
MIT Open Access Articles

Graph Pattern Detection: Hardness for all
Induced Patterns and Faster Noninduced Cycles

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Dalirrooyfard, Mina, Vuong, Thuy Duong and Williams, Virginia Vassilevska. 2021.
"Graph Pattern Detection: Hardness for all Induced Patterns and Faster Noninduced Cycles."
SIAM Journal on Computing, 50 (5).

As Published: 10.1137/20M1335054

Publisher: Society for Industrial & Applied Mathematics (SIAM)

Persistent URL: https://hdl.handle.net/1721.1/143941

Version: Final published version: final published article, as it appeared in a journal, conference
proceedings, or other formally published context

Terms of Use: Article is made available in accordance with the publisher's policy and may be
subject to US copyright law. Please refer to the publisher's site for terms of use.

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/143941

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. COMPUT. © 2021 Society for Industrial and Applied Mathematics
Vol. 50, No. 5, pp. 1627–1662

GRAPH PATTERN DETECTION: HARDNESS FOR ALL INDUCED
PATTERNS AND FASTER NONINDUCED CYCLES∗

MINA DALIRROOYFARD† , THUY DUONG VUONG‡ , AND

VIRGINIA VASSILEVSKA WILLIAMS§

Abstract. We consider the pattern detection problem in graphs: given a constant size pattern
graph H and a host graph G, determine whether G contains a subgraph isomorphic to H. We present
the following new improved upper and lower bounds: We prove that if a pattern H contains a k-clique
subgraph, then detecting whether an n node host graph contains a not necessarily induced copy of H
requires at least the time for detecting whether an n node graph contains a k-clique. The previous
result of this nature required that H contains a k-clique which is disjoint from all other k-cliques
of H. We show that if the famous Hadwiger conjecture from graph theory is true, then detecting
whether an n node host graph contains a not necessarily induced copy of a pattern with chromatic
number t requires at least the time for detecting whether an n node graph contains a t-clique. This
implies that (1) under Hadwiger’s conjecture for every k-node pattern H, finding an induced copy of

H requires at least the time of
√
k-clique detection and size ω(n

√
k/4) for any constant depth circuit,

and (2) unconditionally, detecting an induced copy of a random G(k, p) pattern with high probability
requires at least the time of Θ(k/ log k)-clique detection, and hence also at least size nΩ(k/ log k) for
circuits of constant depth. We show that for every k, there exists a k-node pattern that contains a
k − 1-clique and that can be detected as an induced subgraph in n node graphs in the best known
running time for k− 1-clique detection. Previously such a result was only known for infinitely many
k. Finally, we consider the case when the pattern is a directed cycle on k nodes, and we would like to
detect whether a directed m-edge graph G contains a k-cycle as a not necessarily induced subgraph.
We resolve a 14-year-old conjecture of [Yuster and Zwick, Proceedings of SODA, 2004, pp. 247–253]
on the complexity of k-cycle detection by giving a tight analysis of their k-cycle algorithm. Our
analysis improves the best bounds for k-cycle detection in directed graphs for all k > 5.

Key words. fine-grained complexity, subgraph isomorphism, cliques, cycle detection

AMS subject classifications. 05C60, 05C38, 03D15, 05C85

DOI. 10.1137/20M1335054

1. Introduction. One of the most fundamental graph algorithmic problems is
subgraph isomorphism: given two graphs G = (V,E) and H = (VH , EH), determine
whether G contains a subgraph isomorphic to H. While the general problem is NP-
complete, many applications (e.g., from biology [2, 35]) only need algorithms for the
special case in which H is a small graph pattern, of constant size k, while the host
graph G is large. This graph pattern detection problem is easily seen to be in polyno-
mial time: if G has n vertices, the brute-force algorithm solves the problem in O(nk)
time, for any H.

Two versions of the subgraph isomorphism problems are typically considered. The
first is the induced version in which one seeks an injective mapping f : VH 7→ V so that
(u, v) ∈ EH if and only if (f(u), f(v)) ∈ E. The second is the not necessarily induced
version where one seeks an injective mapping f : VH 7→ V so that if (u, v) ∈ EH , then
(f(u), f(v)) ∈ E (however, if (u, v) /∈ EH , (f(u), f(v)) may or may not be an edge).

∗Received by the editors May 1, 2020; accepted for publication (in revised form) June 3, 2021;
published electronically October 28, 2021. A preliminary version of this paper appeared in Proceed-
ings of STOC 2019.

https://doi.org/10.1137/20M1335054
†Electrical Engineering & Computer Science, MIT, Cambridge, MA 02139 USA (minad@mit.edu).
‡Stanford University, Stanford, CA 94305 USA (tdvuong@stanford.edu).
§Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, MA 02139 USA

(virgi@mit.edu).

1627

D
ow

nl
oa

de
d

07
/2

1/
22

 to
 1

8.
9.

61
.1

11
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

https://doi.org/10.1137/20M1335054
mailto:minad@mit.edu
mailto:tdvuong@stanford.edu
mailto:virgi@mit.edu

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1628 DALIRROOYFARD, VUONG, AND VASSILEVSKA WILLIAMS

It is not hard to show (e.g., via color-coding) that when k is a constant, any algorithm
for the induced version can be used to solve the not necessarily induced one (for the
same pattern) in asymptotically the same time, up to logarithmic factors.

This paper considers two settings of the graph pattern detection problem: (1)
finding induced patterns of constant size k in dense n-node undirected graphs, where
the runtime is measured as a function of n, and (2) finding not necessarily induced
patterns in sparse m-edge directed graphs; here we focus on k-cycle patterns, a well-
studied and important case.

1.1. Hardness. A standard generalization of a result of Nešetřil and Poljak [33]
shows that the induced subgraph isomorphism problem for any k-node pattern H in
an n-node host graph can be reduced in O(k2n2) time to the k-clique (or induced k-
independent set) detection problem in kn-node graphs. Thus, for constant k, k-clique
and k-independent set are the hardest patterns to detect.

Following Itai and Rodeh [21], Nešetřil and Poljak [33] showed that a k-clique
(and hence any induced or not necessarily induced k-node pattern) can be detected
in an n node graph G asymptotically in time C(n, k) := M(n⌊k/3⌋, n⌈k/3⌉, n⌈(k−1)/3⌉),
where M(a, b, c) is the fastest known runtime for multiplying an a×b by a b×c matrix.
A simple bound for M(a, b, c) is M(a, b, c) ≤ abc/min{a, b, c}3−ω, where ω < 2.373 is
the exponent of square matrix multiplication [43, 27], but faster algorithms are known
(e.g., Le Gall and Urrutia [18]). In particular, C(n, k) ≤ O(nωk/3) when k is divisible
by 3.

The C(n, k) runtime for k-clique detection has had no improvements in more than
40 years. Because of this, several papers have hypothesized that the runtime might
be optimal for k-cliques (and k-independent sets) (e.g. [1, 9, 28]).

Meanwhile, for some k-node patterns H that are not cliques or independent sets,
specialized algorithms have been developed that are faster than the C(n, k) runtime for
k-clique. For instance, ifH is a 3-node pattern that is not a triangle or an independent
set, it can be detected in G in linear time, much faster than the C(n, 3) = O(nω) time
for 3-clique/triangle. Following work of [11, 34, 14, 23, 25], Vassilevska Williams et
al. [45] showed that every 4-node pattern except for the 4-clique and 4-independent
set can be detected in C(n, 3) = O(nω) time, much faster than the C(n, 4) runtime
for 4-clique. Bläser, Komarath, and Sreenivasaiah [5] recently showed that for k ≤ 8
there are faster than C(n, k) time algorithms for all nonclique nonindependent set
k-node patterns; for k ≤ 6, their runtime is C(n, k − 1). Independently, we were
able to show the same result, using an approach generalizing ideas from [45] (see the
appendix).

A natural conjecture, consistent with the prior work so far, is that for every k
and every k-node pattern H that is not a clique or independent set, one can detect
it in an n node graph in time C(n, k − 1). Blaeser et al. showed that for all k of the
form 3 · 2ℓ for integer ℓ, there is a k-node pattern that (1) is at least as hard to detect
as k − 1-clique and (2) can be detected in C(n, k − 1) time. We show that such a
pattern exists for all k ≥ 3 (Theorem 3.4).

While there exist k-node patterns that can be detected faster than k-clique, it
seems unclear how hard k-node pattern detection actually is. For instance, it could
be that for every k, there is some induced pattern on k-nodes that can be detected
in, say, nlog log(k) time, or even f(k)nc time, where c is independent of k. A Ramsey
theoretic result tells us that every k-node H either contains an Ω(log k) size clique or
an Ω(log k) size independent set. Hence, intuitively, detecting any k-node H in an n
node graph should be at least as hard as detecting an Ω(log k) size clique in an n node

D
ow

nl
oa

de
d

07
/2

1/
22

 to
 1

8.
9.

61
.1

11
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

GRAPH PATTERN DETECTION HARDNESS AND ALGORITHMS 1629

1 2

34

5

V1 V2

V5

4̄ 3̄

Fig. 1. An example of how a simple reduction attempt fails to reduce 3-clique to H. The edges
between the Vi are determined by the 3-clique instance.

graph. The widely believed exponential time hypothesis (ETH) [20] is known to imply
that k-clique cannot be solved in no(k) time [10]. Coupled with the Ramsey result,
ETH should intuitively imply that no matter which k-node H we pick, H-pattern
detection cannot be solved in no(log k) time.

Unfortunately, however, it is still open whether every pattern that contains a t-
clique is as hard to detect as a t-clique (see, e.g., [5]1). In general, it is not clear what
makes patterns hard to detect.2

One of the few results related to this is by Floderus et al. [16], who showed that
if a pattern H contains a t-clique that is disjoint from all other t-cliques in H, then H
is at least as hard to detect as a t-clique. This implied strong clique-based hardness
results for induced k-path and k-cycle. However, the reduction of [16] fails for patterns
whose k-cliques intersect nontrivially.

The main difficulty in reducing k-clique to the detection problem for other graph
patterns H can be seen in the following natural attempt used, e.g., by [16]. Say H
has a k-clique K and let H ′ be the graph induced by the vertices of H not in K.
Let G = (V,E) be an instance of k-clique. We’ll start by creating k copies of V ,
V1, . . . , Vk. For every edge (u, v) of G, add an edge between the copies of u and v in
different parts (this is essentially the Kronecker/tensor product of G and Kk). Every
k-clique C of G appears in the new graph k! times; we’ll say that the main copy C̄
of C has the ith vertex of C (in lexicographic order, say) appearing in Vi. Now, add
a copy H̄ ′ of H ′, using fresh vertices, and for every edge (h, i) of H with h ∈ H ′ and
i ∈ K, add edges from h ∈ H̄ ′ to all vertices in Vi. This forms the new graph G′

and guarantees that if G has a k-clique C, G′ contains a copy of H which is just C̄
together with H̄ ′.

The other direction of the reduction fails miserably, however. If G′ happens to
have a copy of H, there is no guarantee that any of the k-cliques of H would have
a node from each Vi and hence form a clique of G. As a simple counterexample
(Figure 1) consider H as a 4-cycle (1, 2, 3, 4) together with a node 5 that has edges to
all nodes of the 4-cycle. Starting from a graph G, without loss of generality (WLOG)
we would pickK to be (1, 2, 5) andH ′ = 3, 4 and form G′ as described. Let H̄ ′ contain
the nodes 3̄, 4̄ and let the parts of G be V1, V2, V5. Now the reduction graph G′ might

1Bläser, Komarath, and Sreenivasaiah [5] show that for the particular types of algorithms that
they use a pattern that contains a k-clique cannot be found faster than a k-clique, and they note
that such a result is not known for arbitrary algorithms.

2In contrast, there are almost tight lower bounds for “partitioned subgraph isomorphism”; see
[30].

D
ow

nl
oa

de
d

07
/2

1/
22

 to
 1

8.
9.

61
.1

11
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1630 DALIRROOYFARD, VUONG, AND VASSILEVSKA WILLIAMS

contain a copy of H even if G has no 3-cliques, as 4̄ could represent 5, and 1, 3 and
2, 4 could be represented by two nodes each in V1 and V5, respectively; see Figure 1.
Hence the copy of H wouldn’t use V2 at all and doesn’t represent a triangle in G.

One could try to modify the reduction, say, by representing the nodes of H ′ by
copies of the vertices of G, as with K. However, the same issues arise, and they seem
to persist in most natural reduction attempts.

With an intricate construction, we show how to overcome this difficulty. Our first
main theorem is that patterns that contain t-cliques are indeed at least as hard as t-
clique, and in fact we prove it for the not necessarily induced case which automatically
gives a lower bound for the induced case (Theorem 2.1 in the body).

Theorem 1.1. Let G = (V,E) be an n-node, m-edge graph, and let H be a k-node
pattern such that H has a t-clique as a subgraph. Then one can construct a new graph
G∗ of at most nk vertices in O(k2m + k2n) time such that G∗ has a not necessarily
induced subgraph isomorphic to H if and only if G has a t-clique.

Note that since the not necessarily induced pattern detection can be solved with
the induced version, a lower bound for the not necessarily induced pattern detection
gives a lower bound for the induced version. Since for every k-node graph H, either H
or its complement contains a clique of size Ω(log k), ETH implies that no matter which
k-node H we pick, induced H-pattern detection cannot be solved in no(log k) time.

Our second theorem shows that some patterns are even harder, as in fact the
hardness of a pattern grows with its chromatic number!

Our theorem relies on the widely believed Hadwiger conjecture [19] from graph
theory, which roughly states that every graph with chromatic number t contains a
t-clique as a minor.3 The Hadwiger conjecture is known to hold for t ≤ 6 [37] and to
almost hold for t = 7 [22] (it is equivalent to the 4-color theorem for t = 5, 6 [37, 44,
36]). It also holds for almost all graphs [7]. Our lower bound theorem, which is also
proved for the not necessarily induced case (Theorem 2.2 in the body) is the following.

Theorem 1.2. Let G = (V,E) be an n-node graph and let H be a k-node pattern
with chromatic number t, for t > 1. Then assuming that Hadwiger conjecture is true,
one can construct G∗ on at most nk vertices in O(n2k2) time such that G∗ has a not
necessarily induced subgraph isomorphic to H if and only if G has a t-clique.

This is the first connection between the Hadwiger conjecture and subgraph iso-
morphism, to our knowledge. Let us see some exciting consequences of this theorem.
First, we get that if t is the maximum of the chromatic numbers of H and its com-
plement, then an induced H is at least as hard as t-clique to detect. Now, it is a
simple exercise that the maximum of the chromatic number of a k-node graph and
its complement is at least

√
k. Thus, every induced H on k-nodes is at least as hard

as
√
k-clique. There are no easy induced patterns.

Corollary 1.1. No matter what k-node H we take, under ETH and the Had-
wiger conjecture, the induced subgraph isomorphism problem for H in n-node graphs

cannot be solved in no(
√
k) time.

This is the first result of such generality.
A second consequence comes from circuit complexity. Rossman [38] showed that

for any constant integers k and d, any circuit of depth d requires size ω(nk/4) to
detect a k-clique. Because of the simplicity of our reduction (it can be implemented

3H is called a minor of the graph G if H can be formed from G by deleting edges and vertices
and by contracting edges.

D
ow

nl
oa

de
d

07
/2

1/
22

 to
 1

8.
9.

61
.1

11
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

GRAPH PATTERN DETECTION HARDNESS AND ALGORITHMS 1631

in constant depth), we also obtain a circuit lower bound for induced pattern detection
for any H node subgraph.

Corollary 1.2. Let d and k be any integer constants. No matter what k-node H
we take, under the Hadwiger conjecture, any depth d circuit for the induced subgraph

isomorphism problem for H in n-node graphs requires size ω(n
√
k/4).

A third consequence is that in fact almost all k-node induced patterns are very
hard—at least as hard as Θ(k/ log k)-clique. Consider an Erdös–Renyi graph H from
G(k, p) for constant p. It is known [7] that the Hadwiger conjecture holds for H
with high probability. Moreover, the chromatic number of such graphs (and their
complements) is with high probability Θ(k/ log k) [6]; meanwhile the clique and inde-
pendent set size is only O(log k). Thus our chromatic number theorem significantly
strengthens our first theorem.

Corollary 1.3. For almost all k-node patterns H, under ETH, induced H de-
tection in n node graphs cannot be done in no(k/ log k) time.

We also immediately obtain, via Rossman’s lower bound, that for almost all k-
node patterns H, any constant depth circuit that can detect an induced H requires
size nΩ(k/ log k).

1.2. Detecting not necessarily induced directed k-cycles. Some of the
most striking differences between the complexity of induced and not necessarily in-
duced subgraph detection is in the k-path and k-cycle problems. Since a k-path and
a k-cycle both contain an independent set on ⌊k/2⌋ nodes, the induced version of
their subgraph detection problems is at least as hard as detecting ⌊k/2⌋-cliques and
needs C(n, ⌊k/2⌋) time unless there is a breakthrough in clique detection. Thus also
under ETH, induced k-path and k-cycle cannot be solved in no(k) time. Monien [31],
however, showed that for all constants k, a noninduced k-path can be detected with
constant probability in linear time. Thus, for constant k, the noninduced k-path
problem has an essentially optimal (randomized) algorithm. With the same ideas, a
k-cycle can be found in Õ(nω) time. Due to the tight relationship between triangle
detection and Boolean matrix multiplication (e.g. [41]), this runtime is often conjec-
tured to be optimal for dense graphs. For sparse graphs, however, there has been a lot
of active research in improving the runtime of k-cycle detection, and it is completely
unclear what the best runtime should be.

Alon, Yuster, and Zwick [4] gave several algorithms for both directed and undi-
rected cycle detection. The bounds for directed graphs are as follows. For 3-cycles
(triangles) [4] gives an algorithm running in time O(m2ω/(ω+1)) ≤ O(m1.41), which is
still the fastest algorithm for the problem in sparse graphs. For general k, one can
find a k-cycle in time O(m2−2/k) if k is even and in time O(m2−2/(k+1)) if k is odd.
These last algorithms do not use matrix multiplication.

Yuster and Zwick [47] set out to improve upon the general k-cycle algorithms
above using fast matrix multiplication. They presented an algorithm that combines
most known techniques for cycle detection and works for arbitrary k ≥ 3. However,
they were not able to analyze the complexity of their algorithm in general. They
showed that for k = 4, the algorithm runs in O(m(4ω−1)/(2ω+1)) ≤ O(m1.48) time and
that for k = 5, it runs in time O(m3ω/(ω+2)) ≤ O(m1.63). Both bounds improve the
runtimes from [4].

