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CONSISTENCY GUARANTEES FOR GREEDY

PERMUTATION-BASED CAUSAL INFERENCE ALGORITHMS

LIAM SOLUS, YUHAO WANG, AND CAROLINE UHLER

Abstract. Directed acyclic graphical models, or DAG models, are widely

used to represent complex causal systems. Since the basic task of learning
such a model from data is NP-hard, a standard approach is greedy search over

the space of directed acyclic graphs or Markov equivalence classes of directed

acyclic graphs. As the space of directed acyclic graphs on p nodes and the
associated space of Markov equivalence classes are both much larger than the

space of permutations, it is desirable to consider permutation-based greedy

searches. Here, we provide the first consistency guarantees, both uniform and
high-dimensional, of a greedy permutation-based search. This search corre-

sponds to a simplex-like algorithm operating over the edge-graph of a sub-

polytope of the permutohedron, called a DAG associahedron. Every vertex
in this polytope is associated with a directed acyclic graph, and hence with a

collection of permutations that are consistent with the directed acyclic graph
ordering. A walk is performed on the edges of the polytope maximizing the

sparsity of the associated directed acyclic graphs. We show via simulated and

real data that this permutation search is competitive with current approaches.

1. Introduction

Bayesian networks, or DAG models, are widely used to model complex causal
systems arising, for example, in computational biology, epidemiology, or sociology
[8, 24, 27, 29]. Given a directed acyclic graph, i.e., a DAG, G := ([p], A) with
node set [p] := {1, 2, . . . , p} and arrow set A, a DAG model associates to each
node i ∈ [p] of G a random variable Xi. By the Markov property, G encodes a
set of conditional independence relations Xi ⊥⊥ XNd(i)\Pa(i) |XPa(i), where Nd(i)
and Pa(i), respectively, denote the nondesendants and parents of the node i in G.
A joint distribution P on X1, . . . , Xp is said to satisfy the Markov assumption, or
be Markov, with respect to G if it entails these conditional independence relations.
This paper is concerned with the structural learning problem: Suppose we sample
from a distribution P that is Markov with respect to a DAG G∗. If we infer from
this data a collection of conditional independence relations C, can we recover the
unknown DAG G∗ using C?

In general, this problem is not well-defined since multiple DAGs can encode the
same set of conditional independence relations. Any two such DAGs are termed
Markov equivalent, and they are said to belong to the same Markov equivalence
class. Thus, our goal becomes to identify the Markov equivalence classM(G∗) of G∗.
The Markov assumption alone is not sufficient to guarantee identifiability, and so
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greedy search; pointwise and high-dimensional consistency; faithfulness; generalized permutohe-
dron; DAG associahedron.
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additional identifiability assumptions have been studied, the most prominent being
faithfulness [29]. Unfortunately, this assumption has been shown to be restrictive
in practice [36]. Hence, it is desirable to develop structure learning algorithms that
are consistent under strictly weaker assumptions than faithfulness.

Since the space of all Markov equivalence classes of DAGs on p nodes grows
super-exponentially in p [13], one way to perform structure learning is to use greedy
approaches. For example, the greedy equivalence search [4, 20] greedily maximizes
a score, such as the Bayesian information criterion, over the space of all Markov
equivalence classes on p nodes. An alternative approach is to consider algorithms
with a reduced search space, such as the space of all p! linear extensions of DAGs;
i.e., the permutations of [p]. Greedy permutation-based algorithms combine both
of these heuristic approaches for DAG model learning. In recent decades, a variety
of greedy permutation-based algorithms have been proposed and analyzed. See,
for instance, [2, 6, 18, 28, 31]. However, all of these algorithms rely on heuristics
for sparse DAG recovery and are therefore not provably consistent, even under the
faithfulness assumption.

On the other hand, a non-greedy permutation-based algorithm known as the
sparsest permutation algorithm was introduced in [26], and it was shown to be
consistent under strictly weaker assumptions than faithfulness. Unfortunately, the
sparsest permutation algorithm must generate and score a DAG for each permu-
tation of {1, . . . , p}, and hence it runs in O(p!) time no matter the true under-
lying DAG model. Here, we provide the first consistency guarantees of a greedy
permutation-based algorithm for DAG model structure learning. This algorithm
is a greedy version of the sparsest permutation algorithm. Unlike its non-greedy
predecessor, the proposed algorithm scales to DAG structure discovery with hun-
dreds of variables, since only in the worst case does it have to search over all p!
permutations; e.g., when the true model is the complete graph. Such worst-case
behavior is to be expected since in general the problem of learning a DAG model is
NP-hard [5]. In addition, we show that our greedy sparsest permutation algorithm
is consistent under weaker assumptions than standardly assumed, which translates
into competitive performance in terms of structure recovery when compared to
currently popular algorithms on both simulated and real data.

2. Background

We refer the reader to Section A in the Supplementary Material for graph the-
ory definitions and notation. A fundamental result about DAG models is that the
complete set of conditional independence relations implied by the Markov assump-
tion for G is given by the d-separation relations in G [19, Section 3.2.2]; i.e., a
distribution P is Markov with respect to G if and only if XA ⊥⊥ XB |XC in P when-
ever A and B are d-separated in G given C. The faithfulness assumption asserts
that all conditional independence relations entailed by P are given by d-separations
in G [29].

Assumption 1 (Faithfulness Assumption). A distribution P satisfies the faithful-
ness assumption with respect to a DAG G = ([p], A) if for any pair of nodes i, j ∈ [p]
and any S ⊂ [p]\{i, j} we have that i ⊥⊥ j |S if and only if i is d-separated from j
given S in G.

All DAG model learning algorithms assume the Markov assumption, i.e. the for-
ward direction of the faithfulness assumption, and many of the classical algorithms
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Figure 1. For C = {1 ⊥⊥ 3}, we see the polytope A3(C), the
graphs Gπ and Gτ for the π = 123 and τ = 132, and a graph G
Markov equivalent to Gπ that is not a minimal independence map
of C. π and τ are related by transposing 2 and 3 in π and the arrow
2→ 3 in Gπ is covered.

also assume the converse. Unfortunately, the faithfulness assumption has been
shown to be restrictive in practice [36], and a number of relaxations of this assump-
tion have been suggested [25]. For example, restricted faithfulness is the weakest
known sufficient condition for consistency of the popular PC-algorithm [29].

Assumption 2 (Restricted faithfulness assumption). A distribution P satisfies the
restricted faithfulness assumption with respect to a DAG G = ([p], A) if it satisfies
the two conditions:

(1) (Adjacency Faithfulness) For all arrows i → j ∈ A we have that Xi 6⊥⊥
Xj |XS for all subsets S ⊂ [p]\{i, j}.

(2) (Orientation Faithfulness) For all unshielded triples (i, j, k) and all subsets
S ⊂ [p]\{i, k} such that i is d-connected to k given S, we have that Xi 6⊥⊥
Xk |XS .

By sacrificing computation time, some algorithms remain consistent under as-
sumptions that further relax restricted faithfulness, an example being the sparsest
permutation algorithm [26]: Let Sp denote the space of all permutations of length
p. Given a set of conditional independence relations C on [p], every permutation
π ∈ Sp is associated to a DAG Gπ as follows:

πi → πj ∈ A(Gπ) ⇔ i < j and πi 6⊥⊥ πj | {π1, . . . , πj}\{πi, πj}.
Examples of the DAGs Gπ appear in Figure 1. A DAG Gπ is known as a minimal

independence map with respect to C, since any DAG Gπ satisfies the minimality
assumption with respect to C, i.e., any conditional independence relation encoded
by a d-separation in Gπ is in C and any proper sub-DAG of Gπ encodes a conditional
independence relation that is not in C [23]. The sparsest permutation algorithm
searches over all DAGs Gπ for π ∈ Sp and returns a DAG that maximizes the score

score(C;G) :=

{
−|G| if G is Markov with respect to C,
−∞ otherwise,

where |G| denotes the number of arrows in G. In [26], it is shown that the spars-
est permutation algorithm is consistent under the sparsest Markov representation
assumption, which is strictly weaker than restricted faithfulness.
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Assumption 3 (Sparsest Markov representation assumption). A probability dis-
tribution P satisfies the sparsest Markov representation assumption with respect to
a DAG G if it is Markov with respect to G and |G| < |H| for every DAG H to which
P is Markov and which satisfies H /∈M(G).

The downside to the sparsest permutation algorithm is that it requires a search
over all p! permutations of the node set [p]. A typical approach to accommodate
a large search space is to pass to a greedy variant of the algorithm. To this end,
we analyze greedy variants of the sparsest permutation algorithm in the coming
section.

3. Greedy sparsest permutation algorithm

The sparsest permutation algorithm has a natural interpretation in the setting
of discrete geometry. The permutohedron on p elements, denoted Ap, is the convex
hull in Rp of all vectors obtained by permuting the coordinates of (1, 2, 3, . . . , p)T .
The sparsest permutation algorithm can be thought of as searching over the vertices
of Ap, since it considers the DAGs Gπ for each π ∈ Sp. Hence, a natural first step to
reduce the size of the search space is to contract all vertices of Ap that correspond to
the same DAG Gπ. This can be done via the following construction first presented
in [21].

Two vertices of the permutohedron Ap are connected by an edge if and only
if the permutations indexing the vertices differ by an adjacent transposition. We
associate a conditional independence relation to adjacent transpositions, and hence
to each edge of Ap; namely πi ⊥⊥ πi+1|{π1, . . . , πi−1} to the edge between

(π1, . . . , πi, πi+1, . . . , πp)
T and (π1, . . . , πi+1, πi, . . . , πp)

T .

In [21, Section 4], it is shown that given a set of conditional independence relations
C from a joint distribution P on [p], then contracting all edges in Ap corresponding
to conditional independence relations in C results in a convex polytope, which
we denote by Ap(C). Note that Ap(∅) = Ap. Furthermore, if the conditional
independence relations in C form a graphoid, i.e., they satisfy the semigraphoid
properties and the intersection property:

(1) if i ⊥⊥ j|S then j ⊥⊥ i|S,
(2) if i ⊥⊥ j|S and i ⊥⊥ k|{j} ∪ S, then i ⊥⊥ k|S and i ⊥⊥ j|{k} ∪ S,
(3) if i ⊥⊥ j|{k} ∪ S and i ⊥⊥ k|{j} ∪ S, then i ⊥⊥ j|S and i ⊥⊥ k|S,

then it was shown in [21, Theorem 7.1] that contracting edges in Ap that correspond
to conditional independence relations in C is the same as identifying vertices of
Ap that correspond to the same DAG. The semigraphoid properties hold for any
distribution. On the other hand, the intersection property holds, for example,
for strictly positive distributions. Another example of a graphoid is the set of
conditional independence relations C corresponding to all d-separations in a DAG.
In that case Ap(C) is also called a DAG associahedron [21]. The edge graph of the
polytope Ap(C), where each vertex corresponds to a different DAG, represents a
natural search space for a greedy version of the sparsest permutation algorithm.

Through a closer examination of the polytope Ap(C), we arrive at two greedy
versions of the sparsest permutation algorithm: one based on the geometry of Ap(C)
by walking along edges of the polytope and another based on the combinatorial
description of the vertices by walking from DAG to DAG. These two greedy versions
of the sparsest permutation algorithm are given in Algorithms 1 and 2.
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Algorithm 1: The Edge Sparsest Permutation Algorithm

Input : A set of conditional independence relations C on node set [p] and a
starting permutation π ∈ Sp.

Output: A minimal independence map G.

1 Compute the polytope Ap(C) and set G := Gπ.

2 Using a depth-first search approach with root G along the edges of Ap(C),
search for a minimal independence map Gτ with |G| > |Gτ |. If no such Gτ
exists, return G; else set G := Gτ and repeat this step.

