
MIT Open Access Articles

Monochromatic Triangles, Triangle Listing and APSP

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Williams, Virginia Vassilevska and Xu, Yinzhan. 2020. "Monochromatic Triangles,
Triangle Listing and APSP." Proceedings - Annual IEEE Symposium on Foundations of Computer
Science, FOCS, 2020-November.

As Published: 10.1109/FOCS46700.2020.00078

Publisher: Institute of Electrical and Electronics Engineers (IEEE)

Persistent URL: https://hdl.handle.net/1721.1/143942

Version: Original manuscript: author's manuscript prior to formal peer review

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/143942
http://creativecommons.org/licenses/by-nc-sa/4.0/

ar
X

iv
:2

00
7.

09
31

8v
2

 [
cs

.C
C

]
 2

7
Ju

l 2
02

0

Monochromatic Triangles, Triangle Listing and APSP

Virginia Vassilevska Williams

MIT

virgi@mit.edu

Yinzhan Xu

MIT

xyzhan@mit.edu

Abstract

All-Pairs Shortest Paths (APSP) is one of the most basic problems in graph algorithms. In one of

the most general variants of the problem, one is given an n-node directed or undirected graph with

integer weights in {−nc, . . . , nc} and no negative cycles and one needs to compute the shortest paths

distance between every pair of vertices. A central question in graph algorithms is how fast APSP can be

solved. The fastest known algorithm runs in n3/2Θ(
√

logn) time [Williams’14], and no truly subcubic

time algorithms are known.

One of the main hypotheses in fine-grained complexity is that this problem requires n3−o(1) time.

Another famous hypothesis in fine-grained complexity is that the 3SUM problem for n integers (which

can be solved in O(n2) time) requires n2−o(1) time. Although there are no direct reductions between

3SUM and APSP, it is known that they are related: there is a problem, (min,+)-convolution that reduces

in a fine-grained way to both, and a problem Exact Triangle that both fine-grained reduce to.

In this paper we find more relationships between these two problems and other basic problems.

Pătraşcu had shown that under the 3SUM hypothesis the All-Edges Sparse Triangle problem in m-edge

graphs requires m4/3−o(1) time. The latter problem asks to determine for every edge e, whether e is in a

triangle. It is equivalent to the problem of listing m triangles in an m-edge graph where m = Õ(n1.5),
and can be solved in O(m1.41) time [Alon et al.’97] with the current matrix multiplication bounds, and

in Õ(m4/3) time if ω = 2.

We show that one can reduce Exact Triangle to All-Edges Sparse Triangle, showing that All-Edges

Sparse Triangle (and hence Triangle Listing) requires m4/3−o(1) time also assuming the APSP hypoth-

esis. This allows us to provide APSP-hardness for many dynamic problems that were previously known

to be hard under the 3SUM hypothesis.

We also consider the previously studied All-Edges Monochromatic Triangle problem. Via work of

[Lincoln et al.’20], our result on All-Edges Sparse Triangle implies that if the All-Edges Monochromatic

Triangle problem has an O(n2.5−ε) time algorithm for ε > 0, then both the APSP and 3SUM hypothe-

ses are false. The fastest algorithm for All-Edges Monochromatic Triangle runs in Õ(n(3+ω)/2) time

[Vassilevska et al.’06], and our new reduction shows that if ω = 2, this algorithm is best possible, unless

3SUM or APSP can be solved faster. Besides 3SUM, previously, the only problems known to be fine-

grained reducible to All-Edges Monochromatic Triangle were the seemingly easier problems directed

unweighted APSP and Min-Witness Product [Lincoln et al.’20]. Our new reduction shows that this prob-

lem is much harder. We also connect the problem to other “intermediate” problems, whose runtimes are

between O(nω) and O(n3), such as the Max-Min product problem.

1

http://arxiv.org/abs/2007.09318v2

1 Introduction

All-Pairs Shortest Paths (APSP) is one of the most fundamental problems in graph algorithms. In one of

the most general variants of the problem, one is given an n-node directed or undirected graph with integer

weights in {−nc, . . . , nc} with no negative cycles and one needs to compute the shortest paths distance

between every pair of vertices. A central question in graph algorithms is how fast APSP in n node graphs

can be solved. The fastest known algorithm runs in n3/2Θ(
√
logn) time [29, 30], and no O(n3−ε) time for

ε > 0, so called truly subcubic algorithms are known.

One of the main hypotheses in fine-grained complexity, the APSP hypothesis, is that APSP requires

n3−o(1) time1. Another famous hypothesis is the 3SUM hypothesis that the 3SUM problem for n integers

in {−nc, . . . , nc} requires n2−o(1) time. 3SUM asks if three of the integers sum to 0 and can be solved in

O(n2) time. Although there are no direct reductions between 3SUM and APSP, it is known that they are

related, in a sense much more related than the third core problem of fine-grained complexity Orthogonal

Vectors (OV). For instance, the (min,+)-convolution problem is known to be fine-grained reducible to

both 3SUM and APSP, so that if APSP is in truly subcubic time, or 3SUM is in truly subquadratic time,

then (min,+)-convolution is in truly subquadratic time [6, 21, 22, 31, 32, 33]. Further, the Exact Triangle

problem is known to be harder than both APSP and 3SUM [31, 33], so that if it has a truly subcubic time

algorithm, then both the APSP and the 3SUM hypotheses would be false. Meanwhile, it is not known how

3SUM and APSP (or (min,+)-convolution and Exact Triangle) are related to OV2.

In this paper we provide more relationships to other problems that 3SUM and APSP have in common.

Pătraşcu [21] showed that 3SUM can be reduced in truly subquadratic time to the All-Edges Sparse Triangle

problem of determining for every edge e in an n-node, m = Õ(n1.5)-edge3 graph, whether e is in a triangle.

Pătraşcu’s reduction implies that under the 3SUM hypothesis, All-Edges Sparse Triangle requires m4/3−o(1)

time. All-Edges Sparse Triangle is known to be equivalent to the problem of listing m triangles in an m-

edge graph where m = Õ(n1.5) [10], and can be solved in O(m1.41) time [4] with the current matrix

multiplication bounds [11, 26], and in Õ(m4/3) time if the exponent of square matrix multiplication ω is 2.

Our main result is a reduction from Exact Triangle to All-Edges Sparse Triangle, thus showing that

All-Edges Sparse Triangle (and hence Triangle Listing) requires m4/3−o(1) time also assuming the APSP

hypothesis. This allows us to provide APSP-hardness for many dynamic problems.

We also consider the previously studied All-Edges Monochromatic Triangle problem (AE-Mono∆) [18,

23, 25] in which one is given an n-node graph G with colors on the edges, and one is asked to return for

every edge e, whether it appears in a monochromatic triangle in G. The fastest algorithm for AE-Mono∆
runs in Õ(n(3+ω)/2) time [23, 25]. Via work of [18], our reduction from Exact Triangle to All-Edges Sparse

Triangle implies that if AE-Mono∆ has an O(n2.5−ε) time algorithm for ε > 0, then both the APSP and

3SUM hypotheses are false. This shows that if ω = 2, the known algorithm for AE-Mono∆ is best possible,

unless 3SUM and APSP can both be solved faster.

[18] showed that 3SUM is in fact fine-grained equivalent to the Monochromatic Convolution problem,

which is the convolution version of AE-Mono∆. These two latter problems are very related (e.g. the known

algorithms for them are analogous, the only difference being the use of FFT vs Fast Matrix Multiplication),

to the extent that one might conjecture that they are fine-grained equivalent. If this bold conjecture were

true, then 3SUM would be equivalent to both problems, and thus APSP would reduce to 3SUM. We leave

determining the veracity of this conjecture to future work.

1All of the hypotheses are for the Word-RAM model of computation with O(log n) bit words.
2The Min-Weight k-Clique problem can be reduced to both APSP and moderate-dimension OV [1], but it is not known whether

it can be reduced to OV.
3The Õ notation in this paper hides poly-logarithmic factors.

2

Besides 3SUM, previously, the only problems known to be fine-grained reducible to AE-Mono∆ were

the seemingly easier problems directed unweighted APSP and Min-Witness Product [18]. Our new reduction

shows that this problem is much harder. We also connect the problem to multiple so-called “intermediate”

problems, whose runtimes are between O(nω) and O(n3), such as the Max-Min Product problem that has

been studied in relation to All Pairs Bottleneck Paths [9, 24].

1.1 Our results

Here we give more details about the results summarized above.

Reductions from Exact Triangle. The Exact Triangle problem asks, given an n-node graph with integer

edge weights in {−nc, . . . , nc} for some constant c and a target T , whether there are three vertices p, q, r
so that w(p, q) + w(q, r) + w(r, p) = T . Exact Triangle is equivalent to the version of Exact Triangle in

which the target T is 0 [33]. This is called the Zero Triangle problem (also known as Zero-3-Clique or Love

Triangle).

The brute-force algorithm for Exact Triangle runs in O(n3) time. Meanwhile, as mentioned earlier,

an O(n3−ε) time algorithm for ε > 0 for Exact Triangle would violate both the APSP hypothesis and the

3SUM hypothesis. The Exact Triangle hypothesis states that Exact Triangle requires n3−o(1) time in the

word-RAM model of computation with O(log n) bit words. This hypothesis is at least as believable as the

hypothesis that at least one of the 3SUM and APSP hypotheses is true.

Our main result is a reduction from Exact Triangle to certain unbalanced versions of Triangle List-

ing, and All-Edges Triangle Listing in sparse graphs which can then easily be reduced to other problems,

including All-Edges Sparse Triangle, AE-Mono∆, SetDisjointness and SetIntersection.

In our unbalanced triangle problems there are five parameters, α, β, γ, ρ, t. One is given a tripartite

graph where the three parts have nα, nβ, nγ vertices, respectively. The fourth parameter ρ controls the edge

density of the graph. Roughly speaking, each vertex in the graph has an n−ρ fraction of vertices as its

neighbors. In the parameterized version of All-Edges Triangle Listing one is asked to list for every edge e, t
triangles containing e (or all triangles containing e if there are fewer than t triangles). In our parameterized

version of Triangle Listing, one is asked to list t triangles in the graph (or all triangles if there are fewer than

t triangle).

The statements of our reductions to the parameterized versions of Triangle Listing and All-Edges Trian-

gle Listing are a bit technical (see Theorem 3.4 in the Section 3). We will list some consequences.

Corollary 1.1. Any n-node instance of Exact Triangle can be reduced in Õ(n2.5) time to Õ(n) instances of

All-Edges Sparse Triangle on O(n1.5) edges each. Thus, assuming the Exact Triangle hypothesis, there is

no O(m4/3−ǫ) time algorithm for All-Edges Sparse Triangle for any ǫ > 0.

Lincoln et al. [18] showed that computing a certain number of independent instances of All-Edges

Sparse Triangle is equivalent to AE-Mono∆.

Theorem 1.2. [18] Computing m1/3 independent instances of All-Edges Sparse Triangle with m edges

each, where the number of vertices in each instance is m2/3 is equivalent up to poly-logarithmic factors to

computing an AE-Mono∆ instance where the number of vertices is n = O(m2/3).

Combining Corollary 1.1 and Theorem 1.2, we get the following conditional lower bound for AE-

Mono∆.

Corollary 1.3. Assuming the Exact Triangle hypothesis, there is no O(n2.5−ǫ) algorithm for AE-Mono∆ on

n-node graphs for any ǫ > 0.

3

We also achieve the following conditional lower bound for even sparser triangle detection problems, as

another corollary of our main reduction.

Corollary 1.4. Let A be an algorithm for All-Edges Sparse Triangle for n-node graphs where every node

has degree at most d = nδ for some 0 < δ ≤ 0.5. Assuming the Exact Triangle hypothesis, A cannot run in

O(n1−ǫd2) time for any ǫ > 0.

Many 3SUM-hard problems are now also APSP-hard. Kopelowitz, Pettie and Porat [14] considered

the SetDisjointness and SetIntersection problems. They showed 3SUM hardness for both SetDisjointness

and SetIntersection, which were in turn used to show 3SUM hardness for many dynamic graph problems.

