
MIT Open Access Articles

DAGguise: mitigating memory timing side channels

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Deutsch, Peter W, Yang, Yuheng, Bourgeat, Thomas, Drean, Jules, Emer, Joel S et
al. 2022. "DAGguise: mitigating memory timing side channels." Proceedings of the 27th ACM
International Conference on Architectural Support for Programming Languages and Operating
Systems.

As Published: 10.1145/3503222.3507747

Publisher: Association for Computing Machinery (ACM)

Persistent URL: https://hdl.handle.net/1721.1/143954

Version: Final published version: final published article, as it appeared in a journal, conference
proceedings, or other formally published context

Terms of use: Creative Commons Attribution 4.0 International license

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/143954
https://creativecommons.org/licenses/by/4.0/

DAGguise: Mitigating Memory Timing Side Channels

Peter W. Deutsch∗

MIT
Cambridge, MA, USA

pwd@mit.edu

Yuheng Yang∗

MIT
Cambridge, MA, USA
yuhengy@mit.edu

Thomas Bourgeat
MIT

Cambridge, MA, USA
bthom@mit.edu

Jules Drean
MIT

Cambridge, MA, USA
drean@mit.edu

Joel S. Emer
MIT/NVIDIA

Cambridge, MA, USA
jsemer@mit.edu

Mengjia Yan
MIT

Cambridge, MA, USA
mengjiay@mit.edu

ABSTRACT

This paper studies the mitigation of memory timing side channels,

where attackers utilize contention within DRAM controllers to infer

a victim’s secrets. Already practical, this class of channels poses

an important challenge to secure computing in shared memory

environments.

Existing state-of-the-art memory timing side channel mitiga-

tions have several key performance and security limitations. Prior

schemes require onerous static bandwidth partitioning, extensive

profiling phases, or simply fail to protect against attacks which

exploit fine-grained timing and bank information.

We present DAGguise, a defense mechanismwhich fully protects

against memory timing side channels while allowing for dynamic

traffic contention in order to achieve good performance. DAGguise

utilizes a novel abstract memory access representation, the Directed

Acyclic Request Graph (𝑟DAG for short), to model memory access

patterns which experience contention. DAGguise shapes a victim’s

memory access patterns according to a publicly known 𝑟DAG ob-

tained through a lightweight profiling stage, completely eliminating

information leakage.

We formally verify the security of DAGguise, proving that it

maintains strong security guarantees. Moreover, by allowing dy-

namic traffic contention, DAGguise achieves a 12% overall system

speedup relative to Fixed Service, which is the state-of-the-art miti-

gation mechanism, with up to a 20% relative speedup for co-located

applications which do not require protection. We further claim that

the principles of DAGguise can be generalized to protect against

other types of scheduler-based timing side channels, such as those

targeting on-chip networks, or functional units in SMT cores.

CCS CONCEPTS

• Security and privacy→ Side-channel analysis and counter-

measures.

∗Both authors contributed equally to this research.

ASPLOS ’22, February 28 ś March 4, 2022, Lausanne, Switzerland

© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9205-1/22/02.
https://doi.org/10.1145/3503222.3507747

KEYWORDS

Security, Timing side channels, Directed acyclic graphs, Memory

traffic shaping

ACM Reference Format:

Peter W. Deutsch, Yuheng Yang, Thomas Bourgeat, Jules Drean, Joel S. Emer,

and Mengjia Yan. 2022. DAGguise: Mitigating Memory Timing Side Chan-

nels. In Proceedings of the 27th ACM International Conference on Architectural

Support for Programming Languages and Operating Systems (ASPLOS ’22),

February 28 ś March 4, 2022, Lausanne, Switzerland. ACM, New York, NY,

USA, 15 pages. https://doi.org/10.1145/3503222.3507747

1 INTRODUCTION

Side channel attacks, a class of attacks that exploits micro-

architectural vulnerabilities to breach system security, have become

a serious security threat in recent years. An attacker can use such

vulnerabilities to steal secrets from a victim by monitoring the side

effects of the victim’s actions on various microarchitectural struc-

tures [27], including caches [7, 18, 19, 32], branch predictors [1, 8],

on-chip networks [30], and memory controllers [29].

In this paper, we focus on studying memory timing side channels

which exploit shared memory controllers, a broad attack surface.

These attacks are practical and highly effective, as memory con-

trollers are typically shared by all cores on a machine. For instance,

Wang et al. [29] have demonstrated that contention on memory

buses can be used to extract RSA keys. Pessl et al. [22] have fur-

ther shown that row-buffer contention can be used to monitor

keystrokes and recover user passwords.

In general, side channel attacks can be viewed via a communica-

tion model where there is a transmitter (the victim) that modulates

a channel, with that modulation being detected by a receiver (the at-

tacker) [5, 14]. When the channel is a cache, the receiver is generally

active, i.e., it modulates the channel itself in order to detect a trans-

mission. In cache-based channels, this involves preconditioning the

channel prior to transmission to detect the modulation, e.g., using

Prime+Probe [18, 20]. In a memory timing side channel the channel

is a memory controller, and the modulation by the transmitter is

memory requests based on secret values that make the memory

controller busy. In this case, the active receiver must concurrently

modulate the channel (opposed to preconditioning it) by emitting

memory requests to try to contend with the transmitter’s requests.

Due to memory queuing and scheduling delays, the latency of the

receiver’s requests can be affected by the transmitter’s traffic pat-

terns. Therefore, the receiver can use the timing information of its

own memory requests to infer the transmitter’s secret.

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

329

http://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3503222.3507747
https://doi.org/10.1145/3503222.3507747

ASPLOS ’22, February 28 ś March 4, 2022, Lausanne, Switzerland Peter W. Deutsch, Yuheng Yang, Thomas Bourgeat, Jules Drean, Joel S. Emer, and Mengjia Yan

1.1 Mitigation Challenges

Prior work has struggled to efficiently mitigate these attacks,

broadly exploring two directions. The first approach has been to

completely block interference betweenmemory requests emitted by

different applications using partitioning techniques such as Tempo-

ral Partitioning (TP) [29] and Fixed Service (FS) [25]. While secure,

such approaches incur high performance overheads as they stati-

cally partition memory bandwidth across applications and allocated

bandwidth can often go under-utilized.

The second explored approach has been to shape the transmit-

ter’s requests into a predefined pattern that is independent from the

secret, such as demonstrated in Camouflage [36]. Camouflage lever-

ages offline profiling to obtain the distribution of timing distances

between consecutive memory requests, and then shapes request

patterns on-the-fly so that the distance between consecutive re-

quests follows this predefined distribution. Although Camouflage

can achieve better performance than Temporal Partitioning [29]

and Fixed Service [25], it does not offer the same level of security.

As described by its authors [36], Camouflage was designed to hide

coarse-grained timing information and only provides security when

the attacker’s timer resolution is low. Camouflage is also severely

limited in its flexibility, requiring prior knowledge of co-running

applications’ bandwidth requirements during profiling to determine

an optimal shaping distribution.

We observe that no prior work can simultaneously meet the

following criteria for an optimal secure memory controller:

(1) Security: Completely blocking information leakage to an

attacker that uses the latency of its own memory requests

to infer a secret.

(2) Limited Performance Overhead: Allowing a dynamic alloca-

tion of bandwidth across applications.

(3) Low Profiling Costs: Requiring, at most, a simplistic profiling

step which does not need prior knowledge of co-located

applications.

1.2 Our Proposal: 𝑟DAGs and DAGguise

We introduce DAGguise, an effective defense mechanism that simul-

taneously satisfies the three requirements above. To accomplish

this, DAGguise shapes requests according to a novel memory re-

quest representation, the Directed Acyclic Request Graph (𝑟DAG for

short).

The Directed Acyclic Request Graph Representation. In an

𝑟DAG, each vertex represents a memory request which experiences

an unknown amount of contention in the memory controller. An

edge between two vertices indicates the existence of a timing de-

pendency between the two requests, i.e., the destination request

can only be emitted by the core after the source request completes.

If there exists no path between two vertices, that implies that the

corresponding requests can be emitted in parallel.

As a representation ofmemory request patterns, 𝑟DAGs have two

appealing properties: generality and versatility. 𝑟DAGs are general

enough to fully describe any fine-grained request pattern, describ-

ing the distances between consecutive requests, timing dependen-

cies between requests, and the requests’ memory-level parallelism.

Moreover, rather than being a constant representation of memory

request timing, 𝑟DAGs are versatile, being able to accommodate un-

known latencies within the memory controller. Specifically, when

a request in an 𝑟DAG is delayed due to memory contention, its de-

pendent requests are also delayed. We fully describe the structure

and properties of 𝑟DAGs in Section 4.1.

Shaping Memory Requests Using 𝑟DAGs. The key idea of

DAGguise is to shape memory requests into a pre-defined pat-

tern described using an 𝑟DAG, which we call a defense 𝑟DAG.

Specifically, DAGguise introduces a request shaper between the

transmitter and the memory controller. The request shaper works

as a proxy agent of the transmitter and disguises the transmitter’s

request patterns. The shaper buffers requests from the transmitter

and emits requests following the timing dependencies described

by the defense 𝑟DAG by either delaying some requests or emitting

fake requests. At the cycle when the defense 𝑟DAG prescribes the

need to emit a request, the shaper checks whether any request

from the transmitter has been buffered. If such a request exists, that

request is sent, otherwise a fake request is generated to maintain

conformity with the defense 𝑟DAG and preserve security.

To achieve better performance, DAGguise is assisted with an

offline profiling phase which aims to generate a defense 𝑟DAG

that can match the bandwidth requirements of the program to be

protected. The profiling is lightweight and is performed on the

transmitter in isolation, without requiring the need to account for

any co-running applications.

DAGguise satisfies our three secure memory controller require-

ments, thanks to the generality and versatility of 𝑟DAGs. First,

DAGguise securely hides memory request patterns, as the memory

requests emitted by the shaper are fully dependent on the defense

𝑟DAG, and completely independent from the transmitter’s original

request patterns. Since the defense 𝑟DAG is not dependent on any

secrets, even if the receiver can fully reconstruct the defense 𝑟DAG,

it cannot glean any information from the transmitter.

Second, DAGguise can achieve better performance than TP [29]

and FS [25]. Rather than statically allocating bandwidth between

applications, DAGguise allows the memory controller to dynami-

cally adjust the bandwidth allocation between the shaped requests

and co-running applications. For instance, when a co-running ap-

plication emits an increased number of requests, the requests from

the defense 𝑟DAG suffer from more contention. As these requests

and the subsequent requests which are dependent on them are de-

layed in turn, the shaper’s bandwidth utilization naturally reduces

accordingly.

Lastly, DAGguise’s offline profiling cost is low. Since 𝑟DAGs are

versatile, we only need to independently profile the transmitter to

derive a defense 𝑟DAGwhich achieves good performance, requiring

a far smaller profiling cost compared to Camouflage [36].

