
MIT Open Access Articles

NetAdaptV2: Efficient Neural Architecture Search with Fast
Super-Network Training and Architecture Optimization

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Yang, Tien-Ju, Liao, Yi-Lun and Sze, Vivienne. 2021. "NetAdaptV2: Efficient Neural
Architecture Search with Fast Super-Network Training and Architecture Optimization." 2021
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

As Published: 10.1109/CVPR46437.2021.00243

Publisher: Institute of Electrical and Electronics Engineers (IEEE)

Persistent URL: https://hdl.handle.net/1721.1/143902

Version: Original manuscript: author's manuscript prior to formal peer review

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/143902
http://creativecommons.org/licenses/by-nc-sa/4.0/

NetAdaptV2: Efficient Neural Architecture Search with
Fast Super-Network Training and Architecture Optimization

Tien-Ju Yang, Yi-Lun Liao, Vivienne Sze
Massachusetts Institute of Technology

{tjy,ylliao,sze}@mit.edu

Abstract

Neural architecture search (NAS) typically consists of
three main steps: training a super-network, training and
evaluating sampled deep neural networks (DNNs), and train-
ing the discovered DNN. Most of the existing efforts speed
up some steps at the cost of a significant slowdown of other
steps or sacrificing the support of non-differentiable search
metrics. The unbalanced reduction in the time spent per
step limits the total search time reduction, and the inabil-
ity to support non-differentiable search metrics limits the
performance of discovered DNNs.

In this paper, we present NetAdaptV2 with three innova-
tions to better balance the time spent for each step while
supporting non-differentiable search metrics. First, we pro-
pose channel-level bypass connections that merge network
depth and layer width into a single search dimension to re-
duce the time for training and evaluating sampled DNNs.
Second, ordered dropout is proposed to train multiple DNNs
in a single forward-backward pass to decrease the time for
training a super-network. Third, we propose the multi-layer
coordinate descent optimizer that considers the interplay
of multiple layers in each iteration of optimization to im-
prove the performance of discovered DNNs while supporting
non-differentiable search metrics. With these innovations,
NetAdaptV2 reduces the total search time by up to 5.8× on
ImageNet and 2.4× on NYU Depth V2, respectively, and dis-
covers DNNs with better accuracy-latency/accuracy-MAC
trade-offs than state-of-the-art NAS works. Moreover, the
discovered DNN outperforms NAS-discovered MobileNetV3
by 1.8% higher top-1 accuracy with the same latency.1

1. Introduction

Neural architecture search (NAS) applies machine learn-
ing to automatically discover deep neural networks (DNNs)
with better performance (e.g., better accuracy-latency trade-
offs) by sampling the search space, which is the union of all
discoverable DNNs. The search time is one key metric for

1The project website: http://netadapt.mit.edu.

50 60 70 80 90
Latency (ms)

74

75

76

77

78

To
p-

1
A

cc
ur

ac
y

(%
)

500

243

1315
This Work

397

NAS Methods
MnasNet
ProxylessNAS
Single-Path NAS
AutoSlim
MobileNetV3
FairNAS
Once-for-All
NetAdaptV2

Total Search Time

Unknown

400 GPU-Hours

1300 GPU-Hours

Total Search Time

Unknown

400 GPU-Hours

1300 GPU-Hours

Figure 1: The comparison between NetAdaptV2 and related
works. The number above a marker is the corresponding
total search time measured on NVIDIA V100 GPUs.

NAS algorithms, which accounts for three steps: 1) train-
ing a super-network, whose weights are shared by all the
DNNs in the search space and trained by minimizing the
loss across them, 2) training and evaluating sampled DNNs
(referred to as samples), and 3) training the discovered DNN.
Another important metric for NAS is whether it supports
non-differentiable search metrics such as hardware metrics
(e.g., latency and energy). Incorporating hardware metrics
into NAS is the key to improving the performance of the
discovered DNNs [1–5].

There is usually a trade-off between the time spent for
the three steps and the support of non-differentiable search
metrics. For example, early reinforcement-learning-based
NAS methods [2, 6, 7] suffer from the long time for train-
ing and evaluating samples. Using a super-network [8–16]
solves this problem, but super-network training is typically
time-consuming and becomes the new time bottleneck. The
gradient-based methods [3, 17–24] reduce the time for train-
ing a super-network and training and evaluating samples at
the cost of sacrificing the support of non-differentiable search
metrics. In summary, many existing works either have an
unbalanced reduction in the time spent per step (i.e., optimiz-
ing some steps at the cost of a significant increase in the time
for other steps), which still leads to a long total search time,

ar
X

iv
:2

10
4.

00
03

1v
1

 [
cs

.C
V

]
 3

1
M

ar
 2

02
1

http://netadapt.mit.edu

or are unable to support non-differentiable search metrics,
which limits the performance of the discovered DNNs.

In this paper, we propose an efficient NAS algorithm,
NetAdaptV2, to significantly reduce the total search time by
introducing three innovations to better balance the reduction
in the time spent per step while supporting non-differentiable
search metrics:

Channel-level bypass connections (mainly reduce the
time for training and evaluating samples, Sec. 2.2): Early
NAS works only search for DNNs with different numbers
of filters (referred to as layer widths). To improve the per-
formance of the discovered DNN, more recent works search
for DNNs with different numbers of layers (referred to as
network depths) in addition to different layer widths at the
cost of training and evaluating more samples because net-
work depths and layer widths are usually considered inde-
pendently. In NetAdaptV2, we propose channel-level bypass
connections to merge network depth and layer width into a
single search dimension, which requires only searching for
layer width and hence reduces the number of samples.

Ordered dropout (mainly reduces the time for train-
ing a super-network, Sec. 2.3): We adopt the idea of super-
network to reduce the time for training and evaluating sam-
ples. In previous works, each DNN in the search space
requires one forward-backward pass to train. As a result,
training multiple DNNs in the search space requires multi-
ple forward-backward passes, which results in a long train-
ing time. To address the problem, we propose ordered
dropout to jointly train multiple DNNs in a single forward-
backward pass, which decreases the required number of
forward-backward passes for a given number of DNNs and
hence the time for training a super-network.

Multi-layer coordinate descent optimizer (mainly re-
duces the time for training and evaluating samples and
supports non-differentiable search metrics, Sec. 2.4):
NetAdaptV1 [1] and MobileNetV3 [25], which utilizes Ne-
tAdaptV1, have demonstrated the effectiveness of the single-
layer coordinate descent (SCD) optimizer [26] in discovering
high-performance DNN architectures. The SCD optimizer
supports both differentiable and non-differentiable search
metrics and has only a few interpretable hyper-parameters
that need to be tuned, such as the per-iteration resource re-
duction. However, there are two shortcomings of the SCD
optimizer. First, it only considers one layer per optimiza-
tion iteration. Failing to consider the joint effect of multiple
layers may lead to a worse decision and hence sub-optimal
performance. Second, the per-iteration resource reduction
(e.g., latency reduction) is limited by the layer with the small-
est resource consumption (e.g., latency). It may take a large
number of iterations to search for a very deep network be-
cause the per-iteration resource reduction is relatively small
compared with the network resource consumption. To ad-
dress these shortcomings, we propose the multi-layer co-
ordinate descent (MCD) optimizer that considers multiple

layers per optimization iteration to improve performance
while reducing search time and preserving the support of
non-differentiable search metrics.

