

10: if testAndSet(&Relaxed [𝑑]) then ⊲ first writer this round

11: res B Some(oldDist) ⊲ store and return the original distance

12: priorityWrite(&Distance[𝑑], newDist, <)
13: return res
14: procedure Reset(𝑣, oldDist)
15: Relaxed [𝑣] B 0

16: newDist B Distance[𝑑]
17: return B.getBucket(oldDist, newDist)
18: procedure wBFS(𝐺 (𝑉 , 𝐸,𝑤), src)
19: Distance[src] B 0

20: B B makeBuckets(|𝑉 |,GetBucketNum, increasing)
21: (bktId, bktContents) B B.nextBucket()
22: while bktId ≠ nullbkt do

23: Moved B edgeMapData(𝐺, bktContents,Update,Cond)
24: NewBuckets B vertexMapVal(Moved, Reset)
25: B.updateBuckets(NewBuckets)
26: (bktId, bktContents) B B.nextBucket()
27: return Distance

distance of∞ places a vertex in a special “unknown” bucket. While the bucketing structure contains

vertices, the algorithm extracts the next bucket (Lines 21 and 22) and applies the edgeMapData

primitive (see Section 4) on all edges incident to the bucket (Line 23). The map function computes the

distance along an edge (𝑠, 𝑑,𝑤𝑠𝑑), updating the distance to 𝑑 using a priorityWrite if 𝐷 [𝑠] +𝑤𝑠𝑑 <

𝐷 [𝑑] (Lines 5–13). The function also checks if the source vertex relaxing this edge is the first visitor

to 𝑑 during this round by performing a testAndSet on the Relaxed array, emitting 𝑑 , and the old

distance to 𝑑 in the output vertexSubset if so.

The next step in the round applies a vertexMapVal on the augmented vertexSubsetMoved. The
map function first resets the Relaxed flag for each vertex (Line 15), and then computes the new

bucket each relaxed vertex should move to using the getBucket primitive (Line 17). The output is

an augmented vertexSubset NewBuckets, containing vertices and their destination buckets (Line 24).

The last step updates the buckets for all vertices in NewBuckets (Line 25). The algorithm runs in

𝑂 (𝑚) work in expectation and 𝑂 (diam(𝐺) log𝑛) depth whp on the PW-BF model, as vertices use

priorityWrite to write the minimum distance to a neighboring vertex in each round. The main

change we made to this algorithm was to improve the cache-efficiency of edgeMapData using the

block-based edgeMapBlocked algorithm described in Section 7.

General-Weight SSSP

The General-Weight SSSP problem is to compute a mapping with the shortest path distance between

the source vertex and every reachable vertex on a graph with general (positive and negative) edge

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article . Publication date: January 2020.

21

Algorithm 3 Bellman-Ford

1: Relaxed [0, . . . , 𝑛) B false

2: Distance[0, . . . , 𝑛) B ∞
3: procedure Cond(𝑣)

4: return true

5: procedure ResetFlags(𝑣)

6: Relaxed [𝑣] B false

7: procedure Update(𝑠 , 𝑑 ,𝑤𝑠𝑑)

8: newDist B Distance[𝑠] +𝑤𝑠𝑑
9: if newDist < Distance[𝑑] then

10: priorityWrite(&Distance[𝑑], newDist, <)
11: if !Relaxed [𝑑] then

12: return testAndSet(&Relaxed [𝑑]) ⊲ to ensure 𝑑 is only added once to the next frontier

13: return false

14: procedure BellmanFord(𝐺 (𝑉 , 𝐸,𝑤), src)
15: 𝐹 B vertexSubset({src})
16: Distance[src] B 0

17: round B 0

18: while |𝐹 | > 0 do

19: if round = 𝑛 then ⊲ only applied if a negative weight cycle is reachable from src
20: 𝑅 B GeneralizedBFS(𝐺, 𝐹) ⊲ defined in Algorithm 1

21: In parallel, set Distance[𝑢] B −∞ for 𝑢 ∈ 𝑅 s.t. 𝑅 [𝑢] ≠ ∞
22: return Distance
23: 𝐹 B edgeMap(𝐺, 𝐹,Update,Cond)
24: vertexMap(𝐹, ResetFlags)
25: round B round + 1
26: return Distance

weights. The mapping should return a distance of∞ for unreachable vertices. Furthermore, if the

graph contains a negative weight cycle reachable from the source, the mapping should set the

distance to all vertices in the cycle and vertices reachable from it to −∞.
Our implementation for this problem is the classic Bellman-Ford algorithm [49]. Algorithm 3

shows pseudocode for our frontier-based version of Bellman-Ford. The algorithm runs over a

number of rounds. The initial frontier, 𝐹 , consists of just the source vertex, src (Line 17). In each

round, the algorithm applies edgeMap over 𝐹 to produce a new frontier of vertices that had their

shortest path distance decrease, and updates 𝐹 to be this new frontier. The map function supplied

to edgeMap (Line 7–13) tests whether the distance to a neighbor can be decrased, and uses a

priorityWrite to atomically lower the distance (Line 10). Emitting a neighbor to the next frontier

is done using a testAndSet on Relaxed, an array of flags indicating whether the vertex had its

current shortest path distance decrease (Line 12). Finally, at the end of a round the algorithm resets

the flags for all vertices in 𝐹 (Line 24). After 𝑘 rounds, the algorithm has correctly computed the

distances to vertices that are within 𝑘 hops from the source. Since any vertex is at most 𝑛 − 1 hops
away from the source, if the number of rounds in the algorithm reaches 𝑛, we know that the input

graph contains a negative weight cycle. The algorithm identifies vertices reachable from these

cycles using the GeneralizedBFS algorithm (Algorithm 1) to compute all vertices reachable from

the current frontier (Line 20). It sets the distance to the vertices with distances that are not∞ (i.e.,

reachable from a negative weight cycle) to −∞ (Line 21).

For inputs without negative-weight cycles, the algorithm runs in 𝑂 (diam(𝐺)𝑚) work and

𝑂 (diam(𝐺) log𝑛) depth on the PW-BF model. If the graph contains a negative-weight cycle, the

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article . Publication date: January 2020.

22 Laxman Dhulipala, Guy E. Blelloch, and Julian Shun

Algorithm 4 Betweenness Centrality

1: Completed [0, . . . , 𝑛) B false

2: NumPaths[0, . . . , 𝑛) B 0 ⊲ stores the number of shortest paths from 𝑟 to each vertex, initially all 0

3: Dependencies[0, . . . , 𝑛) B 0 ⊲ stores the dependency scores of each vertex

4: Visited [0, . . . , 𝑛) B false

5: procedure Update(𝑠 , 𝑑)

6: if (!Visited [𝑑] and testAndSet(&Visited [𝑑])) then return true

7: return false

8: procedure Cond(𝑣) return !Visited [𝑣]
9: procedure AggregatePathContributions(𝐺, 𝑣)

10: mapfn B fn (𝑠, 𝑑) → return if Completed [𝑑] then NumPaths[𝑑] else 0
11: NumPaths[𝑣] B 𝐺.getVertex(𝑣).reduceInNgh(mapfn, (0, +))
12: procedure MarkFinishedForwards(𝑣)

13: Completed [𝑣] B true

14: procedure AggregateDependencies(𝐺, 𝑣)

15: mapfn B fn (𝑠, 𝑑) → return if Completed [𝑑] then Dependencies[𝑑] else 0
16: Dependencies[𝑣] B 𝐺.getVertex(𝑣) .reduceOutNgh(mapfn, (0, +))
17: procedure MarkFinishedBackwards(𝑣)

18: Completed [𝑣] B true

19: Dependencies[𝑣] B Dependencies[𝑣] + (1/NumPaths[𝑣])
20: procedure UpdateDependencies(𝑣)

21: Dependencies[𝑣] B (Dependencies[𝑣] − (1/NumPaths[𝑣])) · NumPaths[𝑣]
22: procedure BC(𝐺 (𝑉 , 𝐸), 𝑟)
23: 𝐹 B vertexSubset({𝑟 })
24: round B 0

25: Levels[1, . . . , 𝑛) B null

26: while |𝐹 | > 0 do

27: 𝐹 B edgeMap(𝐺, 𝐹,Update,Cond) ⊲ generate the next frontier of unvisited neighbors

28: vertexMap(𝐺, 𝐹,AggregatePathContributions) ⊲ reduce in-neighbor path contributions

29: vertexMap(𝐹,MarkFinishedForwards)
30: Levels[round] B 𝐹 ⊲ save frontier for the backwards pass

31: round B round + 1
32: In parallel ∀𝑣 ∈ 𝑉 , set Completed [𝑣] B false ⊲ reset Completed
33: while round > 0 do

34: 𝐹 B Levels[round − 1] ⊲ use saved frontier

35: vertexMap(𝐺, 𝐹,AggregateDependencies) ⊲ reduce out-neighbor dependency contributions

36: vertexMap(𝐹,MarkFinishedBackwards)
37: round B round − 1
38: vertexMap(𝑉 ,UpdateDependencies) ⊲ compute the final Dependencies scores
39: return Dependencies

algorithm runs in 𝑂 (𝑛𝑚) work and 𝑂 (𝑛 log𝑛) depth on the PW-BF model. The main change we

made to this algorithm compared to the Ligra implementation was to add a GeneralizedBFS

implementation and invoke it in the case where the algorithm detects a negative weight cycle. We

also improve its cache-efficiency by using the block-based version of edgeMap, edgeMapBlocked,

which we describe in Section 7.

Single-Source Betweenness Centrality

Betweenness centrality is a classic tool in social network analysis for measuring the importance

of vertices in a network [114]. Before describing the benchmark and our implementation, we

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article . Publication date: January 2020.

23

introduce several definitions. Define 𝜎𝑠𝑡 to be the total number of 𝑠–𝑡 shortest paths, 𝜎𝑠𝑡 (𝑣) to be the
number of 𝑠–𝑡 shortest paths that pass through 𝑣 , and 𝛿𝑠𝑡 (𝑣) = 𝜎𝑠𝑡 (𝑣)

𝜎𝑠𝑡
to be the pair-dependency

of 𝑠 and 𝑡 on 𝑣 .4 The betweenness centrality of a vertex 𝑣 is equal to
∑
𝑠≠𝑣≠𝑡 ∈𝑉 𝛿𝑠𝑡 (𝑣), i.e. the sum

of pair-dependencies of shortest-paths passing through 𝑣 . Brandes [41] proposes an algorithm to

compute the betweenness centrality values based on the following notion of ‘dependencies’: the

dependency of a vertex 𝑟 on a vertex 𝑣 is 𝛿𝑟 (𝑣) =
∑
𝑡 ∈𝑉 𝛿𝑟𝑡 (𝑣). The single-source betweenness

centrality problem in this paper is to compute the dependency values for each vertex given a source

vertex, 𝑟 . The dependency values for unreachable vertices should be set to∞.
Our implementation is based on Brandes’ algorithm, and follows the approach from Ligra [136].

We note that our implementation achieves speedups over the Ligra implementation by using

contention-avoiding primitives from the GBBS interface. Our algorithm runs in 𝑂 (𝑚) work and

𝑂 (diam(𝐺) log𝑛) depth on the BF model (it does not require the fetchAndAdd primitive, as in

the Ligra implementation, as we explain shortly). The algorithm works in two phases, which both

rely on the structure of a BFS tree rooted at 𝑟 . The first phase computes 𝜎𝑟 𝑣 , i.e., the number of

shortest paths from the source, 𝑟 , to each vertex 𝑣 . In more detail, let 𝑃𝑟 (𝑣) be the parents of a vertex
𝑣 on the previous level of the BFS tree. The first phase computes 𝜎𝑟 𝑣 =

∑
𝑢∈𝑃𝑟 (𝑣) 𝜎𝑟𝑢 by processing

the BFS tree in level order and summing the 𝜎𝑟𝑢 values for all parents of 𝑣 in the previous level.

The second phase then applies the equation 𝛿𝑟 (𝑣) =
∑
𝑤:𝑣∈𝑃𝑟 (𝑤)

𝜎𝑟𝑣
𝜎𝑟𝑤
· (1 + 𝛿𝑟 (𝑤)) to compute the

dependencies for each vertex by processing the levels of the BFS tree in reverse order.

Instead of directly applying the update rule for the second phase above, which requires per-

neighbor random accesses to both the array storing the 𝜎𝑟∗ values, and the array storing 𝛿𝑟 (∗)
values, the Ligra implementation performs an optimization which allows accessing a single array

(we note that this optimization was not described in the Ligra paper, and thus we describe it here).

The idea of the optimization is as follows. The second phase computes an inverted dependency
score, 𝜁𝑟 (𝑣), for each vertex. These scores are updated level-by-level using the update rule 𝜁𝑟 (𝑣) =
1

𝜎𝑟𝑣
+∑𝑤:𝑣∈𝑃𝑟 (𝑤) 𝜁𝑟 (𝑤). At the end of the second phase, a simple proof by induction shows that

𝜁𝑟 (𝑣) =
1

𝜎𝑟 𝑣
+

∑
𝑤∈𝐷𝑟 (𝑣)

𝜎𝑣𝑤 ·
1

𝜎𝑟𝑤

where 𝐷𝑟 (𝑣) is the set of all descendent vertices through 𝑣 , i.e.,𝑤 ∈ 𝑉 where a shortest path from

𝑟 to 𝑤 passes through 𝑣 . These final scores can be converted to the dependency scores by first

subtracting
1

𝜎𝑟𝑣
and then multiplying by 𝜎𝑟 𝑣 , since∑

𝑤∈𝐷𝑟 (𝑣)
𝜎𝑟 𝑣 ·

𝜎𝑣𝑤

𝜎𝑟𝑤
=

∑
𝑤∈𝐷𝑟 (𝑣)

𝜎𝑟𝑤 (𝑣)
𝜎𝑟𝑤

Next, we discuss the main difference between our implementation and that of Ligra. The Ligra

implementation is based on using edgeMap with an map function that uses the fetchAndAdd

primitive to update the number of shortest paths (𝜎𝑟 𝑣) in the forward phase, and to update the

inverted dependencies (𝜁𝑟 (𝑣)) in the reverse phase. The Ligra implementation thus combines the

generation of the next BFS frontier with aggregating the number of shortest paths passing through

a vertex in the first phase, or the inverted dependency contribution of the vertex in the second

phase by using the fetchAndAdd primitive. In our implementation, we observed that for certain

graphs, especially those with skewed degree distribution, using a fetchAndAdd to sum up the

contributions incurs a large amount of contention, and significant speedups (in our experiments,

up to 2x on the Hyperlink2012 graph) can be obtained by (i) separating the computation of the next

4
Note that 𝜎𝑠𝑡 (𝑣) = 0 if 𝑣 ∈ {𝑠, 𝑡 }

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article . Publication date: January 2020.

24 Laxman Dhulipala, Guy E. Blelloch, and Julian Shun

Algorithm 5 𝑂 (𝑘)-Spanner
1: procedure Spanner(𝐺 (𝑉 , 𝐸), 𝑘)
2: 𝛽 B

log𝑛

2𝑘
3: (Clusters, Parents) B LDD(𝐺 (𝑉 , 𝐸), 𝛽) ⊲ see Algorithm 6

4: ELDD B {(𝑖, Parents[𝑖]) | 𝑖 ∈ [0, 𝑛) and Parents[𝑖] ≠ ∞} ⊲ tree edges used in the LDD

5: 𝐼 B one inter-cluster edge for each pair of adjacent clusters in 𝐿

6: return ELDD ∪ I

frontier from the computation of the 𝜎𝑟 𝑣 and 𝛿𝑟 (𝑣) values in the two phases and (ii) computing the

computation of 𝜎𝑟 𝑣 and 𝛿𝑟 (𝑣) using the pull-based approach described below.

The pseudocode for our betweenness centrality implementation is shown in Algorithm 4. The

algorithm runs in two phases. The first phase (Lines 26–31) computes a BFS tree rooted at the

source vertex 𝑟 using a nghMap using Update, and Cond defined identically to the BFS algorithm

in Algorithm 1. After computing the new BFS frontier, 𝐹 , the algorithm maps over the vertices

in it using a vertexMap (Line 28), and applies the AggregatePathContributions procedure

for each vertex. This procedure (Lines 9–11) performs a reduction over all in-neighbors of the

vertex to pull path-scores from vertices that are completed, i.e. Completed [𝑣] = true (Line 11). The

algorithm then applies a second vertexMap over 𝐹 to mark these vertices as completed (Line 29).

The frontier is then saved for use in the second phase (Line 30). At the end of the second phase we

reset the Status values (Line 32).
The second phase (Lines 33–37) processes the saved frontiers level by level in reverse order. It

first extracts a saved frontier (Line 34). It then applies a vertexMap over the frontier applying

the AggregateDependencies procedure for each vertex (Line 35. This procedure (Lines 14–16)

performs a reduction over all out-neighbors of the vertex to pull the inverted dependency scores

over completed neighbors. Finally, the algorithm applies a second vertexMap to mark the vertices

in it as completed (Line 36). After all frontiers have been processed, the algorithm finalizes the

dependency scores by first subtracting the inverted NumPaths value, and then multiplying by the

NumPaths value (Line 38).

Widest Path (Bottleneck Path)

The Widest Path, or Bottleneck Path benchmark in GBBS is to compute ∀𝑣 ∈ 𝑉 the maximum over

all paths of the minimumweight edge on the path between a source vertex, src, and 𝑣 . The algorithm
is an important primitive, used for example in the Ford-Fulkerson maximum flow algorithm [49, 66],

as well as other flow algorithms [19]. Sequentially, the algorithm can be solved as quickly as SSSP

by using a modified version of Dijkstra’s algorithm. We note that faster algorithms are known

sequentially for sparse graphs [60]. For positive integer-weighted graphs, the problem can also be

solved using the work-efficient bucketing data structure from Julienne [52]. The buckets, which

represent the width classes, are initialized with the out-neighbors of the source, 𝑢, and the buckets

are traversed using the decreasing order (from the largest bucket to the smallest bucket). Unlike

the other applications in Julienne, using widest path is interesting since the bucket containing a

vertex (the vertex priorities) only increase (in other applications in Julienne, the priorities can only

decrease). The problem can also be solved using the Bellman-Ford approach described above by

performing computations over the (max,min) semi-ring instead of the (min, +) semi-ring. Other

than these changes, the pseudocode for the problem is identical to that of Algorithms 2 and 3.

𝑂 (𝑘)-Spanner
Computing graph spanners is a fundamental problem in combinatorial graph algorithms and

graph theory [120]. A graph 𝐻 is a 𝒌-spanner of a graph 𝐺 if ∀𝑢, 𝑣 ∈ 𝑉 connected by a path,

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article . Publication date: January 2020.

25

dist𝐺 (𝑢, 𝑣) ≤ dist𝐻 (𝑢, 𝑣) ≤ 𝑘 · dist𝐺 (𝑢, 𝑣) (equivalently, such a subgraph is called a spanner with

stretch 𝑘). The spanner problem studied in this paper is to compute an 𝑂 (𝑘) spanner for a given 𝑘 .
Sequentially, classic results give elegant constructions of (2𝑘 − 1)-spanners using 𝑂 (𝑛1+1/𝑘)

edges, which are essentially the best possible assuming the girth conjecture [149]. In this paper, we

implement the spanner algorithm recently proposed by Miller, Peng, Xu, and Vladu (MPXV) [110].

The construction results in an 𝑂 (𝑘)-spanner with expected size 𝑂 (𝑛1+1/𝑘), and runs in 𝑂 (𝑚) work
and 𝑂 (𝑘 log𝑛) depth on the BF model.

The MPXV spanner algorithm (Algorithm 5) uses the low-diameter decomposition (LDD) algo-

rithm, which will be described in Section 6.2. It takes as input a parameter 𝑘 which controls the

stretch of the spanner. The algorithm first computes an LDD with 𝛽 = log𝑛/(2𝑘) (Line 3). The
stretch of each LDD cluster is 𝑂 (𝑘) whp, and so the algorithm includes all tree edges generated by

the LDD in the spanner (Line 4). The algorithm handles inter-cluster edges by taking a single inter-

cluster edge between a boundary vertex and each neighboring cluster (Line 5). Our implementation

uses a parallel hash table to select a single inter-cluster edge between two neighboring clusters.

We note that this procedure is slightly different than the procedure in the MPXV paper, which

adds a single edge between every boundary vertex of a cluster and each adjacent cluster. Our

algorithm only adds a single edge between two clusters, while the MPXV algorithm may add

multiple parallel edges between two clusters. Their argument bounding the stretch to 𝑂 (𝑘) for an
edge spanning two clusters is still valid for our modified algorithm, since the endpoints can be

first routed to the cluster centers, and then to the single edge that was selected between the two

clusters.

6.2 Connectivity Problems

Low-Diameter Decomposition

A (𝛽, 𝑑) decomposition of a graph of a graph is a partition of the vertices into clusters 𝐶1, . . . ,𝐶𝑘
such that (i) the shortest path distance between two vertices in𝐶𝑖 using only vertices within𝐶𝑖 is at

most𝑑 , and (ii) the number of edges with endpoints belonging to different clusters is at most 𝛽𝑚. The

low-diameter decomposition problem studied in this paper is to compute an (𝑂 (𝛽),𝑂 ((log𝑛)/𝛽))
decomposition.

Low-diameter decompositions (LDD) were first introduced in the context of distributed com-

puting [11], and were later used in metric embedding, linear-system solvers, and parallel algo-

rithms. Awerbuch presents a simple sequential algorithm based on ball growing that computes an

(𝛽,𝑂 ((log𝑛)/𝛽) decomposition [11]. Miller, Peng, and Xu (MPX) [111] present a work-efficient

parallel algorithm that computes a (𝛽,𝑂 ((log𝑛)/𝛽) decomposition. For each 𝑣 ∈ 𝑉 , the algorithm
draws a start time, 𝛿𝑣 , from an exponential distribution with parameter 𝛽 . The clustering is done

by assigning each vertex 𝑢 to the cluster 𝑣 which minimizes dist𝐺 (𝑢, 𝑣) − 𝛿𝑣 . This algorithm can be

implemented by running a set of parallel breadth-first searches as follows. The first breadth-first

search starts at the vertex with the largest start time, 𝛿max, and breadth-first searches start from

other 𝑣 ∈ 𝑉 once 𝛿max − 𝛿𝑣 steps have elapsed. In this paper, we present an implementation of the

MPX algorithm which computes an (2𝛽,𝑂 (log𝑛/𝛽)) decomposition in 𝑂 (𝑚) work and 𝑂 (log2 𝑛)
depth whp on the BFmodel. Our implementation is based on the non-deterministic LDD implemen-

tation from Shun et al. [140] (designed as part of a parallel connectivity implementation). The main

changes in our implementation are to separate the LDD code from the connectivity implementation.

Algorithm 6 shows pseudocode for the modified version of the Miller-Peng-Xu algorithm

from [140], which computes a (2𝛽,𝑂 (log𝑛/𝛽)) decomposition in 𝑂 (𝑚) work and 𝑂 (log2 𝑛) depth
whp on the BF model. The algorithm allows ties to be broken arbitrarily when two searches visit a

vertex in the same time-step, and one can show that this only affects the number of cut edges by a

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article . Publication date: January 2020.

