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Abstract

Topological materials are of significant interest for both basic science and next-
generation technological applications due to their unconventional electronic proper-
ties. The majority of currently-known topological materials have been discovered
using methods that involve symmetry-based analysis of the quantum mechanical
wavefunction. Here we use machine learning to develop a heuristic chemical rule,
which diagnoses whether a material is topological using only its chemical formula.
It is based on a notion that we term topogivity, which is a learned numerical value
for each element that loosely captures the tendency of an element to form topolog-
ical materials. Topogivities provide chemical insights for understanding topological
materials. We implement a high-throughput procedure for discovering topological
materials that are not diagnosable by symmetry indicators. The procedure is based
on heuristic rule prediction followed by ab initio validation. The concept of topogivity
represents a fundamentally new approach to the study of topological materials, and
opens up new directions of research at the intersection of chemistry, machine learning,
and band topology.
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Chapter 1

Introduction

Topological materials are an exotic class of materials that have been of major interest

in recent years. Their unconventional properties – such as the protected conduct-

ing surfaces of topological insulators – make them important for both fundamental

science and next-generation technological applications [1, 2]. There are a wide va-

riety of topological materials, including strong and weak topological insulators [3],

topological crystalline insulators [4, 5], higher-order topological insulators [6], Weyl

semimetals [7, 8], Dirac semimetals [9], nodal-line semimetals [10], and multifold

fermion semimetals [11].

Since the genesis of the field, a central and enduring question has been how to

determine whether a given electronic material is topological. Finding answers to this

question is important both for deepening our fundamental understanding of topolog-

ical materials, and also in the search for ideal candidates for experimental realization

and realisitic device applications.

Efforts to answer this question have predominately taken a first-principles, quantum-

mechanical approach [12]. In particular, a recurring theme has been to exploit sym-

metry to simplify the diagnosis problem, as exemplified by the Fu-Kane criterion for

inversion-symmetric materials [13]. Recently-developed theories known as symme-

try indicators [14] and topological quantum chemistry [15] enable the diagnosis of

a wide range of topological materials using symmetry-based analysis of the wave-

function. These symmetry-based approaches are broadly-applicable and require rel-
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atively little computational cost [14, 15, 16], and they have enabled high-throughput

computational searches for topological materials [17, 18, 19, 20, 21]. Despite these

successes, symmetry-based approaches provide only limited intuition regarding why a

given material is topological. Moreover, some topological materials are not diagnos-

able by symmetry indicators [14] (we will refer to such materials as non-symmetry-

diagnosable topological materials). For example, the first experimentally-observed

Weyl semimetal, tantalum arsenide (TaAs) [7], is a non-symmetry-diagnosable topo-

logical material [18].

Many physical phenomena can be understood both at a quantum-mechanical level

and at a chemical heuristic level. A well-known example is bonding, which can be un-

derstood using quantum-mechanical approaches such as molecular orbital theory [22],

as well as using heuristics such as the difference of element electronegativities. While

the former approach is more detailed and accurate, the latter gives an immediate an-

swer and provides valuable and easily transferable intuition. An intriguing question

is whether topological materials could also be understood using a chemical heuristic

approach. Already, there has been research on connections between chemistry and

electronic band topology [23], e.g. finding evidence that certain elements are more

likely to form topological materials than others [24, 25] and using chemical intuition

and heuristics to help find topological materials [26, 27]. However, these approaches

are not as broadly applicable as wavefunction-based approaches.

In the field of materials science, one topic of growing interest is the use of ma-

chine learning [28], which can reduce computational costs [29, 30], yield interpretable

models [31, 32], guide the discovery of new materials [33, 34, 35], and enable the dis-

covery of novel scientific understandings and insights [36, 37, 38]. At the intersection

of chemistry and machine learning, there have been recent applications in developing

chemical heuristics for many problems in materials science [39]. In the area of topo-

logical materials, one direction has been in the study of toy models of electronic band

topology [40, 41, 42, 43]. Another direction – enabled by ab initio data – has been

the study of topology in real electronic materials [44, 45, 46, 47, 48, 49]. Outside of

the area of topological materials, there have also been a number of works on the use
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of machine learning for topology in other physical systems [50, 51, 52, 53, 54, 55, 56].

In our work, we (i) use machine learning to develop a broadly-applicable heuristic

chemical rule that diagnoses whether or not a material is topological, and (ii) apply

this rule to predict topological materials that are subsequently validated using ab ini-

tio calculations. This SM thesis will focus primarily on the machine learning portion

of this collaboration. Key parts of the ab initio calculations (which were performed by

Yang Zhang) will also be described. Full results will be presented in our manuscript

in preparation [57].

