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ABSTRACT
Pre-training (PT) has been used successfully in many areas of ma-
chine learning. One area where PT would be extremely impactful
is over electronic health record (EHR) data. Successful PT strate-
gies on this modality could improve model performance in data-
scarce contexts such as modeling for rare diseases or allowing
smaller hospitals to benefit from data from larger health systems.
While many PT strategies have been explored in other domains,
much less exploration has occurred for EHR data. One reason for
this may be the lack of standardized benchmarks suitable for de-
veloping and testing PT algorithms. In this work, we establish a
PT benchmark dataset for EHR timeseries data, establishing co-
horts, a diverse set of fine-tuning tasks, and PT-focused evalua-
tion regimes across two public EHR datasets: MIMIC-III and eICU.
This benchmark fills an essential hole in the field by enabling a
robust manner of iterating on PT strategies for this modality. To
show the value of this benchmark and provide baselines for fur-
ther research, we also profile two simple PT algorithms: a self-
supervised, masked imputation system and a weakly-supervised,
multi-task system. We find that PT strategies (in particular weakly-
supervised PT methods) can offer significant gains over traditional
learning in few-shot settings, especially on tasks with strong class
imbalance. Our full benchmark and code are publicly available at
https://github.com/mmcdermott/comprehensive_MTL_EHR

CCS CONCEPTS
• Computing methodologies → multitask learning; Neu-

ral networks; Learning latent representations; • Applied com-
puting→ Bioinformatics; • Theory of computation→ Semi-
supervised learning.
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1 INTRODUCTION
Pre-training (PT) methods are instrumental in the success of ma-
chine learning in various domains, including examples such as
ImageNet [10] PT in computer vision and language-model PT (e.g.,
ELMO [25] or BERT [11]) in natural language processing. PT has
enabled ML researchers to use large, unlabelled or weakly-labeled
datasets to learn a representation of a data modality such that spe-
cific fine-tuning (FT) tasks can be learned successfully even with
minimal task-specific data.

One domain where PT would be particularly impactful is pro-
cessing electronic health record (EHR) data in machine learning for
health (ML4H). ML4H presents a prime use-case for PT in part be-
cause there are many clinical applications of MLwhere the ability to
leverage high-capacity models effectively even on relatively small,
task-specific datasets would be important. For example, clinicians
at smaller health systems could leverage public PTmodels produced
on larger, more diverse populations to produce improved models
for their specific institutions via FT. Researchers could also leverage
PT models to aid in the study of rare [22] or novel (e.g., COVID-19)
diseases, where there may not be enough data at any institution to
train a high-capacity model from scratch. Lastly, researchers can
leverage PT models to help reduce the need for annotating large,
task-specific gold-standard datasets for specific research cohorts.
These examples are also shown visually in Figure 1. Simultaneously,
PT is eminently feasible in the clinical domain, as the large, EHR
datasets collected at the point of care serve as natural sources of PT
data. While these datasets are often only weakly labeled and noisy,
making them challenging to work with in the context of traditional,
fully supervised ML [14], PT algorithms often use self- or weakly-
supervised algorithms and thus rely less on label availability and
quality.

Despite these important application areas, PT has been only
minimally explored in EHR timeseries data. In part, this may be
because standardized sets of benchmarks for PT/FT paradigms do
not exist for EHR data. While benchmarks do exist for ML over
clinical tasks in general [15, 35], these are focused on traditional
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Figure 1: Pre-training (PT) an encoder E on a general do-
main, then fine-tuning (FT) it on a task specific problem fits
naturally into many use-cases within ML4H. Examples in-
clude transferring a model from a large health system to
smaller, community hospitals (A), specializing a model to a
rare or novel disease sub-population (B), or supporting clin-
ical research efforts which produce fully annotated datasets
for select cohorts within a health system (C).

supervised learning, not PT/FT. In contrast to supervised learning,
PT benchmarks are concerned primarily with how a system can
optimally leverage PT data to improve performance in a disparate,
secondary set of FT tasks. As one might not foresee all FT tasks at
PT time, any effective benchmark must assess PT algorithms across
a broad variety of tasks. Critically, we also cannot simply judge FT
performance at a single FT dataset size—PT methods are exciting
particularly because they enable models to be leveraged effectively
even in few-shot settings, so we must judge PT algorithms over
a variety of FT dataset sizes. Additionally, for PT systems in par-
ticular within ML4H, where many (though not all) use cases are
multi-domain in nature, we should ensure we analyze PT system
performance across multiple datasets.

In this work, we introduce the first comprehensive PT bench-
mark for clinical EHR timeseries data. We define a suite of FT tasks
to consider across MIMIC-III [17] and eICU [26], as well as eval-
uation procedures for model performance across a variety of FT
dataset sizes. In contrast with existing clinical benchmarks (e.g.,
[15]), our system includes multiple datasets, more tasks, and few-
shot evaluations, all of which help support its use in analyzing PT
algorithms. In addition, we provide two baselines against which
the field can compare—first, a weakly-supervised, multi-task PT ap-
proach, and second, a masked-imputation based model reminiscent
of a continuous analog of the BERT NLP model [11]. Based on these
results, we find that while PT does not offer best-in-class perfor-
mance for FT datasets at the full scale of MIMIC-III or eICU, PT can
indeed be very helpful in the small-data regime, showing dramatic
improvements in performance in particular on class-imbalanced,

time-varying tasks across both datasets. These baseline results sug-
gest that the gains offered by PT in clinical settings warrant future
exploration, and we hope that this benchmark will help prompt
those gains by enabling iterative development of PT paradigms in
the clinical space.

2 RELATEDWORKS
PT over EHR timeseries data has been explored only minimally,
but PT on other clinical data modalities has been explored. Learn-
ing contextual representations of clinical codes, for example, has
been explored via a variety of methods, often leveraging known
biomedical hierarchies to improve performance [9, 29]. PT models
for clinical text have also been thoroughly explored [1, 31, 40] and
are regularly used in the context of clinical NLP.

Three recent examples do study topics closely related to PT over
clinical timeseries data, however. In particular, Yoon et al. explored
PT on tabular data via a masked-imputation based self- and semi-
supervised algorithm [39], Xue et al. explore using meta-learning in
a semi-supervised context to specialize PT to a specific downstream
task over MIMIC-III [38], and Steinberg et al. explores a novel
analog of language-modeling on discretized clinical timeseries data.
Each of these three cases have slightly different foci, and thus are
relevant to our work in different ways.

Yoon et al.’s work explores both self- and semi-supervised PT
(of which only the self-supervised PT is relevant to us as we do not
allow FT data to be leveraged at PT time); however, their primary
improvements are demonstrated most soundly in semi-supervised
PT, and there is minimal evidence that their algorithm offers con-
sistent improvements in the self-supervised setting. Similarly, Xue
et al.’s work is exclusively for semi-supervised learning. As a re-
sult, neither of these two works are directly comparable to our
benchmark or results. Steinberg et al.’s work, however, is much
more relevant. It focuses squarely on self-supervised PT, using a
different analog of language model PT than our masked imputation
model, and also studies clinical timeseries (albeit discretized clinical
timeseries). However, their approach is tested on a private dataset,
and thus is not suitable as a PT benchmark, which is our goal.

Beyond explicit PT systems, more general clinical representation
learning has been explored extensively in the literature. Multi-task
learning (MTL) has been explored significantly from this perspec-
tive [12, 15, 30, 36], as well as those focusing on auto-encoding,
imputation, or clustering approaches [13, 34].

Benchmarks for PT paradigms are also growing in use in other
domains. Rao et al. examines PT in the context of proteins, for
example, and Liang et al. defines a benchmark for cross-lingual PT
systems, a topic that is also of interest in clinical contexts such as
diagnosing speech pathologies [2].

3 PROBLEM FORMULATION & NOTATION
Let XPT ∈ RNPT×D , paired with a collection of auxiliary tasks TPT
with associated labels Y PT ∈ RNPT×|TPT | be our “pre-training” (PT)
dataset. In addition, let TFT denote our set of downstream (fine-
tuning/FT) tasks and X FT ∈ RNFT×D ,Y FT ∈ RNFT×|TFT | denote the
corresponding FT dataset. Note thatX FT may intersect non-trivially
with XPT (i.e., some data may overlap between the PT and the FT
settings), but no tasks overlap directly between TPT and TFT. Given
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this lack of overlap in tasks, TPT/Y PT can serve as a form of weak-
supervision for the ultimate FT tasks. In most practical scenarios,
it will be the case that NFT ≪ NPT.

Let our pre-training model be given by M(x) = DPT(E(x)),
where E is an encoder (which we will ultimately transfer during
FT) and DPT is a PT specific decoder (which will not be transferred).
Then, the goal of PT is to use the dataset XPT (and possibly Y PT)
to learn the parameters of the pre-training modelM such that E
offers strong transfer performance for the tasks TFT, all without
actually leveraging (or even knowing about) the fine-tuning labels
Y FT at any point during the PT process. Note that at fine-tuning
time we will also train a freshly initialized decoder DFT such that
the full FT model makes predictions ŷ = DFT(E(x)).

4 HIGH-LEVEL OVERVIEW
Here, we will provide an overview of the rest of the paper, to
help provide a high-level grounding for the more detailed content
in Section 5, which defines the benchmark’s data and usage, and
Section 6, which details our baseline PT experiments.

Our benchmark defines two separate cohorts: one over MIMIC-
III and one over eICU (Section 5.1). Cohorts consist of timeseries
of labs, vitals, & treatments. In addition, we also define a set of 10
clinically meaningful downstream tasks which we use as FT tasks
(Section 5.2) to judge PT algorithms within our benchmark.

PT systems using our benchmark must fall into one of two cate-
gories: self-supervised, in which case they can only leverage the
labs, vitals, and treatment dataset during PT, or weakly-supervised,
in which case they can also leverage “off-target” tasks during PT
as auxiliary labels (Section 5.4). After PT, models are fine-tuned
under two distinct transfer regimes (Section 5.5) and across datasets
ranging in size (Section 5.6) to simulate extreme NPT

NFT
ratios.

Ultimately, PT systems are judged on their final FT scores across
all tasks, datasets, and NPT

NFT
ratios. In particular, to profile a PT sys-

tem on our benchmark, one simply downloads the provided cohorts
and the 5 standardized train/validation/test splits, tunes hyperpa-
rameter and trains their PT model according to the appropriate
procedures (for either self- or weakly-supervised methods), then
fine-tunes the model against our 10 downstream tasks at all dataset
sizes. This usage procedure is detailed more in Section 5.7.