26 Laxman Dhulipala, Guy E. Blelloch, and Julian Shun

Algorithm 6 Low Diameter Decomposition

1: Visited [0, . . . , 𝑛) B false

2: Cluster [0, . . . , 𝑛) B ∞
3: Parents[0, . . . , 𝑛) B ∞
4: procedure Cond(𝑣) return !Visited [𝑣]
5: procedure Update(𝑠 , 𝑑)

6: if testAndSet(&𝑉𝑖𝑠𝑖𝑡𝑒𝑑 [𝑑]) then

7: Cluster [𝑑] B Clusters[𝑠] ⊲ vertex 𝑑 joins 𝑠’s cluster

8: Parents[𝑑] B 𝑠 ⊲ vertex 𝑑’s BFS parent in the LDD ball is 𝑠

9: return true

10: return false

11: procedure InitializeClusters(𝑢)

12: Clusters[𝑢] B 𝑢

13: Visited [𝑢] B true

14: procedure Partition(𝑉 , 𝛽)

15: 𝑃 B random permutation of [0, . . . , |𝑉 |)
16: 𝐵 B array of arrays of consecutive elements in 𝑃 , where |𝐵𝑖 | = ⌊exp(𝑖 · 𝛽)⌋
17: return 𝐵 ⊲ 𝐵 partitions [0, . . . , |𝑉 |)
18: procedure LDD(𝐺 (𝑉 , 𝐸), 𝛽)
19: B B Partition(𝑉 , 𝛽) ⊲ permute vertices, and group into 𝑂 (log𝑛/𝛽) batches
20: 𝐹 B vertexSubset({}) ⊲ an initially empty vertexSubset

21: for 𝑖 ∈ [0, |𝐵 |) do
22: newClusters B vertexSubset({𝑏 ∈ 𝐵 [𝑖] | Cluster [𝑣] = ∞}) ⊲ vertices not yet clustered in 𝐵 [𝑖]
23: vertexMap(newClusters, InitializeClusters)
24: addToSubset(𝐹, newClusters) ⊲ add new cluster centers to the current frontier

25: 𝐹 B edgeMap(𝐺, 𝐹,Update,Cond)
26: return (Clusters, Parents)

constant factor [140]. The LDD algorithm starts by first permuting the vertices into 𝑂 (log𝑛/𝛽)
batches, stored in an array 𝐵 (Line 19). This partitioning simulates sampling from the exponential

distribution by randomly permuting the vertices in parallel (Line 15) and dividing the vertices in

the permutation into 𝑂 (log𝑛/𝛽) many batches (Line 16). After partitioning the vertices, the LDD

algorithm performs a sequence of rounds, where in each round all vertices that are not already

clustered in the next batch are added as new cluster centers. Each cluster then tries to acquire

unclustered vertices adjacent to it (thus increasing its radius by 1). This procedure is sometimes

referred to as ball-growing in the literature [12, 35, 111].

The first step in the ball-growing loop extracts newClusters, which is a vertexSubset of vertices

in the 𝑖-th batch that are not yet clustered (Line 22). Next, the algorithm applies a vertexMap

to update the Clusters and Visited status of the new clusters (Line 23). The new clusters are then

added to the current LDD frontier using the addToSubset primitive (Line 24). On Line 25, the

algorithm uses edgeMap to traverse the out edges of the current frontier and non-deterministically

acquire unvisited neighboring vertices. The condition and map functions supplied to edgeMap are

defined similarly to the ones in BFS.

We note that the pseudocode show in Algorithm 6 returns both the LDD clustering, Clusters, as
well as a Parents array. The Parents array contains for each vertex 𝑣 that joins a different vertex’s

cluster (Clusters[𝑣] ≠ 𝑣) the parent in the BFS tree rooted at Clusters[𝑣]. Specifically, for a vertex 𝑑
that is not in its own cluster, Parents[𝑑] stores the vertex 𝑠 that succeeds at the testAndSet in

Line 6. The Parents array is used by both the 𝑂 (𝑘)-spanner and spanning forest algorithms in this

paper to extract the tree edges used in the LDD.

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article . Publication date: January 2020.

27

Algorithm 7 Connectivity

1: procedure Connectivity(𝐺 (𝑉 , 𝐸), 𝛽)
2: (L, P) B LDD(𝐺 (𝑉 , 𝐸), 𝛽) ⊲ see Algorithm 6

3: 𝐺 ′(𝑉 ′, 𝐸 ′) B contractGraph(𝐺, 𝐿)
4: if |𝐸 ′ | = 0 then

5: return L
6: L′ B Connectivity(𝐺 ′(𝑉 ′, 𝐸 ′), 𝛽)
7: L′′ B {𝑣 → L′[L[𝑣]] | 𝑣 ∈ 𝑉 } ⊲ implemented as a vertexMap over 𝑉

8: return 𝐿′′

Connectivity

The connectivity problem is to compute a connectivity labeling of an undirected graph, i.e., a

mapping from each vertex to a label such that two vertices have the same label if and only if there

is a path between them in the graph. Connectivity can easily be solved sequentially in linear work

using breadth-first or depth-first search. Parallel algorithms for connectivity have a long history; we

refer readers to [140] for a review of the literature. Early work on parallel connectivity discovered

many natural algorithms which perform 𝑂 (𝑚 log𝑛) work and poly-logarithmic depth [13, 122,

127, 135]. A number of optimal parallel connectivity algorithms were discovered in subsequent

years [45, 67, 75, 76, 121, 123, 140], but to the best of our knowledge the recent algorithm by Shun

et al. is the only linear-work polylogarithmic-depth parallel algorithm that is practical and has

been studied experimentally [140].

In this paper, we implement the connectivity algorithm from Shun et al. [140], which runs in

𝑂 (𝑚) expected work and 𝑂 (log3 𝑛) depth whp on the BF model. The implementation uses the

work-efficient algorithm for low-diameter decomposition (LDD) described above. One change we

made to the implementation from [140] was to separate the LDD and contraction steps from the

connectivity algorithm. Refactoring these sub-routines allowed us to express the main connectivity

algorithm in about 50 lines of code.

The connectivity algorithm from Shun et al. [140] (Algorithm 7) takes as input an undirected

graph 𝐺 and a parameter 0 < 𝛽 < 1. It first runs the LDD algorithm, Algorithm 6 (Line 2), which

decomposes the graph into clusters each with diameter 𝑂 (log𝑛/𝛽), and 𝛽𝑚 inter-cluster edges in

expectation. Next, it builds𝐺 ′ by contracting each cluster to a single vertex and adding inter-cluster

edges while removing duplicate edges, self-loops, and isolated vertices (Line 3). It then checks if the

contracted graph is empty (Line 4); if so, the current clusters are the components, and it returns the

mapping from vertices to clusters (Line 5). Otherwise, it recurses on the contracted graph (Line 6)

and returns the connectivity labeling produced by assigning each vertex to the label assigned to its

cluster in the recursive call (Lines 7 and 8).

Spanning Forest

The spanning forest problem is to compute a subset of edges in the graph that represent a spanning

forest. Finding spanning forests in parallel has been studied largely in conjunction with connectivity

algorithms, since most parallel connectivity algorithms can naturally be modified to output a

spanning forest (see [140] for a review of the literature).

Our spanning forest algorithm (Algorithm 8) is based on the connectivity algorithm from Shun

et al. [140] which we described earlier. Our algorithm runs in runs in 𝑂 (𝑚) expected work and

𝑂 (log3 𝑛) depth whp on the BF model. The main difference in the spanning forest algorithm

compared to the connectivity algorithm is to include all LDD edges at each level of the recursion

(Line 4). These LDD edges are extracted using the Parents array returned by the LDD algorithm

given in Algorithm 6. Recall that this array has size proportional to the number of vertices, and all

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article . Publication date: January 2020.

28 Laxman Dhulipala, Guy E. Blelloch, and Julian Shun

Algorithm 8 Spanning Forest

1: procedure SpanningForestHelper(𝐺 (𝑉 , 𝐸), 𝑀, 𝛽)
2: (Clusters, Parents) B LDD(𝐺 (𝑉 , 𝐸), 𝛽) ⊲ see Algorithm 6

3: ELDD B {(𝑖, Parents[𝑖]) | 𝑖 ∈ [0, 𝑛) and Parents[𝑖] ≠ ∞} ⊲ tree edges used in the LDD

4: E𝑀 B {𝑀 (𝑒) | 𝑒 ∈ ELDD} ⊲ original graph edges corresponding to ELDD
5: 𝐺 ′(𝑉 ′, 𝐸 ′) B contractGraph(𝐺, 𝐿)
6: if |𝐸 ′ | = 0 then

7: return EM
8: 𝑀 ′ B mapping from 𝑒 ′ ∈ 𝐸 ′ to𝑀 (𝑒) where 𝑒 ∈ 𝐸 is some edge representing 𝑒 ′

9: E′′ B SpanningForestHelper(𝐺 ′(𝑉 ′, 𝐸 ′), 𝑀 ′, 𝛽)
10: return E𝑀 ∪ E′′

11: procedure SpanningForest(𝐺 (𝑉 , 𝐸), 𝛽)
12: return SpanningForestHelper(𝐺, {𝑒 → 𝑒 | 𝑒 ∈ 𝐸}, 𝛽))

entries initialized to∞. The LDD algorithm uses this array to store the BFS parent of each vertex 𝑣

that joins a different vertex’s cluster (Clusters[𝑣] ≠ 𝑣). The LDD edges are retrieved by checking

for each index 𝑖 ∈ [0, 𝑛) whether Parents[𝑖] ≠ ∞ and if so taking (𝑖, Parents[𝑖]) as an LDD edge.

Furthermore, observe that the LDD edges after the topmost level of recursion are taken from a

contracted graph, and need to be mapped back to some edge in the original graph realizing the

contracted edge. We decide which edges in 𝐺 to add by maintaining a mapping from the edges in

the current graph at some level of recursion to the original edge set. Initially this mapping,𝑀 , is an

identity map (Line 12). To compute the mapping to pass to the recursive call, we select any edge 𝑒

in the input graph 𝐺 that resulted in 𝑒 ′ ∈ 𝐸 ′ and map 𝑒 ′ to𝑀 (𝑒) (Line 8). In our implementation,

we use a parallel hash table to select a single original edge per contracted edge.

Biconnectivity

A biconnected component of an undirected graph is a maximal subgraph such that the subgraph

remains connected under the deletion of any single vertex. Two closely related definitions are

articulation points and bridge. An articulation point is a vertex whose deletion increases the

number of connected components, and a bridge is an edge whose deletion increases the number

of connected components. Note that by definition an articulation point must have degree greater

than one. The biconnectivity problem is to emit a mapping that maps each edge to the label of its

biconnected component.

Sequentially, biconnectivity can be solved using the Hopcroft-Tarjan algorithm [80]. The algo-

rithm uses depth-first search (DFS) to identify articulation points and requires 𝑂 (𝑚 + 𝑛) work to

label all edges with their biconnectivity label. It is possible to parallelize the sequential algorithm

using a parallel DFS, however, the fastest parallel DFS algorithm is not work-efficient [3]. Tarjan and

Vishkin present the first work-efficient algorithm for biconnectivity [148] (as stated in the paper

the algorithm is not work-efficient, but it can be made so by using a work-efficient connectivity

algorithm). The same paper also introduces the Euler-tour technique, which can be used to compute

subtree functions on rooted trees in parallel in 𝑂 (𝑛) work and 𝑂 (log2 𝑛) depth on the BF model.

Another approach relies on the fact that biconnected graphs admit open ear decompositions to

solve biconnectivity efficiently [103, 126].

In this paper, we implement the Tarjan-Vishkin algorithm for biconnectivity in 𝑂 (𝑚) expected
work and 𝑂 (max(diam(𝐺) log𝑛, log3 𝑛)) depth on the FA-BF model. Our implementation first

computes connectivity labels using our connectivity algorithm, which runs in 𝑂 (𝑚) expected
work and 𝑂 (log3 𝑛) depth whp and picks an arbitrary source vertex from each component. Next,

we compute a spanning forest rooted at these sources using breadth-first search, which runs in

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article . Publication date: January 2020.

29

Algorithm 9 Biconnectivity

1: Parents[0, . . . , 𝑛) ⊲ the parent of each vertex in a rooted spanning forest

2: Preorder [0, . . . , 𝑛) ⊲ the preorder number of each vertex in a rooted spanning forest

3: Low [0, . . . , 𝑛) ⊲ minimum preorder number for a non-tree edge in a vertex’s subtree

4: High[0, . . . , 𝑛) ⊲ maximum preorder number for a non-tree edge in a vertex’s subtree

5: Size[0, . . . , 𝑛) ⊲ the size of a vertex’s subtree

6: procedure IsArticulationPoint(𝑢)

7: 𝑝𝑢 B Parents[𝑢]
8: return Preorder [𝑝𝑢] ≤ Low(𝑢) and High[𝑢] < Preorder [𝑝𝑢] + Size[𝑝𝑢]
9: procedure IsNonCriticalEdge(𝑢, 𝑣)

10: cond𝑣 B 𝑣 = Parents[𝑢] and IsArticulationPoint(𝑣)
11: cond𝑢 B 𝑢 = Parents[𝑣] and IsArticulationPoint(𝑢)
12: critical B cond𝑢 or cond𝑣 ⊲ true if this edge is a bridge

13: return !critical
14: procedure Biconnectivity(𝐺 (𝑉 , 𝐸))
15: F B SpanningForest(𝐺)
16: Parents B root each tree in 𝐹 at an arbitrary root

17: Preorder B compute a preorder numbering on each rooted tree in 𝐹

18: For each 𝑣 ∈ 𝑉 , compute Low(𝑣),High(𝑣), and Size(𝑣) ⊲ subtree functions defined in the text

19: packGraph(𝐺, IsNonCriticalEdge) ⊲ removes all critical edges from the graph

20: Labels B Connectivity(𝐺)
21: return (Labels, Parents) ⊲ sufficient to answer biconnectivity queries

𝑂 (𝑚) work and 𝑂 (diam(𝐺) log𝑛) depth. We compute the subtree functions Low, High, and Size
for each vertex by running leaffix and rootfix sums on the spanning forests produced by BFS with

fetchAndAdd, which requires 𝑂 (𝑛) work and 𝑂 (diam(𝐺) log𝑛) depth. Finally, we compute an

implicit representation of the biconnectivity labels for each edge, using an idea from [23]. This

step computes per-vertex labels by removing all critical edges and computing connectivity on the

remaining graph. The resulting vertex labels can be used to assign biconnectivity labels to edges by

giving tree edges the connectivity label of the vertex further from the root in the tree, and assigning

non-tree edges the label of either endpoint. Summing the cost of each step, the total work of this

algorithm is 𝑂 (𝑚) in expectation and the total depth is 𝑂 (max(diam(𝐺) log𝑛, log3 𝑛)) whp.
Algorithm 9 shows the Tarjan-Vishkin biconnectivity algorithm. It first computes a spanning

forest of 𝐺 and roots the trees in this forest arbitrarily (Lines 15 and 16). Next, the algorithm

computes a preorder numbering, Preorder , with respect to the roots (Line 17). It then computes

the subtree functions Low(𝑣) and High(𝑣) for each 𝑣 ∈ 𝑉 , which are the minimum and maximum

preorder numbers respectively of all non-tree edges (𝑢,𝑤) where 𝑢 is a vertex in 𝑣 ’s subtree

(Line 18). It also computes Size(𝑣), the size of each vertex’s subtree. Observe that one can determine

whether the parent of a vertex𝑢, 𝑝𝑢 is an articulation point by checking Preorder [𝑝𝑢] ≤ Low(𝑢) and
High(𝑢) < Preorder [𝑝𝑢] + Size[𝑝𝑢]. Following [23], we refer to this set of tree edges (𝑢, 𝑝𝑢), where
𝑝𝑢 is an articulation point, as critical edges (Line 9). The last step of the algorithm is to compute

a connectivity labeling of the graph with all critical edges removed. Our algorithm removes the

critical edges using the packGraph primitive (see Section 4).

Given this final connectivity labeling, the biconnectivity label of an edge (𝑢, 𝑣) is the connectivity
label of the vertex that is further from the root of the tree. The query data structure can thus report

biconnectivity labels of edges in 𝑂 (1) time using 2𝑛 words of memory; each vertex just stores its

connectivity label, and the vertex ID of its parent in the rooted forest (for an edge (𝑢, 𝑣) either one
vertex is the parent of the other, which determines the vertex further from the root, or neither is the

parent of the other, which implies that both are the same distance from the root). The same query

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article . Publication date: January 2020.

30 Laxman Dhulipala, Guy E. Blelloch, and Julian Shun

Algorithm 10Minimum Spanning Forest

1: Parents[0, . . . , 𝑛) B 0

2: procedure Borůvka(𝑛, 𝐸) ⊲ 𝐸 is a prefix of minimum weight inter-component edges

3: Forest B {}
4: while |𝐸 | > 0 do

5: P [0, . . . , 𝑛) B (∞,∞) ⊲ array of (weight , index) pairs for each vertex

6: for 𝑖 ∈ [0, |𝐸 |) in parallel do

7: (𝑢, 𝑣,𝑤) B 𝐸 [𝑖] ⊲ the 𝑖-th edge in 𝐸

8: priorityWrite(&𝑃 [𝑢], (𝑤, 𝑖), <) ⊲ < lexicographically compares the (weight, index) pairs

9: priorityWrite(&𝑃 [𝑣], (𝑤, 𝑖), <)
10: for 𝑢 ∈ [0, 𝑛) where 𝑃 [𝑢] ≠ (∞,∞) in parallel do

11: (𝑤, 𝑖) B 𝑃 [𝑢] ⊲ the index and weight of the MSF edge incident to 𝑢

12: 𝑣 B the neighbor of 𝑢 along the 𝐸 [𝑖] edge
13: if 𝑣 > 𝑢 and 𝑃 [𝑣] = (𝑤, 𝑖) then ⊲ 𝑣 also chose 𝐸 [𝑖] as its MSF edge; symmetry break

14: Parents[𝑢] B 𝑢 ⊲ make 𝑢 the root of a component

15: else

16: Parents[𝑢] B 𝑣 ⊲ otherwise 𝑣 < 𝑢; join 𝑣 ’s component

17: Forest B Forest ∪ {edges that won on either endpoint in 𝑃} ⊲ add new MSF edges

18: PointerJump(Parents) ⊲ compress the parents array (see Section 3)

19: 𝐸 B map(𝐸, fn (𝑢, 𝑣,𝑤) → return (Parents[𝑢], Parents[𝑣],𝑤)) ⊲ relabel edges

20: 𝐸 B filter(𝐸, fn (𝑢, 𝑣,𝑤) → return 𝑢 ≠ 𝑣) ⊲ remove self-loops

21: return Forest
22: procedure MinimumSpanningForest(𝐺 (𝑉 , 𝐸,𝑤))
23: Forest B {}
24: Rounds B 0

25: vertexMap(𝑉 , fn 𝑢 → Parents[𝑢] = 𝑢) ⊲ initially each vertex is in its own component

26: while 𝐺.numEdges() > 0 do

27: 𝑇 B select min(3𝑛/2,𝑚)-th smallest edge weight in 𝐺

28: if Rounds = 5 then 𝑇 B largest edge weight in 𝐺

29: 𝐸𝐹 B extractEdges(𝐺, fn (𝑢, 𝑣,𝑤𝑢𝑣) → return𝑤𝑢𝑣 ≤ 𝑇)
30: Forest B Forest ∪ Borůvka(|𝑉 |, 𝐸𝐹)
31: packGraph(𝐺, fn (𝑢, 𝑣,𝑤𝑢𝑣) → return Parents[𝑢] ≠ Parents[𝑣]) ⊲ remove self-loops

32: Rounds B Rounds + 1
33: return Forest

structure can also report whether an edge is a bridge in 𝑂 (1) time. We refer the reader to [23] for

more details. The low space usage of this query structure is important for our implementations as

storing a biconnectivity label per-edge explicitly would require a prohibitive amount of memory

for large graphs.

Lastly, we discuss some details about our implemetation of the Tarjan-Vishkin algorithm, and give

the work and depth of our implementation. Note that the Preorder , Low,High, and Size arrays can be
computed either using the Euler tour technique, or by using leaffix and rootfix computations on the

trees. We use the latter approach used in our implementation. The most costly step in the algorithm

is to compute spanning forest and connectivity on the original graph, and so the theoretical

algorithm (using the Euler tour technique) runs in 𝑂 (𝑚) work in expectation and 𝑂 (log3 𝑛) depth
whp. Our implementation runs in the same work but 𝑂 (max(diam(𝐺) log𝑛, log3 𝑛)) depth whp as

it computes a spanning tree using BFS and performs leaffix and rootfix computations on this tree.

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article . Publication date: January 2020.

31

Minimum Spanning Forest

The minimum spanning forest problem is to compute a spanning forest of the graph with minimum

possible total edge weight. Borůvka gave the first known sequential and parallel algorithm for

computing a minimum spanning forest (MSF) [40]. Significant effort has gone into finding linear-

work MSF algorithms both in the sequential and parallel settings [45, 87, 121]. Unfortunately, these

linear-work parallel algorithms are highly involved and do not seem to be practical. Significant

effort has also gone into designing practical parallel algorithms for MSF; we discuss relevant

experimental work in Section 8. Due to the simplicity of Borůvka, many parallel implementations

of MSF use variants of it.

In this paper, we present an implementation of Borůvka’s algorithm that runs in 𝑂 (𝑚 log𝑛)
work and 𝑂 (log2 𝑛) depth whp on the PW-BF model. Our implementation is based on a recent

implementation of Borůvka by Zhou [155] that runs on the edgelist format (graphs represented

as a sequence of edges, see Section 3). We made several changes to the algorithm which improve

performance and allow us to solve MSF on very large graphs stored in the CSR/CSC format (defined

in Section 3). Storing an integer-weighted graph in edgelist format would require well over 1TB of

memory to represent the edges in the Hyperlink2012 graph alone.

Algorithm 10 shows the pseudocode for our implementation of Borůvka’s algorithm designed

for the CSR/CSC format. Our implementation uses an implementation of Borůvka (Lines 2–21)

that works over an edgelist as a subroutine; to make it efficient in practice, we ensure that the size

of the lists passed to it are much smaller than𝑚. The edgelist-based implementation is based on

shortcutting using pointer-jumping instead of contraction. The main MSF algorithm (Lines 22–33)

maintains a Parents array that represents the connected components that have been found by

the algorithm so far. Initially, each vertex is in its own component (Line 25). The main algorithm

performs a constant number of filtering steps on a small number of the lowest-weight edges that

are extracted from the graph. Each filtering step first solves an approximate 𝑘-th smallest problem

in order to determine a weight threshold, which is either the weight of approximately the 3𝑛/2-th
lightest edge, or the max edge weight if the maximum number of filtering rounds are reached

(Line 27). This step can be easily implemented using the vertex primitives in Section 4 and binary

search. Edges lighter than the threshold are extracted using the extractEdges primitive, defined

in Section 4 (Line 29). The algorithm then runs Borůvka on this subset of edges (Line 30), which we

describe next. Borůvka returns edges that are in the minimum spanning forest, and additionally

compresses the Parents array based on the new forest edges. Lastly, the main algorithm removes

edges that are now contained in the same component using the packGraph primitive (Line 31).

The edgelist-based Borůvka implementation (Lines 2–21) takes as input the number of vertices

and a prefix of the lowest weight edges currently in the graph. The forest is initially empty (Line 3).

The algorithm runs over a series of rounds. Within a round, the algorithm first initializes an array

P of (weight, index) pairs for all vertices (Line 5). Next, it loops in parallel over all edges in 𝐸 and

perform priorityWrites to P based on the weight on both endpoints of the edge (Lines 8 and 9).

This step writes the weight and index-id of a minimum-weight edge incident to a vertex 𝑣 into

𝑃 [𝑣]. Next, for each vertex 𝑢 that found an MSF edge incident to it, i.e., 𝑃 [𝑢] ≠ (∞,∞) (Line 10),
the algorithm determines 𝑣 , the neighbor of 𝑢 along this MSF edge (Lines 11–12). If 𝑣 also selected

(𝑢, 𝑣,𝑤) as its MSF edge, the algorithm deterministically sets the vertex with lower id to be the root

of the tree (Line 14) and the vertex with higher id to point to lower one (Line 16). Otherwise, 𝑢 joins

𝑣 ’s component (Line 16). Lastly, the algorithm performs several clean-up steps. First, it updates

the forest with all newly identified MSF edges (Line 17). Next, it performs pointer-jumping (see

Section 3) to compress trees created in Parents (Line 18). Note that the pointer-jumping step can be

work-efficiently implemented in 𝑂 (log𝑛) depth whp on the BF model [31]. Finally, it relabels the

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article . Publication date: January 2020.