We use Rosette [28] to formally verify the security properties of

DAGguise, ensuring that the shaped access patterns of a transmitter

are indistinguishable to any receiver. We evaluate the performance

overhead of DAGguise using gem5 [4] and run SPEC benchmarks

alongside two security-sensitive applications, DocDist [11] and

DNA sequencing [24]. Our results show that DAGguise introduces

considerably less performance overhead compared to FS [25]. DAG-

guise incurs a 10% system slowdown on a two-core system, improv-

ing system-wide performance by 6% compared to Fixed Service [25].

330

DAGguise: Mitigating Memory Timing Side Channels ASPLOS ’22, February 28 ś March 4, 2022, Lausanne, Switzerland

n + Δn 2n 2n + ε

Different Bank
(b)

Same Bank, Same Row
(c)

Same Bank, Different Row
(d)

No Victim Activity
(a)

Bus and Transaction
Queue Delay

Bank Conflict
Delay

Bank Conflict
Delay

Row Conflict
Delay

Victim
Memory
Request

Observable
Contention

Delay

Attacker
Memory
Request

Figure 1: An example of memory timing side channels which exploit different types of memory contention. An attacker can

discern a victim’s detailed memory request patterns based on the latency of its own requests.

We show that DAGguise also scales well compared to Fixed Service,

achieving a 12% performance speedup compared to FS on an eight-

core machine. Furthermore, DAGguise is area efficient, requiring

only 0.037𝑚𝑚2 of area to instantiate eight parallel shaper instances.

Note that, while we focus on utilizing DAGguise to mitigate

memory timing side channels, the key insights of DAGguise are

generalizable. 𝑟DAGs are a general representation of request pat-

terns for various microarchitectural structures. The principles of

DAGguise can be applied to mitigate other types of timing side

channels involving schedulers and queues, such as instruction port

contention in SMT cores [2].

Contributions. This paper makes the following contributions:

• The introduction of the Directed Acyclic Request Graph

(𝑟DAG) representation, a generalizable and versatile way to

describe memory access patterns.

• The design of an effective and performant defense mech-

anism, DAGguise, demonstrating that it is possible to ex-

ceed the performance of state-of-the-art defenses, i.e., fine-

grained static temporal traffic partitioning [25], while pre-

serving the same security guarantees.

• A formal analysis of the security properties of DAGguise

using Rosette [28], a solver-aided programming framework.

• A detailed performance and area evaluation of DAGguise,

demonstrating a 12% speedup over Fixed Service [25] with

an area footprint of only 0.037𝑚𝑚2.

2 BACKGROUND

2.1 Memory Basics

In modern computing systems, processors access the main mem-

ory system via one or more memory controllers (MCs). A memory

controller manages a memory channel, organized hierarchically

into ranks and banks [13]. Each memory channel supports multiple

ranks, where a rank is a collection of DRAM chips that work in

parallel to handle a memory request, e.g., to fill a cache line. Each

rank is partitioned into multiple banks. Banks and ranks help sup-

port multiple outstanding requests, thus enabling a high degree of

parallelism in the memory system. Each bank contains a row-buffer,

which caches the data of the most recent request. Under an open-

row policy, temporally adjacent accesses to the same DRAM row

can hit in the row-buffer. Conversely, a closed-row policy forbids

hits in the row-buffer.

Memory requests can interfere with each other’s timing at sev-

eral points within the memory controller [13]. Upon arrival from

the last-level cache, memory requests are first buffered in a transac-

tion queue. Then, each memory request is converted to a sequence

of DRAM commands, which are placed into a command queue based

on their addresses. These command queues are arranged such that

there is one queue per bank or per rank of memory. Finally, de-

pending on the DRAM command scheduling policy, commands are

scheduled to the DRAM devices based on resource availability and

timing constraints. Command scheduling can vary in complexity,

ranging from a basic First Come First Served (FCFS) policy, to poli-

cies that optimize for row-buffer hits or bus direction switches (i.e.

by grouping reads and writes together) [13].

2.2 Memory Timing Side Channels

Shared memory controllers expose a large attack surface for timing

side channel attacks. Compared to pipeline structures and private

caches, memory controllers are shared by all processes and virtual

machines running on the same chip. Several attacks have already

shown the viability of memory timing side channels [22, 29].

A memory timing side channel involves a victim (transmitter)

program and an attacker (receiver) program communicating via

contention within a memory controller. The transmitter in the vic-

tim’s security domain emits a sequence of memory requests based

on some secret values. The receiver in the attacker’s security do-

main aims to obtain the secret by monitoring the transmitter’s

memory access pattern. While the attacker cannot directly observe

the victim’s access pattern, it can emit a sequence of memory re-

quests and observe how the victim’s accesses interfere with its own

as they contend with each other in the shared memory controller.

An Attack Example. Figure 1 provides an example of how an

attacker can discern a victim’s detailed request patterns based on

the latency of its own requests. In this example, the attacker always

follows the same request pattern, emitting a new request a constant

amount of time after the previous request completes. The attacker’s

requests are always mapped to the same bank and the same row.

We consider a simplified memory where each request takes 𝑛 cycles

to service and the DRAM uses an open-row policy.

In Figure 1(a), when the victim does not emit any requests, none

of the attacker’s requests are delayed. In Figure 1(b), when the

victim emits a request targeting a different bank from the attacker’s

requests, one of the attacker’s requests is delayed for Δ cycles due to

contention in the transaction queue and the shared memory bus. In

331

ASPLOS ’22, February 28 ś March 4, 2022, Lausanne, Switzerland Peter W. Deutsch, Yuheng Yang, Thomas Bourgeat, Jules Drean, Joel S. Emer, and Mengjia Yan

Figure 1(c), when the victim emits a request to the same bank and the

same row as the attacker’s requests, one of the attacker’s requests is

delayed until the victim’s request completes. As a result, the attacker

observes a request latency of 2𝑛 cycles. In Figure 1(d), when the

victim’s request targets the same bank but a different row compared

to the attacker’s requests, one of the attacker’s requests will suffer

an additional 𝜖 cycle penalty, i.e., the time for the memory controller

to close the current row and open a new row. As demonstrated, an

attacker can use its own latency to effectively discern a victim’s

request patterns, including the number of memory requests, the

timing of these requests, as well as their bank and row address

information.

2.3 Threat Model

We assume the attacker and the victim are in different security

domains and the attacker cannot directly access the victim’s secret

data. The attacker and the victim run on the samemachine accessing

DRAM via one or more shared memory controllers. The attacker

can be either a user-level application or privileged system software,

where the latter case applies to a system with support for enclaves,

such as Intel SGX [12], Sanctum [6], or Keystone [17].

The attacker performs a memory timing side channel attack

to glean secrets from the victim’s domain. As described in Sec-

tion 2.2, the attacker actively generates requests to interfere with

the victim’s memory requests and aims to infer the victim’s mem-

ory request patterns based on its own response latencies. We do

not consider physical attacks, that is, where the attacker physically

accesses and probes the DRAM bus to directly observe the timing,

addresses, or even data of memory requests. Such attacks require

the attacker to physically possess the attacked device. Similar to

other existing defense mechanisms [25, 29, 36], we do not block

information leakage due to early termination time. Termination

time leakage is intrinsically a program-level issue, and cannot be

effectively addressed at the microarchitectural level.

We consider a defense mechanism to be secure if no attacker can

distinguish a transmitter’s memory request patterns. The memory

latencies observed by the attacker should be independent from

the victim’s actual memory activity. A formal definition of the

indistinguishability property is provided in Section 5.

3 MOTIVATION

3.1 Limitations of Existing Approaches

There exists two directions in mitigating memory timing side chan-

nels: partitioning and traffic shaping. We observe that existing

mitigation mechanisms [25, 29, 36] along these two directions suf-

fer from several key limitations. In this section, we examine two

state-of-the-art defense mechanisms, Fixed Service [25] and Cam-

ouflage [36].

Fixed Service. Fixed Service (FS) [25] achieves static and fine-

grained temporal partitioning by introducing a deterministic sched-

ule for memory requests. Every request is assigned to a certain

łslotž. Within each slot, a request sequentially passes through the

request queues, the command bus, the bank, and the data bus. The

slots are pipelined, with a fixed stride inserted between consecutive

slots to ensure that each in-flight request uses different resources

Target Distribution
for a Victim Program

(a)

Time
0 200 400 600

Shaped Request Patterns
for the Victim

(b)

①

②1 1

200 400

Fr
eq

ue
nc

y

Injection Interval

Memory Request

Figure 2: A demonstration of how Camouflage cannot hide

fine-grained request patterns.

at any point of time. Therefore, no collisions can occur in any of

the shared microarchitectural resources.

The memory controller assigns slots to different security do-

mains using a round-robin, no-skip arbitration policy. If a security

domain does not have a pending request for its slot, the slot is

wasted. This strict partitioning approach completely isolates the

memory access patterns of security domains from one another and

achieves a strong non-interference property.

Fixed Service’s strict partitioning can often significantly degrade

bandwidth utilization, incurring a high performance overhead. For

instance, if there are 𝑁 security domains, one bandwidth-intensive

domain and the remaining idling, the memory-intensive domain

will only be able to utilize 1/𝑁 of the total bandwidth, with the

remaining bandwidth being wasted.

Camouflage. Camouflage [36] is a memory traffic shaping mech-

anism. It shapes the timing of memory requests to follow a pre-

determined distribution which is independent from any victim

secrets. Camouflage relies on offline profiling to obtain the distri-

bution that approximately matches the bandwidth utilization of

the victim application. Shaping to a distribution is accomplished

by selectively delaying existing memory requests, and issuing fake

requests when necessary.

Unfortunately, Camouflage does not offer strong security guaran-

tees. Specifically, Camouflage is unable to hide fine-grained mem-

ory access patterns, including the ordering of memory requests

and bank contention. We use an example in Figure 2 to illustrate

how distribution-based traffic shaping is insufficient to block infor-

mation leakage. Assume Camouflage aims to shape the injection

time of consecutive victim requests to the target distribution in

Figure 2(a), i.e., one 200-cycle interval and one 400-cycle interval.

Under Camouflage, the output of the shaper is not necessarily de-

terministic. Given different victim request inputs, the shaper can

generate two different request sequences as shown in Figure 2(b).

Both request sequences 1○ and 2○ conform to the distribution in

Figure 2(a), but they differ in the ordering of the injection intervals.

Sequence 1○ has the 200-cycle interval first and then the 400-cycle

interval next, while sequence 2○ swaps the order of the two inter-

vals. An attacker can use memory timing side channels (Section 2.2)

to easily distinguish the two sequences. Moreover, the distribution

used by Camouflage does not consider any bank information. Thus,

332

DAGguise: Mitigating Memory Timing Side Channels ASPLOS ’22, February 28 ś March 4, 2022, Lausanne, Switzerland

Table 1: Design goals of DAGguise and comparison with ex-

isting defense mechanisms.

Fixed Service Camouflage DAGguise

[25] [36] (this paper)

Security ✓ x ✓

Performance Overhead High Low Medium

Profiling Cost ś High Low

Camouflage is further vulnerable to attacks which exploit bank

contention.