To demonstrate this use in practice, and establish baseline results
for further research, we profile one self-supervised and one weakly-
supervised PT method against our tasks in the manner described
above (Section 6). Ultimately, even with simple PT methods, we see
important improvements in the few-shot context (Section 6.4).

5 PRE-TRAINING BENCHMARK
5.1 Data Cohorts & Pre-processing

MIMIC-III Cohort Selection. Our MIMIC-III [17] cohort is ex-
tracted via the MIMIC-Extract pipeline [35], with missingness
threshold set to 2% and otherwise default parameters. This pipeline
extracts a cohort of ICU stay records corresponding to the first ICU
stay of patients over age 15, extracting labs, vitals, and treatments,
with labs & vitals aggregated into clinically meaningful buckets
to produce a more robust representation [23]. ICD codes, comfort-
measures-only (CMO)/do-not-resuscitate (DNR) codes, and records

of death, discharge, and readmission are also extracted via novel
extraction code primarily as task labels, not input signals, though
CMO/DNR codes that are present or added during an input win-
dow are incorporated as features as well. Lastly, we also extract
static, demographic data at a per-patient level. Appendix Table 6
reports the set of all labs & vitals we consider in this work along
with their relative measurement rate. Treatments studied include
various forms of ventilation, vasopressors, or fluid boluses (See
Appendix Section A.1 for a full list). Static data includes age, gender,
ethnicity, insurance type, admission type, and first care unit. Basic
dataset statistics are shown in Table 1.

eICU Cohort Selection. To extract the eICU [26] data, we attempt
to mimic the structure of our MIMIC-III cohort wherever possi-
ble. This cohort also extracts labs and vitals (See Appendix Ta-
ble 6), as well as static demographic data (age, gender, ethnicity,
and unit type). We also extract records of death and discharge to
form our downstream tasks. This cohort contains only patients
over age 15 and only labs & vitals measured for at least 5% of all
observed time-points are included. In addition, as the eICU dataset
is multi-institution, we also restrict our data to correspond only
to institutions with at least 500 patients in the dataset. Extraction
code for our eICU extraction system will be released publicly after
publication. Basic dataset statistics are shown in Table 1.

Dataset Post-processing. Both datasets are standardized to hourly
granularity and represented as numerical timeseries with missing-
ness. Treatment records are also standardized hourly and concate-
nated to the numerical series via a one-hot encoding. Static data
are duplicated and appended to each hour of the series. To form a
pre-training or fine-tuning sample, we first sample a random ICU
stay from the record, then a random end-time T within that stay,
and treat all data for that stay prior to T as the input window for
this sample, and the task labels corresponding either to the end of
the patient’s overall stay (for static tasks) or within a prescribed
prediction window after T (for time-varying tasks) as the labels for
this sample (see Section 5.2 for more details on task labels). Users
may choose to featurize this input window however they like—in
our baselines, for example, rather than processing the entire in-
put window [0,T ], we use a fixed size window ranging from 12
- 96 hours ending at T for computational efficiency. Note that in
evaluating rolling or time-varying tasks, whose labels will vary
throughout patients’ stays, we sample multiple random endpoints
and aggregate evaluation results in a per-patient manner across
those different endpoints to approximate the expected performance
of such tasks at a per-patient level.

Dataset Splits & Release. To capture all relevant sources of vari-
ance, our benchmark consists of 5 random train/tuning/test splits
(split by patient and ICU stay), so that a given PT system can sep-
arately undergo hyperparameter tuning, training, and evaluation
(including fine-tuning training/hyperparameter tuning) across 5
different data splits. These splits are publicly available with the rest
of our benchmark.

5.2 Benchmark Fine-tuning Tasks
Our benchmark consists of 10 FT tasks that span a variety of tra-
ditional ML4H targets as well as several new tasks. In the interest
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Table 1: Dataset Statistics for our MIMIC-III and eICU Cohorts. Values are aggregated across the 5 random splits of our dataset,
shown in the format “[mean] ± [standard deviation] ([min] - [max]).” If only a single number is shown, the quantity does not
vary enough to show any difference at the presented precision. Though the MIMIC-III cohort does include patients with very
short stays, in practice we restrict our analyses to only those with sufficient data to encompass a single input window (at least
12 hours).

Dataset Split # Stays # Patients # Patient-Hrs Hrs/Patient

MIMIC-III Train 17.5K 17.5K 1.48M ± 2.22K (1.47M - 1.48M) 84.3 ± 47.2 (3 - 239)
Tuning 2.19K 2.19K 183K ± 1.5K (182K - 186K) 83.9 ± 46.7 (6 - 239)
Held-out Test 2.19K 2.19K 184K ± 2.33K (182K - 188K) 84.3 ± 47.2 (3 - 239)

eICU Train 58.1K ± 34.4 (58.1K - 58.2K) 51.5K 4.1M 70.6 ± 45.8 (25 - 242)
Tuning 7.27K ± 16.2 (7.26K - 7.3K) 6.44K 517K ± 3.99K (511K - 522K) 71.1 ± 46.3 (25 - 242)
Held-out Test 7.28K ± 34.2 (7.26K - 7.34K) 6.44K 518K ± 2.46K (516K - 522K) 71.1 ± 46.4 (25 - 242)

of ensuring our set of tasks is sufficiently diverse so as to be as
generalizable as possible over FT use cases, and in order to capture
the variety of task definitions commonly used in the literature, we
formulate many of our tasks in a multi-label format, with distinct la-
bels within a single task spanning different possible configurations
of the task. For example, our “Imminent Mortality” task encom-
passes a multi-label prediction of both mortality within 24 hours
and mortality within 48 hours, both with different gap times. We’ll
use the term “task” to refer to the overarching learning target (e.g.,
“Imminent Mortality”) and “label” to refer to an individual predic-
tion target (e.g., binary prediction of mortality within 24 hours, or,
using an example target from a different task, the presence of a
particular ICD code in the record). In addition, we also will use
the term “Rolling” to correspond to tasks with time-varying labels
(e.g., prediction of mortality within the next 24 hours), “Static” to
correspond to tasks that have a single, fixed label corresponding to
the end of the patient’s stay (e.g., predicting overall ICD codes), or
“Autoregressive” to correspond to a task that explicitly is involved
with forecasting the future state of the patient in the feature-space
used by our model. Note that the focus in our task selection is first
on utility for an ML benchmark, and second on direct clinical utility.
Where the latter is certainly important, we choose to focus here
on including a broad variety of tasks, on examining tasks that are
well represented in the current ML literature, and on tasks can be
defined at scale over MIMIC-III and/or eICU, such that we can easily
examine the performance of models across various dataset sizes
within MIMIC-III without anchoring ourselves to a particular set
of clinical cohorts that already have gold-standard labels.

A full table of the tasks we use, across both datasets, is given
in Table 2. In the remainder of this section, we will walk through
each task in more detail. For each task, we will report a formal defi-
nition, over which cohorts the task is defined in this benchmark,
over what input windows the task is predicted (e.g., either through-
out the patient’s stay or only based on the first 24 hours), a brief
pointer to any relevant prior literature for the task, and more de-
tailed majority class statistics for the tasks/labels. When reporting
task definitions, we will frame our rolling tasks relative to the last
measured timepoint in the sample’s input window—e.g., if an input
sample corresponds to the ICU stay record of patient p up to time
T , and the task is defined over a prediction window of 24 hours,
with a gap time of 2 hours, then the task will capture instances of

a label within the time window [T + 2,T + 24] for patient p. Note
that we include the gap time to ensure both that the learning task
isn’t biased by any potential temporal leakage in the data and that
any superficial signals that would be already known to clinicians
during the input window (which is more likely when the task event,
e.g., mortality, would take place just after T ) don’t overwhelm the
learning objective. Task statistics will be reported at a per-patient
level (i.e., rolling tasks will have labels first aggregated within a
patient’s record, then across patients, so as not to be biased by
the behavior of patients with longer overall stays), and aggregated
over the train set of all 5 standardized train/tuning/test splits in
our benchmark. All statistics (as well as some not reported here)
are also available in table form in the appendix, in Supplementary
Tables 4, 5, 6, and 7).

5.2.1 Imminent Mortality: MOR.
Definition: We predict whether the patient’s recorded time of
death is within the subsequent 24/48 hours, with a 2/6 hour gap
time.
Cohort: This task is available on both cohorts.
Input Window: Throughout the entire stay.
Prior Art: Prediction of imminent mortality has been studied ex-
tensively as a silver learning signal for more general physiological
decompensation [15].
Statistics: 24h/48h mortality is false for 97.6± 9.91%/95.4± 17.36%
and 97.9 ± 10.26%/96.2 ± 16.41% of hours per-patient for MIMIC-III
and eICU.

5.2.2 Comfort Measures: CMO.
Definition: “Comfort Measures Only” (CMO) orders indicate that
the (usually terminally ill) patient has requested to receive care
only designed to provide comfort, not treatment, and otherwise
the course of illness should be allowed to progress (typically to
mortality). We predict whether a patient will add a CMO flag to
their record over the next 24/48 hours, using a 2/6 hour gap time.
Cohort: This task is only available on MIMIC-III.
Input Window: Throughout the entire stay.
Prior Art: In the traditional ML4H community, CMO prediction
is somewhat understudied. The only work we know of to study
this prediction task is [20], which uses natural language processing
over clinical notes and structured data to predict CMO codes and
do not resuscitate (DNR) codes.
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Table 2: The set of tasks defined in our benchmark dataset. These tasks are used both as FT tasks or for signals of weak-
supervision during PT. Average (macro) majority class accuracy across train folds is reported for all classification tasks to give
an estimate of the relative level of class imbalance of the task. More detailed MCA statistics are reported in Appendix Table 4.
Both Future Treatment Sequence (FTS), and our more granular Final Acuity (ACU) task are novel tasks.
Abbreviations: AR: Auto-regressive, Bin.: binary classification,ML: binary multi-label classification,MC:multi-class classifica-
tion, SMC: sequential decoding multi-class classification, Reg.: regression.

Task Abbr. Specific Labels Temporal Gap Pred. Type In eICU? Rel. Work Majority Class Acc.

