
MIT Open Access Articles

Snipperclips: Cutting tools into desired polygons using themselves

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Abel, Zachary, Akitaya, Hugo, Chiu, Man-Kwun, Demaine, Erik D, Demaine, Martin L et
al. 2021. "Snipperclips: Cutting tools into desired polygons using themselves." Computational
Geometry: Theory and Applications, 98.

As Published: 10.1016/J.COMGEO.2021.101784

Publisher: Elsevier BV

Persistent URL: https://hdl.handle.net/1721.1/143963

Version: Author's final manuscript: final author's manuscript post peer review, without
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-NonCommercial-NoDerivs License

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/143963
http://creativecommons.org/licenses/by-nc-nd/4.0/

Snipperclips: Cutting Tools into Desired

Polygons using Themselves∗

Zachary Abel† Hugo Akitaya‡ Man-Kwun Chiu§

Erik D. Demaine† Martin L. Demaine† Adam Hesterberg†

Matias Korman¶ Jayson Lynch‖ André van Renssen∗∗

Marcel Roeloffzen††

Abstract

We study Snipperclips, a computer puzzle game whose objective is
to create a target shape with two tools. The tools start as constant-
complexity shapes, and each tool can snip (i.e., subtract its current shape
from) the other tool. We study the computational problem of, given a
target shape represented by a polygonal domain of n vertices, is it possible
to create it as one of the tools’ shape via a sequence of snip operations? If
so, how many snip operations are required? We consider several variants
of the problem (such as allowing the tools to be disconnected and/or using
an undo operation) and bound the number of operations needed for each
of the variants.

1 Introduction

Snipperclips: Cut It Out, Together! [10] is a puzzle game developed by SFB
Games and published by Nintendo worldwide on March 3, 2017 for their new
console, Nintendo Switch. In the game, up to four players cooperate to solve

∗An extended abstract of this paper appeared in the proceedings of the 29th Canadian
Conference on Computational Geometry (CCCG 2017) [4]. M. C. was supported by ERC StG
757609. M. K. was partially supported by MEXT KAKENHI Nos. 12H00855, and 17K12635.
M.-K. C., M. R. and A. v. R. were supported by JST ERATO Grant Number JPMJER1201,
Japan.

†Massachusetts Institute of Technology, Cambridge, Massachusetts, USA, {zabel,
edemaine,mdemaine,achester,}@mit.edu

‡University of Massachusetts Lowell, USA, hugo akitaya@uml.edu
§Institut für Informatik, Freie Universität Berlin, chiumk@zedat.fu-berlin.de
¶Siemens EDA (formerly Mentor Graphics), OR, USA. matias korman@mentor.com.
‖University of Waterloo, Ontario, Canada.jayson.lynch@uwaterloo.ca

∗∗University of Sydney, Sydney, Australia, andre.vanrenssen@sydney.edu.au
††TU Eindhoven, Eindhoven, the Netherlands, m.j.m.roeloffzen@tue.nl

1

ar
X

iv
:2

10
5.

08
30

5v
1

 [
cs

.C
G

]
 1

8
M

ay
 2

02
1

{zabel,edemaine,mdemaine,achester,}@mit.edu
{zabel,edemaine,mdemaine,achester,}@mit.edu
hugo_akitaya@uml.edu
chiumk@zedat.fu-berlin.de
matias_korman@mentor.com
jayson.lynch@uwaterloo.ca
andre.vanrenssen@sydney.edu.au
m.j.m.roeloffzen@tue.nl

puzzles. Each player controls a character1 whose shape starts as a rectangle in
which two corners have been rounded so that one short side becomes a semi-
circle. The main mechanic of the game is snipping : when two such characters
partially overlap, one character can snip the other character, i.e., subtract the
current shape of the first character from the current shape of the latter charac-
ter; see Figure 1 (top middle) where the yellow character snips the red character
subtracting from it their intersection (which is shown in green). In addition, a
reset operation allows a character to restore its original shape. Finally, an undo
operation allows a character to restore its shape to what it was before the prior
snip or reset operation. A more formal definition of these operations follows
in the next section. An unreleased 2015 version of this game, Friendshapes by
SFB Games, had the same mechanics, but supported only up to two players [6].

Puzzles in Snipperclips have varying goals, but an omnipresent subgoal is
to form one or more players into desired shape(s), so that they can carry out
required actions. In particular, a core puzzle type (“Shape Match”) has one
target shape which must be (approximately) formed by the union of the char-
acters’ shapes. In this paper, we study when this goal is attainable, and when
it is, analyze the minimum number of operations required.

2 Problem definition and results

For the remainder of the paper we consider the case of exactly two characters
or tools T1 and T2. For geometric simplicity, we assume that the initial shape of
both tools is a unit square. Most of the results in this paper work for nice (in
particular, fat) constant-complexity initial shapes, such as the rounded rectangle
in Snipperclips, but would result in a more involved description.

We view each tool as an open set of points that can be rotated and trans-
lated freely.2 After any rigid transformation, if the two tools have nonempty
intersection, we can snip (or cut) one of them, i.e., remove from one of the tools
the closure of the intersection of the two tools (or equivalently, the closure of
the other tool, see Figure 2). Note that by removing the closure we preserve the
invariant that both tools remain open sets. In addition to the snip operation,
we can reset a tool, which returns it back to its original unit-square shape.

After a snip operation, the changed tool could become disconnected. There
are two natural variants on the problem of how to deal with disconnection. In
the connected model, we force each tool to be a single connected component.
Thus, if the snip operation disconnects a tool, the user can choose which com-
ponent to use as the new tool. In the disconnected model, we allow the tool
to become disconnected, viewing a tool as a set of points to which we apply
rigid transformations and the snip/reset operation. The Snipperclips game by

1The game in fact allows one human to control up to two characters, with a button to
switch between which character is being controlled.