The heuristic rule is based on the notion of a learned parameter for each ele-

ment that loosely captures the tendency of an element to form topological materials,

which we term an element’s topogivity. The heuristic rule is simple, hand-calculable,

and interpretable: a given material is diagnosed as topologically nontrivial (trivial) if

the weighted average of its elements’ topogivities is positive (negative). A key high-

light is that the heuristic rule can generalize beyond the scope of existing symmetry-

based diagnosis methods [14, 15]. This is important because current first-principles

approaches for non-symmetry-diagnosable topological materials (e.g., using Wilson

loops [12]) typically involve significant computational cost. We integrate the heuris-

tic rule into a high-throughput procedure for discovering non-symmetry-diagnosable

topological materials, which involves screening using the heuristic rule followed by

density functional theory (DFT) validation.
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Chapter 2

Classes of Materials and Dataset

2.1 Modeling Goals

Within the broad umbrella of research on determining whether a real material is

topological, much of the previous literature has focused on issues of diagnosing spe-

cific kinds of topology. For example, the Fu-Kane criterion for inversion-symmetric

materials is a method for diagnosing strong and weak topological insulators [13]. Sim-

ilarly, symmetry indicators often indicate a material’s topological invariant modulo

an integer (e.g., Chern numbers via rotation eigenvalues) [58]. In contrast, in this

work we are interested in a coarser-grained distinction between topological materials

(i.e., topologically nontrivial materials) and trivial materials (i.e., topologically trivial

materials). Topological materials include both topological insulators (Fig. 2-1, left)

and topological semimetals (Fig. 2-1, right). Note that in this work, our criterion for

what constitutes a topological semimetal will focus more on energetics (specifically,

we will require that the protected band-degeneracies be near or at the Fermi level).

We aim to develop a machine learning model – which takes the form of a heuristic

chemical rule – that can distinguish between topological materials and trivial ma-

terials. For our supervised learning approach to fitting this model, we require one

set of materials labeled as “topological” (i.e., positive labels) as well as another set

of materials labeled as “trivial” (i.e., negative labels). Additionally, we also need

to identify a third set of materials that will be used as materials to screen in the

19



Topological
insulator

Topological
semimetal

Figure 2-1: Band topology schematics. Pictorial visualizations of example band
structures of topological insulators and topological semimetals, emphasizing the role
of band-inversions.

high-throughput materials discovery process. We identify materials for each of these

three sets by choosing suitable subsets of an ab initio dataset that was generated

using symmetry indicators by [18] (note that one could also use one of the other

similar datasets [19, 20, 21] for this purpose). The dataset consists of stoichiometric,

non-magnetic, three-dimensional materials treated with spin-orbital coupling (our

modeling consequently applies to this setting). We do basic pre-processing of the

dataset (e.g., to remove materials that contain rare elements).

2.2 Symmetry Indicators Dataset

The symmetry indicators method uses symmetry information to try to determine

whether a material can be distinguished from an atomic insulator – the diagnoses are

obtained by making use of DFT that is performed at high-symmetry points [14]. We

will make use of the fact that the fine-grained classifications produced by symmetry

indicators can be coarse-grained into two categories: Undiagnosable by Symmetry In-

dicators (USI) and Not an Atomic Insulator (NAI). In the terminology of [17] and [18],

USI corresponds to “case 1” and NAI corresponds to “case 2” and “case 3”. Many USI

materials are trivial and many NAI materials are topological. However, a USI mate-

20



rial is not guaranteed to be trivial since it could also be a non-symmetry-diagnosable

topological material, and an NAI material is not guaranteed to be topological (under

our criterion) since it could also be a “trivial” metal (given that the symmetry indi-

cator diagnosis ignores energetic aspects of the electronic bands). For example, the

Weyl semimetal TaAs [7] is categorized by symmetry indicators as USI [18].

14%

86%
49%51%

(+) label(–) label otherto screen

USI

NAI

SGs with nontrivial
indicator groups

SGs with trivial
indicator groups

Figure 2-2: Materials dataset. The symmetry-indicator-generated ab initio dataset
is partitioned into two sets of materials based on SG. Materials that have an SG with
a nontrivial indicator group are in the first set and the remaining materials are in the
second set. The two sets have substantially different ratios of NAI (Not an Atomic
Insulator) to USI (Undiagnosable by Symmetry Indicators). The first set is used as
labeled data for learning the values of the topogivities, and the USI portion of the
second set are the materials to screen in the high-throughput materials discovery
process.