32 Laxman Dhulipala, Guy E. Blelloch, and Julian Shun

Algorithm 11 Strongly Connected Components

1: procedure SCC(𝐺 (𝑉 , 𝐸))
2: B B Partition(𝑉 , 1) ⊲ permute and group vertices in 𝑂 (log𝑛) batches of increasing size (see Alg.6)
3: L[0, . . . , 𝑛) B ∞
4: Done[0, . . . , 𝑛) B false

5: d B 0 ⊲ counter used to assign a unique label to each center based on its position in 𝐵

6: for 𝑖 ∈ [0, |𝐵 |) do
7: Centers B{𝑣 ∈ 𝐵𝑖 | !Done[𝑖]} ⊲ vertices starting in the 𝑖-th batch that are not yet done

8: OutL B MarkReachable(𝐺,Centers) ⊲ pairs (𝑢,𝑑 + 𝑗) s.t. the 𝑗-th center in 𝐵𝑖 reaches 𝑢 in 𝐺

9: InL B MarkReachable(𝐺T,Centers) ⊲ pairs (𝑢,𝑑 + 𝑗) s.t. the 𝑗-th center in 𝐵𝑖 reaches 𝑢 in 𝐺𝑇

10: for (𝑢, 𝑙) ∈ InL ∩ OutL in parallel do

11: Done[𝑢] B true ⊲ mark this vertex as done

12: priorityWrite(&𝐿[𝑢], 𝑙, <) ⊲ final value is 𝑙 ′ = 𝑑 + 𝑗 ′ where 𝑗 ′ = argmin𝑗 {𝐵𝑖 [𝑗] in 𝑢’s SCC }

13: packGraph(𝐺, fn (𝑢, 𝑣) → return ⊲ preserve edges within the same subproblem

14: |InL[𝑢] | = |InL[𝑣] | and |OutL[𝑢] | = |OutL[𝑣] |)
15: 𝑑 B 𝑑 + |𝐵𝑖 | ⊲ increment 𝑑 by the number of finished centers in the 𝑖-th batch

16: return 𝐿

edges array 𝐸 based on the new ids in Parents (Line 19) and then filters 𝐸 to remove any self-loops,

i.e., edges within the same component after this round (Line 20).

We note that our implementation uses indirection by maintaining a set of active vertices and a

using a set of integer edge-ids to represent 𝐸 in the Borůvka procedure. Applying indirection over

the vertices helps in practice as the algorithm can allocate 𝑃 (Line 5) to have size proportional to the

number of active vertices in each round, which may be much smaller than 𝑛. Applying indirection

over the edges allows the algorithm to perform a filter over just the ids of the edges, instead of

triples containing the two endpoints and the weight of each edge.

We point out that the filtering idea used in our main algorithm is similar to the theoretically-

efficient algorithm of Cole et al. [45], except that instead of randomly sampling edges, our filtering

procedure selects a linear number of the lowest weight edges. Each filtering step costs 𝑂 (𝑚) work
and 𝑂 (log𝑚) depth, but as we only perform a constant number of steps before processing the

rest of the remaining graph, the filtering steps do not affect the work and depth asymptotically. In

practice, most of the edges are removed after 3–4 filtering steps, and so the remaining edges can

be copied into an edgelist and solved in a single Borůvka step. We also note that as the edges are

initially represented in both directions, we can pack out the edges so that each undirected edge

is only inspected once (we noticed that earlier edgelist-based implementations stored undirected

edges in both directions).

Strongly Connected Components

The strongly connected components problem is to compute a labeling 𝐿 that maps each vertex to a

unique label for its strongly connected component (i.e., 𝐿[𝑢] = 𝐿[𝑣] iff there is a directed path from

𝑢 to 𝑣 and from 𝑣 to 𝑢). Tarjan’s algorithm is the textbook sequential algorithm for computing the

strongly connected components (SCCs) of a directed graph [49]. As it uses depth-first search, we

currently do not know how to efficiently parallelize it [3]. The current theoretical state-of-the-art

for parallel SCC algorithms with polylogarithmic depth reduces the problem to computing the

transitive closure of the graph. This requires �̃� (𝑛3) work using combinatorial algorithms [68],

which is significantly higher than the 𝑂 (𝑚 + 𝑛) work done by sequential algorithms. As the

transitive-closure based approach performs a significant amount of work even for moderately sized

graphs, subsequent research on parallel SCC algorithms has focused on improving the work while

potentially sacrificing depth [33, 48, 65, 131]. Conceptually, these algorithms first pick a random

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article . Publication date: January 2020.

33

pivot and use a reachability-oracle to identify the SCC containing the pivot. They then remove this

SCC, which partitions the remaining graph into several disjoint pieces, and recurse on the pieces.

In this paper, we present the first implementation of the SCC algorithm from Blelloch et al. [33],

shown in Algorithm 11. We refer the reader to Section 6.2 of [33] for proofs of correctness and its

work and depth bounds. The algorithm is similar in spirit to randomized quicksort. The algorithm

first sets the initial label for all vertices as ∞ and marks all vertices as not done (Lines 3 and 4).

Next, it randomly permutes the vertices and partitions them into log𝑛 batches whose sizes increase

geometrically (Line 2). This pseudocode for Partition is given in Algorithm 6. Specifically, 𝐵𝑖
contains all vertices that are part of the 𝑖-th batch. The variable 𝑑 is a counter tracking the number

of vertices that the algorithm has finished processing. It processes the batches one at a time.

For each batch, it first computes Centers, which are the vertices in this batch that are not yet

done (Line 7). The next step calls MarkReachable from the centers on both 𝐺 and the transposed

graph,𝐺T
(Lines 8–9).MarkReachable takes the set of centers and uses a variant of a breadth-first

search to compute the sets OutL (InL), which for the 𝑗 ’th center 𝑐 𝑗 ∈ 𝐵𝑖 includes all (𝑣, 𝑑 + 𝑗) pairs
for vertices 𝑣 that 𝑐 𝑗 can reach through its out-edges (in-edges). We describe this procedure in more

detail below. Finally, the algorithm computes all (𝑢, 𝑙) pairs in the intersection of InL and OutL
in parallel (Line 10). For each pair, the algorithm first marks the vertex as done (Line 11). It then

performs a priorityWrite to atomically try and update the label of the vertex to 𝑙 (Line 12). After

the parallel loop on Line 10 finishes, the label for a vertex 𝑢 that had some vertex in its SCC appear

as a center in this batch will be set to 𝑙 ′ = 𝑑 + 𝑗 , where 𝑗 ′ = argmin𝑗 {𝐵𝑖 [𝑗] in 𝑢’s SCC }, i.e., it the

unique label for the vertex with minimum rank in the permutation 𝐵 contained in 𝑢’s SCC.

The last step of the algorithm refines the subproblems in the graph by partitioning it, i.e., deleting

all edges which the algorithm identifies as not being in the same SCC. In our implementation, this

step is implemented using the packGraph primitive (Line 13), which considers every directed edge

in the graph and only preserves edges (𝑢, 𝑣) where the number of centers reaching 𝑢 and 𝑣 in InL
are equal (respectively the number of centers reaching them in OutL). We note that the algorithm

described in Blelloch et al. [33] suggests that to partition the graph, each reachability search can

check whether any edge (𝑢, 𝑣) where one endpoint is reachable in the search, and the other is not,

can be cut (possibly cutting some edges multiple times). The benefit of our approach is that we can

perform a single parallel scan over the edges in the graph and pack out a removed edge exactly

once. Our implementation runs in 𝑂 (𝑚 log𝑛) expected work and 𝑂 (diam(𝐺) log𝑛) depth whp on

the PW-BF model.

One of the challenges in implementing this SCC algorithm is how to compute reachability

information from multiple vertices (the centers) simultaneously. Our implementation explicitly

materializes the forward and backward reachability sets for the set of centers that are active in

the current phase. The sets are represented as hash tables that store tuples of vertices and labels,

(𝑢, 𝑙), representing a vertex 𝑢 in the same subproblem as the vertex 𝑐 with label 𝑙 that is visited by

a directed path from 𝑐 . We explain how to make the hash table technique practical in Section 7.3.

The reachability sets are computed by running simultaneous breadth-first searches from all active

centers. In each round of the BFS, we apply edgeMap to traverse all out-edges (or in-edges) of

the current frontier. When we visit an edge (𝑢, 𝑣) we try to add 𝑢’s center IDs to 𝑣 . If 𝑢 succeeds

in adding any IDs, it testAndSet’s a visited flag for 𝑣 , and returns it in the next frontier if the

testAndSet succeeded. Each BFS requires at most 𝑂 (diam(𝐺)) rounds as each search adds the

same labels in each round as it would have had it run in isolation.

We also implement an optimized search for the first phase, which just runs two regular BFSs

over the in-edges and out-edges from a single pivot and stores the reachability information in

bit-vectors instead of hash-tables. It is well known that many directed real-world graphs have a

single massive strongly connected component, and so with reasonable probability the first vertex in

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article . Publication date: January 2020.

34 Laxman Dhulipala, Guy E. Blelloch, and Julian Shun

Algorithm 12Maximal Independent Set

1: P B RandomPermutation([0, . . . , 𝑛 − 1])
2: Flags[0, . . . , 𝑛) B false

3: Priority [0, . . . , 𝑛) B 0

4: procedure NewlyCovered(𝑠 , 𝑑)

5: if testAndSet(&Flags[𝑑]) then
6: return true

7: return false

8: procedure NewlyCoveredCond(𝑣) return !Flags[𝑣]
9: procedure DecrementPriority(𝑠 , 𝑑)

10: if P [𝑠] < P [𝑑] and fetchAndAdd(&Priority [𝑑],−1) = 1 then

11: return true

12: return false

13: procedure DecrementPriorityCond(𝑣) return Priority [𝑣] > 0

14: procedure MIS(𝐺 (𝑉 , 𝐸))
15: vertexMap(𝑉 , fn 𝑢 → ⊲ initialize priority to the number of neighbors appearing before 𝑢 in P
16: Priority [𝑢] B 𝐺.getVertex(𝑢) .countNghs(fn (𝑢, 𝑣) → return P [𝑣] < P [𝑢]))
17: Roots B vertexSubset({𝑣 ∈ 𝑉 | Priority [𝑣] = 0})
18: numFinished B 0

19: I B {}
20: while numFinished < 𝑛 do

21: I B I ∪ Roots
22: Covered B edgeMap(𝐺, Roots,NewlyCovered,NewlyCoveredCond)
23: vertexMap(Covered, fn 𝑣 → Priority [𝑣] = 0) ⊲ remove 𝑣 ∈ Covered from consideration as roots

24: numFinished B numFinished + |Roots | + |Covered |
25: Roots B edgeMap(𝐺,Covered,DecrementPriority,DecrementPriorityCond)
26: return I

the permutation will find this giant component [43]. Our implementation also supports a trimming
optimization that is used by some papers in the literature [106, 144], which eliminates trivial SCCs by

removing any vertices that have zero in- or out-degree. We implement a procedure that recursively

trims until no zero in- or out-degree vertices remain, or until a maximum number of rounds are

reached, although in practice we found that a single trimming step is sufficient to remove the

majority of trivial vertices on our graph inputs.

6.3 Covering Problems

Maximal Independent Set

The maximal independent set problem is to compute a subset of vertices𝑈 such that no two vertices

in𝑈 are neighbors, and all vertices in 𝑉 \𝑈 have a neighbor in𝑈 . Maximal independent set (MIS)

and maximal matching (MM) are easily solved in linear work sequentially using greedy algorithms.

Many efficient parallel maximal independent set and matching algorithms have been developed

over the years [5, 25, 32, 82, 89, 98]. Blelloch et al. show that when the vertices (or edges) are

processed in a random order, the sequential greedy algorithms for MIS and MM can be parallelized

efficiently and give practical algorithms [32]. Recently, Fischer and Noever showed an improved

depth bound for these MIS and MM algorithms [64].

In this paper, we implement the rootset-based algorithm for MIS from Blelloch et al. [32] which

runs in𝑂 (𝑚) work and𝑂 (log2 𝑛) depthwhp on the FA-BFmodel (using the improved depth analysis

of Fischer and Noever [64]). To the best of our knowledge this is the first implementation of the

rootset-based algorithm; the implementations from [32] are based on processing appropriately-sized

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article . Publication date: January 2020.

35

prefixes of an order generated by a random permutation 𝑃 , and have linear expected work and a

larger depth bound. Our implementation of the rootset-based algorithm works on a priority-DAG

defined by directing edges in the graph from the higher-priority endpoint to the lower-priority

endpoint. In each round, we add all roots of the DAG into the MIS, compute 𝑁 (Roots), the neighbors
of the rootset that are still active, and finally decrement the priorities of𝑁 (𝑁 (Roots)). As the vertices
whose priorities we decrement are at arbitrary depths in the priority-DAG, we only decrement

the priority along an edge (𝑢, 𝑣) if 𝑃 [𝑢] < 𝑃 [𝑣] (we could also explicitly run the algorithm on

the graph directed according to 𝑃 , which would avoid this check). The algorithm runs in 𝑂 (𝑚)
work as we process each vertex and edge once; the depth bound is 𝑂 (log2 𝑛) as the priority-DAG
has 𝑂 (log𝑛) depth whp [64], and each round takes 𝑂 (log𝑛) depth. We were surprised that this

implementation usually outperforms the prefix-based implementation from [32], while also being

simple to implement.

Our implementation of the rootset-based MIS algorithm is shown in Algorithm 12. The algorithm

first randomly orders the vertices with a random permutation 𝑃 (Line 1). It then computes an array

Priority where each vertex is associated with the count of its number of neighbors that have higher

priority than it with respect to the permutation 𝑃 . This computation is done using the countNghs

primitive from Section 4 (Line 16). Next, on Line 17 we compute the initial rootset, Roots, which is

the set of all vertices that initially have priority 0. In each round, the algorithm adds the roots to

the independent set, I (Line 21), and computes the set of covered (i.e., removed) vertices, which

are neighbors of the rootset that are still active (Priority [𝑣] > 0). This step is done using edgeMap

over Roots, where the map and condition function are defined similarly to BFS, returning true for a

neighboring vertex if and only if it has not been visited before (the testAndSet to Flags succeeds).
The algorithm also sets the Priority values of these vertices to 0 (Line 23), which prevents them

from being considered as potential roots in the remainder of the algorithm. Next, the algorithm

updates the number of finished vertices (Line 24). Finally, the algorithm computes the next set

of roots using a second edgeMap. The map function (Lines 9–12) decrements the priority of all

neighbors 𝑣 visited over an edge (𝑢, 𝑣) where 𝑢 ∈ Covered and 𝑃 [𝑢] < 𝑃 [𝑣] using a fetchAndAdd
that returns true for a neighbor 𝑣 if this edge decrements its priority to 0.

Maximal Matching

The maximal matching problem is to compute a subset of edges 𝐸 ′ ⊆ 𝐸 such that no two edges

in 𝐸 ′ share an endpoint, and all edges in 𝐸 \ 𝐸 ′ share an endpoint with some edge in 𝐸 ′. Our
maximal matching implementation is based on the prefix-based algorithm from [32] that takes

𝑂 (𝑚) expected work and 𝑂 (log2𝑚) depth whp on the PW-BF model (using the improved depth

shown in [64]). We had to make several modifications to run the algorithm on the large graphs

in our experiments. The original code from [32] uses an edgelist representation, but we cannot

directly use this implementation as uncompressing all edges would require a prohibitive amount of

memory for large graphs. Instead, as in our MSF implementation, we simulate the prefix-based

approach by performing a constant number of filtering steps. Each filter step packs out 3𝑛/2 of
the highest priority edges, randomly permutes them, and then runs the edgelist based algorithm

on the prefix. After computing the new set of edges that are added to the matching, we filter the

remaining graph and remove all edges that are incident to matched vertices. In practice, just 3–4

filtering steps are sufficient to remove essentially all edges in the graph. The last step uncompresses

any remaining edges into an edgelist and runs the prefix-based algorithm. The filtering steps can

be done within the work and depth bounds of the original algorithm.

Our implementation of the prefix-based maximal matching algorithm from Blelloch et al. [32]

is shown in Algorithm 13. The algorithm first creates the array matched, sets all vertices to be

unmatched, and initializes the matching to empty (Line 11). The algorithm runs a constant number

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article . Publication date: January 2020.

36 Laxman Dhulipala, Guy E. Blelloch, and Julian Shun

Algorithm 13Maximal Matching

1: Matched [0, . . . , 𝑛) B false

2: procedure ParallelGreedyMM(𝑃)

3: M B {}
4: 𝑃 B RandomPermutation(𝑃) ⊲ a random permutation of the edges in the prefix

5: while |𝑃 | > 0 do

6: W B edges in 𝑃 with no adjacent edges with higher rank

7: ∀(𝑢, 𝑣) ∈𝑊 , set Matched [𝑢] B true and Matched [𝑣] B true

8: 𝑃 ←filter edges incident to newly matched vertices from 𝑃

9: return𝑀

10: procedure MaximalMatching(𝐺 (𝑉 , 𝐸))
11: Matching B {}
12: Rounds B 0
13: while 𝐺.numEdges() > 0 do

14: curM B 𝐺.numEdges()
15: toExtract B if Rounds ≤ 5 then min(3𝑛/2, curM) else curM
16: P B extractEdges(𝐺, fn (𝑒 = (𝑢, 𝑣)) →
17: inPrefix B 𝑒 ∈ top toExtract highest-priority edges

18: return 𝑢 < 𝑣 and inPrefix) ⊲ 𝑢 < 𝑣 to emit an edge in the prefix only once

19: 𝑊 B ParallelGreedyMM(𝑃)
20: packGraph(𝐺, fn (𝑒 = (𝑢, 𝑣)) → return !(𝑒 ∈𝑊 or 𝑒 incident to𝑊)) ⊲ 𝐸 B 𝐸 \ (𝑊 ∪ 𝑁 (𝑊))
21: Matching B Matching ∪𝑊
22: Rounds B Rounds + 1
23: return Matching

of filtering rounds, as described above, where each round fetches some number of highest priority

edges that are still active (i.e., neither endpoint is incident to a matched edge). First, it calculates

the number of edges to extract (Line 15). It then extracts the highest priority edges using the

packGraph primitive. The function supplied to packGraph checks whether an edge 𝑒 is one of the

highest priority edges, and if so, emits it in the output edgelist, 𝑃 and removes this edge from the

graph. Our implementation calculates edge priorities by hashing the edge pair. It selects whether

an edge is in the prefix by comparing each edge’s priority with the priority of approximately the

toExtract-th smallest priority, computed using approximate median.

Next, the algorithm applies the parallel greedy maximal matching algorithm (Lines 2–9) on it.

The parallel greedy algorithm first randomly permutes the edges in the prefix (Line 4). It then

repeatedly finds the set of edges that have the lowest rank in the prefix amongst all other edges

incident to either endpoint (Line 6), adds them to the matching (Line 7), and filters the edges based

on the newly matched edges (Line 8). The edges matched by the greedy algorithm are returned to

the MaximalMatching procedure (Line 9). We refer to [32, 64] for a detailed description of the prefix-

based algorithm that we implement, and a proof of the work and depth of the ParallelGreedyMM

algorithm.

The last steps within a round are to filter the remaining edges in the graph based on the newly

matched edges using the packGraph primitive (Line 20). The supplied predicate does not return

any edges in the output edgelist, and packs out any edge incident to the partial matching,𝑊 . Lastly,

the algorithm adds the newly matched edges to the matching Line 21. We note that applying a

constant number of filtering rounds before executing ParallelGreedyMM does not affect the

work and depth bounds.

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article . Publication date: January 2020.

37

Algorithm 14 LLF Graph Coloring

1: P B RandomPermutation([0, . . . , 𝑛 − 1])
2: Color [0, . . . , 𝑛) B ∞
3: D[0, . . . , 𝑛) B 0

4: Priority [0, . . . , 𝑛) B 0

5: procedure AssignColors(𝑢)

6: Color [𝑢] B 𝑐 , where 𝑐 is the first unused color in 𝑁 (𝑢)
7: procedure DecrementPriority(𝑠 , 𝑑)

8: if fetchAndAdd(&Priority [𝑑],−1) = 1 then return true

9: return false

10: procedure DecrementPriorityCond(𝑣) return Priority [𝑣] > 0

11: procedure LLF(𝐺 (𝑉 , 𝐸))
12: vertexMap(𝑉 , fn 𝑢 → D[𝑢] B ⌈log(𝑑 (𝑢))⌉)
13: countFn B fn (𝑢, 𝑣) → return D[𝑣] > D[𝑢] or (D[𝑣] = D[𝑢] and 𝑃 [𝑣] < 𝑃 [𝑢])
14: vertexMap(𝑉 , fn 𝑢 → Priority [𝑢] B 𝐺.getVertex(𝑢).countNghs(countFn))
15: Roots B vertexSubset({𝑣 ∈ 𝑉 | Priority [𝑣] = 0})
16: Finished B 0

17: while Finished < 𝑛 do

18: vertexMap(Roots,AssignColors)
19: Finished B Finished + |Roots |
20: Roots B edgeMap(𝐺, Roots,DecrementPriority,DecrementPriorityCond)
21: return Color

Graph Coloring

The graph coloring problem is to compute a mapping from each 𝑣 ∈ 𝑉 to a color such that for each

edge (𝑢, 𝑣) ∈ 𝐸, 𝐶 (𝑢) ≠ 𝐶 (𝑣), using at most Δ + 1 colors. As graph coloring is NP-hard to solve

optimally, algorithms like greedy coloring, which guarantees a (Δ + 1)-coloring, are used instead

in practice, and often use much fewer than (Δ + 1) colors on real-world graphs [77, 151]. Jones and

Plassmann (JP) parallelize the greedy algorithm using linear work, but unfortunately adversarial

inputs exist for the heuristics they consider that may force the algorithm to run in 𝑂 (𝑛) depth.
Hasenplaugh et al. introduce several heuristics that produce high-quality colorings in practice and

also achieve provably low-depth regardless of the input graph. These include LLF (largest-log-degree-

first), which processes vertices ordered by the log of their degree and SLL (smallest-log-degree-last),

which processes vertices by removing all lowest log-degree vertices from the graph, coloring the

remaining graph, and finally coloring the removed vertices. For LLF, they show that it runs in

𝑂 (𝑚 + 𝑛) work and 𝑂 (𝐿 logΔ + log𝑛) depth, where 𝐿 = min{
√
𝑚,Δ} + log2 Δ log𝑛/log log𝑛 in

expectation.

In this paper, we implement a synchronous version of Jones-Plassmann using the LLF heuristic,

which runs in 𝑂 (𝑚 + 𝑛) work and 𝑂 (𝐿 logΔ + log𝑛) depth on the FA-BF model. The algorithm is

implemented similarly to our rootset-based algorithm for MIS. In each round, after coloring the

roots we use a fetchAndAdd to decrement a count on our neighbors, and add the neighbor as a

root on the next round if the count is decremented to 0.

Algorithm 14 shows our synchronous implementation of the parallel LLF-Coloring algorithm

from [77]. The algorithm first computes priorities for each vertex in parallel using the countNghs

primitive (Line 14). This step computes the number of neighbors of a vertex that must run before it

by applying the countFn predicate (Line 13). This predicate function returns true for a (𝑢, 𝑣) edge
to a neighbor 𝑣 if the log-degree of 𝑣 is greater than 𝑢, or, if the log-degrees are equal whether 𝑣

has a lower-rank in a permutation on the vertices (Line 1) than 𝑣 . Next, the algorithm computes

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article . Publication date: January 2020.