2In the actual game, the tools’ translations are limited by gravity, jumping, crouching,
stretching, standing on each other, etc., though in practice this is not a huge limitation.
Rotation is indeed arbitrary.

2

Nintendo follows the disconnected model, but we find the connected model an
interesting alternative to consider.

The actual game has an additional undo/redo operation, allowing each tool
to return into its previous shape. For example, a heavily cut tool can reset
to the square, cut something in the other tool, and use the undo operation to
return to its previous cut shape. The game has an undo stack of size 1; we
consider a more general case in which the stack could have size 0, 1 or 2.

2.1 Results

Given two target shapes P1 and P2, we would like to find a sequence of snip/reset
operations that transform tool T1 into P1 and at the same time transform T2

Figure 1: Cropped screenshots of Snipperclips: snipping, resetting, and solving a
Shape Match puzzle. Sprites copyright SFB/Nintendo and included here under
Fair Use.

3

Figure 2: By translating and rotating the two tools we can make them partially
overlap (left figure). On the right we see the resulting shape of both tools after
the snip operation.

Connected Model Disconnected Model
Undo stack size 1 shape 2 shapes 1 shape 2 shapes

0 O(n) No O(n2) No
1 O(n) O(n+m) O(n) Yes
2 O(n) O(n+m) O(n) O(n+m)

Table 1: Number of operations required to carve out the target shapes of n and
m vertices, respectively. A cell entry with “No” means that it is not always
possible to do whereas “Yes” means it is possible (but the number of operations
needed is not bounded by any function of n or m).

into P2. Because our initial shape is polygonal, and we allow only finitely many
snips, the target shapes P1 and P2 must be polygonal domains of n and m ver-
tices, respectively. Whenever possible, our aim is to transform the tools into the
desired shapes using as few snip and reset operations as possible. Specifically,
our aim is for the number of snip and reset operations to depend only on n
and m (and not depend on other parameters such as the feature size of the
target shape).

In Section 3, we prove some lower bound results. First we show in Section 3.1
that, without an undo operation, it is not always possible to cut both tools into
the desired shape, even when P1 = P2. Then we show lower bounds on the
number of snips/undo/redo/reset operations required to make a single target
shape P1. For the connected model, Section 3.2 proves an easy Ω(n) lower
bound. For the disconnected model, Section 3.3 gives a family of shapes that
need Ω(n) operations to carve in a natural 1D model, and gives a lower bound
of Ω(log n) for all shapes in the 2D model.

On the positive side, we first consider the problem without the undo opera-
tion in Section 4. We give linear and quadratic constructive algorithms to carve
a single shape P1 in both the connected and disconnected models, respectively.

In Section 5 we introduce the undo operation. We first show that even a

4

stack of one undo allows us to cut both tools into the target shapes, although
the number of snip operations is unbounded if we use the disconnected model.
We then show that by increasing the undo stack size, we can reduce the number
of operations needed to linear. A summarizing table of the number of snips
needed depending on the model is shown in Table 1.

2.2 Related Work

Computational geometry has considered a variety of problems related to cutting
out a desired shape using a tool such as circular saw [3], hot wire [7], and
glass cutting [8, 9]. The Snipperclips model is unusual in that the tools are
themselves the material manipulated by the tools. This type of model arises
in real-world manufacturing, for example, when using physical objects to guide
the cutting/stamping of other objects—a feature supported by the popular new
Glowforge laser cutter [1] via a camera system.

Our problem can also be seen as finding the optimal Constructive Solid
Geometry (CSG) [5] expression tree, where leaves represent base shapes (in our
model, rectangles), internal nodes represent shape subtraction, and the root
should evaluate to the target shape, such that the tree can be evaluated using
only two registers. Applegate et al. [2] studied a rectilinear version of this
problem (with union and subtraction, and a different register limitation).

3 Lower Bounds

In this section, we first prove that some pairs of target shapes cannot be realized
in both tools simultaneously, using only snip and reset operations. Then we
focus on achieving only one target shape. In the connected model, we give a
linear lower bound (with respect to the number n of vertices of the target shape)
on the number of operations to construct the target shape. In the disconnected
model, we give a logarithmic lower bound, and give a linear lower bound in a
natural 1D version of Snipperclips.

3.1 Impossibility

We begin with the intuitive observation that not all combinations of target
shapes can be constructed when restricted to the snip and reset operations.

Observation 1. In both the connected and disconnected models, there is a target
shape that cannot be realized by both tools at the same time using only snip and
reset operations.

Proof. Consider the target shape shown in Figure 3: a unit square in which we
have removed a very thin rectangle, creating a sort of thick “U”. First observe
that, if we perform no resets, neither tool has space to spare to construct a thin
auxiliary shape to carve out the rectangular gap of the other tool. Thus, after

5

Figure 3: A target shape that cannot be realized by both tools at the same
time.

we have completed carving one tool, the other one would need to reset. This
implies that we cannot have the target shape in both tools at the same time.

Now assume that we can transform both tools into the target shape by
performing a sequence of snips and resets. Consider the state of the tools just
after the last reset operation. One of the two shapes is the unit square and thus
we still need to remove the thin hole using the other shape. However, because no
more resets are executed, the other tool is currently and must remain a superset
of the target shape. In particular, it can differ from the square only in the thin
hole, so it does not have any thin portions that can carve out the hole of the
other tool.

Because the above argument is based solely on the shape of the figure, it
holds in both the connected and disconnected model.

3.2 Connected Model

Next it is easy to see that in the connected model a target shape with Θ(n)
holes requires Ω(n) operations.

Theorem 2. There are target shapes that require Ω(n) operations (snip, reset,
undo and redo) to construct in the connected model.