Already for k = 6 the analysis of the algorithm seemed very difficult. Yuster and
Zwick ran computer simulations to find the worst case runtime for k = 6 and beyond
and came up with conjectures for what the runtime should be for k = 6 and for all

D
ow

nl
oa

de
d

07
/2

1/
22

 to
 1

8.
9.

61
.1

11
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1632 DALIRROOYFARD, VUONG, AND VASSILEVSKA WILLIAMS

odd k. They also stated that for even k larger than 6, the runtime expression is likely
extremely complicated. Their conjectures have remained unproven for over 14 years.

In this paper we present an analysis of the running time of the Yuster–Zwick
algorithm, proving the two conjectures (for k = 6 and odd k). We give an analysis
of the runtime for even k as well. Our bound is tight, assuming that the matrix
multiplication exponent ω is 2. For larger values of ω, the tight bound on the runtime
is a step function of ω that remains to be analyzed. Our final result is as follows.

Theorem 1.3. There is an algorithm for k-cycle detection in m edge directed
graphs (the Yuster–Zwick algorithm) which runs in Θ̃(mck) time, where

• ck = ω(k + 1)/(2ω + k − 1) when k is odd,
• c4 = (4ω − 1)/(2ω + 1),•

c6 =

10ω−3
4ω+3 if 2 ≤ ω ≤ 13

6 ,

22−4ω
17−4ω if 13

6 ≤ ω ≤ 9
4 ,

11ω−2
4ω+5 if 9

4 ≤ ω ≤ 16
7 ,

10−ω
7−ω if 16

7 ≤ ω ≤ 5
2 ,

• ck ≤ (kω−4/k)/(2ω+k−2−4/k) for all even k ≥ 4. This is tight for ω = 2.

Related work. Vassilevska Williams [42] showed that Kk − e (a k-clique missing
an edge) can be found in O(nk−1) time without using fast matrix multiplication,
whereas the fastest algorithms for k-clique without fast matrix multiplication run
in O(nk/ logk−1 n) time [40]; this was recently improved by Bläser, Komarath, and
Sreenivasaiah [5], who showed that every k node pattern except the k-clique and k-
independent set can be detected in time O(nk−1). Before this, Floderus et al. [15]
showed that 5 node patterns4 can be found in O(n4) time, again without using fast
matrix multiplication.

Some other related work includes improved algorithms for subgraph detection
when G has special structure (e.g. [24] and [17]). Other work counts the number of
occurrences of a pattern in a host graph (e.g. [25, 39, 12]). Finally, there is some
work on establishing conditional lower bounds. Floderus et al. [16] produced re-
ductions from k-clique (or k-independent set) to the detection problem of ℓ-patterns
for ℓ > k (but still linear in k). They show, for instance, that finding an induced
k-path is at least as hard as finding an induced k/2-independent set. Lincoln, Vas-
silevska Williams, and Williams [28] give conditional lower bounds for not necessarily
induced directed k-cycle detection. For instance, they show that if k-clique requires
essentially C(n, k) time, then finding a directed k-cycle in an m edge graph requires
m2ωk/(3(k+1))−o(1) time. This lower bound is lower than the upper bounds in this
paper, but they do show that superlinear time is likely needed.

Detecting k-cycles in undirected graphs is an easier problem, when k is an even
constant. Yuster and Zwick [46] showed that a k-cycle in an undirected graph can
be detected (and found) in O(n2) time for all even constants k. Dahlgaard et al. [13]
extended this result showing that k-cycles for even k in m-edge graphs can be found
in time Õ(m2k/(k+1)). Their result implies that of [46], as by a result of Bondy and
Simonovits [8], any n node graph with ≥ 100kn1+1/k edges must contain a 2k-cycle.
When k is an odd constant, the k-cycle problems in undirected and directed graphs
are equivalent (see, e.g., [42]).

4All patterns except for K5, K4 + e, (3, 2)-fan, gem, house, butterfly, bull, C5, K1,4, K2,3, and
their complements; for these subgraphs the fastest runtime remained C(n, 5) ≤ O(n4.09).

D
ow

nl
oa

de
d

07
/2

1/
22

 to
 1

8.
9.

61
.1

11
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

GRAPH PATTERN DETECTION HARDNESS AND ALGORITHMS 1633

1.3. Organization of the paper. We start by providing lower bounds for de-
tecting small subgraphs in section 2. In section 3, we provide our algorithms for the
induced pattern detection. We first introduce a technique for detecting any k-node
pattern that is not a clique or independent set in time C(n, k − 1). Using this tech-
nique in subsection 3.5, we show that there is a k-node pattern that can be detected
in C(n, k − 1) time in an n-node graph for all k. Finally, in section 4 we analyze the
algorithm of Yuster and Zwick for k-cycle detection in sparse directed graphs.

2. Lower bounds. In this section we consider the problem of detecting and find-
ing a (not necessarily induced) copy of a given small pattern graph H in a host graph
G (we assume G and H are simple graphs with no self-loops). This is the variant of
subgraph isomorphism in which the pattern H is fixed, on a constant k number of ver-
tices, and G = (V,E) with |V | = n is given as an input. We focus on the hardness of
this problem: we show that any fixed pattern that has a t-clique as a subgraph is not
easier to detect as a subgraph than a t-clique, formally stated as Theorem 2.1. First,
we start by an easier case of the theorem where the pattern is t-chromatic to depict
the main idea of our proof and then we proceed with the proof of the theorem for all
patterns. Recall that a proper vertex coloring of a graph is an assignment of colors to
each of its vertices such that no edge connects two identically colored vertices. If the
set of colors is of size c, we say that the graph is c-colorable. The chromatic number
of a graph is the smallest number c for which the graph is c-colorable, and we call
such graph c-chromatic. In the second part of this section, we prove a stronger lower
bound using Hadwiger conjecture, showing that under this conjecture any t-chromatic
pattern is not easier to detect as a subgraph than a t-clique.

Theorem 2.1. Let G = (V,E) be an n-node m-edge graph and let H be a k-node
pattern such that H has a t-clique as a subgraph. Then one can construct G∗ on at
most nk vertices in O(k2m + k2n) time such that G∗ has a not necessarily induced
subgraph isomorphic to H if and only if G has a t-clique.

More specifically, we show that if G has a t-clique, then G∗ has an “induced” sub-
graph isomorphic to H, and if H has a “not necessarily induced” subgraph isomorphic
to H, then G has a t-clique.

2.1. Simple case: t-chromatic patterns. We show Theorem 2.1 when H is
t-chromatic in addition to having a t-clique as a subgraph. Construct the new graph
G∗ as follows: For each v ∈ H, let Gv be a copy of the vertices of G as an independent
set. For any two vertices v and u in H where vu is an edge, add the following edges
between vertex sets Gv and Gu: for each w1 and w2 in G, add an edge between the
copy of w1 in Gv and the copy of w2 in Gu if and only if w1w2 is an edge in G. So G∗

has nk vertices and since for each pair of vertices u, v ∈ H we have at most m edges
between Gu and Gv, the construction time is at most O(k2m+ kn).

Now we show that G has a t-clique as a subgraph if and only if G∗ has H as
a subgraph. First suppose that G has a t-clique, say, T = v1, . . . , vt. Consider a
t-coloring of the vertices of H, with colors 1, . . . , t. For each w ∈ H, pick vi from
Gw if w is of color i. Call the induced subgraph on these vertices H∗. We show
that H∗ is isomorphic to H: map each w ∈ H to the vertex picked from Gw in
G∗. If w and w′ are adjacent in H, then their colors are different, so the vertices
that are picked from Gw and Gw′ are different vertices of G, and they are part of
the clique T , so they are adjacent. If w and w′ are not adjacent, we don’t have
any edges between Gw and Gw′ , so the vertices picked from them are not adja-
cent.

D
ow

nl
oa

de
d

07
/2

1/
22

 to
 1

8.
9.

61
.1

11
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1634 DALIRROOYFARD, VUONG, AND VASSILEVSKA WILLIAMS

a1

a2

a3a4

a5
a6

Ga1

Ga2

Ga6

Ga3

a∗5

a∗4

E(G)

E(G)

Hex G∗

Fig. 2. Graph Hex on the left. The largest clique of this graph is a triangle. Hex is 4-
chromatic, so p(Hex) > 1. We have p(Hex) = 2, as a minimum 3-clique covering for it is
{{a1, a2, a3, a6}, {a3, a4, a5, a1, a6}}. The graph G∗ is on the right, and thick edges represent the
way the edges are specified according to E(G) between two copies of G.

For the other direction, we show that if G∗ has H as a subgraph, then G has a
t-clique. Since H has a t-clique as a subgraph, G∗ also has a t-clique as a subgraph.
Suppose the vertices of this clique are W = {w1, . . . , wt}, where wi is a copy of
vi ∈ G. Each pair of vertices of the clique are in different copies of G, as these
copies are independent sets. Moreover, for each i, j ∈ {1, . . . , t}, since wi and wj are
adjacent, they correspond to different vertices in G, so vi ̸= vj . Since we connect two
vertices in G∗ if their corresponding vertices in G are connected, this means that vi
and vj are connected in G. So v1, . . . , vt form a t-clique in G.

2.2. General case. Define a t-clique covering of a pattern H to be a collection
C of sets of vertices of H, such that the induced subgraph on each set is t-colorable,
and for any t-clique T of H, there is a set in C that contains all the vertices of T .
For example, in Figure 2, the graph Hex has the following 3-clique covering of size 2:
{{a1, a2, a3, a6}, {a3, a4, a5, a1, a6}}.

For each H we have at least one t-clique covering by considering the vertices of
each t-clique of H as one set. However we are interested in the smallest collection C.
So for a fixed t, we define p(H) to be the smallest integer r ≥ 1, such that there is a
t-clique covering of H of size r. We call a t-clique covering of size p(H) a minimum
t-clique covering. For example, if H is t-colorable, p(H) = 1 as the whole vertex
set is the only set that the t-clique covering has. If H is not t-colorable but has a
t-clique, then p(H) > 1. Note that when H has size k for a constant k, we can assume
that finding a minimum t-clique covering for H takes constant time. One simple (and
not very efficient) approach is to first list all the t-cliques of H and then look at all
the ways one can partition this list into subsets. For each partition, check whether
the induced subgraph on these subsets is t-colorable. Call the partitions with this
property valid, and take the valid partition with the least number of subsets.

Proof of Theorem 2.1. Let C = {C1, . . . , Cr} be a minimum t-clique covering of
H, where r = p(H). The vertex set of the new graph G∗ is the following: For each
vertex v ∈ C1, let Gv be a copy of the vertices of G as an independent set. For each
vertex v ∈ V (H) \ C1, let v

∗ be a copy of v in G∗. The edge set of G∗ is as follows:
For each two vertices v, u ∈ C1 such that uv is an edge in H, add the following edges
between Gv and Gu: for each w1 and w2 in G, add an edge between the copy of w1

in Gv and the copy of w2 in Gu if and only if w1w2 is an edge in G. For each two
vertices u ∈ C1 and v ∈ V (H) \C1 such that uv is an edge in H, connect v∗ to all the
vertices in Gu. For each two vertices u, v ∈ V (H) \ C1 such that uv is an edge in H,

D
ow

nl
oa

de
d

07
/2

1/
22

 to
 1

8.
9.

61
.1

11
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

GRAPH PATTERN DETECTION HARDNESS AND ALGORITHMS 1635

connect u∗ and v∗. The way G∗ is constructed is shown in Figure 2 for the particular
pattern Hex with maximum clique 3.

The number of nodes in G∗ is |C1| · |V (G)|+ |V (H) \C1| ≤ |V (H)| · |V (G)| = nk.
The number of edges between Gv and Gu for some u, v ∈ C1 is at most m, and the
number of edges between any v∗ andGu for u ∈ C1 and v /∈ C1 is at most n. The rest of
the edges are at most k2 many, so in total we have O(k2m+k2n+k2) = O(k2m+k2n)
many edges. Note that since finding the minimum t-clique covering takes constant
time (because k is a constant) the construction time is also O(k2m+ k2n).

Now we show that G has a t-clique as a subgraph if and only if G∗ has H as a
subgraph. First suppose that G has a t-clique, say, v1, . . . , vt. Consider a t-coloring of
vertices of C1, with colors 1, . . . , t. Let H∗ be the subgraph on the following vertices
in G∗: for each w ∈ C1, pick vi from Gw if w is of color i. For each w ∈ V (H) \ C1,
pick w∗. We show that H is isomorphic to H∗: for each w ∈ C1, map w to the vertex
picked from Gw, and for each w ∈ V (H) \ C1, map w to w∗. If w, u ∈ C1 such that
wu ∈ E(H), then their colors are different in the t-coloring of C1, and so the vertices
that are picked from Gw and Gu are different vertices of G and part of the t-clique of
G, so they are adjacent. If wu is not an edge, then there is no edge between Gw and
Gu. If w ∈ C1 and u ∈ V (H) \ C1 and wu is an edge in H, then u∗ is adjacent to all
vertices in Gw including the vertex that is picked from Gw for H∗. If wu is not an
edge, then there is no edge between u∗ and Gw. If w, u ∈ V (H) \C1, then u∗, w∗ are
both picked inH∗ and they are adjacent in G∗ if and only if w and u are adjacent inH.

For the other direction, we show that if G∗ has a subgraph H∗ isomorphic to H,
then G has a t-clique. Let S1 = ∪v∈C1

Gv. First suppose that H∗ has a t-clique T
using vertices in S1. Since for each v ∈ C1, Gv is an independent set, no two vertices
of T are in the same Gv. So there are t vertices of H, v1, . . . , vt such that T has a
vertex in each Gvi . Let this vertex be a copy of wi ∈ G. Since for each i, j ∈ {1, . . . , t},
i ̸= j, the copies of wi and wj are adjacent in G∗, we have that wi ̸= wj and they are
adjacent in G. So {w1, . . . , wt} form a t-clique in G.

So assume that the induced subgraph on V (H∗) ∩ S1 in G∗ has no t-clique. As
S1 has all the vertices in G∗ that correspond to the vertices in C1, we define similar
sets for other Cis. For i ∈ {2, . . . , p(H)}, let S′

i = ∪v∈Ci∩C1
Gv, S

′′
i = ∪v∈Ci\C1

v∗ and
Si = S′

i ∪S′′
i . First note that the induced subgraph on Si is t-colorable: Consider the

t-coloring of Ci. For each v ∈ Ci \ C1, color v
∗ the same as v. For each v ∈ Ci ∩ C1,

color all vertices in Gv the same as v.
Now we show that any t-clique in H∗ is in one of the sets S2, . . . , Sp(H). This

means that the collection {S2∩V (H∗), . . . , Sp(H)∩V (H∗)} is a t-clique covering forH∗

(and thus for H) with size p(H)−1, which is a contradiction. Consider a t-clique T =
v1, . . . , vt inH∗. Each vi is in one of the copies of G or is a copy of a vertex inH. So for
each vi, there is some vertex wi ∈ H, such that vi ∈ Gwi and wi ∈ C1 if vi ∈ S1, or vi =
w∗

i and wi /∈ C1 if vi /∈ S1. Since for each i, j, vi, and vj are adjacent in G∗, this means
that wi and wj are different vertices in H and they are adjacent. So W = {w1, . . . , wt}
form a clique inH. Since T ̸⊆ S1, WLOG we can assume that v1 /∈ S1. So w1 /∈ C1. So
the t-cliqueW is not in C1, and so it is in Ci, for some 2 ≤ i ≤ p(H). Hence, T ⊆ Si.

Corollary 2.1. Let H be a k-node pattern that has a t-clique or a t-independent
set as a subgraph. Then the problem of finding H as an induced subgraph in an n-node
graph is at least as hard as finding a t-clique in an O(n)-node graph.

2.3. A stronger lower bound. One of the oldest conjectures in graph the-
ory is the Hadwiger conjecture, which introduces a certain structure for t-chromatic
graphs. Assuming that this conjecture is true, we show that any fixed pattern with

D
ow

nl
oa

de
d

07
/2

1/
22

 to
 1

8.
9.

61
.1

11
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1636 DALIRROOYFARD, VUONG, AND VASSILEVSKA WILLIAMS

chromatic number t is not easier to detect as an induced subgraph than a t-clique.
This strengthens the previous lower bound because the size of the maximum clique
of a pattern is at most its chromatic number, and moreover there are graphs with
maximum clique of size two but large chromatic number.

Conjecture 1 (Hadwiger’s conjecture). Let H be a graph with chromatic num-
ber t. Then one can find t disjoint connected subgraphs of H such that there is an
edge between every pair of subgraphs.

Contracting the edges within each of these subgraphs so that each subgraph col-
lapses to a single vertex produces a t-clique as a minor of H. This is the property we
are going to use to show that H is at least as hard to detect as a t-clique. Our main
theorem is as follows.

Theorem 2.2. Let G = (V,E) be an n-node graph and let H be a k-node t-
chromatic pattern, for t > 1. Then assuming that Hadwiger conjecture is true, one
can construct G∗ on at most nk vertices in O(n2k2) time such that G∗ has a (not
necessarily induced) subgraph isomorphic to H if and only if G has a t-clique.

To prove Theorem 2.2, we use a similar approach as Theorem 2.1. The approach
of Theorem 2.1 is covering the maximum cliques of the pattern by a collection of
subgraphs. However, since in Theorem 2.2 the pattern doesn’t necessarily have a
t-clique, we cover another particular subgraph of the pattern, and hence we introduce
a similar notion as t-clique covering for this subgraph.

Let F be a graph with a vertex (not necessarily proper) coloring C : V (F) →
{1, . . . , t}. We say that F has a Kt minor with respect to the coloring C if the vertices
of each color induce a connected subgraph and for every color there is an edge from
one of the vertices of that color to one of the vertices of every other color. For example,
in Figure 2, consider the following coloring for Hex: Cex : {a1, . . . , a6} → {1, . . . , 4},
where Cex(a1) = Cex(a2) = 1, Cex(a3) = Cex(a4) = 2, Cex(a5) = 3, and Cex(a6) = 4.
Clearly Hex has a K4 minor with respect to the coloring Cex.