Fig. 1 (and Table 1) compares NetAdaptV2 with related
works. NetAdaptV2 can reduce the search time by up to
5.8× and 2.4× on ImageNet [27] and NYU Depth V2 [28]
respectively and discover DNNs with better performance
than state-of-the-art NAS works. Moreover, compared to
NAS-discovered MobileNetV3 [25], the discovered DNN
has 1.8% higher accuracy with the same latency.

2. Methodology: NetAdaptV2

2.1. Algorithm Overview

NetAdaptV2 searches for DNNs with different network
depths, layer widths, and kernel sizes. The proposed
channel-level bypass connections (CBCs, Sec. 2.2) en-
ables NetAdaptV2 to discover DNNs with different network
depths and layer widths by only searching layer widths be-
cause different network depths become the natural results of
setting the widths of some layers to zero. To search kernel
sizes, NetAdaptV2 uses the superkernel method [12, 21, 22].

Fig. 2 illustrates the algorithm flow of NetAdaptV2. It
takes an initial network and uses its sub-networks, which
can be obtained by shrinking some layers in the initial net-
work, to construct the search space. In other words, a
sample in NetAdaptV2 is a sub-network of the initial net-
work. Because the optimizer needs the accuracy of sam-
ples for comparing their performance, the samples need
to be trained. NetAdaptV2 adopts the concept of jointly
training all sub-networks with shared weights by training
a super-network, which has the same architecture as the
initial network and contains these shared weights. We use
CBCs, the proposed ordered dropout (Sec. 2.3), and su-
perkernel [12, 21, 22] to efficiently train the super-network
that contains sub-networks with different layer widths, net-
work depths, and kernel sizes. After training the super-
network, the proposed multi-layer coordinate descent op-
timizer (Sec. 2.4) is used to discover the architectures of
DNNs with optimal performance. The optimizer iteratively
samples the search space to generate a bunch of samples and
determines the next set of samples based on the performance
of the current ones. This process continues until the given
stop criteria are met (e.g., the latency is smaller than 30ms),
and the discovered DNN is then trained until convergence.
Because of the trained super-network, the accuracy of sam-
ples can be directly evaluated by using the shared weights
without any further training.

2.2. Channel-Level Bypass Connections

Previous NAS algorithms generally treat network depth
and layer width as two different search dimensions. The
reason is evident in the following example. If we remove

7 x 7

7 x 7

7 x 7

7 x 7

Initial Network Super-Network

Sampling Evaluation

Sample 1 Sample J

……

Latency 50ms … 52ms

Accuracy 61% … 60%

Sample 1 … Sample J

Multi-Layer Coordinate Descent Optimizer

3 x 3

5 x 5

7 x 7

Super-Network
Training

Discovered
Network Training

Discovered Network

Figure 2: The algorithm flow of the proposed NetAdaptV2.

a filter from a layer, we reduce the number of output chan-
nels by one. As a result, if we remove all the filters, there
are no output channels for the next layer, which breaks the
DNN into two disconnected parts. Hence, reducing layer
widths typically cannot be used to reduce network depths.
To address this, we need an approach that keeps the network
connectivity while removing filters; this is achieved by our
proposed channel-level bypass connections (CBCs).

The high-level concept of CBCs is “when a filter is re-
moved, an input channel is bypassed to maintain the same
number of output channels”. In this way, we can preserve
the network connectivity when all filters are removed from a
layer. Assuming the target layer in the initial network has C
input channels, T filters, and Z output channels2, we gradu-
ally remove filters from the layer, where there are M filters
remaining. Fig. 3 illustrates how CBCs handle three cases in
this process based on the relationship between the number
of input channels (C) and the initial number of filters (T)
(only M changes, and C and T are fixed):

• Case 1, C = T (Fig. 3a): When the i-th filter is re-
moved, we bypass the i-th input channel, so the number
of output channels (Z) can be kept the same. When all
the filters are removed (M = 0), all the input channels
are bypassed, which is the same as removing the layer.

• Case 2, C < T (Fig. 3b): We do not bypass input
channels at the beginning of filter removal because we
have more filters than input channels (i.e., M > C) and
there are no corresponding input channels to bypass.
The bypass process starts when there are fewer filters
than input channels (M < C), which becomes case 1.

• Case 3, C > T (Fig. 3c): When the i-th filter is re-
moved, we bypass the i-th input channel. The extra
(C − T) input channels are not used for the bypass.

These three cases can be summarized in a rule: when the
i-th filter is removed, the corresponding i-th input channel is
bypassed if that input channel exists. Therefore, the number
of output channels (Z) when using CBCs can be computed
by Z = max(min(C, T),M). The proposed CBCs can be

2If we do not use CBCs, Z is equal to T .

efficiently trained when combined with the proposed ordered
dropout, as discussed in Sec. 2.3.

As a more advanced usage of T , we can treat T as a hyper-
parameter. Please note that we only change M , and C and T
are fixed. From the formulation Z = max(min(C, T),M),
we can observe that the function of T is limiting the number
of bypassed input channels and hence the minimum number
of output channels (Z). If we set T ≥ C to allow all C input
channels to be bypassed, the formulation becomes Z =
max(C,M), and the minimum number of output channels
is C. If we set T < C to only allow T input channels to be
bypassed, the formulation becomes Z = max(T,M), and
the minimum number of output channels is T .

Setting T < C enables generating the bottleneck, where
we have fewer output channels than input channels (Z < C).
The bottleneck has been shown to be effective in improving
the accuracy-efficiency (e.g., accuracy-latency) trade-offs
in MobileNetV2 [29]/V3 [25]. We take the case 1 as an
example. In Fig. 3a, we can observe that the number of
output channels is always 4, which is the same as the number
of input channels (Z = C = 4) no matter how many filters
are removed. Therefore, the bottleneck cannot be generated.
In contrast, if we set T to 2 as the case 4 in Fig. 3d, no
input channels are bypassed until we remove the first two
filters because Z = max(min(4, 2), 2) = 2. After that, it
becomes the case 3 in Fig. 3c, which forms a bottleneck.

2.3. Ordered Dropout

Training the super-network involves joint training of mul-
tiple sub-networks with shared weights. After the super-
network is trained, comparing sub-networks of the super-
network (i.e., samples) only requires their relative accuracy
(e.g., sub-network A has higher accuracy than sub-network
B). Generally speaking, the more sub-networks are trained,
the better the relative accuracy of sub-networks will be. How-
ever, previous works usually require one forward-backward
pass for training one sub-network. As a result, training more
sub-networks requires more forward-backward passes and
hence increases the training time.