Proof. Consider the target shape to be a square with n/3 triangular holes. Since
we consider the connected model, the cutting tool created by any operations is
connected and it can only carve out one hole at a time.

3.3 Disconnected Model

In the disconnected model, we conjecture that most shapes require Ω(n) snip
operations to produce (see Conjecture 4), but such a proof or explicit shape
remains elusive. The challenge is that a cutting tool may be reused many times,
which for some shapes leads to an exponential speedup. Indeed, we prove in
Theorem 5 that every shape requires Ω(log n) snips. As a step toward a linear
lower bound, we prove that a natural 1D version of the disconnected Snipperclips
model has a linear lower bound.

Define the disconnected 1D Snipperclips model (with arbitrarily many tools)
as follows. A 1D tool is a disjoint set of intervals in R. A 1D snip operation takes

6

a translation of one tool, optionally reflects it around the origin, and subtracts
it from another tool, producing a new tool.

The main difference with the disconnected model that we consider is that
we allow for arbitrarily many tools. Alternatively, this is can be done with two
tools if you can recall any shape that has been created in the past (i.e., having
infinitely many undo, redo, and reset operations).

Theorem 3. For M a positive integer, consider the set of all 1D tools consisting
of n disjoint intervals having integer endpoints between 0 and M . For all positive
integers n and all ε ∈ (0, 1), for all sufficiently large M , almost all such tools
(at least a 1− ε fraction of them) require at least 2n 1D snip operations to build
from a single 1D tool consisting of a single interval.

Proof. Starting from k = 1, the kth snip operation is determined by:

1. A choice of the k + 1 existing tools for the cutting tool T ;

2. A choice of the k + 1 existing tools for the cut tool U ;

3. An offset xk of U relative to T .

If T has interval endpoints t0, t1, . . . and U has interval endpoints u0, u1,
. . . , then each interval endpoint of the tool created by the kth operation is either
tj or xk + uj . The first tools have interval endpoints 0 and x0 = M (the board
width), so by induction on k, each interval endpoint of the tool created by the
kth operation is of the form

∑
i∈I xi for some I ⊂ {0, . . . , k}. Therefore, if we

make, with k < 2n − 1 operations, a tool with endpoints y0, . . . , y2n−1, then

there is a (2n− 1)× (k + 1) 0-1 matrix A such that A

x0...
xk

 =

 y0
...

y2n−1

 .
If this matrix has rank rk(A) < k + 1, set k + 1 − rk(A) of the xi to be

0 such that it still has a solution, and choose rk(A) of the yi such that the
rk(A)×rk(A) square matrix B formed by restricting to the rows corresponding
to nonzero xi and columns corresponding to those yi is full-rank. det(B) is a
sum, over rk(A)! permutations σ, of a product of entries of A (or its negative).
The entries of A are 0 or 1, so 0 < |det(B)| ≤ rk(A)! ≤ (k + 1)!. All the yi
are integers, so for all i, det(B)xi is an integer, since we have that Bx = y, so
x = B−1y, and B−1 is 1/det(B) times the cofactor matrix of B (which has only
integer entries).

Therefore, the kth snip operation has at most (k+1)2 choices for the cutting
tools and (k + 1)!M < (k + 1)k+1M choices for the offset xk, so the number of

choices for operations up to the (k − 1)st is at most Mk−1kk
2

. On the other
hand, the number of 1D tools consisting of n intervals with integer endpoints y0,
. . . , y2n−1 between 0 and M is

(
M
2n

)
> (M −2n)2n > (M2)2n. If k−1 < 2n, then

the total number of integer-endpoint tools with n intervals is asymptotically (for
large M) at most O(M−1) times the number of integer-endpoint tools we can
build in k−1 steps, so almost all integer-endpoint tools with n intervals require at

7

least 2n steps, as claimed. In particular, if ε ∈ (0, 1) and M > 22n(2n)(2n)
2

ε−1,
then at most an ε fraction of such tools can be built in fewer than 2n snip
operations, as claimed.

We conjecture that the same linear lower bound applies to the 2D (discon-
nected) model of Snipperclips as well:

Conjecture 4. For M a positive integer, consider the collection of all possible
2D “comb” tools consisting of a 1 ×M rectangle with n disjoint 1 × ti “teeth”
attached above it (by its side of length ti), where each tooth has integer coor-
dinates and 1 ≤ ti ≤ M so that the construction fits a 2 ×M rectangle. For
all positive integers n and all ε ∈ (0, 1), for all sufficiently large M , almost
all such tools (a 1 − ε fraction of them) require Ω(n) snip operations to build,
even with arbitrarily many tools (and thus with arbitrary undo, redo, and reset
operations).

t1 t2 t3 t4

Figure 4: Illustration of Conjecture 4. Note that because the teeth are disjoint
and have integer coordinates, they are at least one unit apart.

Unfortunately, a reduction from 2D Snipperclips to 1D Snipperclips remains
elusive. A natural approach is to view a 2D tool T as a set of 1D tools, one for
each direction that has perpendicular edges in T . But in this view, it is possible
in a linear number of snips to construct a 2D tool containing exponentially many
1D tools, by repeated generic rotation and snipping of the tool by itself. The
information-theoretic argument of Theorem 3 might still apply, but given the
exponential number of tool choices in each step, it would give only a logarithmic
lower bound on the number of snips. We can instead prove such a bound holds
for all shapes:

Theorem 5. Every tool shape with n edges requires Ω(log n) snip operations to
build from initial shapes of O(1) edges in the disconnected model. This result
holds even with arbitrarily many tools (and thus with arbitrary undo, redo, and
reset operations).

Proof. Each snip operation involving two tools with n1 and n2 edges, respec-
tively, produces a shape with at most n1 +n2 edges. Thus, if we start with tools
having c = O(1) edges, then in k snips we can produce a shape having at most
ck edges, proving a lower bound of k ≥ logc n.