Both algorithms take as input a set of conditional independence relations C and
an initial permutation π ∈ Sp. Beginning at the vertex Gπ of Ap(C), Algorithm 1
walks along an edge of Ap(C) to any vertex whose corresponding DAG has at
most as many arrows as Gπ. Once it can no longer discover a sparser DAG, the
algorithm returns the last DAG it visited, from which we deduce the corresponding
Markov equivalence class. Since this algorithm is based on walking along edges of
Ap(C), we call this greedy version the edge sparsest permutation algorithm. The
corresponding identifiability assumption can be stated as follows:

Assumption 4 (Edge assumption). A distribution P satisfies the edge assumption
with respect to a DAG G if it is Markov with respect to G and if Algorithm 1 returns
only DAGs in M(G).

Algorithm 1 requires computing the polytope Ap(C). This is inefficient, since an
edge walk in a polytope only requires knowing the neighbors of a vertex and not
the full polytope. In the following, we overcome this inefficiency by providing a
graphical characterization of neighboring DAGs.

We say that an arrow i → j in a DAG G is covered if Pa(i) = Pa(j) \ {i}
and it is trivially covered if Pa(i) = Pa(j) \ {i} = ∅. For example, the arrows
1→ 2 and 2→ 3 in the DAG Gπ in Figure 1 are both covered, but only the arrow
1→ 2 is trivially covered. In addition, we call a sequence of minimal independence
maps (Gπ1 ,Gπ2 , . . . ,GπN ) a weakly decreasing sequence if |Gπi | ≥ |Gπi+1 | for all
i ∈ [N −1]. If Gπi+1 is produced from Gπi by reversing a covered arrow in Gπi , then
we refer to this sequence as a weakly decreasing sequence determined by covered
arrow reversals. For instance, given the DAGs Gπ and Gτ from Figure 1, (Gπ,Gτ ) is
a weakly decreasing sequence determined by covered arrow reversals. Let Gπ and
Gτ denote two adjacent vertices in a DAG associahedron Ap(C). Let Ḡ denote the
skeleton of G; i.e., the undirected graph obtained by undirecting all arrows in G.
Then, as noted in [21, Theorem 8.3], Gπ and Gτ differ by a covered arrow reversal if
and only if Gπ ⊆ Gτ or Gτ ⊆ Gπ. In some instances, this fact gives a combinatorial
interpretation of all edges of Ap(C). However, this need not always be true as
demonstrated in Example 16 in Section A of the Supplementary Material.

The combinatorial description of some edges of Ap(C) via covered arrow rever-
sals motivates Algorithm 2, a combinatorial greedy sparsest permutation algorithm.
Since this algorithm is based on flipping covered arrows, we call this the triangle
sparsest permutation algorithm. Unlike Algorithm 1, this algorithm does not re-
quire computing the polytope Ap(C) and is thus the version run in practice. Similar
to Algorithm 1, we specify an identifiability assumption in relation to Algorithm 2.
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Algorithm 2: The Triangle Sparsest Permutation Algorithm

Input : A set of conditional independence relations C on node set [p] and a
starting permutation π ∈ Sp.

Output: A minimal independence map G.

1 Set G := Gπ.

2 Using a depth-first search approach with root G, search for a minimal
independence map Gτ with |G| > |Gτ | that is connected to G by a weakly
decreasing sequence determined by covered arrow reversals. If no such Gτ
exists, return G; else set G := Gτ and repeat this step.

Assumption 5 (Triangle assumption). A distribution P satisfies the triangle as-
sumption with respect to a DAG G if it is Markov with respect to G and if Algo-
rithm 2 returns only DAGs in M(G).

In the same way that the sparsest Markov representation assumption is precisely
the necessary and sufficient condition under which the sparsest permutation algo-
rithm is consistent, Assumption 4 and Assumption 5, respectively, are defined to be
the necessary and sufficient conditions under which Algorithm 1 and Algorithm 2,
respectively, are consistent. By associating an identifiability assumption with an
algorithm in this way, we can more easily describe which algorithms are consistent
for more distributions. It is straightforward to verify that every covered arrow re-
versal in some minimal independence map Gπ with respect to C corresponds to some
edge of the DAG associahedron Ap(C). Consequently, if a distribution satisfies the
triangle assumption then it also satisfies the edge assumption. In Theorem 11 we
show that both these assumptions are weaker than the faithfulness assumption, but
stronger than the sparsest Markov representation assumption.

4. Consistency Guarantees and Identifiability Implications

4.1. Consistency of the edge and triangle sparsest permutation algo-
rithms under faithfulness. In this section, we prove that both Algorithm 1
and Algorithm 2 are pointwise consistent under the faithfulness assumption; i.e.,
in the oracle-version as n→∞ the algorithm outputs the true Markov equivalence
class. First note that since the triangle assumption implies the edge assumption, it
is sufficient to prove pointwise consistency of Algorithm 2. To prove this, we need
to show that for given a set of conditional independence relations C corresponding
to d-separations in a DAG G∗, every weakly decreasing sequence determined by
covered arrow reversals ultimately leads to a DAG in M(G∗). Given two DAGs G
and H, H is an independence map of G, denoted by G ≤ H, if every conditional
independence relation encoded by H holds in G (i.e. CI(G) ⊇ CI(H)). The follow-
ing simple result, whose proof is given in the Supplementary Material, reveals the
main idea of the proof.

Lemma 6. A probability distribution P on the node set [p] is faithful with respect
to a DAG G if and only if G ≤ Gπ for all π ∈ Sp.

The goal is to prove that for any pair of DAGs such that Gπ ≤ Gτ , there is a
weakly decreasing sequence determined by covered arrow reversals such that

(Gτ = Gπ0 ,Gπ1 ,Gπ2 , . . . ,GπM = Gπ) .
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Our proof relies heavily on Chickering’s consistency proof of greedy equivalence
search and, in particular, on his proof of a conjecture known as Meek’s conjecture.

Theorem 7. [4, Theorem 4] Let G and H be any pair of DAGs such that G ≤ H.
Let r be the number of arrows in H that have opposite orientation in G, and let m
be the number of arrows in H that do not exist in either orientation in G. There
exists a sequence of at most r + 2m arrow reversals and additions in G with the
following properties:

(1) Each arrow reversal is a covered arrow.
(2) After each reversal and addition, the graph G′ is a DAG and G′ ≤ H.
(3) After all reversals and additions G = H.

In [4], a constructive proof of this result is given via the APPLY-EDGE-
OPERATION algorithm. For convenience, we will henceforth refer to this algorithm
as the Chickering algorithm. The Chickering algorithm takes in an independence
map G ≤ H and adds an arrow to G or reverses a covered arrow in G to produce a
new DAG G1 for which G ≤ G1 ≤ H. By Theorem 7, repeated applications of this
algorithm produces a sequence of graphs

G = G0 ≤ G1 ≤ G2 ≤ · · · ≤ GN = H.

We will call any sequence of DAGs produced in this fashion a Chickering sequence
from G to H. A quick examination of the Chickering algorithm reveals that there
can be multiple Chickering sequences from G toH. We are interested in identifying a
specific type of Chickering sequence in which the covered arrow reversals and edge
additions correspond to steps between minimal independence maps in a weakly
decreasing sequence.

Given two DAGs Gπ ≤ Gτ , Algorithm 2 proposes that there is a path along
the edges of Ap(C) corresponding to covered arrow reversals taking us from Gτ
to Gπ, say (Gτ = Gπ0 ,Gπ1 ,Gπ2 , . . . ,GπM = Gπ) , for which |Gπj−1 | ≥ |Gπj | for all
j = 1, . . . ,M . Recall that we call such a sequence of minimal independence maps
satisfying the latter property a weakly decreasing sequence determined by covered
arrow reversals. If such a weakly decreasing sequence exists from any Gτ to Gπ,
then Algorithm 2 must find it. By definition, such a path is composed of covered
arrow reversals and arrow deletions. Since these are precisely the types of moves
used in the Chickering algorithm, then we must understand the subtleties of the
relationship between independence maps relating the DAGs Gπ for a collection of
conditional independence relations C and the skeletal structure of the Gπ. To this
end, we will use the following two definitions: We will denote that two DAGs G
and H are Markov equivalent by G ≈ H. A minimal independence map Gπ with
respect to a graphoid C is called Markov equivalence class-minimal if for all G ≈ Gπ
and linear extensions τ of G we have that Gπ ≤ Gτ . Notice by [21, Theorem 8.1], it
suffices to check only one linear extension τ for each G. The minimal independence
map Gπ is further called Markov equivalence class-s-minimal if it is class-minimal
and Gπ ⊆ Gτ for all G ≈ Gπ and linear extensions τ of G. We are now ready to state
the main proposition that allows us to verify consistency of Algorithm 2 under the
faithfulness assumption.

Proposition 8. Suppose that C is a graphoid and Gπ and Gτ are minimal indepen-
dence maps with respect to C. Then
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(a) if Gπ ≈ Gτ and Gπ is class-s-minimal then there exists a weakly decreasing
edgewalk from Gπ to Gτ along Ap(C). In particular, any Chickering sequence
connecting Gτ and Gπ is a sequence of Markov equivalent minimal indepen-
dence maps;

(b) if Gπ ≤ Gτ but Gπ 6≈ Gτ then there exists a minimal independence map Gτ ′
with respect to C satisfying Gτ ′ ≤ Gτ that is strictly sparser than Gτ and is
connected to Gτ by a weakly decreasing edgewalk along Ap(C).

The proof of Proposition 8 can be found in the Supplementary Material. We
see from Proposition 8 (a) that class-s-minimality is simply a formality required
to guarantee that moving between Markov equivalent minimal independence maps
via covered arrow reversals is equivalent to moving along the edge graph of the
associahedron Ap(C). Recall that, unlike edgewalks along Ap(C), not all Chicker-
ing sequences are sequences of minimal independence maps. Instead, a single move
along an edge of Ap(C) is given by reversing a covered arrow to produce a Markov
equivalent graph, taking a linear extension of that graph, and then computing the
associated minimal independence map. For instance, a single edge of the associa-
hedron depicted in Figure 1 corresponds to transforming the DAG Gπ into G and
then into Gτ . Intuitively, by Lemma 6 and Theorem 7, one would expect that we
can always move in such a fashion from a minimal independence map to a sparser
one that better approximates the sparsest minimal independence map Gπ∗ . Propo-
sition 8 (b) says this intuition is correct, and Proposition 8 (a) ensures that once
we make it to the Markov equivalence class of the sparsest minimal independence
map, moving between elements of the class is equivalent to moving along the edge
graph of Ap(C). These ideas form the basis for the proof of the following theorem.

Theorem 9. Algorithms 1 and 2 are pointwise consistent under the faithfulness
assumption.

Proof. Since the triangle assumption implies the edge assumption, it suffices to
prove consistency of the triangle sparsest permutation algorithm. Suppose that C
is a graphoid that is faithful to the sparsest minimal independence map Gπ∗ with
respect to C. By Lemma 6, we know that Gπ∗ ≤ Gπ for all π ∈ Sp. By (b) of
Proposition 8, if Algorithm 2 is at a minimal independence map Gτ that is not in
the same Markov equivalence class as G∗π, then we can take a weakly decreasing
edgewalk along Ap(C) to reach a sparser minimal independence map Gτ ′ satisfying
Gπ∗ ≤ Gτ ′ ≤ Gτ . Following repeated applications of Proposition 8 (b), the algorithm
eventually returns a minimal independence map in the Markov equivalence class of
Gπ∗ . In order for the algorithm to verify that it is in the correct Markov equivalence
class, it needs to compute a minimal independence map Gτ for a linear extension τ
for each DAG G ≈ Gπ∗ and check that it is not sparser than Gπ∗ . Proposition 8 (a)
states that any such minimal independence map Gτ is connected to Gπ∗ by a weakly
decreasing edgewalk along Ap(C). In other words, the Markov equivalence class of
Gπ∗ is a connected subgraph of the edge graph of Ap(C), and hence the algorithm
can verify that it has reached the sparsest Markov equivalence class and terminate.
Thus, Algorithm 2 is pointwise consistent under the faithfulness assumption. �

4.2. Consistency of Algorithm 2 using the Bayesian information criterion.
We now show that a version of Algorithm 2 that uses the Bayesian information cri-
terion instead of graph sparsity is also consistent under faithfulness. This algorithm
is Algorithm 3, and it is constructed in analogy to the methods studied in [31].
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Algorithm 3: Triangle Sparsest Permutation Algorithm with Bayesian in-
formation criterion

Input : Observations X̂, initial permutation π.
Output: Permutation π̂ with DAG Gπ̂.