Let F and H be two fixed graphs, where F is t-chromatic. We say that H is
(Kt, F) minor colorable if there is a (not necessarily proper) coloring C : V (H) →
{1, . . . , t} such that any induced copy of F in H has a Kt minor with respect to C.
For example, in Figure 3, the graph H ′

ex has graph Hex (Figure 2) as a 4-chromatic
subgraph, and it is (K4, Hex) minor colorable: There are exactly two copies of Hex in
H ′

ex, one with vertex set {a1, . . . , a6} and one with vertex set {a1, a4, a5, a6, a7, a8},
and both have a K4 minor with respect to the coloring given in Figure 3. Note that
minor colorability is different from colorability and the chromatic number of a graph:
recall that a graph is c-colorable for an integer c if the graph has a proper coloring
using c colors and the graph is c-chromatic (its chromatic number is c) if c is the
smallest integer such that the graph is c-colorable.

Let H be a pattern and let F be a t-chromatic subgraph of H. As a generalization
to a t-clique covering of H, we define an F -covering of H to be a collection C of sets of
vertices of H, such that the induced subgraph of each set is (Kt, F) minor colorable,
and each (not necessarily induced) copy of F is completely inside one of the sets in C.

For any graph H, we have at least one F -covering by considering the vertices
of each (not necessarily induced) copy of F as one set where the (Kt, F) minor col-
orablitiy of each set comes from Conjecture 1. Similar to t-clique coverings we are
interested in the smallest collection C among all F -coverings. So for a fixed number
t and a t-chromatic subgraph F of H, we define pF (H) to be the smallest integer
r ≥ 1, such that there is an F -covering of H of size r. We call an F -covering of size

D
ow

nl
oa

de
d

07
/2

1/
22

 to
 1

8.
9.

61
.1

11
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

GRAPH PATTERN DETECTION HARDNESS AND ALGORITHMS 1637

a1

a2

a3a4

a5
a6

Ga1

Ga2

Ga6

Ga3

E(G)

G∗

a7

a8

H ′ex

matching

Ga7

Ga8

Ga5

Ga4

Fig. 3. The 4-chromatic graph H′
ex on the left side has the coloring C′

ex, which makes it
(K4, Hex) minor colorable: C′

ex(a1) = C′
ex(a2) = C′

ex(a7) = 1, C′
ex(a3) = C′

ex(a4) = C′
ex(a8) = 2,

C′
ex(a5) = 3, C′

ex(a6) = 4. On the right side we show how G∗ is constructed as it is described in
the proof of Theorem 2.2. The double edges indicate a matching where nodes that are a copy of the
same vertex in G are connected. The thick edges represent the way we add edges according to E(G).

pF (H) a minimum F -covering. Note that pKt
(H) = p(H). For example, in Figure 3,

pHex
(H ′

ex) = 1, according to the coloring given in the figure. Note that similar to the
t-clique covering, we can find a minimum F -covering in constant time if the size of H
is constant by a brute-force argument.

Now we are ready to prove Theorem 2.2.

Proof of Theorem 2.2. We are going to mimic the proof of Theorem 2.1, and so
we are going to carefully choose a subgraph F and consider the minimum F -covering
of it.

Let z be the largest integer such that every (z − 1)-node subgraph of H is t − 1
colorable. Let F be a t-chromatic subgraph of H on z nodes with a maximum number
of edges. Note that F is an induced subgraph of H. In Figure 3, H = H ′

ex is 4-
chromatic and one can check that any subgraph on 5 vertices or less is 3 colorable.
In this graph z = 6 and F = Hex.

Now suppose that C = {C1, . . . , Cr} is a minimum F -covering of H, where r =
pF (H). Let f : C1 → {1, . . . , t} be a (Kt, F) minor coloring of C1. Define the vertex
set of G∗ as follows: For each vertex v ∈ C1, let Gv be a copy of G as an independent
set. For each vertex v ∈ V (H) \ C1, let v

∗ be a copy of v in G∗. The edge set of G∗

is as follows: For each pair of vertices u, v ∈ C1, if uv is not an edge in H we don’t
add any edges between Gu and Gv. If uv is an edge and f(u) = f(v), then add the
following edges between Gu and Gv: For each w ∈ G, add an edge between the copy
of w in Gu and the copy of w in Gv (so we have a complete matching between Gu

and Gv). If uv is an edge and f(u) ̸= f(v), then add the following edges between Gu

and Gv: for each w1 and w2 in G, add an edge between the copy of w1 in Gu and
the copy of w2 in Gv if and only if w1w2 is an edge in G. For each pair of vertices
u ∈ C1 and v ∈ V (H) \C1 such that uv is an edge in H, add an edge between v∗ and
all vertices in Gu. For each pair of vertices u, v ∈ V (H) \ C1 such that uv is an edge
in H, add an edge between u∗ and v∗ in G∗. In Figure 3, H ′

ex has a Hex-covering of
size 1 which is the whole graph. On the right side of the figure we show how G∗ is
constructed.

The number of nodes in G∗ is |C1| · |V (G)|+ |V (H) \C1| ≤ |V (H)| · |V (G)| = nk.
The number of edges between Gv and Gu for some u, v ∈ C1 is at most max (m,n),
where m is the number of edges of G. The number of edges between any v∗ and Gu

for u ∈ C1 and v /∈ C1 is at most n. The rest of the edges are at most k2 many, so
in total we have O(k2m+ k2n+ k2) = O(k2m+ k2n) many edges. Note that finding

D
ow

nl
oa

de
d

07
/2

1/
22

 to
 1

8.
9.

61
.1

11
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1638 DALIRROOYFARD, VUONG, AND VASSILEVSKA WILLIAMS

z and F takes constant time by a brute-force argument on all the subgraphs of H.
Since finding the minimum F -covering takes constant time (because k is a constant)
the construction time is also O(k2m+ k2n) ≤ O(n2k2).

Now we show that G has a t-clique as a subgraph if and only if G∗ has H as a
subgraph. First, suppose that G has a t-clique, say, T = v1, . . . , vt. Let H∗ be the
induced subgrpah on the following vertices in G∗: for each w ∈ C1, pick vi from Gw

if f(w) = i. For each w ∈ V (H) \C1, pick w∗. We show that H is isomorphic to H∗:
for each w ∈ C1, map w to the vertex picked from Cw, and for each w ∈ V (H) \ C1,
map w to w∗. If u,w ∈ C1 and they are not adjacent, then there is no edge between
Gu and Gw. If uw is an edge in H, then if f(u) = f(w) = i, we picked vi from both
Gu and Gw and hence there are adjacent (note that in this case the edges between
Gu and Gw form a complete matching). If f(u) ̸= f(w), then the vertices that we
picked from Gu and Gw are copies of different vertices of the clique T , and so they
are adjacent in G∗. If u ∈ C1 and w ∈ V (H) \C1 and uw is an edge in H, then w∗ is
adjacent to all vertices in Gu, so it is adjacent to the vertex chosen from Gu for H∗.
If uw is not an edge, then there is no edge between w∗ and Gu. If u,w ∈ V (H) \C1,
then u∗ and w∗ are connected in H∗ if and only if uw are connected in H.

For the other direction, we show that if G∗ has a (not necessarily induced) sub-
graph H∗ isomorphic to H, then G has a t-clique. Let S1 = ∪v∈C1

Gv. First suppose
that H∗ has a copy of F in S1. Let the vertices of this copy be w1, . . . , wz. For each wi

there is a vertex vi ∈ H such that wi ∈ Gvi . Now if for some i ̸= j, vi = vj , then the
induced subgraph on {v1, . . . , vz} has less than z vertices, so it is t−1 colorable (using
proper coloring). Now if we color wi the same color as vi, we get a proper coloring of
this copy of F with t − 1 colors, a contradiction to the chromatic number of F . So
for each i ̸= j, vi ̸= vj . Now we show that the induced subgraph on {v1, . . . , vz} in H
is isomorphic to F . Call this subgraph F ′. We just showed that |V (F ′)| = z. Since
there is no edge between Gvi and Gvj if vi and vj are not connected, we have that
F is a subgraph of F ′, and so F ′ is not t− 1 colorable, and since it is a subgraph of
H, it is t-chromatic. If F and F ′ are not isomorphic, then F ′ has more edges than
F , which is a contradiction. So F and F ′ are isomorphic, and in particular wi and
wj are adjacent if and only if vi and vj are adjacent. Suppose that wi ∈ Gvi

is the
copy of w′

i in G. We show that {w′
1, . . . , w

′
z} contains exactly t distinct vertices that

induce a t-clique in G. Consider the coloring f on C1. First note that if vi and vj are
adjacent vertices such that f(vi) = f(vj), then since wi and wj are adjacent, we have
w′

i = w′
j . Since F

′ is a copy of F in C1, it has a Kt minor with respect to the coloring
f . So the subgraph that each color induces is connected, and so for each vi and vj
with f(vi) = f(vj) = a we have w′

i = w′
j . This means that all wi’s with f(vi) = a

are copies of the same vertex, say, ua. Now take a pair of colors, a, b ∈ {1, . . . , t}.
There are vertices vi and vj such that f(vi) = a, f(vj) = b, and vivj is an edge in
H. So wiwj is an edge in G∗, and since a ̸= b, w′

i ̸= w′
j , and w′

iw
′
j is an edge in G.

Since w′
i = ua and w′

j = ub, we have that ua and ub are different vertices and they
are adjacent in G. So {w′

1, . . . , w
′
z} = {u1, . . . , ut} induces a t-clique in G∗.

Now suppose that there is no copy of F in the induced subgraph on V (H∗) ∩ S1

in G∗. For i ∈ {2, . . . , pF (H)}, let S′
i = ∪v∈Ci∩C1Gv, S

′′
i = ∪v∈Ci\C1

{v∗} and Si =
S′
i ∪ S′′

i . We prove that the collection {S2 ∩ V (H∗), . . . , SpF (H) ∩ V (H∗)} is an F -
covering for H∗, which means that pF (H) = pF (H

∗) < r, a contradiction.
First we show that any copy of F in H∗ is in one of Sis. Let F ∗ with vertex set

{w1, . . . , wz} be a copy of F in H∗. For each wi, there is a vi ∈ H where wi ∈ Gvi

and vi ∈ C1 if wi ∈ S1, or wi = v∗i and vi /∈ C1 if wi /∈ S1. If vi = vj for some i ̸= j,
then F ∗ is t − 1 colorable (with proper coloring): the induced graph on {v1, . . . , vz}

D
ow

nl
oa

de
d

07
/2

1/
22

 to
 1

8.
9.

61
.1

11
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

GRAPH PATTERN DETECTION HARDNESS AND ALGORITHMS 1639

has at most z − 1 vertices and so it is t− 1 colorable. Color wi the same as vi. From
the way we construct G∗ we know that if vi and vj are not connected, wi and wj are
also not connected, and so this coloring of F ∗ is proper. Since F ∗ is t-chromatic, this
is a contradiction. So if we call the induced graph on {v1, . . . , vz} ⊆ V (H) by FH ,
then |V (FH)| = z. We know that if wi and wj are connected, then vi and vj are
connected. So F is a subgraph of FH , and so FH is t-chromatic. If FH and F are
not isomorphic, it means that FH has more edges than F , which is a contradiction.
So FH and F are isomorphic. Now since F ∗ is not in S1, WLOG we can assume that
w1 /∈ S1, and so w1 = v∗1 and v1 is not in C1. So FH ̸⊆ C1 and there is some i ≥ 2
such that FH ⊆ Ci. So F ∗ is in Si.

Now we show that for each i ≥ 2, Si ∩ V (H∗) is (Kt, F)-minor colorable. Since
Ci is (Kt, F)-minor colorable, there is a coloring fi : Ci → {1, . . . , t} such that each
induced copy of F in Ci has a Kt minor with respect to fi. Let f∗

i : Si ∩ V (H∗) →
{1, . . . , t} be the following coloring: For each v ∈ Ci ∩ C1, let f∗

i (u) = fi(v) for
all vertices u ∈ Si ∩ V (H∗) ∩ Gv. For each v ∈ Ci \ C1, where v∗ ∈ V (H∗), let
f∗
i (v

∗) = fi(v). Now if F ∗ = {w1, . . . , wz} is a copy of F in Si ∩ V (H∗), we know
that the set FH = {v1, . . . , vz} is a copy of F in Ci, where wi ∈ Gvi if wi ∈ S1 and
wi = v∗i if wi /∈ S1. Note that f(vi) = f∗

i (wi) and vi and vj are adjacent if and
only if wi and wj are adjacent. So since the subgraph induced on vertices of any
color in FH is connected, the subgraph induced on any color in F ∗ is also connected.
Moreover, since in fi for any pair of colors there is an edge between one of the vertices
of that color to one of the vertices of the other color, this property holds for f∗

i . So
Si ∩ V (H∗) is (Kt, F)-minor colorable, and so we have an F -covering for H of size
less than pF (H).

Corollary 2.2. Let H be a pattern and let t be the maximum chromatic number
of H and its complement. Then under the Hadwiger conjecture, finding an induced
copy of H in an n-node graph is at least as hard as finding a t-clique in an O(n)-node
graph.

3. Induced pattern detection: Algorithms. In this section we focus on
the algorithmic part of the induced pattern detection problem, starting with some
background on the problem. First, it is a simple and folklore exercise to show that
if there is a T (n) time algorithm that can detect whether G contains a copy of H,
then one can also find such a copy in O(T (n)) time: Partition the vertices V of G
into k+1 equal parts (WLOG n is divisible by k+1), and for every k-tuple of parts,
use the detection algorithm in T (nk/(k + 1)) time to check whether the union of the
parts contains a copy of H. The moment a k-tuple of parts is detected to contain a
copy of H, stop looking at other k-tuples and recurse on the graph induced by the
union of the k parts. (Stop the recursion when n is constant, and brute force then.)
Since every k node subgraph is contained in some k-tuple of the parts, the algorithm
is correct. The runtime is

t(n) ≤
log(1+1/k) n∑

i=1

(k + 1)T (n(k/(k + 1))i)

≤ (k + 1)T (n)

∞∑
i=1

((k/(k + 1))2)i ≤ O(T (n)).

The second inequality above follows since T (n) ≥ Ω(n2) as the algorithm needs to at
least read the input and the input can be dense. Because of this, for some nondecreas-
ing function g(n), T (n) = n2g(n). Hence for any L ≥ 1, T (n/L) = n2/L2g(n/L) ≤

D
ow

nl
oa

de
d

07
/2

1/
22

 to
 1

8.
9.

61
.1

11
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1640 DALIRROOYFARD, VUONG, AND VASSILEVSKA WILLIAMS

n2/L2g(n) = T (n)/L2. (Without this observation about T (n), the analysis would
incur at most a log n factor for finding from detection.) As finding and detection are
equivalent, we will focus on the detection version of the problem.

Recall from the introduction, C(n, k) := M(n⌊k/3⌋, n⌈k/3⌉, n⌈(k−1)/3⌉). Nešetřil
and Poljak [33] showed that the pattern detection problem can be reduced to rectan-
gular matrix multiplication. In particular, when k ≡ q mod 3, detecting a k node
pattern in an n node G can be reduced in O(n(2k+q)/3) time to the product of an
n⌊k/3⌋ × n⌈k/3⌉ matrix by an n⌈k/3⌉ × n⌈(k−1)/3⌉ matrix.

Here we first recall the approach from [45] and then generalize the ideas there to
obtain an approach for all k to show that (1) for all k ≤ 6 and for all k-node H that
is not a clique or independent set, H can be detected in O(C(n, k − 1)) time, with
high probability, and (2) for all k ≥ 3, there is a pattern that can be detected in time
O(C(n, k − 1)), with high probability.

3.1. The approach from [45]. Vassilevska Willams et al. [45] proposed the
following approach for detecting a copy of H in G:

1. First obtain a random subgraph G′ of G by removing each vertex of G inde-
pendently and uniformly at random with probability 1/2.

2. Compute a quantity Q that equals the number of induced H in G′, modulo
a particular integer q.

3. If Q ̸= 0 mod q, return that G contains an induced H, and otherwise, return
that G contains no induced H with high probability.

The following lemma from [45] implies that (regardless of q), if G contains a copy
of H, after the first step, with constant probability, the number of copies of H in G′

is not divisible by q.

Lemma 3.1 ([45]). Let q ≥ 2 be an integer and G,H be undirected graphs. Let
G′ be a random induced subgraph of G such that each vertex is taken with probability
1
2 , independently. If there is at least one induced H in G, the number of induced H

in G′ is not a multiple of q with probability at least 2−|H|.

Now using Lemma 3.1, we can sample graph G′ from G, and with probability
2−k we have that the number of induced H is not divisible by q. To obtain higher
probability, we can simply repeat this procedure.

Hence, it suffices to provide an algorithm for counting the number of copies of
H modulo some integer. The approach from [45] is to efficiently compute a quantity
which is an integer linear combination Q =

∑t
i=1 αinHi of the number of copies nHi

in G of several different patterns H = H1, H2, . . . ,Ht, so that some integer q divides
the coefficients αi in front of nHi

for i > 1 but q does not divide α1. Thus, Q = α1nH

mod q.
Suppose that d is the largest common divisor of α1 and q. Suppose that d ̸= 1.

Since q divides every αk with k > 1, d must divide all αi. Hence, we could just
consider Q/d in place of Q and take everything mod q/d instead of q. Thus WLOG
α1 and q are coprime, and so α−1 exists in Zq. Hence, Qα−1 = nH mod q, and we
can use this quantity in step 2 of the approach above.

For instance, if H is K4− e (the diamond), one can compute the square A2 of the
adjacency matrix A of G in O(nω) time and compute

Q =
∑

(u,v)∈E

(
A2(u, v)

2

)
= nK4−e + 6nK4 ,

so that Q = nK4−e mod 6.

D
ow

nl
oa

de
d

07
/2

1/
22

 to
 1

8.
9.

61
.1

11
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

GRAPH PATTERN DETECTION HARDNESS AND ALGORITHMS 1641

v0 v1 v2 v3 v0 v1 v2 v3
(a) class c1

v0 v1 v2 v3 v0 v1 v2 v3
(b) class c2

Fig. 4. Two graph classes for k = 4. In both classes, the graphs in the class agree on all edges
except the edge v0v1.

In prior work, the equations Q were obtained carefully for each particular 4 node
pattern. In this section we provide a general and principled approach of obtaining
such quantities that can be computed in O(C(n, k − 1)) time for k ≤ 6.