To address this problem, we propose ordered dropout
(OD) to enable training N sub-networks in a single forward-
backward pass with a batch of N images. OD is inserted
after each convolutional layer in the super-network and zeros

C

Conv
4 4

of input
channels

of filters

C M, Z, T

Concat
4

4

40
Conv

C M Z

Concat
4

2

2 4
M Z

Conv

(a) Case 1: Same number of input
channels and initial filters.
(C = T = 4)

Conv
4 6
C M, Z, T

Conv
4 4
C M, Z

Case 1

of input
channels

of filters

(b) Case 2: Fewer input channels
than initial filters.
(C = 4 < T = 6)

Conv

Conv
4 2
C M, Z, T

Concat
4

2

20
C M Z

Concat
4

1

1 2
C M Z

of input
channels

of filters

Conv

(c) Case 3: More input channels
than initial filters.
(C = 4 > T = 2)

Conv
4 4
C

Conv
4 2
C M, Z

Case 3

M, Z
T = 2

of input
channels

of filters

(d) Case 4: Same number of in-
put channels and initial filters but
with a given T. (C = 4, T = 2)

Figure 3: An illustration of how CBCs handle different cases based on the relationship between the number of input channels
(C) and the initial number of filters (T) (only the number of filters remaining (M) changes, and C and T are fixed). For
each case, it shows how the architecture changes with more filters removed from top to bottom. The numbers above lines
correspond to the letters below lines. Please note that the number of output channels (Z) will never become zero.

out different output channels for different images in a batch.
As shown in Fig. 4, OD simulates different layer widths with
a constant number of output channels. Unlike the standard
dropout [30] that zeros out a random subset of channels
regardless of their positions, OD always zeros out the last
channels to simulate removing the last filters. As a result,
while sampling the search space, we can simply drop the last
filters from the super-network to evaluate samples without
other operations like sorting and avoid a mismatch between
training and evaluation.

When combined with the proposed CBCs, OD can train
sub-networks with different network depths by zeroing out
all output channels of some layers to simulate layer removal.
As shown in Fig. 5, to simulate CBCs, there is another OD
in the bypass path (upper) during training, which zeros out
the complement set of the channels zeroed by the OD in the
corresponding convolution path (lower).

Because NAS only requires the relative accuracy of sam-
ples, we can decrease the number of training iterations to
further reduce the super-network training time. Moreover,
for each layer, we sample each layer width almost the same
number of times in a forward-backward pass to avoid biasing
towards any specific layer widths.

2.4. Multi-Layer Coordinate Descent Optimizer

The single-layer coordinate descent (SCD) optimizer [26],
used in NetAdaptV1 [1], is a simple-yet-effective optimizer
with the advantages such as supporting both differentiable
and non-differentiable search metrics and having only a few
interpretable hyper-parameters that need to be tuned. The
SCD optimizer runs an iterative optimization. It starts from
the super-network and gradually reduces its latency (or other
search metrics such as multiply-accumulate operations and
energy). In each iteration, the SCD optimizer generates K

Conv

(2 Filters)

Conv

(4 Filters)

Conv

(4 Filters)

Ordered
Dropout

Joint Training of 2 Sub-Networks

Sub-Network 1 Sub-Network 2

Figure 4: An illustration of how NetAdaptV2 uses the pro-
posed ordered dropout to train two different sub-networks
in a single forward-backward pass. The ordered dropout is
inserted after each convolutional layer to simulate different
layer widths by zeroing out some channels of activations.
Note that all the sub-networks share the same set of weights.

samples if the super-network has K layers. The k-th sample
is generated by shrinking (e.g., removing filters) the k-th
layer in the best sample from the previous iteration to reduce
its latency by a given amount. This amount is referred to
as per-iteration resource reduction and may change from
one iteration to another. Then, the sample with the best
performance (e.g., accuracy-latency trade-off) will be chosen

Input feature maps Output feature maps

One batch of
images/feature

maps

Joint training of
different layer

widths
Conv Ordered

Dropout

Conv

2

Ordered
Dropout

Ordered Dropout
Complement

+

Figure 5: An illustration of how NetAdaptV2 uses the pro-
posed channel-level bypass connections and ordered dropout
to train a super-network that supports searching different
layer widths and network depths.

and used for the next iteration. The optimization terminates
when the target latency is met, and the sample with the best
performance in the last iteration is the discovered DNN.

The shortcoming of the SCD optimizer is that it generates
samples by shrinking only one layer per iteration. This
property causes two problems. First, it does not consider
the interplay of multiple layers when generating samples in
an iteration, which may lead to sub-optimal performance of
discovered DNNs. Second, it may take many iterations to
search for very deep networks because the layer with the
lowest latency limits the maximum value of the per-iteration
resource reduction; the lowest latency of a layer becomes
small when the super-network is deep. To address these
problems, we propose the multi-layer coordinate descent
(MCD) optimizer. It generates J samples per iteration, where
each sample is obtained by randomly shrinking L layers from
the previous best sample. In NetAdaptV2, shrinking a layer
involves removing filters, reducing the kernel size, or both.
Compared with the SCD optimizer, the MCD optimizer
considers the interplay of L layers in each iteration so that
the performance of the discovered DNN can be improved.
Moreover, it enables using a larger per-iteration resource
reduction (i.e., up to the total latency of L layers) to reduce
the number of iterations and hence the search time.

3. Related Works
Reinforcement-learning-based methods [2, 4, 6, 7, 31]

demonstrate the ability of neural architecture search for de-
signing high-performance DNNs. However, its search time is
longer than the following works due to the long time for train-
ing samples individually. Gradient-based methods [3, 17–
19, 21–24] successfully discover high-performance DNNs
with a much shorter search time, but they can only support
differentiable search metrics. NetAdaptV1 [1] proposes a
single-layer coordinate descent optimizer that can support
both differentiable and non-differentiable search metrics and
was used to design state-of-the-art MobileNetV3 [25]. How-
ever, shrinking only one layer for generating each sample
and the long time for training samples individually become
its bottleneck of search time. The idea of super-network
training [10–12], which jointly trains all the sub-networks in

the search space, is proposed to reduce the time for training
and evaluating samples and training the discovered DNN at
the cost of a significant increase in the time for training a
super-network. Moreover, network depth and layer width are
usually considered separately in related works. The proposed
NetAdaptV2 addresses all these problems at the same time
by reducing the time for training a super-network, training
and evaluating samples, and training the discovered DNN in
balance while supporting non-differentiable search metrics.

The algorithm flow of NetAdaptV2 is most similar to
NetAdaptV1 [1], as shown in Fig. 2. Compared with Ne-
tAdaptV2, NetAdaptV1 does not train a super-network but
train each sample individually. Moreover, NetAdaptV1 con-
siders only one layer per optimization iteration and different
layer widths, but NetAdaptV2 considers multiple layers per
optimization iteration and different layer widths, network
depths, and kernel sizes. Therefore, NetAdaptV2 is both
faster and more effective than NetAdaptV1, as shown in
Sec. 4.1.4 and 4.2.

For the methodology, the proposed ordered dropout is
most similar to the partial channel connections [24]. How-
ever, they are different in the purpose and the ability to
expand the search space. Partial channel connections aim
to reduce memory consumption while training a DNN with
multiple parallel paths by removing some channels. The
number of channels removed is constant during training.
Moreover, this number is manually chosen. As a result,
partial channel connections do not expand the search space.
In contrast, the proposed ordered dropout is designed for
jointly training multiple sub-networks and expanding the
search space. The number of channels removed (i.e., ze-
roed out) varies from image to image and from one training
iteration to another during training to simulate different sub-
networks. Moreover, the final number of channels removed
(i.e., the discovered architecture) is searched. Therefore, the
proposed ordered dropout expands the search space in terms
of layer width as well as network depth when the proposed
channel-level bypass connections are used.

4. Experiment Results
We apply NetAdaptV2 on two applications (image clas-

sification and depth estimation) and two search metrics
(latency and multiply-accumulate operations (MACs)) to
demonstrate the effectiveness and versatility of NetAdaptV2
across different operating conditions. We also perform an
ablation study to show the impact of each of the proposed
techniques and the associated hyper-parameters.

4.1. Image Classification

4.1.1 Experiment Setup

We use latency or MACs to guide NetAdaptV2. The latency
is measured on a Google Pixel 1 CPU. The search time is
reported in GPU-hours and measured on V100 GPUs.