To facilitate our goal of selecting suitable subsets, we partition the dataset’s ma-

terials into two sets based on space group (SG) (see Fig. 2-2). All materials that have

an SG with a nontrivial indicator group [14] are placed in the first set, and the rest

are placed in the second set. Symmetry indicators are more successful in searching

for topological materials in the first set in the sense that: (i) 49% of the materials

in the first set are NAI compared to only 14% in the second set, and (ii) symmetry

indicators can diagnose both gapped and gapless NAI materials in the first set but

can only diagnosis gapless NAI materials in the second set [14]. Motivated by this,

we use the first set’s NAI materials as the “topological” labeled set and the first set’s

USI materials as the “trivial” labeled set; collectively, we refer to these two sets as

21



the labeled data. From a machine learning perspective, this defines a dataset with

noisy labels. One source of noise is the fact that the distinction between NAI and

USI is mathematically not the same as the distinction between topological and trivial.

There are also other sources of noise, such as inaccuracies in the DFT itself [59]. We

use the second set’s USI materials as the materials to screen in the high-throughput

materials discovery process. A useful consequence of this choice is that any material

from the materials to screen that turns out to be topological must be a non-symmetry-

diagnosable topological material as long as the symmetry indicator based calculation

in the original dataset [18] was correct. The labeled data consists of 9,026 materials

and the materials to screen consists of 1,433 materials.

2.3 Frequencies

Figure 2-3: Topological label percentage for each element. Percentages are
shown by color-coding and in values. These are calculated for the labeled data. It
represents the percentage of materials with the “topological” label among the materials
that contain a given element.

In Fig. 2-3, we show the topological label percentage for each element. For each

element, this represents the percentage of materials that have the “topological label”

among all of the labeled data materials that contain that element. From this figure,

22



we can see that the frequency of topological materials varies substantially across

different elements.
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Chapter 3

Machine Learning Model

3.1 Formulation

Atom CAtom C

Atom BAtom B

Atom AAtom A

1
2

1
2

+τA τB

1
4

3
4

+τA τC
Topologically

nontrivial

AB

AC3

Heuristic
diagnosis

Topologically
trivial

>0

<0

Figure 3-1: Topogivity-based diagnosis of materials. Given a stoichiometric
material, the topogivity-based heuristic diagnosis is evaluated by simply weighting
the material’s elements’ (atoms A, B, C) topogivities (𝜏A, 𝜏B, 𝜏C) by their relative
abundance in the unit cell, or equivalently, in the chemical formula (AB and AC3).
The sign indicates the topological classification and the magnitude indicates roughly
how confident we are in this classification. Each element’s topogivity is a machine-
learned parameter, which loosely captures the element’s tendency to form topological
materials.

We represent the heuristic chemical rule as a parameterized machine learning

model (Fig. 3-1). More specifically, the model maps each material 𝑀 to a real number
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𝑔(𝑀) according to the function

𝑔(𝑀) =
∑︁
𝐸

𝑓𝐸(𝑀)𝜏𝐸, (3.1)

where the summation runs over the elements present in the chemical formula of

material 𝑀 , 𝜏𝐸 is a learned parameter for each element 𝐸, and 𝑓𝐸(𝑀) is the ele-

ment fraction for the element 𝐸 in material 𝑀 (e.g., for a chemical formula 𝐴𝑥𝐵𝑦𝐶𝑧,

𝑓𝐴(𝑀) = 𝑥
𝑥+𝑦+𝑧

, 𝑓𝐵(𝑀) = 𝑦
𝑥+𝑦+𝑧

, and 𝑓𝐶(𝑀) = 𝑧
𝑥+𝑦+𝑧

). Classification decisions are

made according to the sign of 𝑔(𝑀): classify as topological if positive and classify

as trivial if negative. A greater magnitude of 𝑔(𝑀) roughly corresponds to a more

confident classification decision. The model is a heuristic chemical rule in the sense

that all the information required for obtaining a diagnosis is contained in the mate-

rial’s chemical formula. Nevertheless, it is possible that symmetry or other spatial

information is used implicitly, e.g. due to relationships between chemical composition

and crystal structure [60].

The optimized parameters {𝜏𝐸} are obtained by fitting the model as a parame-

terized binary classifier to the data. Rather than directly optimizing the parameters,

we use an approach based on featurizing the materials as vectors of element fractions

with one element dropped, learning a linear function, and then mapping the weights

to the corresponding topogivities. The linear function is trained using soft-margin

linear SVM [61], which we implemented using the Scikit-learn package [62].