3.2. Setup. As mentioned earlier, two graphs H and H ′ are isomorphic if there
is an injective mapping from the vertex set of H onto the vertex set of H ′ so that
edges and nonedges are preserved. We will represent this mapping by presenting
permutations of the vertices of H and H ′, i.e., for two graphs H and H ′ with vertex
orders H = (v1, . . . , vt) and H ′ = (w1, . . . , wt), we say H maps to H ′ if for each i and
j, (vi, vj) ∈ E(H) if and only if (wi, wj) ∈ E(H ′). Note that if H maps to H ′, H ′

maps to H as well.
Throughout this section, fix an integer k and let k′ = ⌊k−1

3 ⌋. We refer to k-node
graphs as patterns, and we want to detect them in n-node graphs. We will assume that
every graph we consider is given with a vertex ordering, unless otherwise specified.
We call a pattern with an ordering labeled, and otherwise, the pattern is unlabeled.
By the subgraph (v1, . . . , vh) in a graph G, we mean the subgraph induced by these
vertices, with this specified order when considering isomorphisms.

We partition all k-node patterns with specified vertex orders (there are 2(
k
2) many

of these) into classes and for each class we count the number of subgraphs in a given
graph G which map to one of the graphs in this class. For a k-node pattern H =
(v0, . . . , vk−1), define the class of k-node patterns C(H) as follows:

Let F be the set of the following pairs of vertices: (v0, v1), . . . (v0, vk′) (we
sometimes refer to these pairs as the first k′ edges of H). Then the graph H ′ =
(w0, . . . , wk−1) is in class C(H) if for all pairs of vertices (vi, vj) /∈ F , we have
(vi, vj) ∈ E(H) if and only if (wi, wj) ∈ E(H ′). In other words, all graphs in a
class agree on the edge relation except possibly for the pairs in F .

Note that for any H ′ ∈ C(H), we have C(H ′) = C(H). So each k-node pattern is
in exactly one class, which is obtained by changing its first k′ edges. Figure 4 shows
two classes of graphs for k = 4 (and hence k′ = 1). In this case the set F consists of
only one edge (k/(k + 1))2i and hence the graph classes are of size two.

3.3. General approach. Our goal is to detect an unlabeled pattern by counting
the number of (labeled) patterns in different classes of graphs, which can be done as

D
ow

nl
oa

de
d

07
/2

1/
22

 to
 1

8.
9.

61
.1

11
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1642 DALIRROOYFARD, VUONG, AND VASSILEVSKA WILLIAMS

Fig. 5. The diamond graph on the left and the paw graph on the right.

fast as the fastest algorithm for detecting k− 1-clique (i.e., C(n, k− 1)). Theorem 3.1
states this result formally and we prove it at the end of this section. The graph classes
possess some useful properties that we introduce in Theorem 3.2 and Lemma 3.2 and
whose proofs we provide in the appendix. Using these properties, we show how to use
graph classes to detect unlabeled patterns.

Theorem 3.1. Let G be an n-node graph and let c be one of the classes of k-node
patterns. We can count the number of subgraphs in G which map to a pattern in c

in O(C(n, k − 1)) = O(M(n⌊ k−1
3 ⌋, n⌈ k−1

3 ⌉, n⌈ k−2
3 ⌉)) time, which is the runtime of the

fastest algorithm for detecting Kk−1.

Note that Theorem 3.1 counts the number of “labeled” patterns where the labeling
comes from an arbitrary but fixed initial ordering on V (G).

Now we need to relate unlabeled patterns to pattern classes. Each unlabeled k-
node pattern has k! possible vertex orderings. We say that an unlabeled pattern H̃
embeds in class c if there is an ordering of vertices of H̃ which is in c. Let U(c) be
the set of unlabeled patterns that embed in c. For example, for the classes c1 and
c2 in Figure 4, U(c1) consists of the diamond (also called diam for abbreviation) and
the paw (depicted in Figure 5), and U(c2) consists of the diamond and K4. For each
unlabeled pattern H̃, let αc

H̃
denote the number of ways H̃ can be embedded in c, i.e.,

the number of vertex orderings of H̃ that put H̃ into c. In the example of Figure 4,
αc1
diam = 4 = αc2

diam, αc1
paw = 2, and αc2

K4
= 24. In this example, the αc

H̃
numbers are

all equal to |Aut(H̃)|,5 and each class contains at most one labeled copy of each H;
in general, this need not be the case.

Let nH̃ be the number of copies of H̃ in G. We have the following corollary.

Corollary 3.1. The number of (labeled) subgraphs in G which map to a pattern
in c is

∑
H̃∈U(c) α

c
H̃
nH̃ .

The numbers αc
H̃

have some useful properties as shown in the next theorem.

Theorem 3.2. For any unlabeled pattern H̃ we have |Aut(H̃)| |αc
H̃
. Moreover,

for any class c, we have ∑
H̃∈U(c)

αc
H̃

|Aut(H̃)|
= 2k

′
.

First note that this theorem gives us upper and lower bounds on the size of U(c).
Each term in the above summation contributes at least 1, so |U(c)| ≤ 2k

′
. Moreover

since c has at least k′ + 1 labeled patterns which have different numbers of edges, we
have |U(c)| ≥ k′ + 1. So we get the following corollary.

Corollary 3.2. For any class c, we have 2k
′ ≥ |U(c)| ≥ k′ + 1.

5Aut(H̃) is the automorphism group of H̃.

D
ow

nl
oa

de
d

07
/2

1/
22

 to
 1

8.
9.

61
.1

11
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

GRAPH PATTERN DETECTION HARDNESS AND ALGORITHMS 1643

Define bc
H̃

=
αc

H̃

|Aut(H̃)| . By Corollary 3.1, the number of subgraphs in G that map

to a pattern in c computed by Theorem 3.1 is of the following form.

(1)
∑

H̃∈U(c)

bc
H̃
|Aut(H̃)|nH̃ .

So far we showed how each pattern class relates to unlabeled patterns. Now we show
how we can obtain different pattern classes from unlabeled patterns.

Lemma 3.2. Let H̃ be an unlabeled k-node pattern. For an arbitrary vertex with
degree at least k′, consider k′ of the edges adjacent to it; namely, e1, . . . , ek′ . Let S be
the set of all graphs obtained by removing any number of the edges in {e1, . . . , ek′}.
Then there is a class c, such that U(c) = S. Moreover, bc

H̃
= 1, and H̃ is the pattern

with maximum number of edges in c.

Applying Lemma 3.2 to our example, consider K4 as the initial pattern and
consider an arbitrary edge of it. Then the set S consists of the diamond and K4,
and so U(c2) = S. Moreover, since |Aut(K4)| = 24 = αc2

K4
, we have bc2K4

= 1.
So by Theorem 3.2, bc2diam = 2 − 1 = 1. Similarly if we consider the diamond as
the initial pattern and take the edge between the degree three vertices, then the
set S consists of the diamond and the paw, and so U(c1) = S. Moreover, since
|Aut(diam)| = 4 = αc1

diam, we have bc1diam = 1, and hence bc1paw = 1.
Now we are ready to show how to detect unlabeled patterns using graph classes.

First let Br be the set of unlabeled patterns H̃ such that r | |Aut(H̃)|. Note that we
have Kk, K̄k ∈ Br for all r such that r|k! (where Kk is the k-clique and K̄k is the k-
independent set). For a fixed unlabeled pattern H̃ which is not the k-independent set
or the k-clique, the idea is to compute the sums of the form (1) for different pattern
classes c, such that a linear combination of these sums gives us a sum consisting of
only the terms from H̃ and patterns H̃ ′ ∈ Br for some r such that r ̸ | |Aut(H̃)|. More
specifically, we want to compute a sum of the following form:

(2) |Aut(H̃)|nH̃ +
∑

H̃′∈Br

dH̃′ |Aut(H̃ ′)|nH̃′ ,

where dH̃′ are some integers. Then using the fact that this sum is equal to |Aut(H̃)|nH̃

modulo r, by the approach of Vassilevska Williams et al. [45] we can assume with
constant probability that r ̸ |nH̃ , and hence we can detect H̃ in G.

We first prove Theorem 3.2 and Lemma 3.2 below, and then we provide the
proof of Theorem 3.1. Then we use our approach to show that for each k, there is a
pattern that can be detected in time O(C(n, k − 1)). Moreover, in the appendix we
show how our approach is used to prove that any k-node pattern except k-clique and
k-independent set can be detected in O(C(n, k − 1)) time, for k ≤ 6.

Proof of Theorem 3.2. Let H = (w0, . . . , wk−1) be an arbitrary pattern in c.
Define bc

H̃
to be the number of ways we can specify the edges w0w1, . . . , w0wk′ so that

the resulting vertex order maps to a vertex order of H̃. Note that this is independent
of the choice of H, because all edges except the k′ edges mentioned are the same for all
H ∈ c. For each of these bc

H̃
vertex orderings, we can apply |Aut(H̃)| automorphisms

to get a different ordering that maps to it. So all these orderings make the αc
H̃

possible ways H̃ can be embedded in c; hence αc
H̃

= bc
H̃

· |Aut(H̃)|. Now note that

the total number of ways we can specify the k′ edges w0w1, . . . , w0wk′ is 2k
′
, so∑

H̃∈U(c)

αc
H̃

|Aut(H̃)| =
∑

H̃∈U(c) b
c
H̃

= 2k
′
.

D
ow

nl
oa

de
d

07
/2

1/
22

 to
 1

8.
9.

61
.1

11
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1644 DALIRROOYFARD, VUONG, AND VASSILEVSKA WILLIAMS

Proof of Lemma 3.2. Let H = (w0, w1, . . . , wk−1) be an ordering of the vertices
of H̃ such that ei = w0wi for each i ∈ {1, . . . , k′}. Now each pattern H ′ ∈ C(H)
differs from H only in those k′ edges, so the unlabeled version of H ′ is obtained from
H̃ by removing some of ei edges. So C(H) ⊆ S. Now consider H̃ ′ ∈ S. Since H̃ ′ is
obtained from H̃, we can consider the same ordering of vertices for it. Call this vertex
order H ′. H ′ and H differ only in the first k′ edges, so H ′ ∈ C(H). Hence S ⊆ U(c),
which shows that U(c) = S.

Now since the number of ways we can embed H in class c is 1 (we have to put an
edge between all the k′ pairs of vertices), we have bc

H̃
= 1.

3.4. Proof of Theorem 3.1. The general idea is to remove one vertex and
divide the rest of the vertices into three (almost) equal parts. Then form two matrices
such that the first matrix captures the subgraphs isomorphic to the removed vertex
plus the first part, and the second matrix captures the subgraphs isomorphic to the
removed vertex plus the second and the third part, and then use matrix multiplication
to count the number of subgraphs isomorphic to the whole pattern in the host graph.
We show the approach more formally below.

Let V (G) = {v1, . . . , vn}. Let H = (w0, . . . , wk−1) be an arbitrary pattern in
c (so c = C(H)). Recall that k′ = ⌊k−1

3 ⌋. Our algorithm consists of three steps.
In step one, for each t = k − k′ − 1 vertices vi1 , . . . , vit , we count the number of
vertices u in G such that the subgraph (u, vi1 , . . . , vit) in G maps to the subgraph
(w0, wk′+1, wk′+2, . . . , wk−1) in H. In step two, we count the number of k′-tuples
(vj1 , . . . , vjk′) such that the subgraph (vj1 , . . . , vjk′ , vi1 , . . . , vit) in G maps to the sub-
graph (w1, . . . , wk−1) in H. In step three, we show how to combine the numbers
obtained in the last two steps to get the resulting value.

Before we explain each step, here is some notation. Let k1 = ⌈k−1
3 ⌉ and k2 =

⌈k−2
3 ⌉. Note that k1, k2 ∈ {k′, k′ +1} and k′ + k1 + k2 = k− 1. Define the set S to be

all t-tuples p = (vi1 , . . . , vit), where the subgraph induced by p maps to the subgraph
(wk′+1, . . . , wk−1) in H. We can write each t-tuple p with a pair of k1 and k2 tuples,
p′ and p′′, i.e., p′ = (vi1 , . . . , vik1

) and p′′ = (vik1+1
, . . . , vit).

Step one: Construct two matrices B and C of sizes nk1 ×n and n×nk2 as follows:
For each k1-tuple p1 = (vi1 , . . . , vik1

) and each vertex vh ∈ G, let Bp1,vh = 1 if the
subgraph (vh, p1) in G maps to the subgraph (w0, wk′+1, . . . , wk′+k1) in H. Otherwise
set it to 0. For each k2-tuple p2 = (vj1 , . . . , vjk2

) and each vertex vh ∈ G, let Cvh,p2 =
1 if the subgraph (vh, p2) in G maps to the subgraph (w0, wk′+k1+1, . . . , wk−1) in
H. Otherwise set it to 0. Compute M = BC. For any p1 = (vi1 , . . . , vik1

) and
p2 = (vj1 , . . . , vjk2

) such that the t-tuple (p1, p2) ∈ S, we have that Mp1,p2
is the

number of vertices u such that the subgraph (u, p1, p2) in G maps to the subgraph
(w0, wk′+1, . . . , wk−1) in H.

Step two: Construct two matrices B′ and C ′ of sizes nk1 × nk′
and nk′ × nk2 as

follows: For each k1-tuple p2 = (vi1 , . . . , vik1
) and each k′-tuple p1 = (vj1 , . . . , vjk′) in

G, let B′
p2,p1

= 1 if the subgraph (p1, p2) in G maps to the subgraph (w1, . . . , wk′+k1
)

in H. Otherwise set it to 0. For each k2-tuple p3 = (vh1 , . . . , vhk2
) and each k′-tuple

p1 = (vj1 , . . . , vjk′) in G, let C ′
p1,p3

= 1 if the subgraph (p1, p3) in G maps to the
subgraph (w1, . . . , wk′ , wk′+k1+1, . . . , wk−1) in H. Otherwise set it to 0. Compute
M ′ = B′C ′. For any p2 = (vi1 , . . . , vik1

) and p3 = (vh1
, . . . , vhk2

) such that the t-
tuple (p2, p3) ∈ S, we have that M ′

p1,p3
is the number of k′-tuples p1 in G such that

the subgraph (p1, p2, p3) in G maps to the subgraph (w1, . . . , wk−1) in H.
Step three: Let r be the number of vertices wi in {w1, . . . , wk′}, such that the

subgraph (wi, wk′+1, . . . , wk−1) in H maps to the subgraph (w0, wk′+1, . . . , wk−1) in

D
ow

nl
oa

de
d

07
/2

1/
22

 to
 1

8.
9.

61
.1

11
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

GRAPH PATTERN DETECTION HARDNESS AND ALGORITHMS 1645

H. Compute the following sum using matrices M and M ′:

(3)
∑
p∈S

(Mp′,p′′ − r)M ′
p′,p′′ .

If r = 0, by the way we constructed M and M ′, each number Mp′,p′′M ′
p′,p′′ is the

number of k′ + 1 tuples (vi0 , . . . , vik′) such that the subgraph (vi0 , p
′, p′′) in G maps

to the subgraph (w0, wk′+1, . . . , wk−1) in H, and the subgraph (vi1 , . . . , vik′ , p
′, p′′) in

G maps to the subgraph (w1, . . . , wk−1) in H. So the number in (3) is the number of
subgraphs in G which map to a pattern in c. Now if r > 0, then each k′-tuple that
is counted in M ′

p′,p′′ contains exactly r vertices that are also counted in Mp′,p′′ and
cannot be used simultaneously. So in this case, the number (Mp′,p′′ − r)M ′

p′,p′′ counts
the number of k′ + 1 tuples with the property mentioned above.

Now we analyze the running time. M and M ′ in step one and two can be com-

puted in O(M(n⌊ k−1
3 ⌋, n, n⌈ k−2

3 ⌉)) and O(M(n⌊ k−1
3 ⌋, n⌈ k−1

3 ⌉, n⌈ k−2
3 ⌉)) time, respec-

tively, using rectangular matrix multiplication. By checking all t-tuples of vertices
in G in nt time, we can identify the set S, and then the sum in step three can

be computed in O(|S|) ≤ O(nt) time. Note that O(M(n⌊ k−1
3 ⌋, n⌈ k−1

3 ⌉, n⌈ k−2
3 ⌉)) ≥

nmax (⌊ k−1
3 ⌋+⌈ k−1

3 ⌉,⌈ k−1
3 ⌉+⌈ k−2

3 ⌉), which is the size of the input in rectangular matrix
multiplication, and also we have t = k−1−k′ ≤ max (⌊k−1

3 ⌋+ ⌈k−1
3 ⌉, ⌈k−1

3 ⌉+ ⌈k−2
3 ⌉).

So the total the running time is O(M(n⌊ k−1
3 ⌋, n⌈ k−1

3 ⌉, n⌈ k−2
3 ⌉)).

3.5. Patterns easier than cliques. Using the approach of section 3, we show
that for any k, there is a pattern that contains a k − 1-clique and can be detected in
O(C(n, k − 1)) time in an n-node graph G. Since this pattern has a k − 1-clique as a
subgraph, it is at least as hard as k−1-clique to detect, which means that the runtime
obtained for it is tight, if we assume that the best runtime for detecting k − 1-clique
is O(C(n, k − 1)). Let Hk

s be the k-node pattern consisting of a (k − 1)-clique and
a vertex adjacent to s vertices of the (k − 1)-clique. Assume that s ≥ ⌈k−1

2 ⌉. If
s ̸= k − 2, then |Aut(Hk

s)| = s!(k − s− 1)!. For s = k − 2, |Aut(Hk
k−2)| = (k − 2)!2!.

So in all cases |Aut(Hk
s)| is divisible by s!(k − s− 1)!.

Theorem 3.3. Let k be any positive integer, and suppose that there exists s,
⌈k−1

2 ⌉ ≤ s ≤ k − 1 − ⌊k−1
3 ⌋, such that s + 1 is a prime number. Then Hk

s can be
detected in C(n, k − 1) time with high probability.

Proof. Let the vertex outside the (k−1)-clique in Hk
s be v0. We know that if k′ =

⌊k−1
3 ⌋, there are at least k′ vertices that are not adjacent to v0 because s ≤ k−1−k′.