1 Set Ĝπ := argmax
G consistent with permutationπ

BIC(G; X̂).

2 Using a depth-first search approach with root π, search for a permutation τ

with BIC(Ĝτ ; X̂) > BIC(Ĝπ; X̂) that is connected to π through a sequence
of permutations (π1, · · · , πk) where each permutation πi is produced from

πi−1 by first doing a covered arrow reversal Ĝπi−1
and selecting a linear

extension πi of the DAG Ĝπi−1
. If no such Ĝτ exists, return Ĝπ; else set

π := τ and repeat.

Theorem 10. Algorithm 3 is pointwise consistent under the faithfulness assump-
tion.

Theorem 10 is proven in Section B of the Supplementary Material. It is based
on the fact that the Bayesian information criterion is locally consistent. This fact
follows from the first line of the proof of [4, Lemma 7], which states that Bayesian
scoring is locally consistent. We note that Algorithm 3 differs from the ordering-
based search method proposed in [31] in two main ways: First, Algorithm 3 selects
each new permutation by a covered arrow reversal in the associated independence
maps. Second, it uses a depth-first-search approach instead of greedy hill-climbing.
In particular, our search guarantees that any independence map of minimal inde-
pendence maps Gπ ≤ Gτ are connected by a Chickering sequence. The proof of
Theorem 10 then follows since |Gτ | < |Gπ| if and only if BIC(Gτ ; X̂) > BIC(Gπ; X̂),
for any minimal independence maps Gπ and Gτ . However, since this fact does not
hold for arbitrary DAGs satisfying the Markov assumption with respect to a given
distribution, the algorithm of [31] lacks known consistency guarantees.

4.3. Beyond faithfulness. We now examine the relationships between the edge,
triangle, sparsest Markov representation, faithfulness, and restricted faithfulness
assumptions. All proofs for this section can be found in Section B of the Supple-
mentary Material.

Theorem 11. Faithfulness implies Assumption 5, which implies Assumption 4,
which implies the sparsest Markov representation assumption. Moreover, all impli-
cations are strict.

It is clear from the definition that restricted faithfulness is a significantly weaker
assumption than faithfulness. In [26, Theorem 2.5] it was shown that the sparsest
Markov representation assumption is strictly weaker than restricted faithfulness.
In the following, we compare restricted faithfulness to the triangle assumption and
show that the restricted faithfulness assumption is not weaker than the triangle
assumption.

Theorem 12. Let P be a semigraphoid w.r.t. a DAG G. If P satisfies the triangle
assumption, then P satisfies adjacency faithfulness with respect to G. However,
there exist distributions P such that P satisfies the triangle assumption with respect
to a DAG G and P does not satisfy orientation faithfulness with respect to G.
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Algorithm 4: The Greedy Sparsest Permutation Algorithm

Input : A set of conditional independence relations C on node set [p], and
two positive integers d and r.

Output: A minimal independence map Gπ.

1 Set R := 0, and Y := ∅.
2 while R < r do
3 Select a permutation π ∈ Sn and set G := Gπ.

4 Using a depth-first search approach with root G, search for a minimal
independence map Gτ with |G| > |Gτ | that is connected to G by a
weakly decreasing sequence determined by covered arrow reversals that
is length at most d.

5 if no such Gτ exists then
6 set Y := Y ∪ {G}, R := R+ 1, and go to step 2.

7 else
8 set G := Gτ and go to step 4.

9 end

10 end

11 Return the sparsest DAG Gπ in the collection Y .

4.4. The problem of Markov equivalence. It is important to note that in
contrast to for example the PC-algorithm, Algorithms 1 and 2 may need to search
over DAGs that belong to the same Markov equivalence class. This is due to
the fact that two DAGs in the same Markov equivalence class differ only by a
sequence of covered arrow reversals [3, Theorem 2]. Thus, the greedy nature of
Algorithm 2 can leave us searching through large portions of Markov equivalence
classes until we identify a sparser minimal independence map. In particular, in order
for Algorithm 2 to terminate, it must visit all members of the Markov equivalence
class M(G∗).

To address this problem, Algorithm 4 provides a parametrized alternative that
approximates Algorithm 2. We call this algorithm the greedy sparsest permutation
algorithm since this is the version that we run in practice; see Section 6. The
greedy sparsest permutation algorithm operates exactly like Algorithm 2, with the
exception that it bounds the search depth d and number of runs r allowed before
the algorithm terminates. Recall that Algorithm 2 searches for a weakly decreasing
edge-walk from a minimal independence map Gπ to another Gτ with |Gπ| > |Gτ | via
a depth-first-search approach. In Algorithm 4, if this search step does not produce a
sparser minimal independence map after searching up to and including depth d, the
algorithm terminates and returns Gπ. The computational analysis in [13] suggests
that the average Markov equivalence class contains four graphs. This suggests that
a search depth of 4 is, on average, sufficient for escaping a Markov equivalence
class of minimal independence maps. This intuition is verified via simulations in
Section 6.

5. Uniform Consistency

In this section we show that minor adjustments can turn Algorithm 2 into Al-
gorithm 5, which is uniformly consistent in the high-dimensional Gaussian setting.
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Algorithm 5: A High-dimensional Greedy Sparsest Permutation Algorithm

Input: Observations X̂, threshold λ, and initial permutation π0.
Output: Permutation π̂ together with the DAG Ĝπ̂.

1 Construct the minimal independence map Ĝπ0 from the initial permutation

π0 and X̂;

2 Perform Algorithm 2 with constrained conditioning sets, i.e., let i→ j be a
covered arrow and let S = pa(i) = pa(j) \ {i}; perform the edge flip,
i.e. i← j, and update the DAG by removing edges (k, i) for k ∈ S such
that |ρ̂i,k|(S∪{j}\{k})| ≤ λ and edges (k, j) for k ∈ S such that
|ρ̂j,k|(S\{k})| ≤ λ.

In particular, Algorithm 5 only tests conditioning sets made up of parent nodes
of covered arrows. This feature turns out to be critical for high-dimensional con-
sistency. Recently, it was shown that a variant of greedy equivalence search is
consistent in the high-dimensional setting [22]. Similarly to this approach, by as-
suming sparsity of the initial DAG, we obtain uniform consistency of the triangle
sparsest permutation algorithm in the high-dimensional setting, i.e., it converges
to the data-generating DAG when p scales with n.

Letting the dimension p grow as a function of the sample size n, we write p = pn.
Similarly, for the true underlying DAG and the data-generating distribution we let
G∗ = G∗n and P = Pn, respectively. The assumptions under which we will guarantee
high-dimensional consistency of Algorithm 5 are as follows:

(1) Pn is multivariate Gaussian and faithful to the DAG G∗n for all n.
(2) The number of nodes pn scales as pn = O(na) for some 0 ≤ a < 1.
(3) Given an initial permutation π0, the maximal degree dπ0

of the corre-
sponding minimal independence map Gπ0

satisfies dπ0
= O(n1−m) for some

0 < m ≤ 1.
(4) There exists M < 1 and cn > 0 such that all non-zero partial correlations

ρi,j|S satisfy |ρi,j|S | ≤ M and |ρi,j|S | ≥ cn where c−1
n = O(n`) for some

0 < ` < m/2.

Analogous to the conditions needed in [15], assumptions (1), (2), (3), and (4) relate
to faithfulness, the scaling of the number of nodes with the number of observations,
the maximum degree of the initial DAG, and bounds on the minimal non-zero and
maximal partial correlations, respectively. In the Gaussian setting, the conditional
independence relation Xj ⊥⊥ Xk|XS is equivalent to the partial correlation ρj,k|S =
corr(Xj , Xk|XS) equaling zero, and a hypothesis test based on Fischer’s z-transform
can be used to test whether Xj ⊥⊥ Xk|XS . Combining these facts, we arrive at the
following theorem.

Theorem 13. Suppose that assumptions (1), (2), (3), and (4) hold and let the
threshold λ in Algorithm 5 be defined as λ := cn/2. Then there exists a constant

c > 0 such that Algorithm 5 is consistent, i.e., it returns a DAG Ĝπ̂ that is in the
same Markov equivalence class as G∗n, with probability at least 1−O{exp(−cn1−2`)},
where ` is defined to satisfy assumption (4).

As seen in the proof of Theorem 13, consistent estimation in the high-dimensional
setting requires that we initialize the algorithm at a permutation satisfying assump-
tion (3). This assumption corresponds to a sparsity constraint. In the Gaussian
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Algorithm 6: A neighbor-based minimum degree algorithm

Input: Observations X̂, threshold λ
Output: Permutation π̂ together with the DAG Ĝπ̂
Set S := [p]; construct undirected graph ĜS with (i, j) ∈ ĜS if and only if
|ρ̂i,j|(S\{i,j})| ≥ λ;

while S 6= ∅ do
Uniformly draw node k from all nodes with the lowest degree in the
graph ĜS ;

Construct ĜS\{k} by first removing node k and its adjacent edges; then

update the graph ĜS\{k} as follows:

∀i, j ∈ adj(ĜS , k): if (i, j) not an edge in ĜS , add (i, j);

else (i, j) an edge in ĜS\{k} iff |ρ̂i,j|S\{i,j,k}| ≥ λ;

∀i, j /∈ adj(ĜS , k): (i, j) an edge in ĜS\{k} iff (i, j) an edge in ĜS .

Set π̂(k) := |S| and S := S \ {k}.
Output the minimal independence map Ĝπ̂ constructed from π̂ and X̂.

oracle setting the problem of finding a sparsest DAG is equivalent to finding the
sparsest Cholesky decomposition of the inverse covariance matrix [26]. Various
heuristics have been developed for finding sparse Cholesky decompositions, the
most prominent being the minimum degree algorithm [12, 33]. In Algorithm 6 we
provide a heuristic for finding a sparse minimal independence map Gπ that reduces
to the minimum degree algorithm in the oracle setting as shown in Theorem 15.
In Algorithm 6, for a subset of nodes S ⊂ [p] we let GS denote the vertex-induced
subgraph of G with node set S, and for k ∈ V we let adj(G, i) denote the nodes
k ∈ V \ {i} such that {i, k} ∈ E. The following theorem states that Algorithm 6 is
equivalent to the minimum degree algorithm [33] in the oracle setting.

Theorem 14. Let the data-generating distribution P be multivariate Gaussian with
precision matrix Θ. Then in the oracle-setting the set of possible output permuta-
tions from Algorithm 6 is equal to the possible output permutations of the minimum
degree algorithm applied to Θ.

The following result shows that Algorithm 6 in the non-oracle setting is also
equivalent to the minimum degree algorithm in the oracle setting.

Theorem 15. Suppose that assumptions (1), (2), and (4) hold, and let the thresh-
old λ in Algorithm 5 be defined as λ := cn/2. Then with probability at least
1 − O{exp(−cn1−2`)} the output permutation from Algorithm 6 is contained in
the possible output permutations of the minimum degree algorithm applied to Θ.