The SetDisjointness problem can be viewed as an All-Edges Sparse Triangle problem in constrained

graphs, and the SetIntersection problem can be viewed as a triangle listing problem. Using our reductions

from Exact Triangle to All-Edges Sparse Triangle and Triangle Listing, we show that the SetDisjointness

and SetIntersection problems are hard under the Exact Triangle hypothesis. Thus, we immediately get

APSP-hardness for a variety of problems that were previously known to be 3SUM-hard, including Dynamic

Maximum Cardinality Matching, Incremental Maximum Cardinality Matching, d-Failure Connectivity and

Triangle Enumeration in graphs with particular arboricity [14]. One example result is the following.

Corollary 1.5. Assume the Exact Triangle hypothesis (or any one of the 3SUM hypothesis or the APSP

hypothesis). For any constants y ∈ (0, 1/2), x ∈ (0, 2y], there exists a constant ǫ > 0 so that for graphs with

n vertices, m edges, arboricity α = Θ(nx) = Θ(my), and t < mα1−ǫ triangles, it requires Ω(mα1−o(1))
time to list all triangles in the graph.

Notably, the SetIntersection problem of Kepolowitz et al. is a more generalized version of the All-Edges

Sparse Triangle problem considered by Pătraşcu [21] and later by Abboud and Williams [2]. Therefore, all

conditional lower bound results in [21] and [2] that use All-Edges Sparse Triangle as a source of hardness

also hold under the Exact Triangle hypothesis. These results include (but are not limited to) dynamic st
reachability, dynamic st shortest paths, dynamic strong connectivity, subgraph connectivity, Langerman’s

problem, Pagh’s problem and Erickson’s problem. An example result from All-Edges Sparse Triangle is the

following.

Corollary 1.6. Assume the Exact Triangle hypothesis (or any one of the 3SUM hypothesis or the APSP hy-

pothesis). Then there is no fully dynamic algorithm for s-t reachability that can have O(m4/3−ǫ) processing

time, O(ma−ǫ) update time, and O(m2/3−a−ǫ) query time for some ǫ > 0 and 1/6 ≤ a ≤ 1/3.

Readers interested in reductions from triangle problems to dynamic graphs problems can check [2, 14,

21] for more details.

Reductions for intermediate problems. The notion of “intermediate” problems were first devised by

Lincoln et al. [18] who studied problems whose current best running time is Õ(n2.5) if ω = 2. With the

current bounds on rectangular matrix multiplication [17], the running time of these problems vary. The eas-

iest “intermediate” problems seem to be the unweighted directed APSP [35] problem and the Min-Witness

Product problem [7], whose best algorithms run in Õ(n2.5286) time using the best bounds on rectangular

matrix multiplication [17]. Following them in complexity, there are the Equality Product problem [15, 28]

and the Dominance Product problem [20, 34], which are known to have Õ(n2.6598) time algorithms.

The Equality Product of two n × n integer matrices A and B is the n × n matrix C with C[i, j] =
|{k | A[i, k] = B[k, j]}|. The Boolean version of the problem, ∃Equality Product asks to determine whether

|{k | A[i, k] = B[k, j]}| > 0, for each i, j. The Dominance Product of integer matrices A and B is the

matrix C with C[i, j] = |{k | A[i, k] ≤ B[k, j]}|. The Boolean version of the problem, ∃Dominance

4

Product asks whether |{k | A[i, k] ≤ B[k, j]}| > 0, for each i, j. While the regular versions of Equality

Product and Dominance Product are known to be equivalent [15, 28], their Boolean versions are not known

to be, although ∃Dominance Product can be reduced to O(log n) instances of ∃Equality Product [15, 28].

There are also several intermediate problems that do not have any improvement brought by fast rectan-

gular matrix multiplication, and whose running times are all Õ(n(3+ω)/2) = Õ(n2.6865). There problems

include for instance, the aforementioned AE-Mono∆ problem, the (min,≤)-product problem, the Max-

Min Product problem studied in relation to the All-Pairs Bottleneck Paths and All-Pairs Nondecreasing

Paths [8, 9, 24], and the related (min,=)-product which we introduce in this paper.

Lincoln et al. [18] gave reductions from unweighted directed APSP to Max-Min Product and AE-

Mono∆, showing that if there exists a T (n) time algorithm for Max-Min Product or AE-Mono∆, then one

can also obtain an Õ(T (n)) time algorithm for unweighted directed APSP. They also give reductions from

Min-Witness Product to Max-Min Product and AE-Mono∆.

These reductions are not tight when ω > 2, since they are reductions from a seemingly easier problem

(for which improvements via rectangular matrix multiplication are known) to a harder problem (for which no

improvements via rectangular matrix multiplication are known). For instance, in order to use the reduction

to AE-Mono∆ to get a better algorithm for unweighted directed APSP, one would need to obtain a better

than Õ(n2.5286) time algorithm for AE-Mono∆. This doesn’t seem doable with current techniques. Hence

a natural question is whether one can obtain tight reductions between some of the intermediate problems.

As a first result in this direction, we show that AE-Mono∆ is the hardest “intermediate” problem among

the ones mentioned above, as all of the problems can be reduced to it. A key step in the reduction is to study

a new problem called All-Edges Monochromatic Equality Triangle (AE-MonoEq∆), which can be viewed

as a combination of AE-Mono∆ and ∃Equality Product. We delay its formal definition to Section 2. As the

first step in the reductions, we reduce AE-Mono∆ to AE-MonoEq∆.

Theorem 1.7. If AE-Mono∆ has an Õ(n(3+ω)/2−ǫ) time algorithm for 0 ≤ ǫ ≤ ω
2 − 1, then AE-MonoEq∆

has an Õ(n(3+ω)/2−δ) time algorithm for δ ≥ 0. Moreover, if ǫ > 0 then δ > 0.

If we use ǫ = 0 in Theorem 1.7, we immediately get an Õ(n(3+ω)/2) time algorithm for AE-MonoEq∆,

showing that AE-MonoEq∆ is indeed another “intermediate” problem. If ω > 2, we can use ǫ > 0 in

Theorem 1.7 to get that any slight improvements over the current best algorithm for AE-Mono∆ implies an

improved algorithm for AE-MonoEq∆.

As suggested by the names of the problems, AE-Mono∆ is a special version of AE-MonoEq∆ (See

Section 4 for the formal definition), so that any runtime improvements for AE-MonoEq∆ imply runtime im-

provements of AE-Mono∆. Thus, AE-MonoEq∆ and AE-Mono∆ are sub-n(3+ω)/2-fine-grained equivalent

when ω > 2.

Next, we show that one can reduce all the “intermediate” problems mentioned above to AE-MonoEq∆.

Theorem 1.8. Suppose there exists a T (n) time algorithm for AE-MonoEq∆, then there exist Õ(T (n)) time

algorithms for all of the following:

• unweighted directed APSP,

• Min-Witness Product,

• ∃Equality Product,

• ∃Dominance Product,

• (min,=)-product,

• Max-Min Product,

5

• (min,≤)-product.

Some reductions in the above theorem were already known. First of all, both Max-Min Product and

∃Dominance Product can be reduced to (min,≤)-product [24]. Next, both Min Witness Product and un-

weighted directed APSP can be reduced to Max-Min Product [18]. As mentioned earlier, ∃Dominance

Product reduces to ∃Equality Product, and the latter easily reduces to (min,=)-product. Thus, to prove

Theorem 1.7, it suffices to give reductions from (min,=)-product and (min,≤)-product to AE-MonoEq∆.

Since AE-MonoEq∆ has an Õ(n(3+ω)/2) time algorithm, Theorem 1.7 provides alternative algorithms

for (min,=)-product and Max-Min Product. These new algorithms are also potentially simpler as they do

not involve dealing with sparse matrix products, which were the main source of difficulty in the previous

Õ(n(3+ω)/2) time algorithms for the problems

Combining Theorem 1.7 and Theorem 1.8, we obtain that AE-Mono∆ is the hardest “intermediate”

problem among all “intermediate” problems considered in [18], in the sense that if there is any improvement

of AE-Mono∆ over the Õ(n(3+ω)/2) running time when ω > 2, there will also be improvements for (min,=
)-product, Max-Min Product and (min,≤)-product.

AE-MonoEq∆ can be viewed as many independent instances of a problem called AE-Eq∆, in which

we are given a graph G with edge values, and we are asked to decide for each edge e in the graph, whether

it is in a triangle such that at least two of its three edges share the same edge value. Via techniques used

in the proof of Theorem 4 in [18], we can show that computing a single instance of AE-MonoEq∆ of size

n is equivalent to, up to poly-logarithmic factors, computing a certain number of instances of AE-Eq∆ on

graphs with n vertices where the total number of edges across all instances is Θ(n2).
Motivated by the simple nature of AE-Eq∆ and its relationship to our AE-MonoEq∆ problem, we

consider the monochromatic versions of other intermediate problems. The most interesting of these are

arguably the monochromatic versions of ∃Equality Product and (min,=)-product which we call Monochro-

matic Equality Product and Monochromatic (min,=)-product.

In the Monochromatic Equality Product problem (MonoEq), we are given a tripartite graph G on vertex

parts I ∪ J ∪ K . Each edge e in G has a color c(e). All edges e in I × K and J × K has a value v(e).
For every (i, j), we need to decide if there exists k such that v[i, k] = v[j, k] and c[i, k] = c[j, k] = c[i, j].
MonoEq can be regarded as a combination of many sparse ∃Equality Product instances, where we are given

sparse matrices A and B, and we need to compute their ∃Equality Product result on a small number of

entries. MonoEq is a special case of AE-MonoEq∆, so there exists an Õ(n(3+ω)/2) time algorithm for it.

The input to the Monochromatic (min,=)-product (MonoMinEq) problem is the same as the input to

MonoEq. For the output, instead of only determining for each (i, j) the existence of k such that v[i, k] =
v[j, k] and c[i, k] = c[j, k] = c[i, j], we also have to output the minimum value of such a v[i, k]. MonoMinEq

can be viewed as combination of many sparse (min,=)-product instances.

The best known algorithms for ∃Equality Product and (min,=)-product have different running times,

and it is unclear whether they are equivalent; clearly ∃Equality reduces to (min,=)-product, but a reduction

in the other direction would imply an improvement over the known algorithms for (min,=)-product.

Surprisingly, we are able to show that the monochromatic versions, MonoEq and MonoMinEq, are

equivalent up to poly-logarithmic factors.

Theorem 1.9. If there exists a T (n) time algorithm for Monochromatic Equality Product, then there exists

an Õ(T (n)) time algorithm for Monochromatic (min,=)-product, and vice versa.

Theorem 1.9 also implies an Õ(n(3+ω)/2) time algorithm for MonoMinEq.

6

2 Preliminaries

In this section, we recall formal definitions of problems considered in this paper and define notations

used in the proofs.

2.1 Hardness Sources

Definition 2.1 (3SUM). Given n integers in {−nc, . . . , nc} for constant c, determine if three of the integers

sum to 0.

Conjecture 2.2 (3SUM hypothesis). In the word-RAM model with O(log n) bit words, there is no O(n2−ǫ)
for ǫ > 0 time algorithm for 3SUM.

Definition 2.3 (APSP). Given an n-node directed graph with integer weights in {−nc, . . . , nc} and no

negative cycles, compute the shortest paths distance between every pair of vertices.

Conjecture 2.4 (APSP hypothesis). In the word-RAM model with O(log n) bit words, there is no O(n3−ǫ)
for ǫ > 0 time algorithm for APSP.

Definition 2.5 (Exact Triangle, Exact∆). Given an n-node graph with integer edge weights in {−nc, . . . , nc}
for some constant c and a target T , decide whether there are three vertices p, q, r so that w(p, q)+w(q, r)+
w(r, p) = T .

Conjecture 2.6 (Exact Triangle hypothesis). In the word-RAM model with O(log n) bit words, there is no

O(n3−ǫ) for ǫ > 0 time algorithm for Exact Triangle.

It is known that either the 3SUM hypothesis or the APSP hypothesis implies the Exact Triangle hypoth-

esis [31, 33].