Let v1, . . . , vk′ be k′ of the vertices of the (k−1)-clique that v0 is not adjacent to. Let
vk′+1, . . . , vk be the rest of the vertices. Consider the ordering H = (v0, v1, . . . , vk) of
Hk

s , and let c = C(H) be the class defined by H. Note that U(c), which is the set of
unlabeled graphs that can be embedded in c, is {Hk

s , H
k
s+1, . . . ,H

k
s+k′}. So if we want

to detect Hk
s in an n-node graph G, using Theorem 3.1 we can count the number of

subgraphs in G that map to a pattern in the class c in time O(C(n, k−1)). As proved

in our setup (see (1)), this number is Q =
∑k′

i=0 bi|Aut(Hk
s+i)|nHk

s+i
, where bi is some

integer and b0 = 1 (by an argument similar to Lemma 3.2). Since s ≥ (k − 1)/2, we
have that s+1 > k−s−1, and so |Aut(Hk

s)| is not divisible by s+1, which means that
the coefficient of nHk

s
in the equation is not divisible by s+1. However, for all i ≥ 1,

we have that |Aut(Hk
s+i)| is divisible by s+ 1. So Q is of the form (2) for r = s+ 1,

and hence we can detect Hk
s in time O(C(n, k − 1)) with high probability.

D
ow

nl
oa

de
d

07
/2

1/
22

 to
 1

8.
9.

61
.1

11
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1646 DALIRROOYFARD, VUONG, AND VASSILEVSKA WILLIAMS

Lemma 3.3. For any positive integer k ≥ 3, k ̸= 14, there exists s such that
⌈k−1

2 ⌉ ≤ s ≤ k − 1− ⌊k−1
3 ⌋ and s+ 1 is prime.

Proof. We are going to use two theorems about prime numbers in intervals. The
first one is due to Loo [29] and says for all n > 1, there is a prime number in (3n, 4n).
The second theorem is due to Nagura [32] and says that for all x ≥ 25, there is a
prime number in [x, 6x/5].

First suppose that k = 6t+ i for two nonnegative integers t and i where 0 ≤ i ≤ 5
and i ̸= 2. If i < 2, let n = t, and otherwise let n = t + 1. We need a prime in the
interval I = (⌈k−1

2 ⌉, k − ⌊k−1
3 ⌋ + 1), and since ⌈k−1

2 ⌉ ≤ 3n and 4n ≤ k − ⌊k−1
3 ⌋ + 1,

there exists such a prime by the first theorem. Now assume that i = 2. If t ≥ 8, then
⌈k−1

2 ⌉ + 1 ≥ 25, and so if x = ⌈k−1
2 ⌉ + 1, then 6x/5 ≤ k − ⌊k−1

3 ⌋ and so there is a
prime in the interval I by the second theorem. Now suppose that t ≤ 7 and i = 2.
For t = 1, 3, 4, 5, 6, 7, the prime numbers in the interval I associated to each k are
5, 11, 17, 17, 23, 23, respectively.

For k = 14, we show that we can detect Hk
7 in O(C(n, k − 1)) time. Note

that k′ = 4 in this case. The approach is the same as Theorem 3.3: we look at
the class c where U(c) consists of Hk

7 , . . . ,H
k
11 and we consider the equation Q =∑4

i=0 bi|Aut(Hk
7+i)|nHk

7+i
which can be obtained in O(C(n, k−1)) time, where b0 = 1

(by an argument similar to Lemma 3.2). Now note that |Aut(Hk
7+i)| is divisible by

29 for all 0 < i ≤ 4, and |Aut(Hk
7)| is not divisible by 29. So Q is of the form (2) for

r = 29, and hence we can detect Hk
7 in O(C(n, k − 1)) time, and hence we have the

following theorem.

Theorem 3.4. For all k > 2, there is some s where the k-node pattern Hk
s can

be detected in O(C(n, k − 1)) time.

4. Detecting noninduced directed cycles. In this section we analyze an
algorithm proposed by Yuster and Zwick [47], obtaining the fastest algorithms for
k-cycle detection in sparse directed graphs, to date.

We begin by summarizing the algorithm.

4.1. Yuster and Zwick’s algorithm. Let k ≥ 3 be a constant. Let G = (V,E)
be a given directed graph with |V | = n, |E| = m. The algorithm will find a k-cycle
in G if one exists. First, let us note that we can assume that G is k-partite with
partitions V0, . . . , Vk−1 so that the edges only go between Vi and Vi+1 mod k (for
i ∈ {0, . . . , k − 1}). This is because we can use the color-coding technique [3]: if we
assign each vertex v a color c(v) ∈ {0, . . . , k− 1} independently uniformly at random
and then place v into Vc(v), removing edges that are not between adjacent partitions

Vi and Vi+1 mod k, then any k-cycle will be preserved with probability ≥ 1/kk. The
procedure can be derandomized at the cost of a O(log n) factor in the runtime.

Now that we have a k-partite m-edge G, we are looking for a cycle v0 ∈ V0 →
v1 ∈ V1 → · · · → vk−1 ∈ Vk−1 → v0. Let us partition the vertices V into log n degree
classes: Wj = {v ∈ V | deg(v) ∈ [2j , 2j+1)}. We refer to a degree class Wj by its
index j, for simplicity of notation.

For all (log n)k choices of degree classes (f0, . . . , fk−1) with fr ∈ {0, . . . , log n} for
all r, we will be looking for a k-cycle v0 → v1 → · · · → vk−1 → v0 such that for all
j ∈ {0, . . . , k − 1}, vj ∈ Vj ∩Wfj (i.e., vj has degree roughly 2fj).

It will make sense for the degrees of the cycle vertices to be expressed in terms of
the number of edges m. For this reason, when we are considering a k-tuple of degree

D
ow

nl
oa

de
d

07
/2

1/
22

 to
 1

8.
9.

61
.1

11
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

GRAPH PATTERN DETECTION HARDNESS AND ALGORITHMS 1647

classes (f0, . . . , fk−1), we will let mdj = 2fj , so dj = fj/ logm, and we will be talking
about degree classes (d0, . . . , dk−1) instead.

Now, let us fix one of the degree classes d = (d0, . . . , dk−1). There are two
approaches for finding a k-cycle v0 → v1 → · · · → vk−1 → v0 such that vj ∈ Vj and
vj has degree roughly mdj :

1. For each j ∈ {0, . . . , k−1} we know that the number of vertices in Vj of degree
roughly mdj is O(m1−dj). Thus, in O(m2−dj) time we can run breadth-first
search from each node in Vj of such degree and determine whether there is a
k-cycle going through it.

2. Let p, q ∈ {0, . . . , k− 1}. Let’s denote by Bd
p,q the |Vp| × |Vq| Boolean matrix

such that for all vp ∈ Vp, vq ∈ Vq, B
d
p,q[vp, vq] = 1 if and only if there is a path

vp → vp+1 mod k → · · · → vq (indices mod k) so that each vr ∈ Vr and the
degree of vr is roughly mdr .
The approach here is to pick a particular pair i, j ∈ {0, . . . , k−1} and compute
Bd

i,j and Bd
j,i. Then one can find a pair of vertices vi ∈ Vi, vj ∈ Vj such that

Bd
i,j [vi, vj] = Bd

j,i[vj , vi] = 1, if such a pair exists, at an additional cost of the

number of nonzero entries in Bd
i,j and Bd

j,i which is dominated by the runtime
of computing these matrices.

For a fixed degree class d = (d0, . . . , dk−1), let P d
i,j be the minimum real value

such that Bd
i,j can be computed in Õ(mPd

i,j) time. There are three ways to compute

Bd
i,j :

(a) Compute Bd
i,j−1 and then for every vertex vj−1 ∈ Vj−1 of degree roughly

mdj−1 , go through all of its outneighbors vj in Vj (only of degree roughly
mdj) and set Bd

i,j [vi, vj] to 1 for every vi ∈ Vi for which Bd
i,j−1[vi, vj−1] = 1.

(b) Similar to above but reversing the roles of j − 1 and i, compute Bd
i+1,j and

then for every vertex vi+1 ∈ Vi+1 of degree roughly mdi+1 , go through all of
its inneighbors vi in Vi (only of degree roughly mdi) and set Bd

i,j [vi, vj] to 1

for every vj ∈ Vj for which Bd
i+1,j [vi+1, vj] = 1.

(c) For some r with i < r < j, compute Bd
i,r and Bd

r,j and compute their Boolean

product to obtain Bd
i,j .

The exponent of the runtime of (a) is recursively bounded as P d
i,j ≤ P d

i,j−1+dj−1

as in the worst case, the number of nonzero entries in Bd
i,j could be Õ(mPd

i,j−1).

Similarly, the runtime of (b) is bounded by P d
i,j ≤ P d

i+1,j + di+1. The runtime of (c)
is bounded by

P d
i,j ≤ min

i<r<j
max{P d

i,r, P
d
r,j ,M(1− di, 1− dr, 1− dj)},

and M(a, b, c) is the smallest g such that one can multiply an ma×mb by an mb×mc

matrix in O(mg) time. We will not use the known fast rectangular matrix multipli-
cation algorithms (e.g., [26, 18]) here, but for clarity instead will use the estimate
M(a, b, c) ≤ a+ b+ c− (3− ω)min{a, b, c}.

We get the inductive definition.

P d
i,i+1

= 1 ∀j ̸= i+ 1, P d
i,j

= min{P d
i,j−1 + dj−1, P

d
i+1,j + di+1, min

i<r<j
max{P d

i,r, P
d
r,j ,M(1− di, 1− dr, 1− dj)}}.

(4)

D
ow

nl
oa

de
d

07
/2

1/
22

 to
 1

8.
9.

61
.1

11
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1648 DALIRROOYFARD, VUONG, AND VASSILEVSKA WILLIAMS

For d = (d0, . . . , dk−1), define

Ck(d0, . . . , dk−1) = min
0≤i<j≤k−1

max{P d
i,j , P

d
j,i}.

The algorithm above runs in Θ̃(mck) time, where

ck = max
d=(d0,...,dk−1)

min

{
min

0≤i≤k−1
(2− di), Ck(d0, . . . , dk−1)

}
.

Yuster and Zwick were only able to analyze ck for k ≤ 5. In particular, they
showed that c3 = 2ω/(ω+1), c4 = (4ω−1)(2ω+1), c5 = 3ω/(ω+2). While they were
not able to analyze ck for k > 5, using extensive numerical experiments, they came
up with conjectures about the structure of ck for all odd k and for k = 6. They did
not propose a conjecture for larger even k.

Conjecture 2.6 For all odd k ≥ 3, ck ≤ (k + 1)ω/(2ω + k − 1); if ω ≤ 2k
k−1 ,

ck = (k + 1)ω/(2ω + k − 1).

Conjecture 3.7

(5) c6 =

10ω−3
4ω+3 if 2 ≤ ω ≤ 13

6 ,

22−4ω
17−4ω if 13

6 ≤ ω ≤ 9
4 ,

11ω−2
4ω+5 if 9

4 ≤ ω ≤ 16
7 ,

10−ω
7−ω if 16

7 ≤ ω ≤ 5
2 .

We prove these conjectures and in addition prove upper bounds on ck that are
tight when ω = 2.

4.2. The runtime of Yuster and Zwick’s algorithm for finding k-cycles.
Here we prove Conjectures 3 and 2, and in addition we give bounds for all even k
that are tight when ω = 2. This proves Theorem 1.3 from the introduction. Let Ck

denote the k-cycle.
To highlight the result for even cycles for which there wasn’t even a conjectured

runtime, we split it into its separate theorem.

Theorem 4.1. For all even k ≥ 4, ck ≤ kω− 4
k

2ω+k−2− 4
k

. This bound is tight for

ω = 2.

4.3. Setup: Basic lemmas. For simplicity’s sake, we write Pi,j for P
(d0,...,dk−1)
i,j

when (d0, . . . , dk−1) is fixed. Here and in what follows, all indices are considered
modulo k. Visualizing these indices as k points arranged counterclockwise on a circle
would make the following definitions and inequalities more intuitive. For two indices
i, j, we write i ≤ j to mean that i precedes j in counterclockwise order. For example,
k − 2 ≤ k − 1, but k − 1 ≤ 0. To avoid cluttering of notation, for index i we write
i = i+ k instead of i ≡ (i+ k) mod k.

Definition 4.1. For any index r, and δ ≥ 0, r is δ-low if dr < δ, and δ-high
otherwise.

6The conjecture given in [47] states that ck = (k+ 1)ω/(2ω + k− 1). However, we discover that

ck ≤ 2− 2
k+1

<
(k+1)ω
2ω+k−1

when ω > 2k
k−1

.
7The conjecture given in [47] had a slight typo in the first case—the denominator stated there

were (4ω+4) instead of (4ω+3). However, looking at the numerical experiments given to us by Uri
Zwick we saw that it should be corrected, and indeed we prove that the corrected version is correct.

D
ow

nl
oa

de
d

07
/2

1/
22

 to
 1

8.
9.

61
.1

11
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

GRAPH PATTERN DETECTION HARDNESS AND ALGORITHMS 1649

Definition 4.2. For any two indices i, j, let ℓ(i, j) = (j − i + 1) (mod k) and

f(i, j) =
∑i+ℓ(i,j)−1

r=i dr. Note that ℓ(i, j) ≥ 0. When ℓ(i, j) = 0 (i.e., i = j + 1),

f(i, j) =
∑j

r=j+1 dr = 0.

Repeatedly applying inequality P d
w,y ≤ P d

w,y−1 + dy−1, which is derived from (4),

gives P d
w,y ≤ 1 + f(w + 1, y − 1).

Lemma 4.1. Suppose that dr ≤ δ ≤ di, dj. Let j0 ∈ {i, j} such that dj0 =
min{di, dj}.

1. If P d
j,i, P

d
i,r, P

d
r,j ≤ B and Ck(d0, . . . , dk−1) > B, then M(1−di, 1−dj , 1−dr) >

B.
2. If M(1−di, 1−dj , 1−dr) ≥ B ≥ ω(1−δ), then dr+dj0 ≤ ω−B−(ω−2)δ ≤ 2δ,

and dr ≤ ω −B − (ω − 2)δ − δ.

Proof.
1. Suppose that M(1− di, 1− dj , 1− dr) ≤ B. Using the matrix multiplication

rule gives P d
i,j ≤ max{P d

i,r, P
d
r,j ,M(1 − di, 1 − dj , 1 − dr)} ≤ B. But then

Ck(d0, . . . , dk−1) ≤ max{P d
i,j , P

d
j,i} ≤ B, a contradiction.

2. Suppose that dr + dj0 > ω − B − (ω − 2)δ, then M(1 − di, 1 − dj , 1 − dr) =
3− di − dj − dr − (3− ω)(1−max{di, dj , dr}) = 2− (dr + dj0) + (ω − 2)(1−
max{di, dj}) < 2− (ω −B − (ω − 2)δ) + (ω − 2)(1− δ) = B (contradiction).
Since B ≥ ω(1− δ), we have dr + dj0 ≤ ω−B− (ω− 2)δ ≤ 2δ. This together
with dj0 ≥ δ implies dr ≤ ω −B − (ω − 2)δ − δ.

Lemma 4.2. For any two indices i, j and integer t ≤ k − 2, if di, dj ≥ δ and
there are no t + 1 consecutive δ-low indices r such that i < r < j, then Pi,j ≤
max{1 + tδ, ω(1− δ)}.

As a consequence, if there are no t + 1 consecutive δ-low indices, then
Ck(d0, . . . , dk−1) ≤ max{1 + tδ, ω(1− δ)}.

Proof. Let i = i0, i1, . . . , iz = j be the indices within {i, i+1, . . . , j} (indices mod
k) such that dib ≥ δ for each b ∈ {0, . . . , z}. Since there are no consecutive t+1 δ-low
indices, for each b, Pib,ib+1

≤ 1+ tδ, using the rule Pw,y ≤ Pw,y−1+dy−1. Now we can
use the matrix multiplication rule to get Pi,j ≤ max{1+ tδ,M(1− δ, 1− δ, 1− δ)}.

4.4. Finding odd cycles. Here we prove Yuster and Zwick’s conjecture that
when k is odd and ω ≤ 2k

k−1 , the exponent ck of the runtime is ω(k+1)/(2ω+ k− 1).

When k is odd and ω > 2k
k−1 , using only rule 1 and 2(a), (b) in Algorithm 4.1, one

can prove ck ≤ 2− 2
k+1 < (k + 1)ω/(2ω + k − 1) (see [4, Theorem 3.4]).

We first prove general lemmas that will be useful for all k (not just k that is odd).
Then we will derive upper bound ck for odd k at the end of this subsection, and for
even k in subsection 4.6.

Let t := ⌊k−1
2 ⌋, h := k − t− 1. Note that t ≤ h ≤ t+ 1 and 2h ≤ k.

Let δ ≥ 0 be a parameter to be specified later. Let B := 1 + tδ. Assume that
B ≥ ω(1 − δ). Pick arbitrary 0 ≤ d0, . . . , dk−1 ≤ 1. Below, we write Ck in place of
Ck(d0, . . . , dk−1) for simplicity. We need to prove that Ck ≤ B.

By Lemma 4.2, if there are no t+1 consecutive δ-low indices, then Ck ≤ max{1+
tδ, ω(1 − δ)} = B. Now, consider the case when there are at least t + 1 consecutive
δ-low indices. WLOG, we can assume that there exists s ∈ [0, h− 1] such that indices
0 and s are δ-high and indices r are δ-low for all s + 1 ≤ r ≤ k − 1. P0,s ≤ B
follows from the fact that there are at most s − 1 ≤ h − 2 < t indices r such that
0 < r < s and Lemma 4.2. Our proof for upper bounds on Ck will proceed as follows:
supposing Ck > B, we use Lemma 4.3 to derive multiple inequalities of the form

D
ow

nl
oa

de
d

07
/2

1/
22

 to
 1

8.
9.

61
.1

11
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1650 DALIRROOYFARD, VUONG, AND VASSILEVSKA WILLIAMS

di + dr ≤ ω −B − (ω − 2)δ ≤ 2δ, where r ∈ {i+ t, i− t}, then sum these inequalities
together to get f(R+ 1, R− 1) ≤ 2tδ, which implies Ck ≤ B by Lemma 4.4.

Lemma 4.3. Consider indices i, j, r,where 0 ≤ i ≤ j ≤ s < r ≤ k − 1 and
f(r + 1, i− 1), f(j + 1, r − 1) ≤ tδ. If Ck > B, then dr ≤ ω − B − (ω − 2)δ − δ, and
dr +min{di, dj} ≤ ω −B − (ω − 2)δ ≤ 2δ.