6. Simulations

The simulations presented in this section were done using the R library pcalg [17],
and linear structural equation models with Gaussian noise:

(X1, . . . , Xp)
T = {(X1, . . . , Xp)A}T + ε,

where ε ∼ N (0, Ip) with Ip being the p × p identity matrix and A = [aij ]
p
i,j=1 is,

without loss of generality, an upper-triangular matrix of edge weights with aij 6= 0
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(a) p = 10, λ = 0.001 (b) p = 10, λ = 0.01

(c) p = 10, λ = 0.1 (d) Legend

Figure 2. Expected neighborhood size versus proportion of con-
sistently recovered Markov equivalence classes based on 100 simu-
lations for each expected neighborhood size on DAGs with p = 10
nodes, edge weights sampled uniformly in [−1,−0.25] ∪ [0.25, 1],
and λ-values 0.1, 0.01 and 0.001. Greedy SP denotes Algorithm 4.
When r = 1 and d =∞ this is Algorithm 2.

if and only if i → j is an arrow in the underlying DAG G∗. For each simulation
study, we generated 100 realizations of a p-node random Gaussian DAG model on
an Erdös-Renyi graph for different values of p and expected neighborhood sizes; i.e.,
edge probabilities. The edge weights aij were sampled uniformly in [−1,−0.25] ∪
[0.25, 1], ensuring that the edge weights are bounded away from 0. We first analyzed
the oracle setting, where we have access to the true underlying covariance matrix
Σ. In the remaining simulations, n samples were drawn from the distribution
induced by the Gaussian DAG model for different values of n and p. In the oracle
setting, the conditional independence relations were computed by thresholding the
partial correlations using different thresholds λ. For the simulations with n samples,
conditional independence relations were estimated by applying Fisher’s z-transform
and comparing the derived p-values with a significance level α. In the oracle and
low-dimensional settings, the greedy equivalence search, denoted GES in all figures,
was simulated using the Bayesian information criterion. In the high-dimensional
setting, we used the `0-penalized maximum likelihood estimation score [22, 35].
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(a) p = 10, λ = 0.001 (b) p = 10, λ = 0.01

(c) p = 10, λ = 0.1 (d) Legend

Figure 3. Expected neighborhood size versus structural Ham-
ming distance between the true and recovered Markov equivalence
classes based on 100 simulations for each expected neighborhood
size on DAGs with p = 10 nodes, edge weights sampled uniformly
in [−1,−0.25] ∪ [0.25, 1], and λ-values 0.1, 0.01 and 0.001.

Figure 2 compares the proportion of consistently estimated DAGs in the or-
acle setting for Algorithm 4 with number of runs r ∈ {1, 5, 10} and depth d ∈
{1, 4, 5,∞}, the PC-algorithm, and the greedy equivalence search. Notice that the
instance of Algorithm 4 with parameter settings r = 1 and d = ∞ is the triangle
sparsest permutation algorithm; i.e. Algorithm 2. The number of nodes in these
simulations is p = 10, and we consider λ-values: 0.1, 0.01 and 0.001 for the PC-
algorithm and Algorithm 4. Note that we only run the greedy equivalence search
with n = 100, 000 samples since there is no oracle version for this algorithm. As
expected, increasing the number of runs for Algorithm 4 results in a consistently
higher rate of model recovery. In addition, for each fixed number of runs, Algo-
rithm 4 with search depth d = 4 performs similarly to d = ∞, in line with the
observation that the average Markov equivalence class has 4 elements, as discussed
in Section 4.4. For this reason, we recommend setting the search depth d = 4. Re-
garding the choice of r, in the low-dimensional setting we have found that choosing
r to be of the same magnitude as the number of nodes p produces good estimates.
To accelerate computations, for high-dimensional sparse graphs with large p, we
used d = 1 and r = 50; see Figure 6.
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For each run, we also recorded the structural Hamming distance between the
true and the recovered Markov equivalence classes. Figure 3 shows the average
structural Hamming distance versus the expected neighborhood size of the true
DAG. While Figure 2 demonstrates that Algorithm 4 with search depth d = 4
and multiple runs learns the true Markov equivalence class at a higher rate than
the PC-algorithm and greedy equivalence search when λ is chosen small, Figure 3
shows that, for small values of d and r, when Algorithm 4 learns the wrong DAG
it is further off from the true DAG than the PC-algorithm. On the other hand, it
appears that this trend only holds for Algorithm 4 with a relatively small search
depth and few runs. That is, increasing the value of these parameters ensures that
the wrong DAG learned by Algorithm 4 will consistently be closer to the true DAG
than that learned by the PC-algorithm.

Recall that Algorithm 4 and the PC-algorithm can be sensitive to wrong condi-
tional independence test results. Each edge and non-edge in the DAG returned by
Algorithm 4 or the PC-algorithm is the result of a conditional independence test.
To get a sense of their respective sensitivities to wrong conditional independence
tests, in Figure 4 we report the number of true positives and false positives for di-
rected edge recovery and skeleton recovery. Each data point in the plots represent
the average number of true positives and false positives based on 100 simulated
models with p = 8 nodes and expected neighborhood size 4 with a fixed parameter
setting. For Algorithm 4 and the PC-algorithm, the reported data points corre-
spond to 14 chosen significance levels in the interval [0.00005, 0.6]. In practice, we
recommend tuning the significance level parameter via stability selection [16] as
described in Section 7. Similarly, for greedy equivalence search the reported data
points correspond to 14 different choices of the scaling constant c from the interval
[0.125, 100] for the `0-penalization parameter λn = c log(n). In Figure 4, we see that
Algorithm 4 generally outperforms greedy equivalence search and the PC-algorithm
in both directed edge and skeleton recovery with large enough sample size.

As noted in Section 3, we do not consider Algorithm 1 in these simulations.
Recall that Algorithm 2 relies on the fact that a, generally strict, subset of the
edges of the polytope Ap(C) have a combinatorial interpretation in terms of their
associated minimal independence maps, which makes moving between elements of
the search space easier to code. Since we do not have a complete combinatorial
characterization of all edges of Ap(C), implementing Algorithm 1 would require
generating a geometric realization of Ap(C) in a program such as polymake [11],
recovering the complete edge graph of this embedding, and then implementing our
search over this data structure. A natural line of follow-up research is to identify
a complete combinatorial interpretation of the edges of Ap(C) so as to allow for an
implementation of Algorithm 1 that does not require computing the entire polytope
Ap(C) and its edge graph. As shown in Theorem 11, an efficient implementation of
Algorithm 1 should recover the true DAG at a higher rate than Algorithm 2.

We then compared the recovery performance of Algorithm 4 to the sparsest per-
mutation algorithm, greedy equivalence search, the PC-algorithm and its original
version, denoted SGS in Figure 5, and the max-min hill-climbing algorithm [34],
which is denoted MMHC in Figure 5. This hybrid method first estimates a skeleton
through conditional independence testing and then performs a hill-climbing search
to orient the edges. We fixed the number of nodes to be p = 8 due to the compu-
tational limitations of the sparsest permutation algorithm, and considered sample
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(a) Directed edge; n = 1000 (b) Skeleton; n = 1000

(c) Directed edge; n = 10000 (d) Skeleton; n = 10000

Figure 4. Receiver operating characteristic curves for directed
edge recovery and skeleton recovery based on 100 simulations on
DAGs with 8 nodes, expected neighborhood size 4 and sample size
n ∈ {1000, 10000}. The dots denote GES, crosses is greedy SP,
and circles is PC.

sizes n = {1, 000, 10, 000}. We analyzed the performance of greedy equivalence
search using the Bayesian information criterion along with Algorithm 4 and the
PC-algorithm for α = {0.01, 0.001, 0.0001}. Figure 5 shows that the sparsest per-
mutation and greedy sparsest permutation algorithms achieve the best performance
among all algorithms. Since for computational reasons the sparsest permutation
algorithm cannot be applied to graphs with over 10 nodes, Algorithm 4 is the
preferable approach for most applications.

In the remainder of this section, we analyze the performance of Algorithm 5 in
the sparse high-dimensional setting. We compared the performance of Algorithm 5
with d = 1 and r = 50 with methods that have high-dimensional consistency
guarantees; namely the PC-algorithm [15] and greedy equivalence search [22, 35].
The initial permutation of Algorithm 6 and its associated minimal independence
map were used as a starting point in Algorithm 5, called high-dim greedy SP in
Figure 6. To understand the influence of accurately selecting an initial minimal
independence map on the performance of Algorithm 5, we also considered the case
when the moral graph of the data-generating DAG is given as prior knowledge;
these results appear in Figure 6 (d)-(f). Figure 6 compares the skeleton recovery of
Algorithm 5 with the PC-algorithm and greedy equivalence search, both without
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(a) n = 1, 000, α = 0.0001 (b) n = 1, 000, α = 0.001 (c) n = 1, 000, α = 0.01

(d) n = 10, 000, α = 0.0001 (e) n = 10, 000, α = 0.001 (f) n = 10, 000, α = 0.01

Figure 5. Expected neighborhood size versus proportion of con-
sistently recovered skeleta based on 100 simulations for each ex-
pected neighborhood size on DAGs with p = 8 nodes, sample
size n = 1, 000 and 10, 000, edge weights sampled uniformly in
[−1,−0.25]∪ [0.25, 1], and α-values 0.01, 0.001 and 0.0001; we used
r = 10 and d = 4 for the greedy sparsest permutation algorithm.

prior knowledge of the moral graph (subfigures (a)-(c)), and with prior knowledge
of the moral graph (subfigures (d)-(f)). We used the ARGES-CIG algorithm [22]
to run greedy equivalence search with knowledge of the moral graph.

The number of nodes in our simulations is p = 100, the number of samples
considered is n = 300, and the neighborhood sizes used are s = 0.2, 1 and 2. We
varied the tuning parameters of each algorithm; namely, the significance level α for
the PC-algorithm and Algorithm 5, and the penalization parameter λn for greedy
equivalence search. We reported the average number of true positives and false
positives for each tuning parameter in the plots shown in Figure 6. This figure shows
that, unlike the low-dimensional setting, although Algorithm 5 is still comparable
to the PC-algorithm and greedy equivalence search in the high-dimensional setting,
greedy equivalence search tends to achieve a slightly better performance in some of
the settings.

7. An Application to Real Data

In this section, we compare the performance of the greedy sparsest permutation
algorithm, i.e., Algorithm 4, with that of the PC-algorithm and greedy equiva-
lence search on the task of gene regulatory network recovery. We consider the
perturb-seq data set [7] containing both observational and interventional data from
bone-marrow derived dendritic cells. Each data point contains gene expression
measurements of 32,777 genes; each interventional data point is sampled from a
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(a) s = 0.2, n = 300 (b) s = 1, n = 300 (c) s = 2, n = 300

(d) s = 0.2, n = 300 (e) s = 1, n = 300 (f) s = 2, n = 300

Figure 6. ROC curves for skeleton recovery for 100 simulations on
DAGs with 100 nodes, expected neighborhood size s, sample size
n, and edge weights sampled uniformly in [−1,−0.25] ∪ [0.25, 1].
Figures (a)-(c) are without prior knowledge of the moral graph(d)-
(f) are with prior knowledge of the moral graph. Dots denote high-
dim GES, crosses denote high-dim greedy SP, and circles denote
high-dim PC.

cell where a single gene was targeted for deletion using the CRISPR/Cas9 system.
Following preprocessing, the data set consists of 992 observational samples and
13,534 interventional samples over eight gene deletions. As in [7, 37], we focused
on learning the DAG structure on 24 genes that are transcription factors known to
regulate expression of a variety of different genes, including one another [10].