MIMIC-III eICU

Imminent Mortality MOR Mortality (24h) Rolling 2h 24h Bin. ✓ [15] 97% 97%
Mortality (48h) 6h 48h ✓

Comfort Measures CMO CMO added (24h) Rolling 2h 24h Bin. [20] 98%
CMO added (48h) 6h 48h

DNR Ordered DNR DNR added (24h) Rolling 2h 24h Bin. [20] 96%
DNR added (48h) 6h 48h

Imminent Discharge DIS Discharge (24h) Rolling 2h 24h MC ✓ [4] 43% 44%
Discharge (48h) 6h 48h ✓

ICD Code Prediction ICD Appendix Table 7 Static 12h N/A ML [12, 15] 67%
Long Length-of-Stay LOS Static 12h N/A Bin. ✓ [15, 23, 35] 53% 67%
30 Day ICU
Readmission REA Static N/A N/A Bin. [15] 95%
Final Acuity ACU Static 12h N/A MC ✓ [6, 30, 35] 25% 60%
Next Timepoint WBM Appendix Table 6 AR 0h 1h ML [5] 92% 88%
Future Treatment
Sequence FTS AR N/A N/A SMC [24, 37] 97%

Statistics: 24h/48h CMO status is false for 99.1±5.55%/98.5±9.59%
of hours per-patient.

5.2.3 DNR Ordered: DNR.
Definition: “Do Not Resuscitate” (DNR) orders indicate that the
patient has requested to not receive resuscitation care (e.g., car-
diopulmonary resuscitation a.k.a. CPR). We predict whether a pa-
tient will add a DNR flag to their record over the next 24/48 hours,
using a 2/6 hour gap time.
Cohort: This task is only available on MIMIC-III.
Input Window: Throughout the entire stay.
Prior Art: To the best of our knowledge this task has only been
studied within the ML4H community in [20].
Statistics: 24h/48h DNR status is false for 96.6 ± 16.16%/96.1 ±

18.03% of hours per-patient.

5.2.4 Imminent Discharge: DIS.
Definition:We predict whether the patient will be discharged, and
if so to where (e.g., discharged home vs. to a skilled nursing facil-
ity), within the next 24/48 hours, using a 2/6 hour gap time. Unlike
the prior tasks, this task is both multi-label (across prediction/gap
windows) and multi-class (across discharge locations).
Cohort: This task is available on both MIMIC-III and eICU.
Input Window: Throughout the entire stay.
Prior Art: Imminent discharge has been primarily predicted in
operational contexts, rather than for use as a signal of acuity, e.g.
[4].
Statistics:Within 24 hours, the patients are more commonly not
discharged than they are discharged to any other possible individ-
ual discharge location (57.7 ± 24.68% and 48.2 ± 26.67% of hours

per-patient for MIMIC-III and eICU).Within 48 hours, MIMIC-III pa-
tients are again most commonly not discharged (27.6± 26.58%), but
eICU patients are most commonly discharged home (40.2± 35.95%).
A full list of possible discharge locations, and their prevalence per-
hour, per-patient, is shown in Appendix Tables 8,9 for theMIMIC-III
and eICU cohorts.

5.2.5 ICD Code Prediction: ICD.
Definition:We predict the multi-label presence of each of the 19
major ICD category under the categorization of Slee.
Cohort: ICD codes are available only on the MIMIC-III dataset.
Input Window: The first 24 hours of data.
Prior Art: Prediction of ICD codes is commonly studied in ML4H
as a phenotyping task [12, 15].
Statistics: Per-label majority class accuracies are shown in Supple-
mentary Table 7. Macro-averaged across all categories, the majority
class accuracy of this task is 67.0 ± 18.07%.

5.2.6 Long Length-of-Stay: LOS.
Definition:We predict via binary classification whether a patient’s
total length-of-stay will be longer than 3 days or not.
Cohort: LOS is available on both cohorts.
Input Window: The first 24 hours of data.
Prior Art: Long LOS has been predicted numerous times, both in
a classification sense for 3-day LOS [35] and 7-day LOS [15].
Statistics: Patient LOS is longer than 3 days 47.1 ± 0.11% and
33.3 ± 0.04% of the time on MIMIC-III and eICU.

5.2.7 30 Day ICU Readmission: REA.
Definition:We predict whether or not patientswho are successfully
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discharged will be readmitted to the ICU 1 within 30 days.
Cohort: This task is defined only on the MIMIC-III cohort. As
MIMIC-Extract extracts a cohort only of patients’ first ICU stays [35],
this task also has the bias of only being analyzed on the first ICU
visit for a patient.
Input Window: 30-day ICU readmission is predicted over the en-
tirety of the patient’s data, up until discharge. In practice this often
means that it will be predicted over a fixed size window of, e.g., 48
hours prior to discharge.
Prior Art: Rajkomar et al. [27] examine overall hospital readmis-
sion in their work.
Statistics: 95.1±0.09% of patients aren’t readmitted within 30 days.

5.2.8 Final Acuity: ACU.
Definition:We predict, in a multi-class manner, whether the pa-
tient will die—and if so, when (e.g., In-ICU v. In-Hospital)—or be
discharged—and if so, to where (e.g., Home, a Skilled Nursing
Facility)—at the end of their stay.
Cohort: This task is defined over both cohorts.
Input Window: The first 24 hours of data.
Prior Art: Various sub-forms of this task have been explored
historically. In-ICU and in-hospital mortality, for example, have
been explored as separate, binary classification tasks in numerous
ways [7, 15, 35]. Challenging the model to predict death (including
location of mortality) and the final discharge location jointly is
novel, to the best of our knowledge.
Statistics: Prevalences of all classes for the final acuity task are
shown in Supplementary Tables 11 and 10, for the MIMIC-III and
eICU cohorts. The macro averaged majority class accuracy for this
task, however, is 25.3 ± 0.24% of patients being discharged to a
home health care system and 59.7± 0.1% being discharged to home
for MIMIC-III and eICU.

5.2.9 Next Timepoint Will be Measured: WBM.
Definition:We predict which labs & vitals will be measured in the
next hour via multi-label binary classification.
Cohort: This task is defined over both cohorts.
Input Window: Throughout the patient’s stay.
Prior Art: Imputation and forecasting over clinical data has been
explored extensively in the past, both as a necessary technical pre-
processing step for large pipelines and as a vehicle for direct use
in other clinical tasks, such as anomaly detection [21]. The classifi-
cation formulation is somewhat less common than the regression
formulation, but the analysis of measurement observation patterns
in clinical data in general has been explored in a number of contexts
beyond just prediction [5].
Statistics: The labs & vitals over which we predict, along with
their observed measurement rates, are shown in Appendix Table 6
for both the MIMIC-III and eICU cohorts. Macro averaged majority
class accuracy per-hour, per-patient for this task is 92.1 ± 9.18% on
MIMIC-III and 88.0 ± 19.61% on eICU.

5.2.10 Future Treatment Sequence: FTS.
Definition: We predict the sequence of combinations of ventila-
tion, vasopressor, and fluid bolus treatments the patient will receive

1Hospital readmission would be both a more natural and more actionable task in
practice; however, the granularity of our input data only permits ICU readmission, so
we use this as a proxy for the more traditional hospital readmission task.

over the remainder of their stay (bucketed to an hourly granularity),
in a duration agnostic manner, meaning this task does not differ-
entiate between a patient who is ventilated for one hour, followed
by receiving vasopressors for two hours and a patient who is ven-
tilated for two hours, followed by receiving vasopressors for one
hour—in both cases, the task labels would simply be the sequence
“ventilation, vasopressors.”

As this task is a sequential decoding task, predictions for FTS
must use more specialized prediction heads and training regimes
than on our other tasks; our baselines, for example, rely on LSTM
RNN decoders and teacher forcing [18], but other users may at-
tempt different strategies. We evaluate this task in an autoregressive
manner also using teacher forcing [18].
Cohort: This task is defined only on the MIMIC-III cohort.
Input Window: Throughout the patient’s stay.
Prior Art:While this task formulation is novel, researchers have
investigated learning optimal control policies for applications of
treatments, including ventilators or vasopressors [16, 24, 37].
Statistics:We show the relative frequency of the various treatment
combinations in Appendix Figure 5. The majority class accuracy of
this task at a per-patient, per-hour level is 97.4 ± 2.77%.

5.3 Pre-training vs. Fine-tuning Data
For both cohorts, we leverage the full dataset (excluding separate
hyperparameter tuning and held-out sets) as our PT data XPT.
Naturally, this also means that our fine-tuning datasets X FT will
overlap with our PT data. While this renders our benchmark less
reflective of cases where one would like to deploy a PT model on a
disjoint FT dataset, there are also many use-cases where these two
datasets will overlap.

5.4 Pre-training Regimes
Our benchmark supports two styles of PT: self-supervised and
weakly-supervised. Under self-supervision, only a single PT model
is pre-trained, which is then used to assess FT performance directly
on each downstream task (through separate FT runs, all transferring
from the single PT model). Under weak-supervision, we permit the
user to leverage a portion of our provided downstream tasks at
pre-training time while still ensuring there is no task leakage from
PT to FT via a “leave-one-task-out” (LOTO) framework. If our total
set of downstream tasks is given by T , then the LOTO framework
requires pre-training a separate encoder Et per downstream task
t ∈ T such that Et is transferred only to FT task TFT = {t} for
evaluation and leverages only tasks TPT = {t ′ ∈ T |t ′ , t} for PT
weak supervision signals.

5.5 Fine-tuning Regimes
We analyzed two different styles of FT transfer: fine-tuning, decoder-
only (FTD), and fine-tuning, full (FTF).

In the fine-tuning decoder-only (FTD) setting, the encoder E is
frozen after PT, and only the decoderD is allowed to change during
the FT stage. In the fine-tuning full (FTF) setting, the entire model,
including the PT encoder E and the FT decoder D (which is not
initialized during PT), can be updated during FT. This setting allows
greater capacity, at the expense of a risk of over-fitting during FT.
In addition, we naturally also encourage users to profile traditional,
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Figure 2: We always pre-train on the full available dataset,
but additionally assess our models’ ability to fine-tune in
a few-shot context by randomly subsampling (with replace-
ment) a variety of smaller FT datasets for each experiment.

non-PT, single-task (ST) models of the same architectures over
these tasks, to establish baseline performance levels.