Proof. P0,s ≤ B by Lemma 4.2. That max{f(s + 1, r − 1), f(r + 1, k − 1)} ≤
max{f(j +1, r− 1), f(r+1, i− 1)} ≤ tδ implies max{Ps,r, Pr,0} ≤ B. Also, dr ≤ δ ≤
d0, ds, so dr ≤ ω −B − (ω − 2)δ − δ ≤ 2δ by Lemma 4.1.

WLOG, assume di ≤ dj . If di ≤ δ, then di + dr ≤ ω − B − (ω − 2)δ − δ + δ =
ω − B − (ω − 2)δ. Else, δ ≤ di ≤ dj . Since 0 ≤ i ≤ j ≤ s, by Lemma 4.2, Pi,j ≤ B.
That f(r+1, i− 1), f(j+1, r− 1) ≤ tδ implies Pr,i, Pj,r ≤ B. Also, dr ≤ δ ≤ di ≤ dj ,
so di + dr ≤ ω −B − (ω − 2)δ by Lemma 4.1.

Lemma 4.4. If there exists index R, 0 ≤ R ≤ k−1 such that f(R+1, R−1) ≤ 2tδ,
then Ck ≤ B.

Proof. For every index r ∈ [R+ 1, R− 2],

PR,r+1+Pr,R ≤ (1+f(R+1, r))+(1+f(r+1, R−1)) = 2+f(R+1, R−1) ≤ 2+2tδ = 2B,

so either PR,r+1 ≤ B or Pr,R ≤ B.
Note that PR,R+1 = 1 ≤ B, so there exists index r∗ := max{r|R + 1 ≤ r ≤

R − 1 ∧ PR,r ≤ B}. If r∗ = R − 1, then PR,R−1 ≤ B and PR−1,R = 1 ≤ B so
Ck ≤ max{PR,R−1, PR−1,R} ≤ B. If r∗ ≤ R−2, then either PR,r+1 ≤ B or Pr,R ≤ B.
By the definition of r∗, PR,r+1 > B, so Pr,R ≤ B and Ck ≤ max{PR,r, Pr,R} ≤ B.

To use Lemma 4.3, we need Definition 4.3 to ensure the preconditions and Defi-
nition 4.4 to get rid of the min{., .} symbol.

Definition 4.3. For any integer q, arc (i, j) is q-low if f(i, j) ≤ δ(ℓ(i, j) − q)
and q-high otherwise.

Lemma 4.5. Consider indices i, j such that s + 1 ≤ i ≤ j + 1 ≤ k. If (i, j) is
q-low, then (i′, j′) is q-low for any s+1 ≤ i′ ≤ i and j ≤ j′ ≤ k−1. If (i, j) is q-high,
then (i′, j′) is q-high for any i ≤ i′ ≤ j′ + 1 ≤ j + 1.

Proof. Since dr ≤ δ∀s+ 1 ≤ r ≤ k − 1,

f(i′, j′) = f(i′, i− 1) + f(i, j) + f(j + 1, j′)

≤ ℓ(i′, i− 1)δ + (ℓ(i, j)− q)δ + ℓ(j + 1, j′)δ = (ℓ(i, j)− q)δ.

The second statement follows by taking the contrapositive of the first.

Lemma 4.6. For any indices i, j such that s + 1 ≤ i ≤ j + 1 ≤ k, (i, j) is 0-low.
If Ck > B, then (i, j) is (h− s)-high

Proof. Our earlier assumption about δ-low indices implies dr ≤ δ∀s + 1 ≤ r ≤
k − 1. Thus

f(i, j) =

j∑
r=i

dr ≤
j∑

r=i

δ = δ(ℓ(i, j)− 0).

Recall that P0,s ≤ B by Lemma 4.2. If (i, j) is (h − s)-low, then so is (s + 1, k − 1)

D
ow

nl
oa

de
d

07
/2

1/
22

 to
 1

8.
9.

61
.1

11
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

GRAPH PATTERN DETECTION HARDNESS AND ALGORITHMS 1651

0
1

am = bm

3

4

s

6 bm + t− 1

bm + t

am − t

am − t+ 1

11

12

Fig. 6. A visualization of the setup of Theorem 4.2 when k = 13, t = h = 6, s = h−1 = 5,∆ = 0,
and am = bm = 2.

by Lemma 4.5. But then

f(s+ 1, k − 1) ≤ δ(ℓ(s+ 1, k − 1)− (h− s))

= δ(k − s− 1− (k − t− 1− s)) = δt = B − 1

⇒ Ck ≤ max{P0,s, Ps,0} ≤ max{P0,s, 1 + f(s+ 1, k − 1)} ≤ B.

Definition 4.4. Define sequences (an), (bn) for n ∈ {0, . . . , s} as follows:

a0 = 0, b0 = s, (an, bn) =

{
(an−1 + 1, bn−1) if dan

≤ dbn ,

(an−1, bn−1 − 1) else.

Clearly, (an) is weakly increasing, (bn) is weakly decreasing, and bn− an = s−n ≥ 0.
Let T := as = bs.

Theorem 4.2. For a visualization of the set up of the theorem see Figure 6. Let
p, q be integers in [0, h − s − 1]. Let ∆ := p − q. For every index i, let i∆ := i +∆.
Let m = s − h + t ≤ s. We say condition (p, q) holds if (s + 1, b∆m + t − 1) is p-low,
(s + 1, b∆m + t) is (p + 1)-high, (a∆m − t + 1, k − 1) is q-low, and (a∆m − t, k − 1) is
(q + 1)-high, and property (p, q, B) holds if condition (p, q) implies Ck ≤ B.

1. If condition (p, q) holds and Ck > B, then
(a) ∀n ∈ {0, . . . ,m},

f(a∆n − t+ 1, an − 1) ≤ tδ,(6)

f(bn + 1, b∆n + t− 1) ≤ tδ,(7)

dr + dr∆−t ≤ ω −B − (ω − 2)δ ≤ 2δ ∀r, 0 ≤ r < an,(8)

dr + dr∆+t ≤ ω −B − (ω − 2)δ ≤ 2δ ∀r, bn < r ≤ s,(9)

(b) f(bm + 1, am − 1) ≤ 2tδ.
2. Property (p, q, B) holds when k is odd, i.e., if k is odd and condition (p, q)

holds, then Ck ≤ B.

D
ow

nl
oa

de
d

07
/2

1/
22

 to
 1

8.
9.

61
.1

11
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1652 DALIRROOYFARD, VUONG, AND VASSILEVSKA WILLIAMS

Proof. We prove Theorem 4.2.1(a) by induction on n for n ∈ {0, . . . ,m}. First,
observe a useful fact.

Fact 4.1. If condition (p, q) holds, then ∀n ∈ {0, . . . ,m}, (s + 1, b∆n + t − 1) is
p-low, (s+1, a∆n −t−1) is (p+1)-high, (a∆n −t+1, k−1) is q-low, and (b∆n +t+1, k−1)
is (q + 1)-high.

Proof of Fact 4.1. Since 0 ≤ p, q ≤ h− s− 1,

s+ 1− h ≤ ∆ ≤ h− s− 1.

Also,
a∆n − t− 1 = a∆n + k − t− 1 = a∆n + h.

Sequence (an) defined in Definition 4.4 is weakly increasing and am = bm − (h− t) ≤
s− (h− t) so

k− 2 ≥ (s− (h− t))+ (h− s− 1)+h ≥ a∆m+h ≥ a∆n +h ≥ 0+(s+1−h)+h = s+1,

where we use a∆i = ai +∆.
Therefore, s+1 ≤ a∆n − t− 1 < a∆n − t+1 ≤ a∆m − t+1 and (a∆m − t+1, k− 1) is

q-low so (a∆n − t+ 1, k − 1) is q-low by Lemma 4.5. Since bm − am = s−m = h− t,
we have s+ 1 ≤ a∆n − t− 1 ≤ a∆m + h ≤ b∆m + t. Also, (s+ 1, b∆m + t) is (p+ 1)-high so
(s+ 1, a∆n − t− 1) is (p+ 1)-high by Lemma 4.5.

Analogously (but note that (bn) is decreasing), (s + 1, b∆n + t − 1) is p-low and
(b∆n + t+ 1, k − 1) is (q + 1)-high.

Now, let us proceed with the inductive proof.
Base case, n = 0:
By Fact 4.1, (s+ 1, b∆0 + t− 1) is p-low. We have ∆ = p− q ≤ p, so

f(s+ 1, b∆0 + t− 1) ≤ δ(ℓ(s+ 1, b∆0 + t− 1)− p) ≤ δ(ℓ(s+ 1, b∆0 + t− 1)−∆) < tδ.

By Fact 4.1, (a∆0 − t+ 1, k − 1) is q-low. We have −∆ = q − p ≤ q, so

f(a∆0 − t+1, k−1) ≤ δ(ℓ(a∆0 − t+1, a0−1)−q) ≤ δ(ℓ(a∆0 − t+1, a0−1)− (−∆)) < tδ.

Since a0 = 0 and b0 = s, inequalities (6) and (7) are proved. Inequalities (8) and
(9) are trivially true.

Suppose Theorem 4.2.1(a) is true for n − 1, where m ≥ n ≥ 1. WLOG, assume
dan−1

≤ dbn−1
. The case dan−1

> dbn−1
is analogous.

By Definition 4.4, an = an−1+1, bn = bn−1. Thanks to inductive assumption, we
only need to show

dan−1 + da∆
n−1−t ≤ ω −B − (ω − 2)δ

and
f(a∆n − t+ 1, an − 1) ≤ tδ.

Below, write R in place of a∆n−1 − t = a∆n − t− 1 = a∆n + h for simplicity’s sake. From
proof of Fact 4.1, s+ 1 ≤ R ≤ a∆m + h ≤ k − 2.

By the inductive assumption, f(R+1, an−1 − 1) = f(a∆n−1 − t+1, an−1 − 1) ≤ tδ
and f(bn−1 + 1, b∆n−1 + t − 1) ≤ tδ. By Definition 4.4, h − t + 1 = s − (m − 1) ≤
s − (n − 1) = bn−1 − an−1, so R − 1 = a∆n−1 + h ≤ b∆n−1 + t − 1. Also, bn−1 + 1 ≤
s + 1 ≤ R, so f(bn−1 + 1, R − 1) ≤ f(bn−1 + 1, b∆n−1 + t − 1) ≤ tδ. By Lemma 4.3,
dan−1 + dR ≤ ω −B − (ω − 2)δ ≤ 2δ.

D
ow

nl
oa

de
d

07
/2

1/
22

 to
 1

8.
9.

61
.1

11
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

GRAPH PATTERN DETECTION HARDNESS AND ALGORITHMS 1653

By the inductive assumption and the above statement, ∀0 ≤ i ≤ an−1 : di ≤
2δ − di∆−t. Hence,
(10)

f(0, an−1) ≤
an−1∑
i=0

(2δ−di∆−t) = 2ℓ(0, an−1)δ−
a∆
n−1−t∑

i=0∆−t

di = 2ℓ(0, an−1)δ−f(0∆−t, R).

Recall that an = an−1 + 1, so R = a∆n−1 − t = a∆n − t− 1. By Fact 4.1, (s+ 1, R)
is (p+ 1)-high. Since 0∆ − t ≥ k+ (s+ 1− h)− t ≥ s+ 1, by Lemma 4.5, (0∆ − t, R)
is also (p+1)-high. By Fact 4.1, (a∆n − t+1, k− 1) is q-low. These together with (10)
implies

f(a∆n − t+ 1, an − 1) = f(a∆n − t+ 1, k − 1) + f(0, an−1)

≤ (ℓ(a∆n − t+ 1, k − 1)− q)δ + 2ℓ(0, an−1)δ − f(0∆ − t, R)

≤ (ℓ(a∆n − t+ 1, k − 1)− q)δ + 2ℓ(0, an−1)δ − (ℓ(0∆ − t, a∆n−1 − t)− (p+ 1))δ

= ((t− an −∆− 1− q) + 2(an−1 + 1)− (an−1 + 1− (p+ 1)))δ

= tδ,

where the simplification in the last two lines follows from an = an−1+1 and ∆ = p−q.
Hence, Theorem 4.2.1(a) is still true for n, so is true for all n ∈ {0, . . . ,m}.
Now, we prove 4.2.1(b). Note that b∆m − a∆m = bm − am = s − m = h − t, so

b∆m + t = a∆m + h. By Theorem 4.2.1(a)’s inequalities (8), (9),

2δm ≥
am−1∑
i=0

(di + di∆−t) +

s∑
j=bm+1

(dj + dj∆+t)

=

am−1∑
i=0

di +

a∆
m+h∑

i=h∆+1

di +

s∑
j=bm+1

dj +

s∆+t∑
j=b∆m+t+1

dj

= f(0, am − 1) + f(h∆ + 1, a∆m + h) + f(bm + 1, s) + f(a∆m + h+ 1, s∆ + t)

= f(0, am − 1) + f(bm + 1, s) + f(h∆ + 1, s∆ + t).

(11)

Since |∆| ≤ h− s− 1, 2h ≤ k and h− 1 ≤ t, we have

h∆ = h+∆ ∈ [h− (h− s− 1), h+ (h− s− 1)] ⊆ [s+ 1, k − 1],

and s∆ + t+ 1 ∈ [s− (h− s− 1) + t+ 1, s+ (h− s− 1) + t+ 1] ⊆ [s+ 1, k − 1].
By Lemma 4.6,

f(s+ 1, h∆) ≤ ℓ(s+ 1, h∆)δ = (h∆ − s)δ = (h+∆− s)δ,

f(s∆ + t+ 1, k − 1) ≤ ℓ(s∆ + t+ 1, k − 1)δ = (h− s∆)δ = (h−∆− s)δ.
(12)

Summing the equations in (12) with (11) gives

2tδ = 2δm+ (h+∆− s)δ + (h−∆− s)δ

≥ f(0, am − 1) + f(bm + 1, s) + f(h∆ + 1, s∆ + t)

+ f(s+ 1, h∆) + f(s∆ + t+ 1, k − 1)

= f(0, am − 1) + f(bm + 1, s) + f(s+ 1, k − 1)

= f(bm + 1, am − 1).

(13)D
ow

nl
oa

de
d

07
/2

1/
22

 to
 1

8.
9.

61
.1

11
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1654 DALIRROOYFARD, VUONG, AND VASSILEVSKA WILLIAMS

Now, we prove Theorem 4.2.2. When k is odd, h = t, m = s, and am = bm =
as = bs = T . Suppose that Ck > B, then f(T + 1, T − 1) ≤ 2tδ by Theorem 4.2.1(b),
and thus Ck ≤ B by Lemma 4.4.

To finish the proof, we prove that property (p, q, B) implies Ck ≤ B.

Lemma 4.7. Suppose that property (p, q, B) holds ∀0 ≤ p, q ≤ h− s− 1.
1. Let p, q,∆ be integers such that 0 ≤ p, q ≤ h − s − 1, and ∆ = p − q. If

(s+ 1, b∆m + t− 1) is p-low and (a∆m − t, k − 1) is (q + 1)-high, then Ck ≤ B.
Analogously, if (a∆m − t+1, k− 1) is q-low and (s+1, b∆m + t) is (p+1)-high,
then Ck ≤ B.

2. Ck ≤ B.

Proof.
1. We prove the first statement by induction on ∆ = p − q. The second one

follows by symmetry. We induct on ∆ where s+ 1− h ≤ ∆ ≤ h− s− 1.
Base case: ∆ = h− s− 1. Since 0 ≤ p, q ≤ h− s− 1, p = h− s− 1, q = 0. By
Lemma 4.6, (s+ 1, b∆m + t) is (p+ 1)-high and (a∆m − t+ 1, k − 1) is q-low, so
Ck ≤ B because property (p, q, B) holds.
Supposing Lemma 4.7 is true for ∆′ = ∆+ 1, we prove it is also true for ∆.
∀ index i, let i∆

′
:= i+∆′ = i∆ + 1.

If (s+1, b∆m+t) = (s+1, b∆
′

m +t−1) is not (p+1)-high, i.e., is (p+1)-low, since
a∆

′

m −t > a∆m−t and (a∆m−t, k−1) is (q+1)-high, by Lemma 4.5, (a∆
′

m −t, k−1)
is (q + 1)-high. Applying induction’s assumption for ∆′ = p+ 1− q, we have
Ck ≤ B.
If (a∆m − t + 1, k − 1) = (a∆

′

m − t, k − 1) is not q-low, i.e., is q-high, since
b∆

′

m + t − 1 > b∆m + t − 1 and (s + 1, b∆m + t − 1) is p-low, by Lemma 4.5,
(s+1, b∆

′

m +t−1) is p-low. Applying induction’s assumption for ∆′ = p−(q−1),
we have Ck ≤ B.
The remaining case is (s+1, b∆m + t) is (p+1)-high and (a∆m − t+1, k− 1) is
q-low, thus condition (p, q) holds. Then Ck ≤ B because of property (p, q, B).

2. Suppose for contradiction that Ck > B. By Lemma 4.6, there exists q ∈
N, 0 ≤ q ≤ h− s− 1 such that (am − t, k − 1) is (q + 1)-high and q-low.
If (s + 1, bm + t) is (q + 1)-low, since (am − t, k − 1) is (q + 1)-high, so is
(am − t + 1, k − 1) by Lemma 4.5. Let p = q + 1,∆ = p − q = 1. Since
(s+1, b∆m+ t−1) = (s+1, bm+ t) is p-low, (a∆m− t, k−1) = (am− t+1, k−1)
is (q + 1)-high, Ck ≤ B by sublemma 4.7.1 (contradiction).
If (s + 1, bm + t − 1) is q-high, let p = q − 1,∆ = p − q = −1. Since
(s+1, b∆m+t) = (s+1, bm+t−1) is (p+1)-high, (a∆m−t+1, k−1) = (am−t, k−1)
is q-low, Ck ≤ B by sublemma 4.7.1 (contradiction). So (s+ 1, bm + t− 1) is
q-low.
If (am−t+1, k−1) is q-high, since (s+1, bm+t−1) is q-low, so is (s+1, bm+t)
by Lemma 4.5. Let p′ = q, q′ = q− 1,∆ = p′− q′ = 1. Since (a∆m− t, k− 1) =
(am− t+1, k−1) is (q′+1)-high, (s+1, b∆m+ t−1) = (s+1, bm+ t) is p′-low,
Ck ≤ B by sublemma 4.7.1 (contradiction).
Hence (s+1, bm+ t) is (q+1)-high, (s+1, bm+ t−1) is q-low, (am− t, k−1)
is (q + 1)-high, (am − t + 1, k − 1) is q-low. In other words, condition (q, q)
holds, so Ck ≤ B by property (q, q, B).