For each element 𝐸, we refer to the optimized parameter 𝜏𝐸 as its topogivity. For

a given material 𝑀 , 𝑔(𝑀) is simply the weighted average of its elements’ topogiv-

ities, where the weighting is with respect to each element’s relative abundance, as

identifiable from the material’s chemical formula. Conceptually, an element’s topo-

givity loosely captures its tendency to form topological materials – greater topogivity

roughly corresponds to greater tendency.
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3.2 Performance Evaluation

Accuracy (%) Recall (%) Precision (%) F1 Score (%)

82.7 ± 1.0 78.0 ± 1.8 85.6 ± 1.9 81.6 ± 1.1

Table 3.1: Results from nested cross validation. Results are shown in the format

mean ± standard deviation. Note that the “topological” label corresponds to the

positive class.

Figure 3-2: Positive label fraction vs. 𝑔(𝑀) bin. For each bin of 𝑔(𝑀) values,
we calculate the fraction of test set materials that have a positive label (i.e., topo-
logical label). Shown are nested cross validation means, with error bars indicating
plus/minus one standard deviation.

We use a nested cross validation procedure, in which the inner loop is used for

hyperparameter selection and the outer loop is used for performance evaluation. The

outer loop is 11-fold, and the inner loop is 10-fold. The dataset splitting is stratified.

We find a test accuracy of 82.7±1.0% (mean ± standard deviation). Additional results

are shown in Table 3.1. Additionally, we find empirical evidence that as the magnitude

of 𝑔(𝑀) is increased, the fraction of correctly-classified materials first increases and
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then plateaus, with the plateau beginning around |𝑔(𝑀)| ≈ 1, as shown in Fig. 3-2.

We heuristically set a threshold of 1.0 for a high-confidence positive classification and

observe that that 93.0 ± 1.2% of materials with 𝑔(𝑀) ≥ 1.0 are correctly classified.

Choosing a threshold in this way means we are prioritizing precision over recall – this

choice is motivated by the fact that the DFT computations will be computationally

expensive and so we want our screening success rate to be reasonably high, but other

choices of threshold may also be reasonable depending on the purpose. Finally, we

train on all of the materials in the labeled data to obtain the final model, which is

what we will use for our high-throughput discovery process.

3.3 Learned Topogivities and Analysis

We visualize the final model’s learned topogivities in Fig. 3-3. This periodic table of

topogivities enables an immediate heuristic diagnosis of any stoichiometric material

whose elements are featured in the table. This is illustrated with examples in Fig. 3-3

for the trivial insulator NaCl and the Dirac semimetal Na3Bi [9]. The Weyl semimetal

TaAs [7] is also worth highlighting: TaAs is non-symmetry-diagnosable [18] and does

not appear in the labeled data, but is successfully diagnosed as topological by the

topogivity approach: 𝑔(TaAs) = 1
2
𝜏Ta +

1
2
𝜏As = 1.450.

The simplicity of our model enables us to readily extract chemical insights from

the periodic table of topogivities. First, we observe that elements that are near each

other in the periodic table tend to have similar topogivities, which is consistent with

intuition. Second, we observe that the elements with negative topogivities (i.e., that

exhibit a tendency to form trivial materials) are located in two clusters respectively

in the top right and bottom left parts of the periodic table. This is also consistent

with intuition: elements in the top right and bottom left are respectively highly elec-

tronegative and highly electropositive, and thus tend to form highly ionic compounds

– such compounds tend to have large trivial band gaps. Third, considering column 15

of the periodic table (the pnictogens), we observe that while the topogivities of Ni, P,

and As are negative (and Sb is slightly positive), the topogivity of Bi is positive with
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a relatively large magnitude. This is consistent with the intuition arising from the

experimental fact that Bi is featured in many well-known topological materials [25].

Finally, we observe a region of high topogivities in the early transition metals – future

work could attempt to understand the reasons for this (note that there is a chance

that this is partially an artifact of typical oxidation states). Overall, while the ele-

ment topogivities are parameters whose specific learned values are affected by dataset

issues and modeling limitations (e.g., the effects of correlated features), the fact that

we can extract chemical insights that are consistent with intuition is evidence that

the topogivity picture is a meaningful way to study topological materials.

1
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2

1
2

1
2

+τNa τCl += (–0.187) (–2.110)NaCl: = –1.149
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3
4

3
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Figure 3-3: Periodic table of topogivities. Machine-learned topogivities 𝜏𝐸 are
shown by color-coding and in values. Elements that do not appear in any material in
the post-processed dataset are shown in gray. Example applications of the topogivity-
based heuristic chemical rule is shown for two materials, NaCl (trivial) and Na3Bi
(nontrivial).