We used the observational samples to infer the DAG and the interventional sam-
ples to evaluate it. In particular, using the interventional data corresponding to
a deletion of gene A we identified the genes that are downstream of gene A by
testing whether the interventional distribution is significantly different from the
observational distribution. For this, we used a Wilcoxon Rank-Sum test with p-
value α = 0.05, corresponding to a magnitude of at least 3 in the q-value heat
map depicted in Figure 7(a); a positive q-value indicates that the gene expression
level is increased by the gene deletion, whereas a negative value means that it is
decreased. The accuracy of an estimated causal network is evaluated based on the
edges adjacent to intervened nodes: an arrow from gene A to gene B in the learned
network is considered a true positive if the expression of gene B in the interventional
distribution when targeting gene A is significantly different from the observational
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(a) Effects of gene deletions (b) Recovery of gene deletion
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Figure 7. (a) Heatmap indicating the effect of each gene deletion
on each measured gene; q-values with magnitude at least 3 are
marked with “*”. (b) Performance of the causal network learned
by Algorithm 4 with d = 4 and r = 20 (circle) as compared to
the PC-algorithm (dot) and GES (cross) in predicting the effect of
each intervention; line corresponds to random guessing. (c) The
PDAG discovered by Algorithm 4 via stability selection using cutoff
0.6.

distribution, e.g., there is a star in the (A,B)-entry in Figure 7(a), and it is con-
sidered a false positive otherwise. Using this metric, Figure 7(b) compares the
performance of Algorithm 4 with d = 4 and r = 20, the PC-algorithm, and greedy
equivalence search. Each point in Figure 7(b) corresponds to the number of true
positives and false positives in a DAG on the 24 genes learned from the observa-
tional data with a fixed parameter setting. The fixed parameter is the significance
level of the conditional independence test for Algorithm 4 and the PC-algorithm,
and it is the `0-penalization constant c in the penalty λn = c log(n) used in the
score function for greedy equivalence search. While the PC-algorithm performs sim-
ilar to random guessing, the other two algorithms perform better, with the greedy
sparsest permutation algorithm, i.e., Algorithm 4, generally outperforming greedy
equivalence search.

To get a sense of the corresponding gene regulatory network, in Figure 7(c) we
plotted the network constructed from our algorithm using stability selection [16].
We determined the cutoff parameter for stability selection by varying it between 0.5
to 0.8 and found that the resulting network was very robust in the range [0.6, 0.7].
The network shown in Figure 7(c) corresponds to a cutoff of 0.6, which is also within
the recommended range given in [16]. In the supplementary material, we provide
ROC plots using a q-value cutoff of 1 instead of 3, showing that our results and
conclusions regarding the comparison of the different algorithms are robust with
respect to the selection of q-value cutoff.

8. Discussion

The greedy sparsest permutation algorithm, i.e., Algorithm 4, with parameter
choices d = ∞ and r = 1 is Algorithm 2, which was shown to be consistent under
strictly weaker conditions than faithfulness. Algorithm 2 is an approximation of
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Algorithm 1, which is further consistent under strictly weaker conditions than Al-
gorithm 2. The fact that Algorithm 2 is consistent under strictly weaker conditions
than faithfulness was observed by its performance on simulated data in Section 6.
On the other hand, Algorithm 1 was not simulated since we must produce the
entire polytope Ap(C) so as to recover its edge graph. A complete characteri-
zation of the edges of Ap(C) would thus be of use, so that Algorithm 1 can be
implemented without computing Ap(C) and its entire edge graph. Such an imple-
mentation would likely recover the true Markov equivalence class more often than
any of the algorithms in Section 6. Further perspectives on this could be gained via
a characterization of all distributions satisfying Assumption 4 or Assumption 5.

We expect the greedy permutation-based approaches developed in this paper to
be useful in a variety of settings. For instance, extensions of Algorithm 4 to the
setting where a mix of observational and interventional data is available were pre-
sented in [37, 38, 30], and they were implemented using kernel-based conditional
independence tests [9, 32] which are better able to deal with non-linear structural
equations and non-Gaussian noise. Extensions of Algorithm 4 to the causally in-
sufficient setting are also being developed [1]. In addition, it would be interesting
to extend Algorithm 4 so as to accommodate cyclic graphs.

Since passage to a greedy permutation-based algorithm is often motivated by a
need to efficiently search through a state space that is super-exponential in size, it
would be interesting to compare the computational efficiency of the algorithms dis-
cussed in Section 6. Such studies could be conducted using the CausalDAG Python
package available at https://github.com/uhlerlab/causaldag, which provides
an efficient implementation of Algorithm 4.
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Appendix A. Background Material and an Example

A.1. Background. Here, we provide some definitions from graph theory and causal
inference that we will use in the coming proofs. Given a DAG G := ([p], A) with
node set [p] := {1, 2, . . . , p} and arrow set A, we associate to the nodes of G a
random vector (X1, . . . , Xp) with a probability distribution P. An arrow in A is
an ordered pair of nodes (i, j) which we will often denote by i → j. A directed
path in G from node i to node j is a sequence of directed edges in G of the form
i → i1 → i2 → · · · → j. A path from i to j is a sequence of arrows between
i and j that connect the two nodes without regard to direction. The parents of
a node i in G is the collection PaG(i) := {k ∈ [p] : k → i ∈ A}, and the an-
cestors of i, denoted AnG(i), is the collection of all nodes k ∈ [p] for which there

https://github.com/uhlerlab/causaldag
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Figure 8. An edge of a DAG associahedron that does not cor-
respond to a covered edge flip. The DAG associahedron Ap(C) is
constructed for the conditional independence relations implied by
the d-separation statements for Gπ∗ with π∗ = 15234. The DAGs
Gπ and Gτ with π = 15432 and τ = 15342 correspond to adjacent
vertices in Ap(C), connected by the edge labeled by the transposi-
tion of 3 and 4. The arrow between nodes 3 and 4 is not covered
in either DAG Gπ or Gτ .

exists a directed path from k to i in G. We do not include i in AnG(i). The de-
scendants of i, denoted DeG(i), is the set of all nodes k ∈ [p] for which there is
a directed path from i to k in G, and the nondescendants of i is the collection of
nodes NdG(i) := [p]\(DeG(i) ∪ {i}). When the DAG G is understood from context
we write Pa(i), An(i), De(i), and Nd(i), for the parents, ancestors, descendants,
and nondescendants of i in G, respectively. The analogous definitions and notation
will also be used for any set S ⊂ [p]. If two nodes are connected by an arrow in G
then we say they are adjacent. A triple of nodes (i, j, k) is called unshielded if i and
j are adjacent, k and j are adjacent, but i and k are not adjacent. An unshielded
triple (i, j, k) forms an immorality if it is of the form i → j ← k. In any triple,
shielded or not, with arrows i → j ← k, the node j is called a collider. Given
disjoint subsets A,B,C ⊂ [p] with A ∩ B = ∅, we say that A is d-connected to B
given C if there exist nodes i ∈ A and j ∈ B for which there is a path between i
and j such that every collider on the path is in An(C) ∪ C and no non-collider on
the path is in C. If no such path exists, we say A and B are d-separated given C.

Example 16. An example of a DAG associahedron containing an edge that does not
correspond to a covered arrow reversal in either DAG labeling its endpoints can be
constructed as follows: Let Gπ∗ denote the left-most DAG depicted in Figure 8, and
let C denote those conditional independence relations implied by the d-separation
statements for Gπ∗ . Then for the permutations π = 15432 and τ = 15342, the
DAGs Gπ and Gτ label a pair of adjacent vertices of Ap(C) since π and τ differ by
the transposition of 3 and 4. This adjacent transposition corresponds to a reversal
of the arrow between nodes 3 and 4 in Gπ and Gτ . However, this arrow is not
covered in either minimal independence map. We further note that this example
shows that not all edges of Ap(C) can be described by covered arrow reversals even
when C is faithful to the sparsest minimal independence map, Gπ∗ .
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Appendix B. Proofs for Results on the Pointwise Consistency of the
Greedy sparsest permutation algorithms

B.1. Proof of Lemma 6. Suppose first that C is not faithful to G and take
any conditional independence statement i ⊥⊥ j |K that is not encoded by the d-
separation statements in G. Take π to be any permutation in which K ≺π i ≺π
j ≺π [p]\(K ∪ {i, j}). Then G 6≤ Gπ since i ⊥⊥ j |K is encoded by the d-separations
of Gπ but not by the d-separations of G.

Conversely, suppose P is faithful to G. By [23, Theorem 9, Page 119], we know
that P satisfies the Markov Assumption with respect to Gπ for any π ∈ Sn. So any
conditional independence relation encoded by Gπ holds for P, which means it also
holds for G. Thus, G ≤ Gπ. �

To prove that Algorithm 2 is consistent under faithfulness we require a number
of lemmas pertaining to the steps of the Chickering algorithm. For the convenience
of the reader, we recall the Chickering algorithm in Algorithm 7.

Lemma 17. Suppose G ≤ H such that the Chickering algorithm has reached step
5 and selected the arrow Y → Z in G to reverse. If Y → Z is not covered in G,
then there exists a Chickering sequence(

G = G0,G1,G2, . . . ,GN ≤ H
)

in which GN is produced by the reversal of Y → Z, and for all i = 1, 2, . . . , N − 1,
the DAG Gi is produced by an arrow addition via step 7 or 8 with respect to the
arrow Y → Z.

Proof. Until the arrow Y → Z is reversed, the set DeG(Y ) and the node choice
D ∈ DeG(Y ) remain the same. This is because steps 7 and 8 only add parents to Y
or Z that are already parents of Y or Z, respectively. Thus, we can always choose
the same Y and Z until Y → Z is covered. �

Algorithm 7: APPLY-EDGE-OPERATION

Input : DAGs G and H where G ≤ H and G 6= H.
Output: A DAG G′ satisfying G′ ≤ H that is given by reversing an edge in G

or adding an edge to G.

1 Set G′ := G.

2 While G and H contain a node Y that is a sink in both DAGs and for which

PaG(Y ) = PaH(Y ), remove Y and all incident edges from both DAGs.

3 Let Y be any sink node in H.

4 If Y has no children in G, then let X be any parent of Y in H that is not a

parent of Y in G. Add the edge X → Y to G′ and return G′.
5 Let D ∈ DeG(Y ) denote the (unique) maximal element from DeG(Y ) within
H. Let Z be any maximal child of Y in G such that D is a descendant of Z
in G.

6 If Y → Z is covered in G, reverse Y → Z in G′ and return G′.
7 If there exists a node X that is a parent of Y but not a parent of Z in G,

then add X → Z to G′ and return G′.
8 Let X be any parent of Z that is not a parent of Y . Add X → Y to G′ and

return G′.
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For an independence map G ≤ H, the Chickering algorithm first deletes all sinks
in G that have precisely the same parents in H, and repeats this process for the
resulting graphs until there is no sink of this type anymore. This is the purpose

of step 2 of the algorithm. If the adjusted graph is G̃, the algorithm then selects

a sink node in G̃, which, by construction, must have fewer parents than the same
node in H and/or some children. The algorithm then adds parents and reverses
arrows until this node has exactly the same parents as the corresponding node in
H. The following lemma shows that this can be accomplished one sink node at a
time. The proof is clear from the statement of the algorithm.

Lemma 18. Let G ≤ H. If Y is a sink node selectable in step 3 of the Chickering
algorithm then we may always select Y each time until it is deleted by step 2.

We would like to see how the sequence of graphs produced in Chickering’s algo-
rithm relates to the DAGs Gπ for a set of conditional independence relations C. In
particular, we would like to see that if Gπ ≤ Gτ for permutations π, τ ∈ Sp, then
there is a sequence of moves given by Chickering’s algorithm that passes through a
sequence of minimal independence maps taking us from Gπ to Gτ . To do so, we re-
quire an additional lemma relating independence maps and minimal independence
maps. To state this lemma we need to consider the two steps within Algorithm 7
in which arrow additions occur. We now recall these two steps:

(i) Suppose Y is a sink node in G ≤ H. If Y is also a sink node in G, then choose
a parent X of Y in H that is not a parent of Y in G, and add the arrow
X → Y to H.

(ii) If Y is not a sink node in G, then there exists an arrow Y → Z in G that is
oriented in the opposite direction in H. If Y → Z is covered, the algorithm
reverses it. If Y → Z is not covered, there exists (in G) either
(a) a parent X of Y that is not a parent of Z, in which case, the algorithm

adds the arrow X → Z.
(b) a parent X of Z that is not a parent of Y , in which case, the algorithm

adds the arrow X → Y .