Suppose k is odd. Set B := 1 + tδ = ω(1 − δ), and then δ = 2(ω−1)
2ω+k−1 and

B = (k + 1)ω/(2ω + k − 1). Lemma 4.7 and Theorem 4.2.2 together imply Ck ≤ B.
Since the choice d0, . . . , dk−1 is arbitrary, ck ≤ B.

D
ow

nl
oa

de
d

07
/2

1/
22

 to
 1

8.
9.

61
.1

11
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

GRAPH PATTERN DETECTION HARDNESS AND ALGORITHMS 1655

Now we show that the bound is tight and that ck = B for some choice of the
degrees. Assume ω ≤ 2k

k−1 . Set d0 = · · · = dk−1 = δ. Every matrix multiplication
costs M(1− δ, 1− δ, 1− δ) = B, and rule 1 in Algorithm 4.1 costs 2− δ ≥ B (indeed,

recall that B = 1 + tδ, so this is equivalent to 2(ω−1)
2ω+k−1 = δ ≤ 1

t+1 = 2
k+1 , which is

equivalent to ω ≤ 2k
k−1). Using only the rules 2(a), (b) costs at least 1 + tδ = B in

total. Hence, Ck(δ, . . . , δ) = B, and the bound in Conjecture 2 is tight for ω ≤ 2k
k−1 .

4.5. Finding 6-cycles. Here we prove Conjecture 3 on the runtime of Yuster
and Zwick’s algorithm for finding 6-cycles.

Let B be a value dependent on ω to be specified later. Let δ := B−1
2 . Assume that

δ ∈ [0, 1] and B ≥ ω(1− δ). Fix a degree class (d0, . . . , d5), and denote C6(d0, . . . , d5)
by C6. We want to prove C6 ≤ B. By Lemma 4.2, if there exist no three consecutive
δ-low indices, then C6 ≤ max{1 + 2δ, ω(1 − δ)} = B. If all indices are δ-low, then
C6 ≤ max{P0,3, P3,0} ≤ 1 + max{d1 + d2, d4 + d5} ≤ 1 + 2δ = B. Now, consider
the case when there exist three consecutive δ-low indices and at least 1 δ-high index.
WLOG, we can assume that indices 3, 4, 5 are δ-low and index 0 is δ-high. Suppose
for contradiction that C6 > B. We will prove certain strict upper bounds on B, which
leads to a contradiction when we set B to be equal to those upper bounds. Then we
will conclude that C6 ≤ B, thus also proving the bound for c6.

We need the following lemma.

Lemma 4.8. Suppose that d0 ≥ δ and d3, d4, d5 < δ.
(a) If C6 > B and d2 ≥ δ, then B < 10ω−3

4ω+3 and B < 15−2ω
11−2ω .

(b) If C6 > B and d2 < δ and d1 ≥ δ, then
• if ω ≤ 9

4 , B < 10ω−3
4ω+3 and B < 22−4ω

17−4ω ;

• if ω > 9
4 , B < 11ω−2

4ω+5 ;

• if ω ≤ 5
2 , B < 10−ω

7−ω .
(c) If d1, d2 < δ, then C6 ≤ B.

The proof of Lemma 4.8 only involves linearly combining inequalities derived from
(4). We include the full proof of Lemma 4.8 in the appendix. Now, we continue on
the proof of Conjecture 3.

To show a lower bound B on c6, we show a tuple (d0, . . . , d5), termed the “hard-
case degree class,” where C6(d0, . . . , d5) = B. Computing C6(d0, . . . , d5) given a tuple
(d0, . . . , d5) can be done via a constant size linear program.

For δ = B−1
2 , B ≥ ω(1 − δ) = ω 3−B

2 if and only if B ≥ 3ω
ω+2 and δ ∈ [0, 1] if

and only if B ∈ [1, 3]. Set B to be the right-hand side of (5). It is easy to check
that, for every value of ω ∈ [2, 3], B ≥ 3ω

ω+2 and B ∈ [1, 3], so δ = B−1
2 ∈ [0, 1] and

B ≥ ω(1− δ) as required in the setup at the beginning of this subsection. By Lemma
4.8(c), we only need to prove C6 ≤ B when d2 ≥ δ and when d2 < δ, d1 ≥ δ.

(a) If 2 ≤ ω ≤ 13
6 , then B = 10ω−3

4ω+3 . Lemma 4.8(a), (b) imply B < 10ω−3
4ω+3 ,

which is a contradiction. So C6 ≤ B as needed. The hard-case degree class
is (4δ3 , δ, δ, 2δ

3 , 2δ
3 , 2δ

3).
(b) If 13

6 ≤ ω ≤ 9
4 , then B = 22−4ω

17−4ω . Lemma 4.8(a), (b) imply

B <

{
15− 2ω

11− 2ω
,
22− 4ω

17− 4ω

}
=

22− 4ω

17− 4ω
,

which is a contradiction. The hard-case degree class is(
2−B,

7B − 10

4
,
6− 3B

4
,
2−B

2
,
2−B

2
, 2B − 3

)
.

D
ow

nl
oa

de
d

07
/2

1/
22

 to
 1

8.
9.

61
.1

11
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1656 DALIRROOYFARD, VUONG, AND VASSILEVSKA WILLIAMS

(c) If 9
4 < ω ≤ 16

7 , then B = 11ω−2
4ω+5 . Lemma 4.8(a), (b) imply

B < max

{
10ω − 3

4ω + 3
,
11ω − 2

4ω + 5

}
=

11ω − 2

4ω + 5
,

which is a contradiction. The hard-case degree class is (8δ7 , 8δ
7 , 6δ

7 , 4δ
7 , 4δ

7 , 6δ
7).

(d) If 16
7 ≤ ω ≤ 5

2 , then B = 10−ω
7−ω . Lemma 4.8(a), (b) imply

B < max

{
15− 2ω

11− 2ω
,
10− ω

7− ω

}
≤ 10− ω

7− ω
,

which is a contradiction. The hard-case degree class is (2 − B, 2 − B, 2B −
3, 2−B

2 , 2−B
2 , 2B − 3).

4.6. Finding even cycles. Here we analyze the algorithm when k is even. We
will show that our analysis is tight when ω = 2.

When k is even, h = t+ 1. Let β := δ t
h < δ, then B = 1 + tδ = 1 + hβ. Set B =

(ω−2)(1−δ)+(1−δ)+(1−β) ≥ ω(1−δ). Note that B =
kω− 4

k

2ω+k−2− 4
k

. To prove Theorem

4.1, we fix arbitrary d0, . . . , dk−1 and prove Ck := Ck(d0, . . . , dk−1) ≤ B. We define
s, (an), (bn) the same as in subsection 4.4. If s = 0, then P0,h ≤ 1 + ℓ(1, h− 1)δ = B
and Ph,0 ≤ 1 + ℓ(h+ 1, k − 1)δ = B, so Ck ≤ B. Below, we assume that s ≥ 1. Note
that ω − B − (ω − 2)δ = δ + β. As in subsection 4.4, we will sum inequalities of the
form di + dr ≤ δ + β to get f(bs + 1, as − 1) ≤ tδ + hβ = 2tδ, then use Lemmas 4.4
and 4.7 to conclude that Ck ≤ B.

Lemma 4.9. Suppose that Ck > B.
1. ∀r, h ≤ r ≤ s+ h such that dr ≤ β.
2. For every index r such that s + 1 ≤ r ≤ h − 1 we have dr + dr+h ≤ δ + β.

Equilvalently, for every index r such that s + h + 1 ≤ r ≤ k − 1 we have
dr + dr−h ≤ δ + β.

3. If index i satisfied s+ 1 ≤ i ≤ i+ s− 1 ≤ k − 1, then f(s+ 1, i− 1) + f(i+
s, k − 1) ≤ (t− s)δ + (h− s)β.

Proof.
1. Since s+1 ≤ h ≤ r ≤ h+s ≤ h+h−1 = k−1, f(s+1, r−1) ≤ ℓ(s+1, r−1)δ ≤

ℓ(s+1, h+s−1)δ = tδ and f(r+1, k−1) ≤ ℓ(r+1, k−1)δ ≤ ℓ(h+1, k−1)δ = tδ.
By Lemma 4.3, dr ≤ β.

2. If dr ≤ β, then dr + dr+h ≤ β + δ.
If dr ≥ β, thenM(1−dr, 1−d0, 1−ds) ≤ B. Clearly, Ps,r ≤ 1+f(s+1, r−1) ≤
1 + tδ = B, and P0,s ≤ B by Lemma 4.2, so P0,r ≤ max{P0,s, Ps,r,M(1 −
dr, 1 − d0, 1 − ds)} ≤ B. Clearly, Pr,r+h, Pr+h,0 ≤ B. So, by Lemma 4.1,
M(1 − dr, 1 − dr+h, 1 − d0) ≥ B. Since dr, dr+h ≤ δ ≤ d0, dr + dr+h ≤
ω −B − (ω − 2)d0 ≤ ω −B − (ω − 2)δ = δ + β.

3. We have two cases: either i ≤ h or i + s − 1 ≥ h + s. These two cases
are symmetrically equivalent. We can assume i ≤ h; the remaining case is
analogous. Since i− 1 ≤ h− 1, by sublemma 4.9.2,

f(s+1, i− 1)+ f(s+h+1, i+h− 1) =

i−1∑
r=s+1

(dr +dr+h) ≤ (i− s− 1)(δ+β).

Since i + s ≤ h + s, by sublemma 4.9.1, f(i + s, h + s) ≤ ℓ(i + s, h + s)β =
(h− i+ 1)β.

D
ow

nl
oa

de
d

07
/2

1/
22

 to
 1

8.
9.

61
.1

11
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

GRAPH PATTERN DETECTION HARDNESS AND ALGORITHMS 1657

Since s+ 1 ≤ i+ h ≤ 2h ≤ k and dr ≤ δ∀s+ 1 ≤ r ≤ k − 1, f(i+ h, k − 1) =∑k−1
r=i+h dr ≤ ℓ(i+ h, k − 1)δ = (k − i− h)δ. Hence,

f(s+ 1, i− 1) + f(i+ s, k − 1)

= f(s+ 1, i− 1) + f(i+ s, h+ s) + f(h+ s+ 1, i+ h− 1) + f(i+ h, k − 1)

≤ (i− s− 1)(δ + β) + (h− i+ 1)β + (k − i− h)δ = (t− s)δ + (h− s)β.

Lemma 4.10. Consider integers p, q ∈ [0, h − s − 1] and ∆ := p − q. Suppose
condition (p, q) holds.

Suppose dr + dr∆+t ≤ δ+β∀bs < r ≤ bm. If ∃n ∈ {0, . . . ,m} : f(a∆n −h+1, an −
1) ≤ tδ and ∀r ∈ [an, as) : dr + dr∆−h ≤ δ + β, then Ck ≤ B.

Suppose dr + dr∆−t ≤ δ+β∀am ≤ r < as. If ∃n ∈ {0, . . . ,m} : f(bn +1, b∆n +h−
1) ≤ tδ and ∀r ∈ (bs, bn] : dr + dr∆+h ≤ δ + β, then Ck ≤ B.

Proof. We prove the first statement by induction on n ∈ {0, . . . ,m}. The second
statement is analogous. Suppose for contradiction Ck > B. By Theorem 4.2.1(a),
dr + dr∆+t ≤ δ + β∀bm < r ≤ s, so dr + dr∆+t ≤ δ + β∀bs < r ≤ s, so

(14) f(bs + 1, s) + f(b∆s + 1 + t, s∆ + t) ≤ (s− bs)(δ + β).

Base case: n = 0. Since ∀r, a0 ≤ r < as : dr + dr∆−h ≤ δ + β, f(a0, as − 1) +
f(a∆0 −h, a∆s −h− 1) ≤ (as − a0)(δ+ β). Since a∆s −h− 1 = b∆s + k−h− 1 = b∆s + t,
f(a∆0 −h, a∆s −h−1)+f(b∆s +1+ t, s∆+ t) = f(a∆0 −h, s∆+ t). Combining these with
(14) gives f(0, as−1)+f(a∆0 −h, s∆+t)+f(bs+1, s) ≤ (s−bs+as−a0)(δ+β) = s(δ+β).

Since a0 = 0, |∆| ≤ h− s− 1, s+ 1 ≤ a∆0 − h ≤ 0∆ − h+ s− 1 = s∆ + t ≤ k − 1.
By sublemma 4.9.3, f(s+1, a∆0 −h−1)+f(s∆+ t+1, k−1) ≤ (t−s)δ+(h−s)β. So,
f(bs + 1, as − 1) ≤ s(δ + β) + (t− s)δ + (h− s)β = tδ + hβ = 2tδ. Since as = bs = T ,
Ck ≤ B by Lemma 4.4.

Suppose Lemma 4.10 is true for n−1 ≤ m−1. We show that it is still true for n.
If an = an−1, then we are done. Else, an = an−1+1, bn = bn−1 and dan−1 ≤ dbn−1 .

We show f(a∆n−1 − h+ 1, an−1 − 1) ≤ tδ and dan−1
+ da∆

n−1−h ≤ δ + β, then conclude

that Ck ≤ B using the inductive assumption.
Consider R = a∆n − h = a∆n−1 − h+1. Note that bn − an = s− n ≥ s−m = 1, so

R−1 = a∆n −h−1 = a∆n +t ≤ b∆n +t−1, so f(bn+1, R−1) ≤ f(bn+1, b∆n +t−1) ≤ tδ
by Theorem 4.2.1(a). Clearly, f(R+1, an−1) = f(a∆n −h+1, an−1) ≤ tδ. So dR ≤ β
by Lemma 4.3.

Note that f(a∆n−1 − h + 1, an−1 − 1) = f(a∆n − h + 1, an − 1) + dR − dan−1
≤

tδ + (dR − dan−1
).

If dR ≤ dan−1
then f(a∆n−1 − h+ 1, an−1 − 1) ≤ tδ. Since bn = bn−1 and a∆n−1 −

h − 1 < a∆n − h − 1 = R − 1, f(bn−1 + 1, a∆n−1 − h − 1) ≤ f(bn + 1, R − 1) ≤ tδ. So
dan−1 + da∆

n−1−h ≤ δ + β by Lemma 4.3, and thus Ck ≤ B by inductive assumption.

If dan−1
≤ dR ≤ β, since dr + dr−h ≤ δ + β∀an ≤ r < as, by Theorem 4.2.1(a),

dr+dr−t ≤ δ+β∀0 ≤ r < an−1 ≤ am. Hence, f(0, an−1−1)+f(0∆−t, a∆n−1−1−t) ≤
an−1(δ + β) and f(an, as − 1) + f(a∆n − h, a∆s − 1 − h) ≤ (as − an)(δ + β). Since
0∆ −h ∈ [s+1, k− 1], dan−1

+ d0∆−h ≤ β+ δ. Summing these three inequalities with
(14) gives f(0, as − 1)+ f(0∆ −h, s∆ + t)+ f(bs +1, s) ≤ s(δ+β). So Ck ≤ B by the
same argument as in the base case.

Now, we prove that property (p, q, B) holds, then conclude that Ck ≤ B using
Lemma 4.7.

Lemma 4.11. For k even and B as defined in this section, property (p, q, B) holds.

D
ow

nl
oa

de
d

07
/2

1/
22

 to
 1

8.
9.

61
.1

11
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1658 DALIRROOYFARD, VUONG, AND VASSILEVSKA WILLIAMS

Proof. Suppose for contradiction that condition (p, q) holds but Ck > B. By
Theorem 4.2.1(b), f(bm + 1, am − 1) ≤ 2tδ. Note that m = s − 1 and bm − am = 1.
Let R := a∆m − h, and then R+ 1 = b∆m + h. Since f(R+ 1, am − 1) + f(bm + 1, R) =
f(bm+1, am−1) ≤ 2tδ, either f(a∆m−h+1, am−1) ≤ tδ or f(bm+1, b∆m+h−1) ≤ tδ.
WLOG, assume dam ≤ dbm , and then as = am + 1, bs = bm.

If f(a∆m−h+1, am−1) ≤ tδ, note that f(bm+1, a∆m−h−1) = f(bm+1, a∆m+t) =
f(bm + 1, b∆m + t− 1) ≤ tδ by Theorem 4.2.1(a). So dam

+ da∆
m−h ≤ δ + β by Lemma

4.3. The first statement of Lemma 4.10 (note that bs = bm) for n = m gives Ck ≤ B
(contradiction).

If f(bm+1, b∆m+h−1) ≤ tδ, note that f(b∆m+h+1, am−1) = f(a∆m−t+1, am−1) ≤
tδ by Theorem 4.2.1(a). So dam

+da∆
m−t = dam

+db∆m+h ≤ δ+β. The second statement
of Lemma 4.10 for n = m gives Ck ≤ B (contradiction).

Assume ω = 2. Set d0 = 2β, d1 = · · · = dt = δ, dt+1 = · · · = dk−1 = β. Note
that M(1 − 2β, 1 − δ, 1 − β) = M(1 − δ, 1 − δ, 1 − β) = B, 2 − δ ≥ 2 − 2β ≥ B, and
tδ = 2β + (t− 1)β = B − 1. Thus, using rule 1 or 2(c) “costs” at least B, and using
only rules 2(a) and 2(b) costs at least B in total. So Ck(d0, . . . , dk−1) = B, and thus
the bound is tight for ω = 2.

5. Appendix.

5.1. Induced pattern detection for k ≤ 6. Note that the case of k = 4
is resolved by [45]. When k ∈ {5, 6}, we have k′ = 1. Consider a class c. By
Corollary 3.2, U(c) has exactly two patterns which differ in only one edge e, namely,
H̃ and H̃ \ e. By Theorem 3.2, bc

H̃
+ bc

H̃\(e) = 2, so bc
H̃

= bc
H̃\(e) = 1. So for any class

c and any unlabeled pattern H̃ that embeds in c, we have αc
H̃

= |Aut(H̃)|. Moreover

by Lemma 3.2, there is some class c such that U(c) consists of H̃ and H̃ \ {e}, where
e is an arbitrary edge in H̃.