The dataset is ImageNet [32]. We reserve 10K images
in the training set for comparing the accuracy of samples
and train the super-network with the rest of the training
images. The accuracy of the discovered DNN is reported
on the validation set, which was not seen during the search.
The initial network is based on MobileNetV3 [25]. The
maximum learning rate is 0.064 decayed by 0.963 every 3
epochs when the batch size is 1024. The learning rate scales
linearly with the batch size [33]. The optimizer is RMSProp
with an `2 weight decay of 10−5. The dropout rate is 0.2.
The decay rate of the exponential moving average is 0.9998.
The batch size is 1024 for training the super-network, 2048
for training the latency-guided discovered DNN, and 1536
for training the MAC-guided discovered DNN.

The multi-layer coordinate descent (MCD) optimizer gen-
erates 200 samples per iteration (J = 200). For the latency-
guided experiment, each sample is obtained by randomly
shrinking 10 layers (L = 10) from the best sample in the
previous iteration. We reduce the latency by 3% in the
first iteration (i.e., initial resource reduction) and decay the
resource reduction by 0.98 every iteration. For the MAC-
guided experiment, each sample is obtained by randomly
shrinking 15 layers (L = 15) from the best sample in the
previous iteration. We reduce the MACs by 2.5% in the
first iteration and decay the resource reduction by 0.98 every
iteration. More details are included in the appendix.

4.1.2 Latency-Guided Search Result

The results of NetAdaptV2 guided by latency and related
works are summarized in Table 1. Compared with the state-
of-the-art (SOTA) NAS algorithms [11, 12], NetAdaptV2
reduces the search time by up to 5.8× and discovers DNNs
with better accuracy-latency/accuracy-MAC trade-offs. The
reduced search time is the result of the much more balanced
time spent per step. Compared with the NAS algorithms
in the class of hundreds of GPU-hours, ProxylessNAS [3]
and Single-Path NAS [22], NetAdaptV2 outperforms them
without sacrificing the support of non-differentiable search
metrics. NetAdaptV2 achieves either 2.4% higher accu-
racy with 1.5× lower latency or 1.4% higher accuracy with
1.6× lower latency. Compared with SOTA NAS-discovered
MobileNetV3 [25], NetAdaptV2 achieves 1.8% higher ac-
curacy with the same latency in around 50 hours on eight
GPUs. We estimate the CO2 emission of NetAdaptV2 based
on [34]. NetAdaptV2 discovers DNNs with better accuracy-
latency/accuracy-MAC trade-offs with low CO2 emission.

4.1.3 MAC-Guided Search Result

We present the result of NetAdaptV2 guided by MACs and
compare it with related works in Table 2. For a fair com-
parison, AutoAugment [36] and stochastic depth [37] with
a survival probability of 0.8 are used for training the dis-

covered network, which results in a longer time for train-
ing the discovered DNN. NetAdaptV2 achieves comparable
accuracy-MAC trade-offs to NSGANetV2-m [38] while the
search time is 2.6× lower. Moreover, the discovered DNN
also outperforms EfficientNet-B0 [31] and MixNet-M [39]
by up to 1.5% higher top-1 accuracy with fewer MACs.

4.1.4 Ablation Study

The ablation study employs the experiment setup outlined in
Sec. 4.1.1 unless otherwise stated. To speed up training the
discovered networks, the distillation model is smaller.
• Impact of Ordered Dropout

To study the impact of the proposed ordered dropout
(OD), we do not use channel-level bypass connections
(CBCs) and multi-layer coordinate descent (MCD) optimizer
in this experiment. When we further remove the usage of OD,
NetAdaptV2 becomes the same as NetAdaptV1 [1], where
each sample needs to be trained for four epochs by following
the setting of NetAdaptV1. To speed up the execution of Ne-
tAdaptV1, we use a shallower network, MobileNetV1 [40],
in this experiment instead. Table 3 shows that using OD
reduces the search time by 3.3× while achieving the same
accuracy-latency trade-off. If we only consider the time for
training a super-network and training and evaluating samples,
which are affected by OD, the time reduction is 10.4×.
• Impact of Channel-Level Bypass Connections

The proposed channel-level bypass connections (CBCs)
enable NetAdaptV2 to search for different network depths.
Table 4 shows that CBCs can improve the accuracy by 0.3%.
The difference is more significant when we target at lower
latency, as shown in the ablation study on MobileNetV1 in
the appendix, because the ability to remove layers becomes
more critical for maintaining accuracy.
• Impact of Multi-Layer Coordinate Descent Optimizer

The proposed multi-layer coordinate descent (MCD) opti-
mizer improves the performance of the discovered DNN by
considering the joint effect of multiple layers per optimiza-
tion iteration. Table 4 shows that using the MCD optimizer
further improves the accuracy by 0.4%.
• Impact of Resource Reduction and Number of Samples

The two main hyper-parameters of the MCD optimizer
are the per-iteration resource reduction, which is defined by
an initial resource reduction and a decay rate, and the num-
ber of samples per iteration (J). They influence the accuracy
of the discovered networks and the search time. Table 5 sum-
marizes the accuracy of the 51ms discovered networks when
using different initial latency reductions (with a fixed decay
of 0.98 per iteration) and different numbers of samples.

The first experiment is fixing the number of samples per
iteration and increasing the initial latency reduction from
1.5% to 6.0%, which gradually reduces the time for evalu-
ating samples. The result shows that as long as the latency

Method Top-1
Accuracy (%)

Latency
(ms)

MAC
(M)

Search Time
(GPU-Hours)

Non-Diff.
Metrics

CO2

Emission (lbs)

MnasNet [2] 75.2 78 312 - X -
ProxylessNAS [3] 74.6 78 320 500 142

Single-Path NAS [22] 75.6 82 -
243*

(24 (TPU V3), 0, 219) 69

AutoSlim [10] 74.6 71 315 - X -
FBNet [19] 74.9 - 375 - -
MobileNetV3 [25] 75.2 51 219 - X -
FairNAS [35] 76.7 77 325 - X -

Once-for-All [11] 76.9 58 230
1315

(1200, 40, 75) X 374

BigNAS [12] 76.5 - 242
2304 (TPU V3)

(2304, -, 0) X 655

NetAdaptV2
(Guided by Latency) 77.0 51 225 397

(167, 24, 206) X 113

* 1) We merge the time for training the super-network and that for training and evaluating samples into one. 2) We train the
discovered network for 350 epochs as mentioned in [22].

Table 1: The comparison between NetAdaptV2 guided by latency and related works on ImageNet. The number of MACs is
reported for completeness although NetAdaptV2 is not guided by MACs and achieves sub-optimal accuracy-MAC trade-offs.
The numbers between parentheses show the breakdown of the search time in terms of training a super-network, training
and evaluating samples, and training the discovered DNN from left to right. Non-Diff. Metrics denotes whether the method
supports non-differentiable metrics. The last column CO2 Emission shows the estimated CO2 emission based on [34].

Method
Top-1

Accuracy (%)
MAC
(M)

Search Time
(GPU-Hours)

NSGANetV2-m [38] 78.3 312
1674

(1200, 24, 450)
EfficientNet-B0 [31] 77.3 390 -
MixNet-M [39] 77.0 360 -
NetAdaptV2
(Guided by MAC) 78.5 314 656

(204, 35, 417)

Table 2: The comparison between NetAdaptV2 guided by
MACs and related works. The numbers between parentheses
show the breakdown of the search time in terms of training a
super-network, training and evaluating samples, and training
the discovered DNN from left to right.