Lemma 19. Let C be a graphoid and Gπ ≤ Gτ with respect to C. Then the common
sink nodes of Gπ and Gτ all have the same incoming arrows. In particular, the
Chickering algorithm needs no instance of arrow additions (i) to move from Gπ to
Gτ .

Proof. Suppose on the contrary that there exists some sink node Y in Gπ and there
is a parent node X of Y in Gτ that is not a parent node of Y in Gπ. Since Y
is a sink in both permutations, then there exists linear extensions π̂ and τ̂ of the
partial orders corresponding to Gπ and Gτ for which Y = π̂p and Y = τ̂p. By
[21, Theorem 7.4], we know that Gπ = Gπ̂ and Gτ = Gτ̂ . In particular, we know
that X 6⊥⊥ Y | [p]\{X,Y } in Gτ̂ and X ⊥⊥ Y | [p]\{X,Y } in Gπ̂. However, this is a
contradiction, since both of these relations cannot simultaneously hold. �

B.2. Lemmata for the Proof of Proposition 8. To prove Proposition 8 we
must first prove a few lemmas. Throughout the remainder of this section, we use
the following notation: Suppose that G ≤ H for two DAGs G and H and that

C = (G0 := G,G1,G2, . . . ,GN := H)
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is a Chickering sequence from G to H. We let πi ∈ Sp denote a linear extension
of Gi for all i = 0, 1, . . . , N . For any DAG G let CI(G) denote the collection of
conditional independence relations encoded by the d-separation statements in G.

Lemma 20. Suppose that Gτ is a minimal independence map of a graphoid C.
Suppose also that G ≈ Gτ and that G differs from Gτ only by a covered arrow
reversal. If π is a linear extension of G then Gπ is a subDAG of G.

Proof. Suppose that G is obtained from Gτ by the reversal of the covered arrow
x→ y in Gτ . Without loss of generality, we assume that τ = SxyT and π = SyxT
for some disjoint words S and T whose letters are collectively in bijection with the
elements in [p]\{x, y}. So in Gπ, the arrows going from S to T , x to T , and y to T
are all the same as in Gτ . However, the arrows going from S to x and S to y may
be different. So, to prove that Gπ is a subDAG of G we must show that for each
letter s in the word S

(1) if s→ x /∈ Gτ then s→ x /∈ Gπ, and
(2) if s→ y /∈ Gτ then s→ y /∈ Gπ.

To see this, notice that if s → x /∈ Gτ , then s → y /∈ Gτ since x → y is covered in
Gτ . Similarly, if s→ y /∈ Gτ then s→ x /∈ Gτ . Thus, we know that s ⊥⊥ x |S\s and
s ⊥⊥ y | (S\s)x are both in the collection C. It then follows from the semigraphoid
property (2) given in Section 3 that s ⊥⊥ x | (S\s)y and s ⊥⊥ y |S\s are in C as well.
Therefore, Gπ is a subDAG of G. �

Lemma 21. Let C be a graphoid and let

C = (G0 := Gπ,G1,G2, . . . ,GN := Gτ )

be a Chickering sequence from a minimal independence map Gπ of C to another Gτ .
If, for some index 0 ≤ i < N , Gi is obtained from Gi+1 by deletion of an arrow
x→ y in Gi+1 then x→ y is not in Gπi+1 .

Proof. Let πi+1 = SxTyR be a linear extension of Gi+1 for some disjoint words S,
T , and R whose letters are collectively in bijection with the elements in [p]\{x, y}.
Since Gπ∗ ≤ Gi ≤ Gi+1 then

C ⊇ CI(Gπ) ⊇ CI(Gi) ⊇ CI(Gi+1).

We claim that x ⊥⊥ y |ST ∈ CI(Gi) ⊆ C. Therefore, x → y cannot be an arrow in
Gπi+1 .

First, since Gi is obtained from Gi+1 by deleting the arrow x → y, then πi+1

is also a linear extension of Gi. Notice, there is no directed path from y to x in
Gi, and so it follows that x and y are d-separated in Gi by PaGi(y). Therefore,
x ⊥⊥ y | PaGi(y) ∈ CI(Gi). Notice also that PaGi(y) ⊂ ST and any path in Gi
between x and y lacking colliders uses only arrows in the subDAG of Gi induced
by the vertices S ∪ T ∪ {x, y} = [p]\R. Therefore, x ⊥⊥ y |ST ∈ CI(Gi) as well.
It follows that x ⊥⊥ y |ST ∈ C, and so, by definition, x → y is not an arrow of
Gπi+1 . �

Lemma 22. Suppose that C is a graphoid and Gπ is a minimal independence map
with respect to C. Let

C = (G0 := Gπ,G1,G2, . . . ,GN := Gτ )

be a Chickering sequence from Gπ to another minimal independence map Gτ with
respect to C. Let i be the largest index such that Gi is produced from Gi+1 by deletion
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of an arrow, and suppose that for all i+ 1 < k ≤ N we have Gπk = Gk. Then Gπi+1

is a proper subDAG of Gi+1.

Proof. By Lemma 20, we know that Gπi+1 is a subDAG of Gi+1. This is because
πi+1 is a linear extension of Gi+1 and Gi+1 ≈ Gi+2 = Gπi+2 and Gi+1 differs from
Gi+2 only by a covered arrow reversal. By Lemma 21, we know that the arrow
deleted in Gi+1 to obtain Gi is not in Gπi+1 . Therefore, Gπi+1 is a proper subDAG
of G. �

Using these lemmas, we can now give a proof of Proposition 8.

B.3. Proof of Proposition 8. To see that (a) holds, notice since Gπ ≈ Gτ then by
the transformational characterization of Markov equivalence given in [3, Theorem
2], we know there exists a Chickering sequence

C := (G0 := Gπ,G1,G2, . . . ,GN := Gτ )

for which G0 ≈ G1 ≈ · · · ≈ GN and Gi is obtained from Gi+1 by the reversal of a
covered arrow in Gi+1 for all 0 ≤ i < N . Furthermore, since Gπ is class-s-minimal,
and by Lemma 20, we know that for all 0 ≤ i ≤ N

Gi ⊇ Gπi ⊇ Gπ.
However, since Gi ≈ Gπ and Gπi is a subDAG of Gi, then Gi = Gπi for all i. Thus,
the desired weakly decreasing edgewalk along Ap(C) is

(Gπ = Gπ0 ,Gπ1 , . . . ,GπN−1 ,GπN = Gτ ).

To see that (b) holds, suppose that Gπ ≤ Gτ but Gπ 6≈ Gτ . Since Gπ ≤ Gτ , there
exists a Chickering sequence from Gπ to Gτ that uses at least one arrow addition.
By Lemmas 17 and 18 we can choose this Chickering sequence such that it resolves
one sink at a time and, respectively, reverses one covered arrow at a time. We
denote this Chickering sequence by

C := (G0 := Gπ,G1,G2, . . . ,GN := Gτ ).

Let i denote the largest index for which Gi is obtained from Gi+1 by deletion of
an arrow. Then by our choice of Chickering sequence we know that Gk is obtained
from Gk+1 by a covered arrow reversal for all i < k < N . Moreover, πi = πi+1, and
so Gπi = Gπi+1 . Furthermore, by Lemma 20 we know that Gπk is a subDAG of Gk
for all i < k ≤ N .

Suppose now that there exists some index i + 1 < k < N such that Gπk is a
proper subDAG of Gk. Without loss of generality, we pick the largest such index.
It follows that for all indices k < ` ≤ N , Gπ` = G` and that

Gk+1 ≈ Gk+2 ≈ · · · ≈ GN = Gτ .
Thus, by [3, Theorem 2], there exists a weakly decreasing edgewalk from Gτ to Gk+1

on Ap(C). Since we chose the index k maximally then Gk is obtained from Gk+1

by a covered arrow reversal. Therefore, Gπk and Gπk+1 are connected by an edge of
Ap(C) indexed by a covered arrow reversal. Since |Gk| = |Gk+1| = |Gπk+1 | and Gπk
is a proper subDAG of Gk, then the result follows.

On the other hand, suppose that for all indices i+1 < k ≤ N , we have Gπk = Gk.
Then this is precisely the conditions of Lemma 22, and so it follows that Gπi+1 is
a proper subDAG of Gi+1. Since Gi+1 is obtained from Gi+2 by a covered arrow
reversal, the result follows. �
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B.4. Proof of Theorem 10. The proof is composed of two parts. We first prove
that for any permutation π, in the limit of large n, Ĝπ is a minimal independence
map of Gπ. We prove this by contradiction. Suppose Ĝπ 6= Gπ. Since the Bayesian
information criterion is a consistent scoring function [14], in the limit of large n,

Ĝπ is an independence map of the distribution. Since Ĝπ and Gπ share the same
permutation and Gπ is a minimal independence map, then Gπ ⊂ Ĝπ. Suppose now
that there exists (i, j) ∈ Ĝπ such that (i, j) 6∈ Gπ. Since Gπ is a minimal inde-
pendence map, we obtain that i ⊥⊥ j |PaGπ (j). In Lemma 7 of [4], it is shown
that Bayesian scoring is locally consistent, and it follows from the first sentence
of the proof therein that the Bayesian information criterion is also locally consis-
tent. Since the Bayesian information criterion is locally consistent, it follows that
BIC(Gπ, X̂) > BIC(Ĝπ, X̂).

Now we prove that for any two permutations τ and π where Gτ is connected to
Gπ by precisely one covered arrow reversal, in the limit of large n,

BIC(Gτ ; X̂) > BIC(Gπ; X̂)⇔ |Gτ | < |Gπ|,
and

BIC(Gτ ; X̂) = BIC(Gπ; X̂)⇔ |Gτ | = |Gπ|.
It suffices to prove

|Gτ | = |Gπ| ⇒ BIC(Gτ ; X̂) = BIC(Gπ; X̂) (B.1)

and

|Gτ | < |Gπ| ⇒ BIC(Gτ ; X̂) > BIC(Gπ; X̂). (B.2)

Eq. B.1 is easily seen to be true using [3, Theorem 2] as Gπ and Gτ are equivalent.
For Eq. B.2, by Theorem 7, since Gτ ≤ Gπ there exists a Chickering sequence from
Gτ to Gπ with at least one edge addition and several covered arrow reversals. For the
covered arrow reversals, the Bayesian information criterion remains the same since
the involved DAGs are equivalent. For the edge additions, the score necessarily
decreases in the limit of large n due to the increase in the number of parameters.
This follows from the consistency of the Bayesian information criterion and the
fact that DAGs before and after edge additions are both independence maps of
P. In this case, the path taken in the triangle sparsest permutation algorithm
using the Bayesian information criterion is the same as in the original triangle
sparsest permutation algorithm. Since the triangle sparsest permutation algorithm
is consistent, it follows that the triangle sparsest permutation algorithm with the
Bayesian information criterion is also consistent. �

B.5. Proof of Theorem 11. It is quick to see that

faithfulness =⇒ triangle assumption

triangle assumption =⇒ edge assumption

edge assumption =⇒ sparsest Markov representation assumption.

The first implication is given by Theorem 9, and the latter three are immediate
consequences of the definitions of the triangle, edge, and sparsest Markov represen-
tation assumptions. Namely, the triangle, edge, and sparsest Markov representation
assumptions are each defined to be precisely the condition in which Algorithm 2,
Algorithm 1, and the sparsest permutation algorithm are, respectively, consistent.
The implications then follow since each of the algorithms is a refined version of the
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1 2
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Figure 9. A sparsest DAG w.r.t. the conditional independence
relations C given in the proof of Theorem 11.

preceding one in this order. Hence, we only need to show the strict implications.
For each statement we identify a collection of conditional independence relations
satisfying the former identifiability assumption but not the latter. For the first
implication consider the collection of conditional independence relations

C = {1 ⊥⊥ 5 | {2, 3}, 2 ⊥⊥ 4 | {1, 3}, 3 ⊥⊥ 5 | {1, 2, 4},
1 ⊥⊥ 4 | {2, 3, 5}, 1 ⊥⊥ 4 | {2, 3}}.