38 Laxman Dhulipala, Guy E. Blelloch, and Julian Shun

the vertexSubset Roots (Line 15) which consists of all vertices that have no neighbors that are still

uncolored that must be run before them based on countFn. Note that Roots is an independent set. The
algorithm then loops while some vertex remains uncolored. Within the loop, it first assigns colors

to the roots in parallel (Line 18) by setting each root to the first unused color in its neighborhood

(Lines 5–6). Finally, it updates the number of finished vertices by the number of roots (Line 19)

and computes the next rootset by applying edgeMap on the rootset with a map function that

decrements the priority over all (𝑢, 𝑣) edges incident to Roots where Priority [𝑣] > 0. The map

function returns true only if the priority decrement decreases the priority of the neighboring vertex

to 0 (Line 8).

Approximate Set Cover

The set cover problem can bemodeled by a bipartite graphwhere sets and elements are vertices, with

an edge between a set and an element if and only if the set covers that element. The approximate

set cover problem is as follows: given a bipartite graph 𝐺 = (𝑉 = (𝑆, 𝐸), 𝐴) representing an

unweighted set cover instance, compute a subset 𝑆 ′ ⊆ 𝑆 such that ∪𝑠∈𝑆′𝑁 (𝑠) = 𝐸 and |𝑆 ′ | is an
𝑂 (log𝑛)-approximation to the optimal cover. Like graph coloring, the set cover problem is NP-hard

to solve optimally, and a sequential greedy algorithm computes an 𝐻𝑛-approximation in𝑂 (𝑚) time

for unweighted sets, and𝑂 (𝑚 log𝑚) time for weighted sets, where𝐻𝑛 =
∑𝑛
𝑘=1

1/𝑘 and𝑚 is the sum

of the sizes of the sets (or the number of edges in the graph). There has been significant work on

finding work-efficient parallel algorithms that achieves an 𝐻𝑛-approximation [24, 36, 37, 91, 124].

Algorithm 15 shows pseudocode for the Blelloch et al. algorithm [36] which runs in 𝑂 (𝑚) work
and 𝑂 (log3 𝑛) depth on the PW-BF model. Our presentation here is based on the bucketing-based

implementation from Julienne [52], with one significant change regarding how sets acquire elements

which we discuss below. The algorithm first buckets the sets based on their degree, placing a set

covering 𝐷 elements into ⌊log
1+𝜖 𝐷⌋-th bucket (Line 24). It then processes the buckets in decreasing

order (Lines 26–38). In each round, the algorithm extracts the highest bucket (Sets) (Line 26) and
packs out the adjacency lists of vertices in this bucket to remove edges to neighbors that are covered

in prior rounds (Line 27). The output is an augmented vertexSubset, SetsD, containing each set

along with its new degree after packing out all dead edges. It then maps over SetsD, updating the

degree in 𝐷 for each set with the new degree (Line 28). The algorithm then filters SetsD to build

a vertexSubset Active, which contains sets that have sufficiently high degree to continue in this

round (Line 29).

The next few steps of the algorithm implement one step of MaNIS (Maximal Nearly-Independent

Set) [36], to compute a set of sets from Active that have little overlap. First, the algorithm assigns a

random priority to each currently active set using a random permutation, storing the priorities in

the array 𝜋 (Lines 30–31). Next, it applies edgeMap (Line 32) where the map function (Line 12)

uses a priority-write on each (𝑠, 𝑒) edge to try and acquire an element 𝑒 using the priority of the

visiting set, 𝜋 [𝑠]. It then computes the number of elements each set successfully acquired using

the srcCount primitive (Line 33) with the predicateWonElm (Line 10) that checks whether the

minimum value stored at an element is the unique priority for the set. The final MaNIS step maps

over the vertices and the number of elements they successfully acquired (Line 34) with the map

functionWonEnough (Lines 13–16) which adds sets that covered enough elements to the cover.

The final step in a round is to rebucket all sets which were not added to the cover to be processed

in a subsequent round (Lines 36–37). The rebucketed sets are those in Sets that were not added to

the cover, and the new bucket they are assigned to is calculated by using the getBucket primitive

with the current bucket, 𝑏, and a new bucket calculated based on their updated degree (Line 6).

Our implementation of approximate set cover in this paper is based on the implementation from

Julienne [52], and we refer to this paper for more details about the bucketing-based implementation.

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article . Publication date: January 2020.

39

Algorithm 15 Approximate Set Cover

1: Elm[0, . . . , |𝐸 |) B ∞
2: Flags[0, . . . , |𝐸 |) B uncovered

3: 𝐷 [0, . . . , |𝑆 |) B {𝑑 (𝑠0), . . . , 𝑑 (𝑠𝑛−1)} ⊲ initialized to the initial degree of 𝑠 ∈ 𝑆
4: 𝜋 [0, . . . , |𝑆 |) B 0 ⊲ map from sets to priorities; entries are updated on each round for active sets

5: 𝑏 ⊲ current bucket number

6: procedure BucketNum(𝑠) return ⌊log
1+𝜖 D[𝑠]⌋

7: procedure ElmUncovered(𝑠, 𝑒) return Flags[𝑒] = uncovered

8: procedure UpdateD(𝑠, deg) 𝐷 [𝑠] B deg
9: procedure AboveThreshold(𝑠, deg) return deg ≥ ⌈(1 + 𝜖)max(𝑏,0) ⌉
10: procedure WonElm(𝑠 , 𝑒) return 𝜋 [𝑠] = Elm[𝑒]
11: procedure InCover(𝑠) return 𝐷 [𝑠] = ∞
12: procedure VisitElms(𝑠 , 𝑒) priorityWrite(&Elm[𝑒], 𝜋 [𝑠], <)
13: procedure WonEnough(𝑠 , elmsWon)
14: threshold B ⌈(1 + 𝜖)max(𝑏−1,0) ⌉
15: if (elmsWon > threshold) then

16: 𝐷 [𝑠] B ∞ ⊲ places 𝑠 in the set cover

17: procedure ResetElms(𝑠 , 𝑒)

18: if (Elm[𝑒] = 𝑠) then

19: if (InCover(𝑠)) then

20: Flags[𝑒] B covered ⊲ 𝑒 is covered by 𝑠

21: else

22: Elm[𝑒] B ∞ ⊲ reset 𝑒

23: procedure SetCover(𝐺 B (𝑆 ∪ 𝐸,𝐴))
24: 𝐵 B makeBuckets(|𝑆 |, BucketNum, decreasing) ⊲ process from largest to smallest log-degree

25: (𝑏, Sets) B 𝐵.nextBucket()
26: while (𝑏 ≠ nullbkt) do

27: SetsD B srcPack(𝐺, Sets, ElmUncovered) ⊲ pack out edges to covered elements

28: vertexMap(SetsD,UpdateD) ⊲ update set degrees in 𝐷

29: Active B vertexFilter(SetsD,AboveThreshold) ⊲ extract sets with sufficiently high degree

30: 𝜋𝐴 B RandomPermutation(|Active |)
31: ∀𝑖 ∈ [0, |Active |), set 𝜋 [Active[𝑖]] B 𝜋𝐴 [𝑖] ⊲ assign each active set a random priority

32: edgeMap(𝐺,Active,VisitElms, ElmUncovered) ⊲ active sets try to acquire incident elements

33: ActiveCts B srcCount(𝐺,Active,WonElm) ⊲ count number of neighbors won by each set

34: vertexMap(ActiveCts,WonEnough) ⊲ place sets that won enough into the cover

35: edgeMap(𝐺,Active, ResetElms) ⊲ update neighboring elements state based on set status

36: Rebucket B{(𝑠, 𝐵.getBucket(𝑏,BucketNum(𝑠)) | 𝑠 ∈ Sets and !InCover(𝑠)}
37: 𝐵.updateBuckets(Rebucket) ⊲ update buckets of sets that failed to join the cover

38: (𝑏, Sets) B 𝐵.nextBucket()
39: return {𝑠 ∈ 𝑆 | InCover(𝑠) = true}

The main change we made in this paper is to ensure that we correctly set random priorities for

active sets in each round of the algorithm. Both the implementation in Julienne as well as an

earlier implementation of the algorithm [37] use the original IDs of sets instead of picking random

priorities for all sets that are active on a given round. This approach can cause very few vertices to

be added in each round on meshes and other graphs with a large amount of symmetry. Instead,

in our implementation, for A𝑆 , the active sets on a round, we generate a random permutation of

[0, . . . , |A𝑆 | − 1] and write these values into a pre-allocated dense array with size proportional to

the number of sets (Lines 30—31). We give experimental details regarding this change in Section 8.

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article . Publication date: January 2020.

40 Laxman Dhulipala, Guy E. Blelloch, and Julian Shun

Algorithm 16 𝑘-core (Coreness)

1: Coreness[0, . . . , 𝑛) B 0

2: procedure Coreness(𝐺 (𝑉 , 𝐸))
3: vertexMap(𝑉 , fn 𝑣 → Coreness[𝑣] B 𝑑 (𝑣𝑖)) ⊲ coreness values initialized to initial degrees

4: B B makeBuckets(|𝑉 |,Coreness, increasing) ⊲ buckets processed in increasing order

5: Finished B 0

6: while (Finished < |𝑉 |) do

7: (𝑘 , ids) B B.nextBucket() ⊲ 𝑘 is the current core number, ids is vertices peeled in this core

8: Finished B Finished + |ids |
9: condFn B fn 𝑣 → return true

10: applyFn B fn (𝑣, edgesRemoved) →
11: inducedD B 𝐷 [𝑣]
12: if (inducedD > 𝑘) then

13: newD B max(inducedD − edgesRemoved, 𝑘)
14: Coreness[v] B newD
15: bkt B B.get_bucket(inducedD, newD)
16: if (bkt ≠ nullbkt) then

17: return Some(bkt)
18: return None

19: Moved B nghCount(𝐺, ids, condFn, applyFn) ⊲ Moved is an bktdest vertexSubset

20: B.updateBuckets(Moved) ⊲ update the buckets of vertices in Moved
21: return Coreness

6.4 Substructure Problems

𝑘-core

A 𝑘-core of a graph is a maximal subgraph 𝐻 where the degree of every vertex in 𝐻 is ≥ 𝑘 .

The coreness of a vertex is the maximum 𝑘-core a vertex participates in. The 𝑘-core problem in

this paper is to compute a mapping from each vertex to its coreness value. 𝑘-cores were defined

independently by Seidman [132], and by Matula and Beck [104] who also gave a linear-time

algorithm for computing the coreness value of all vertices. Anderson and Mayr showed that 𝑘-core

(and therefore coreness) is in NC for 𝑘 ≤ 2, but is P-complete for 𝑘 ≥ 3 [7]. The Matula and

Beck algorithm is simple and practical—it first bucket-sorts vertices by their degree, and then

repeatedly deletes the minimum-degree vertex. The affected neighbors are moved to a new bucket

corresponding to their induced degree. As each edge in each direction and vertex is processed

exactly once, the algorithm runs in 𝑂 (𝑚 + 𝑛) work. In [52], the authors gave a parallel algorithm

based on bucketing that runs in 𝑂 (𝑚 + 𝑛) expected work, and 𝜌 log𝑛 depth whp. 𝜌 is the peeling-

complexity of the graph, defined as the number of rounds to peel the graph to an empty graph

where each peeling step removes all minimum degree vertices.

Algorithm 16 shows pseudocode for the work-efficient 𝑘-core algorithm from Julienne [52]

which computes the coreness values of all vertices. The algorithm initializes the initial coreness

value of each vertex to its degree (Line 3), and inserts the vertices into a bucketing data-structure

based on their degree (Line 4). In each round, while all of the vertices have not yet been processed

the algorithm performs the following steps. It first removes (or peels) the vertices in the minimum

bucket, 𝑘 (Line 7). Next, it computes the number of edges removed from each neighbor using the

nghCount primitive. The apply function supplied to the primitive (Lines 10–18) takes a pair of a

vertex, and the number of incident edges removed (𝑣, edgesRemoved), updates the current coreness
of the vertex 𝑣 and emits a vertex and bucket identifier into the output vertexSubset if and only

if the vertex needs to move to a new bucket (the return value of the getBucket primitive). The

output is an augmented vertexSubset where each vertex is augmented with the bucket (a value of

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article . Publication date: January 2020.

41

Algorithm 17 Approximate Densest Subgraph

1: 𝐷 [0, . . . , 𝑛) B 0

2: procedure ApproximateDensestSubgraph(𝐺 (𝑉 , 𝐸))
3: vertexMap(𝑉 , fn 𝑣 → 𝐷 [𝑣] B 𝑑 (𝑣)) ⊲ induced degrees are initially original degrees

4: 𝑆 B 𝑉

5: 𝑆max B ∅
6: while 𝑆 ≠ ∅ do
7: 𝑅 B vertexSubset({𝑣 ∈ 𝑆 | 𝐷 [𝑣] < 2(1 + 𝜖)D(𝑆)}) ⊲ D(𝑆) B |𝐸 (𝐺 [𝑆]) |

|𝑆 |
8: vertexMap(𝑅, fn 𝑣 → return 𝐷 [𝑣] B 0)
9: condFn B fn 𝑣 → return true

10: applyFn B fn (𝑣, edgesRemoved) →
11: 𝐷 [𝑣] B max(0, 𝐷 [𝑣] − edgesRemoved)
12: return None

13: nghCount(𝐺, 𝑅, condFn, applyFn)
14: 𝑆 B 𝑆 \ 𝑅
15: if D(𝑆) > D(𝑆max) then
16: 𝑆max B 𝑆

17: return Smax

type bktdest) that it moves to. The last step is to update the buckets of affected neighbors (Line 20).

Once all buckets have been processed (all cores have been peeled), the algorithm returns the array

Coreness, which contains the final coreness values of each vertex at the end of the algorithm.

Approximate Densest Subgraph

The densest subgraph problem is to find a subset of vertices in an undirected graph with the highest

density. The density of a subset of vertices 𝑆 is the number of edges in the subgraph 𝑆 divided by

the number of vertices. The approximate densest problem is to compute a subset 𝑈 ⊆ 𝑉 where the

density of𝑈 is a 2(1 + 𝜖) approximation of the density of the densest subgraph of 𝐺 .

The problem is a classic graph optimization problem that admits exact polynomial-time solutions

using either a reduction to flow [70] or LP-rounding [44]. In his paper, Charikar also gives a simple

𝑂 (𝑚 + 𝑛) work 2-approximation algorithm based on computing a degeneracy ordering of the

graph, and taking the maximum density subgraph over all suffixes of the degeneracy order.
5
The

problem has also received attention in parallel models of computation [17, 18]. Bahmani et al. give

a (2 + 𝜖)-approximation running in𝑂 (log
1+𝜖 𝑛) rounds of MapReduce [18]. Subsequently, Bahmani

et al. [17] showed that a (1 + 𝜖) can be found in 𝑂 (log𝑛/𝜖2) rounds of MapReduce by using the

multiplicative-weights approach on the dual of the natural LP for densest subgraph. To the best

our knowledge, it is open whether the densest subgraph problem can be exactly solved in NC.

In this paper, we implement the elegant (2 + 𝜖)-approximation algorithm of Bahmani et al.

(Algorithm 17). Our implementation of the algorithm runs in 𝑂 (𝑚 + 𝑛) work and 𝑂 (log
1+𝜖 𝑛 log𝑛)

depth. The algorithm starts with a candidate subgraph, 𝑆 , consisting of all vertices, and an empty

approximate densest subgraph 𝑆max (Lines 4–5). It also maintains an array with the induced degree

of each vertex in the array𝐷 , which is initially just its degree in𝐺 (Line 3). The main loop iteratively

peels vertices with degree below the density threshold in the current candidate subgraph (Lines 6–

16). Specifically, it first finds all vertices with induced degree less than 2(1 + 𝜖)D(𝑆) (Line 7). Next,
it calls nghCount (see Section 4), which computes for each neighbor of 𝑅 the number of incident

edges removed by deleting vertices in 𝑅 from the graph, and updates the neighbor’s degree in 𝐷

5
We note that the 2-approximation can be work-efficiently solved in the same depth as our 𝑘-core algorithm by augmenting

the 𝑘-core algorithm to return the order in which vertices are peeled. Computing the maximum density subgraph over

suffixes of the degeneracy order can be done using scan.

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article . Publication date: January 2020.

42 Laxman Dhulipala, Guy E. Blelloch, and Julian Shun

Algorithm 18 Triangle Counting

1: procedure FilterEdge(𝑢, 𝑣)

2: return 𝑑 (𝑢) > 𝑑 (𝑣) or (𝑑 (𝑢) = 𝑑 (𝑣) and 𝑢 > 𝑣)
3: procedure TriangleCounting(𝐺 (𝑉 , 𝐸))
4: 𝐺 ′ B filterGraph(𝐺, FilterEdge) ⊲ orient edges from lower to higher degree

5: vertexCounts[0, . . . , 𝑛) B 0

6: vertexMap(𝑉 , fn 𝑢 → vertexCounts[𝑢] B
7: 𝐺.getVertex(𝑢).reduceOutNgh(fn (𝑢, 𝑣) → return intersection(𝑁 + (𝑢), 𝑁 + (𝑣)), (0, +)))
8: return reduce(vertexCounts, (0, +))

(Line 11). Finally, it removes vertices in 𝑅 from 𝑆 (Line 14). If the density of the updated subgraph 𝑆

is greater than the density of 𝑆max, the algorithm updates 𝑆max to be 𝑆 .

Bahmani et al. show that this algorithm removes a constant factor of the vertices in each round,

but do not consider the work or total number of operations performed by their algorithm. We

briefly sketch how the algorithm can be implemented in𝑂 (𝑚 +𝑛) work and𝑂 (log
1+𝜖 𝑛 log𝑛) depth.

Instead of computing the density of the current subgraph by scanning all edges, we maintain it

explicitly using an array, 𝐷 (Line 3) which tracks the degrees of vertices still in 𝑆 , and update 𝐷 as

vertices are removed from 𝑆 . Each round of the algorithm does work proportional to vertices in 𝑆

to compute 𝑅 (Line 7) but since 𝑆 decreases by a constant factor in each round the work of these

steps to obtain 𝑅 is 𝑂 (𝑛) over all rounds. Updating 𝐷 can be done by computing the number of

edges going between 𝑅 and 𝑆 which are removed, which only requires scanning edges incident to

vertices in 𝑅 using nghCount (Line 13). Therefore, the edges incident to each vertex are scanned

exactly once (in the round when it is included in 𝑅) and so the algorithm performs 𝑂 (𝑚 + 𝑛) work.
The depth is𝑂 (log

1+𝜖 𝑛 log𝑛) since there are𝑂 (log1+𝜖 𝑛) rounds each of which perform a filter and

nghCount which both run in 𝑂 (log𝑛) depth.
We note that an earlier implementation of our algorithm used the edgeMap primitive combined

with fetchAndAdd to decrement degrees of neighbors of 𝑅. We found that since a large number

of vertices are removed in each round, using fetchAndAdd can cause significant contention,

especially on graphs containing vertices with high degrees. Our implementation uses a work-

efficient histogram procedure to implement nghCount (see Section 7) which updates the degrees

while incurring very little contention.

Triangle Counting

The triangle counting problem is to compute the global count of the number of triangles in the graph.

Triangle counting has received significant recent attention due to its numerous applications in Web

and social network analysis. There have been dozens of papers on sequential triangle counting

(see e.g., [6, 83, 93, 117, 118, 129, 130], among many others). The fastest algorithms rely on matrix

multiplication and run in either 𝑂 (𝑛𝜔) or 𝑂 (𝑚2𝜔/(1+𝜔)) work, where 𝜔 is the best matrix multi-

plication exponent [6, 83]. The fastest algorithm that does not rely matrix multiplication requires

𝑂 (𝑚3/2) work [93, 129, 130], which also turns out to be much more practical. Parallel algorithms

with 𝑂 (𝑚3/2) work have been designed [1, 97, 142], with Shun and Tangwongsan [142] showing

an algorithm that requires 𝑂 (log𝑛) depth on the BF model.
6
The implementation from [142] par-

allelizes Latapy’s compact-forward algorithm, which creates a directed graph 𝐷𝐺 where an edge

(𝑢, 𝑣) ∈ 𝐸 is kept in 𝐷𝐺 iff 𝑑 (𝑢) < 𝑑 (𝑣). Although triangle counting can be done directly on the

undirected graph in the same work and depth asymptotically, directing the edges helps reduce

work, and ensures that every triangle is counted exactly once.

6
The algorithm in [142] was described in the Parallel Cache Oblivious model, with a depth of𝑂 (log3/2 𝑛) .

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article . Publication date: January 2020.

43

Algorithm 19 PageRank

1: 𝑃curr [0, . . . , 𝑛) B 1/𝑛
2: 𝑃next [0, . . . , 𝑛) B 0

3: diffs[0, . . . , 𝑛) B 0

4: procedure PageRank(𝐺)

5: Frontier B vertexSubset({0, . . . , 𝑛 − 1})
6: condFn B fn 𝑢 → return true

7: mapFn B fn (𝑢, 𝑣) → return Pcurr [𝑢]/𝑑 (𝑢)
8: applyFn B fn (𝑣, contribution) →
9: 𝑃next [𝑣] B 𝛾 ∗ contribution + 1−𝛾

𝑛
10: diffs[𝑣] B |𝑃next [𝑣] − 𝑃curr [𝑣] |
11: return None

12: error B ∞
13: while (error < 𝜖) do

14: nghReduceApply(𝐺, ids,mapFn, (0, +), condFn, applyFn)
15: error B reduce(diffs, (0, +))
16: swap(𝑃curr , 𝑃next)
17: return 𝑃curr

In this paper we implement the triangle counting algorithm described in [142] (Algorithm 18).

The algorithm first uses the filterGraph primitive (Line 4) to direct the edges in the graph from

lower-degree to higher-degree, breaking ties lexicographically (Line 2). It then maps over all vertices

in the graph in parallel (Line 6), and for each vertex performs a sum-reduction over its out-neighbors,

where the value for each neighbor is the intersection size between the directed neighborhoods

𝑁 + (𝑢) and 𝑁 + (𝑣) (Line 7).
We note that we had to make several significant changes to the implementation in order to run

efficiently on large compressed graphs. First, we parallelized the creation of the directed graph; this

step creates a directed graph encoded in the parallel-byte format in𝑂 (𝑚) work and𝑂 (log𝑛) depth
using the filterGraph primitive. We also parallelized the merge-based intersection algorithm to

make it work in the parallel-byte format. We give more details on these techniques in Section 7.

6.5 Eigenvector Problems

PageRank

PageRank is a centrality algorithm first used at Google to rank webpages [42]. The algorithm takes

a graph 𝐺 = (𝑉 , 𝐸), a damping factor 0 ≤ 𝛾 ≤ 1 and a constant 𝜖 which controls convergence.

Initially, the PageRank of each vertex is 1/𝑛. In each iteration, the algorithm updates the PageRanks

of the vertices using the following equation:

𝑃𝑣 =
1 − 𝛾
𝑛
+ 𝛾

∑
𝑢∈𝑁 − (𝑣)

𝑃𝑢

deg+ (𝑢)

The PageRank algorithm terminates once the 𝑙1 norm of the differences between PageRank values

between iterations is below 𝜖 . The algorithm implemented in this paper is an extension of the imple-

mentation of PageRank described in Ligra [136]. The main changes are using a contention-avoiding

reduction primitive, which we describe in more detail below. Some PageRank implementations

used in practice actually use an algorithm called PageRank-Delta [96], which modifies PageRank

by only activating a vertex if its PageRank value has changed sufficiently. However, the work and

depth of this algorithm are the same as that of PageRank in the worst case, and therefore we chose

to implement the classic algorithm.

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article . Publication date: January 2020.

44 Laxman Dhulipala, Guy E. Blelloch, and Julian Shun

We show pseudocode for our PageRank implementation in Algorithm 19. The initial PageRank

values are set to 1/𝑛 (Line 1). The algorithm initializes a frontier containing all vertices (Line 5), and

sets the error (the 𝑙1 norm between consecutive PageRank vectors) to∞ (Line 12). The algorithm

then iterates the PageRank update step while the error is above the threshold 𝜖 (Lines 13–16). The

update is implemented using the nghReduce primitive (see Section 4 for details on the primitive).