OD
Top-1

Accuracy (%)
Latency

(ms)
Search Time
(GPU-Hours)

71.0 (+0) 43.9 (100%)
721 (100%)
(0, 543, 178)

X 71.1 (+0.1) 44.4 (101%)
221 (31%)
(50, 2, 169)

Table 3: The ablation study of the proposed ordered dropout
(OD) on MobileNetV1 [40] and ImageNet. The numbers
between parentheses show the breakdown of the search time
in terms of training a super-network, training and evaluating
samples, and training the discovered DNN from left to right.

Methods Top-1
Accuracy (%)CBC MCD

75.9 (+0)
X 76.2 (+0.3)
X X 76.6 (+0.7)

Table 4: The ablation study of the channel-level bypass con-
nections (CBCs) and the multi-layer coordinate descent opti-
mizer (MCD) on ImageNet. The latency of the discovered
networks is around 51ms, and ordered dropout is used.

reduction is small enough, specifically below 3% in this ex-
periment, the accuracy of the discovered networks does not
change with the latency reduction.

The second experiment is fixing the time for evaluating
samples by scaling both the initial latency reduction and the
number of samples per iteration at the same rate. As shown
in Table 5, as long as the latency reduction is small enough,
more samples will result in better discovered networks. How-
ever, if the initial latency reduction is too large, increasing
the number of samples per iteration cannot prevent the accu-
racy from degrading.
• Accuracy Variation across Multiple Executions

To know the accuracy variation of each step in Ne-
tAdaptV2 [41], we execute different steps three times and
summarize the resultant accuracy of the discovered networks
in Table 6. The initial latency reduction is 1.5%, and the
number of samples per iteration is 100 (J = 100). The la-

Initial Latency
Reduction

Number of
Samples (J)

Top-1
Accuracy (%)

Fixed Number of
Samples per Iteration

1.5% 100 76.4
3.0% 100 76.4
6.0% 100 75.9

Fixed Time for
Evaluating Samples

1.5% 100 76.4
3.0% 200 76.6
6.0% 400 75.7

Table 5: The experiments for evaluating the influence of the
two main hyper-parameters of the MCD optimizer, which
are the initial latency reduction (with a fixed decay of 0.98
per iteration) and the number of samples (J). All discovered
networks have almost the same latency (51ms).

Training
Super-Network

Evaluating
Samples

Training
Discovered DNN

Top-1 Accuracy of
Executions (%)
1 2 3

X 76.1 76.1 76.2
X X 76.1 76.2 76.4

X X X 76.1 76.2 76.4

Table 6: The accuracy variation of NetAdaptV2. The X
denotes the step is executed three times, and the others are
executed once. For example, the last row corresponds to
executing the entire algorithm flow of NetAdaptV2 three
times. For the MCD optimizer, the initial latency reduction
is 1.5%, and the number of samples per iteration is 100
(J = 100). The latency of all discovered networks is around
51ms, and the accuracy values are sorted in ascending order.

tency of discovered networks is around 51ms. According to
the last row of Table 6, which corresponds to executing the
entire algorithm flow of NetAdaptV2 three times, the accu-
racy variation is 0.3%. The variation is fairly small because
simply training the same discovered network three times
results in an accuracy variation of 0.1% as shown in the first
row. Moreover, when we fix the super-network and execute
the MCD optimizer three times as shown in the second row,
the accuracy variation is the same as that of executing the
entire NetAdaptV2 three times. The result suggests that the
randomness in training a super-network does not increase
the overall accuracy variation, which is preferable since we
only need to perform this relatively costly step one time.

4.2. Depth Estimation

4.2.1 Experiment Setup

NYU Depth V2 [28] is used for depth estimation. We reserve
2K training images for evaluating the performance of sam-
ples and train the super-network with the rest of the training
images. The initial network is FastDepth [42]. Following
FastDepth, we pre-train the encoder of the super-network
on ImageNet. The batch size is 256, and the learning rate
is 0.9 decayed by 0.963 every epoch. After pre-training the

Method RMSE
(m)

Delta-1
Accuracy

(%)

Latency
(ms)

Search Time
(GPU-Hours)

ImageNet
NYU
Depth

NetAdaptV1 [1] 0.583 77.4 87.6 96 65
NetAdaptV2 0.576 77.9 86.7 96 27

Table 7: The comparison between NetAdaptV2 and Ne-
tAdaptV1 on depth estimation and NYU Depth V2 [28].

encoder, we train the super-network on NYU Depth V2 for
50 epochs with a batch size of 16 and an initial learning rate
of 0.025 decayed by 0.9 every epoch. For the MCD opti-
mizer, we generate 150 (J = 150) samples per iteration. We
search with latency measured on a Google Pixel 1 CPU. The
latency reduction is 1.5% in the first iteration and is decayed
by 0.98 every iteration. For training the discovered network,
we use the same setup as training the super-network, except
that the initial learning rate is 0.05.

4.2.2 Search Result

The comparison between the proposed NetAdaptV2 and
NetAdaptV1 [1], which is used in FastDepth [42], is sum-
marized in Table 7. NetAdaptV2 reduces the search time
by 2.4× on NYU Depth V2, and the discovered DNN out-
performs that of NetAdaptV1 by 0.5% in delta-1 accuracy
with comparable latency. Because NYU Depth V2 is much
smaller than ImageNet, the reduction in the total search time
is less than that of applying NetAdaptV2 on ImageNet. The
search time spent on ImageNet is for pre-training the en-
coder, which is a common practice and indispensable when
training DNNs for depth estimation on NYU Depth V2.

5. Conclusion
In this paper, we propose NetAdaptV2, an efficient neural

architecture search algorithm, which significantly reduces
the total search time and discovers DNNs with state-of-the-
art accuracy-latency/accuracy-MAC trade-offs. NetAdaptV2
better balances the time spent per step and supports non-
differentiable search metrics. This is realized by the pro-
posed methods: channel-level bypass connections, ordered
dropout, and multi-layer coordinate descent optimizer. The
experiments demonstrate that NetAdaptV2 can reduce the
total search time by up to 5.8× on image classification and
2.4× on depth estimation and discover DNNs with better
performance than state-of-the-art works.

Acknowledgement
This research was funded by the National Science Foun-

dation, Real-Time Machine Learning (RTML) program,
through grant No. 1937501, a Google Research Award,
and gifts from Intel and Facebook.

A. Additional Information about Experiment
Setup

This section provides additional information about the ex-
periment setup for image classification (Sec. 4.1) and depth
estimation (Sec. 4.2).

A.1. Image Classification

For the latency-guided experiment, we design the initial
network based on MobileNetV3 [25] with an input resolution
of 224× 224, which is widely used to construct the search
space. Starting from MobileNetV3-Large, we round up all
layer widths to the power of 2 and add two MobileNetV3
blocks, each with the input resolution of 28×28 and 14×14.
The kernel sizes of depthwise layers are increased by 2.
For sampling sub-networks, we allow 9 uniformly-spaced
layer widths from 0 to the full layer width and different odd
kernel sizes from 3 to the full kernel size for each layer. We
use the initial network of Once-for-All [11] for knowledge
distillation when training the discovered network for a fair
comparison with Once-for-All [11] and BigNAS [12].