Another limitation of Camouflage is that its offline profiling

process is both expensive and oftentimes infeasible. The timing

distribution of the victim is inherently dependent on co-running

applications, as memory contention can slow down the victim pro-

gram and significantly affect the injection intervals of its memory

requests. Therefore, to obtain good performance, the target timing

distributions used by Camouflage must not only be tailored to the

program being protected, but also to the applications expected to

run alongside the victim, significantly increasing the offline profil-

ing cost. Moreover, such a profiling method is completely infeasible

if the co-running applications also need protection and the applica-

tion owners do not want to share any memory bandwidth usage

information.

3.2 Design Goals

We propose DAGguise to achieve the three design goals as shown in

Table 1, comparing it with the existing defense mechanisms, Fixed

Service [25] and Camouflage [36].

First, our security goal is to block information leakage via fine-

grained memory access patterns, including the number of mem-

ory requests, the timings of requests, and bank/row information.

Second, the defense mechanism should incur a low performance

overhead. Different from FS [25], which uses static partitioning

which leads to significant bandwidth under-utilization, DAGguise

can flexibly allocate memory bandwidth among different applica-

tions based on each application’s actual bandwidth requirements.

Finally, we aim to address the substantive profiling issue in Cam-

ouflage [36]. DAGguise uses a feasible and lightweight profiling

method which only needs to profile the victim application alone,

without needing knowledge about the bandwidth requirements of

potentially co-located programs.

4 DAGGUISE: 𝑟DAG REQUEST SHAPER

We propose DAGguise, an effective defense mechanism to mitigate

memory timing side channels. The core idea of DAGguise is to

shape memory requests into a pre-determined pattern described

using a novel graph representation, which we call a Directed Acyclic

Request Graph or 𝑟DAG for short. An 𝑟DAG is general enough to

describe any detailed memory request pattern, including those ig-

nored by Camouflage [36], such as the ordering of requests and

their bank information. Moreover, 𝑟DAGs are versatile and can

react to contention within the memory controller, helping to ad-

just memory bandwidth allocation automatically to achieve better

performance.

LLC Memory
Controller

Request
Shaper

Defense rDAG

Requests
(Forwarded/Fake)

Figure 3: DAGguise overview.

v0

v1

v2

v3 v4

arrival
time

completion
time

w01

w02

w13

w23

w34

latencyid

Figure 4: An 𝑟DAG example.

At a high level, DAGguise introduces a request shaper that works

as a proxy agent for the transmitter and emits requests following

the timing dependencies prescribed by an 𝑟DAG, which we call

a defense 𝑟DAG. An overview of DAGguise is shown in Figure 3.

The shaping operation is achieved by delaying existing requests

and emitting fake requests. Note that any secret-independent de-

fense 𝑟DAG can be used to effectively block information leakage.

To achieve better performance, the defense 𝑟DAG should match the

bandwidth utilization of the victim application. We profile the vic-

tim application alone to construct a defense 𝑟DAG by configuring

parameters in an 𝑟DAG template.

In this section, we first introduce the 𝑟DAG representation in

Section 4.1. We then describe the DAGguise scheme through an

illustrative example in Section 4.2, demonstrating both the security

properties of DAGguise and the versatility of the 𝑟DAG representa-

tion. We then provide further details of the DAGguise architecture,

describing the offline profiling methodology in Section 4.3 and the

online shaping mechanism in Section 4.4.

4.1 Directed Acyclic Request Graph (𝑟DAG)

We introduce Directed Acyclic Request Graphs (𝑟DAGs) to describe

memory request patterns. An 𝑟DAG is a weighted direct acyclic

graph that encodes the detailed timing dependencies between mem-

ory requests. An example of an 𝑟DAG is shown in Figure 4. Each

vertex represents a memory request. Each edge, connecting two

vertices, represents a timing dependency between the two requests.

A timing dependency indicates that the destination request can

only be emitted after the memory controller finishes serving the

source request, e.g., request 𝑣1 must be emitted after the response

for request 𝑣0 leaves the memory controller. If there does not exist a

path between two vertices, it means the two corresponding requests

can be emitted in parallel, such as request 𝑣1 and 𝑣2.

To consider possible memory contention, an 𝑟DAG encodes de-

tailed timing information as follows. First, an 𝑟DAG encodes two

time points for each memory request, its arrival time and its com-

pletion time. The arrival time is the time point when a request

arrives at the memory controller and enters the transaction queue;

333

ASPLOS ’22, February 28 ś March 4, 2022, Lausanne, Switzerland Peter W. Deutsch, Yuheng Yang, Thomas Bourgeat, Jules Drean, Joel S. Emer, and Mengjia Yan

the completion time is the time point when a request has been

fully consumed by the memory controller and the response for

the request leaves the memory controller. We often conventionally

represent the 𝑟DAG with implicit time flowing from left to right.

Hence, it is convenient to associate the arrival time with the left

side of a vertex, and the completion time with the right side of a

vertex, as shown in Figure 4. Note that, due to contention, it can

take a variable amount of time between when the request arrives at

the memory controller and when the memory controller finishes

serving the request.

Each vertex is associated with a bank ID and a tag to indicate

whether it is a read or write request. This information is included

since the memory controller’s scheduling policy takes these prop-

erties into account in deciding when to serve the request.

Each edge is associated with a weight that measures the latency

between the completion time of the source request and the arrival

time of the destination request. For example, the weight of the

edge connecting vertices 𝑣0 and 𝑣1 is𝑤01, so we have 𝑡𝑎𝑟𝑟𝑖𝑣𝑎𝑙 (𝑣1) =

𝑡𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛 (𝑣0) +𝑤01.

𝑟DAG Properties. 𝑟DAGs have two appealing properties: gener-

ality and versatility. First, an 𝑟DAG is general enough to represent

any fine-grained request pattern, describing the injection intervals

between requests (used by Camouflage [36]), timing dependen-

cies between requests, and memory level parallelism. Moreover,

an 𝑟DAG can also describe complex and irregular request patterns

generated by real applications.

Second, rather than being a constant representation of memory

request patterns, 𝑟DAGs are versatile, meaning that an 𝑟DAG can

accommodate for unknown memory latencies. Specifically, when

a request in an 𝑟DAG is delayed due to memory contention, its

dependent requests will also be delayed. For example, in Figure 4,

if the request 𝑣3 suffers from bank contention, the completion time

of the vertex 𝑣3 will be delayed. As a result, the arrival time of

the dependent request 𝑣4 is also delayed. This versatility property

allows an 𝑟DAG to flexibly represent different memory request

injection times.

Original 𝑟DAGs vs. Defense 𝑟DAGs. A victim’s unshaped mem-

ory request pattern can also be described using an 𝑟DAG, which we

call the original 𝑟DAG. This original 𝑟DAG varies with the secret

value used by the victim application.

The 𝑟DAG representation conveniently visualizes the lifetime of

memory requests. Specifically, in an original 𝑟DAG, the time repre-

sented by a vertex (i.e. between the vertex’s arrival and completion

times) corresponds to the time that the request spends within the

memory controller, where it may experience contention. The la-

tency indicated by the edge weight represents inter-request timing

relationships, corresponding to the time to traverse through the

cache hierarchy and perform dependent computations in a core.

A defense 𝑟DAG is used to describe the memory request patterns

that should be emitted by the DAGguise request shaper, which is

placed between the LLC and the memory controller (as shown in

Figure 3). The request shaper takes a secret-independent defense

𝑟DAG as input, and shapes the victim’s memory requests accord-

ing to this 𝑟DAG. Effectively, the shaper encapsulates the victim’s

original 𝑟DAG inside the defense 𝑟DAG.

Note that we do not need to obtain the original 𝑟DAG for our

defense mechanism to work. We also note that the defense 𝑟DAG

also does not need to closely resemble the original 𝑟DAG to achieve

good performance. We show how to directly obtain a defense 𝑟DAG

via statistical profiling in Section 4.3.

4.2 An Illustrative Example

We now describe the DAGguise scheme through an illustrative

example, shown in Figure 5, demonstrating both the security prop-

erties of DAGguise and the versatility of the 𝑟DAG representation.

Security Properties of DAGguise. In this example, a victim ap-

plication emits different memory access patterns based a boolean

secret value. Figure 5(a) shows the victim’s original request patterns

using 𝑟DAGs. When the victim’s secret is 0, the application emits

one request at a time with a 100-cycle interval between the com-

pletion time of each request and the arrival time of its subsequent

request. When the secret is 1, the application emits requests slower

with a 200-cycle interval between consecutive requests. In both

cases, we assume a fixed DRAM latency of 100 cycles. DAGguise

works by shaping the two memory request patterns into the same

pattern described by the defense 𝑟DAG in Figure 5(a), making the

interval between consecutive requests 150 cycles.

Figure 5(b) demonstrates how each of the victim’s request pat-

terns are shaped in accordance with the defense 𝑟DAG. The first

line for each secret represents the victim’s original request pattern,

corresponding to the victim’s original 𝑟DAG in Figure 5(a). The

shaper delays the victim’s requests, as shown on the second line for

each secret, to match the timing pattern prescribed by the defense

𝑟DAG. The final request pattern output by the shaper is shown on

the third line.

When the secret is 0, the shaper delays each of the victim’s re-

quests by 50 cycles to increase the timing interval between requests

to 150 cycles (as required by the defense 𝑟DAG). When the secret

is 1, the shaper needs to both delay the victim’s requests and issue

fake requests. Since the victim issues requests with 200-cycle in-

tervals, and the defense 𝑟DAG emits requests faster with a timing

interval of 150 cycles, the shaper generates a fake request when the

victim has no outstanding request pending. For example, the second

and the fourth requests output by the shaper (on the third line) are

fake requests. The victim’s actual requests are further delayed to

become the third and fifth requests output by the shaper.

Since the requests generated by the shaper have identical timing

intervals (shown on the third line) regardless of the victim’s secret,

and because an attacker cannot differentiate between contention

caused by fake and real requests, the shaping scheme employed by

DAGguise guarantees that an attacker cannot distinguish between

the victim’s original request traces. A formal security verification

of this property is discussed in Section 5.

Adaptivity Properties of DAGguise. Figures 5(c) and (d) further

demonstrate how the versatility property of 𝑟DAGs helps DAGguise

achieve good performance. We continue to use the same victim

application and defense 𝑟DAG as the previous example. In these

figures, the victim application protected by DAGguise shares a

memory controller with an unprotected co-running application.

Figure 5(c) describes the unprotected application with two phases

of differing request intervals, modeling a real-world application

334

DAGguise: Mitigating Memory Timing Side Channels ASPLOS ’22, February 28 ś March 4, 2022, Lausanne, Switzerland

150

300 300 25

Defense rDAG

Original rDAG

Phase 1 Phase 2

(c) Unprotected Program's Request Pattern

(b) Shaping Victim's Request Patterns to the Same rDAG

(d) Memory Controller Contention Between Victim and Unprotected Program

Shaper Output

Unprotected Requests
25

Original rDAG

Delayed Requests

Shaper Output

100

150

100

150

 Delayed Requests

Shaper Output

200

150

200

150 150150

100

150

100

150

150

(a) Victim's Request Patterns

 Original Requests
200 200 200

 Original Requests
100 100 100 100 100

100

200

Secret 0

Secret 1 200

100 100 100

Phase 1 Phase 2
Se

cr
et

 0
Se

cr
et

 1

250 325

Queue Delay Timing Dependency Memory Request

Figure 5: A running example to demonstrate the security and adaptivity properties of DAGguise.

with varied memory behaviors. Figure 5(d) details the effects of

contention between the unprotected application’s memory requests

and the victim’s shaped memory requests.