5.6 Few-shot Analyses
In addition to comparing FTF vs. FTD performance, we also assess
FT systems across various FT dataset sizes to judge models across a
wide range ofNPT/NFT disparities. These few-shot analysis datasets
are formed by taking a series of random subsets (with replacement)
of our overarching dataset XPT corresponding to 14 different sam-
pling rates ranging on a logarithmic scale from 0.03% to 100%. This
process is shown in Figure 2. Note that as all samples are taken
randomly, our benchmark currently does not support PT/ FT in
a setting with domain shift. This is obviously also an important
challenge as well, that we hope to explore in future work.

5.7 Benchmark Utilization Protocol
First, the encoder must be pre-trained on the MIMIC-III and eICU
cohorts. For a self-supervised PT system, hyperparameter tuning
and pre-training are performed once (per random train/test split).
For aweakly-supervised PT system, a separate round of pre-training
must be performed per task t such that the pre-trained encoder
Et is trained to optimize task performance on all tasks except for
task t , which is reserved for fine-tuning evaluation. To ease the
hyperparameter tuning burden for weakly-supervised systems, it
also is possible to perform a single round of PT hyperparameter
tuning using the entire set of tasks, risking a small amount of
task leakage at the gain of a significant reduction in compute cost
(though of course actual PT must still be repeated for each model Et
with the proper subdivision of tasks after hyperparameter tuning
is complete).

Next, fine-tuning is performed on task-specific models across
all cohorts, sub-sampled datasets, and tasks. To assess the self-
supervised system, all fine-tuning models will transfer from the
same pre-trained source model, whereas for the weakly-supervised
system, following LOTO, each encoder Et must be fine-tuned on
only task t to ensure no overlap between PT and FT tasks. This

fine-tuning procedure is repeated across both the FTF and FTD
transfer settings defined in Section 5.5.

Finally, fully-supervised, single-task (ST)models of the same base
architecture are hyperparameter tuned and trained from scratch
for each task to provide a baseline score.

The output of this process will yield one score per task, cohort,
sub-sampled-dataset, PT algorithm, and FT transfer regime. This
process is then repeated across the random splits within the bench-
mark to assess variance. Based on these results, the user can judge if
either of these PT algorithms offer robust benefits across all cohorts
and tasks, if one fine-tuning transfer style is preferred over another,
or any number of other questions.

6 BASELINE EXPERIMENTS
6.1 Baseline-specific Data Post-processing
Our baseline models featurize the timeseries into fixed-size input
windows of anywhere from 12 - 96 hours (chosen via hyperparam-
eter search). Within these fixed input windows (and not taking
into account any data from the prediction windows), any missing
features are linearly interpolated between their previous and sub-
sequent measurements. If a measurement is only observed on one
side of the value (e.g., there are no future measurements or no pre-
vious measurements within the input window), values are carried
forward or backward, respectively, and if no measurements are ob-
served, they are imputed to the feature’s mean value over the train
dataset. In addition, time-since-last-measured ordinal indicators
(up to 8 hours) are added to capture how long it has been at any
given time-point since a specific feature was last measured. Both
to simplify our shared code base, and as a form of data augmen-
tation, all training is done across random time-points throughout
the patient’s stay, regardless of the specific details of the task’s pre-
scribed evaluation input window, though those relationships are,
of course, respected during evaluation. For example, though ICD
code prediction will only be evaluated using the first 24 hours of a
patient’s stay, during training we will train this model on inputs
throughout the patient’s stay.

6.2 Models
6.2.1 Encoder Architecture. All models in this work use a GRU
model [8] as their encoder E. Early experiments suggested this
model outperformed other architectures, including a simpler, linear
baseline, a convolutional neural network architecture, and a trans-
former model, and it is a commonly used model in the literature,
so it is a reasonable choice for a baseline architecture here. Input
data is projected down to a unified numerical representation, then
run through a (potentially) multi-layer, bidirectional GRU (GRU
parameters are determined via hyperparameter tuning) to yield a
final encoder. This encoded representation is then passed through
a task-specific decoder, which is either (1) a LSTM based sequen-
tial decoder for the FTS task, or (2) a simple linear layer up to the
appropriate dimensionality of the task, followed by an appropri-
ate classification activation (e.g., sigmoid or softmax) for all other
tasks. For multi-label tasks, activations and losses are computed in
a per-label manner and losses are then averaged.
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6.2.2 Supervised, Single-task (ST) Models. We perform fully super-
vised, single-task (ST) training, with no PT, on each task separately,
to provide baselines in comparisons with our PT/FT methods. These
runs use the same GRU architecture as our other experiments, and
are hyperparameter tuned separately for each downstream task.

6.2.3 Pre-training Algorithms. We profile two distinct PT systems
on our benchmark: Aweakly-supervised, multi-task (MT) PTmodel,
and a self-supervised, masked-imputation (MI) model. For a visual
overview of both of these methods, see Figure 3.

Weakly-supervised, Multi-task (MT) Pre-training. In multi-task
(MT) PT, we use the “leave-one-task-out” method described in
Section 5.4 to ensure our MT PT approach does not leak task in-
formation between FT and PT contexts. Our multi-task approach
is very straightforward: all tasks in the learning ensemble (e.g., all
tasks save the eventual fine-tuning target) will be jointly trained
via a model whose encoder E is shared across all tasks but with
separate decodersDt per task. No loss weighting or task-alignment
is used.

Masked-Imputation (MI) Pre-training. Masked-imputation (MI)
PT is inspired by the successes of models such as BERT [11] in NLP.
To adapt the ideas of BERT to a continuous domain with missing-
ness, we choose at random approximately 15% of the time-points
in the input window to “mask,” (replace with all zeros and augment
with a bit indicating masking took place). Then, the model is tasked
with predicting within this masked time-point which labs/vitals
were actually measured via a classification task and what their
values were via a continuous regression task. At fine-tuning time,
the model is no longer asked to perform masked imputation, and
no masking is applied. For this PT task, we limit our GRU models to
unidirectional GRUs to avoid leaking information from future time-
points2, and models are hyperparameter tuned to maximize the
mean of the classification task’s macro AUROC and the regression
task’s R2 value.

Fine-tuning. For both PT systems, after PT is complete, the model
is fine-tuned by initializing an untrained decoder layer and training
the system according to the loss criteria appropriate to the type
of task at hand (e.g., binary cross-entropy loss or a negative log
likelihood loss depending on the task type). Tasks that are multi-
label in nature are trained by averaging the losses together for all
labels. As described in Section 5.5, we profile both FTF and FTD
transfer styles in this baseline, and we report across all sub-sampled
dataset sizes as described in Section 5.6.

6.3 Hyperparameter Tuning
Hyperparameter tuning was performed to optimize the underlying
architecture via the PT task with random search, via the Bayesian
Hyperopt Library [3]. No FT specific hyperparameter tuning was
performed, as the majority of the details of the architecture (e.g.,
the GRU depth and dimensionality) are fixed by the pre-training
algorithm. ST models were naturally tuned based on output task
performance, as there is no PT stage for these models.

2This is especially important in the context of our imputation procedure, which directly
encodes how long it has been since any given lab/vital was measured.

Specific model hyperparameters were chosen to maximize the
appropriate score on the validation fold over a random search drawn
from a customized hyperparameter distribution. For MT PT models,
this search was done once across all tasks simultaneously in a MT
manner, optimizing for the average AUROC across all tasks in the
ensemble, then used for all PT/FT experiments. This represents a
possible source of very mild task leakage, but yielded significant
computational savings. For MI models, hyperparameter tuning was
done once in a task-independent manner (as masked imputation
is a self-supervised, rather than weakly-supervised PT method).
Final hyperparameters were chosen based on the full dataset, and
were not repeated at smaller training set sizes for the few-shot
experiments, which may represent another possible source of bias.
Additional details on the hyperparameter search can be found in
Appendix Section B.

6.4 Results
In this section, we will highlight a subset of the most relevant
results found in our baseline experiments. Figure 4 shows two things
of interest: First, it shows a graph cataloging over what fraction
of tasks a particular PT/FT model type offers best performance
as a function of dataset size. This allows us to see quickly, for
example, that for a wide variety of dataset sizes, MT FTF offers
significnat improvements over other strategies on a significant
portion of the tested tasks. To show these relationships in more
detail, Figure 4 also showsmore complete results for 3 of our 10 tasks
across both cohorts and all dataset fractions, comparing specifically
both varieties of the FTF models and the ST model. In addition,
the results corresponding to the 1%, 10%, and full-data scales for
both cohorts are shown in Table 3. In this view, we see that at
the 1% setting, the Multi-task (MT) FTF setting performs best in
7/10 settings, whereas ST never offers best-in-class performance.
At the 10% setting, MT FTF excels 6/10 times, and ST performs
best in only one task. Finally, at the 100% (e.g., full) data scale, ST
always performs best. This demonstrates a strong trend between
the performance benefit offered by MT-FTF PT and the severity of
the NFT v. NPT imbalance. Full results can be found in the Appendix,
in Figures 6,7 for MIMIC-III and 8,9 for eICU.

6.5 Discussion
Pre-training does not offer benefits at full data scale. Table 3 shows

that PT does not offer any gains over traditional supervised learning
at full MIMIC or eICU dataset scales. In some cases, PT actually
harms the final results. This is not necessarily surprising; while PT
can help compensate for too little data and provide (indirect) access
to additional data in the case of larger NFT / NPT discrepancies,
when X FT = XPT the risks that PT simply serves as a distraction
from the (comparatively direct) supervised learning signal is large.

Pre-training can offer significant benefits in few-shot settings. Our
benchmark reveals that PT in few-shot settings is helpful. Figure 4
shows that across a significant fraction of the dataset fractions for
both the MIMIC-III and eICU cohorts, MT FTF offers significant
benefits over other approaches. In Table 3, we see more concretely
that in the 1% FT dataset setting, some form of PT/FT offers best in
class performance across all tasks in both cohorts except for LOS
on the eICU cohort, with performance improvements ranging as
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Figure 3: We profile both a self-supervised, masked-imputation PT system and a weakly-supervised multi-task PT system.

Figure 4: (left column) For what % of tasks (y-axis) does a given PT/FT regime (linestyle) perform better than all other PT/FT
regimes, as a function of dataset fraction (x-axis). (right 3 columns) Performance inmacro-averaged AUROC (y-axis) of various
PT/FT models (linestyle) across various FT dataset sub-sampling rates (x-axis), over 3 sample FT tasks (subplots).

high as an AUROC improvement of 0.2/0.24 for mortality prediction
in MIMIC-III/eICU. In the 10% dataset size setting, some form of
PT/FT still offers best-in-class performance on all tasks save LOS
for the eICU cohort and ICD for the MIMIC cohort. The margins of
improvement are no longer as high, but offer consistent gains across
a variety of other tasks such as with CMO, DNR, MOR, WBM, and
FTS all offering AUROC improvements of up to 0.1 on MIMIC-III
(improvements are much smaller on eICU at this threshold). These
findings provide evidence to affirm that EHR PT/FT strategies could
enable more effective modelling even given only very small task-
specific datasets, thus potentially offering a vehicle to help train
models for novel or rare diseases.