The condFn function (Line 6) specifies that value should be aggregated for each vertex with non-zero
in-degree. ThemapFn function pulls a PageRank contribution of 𝑃curr [𝑢]/𝑑 (𝑢) for each in-neighbor

𝑢 in the frontier (Line 7). Finally, after the contributions to each neighbor have been summed up,

the applyFn function is called on a pair of a neighboring vertex 𝑣 , and its contribution (Lines 8–11).

The apply step updates the next PageRank value for the vertex using the PageRank equation above

(Line 9) and updates the difference in PageRank values for this vertex in the diffs vector (Line 10).
The last steps in the loop applies a parallel reduction over the differences vector to update the

current error (Line 15) and finally swaps the current and next PageRank vectors (Line 16).

The main modification we made to the implementation from Ligra was to implement the dense

iterations of the algorithm using the reduction primitive nghReduce, which can be carried out over

the incoming neighbors of a vertex in parallel, without using a fetchAndAdd instruction. Each

iteration of our implementation requires 𝑂 (𝑚 + 𝑛) work and 𝑂 (log𝑛) depth (note that the bounds

hold deterministically since in each iteration we can apply a dense, or pull-based implementation

which performs a parallel reduction over the in-neighbors of each vertex). As the number of

iterations required for PageRank to finish for a given 𝜖 depends on the structure of the input graph,

our benchmark measures the time for a single iteration of PageRank.

7 IMPLEMENTATIONS AND TECHNIQUES

In this section, we introduce several general implementation techniques and optimizations that we

use in our algorithms. The techniques include a fast histogram implementation useful for reducing

contention in the 𝑘-core algorithm, a cache-friendly sparse edgeMap implementation that we

call edgeMapBlocked, and compression techniques used to efficiently parallelize algorithms on

massive graphs.

7.1 A Work-efficient Histogram Implementation

Our initial implementation of the peeling-based algorithm for 𝑘-core algorithm suffered from poor

performance due to a large amount of contention incurred by fetchAndAdds on high-degree

vertices. This issue occurs as many social-networks and web-graphs have large maximum degree,

but relatively small degeneracy, or largest non-empty core (labeled 𝑘𝑚𝑎𝑥 in Table 3). For these

graphs, we observed that many early rounds, which process vertices with low coreness perform

a large number of fetchAndAdds on memory locations corresponding to high-degree vertices,

resulting in high contention [138]. To reduce contention, we designed a work-efficient histogram

implementation that can perform this step while only incurring 𝑂 (log𝑛) contention whp. The
Histogram primitive takes a sequence of (K,T) pairs, and an associative and commutative operator

𝑅 : T × T→ T and computes a sequence of (K,T) pairs, where each key 𝑘 only appears once, and

its associated value 𝑡 is the sum of all values associated with keys 𝑘 in the input, combined with

respect to 𝑅.

A useful example of histogram to consider is summing for each 𝑣 ∈ 𝑁 (𝐹) for a vertexSubset 𝐹 ,
the number of edges (𝑢, 𝑣) where 𝑢 ∈ 𝐹 (i.e., the number of incoming neighbors from the frontier).

This operation can be implemented by running histogram on a sequence where each 𝑣 ∈ 𝑁 (𝐹)
appears once per (𝑢, 𝑣) edge as a tuple (𝑣, 1) using the operator +. One theoretically efficient

implementation of histogram is to simply semisort the pairs using the work-efficient semisort

algorithm from [74]. The semisort places pairs from the sequence into a set of heavy and light

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article . Publication date: January 2020.

45

Algorithm 20 edgeMapBlocked

1: procedure edgeMapBlocked(𝐺,𝑈 , 𝐹)

2: O B Prefix sums of degrees of 𝑢 ∈ 𝑈
3: 𝑑𝑈 B

∑
𝑢∈𝑈 𝑑 (𝑢)

4: nblocks B ⌈𝑑𝑈 /bsize⌉
5: B B Result of binary search for nblocks indices into O
6: I B Intermediate array of size

∑
𝑢∈𝑈 𝑑 (𝑢)

7: A B Intermediate array of size nblocks
8: parfor 𝑖 ∈ B do

9: Process work in 𝐵 [𝑖] and pack live neighbors into 𝐼 [𝑖bsize]
10: A[𝑖] B Number of live neighbors

11: R B Prefix sum A and compact I
12: return 𝑅

buckets, where heavy buckets contain a single key that appears many times in the input sequence,

and light buckets contain at most 𝑂 (log2 𝑛) distinct keys (𝑘, 𝑣) keys, each of which appear at most

𝑂 (log𝑛) times whp (heavy and light keys are determined by sampling). We compute the reduced

value for heavy buckets using a standard parallel reduction. For each light bucket, we allocate a

hash table, and hash the keys in the bucket in parallel to the table, combining multiple values for

the same key using 𝑅. As each key appears at most 𝑂 (log𝑛) times whp we incur at most 𝑂 (log𝑛)
contention whp. The output sequence can be computed by compacting the light tables and heavy

arrays.

While the semisort implementation is theoretically efficient, it requires a likely cache miss

for each key when inserting into the appropriate hash table. To improve cache performance in

this step, we implemented a work-efficient algorithm with 𝑂 (𝑛𝜖) depth based on radix sort. Our

implementation is based on the parallel radix sort from PBBS [139]. As in the semisort, we first

sample keys from the sequence and determine the set of heavy-keys. Instead of directly moving the

elements into light and heavy buckets, we break up the input sequence into 𝑂 (𝑛1−𝜖) blocks, each
of size 𝑂 (𝑛𝜖), and sequentially sort the keys within a block into light and heavy buckets. Within

the blocks, we reduce all heavy keys into a single value and compute an array of size 𝑂 (𝑛𝜖) which
holds the starting offset of each bucket within the block. Next, we perform a segmented-scan [26]

over the arrays of the 𝑂 (𝑛1−𝜖) blocks to compute the sizes of the light buckets, and the reduced

values for the heavy-buckets, which only contain a single key. Finally, we allocate tables for the

light buckets, hash the light keys in parallel over the blocks and compact the light tables and heavy

keys into the output array. Each step runs in𝑂 (𝑛) work and𝑂 (𝑛𝜖) depth. Compared to the original

semisort implementation, this version incurs fewer cache misses because the light keys per block

are already sorted and consecutive keys likely go to the same hash table, which fits in cache. We

compared our times in the histogram-based version of 𝑘-core and the fetchAndAdd-based version

of 𝑘-core and saw between a 1.1–3.1x improvement from using the histogram.

7.2 edgeMapBlocked

One of the core primitives used by our algorithms is edgeMap (described in Section 3). The push-

based version of edgeMap, edgeMapSparse, takes a frontier𝑈 and iterates over all (𝑢, 𝑣) edges
incident to it. It applies an update function on each edge that returns a boolean indicating whether

or not the neighbor should be included in the next frontier. The standard implementation of

edgeMapSparse first computes prefix-sums of 𝑑 (𝑢), 𝑢 ∈ 𝑈 to compute offsets, allocates an array of

size

∑
𝑢∈𝑈 𝑑 (𝑢), and iterates over all 𝑢 ∈ 𝑈 in parallel, writing the ID of the neighbor to the array if

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article . Publication date: January 2020.

46 Laxman Dhulipala, Guy E. Blelloch, and Julian Shun

the update function 𝐹 returns true, and ⊥ otherwise. It then filters out the ⊥ values in the array to

produce the output vertexSubset.

In real-world graphs, |𝑁 (𝑈) |, the number of unique neighbors incident to the current frontier is

often much smaller than

∑
𝑢∈𝑈 𝑑 (𝑢). However, edgeMapSparse will always perform

∑
𝑢∈𝑈 𝑑 (𝑢)

writes and incur a proportional number of cache misses, despite the size of the output being at

most |𝑁 (𝑈) |. More precisely, the size of the output is at most 𝐿𝑁 (𝑈) ≤ |𝑁 (𝑈) |, where 𝐿𝑁 (𝑈) is
the number of live neighbors of𝑈 , where a live neighbor is a neighbor of the current frontier for

which 𝐹 returns true. To reduce the number of cache misses we incur in the push-based traversal,

we implemented a new version of edgeMapSparse that performs at most 𝐿𝑁 (𝑈) writes that we
call edgeMapBlocked. The idea behind edgeMapBlocked is to logically break the edges incident

to the current frontier up into a set of blocks, and iterate over the blocks sequentially, packing

live neighbors compactly for each block. The output is obtained by applying a prefix-sum over the

number of live neighbors per-block, and compacting the block outputs into the output array.

We now describe a theoretically efficient implementation of edgeMapBlocked (Algorithm 20).

As in edgeMapSparse, we first compute an array of offsets O (Line 2) by prefix summing the

degrees of 𝑢 ∈ 𝑈 . We process the edges incident to this frontier in blocks of size bsize. As we cannot
afford to explicitly write out the edges incident to the current frontier to block them, we instead

logically assign the edges to blocks. Each block searches for a range of vertices to process with

bsize edges; the 𝑖-th block binary searches the offsets array to find the vertex incident to the start of

the (𝑖 · bsize)-th edge, storing the result into 𝐵 [𝑖] (Lines 4–5). The vertices that block 𝑖 must process

are therefore between 𝐵 [𝑖] and 𝐵 [𝑖 + 1]. We note that multiple blocks can be assigned to process

the edges incident to a high-degree vertex. Next, we allocate an intermediate array 𝐼 of size 𝑑𝑈
(Line 6), but do not initialize the memory, and an array 𝐴 that stores the number of live neighbors

found by each block (Line 7). Next, we process the blocks in parallel by sequentially applying 𝐹 to

each edge in the block and compactly writing any live neighbors to 𝐼 [𝑖 · bsize] (Line 9), and write

the number of live neighbors to 𝐴[𝑖] (Line 10). Finally, we do a prefix sum on 𝐴, which gives offsets

into an array of size proportional to the number of live neighbors, and copy the live neighbors in

parallel to 𝑅, the output array (Line 11).

We found that this optimization helps the most in algorithms where there is a significant

imbalance between the size of the output of each edgeMap, and

∑
𝑢∈𝑈 𝑑 (𝑢). For example, in

weighted BFS, relatively few of the edges actually relax a neighboring vertex, and so the size of the

output, which contains vertices that should be moved to a new bucket, is usually much smaller

than the total number of edges incident to the frontier. In this case, we observed as much as a 1.8x

improvement in running time by switching from edgeMapSparse to edgeMapBlocked.

7.3 Techniques for overlapping searches

In this section, we describe how we compute and update the reachability labels for vertices that

are visited in a phase of our SCC algorithm. Recall that each phase performs a graph traversal

from the set of active centers on this round, 𝐶𝐴, and computes for each center 𝑐 , all vertices in the

weakly-connected component for the subproblem of 𝑐 that can be reached by a directed path from

it. We store this reachability information as a set of (𝑢, 𝑙𝑖) pairs in a hash-table, which represent

the fact that 𝑢 can be reached by a directed path from 𝑐𝑖 (𝑙𝑖 is a unique label for the center 𝑐𝑖 , see

Algorithm 11). A phase performs two graph traversals from the centers to compute R𝐹 and R𝐵 , the
out-reachability set and in-reachability sets respectively. Each traversal allocates an initial hash

table and runs rounds of edgeMap until no new label information is added to the table.

The main challenge in implementing one round in the traversal is (1) ensuring that the table

has sufficient space to store all pairs that will be added this round, and (2) efficiently iterating

over all of the pairs associated with a vertex. We implement (1) by performing a parallel reduce to

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article . Publication date: January 2020.

47

sum over vertices 𝑢 ∈ 𝐹 , the current frontier, the number of neighbors 𝑣 in the same subproblem,

multiplied by the number of distinct labels currently assigned to 𝑢. This quantity upper-bounds the

number of distinct labels that could be added this round, and although we may overestimate the

number of actual additions, we will never run out of space in the table. We update the number of

elements stored in the table during concurrent insertions by storing a per-processor count which

gets incremented whenever the processor performs a successful insertion. The counts are then

summed together at the end of a round and used to update the count of the number of elements in

the table.

One simple implementation of (2) is to simply allocate 𝑂 (log𝑛) space for every vertex, as one

can show that the maximum number of centers that visit any vertex during a phase is at most

𝑂 (log𝑛) whp. However, this approach will waste a significant amount of space, as most vertices

are visited just a few times (a constant number of times per round, in expectation). Instead, our

implementation stores (𝑢, 𝑙) pairs in the table for visited vertices 𝑢, and computes hashes based

only on the ID of 𝑢. As each vertex is only expected to be visited a constant number of times during

a phase, the expected probe length is still a constant. Storing the pairs for a vertex in the same

probe-sequence is helpful for two reasons. First, we may incur fewer cache misses than if we had

hashed the pairs based on both entries, as multiple pairs for a vertex can fit in the same cache

line. Second, storing the pairs for a vertex along the same probe sequence makes it easy to find all

pairs associated with a vertex 𝑢; the idea is to simply perform linear-probing, reporting all pairs

that have 𝑢 as their key until we hit an empty cell. Our experiments confirm that this technique is

practical, and we believe that it may have applications in similar algorithms, such as computing

least-element lists and FRT trees in parallel [33, 34].

7.4 Primitives on Compressed Graphs

Most of the algorithms studied in this paper are concisely expressed using fundamental primitives

such as map, map-reduce, filter, pack, and intersection (see Section 4). To run our algorithms without

any modifications on compressed graphs, we wrote new implementations of these primitives using

using the parallel-byte format from Ligra+, some of which required some new techniques in order

to be theoretically efficient. We first review the byte and parallel-byte formats from [141]. In

byte coding, we store a vertex’s neighbor list by difference encoding consecutive vertices, with

the first vertex difference encoded with respect to the source. Decoding is done by sequentially

uncompressing each difference, and summing the differences into a running sum which gives the

ID of the next neighbor. As this process is sequential, graph algorithms using the byte format that

map over the neighbors of a vertex will require Ω(Δ) depth, where Δ is the maximum degree of a

vertex in the graph. The parallel-byte format from Ligra+ breaks the neighbors of a high-degree

vertex into blocks, where each block contains a fixed number of neighbors. Each block is difference

encoded with respect to the source. As each block can have a different compressed size, it also

stores offsets that point to the start of each block. The format stores the blocks in a neighbor list 𝐿

in sorted order.

We now describe efficient implementations of primitives used by our algorithms. All descriptions

are given for neighbor lists coded in the parallel-byte format, and we assume for simplicity that

the block size (the number of neighbors stored in each block) is 𝑂 (log𝑛). The Map primitive takes

as input neighbor list 𝐿, and a map function 𝐹 , and applies 𝐹 to each ID in 𝐿. This primitive can

be implemented with a parallel-for loop across the blocks, where each iteration decodes its block

sequentially. Our implementation of map runs in 𝑂 (|𝐿 |) work and 𝑂 (log𝑛) depth.Map-Reduce

takes as input a neighbor list 𝐿, a map function 𝐹 : vtx→ T and a binary associative function 𝑅

and returns the sum of the mapped elements with respect to 𝑅. We perform map-reduce similarly

by first mapping over the blocks, then sequentially reducing over the mapped values in each block.

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article . Publication date: January 2020.

48 Laxman Dhulipala, Guy E. Blelloch, and Julian Shun

We store the accumulated value on the stack or in an heap-allocated array if the number of blocks

is large enough. Finally, we reduce the accumulated values using 𝑅 to compute the output. Our

implementation of map-reduce runs in 𝑂 (|𝐿 |) work and 𝑂 (log𝑛) depth.
Filter takes as input a neighbor list 𝐿, a predicate 𝑃 , and an array 𝑇 into which the vertices

satisfying 𝑃 are written, in the same order as in 𝐿. Our implementation of filter also takes as input

an array 𝑆 , which is an array of size 𝑑 (𝑣) space for lists 𝐿 larger than a constant threshold, and

null otherwise. In the case where 𝐿 is large, we implement the filter by first decoding 𝐿 into 𝑆 in

parallel; each block in 𝐿 has an offset into 𝑆 as every block except possibly the last block contains

the same number of vertex IDs. We then filter 𝑆 into the output array𝑇 . In the case where 𝐿 is small

we just run the filter sequentially. Our implementation of filter runs in 𝑂 (|𝐿 |) work and 𝑂 (log𝑛)
depth. Pack takes as input a neighbor list 𝐿 and a predicate 𝑃 function, and packs 𝐿, keeping only

vertex IDs that satisfied 𝑃 . Our implementation of pack takes as input an array 𝑆 , which an array

of size 2 ∗ 𝑑 (𝑣) for lists larger than a constant threshold, and null otherwise. In the case where 𝐿 is

large, we first decode 𝐿 in parallel into the first 𝑑 (𝑣) cells of 𝑆 . Next, we filter these vertices into
the second 𝑑 (𝑣) cells of 𝑆 , and compute the new length of 𝐿. Finally, we recompress the blocks

in parallel by first computing the compressed size of each new block. We prefix-sum the sizes to

calculate offsets into the array and finally compress the new blocks by writing each block starting at

its offset. When 𝐿 is small we just pack 𝐿 sequentially. We make use of the pack and filter primitives

in our implementations of maximal matching, minimum spanning forest, and triangle counting.

Our implementation of pack runs in 𝑂 (|𝐿 |) work and 𝑂 (log𝑛) depth.
The Intersection primitive takes as input two neighbor lists 𝐿𝑎 and 𝐿𝑏 and computes the size

of the intersection of 𝐿𝑎 and 𝐿𝑏 (|𝐿𝑎 | ≤ |𝐿𝑏 |). We implement an algorithm similar to the optimal

parallel intersection algorithm for sorted lists. As the blocks are compressed, our implementation

works on the first element of each block, which can be quickly decoded. We refer to these elements

as block starts. If the number of blocks in both lists sum to less than a constant, we intersect them

sequentially. Otherwise, we take the start 𝑣𝑠 of the middle block in 𝐿𝑎 , and binary search over the

starts of 𝐿𝑏 to find the first block whose start is less than or equal to 𝑣𝑠 . Note that as the closest

value less than or equal to 𝑣𝑠 could be in the middle of the block, the subproblems we generate must

consider elements in the two adjoining blocks of each list, which adds an extra constant factor of

work in the base case. Our implementation of intersection runs in 𝑂 (|𝐿𝑎 | log(1 + |𝐿𝑏 |/|𝐿𝑎 |)) work
and 𝑂 (log𝑛) depth.

8 EXPERIMENTS

In this section, we describe our experimental results on a set of real-world graphs and also discuss

related experimental work. Tables 5 and 6 show the running times for our implementations on our

graph inputs. For compressed graphs, we use the compression schemes from Ligra+ [141], which

we extended to ensure theoretical efficiency (see Section 7.4). We describe statistics about our input

graphs and algorithms (e.g., number of colors used, number of SCCs, etc.) in Section A.

8.1 Experimental Setup and Graph Inputs

Experimental Setup. We ran all of our experiments on a 72-core Dell PowerEdge R930 (with

two-way hyper-threading) with 4 × 2.4GHz Intel 18-core E7-8867 v4 Xeon processors (with a

4800MHz bus and 45MB L3 cache) and 1TB of main memory. Our programs use Cilk Plus to express

parallelism and are compiled with the g++ compiler (version 5.4.1) with the -O3 flag. By using

Cilk’s work-stealing scheduler we are able obtain an expected running time of𝑊 /𝑃 +𝑂 (𝐷) for
an algorithm with𝑊 work and 𝐷 depth on 𝑃 processors [38]. We note that our codes can also be

easily run using other parallel runtimes, such as OpenMP, TBB, or a homegrown scheduler based

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article . Publication date: January 2020.

49

Graph Dataset Num. Vertices Num. Edges diam 𝜌 𝑘max

LiveJournal 4,847,571 68,993,773 16 ∼ ∼
LiveJournal-Sym 4,847,571 85,702,474 20 3480 372

com-Orkut 3,072,627 234,370,166 9 5,667 253

Twitter 41,652,231 1,468,365,182 65* ∼ ∼
Twitter-Sym 41,652,231 2,405,026,092 23* 14,963 2488

3D-Torus 1,000,000,000 6,000,000,000 1500* 1 6

ClueWeb 978,408,098 42,574,107,469 821* ∼ ∼
ClueWeb-Sym 978,408,098 74,744,358,622 132* 106,819 4244

Hyperlink2014 1,724,573,718 64,422,807,961 793* ∼ ∼
Hyperlink2014-Sym 1,724,573,718 124,141,874,032 207* 58,711 4160

Hyperlink2012 3,563,602,789 128,736,914,167 5275* ∼ ∼
Hyperlink2012-Sym 3,563,602,789 225,840,663,232 331* 130,728 10565

Table 3. Graph inputs, including vertices and edges. diam is the diameter of the graph. For undirected graphs,

𝜌 and 𝑘max are the number of peeling rounds, and the largest non-empty core (degeneracy). We mark diam

values where we are unable to calculate the exact diameter with * and report the effective diameter observed

during our experiments, which is a lower bound on the actual diameter.

Graph Dataset Uncompressed Compressed Savings

ClueWeb 324GB 115GB 2.81x

ClueWeb-Sym 285GB 100GB 2.85x

Hyperlink2014 492GB 214GB 2.29x

Hyperlink2014-Sym 474GB 184GB 2.57x

Hyperlink2012 985GB 446GB 2.21x

Hyperlink2012-Sym 867GB 351GB 2.47x

Table 4. Compressed graph inputs, including memory required to store the graph in an uncompressed CSR

format, memory required to store the graph in the parallel byte-compressed CSR format, and the savings

obtained over the uncompressed format by the compressed format. The number of vertices and edges in

these graphs are given in Table 3.

on the Arora-Blumofe-Plaxton deque [10] that we implemented ourselves [27]. For the parallel

experiments, we use the command numactl -i all to balance the memory allocations across the

sockets. All of the speedup numbers we report are the running times of our parallel implementation

on 72-cores with hyper-threading over the running time of the implementation on a single thread.

Graph Data. To show how our algorithms perform on graphs at different scales, we selected a

representative set of real-world graphs of varying sizes. Most of the graphs are Web graphs and

social networks—low diameter graphs that are frequently used in practice. To test our algorithms

on large diameter graphs, we also ran our implementations on 3-dimensional tori where each vertex

is connected to its 2 neighbors in each dimension.

We list the graphs used in our experiments, along with their size, approximate diameter, peeling

complexity [52], and degeneracy (for undirected graphs) in Table 3. LiveJournal is a directed

graph of the social network obtained from a snapshot in 2008 [39]. com-Orkut is an undirected

graph of the Orkut social network. Twitter is a directed graph of the Twitter network, where

edges represent the follower relationship [92]. ClueWeb is a Web graph from the Lemur project at

CMU [39]. Hyperlink2012 and Hyperlink2014 are directed hyperlink graphs obtained from the

WebDataCommons dataset where nodes represent web pages [107]. 3D-Torus is a 3-dimensional

torus with 1B vertices and 6B edges.Wemark symmetric (undirected) versions of the directed graphs

with the suffix -Sym. We create weighted graphs for evaluating weighted BFS, Borůvka, widest

path, and Bellman-Ford by selecting edge weights between [1, log𝑛) uniformly at random. We

process LiveJournal, com-Orkut, Twitter, and 3D-Torus in the uncompressed format, and ClueWeb,

Hyperlink2014, and Hyperlink2012 in the compressed format.

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article . Publication date: January 2020.