Definition 2.7 (Zero Triangle, Zero∆). Given an n-node graph with integer edge weights in {−nc, . . . , nc}
for some constant c, decide whether there are three vertices p, q, r so that w(p, q) + w(q, r) + w(r, p) = 0

It is known that Exact Triangle is sub-cubic fine-grained equivalent to Zero Triangle [33].

2.2 Graph Problems

Definition 2.8 (All-Edges Sparse Triangle, AE-Sparse∆). Given an n-node m-edge graph G = (V,E),
determining for every edge e ∈ E whether e is in a triangle.

Definition 2.9 (All-Pairs Shortest Paths in directed unweighted graphs, UnweightedAPSP). Given an n-

node directed unweighted graph G = (V,E), compute the shortest paths distance between every pair of

vertices.

2.3 Set Problems

we define two problems investigated in [14]: SetDisjointness and SetIntersection.

Definition 2.10 (SetDisjointness). Given a universe U , a family F ⊆ 2U of subsets of U , and q pairs of

queries (S, S′) ∈ F × F , determine for each query (S, S′) whether S ∩ S′ is empty.

Definition 2.11 (SetIntersection). Given a universe U , a family F ⊆ 2U of subsets of U , q pairs of queries

(S, S′) ∈ F×F and a number T , output elements of S∩S′ for each query (S, S′). It is allowed to terminate

the algorithm once it outputs T elements in total.

7

2.4 Matrix Product Problems

Definition 2.12 (Minimum Witness matrix product, MinWitness). Given two n×n Boolean matrices A,B,

compute an n× n matrix C such that

Ci,j = min({k : Ai,k = Bk,j = 1} ∪ {∞}).

Definition 2.13 (Max-Min Product, (max,min)-product). Given two n×n integer matrices A,B, compute

an n× n matrix C such that

Ci,j = max
k

min {Ai,k, Bk,j} .

We define a generic (⊕,⊗)-product, where ⊕ maps a set of integers to an integer, and ⊗ maps two

integers to a Boolean value.

Definition 2.14 ((⊕,⊗)-product). Given two n×n integer matrices A,B, compute an n×n matrix C such

that

Ci,j = ⊕({Bk,j : Ai,k ⊗Bk,j}k).

We can define operation NonEmpty that returns 1 if a set is nonempty, and 0 otherwise. We can therefore

define ∃Equality Product as (NonEmpty,=)-product, and define ∃Dominance Product as (NonEmpty,≤)-
product.

If we define min(∅) = ∞ and max(∅) = −∞, then (min,=)-product, (min,≤)-product and (max,≤)-
product all fall into this generic definition without ambiguity.

2.5 Problems with Colors

Definition 2.15 (All-Edges Monochromatic Triangle, AE-Mono∆). Given an n-node graph G = (V,E),
where each edge e ∈ E has a color c(e). Determine for every edge e, whether it appears in a monochromatic

triangle in G.

Definition 2.16 (All-Edges Monochromatic Equality Triangle, AE-MonoEq∆). Given an n-node graph

G = (V,E), where each edge e ∈ E has a color c(e) and a value v(e). Determine for every edge e,

whether it appears in a monochromatic triangle in G that at least two of its edges share the same value.

Definition 2.17 (Monochromatic Equality Product, MonoEq). Given a graph G = (I ∪ J ∪K,E), where

|I| = |J | = |K| = n. Each edge e in the graph has a color c(e). Each edge e in I ×K and J ×K has a

value v(e). For every (i, j), decide if there exists k such that v(i, j) = v(j, k) and c(i, k) = c(j, k) = c(i, j).

Definition 2.18 (Monochromatic (min,=)-product, MonoMinEq). Given a graph G = (I ∪ J ∪ K,E),
where |I| = |J | = |K| = n. Each edge e in the graph has a color c(e). Each edge e in I ×K and J ×K
has a value v(e). For every (i, j), compute

min ({v(i, k) : v(i, k) = v(j, k) ∧ c(i, k) = c(j, k) = c(i, j)}k ∪ {∞}) .

Definition 2.19 (Monochromatic (min,≤)-product). Given a graph G = (I∪J∪K,E), where |I| = |J | =
|K| = n. Each edge e in the graph has a color c(e). Each edge e in I ×K and J ×K has a value v(e).
For every (i, j), compute

min ({v(j, k) : v(i, k) ≤ v(j, k) ∧ c(i, k) = c(j, k) = c(i, j)}k ∪ {∞}) .

8

2.6 Notations

For a graph G = (V,E), a node v ∈ V and U ⊆ V , we use deg(v, U) to denote |{u ∈ U : (v, u) ∈ E}|.
We use ω(a, b, c) to denote the rectangular matrix multiplication exponent, i.e. the smallest real number

z such that the time to multiply an na×nb matrix by an nb×nc matrix is O(nz+ε) for all ε > 0. In particular,

let ω = ω(1, 1, 1) be the exponent for square matrix multiplication. It is known that ω ∈ [2, 2.373) [11, 26].

The best known bounds for ω(a, b, c) are in [17].

3 Hardness of Sparse Triangle Listing

3SUMO(n2)

APSPO(n3)
Exact∆
Zero∆

[m1/3]× AE-Sparse∆ AE-Sparse∆

AE-Mono∆

SetIntersection

SetDisjointness O(n2)

[33]

[31] m5/3

trivial

m4/3

[18]
n5/2

Figure 1: The main reduction in Section 3 is from Exact∆/Zero∆ to parameterized versions of triangle

detection and triangle listing. This reduction implies hardness for SetDisjointness, SetIntersection, AE-

Sparse∆ and AE-Mono∆.

We define a parameterized version of Triangle Listing. In this version, the graph has three parts of

vertices. Each of the three parts can have different sizes, but edge densities between any pair of parts are the

same.

Definition 3.1 ((α, β, γ, ρ, t)-All-Edges Triangle Listing). Given a tripartite graph G whose vertex set is

A ∪ B ∪ C , such that |A| = nα, |B| = nβ, |C| = nγ . Let X,Y ∈ {A,B,C} be two different parts of the

graph. For any v ∈ X, deg(v, Y) ≤ O(n−ρ|Y |). The (α, β, γ, ρ, t)-All-Edges Triangle Listing problem

asks to list, for each e ∈ E ∩ (A×B), all triangles containing e if there are fewer than t such triangles or

t distinct triangles containing e is there are at least t such triangles.

Definition 3.1 defines the triangle listing problem slightly differently from the usual definition. In pre-

vious works (e.g. [5, 10]), the algorithm for triangle listing is required list up to T triangles in the the whole

graph, while (α, β, γ, ρ, t)-All-Edges Triangle Listing asks to list up to t triangles for each edge.

We also define an unbalanced triangle listing problem when we have to list up to T triangles globally.

Definition 3.2 ((α, β, γ, ρ, T) Triangle Listing). Given a tripartite graph G whose vertex set is A∪B ∪C ,

such that |A| = nα, |B| = nβ, |C| = nγ . Let X,Y ∈ {A,B,C} be two different parts of the graph. For

any v ∈ X, deg(v, Y) ≤ O(n−ρ|Y |). The (α, β, γ, ρ, T) Triangle Listing problem asks to list all triangles

in G if there are fewer than T triangles or list T distinct triangles in G if there are at least T triangles.

Triangle Listing and All-Edges Triangle Listing are strongly related problems. For instance, it can

be shown that (α, β, γ, ρ, t)-All-Edges Triangle Listing can be reduced to, up to polylogarithmic factors,

(α, β, γ, ρ, nα+β−ρt) Triangle Listing, by a reduction similar to the reduction for Theorem 15 in [10]. This

reduction means that if we have hardness for (α, β, γ, ρ, t)-All-Edges Triangle Listing, then we also have

9

hardness for (α, β, γ, ρ, T) Triangle Listing when T = nα+β−ρt. However, this argument won’t work when

T < nα+β−ρ, since it would require us to set t < 1, which doesn’t make sense. Therefore, to circumvent this

difficulty, we will directly reduce Exact Triangle to both Triangle Listing and All-Edges Triangle Listing.

The triangle listing problems require us to actually list triangles for some edge e. However, many

problems we consider, including All-Edges Sparse Triangle and AE-Mono∆, only require the algorithms to

output whether some triangle exists containing edge e. Thus, in order to reduce to these problems, we define

the following version of triangle detection.

Definition 3.3 ((α, β, γ, ρ)-All-Edges Sparse Triangle). Given a tripartite graph G whose vertex set is

A ∪ B ∪ C , such that |A| = nα, |B| = nβ, |C| = nγ . Let X,Y ∈ {A,B,C} be two different parts of the

graph. For any v ∈ X, deg(v, Y) ≤ O(n−ρ|Y |). The (α, β, γ, ρ)-All-Edges Sparse Triangle problem asks

to determine, for each e ∈ E ∩ (A×B), whether e is in a triangle or not.

Now we are ready to present the reduction from Exact Triangle to triangle listing problems.

Theorem 3.4. Fix constants 0 ≤ α, β, γ ≤ 1, ρ < min{α, β, γ}. There exists an Õ(n3−min{α,β,γ}+ρ)
time randomized reduction from a Zero Triangle instance with n vertices to Õ(n3−α−β−γ+2ρ) instances

of (α, β, γ, ρ, 900nγ−2ρ + 1)-All-Edges Triangle Listing. Similarly, there is also an Õ(n3−min{α,β,γ}+ρ)
time randomized reduction from a Zero Triangle instance with n vertices to Õ(n3−α−β−γ+2ρ) instances of

(α, β, γ, ρ, 8100nα+β+γ−3ρ + 1) Triangle Listing.

Proof. We will first provide the reduction to All-Edges Triangle Listing. The reduction to Triangle Listing

can be obtained via slight modifications.

Step 1:

Fix a Zero Triangle instance G. We can randomly assign its vertices to one of three colors, and only

keep edges whose two endpoints have different colors. If we repeat Θ(log n) times, a zero triangle in G will

remain at least one of the graphs. Thus it suffices to solve Zero Triangle on a tripartite graph.

Suppose G is a tripartite graph with vertex parts A,B,C . First, we split vertex parts A,B,C to parts

of size nα, nβ, nγ respectively. We could enumerate all n3−α−β−γ triples of parts, and detect zero triangle

within each triple of parts. In the remainder of the reduction, it suffices to reduce each individual unbalanced

zero triangle instance of vertex set sizes |A| = nα, |B| = nβ, |C| = nγ to (α, β, γ, ρ, t)-All-Edges Triangle

Listing instances.

Step 2:

We assume the edge weights w(·, ·) in the Zero Triangle instance are integers whose absolute values are

bounded by nk for some constant k ≥ 1. We pick an arbitrary prime p that is between 100nk and Dnk log n
for large enough constant D. By the Prime Number Theorem, a random integer in this range is a prime

with probability Ω(1/ log n), so it takes Õ(1) time to find such a prime by randomly picking integers in this

range and test its primality. After we determine p, we can regard all the weights of the graph as elements in

Fp by taking the weight of every edge modulo p. Since the weight of each triangle is in [−3nk, 3nk] while

p ≥ 100nk , the set of zero triangles with respect to the new weights stays the same.

Step 3:

Let x ∈ Fp be a random element from Fp, and let yv ∈ Fp be random elements from Fp for every

v ∈ A ∪ B ∪ C . As illustrated in Figure 2, for every edge e = (a, b) ∈ E ∩ (A × B), we set its new

weight to w′(a, b) = xw(e) − yb + ya; for every edge e = (a, c) ∈ E ∩ (A × C), we set its new weight

to w′(a, c) = xw(e) − ya + yc; for every edge e = (b, c) ∈ E ∩ (B × C), we set its new weight to

w′(b, c) = xw(e)− yc + yb. Let the graph with the new weights be G′.
Clearly, as long as x 6= 0, the set of zero triangles with weights w′(·, ·) is exactly the same as the set of

zero triangles with weights w(·, ·). Thus, false positives occur with probability 1
p ≤ 1

100nk ≤ 0.01.

10

c

a b

x · w(a, c) − ya + yc x · w(b, c) − yc + yb

x · w(a, b) − yb + ya

Figure 2: “randomizing” the weights.