We also observe that the tasks which tend to show the largest
improvements with PT (MOR, WBM, CMO, DNR, and FTS) are all
rolling tasks with substantial class imbalance. Across both cohorts
these tasks report majority class accuracies greater than or equal
to 88% (with most ≥ 95%). No other tasks in our benchmark meet
these criteria, suggesting there may be stronger benefits from PT
(in particular, from MT PT) on rolling, imbalanced tasks.

Weakly-supervised pre-training out-performs self-supervised pre-
training. In general, MT PT is superior to MI, even at small data
scales, suggesting that simple adaption of the masked language
modeling idea is not sufficient for the clinical domain. Despite
this, in the few-shot domain, MI FTF training still does outperform
traditional ST modelling, just not by as much as MT FTF does. For
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Table 3: GRU Results (AUROC) subdivided among different PT regimes, under both the full-data fine-tuning setting and
few-shot (1%, 10%) settings, on both the MIMIC-III and eICU cohorts. Bolded results indicate top performing result per each
task/evaluation setting.

Dataset Size Task MIMIC-III eICU

MI FTD MI FTF MT FTD MT FTF ST MI FTD MI FTF MT FTD MT FTF ST

Few-shot (1%) MOR 0.55 ± 0.08 0.68 ± 0.08 0.57 ± 0.17 0.84 ± 0.11 0.64 ± 0.06 0.57 ± 0.04 0.7 ± 0.06 0.52 ± 0.14 0.8 ± 0.02 0.6 ± 0.06
CMO 0.6 ± 0.09 0.65 ± 0.05 0.52 ± 0.17 0.76 ± 0.18 0.58 ± 0.11
DNR 0.59 ± 0.04 0.57 ± 0.06 0.55 ± 0.08 0.63 ± 0.1 0.55 ± 0.07
ICD 0.49 ± 0.03 0.56 ± 0.03 0.52 ± 0.02 0.56 ± 0.03 0.56 ± 0.02
LOS 0.51 ± 0.09 0.62 ± 0.03 0.6 ± 0.08 0.67 ± 0.03 0.58 ± 0.02 0.51 ± 0.02 0.55 ± 0.02 0.53 ± 0.06 0.59 ± 0.02 0.54 ± 0.04
REA 0.54 ± 0.03 0.51 ± 0.02 0.5 ± 0.04 0.54 ± 0.03 0.51 ± 0.03
DIS 0.52 ± 0.02 0.57 ± 0.05 0.54 ± 0.03 0.58 ± 0.03 0.54 ± 0.01 0.51 ± 0.01 0.56 ± 0.01 0.53 ± 0.03 0.58 ± 0.01 0.56 ± 0.01
ACU 0.51 ± 0.03 0.61 ± 0.04 0.56 ± 0.05 0.61 ± 0.01 0.6 ± 0.05 0.51 ± 0.01 0.58 ± 0.02 0.55 ± 0.05 0.62 ± 0.02 0.58 ± 0.02
WBM 0.53 ± 0.03 0.61 ± 0.03 0.53 ± 0.03 0.64 ± 0.08 0.58 ± 0.02 0.59 ± 0.04 0.77 ± 0.05 0.53 ± 0.02 0.8 ± 0.05 0.65 ± 0.09
FTS 0.61 ± 0.05 0.61 ± 0.04 0.62 ± 0.05 0.62 ± 0.06 0.6 ± 0.04

Few-shot (10%) MOR 0.61 ± 0.12 0.82 ± 0.02 0.82 ± 0.17 0.9 ± 0.03 0.84 ± 0.07 0.62 ± 0.09 0.8 ± 0.03 0.77 ± 0.07 0.8 ± 0.03 0.77 ± 0.03
CMO 0.62 ± 0.08 0.74 ± 0.03 0.76 ± 0.15 0.85 ± 0.06 0.77 ± 0.09
DNR 0.6 ± 0.04 0.75 ± 0.03 0.76 ± 0.09 0.82 ± 0.03 0.71 ± 0.1
ICD 0.53 ± 0.05 0.65 ± 0.01 0.6 ± 0.02 0.64 ± 0.01 0.67 ± 0.03
LOS 0.55 ± 0.09 0.6 ± 0.02 0.69 ± 0.02 0.65 ± 0.03 0.66 ± 0.02 0.52 ± 0.03 0.6 ± 0.03 0.61 ± 0.02 0.61 ± 0.02 0.61 ± 0.0
REA 0.54 ± 0.04 0.53 ± 0.03 0.54 ± 0.05 0.57 ± 0.04 0.57 ± 0.03
DIS 0.56 ± 0.03 0.63 ± 0.02 0.67 ± 0.04 0.66 ± 0.04 0.64 ± 0.03 0.53 ± 0.02 0.6 ± 0.01 0.61 ± 0.04 0.62 ± 0.01 0.61 ± 0.01
ACU 0.58 ± 0.06 0.69 ± 0.03 0.68 ± 0.04 0.7 ± 0.04 0.69 ± 0.03 0.56 ± 0.03 0.63 ± 0.02 0.67 ± 0.03 0.64 ± 0.02 0.64 ± 0.01
WBM 0.57 ± 0.04 0.76 ± 0.01 0.65 ± 0.06 0.79 ± 0.05 0.72 ± 0.04 0.72 ± 0.03 0.87 ± 0.01 0.66 ± 0.05 0.88 ± 0.02 0.82 ± 0.05
FTS 0.74 ± 0.09 0.77 ± 0.08 0.82 ± 0.05 0.81 ± 0.05 0.73 ± 0.06

Full Data MOR 0.74 ± 0.09 0.8 ± 0.11 0.94 ± 0.01 0.89 ± 0.03 0.95 ± 0.01 0.72 ± 0.07 0.83 ± 0.01 0.86 ± 0.01 0.82 ± 0.02 0.85 ± 0.01
CMO 0.72 ± 0.06 0.77 ± 0.05 0.92 ± 0.01 0.85 ± 0.04 0.91 ± 0.02
DNR 0.72 ± 0.09 0.74 ± 0.01 0.87 ± 0.02 0.78 ± 0.06 0.87 ± 0.02
ICD 0.65 ± 0.05 0.67 ± 0.01 0.67 ± 0.01 0.68 ± 0.03 0.74 ± 0.01
LOS 0.61 ± 0.04 0.58 ± 0.03 0.69 ± 0.02 0.64 ± 0.04 0.71 ± 0.01 0.54 ± 0.04 0.64 ± 0.02 0.62 ± 0.02 0.63 ± 0.05 0.65 ± 0.0
REA 0.57 ± 0.04 0.56 ± 0.02 0.6 ± 0.04 0.57 ± 0.02 0.61 ± 0.02
DIS 0.64 ± 0.05 0.68 ± 0.04 0.75 ± 0.02 0.72 ± 0.02 0.74 ± 0.03 0.58 ± 0.03 0.64 ± 0.01 0.66 ± 0.02 0.64 ± 0.01 0.65 ± 0.0
ACU 0.7 ± 0.05 0.74 ± 0.02 0.75 ± 0.04 0.74 ± 0.04 0.78 ± 0.02 0.62 ± 0.02 0.66 ± 0.01 0.7 ± 0.02 0.67 ± 0.02 0.68 ± 0.02
WBM 0.68 ± 0.07 0.81 ± 0.01 0.77 ± 0.02 0.86 ± 0.02 0.89 ± 0.01 0.79 ± 0.04 0.91 ± 0.01 0.79 ± 0.02 0.91 ± 0.01 0.9 ± 0.02
FTS 0.86 ± 0.02 0.89 ± 0.01 0.89 ± 0.01 0.9 ± 0.0 0.9 ± 0.01

example, at 1% on MIMIC-III, MI FTF outperforms ST in all but one
case, and at 10% it does in all but four cases (though on eICU the
situation is murkier).

FTF is in general preferred over FTD. Consistent across both MI
and MT PT is that FTF models are preferred to FTD models. This
is true across datasets and sub-sampling rate, and suggests that
despite the increased risk of overfitting offered by fine-tuning the
encoder as well as the decoder, this strategy may be integral to
obtaining strong PT/FT results in this modality.

7 CONCLUSION
In this work, we present a novel benchmark for PT systems over
EHR time-series data. We define a suite of FT task targets, includ-
ing several novel tasks, over both MIMIC-III and eICU, and estab-
lish evaluation procedures for examining a PT system’s perfor-
mance both across various FT dataset sizes. We then establish three
baseline systems on this benchmark, including a traditional, non-
pre-trained single-task baseline, a weakly-supervised multi-task
PT baseline, and a fully self-supervised masked-imputation based
PT baseline. These baselines demonstrate that weakly-supervised,
multi-task PT can offer substantial improvements in few-shot con-
texts for tasks suffering from significant class imbalance. In addition,
they suggest important findings on the viability of different styles
of PT and FT; in particular that masked-imputation based PT cur-
rently is not competitive with multi-task PT, and that fine-tuning
both model encoders and decoders is necessary for ensuring strong
FT performance.

While significant future work remains, including assessing addi-
tional PT systems on this benchmark as well as augmenting this

benchmark to assess the impact PT has on fine-tuning under do-
main shift such as pre-training on one hospital and fine-tuning
on another, or subpopulation shift in fairness applications, we be-
lieve that this benchmark can be an invaluable tool for the ML4H
community. By standardizing PT/FT training and evaluation proce-
dures, including few-shot evaluation analyses and the inclusion of
a sufficiently diverse set of tasks to assess the utility of PT schemes
in general, rather than merely on a isolated, highly specific subset
of tasks, this benchmark offers the possibility of greatly increasing
the efficiency of PT research on EHR data. This benchmark will
help enable iterative analysis and development of PT strategies in
this domain and lead to the release of PT encoders that enable easy
specialization and deployment in clinical settings.
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Figure 5: A sample Upset plot showing the frequency of rel-
ative combinations of our three treatment types: Vasopres-
sors (vaso), Ventilation (vent), and Fluid Bolus administra-
tion (bolus) on the MIMIC-III cohort.