50 Laxman Dhulipala, Guy E. Blelloch, and Julian Shun

Problem LiveJournal-Sym com-Orkut Twitter-Sym 3D-Torus

(1) (72h) (SU) (1) (72h) (SU) (1) (72h) (SU) (1) (72h) (SU)

Breadth-First Search (BFS) 0.59 0.018 32.7 0.41 0.012 34.1 5.45 0.137 39.7 301 5.53 54.4

Integral-Weight SSSP (weighted BFS) 1.45 0.107 13.5 2.03 0.095 21.3 33.4 0.995 33.5 437 18.1 24.1

General-Weight SSSP (Bellman-Ford) 3.39 0.086 39.4 3.98 0.168 23.6 48.7 1.56 31.2 6280 133 47.2

Single-Source Widest Path (Bellman-Ford) 3.48 0.090 38.6 4.39 0.098 44.7 42.4 0.749 56.6 580 9.7 59.7

Single-Source Betweenness Centrality (BC) 1.66 0.049 33.8 2.52 0.057 44.2 26.3 0.937 28.0 496 12.5 39.6

𝑂 (𝑘)-Spanner 1.31 0.041 31.9 2.34 0.046 50.8 41.5 0.768 54.0 380 11.7 32.4

Low-Diameter Decomposition (LDD) 0.54 0.027 20.0 0.33 0.019 17.3 8.48 0.186 45.5 275 7.55 36.4

Connectivity 1.01 0.029 34.8 1.36 0.031 43.8 34.6 0.585 59.1 300 8.71 34.4

Spanning Forest 1.11 0.035 31.7 1.84 0.047 39.1 43.2 0.818 52.8 334 10.1 33.0

Biconnectivity 5.36 0.261 20.5 7.31 0.292 25.0 146 4.86 30.0 1610 59.6 27.0

Strongly Connected Components (SCC)* 1.61 0.116 13.8 ∼ ∼ ∼ 13.3 0.495 26.8 ∼ ∼ ∼
Minimum Spanning Forest (MSF) 3.64 0.204 17.8 4.58 0.227 20.1 61.8 3.02 20.4 617 23.6 26.1

Maximal Independent Set (MIS) 1.18 0.034 34.7 2.23 0.052 42.8 34.4 0.759 45.3 236 4.44 53.1

Maximal Matching (MM) 2.42 0.095 25.4 4.65 0.183 25.4 46.7 1.42 32.8 403 11.4 35.3

Graph Coloring 4.69 0.392 11.9 9.05 0.789 11.4 148 6.91 21.4 350 11.3 30.9

Approximate Set Cover 4.65 0.613 7.58 4.51 0.786 5.73 66.4 3.31 20.0 1429 40.2 35.5

𝑘-core 3.75 0.641 5.85 8.32 1.33 6.25 110 6.72 16.3 753 6.58 114.4

Approximate Densest Subgraph 2.89 0.052 55.5 4.71 0.081 58.1 76.0 1.14 66.6 95.4 1.59 60.0

Triangle Counting (TC) 13.5 0.342 39.4 78.1 1.19 65.6 1920 23.5 81.7 168 6.63 25.3

PageRank Iteration 0.861 0.012 71.7 1.28 0.018 71.1 24.16 0.453 53.3 107 2.25 47.5

Table 5. Running times (in seconds) of our algorithms over symmetric graph inputs on a 72-core machine

(with hyper-threading) where (1) is the single-thread time, (72h) is the 72 core time using hyper-threading,

and (SU) is the parallel speedup (single-thread time divided by 72-core time). We mark experiments that are

not applicable for a graph with ∼, and experiments that did not finish within 5 hours with —. *SCC was run

on the directed versions of the input graphs.

Table 4 lists the size in gigabytes of the compressed graph inputs used in this paper both with and

without compression, and reports the savings obtained by using compression. Note that the largest

graph studied in this paper, the directed Hyperlink2012 graph, barely fits in the main memory of

our machine in the uncompressed format, but would leave hardly any memory to be used for an

algorithm analyzing this graph. Using compression significantly reduces the memory required to

represent each graph (between 2.21–2.85x, and 2.53x on average). We converted the graphs listed

in Table 4 directly from the WebGraph format to the compressed format used in this paper by

modifying a sequential iterator method from the WebGraph framework [39].

8.2 SSSP Problems

Our BFS, weighted BFS, Bellman-Ford, and betweenness centrality implementations achieve be-

tween a 13–67x speedup across all inputs. We ran all of our shortest path experiments on the

symmetrized versions of the graph. Our widest path implementation achieves between 38–72x

speedup across all inputs, and our spanner implementation achieves between 31–65x speedup

across all inputs. We ran our spanner code with 𝑘 = 4. Our experiments show that our weighted BFS

and Bellman-Ford implementations perform as well as or better than our prior implementations

from Julienne [52]. Our running times for BFS and betweenness centrality are the same as the times

of the implementations in Ligra [136]. We note that our running times for weighted BFS on the

Hyperlink graphs are larger than the times reported in Julienne. This is because the shortest-path

experiments in Julienne were run on directed version of the graph, where the average vertex can

reach significantly fewer vertices than on the symmetrized version. We set a flag for our weighted

BFS experiments on the ClueWeb and Hyperlink graphs that lets the algorithm switch to a dense

edgeMap once the frontiers are sufficiently dense, which lets the algorithm run within half of the

RAM on our machine. Before this change, our weighted BFS implementation would request a large

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article . Publication date: January 2020.

51

Problem ClueWeb-Sym Hyperlink2014-Sym Hyperlink2012-Sym

(1) (72h) (SU) (1) (72h) (SU) (1) (72h) (SU)

Breadth-First Search (BFS) 106 2.29 46.2 250 4.50 55.5 576 8.44 68.2

Integral-Weight SSSP (weighted BFS) 736 14.4 51.1 1390 22.3 62.3 3770 58.1 64.8

General-Weight SSSP (Bellman-Ford) 1050 16.2 64.8 1460 22.9 63.7 4010 59.4 67.5

Single-Source Widest Path (Bellman-Ford) 849 11.8 71.9 1211 16.8 72.0 3210 48.4 66.3

Single-Source Betweenness Centrality (BC) 569 27.7 20.5 866 16.3 53.1 2260 37.1 60.9

𝑂 (𝑘)-Spanner 613 9.79 62.6 906 14.3 63.3 2390 36.3 65.8

Low-Diameter Decomposition (LDD) 176 3.62 48.6 322 6.84 47.0 980 16.6 59.0

Connectivity 381 6.01 63.3 710 11.2 63.3 1640 25.0 65.6

Spanning Forest 936 18.2 51.4 1319 22.4 58.8 2420 35.8 67.5

Biconnectivity 2250 48.7 46.2 3520 71.5 49.2 9860 165 59.7

Strongly Connected Components (SCC)* 1240 38.1 32.5 2140 51.5 41.5 8130 185 43.9

Minimum Spanning Forest (MSF) 2490 45.6 54.6 3580 71.9 49.7 9520 187 50.9

Maximal Independent Set (MIS) 551 8.44 65.2 1020 14.5 70.3 2190 32.2 68.0

Maximal Matching (MM) 1760 31.8 55.3 2980 48.1 61.9 7150 108 66.2

Graph Coloring 2050 49.8 41.1 3310 63.1 52.4 8920 158 56.4

Approximate Set Cover 1490 28.1 53.0 2040 37.6 54.2 5320 90.4 58.8

𝑘-core 2370 62.9 37.6 3480 83.2 41.8 8515 184 46.0

Approximate Densest Subgraph 1380 19.6 70.4 1721 24.3 70.8 4420 61.4 71.9

Triangle Counting (TC) 13997 204 68.6 — 480 — — 1168 —

PageRank Iteration 256.1 3.49 73.3 385 5.17 74.4 973 13.1 74.2

Table 6. Running times (in seconds) of our algorithms over symmetric graph inputs on a 72-core machine

(with hyper-threading) where (1) is the single-thread time, (72h) is the 72 core time using hyper-threading,

and (SU) is the parallel speedup (single-thread time divided by 72-core time). We mark experiments that are

not applicable for a graph with ∼, and experiments that did not finish within 5 hours with —. *SCC was run

on the directed versions of the input graphs.

amount of memory when processing the largest frontiers which then caused the graph to become

partly evicted from the page cache. For widest path, the times we report are for the Bellman-Ford

version of the algorithm, which we were surprised to find is consistently 1.1–1.3x faster than our

algorithm based on bucketing. We observe that our spanner algorithm is only slightly more costly

than computing connectivity on the same input.

In an earlier paper [52], we compared the running time of our weighted BFS implementation

to two existing parallel shortest path implementations from the GAP benchmark suite [22] and

Galois [100], as well as a fast sequential shortest path algorithm from the DIMACS shortest path

challenge, showing that our implementation is between 1.07–1.1x slower than the Δ-stepping
implementation from GAP, and 1.6–3.4x faster than the Galois implementation. Our old version of

Bellman-Ford was between 1.2–3.9x slower than weighted BFS; we note that after changing it to

use the edgeMapBlocked optimization, it is now competitive with weighted BFS and is between

1.2x faster and 1.7x slower on our graphs with the exception of 3D-Torus, where it performs 7.3x

slower than weighted BFS, as it performs 𝑂 (𝑛4/3) work on this graph.

8.3 Connectivity Problems

Our low-diameter decomposition (LDD) implementation achieves between 17–59x speedup across

all inputs. We fixed 𝛽 to 0.2 in all of the codes that use LDD. The running time of LDD is comparable

to the cost of a BFS that visits most of the vertices. We are not aware of any prior experimental

work that reports the running times for an LDD implementation.

Our work-efficient implementation of connectivity and spanning forest achieve 34–65x speedup

and 31–67x speedup across all inputs, respectively. We note that our implementation does not

assume that vertex IDs in the graph are randomly permuted and always generates a random

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article . Publication date: January 2020.

52 Laxman Dhulipala, Guy E. Blelloch, and Julian Shun

permutation, even on the first round, as adding vertices based on their original IDs can result in

poor performance (for example on 3D-Torus). There are several existing implementations of fast

parallel connectivity algorithms [119, 139, 140, 144], however, only the implementation from [140],

which presents the connectivity algorithm that we implement in this paper, is theoretically-efficient.

The implementation from Shun et al. was compared to both the Multistep [144] and Patwary et

al. [119] implementations, and shown to be competitive on a broad set of graphs. We compared our

connectivity implementation to the work-efficient connectivity implementation from Shun et al.

on our uncompressed graphs and observed that our code is between 1.2–2.1x faster in parallel. Our

spanning forest implementation is slightly slower than connectivity due to having to maintain a

mapping between the current edge set and the original edge set.

Despite our biconnectivity implementation having𝑂 (diam(𝐺) log𝑛) depth, our implementation

achieves between a 20–59x speedup across all inputs, as the diameter of most of our graphs is

extremely low. Our biconnectivity implementation is about 3–5x slower than running connectivity

on the graph, which seems reasonable as our current implementation performs two calls to connec-

tivity, and one breadth-first search. There are a several existing implementations of biconnectivity.

Cong and Bader [46] parallelize the Tarjan-Vishkin algorithm and demonstrated speedup over the

Hopcroft-Tarjan (HT) algorithm. Edwards and Vishkin [61] also implement the Tarjan-Vishkin

algorithm using the XMT platform, and show that their algorithm achieves good speedups. Slota

and Madduri [143] present a BFS-based biconnectivity implementation which requires 𝑂 (𝑚𝑛)
work in the worst-case, but behaves like a linear-work algorithm in practice. We ran the Slota and

Madduri implementation on 36 hyper-threads allocated from the same socket, the configuration

on which we observed the best performance for their code, and found that our implementation is

between 1.4–2.1x faster than theirs. We used a DFS-ordered subgraph corresponding to the largest

connected component to test their code, which produced the fastest times. Using the original order

of the graph affects the running time of their implementation, causing it to run between 2–3x

slower as the amount of work performed by their algorithm depends on the order in which vertices

are visited.

Our strongly connected components implementation achieves between a 13–43x speedup across

all inputs. Our implementation takes a parameter 𝛽 , which is the base of the exponential rate at

which we grow the number of centers added. We set 𝛽 between 1.1–2.0 for our experiments and

note that using a larger value of 𝛽 can improve the running time on smaller graphs by up to a factor

of 2x. Our SCC implementation is between 1.6x faster to 4.8x slower than running connectivity on

the undirected version of the graph. There are several existing SCC implementations that have been

evaluated on real-world directed graphs [79, 106, 144]. The Hong et al. algorithm [79] is a modified

version of the FWBW-Trim algorithm from McLendon et al. [106], but neither algorithm has any

theoretical bounds on work or depth. Unfortunately [79] do not report running times, so we are

unable to compare our performance with them. The Multistep algorithm [144] has a worst-case

running time of 𝑂 (𝑛2), but the authors point-out that the algorithm behaves like a linear-time

algorithm on real-world graphs. We ran our implementation on 16 cores configured similarly to

their experiments and found that we are about 1.7x slower on LiveJournal, which easily fits in

cache, and 1.2x faster on Twitter (scaled to account for a small difference in graph sizes). While the

multistep algorithm is slightly faster on some graphs, our SCC implementation has the advantage

of being theoretically-efficient and performs a predictable amount of work.

Our minimum spanning forest implementation achieves between 17–54x speedup over the

implementation running on a single thread across all of our inputs. Obtaining practical parallel

algorithms for MSF has been a longstanding goal in the field, and several existing implementations

exist [14, 47, 116, 139, 155]. We compared our implementation with the union-find based MSF

implementation from PBBS [139] and the implementation of Borůvka from [155], which is one

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article . Publication date: January 2020.

53

of the fastest implementations we are aware of. Our MSF implementation is between 2.6–5.9x

faster than the MSF implementation from PBBS. Compared to the edgelist based implementation of

Borůvka from [155] our implementation is between 1.2–2.9x faster.

8.4 Covering Problems

Our MIS and maximal matching implementations achieve between 31–70x and 25–66x speedup

across all inputs. The implementations by Blelloch et al. [32] are the fastest existing implementations

of MIS and maximal matching that we are aware of, and are the basis for our maximal matching

implementation. They report that their implementations are 3–8x faster than Luby’s algorithm on

32 threads, and outperform a sequential greedy MIS implementation on more than 2 processors. We

compared our rootset-based MIS implementation to the prefix-based implementation, and found

that the rootset-based approach is between 1.1–3.5x faster. Our maximal matching implementation

is between 3–4.2x faster than the implementation from [32]. Our implementation of maximal

matching can avoid a significant amount of work, as each of the filter steps can extract and permute

just the 3𝑛/2 highest priority edges, whereas the edgelist-based version in PBBS must permute

all edges. Our coloring implementation achieves between 11–56x speedup across all inputs. We

note that our implementation appears to be between 1.2–1.6x slower than the asynchronous

implementation of JP in [77], due to synchronizing on many rounds which contain few vertices.

Our approximate set cover implementation achieves between 5–58x speedup across all inputs.

Our implementation is based on the implementation presented in Julienne [52]; the one major

modification was to regenerate random priorities for sets that are active on the current round. We

compared the running time of our implementation with the parallel implementation from [37] which

is available in the PBBS library. We ran both implementations with 𝜖 = 0.01. Our implementation is

between 1.2x slower to 1.5x faster than the PBBS implementation on our graphs, with the exception

of 3D-Torus. On 3D-Torus, the implementation from [37] runs 56x slower than our implementation

as it does not regenerate priorities for active sets on each round causing worst-case behavior. Our

performance is also slow on this graph, as nearly all of the vertices stay active (in the highest

bucket) during each round, and using 𝜖 = 0.01 causes a large number of rounds to be performed.

8.5 Substructure Problems

Our 𝑘-core implementation achieves between 5–46x speedup across all inputs, and 114x speedup

on the 3D-Torus graph as there is only one round of peeling in which all vertices are removed.

There are several recent papers that implement parallel algorithms for 𝑘-core [50, 52, 86, 128]. Both

the ParK algorithm [50] and Kabir and Madduri algorithm [86] implement the peeling algorithm in

𝑂 (𝑘max𝑛 +𝑚) work, which is not work-efficient. Our implementation is between 3.8–4.6x faster

than ParK on a similar machine configuration. Kabir and Madduri show that their implementation

achieves an average speedup of 2.8x over ParK. Our implementation is between 1.3–1.6x faster

than theirs on a similar machine configuration.

Our approximate densest subgraph implementation achieves between 55–71x speedup across

all inputs. We ran our implementation with 𝜖 = 0.001, which in our experiments produced sub-

graphs with density roughly equal to those produced by the 2-approximation algorithm based on

degeneracy ordering, or setting 𝜖 to 0. To the best of our knowledge, there are no prior existing

shared-memory parallel algorithms for this problem.

Our triangle counting (TC) implementation achieves between 39–81x speedup across all inputs.

Unfortunately, we are unable to report speedup numbers for TC on our larger graphs as the

single-threaded times took too long due to the algorithm performing 𝑂 (𝑚3/2) work. There are a
number of experimental papers that consider multicore triangle counting [1, 72, 90, 97, 133, 142].

We implement the algorithm from [142], and adapted it to work on compressed graphs. We note

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article . Publication date: January 2020.

54 Laxman Dhulipala, Guy E. Blelloch, and Julian Shun

 100000 1x10
6

 1x10
7

 1x10
8

 1x10
9

n
o

rm
a

liz
e

d
 t

h
ro

u
g

h
p

u
t

number of vertices (logscale)

MIS
BFS
BC

Graph Coloring

Fig. 7. Log-linear plot of normalized throughput vs. vertices for MIS, BFS, BC, and coloring on the 3D-Torus

graph family.

that in our experiments we intersect directed adjacency lists sequentially, as there was sufficient

parallelism in the outer parallel-loop. There was no significant difference in running times between

our implementation and the implementation from [142]. We ran our implementation on 48 threads

on the Twitter graph to compare with the times reported by EmptyHeaded [1] and found that our

times are about the same.

8.6 Eigenvector Problems

Our PageRank (PR) implementation achieves between 47–74x speedup across all inputs. We note

that the running times we report are for a single iteration of PageRank. Our implementation is

based on the implementation from Ligra [136], and uses a damping factor 𝛾 = 0.85. We note that

the modification made to carry out dense iterations using a reduction over the in-neighbors of a

vertex was important to decrease contention and improve parallelism, and provided between 2–3x

speedup over the Ligra implementation in practice. Many graph processing systems implement

PageRank. The optimizing compiler used by GraphIt generates a highly-optimized implementation

that is currently the fastest shared-memory implementation known to us [153]. We note that

our implementation is about 1.8x slower than the implementation in GraphIt for LiveJournal and

Twitter when run on the same number of threads as in their experiments, which is likely due to a

partitioning optimization used by GraphIt that eliminates a large amount of cross-socket traffic

and thus improves performance on multi-socket systems.

8.7 Performance on 3D-Torus

We ran experiments on a family of 3D-Torus graphs with different sizes to study how our diameter-

bounded algorithms scale relative to algorithms with polylogarithmic depth. We were surprised to

see that the running time of some of our polylogarithmic depth algorithms on this graph, like LDD

and connectivity, are 17–40x more expensive than their running time on Twitter and Twitter-Sym,

despite 3D-Torus only having 4x and 2.4x more edges than Twitter and Twitter-Sym. One reason for

our slightly worse scaling on this graph (and the higher cost of algorithms relative to graphs with

a similar number of edges) is the very low average-degree of this graph (𝑚/𝑛 = 6) compared with

the Twitter graph (𝑚/𝑛 = 57.8). Many of the algorithms we study in this paper process all edges

incident to a vertex whenever a vertex is considered (e.g., when a vertex is part of a frontier in the

LDD computation). Furthermore, each vertex is only processed a constant number of times. Thus,

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article . Publication date: January 2020.

55

Algorithm Cycles Stalled LLC Hit Rate LLC Misses BW Time

𝑘-core (histogram) 9 0.223 49 96 62.9

𝑘-core (fetchAndAdd) 67 0.155 42 24 221

weighted BFS (blocked) 3.7 0.070 19 130 14.4

weighted BFS (unblocked) 5.6 0.047 29 152 25.2

Table 7. Cycles stalled while the memory subsystem has an outstanding load (trillions), LLC hit rate and

misses (billions), bandwidth in GB/s (bytes read and written from memory, divided by running time), and

running time in seconds. All experiments are run on the ClueWeb graph using 72 cores with hyper-threading.

each time such an algorithm processes a vertex in the 3D-Torus graph, it only uses 24 bytes out of

each 64-byte cache line (assuming each edge is stored in 4 bytes), but it will utilize the entire cache

line in the Twitter graph, on average. Another possible reason is that we store the 3D-Torus graph

ordered by dimension, instead of using a local ordering. However, we did not study reordering this

graph, since it was not the main focus of this work.

In Figure 7 we show the normalized throughput of MIS, BFS, BC, and graph coloring for 3-

dimensional tori of different sizes, where throughput is measured as the number of edges processed

per second. The throughput for each application becomes saturated before our largest-scale graph

for all applications except for BFS, which is saturated on a graph with 2 billion vertices. The

throughput curves show that the theoretical bounds are useful in predicting how the half-lengths
7

are distributed. The half-lengths are ordered as follows: coloring, MIS, BFS, and BC. This is the

same order as sorting these algorithms by their depth with respect to this graph.

8.8 Locality

While our algorithms are efficient in the specific variants of the binary-forking model that we

consider, we do not analyze their cache complexity, and in general they may not be efficient in a

model that takes caches into account. Despite this fact, we observed that our algorithms have good

cache performance on the graphs we tested on. In this section we give some explanation for this

fact by showing that our primitives make good use of the caches. Our algorithms are also aided

by the fact that these graph datasets often come in highly local orders (e.g., see the Natural order
in [56]).

We ran a set of experiments to study the locality of a subset of our algorithms on the ClueWeb

graph. Table 7 shows locality metrics for our experiments, which we measured using the Open

Performance Counter Monitor (PCM). We found that using a work-efficient histogram is 3.5x faster

than using fetchAndAdd in our 𝑘-core implementation, which suffers from high contention on

this graph. Using a histogram reduces the number of cycles stalled due to memory by more than 7x.

We also ran our wBFS implementation with and without the edgeMapBlocked optimization, which

reduces the number of cache-lines read from and written to when performing a sparse edgeMap.

The blocked implementation reads and writes 2.1x fewer bytes than the unoptimized version, which

translates to a 1.7x faster running time. We note that we disabled the dense optimization for this

experiment to directly compare the two implementations of a sparse edgeMap.

8.9 Processing Massive Web Graphs

In Table 6, we show the running times of our implementations on the ClueWeb, Hyperlink2014, and

Hyperlink2012 graphs. To put our performance on these massive graphs in context, we compare

our 72-core running times to running times reported by existing work. Table 8 summarizes state-of-

the-art existing results in the literature. Most results process the directed versions of these graphs,

which have about half as many edges as the symmetrized version. Unless otherwise mentioned, all

7
The graph size when the system achieves half of its peak-performance.

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article . Publication date: January 2020.

56 Laxman Dhulipala, Guy E. Blelloch, and Julian Shun

Paper Problem Graph Memory Hyper-threads Nodes Time

Mosaic [99]

BFS* 2014 0.768 1000 1 6.55

Connectivity* 2014 0.768 1000 1 708

SSSP* 2014 0.768 1000 1 8.6

FlashGraph [154]

BFS* 2012 .512 64 1 208

BC* 2012 .512 64 1 595

Connectivity* 2012 .512 64 1 461

TC* 2012 .512 64 1 7818

GraFBoost [85]

BFS* 2012 0.064 32 1 900

BC* 2012 0.064 32 1 800

Slota et al. [146]

Largest-CC* 2012 16.3 8192 256 63

Largest-SCC* 2012 16.3 8192 256 108

Approx 𝑘-core* 2012 16.3 8192 256 363

Stergiou et al. [147] Connectivity 2012 128 24000 1000 341

Gluon [51] BFS 2012 24 69632 256 380

Connectivity 2012 24 69632 256 75.3

PageRank 2012 24 69632 256 158.2

SSSP 2012 24 69632 256 574.9

This paper

BFS* 2014 1 144 1 5.71

SSSP* 2014 1 144 1 9.08

Connectivity 2014 1 144 1 11.2

BFS* 2012 1 144 1 16.7

BC* 2012 1 144 1 35.2

Connectivity 2012 1 144 1 25.0

SCC* 2012 1 144 1 185

SSSP 2012 1 144 1 58.1

𝑘-core 2012 1 144 1 184

PageRank 2012 1 144 1 462

TC 2012 1 144 1 1168

Table 8. System configurations (memory in terabytes, hyper-threads, and nodes) and running times (in

seconds) of existing results on the Hyperlink graphs. The last section shows our running times. *These

problems are run on directed versions of the graph.

results from the literature use the directed versions of these graphs. To make the comparison easier

we show our running times for BFS, SSSP (weighted BFS), BC and SCC on the directed graphs, and

running times for Connectivity, 𝑘-core and TC on the symmetrized graphs in Table 8.