Step 4:

We split Fp into nρ contiguous ranges L1, . . . , Lnρ , so that each range has size between ⌊p/nρ⌋ and

⌈p/nρ⌉. We enumerate every triple of i, j, k such that 0 ∈ Li + Lj + Lk. For every pair of i, j, the size of

Li + Lj is O(p/nρ). In order for 0 ∈ Li + Lj + Lk, we need Lk ∩ −(Li + Lj) 6= ∅. Since each Lk has

size Θ(p/nρ), there can be at most O(1) ranges Lk that intersect with −(Li + Lj). Thus, the total number

of such triples is O(n2ρ).
For each triple (i, j, k), we consider a subset of edges Ei,j,k defined as

{e ∈ E ∩ (A×C) : w′(e) ∈ Li} ∪ {e ∈ E ∩ (B ×C) : w′(e) ∈ Lj} ∪ {e ∈ E ∩ (A×B) : w′(e) ∈ Lk}.

Let Gi,j,k = (A ∪B ∪ C,Ei,j,k) be the subgraph of G′ with edge set Ei,j,k. Clearly, if graph G′ has a zero

triangle, one of Gi,j,k will have a zero triangle, and vice versa.

Now we change Gi,j,k so that the degree of every vertex is bounded. For each v ∈ A, if deg(v, |B|) >
100|B|n−ρ + 200 or deg(v, |C|) > 100|C|n−ρ + 200, we remove the vertex v from graph Gi,j,k. We

similarly handle vertices in parts B and C that have large degrees.

Finally, we use an algorithm for (α, β, γ, ρ, t)-All-Edges Triangle Listing for t = 900nc−2ρ+1 on graph

Gi,j,k to list up to 900nc−2ρ + 1 triangle for each edge e ∈ Ei,j,k ∩ (A×B). If any of these listed triangles

is a zero triangle in the original graph G, we return YES to the Zero Triangle instance.

Step 5:

We repeat the previous steps 100 log n times. If no zero triangle is found in any of these 100 log n tries,

we return NO to the Zero Triangle instance.

Analysis

It should be clear why Step 1 through Step 3 works via the in-text explanations. Now we prove why

Step 4 and Step 5 work.

Claim 3.5. Fix any zero triangle (a, b, c) in Gi,j,k where a ∈ A, b ∈ B, c ∈ C . With probability at least

0.94, none of a, b, c will be removed in Step 4 due to having a large degree.

Proof. First consider deg(a,B). For any b′ ∈ B \ {b}, w′(a, b′) = x · w(a, b′)− yb′ + ya. Conditioned on

the fact that (a, b), (b, c), (c, a) ∈ Ei,j,k, yb′ is a completely new random variable. Therefore, Pr[(x, b′) ∈
Ei,j,k] = Pr[w(a, b′) − yb′ + ya ∈ Lk] =

|Lk|
p ≤ ⌈pn−ρ⌉

p ≤ n−ρ + 1
p . Therefore, the expected value of

deg(a,B) can be written as

E [deg(a,B)] = 1 + E

∑

b′ 6=b

[(a, b′) ∈ Ei,j,k]

 ≤ 1 + |B|n−ρ +
|B|
p

≤ 2 + |B|n−ρ.

11

Thus, by Markov’s inequality, Pr [deg(a,B) > 200 + 100|B|n−ρ] ≤ 0.01. We can apply the same ar-

gument to deg(a,C),deg(b,A),deg(b, C),deg(c,A) and deg(c,B) and take a union bound. Thus, with

probability at least 0.94, all of these degrees will be small enough so that none of a, b, c are removed.

�

We also need to show that listing 900nγ−2ρ +1 triangles for each edge will be enough, i.e. there are not

too many false positives for each edge e ∈ Ei,j,k ∩ (A×B).

Claim 3.6. Fix any zero triangle (a, b, c) in Gi,j,k where a ∈ A, b ∈ B, c ∈ C . The number of vertices c′

such that

1) (a, c′), (b, c′) ∈ Ei,j,k, and

2) w(a, b) + w(b, c′) + w(c′, a) 6= 0 (Recall that w(·, ·) is viewed as elements in Fp, so all operations

are modulo p).

is at most 900nγ−2ρ with probability at least 0.99.

Proof. Let c′ be any c′ ∈ C such that w(a, b) + w(b, c′) + w(c′, a) 6= 0. If (a, c′), (b, c′) ∈ Ei,j,k, then

w′(a, c′), w′(a, c) ∈ Li and w′(b, c′), w′(b, c) ∈ Lj . Since Li and Lj are both ranges of size at most ⌈pn−ρ⌉,

we must have
{

w′(a, c) − w′(a, c′) ∈ [−pn−ρ, pn−ρ]

w′(b, c) − w′(b, c′) ∈ [−pn−ρ, pn−ρ] .

We can expand out the definition of w′ to get

{

x · (w(a, c) − w(a, c′)) + (yc − yc′) ∈ [−pn−ρ, pn−ρ]

x · (w(b, c) − w(b, c′)) + (yc′ − yc) ∈ [−pn−ρ, pn−ρ].
(1)

Each of the two values in Equation (1) is clearly uniformly at random. To show these two values are

independent, we consider the sum of these two values, which is x · (w(a, c)+w(b, c)−w(a, c′)−w(b, c′)).
Since w(a, b)+w(b, c′)+w(c′, a) 6= 0, while w(a, b)+w(b, c)+w(c, a) = 0, we have w(a, c)+w(b, c) 6=
w(a, c′) + w(b, c′). Thus, the sum of the two values in Equation (1) is the product of x with a nonzero

value. Thus, the sum of these two values is also a uniformly random variable. Conditioned on the sum,

x · (w(a, c)−w(a, c′))+ (yc− yc′) is also uniformly at random, since the sum does not contain the yc′ term.

Thus the two values in Equation (1) are independent. Therefore, the probability that Equation (1) happens

is at most (2n−ρ + 1
p)

2 ≤ 9n−2ρ.

Summing over all c′ ∈ C , the expected number of c′ satisfying conditions 1) and 2) is at most 9nγ−2ρ.

Thus, the probability that the number of such c′ exceeds 900nγ−2ρ is at most 0.01.

�

If an edge (a, b) is in a zero triangle (a, b, c) in the original graph G, then this zero triangle is preserved

in one instance Gi,j,k before removing any vertices. Then we will report a triangle containing edge (a, b) as

long as

1) we don’t remove any of a, b, c in the vertex removal process in Step 4 (which happens with probability

at least 0.94 by Claim 3.5);

2) the number of nonzero triangles containing (a, b) in Gi,j,k is at most 900nγ−2ρ(which happens with

probability at least 0.99 by Claim 3.6).

12

Therefore, by union bound, each iteration reports at least one zero triangle with constant probability if the

original graph has a zero triangle. Thus, repeating the iterations for O(log n) time suffices.

Running Time:

We split the n-node graph to n3−α−β−γ unbalanced graphs in Step 1. For each unbalanced graph, we

reduce it to n2ρ instances of (α, β, γ, ρ, 900nγ−2ρ +1)-All-Edges Triangle Listing. The running time of the

reduction is linear (up to poly-logarithmic factors) to the total input size of all the triangle listing instances.

Thus, the running time is

Õ(n3−α−β−γ+2ρ · (nα+β−ρ + nβ+γ−ρ + nα+γ−ρ)) = Õ(n3−min{α,β,γ}+ρ).

Proof of the reduction from Zero Triangle to Triangle Listing

The reduction is largely the same as the previous reduction. The only difference in the reduction is

that now in Step 4, we use the (α, β, γ, ρ, T) Triangle Listing algorithm on graph Gi,j,k to list up to T =
8100nα+β+γ−3ρ + 1 triangles, and test whether any of these triangles is a zero triangle. The correctness

analysis of this reduction requires a more careful analysis of the expected number of triangles in Gi,j,k.

Claim 3.7. Fix any triple (i, j, k) so that Gi,j,k contains at least one zero triangle with respect to weight

w(·, ·). With probability at least 0.99, the number of triangles in Gi,j,k that are not zero triangles in the

original graph G is at most 8100nα+β+γ−3ρ.

Proof. Let (a, b, c) ∈ Gi,j,k be one arbitrary zero triangle in Gi,j,k. We analyze the probability that each

nonzero triangle (a′, b′, c′) ∈ G belongs to Gi,j,k. In Claim 3.6, we already analyzed the case for triangles

with a = a′ and b = b′, in which case the expected number of (a′, b′, c′) inside Gi,j,k is at most 9nγ−2ρ.

We can similarly bound the expected number of triangles (a′, b′, c′) in Gi,j,k that share two vertices with

triangle (a, b, c). The expected number of such triangles can be shown to be at most 9(nα + nβ + nγ)n−2ρ.

Thus, it suffices to analyze the remaining cases when (a, b, c) and (a′, b′, c′) share one or zero common

vertices. First, consider triangles (a′, b′, c′) that share one vertex with (a, b, c). Without loss of generality,

assume such triangles have the form (a, b′, c′) for some b 6= b′, c 6= c′. In order for (a, b, c) and (a, b′, c′)
happen to be in the same edge set Ei,j,k, we must have

x · (w(a, b) −w(a, b′))− yb + yb′ ∈ [−pn−ρ, pn−ρ]

x · (w(a, c) − w(a, c′)) + yc − yc′ ∈ [−pn−ρ, pn−ρ]

x · (w(b, c) − w(b′, c′))− yc + yb + yc′ − yb′ ∈ [−pn−ρ, pn−ρ].

Let Xa,b,Xa,c,Xb,c be the random variables denoting the three expressions in the above condition respec-

tively. We will show that Xa,b,Xa,c,Xb,c are independent. First, we analyze the sum of these three random

variables. Consider Xa,b+Xa,c+Xb,c, which equals x · (w(a, b)+w(a, c)+w(b, c)−w(a, b′)−w(a, c′)−
w(b′, c′)). Note that (a, b′, c′) is not a zero triangle, while (a, b, c) is. Thus, the sum is the product of x and

a nonzero value, so the result is a uniformly random value. Xa,b has an additive term yb′ that is independent

of Xa,b +Xa,c +Xb,c, so Xa,b is independent of Xa,b +Xa,c +Xb,c. Similarly, Xa,c has an additive term

yc′ , which is independent of (Xa,b + Xa,c + Xb,c,Xa,b). Thus, Xa,b + Xa,c + Xb,c, Xa,b and Xa,c are

independent, which implies Xa,b,Xa,c and Xb,c are independent.

The probability that Xa,b ∈ [−pn−ρ, pn−ρ] is at most 2pn−ρ+1
p ≤ 3n−ρ. Similarly, the probability that

Xa,c,Xb,c ∈ [−pn−ρ, pn−ρ] are both at most 2n−ρ + 1/p ≤ 3n−ρ. Since these three random variables

are independent, the probability that all of the three are in [−pn−ρ, pn−ρ] is at most 27n−3ρ. This means

that (a, b, c) and (a, b′, c′) are in the same edge set Ei,j,k with probability at most 27n−3ρ. More generally,

13

if (a′, b′, c′) share exactly one common vertex with (a, b, c), it will be in Ei,j,k with probability at most

27n−3ρ.

Triangles that share zero vertices with (a, b, c) can be analyzed similarly, and each of them is in Ei,j,k

with probability at most 27n−3ρ as well.

Thus, the expected number of nonzero triangles in Gi,j,k is at most 2 · 27nα+β+γ−3ρ + 9(nα + nβ +
nγ)n−2ρ. By Markov’s inequality, with probability at least 0.99, the number of nonzero triangles in Gi,j,k is

at most 5400nα+β+γ−3ρ+900(nα+nβ+nγ)n−2ρ. Since ρ < min{α, β, γ}, we have nα−2ρ, nβ−2ρ, nγ−2ρ ≤
nα+β+γ−3ρ. Therefore, 5400nα+β+γ−3ρ + 900(nα + nβ + nγ)n−2ρ ≤ 8100nα+β+γ−3ρ. �

By Claim 3.7, we know that is suffices to list 8100nα+β+γ−3ρ + 1 triangles in each graph Gi,j,k.