For the MAC-guided experiment, following the practice
of Once-for-All [11] and NSGANetV2 [38], we increase
layer widths of the initial network used in the latency-guided
experiment by 1.25× and add one MobileNetV3 block with
an input resolution of 7 × 7 to support a large-MAC op-
erating condition. For sampling sub-networks, we allow
11 uniformly-spaced layer widths from 0 to the full layer
width and different odd kernel sizes from 3 to the full kernel
size for each layer. When training the discovered DNN, we
use the initial network of Once-for-All [11] for knowledge
distillation for a fair comparison with NSGANetV2 [38].

A.2. Depth Estimation

The initial network is FastDepth [42]. FastDepth con-
sists of an encoder and a decoder. The encoder uses Mo-
bileNetV1 [40] as a feature extractor, and the decoder uses
depthwise separable convolution and nearest neighbor up-
sampling. Please refer to FastDepth [42] for more details.
For sampling sub-networks, we allow 9 uniformly-spaced
layer widths from 0 to the full layer width and different odd
kernel sizes from 3 to the full kernel size for each layer.

Following a common practice of training DNNs on the
NYU Depth V2 dataset, we pre-train the encoder of the
initial network on ImageNet. However, as shown in Table 7,
this step is relatively expensive and takes 96 GPU-hours.
To avoid pre-training the encoder of the discovered DNN
on ImageNet again, we transfer the knowledge learned by
the encoder of the initial network to that of the discovered
DNN, which is achieved by the following method. We log
the architecture of the best sample in each iteration of the
MCD optimizer, which forms an architecture trajectory. The
starting point of this trajectory is the initial DNN architecture,
and the end point is the discovered DNN architecture. For

training the discovered network, we start from the starting
point of the trajectory with the pre-trained weights of the
initial DNN and follow this trajectory to gradually shrink the
architecture. In each step of shrinking the architecture, we
reuse the overlapped weights from the previous architecture
and train the new architecture for two epochs. This process
continues until we get to the end point of the trajectory,
which is the discovered DNN architecture. Then, we train it
until convergence. This knowledge transfer method enables
high accuracy of the discovered DNN without pre-training
its encoder on ImageNet.

B. Discovered DNN Architectures

For the latency-guided experiment on ImageNet (Table 1),
Table 8 shows the discovered 51ms DNN architecture of
NetAdaptV2. To make the numbers of MACs of all layers
as similar as possible, modern DNN design usually doubles
the number of filters and channels when the resolution of
activations is reduced by 2×. Similarly, to fix the ratio of
T (Sec. 2.2) to the number of input channels, we use one
value of T for each resolution of input activations and set T
inversely proportional to the resolution. T s of all depthwise
layers are set to infinity to allow bypassing all the input
channels. We observe that channel-level bypass connections
(CBCs) are widely used in the discovered DNN. Moreover,
block 12 is removed, which demonstrates the ability of CBCs
to remove a layer.

For the MAC-guided experiment on ImageNet (Table 2),
Table 9 shows the discovered 314M-MAC DNN architecture.
We apply the same rule for setting T s as in the latency-
guided experiment. We observe that CBCs are widely used
in the discovered DNN. Moreover, MobileNetV3 block 7, 8,
12, 15 are removed.

For the depth estimation experiment on the NYU Depth
V2 dataset (Table 7), Table 10 shows the discovered 87ms
DNN architecture of NetAdaptV2. We apply the same rule
for setting T s as in the image classification experiments. We
observe that NetAdaptV2 reduces the kernel sizes of the
37-th and 40-th depthwise convolutional layers from 5 to 3,
which demonstrates that the ability to search kernel sizes
may improve the performance of the discovered DNN.

C. Formulation of Channel-Level Bypass Con-
nections

The formulation of channel-level bypass connections
(CBCs), Z = max(min(C, T),M), can be derived by con-
sidering the case 1 to 3 in Sec. 2.2 and Fig. 3. For the case 1
(C = T) and 2 (C < T), CBCs start bypassing input chan-
nels when M becomes smaller than C (M < C) to maintain
the number of output channels Z = max(C,M) = C. For
the case 3 (C > T), CBCs start bypassing input channels
when M becomes smaller than T (M < T) instead of C,

Index Type T Kernel Size Stride BN Act Exp DW PW SE

1 conv 8 3 2 X HS 16 - - -
2 mnv3 block 8 3 1 X RE 8 8 16 -
3 mnv3 block 16 5 2 X RE 48 48 20 16
4 mnv3 block 16 3 1 X RE 48 48 32 -
5 mnv3 block 32 7 2 X RE 80 80 32 32
6 mnv3 block 32 3 1 X RE 112 80 40 32
7 mnv3 block 32 3 1 X RE 64 32 16 32
8 mnv3 block 32 3 1 X RE 96 96 8 32
9 mnv3 block 64 5 2 X HS 192 192 128 64

10 mnv3 block 64 5 1 X HS 224 192 128 -
11 mnv3 block 64 3 1 X HS 128 32 48 64
12 mnv3 block 64 0 1 X HS 0 0 0 0
13 mnv3 block 64 3 1 X HS 512 256 80 256
14 mnv3 block 64 3 1 X HS 256 256 112 256
15 mnv3 block 64 5 1 X HS 512 512 64 256
16 mnv3 block 128 7 2 X HS 640 640 224 256
17 mnv3 block 128 7 1 X HS 640 384 224 256
18 mnv3 block 128 5 1 X HS 896 512 224 256
19 conv 128 1 1 X HS 1024 - - -
20 global avg pool - - - - - - - - -
21 conv 1024 1 1 HS 1792 - - -
22 fc - 1 1 - - 1000 - - -

Table 8: The discovered 51ms DNN architecture of NetAdaptV2 on ImageNet presented in Table 1. Type: type of the layer
or block. BN: using batch normalization. Act: activation type (HS: Hard-Swish, RE: ReLU). Exp: number of filters in the
expansion layer or number of filters in the conv layer. DW: number of filters in the depthwise layer. PW: number of filters in
the pointwise layer. SE: number of filters in the squeeze-and-excitation operation. All MobileNetV3 blocks (mnv3 block) with
a stride of 1 have residual connections.

which requires replacing the C in Z = max(C,M) with
min(C, T) and gives the formulation of CBCs.

D. Ablation Study on MobileNetV1

This section provides the ablation study on Mo-
bileNetV1 [40]. This ablation study employs the experiment
setup outlined in Sec. 4.1.1 unless otherwise stated. The
initial network is the largest MobileNetV1 (1.0 MobileNet-
224 [40]).

D.1. Impact of Channel-Level Bypass Connections

The proposed channel-level bypass connections (CBCs)
enable NetAdaptV2 to search for different network depths
with marginal overhead. Table 11 shows that supporting
CBCs only increases the training time of the super-network
by 1.2×. Moreover, the ability to search network depth al-
lows discovering DNNs with better performance. As shown
in Table 11, CBCs improve the accuracy of the discovered
DNN by 6.5% with the same latency.

D.2. Impact of Multi-Layer Coordinate Descent
Optimizer

The proposed multi-layer coordinate descent (MCD) op-
timizer improves the performance of the discovered DNN
while reducing the number of samples and hence the search
time. In this experiment, the MCD optimizer generates 27
samples (J = 27) in each iteration, where J is equal to the
number of layers, and each sample is obtained by randomly
shrinking 4 layers (L = 4). Table 11 shows that the MCD
optimizer reduces the time for evaluating samples by 1.9×
and improves the accuracy by 2.8%.