A ADDITIONAL DATA/TASK INFORMATION
A.1 Additional Dataset Details

MIMIC-III Cohort Treatment Data. In the MIMIC-III cohort, we
incorporate as inputs treatments including adenosine, colloid bolus,
crystalloid bolus, dobutamine, dopamine, epinephrine, isuprel, mil-
rinone, nivdurations, norepinephrine, phenylephrine, vaso (other
vasopressor application), vasopressin, and vent (ventilation).

A.2 Task Details and Statistics
Imminent Discharge: DIS. The below two tables (Table 8, 9) cap-

ture the overall prevalence of all DIS classes observed across both
cohorts and all labels.

Final Acuity: ACU. The below two tables (Table 11, 10) capture
the overall prevalence of all ACU classes observed across both
cohorts.

Next Timepoint: WBM. Table 6 shows the majority class accuracy
for all labs & vitals used in this work for the WBM task.

Future Treatment Sequence: FTS. Figure 5 shows which combina-
tions of treatments are most commonly observed over MIMIC-III.

B HYPERPARAMETER SEARCH ANALYSIS
B.1 Search Space
For our hyperparameter search procedure, we searched over a wide
variety of parameters, including number of epochs, batch size, learn-
ing rate, learning rate decay paradigms, L2 regularization penalty,
dropout, the maximum length of a patients record included, the size,
number, and configuration of various hidden layers, pooling and
fully connected stack parameters, and various other model-specific
options. All search distributions are shown in Table 12. Various
numbers of samples were run for each experiment. Universally,
at least 100 random samples per search were run. Runs that had
more than 100 samples were almost universally single-task runs,
not PT/FT runs.

C FINAL RESULTS
In Figures 6,9 we show the absolute performance of all models
on the MIMIC-III, eICU cohorts, and Figures 7,9 show the relative
performance of all model types as compared to a ST baseline for
the MIMIC-III, eICU cohorts. We note that the eICU results for
the ST LOS task appear anomalous—while all runs reported here
have gone through internal validation, this oddity warrants further
investigation in future work.

D SAMPLES COMPLETED
Below are the full experiment counts for all results reported in this
work. Note that an extra rotation was also run on the MIMIC-III
MT results. This was unintentional, but as all rotations here are
separate random train/test splits, we chose to retain the result as it
simply improves the quality of our estimates of variance and should
add no bias to the results or comparisons.

E NEGATIVE TRANSFER ANALYSES
We can also leverage these experiments to perform a robust analysis
of negative transfer within EHR timeseries multi-task learning. In
particular, by comparing our multi-task pre-training results, which
are trained over all but one task (as one task is withheld for use in
fine-tuning) vs. our hyperparameter search results as well as our
single-task results vs. our full MT hyperparameter search results.
First, at a lgobal scale, we see in Table 15 that there is no general
apparent preference between ST and MT runs. This suggests that
we see no evidence of either global positive or negative transfer.

Examining the transfer utility on a local, per-task level, we can
examine how the performance on a particular task is affected by
removing a single other task from the full multi-task ensemble or,
in a transpose fashion, how including a given task in the learning
ensemlbe effects the performance of other downstream tasks. These
results are shown visually in Figure 10. There, we see that, like our
global finding, there is minimal evidence of any universal positive
or negative transfer; instead, we see examples of both positive and
negative transfer, which, in aggregate, offer no consistent effect.
These results suggest that negative transfer is quite likely in a
generic MT setting without careful consideration.
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Table 4: Macro-averaged (train-set) majority class accuracy aggregated across all folds / labels for all tasks.

Task MIMIC-III eICU

Train Tuning Held-out Test Train Tuning Held-out Test

MOR 96.5 ± 14.14% 96.5 ± 14.23% 96.3 ± 14.67% 97.0 ± 13.67% 97.1 ± 13.58% 97.1 ± 13.60%
CMO 98.8 ± 7.83% 98.8 ± 7.84% 98.7 ± 8.03%
DNR 96.3 ± 17.12% 96.3 ± 17.13% 96.4 ± 17.13%
WBM 92.1 ± 9.18% 92.2 ± 9.19% 92.1 ± 9.21% 88.0 ± 19.61% 88.0 ± 19.63% 88.0 ± 19.65%
DIS 42.6 ± 25.65% 42.6 ± 25.53% 42.6 ± 25.71% 44.2 ± 31.65% 44.1 ± 31.72% 44.1 ± 31.69%
ICD 67.0 ± 18.07% 70.2 ± 18.12% 70.2 ± 18.19%
LOS 52.9 ± 0.11% 53.0 ± 1.26% 52.8 ± 1.02% 66.6 ± 0.04% 66.5 ± 0.26% 66.6 ± 0.32%
REA 95.1 ± 0.09% 95.1 ± 0.62% 95.0 ± 0.61%
ACU 25.3 ± 0.24% 25.2 ± 1.34% 25.3 ± 1.15% 59.7 ± 0.10% 59.2 ± 0.39% 59.4 ± 0.64%
FTS 97.4 ± 2.77% 97.5 ± 2.91% 97.4 ± 2.96% 97.0 ± 3.75% 97.0 ± 3.75% 97.0 ± 3.75%

Table 5: Per-label majority class accuracies for all tasks aside fromWBM and LOS, which are shown separately.

Task Label Majority Class MIMIC-III eICU

Train Tuning Held-out Test Train Tuning Held-out Test

MOR 24H 0 97.6 ± 9.91% 97.6 ± 10.07% 97.5 ± 10.53% 97.9 ± 10.20% 97.9 ± 10.09% 97.9 ± 10.06%
48H 0 95.4 ± 17.36% 95.4 ± 17.42% 95.2 ± 17.88% 96.2 ± 16.41% 96.2 ± 16.34% 96.2 ± 16.39%

CMO 24H 0 99.1 ± 5.55% 99.1 ± 5.58% 99.1 ± 5.77%
48H 0 98.5 ± 9.59% 98.4 ± 9.58% 98.4 ± 9.77%

DNR 24H 0 96.6 ± 16.16% 96.6 ± 16.18% 96.6 ± 16.22%
48H 0 96.1 ± 18.03% 96.1 ± 18.03% 96.1 ± 18.00%

DIS 24H No Discharge 57.7 ± 24.68% 57.7 ± 24.57% 57.7 ± 24.79% 48.2 ± 26.67% 48.2 ± 26.73% 48.2 ± 26.71%
48H Home 40.2 ± 35.95% 39.9 ± 36.03% 40.0 ± 35.98%

No Discharge 27.6 ± 26.58% 27.5 ± 26.45% 27.6 ± 26.60%
LOS 0 52.9 ± 0.11% 53.0 ± 1.26% 52.8 ± 1.02% 66.6 ± 0.04% 66.5 ± 0.26% 66.6 ± 0.32%
REA 0 95.1 ± 0.09% 95.1 ± 0.62% 95.0 ± 0.61%
ACU Home 59.7 ± 0.10% 59.2 ± 0.39% 59.4 ± 0.64%

Home Health Care 25.3 ± 0.24% 25.2 ± 1.34% 25.3 ± 1.15%
FTS 0 97.4 ± 2.77% 97.5 ± 2.91% 97.4 ± 2.96% 97.0 ± 3.75% 97.0 ± 3.75% 97.0 ± 3.75%
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Table 6: Per-label majority class accuracies for the WBM task

Task Label Majority Class MIMIC-III eICU

Train Tuning Held-out Test Train Tuning Held-out Test

WBM Anion Gap 0 91.4 ± 4.95% 91.5 ± 4.87% 91.5 ± 4.96%
Bedside Glucose 0 86.0 ± 16.68% 85.9 ± 16.75% 85.9 ± 16.77%
Bicarbonate 0 91.1 ± 4.88% 91.1 ± 4.81% 91.1 ± 4.90%
Blood Urea Nitrogen 0 91.0 ± 4.87% 91.0 ± 4.78% 91.0 ± 4.92%
Bun 0 94.8 ± 3.29% 94.8 ± 3.29% 94.8 ± 3.32%
Calcium 0 92.8 ± 5.05% 92.8 ± 4.94% 92.8 ± 5.05%
Calcium Ionized 0 95.2 ± 7.01% 95.3 ± 6.87% 95.2 ± 7.00%
Cardiac Index 0 96.7 ± 10.73% 96.6 ± 11.02% 96.7 ± 10.84%
Cardiac Output Thermodilution 0 97.2 ± 9.92% 97.1 ± 10.23% 97.2 ± 9.99%
Central Venous Pressure 0 82.2 ± 26.70% 82.1 ± 26.67% 82.0 ± 26.75%
Chloride 0 90.3 ± 5.68% 90.4 ± 5.55% 90.3 ± 5.66%
Co2 0 96.5 ± 3.52% 96.4 ± 3.54% 96.4 ± 3.53%
Co2 (Etco2, Pco2, Etc.) 0 92.3 ± 9.05% 92.4 ± 8.89% 92.3 ± 8.97%
Creatinine 0 90.9 ± 4.91% 91.0 ± 4.81% 91.0 ± 4.95% 94.8 ± 3.30% 94.8 ± 3.30% 94.8 ± 3.33%
Diastolic Blood Pressure 1 88.0 ± 12.70% 88.1 ± 12.61% 88.0 ± 12.77%
Fraction Inspired Oxygen 0 95.9 ± 8.12% 96.0 ± 8.12% 96.0 ± 8.15%
Fraction Inspired Oxygen Set 0 94.1 ± 9.67% 94.1 ± 9.73% 94.0 ± 9.79%
Glascow Coma Scale Total 0 82.4 ± 17.85% 82.0 ± 18.10% 82.1 ± 17.82%
Glucose 0 77.0 ± 15.35% 77.0 ± 15.38% 77.2 ± 15.20% 94.7 ± 3.62% 94.7 ± 3.61% 94.7 ± 3.67%
Hct 0 94.7 ± 3.37% 94.7 ± 3.37% 94.7 ± 3.41%
Heart Rate 0 80.3 ± 29.21% 80.3 ± 29.29% 80.3 ± 29.27%