8

4 Making one shape with snips and resets

4.1 Connected Model

In the connected model, the shapes must remain connected. Whenever the snip
operation would break a tool into multiple pieces, we can choose one piece to
keep. In this model, we show that O(n) snips suffice to create any polygonal
shape of n vertices.

Theorem 6. We can cut one of the tools into any target polygonal domain P1

of n vertices using O(n) snip operations (and no reset or undo operations) in
the connected model.

Proof. The idea is that we can shape T2 into a very narrow triangle, a needle,
and use that to cut along the edges of the target shape P1. Whenever a snip
disconnects the shape, we simply keep the one containing the target shape.
Initially, we start with a long needle to cut the long edges of T2 and we gradually
shrink the needle to cut the smaller edges.

Let α and h be two small numbers to be determined. Our needle will be an
isosceles triangle, with the two equal-length edges making an angle of α and the
base edge with length at most h. We refer to the length of the needle as the
length of the equal-length edges. We will choose α small enough so that (i) the
needle can fit into all reflex vertices, and we choose h small enough so that, (ii)
when placed on an edge of the target polygon, the needle does not intersect a
non-adjacent edge.

(a) (b)

v

u'
u

Figure 5: (a) The needle is an isosceles triangle with apex at most α and a base
edge of length at most h. The equal-length edges have length at most 1 so that
the whole triangle can fit inside a tool. (b) Dashed blue lines denote Ch(P1).
The choice of h guarantees that there is a segment of length ≥ h contained on
the boundary of T1 that can be used to shrink the needle T2.

Refer to Figure 5. Let v be an arbitrary vertex on the convex hull of P1,
denoted Ch(P1), and let e1 and e2 be its incident edges. By the definition of
convex hull, at least one edge in {e1, e2} has the property that its normal vector
at v is outside of Ch(P1). Without loss of generality, let that be e1 and let u be
the vertex of P1 whose orthogonal projection u′ on e1 is closest to v and u lies on
the closed half-plane defined by the supporting line of e1 containing the normal

9

vector. Note that u might be also in the convex hull and then u = u′. We first
make T2 into a needle of length 1/2 using 2 snips. Fix a rigid transformation of
P1 so that it is entirely contained in T1. We no longer move T1. Use the needle
to cut off a 90◦ wedge at u′ containing the segment u′v on its boundary and so
that we do not cut off any point in the interior of P1. This is done with at most
4 snips due to the length of the needle.

Now we group all edges of P1 into sets based on their length. Let E denote
the full set of edges defining P1 and let Ei, for 0 ≤ i, be the set of edges whose
length is between 2−i−1 and 2−i. To cut along the edges of Ei, we use a needle
where the equal-length edges have length 2−i−2. Such a needle can cut each
edge in Ei using at most four snips; see Figure 5 (a). For an edge e, its nearest
other features of P1 are its two adjacent edges, the vertices closest to the edge,
and the edges closest to its endpoints. We avoid cutting into the adjacent edges
by placing the tip of the needle at the vertex when cutting near a vertex. By
Properties (i)–(ii), we can make e an edge of T1 without removing any point in
the interior of P1.

By making the cuts along the edges in the sets Ei in increasing order of i the
needle has to only shrink, which is easily done by using the segment u′v in the
perimeter of T1 to shorten the needle by placing the short edge of the needle
parallel to u′v. This is possible as long as (iii) h < ‖u′v‖ where ‖.‖ denotes
Euclidean norm. We are now ready to set α and h. Property (i) is achieved if
α is smaller than every external angle in P1. Property (ii) is achieved if h is
smaller than the shortest distance between an edge and a nonincident vertex.
We also have that the length of the initial needle is 1/2 and thus sin(α/2) ≤ h
using the law of cosines.

Recall that making the initial needle requires two snips, cutting each edge
requires at most four snips and hence O(n) snips in total, and reducing the
needle length requires one snip per nonempty set Ei of which there are at most
O(n). Thus, in total the required number of snips is O(n).

4.2 Disconnected Model

We now consider the disconnected model. Recall that in this model we allow
the tools to become disconnected. That is, when a snip would disconnect the
tool, we keep all pieces. This is the actual version implemented in the game.
Unfortunately, the method in the prior section will not work here. The first
issue is that our tool must now remove the full area of the unwanted space
rather than relying on separated components disappearing. The second issue is
that we may cut up the boundary of our target in such a way that we can no
longer ensure we have an exterior edge of sufficient size to efficiently trim our
needle into the next needed shape. To solve these problems we end up using
O(n2) snips and the reset operation which was not used in the previous section.
The new algorithm works in phases where we only tackle an L-shaped portion
of the shape at a time. This allows us to keep a solid square in the lower right
which is sufficiently large to create the tools we need to carve out the desired
shape. It also ensures that we can isolate the tool which we are using to carve

10

S2

c

S1

Q1

Figure 6: The squares S1 and S2 along with L-shaped region Q1 and corner c.

the target region of the current phase. Thus each phase bounds how far into
the target we must reach and ensures we have a block with which to alter our
carving tool, allowing methods similar to those in Section 4.1 to complete each
phase. We now give a formal description and proof of correctness.

In order to carve out a target shape P1, we virtually fix a location of P1

inside T1, pick a corner c of T1 (say, the lower right one) and consider the set
of distances d1, . . . , dn′ from each of the vertices in the fixed location of the
target shape P1 to c in decreasing order under the L∞-metric. For simplicity
assume that all distances are distinct, and thus n′ = n (this can be achieved
with symbolic perturbation). We refer to the part of T1 not in P1, i.e., T1 \ P1,
as the free-space. We will remove the free-space in n steps, where in each step
i we remove the free-space from an L-shaped region Qi that is the intersection
of T1 and an annulus formed by removing the L∞-ball of radius di from the
L∞-ball of radius di−1 centered at c. We argue that in each step we will need
O(n) snips and resets, thus creating the target shape in O(n2) operations. Our
inductive step is given in the following lemma.