In phase 1, the unprotected application emits memory requests

at a slow interval of 300 cycles, and there is not much contention at

the memory controller. As a result, the shaper is able to maintain the

victim’s ideal injection interval of 250 cycles, i.e., 100 cycles for the

memory access latency, and 150 cycles for the timing dependency

(i.e., the weighted edge between vertices in the defense 𝑟DAG).

In phase 2, the unprotected application generates requests at a

rapid interval of 25 cycles, causing a large amount of contention at

the memory controller and delaying many of the shaper’s requests.

To maintain the timing dependencies in the defense 𝑟DAG, the

shaper emits the next request 150 cycles after the response of the

previous request returns. As a result, due to contention, the injection

intervals of the victim’s requests in phase 2 are increased from the

original 250 cycles to 325 cycles. By slowing down the shaper’s

emission rate, the scheduler is able to allocate more bandwidth

to the unprotected application and achieve better overall memory

utilization.

Thanks to the versatility property of 𝑟DAGs, DAGguise is able to

adapt to memory controller contention and adjust its own emission

rate, allowing the memory controller to achieve better memory

utilization while still maintaining security. Note that, while the

example focuses on the case of running a protected application

with an unprotected application, DAGguise also works effectively

for the case of running multiple protected applications together.

In this case, multiple defense 𝑟DAGs can interact with each other

in a similar way as in Figure 5(d), as a łdenserž defense 𝑟DAG can

obtain more bandwidth from the memory controller.

100100 100

100100 100

100100 100

100100 100

200 200 200 200200

200 200 200 200200

x Timing Dependency
with Latency x

Request Vertex
with Bank ID kk

1 5

2 6

3 7

4 8

(a) 4 Parallel Sequences

1 3 5 7

2 4 6 8

(b) 2 Parallel Sequences

… … … …

Figure 6: Example 𝑟DAGs used in DAGguise, derived from

𝑟DAG templates.

4.3 Offline Profiling Method

The goal of the offline profiling phase is to find a suitable defense

𝑟DAG to be used by the memory request shaper. It is important

to note that shaping requests to any secret-independent defense

𝑟DAG will ensure security. The offline profiling step is thus used to

optimize for system-wide performance.

DAGguise uses a lightweight two-step profiling method: 1) ob-

taining an 𝑟DAG search space by configuring parameters in an

𝑟DAG template, and 2) profiling the victim application alone using

different candidate 𝑟DAGs to select a final defense 𝑟DAG.

Generating an 𝑟DAG Search Space. Rather than searching the

entire space of possible 𝑟DAGs, we generate an 𝑟DAG search space

by deriving candidate 𝑟DAGs from an 𝑟DAG template. The search

space can be generated by varying configurable parameters in the

𝑟DAG template, including the number of parallel sequences, the

edge weights, and the write ratio (the frequency of write requests).

Note that the template determines the complexity of the 𝑟DAGs.

We intentionally choose templates that follow a regular and repeti-

tive pattern, aiming to simplify the defense 𝑟DAGs and reduce the

335

ASPLOS ’22, February 28 ś March 4, 2022, Lausanne, Switzerland Peter W. Deutsch, Yuheng Yang, Thomas Bourgeat, Jules Drean, Joel S. Emer, and Mengjia Yan

0 100 200 300
Weight

(a)

0.4

0.6

0.8

No
rm

al
ize

d
IP

C

0 100 200 300
Weight

(b)

0

2

4

6

8

Av
g.

 A
llo

ca
te

d
Ba

nd
wi

dt
h

(G
B/

s)

0 2 4 6 8
Avg. Allocated Bandwidth (GB/s)

(c)

0.4

0.6

0.8

No
rm

al
ize

d
IP

CNumber of
Parallel Sequences

1
2
4
8

Figure 7: Selecting a defense 𝑟DAG for DocDist based on sensitivity to allocated bandwidth.

hardware overhead of storing and processing the defense 𝑟DAGs

during the online shaping phase (Section 4.4).

Figure 6 shows two examples of 𝑟DAGs used in DAGguise, as

derived from an 𝑟DAG template. Figure 6(a) demonstrates an 𝑟DAG

with four parallel sequences (where each sequence contains re-

quests that alternate between two different banks) with uniform

edge weights of 100 DRAM cycles. Figure 6(b) demonstrates an

𝑟DAG derived from the same template when reducing the number

of parallel sequences to 2 and increasing the edge weights to 200

DRAM cycles.

Selecting a Defense 𝑟DAG. To select the final 𝑟DAG from the

search space, we test these candidate 𝑟DAGs on the protected pro-

gram by feeding each candidate 𝑟DAG to DAGguise and measur-

ing the impact of DAGguise on the protected program’s perfor-

mance. Intuitively, if we choose a candidate 𝑟DAG with smaller

edge weights and more parallel sequences, the defense 𝑟DAG be-

comes denser and thus can request more bandwidth from the mem-

ory controller, reducing the amount of bandwidth remaining for

co-running applications. In other words, the density of the defense

𝑟DAG determines the allocated bandwidth to the protected appli-

cation. To optimize for system-wide performance, we derive the

final defense 𝑟DAG based on the victim program’s sensitivity to al-

located bandwidth. This presents a trade-off between the protected

program’s own IPC, and the proportion of memory bandwidth con-

sumed by that program (which is made unavailable to co-running

applications).

Figure 7 shows an example of selecting a defense 𝑟DAG for

DocDist, a security sensitive application (see Section 6.1 for details

about the experimental setup and DocDist). In this example, a can-

didate 𝑟DAG can have 1, 2, 4, or 8 parallel sequences, and a uniform

edge weight varying from 0 to 400 DRAM cycles. We run the victim

alone, recording the victim’s IPC (Figure 7(a)) and memory band-

width utilization (Figure 7(b)) for each candidate defense 𝑟DAG.

Figure 7(c) combines the IPC and bandwidth results of (a) and (b),

demonstrating how the victim program’s IPC changes according to

the bandwidth allocated to it.

From Figure 7(a) and (b), we observe that as the edge weight

decreases and the number of parallel sequences increases, the nor-

malized IPC of the protected program increases, and the allocated

bandwidth also increases. From Figure 7(c), we observe that the

IPC of DocDist increases quickly when increasing the allocated

bandwidth from 0 to 3 GB/s, with a diminishing return after the

allocated bandwidth exceeds 4 GB/s. A cost-effective selection of

defense 𝑟DAGs should lie within the highlighted region where the

allocated bandwidth is around 2-4 GB/s. Thus, for our evaluation

in Section 6, we select a defense 𝑟DAG for DocDist identical to

Figure 6(a), comprising of 4 parallel sequences and a uniform edge

weight of 100 DRAM cycles. As DocDist is a streaming application

which performs very few writes, we set the write ratio (the pro-

portion of vertices in the defense 𝑟DAG marked as writes) to be

small (i.e. 1

1000
). For applications with more varied access patterns,

further profiling can be performed to derive an appropriate write

ratio which maximizes IPC and minimizes allocated bandwidth.

Note that the actual system-wide performance can vary as co-

running applications can have varying bandwidth demands. We

heavily rely on the versatility property of 𝑟DAGs to dynamically

adjust the bandwidth utilization for the protected application when

running with other applications.

Low Profiling Cost. The profiling cost required by DAGguise is

low for two reasons. First, as the 𝑟DAG representation is versatile,

we only need to profile the victim application alone, without re-

quiring any information about co-located applications. This makes

our approach much more practical than the approach used by Cam-

ouflage [36]. Second, we generate candidate 𝑟DAGs from 𝑟DAG

templates, significantly reducing the search space of defense 𝑟DAGs.

Multithreaded Applications. So far, we have considered how to

profile a single-threaded application to generate an optimal defense

𝑟DAG. For programs with multiple threads belonging to the same

security domain, it is possible to utilize a single defense 𝑟DAG

shared across all threads of a program, or multiple defense 𝑟DAGs

with each one being exclusively used by one thread. These two

approaches have different trade-offs in profiling cost and system-

wide performance. Using a single defense 𝑟DAG for all threads

allows for different threads to share vertices in the defense 𝑟DAG,

reducing the number of fake requests issued and thus increasing

system-wide performance. However, this approachmay increase the

offline profiling cost, since using a single defense 𝑟DAGmay require

re-profiling the application for each possible number of concurrent

threads. Using one 𝑟DAG per thread reduces the overall offline

profiling cost, in exchange for an increased online performance

overhead.

336

DAGguise: Mitigating Memory Timing Side Channels ASPLOS ’22, February 28 ś March 4, 2022, Lausanne, Switzerland

transaction queue

bank 0

bank 1

bank N

command queues

D
IM

M
s

requests

rDAG
parameters

computation
logic

responses
response queue

①

②

③

ca
ch

es

Figure 8: DAGguise memory controller architecture.

4.4 Online Shaping Mechanism

DAGguise uses a request shaper to disguise the transmitter’s request

pattern. Specifically, the shaper works as a proxy agent for the

transmitter and emits requests following the defense 𝑟DAG by

either delaying some of the transmitter’s requests or emitting fake

requests. Figure 8 shows the memory controller with DAGguise’s

hardware highlighted.

The baseline memory controller has a transaction queue and

multiple command queues which are arranged so that there is one

queue per bank. We have discussed how the memory controller

manages these queues in Section 2.1.

DAGguise’s hardware needs to include the following three com-

ponents for each security domain that needs protection: a private

transaction queue, 𝑟DAG parameter registers, and the shaper logic.

To make our mechanism work, every memory request is tagged

with a security domain ID. If a memory request is emitted by a

domain that is under protection, the request will be inserted into

the corresponding domain’s private queue, while other requests

are directly inserted into the global transaction queue.

We describe the shaper’s operations using a single-bank configu-

ration as an example. The shaper logic keeps track of the responses

and decides when to emit the next request. When the shaper re-

ceives a response for its own security domain (1○), the shaper logic

computes whether the next request is ready to be emitted. If the

next request is ready to be emitted, the shaper checks the private

transaction queue to see whether there exists a pending request

(2○) matching the type of request to be issued (i.e. read or write).

In the case that such a matching pending request exists in the pri-

vate queue, the request will be transferred to the global transaction

queue; otherwise, a fake request will be generated and inserted into

the transaction queue (3○).

In a multi-bank scenario, the access pattern to different memory

banks could leak information. Thus, DAGguise needs to ensure that

the bank access pattern is the same no matter what secret value is

used. Recall that each vertex in an 𝑟DAG is associated with a bank

ID (Section 4.1). Each step in Figure 8 takes the bank information

into account. For example, when the shaper is ready to emit the next

request, in addition to checking whether a pending request exists

in the private queue, it needs to search the private queue to look

for a request with the same bank ID. Similarly, when generating

fake requests, the shaper needs to generate the request with the

bank ID as prescribed by the defense 𝑟DAG.