E. Estimation of CO2 Emission
We estimate CO2 emission based on Strubell et al. [34].

According to Table 3 in this paper, when BERTbase is trained
on 64 V100 GPUs for 79 hours, the CO2 emission is 1438
lbs. Therefore, the ratio of CO2 emission to GPU-hours is
1438
64×79 = 0.2844. For each NAS method, we multiply its
search time by this ratio to estimate its corresponding CO2

emission.

Index Type T Kernel Size Stride BN Act Exp DW PW SE

1 conv 8 3 2 X HS 24 - - -
2 mnv3 block 8 3 1 X RE - 24 24 -
3 mnv3 block 16 5 2 X RE 64 48 32 24
4 mnv3 block 16 3 1 X RE 128 64 32 -
5 mnv3 block 32 5 2 X RE 96 96 48 40
6 mnv3 block 32 3 1 X RE 128 80 56 40
7 mnv3 block 32 0 1 X RE 0 0 0 0
8 mnv3 block 32 0 1 X RE 0 0 0 0
9 mnv3 block 64 5 2 X HS 224 224 96 80

10 mnv3 block 64 3 1 X HS 224 96 96 -
11 mnv3 block 64 3 1 X HS 256 256 96 80
12 mnv3 block 64 0 1 X HS 0 0 0 0
13 mnv3 block 64 5 1 X HS 640 640 144 320
14 mnv3 block 64 3 1 X HS 640 512 144 320
15 mnv3 block 64 0 1 X HS 0 0 0 0
16 mnv3 block 128 5 2 X HS 768 640 192 320
17 mnv3 block 128 5 1 X HS 768 256 192 320
18 mnv3 block 128 7 1 X HS 896 768 192 320
19 mnv3 block 128 7 1 X HS 1152 1152 192 320
20 conv 128 1 1 X HS 1152 - - -
21 global avg pool - - - - - - - - -
22 conv 1024 1 1 HS 2048 - - -
23 fc - 1 1 - - 1000 - - -

Table 9: The discovered 314M-MAC DNN architecture of NetAdaptV2 on ImageNet presented in Table 2. Type: type of the
layer or block. BN: using batch normalization. Act: activation type (HS: Hard-Swish, RE: ReLU). Exp: number of filters in
the expansion layer or number of filters in the conv layer. DW: number of filters in the depthwise layer. PW: number of filters
in the pointwise layer. SE: number of filters in the squeeze-and-excitation operation. All MobileNetV3 blocks (mnv3 block)
with a stride of 1 have residual connections.

Index Type T Kernel Size Stride Filter

1 conv 16 3 2 24
2 dw ∞ 3 1 20
3 pw 16 1 1 48
4 dw ∞ 3 2 48
5 pw 32 1 1 96
6 dw ∞ 3 1 96
7 pw 32 1 1 112
8 dw ∞ 3 2 112
9 pw 64 1 1 256
10 dw ∞ 3 1 256
11 pw 64 1 1 192
12 dw ∞ 3 2 192
13 pw 128 1 1 448
14 dw ∞ 3 1 448
15 pw 128 1 1 448
16 dw ∞ 3 1 448
17 pw 128 1 1 384
18 dw ∞ 3 1 384
19 pw 128 1 1 512
20 dw ∞ 3 1 512
21 pw 128 1 1 384
22 dw ∞ 3 1 384
23 pw 128 1 1 448
24 dw ∞ 3 2 448
25 pw 256 1 1 384
26 dw ∞ 3 1 384
27 pw 256 1 1 768
28 dw ∞ 5 1 768
29 pw 256 1 1 384
30 upsample - - - -
31 dw ∞ 5 1 320
32 pw 128 1 1 192
33 upsample - - - -
34 dw ∞ 5 1 160
35 pw 64 1 1 112
36 upsample - - - -
37 dw ∞ 3 1 112
38 pw 32 1 1 48
39 upsample - - - -
40 dw ∞ 3 1 28
41 pw 16 1 1 24
42 upsample - - - -
43 pw 0 1 1 1

Table 10: The discovered 87ms DNN architecture of NetAdaptV2 on NYU Depth V2 presented in Table 7. Type: type of
the layer, which can be standard convolution (conv), depthwise convolution (dw), pointwise convolution (pw), or nearest
neighbor upsampling (upsample). Filter: number of filters. All layers except for upsampling layers are followed by a batch
normalization layer and a ReLU activation layer.

Methods Top-1
Accuracy (%)

of
Layers

Super-Network Training
Speed (min/epoch) # of SamplesCBC MCD

40.0 (+0) 28 (-0) 3.2 (100%) 1064 (100%)
X 46.5 (+6.5) 19 (-9) 3.8 (119%) 1092 (103%)
X X 49.3 (+9.3) 17 (-11) 3.8 (119%) 567 (53%)

Table 11: The ablation study of the channel-level bypass connections (CBCs) and the multi-layer coordinate descent (MCD)
optimizer on ImageNet and MobileNetV1. The latency of the discovered networks is around 6.5ms.

References
[1] T.-J. Yang, A. Howard, B. Chen, X. Zhang, A. Go,

M. Sandler, V. Sze, and H. Adam, “NetAdapt:
Platform-Aware Neural Network Adaptation for Mo-
bile Applications,” in European Conference on Com-
puter Vision (ECCV), 2018.

[2] M. Tan, B. Chen, R. Pang, V. Vasudevan, and Q. V. Le,
“Mnasnet: Platform-aware neural architecture search
for mobile,” in IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2019.

[3] H. Cai, L. Zhu, and S. Han, “ProxylessNAS: Direct
neural architecture search on target task and hardware,”
in International Conference on Learning Representa-
tions (ICLR), 2019.

[4] B. Chen, G. Ghiasi, H. Liu, T.-Y. Lin, D. Kalenichenko,
H. Adam, and Q. V. Le, “Mnasfpn: Learning latency-
aware pyramid architecture for object detection on mo-
bile devices,” IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 13604–13613,
2020.

[5] X. Dai, P. Zhang, B. Wu, H. Yin, F. Sun, Y. Wang,
M. Dukhan, Y. Hu, Y. Wu, Y. Jia, P. Vajda, M. Uyt-
tendaele, and N. K. Jha, “Chamnet: Towards efficient
network design through platform-aware model adap-
tation,” in IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 11390–11399, 2019.

[6] B. Zoph and Q. V. Le, “Neural architecture search with
reinforcement learning,” in International Conference
on Learning Representations (ICLR), 2017.

[7] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, “Learn-
ing transferable architectures for scalable image recog-
nition,” IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), 2018.

[8] J. Yu, L. Yang, N. Xu, J. Yang, and T. Huang,
“Slimmable neural networks,” in International Con-
ference on Learning Representations (ICLR), 2019.

[9] J. Yu and T. S. Huang, “Universally slimmable net-
works and improved training techniques,” in Interna-
tional Conference on Computer Vision (ICCV), October
2019.

[10] J. Yu and T. Huang, “Autoslim: Towards one-shot
architecture search for channel numbers,” ArXiv,
vol. abs/1903.11728, 2019.

[11] H. Cai, C. Gan, T. Wang, Z. Zhang, and S. Han, “Once
for all: Train one network and specialize it for efficient
deployment,” in International Conference on Learning
Representations (ICLR), 2020.