1 91.1 ± 11.41% 91.2 ± 11.44% 91.0 ± 11.61%
Hematocrit 0 88.2 ± 6.81% 88.3 ± 6.63% 88.3 ± 6.66%
Hemoglobin 0 90.6 ± 4.89% 90.7 ± 4.70% 90.7 ± 4.80%
Lactate 0 97.2 ± 3.97% 97.3 ± 3.88% 97.3 ± 3.92%
Lactic Acid 0 97.6 ± 4.04% 97.7 ± 4.00% 97.7 ± 3.99%
Magnesium 0 91.5 ± 4.79% 91.6 ± 4.67% 91.6 ± 4.78%
Mean Blood Pressure 1 87.5 ± 13.31% 87.7 ± 13.21% 87.5 ± 13.43%
Mean Corpuscular Hemoglobin 0 93.5 ± 2.44% 93.6 ± 2.40% 93.6 ± 2.47%
Mean Corpuscular Hemoglobin Concentration 0 93.5 ± 2.44% 93.6 ± 2.40% 93.6 ± 2.47%
Mean Corpuscular Volume 0 93.5 ± 2.44% 93.6 ± 2.40% 93.6 ± 2.47%
Noninvasive Diastolic 1 79.7 ± 24.12% 79.7 ± 24.16% 79.6 ± 24.21%
Noninvasive Mean 1 79.8 ± 24.12% 79.8 ± 24.17% 79.8 ± 24.22%
Noninvasive Systolic 1 79.7 ± 24.12% 79.7 ± 24.16% 79.6 ± 24.21%
Oxygen Saturation 1 86.8 ± 15.09% 86.9 ± 14.99% 86.7 ± 15.18%
Partial Pressure Of Carbon Dioxide 0 92.3 ± 9.05% 92.4 ± 8.89% 92.3 ± 8.97%
Partial Pressure Of Oxygen 0 96.0 ± 6.79% 96.1 ± 6.63% 96.0 ± 6.76%
Partial Thromboplastin Time 0 93.7 ± 5.11% 93.8 ± 4.96% 93.8 ± 4.98%
Peak Inspiratory Pressure 0 95.4 ± 6.80% 95.3 ± 6.90% 95.3 ± 6.85%
Ph 0 91.4 ± 9.74% 91.5 ± 9.62% 91.4 ± 9.67%
Phosphate 0 94.4 ± 3.11% 94.4 ± 3.07% 94.4 ± 3.15%
Phosphorous 0 94.6 ± 3.30% 94.6 ± 3.29% 94.6 ± 3.30%
Plateau Pressure 0 97.2 ± 4.70% 97.1 ± 4.78% 97.1 ± 4.75%
Platelets 0 91.4 ± 4.50% 91.5 ± 4.34% 91.5 ± 4.42%
Positive End-Expiratory Pressure Set 0 93.5 ± 8.45% 93.4 ± 8.55% 93.4 ± 8.49%
Potassium 0 89.4 ± 6.15% 89.4 ± 6.06% 89.4 ± 6.20% 94.8 ± 4.66% 94.8 ± 4.67% 94.8 ± 4.71%
Potassium Serum 0 96.7 ± 4.12% 96.8 ± 4.08% 96.8 ± 4.13%
Prothrombin Time Inr 0 94.0 ± 4.67% 94.1 ± 4.53% 94.1 ± 4.60%
Prothrombin Time Pt 0 94.0 ± 4.67% 94.1 ± 4.53% 94.1 ± 4.60%
Pulmonary Artery Pressure Mean 0 97.2 ± 12.56% 97.0 ± 13.02% 97.1 ± 12.81%
Pulmonary Artery Pressure Systolic 0 91.3 ± 19.70% 91.0 ± 19.93% 91.2 ± 19.77%
Red Blood Cell Count 0 93.5 ± 2.44% 93.6 ± 2.41% 93.5 ± 2.47%
Respiratory Rate 0 82.1 ± 28.33% 82.0 ± 28.43% 82.1 ± 28.38%

1 89.6 ± 13.74% 89.7 ± 13.76% 89.5 ± 14.04%
Respiratory Rate Set 0 95.8 ± 6.52% 95.8 ± 6.60% 95.7 ± 6.57%
Sao2 0 81.6 ± 28.19% 81.6 ± 28.25% 81.6 ± 28.27%
Sodium 0 89.7 ± 5.89% 89.9 ± 5.74% 89.8 ± 5.87%
St1 0 92.2 ± 20.06% 92.3 ± 19.98% 92.2 ± 20.03%
St2 0 91.8 ± 20.66% 91.9 ± 20.59% 91.8 ± 20.67%
St3 0 92.4 ± 19.86% 92.4 ± 19.76% 92.4 ± 19.83%
Systemic Vascular Resistance 0 96.8 ± 10.43% 96.7 ± 10.68% 96.8 ± 10.55%
Systolic Blood Pressure 1 88.0 ± 12.69% 88.1 ± 12.60% 88.0 ± 12.77%
Temperature 0 70.6 ± 13.32% 70.5 ± 13.47% 70.7 ± 13.33%
Tidal Volume Observed 0 94.3 ± 8.13% 94.3 ± 8.18% 94.3 ± 8.15%
Tidal Volume Set 0 96.1 ± 6.13% 96.0 ± 6.20% 96.0 ± 6.16%
Tidal Volume Spontaneous 0 97.3 ± 4.55% 97.3 ± 4.59% 97.2 ± 4.59%
Weight 0 97.3 ± 2.76% 97.3 ± 2.58% 97.3 ± 2.67%
White Blood Cell Count 0 91.7 ± 4.27% 91.8 ± 4.12% 91.8 ± 4.24%
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Table 7: ICD task per-label majority class accuracies. As the ICD task is defined only on MIMIC-III, this table is specific to that
cohort.

Task Label Class Train Tuning Held-out Test

ICD Blood 0 52.5 ± 0.16% 54.3 ± 0.77% 54.7 ± 0.48%
Circulatory 1 72.0 ± 0.14% 78.8 ± 1.45% 78.7 ± 1.14%
Congenital 0 91.4 ± 0.15% 94.8 ± 0.51% 95.1 ± 0.56%
Defined 0 50.8 ± 0.41% 53.3 ± 1.30% 53.6 ± 1.17%
Digestive 0 51.2 ± 0.35% 54.0 ± 1.34% 54.0 ± 1.34%
Endocrine 1 63.5 ± 0.27% 67.6 ± 1.30% 67.1 ± 1.18%
Genitourinary 0 51.9 ± 0.10% 52.8 ± 1.77% 52.5 ± 1.26%
Infection 0 58.0 ± 0.24% 64.4 ± 0.70% 65.5 ± 1.61%
Injury 0 50.1 ± 0.04% 51.8 ± 0.10% 51.1 ± 0.63%

1 50.2 ± 0.13% 48.8 ± 1.16% 48.8 ± 1.05%
Mental 0 57.0 ± 0.19% 61.4 ± 0.88% 61.1 ± 0.80%
Musculoskeletal 0 66.7 ± 0.08% 73.5 ± 0.28% 73.8 ± 0.22%
Neoplasms 0 70.3 ± 0.32% 76.1 ± 1.03% 75.7 ± 0.32%
Nervous 0 59.3 ± 0.16% 63.9 ± 0.62% 64.0 ± 0.41%
Perinatal 0 100.0 ± 0.01% 100.0 ± 0.03% 100.0 ± 0.03%
Pregnancy 0 98.8 ± 0.04% 99.3 ± 0.30% 99.5 ± 0.24%
Respiratory 1 53.3 ± 0.15% 53.6 ± 0.87% 53.3 ± 0.81%
Skin 0 76.7 ± 0.25% 85.1 ± 1.50% 85.3 ± 1.13%
Unknown 0 100.0 ± 0.01% 100.0 ± 0.03% 100.0 ± 0.03%

Table 8: All discharge locations we predict on the MIMIC-III cohort, along with the percent of patient-hours in the train set
across all 5 splits.

Class 24H 48H

Train Tuning Held-out Test Train Tuning Held-out Test

Long Term Care Hospital 1.0 ± 6.07% 1.0 ± 5.96% 1.0 ± 5.80% 1.9 ± 10.96% 1.9 ± 10.68% 1.8 ± 10.55%
Rehab/Distinct Part Hosp 3.8 ± 11.04% 3.8 ± 11.12% 3.9 ± 11.23% 7.0 ± 20.01% 7.1 ± 20.06% 7.1 ± 20.20%
Home Health Care 8.6 ± 16.23% 8.6 ± 16.23% 8.6 ± 16.09% 15.9 ± 29.41% 15.9 ± 29.40% 15.8 ± 29.22%
Disc-Tran Cancer/Chldrn H 0.5 ± 4.25% 0.5 ± 4.16% 0.5 ± 4.14% 0.9 ± 7.58% 0.8 ± 7.40% 0.8 ± 7.37%
Short Term Hospital 0.3 ± 3.66% 0.4 ± 3.73% 0.4 ± 3.83% 0.6 ± 6.55% 0.6 ± 6.61% 0.7 ± 6.75%
Icf 0.0 ± 1.50% 0.0 ± 1.33% 0.0 ± 1.47% 0.1 ± 2.61% 0.1 ± 2.26% 0.1 ± 2.48%
Disc-Tran To Federal Hc 0.0 ± 0.62% 0.0 ± 0.01% 0.0 ± nan% 0.0 ± 1.19% 0.0 ± 0.03% 0.0 ± nan%
Disch-Tran To Psych Hosp 0.4 ± 4.20% 0.3 ± 3.86% 0.4 ± 4.13% 0.7 ± 7.29% 0.6 ± 6.80% 0.7 ± 7.22%
Other Facility 0.0 ± 1.30% 0.0 ± 1.19% 0.0 ± 0.01% 0.1 ± 2.36% 0.1 ± 2.13% 0.0 ± 0.03%
Home With Home Iv Providr 0.0 ± 1.42% 0.1 ± 1.60% 0.1 ± 1.72% 0.1 ± 2.50% 0.1 ± 2.90% 0.1 ± 3.01%
Home 9.1 ± 17.60% 9.3 ± 17.76% 9.2 ± 17.66% 16.3 ± 30.90% 16.6 ± 31.15% 16.5 ± 31.05%
Left Against Medical Advi 0.2 ± 2.66% 0.2 ± 2.72% 0.2 ± 2.74% 0.3 ± 4.61% 0.3 ± 4.73% 0.3 ± 4.75%
Hospice-Medical Facility 0.1 ± 1.86% 0.1 ± 1.65% 0.1 ± 1.66% 0.2 ± 3.36% 0.2 ± 3.06% 0.2 ± 3.02%
No Discharge 57.7 ± 24.68% 57.7 ± 24.57% 57.7 ± 24.79% 27.6 ± 26.58% 27.5 ± 26.45% 27.6 ± 26.60%
Snf 5.5 ± 13.24% 5.5 ± 13.32% 5.3 ± 13.09% 10.0 ± 23.95% 10.1 ± 24.02% 9.9 ± 23.79%
Hospice-Home 0.3 ± 3.18% 0.3 ± 3.04% 0.2 ± 2.97% 0.5 ± 5.73% 0.5 ± 5.52% 0.5 ± 5.47%
Snf-Medicaid Only Certif 0.0 ± 0.32% nan ± nan% nan ± nan% 0.0 ± 0.61% nan ± nan% nan ± nan%
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Table 9: All discharge locations we predict for the eICU cohort, along with the percent of patient-hours in the train set across
all 5 splits.