FlashGraph [154] reports disk-based running times for the Hyperlink2012 graph on a 4-socket,

32-core machine with 512GB of memory and 15 SSDs. On 64 hyper-threads, they solve BFS in

208s, BC in 595s, connected components in 461s, and triangle counting in 7818s. Our BFS and

BC implementations are 12x faster and 16x faster, and our triangle counting and connectivity

implementations are 5.3x faster and 18x faster than their implementations, respectively. Mosaic [99]

report in-memory running times on the Hyperlink2014 graph; we note that the system is optimized

for external memory execution. They solve BFS in 6.5s, connected components in 700s, and SSSP

(Bellman-Ford) in 8.6s on a machine with 24 hyper-threads and 4 Xeon-Phis (244 cores with

4 threads each) for a total of 1000 hyper-threads, 768GB of RAM, and 6 NVMes. Our BFS and

connectivity implementations are 1.1x and 62x faster respectively, and our SSSP implementation

is 1.05x slower. Both FlashGraph and Mosaic compute weakly connected components, which is

equivalent to connectivity. GraFBoost [85] report disk-based running times for BFS and BC on the

Hyperlink2012 graph on a 32-core machine. They solve BFS in 900s and BC in 800s. Our BFS and

BC implementations are 53x and 22x faster than their implementations, respectively.

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article . Publication date: January 2020.

57

Slota et al. [146] report running times for the Hyperlink2012 graph on 256 nodes on the Blue

Waters supercomputer. Each node contains two 16-core processors with one thread each, for a total

of 8192 hyper-threads. They report they can find the largest connected component and SCC from

the graph in 63s and 108s respectively. Our implementations find all connected components 2.5x

faster than their largest connected component implementation, and find all strongly connected

components 1.6x slower than their largest-SCC implementation. Their largest-SCC implementation

computes two BFSs from a randomly chosen vertex—one on the in-edges and the other on the

out-edges—and intersects the reachable sets. We perform the same operation as one of the first

steps of our SCC algorithm and note that it requires about 30 seconds on our machine. They solve

approximate 𝑘-cores in 363s, where the approximate 𝑘-core of a vertex is the coreness of the vertex

rounded up to the nearest powers of 2. Our implementation computes the exact coreness of each
vertex in 184s, which is 1.9x faster than the approximate implementation while using 113x fewer

cores.

Recently, Dathathri et al. [51] have reported running times for the Hyperlink2012 graph using

Gluon, a distributed graph processing system based on Galois. They process this graph on a 256

node system, where each node is equipped with 68 4-way hyper-threaded cores, and the hosts are

connected by an Intel Omni-Path network with 100Gbps peak bandwidth. They report times for

BFS, connectivity, PageRank, and SSSP. Other than their connectivity implementation, which uses

pointer-jumping, their implementations are based on data-driven asynchronous label-propagation.

We are not aware of any theoretical bounds on the work and depth of these implementations.

Compared to their reported times, our implementation of BFS is 22.7x faster, our implementation of

connectivity is 3x faster, and our implementation of SSSP is 9.8x faster. Our PageRank implementa-

tion is 2.9x slower (we ran it with 𝜖 , the variable that controls the convergence rate of PageRank,

set to 1𝑒 − 6). However, we note that the PageRank numbers they report are not for true PageRank,

but PageRank-Delta, and are thus incomparable.

Stergiou et al. [147] describe a connectivity algorithm that runs in 𝑂 (log𝑛) rounds in the BSP

model and report running times for the Hyperlink2012-Sym graph. They implement their algorithm

using a proprietary in-memory/secondary-storage graph processing system used at Yahoo!, and run

experiments on a 1000 node cluster. Each node contains two 6-core processors that are 2-way hyper-

threaded and 128GB of RAM, for a total of 24000 hyper-threads and 128TB of RAM. Their fastest

running time on the Hyperlink2012 graph is 341s on their 1000 node system. Our implementation

solves connectivity on this graph in 25s–13.6x faster on a system with 128x less memory and 166x

fewer cores. They also report running times for solving connectivity on a private Yahoo! webgraph

with 272 billion vertices and 5.9 trillion edges, over 26 times the size of our largest graph. While

such a graph seems to currently be out of reach of our machine, we are hopeful that techniques

from theoretically-efficient parallel algorithms can help solve problems on graphs at this scale and

beyond.

9 CONCLUSION AND FUTUREWORK

Conclusion. In this paper, we showed that we can process the largest publicly-available real-world

graph on a single shared-memory server with 1TB of memory using theoretically-efficient parallel

algorithms. We also presented the programming interfaces, algorithms, and graph processing

techniques used to obtain these results. Our implementations outperform existing implementations

on the largest real-world graphs, and use many fewer resources than the distributed-memory

solutions. On a per-core basis, our numbers are significantly better. Our results provide evidence

that theoretically-efficient shared-memory graph algorithms can be efficient and scalable in practice.

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article . Publication date: January 2020.

58 Laxman Dhulipala, Guy E. Blelloch, and Julian Shun

Future Work. There are many directions for future work stemming from this work. One is to

continue to extend GBBS with other graph problems that were not considered in this paper. For

example, the recent work of Shi et al. [134] extends GBBS with work-efficient clique-counting

algorithms and work-efficient algorithms for low out-degree orientation. It would be interesting to

include parallel implementations for other classic graph problems as part of GBBS, such as planarity

testing and embedding, planar separator, higher connectivity, among many others.

It would also be interesting to study practical implementations for dynamic graph problems

in the parallel batch-dynamic setting. Recent work has proposed theoretically-efficient parallel

batch-dynamic algorithms for many fundamental problems such as dynamic connectivity [2, 55]

and dynamic 𝑘-clique counting [57], among other problems. It would be interesting to study the

practicality of these algorithms using an efficient parallel batch-dynamic data structure for dynamic

graphs, such as Aspen [54], and to include these problems as part of GBBS.

Another direction is to extend GBBS to important application domains of graph algorithms, such

as graph clustering. Although clustering is quite different from the problems studied in this paper

since there is usually no single “correct” way to cluster a graph or point set, we believe that our

approach will be useful for building theoretically-efficient and scalable single-machine clustering

algorithms, including density-based clustering [62], affinity clustering [20], and hierarchical ag-

glomerative clustering (HAC) on graphs [102]. The recent work of Tseng et al. [150] presents a

work-efficient parallel structural graph clustering algorithm which is incorporated into GBBS.

Lastly, it would be interesting to understand the portability of our implementations in different

architectures and computational settings. Recent work in this direction has found that implementa-

tions developed in this paper can be efficiently implemented in a setting where the graph is stored

in NVRAM, and algorithms have access to a limited amount of DRAM [29, 58]. The experimen-

tal results for their NVRAM system, called Sage, shows that applying the implementations from

this paper in conjunction with an optimized edgeMap primitive designed for NVRAMs achieves

superior performance on an NVRAM-based machine compared to the state-of-the-art NVRAM

implementations of Gill et al. [69], providing promising evidence for the portability of our approach.

ACKNOWLEDGEMENTS

Thanks to Jessica Shi and Tom Tseng for their work on GBBS and parts of this paper, and thanks to

the reviewers and Lin Ma for helpful comments. This research was supported in part by NSF grants

#CCF-1408940, #CCF-1533858, #CCF-1629444, and #CCF-1845763, DOE grant #DE-SC0018947, and

a Google Faculty Research Award.

REFERENCES

[1] C. R. Aberger, A. Lamb, S. Tu, A. Nötzli, K. Olukotun, and C. Ré. Emptyheaded: A relational engine for graph

processing. ACM Trans. Database Syst., 42(4):20:1–20:44, 2017.
[2] U. A. Acar, D. Anderson, G. E. Blelloch, and L. Dhulipala. Parallel batch-dynamic graph connectivity. In The 31st

ACM on Symposium on Parallelism in Algorithms and Architectures, SPAA 2019, Phoenix, AZ, USA, June 22-24, 2019.,
pages 381–392, 2019.

[3] A. Aggarwal, R. J. Anderson, and M.-Y. Kao. Parallel depth-first search in general directed graphs. In ACM Symposium
on Theory of Computing (STOC), pages 297–308, 1989.

[4] M. Ahmad, F. Hijaz, Q. Shi, and O. Khan. Crono: A benchmark suite for multithreaded graph algorithms executing on

futuristic multicores. In IEEE International Symposium on Workload Characterization, IISWC, pages 44–55, 2015.
[5] N. Alon, L. Babai, and A. Itai. A fast and simple randomized parallel algorithm for the maximal independent set

problem. J. Algorithms, 7(4):567–583, 1986.
[6] N. Alon, R. Yuster, and U. Zwick. Finding and counting given length cycles. Algorithmica, 17(3):209–223, 1997.
[7] R. Anderson and E. W. Mayr. A P-complete problem and approximations to it. Technical report, 1984.

[8] A. Andoni, C. Stein, and P. Zhong. Parallel approximate undirected shortest paths via low hop emulators. In ACM
Symposium on Theory of Computing (STOC), pages 322–335. ACM, 2020.

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article . Publication date: January 2020.

59

[9] N. S. Arora, R. D. Blumofe, and C. G. Plaxton. Thread scheduling for multiprogrammed multiprocessors. Theory of
Computing Systems (TOCS), 34(2), Apr 2001.

[10] N. S. Arora, R. D. Blumofe, and C. G. Plaxton. Thread scheduling for multiprogrammed multiprocessors. Theory of
Computing Systems (TOCS), 34(2):115–144, 2001.

[11] B. Awerbuch. Complexity of network synchronization. J. ACM, 32(4):804–823, 1985.

[12] B. Awerbuch, B. Berger, L. Cowen, and D. Peleg. Low-diameter graph decomposition is in NC. In Scandinavian
Workshop on Algorithm Theory, pages 83–93, 1992.

[13] B. Awerbuch and Y. Shiloach. New connectivity and MSF algorithms for Ultracomputer and PRAM. In International
Conference on Parallel Processing (ICPP), pages 175–179, 1983.

[14] D. A. Bader and G. Cong. Fast shared-memory algorithms for computing the minimum spanning forest of sparse

graphs. J. Parallel Distrib. Comput., 66(11):1366–1378, 2006.
[15] D. A. Bader and K. Madduri. Design and implementation of the HPCS graph analysis benchmark on symmetric

multiprocessors. In IEEE International Conference on High-Performance Computing (HiPC), pages 465–476, 2005.
[16] D. A. Bader and K. Madduri. Designing multithreaded algorithms for breadth-first search and st-connectivity on the

cray mta-2. In International Conference on Parallel Processing (ICPP), pages 523–530, 2006.
[17] B. Bahmani, A. Goel, and K. Munagala. Efficient primal-dual graph algorithms for MapReduce. In International

Workshop on Algorithms and Models for the Web-Graph, pages 59–78, 2014.
[18] B. Bahmani, R. Kumar, and S. Vassilvitskii. Densest subgraph in streaming and MapReduce. Proc. VLDB Endow.,

5(5):454–465, 2012.

[19] G. Baier, E. Köhler, and M. Skutella. The k-splittable flow problem. Algorithmica, 42(3-4):231–248, 2005.
[20] M. Bateni, S. Behnezhad, M. Derakhshan, M. Hajiaghayi, R. Kiveris, S. Lattanzi, and V. Mirrokni. Affinity clustering:

Hierarchical clustering at scale. In Advances in Neural Information Processing Systems, pages 6864–6874, 2017.
[21] S. Beamer, K. Asanović, and D. Patterson. Direction-optimizing breadth-first search. Scientific Programming, 21(3-

4):137–148, 2013.

[22] S. Beamer, K. Asanovic, and D. A. Patterson. The GAP benchmark suite. CoRR, abs/1508.03619, 2015.
[23] N. Ben-David, G. E. Blelloch, J. T. Fineman, P. B. Gibbons, Y. Gu, C. McGuffey, and J. Shun. Implicit decomposition for

write-efficient connectivity algorithms. In IEEE International Parallel and Distributed Processing Symposium (IPDPS),
pages 711–722, 2018.

[24] B. Berger, J. Rompel, and P. W. Shor. Efficient NC algorithms for set cover with applications to learning and geometry.

J. Computer and System Sciences, 49(3):454–477, Dec. 1994.
[25] M. Birn, V. Osipov, P. Sanders, C. Schulz, and N. Sitchinava. Efficient parallel and external matching. In European

Conference on Parallel Processing (Euro-Par), pages 659–670, 2013.
[26] G. E. Blelloch. Prefix sums and their applications. In J. Reif, editor, Synthesis of Parallel Algorithms. Morgan Kaufmann,

1993.

[27] G. E. Blelloch, D. Anderson, and L. Dhulipala. Parlaylib - a toolkit for parallel algorithms on shared-memory multicore

machines. In ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), page 507–509, 2020.
[28] G. E. Blelloch and L. Dhulipala. Introduction to parallel algorithms. http://www.cs.cmu.edu/~realworld/slidesS18/

parallelChap.pdf, 2018. Carnegie Mellon University.

[29] G. E. Blelloch, L. Dhulipala, P. B. Gibbons, Y. Gu, C. McGuffey, and J. Shun. The read-only semi-external model. In

SIAM/ACM Symposium on Algorithmic Principles of Computer Systems (APOCS), pages 70–84, 2021.
[30] G. E. Blelloch, J. T. Fineman, P. B. Gibbons, and J. Shun. Internally deterministic algorithms can be fast. In ACM

Symposium on Principles and Practice of Parallel Programming (PPoPP), pages 181–192, 2012.
[31] G. E. Blelloch, J. T. Fineman, Y. Gu, and Y. Sun. Optimal parallel algorithms in the binary-forking model. In ACM

Symposium on Parallelism in Algorithms and Architectures (SPAA), pages 89–102, 2020.
[32] G. E. Blelloch, J. T. Fineman, and J. Shun. Greedy sequential maximal independent set and matching are parallel on

average. In ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), pages 308–317, 2012.
[33] G. E. Blelloch, Y. Gu, J. Shun, and Y. Sun. Parallelism in randomized incremental algorithms. In ACM Symposium on

Parallelism in Algorithms and Architectures (SPAA), pages 467–478, 2016.
[34] G. E. Blelloch, Y. Gu, and Y. Sun. Efficient construction on probabilistic tree embeddings. In Intl. Colloq. on Automata,

Languages and Programming (ICALP), pages 26:1–26:14, 2017.
[35] G. E. Blelloch, A. Gupta, I. Koutis, G. L. Miller, R. Peng, and K. Tangwongsan. Nearly-linear work parallel SDD solvers,

low-diameter decomposition, and low-stretch subgraphs. Theory of Computing Systems, 55(3):521–554, 2014.
[36] G. E. Blelloch, R. Peng, and K. Tangwongsan. Linear-work greedy parallel approximate set cover and variants. In

ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), 2011.
[37] G. E. Blelloch, H. V. Simhadri, and K. Tangwongsan. Parallel and I/O efficient set covering algorithms. In ACM

Symposium on Parallelism in Algorithms and Architectures (SPAA), pages 82–90, 2012.

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article . Publication date: January 2020.

http://www.cs.cmu.edu/~realworld/slidesS18/parallelChap.pdf
http://www.cs.cmu.edu/~realworld/slidesS18/parallelChap.pdf

60 Laxman Dhulipala, Guy E. Blelloch, and Julian Shun

[38] R. D. Blumofe and C. E. Leiserson. Scheduling multithreaded computations by work stealing. J. ACM, 46(5):720–748,

1999.

[39] P. Boldi and S. Vigna. The WebGraph framework I: Compression techniques. In International World Wide Web
Conference (WWW), pages 595–601, 2004.

[40] O. Borůvka. O jistém problému minimálním. Práce Mor. Přírodověd. Spol. v Brně III, 3:37–58, 1926.
[41] U. Brandes. A faster algorithm for betweenness centrality. Journal of Mathematical Sociology, 25(2):163–177, 2001.
[42] S. Brin and L. Page. The anatomy of a large-scale hypertextual web search engine. In International World Wide Web

Conference (WWW), pages 107–117, 1998.
[43] A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan, R. Stata, A. Tomkins, and J. Wiener. Graph structure in

the web. Computer Networks, 33(1-6):309–320, 2000.
[44] M. Charikar. Greedy approximation algorithms for finding dense components in a graph. In International Workshop

on Approximation Algorithms for Combinatorial Optimization, pages 84–95, 2000.
[45] R. Cole, P. N. Klein, and R. E. Tarjan. Finding minimum spanning forests in logarithmic time and linear work using

random sampling. In ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), pages 243–250, 1996.
[46] G. Cong and D. A. Bader. An experimental study of parallel biconnected components algorithms on symmetric

multiprocessors (SMPs). In IEEE International Parallel and Distributed Processing Symposium (IPDPS), pages 9–18,
2005.

[47] G. Cong and I. G. Tanase. Composable locality optimizations for accelerating parallel forest computations. In IEEE
International Conference on High Performance Computing and Communications (HPCC), pages 190–197, 2016.

[48] D. Coppersmith, L. Fleischer, B. Hendrickson, and A. Pinar. A divide-and-conquer algorithm for identifying strongly

connected components. Technical Report RC23744, IBM Research, 2003.

[49] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms (3. ed.). MIT Press, 2009.

[50] N. S. Dasari, R. Desh, and M. Zubair. ParK: An efficient algorithm for 𝑘-core decomposition on multicore processors.

In IEEE International Conference on Big Data (BigData), pages 9–16, 2014.
[51] R. Dathathri, G. Gill, L. Hoang, H.-V. Dang, A. Brooks, N. Dryden, M. Snir, and K. Pingali. Gluon: A communication-

optimizing substrate for distributed heterogeneous graph analytics. In ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), pages 752–768, 2018.

[52] L. Dhulipala, G. E. Blelloch, and J. Shun. Julienne: A framework for parallel graph algorithms using work-efficient

bucketing. In ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), pages 293–304, 2017.
[53] L. Dhulipala, G. E. Blelloch, and J. Shun. Theoretically efficient parallel graph algorithms can be fast and scalable. In

ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), pages 293–304, 2018.
[54] L. Dhulipala, G. E. Blelloch, and J. Shun. Low-latency graph streaming using compressed purely-functional trees. In

ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI), pages 918–934, 2019.
[55] L. Dhulipala, D. Durfee, J. Kulkarni, R. Peng, S. Sawlani, and X. Sun. Parallel batch-dynamic graphs: Algorithms and

lower bounds. In ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1300–1319, 2020.
[56] L. Dhulipala, I. Kabiljo, B. Karrer, G. Ottaviano, S. Pupyrev, and A. Shalita. Compressing graphs and indexes with

recursive graph bisection. In ACM International Conference on Knowledge Discovery and Data Mining (KDD), pages
1535–1544, 2016.

[57] L. Dhulipala, Q. C. Liu, J. Shun, and S. Yu. Parallel batch-dynamic 𝑘-clique counting. In SIAM/ACM Symposium on
Algorithmic Principles of Computer Systems (APOCS), pages 129–143, 2021.

[58] L. Dhulipala, C. McGuffey, H. Kang, Y. Gu, G. E. Blelloch, P. B. Gibbons, and J. Shun. Sage: Parallel semi-asymmetric

graph algorithms for NVRAMs. Proc. VLDB Endow., 13(9):1598–1613, 2020.
[59] L. Dhulipala, J. Shi, T. Tseng, G. E. Blelloch, and J. Shun. The graph based benchmark suite (GBBS). In International

Workshop on Graph Data Management Experiences and Systems (GRADES) and Network Data Analytics (NDA), pages
11:1–11:8, 2020.

[60] R. Duan, K. Lyu, and Y. Xie. Single-source bottleneck path algorithm faster than sorting for sparse graphs. In Intl.
Colloq. on Automata, Languages and Programming (ICALP), pages 43:1–43:14, 2018.

[61] J. A. Edwards and U. Vishkin. Better speedups using simpler parallel programming for graph connectivity and

biconnectivity. In International Workshop on Programming Models and Applications for Multicores and Manycores
(PMAM), pages 103–114, 2012.

[62] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-based algorithm for discovering clusters in large spatial

databases with noise. In ACM International Conference on Knowledge Discovery and Data Mining (KDD), pages 226–231,
1996.

[63] J. T. Fineman. Nearly work-efficient parallel algorithm for digraph reachability. In ACM Symposium on Theory of
Computing (STOC), pages 457–470, 2018.

[64] M. Fischer and A. Noever. Tight analysis of parallel randomized greedy MIS. In ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 2152–2160, 2018.

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article . Publication date: January 2020.

61

[65] L. K. Fleischer, B. Hendrickson, and A. Pinar. On identifying strongly connected components in parallel. In IEEE
International Parallel and Distributed Processing Symposium (IPDPS), pages 505–511, 2000.

[66] L. R. Ford and D. R. Fulkerson. Maximal flow through a network. In Classic Papers in Combinatorics, pages 243–248.
Springer, 2009.

[67] H. Gazit. An optimal randomized parallel algorithm for finding connected components in a graph. SIAM J. on
Computing, 20(6):1046–1067, Dec. 1991.

[68] H. Gazit and G. L. Miller. An improved parallel algorithm that computes the BFS numbering of a directed graph.

Information Processing Letters, 28(2):61–65, 1988.
[69] G. Gill, R. Dathathri, L. Hoang, R. Peri, and K. Pingali. Single machine graph analytics on massive datasets using intel

optane DC persistent memory. Proc. VLDB Endow., 13(8):1304–13, 2020.
[70] A. V. Goldberg. Finding a maximum density subgraph. Technical Report UCB/CSD-84-171, Berkeley, CA, USA, 1984.

[71] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin. PowerGraph: Distributed graph-parallel computation on

natural graphs. In USENIX Symposium on Operating Systems Design and Implementation (OSDI), pages 17–30, 2012.
[72] O. Green, L. M. Munguia, and D. A. Bader. Load balanced clustering coefficients. InWorkshop on Parallel programming

for analytics applications (PPAA), pages 3–10, 2014.
[73] R. Greenlaw, H. J. Hoover, and W. L. Ruzzo. Limits to Parallel Computation: P-completeness Theory. Oxford University

Press, Inc., 1995.

[74] Y. Gu, J. Shun, Y. Sun, and G. E. Blelloch. A top-down parallel semisort. In ACM Symposium on Parallelism in
Algorithms and Architectures (SPAA), pages 24–34, 2015.

[75] S. Halperin and U. Zwick. An optimal randomized logarithmic time connectivity algorithm for the EREW PRAM. J.
Comput. Syst. Sci., 53(3):395–416, 1996.

[76] S. Halperin and U. Zwick. Optimal randomized EREW PRAM algorithms for finding spanning forests. 39(1):1–46,

2001.

[77] W. Hasenplaugh, T. Kaler, T. B. Schardl, and C. E. Leiserson. Ordering heuristics for parallel graph coloring. In ACM
Symposium on Parallelism in Algorithms and Architectures (SPAA), pages 166–177, 2014.

[78] L. Hoang, M. Pontecorvi, R. Dathathri, G. Gill, B. You, K. Pingali, and V. Ramachandran. A round-efficient distributed

betweenness centrality algorithm. In ACM Symposium on Principles and Practice of Parallel Programming (PPoPP),
pages 272–286, 2019.

[79] S. Hong, N. C. Rodia, and K. Olukotun. On fast parallel detection of strongly connected components (SCC) in

small-world graphs. In International Conference for High Performance Computing, Networking, Storage and Analysis
(SC), pages 92:1–92:11, 2013.