As discussed in Section 2.2, row-buffer hits and misses can also

leak information [22]. To hide row-buffer access patterns when

using DAGguise, the memory controller must use a closed-row

policy, ensuring that DRAM rows are closed immediately after

every read or write. It also is possible to encode row-buffer activity

in the defense 𝑟DAG to avoid the overhead of using a closed-row

policy. Each vertex could additionally specify whether the memory

access is a row-hit, and 𝑟DAGs with varying row-buffer hit ratios

could be explored during the profiling stage. Such a scheme would

save costs related to always closing a row, but when a vertex is

marked as a row-hit in the 𝑟DAG and the program actually accesses

a different (closed) row, DAGguise would need to emit a fake request

to maintain security (negatively impacting performance). We leave

further exploration of this direction as future work.

𝑟DAG Computation Logic. The 𝑟DAG computation logic is re-

sponsible for tracking the execution status of the defense 𝑟DAG and

determining whether a request needs to be emitted by the shaper

on a given cycle (and the bank ID/write status of that request if

one is required). The complexity of this logic is fully determined

by the defense 𝑟DAG. Recall that the defense 𝑟DAG is derived from

an 𝑟DAG template following a regular and repetitive pattern (Sec-

tion 4.3). Consequently, the corresponding computation logic is

fairly simple.

For example, to track the status of the 𝑟DAG template in Figure 6,

this logic only needs to track the following states for each bank:

a bit to indicate whether the shaper is waiting for a response, a

bit to indicate whether the next request is a read or write, and

a counter to track the remaining cycles until the next request is

required. We evaluate the area overhead of this computation logic

for multiple parallel security domains, in addition to the required

supplementary private queue storage in Section 6.4.

Fake Requests. When the shaper needs to emit a request but

there does not exist a matching pending request, the shaper must

insert a fake request into the global transaction queue. The fake

request accesses a random address in the targeted bank. Issuing

fake requests, however, can incur high energy consumption. Prior

work [25] has introduced multiple approaches to address these en-

ergy concerns. One possible approach is to łsuppressž fake requests.

Rather than issuing these requests to the DIMMs, we can update

the timing parameters and DRAM states as if the request was ac-

tually performed, as the data of these fake requests is irrelevant.

An alternative approach is to use the fake requests to do useful

work, e.g., issuing prefetching requests. For simplicity, we use the

suppression approach in this paper.

Shaper Management. The DAGguise hardware structures, par-

ticularly the rDAG parameter registers for each security domain,

need to be securely managed by privileged software that is part of

the system’s trusted computing base (TCB). Such software could

be a security monitor [6] or microcode [12] in a system with sup-

port for enclaves, or the operating system or hypervisor when

protecting user-level applications/virtual machines. Specifically,

the privileged software is responsible for initializing and clearing

the 𝑟DAG parameter registers when requested. During context

switches, the privileged software is required to save and restore the

𝑟DAG registers, private queue state, and computation logic states.

337

ASPLOS ’22, February 28 ś March 4, 2022, Lausanne, Switzerland Peter W. Deutsch, Yuheng Yang, Thomas Bourgeat, Jules Drean, Joel S. Emer, and Mengjia Yan

5 SECURITY VERIFICATION

In this section, we start by describing a formally modeled system

of DAGguise, followed by an explicitly defined indistinguishability

property. We then provide details on the verification process. We

perform our verification using k-induction [26] (a common tech-

nique for the verification of transition systems) in Rosette [28], a

solver-aided programming language that integrates SMT solvers.

5.1 System Modeling

We model the DAGguise system as a state machine, consisting of

an 𝑟DAG request shaper and a memory controller. We denote the

simulation state of the DAGguise system at the beginning of cycle 𝑖

as 𝑆𝑖 , which includes the states of the shaper, the memory controller,

and the buffers between them. We use 𝑆reset to denote the state

after a reset operation.

The inputs to the state machine are two memory request traces

from a transmitter and a receiver, denoted as Req𝑇𝑥 and Req𝑅𝑥 re-

spectively. The transmitter’s request trace is passed to the request

shaper, while the receiver’s request trace is directly passed to the

memory controller. The outputs of the state machine are two mem-

ory response traces to the transmitter and the receiver, which are

denoted as Resp𝑇𝑥 and Resp𝑅𝑥 . A request/response trace is a vector,

with the element at index 𝑖 describing whether the trace contains a

request/response at cycle 𝑖 and the bank ID of the request/response.

For example, Req𝑇𝑥 [𝑖] = (valid𝑖 , bankID𝑖).

Given a state 𝑆𝑖 at cycle 𝑖 and request traces for 𝑗 cycles, Req𝑇𝑥

and Req𝑅𝑥 , we use the notation 𝑆𝑖
Resp

𝑇𝑥
,Resp

𝑅𝑥

↩−−−−−−−−−−−−→
Req

𝑇𝑥
,Req

𝑅𝑥

𝑆𝑖+𝑗 to denote

simulation of the system for 𝑗 cycles from state 𝑆𝑖 to state 𝑆𝑖+𝑗 that

outputs the response traces Resp𝑇𝑥 to the transmitter and Resp𝑅𝑥
to the receiver.1 The transition function is determined by the con-

figuration of the DAGguise system, including the chosen defense

𝑟DAG and the scheduling policy used by the memory controller.

For demonstration purposes, in our Rosette implementation we

model a simplified memory controller that uses a FCFS scheduling

policy and a constant memory latency of 2 cycles. The modeled

request shaper uses a defense 𝑟DAG with a sequence of strictly de-

pendent requests. It is feasible to extend our tool to verify whether

the security property holds for different 𝑟DAGs and complex mem-

ory controllers.

5.2 Security Property

Recall that in Section 2.3, we consider a system as secure if an ad-

versary (the receiver) cannot distinguish between different request

traces of the victim (the transmitter) based on its own response

latencies. By indistinguishability of request traces, we mean that

the receiver’s response trace Resp𝑅𝑥 is independent from the trans-

mitter’s request trace Req𝑇𝑥 .

We formally define P(𝑆0, 𝑛), meaning the system achieves indis-

tinguishability when running the system from the state 𝑆0 for 𝑛

cycles.

1This standard notation of state machine transition places the input below the arrow
and the output above the arrow.

P(𝑆0, 𝑛) := ∀ Req𝑇𝑥 , Req
′
𝑇𝑥 , ∀ Req𝑅𝑥

if 𝑆0
Resp

𝑇𝑥
,Resp

𝑅𝑥

↩−−−−−−−−−−−−→
Req

𝑇𝑥
,Req

𝑅𝑥

𝑆𝑛 and 𝑆0
Resp′

𝑇𝑥
,Resp′

𝑅𝑥

↩−−−−−−−−−−−−→
Req′

𝑇𝑥
,Req

𝑅𝑥

𝑆 ′𝑛

then Resp𝑅𝑥 = Resp′𝑅𝑥

We verify that P(𝑆0, 𝑛) holds for an arbitrary 𝑛 when setting 𝑆0 =

𝑆reset. Note that in practice, a request may depend on previous

responses, and so may depend on previous requests. This is not

a problem as we prove the property for all possible sequences of

requests, independently of how they came to be.

5.3 Verifying the Security Property using
K-Induction

We use k-induction [26] to verify the security property above. Our

verification involves the following two high-level steps:

1) Base step: Perform bounded model checking to verify that

the security property P(𝑆reset, 𝑘) holds for a small integer 𝑘 ;

2) Induction step: Simulate the system from two arbitrary start-

ing states 𝑆 and 𝑆 ′, taking two arbitrary request traces Req𝑇𝑥
and Req′

𝑇𝑥
for 𝑘+1 cycles. Assuming the receiver cannot dis-

tinguish between the two cases in the first 𝑘 cycles, check

whether the receiver can distinguish them in the (𝑘+1)-th

cycle.

Base Step. To perform the bounded model checking of P(𝑆reset, 𝑘),

we model arbitrary inputs to the system by defining three symbolic

vectors to represent Req𝑇𝑥 , Req
′
𝑇𝑥

, and Req𝑅𝑥 . We then simulate

the system symbolically for 𝑘 cycles and obtain the response traces

for the receiver, Resp𝑅𝑥 and Resp′
𝑅𝑥

. We implement the symbolic

simulation process in Rosette and call the SMT solver to search for

a binding of symbolic vectors to concrete values that violates the

assertion Resp𝑅𝑥 = Resp′
𝑅𝑥

.

Induction Step. The induction step is equivalent to searching for

a violation of the following assertion.

∀ Req𝑇𝑥 , Req
′
𝑇𝑥 , ∀ Req𝑅𝑥 , ∀ 𝑆, 𝑆

′

if 𝑆
Resp

𝑇𝑥
,Resp

𝑅𝑥

↩−−−−−−−−−−−→
Req

𝑇𝑥
,Req

𝑅𝑥

𝑆𝑘+1 and 𝑆
′

Resp′
𝑇𝑥

,Resp′
𝑅𝑥

↩−−−−−−−−−−−→
Req′

𝑇𝑥
,Req

𝑅𝑥

𝑆 ′
𝑘+1

and Resp𝑅𝑥 [0 :𝑘) = Resp′𝑅𝑥 [0 :𝑘)

then Resp𝑅𝑥 [𝑘] = Resp′𝑅𝑥 [𝑘]

Similarly, we use symbolic vectors to represent the request traces

and the starting states, 𝑆 and 𝑆 ′. Again we call the SMT solver to

search for a binding of symbolic vectors to concrete values that

satisfies the assumption Resp𝑅𝑥 [0 :𝑘) = Resp′
𝑅𝑥

[0 :𝑘) and violates

the assertion Resp𝑅𝑥 [𝑘] = Resp′
𝑅𝑥

[𝑘].

We follow standard methodology by incrementing the value of

𝑘 until the induction step succeeds. The minimal 𝑘 is related to the

system’s configuration, proportional to the number of cycles needed

for a request to traverse the whole system. The time complexity

of the verification process increases significantly with the value of

𝑘 . For our specific implementation, the induction step works with

𝑘 = 6, thanks to the simplified configuration of our model. While

the verification is performed on a simplified model, the verification

338

DAGguise: Mitigating Memory Timing Side Channels ASPLOS ’22, February 28 ś March 4, 2022, Lausanne, Switzerland

Table 2: Baseline architecture configurations.