The sparsest DAG Gπ∗ with respect to C is shown in Figure 9. To see that C satisfies
the triangle assumption with respect to Gπ∗ , we can use computer evaluation. To
see that it is not faithful with respect to G∗π, notice that 1 ⊥⊥ 5 | {2, 3} and 1 ⊥⊥
4 | {2, 3, 5} are both in C, but they are not implied by G∗π. We also remark that C is
not a semigraphoid since the semigraphoid property (2) given in Section 3 applied
to the conditional independence relations 1 ⊥⊥ 5 | {2, 3} and 1 ⊥⊥ 4 | {2, 3, 5} implies
that 1 ⊥⊥ 5 | {2, 3, 4} should be in C.

For the second implication consider the collection of conditional independence
relations

D = {1 ⊥⊥ 2 | {4}, 1 ⊥⊥ 3 | {2}, 2 ⊥⊥ 4 | {1, 3}}
and initialize Algorithm 2 at the permutation π := 1423. A sparsest DAG Gπ∗ with
respect to D is given in Figure 10(a), and the initial minimal independence map Gπ
is depicted in Figure 10(b). Notice that the only covered arrow in Gπ is 1→ 4 , and
reversing this covered arrow produces the permutation τ = 4123; the corresponding
DAG Gτ is shown in Figure 10(c). The only covered arrows in Gτ are 4 → 1 and
4 → 2. Reversing 4 → 1 returns us to Gπ, which we already visited, and reversing
4 → 2 produces the permutation σ = 2143; the associated DAG Gσ is depicted in
Figure 10(d). Since the only DAGs connected to Gπ and Gτ via covered arrow flips
have at least as many edges as Gπ and Gτ , then Algorithm 2 is inconsistent, and
so the triangle assumption does not hold for C. On the other hand, we can verify

1 2

34

1 2

34

1 2

34

1 2

34

(a) (b) (c) (d)

Figure 10. The four minimal independence maps with respect to
the conditional independence relations D described in the proof of
Theorem 11.
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Figure 11. The initial minimal independence map and the spars-
est minimal independence map with respect to the conditional in-
dependence relations E described in the proof of Theorem 11.

computationally that Algorithm 1 is consistent with respect to D, meaning that
the edge assumption holds.

Finally, for the last implication consider the collection of conditional indepen-
dence relations

E = {1 ⊥⊥ 3 | {2}, 2 ⊥⊥ 4 | {1, 3}, 4 ⊥⊥ 5},
and the initial permutation π = 54321. The initial DAG Gπ and a sparsest DAG
Gπ∗ are depicted in Figures 11(a) and (b), respectively. It is not hard to check that
any DAG Gτ that is edge adjacent to Gπ is a complete graph. Thus, the sparsest
Markov representation assumption holds for E but not the edge assumption. �

B.6. Proof of Theorem 12. Let P be a semigraphoid, and let C denote the con-
ditional independence relations entailed by P. Suppose for the sake of contradiction
that Algorithm 2 is consistent with respect to C, but P fails to satisfy adjacency
faithfulness with respect to a sparsest DAG G∗π. Then there exists some condi-
tional independence relation i ⊥⊥ j |S in C such that i → j is an arrow of G∗π.
Now let π be any permutation respecting the concatenated ordering iSjT where
T = [p] \ ({i, j} ∪ S). Then our goal is to show that any covered arrow reversal in
Gπ that results in a minimal independence map Gτ with strictly fewer edges than
Gπ must satisfy the condition that i→ j is not an arrow in Gτ .

First, we consider the possible types of covered arrows that may exist in Gπ. To
list these, it will be helpful to look at the diagram depicted in Figure 12. Notice first
that we need not consider any trivially covered arrows, since such edge reversals
do not decrease the number of arrows in the minimal independence maps. Any
edge i → S or i → T is trivially covered, so the possible cases of non-trivially
covered arrows are exactly the covered arrows given in Figure 13. In this figure,

i

j

S

T

Figure 12. This diagram depicts the possible arrows between the
node sets {i}, {j}, S, and T for the minimal independence map Gπ
considered in the proof of Theorem 12.
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Figure 13. The possible non-trivially covered arrows between the
node sets {i}, {j}, S, and T for the minimal independence map Gπ
considered in the proof of Theorem 12 are labeled with the symbol
?. Here, we take s, s′, s′′ ∈ S and t, t′ ∈ T .

each covered arrow to be considered is labeled with the symbol ?. Notice that the
claim is trivially true for cases (1) – (4); i.e., any covered arrow reversal resulting
in edge deletions produces a minimal independence map Gτ for which i→ j is not
an arrow of Gτ .

Case (5) is also easy to see. Recall that π = is1 · · · skjt1 · · · tm where S :=
{s1, . . . , sk} and T := {t1, . . . , tk}, and that reversing the covered arrow in case
(5) results in an edge deletion. Since s → t is covered, then there exists a linear
extension τ of Gπ such that s and t are adjacent in τ . Thus, either j precedes both
s and t or j follows both s and t in τ . Recall also that by [21, Theorem 7.4] we
known Gτ = Gπ. Thus, reversing the covered arrow s→ t in Gτ = Gπ does not add
in i→ j.

To see the claim also holds for cases (6) and (7), we utilize the semigraphoid
property (2) given in Section 3. It suffices to prove the claim for case (6). So
suppose that reversing the ?-labeled edge j → t from case (6) results in a minimal
independence map with fewer arrows. We simply want to see that i → j is still
a non-arrow in this new DAG. Assuming once more that π = is1 · · · skjt1 · · · tm,
by [21, Theorem 7.4] we can, without loss of generality, pick t := t1. Thus, since
i ⊥⊥ j |S and j → t is covered, then i ⊥⊥ t |S ∪ {j}. By the semigraphoid property
(2), we then know that i ⊥⊥ j |S ∪ {t}. Thus, the covered arrow reversal j ← t
produces a permutation τ = is1 · · · skt1jt2 · · · tm, and so i → j is not an arrow in
Gτ . This completes all cases of the proof.

1 2

3

45

6

Figure 14. A sparsest DAG for the conditional independence re-
lations C considered in the proof of Theorem 12.
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To complete the proof, we provide an example of a distribution P that satisfies
the triangle assumption but not orientation faithfulness. Consider any probability
distribution entailing the conditional independence relations

C = {1 ⊥⊥ 3, 1 ⊥⊥ 5 | {2, 3, 4}, 4 ⊥⊥ 6 | {1, 2, 3, 5}, 1 ⊥⊥ 3 | {2, 4, 5, 6}}.
For example, C can be faithfully realized by a regular Gaussian. From left-to-
right, we label these conditional independence relations as c1, c2, c3, c4. For the
collection C, a sparsest DAG Gπ∗ is depicted in Figure 14. Note that since there
is no equally sparse or sparser DAG that is Markov with respect to P then P
satisfies the sparsest Markov representation assumption with respect to Gπ∗ . Notice
also that the conditional independence relation c4 does not satisfy the orientation
faithfulness assumption with respect to Gπ∗ . Moreover, if Gπ entails c4, then the
subDAG on the nodes π1, . . . , π5 forms a complete graph. Thus, by [3, Theorem
2], we can find a sequence of covered arrow reversals preserving edge count such
that after all covered arrow reversals, π5 = 6. Then transposing the entries π5π6

produces a permutation τ in which c3 holds. Therefore, the number of arrows in
Gπ is at least the number of arrows in Gτ . Even more, Gτ is an independence map
of Gπ∗ , i.e., Gπ∗ ≤ Gτ . So by Proposition 8, there exists a weakly decreasing edge
walk determined by covered arrow reversals along Ap(C) taking us from Gτ to G∗π.
Thus, we conclude that P satisfies the triangle assumption, but not orientation
faithfulness. �

Appendix C. Proofs for Results on the Uniform Consistency of the
Greedy sparsest permutation algorithm

C.1. Lemmata for the Proof of Theorem 13. To prove Theorem 13, we require
a pair of lemmas, the first of which shows that the conditioning sets in the triangle
sparsest permutation algorithm can be restricted to parent sets of covered arrows.

Lemma 23. Suppose that the data-generating distribution P is faithful to G∗. Then
for any permutation π and any covered arrow i→ j in Gπ it holds that

(a) i ⊥⊥ k|(S′ ∪ {j}) \ {k} if and only if i ⊥⊥ k|(S ∪ {j}) \ {k},
(b) j ⊥⊥ k|S′ \ {k} if and only if j ⊥⊥ k|S \ {k},

for all k ∈ S, where S is the set of common parent nodes of i and j, and S′ = {a :
a <π maxπ(i, j)}.
Proof. Let PaGπ (j) be the set of parent nodes of node j in the DAG Gπ. Let k ∈ S
and let P1 denote the joint distribution of (Xi, Xj , Xk) conditioned on S \ {k}
and P2 the joint distribution of (Xi, Xj , Xk) conditioned on S′. Then the claimed
statements boil down to

(a) j ⊥⊥ k under distribution P1 ⇔ j ⊥⊥ k under distribution P2;
(b) i ⊥⊥ k|j under distribution P1 ⇔ i ⊥⊥ k|j under distribution P2.

Note that

P1(Xi, Xj , Xk) := P(Xi, Xj , Xk|XS\{k}) = P(Xi, Xj |XS)P1(Xk).

Similarly, the Markov assumption of P with respect to Gπ implies that

P2(Xi, Xj , Xk) = P(Xi, Xj |XS′)P2(Xk) = P(Xi, Xj |XS)P2(Xk).

Hence, P1(Xj |Xk) = P2(Xj |Xk), P1(Xi|Xj , Xk) = P2(Xi|Xj , Xk). This completes

the proof since Xa ⊥⊥ Xb|XC under some distribution P̃ if and only if P̃(Xa|Xb =

z1, XC) = P̃(Xa|Xb = z2, XC) for all z1 and z2 in the sample space. �
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The second lemma we require was first proven in [15, Lemma 3] and is here
restated for the sake of completeness.

Lemma 24. [15, Lemma 3] Suppose that assumption (4) holds, and let zi,j|S be
the z-transform of the partial correlation coefficient ρi,j|S. Then

P[|ẑi,j|S − zi,j|S | > γ] ≤ O(n− |S|) ∗ Φ, where

Φ =

[
exp

{
(n− 4− |S|) log

(
4− (γ/L)2

4 + (γ/L)2

)}
+ exp{−C2(n− |S|)}

]
,

where C2 is some constant such that 0 < C2 <∞ and

L = 1/(1− (1 +M)2/4),

in which M is defined such that it satisfies assumption (4).

Provided with Lemmas 23 and 24, we can then prove Theorem 13.

C.2. Proof of Theorem 13. For any initial permutation π0, we let Lπ0
denote

the set of tuples (i, j, S) used for partial correlation testing in the estimation of the
initial permtuation DAG Gπ0

. That is,

Lπ0
:=
{

(i, j, S) : S = {k : π0(k) ≤ max(π0(i), π0(j))} \ {i, j}
}
.

Given a DAG G and a node i we let adj(G, i) denote the collection of nodes that share
an arrow with node i in G. We then let Kπ0

denote the collection of tuples (i, j, S)
that will be used in the partial correlation testing done in step (2) of Algorithm 5;
i.e.

Kπ0 :=
⋃

(i,j)∈Gπ0

{
(k, l, S) : k ∈ {i, j}, l ∈ adj(Gπ0 , i) ∩ adj(Gπ0 , j), S 6= ∅, and

S ⊆ {adj(Gπ0 , i) ∩ adj(Gπ0 , j)} ∪ {i, j}
}
.