Hence by Theorem 3.1 and Corollary 3.1, for any unlabeled pattern H̃ which has
at least one edge, we can compute nH̃ |Aut(H̃)|+ nH̃\e|Aut(H̃ \ e)| in O(M(n, n2, n))

time for k = 5 and O(M(n, n2, n2)) time for k = 6. Now we give an algorithm
which detects any fixed pattern H̃ in a graph G, where H̃ is not the k-clique or the
k-independent set.

Let e1, . . . , eh be an arbitrary permutation of all the edges of H̃. Let H̃i =
H̃ \ {e1, . . . , ei−1}, where H̃1 = H̃. Compute qi = nH̃i

|Aut(H̃i)|+ nH̃i+1
|Aut(H̃i+1)|.

Compute Q =
∑h

i=1(−1)iqi. In fact, Q = nH̃ |Aut(H̃)| + (−1)hnH̃h+1
|Aut(H̃h+1)|,

which is of the form (2) for r = k!, since H̃h+1 is the k-independent set. So we can
detect all 5-node patterns in time O(M(n, n2, n)) ∈ O(nω+1) and all 6-node patterns
in time O(M(n, n2, n2)) ∈ O(nω+2).

5.2. Omitted proofs.
Proof of Lemma 4.8. For r ∈ {0, . . . , 5}, if B < C6, we get B < C6 ≤ 2 − dr,

dr < 2−B. Note that 2 ≤ ω ≤ 3.
(a) By Lemma 4.2, P0,2 ≤ max{1 + 2δ, ω(1 − δ)} ≤ B. This and B < C6 imply

B < P2,0. Hence 1 + 2δ = B < P2,0 ≤ 1 + d3 + d4 + d5, so d3 + d4 + d5 ≥
2δ = −(B − 1).
For r ∈ {3, 4, 5}, max{Pr,0, P2,r} ≤ 1+max{f(r+1, 5), f(3, r−1)} ≤ 1+2δ =
B. By Lemma 4.1, M(1− d0, 1− d2, 1− dr) > B, which means

(15) (ω − 2)d0 + d2 + dr < ω −B.

D
ow

nl
oa

de
d

07
/2

1/
22

 to
 1

8.
9.

61
.1

11
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

GRAPH PATTERN DETECTION HARDNESS AND ALGORITHMS 1659

Summing (15) for r ∈ {3, 4, 5} with −(d3 + d4 + d5) < −(B − 1) gives

(16) (ω − 2)d0 + d2 < ω −B − B − 1

3
.

Summing (15) for r = 3 with −(ω − 2)d0 ≤ −(ω − 2)δ gives

d2 + d3 ≤ ω − (ω − 2)δ −B ≤ ω − (ω − 2)δ − ω(1− δ) = 2δ

⇒ P1,4 ≤ 1 + d2 + d3 ≤ 1 + 2δ = B ⇒ B < C6 ≤ max{P1,4, P4,1}
≤ max{B,P4,1}

⇒ B < P4,1 ≤ 1 + d5 + d0 ⇒ 2δ < d0 + d5.

Summing (15) for r = 5 with −(d5 + d0) < −2δ = −(B − 1) gives

(17) (ω − 3)d0 + d2 < ω −B − (B − 1).

Summing (15) for r = 5, −(d5 + d0) < −(B − 1) and d0 < 2−B gives

(18) (ω − 2)d0 + d2 < ω −B − (2B − 3).

Multiplying (15) with 3 − ω ≥ 0, (17) with ω − 2 ≥ 0, and summing them
gives d2 ≤ 5ω

3 −B 2ω
3 − 1.

Since d2 > δ = B−1
2 , B−1

2 < d2 ≤ 5ω
3 −B 2ω

3 − 1, which implies B < 10ω−3
4ω+3 .

Multiplying (18) with 3 − ω ≥ 0, (17) with ω − 2 ≥ 0, and summing them
gives d2 ≤ 7 − ω − B(5 − ω). Thus B−1

2 < d2 ≤ 7 − ω − B(5 − ω), which
implies B < 15−2ω

11−2ω .
(b) P3,0 ≤ 1 + d4 + d5 ≤ 1 + 2δ = B ⇒ B < P0,3 ≤ 1 + d1 + d2 ⇒ 2δ < d1 + d2.

Analogously, 2δ < d0 + d5.
For r ∈ {0, 1}, if dr ≥ 2δ, then C6 ≤ 2 − dr ≤ 2(1 − δ) ≤ ω(1 − δ) ≤ B.
So dr ≤ 2δ, and thus max{P5,1, P0,2} ≤ max{1 + d0, 1 + d1} ≤ B. Clearly
P1,2 = P5,0 = 1 ≤ B,P2,5 ≤ 1 + d3 + d4 ≤ B. So P5,r, Pr,2, P2,5 ≤ B. By
Lemma 4.1, M(1− dr, 1− d5, 1− d2) > B, which means

(19) (ω − 2)dr + d2 + d5 < ω −B.

Summing (19) for r = 0 with −(ω−2)(d0+d5) ≤ −(ω−2)2δ = −(ω−2)(B−1)
gives

(20) d2 + (3− ω)d5 < ω −B − (ω − 2)(B − 1).

Summing (19) for r = 1 with −(ω−2)(d1+d2) ≤ −(ω−2)2δ = −(ω−2)(B−1)
gives

(21) d5 + (3− ω)d2 < ω −B − (ω − 2)(B − 1).

For r ∈ {3, 4}, max{P1,r, Pr,0} ≤ 1+max{f(2, r−1), f(r+1, 5)} ≤ 1+2δ = B,
and P0,1 = 1 ≤ B. By Lemma 4.1, M(1−d0, 1−d1, 1−dr) > B, which means

(22) (ω − 2)d0 + d1 + dr < ω −B, r ∈ {3, 4}.

Summing (22) for r ∈ {3, 4}, 2δ−d3−d4 ≤ d5, 2δ−d1 ≤ d2, and (ω−2)(2δ−
d0) ≤ (ω − 2)d5 gives

(23)

(
ω − 3

2

)
d5 + d2 > −(ω −B) +

(
ω − 1

2

)
(B − 1).

D
ow

nl
oa

de
d

07
/2

1/
22

 to
 1

8.
9.

61
.1

11
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1660 DALIRROOYFARD, VUONG, AND VASSILEVSKA WILLIAMS

If ω ≤ 9
4 , multiplying (20) by ω − 3

2 > 0, (23) by ω − 3 ≤ 0, and summing

them gives (2ω − 9
2)d2 < 3

2 (ω − B) − 3
2 (B − 1). Since d5 ≤ δ = B−1

2 and

2ω − 9
2 ≤ 0, (2ω − 9

2)
B−1
2 < 3

2 (ω −B)− 3
2 (B − 1), which implies B < 10ω−3

4ω+3 .

Subtracting (20) by (23) gives (92 − 2ω)d5 < 2(ω − B) − (2ω − 5
2)(B − 1).

Since d5 ≥ (B − 1)− d0 ≥ (B − 1)− (2−B) and 9
2 − 2ω ≥ 0, (92 − 2ω)((B −

1)− (2−B)) < 2(ω −B)− (2ω − 5
2)(B − 1), which implies B < 22−4ω

17−4ω .

If ω > 9
4 , multiplying (20) by 2ω2 − 9ω+ 11 > 0, (21) by 4ω− 9 > 0, (23) by

2(ω− 2)(ω− 4) < 0, and summing them gives 0 < (7ω− 14)(ω−B)− 2(2ω−
1)(ω − 2)(B − 1), which implies B < 11ω−2

4ω+5 .

If ω ≤ 5
2 , note that d2 ≥ (B − 1) − d1 ≥ (B − 1) − (2 − B) = 2B − 3, d5 ≥

(B−1)−d0 ≥ (B−1)−(2−B) = 2B−3. Summing (20) with −d2 ≤ −(2B−3)
and (ω−3)d5 ≤ (ω−3)(2B−3) gives 0 < ω−B−(ω−2)(B−1)−(4−ω)(2B−3),
which implies B < 10−ω

7−ω .
(c) P3,0 ≤ 1 + d4 + d5 ≤ 1 + 2δ = B,P0,3 ≤ 1 + d1 + d2 ≤ 1 + 2δ = B, so

C6 < max{P0,3, P3,0} ≤ B.

Acknowledgment. We would like to thank Uri Zwick for pointing us to the
open problem of analyzing the Yuster–Zwick algorithm.

REFERENCES

[1] A. Abboud, A. Backurs, and V. Vassilevska Williams, If the current clique algorithms are
optimal, so is valiant’s parser, in Proceedings of the IEEE 56th Annual Symposium on
Foundations of Computer Science, FOCS 2015, Berkeley, CA, 2015, pp. 98–117.

[2] N. Alon, P. Dao, I. Hajirasouliha, F. Hormozdiari, and S. Cenk Sahinalp, Biomolecular
network motif counting and discovery by color coding, Bioinformatics, 24 (2008), pp. i241–
i249.

[3] N. Alon, R. Yuster, and U. Zwick, Color-coding, J. ACM, 42 (1995), pp. 844–856.
[4] N. Alon, R. Yuster, and U. Zwick, Finding and counting given length cycles, Algorithmica,

17 (1997), pp. 209–223.
[5] M. Bläser, B. Komarath, and K. Sreenivasaiah, Graph Pattern Polynomials, CoRR,

abs/1809.08858, 2018.
[6] B. Bollobás, The chromatic number of random graphs, Combinatorica, 8 (1988), pp. 49–55.
[7] B. Bollobás, P.A. Catlin, and P. Erdös, Hadwiger’s conjecture is true for almost every

graph, European J. Combin., 1 (1980), pp. 195–199.
[8] A. Bondy and M. Simonovits, Cycles of even length in graphs, J. Combin. Theory, 16 (1974),

pp. 97–105.
[9] K. Bringmann and P. Wellnitz, Clique-based lower bounds for parsing tree-adjoining gram-

mars, in Proceedings of the 28th Annual Symposium on Combinatorial Pattern Matching,
CPM 2017, Warsaw, Poland, 2017, pp. 12:1–12:14.

[10] J. Chen, B. Chor, M. Fellows, X. Huang, D. W. Juedes, I. A. Kanj, and G. Xia,
Tight lower bounds for certain parameterized np-hard problems, Inf. Comput., 201 (2005),
pp. 216–231.

[11] D. Corneil, Y. Perl, and L. Stewart, A linear recognition algorithm for cographs, SIAM J.
Comput., 14 (1985), pp. 926–934.

[12] R. Curticapean, H. Dell, and D. Marx, Homomorphisms are a good basis for counting
small subgraphs, in Proceedings of the 49th Annual ACM SIGACT Symposium on Theory
of Computing, STOC 2017, Montreal, QC, Canada, 2017, pp. 210–223.

[13] S. Dahlgaard, M. Bæk Tejs Knudsen, and M. Stöckel, Finding even cycles faster via
capped k-walks, in Proceedings of the 49th Annual ACM SIGACT Symposium on Theory
of Computing, STOC 2017, Montreal, QC, Canada, 2017, pp. 112–120.

[14] F. Eisenbrand and F. Grandoni, On the complexity of fixed parameter clique and dominating
set, Theoret. Comp. Sci., 326 (2004), pp. 57–67.

[15] P. Floderus, M. Kowaluk, A. Lingas, and E.-M. Lundell, Detecting and counting small
pattern graphs, in Proceedings of the 24th International Symposium on Algorithms and
Computation, ISAAC 2013, Hong Kong, China, 2013, pp. 547–557.

D
ow

nl
oa

de
d

07
/2

1/
22

 to
 1

8.
9.

61
.1

11
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

GRAPH PATTERN DETECTION HARDNESS AND ALGORITHMS 1661

[16] P. Floderus, M. Kowaluk, A. Lingas, and E.-M. Lundell, Induced subgraph isomorphism:
Are some patterns substantially easier than others?, Theoret. Comput. Sci., 605 (2015),
pp. 119–128.

[17] F. V. Fomin, D. Lokshtanov, V. Raman, S. Saurabh, and B. V. Raghavendra Rao, Faster
algorithms for finding and counting subgraphs, J. Comput. System Sci., 78 (2012), pp. 698–
706.

[18] F. Le Gall and F. Urrutia, Improved rectangular matrix multiplication using powers of the
Coppersmith–Winograd tensor, in Proceedings of the 29th Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2018, New Orleans, LA, 2018, pp. 1029–1046.

[19] H. Hadwiger, Ungelöste probleme, Elem. Math., 12 (1957), p. 121.
[20] R. Impagliazzo and R. Paturi, On the complexity of k-sat, J. Comput. Syst. Sci., 62 (2001),

pp. 367–375.
[21] A. Itai and M. Rodeh, Finding a minimum circuit in a graph, SIAM J. Comput., 7 (1978),

pp. 413–423.
[22] K.-i. Kawarabayashi and B. Toft, Any 7-chromatic graphs has k7 or K4,4 as a minor,

Combinatorica, 25 (2005), pp. 327–353.
[23] T. Kloks, D. Kratsch, and H. Müller, Finding and counting small induced subgraphs effi-

ciently, Inf. Proc. Lett., 74 (2000), pp. 115–121.
[24] M. Kowaluk and A. Lingas, A fast deterministic detection of small pattern graphs in graphs

without large cliques, in Proceedings of WALCOM: Algorithms and Computation, 11th In-
ternational Conference and Workshops, WALCOM 2017, Hsinchu, Taiwan, 2017, pp. 217–
227.

[25] M. Kowaluk, A. Lingas, and E.-M. Lundell, Counting and detecting small subgraphs via
equations, SIAM J. Discrete Math., 27 (2013), pp. 892–909.

[26] F. Le Gall, Faster algorithms for rectangular matrix multiplication, in Proceedings of the
53rd Annual IEEE Symposium on Foundations of Computer Science, FOCS 2012, New
Brunswick, NJ, 2012, pp. 514–523.

[27] F. Le Gall, Powers of tensors and fast matrix multiplication, in Proceedings of the Inter-
national Symposium on Symbolic and Algebraic Computation, ISSAC ’14, Kobe, Japan,
2014, pp. 296–303.

[28] A. Lincoln, V. Vassilevska Williams, and R. Williams, Tight hardness for shortest cycles
and paths in sparse graphs, in Proceedings of the 29th Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA ’18, 2018, pp. 1236–1252.

[29] A. Loo, On the Primes in the Interval [3n, 4n], preprint, arXiv:1110.2377, 2011.
[30] D. Marx, Can you beat treewidth?, in Proceedings of the 48th Annual IEEE Symposium on

Foundations of Computer Science (FOCS’07), 2007, pp. 169–179.
[31] B. Monien, How to find long paths efficiently, Ann. Discrete Math., 25 (1985), pp. 239–254.
[32] J. Nagura, On the interval containing at least one prime number, Proc. Japan Acad., 28

(1952), pp. 177–181.
[33] J. Nešetřil and S. Poljak, On the complexity of the subgraph problem, Comment. Math.

Univ. Carolin., 26 (1985), pp. 415–419.
[34] S. Olariu, A simple linear-time algorithm for computing the center of an interval graph, Int.

J. Comput. Math., 34 (1990), pp. 121–128.
[35] N. Przulj, D. G. Corneil, and I. Jurisica, Efficient estimation of graphlet frequency distri-

butions in protein–protein interaction networks, Bioinformatics, 22 (2006), pp. 974–980.
[36] N. Robertson, D. Sanders, P. Seymour, and R. Thomas, The four-colour theorem, J.

Combin. Theory, Ser. B, 70 (1997), pp. 2–44.
[37] N. Robertson, P. Seymour, and R. Thomas, Hadwiger’s conjecture for k6-free graphs, Com-

binatorica, 13 (1993), pp. 279–361.
[38] B. Rossman, On the constant-depth complexity of k-clique, in Proceedings of the 40th Annual

ACM Symposium on Theory of Computing, STOC ’08, 2008, pp. 721–730.
[39] V. Vassilevska and R. Williams, Finding, minimizing, and counting weighted subgraphs, in

Proceedings of STOC, 2009, pp. 455–464.
[40] V. Vassilevska, Efficient algorithms for clique problems, Inform. Process. Lett., 109 (2009),

pp. 254–257.
[41] V. Vassilevska Williams and R. Williams, Subcubic equivalences between path, matrix and

triangle problems, in Proceedings of the FOCS, 2010, pp. 645–654.
[42] V. Vassilevska Williams, Efficient Algorithms for Path Problems in Weighted Graphs, Ph.D.

thesis, Carnegie Mellon University, 2008.
[43] V. Vassilevska Williams, Multiplying matrices faster than Coppersmith-Winograd, in Pro-

ceedings of the 44th Symposium on Theory of Computing Conference, STOC 2012, New
York, 2012, pp. 887–898.

D
ow

nl
oa

de
d

07
/2

1/
22

 to
 1

8.
9.

61
.1

11
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1662 DALIRROOYFARD, VUONG, AND VASSILEVSKA WILLIAMS

[44] K. Wagner, Über eine eigenschaft der ebenen komplexe, Math. Ann., 114 (1937), pp. 570–590.
[45] V. Vassilevska Williams, J. R. Wang, R. R. Williams, and H. Yu, Finding four-node

subgraphs in triangle time, in Proceedings of the 26th Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2015, San Diego, CA, 2015, pp. 1671–1680.

[46] R. Yuster and U. Zwick, Finding even cycles even faster, in Proceedings of ICALP, 1994,
pp. 532–543.

[47] R. Yuster and U. Zwick, Detecting short directed cycles using rectangular matrix multipli-
cation and dynamic programming, in Proceedings of SODA, 2004, pp. 247–253.

D
ow

nl
oa

de
d

07
/2

1/
22

 to
 1

8.
9.

61
.1

11
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

	Introduction
	Hardness
	Detecting not necessarily induced directed k-cycles
	Organization of the paper

	Lower bounds
	Simple case: t-chromatic patterns
	General case
	A stronger lower bound

	Induced pattern detection: Algorithms
	The approach from four-nodes
	Setup
	General approach
	Proof of Theorem 3.1
	Patterns easier than cliques

	Detecting noninduced directed cycles
	Yuster and Zwick's algorithm
	The runtime of Yuster and Zwick's algorithm for finding k-cycles
	Setup: Basic lemmas
	Finding odd cycles
	Finding 6-cycles
	Finding even cycles

	Appendix
	Induced pattern detection for k6
	Omitted proofs

	References