Parameter Value

Multicore 2 and 8 out-of-order cores at 2.4GHz

Core 8-issue, out-of-order, 192-entry ROB

Private L1 32KB each, 64B line, 8-way

I-Cache/D-Cache 4-cycle round-trip (RT) latency

Private L2 Cache 256kB, 64B line, 16-way, 13-cycle RT latency

Shared L3 Cache 1MB per core, 64B line, 16-way

42-cycle RT latency

4GB (2-core) and 8GB (8-core)

DRAM Configuration 1 Channel, 1 Rank/Channel, 8 Banks/Rank

Frequency: 1600Mbps

𝑡𝑅𝐶 = 39, 𝑡𝑅𝐶𝐷 = 11, 𝑡𝑅𝐴𝑆 = 28, 𝑡𝐹𝐴𝑊 = 24,

DRAM Timing 𝑡𝑊𝑅 = 12, 𝑡𝑅𝑃 = 11, 𝑡𝑅𝑇𝑅𝑆 = 2, 𝑡𝐶𝐴𝑆 = 11,

Parameters 𝑡𝑅𝑇𝑃 = 6, 𝑡𝐵𝑈𝑅𝑆𝑇 = 4, 𝑡𝐶𝐶𝐷 = 4, 𝑡𝑊𝑇𝑅 = 6,

𝑡𝑅𝑅𝐷 = 5, 𝑡𝑅𝐸𝐹𝐼 = 7.8𝜇𝑠, 𝑡𝑅𝐹𝐶 = 260𝑛𝑠

process itself is sound, with potential to extend to more complex

configurations.

6 EVALUATION

6.1 Experimental Setup

To evaluate the performance overhead of DAGguise, we use

gem5 [4], a cycle-accurate simulator. We use DRAMSim2 [23] to

model the memory controller and DIMMs. Table 2 shows the details

of the simulated architectures.

Experiment Configurations. We compare DAGguise and FS-

BTA, a state-of-the-art protection scheme, against an insecure base-

line. FS-BTA is short for Fixed Service Bank Triple Alternation, a

performance optimized variant of Fixed Service [25]. FS-BTA ag-

gressively pipelines requests such that parallel bank accesses can

occur under narrow circumstances, while still maintaining non-

interference.

The insecure baseline uses an open-row policy, while FS-BTA

and DAGguise utilize a closed-row policy to mitigate row-buffer at-

tacks. Both schemes can mitigate the memory timing side channels

described in Section 2.2. Note that we do not provide a performance

comparison to Camouflage [36] as it does not fully hide bank con-

tention, while most of the performance penalties associated with

FS-BTA and DAGguise stem from protecting bank access patterns.

Benchmarks. To evaluate the impact of DAGguise on overall sys-

tem performance, we co-locate victim programs with benchmark

applications on separate cores. The sample set of fifteen co-running

benchmark applications are selected from the SPEC2017rate

suite [16]. For each SPEC application, we utilize the SimPoint

methodology [21] to run up to 10 representative intervals of 50

million instructions each to accurately reflect the application’s

performance [35]. The caches are populated prior to interval data

collection using 1 million warm-up instructions, and all simulations

are run using gem5’s system call emulation mode.

We use two victim programs: Document Distance (DocDist) and

DNA sequence matching (DNA), which process unstructured data

and can leak information via memory accesses [34].

DocDist [11] compares documents for similarity, computing the

distance between a private input document and a public reference

blender

cactuBSSN
cam4

deepsjeng

exchange2
fotonik3d lbm leela nab

namd
povray

roms wrf
x264 xz

geomean

test

0.0

0.2

0.4

0.6

0.8

Av
er

ag
e

No
rm

al
ize

d
IP

C

FS-BTA DAGguise DocDist SPEC

Figure 9: Average Normalized IPC runningDocDist with one

SPEC application on a two-core system.

document. DocDist precomputes a feature vector counting the fre-

quency of each word in the reference document. Upon receiving

an input document, it first computes a feature vector for that doc-

ument, then computes the euclidean distance between the input

and the reference feature vectors. The access pattern to the feature

vectors can leak information.

DNA sequence matching [24] takes a private DNA sequence as

input and aligns it with a public DNA sequence. Specifically, the

public DNA sequence is divided into substrings and stored in a hash

table. To do the alignment, the hash table is searched for common

substrings with the private DNA sequence. The access pattern to

the hash table can leak information.

We perform system-wide performance evaluations across two

system environments. In Section 6.2 we evaluate a two-core system

running one protected application and one SPEC benchmark. We

extend our analysis in Section 6.3 to evaluate DAGguise’s scalability

on an eight-core system running four protected domains alongside

four co-running SPEC benchmarks.

6.2 Performance Overhead

To measure the impact that DAGguise has on overall system per-

formance within a two-core system, we measure the IPCs of each

application (DocDist protected by DAGguise, and one SPEC bench-

mark), and then normalize each IPC to its baseline performance

under the insecure configuration (under the same co-location). We

then take the average of these values to arrive at an average nor-

malized IPC, representing the overall performance of the system,

shown in Figure 9.

We observe that in a two-core environment DAGguise has a

10% system slowdown compared to the insecure baseline, while

enjoying a modest performance increase over FS-BTA, achieving a

relative 6% performance increase.

As a general trend, we note that DAGguise is particularly good

at maintaining the performance of co-running applications at the

expense of the protected program’s performance. In most observed

cases, the SPEC program performs better using DAGguise than

FS-BTA (20% better, on average), while DocDist does worse (7%

worse, on average), resulting in an overall system speedup. For

some non-memory-bound benchmarks (such as leela) we observe

an overall decrease in performance, as the additional bandwidth

made available to unprotected applications by DAGguise is not

used by the benchmark, while the protected program still pays

339

ASPLOS ’22, February 28 ś March 4, 2022, Lausanne, Switzerland Peter W. Deutsch, Yuheng Yang, Thomas Bourgeat, Jules Drean, Joel S. Emer, and Mengjia Yan

blender

cactuBSSN
cam4

deepsjeng

exchange2
fotonik3d lbm leela nab

namd
povray

roms wrf
x264 xz

geomean
0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

No
rm

al
ize

d
IP

C

FS-BTA DAGguise DocDist DNA SPEC

Figure 10: AverageNormalized IPCof twoDocDist, twoDNA,

and four SPEC processes on an eight-core system.

costs for the shaper. We hypothesize that additional performance

for protected programs may be achieved by expanding the 𝑟DAG

search space to consider more complex defense 𝑟DAGs.

6.3 Scalability

In order to demonstrate our system’s scalability compared to FS-

BTA, we expand our simulation to encompass multiple co-running

victim programs alongside unprotected applications. On an eight-

core systemwe use four DAGguise shapers to protect four programs,

two copies of DocDist and two of DNA, co-located with four iden-

tical unprotected copies of SPEC benchmarks. Under FS-BTA, each

individual victim receives 1

8
of the total number of slots, while the

remaining 4

8
slots are shared amongst the SPEC applications.

The average normalized IPC results for our eight-core experi-

ment are shown in Figure 10. DAGguise encounters a 34% system-

wide slowdown compared to the insecure baseline, with an im-

proved 12% average system-wide performance gain relative to FS-

BTA. In a heavily provisioned system protected by DAGguise we

observe that most applications, not just unprotected ones, achieve

a relative speed-up compared to their performance under FS-BTA.

This suggests that DAGguise is indeed versatile to complex band-

width patterns, allowing for better bandwidth utilization compared

to FS-BTA.

6.4 Area Overhead

To evaluate the area overhead of DAGguise, we compute the com-

bined area of the computation logic (described in Section 4.4) and

the private transaction queues.

We implement the computation logic in RTL, synthesizing it us-

ing the YoSys suite [31] and the 45nm FreePDK45 cell library [15].

We evaluate an eight shaper configuration (allowing for eight in-

dependent security domains), each supporting eight banks, 16-bit

𝑟DAG weights, and eight private queue entries. The implementa-

tion supports template 𝑟DAGs like in Figure 6, allowing 1, 2, 4, and

8-parallel patterns.

To evaluate the SRAM area overhead of the private transaction

queues, we use Cacti [3]. Each private queue is sized to match

the expected maximum number of parallel memory accesses of a

protected program. Each queue entry contains a request’s 64-bit

address and, if the request is a write, 64B of data. Even if the queue

Table 3: Area overhead ofDAGguise for 8 protected domains.

Component Resources Area (𝑚𝑚2)

Computation Logic 13424 Gates 0.02022

Private Queue (8 × 8 entries) 4608 B (72B×64) SRAM 0.01705

Total ś 0.03727

is full, we do not leak any information, as each queue is private to

a security domain.

The area of the computation logic and private transaction queues

is reported in Table 3, with an eight shaper configuration ultimately

requiring a footprint of only 0.037𝑚𝑚2.

7 GENERALIZING DAGGUISE TO MITIGATE
OTHER TYPES OF SIDE CHANNELS

While this paper focuses on mitigating memory timing side chan-

nels, its key insights (to shape request patterns using an 𝑟DAG) are

even more general. DAGguise can be applied to address a broader

range of side channels, such as those that exploit contention in SMT

cores [2], on-chip networks [30], cache banks [33], etc. Similar to

main memory, these resources are all associated with schedulers

which decide the order in which requests are served, such as a

pipeline scheduler deciding which instruction will use a functional

unit, and a Network-on-Chip scheduler deciding which packet will

use a network link. The scheduler introduces extra latency to some

requests due to contention, which can leak information.

The principles of DAGguise can be used to mitigate these

scheduler-based channels. For example, consider using DAGguise

to block leakage via functional unit contention in SMT cores. We

can profile the transmitter program and construct a defense 𝑟DAG,

where each vertex represents an instruction’s request to use a spe-

cific type of functional unit. We then place a request shaper between

the decode and the dispatch stages. The shaper emits requests fol-

lowing the defense 𝑟DAG by delaying instructions and emitting

fake instructions. It is promising to improve performance by pair-

ing defense 𝑟DAGs with complementary functional unit bandwidth

requirements on the same core. We leave this as future work.

8 RELATED WORK

We have discussed most related work in Section 3. A few other

pertinent works are as follows.

Temporal partitioning (TP) [29] divides time into fixed-length

periods during which only requests from a given security domain

are scheduled, rather than interleaving requests, as in Fixed Ser-

vice [25]. TP still guarantees non-interference but performs worse

than FS, suffering from a static bandwidth allocation.

In addition to FS-BTA, which we compare against in Section 6,

Fixed Service [25] has other variants which perform spatial parti-

tioning at the bank, rank, or channel-level. While these variants can

improve performance, they severely limit the number of simultane-

ous programs and the allowable memory usage of each. DAGguise

has no such spatial partitioning requirements.

Ascend [9] and its follow-up paper [10] examine a different threat

model and consider a passive (non-interfering) attacker probing

memory buses to observe request patterns, and tries to obfuscate

340

DAGguise: Mitigating Memory Timing Side Channels ASPLOS ’22, February 28 ś March 4, 2022, Lausanne, Switzerland

them using traffic shaping. They rely on a fixed request rate that is

changed periodically, resulting in bounded amounts of leakage.

9 CONCLUSION

We introduced DAGguise, an effective defense mechanism against

memory timing side channels. DAGguise utilizes Directed Acyclic

Request Graphs (𝑟DAGs), a novel memory request pattern represen-

tation, to shape memory access patterns into secret-independent

ones. DAGguise is able to attain formally verified security guar-

antees while allowing for dynamic traffic contention to achieve

good performance, only requiring a lightweight and feasible offline

profiling process. DAGguise’s insights can further be applied to

other scheduler-based side channels which exploit contention in

other microarchitectural structures, such as SMT cores and on-chip

networks.