[12] J. Yu, P. Jin, H. Liu, G. Bender, P.-J. Kindermans,
M. Tan, T. Huang, X. Song, R. Pang, and Q. Le, “Big-
nas: Scaling up neural architecture search with big
single-stage models,” in European Conference on Com-
puter Vision (ECCV), 2020.

[13] G. Bender, P. Kindermans, B. Zoph, V. Vasudevan, and
Q. V. Le, “Understanding and simplifying one-shot
architecture search,” in International Conference on
Machine Learning (ICML), 2018.

[14] H. Pham, M. Y. Guan, B. Zoph, Q. V. Le, and J. Dean,
“Efficient neural architecture search via parameter shar-
ing,” in International Conference on Machine Learning
(ICML), 2018.

[15] G. Bender, H. Liu, B. Chen, G. Chu, S. Cheng, P.-J.
Kindermans, and Q. V. Le, “Can weight sharing out-
perform random architecture search? an investigation
with tunas,” in IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), June 2020.

[16] Z. Guo, X. Zhang, H. Mu, W. Heng, Z. Liu, Y. Wei, and
J. Sun, “Single path one-shot neural architecture search
with uniform sampling,” in European Conference on
Computer Vision (ECCV), 2020.

[17] A. Gordon, E. Eban, O. Nachum, B. Chen, T.-J. Yang,
and E. Choi, “Morphnet: Fast & simple resource-
constrained structure learning of deep networks,” in
IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2018.

[18] H. Liu, K. Simonyan, and Y. Yang, “DARTS: Differen-
tiable architecture search,” in International Conference
on Learning Representations (ICLR), 2019.

[19] B. Wu, X. Dai, P. Zhang, Y. Wang, F. Sun, Y. Wu,
Y. Tian, P. Vajda, Y. Jia, and K. Keutzer, “Fbnet:
Hardware-aware efficient convnet design via differ-
entiable neural architecture search,” IEEE Conference
on Computer Vision and Pattern Recognition (CVPR),
2019.

[20] A. Wan, X. Dai, P. Zhang, Z. He, Y. Tian, S. Xie, B. Wu,
M. Yu, T. Xu, K. Chen, P. Vajda, and J. E. Gonzalez,
“Fbnetv2: Differentiable neural architecture search for
spatial and channel dimensions,” in IEEE Conference
on Computer Vision and Pattern Recognition (CVPR),
pp. 12962–12971, 2020.

[21] D. Stamoulis, R. Ding, D. Wang, D. Lymberopoulos,
B. Priyantha, J. Liu, and D. Marculescu, “Single-path
nas: Designing hardware-efficient convnets in less than
4 hours,” in arXiv preprint arXiv:1904.02877, 2019.

[22] D. Stamoulis, R. Ding, D. Wang, D. Lymberopou-
los, B. Priyantha, J. Liu, and D. Marculescu, “Single-
path mobile automl: Efficient convnet design and
nas hyperparameter optimization,” in arXiv preprint
arXiv:1907.00959, 2019.

[23] J. Mei, Y. Li, X. Lian, X. Jin, L. Yang, A. Yuille, and
J. Yang, “Atomnas: Fine-grained end-to-end neural
architecture search,” in International Conference on
Learning Representations (ICLR), 2020.

[24] Y. Xu, L. Xie, X. Zhang, X. Chen, G.-J. Qi, Q. Tian,
and H. Xiong, “Pc-darts: Partial channel connections
for memory-efficient architecture search,” in Interna-
tional Conference on Learning Representations (ICLR),
2020.

[25] A. Howard, M. Sandler, G. Chu, L.-C. Chen, B. Chen,
M. Tan, W. Wang, Y. Zhu, R. Pang, V. Vasudevan, Q. V.
Le, and H. Adam, “Searching for mobilenetv3,” in
International Conference on Computer Vision (ICCV),
2019.

[26] V. Sze, Y.-H. Chen, T.-J. Yang, and J. Emer, Efficient
Processing of Deep Neural Networks. Morgan & Clay-
pool, 2020.

[27] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and
L. Fei-Fei, “ImageNet: A Large-Scale Hierarchical
Image Database,” in IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2009.

[28] P. K. Nathan Silberman, Derek Hoiem and R. Fergus,
“Indoor segmentation and support inference from rgbd
images,” in European Conference on Computer Vision
(ECCV), 2012.

[29] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-
C. Chen, “Mobilenetv2: Inverted residuals and linear
bottlenecks,” in IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2018.

[30] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever,
and R. Salakhutdinov, “Dropout: A simple way to
prevent neural networks from overfitting,” Journal of
Machine Learning Research, vol. 15, no. 56, pp. 1929–
1958, 2014.

[31] M. Tan and Q. V. Le, “Efficientnet: Rethinking model
scaling for convolutional neural networks,” in Inter-
national Conference on Machine Learning (ICML),
2019.

[32] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,
S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,
A. C. Berg, and L. Fei-Fei, “ImageNet Large Scale
Visual Recognition Challenge,” International Journal

of Computer Vision (IJCV), vol. 115, no. 3, pp. 211–
252, 2015.

[33] P. Goyal, P. Dollár, R. B. Girshick, P. Noordhuis,
L. Wesolowski, A. Kyrola, A. Tulloch, Y. Jia, and
K. He, “Accurate, large minibatch sgd: Training ima-
genet in 1 hour,” arXiv, vol. abs/1706.02677, 2017.

[34] E. Strubell, A. Ganesh, and A. McCallum, “Energy
and policy considerations for deep learning in NLP,” in
Proceedings of the 57th Annual Meeting of the Associ-
ation for Computational Linguistics, pp. 3645–3650,
2019.

[35] X. Chu, B. Zhang, and R. Xu, “Fairnas: Rethinking
evaluation fairness of weight sharing neural architec-
ture search,” arXiv preprint arXiv:1907.01845, 2019.

[36] E. D. Cubuk, B. Zoph, D. Mane, V. Vasudevan, and
Q. V. Le, “Autoaugment: Learning augmentation strate-
gies from data,” in IEEE Conference on Computer Vi-
sion and Pattern Recognition (CVPR), June 2019.

[37] G. Huang, Y. Sun, Z. Liu, D. Sedra, and K. Q. Wein-
berger, “Deep networks with stochastic depth,” in Euro-
pean Conference on Computer Vision (ECCV), 2016.

[38] Z. Lu, K. Deb, E. Goodman, W. Banzhaf, and V. N.
Boddeti, “NSGANetV2: Evolutionary multi-objective
surrogate-assisted neural architecture search,” in Euro-
pean Conference on Computer Vision (ECCV), 2020.

[39] M. Tan and Q. V. Le, “Mixconv: Mixed depthwise
convolutional kernels,” in British Machine Vision Con-
ference (BMVC), 2019.

[40] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko,
W. Wang, T. Weyand, M. Andreetto, and H. Adam,
“Mobilenets: Efficient convolutional neural net-
works for mobile vision applications,” ArXiv,
vol. abs/1704.04861, 2017.

[41] L. Li and A. Talwalkar, “Random search and repro-
ducibility for neural architecture search,” in Proceed-
ings of Machine Learning Research, vol. 115, pp. 367–
377, 22–25 Jul 2020.

[42] Wofk, Diana and Ma, Fangchang and Yang, Tien-Ju
and Karaman, Sertac and Sze, Vivienne, “FastDepth:
Fast Monocular Depth Estimation on Embedded Sys-
tems,” in International Conference on Robotics and
Automation (ICRA), 2019.