Lemma 7. The free-space in region Qi can be removed in O(n) snip and reset
operations provided that

⋃
j≥iQj is a square in T1.

Proof. Let Si be the bounding square containing Qi (see Figure 6) and let Fi be
the set of faces created when removing the boundary edges of the target shape
from Qi. By definition all vertices of the target shape on Qi must be on its inner
or outer L-shaped boundary and all boundary segments must fully traverse Qi,
i.e., they cannot have an endpoint inside Qi. It then follows that the set Fi of
faces consists of O(n) constant complexity pieces. Now triangulate all faces of
Fi and let Ti denote the resulting set of triangles (Figure 7). Note that our aim
is to remove some of the triangles of Ti. We will show that we can remove any
triangle that fits in Si \ Si+1 with a constant number of cuts.

For simplicity in the exposition we first consider the case in which Si+1 is
large. That is, the side length of Si+1 is at least half the side length of Si.

11

Si+1

tr

tb

tt` Qi

Figure 7: An L-shaped region Qi, the edges of the target shape that cross
it (thick edges) define Fi. We further triangulate each face (thin edges), and
consider the corresponding dual graph (dotted edges).

Consider a triangle t ∈ Fi that needs to be removed. To create a cutting tool
move T2 so that its only overlap with T1 is Si. Let S′i denote the area in T2
corresponding to Si and let t′ be the projection of t on T2. Our goal will be
to remove S′i\t′ from T2 without affecting t′. Note that we can create a cut
where only S′i overlaps T1 in Si, so the shape of T2\S′i does not influence the
cut (Figure 8). That means we do not have to cut it away and we do not need
to worry about cutting part of it while creating a cutting tool within S′i.

T1 T2

t

Si

t′

S′
i

Figure 8: A triangle t in Si is cut out of T2 at t′.

Consider the halfspace H defined by one of the bounding lines ` of t′ that
does not contain t′. We can remove H ∩ S′i by rotating T1 so that one of the
sides of T1 along which Si+1 is situated aligns with ` and repeatedly snip with
Si+1 in a grid-pattern as shown in Figure 9. Because Si+1 is large compared
to S′i we can remove H ∩ S′i in O(1) snips. We then apply the same procedure
for the other two halfspaces that should be removed to obtain the cutting tool

12

for t. This means that, under the assumption that Si+1 is large, each triangle
can be removed in O(1) snips. Since there are O(n) triangles in Si, the linear
bound holds.

`

Si+1

Si S′
i

t t′

Figure 9: If Si+1 is large, we can use it to carve out any desired shape in T2
with O(1) snips.

It remains to consider the case in which Si+1 is small. That is, the side
length of Si+1 is less than half that of Si, and potentially much smaller. Al-
though the main idea is the same, we need to remove the triangles in order, and
use portions of Qi that are still solid to create the cutting tools.

Let Gi be the dual graph of Ti. This graph is a tree with at most three
leaves. Two leaves correspond to the unique triangles tb and tr that share an
edge with the lower and right boundary of Qi respectively and the third exists
only if the top-left corner of Qi is contained in a single triangle tt`, that is,
there is at least one segment contained in Qi that connects the top and left
boundaries; see Figure 7. Finally, we change the coordinate system so that c
is the origin, and Si is a unit square (note that the vertices of this square are
(−1, 1), (−1, 0), (0, 1), and c = (0, 0)).

We process the triangles in the following order. We first process the cross-
triangles, triangles with one endpoint on the left boundary and one on the top
boundary (if any exist), starting from tt` following Gi until we find a triangle
that has degree three in Gi which we do not process yet. The remaining fan-
triangles form a path in Gi which we process from tb to tr.

Cross-triangles. Recall that, by the way in which we nest regions Qi, there
cannot be vertices to the right or below Si. In particular, cross-triangles have
all three vertices in the top and left boundaries of Qi. Hence, while we have
some cross-triangle that has not been processed, the triangle of vertices (−1, 0),
(0, 1) and c must be present in T1. This triangle has half the area of Qi and
can be used to create cutting pieces in the same way as in the case where we
assumed Si+1 is large. Thus, we conclude that any cross-triangle of Qi can be
removed from T1 with O(1) snips.

Fan-triangles. We now process the fan-triangles in the path from tb to tr
in Gi. We treat this sequence in two phases. First consider the triangles that

13

Si+1

t

(0, 1)

(0, 3
4)

(− 1
4 ,

3
4)

Figure 10: The triangle used to cut out the fan-triangles. Cut cross-triangles
are above the dashed line and cut fan-triangles are below the dotted line.

have at least one vertex on the left edge of Si (that is, we process triangles up
to and including the triangle that has degree three in Gi if it exists). Consider
the triangle t of vertices (0, 1), (0, 3/4), and (−1/4, 3/4) (see Figure 10). This
triangle has 1/32 of the total area of Si. It is also still fully part of T1 until
we cut out the triangle of degree 3. That is, every cross-triangle that was cut
is above the diagonal from (-1,0) to (0,1) and any fan-triangle that has at least
one vertex on the left edge of Si and has degree two in Gi is below the line
from (-1,1) to (0,1/2) (technically, below the line from (-1,1) to the top-right
corner of Si+1, but the higher line suffices for our purposes). So we can use this
triangle t as a cutting tool to create the desired triangle in T2 to cut out any
undesired fan-triangles up to and including the triangle of degree 3.

The remaining triangles have their vertices in the upper edge of Si and on
the upper or left edge of Si+1. In this case we must be more careful as we cannot
guarantee the existence of a large square in T1. However, we do not have to
clear the entire space S′i any longer. Instead it suffices to clear a much smaller
area.