�

Theorem 3.4 shows hardness for listing triangles in some special graphs. To show the hardness for

detecting triangles, we still need a reduction from triangle listing to triangle detection. Theorem 15 in [10]

is such a reduction that reduces listing O(1) triangles for each edge to detecting whether each edge is in

a triangle; however, that reduction changes the structure of the graph. Specifically, it does not necessarily

reduce an (α, β, γ, ρ,O(1))-All-Edges Triangle Listing instance to (α, β, γ, ρ)-All-Edges Sparse Triangle

instances. Thus, we give a new structure-preserving reduction from triangle listing to all edge triangle

detection. The reduction adapts the techniques for finding the witnesses of Boolean matrix multiplication [3,

27].

Proposition 3.8. Let α, β, γ be any positive constants and let ρ ≤ min{α, β, γ}. There exists an Õ((nα+β+
nβ+γ + nγ+α)n−ρ) time randomized reduction from an (α, β, γ, ρ,O(1))-All-Edges Triangle Listing in-

stance to Õ(1) instances of (α, β, γ, ρ)-All-Edges Sparse Triangle.

Proof. The reduction proceeds in two parts. We define an intermediate problem called (α, β, γ, ρ)-All-

Edges Unique Triangle Listing, where we are given a graph that shares the same structure as (α, β, γ, ρ)-
All-Edges Sparse Triangle instances, and we seek an algorithm that outputs a triangle for every edge e ∈
E ∩ (A× B) only if there is a unique triangle containing edge e; otherwise, the algorithm can output 0 for

edge e.

In the first part, we show a reduction from (α, β, γ, ρ,O(1))-All-Edges Triangle Listing to (α, β, γ, ρ)-
All-Edges Unique Triangle Listing. In the second part, we show a reduction from (α, β, γ, ρ)-All-Edges

Unique Triangle Listing to (α, β, γ, ρ)-All-Edges Sparse Triangle.

Fix an (α, β, γ, ρ, k)-All-Edges Triangle Listing instance G for some constant k. For each integer ℓ from

1 to c log n, we perform a stage. In each stage ℓ, we repeat the following iterations for Θ(k2 log n) times. In

each iteration, we create a new graph G′ that contains parts A and B and a subset C ′ of part C . We obtain

C ′ by independently keeping every vertex c ∈ C with probability 1
2ℓ

. Then G′ is the induced subgraph of G
with vertex set A ∪ B ∪ C ′. We run an algorithm for (α, β, γ, ρ)-All-Edges Unique Triangle Listing on G′

to list at most one triangle for each edge. If the algorithm lists a triangle for edge (a, b), we add this triangle

to a set S(a,b) that contains a list of found triangles containing edge (a, b). After all the rounds, we output

up to k distinct triangles from each S(a,b).

To show the correctness for this algorithm, we show that if the actual number of triangles containing

edge (a, b) is ∆ for some ∆ ∈ [2ℓ−1, 2ℓ], then in stage ℓ we will list all or up to k triangles containing

(a, b) with high probability. In every iteration, we pick a random subset C ′ ⊆ C . For every (a, b), suppose

|S(a,b)| < k and there are more triangles containing (a, b) that have not been found. The probability that

we keep a unique triangle not in S(a,b) for edge (a, b) is at least (∆ − |S(a,b)|) · 1
2ℓ
(1 − 1

2ℓ
)∆−1 = Ω(1/k).

14

Thus, after every Θ(k log n) iterations, we will find a new triangle for edge (a, b) with high probability if

|S(a,b)| < min{k,∆}. Therefore, we need Θ(k2 log n) rounds in total.

Now we show the second part of the reduction, which reduces from (α, β, γ, ρ)-All-Edges Unique

Triangle Listing to (α, β, γ, ρ)-All-Edges Sparse Triangle. Let G be a graph on which we want to solve

(α, β, γ, ρ)-All-Edges Unique Triangle Listing. For every 1 ≤ i ≤ γ log n, we create a graph Gi that con-

tains all vertices of A and B, but only those vertices from C whose i-th bit in its binary representation is

1. Then we run an algorithm for (α, β, γ, ρ)-All-Edges Sparse Triangle on graph Gi. Suppose (a, b) is in

a unique triangle (a, b, c). Then if (a, b) is in a triangle in Gi, the i-th bit of c must be 1; otherwise, the

i-th bit of c must be 0. Therefore, we will be able to determine c after all the iterations. If (a, b) is not in a

unique triangle, then the value c we determine might not form a triangle. In this case, we can determine that

(a, b, c) does not form a triangle and output 0 for edge (a, b).
�

Corollary 3.9. There exists a reduction from Exact Triangle to Õ(n) instances of All-Edges Sparse Triangle

of O(n1.5) edges. Thus, assuming the Exact Triangle hypothesis, there is no O(m4/3−ǫ) time algorithm for

All-Edges Sparse Triangle for ǫ > 0.

Proof. If we set α = β = γ = 1 and ρ = 0.5 in Theorem 3.4, we get an Õ(n2.5) time reduction from

Exact Triangle to Õ(n) instances of (1, 1, 1, 0.5, O(1))-All-Edges Triangle Listing. By Proposition 3.8,

these instances further reduce to Õ(n) instances of (1, 1, 1, 0.5)-All-Edges Sparse Triangle. These instances

can be solved by an algorithm for All-Edges Sparse Triangle with O(n1.5) edges.

Thus, if there is an O(m4/3−ǫ) time algorithm for All-Edges Sparse Triangle, we can use it to solve Exact

Triangle in Õ(n2.5 + n · (n1.5)4/3−ǫ) = Õ(n2.5 + n3−1.5ǫ) time, breaking the Exact Triangle hypothesis. �

Corollary 3.10. Assuming the Exact Triangle hypothesis, there is no O(n2.5−ǫ) algorithm for AE-Mono∆
on n-node graphs for ǫ > 0.

Proof. Combining Corollary 3.9 and Theorem 1.2, we get an Õ(n2.5) time reduction from Exact Triangle

of size n to Õ(
√
n) instances of AE-Mono∆ of size O(n). Thus, if there is an O(n2.5−ǫ) time algorithm

for AE-Mono∆, we can use it to solve Exact Triangle in Õ(n2.5 +
√
n · n2.5−ǫ) = Õ(n2.5 + n3−ǫ) time,

breaking the Exact Triangle hypothesis. �

Corollary 3.11. Let A be an algorithm for All-Edges Sparse Triangle for n-node graphs where every node

has degree at most d = nδ for some 0 < δ ≤ 0.5. Assuming the Exact Triangle hypothesis, A cannot run in

O(n1−ǫd2) for ǫ > 0.

Proof. We set α = β = γ = 1 and ρ = 1 − δ in Theorem 3.4. This gives an Õ(n3−δ) time reduction

from Exact Triangle to Õ(n2−2δ) instances of (1, 1, 1, ρ,O(1))-All-Edges Triangle Listing. Thus, each of

these instances requires n1+2δ−o(1) time. By Proposition 3.8, there is a reduction from (1, 1, 1, ρ,O(1))-All-

Edges Triangle Listing to Õ(1) instances of (1, 1, 1, ρ)-All-Edges Sparse Triangle. Therefore, (1, 1, 1, ρ)-
All-Edges Sparse Triangle – All-Edges Sparse Triangle in graphs with maximum degree nδ – also requires

n1+2δ−o(1) time. �

Corollary 3.12. For any constant 0 < θ < 1, let A be an algorithm for offline SetDisjointness where

|U | = Θ(N2−2θ), |F| = Θ(N), each set in F has at most O(N1−θ) elements from U , and q = Θ(N1+θ).
Assuming the Exact Triangle hypothesis, A cannot run in O(N2−ǫ) for ǫ > 0.

15

Proof. Set α = β = 0.5, γ = 1 − θ and ρ = 0.5 − θ/2 in Theorem 3.4. Thus there is a subcubic time

reduction from Exact Triangle to Õ(n2) instances of (0.5, 0.5, 1 − θ, 0.5 − θ/2, O(1))-All-Edges Triangle

Listing. Thus, assuming the Exact Triangle hypothesis, (0.5, 0.5, 1−θ, 0.5−θ/2, O(1))-All-Edges Triangle

Listing requires n1−o(1) time. By Proposition 3.8, (0.5, 0.5, 1−θ, 0.5−θ/2)-All-Edges Sparse Triangle also

requires n1−o(1) time. As realized in previous works (e.g. [14]), All-Edges Sparse Triangle can be solved

using SetDisjointness. Using the language of the (0.5, 0.5, 1 − θ, 0.5 − θ/2)-All-Edges Sparse Triangle

problem, we can set the universe U to the vertex set C , and set the family F to A ⊔ B. We add an element

u ∈ U to S ∈ F if the corresponding vertex of S has an edge with the corresponding vertex of u. Finally,

for any edge (a, b) ∈ A×B, we add a query for the two sets corresponding to vertices a and b. Then clearly,

(a, b) is in a triangle if and only if their corresponding sets intersect. Setting N =
√
n finishes the proof. �

Corollary 3.13. For any constants 0 ≤ θ < 1 and 0 < δ, let A be an algorithm for offline SetIntersection

where |U | = Θ(N1+δ−θ), |F| = Θ(
√
N1+δ+θ), each set in F has at most O(N1−θ) elements from U ,

q = Θ(N1+θ), and T = O(N2−δ). Assuming the Exact Triangle hypothesis, A cannot run in O(N2−ǫ) for

ǫ > 0.

Proof. If δ−θ ≥ 1, the lower bound is trivially true because the input size is |F|·N1−θ = N1.5+0.5δ−0.5θ ≥
N2. Thus, we assume δ − θ < 1.

Set α = β = 1
2 + θ

2+2δ , γ = 1 − θ
1+δ , and ρ = δ

1+δ in Theorem 3.4. This yields a reduction from

Exact Triangle to Õ(n1+ 2δ
1+δ) instances of (12 +

θ
2+2δ ,

1
2 +

θ
2+2δ , 1− θ

1+δ ,
δ

1+δ , O(n2− 3δ
1+δ)) Triangle Listing.

Assuming the Exact Triangle hypothesis, each triangle listing instance requires n
2

1+δ
−o(1)

time to compute.

Similar to the fact that SetDisjointness can be used to solve All-Edges Sparse Triangle, SetIntersection can

be used to solve Triangle Listing. Thus, setting N = n
1

1+δ finishes the proof. �

4 Reductions Between Intermediate Problems

AE-Mono∆

AE-MonoEq∆

MonoEqMonoMinEq (min,≤) (max,≤)

(min,=) (max,min)

[24]

Õ(n(3+ω)/2)

Figure 3: Main reductions in Section 4. Double arrows represent that the running times before and after the

reduction are the same up to poly-logarithmic factors. Dashed arrows represent reductions that hold only

when ω > 2.

We will use the following known facts about the exponent of rectangular matrix multiplication in this

section.

16

Theorem 4.1. [13] For any k > 1 and for any integer q ≥ 3,

ω(1, k, 1) ≤
log

(

(1 + k)(1+k)
(

2+q
2+k

)2+k
)

log q
.

Corollary 4.2. For any δ > 0, there exists a number k ≥ 3 such that ω(1, k, 1) ≤ 1 + k + δ.

Proof. Let k ≥ 3 and use q = k in Theorem 4.1. Thus, w(1, k, 1) ≤ (1 + k) log(k+1)
log k . Consider (1 +

k) log(k+1)
log k − (1 + k) = (1 + k) log(k+1)−log(k)

log k . Since log(k + 1)− log(k) =
∫ k+1
k

1
xdx <

∫ k+1
k

1
kdx = 1

k ,

we must have (1+ k) log(k+1)
log k − (1+ k) ≤ 1+k

k log k . When k is large enough, 1+k
k log k ≤ δ and thus ω(1, k, 1) ≤

1 + k + δ. �

We will also use the following fact about the convexity of ω(1, x, 1) (see e.g. [16], [19]).

Fact 4.3. When 0 < p ≤ k ≤ q, ω(1, k, 1) ≤ k−p
q−pω(1, q, 1) +

q−k
q−pω(1, p, 1).