29



30



Chapter 4

High-Throughput Topological

Materials Discovery

Some of the results described in this chapter are preliminary results. The finalized

results will be included in [57]. Additionally, since this SM thesis focuses on the

machine learning component of the collaboration, we will not elaborate on the DFT

methodological details, which will be described in detail in [57].

4.1 Topogivity-Based Screening Approach

To identify topological materials using the learned topogivities, we compute 𝑔(𝑀)

for each of the 1,433 materials to screen (Fig. 4-1). We restrict our attention to

the materials that have a 𝑔(𝑀) value corresponding to a high-confidence positive

classification (i.e., 𝑔(𝑀) ≥ 1.0), of which there are 73 materials (a repeated structure

and a material that does not exist in ICSD were removed). Additionally, since it

is difficult to obtain accurate DFT calculations for f electron materials, we exclude

materials containing 4f and 5f electrons, which eliminates 5 materials and thus leaves

us with 68 materials for ab initio validation. Note that even though SG is not used

explicitly by the model, we consider two materials to be distinct if they have different

SGs (one consequence is that some of these 68 materials have chemical formulas that

also appeared in training the model).
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All materials
to screen

Topogivity prediction

Ab initio validation

Figure 4-1: Topogivity-based discovery of topological materials. We lever-
age our framework to perform high-throughput topological materials discovery by
first screening through a suitable collection of materials using topogivities – identify-
ing candidate topological materials rapidly – and subsequently performing ab initio
validation using DFT.

4.2 Ab Initio Calculations

For each of the 68 materials, we perform DFT using the Full-Potential Local-Orbital

program (FPLO) [63] within the generalized gradient approximation (GGA) [64].

Our calculations can detect many forms of nontrivial topology, but we note that our

DFT does not check for all types of nontrivial topology, so in principle it is possible

that some topological materials are missed. Of the 68 materials, we find that 56

are topological, corresponding to a success rate of 82.4%. All 56 of these topological

materials are topological semimetals. Some of these 56 topological materials have

previously been predicted in the literature and a smaller portion have also already

been experimentally observed, e.g., TaAs [7]. Beyond these, our DFT calculations also

turn up multiple new topological materials that to our knowledge have not previously

been identified.

The band structures of four newly-discovered topological materials that are promis-

ing for experimental observation are shown in Fig. 4-2. The band crossings are circled

in red – we can see that they are near or at the Fermi level. We emphasize that the

reason these four materials are non-symmetry-diagnosable is that their topological

nodes are all within the valence band manifold or conduction band manifold. Such
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Figure 4-2: Example of newly-discovered topological materials. These mate-
rials are not diagnosable using symmetry indicators, but were successfully discovered
using our topogivity-based approach. The band structures were computed using DFT.
All four are topological semimetals.

nodes cannot be diagnosed by the symmetry indicators method, which is formulated

based on the electron filling and therefore cannot target band degeneracies that are

not between the valence and conduction bands [14].
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Chapter 5

Discussion and Outlook

The topogivity approach developed here represents a broadly-applicable, systematic

approach for diagnosing topological materials. An important feature of the approach

is that it is not restricted to the types of topological materials that are diagnosable

using symmetry indicators. Strikingly, a topogivity-based diagnosis uses only the

chemical formula and requires merely a handful of arithmetic operations to evaluate.

Furthermore, the periodic table of topogivities provides simple intuition for a complex,

exotic phenomena.

These merits of the topogivity approach are enabled in part by the heuristic na-

ture of the chemical rule and, accordingly, come at the cost of rigorous classification:

separate validation of a topogivity-based prediction requires either ab initio calcula-

tions – as done here – or experiments. In addition to the diagnoses being heuristic,

the topogivities themselves are not unambiguously defined, and depend e.g., on the

weighted average formulation as well as the choice of machine learning algorithm.

Moreover, the topogivity approach provides only a coarse-grained topological classifi-

cation – nontrivial or trivial – without the fine-grained detail of ab initio approaches

(such as symmetry indicators [14] or Wilson loops [12]).

The machine-learned topogivities enabled us both to extract chemical insights

and to discover new topological materials. One promising future direction is to look

for a more complete understanding of the underlying reasons for the values of the

elements’ topogivities, which may in turn shed new light on the fundamental question
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of why some materials are topological while others are not. Another promising future

direction is to perform more comprehensive searches for new topological materials

using topogivity-based materials discovery strategies. More broadly, the notion of

topogivity represents a new paradigm in the field, which lays the groundwork for

further interdisciplinary research on both understanding and discovering topological

materials.
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