Let t denote the next triangle to be removed and let B denote the bounding
box of t and c (see Figure 11). As before consider moving T2 so that the only
overlap with T1 is B, let B′ denote this area in T2 and t′ the projection of t onto
B′. To create a cutting tool we need only remove the area B′\t′.

As before, we look for a region in T1 that has roughly the area of B to use
for carving the desired shape in T2. Let w be the width of B. Also, let h′ be the
height of Si+1. Note that the height of B is 1, and since Si+1 is small, we have
h′ < 1/2. By construction of the bounding box, one of the vertices of t will have
x-coordinate equal to −w; let q denote this vertex. The y-coordinate yq of q is
either 1 or h′ as it must be on the upper edge of Si or on the upper boundary
of Si+1—if t has vertices on the left boundary of Si+1, then there is a vertex on
the upper boundary of Si with lower x-coordinate. Now consider the triangle
with vertices (0, 1), (0, h′), q. This triangle has height at least 1− h′ > 1/2 and
width w, and thus its area is at least 1/4 of the area of B. As in the previous

14

Si

Si+1

t

B

c

Figure 11: The solid areas (grey) and bounding box B when cutting fan-triangles
with no vertices on the left boundary of Si.

cases, we use this triangle to create a cutting tool from T2 to remove triangle t
from T1.

Thus, it follows that all free-space triangles can be removed with a cutting
tool that is constructed from T2 in O(1) snip and reset operations, hence we can
clear Qi of free-space in total O(n) operations.

Because there are at most n distinct distances, we repeat this procedure at
most n times, giving us the desired result.

Theorem 8. We can cut one of the tools into any target polygonal domain P1

of n vertices using O(n2) snip and reset operations in the disconnected model.

5 Adding the undo operation

We now consider a more powerful model in which we can undo the k latest
operations performed on either of the tools. More formally, each snip or reset
operation will change the current shape of one of the two tools (if a snip or reset
operation does not change the shape of either tool, we can ignore it). Given a
sequence of such operations, consider the subsequence o1, . . . om of operations

that have changed the shape of the first tool. Also, let P
(i)
1 be the shape of

the first tool after oi has been executed. The k-undo operation on the first tool

replaces the current shape with P
(m−k)
1 . The k-undo operation on the second

tool is defined analogously.
In this section we show that the k-undo operation is very powerful, and allows

us to do much more than we can do without it. In particular, we can transform
two tools into any two target polygonal domains in both the connected and
disconnected model. This statement holds even if we force k to be equal to 1.

15

5.1 Connected Model

We first consider the connected model. The general idea in this case is that we
first construct the target shape in one of the two tools. In order to construct
the target shape into the second tool, we repeatedly create a needle in the first
tool, cut a part of the second tool, and perform an undo operation to return the
first tool to its target shape.

Theorem 9. We can cut two tools T1 and T2 into any two target polygonal
domains P1 and P2 of n and m vertices respectively using O(n+m) snip, reset
and 1-undo operations in the connected model.

Proof. Let e1 be the longest edge of P1 not on the boundary of the unit square
and e2 be the longest edge of P2 not on the boundary of the unit square. Without
loss of generality, we assume that e1 is longer than e2. We apply Theorem 6
to cut T1 into P1. To create P2 we will use a needle to cut along edges as in
Theorem 6. Each needle will be cut along e1 using a small construction along
e2. We will ensure the needle can have varying sizes, so we can cut along each
edge in O(1) cuts. We also guarantee that the needle can be created from P1 in
a single cut, so we can easily undo the operation.

e1e

e2
`

Figure 12: We can use e1, e2 and a small added edge on e2 to create a needle
in T1 that can be used to create P2 in T2. The needle is indicated in purple.

We first explain how to create the needle, as also illustrated in Figure 12.
We create the needle from a segment e of P1, which is a subsegment of e1 that is
half the length of e1 but centered at its center. The cutting tool will consist of a
subsegment ` of e2 and an edge perpendicular to it, creating a 90◦ angle in the
freespace. The segment ` is also half the length of e2 and centered at its center.
This is to ensure that there is a constant size rectangle above and below e and
` that does not contain edges or vertices of P1 or P2. Now to cut a needle from
along e, assume that e is horizontal with freespace above it and that the edge
perpendicular to ` is on its left endpoint oriented upward. Now place the right
endpoint of ` on the right endpoint of e and rotate ` counterclockwise around
the right endpoint by an arbitrarily small angle so that the right angle is in the

16

interior of P1, just below e. This cut will disconnect a needle from the rest of
P1 with a length proportional to `. By moving ` higher before cutting we can
create shorter needles.

For this cutting process to work, the triangle created by ` and the perpen-
dicular edge must be empty. So this will be the first piece we remove from T2
in the process of creating P2. How to do this is illustrated in Figure 13 and
described next. We first reset T1 and cut a long narrow rectangle out of the
top left corner of T2. This gives us a long vertical edge and a shorter horizon-
tal edge perpendicular to it. We use this structure to create a narrow triangle
along e1 as described above. This needle is then aligned with e2 and cuts out a
narrow triangle above e2 so that an edge perpendicular to e2 is created that is
sufficiently far from the endpoint of e2.

The remainder of the process follows that of Theorem 6 where we use needles
of a specific length to cut edges proportional to that length. The one exception
is e2, which is cut last. Note that unlike in Theorem 6, the order in which we cut
the edges is no longer relevant, since we can cut the needle to the size required
for the current edge, cut that edge, and then return the needle to its original
length using a 1-undo operation. This guarantees that the perpendicular edge
required stays attached to the main shape and is removed only when no more
needles need to be created.