ACKNOWLEDGMENTS

This work was funded in part by the NSF under grant CNS-2046359,

and by the Air Force Office of Scientific Research (AFOSR) under

grant FA9550-20-1-0402. We thank the anonymous reviewers and

our shepherd Onur Mutlu for all of their valuable feedback. We

also thank Zirui (Neil) Zhao for his help in generating the SPEC

application checkpoints used in the evaluation.

A ARTIFACT APPENDIX

A.1 Abstract

Our artifact comprises of two distinct parts: a unified gem5 and

DRAMSim2 model (for performance evaluation), and a Rosette

model (for security verification).

The unified gem5 and DRAMSim2 model is to profile defense

𝑟DAGs and evaluate the performance of DAGguise. To profile de-

fense 𝑟DAGs, we include the sample victim programs (DocDist and

DNA) as described in the paper, in addition to an 𝑟DAG generation

tool. For performance comparison, our model also evaluates an

insecure baseline and another secure scheme (FS-BTA).

The Rosette model is to verify the security property of DAGguise

using k-induction as described in Section 5 of the paper.

A.2 Artifact Check-List (Meta-Information)

gem5 Simulator:

• Program: SPEC 2017, DocDist, and DNA (mrsFAST).

• Compilation: SPEC 2017 was compiled with clang-3.9, and gem5

was compiled with gcc-5.4.0.

• Data set: SPEC 2017 benchmark inputs are reference size.

• Run-time environment: Linux (with Docker support).

• Hardware: 48-core machine recommended (but not required).

• Run-time state: We utilize the SimPoint methodology to run up

to 10 representative intervals of 50 million instructions each to

accurately reflect the application’s performance.

• Metrics: Results are reported as normalized CPI and average DRAM

memory bandwidth.

• Output: Plots are generated using the provided scripts.

• How much disk space required (approximately)?: The simula-

tion framework occupy approx 2GB, and the SPEC benchmarks (+

checkpoints) occupy approx 40GB.

• How much time is needed to prepare workflow (approxi-

mately)?: 1 Hour.

• Howmuch time is needed to complete experiments (approx-

imately)?: 1 Day.

• Publicly available?: Yes - https://github.com/CSAIL-Arch-

Sec/DAGguise

• Code licenses (if publicly available)?: Berkeley Style (gem5),

BSD (DRAMSim2, mrsFAST), Proprietary (SPEC 2017).

• Workflow framework used?: HTCondor is used to launch batch

jobs.

• Archived (provide DOI)?: 10.5281/zenodo.5748606

Rosette Implementation:

• Run-time environment: Linux (with Docker support), Racket in-

terpreter, Rosette library.

• How much disk space required (approximately)?: 1GB.

• Howmuch time is needed to complete experiments (approx-

imately)?: 1 Hour.

• Publicly available?: Yes - https://github.com/CSAIL-Arch-

Sec/DAGguise-verification

• Code licenses (if publicly available)?:MIT License.

• Archived (provide DOI)?: 10.5281/zenodo.5748606

B GEM5 ARTIFACT

B.1 Description

B.1.1 How to Access. Our unified simulator model can be found

at https://github.com/CSAIL-Arch-Sec/DAGguise.

B.1.2 Software Dependencies. The gem5 simulator in-

frastructure was tested on Ubuntu 18.04. We require

the same dependencies as a standard gem5 installation

(https://www.gem5.org/documentation/general_docs/building).

For plotting, we require some additional Python libraries, which

can be installed by running:

pip3 install -r eval_scripts/requirements.txt

For convenience, we additionally include a complete Dockerfile

which captures all software dependencies required to build and

use our infrastructure. However, as recreating our results requires

running roughly 500 simulation instances, we highly recommend

running HTCondor (without using Docker) to manage these jobs.

B.1.3 Data Sets. SPEC 2017 benchmark inputs are reference size.

B.2 Installation

Clone the DAGguise repository with --recurse-submodules to also

get the DRAMSim2 implementation.

After cloning the repository, set the following environment

variables:

export GEM5_ROOT=/path/to/gem5/

export SPEC_ROOT=/path/to/SPEC/

Then, following the experimental workflow below will automati-

cally build/execute the simulation as required.

B.3 Experiment Workflow

B.3.1 Overview. We include an example workflow to reproduce

Figures 7 and 9 in eval_scripts/.

341

https://github.com/CSAIL-Arch-Sec/DAGguise
https://www.gem5.org/documentation/general_docs/building

ASPLOS ’22, February 28 ś March 4, 2022, Lausanne, Switzerland Peter W. Deutsch, Yuheng Yang, Thomas Bourgeat, Jules Drean, Joel S. Emer, and Mengjia Yan

Building Simulator and Preparing Checkpoints:

• run_once.sh - Patches the user-provided SPEC2017 gem5

checkpoints to be compatible with the provided version of

gem5 (this only should be run once).

• build_gem5.sh - Builds gem5 using the standard SCons

workflow.

• generate_sample_checkpoints.sh - Builds DocDist (the

sample victim program) and generates a standalone check-

point.

Generating Figure 7:

• run_sensitivity_condor.sh - Runs the defense 𝑟DAG pa-

rameter sweep (i.e. the offline profiling step, described in

Section 4.3).

• plot_fig7.sh - Plots the results shown in Figure 7.

Generating Figure 9:

• merge_checkpoint.sh - Merges the single CPU check-

points of DocDist and each SPEC SimPoint checkpoint into

a new combined checkpoint (used for 2 CPU simulation).

• generate_dag.sh - Generates a sample defense 𝑟DAG.

• run_simu.sh - Executes the merged SPEC/DocDist check-

point(s) under the simulator framework.

• plot_fig9.sh - Plots the results shown in Figure 9.

Some scripts are split into _single and _condor variants. The

_single scripts are used to execute a single SimPoint/DocDist

execution pair, while _condor scripts are used for batch execution.

B.3.2 Running in Docker. While we recommend running outside

of a Docker environment due to the relatively large size of the

SPEC benchmark suite, we do include a Dockerfile if desired. To

build the docker environment, run:

docker build -t dagguise . -f docker/Dockerfile

from the root directory. Then, you can ssh into the docker

environment by running:

docker run –rm -it –entrypoint bash dagguise

B.3.3 Running with HTCondor. If the system has HTCondor in-

stalled (highly recommended), running the _condor variant scripts

will handle job submission on your behalf. To check the status of

the jobs, run condor_q.

B.4 Evaluation and Expected Results

Following the aforementioned workflow should generate Figures 7

and 9 which match those in the paper.

B.5 Experiment Customization

To change the 𝑟DAG under examination when repro-

ducing Figure 9, modify the flags provided within the

generate_dag.sh script. More information about the sup-

ported flags can be found in the DAG generation tool source code

(dag_generator/dag_generator.py).

The sample victim programs (found in sample_programs/) can

also be tweaked if desired.

C ROSETTE ARTIFACT

C.1 Description

C.1.1 How to Access. Our Rosette model can be found at https:

//github.com/CSAIL-Arch-Sec/DAGguise-verification.

C.1.2 Software Dependencies. The security verification tool was

tested on Ubuntu 18.04. We include a complete Dockerfile which

captures all software requirements to build and use our verification

tool, including the Racket environment and Rosette library.

C.2 Installation

After cloning the repository, enter the repository folder and build

the docker environment by running:

docker-compose up -d

C.3 Experiment Workflow

Log into the docker container and enter the repository folder with:

docker-compose exec dagguise-verification bash

cd /DAGguise-verification

Run the security verification tool with:

raco test src/checkSecu.rkt

or

raco test ++arg –cycle ++arg 5 src/checkSecu.rkt

The command without extra arguments runs k-induction with the

default value of 𝐾 = 6. The user can test with different 𝐾 values,

such as 𝐾 = 5 in the above example.

C.4 Evaluation and Expected Results

The security verification tool implements k-induction and verifies

the base and induction steps. With a properly-chosen K, such as

𝐾 = 6, the program should output:

**** Base Step Finished ****

(unsat)

...

**** Induction Step Finished ****

(unsat)

meaning the security property is not violated and no counter ex-

ample is found. We find 6 is the minimal value of 𝐾 to prove the

security property of our DAGguise model.

With an improperly-chosen K, such as 𝐾 = 5, the program

should output a counter example. This means the verification is

unsuccessful, and the user should try a larger K value.

D METHODOLOGY

Submission, reviewing and badging methodology:

• https://www.acm.org/publications/policies/artifact-review-

badging

• http://cTuning.org/ae/submission-20201122.html

• http://cTuning.org/ae/reviewing-20201122.html

342

https://github.com/CSAIL-Arch-Sec/DAGguise-verification
https://github.com/CSAIL-Arch-Sec/DAGguise-verification
https://www.acm.org/publications/policies/artifact-review-badging
https://www.acm.org/publications/policies/artifact-review-badging
http://cTuning.org/ae/submission-20201122.html
http://cTuning.org/ae/reviewing-20201122.html

DAGguise: Mitigating Memory Timing Side Channels ASPLOS ’22, February 28 ś March 4, 2022, Lausanne, Switzerland

REFERENCES
[1] Onur Acıiçmez, Çetin Kaya Koç, and Jean-Pierre Seifert. 2007. Predicting Secret

Keys via Branch Prediction. In Cryptographers’ Track at the RSA Conference
(CT-RSA). Springer.

[2] Alejandro Cabrera Aldaya, Billy Bob Brumley, Sohaib ul Hassan, Cesar Pereida
García, and Nicola Tuveri. 2019. Port Contention for Fun and Profit. In 2019 IEEE
Symposium on Security and Privacy (SP). IEEE. https://doi.org/10.1109/SP.2019.
00066

[3] Rajeev Balasubramonian, Andrew B Kahng, Naveen Muralimanohar, Ali Shafiee,
and Vaishnav Srinivas. 2017. CACTI 7: New Tools for Interconnect Exploration
in Innovative Off-chip Memories. ACM Transactions on Architecture and Code
Optimization (2017). https://doi.org/10.1145/3085572

[4] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K Reinhardt, Ali
Saidi, Arkaprava Basu, Joel Hestness, Derek R Hower, Tushar Krishna, Somayeh
Sardashti, Rathijit Sen, Korey Sewell, Muhammad Shoaib, Nilay Vaish, Mark D.
Hill, and David A. Wood. 2011. The Gem5 Simulator. ACM SIGARCH Computer
Architecture News (2011). https://doi.org/10.1145/2024716.2024718

[5] Thomas Bourgeat, Jules Drean, Yuheng Yang, Lillian Tsai, Joel Emer, and Mengjia
Yan. 2020. CaSA: End-to-end Quantitative Security Analysis of RandomlyMapped
Caches. In Proceedings of the 53th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO). IEEE. https://doi.org/10.1109/MICRO50266.2020.
00092

[6] Victor Costan, Ilia Lebedev, and Srinivas Devadas. 2016. Sanctum: Minimal
Hardware Extensions for Strong Software Isolation. In 25th USENIX Security
Symposium (USENIX Security). USENIX Association.