Consider an AE-MonoEq∆ instance G = (V,E). We can copy the vertex set of G three times to part

I, J,K , and then plant the edges of G to I × J, J × K and I × K . Thus we only need to solve AE-

MonoEq∆ on tripartite graphs. Say we want to report for every edge between parts I and J , whether it is

in a monochromatic equality triangle. Depending on where the two edges with the same values are, we can

split the problem to three cases shown in Figure 4.

I J

K

v

vv

(a)

I J

K

v

v

(b)

I J

K

v

v

(c)

Figure 4: Three cases for AE-MonoEq∆. The red edges represent edges colors, and the black edges repre-

sent edge values.

Cases (b) and (c) are symmetric, so it suffices to only consider case (a) and case (b). The following

theorem shows that we can solve AE-MonoEq∆ in Õ(n(3+ω)/2) time. Moreover, when ω > 2, if AE-

Mono∆ has a better algorithm, so does AE-MonoEq∆. However, when ω = 2, we must have λ = 0
in the theorem, so AE-MonoEq∆ won’t necessarily have a better algorithm given a better algorithm for

AE-Mono∆.

Theorem 4.4. Suppose ω ≥ 2 + λ for some λ ≥ 0, and suppose AE-Mono∆ has an O(n(3+ω)/2−ǫ) time

algorithm, then AE-MonoEq∆ has an

Õ

n
(ω+3)/2−

λ
2(κ−1)

ǫ

ω+3+ λ
2(κ−1)

−2ǫ

time algorithm, where κ ≥ 3 is a constant depending on ω and λ.

17

Proof. We first show the algorithm for AE-MonoEq∆ on tripartite graphs I ∪ J ∪K with values on edge

sets I ×K and J ×K (Case (a) in Figure 4). We define a good triangle (i, j, k) to be a triangle where all its

three edges have the same color, and v(i, k) = v(j, k). For each edge e ∈ E ∩ (I × J), the algorithm needs

to report whether it is in a good triangle or not.

k

I J

v1
v1

v2

v1
v2

v3

G

(k, v1) (k, v2) (k, v3)

I J

v1
v1

v2

v1

v2 v3

G′

Figure 5: Transforming graph G to graph G′ by copying each vertex k and adding edges with value v to

vertex (k, v).

We will create a new graph G′ such that the edges of G′ only has colors, instead of having both colors

and values. The vertex set of G′ will be I ∪ J ∪ (K × V), where V is the set of all values in G (we will

create the graph lazily, so we won’t actually spend time creating those vertices that end up not having any

neighbors). The edge set between I and J in G′ is the same as the edge set between I and J in G. For each

edge (i, k) in E(G) with value v and color c, we create an edge between i and (k, v) in G′ with the same

color c. Similarly, for each edge (j, k), in E(G) with value v and color c, we create an edge between j and

(k, v) in G′ with the same color c. We can see that edge (i, j) is in a good triangle in G if and only if it

is in a monochromatic triangle in G′. Thus, from now on, we can focus on the All-Edges Monochromatic

Triangle problem on the unbalanced graph G′.
Let D ≥ 1 and T ≥ n be some parameters to be fixed later. For each color c, let G′

c be the subgraph of

G′ consisting of vertices of G′ and all edges with color c. For each vertex (k, v) ∈ K ′, if its degree in G′
c

is at most D, then we can enumerate all pairs of its neighbors and test if these three vertices form a triangle

in Õ(1) time. If a triangle (i, j, (k, v)) is found during the enumeration, we record that edge (i, j) is in a

good triangle. After the enumeration, we can remove the vertex (k, v) together with all edges incident to it

from the graph G′
c. Summing over all c and all (k, v), these enumerations take O(n2D) time. We can now

assume that, in each G′
c, the degree of every vertex (k, v) ∈ K ′ is at least D.

We consider two cases, based on the the remaining size of K ′ in G′
c. As a high level description, if the

size of K ′ is at least T , we use rectangular matrix multiplication. When the size of K ′ is less than T , we

combine all instances with a small size of K ′ across every G′
c into a single AE-Mono∆ instance, and use the

assumed O(n(3+ω)/2−ǫ) time algorithm for AE-Mono∆. We describe and analyze these two cases in more

details in the following.

Rectangular matrix multiplication for more unbalanced colors

For a subgraph G′
c, if K ′ has size at least T , we use rectangular matrix multiplication to determine

whether each edge e ∈ E(G′
c) ∩ (I × J) is in a triangle. To do so, we create an integer matrix X of

dimension |I| × |K ′| and an integer matrix Y of dimension |K ′| × |J |. Initially all entries in X and Y are

zero. If there is an edge between i ∈ I and k′ ∈ K ′, we set the (i, k′)-th entry of X to 1. Similarly, if there

is an edge between j ∈ J and k′ ∈ K ′, we set the (k′, j)-th entry of Y to 1. It is then not hard to see that

18

edge (i, j) is in a triangle if and only if (XY)i,j > 0. Since |I|, |J | ≤ n, it would take O(nω(1,logn |K ′|,1))
time to multiply X and Y .

In order to analyze rectangular matrix multiplication, we need some bound on ω(1, t, 1) in the regime

when ω ≥ 2 + λ.

Claim 4.5. There exists a constant κ such that ω(1, t, 1) ≤ ω + (t− 1)(1 − λ
2(κ−1)) for every 1 ≤ t ≤ 3.

Proof. If ω = 2, then λ must be 0 and thus the claim is trivially true. Now assume ω > 2.

Using δ = ω− 2−λ/2 in Corollary 4.2, there exists κ ≥ 3 such that ω(1, κ, 1) ≤ ω+ κ− 1−λ/2. By

convexity of ω(1, ∗, 1), for any 1 ≤ t ≤ κ, ω(1, t, 1) ≤ t−1
κ−1(ω + κ− 1− λ/2) + κ−t

κ−1ω = ω + (t− 1)(1−
λ

2(κ−1)).
�

Let t = logn T . If the size of K ′ in G′
c is nqc for some qc ≥ t, then it takes O(nω(1,qc,1)) time to compute

XY . Clearly 1 ≤ t ≤ qc ≤ 3, so nω(1,qc,1) = O(n
ω+(qc−1)(1− λ

2(κ−1))) by Claim 4.5. Since the degree of

every vertex in K ′ is at least D, and the total number of edges across all G′
c is O(n2), so the sum of the

sizes of K ′ is at most O(n
2

D). In other words,
∑

c n
qc = O(n

2

D). Therefore, the overall time complexity can

be bounded as the following up to constant factors.

∑

c

n
ω+(qc−1)(1− λ

2(κ−1)
)
= nω ·

∑

c

n(qc−1)/n
(qc−1)λ
2(κ−1)

≤ nω ·
∑

c

n(qc−1)/n
(t−1)λ
2(κ−1)

=
n
ω+1+ λ

2(κ−1)

DT
λ

2(κ−1)

.

Therefore, this case takes at most O(n
ω+1+ λ

2(κ−1)

DT
λ

2(κ−1)

) time.

All-Edges Monochromatic Triangle for moderately unbalanced colors

In this part, we consider colors c such that the K ′ part in G′
c has at most T vertices. Since T ≥ n we can

assume the number of vertices in G′
c is at most 2n+ T ≤ 3T . Also, if we sum over the number of edges of

G′
c of every c, the total number of edges is at most n2.

Note that the graph on each G′
c is an All-Edges Sparse Triangle instance. We can actually combine all

these instances to a single All-Edges Monochromatic Triangle instance of size Õ(T) by a similar reduction

of the proof of Theorem 1.2.

The reduction from All-Edges Sparse Triangle to All-Edges Monochromatic Triangle in Theorem 1.2

works as follows [18]. Let H be a multi-graph on 3T vertices, initially with no edges. For each All-Edges

Sparse Triangle instance on vertex set [3T], we take a random permutation of its vertices, and copy each edge

in this instance to H , and color these edges using a color unique to this instance. On expectation, for every

(u, v) ∈ [3T] × [3T], the multiplicity of (u, v) in H is n2

(3T)2
= O(1). Since the permutations for graphs

G′
c are independent for different colors c, by Chernoff bound, the multiplicity of any (u, v) is O(log n)

with high probability. For every (u, v) in [3T]× [3T], we arbitrarily label its corresponding O(log n) edges

using numbers from 1 to O(log n). Then we enumerate O(log3 n) triples (i, j, k) of labels. For each triple

(i, j, k), we create a graph on vertex set V1 ⊔ V2 ⊔ V 3, where V1 = V2 = V3 = [3T]. Between V1 and

V2, we add edges in H with label i; between V2 and V3, we add edges with label j; between V3 and V1,

19

we add edges with label k. Then a triangle in one All-Edges Sparse Triangle instance corresponds to some

monochromatic triangle in one of these O(log3 n) instances. This finishes the reduction.

For each of the O(log3 n) instances of All-Edges Monochromatic Triangle, we can use the assumed

O(n(3+ω)/2−ǫ) time algorithm for All-Edges Monochromatic Triangle, so we get an Õ(T (3+ω)/2−ǫ) time

algorithm for this case.

Running Time The three cases have running times O(n2D), O(n
ω+1+ λ

2(κ−1)

DT
λ

2(κ−1)

), and Õ(T (3+ω)/2−ǫ) re-

spectively. We can balance them by setting T = n
1+ 2ǫ

ω+3+ λ
2(κ−1)

−2ǫ
and D = T (3+ω)/2−ǫ

n2 . The overall running

time is

Õ

n
(ω+3)/2−

λ
2(κ−1)

ǫ

ω+3+ λ
2(κ−1)

−2ǫ

.

Now we consider the case where the values are on edge sets I × J and I × K (Case (b) in Figure 4).

The case where the values are on edge sets I × J and J × K (Case (c) in Figure 4) is symmetric. The

algorithm is largely the same with some small changes in details. Instead of creating graph G′ with vertex

set I ∪ J ∪ (K × V), we create graph G′ with vertex set (I ′ = I ×V) ∪ J ∪K . Similarly, now each vertex

in I ′ represents both a vertex i ∈ I and a value. The edges in G′ are added similarly to the algorithm for

Case (a).

Now it is sufficient to compute whether each edge in I ′ × J is in a monochromatic triangle in G′.
Similarly, we partition the edge set by the color of the edges to get instances G′

c. For those vertices i′ ∈ I ′

that has degree at most D in some G′
c, we could enumerate all pairs of neighbors of i′ and test if any pair

forms a triangle in O(deg2G′

c
(i′)) time. Overall, this case takes O(n2D) time.

For the remaining vertices, we similarly consider the size of I ′. If |I ′| = npc ≥ T , we use rectangular

matrix multiplication. In this case, we will compute the product of an npc by n matrix, and an n by n matrix,

so it takes O(nω(pc,1,1)) time. Note that ω(pc, 1, 1) = ω(1, pc, 1), so this case runs in the same time as the

corresponding case in algorithm for Case (a).

Finally, for those G′
c whose I ′ has size at most T , we can still combine them into Õ(1) All-Edges

Monochromatic Triangle instances. Thus, the running time is still the same as the running time for the

corresponding case in algorithm for Case (a).

Since all three cases share the same running times, the overall running time remains the same.

�

Next, we show reductions to AE-MonoEq∆ from many other intermediate problems.

Theorem 4.6. If there is a T (n) time algorithm for AE-MonoEq∆, then there is an O(T (n) log n) time

algorithm for (min,=)-product.

Proof. We can add a column to matrix A with an entry value that’s larger than all other entries, and add the

corresponding row to matrix B with the same value. This value won’t affect Ci,j when {Bk,j|Ai,k = Bk,j}k
is nonempty. If the computed Ci,j equals this large value, we know {Bk,j|Ai,k = Bk,j}k is empty, and can

then set Ci,j back to ∞. Thus, we can assume Ci,j is finite for every i, j.

We can easily discretize the entries of A and B, so that we can assume all entries are integers between 0
and 2n2 − 1.