5.2 Disconnected Model

Finally, we focus our attention on the disconnected model with undo operations.
We show that allowing undo operations reduces the upper bound on the number
of operations required to cut one target shape out of one tool. In fact, we can
cut any two target shapes out of the two tools, but the number of operations
needed for this depends on the size of the undo stack.

Theorem 10. We can cut one of the tools into any target polygonal domain P1

of n vertices using O(n) snip, reset and 1-undo operations in the disconnected
model.

Proof. We first triangulate the free-space T1\P1. Then, we remove each triangle
t by making a congruent triangle t′ in T2. Each time we create a triangle t′ in
T2 we first reset T1 and T2. Then, we can remove T2\t′ using T1 with a constant
number of snips. Since we only apply one operation on T1, we can use an undo
operation to restore T1 to its previous shape, which is the partially constructed
shape towards the target shape P1. Next, we can cut the triangle t in T1 using
the congruent triangle t′ in T2. Thus, we use O(1) snip, reset and 1-undo
operations. We apply this process for each triangle in the free-space. Hence,
since the triangulation has linear complexity, we can remove the free-space with
O(n) operations in total.

Next, we show that we can cut the two tools into any two target shapes
using only snip, reset and 1-undo operations.

17

e1

e1

e2e1

reset

undo

cut

undo

cut

reset

cut

T1 T2

Figure 13: Steps illustrating the creation of a freespace triangle above e2 that
can be used to created needles along e1. Small squares indicate the shape that
is on the undo stack (omitted when not used later).

18

Theorem 11. We can cut two tools T1 and T2 into any two target polygonal
domains P1 and P2 using a finite number of snip, reset and 1-undo operations
in the disconnected model.

Proof. We apply Theorem 10 to cut T1 into P1. Then, the idea is that we can
shape P1 into a very narrow triangle, a needle, by using one snip operation, and
use the needle to cut all the free-space T2\P2. After we get P2, we can perform
a 1-undo operation to restore T1 to P1.

Let α be the smallest angle between any two adjacent edges of P2, d be the
length of the shortest edge of P2, and h be the shortest distance between any
vertex and a non-adjacent edge of P2. These values will define how small the
needle we create needs to be. Let `1 be the vertical line touching the leftmost
vertex of P1. Since there may be multiple such vertices, let p be the bottommost
vertex of P1 on `1. Let `2 be the vertical line touching the first vertex on the
right side of `1 in P1. We first reset T2 to a unit square. We align the left edge
L2 of T2 with `1 such that T2 fully covers P1. Then, we shift T2 a little bit
to the right such that L2 is between `1 and the bisector of `1 and `2, and the
length of the bottommost edge of P1 between `1 and L2 is less than d/2. We
cut P1 with T2 so that we have a set T of triangles (or quadrangles) left in T1
(see Figure 14).

Let e be the bottommost edge of T and let t be the bottommost object of
T . Let R be the function that rotates the input by 180◦ around the midpoint
of e, i.e., R(T) is the set of triangles (or quadrangles) obtained by rotating T
180◦ around the midpoint of e, and R(t) is the triangle obtained by rotating t
in the same manner. Notice that the intersection of R(T) and T is only e. Let
Rε be the function that rotates the input by 180◦ around the midpoint of e and
then rotates it by a small angle ε counterclockwise around p of T . We pick a
small ε < α/2 such that no triangle in Rε(T) crosses `2, only Rε(t) intersects
with t, and the distance between Rε(p) and e is less than h/2. We shift T2 back
to the left such that L2 is on `1. Then, we perform the rotation Rε on T and
cut T2 with Rε(T). After this cut, we perform an undo operation to restore T1
to P1 and rotate P1 back to its starting orientation. Finally, we cut P1 with T2
to obtain the needle (see Figure 15).

We argue why the final cut indeed leaves only the needle. Since T2 almost
covers P1 except for the missing part Rε(T), it is essential to show that the
intersection of Rε(T) and P1 is the needle. Since R(T) lies between `1 and the
bisector of `1 and `2, there exists a small ε such that Rε(T) lies between `1
and `2. In addition, e is the bottommost edge of T , so there cannot be any
intersection of Rε(T) and P1 below e. The intersection of P1 and R(T) is e and
all the triangles in R(T) are below e, so we can rotate them by a small angle ε
around p so that only one vertex Rε(p) in Rε(T) lies above e (see Figure 14).
As one of the endpoints of the edge of P1 that contains e lies on or to the
right side of `2, the intersection of P1 and Rε(t) is a triangle. In particular, the
intersection of Rε(T) and P1 is a narrow triangle with a base length of at most
d/2, height of at most h/2 and a small angle of at most α/2.

After we obtain the needle, we reset T2 and use the needle to cut the free-

19

`1 `2
T

p
e

Rε(p)

Rε(T)

T1

P1

t

Figure 14: The figure shows the set T of the triangles and quadrangles (with
filled colors) after cutting P1 with the unit square T2 and the set Rε(T) obtained
by rotating T 180◦ around the midpoint of e and then rotating a small angle ε
counterclockwise around p.

space T2\P2 in a finite number of snip operations, because the free-space is a
compact object. Finally, we perform an undo operation to restore the needle to
P1, resulting in the two target polygonal domains.

Finally, we show that if we are allowed to use a 2-undo operation instead of
a 1-undo, the number of required operations reduces to linear in the complexity
of the two target polygonal domains.

Theorem 12. We can cut two tools T1 and T2 into any two target polygonal
domains P1 and P2 using O(n + m) snip, reset and 2-undo operations in the
disconnected model.

Proof. We apply Theorem 10 to cut T1 into P1. Then, we define a cover of the
free-space T2\P2 with only small right triangles. We remove each right triangle
t by making a congruent triangle t′ in T1 by performing at most two operations
on P1, so we can get the target shape P2 and restore T1 to P1.