[80] J. Hopcroft and R. Tarjan. Algorithm 447: efficient algorithms for graph manipulation. Communications of the ACM,

16(6):372–378, 1973.

[81] A. Iosup, T. Hegeman, W. L. Ngai, S. Heldens, A. Prat-Pérez, T. Manhardto, H. Chafio, M. Capotă, N. Sundaram,

M. Anderson, I. G. Tănase, Y. Xia, L. Nai, and P. Boncz. LDBC graphalytics: A benchmark for large-scale graph

analysis on parallel and distributed platforms. Proc. VLDB Endow., 9(13):1317–1328, Sept. 2016.
[82] A. Israeli and Y. Shiloach. An improved parallel algorithm for maximal matching. Information Processing Letters,

22(2):57–60, 1986.

[83] A. Itai and M. Rodeh. Finding a minimum circuit in a graph. In ACM Symposium on Theory of Computing (STOC),
pages 1–10, 1977.

[84] J. Jaja. Introduction to Parallel Algorithms. Addison-Wesley Professional, 1992.

[85] S.-W. Jun, A. Wright, S. Zhang, S. Xu, et al. GraFBoost: Using accelerated flash storage for external graph analytics.

In ACM International Symposium on Computer Architecture (ISCA), pages 411–424, 2018.
[86] H. Kabir and K. Madduri. Parallel 𝑘-core decomposition on multicore platforms. In IEEE International Parallel and

Distributed Processing Symposium (IPDPS), pages 1482–1491, 2017.
[87] D. R. Karger, P. N. Klein, and R. E. Tarjan. A randomized linear-time algorithm to find minimum spanning trees. J.

ACM, 42(2):321–328, Mar. 1995.

[88] R. M. Karp and V. Ramachandran. Parallel algorithms for shared-memory machines. In J. van Leeuwen, editor,

Handbook of Theoretical Computer Science (Vol. A), pages 869–941. MIT Press, Cambridge, MA, USA, 1990.

[89] R. M. Karp and A. Wigderson. A fast parallel algorithm for the maximal independent set problem. In ACM Symposium
on Theory of Computing (STOC), pages 266–272, 1984.

[90] J. Kim, W.-S. Han, S. Lee, K. Park, and H. Yu. OPT: A new framework for overlapped and parallel triangulation in

large-scale graphs. In ACM International Conference on Management of Data (SIGMOD), pages 637–648, 2014.
[91] R. Kumar, B. Moseley, S. Vassilvitskii, and A. Vattani. Fast greedy algorithms in MapReduce and streaming. ACM

Trans. Parallel Comput., 2(3):14:1–14:22, 2015.
[92] H. Kwak, C. Lee, H. Park, and S. Moon. What is twitter, a social network or a news media? In International World

Wide Web Conference (WWW), pages 591–600, 2010.

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article . Publication date: January 2020.

62 Laxman Dhulipala, Guy E. Blelloch, and Julian Shun

[93] M. Latapy. Main-memory triangle computations for very large (sparse (power-law)) graphs. Theor. Comput. Sci.,
407(1-3):458–473, 2008.

[94] C. E. Leiserson and T. B. Schardl. A work-efficient parallel breadth-first search algorithm (or how to cope with

the nondeterminism of reducers). In ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), pages
303–314, 2010.

[95] J. Li. Faster parallel algorithm for approximate shortest path. In ACM Symposium on Theory of Computing (STOC),
pages 308–321, 2020.

[96] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, and J. M. Hellerstein. Distributed GraphLab: A framework for

machine learning and data mining in the cloud. Proc. VLDB Endow., 5(8), Apr. 2012.
[97] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and J. M. Hellerstein. GraphLab: A new parallel framework

for machine learning. In Conference on Uncertainty in Artificial Intelligence (UAI), pages 340–349, 2010.
[98] M. Luby. A simple parallel algorithm for the maximal independent set problem. SIAM J. Comput., pages 1036–1053,

1986.

[99] S. Maass, C. Min, S. Kashyap, W. Kang, M. Kumar, and T. Kim. Mosaic: Processing a trillion-edge graph on a single

machine. In European Conference on Computer Systems (EuroSys), pages 527–543, 2017.
[100] S. Maleki, D. Nguyen, A. Lenharth, M. Garzarán, D. Padua, and K. Pingali. DSMR: A parallel algorithm for single-source

shortest path problem. In Proceedings of the 2016 International Conference on Supercomputing (ICS), pages 32:1–32:14,
2016.

[101] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser, and G. Czajkowski. Pregel: A system for

large-scale graph processing. In ACM International Conference on Management of Data (SIGMOD), pages 135–146,
2010.

[102] C. D. Manning, P. Raghavan, and H. Schütze. Introduction to Information Retrieval. Cambridge university press, 2008.

[103] Y. Maon, B. Schieber, and U. Vishkin. Parallel ear decomposition search (EDS) and st-numbering in graphs. Theoretical
Computer Science, 47:277–298, 1986.

[104] D. W. Matula and L. L. Beck. Smallest-last ordering and clustering and graph coloring algorithms. J. ACM, 30(3):417–

427, July 1983.

[105] R. R. McCune, T. Weninger, and G. Madey. Thinking like a vertex: A survey of vertex-centric frameworks for

large-scale distributed graph processing. ACM Comput. Surv., 48(2):25:1–25:39, Oct. 2015.
[106] W. Mclendon Iii, B. Hendrickson, S. J. Plimpton, and L. Rauchwerger. Finding strongly connected components in

distributed graphs. J. Parallel Distrib. Comput., 65(8):901–910, 2005.
[107] R. Meusel, S. Vigna, O. Lehmberg, and C. Bizer. The graph structure in the web–analyzed on different aggregation

levels. The Journal of Web Science, 1(1):33–47, 2015.
[108] U. Meyer and P. Sanders. Parallel shortest path for arbitrary graphs. In European Conference on Parallel Processing

(Euro-Par), pages 461–470, 2000.
[109] U. Meyer and P. Sanders. Δ-stepping: a parallelizable shortest path algorithm. J. Algorithms, 49(1):114–152, 2003.
[110] G. L. Miller, R. Peng, A. Vladu, and S. C. Xu. Improved parallel algorithms for spanners and hopsets. In ACM

Symposium on Parallelism in Algorithms and Architectures (SPAA), pages 192–201, 2015.
[111] G. L. Miller, R. Peng, and S. C. Xu. Parallel graph decompositions using random shifts. In ACM Symposium on

Parallelism in Algorithms and Architectures (SPAA), pages 196–203, 2013.
[112] G. L. Miller and V. Ramachandran. A new graph triconnectivity algorithm and its parallelization. Combinatorica,

12(1):53–76, 1992.

[113] L. Nai, Y. Xia, I. G. Tanase, H. Kim, and C.-Y. Lin. GraphBIG: Understanding graph computing in the context of

industrial solutions. In International Conference for High Performance Computing, Networking, Storage and Analysis
(SC), pages 69:1–69:12, 2015.

[114] M. E. J. Newman. The structure and function of complex networks. SIAM Review, 45(2):167–256, 2003.
[115] D. Nguyen, A. Lenharth, and K. Pingali. A lightweight infrastructure for graph analytics. In ACM Symposium on

Operating Systems Principles (SOSP), pages 456–471, 2013.
[116] S. Nobari, T.-T. Cao, P. Karras, and S. Bressan. Scalable parallel minimum spanning forest computation. In ACM

Symposium on Principles and Practice of Parallel Programming (PPoPP), pages 205–214, 2012.
[117] M. Ortmann and U. Brandes. Triangle listing algorithms: Back from the diversion. In Algorithm Engineering and

Experiments (ALENEX), pages 1–8, 2014.
[118] R. Pagh and F. Silvestri. The input/output complexity of triangle enumeration. In ACM Symposium on Principles of

Database Systems (PODS), pages 224–233, 2014.
[119] M. Patwary, P. Refsnes, and F. Manne. Multi-core spanning forest algorithms using the disjoint-set data structure. In

IEEE International Parallel and Distributed Processing Symposium (IPDPS), pages 827–835, 2012.
[120] D. Peleg and A. A. Schäffer. Graph spanners. Journal of Graph Theory, 13(1):99–116, 1989.

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article . Publication date: January 2020.

63

[121] S. Pettie and V. Ramachandran. A randomized time-work optimal parallel algorithm for finding a minimum spanning

forest. SIAM J. on Computing, 31(6):1879–1895, 2002.
[122] C. A. Phillips. Parallel graph contraction. In ACM Symposium on Parallelism in Algorithms and Architectures (SPAA),

pages 148–157, 1989.

[123] C. K. Poon and V. Ramachandran. A randomized linear work EREW PRAM algorithm to find a minimum spanning

forest. In International Symposium on Algorithms and Computation (ISAAC), pages 212–222, 1997.
[124] S. Rajagopalan and V. V. Vazirani. Primal-dual RNC approximation algorithms for set cover and covering integer

programs. SIAM J. on Computing, 28(2):525–540, Feb. 1999.
[125] V. Ramachandran. A framework for parallel graph algorithm design. In International Symposium on Optimal

Algorithms, pages 33–40, 1989.
[126] V. Ramachandran. Parallel open ear decomposition with applications to graph biconnectivity and triconnectivity. In

J. H. Reif, editor, Synthesis of Parallel Algorithms. Morgan Kaufmann Publishers Inc., 1993.

[127] J. Reif. Optimal parallel algorithms for integer sorting and graph connectivity. Technical Report TR-08-85, Harvard

University, 1985.

[128] A. E. Sariyuce, C. Seshadhri, and A. Pinar. Parallel local algorithms for core, truss, and nucleus decompositions. Proc.
VLDB Endow., 12(1):43–56, 2018.

[129] T. Schank. Algorithmic Aspects of Triangle-Based Network Analysis. PhD thesis, Universitat Karlsruhe, 2007.

[130] T. Schank and D. Wagner. Finding, counting and listing all triangles in large graphs, an experimental study. In

Workshop on Experimental and Efficient Algorithms (WEA), pages 606–609, 2005.
[131] W. Schudy. Finding strongly connected components in parallel using 𝑂 (log2 𝑁) reachability queries. In ACM

Symposium on Parallelism in Algorithms and Architectures (SPAA), pages 146–151, 2008.
[132] S. B. Seidman. Network structure and minimum degree. Soc. Networks, 5(3):269–287, 1983.
[133] M. Sevenich, S. Hong, A. Welc, and H. Chafi. Fast in-memory triangle listing for large real-world graphs. InWorkshop

on Social Network Mining and Analysis, pages 2:1–2:9, 2014.
[134] J. Shi, L. Dhulipala, and J. Shun. Parallel clique counting and peeling algorithms. arXiv preprint arXiv:2002.10047, 2020.
[135] Y. Shiloach and U. Vishkin. An𝑂 (log𝑛) parallel connectivity algorithm. J. Algorithms, 3(1):57–67, 1982.
[136] J. Shun and G. E. Blelloch. Ligra: A lightweight graph processing framework for shared memory. In ACM Symposium

on Principles and Practice of Parallel Programming (PPoPP), pages 135–146, 2013.
[137] J. Shun and G. E. Blelloch. Phase-concurrent hash tables for determinism. In ACM Symposium on Parallelism in

Algorithms and Architectures (SPAA), pages 96–107, 2014.
[138] J. Shun, G. E. Blelloch, J. T. Fineman, and P. B. Gibbons. Reducing contention through priority updates. In ACM

Symposium on Parallelism in Algorithms and Architectures (SPAA), pages 299–300, 2013.
[139] J. Shun, G. E. Blelloch, J. T. Fineman, P. B. Gibbons, A. Kyrola, H. V. Simhadri, and K. Tangwongsan. Brief announcement:

the Problem Based Benchmark Suite. In ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), 2012.
[140] J. Shun, L. Dhulipala, and G. E. Blelloch. A simple and practical linear-work parallel algorithm for connectivity. In

ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), pages 143–153, 2014.
[141] J. Shun, L. Dhulipala, and G. E. Blelloch. Smaller and faster: Parallel processing of compressed graphs with Ligra+. In

Data Compression Conference (DCC), pages 403–412, 2015.
[142] J. Shun and K. Tangwongsan. Multicore triangle computations without tuning. In IEEE International Conference on

Data Engineering (ICDE), pages 149–160, 2015.
[143] G. M. Slota and K. Madduri. Simple parallel biconnectivity algorithms for multicore platforms. In IEEE International

Conference on High-Performance Computing (HiPC), pages 1–10, 2014.
[144] G. M. Slota, S. Rajamanickam, and K. Madduri. BFS and coloring-based parallel algorithms for strongly connected

components and related problems. In IEEE International Parallel and Distributed Processing Symposium (IPDPS), pages
550–559, 2014.

[145] G. M. Slota, S. Rajamanickam, and K. Madduri. Supercomputing for web graph analytics. Technical Report SAND2015-

3087C, Sandia National Lab, 2015.

[146] G. M. Slota, S. Rajamanickam, and K. Madduri. A case study of complex graph analysis in distributed memory:

Implementation and optimization. In IEEE International Parallel and Distributed Processing Symposium (IPDPS), pages
293–302, 2016.

[147] S. Stergiou, D. Rughwani, and K. Tsioutsiouliklis. Shortcutting label propagation for distributed connected components.

In International Conference on Web Search and Data Mining (WSDM), pages 540–546, 2018.
[148] R. E. Tarjan and U. Vishkin. An efficient parallel biconnectivity algorithm. SIAM J. on Computing, 14(4):862–874, 1985.
[149] M. Thorup and U. Zwick. Approximate distance oracles. J. ACM, 52(1):1–24, 2005.

[150] T. Tseng, L. Dhulipala, and J. Shun. Parallel index-based structural graph clustering and its approximation. To appear
in ACM International Conference on Management of Data (SIGMOD), 2021.

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article . Publication date: January 2020.

64 Laxman Dhulipala, Guy E. Blelloch, and Julian Shun

[151] D. J. Welsh and M. B. Powell. An upper bound for the chromatic number of a graph and its application to timetabling

problems. The Computer Journal, 10(1):85–86, 1967.
[152] D. Yan, Y. Bu, Y. Tian, and A. Deshpande. Big graph analytics platforms. Foundations and Trends in Databases,

7(1-2):1–195, 2017.

[153] Y. Zhang, M. Yang, R. Baghdadi, S. Kamil, J. Shun, and S. Amarasinghe. GraphIt: A high-performance graph DSL.

Object-Oriented Programming Systems, Languages,and Applications (OOPSLA), pages 121:1–121:30, 2018.
[154] D. Zheng, D. Mhembere, R. Burns, J. Vogelstein, C. E. Priebe, and A. S. Szalay. FlashGraph: Processing billion-node

graphs on an array of commodity SSDs. In USENIX Conference on File and Storage Technologies (FAST), pages 45–58,
2015.

[155] W. Zhou. A practical scalable shared-memory parallel algorithm for computing minimum spanning trees. Master’s

thesis, KIT, 2017.

A GRAPH STATISTICS

In this section, we list graph statistics computed for the graphs from Section 8.
8
These statistics

include the number of connected components, strongly connected components, colors used by the

LLF and LF heuristics, number of triangles, and several others. These numbers will be useful for

verifying the correctness or quality of our algorithms in relation to future algorithms that also run

on these graphs. Although some of these numbers were present in Table 3, we include in the tables

below for completeness. We provide details about the statistics that are not self-explanatory.

• Effective Directed Diameter : the maximum number of levels traversed during a graph traversal

algorithm (BFS or SCC) on the unweighted directed graph.

• Effective Undirected Diameter : the maximum number of levels traversed during a graph

traversal algorithm (BFS) on the unweighted directed graph.

• Size of Largest (Connected/Biconnected/Strongly-Connected) Component: The number of vertices
in the largest (connected/biconnected/strongly-connected) component. Note that in the case

of biconnectivity, we assign labels to edges, so a vertex participates in a component for each

distinct edge label incident to it.

• Num. Triangles: The number of closed triangles in𝐺 , where each triangle (𝑢, 𝑣,𝑤) is counted
exactly once.

• Num. Colors Used by (LF/LLF): The number of colors used is just the maximum color ID

assigned to any vertex.

• (Maximum Independent Set/Maximum Matching/Approximate Set Cover) Size: We report the

sizes of these objects computed by our implementations. For MIS and maximum matching we

report this metric to lower-bound the size of the maximum independent set and maximum

matching supported by the graph. For approximate set cover, we run our code on instances

similar to those used in prior work (e.g., Blelloch et al. [37] and Dhulipala et al. [52]) where

the elements are vertices and the sets are the neighbors of each vertex in the undirected

graph. In the case of the social network and hyperlink graphs, this optimization problem

naturally captures the minimum number of users or Web pages whose neighborhoods must

be retrieved to cover the entire graph.

• 𝑘max (Degeneracy): The value of 𝑘 of the largest non-empty 𝑘-core.

8
Similar statistics can be found on the SNAP website (https://snap.stanford.edu/data/) and the Laboratory for Web Algorith-

mics website (http://law.di.unimi.it/datasets.php).

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article . Publication date: January 2020.

https://snap.stanford.edu/data/
http://law.di.unimi.it/datasets.php

65

Statistic Value

Num. Vertices 4,847,571

Num. Directed Edges 68,993,773

Num. Undirected Edges 85,702,474

Effective Directed Diameter 16

Effective Undirected Diameter 20

Num. Connected Components 1,876

Num. Biconnected Components 1,133,883

Num. Strongly Connected Components 971,232

Size of Largest Connected Component 4,843,953

Size of Largest Biconnected Component 3,665,291

Size of Largest Strongly Connected Component 3,828,682

Num. Triangles 285,730,264

Num. Colors Used by LF 323

Num. Colors Used by LLF 327

Maximal Independent Set Size 2,316,617

Maximal Matching Size 1,546,833

Set Cover Size 964,492

𝑘max (Degeneracy) 372

𝜌 (Num. Peeling Rounds in 𝑘-core) 3,480

Table 9. Graph statistics for the LiveJournal graph.

Statistic Value

Num. Vertices 3,072,627

Num. Directed Edges —

Num. Undirected Edges 234,370,166

Effective Directed Diameter —

Effective Undirected Diameter 9

Num. Connected Components 187

Num. Biconnected Components 68,117

Num. Strongly Connected Components —

Size of Largest Connected Component 3,072,441

Size of Largest Biconnected Component 3,003,914

Size of Largest Strongly Connected Component —

Num. Triangles 627,584,181

Num. Colors Used by LF 86

Num. Colors Used by LLF 98

Maximal Independent Set Size 651,901

Maximal Matching Size 1,325,427

Set Cover Size 105,572

𝑘max (Degeneracy) 253

𝜌 (Num. Peeling Rounds in 𝑘-core) 5,667

Table 10. Graph statistics for the com-Orkut graph. As com-Orkut is an undirected graph, some of the

statistics are not applicable and we mark the corresponding values with –.

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article . Publication date: January 2020.

66 Laxman Dhulipala, Guy E. Blelloch, and Julian Shun

Statistic Value

Num. Vertices 41,652,231

Num. Directed Edges 1,468,365,182

Num. Undirected Edges 2,405,026,092

Effective Directed Diameter 65

Effective Undirected Diameter 23

Num. Connected Components 2

Num. Biconnected Components 1,936,001

Num. Strongly Connected Components 8,044,729

Size of Largest Connected Component 41,652,230

Size of Largest Biconnected Component 39,708,003

Size of Largest Strongly Connected Component 33,479,734

Num. Triangles 34,824,916,864

Num. Colors Used by LF 1,081

Num. Colors Used by LLF 1,074

Maximal Independent Set Size 26,564,540

Maximal Matching Size 9,612,260

Set Cover Size 1,736,761

𝑘max (Degeneracy) 2,488

𝜌 (Num. Peeling Rounds in 𝑘-core) 14,963

Table 11. Graph statistics for the Twitter graph.

Statistic Value

Num. Vertices 978,408,098

Num. Directed Edges 42,574,107,469

Num. Undirected Edges 74,774,358,622

Effective Directed Diameter 821

Effective Undirected Diameter 132

Num. Connected Components 23,794,336

Num. Biconnected Components 81,809,602

Num. Strongly Connected Components 135,223,661

Size of Largest Connected Component 950,577,812

Size of Largest Biconnected Component 846,117,956

Size of Largest Strongly Connected Component 774,373,029

Num. Triangles 1,995,295,290,765

Num. Colors Used by LF 4,245

Num. Colors Used by LLF 4,245

Maximal Independent Set Size 459,052,906

Maximal Matching Size 311,153,771

Set Cover Size 64,322,081

𝑘max (Degeneracy) 4,244

𝜌 (Num. Peeling Rounds in 𝑘-core) 106,819

Table 12. Graph statistics for the ClueWeb graph.

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article . Publication date: January 2020.

67

Statistic Value

Num. Vertices 1,724,573,718

Num. Directed Edges 64,422,807,961

Num. Undirected Edges 124,141,874,032

Effective Directed Diameter 793

Effective Undirected Diameter 207

Num. Connected Components 129,441,050

Num. Biconnected Components 132,198,693

Num. Strongly Connected Components 1,290,550,195

Size of Largest Connected Component 1,574,786,584

Size of Largest Biconnected Component 1,435,626,698

Size of Largest Strongly Connected Component 320,754,363

Num. Triangles 4,587,563,913,535

Num. Colors Used by LF 4154

Num. Colors Used by LLF 4158

Maximal Independent Set Size 1,333,026,057

Maximal Matching Size 242,469,131

Set Cover Size 23,869,788

𝑘max (Degeneracy) 4,160

𝜌 (Num. Peeling Rounds in 𝑘-core) 58,711

Table 13. Graph statistics for the Hyperlink2014 graph.

Statistic Value

Num. Vertices 3,563,602,789

Num. Directed Edges 128,736,914,167

Num. Undirected Edges 225,840,663,232

Effective Directed Diameter 5275

Effective Undirected Diameter 331

Num. Connected Components 144,628,744

Num. Biconnected Components 298,663,966

Num. Strongly Connected Components 1,279,696,892

Size of Largest Connected Component 3,355,386,234

Size of Largest Biconnected Component 3,023,064,231

Size of Largest Strongly Connected Component 1,827,543,757

Num. Triangles 9,648,842,110,027

Num. Colors Used by LF 10,566

Num. Colors Used by LLF 10,566

Maximal Independent Set Size 1,799,823,993

Maximal Matching Size 2,434,644,438

Set Cover Size 372,668,619

𝑘max (Degeneracy) 10,565

𝜌 (Num. Peeling Rounds in 𝑘-core) 130,728

Table 14. Graph statistics for the Hyperlink2012 graph.

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article . Publication date: January 2020.

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Graph Notation
	3.2 Atomic Primitives
	3.3 Parallel Model and Cost
	3.4 Parallel Primitives

	4 Interface
	4.1 Graph Representations
	4.2 VertexSubset Interface
	4.3 Bucketing Interface
	4.4 Vertex Interface
	4.5 Graph Interface

	5 Benchmark
	5.1 Shortest Path Problems
	5.2 Connectivity Problems
	5.3 Covering Problems
	5.4 Substructure Problems
	5.5 Eigenvector Problems

	6 Algorithms
	6.1 Shortest Path Problems
	6.2 Connectivity Problems
	6.3 Covering Problems
	6.4 Substructure Problems
	6.5 Eigenvector Problems

	7 Implementations and Techniques
	7.1 A Work-efficient Histogram Implementation
	7.2 edgeMapBlocked
	7.3 Techniques for overlapping searches
	7.4 Primitives on Compressed Graphs

	8 Experiments
	8.1 Experimental Setup and Graph Inputs
	8.2 SSSP Problems
	8.3 Connectivity Problems
	8.4 Covering Problems
	8.5 Substructure Problems
	8.6 Eigenvector Problems
	8.7 Performance on 3D-Torus
	8.8 Locality
	8.9 Processing Massive Web Graphs

	9 Conclusion and Future Work
	References
	A Graph Statistics