We create a complete tripartite graph G with vertex set I, J,K . For each edge (i, k) ∈ I×K , we assign

it a value Ai,k; for each edge (j, k) ∈ J ×K , we assign it a value Bk,j. We will use colors on the edges to

perform parallel binary search to find the (min,=)-product.

20

Let t = ⌈log2(2n2)⌉. Initially, we know that Ci,j ∈ [0, 2t) for every i, j. We will perform t calls to the

T (n) time algorithm for AE-MonoEq∆, and each call narrows the possible range of Ci,j by a half. For each

0 ≤ ℓ ≤ t, we will compute C̃ℓ
i,j such that C̃ℓ

i,j is a multiple of 2ℓ and C̃ℓ
i,j ≤ Ci,j < C̃ℓ

i,j + 2ℓ. The initial

condition, when ℓ = t, is clearly satisfied by setting C̃t
i,j = 0.

Assume we have have computed C̃ℓ+1. We will recolor the edges in G for computing C̃ℓ. We set the

color of an edge (i, k) ∈ I × K as ⌊Ai,k

2ℓ
⌋, and set the color of an edge (j, k) ∈ J × K as ⌊Bk,j

2ℓ
⌋. For

each edge (i, j), we set its color to ⌊ C̃
ℓ+1
i,j

2ℓ
⌋. Now we use the T (n) time algorithm for AE-MonoEq∆ on this

graph G. If edge (i, j) is in a monochromatic equality triangle, then we set C̃ℓ = C̃ℓ+1; otherwise, we set

C̃ℓ = C̃ℓ+1 + 2ℓ.
We show that the values C̃ℓ satisfy the conditions, assuming C̃ℓ+1 satisfies the conditions. First, since

C̃ℓ+1
i,j is a multiple of 2ℓ+1, C̃ℓ

i,j will be a multiple of 2ℓ in either case. Suppose an edge (i, j) is in a

monochromatic equality triangle (i, k, j). Since the values on edges (i, k) and (k, j) are the same, we have

Ai,k = Bk,j. Also, the colors on edges (i, k), (k, j), (i, j) are the same, so ⌊Ai,k

2ℓ
⌋ = ⌊Bk,j

2ℓ
⌋ = ⌊ C̃

ℓ+1
i,k

2ℓ
⌋. Since

C̃ℓ+1 is a multiple of 2ℓ+1, we further get that C̃ℓ+1
i,j ≤ Ai,k = Bk,j < C̃ℓ+1

i,j + 2ℓ. We can similarly show

that if there exists k such that C̃ℓ+1
i,j ≤ Ai,k = Bk,j < C̃ℓ+1

i,j +2ℓ, then (i, j) is on a monochromatic equality

triangle. Thus, (i, j) is on a monochromatic equality triangle if and only if C̃ℓ+1
i,j ≤ Ci,j < C̃ℓ+1

i,j + 2ℓ.

Therefore, if (i, j) is on a monochromatic equality triangle, setting C̃ℓ
i,j = C̃ℓ+1

i,j satisfies C̃ℓ
i,j ≤ Ci,j <

C̃ℓ
i,j+2t−ℓ; otherwise, since C̃ℓ+1

i,j ≤ Ci,j < C̃ℓ+1
i,j +2ℓ+1, we must have C̃ℓ+1

i,j +2ℓ ≤ Ci,j < C̃ℓ+1
i,j +2ℓ+2ℓ,

so setting C̃ℓ
i,j = C̃ℓ+1

i,j + 2ℓ satisfies the conditions.

Now if we performed all t rounds, we would get C̃t
i,j such that C̃t

i,j ≤ Ci,j < C̃t
i,j+2t−t, so C̃t

i,j = Ci,j .

�

Theorem 4.7. If there is a T (n) time algorithm for AE-MonoEq∆, then there is an O(T (n) log2 n) time

algorithm for (min,≤)-product.

Proof. First, we can add 1 to every entry of B, so now the problem becomes a (min, <)-product. Also, we

can easily discretize the entries of A and B, so that we can assume all entries are integers between 0 and

2n2 − 1.

For every Ai,k < Bk,j , there is some integer ℓ such that the bit corresponding to 2ℓ−1 in Ai,k’s binary

representation is 0, the bit corresponding to 2ℓ−1 in Bk,j’s binary representation is 1, and ⌊Ai,k

2ℓ
⌋ = ⌊Bk,j

2ℓ
⌋.

Our algorithm enumerates this ℓ, and handles different ℓ independently.

Fix some 1 ≤ ℓ ≤ ⌈log2(2n2)⌉. We aim to compute Cℓ, where Cℓ
i,j is defined as

Cℓ
i,j = min

k
{Bk,j|Ai,k < Bk,j∧ the highest differing bit of Ai,k and Bk,j is the bit corresponding to 2ℓ−1}.

We create new matrices Ãℓ and B̃ℓ. For some i, k, if the bit corresponding to 2ℓ−1 in the binary repre-

sentation of Ai,k is 0, we set Ãℓ
i,k to ⌊Ai,k

2ℓ
⌋; otherwise, we set Ãℓ

i,k to −1. Similarly, For some k, j, if the

bit corresponding to 2ℓ−1 in the binary representation of Bk,j is 1, we set B̃ℓ
k,j to ⌊Bk,j

2ℓ
⌋; otherwise, we set

B̃ℓ
k,j to −2. Then we use Theorem 4.6 to compute the (min,=)-product C̃ℓ of Ãℓ and B̃ℓ in O(T (n) log n)

time. If C̃ℓ
i,j < ∞, then clearly C̃ℓ

i,j · 2ℓ ≤ Cℓ
i,j < C̃ℓ

i,j · 2ℓ + 2ℓ; if C̃ℓ
i,j = ∞, then Cℓ

i,j is also ∞.

For every i, j, it suffices to find mink{Bk,j|Ãℓ
i,k = B̃ℓ

k,j = C̃ℓ
i,j}. We can use the parallel binary search

idea again. Create a complete tripartite graph G with vertex set I ∪ J ∪K . For edge (i, j) ∈ I × J , we use

21

C̃ℓ
i,j as its color; for edge (i, k) ∈ I ×K , we use Ãℓ

i,k as its color; for edge (k, j) ∈ K × J , we use B̃ℓ
k,j as

its color. The values of the graph will be on edge set (I × J) ∪ (J ×K).

For every r ≤ ℓ, we will compute an estimate C̃ℓ,r
i,j such that C̃ℓ,r

i,j is a multiple of 2r and C̃ℓ,r
i,j ≤ Cℓ

i,j <

C̃ℓ,r
i,j + 2r . When r = ℓ, we can clearly set C̃ℓ,r

i,j = C̃ℓ
i,j · 2ℓ. Now suppose we have computed C̃ℓ,r+1 and

want to compute C̃ℓ,r. On the graph G, we set the value of edge (i, j) ∈ I × J to be ⌊ C̃ℓ,r+1

2r ⌋, and set the

value of edge (j, k) ∈ J ×K to be ⌊Bk,j

2r ⌋. Then we use the T (n) time AE-MonoEq∆ algorithm on graph

G. For every (i, j), if it is on a monochromatic equality triangle, we set C̃ℓ,r
i,j = C̃ℓ,r+1

i,j ; otherwise, we set

C̃ℓ,r
i,j = C̃ℓ,r+1

i,j + 2r .

Clearly, C̃ℓ,r
i,j is a multiple of 2r , since C̃ℓ,r+1

i,j is a multiple of 2r+1. If (i, j) is on a monochromatic

equality triangle, then there exists k such that ⌊Bk,j

2r ⌋ = ⌊ C̃ℓ,r+1

2r ⌋ and Ãℓ
i,k = B̃ℓ

k,j = C̃ℓ
i,j . Also because

C̃ℓ,r+1 is a multiple of 2r+1, we must have C̃ℓ,r+1 ≤ Bk,j < C̃ℓ,r+1 + 2r . Since Cℓ
i,j ≥ C̃ℓ,r+1, we must

have C̃ℓ,r+1 ≤ Cℓ
i,j < C̃ℓ,r+1 + 2r. Thus, it is valid to set C̃ℓ,r

i,j = C̃ℓ,r+1
i,j in this case.

If (i, j) is not on a monochromatic equality triangle, then we can similarly show that the best Bk,j

where Ãℓ
i,k = B̃ℓ

k,j = C̃ℓ
i,j must be at least C̃ℓ,r+1 + 2r . Also, by the guarantee of C̃ℓ,r+1

i,j , the best

Bk,j must be smaller than C̃ℓ,r+1
i,j + 2r+1. Thus, it is valid to set C̃ℓ,r

i,j = C̃ℓ,r+1
i,j + 2r in this case since

C̃ℓ,r+1
i,j + 2r ≤ Cℓ

i,j < C̃ℓ,r+1
i,j + 2r + 2r.

After we compute C̃ℓ,r for all 0 ≤ r ≤ ℓ, we can simply set Cℓ = C̃ℓ,0, since the guarantee of C̃ℓ,0 is

C̃ℓ,0
i,j ≤ C̃ℓ

i,j < C̃ℓ,0
i,j + 20.

After we compute Cℓ for every ℓ, we can compute Ci,j = minℓC
ℓ
i,j . The overall time complexity is

O(T (n) log2 n) since the number of bit ℓ is O(log n), and computing Cℓ for each ℓ takes O(T (n) log n)
time. �

Using a similar proof, we can get a reduction to AE-MonoEq∆ from (max,≤) product. Even though

(max,≤)-product looks similar to (min,≤)-product, and their best algorithms both run in Õ(n(3+ω)) time

[9], we don’t know if they are equivalent.

Proposition 4.8. If there is a T (n) time algorithm for AE-MonoEq∆, then there is an O(T (n) log2 n) time

algorithm for (max,≤)-product.

Now we consider the Monochromatic Equality Product problem, which can be viewed as Case (a) of

AE-MonoEq∆.

Note that the proof of Theorem 4.6 only uses Case (a) of AE-MonoEq∆, so the same proof actually

shows a reduction from (min,=)-product to Monochromatic Equality Product. In fact, we will show that

Monochromatic Equality Product is equivalent to Monochromatic (min,=)-product which is a stronger

version of (min,=)-product.

The best algorithm for (min,=)-product runs in Õ(n(3+ω)/2) = Õ(n2.687) time, while the best algo-

rithm for Equality Product runs in Õ(n2.6598) time [12], where the improvement is brought by rectangular

matrix multiplication. Therefore, we don’t know if Min Equality product is equivalent to Equality Product.

The following theorem suggests that if we add the Monochromatic constraint to both problems, they become

equivalent up to poly-logarithmic factors.

Theorem 4.9. If there is a T (n) time algorithm for Monochromatic (min,=)-product then there is an

O(T (n)) time algorithm for Monochromatic Equality Product. Also, if there is a T (n) time algorithm

for Monochromatic Equality Product, then there is an O(T (n) log n) time algorithm for Monochromatic

(min,=)-product.

22

Proof. The first direction is trivially true, since Monochromatic (min,=)-product computes more informa-

tion than Monochromatic Equality Product. The second direction is more interesting.

Let A be an algorithm for Monochromatic Equality Product. Suppose we have an instance of Monochro-

matic (min,=)-product of n× n matrices, with vertex sets I, J,K , edge colors c(·, ·), and edge values Ai,k

for (i, k) ∈ I × K and edge values Bk,j for (k, j) ∈ K × J . Clearly, we can discretize all the values so

that they are integers between [0, 2n2). Let Ci,j be the minimum value of Ai,k such that Ai,k = Bk,j and

c(i, k) = c(k, j) = c(i, j). Using A, we can easily decide whether Ci,j is ∞ for all pairs of (i, j). Thus, we

can focus on determining values for the finite entries of C in the following.

We use the parallel binary search idea from before. Let t = ⌈log(2n2)⌉. For each integer 0 ≤ ℓ ≤ t, we

aim to compute C̃ℓ
i,j so that C̃ℓ

i,j is a multiple of 2ℓ, and C̃ℓ
i,j ≤ Ci,j < C̃ℓ

i,j + 2ℓ. C̃t
i,j is easy to compute,

since we can just set C̃t
i,j = 0.