Class 24H 48H

Train Tuning Held-out Test Train Tuning Held-out Test

0.3 ± 3.93% 0.3 ± 3.88% 0.3 ± 3.92% 0.5 ± 5.74% 0.5 ± 5.79% 0.5 ± 5.81%
Other 1.4 ± 8.63% 1.5 ± 8.84% 1.4 ± 8.75% 2.1 ± 12.08% 2.2 ± 12.18% 2.1 ± 12.00%
Other External 1.5 ± 8.56% 1.5 ± 8.47% 1.6 ± 8.64% 2.4 ± 12.55% 2.4 ± 12.44% 2.5 ± 12.63%
Other Hospital 0.9 ± 6.68% 0.9 ± 6.56% 0.9 ± 6.53% 1.5 ± 9.91% 1.4 ± 9.68% 1.4 ± 9.67%
Skilled Nursing Facility 5.6 ± 15.51% 5.6 ± 15.52% 5.6 ± 15.56% 8.8 ± 22.67% 8.9 ± 22.79% 8.8 ± 22.71%
No Discharge 48.2 ± 26.67% 48.2 ± 26.73% 48.2 ± 26.71% 21.6 ± 24.60% 21.7 ± 24.74% 21.7 ± 24.68%
Nursing Home 0.4 ± 4.20% 0.4 ± 4.30% 0.4 ± 4.22% 0.6 ± 6.13% 0.6 ± 6.38% 0.6 ± 6.36%
Home 27.8 ± 28.14% 27.6 ± 28.13% 27.6 ± 28.06% 40.2 ± 35.95% 39.9 ± 36.03% 40.0 ± 35.98%
Rehabilitation 2.0 ± 9.46% 1.9 ± 9.30% 2.0 ± 9.30% 3.2 ± 14.15% 3.1 ± 13.96% 3.2 ± 14.00%

Table 10: The prevalence for the various classes for our “Final Acuity” (ACU) task on the eICU cohort, averaged over all 5
rotations.

Label Class Train Tuning Held-out Test

0.8 ± 0.01% 0.8 ± 0.10% 0.8 ± 0.11%
Other 3.4 ± 0.04% 3.4 ± 0.14% 3.3 ± 0.33%
In-Hospital Mortality 3.5 ± 0.05% 3.6 ± 0.29% 3.6 ± 0.32%
Other External 4.1 ± 0.03% 4.1 ± 0.16% 4.2 ± 0.10%
Other Hospital 2.6 ± 0.06% 2.5 ± 0.31% 2.5 ± 0.31%
In-ICU Mortality 4.7 ± 0.01% 4.8 ± 0.15% 4.8 ± 0.17%
Skilled Nursing Facility 14.7 ± 0.03% 14.9 ± 0.47% 14.7 ± 0.56%
Home 59.7 ± 0.10% 59.2 ± 0.39% 59.4 ± 0.64%
Nursing Home 1.0 ± 0.01% 1.1 ± 0.12% 1.1 ± 0.12%
Rehabilitation 5.5 ± 0.01% 5.5 ± 0.31% 5.6 ± 0.30%

Table 11: The prevalence for the various classes for our “Final Acuity” (ACU) task on the MIMIC-III cohort, averaged over all
5 rotations.

Label Class Train Tuning Held-out Test

Long Term Care Hospital 3.7 ± 0.07% 3.7 ± 0.41% 3.6 ± 0.38%
Rehab/Distinct Part Hosp 13.2 ± 0.08% 13.4 ± 0.84% 13.4 ± 0.59%
Disc-Tran Cancer/Chldrn H 1.5 ± 0.05% 1.5 ± 0.31% 1.5 ± 0.28%
Home Health Care 25.3 ± 0.24% 25.2 ± 1.34% 25.3 ± 1.15%
Short Term Hospital 1.1 ± 0.05% 1.1 ± 0.22% 1.1 ± 0.18%
Icf 0.1 ± 0.01% 0.1 ± 0.06% 0.1 ± 0.06%
Disc-Tran To Federal Hc 0.0 ± 0.00% 0.1 ± 0.03% 0.0 ± nan%
Disch-Tran To Psych Hosp 1.0 ± 0.03% 0.9 ± 0.13% 1.0 ± 0.23%
In-Hospital Mortality 3.7 ± 0.07% 3.4 ± 0.23% 3.7 ± 0.55%
In-ICU Mortality 7.4 ± 0.05% 7.5 ± 0.48% 7.5 ± 0.42%
Home 24.0 ± 0.08% 24.3 ± 0.38% 24.0 ± 0.50%
Left Against Medical Advi 0.4 ± 0.03% 0.4 ± 0.16% 0.4 ± 0.16%
Home With Home Iv Providr 0.1 ± 0.01% 0.2 ± 0.11% 0.2 ± 0.08%
Other Facility 0.1 ± 0.01% 0.1 ± 0.06% 0.1 ± 0.04%
Hospice-Medical Facility 0.3 ± 0.03% 0.3 ± 0.16% 0.3 ± 0.16%
Snf 17.3 ± 0.12% 17.2 ± 0.75% 16.9 ± 0.53%
Hospice-Home 0.9 ± 0.03% 0.8 ± 0.14% 0.8 ± 0.19%
Snf-Medicaid Only Certif 0.0 ± 0.00% nan ± nan% nan ± nan%
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Figure 6: Performance in macro-averaged AUROC (y-axis) of various PT/FT models (linestyle) across various FT dataset sub-
sampling rates (x-axis), over all FT tasks (subplots) for MIMIC-III.



EHR Pre-training Benchmark ACM CHIL ’21, April 8–10, 2021, Virtual Event, USA

Figure 7: The difference between various FT modes and ST results on MIMIC-III.
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Figure 8: Performance in macro-averaged AUROC (y-axis) of various PT/FT models (linestyle) across various FT dataset sub-
sampling rates (x-axis), over all FT tasks (subplots) for eICU.
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Figure 9: The difference between various FT modes and ST results on eICU.
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Figure 10: We examine the value either for a downstream task or by a downstream task in the context of multi-task ensemble
makeup. On the left, we show, for each task on the x-axis, the performance difference on that task (y-axis) between a MT
learning setting where a single other task (colored dot) is omitted from the ensemble vs. a full MT learning ensemble. This
plot also shows an overall histogram of these discrepancies to its left. On the right, we show the transpose view – for any given
task (x-axis), we plot how much performance on other tasks (colored dots) is improved (y-axis) by including the x-axis task in
the learning ensemble. The same numbers are summarized in both plots, just from differing perspectives (in particular, the
coordinates in the right plot are negated and transposed from those in the left). We see that, like our global finding, there is
minimal evidence of any general positive or negative transfer here – instead, any relationships are highly task specific, and
on average no transfer is observed one way or another. Note that while these results suggest there is no universal negative
transfer, they do suggest that negative transfer is quite likely in a generic MT setting without careful consideration.
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Table 12: The Hyperopt search space we used in this work.
Distributions are noted in pseudocode, but typically refer di-
rectly to the appropriate analog in Hyperopt (e.g., a uniform
distribution over an integral parameter maps to the quan-
tized uniform distribution that only outputs integers).

Hyperparameter Search Space

# Epochs Uniform[10, 35]
Batch Size Uniform[8, 512]
Learning Rate (LR) Lognormal[-7, 0.5]
LR Decay Loguniform[-2.3, 0]
Hidden Dropout Uniform[0, 0.5]
Hidden Size Uniform[8, 256]
Weight Decay Uniform[0, 1]
Input Window Size (h) Uniform[12, 168]
Bidirectional Choice[True, False]
# Hidden Layers Uniform[1, 4]
Encoder Hidden Layer Size Uniform[8, 512]
GRU Pooling Method Choice[max, avg, last]
GRU FC Layer Base Size Uniform[8, 512]
GRU FC Layer Growth Loguniform[-1.1, 1.1]

Table 13: How many random train/test splits are used to
produce each experimental setting shown in this work for
MIMIC-III. Unless otherwise stated, the same number of
samples are used across all few-shot fractions under a given
setting.

PT/FT Regime MI FTD MI FTF MT FTD MT FTF ST
Task

ACU 5 5 6 6 5
FTS 5 5 6 6 5
ICD 5 5 6 6 5
DIS 5 5 6 6 5
DNR 5 5 6 6 5
REA 5 5 6 6 5
MOR 5 5 6 6 5
LOS 5 5 6 6 5
CMO 5 5 6 6 5
WBM 5 5 6 6 5

Table 14: Howmany random train/test splits are used to pro-
duce each experimental setting shown in this work for eICU.
Unless otherwise stated, the same number of samples are
used across all few-shot fractions under a given setting.

PT/FT Regime MI FTD MI FTF MT FTD MT FTF ST
Task

ACU 5 5 5 5 5
DIS 5 5 5 5 5
MOR 5 5 5 5 5
LOS 5 5 5 5 5
WBM 5 5 5 5 5

MIMIC-III eICU

ACU −0.02 ± 0.02 0.01 ± 0.02
CMO 0.02 ± 0.02
DIS 0.0 ± 0.01 0.0 ± 0.01
DNR 0.01 ± 0.03
FTS 0.0 ± 0.01
ICD −0.07 ± 0.04
LOS −0.02 ± 0.03 −0.0 ± 0.02
MOR −0.0 ± 0.01 0.01 ± 0.01
REA 0.01 ± 0.04
WBM −0.08 ± 0.03 −0.01 ± 0.02

Table 15: Difference between full multi-task hyperparame-
ter search results and single-task results across datasets and
tasks.We see no systematic preference towards eithermulti-
task or single-task results.
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