It follows from Lemma 23, that when flipping a covered edge i → j in a minimal
independence map Gπ̃, it is sufficient to calculate the partial correlations ρa,b|C
where

(a, b, C) ∈
{

(a, b, C) : a = i, b ∈ Pai(Gπ̃), C = Pai(Gπ̃) ∪ {j} \ {b}
}
∪{

(a, b, C) : a = j, b ∈ Pai(Gπ̃), C = Pai(Gπ̃) \ {b}
}
.

In particular, we have that (a, b, C) ∈ Kπ̃.
Because of the skeletal inclusion Gπ̃ ⊆ Gπ0 , it follows that Kπ̃ ⊆ Kπ0 and hence

(a, b, C) ∈ Kπ0 . In addition, for all partial correlations ρa,b|C used for construct-
ing the initial DAG Gπ0

, we know that (a, b, C) ∈ Lπ0
. Therefore, for all partial

correlations (a, b, C) used in the algorithm, we have:

(a, b, C) ∈ Kπ0
∪ Lπ0

.

Let Ei,j|S be the event where an error occurs when doing partial correlation
testing of i ⊥⊥ j|S, and suppose that α is the significance level when testing this
partial correlation. Then we see that Ei,j|S corresponds to:

(n− |S| − 3)1/2|ẑi,j|S | > Φ−1(1− α/2), when zi,j|S = 0;

(n− |S| − 3)1/2|ẑi,j|S | ≤ Φ−1(1− α/2), when zi,j|S 6= 0.
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Choosing αn = 2(1− Φ(n1/2cn/2)) it follows under assumption (4) that

P[Ei,j|S ] ≤ P[|ẑi,j|S − zi,j|S | > (n/(n− |S| − 3))1/2cn/2].

Now, by (2) we have that |S| ≤ p = O(na). Hence it follows that

P[Ei,j|S ] ≤ P[|ẑi,j|S − zi,j|S | > cn/2].

Then, Lemma 24 together with the fact that log( 4−δ2
4+δ2 ) ∼ −δ2/2 as δ → 0, imply

that

P[Ei,j|S ] ≤ O(n− |S|) exp{−c′(n− |S|)c2n} ≤ O
(
exp(log n− cn1−2`)

)
(C.1)

for some constants c, c′ > 0. Since the DAG estimated using Algorithm 5 is not
consistent when at least one of the partial correlation tests is not consistent, then
the probability of inconsistency can be estimated as follows:

P[an error occurs in Algorithm 5] ≤ P

 ⋃
i,j,S∈Kπ̂∪Lπ̂

Ei,j|S


≤ |Kπ̂ ∪ Lπ̂|

(
sup

i,j,S∈Kπ̂∪Lπ̂
P(Ei,j|S)

)
.

(C.2)

Next note that assumption (3) implies that the size of the set adj(Gπ0 , i)∪adj(Gπ0 , j)
is at most dπ0

. Therefore, |Kπ0
| ≤ p2 · dπ0

· 2dπ0 and |Lπ0
| ≤ p2. Thus, we see that

|Kπ̂ ∪ Lπ̂| ≤ |Kπ̂|+ |Lπ̂| ≤ (2dπ0 · dπ0
+ 1)p2.

Therefore, the left-hand-side of inequality (C.2) is upper-bounded by

(2dπ0 · dπ0
+ 1)p2

(
sup

i,j,S∈Kπ̂∪Lπ̂
P(Ei,j|S)

)
.

Combining this observation with the upper-bound computed in (C.1), we obtain
that the left-hand-side of (C.2) is upper-bounded by

(2dπ0 · dπ0
+ 1)p2O(exp(log n− cn1−2l)) ≤

O(exp(dπ0
log 2 + 2 log p+ log dπ0

+ log n− cn1−2`)).

By assumptions (3) and (4) it follows that n1−2` dominates all terms in this bound.
Thus, we conclude that

P[estimated DAG is consistent] ≥ 1−O(exp(−cn1−2`)).

�
The proof of Theorem 14 is based on the following lemma.

Lemma 25. Let P be a distribution on [p] that is faithful to a DAG G, and let
PS denote the marginal distribution on S ⊂ [p]. Let GS be the undirected graphical
model corresponding to PS, i.e., the edge {i, j} is in GS if and only if ρi,j|(S\{i,j}) 6=
0. Then GS\{k} can be obtained from GS as follows:

(1) for all i, j ∈ adj(GS , k), if {i, j} is not an edge in GS, then add {i, j}.
Otherwise, {i, j} is an edge of GS\{k} if and only if |ρi,j|S\{i,j,k}| 6= 0.

(2) for all i, j /∈ adj(GS , k), {i, j} is an edge of GS\{k} if and only if {i, j} is
an edge in GS.
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Proof. First, we prove:

For i, j 6∈ adj(GS , k) : (i, j) is an edge in GS\{k} iff (i, j) is an edge in GS .

Suppose at least one of i or j are not adjacent to node k in GS . Without loss of
generality, we assume i is not adjacent to k in GS ; this implies that ρi,k|S\{i,k} = 0.
To prove the desired result we must show that

ρi,j|S\{i,j} = 0⇔ ρi,j|S\{i,j,k} = 0.

To show this equivalence, first suppose that ρi,j|S\{i,j} = 0 but ρi,j|S\{i,j,k} 6= 0.
This implies that there is a path P between i and j through k such that nodes
i and j are d-connected given S \ {i, j, k} and d-separated given S \ {i, j}. This
implies that k is a non-collider along P . Define Pi as the path connecting i and k
in the path P and Pj the path connecting j and k in P . Then the nodes i and j
are d-connected to k given S \{i, k} and S \{j, k} respectively, by using Pi and Pj .
Since j is not on Pi, clearly i and k are also d-connected given S \ {i, j, k} through
Pi, and the same holds for j.

Conversely, suppose that ρi,j|S\{i,j,k} = 0 but ρi,j|S\{i,j} 6= 0. Then there exists
a path P that d-connects nodes i and j given S\{i, j}, while i and j are d-separated
given S \ {i, j, k}. Thus, one of the following must occur:

(1) k is a collider on the path P , or
(2) Some node ` ∈ an(S \ {i, j}) \ an(S \ {i, j, k}) is a collider on P .

For case (2), there must exist a path: ` → · · · → k that d-connects ` and k given
S \ {i, j, k} and ` 6∈ S. Such a path exists since ` is an ancestor of k and not
an ancestor of all other nodes in S \ {i, j, k}. So in both cases i and k are also
d-connected given S \ {i, j, k} using a path that does not containing the node j.
Hence, i and k are also d-connected given S \ {i, k}, a contradiction.

Next, we prove for i, j ∈ adj(GS , k), if (i, j) is not an edge in GS , then (i, j) is
an edge in GS\{k}. Since i ∈ adj(GS , k), there exists a path Pi that d-connects i
and k given S \ {i, k}, and similar for j. Using the same argument as the above,
i and j are also d-connected to k using Pi and Pj , respectively, given S \ {i, j, k}.
Defining P as the path that combines Pi and Pj , then k must be a non-collider
along P as otherwise i and j would be d-connected given S \ {i, j}, in which case i
and j would also be d-connected given S \ {i, j, k}, and (i, j) would be an edge in
GS\{k}. �

C.3. Proof of Theorem 14. In the oracle setting, there are two main differences
between Algorithm 6 and the minimum degree algorithm. First, Algorithm 6 uses
partial correlation testing to construct a graph, while the minimum degree algo-
rithm uses the precision matrix Θ. The second difference is that Algorithm 6 only
updates based on the partial correlations of neighbors of the tested nodes.

Let ΘS denote the precision matrix of the marginal distribution over the variables
{Xi : i ∈ S}. Since the marginal distribution is Gaussian, the (i, j)-th entry of ΘS

is nonzero if and only if ρi,j|S\{i,j} 6= 0. Thus, to prove that Algorithm 6 and the
minimum degree algorithm are equivalent, it suffices to show the following: Let
GS be an undirected graph with edges corresponding to the nonzero entries of ΘS .
Then for any node k, the graph GS\{k} constructed as defined in Algorithm 6 has
edges corresponding to the nonzero entries of ΘS\{k}. To prove that this is indeed
the case, note that by Lemma 25, if GS is already estimated then nodes i and j
are connected in GS\{k} if and only if ρi,j|S\{i,j,k} 6= 0. Finally, since the marginal
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Figure 15. Performance of the causal network learned by Algo-
rithm 4 with d = 4 and r = 20 as compared to the PC-algorithm
and GES in predicting the effect of each intervention using a q-
value cutoff of 1; line corresponds to random guessing.

distribution over S is multivariate Gaussian, the (i, j)-th entry of ΘS\{k} is non-zero
if and only if ρi,j|S\{i,j,k} 6= 0. �

C.4. Proof of Theorem 15. Let Poracle(π̂) denote the probability that π̂ is output
by Algorithm 6 in the oracle-setting, and let Nπ̂ denote the number of partial
correlation tests that had to be performed. Then Nπ̂ ≤ O(pd2

π̂), where dπ̂ is the
maximum degree of the corresponding minimal independence map Gπ̂. Therefore,
using the same arguments as in the proof of Theorem 13, we obtain:

P[π̂ is generated by Algorithm 6]

≥ Poracle(π̂)P[all hypothesis tests for generating π̂ are consistent]

≥ Poracle(π̂)

(
1−O(pd2

π̂) sup
(i,j,S)∈Nπ̂

P(Ei,j|S)

)
,

≥ Poracle(π̂)
(
1−O(exp(2 log dπ̂ + log p+ log n− c′n1−2`))

)
,

≥ Poracle(π̂)
(
1−O(exp(−cn1−2`))

)
.

Let Π denote the set of all possible output permutations of the minimum degree
algorithm applied to Θ. Then

P[Algorithm 6 outputs a permutation in Π]

≥
∑
π̂∈Π

P[π̂ is output by Algorithm 6],

≥ 1−O(exp(−cn1−2`)),

which completes the proof. �

Appendix D. Additional figures for experiments

In this section, we present an additional figure supporting our experimental
findings in Section 7. Figure 15 shows the resulting receiver operating characteristic
curves for the greedy sparsest permutation algorithm, the PC-algorithm as well as
greedy equivalence search when using a q-value of 1 to identify true positive / false
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positive edges. More specifically, we consider an arrow from gene A to gene B
in the learned network as a true positive if the magnitude of the corresponding
q-value is larger than 1, and a false positive otherwise. The random guessing line
was adjusted accordingly. Our greedy sparsest permutation algorithm outperforms
the PC-algorithm and greedy equivalence search, which both perform similar to
random guessing.

Appendix E. Computational Times for Simulations

To test the computational efficiency of our greedy sparsest permutation algo-
rithm, we compared its run time to the PC-algorithm and greedy equivalence
search in the setting p = 8, s = 4 and n = 1000, which is the setting considered
in Figures 4 (a)-(b) in the main paper. For a fair comparison, selected the hyper-
parameters of each algorithm so that the resulting graphs have a similar sparsity,
namely 0.001 for our greedy sparsest permutation search, 0.01 for the PC-algorithm
and λn = 1/2 log(n) for greedy equivalence search. The R implementation of our
greedy sparsest permutation algorithm used in this paper took 0.42 seconds for
one run, while it took 0.08 seconds for the PC-algorithm and 0.02 seconds for
greedy equivalence search (using the pcalg package in R). While our implemen-
tation of the greedy sparsest permutation algorithm should be seen mainly as a
proof-of-concept, in the meantime, a faster implementation of the greedy sparsest
permutation algorithm has been developed and is available as a python package at
https://github.com/uhlerlab/causaldag.

Finally, we note that the moves used in Algorithm 4 are a strict subset of the
moves used by the algorithm of [31]. Moreover, this subset explicitly excludes moves
that are guaranteed not to improve the value of the score function. Therefore, it
seems likely that Algorithm 4 performs with efficiency comparable or favorable to
the algorithm of [31], which was already shown to be more efficient than the greedy
equivalence search.
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