Suppose for some 0 ≤ ℓ < t, we have computed C̃ℓ+1, we will compute C̃ℓ. In order to perform

the binary search, we only need to know for each pair of i, j, whether there exists k such that c(i, k) =
c(k, j) = c(i, j), Ai,k = Bk,j and ⌊Ai,k/2

ℓ⌋ = ⌊Bk,j/2
ℓ⌋ = ⌊C̃ℓ+1

i,k /2ℓ⌋. If there exists one, then we can

set C̃ℓ
i,j = C̃ℓ+1

i,j ; otherwise, we set C̃ℓ
i,j = C̃ℓ+1

i,j + 2ℓ.
To determine the existence of such k, we use the algorithm for Monochromatic Equality Product. We

can create a Monochromatic Equality Product instance on the same vertex set. For each edge (i, j) ∈ I×J ,

we set its color to (c(i, j), ⌊C̃ℓ+1
i,k /2ℓ⌋); for (i, k) ∈ I × K , we set its color to (c(i, k), ⌊Ai,k/2

ℓ⌋); for

(j, k) ∈ J ×K , we set its color to (c(j, k), ⌊Bk,j/2
ℓ⌋). The values of the Monochromatic Equality Product

is the same as the values of the original instance. Thus, if we use the T (n) time algorithm A on this

Monochromatic Equality Product instance, we would be able to compute C̃ℓ, and thus continue the binary

search.

After we compute C̃0, we can easily set Ci,j = C̃0
i,j if Ci,j < ∞. Therefore, the algorithm runs in

O(T (n) log n) time.

�

We further consider Monochromatic (min,≤)-product, which turns out also has an Õ(n(3+ω)/2) time

algorithm.

Proposition 4.10. If there is a T (n) time algorithm for AE-MonoEq∆, then there is an O(T (n) log2 n) time

algorithm for Monochromatic (min,≤) Product.

The proof for Proposition 4.10 is essentially a combination of the proof of Theorem 4.7 and the ideas

used in the proof of Theorem 4.9, so we won’t describe it in full detail for conciseness. For a high level de-

scription, we first reduce this problem to Monochromatic (min, <) Product with entries in {0, . . . , 2n2−1}.

Then we enumerate the first differing bit in the binary representation of Ai,k and Bk,j , and use Theorem 4.9

to find the smallest common binary prefix of Ai,k and Bk,j . After we have this common prefix, we use it,

together with the original color of the graph, as the color for a new graph. Also, we use edge values on I×J
and J ×K for performing parallel binary search, similar to what described in the proof of Theorem 4.7.

23

5 Conclusion

AE-Mono∆

AE-MonoEq∆

MonoEqMonoMinEq (min,≤) (max,≤)

(min,=) (max,min)

[24]

Õ(n(3+ω)/2)

3SUMO(n2)

APSPO(n3)
Exact∆
Zero∆

[m1/3]× AE-Sparse∆ AE-Sparse∆

SetIntersection

SetDisjointness O(n2)

[33]

[31] m5/3

trivial

m4/3

[18]
n5/2

Figure 6: Main reductions in this paper. Single arrows represent normal fine-grained reductions. Double

arrows represent that the running times before and after the reduction are the same up to poly-logarithmic

factors. Dashed arrows represent reductions that hold only when ω > 2.

References

[1] Amir Abboud, Holger Dell, Karl Bringmann, and Jesper Nederlof. More consequences of falsifying

seth and the orthogonal vectors conjecture. In 50th Annual ACM Symposium on Theory of Computing,

STOC 2018, pages 445–456. Association for Computing Machinery, Inc, 2018.

[2] Amir Abboud and Virginia Vassilevska Williams. Popular conjectures imply strong lower bounds for

dynamic problems. In 2014 IEEE 55th Annual Symposium on Foundations of Computer Science, pages

434–443. IEEE, 2014.

[3] Noga Alon, Zvi Galil, Oded Margalit, and Moni Naor. Witnesses for boolean matrix multiplication

and for shortest paths. In 33rd Annual Symposium on Foundations of Computer Science, Pittsburgh,

Pennsylvania, USA, 24-27 October 1992, pages 417–426. IEEE Computer Society, 1992.

[4] Noga Alon, Raphael Yuster, and Uri Zwick. Finding and counting given length cycles. Algorithmica,

17(3):209–223, 1997.

[5] Andreas Björklund, Rasmus Pagh, Virginia Vassilevska Williams, and Uri Zwick. Listing triangles.

In International Colloquium on Automata, Languages, and Programming, pages 223–234. Springer,

2014.

24

[6] Marek Cygan, Marcin Mucha, Karol Wegrzycki, and Michal Wlodarczyk. On problems equivalent to

(min, +)-convolution. ACM Trans. Algorithms, 15(1):14:1–14:25, 2019.

[7] Artur Czumaj, Miroslaw Kowaluk, and Andrzej Lingas. Faster algorithms for finding lowest common

ancestors in directed acyclic graphs. Theor. Comput. Sci., 380(1-2):37–46, 2007.

[8] Ran Duan, Ce Jin, and Hongxun Wu. Faster algorithms for all pairs non-decreasing paths problem. In

46th International Colloquium on Automata, Languages, and Programming, ICALP 2019, July 9-12,

2019, Patras, Greece, volume 132 of LIPIcs, pages 48:1–48:13. Schloss Dagstuhl - Leibniz-Zentrum

für Informatik, 2019.

[9] Ran Duan and Seth Pettie. Fast algorithms for (max, min)-matrix multiplication and bottleneck shortest

paths. In Proceedings of the twentieth annual ACM-SIAM symposium on Discrete algorithms, pages

384–391. SIAM, 2009.

[10] Lech Duraj, Krzysztof Kleiner, Adam Polak, and Virginia Vassilevska Williams. Equivalences between

triangle and range query problems. In Proceedings of the Fourteenth Annual ACM-SIAM Symposium

on Discrete Algorithms, pages 30–47. SIAM, 2020.

[11] François Le Gall. Powers of tensors and fast matrix multiplication. In Katsusuke Nabeshima, Kosaku

Nagasaka, Franz Winkler, and Ágnes Szántó, editors, International Symposium on Symbolic and Alge-

braic Computation, ISSAC ’14, Kobe, Japan, July 23-25, 2014, pages 296–303. ACM, 2014.

[12] Omer Gold and Micha Sharir. Dominance product and high-dimensional closest pair under l infty.

In 28th International Symposium on Algorithms and Computation (ISAAC 2017). Schloss Dagstuhl-

Leibniz-Zentrum fuer Informatik, 2017.

[13] Xiaohan Huang and Victor Y Pan. Fast rectangular matrix multiplication and applications. Journal of

complexity, 14(2):257–299, 1998.

[14] Tsvi Kopelowitz, Seth Pettie, and Ely Porat. Higher lower bounds from the 3sum conjecture. In

Proceedings of the twenty-seventh annual ACM-SIAM symposium on Discrete algorithms, pages 1272–

1287. SIAM, 2016.

[15] Karim Labib, Przemysław Uznański, and Daniel Wolleb-Graf. Hamming distance completeness. Leib-

niz International Proceedings in Informatics, LIPIcs, 128, 2019.

[16] François Le Gall. Faster algorithms for rectangular matrix multiplication. In 2012 IEEE 53rd annual

symposium on foundations of computer science, pages 514–523. IEEE, 2012.

[17] François Le Gall and Florent Urrutia. Improved rectangular matrix multiplication using powers of

the coppersmith-winograd tensor. In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium

on Discrete Algorithms, SODA 2018, New Orleans, LA, USA, January 7-10, 2018, pages 1029–1046,

2018.

[18] Andrea Lincoln, Adam Polak, and Virginia Vassilevska Williams. Monochromatic triangles, inter-

mediate matrix products, and convolutions. In 11th Innovations in Theoretical Computer Science

Conference (ITCS 2020). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2020.

[19] Grazia Lotti and Francesco Romani. On the asymptotic complexity of rectangular matrix multiplica-

tion. Theoretical Computer Science, 23(2):171–185, 1983.

25

[20] Jiřı́ Matoušek. Computing dominances in Eˆn. Inf. Process. Lett., 38(5):277–278, 1991.

[21] Mihai Pătraşcu. Towards polynomial lower bounds for dynamic problems. In Proceedings of the

forty-second ACM symposium on Theory of computing, pages 603–610, 2010.

[22] Virginia Vassilevska and Ryan Williams. Finding, minimizing, and counting weighted subgraphs. In

Michael Mitzenmacher, editor, Proceedings of the 41st Annual ACM Symposium on Theory of Com-

puting, STOC 2009, Bethesda, MD, USA, May 31 - June 2, 2009, pages 455–464. ACM, 2009.

[23] Virginia Vassilevska, Ryan Williams, and Raphael Yuster. Finding the smallest H-subgraph in real

weighted graphs and related problems. In Michele Bugliesi, Bart Preneel, Vladimiro Sassone, and Ingo

Wegener, editors, Automata, Languages and Programming, 33rd International Colloquium, ICALP

2006, Venice, Italy, July 10-14, 2006, Proceedings, Part I, volume 4051 of Lecture Notes in Computer

Science, pages 262–273, 2006.

[24] Virginia Vassilevska, Ryan Williams, and Raphael Yuster. All-pairs bottleneck paths for general graphs

in truly sub-cubic time. In David S. Johnson and Uriel Feige, editors, Proceedings of the 39th Annual

ACM Symposium on Theory of Computing, San Diego, California, USA, June 11-13, 2007, pages

585–589. ACM, 2007.

[25] Virginia Vassilevska, Ryan Williams, and Raphael Yuster. Finding heaviest H-subgraphs in real

weighted graphs, with applications. ACM Trans. Algorithms, 6(3):44:1–44:23, 2010.

[26] Virginia Vassilevska Williams. Multiplying matrices faster than Coppersmith-Winograd. In Howard J.

Karloff and Toniann Pitassi, editors, Proceedings of the 44th Symposium on Theory of Computing

Conference, STOC 2012, New York, NY, USA, May 19 - 22, 2012, pages 887–898. ACM, 2012.

[27] Virginia Vassilevska Williams. Lecture nodes for lecture 8 of CS367, October 15, 2015, 2015.

[28] Virginia Vassilevska Williams. Problem 2 on problem set 2 of CS367, October 15, 2015, 2015.

[29] R. Ryan Williams. Faster all-pairs shortest paths via circuit complexity. SIAM J. Comput., 47(5):1965–

1985, 2018.

[30] Ryan Williams. Faster all-pairs shortest paths via circuit complexity. In David B. Shmoys, editor,

Symposium on Theory of Computing, STOC 2014, New York, NY, USA, May 31 - June 03, 2014, pages

664–673. ACM, 2014.

[31] Virginia Vassilevska Williams and R. Ryan Williams. Subcubic equivalences between path, matrix,

and triangle problems. J. ACM, 65(5):27:1–27:38, 2018.

[32] Virginia Vassilevska Williams and Ryan Williams. Subcubic equivalences between path, matrix and

triangle problems. In 51th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2010,

October 23-26, 2010, Las Vegas, Nevada, USA, pages 645–654. IEEE Computer Society, 2010.

[33] Virginia Vassilevska Williams and Ryan Williams. Finding, minimizing, and counting weighted sub-

graphs. SIAM J. Comput., 42(3):831–854, 2013.

[34] Raphael Yuster. Efficient algorithms on sets of permutations, dominance, and real-weighted APSP.

In Claire Mathieu, editor, Proceedings of the Twentieth Annual ACM-SIAM Symposium on Discrete

Algorithms, SODA 2009, New York, NY, USA, January 4-6, 2009, pages 950–957. SIAM, 2009.

26

[35] Uri Zwick. All pairs shortest paths using bridging sets and rectangular matrix multiplication. J. ACM,

49(3):289–317, 2002.

27

	1 Introduction
	1.1 Our results

	2 Preliminaries
	2.1 Hardness Sources
	2.2 Graph Problems
	2.3 Set Problems
	2.4 Matrix Product Problems
	2.5 Problems with Colors
	2.6 Notations

	3 Hardness of Sparse Triangle Listing
	4 Reductions Between Intermediate Problems
	5 Conclusion