[7] Shuwen Deng, Wenjie Xiong, and Jakub Szefer. 2020. A Benchmark Suite for
Evaluating Caches’ Vulnerability to Timing Attacks. In Proceedings of the 25th
International Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS). ACM. https://doi.org/10.1145/3373376.3378510

[8] Dmitry Evtyushkin, Ryan Riley, Nael CSE Abu-Ghazaleh, ECE, and Dmitry Pono-
marev. 2018. BranchScope: A New Side-Channel Attack on Directional Branch
Predictor. In Proceedings of the 23rd International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS). ACM.
https://doi.org/10.1145/3173162.3173204

[9] Christopher W Fletcher, Marten van Dijk, and Srinivas Devadas. 2012. A Secure
Processor Architecture for Encrypted Computation on Untrusted Programs. In
Proceedings of the seventh ACM workshop on Scalable trusted computing. ACM.
https://doi.org/10.1145/2382536.2382540

[10] Christopher W Fletchery, Ling Ren, Xiangyao Yu, Marten Van Dijk, Omer Khan,
and Srinivas Devadas. 2014. Suppressing the Oblivious RAM Timing Channel
while Making Information Leakage and Program Efficiency Trade-offs. In 2014
IEEE 20th International Symposium on High Performance Computer Architecture
(HPCA). IEEE. https://doi.org/10.1109/HPCA.2014.6835932

[11] Hazem Gamal. 2020. Document Distance. https://github.com/Hazem-Gamall/
document-distance.

[12] Intel. 2013. Intel Software Guard Extensions Programming Reference. https:
//software.intel.com/en-us/sgx/sdk.

[13] Bruce Jacob, David Wang, and Spencer Ng. 2010. Memory Systems: Cache, DRAM,
Disk. Morgan Kaufmann.

[14] Vladimir Kiriansky, Ilia Lebedev, Saman Amarasinghe, Srinivas Devadas, and
Joel Emer. 2018. DAWG: A Defense Against Cache Timing Attacks in Speculative
Execution Processors. In 51st Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO). IEEE. https://doi.org/10.1109/MICRO.2018.00083

[15] Jesper Knudsen. 2008. Nangate 45nm open cell library. CDNLive, EMEA (2008).
[16] Samuel Kounev, Klaus-Dieter Lange, and Jóakim von Kistowski. 2020. The SPEC

CPU Benchmark Suite. In Systems Benchmarking. Springer.
[17] Dayeol Lee, David Kohlbrenner, Shweta Shinde, Krste Asanović, and Dawn

Song. 2020. Keystone: An Open Framework for Architecting Trusted Execution
Environments. In Proceedings of the Fifteenth European Conference on Computer
Systems. ACM. https://doi.org/10.1145/3342195.3387532

[18] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B Lee. 2015. Last-
Level Cache Side-Channel Attacks are Practical. In 2015 IEEE Symposium on
Security and Privacy (SP). IEEE. https://doi.org/10.1109/SP.2015.43

[19] Michael Neve and Jean-Pierre Seifert. 2006. Advances on Access-driven Cache
Attacks on AES. In Selected Areas in Cryptography. Springer.

[20] Colin Percival. 2005. Cache Missing for Fun and Profit. http://www.daemonology.
net/papers/htt.pdf.

[21] Erez Perelman, Greg Hamerly, Michael Van Biesbrouck, Timothy Sherwood, and
Brad Calder. 2003. Using Simpoint for Accurate and Efficient Simulation. ACM
SIGMETRICS Performance Evaluation Review (2003). https://doi.org/10.1145/
781027.781076

[22] Peter Pessl, Daniel Gruss, Clémentine Maurice, Michael Schwarz, and Stefan
Mangard. 2016. DRAMA: Exploiting DRAM Addressing for Cross-CPU Attacks.
In 25th USENIX Security Symposium (USENIX Security). USENIX Association.

[23] Paul Rosenfeld, Elliott Cooper-Balis, and Bruce Jacob. 2011. DRAMSim2: A Cycle
Accurate Memory System Simulator. IEEE Computer Architecture Letters (2011).
https://doi.org/10.1109/L-CA.2011.4

[24] sfu compbio. 2020. DNA Sequence Matching. https://github.com/sfu-compbio/
mrsfast.

[25] Ali Shafiee, Akhila Gundu, Manjunath Shevgoor, Rajeev Balasubramonian, and
Mohit Tiwari. 2015. Avoiding Information Leakage in the Memory Controller
with Fixed Service Policies. In Proceedings of the 48th International Symposium on
Microarchitecture (MICRO). ACM. https://doi.org/10.1145/2830772.2830795

[26] Mary Sheeran, Satnam Singh, and Gunnar Stålmarck. 2000. Checking Safety
Properties Using Induction and a SAT-solver. In Formal Methods in Computer-
Aided Design. Springer.

[27] Jakub Szefer. 2016. Survey of Microarchitectural Side and Covert Channels,
Attacks, and Defenses. Journal of Hardware and Systems Security (2016).

[28] Emina Torlak and Rastislav Bodik. 2013. Growing Solver-Aided Languages
with Rosette. In Proceedings of the 2013 ACM International Symposium on New
Ideas, New Paradigms, and Reflections on Programming & Software. ACM. https:
//doi.org/10.1145/2509578.2509586

[29] Yao Wang, Andrew Ferraiuolo, and G. Edward Suh. 2014. Timing Channel
Protection for a Shared Memory Controller. In 2014 IEEE 20th International
Symposium on High Performance Computer Architecture (HPCA). IEEE. https:
//doi.org/10.1109/HPCA.2014.6835934

[30] Hassan M. G. Wassel, Ying Gao, Jason K. Oberg, Ted Huffmire, Ryan Kastner,
Frederic T. Chong, and Timothy Sherwood. 2013. SurfNoC: A Low Latency and
Provably Non-interfering Approach to Secure Networks-on-chip. In Proceedings
of the 40th Annual International Symposium on Computer Architecture (ISCA).
ACM. https://doi.org/10.1145/2485922.2485972

[31] Clifford Wolf. 2016. Yosys Open SYnthesis Suite. https://yosyshq.net/yosys/.
[32] Yuval Yarom and Katrina Falkner. 2014. Flush+Reload: A High Resolution,

Low Noise, L3 Cache Side-channel Attack. In 23rd USENIX Security Symposium
(USENIX Security). USENIX Association.

[33] Yuval Yarom, Daniel Genkin, and Nadia Heninger. 2017. CacheBleed: A Timing
Attack on OpenSSL Constant Time RSA. Journal of Cryptographic Engineering
(2017). https://doi.org/10.1007/s13389-017-0152-y

[34] Xiangyao Yu, Christopher W Fletcher, Ling Ren, Marten van Dijk, and Srini-
vas Devadas. 2013. Generalized External Interaction with Tamper-Resistant
Hardware with Bounded Information Leakage. In Proceedings of the 2013 ACM
Workshop on Cloud Computing Security Workshop. ACM. https://doi.org/10.1145/
2517488.2517498

[35] Zirui Zhao, Houxiang Ji, Mengjia Yan, Jiyong Yu, Christopher W. Fletcher, Adam
Fletcher, Darko Marinov, and Josep Torrellas. 2020. Speculation Invariance
(InvarSpec): Faster Safe Execution Through Program Analysis. In Proceedings of
the 53th Annual IEEE/ACM International Symposium onMicroarchitecture (MICRO).
IEEE. https://doi.org/10.1109/MICRO50266.2020.00094

[36] Yanqi Zhou, Sameer Wagh, Prateek Mittal, and David Wentzlaff. 2017. Camou-
flage: Memory Traffic Shaping to Mitigate Timing Attacks. In 2017 IEEE Inter-
national Symposium on High Performance Computer Architecture (HPCA). IEEE.
https://doi.org/10.1109/HPCA.2017.36

343

https://doi.org/10.1109/SP.2019.00066
https://doi.org/10.1109/SP.2019.00066
https://doi.org/10.1145/3085572
https://doi.org/10.1145/2024716.2024718
https://doi.org/10.1109/MICRO50266.2020.00092
https://doi.org/10.1109/MICRO50266.2020.00092
https://doi.org/10.1145/3373376.3378510
https://doi.org/10.1145/3173162.3173204
https://doi.org/10.1145/2382536.2382540
https://doi.org/10.1109/HPCA.2014.6835932
https://github.com/Hazem-Gamall/document-distance
https://github.com/Hazem-Gamall/document-distance
https://software.intel.com/en-us/sgx/sdk
https://software.intel.com/en-us/sgx/sdk
https://doi.org/10.1109/MICRO.2018.00083
https://doi.org/10.1145/3342195.3387532
https://doi.org/10.1109/SP.2015.43
http://www.daemonology.net/papers/htt.pdf
http://www.daemonology.net/papers/htt.pdf
https://doi.org/10.1145/781027.781076
https://doi.org/10.1145/781027.781076
https://doi.org/10.1109/L-CA.2011.4
https://github.com/sfu-compbio/mrsfast
https://github.com/sfu-compbio/mrsfast
https://doi.org/10.1145/2830772.2830795
https://doi.org/10.1145/2509578.2509586
https://doi.org/10.1145/2509578.2509586
https://doi.org/10.1109/HPCA.2014.6835934
https://doi.org/10.1109/HPCA.2014.6835934
https://doi.org/10.1145/2485922.2485972
https://yosyshq.net/yosys/
https://doi.org/10.1007/s13389-017-0152-y
https://doi.org/10.1145/2517488.2517498
https://doi.org/10.1145/2517488.2517498
https://doi.org/10.1109/MICRO50266.2020.00094
https://doi.org/10.1109/HPCA.2017.36

	Abstract
	1 Introduction
	1.1 Mitigation Challenges
	1.2 Our Proposal: rDAGs and DAGguise

	2 Background
	2.1 Memory Basics
	2.2 Memory Timing Side Channels
	2.3 Threat Model

	3 Motivation
	3.1 Limitations of Existing Approaches
	3.2 Design Goals

	4 DAGguise: rDAG Request Shaper
	4.1 Directed Acyclic Request Graph (rDAG)
	4.2 An Illustrative Example
	4.3 Offline Profiling Method
	4.4 Online Shaping Mechanism

	5 Security Verification
	5.1 System Modeling
	5.2 Security Property
	5.3 Verifying the Security Property using K-Induction

	6 Evaluation
	6.1 Experimental Setup
	6.2 Performance Overhead
	6.3 Scalability
	6.4 Area Overhead

	7 Generalizing DAGguise to Mitigate Other Types of Side Channels
	8 Related Work
	9 Conclusion
	Acknowledgments
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact Check-List (Meta-Information)

	B gem5 Artifact
	B.1 Description
	B.2 Installation
	B.3 Experiment Workflow
	B.4 Evaluation and Expected Results
	B.5 Experiment Customization

	C Rosette Artifact
	C.1 Description
	C.2 Installation
	C.3 Experiment Workflow
	C.4 Evaluation and Expected Results

	D Methodology
	References