We first explain how to define the cover of the free-space with only right
triangles. We start with any triangulation on the free-space T2\P2. Then, we
subdivide each triangle into a constant number of smaller triangles such that

20

P1

T2

Figure 15: The figure shows T2 after removing Rε(T) and the part of the bound-
ary of P1.

each smaller triangle fits in a 1
2 ×

1
2 square. For each triangle, we draw a line

segment from the vertex of the largest angle perpendicular to its opposite edge
in order to split the triangle into two right triangles. Hence, there are O(m)
right triangles in the cover.

Next, we describe how to create the cutting tool in T1 (see Figure 16). For
each right triangle t in the free-space, we first reset both T1 and T2 (P1 and the
partially constructed P2 are stored at the top of their stacks). We use the unit
square T2 to cut the unit square T1 to get a triangle t′ congruent to t at a corner
of T1 (P1 is stored at the second element of its stack). Note that there are other
garbage components left in T1. Then, we translate T1 in such a way that only
t′ overlaps T2, and cut T2 to make a square with a triangular hole (the partially
constructed P2 is at the second element of its stack). We perform an undo
operation to restore T1 back to the unit square. The next step is to align the
bounding unit square of T1 and T2, and cut T1 with T2 so that we get only t′ in
T1. After we get the cutting tool t′, we perform two undo operations to restore
T2 to the partially constructed P2, and use t′ to remove t from the free-space.
Finally, we perform two undo operations to restore T1 to P1. Overall, we use
O(1) snip, reset and undo operations to make some progress on T2 towards P2

while maintaining P1.

21

T1

P1

T2

partial P2

t

t′

reset

cut

undo

cut

t′

cut undo ×2

partial P2

t

partial P2

t

cutundo ×2

P1

reset

Figure 16: The figure shows how to remove a triangle t in the partially con-
structed P2 of T2 while maintaining P1. Smaller squares indicate which shapes
are on the undo stack.

22

We repeat the above process for each right triangle in the free-space, so we
use O(m) operations to carve out P2. Including the O(n) operations to carve
out P1, we use O(n+m) operations in total.

6 Open Problems

The natural open problem is to close the gap between our algorithms and the
lower bound. Specifically, we are interested in a method that could extend
our lower bound approach to the case in which you have the undo operation.
We believe that without the undo operation there must exist a shape in the
disconnected model that needs ω(n) operations to carve.

Our algorithms focus on worst-case bounds, but we also find the minimiza-
tion problem interesting. Specifically, can we design an algorithm that cuts one
(or two) target shapes with the fewest possible cuts? Is this problem NP-hard?
If so, can we design an approximation algorithm? Although it is not always pos-
sible to cut two tools simultaneously into the desired polygonal shapes, it would
be interesting to characterize when this is possible. Is the decision problem
NP-hard?

It would also be interesting to consider the initial shape implemented in the
Snipperclips game (instead of the unit squares we used for simplicity), namely,
a unit square adjoined with half a unit-diameter disk. This initial shape opens
up the possibility of making curved target shapes bounded by line segments and
circular arcs of matching curvature. Can all such shapes be made, and if so, by
how many cuts?

The stack size has a big impact in the capabilities of what we can do and on
how fast can we do it. Additional tools can have a similar effect, since they can
be used to store previous shapes. It would be interesting to explore if additional
tools have the same impact as the undo operation or they actually allow more
shapes to be constructed faster.

Acknowledgments

This work was initiated at the 32nd Bellairs Winter Workshop on Computa-
tional Geometry held January 2017 in Holetown, Barbados. We thank the other
participants of that workshop for providing a fun and stimulating research en-
vironment. We also thank Jason Ku for helpful discussions about (and games
of) Snipperclips.

References

[1] Glowforge — the 3D laser printer. https://glowforge.com/, 2015.

[2] D. A. Applegate, G. Calinescu, D. S. Johnson, H. Karloff, K. Ligett, and J. Wang.
Compressing rectilinear pictures and minimizing access control lists. In Proceed-

23

https://glowforge.com/

ings of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms, pages
1066–1075, New Orleans, Louisiana, 2007.

[3] E. D. Demaine, M. L. Demaine, and C. S. Kaplan. Polygons cuttable by a circular
saw. Computational Geometry: Theory and Applications, 20(1–2):69–84, October
2001. CCCG 2000.

[4] E. D. Demaine, M. Korman, A. van Renssen, and M. Roeloffzen. Snipperclips:
Cutting tools into desired polygons using themselves. In Proceedings of the 29th
Canadian Conference on Computational Geometry (CCCG 2017), pages 56–61,
Ottawa, Canada, 2017.

[5] J. D. Foley, A. van Dam, S. K. Feiner, and J. F. Hughes. Computer Graphics:
Principles and Practice. Addison-Wesley Professional, 1996.

[6] GDC. European innovative games showcase: Friendshapes. YouTube video, 2015.
https://youtu.be/WJGooKIoy1Q.

[7] J. W. Jaromczyk and M. aw Kowaluk. Sets of lines and cutting out polyhedral
objects. Computational Geometry: Theory and Applications, 25(1):67–95, 2003.
CCCG 2001.

[8] M. H. Overmars and E. Welzl. The complexity of cutting paper. In Proceedings
of the 1st Annual ACM Symposium on Computational Geometry, pages 316–321,
Baltimore, Maryland, June 1985.

[9] J. Pach and G. Tardos. Cutting glass. Discrete & Computational Geometry,
24:481–495, 2000.

[10] Wikipedia. Snipperclips. https://en.wikipedia.org/wiki/Snipperclips, 2017.

24

https://youtu.be/WJGooKIoy1Q
https://en.wikipedia.org/wiki/Snipperclips

	1 Introduction
	2 Problem definition and results
	2.1 Results
	2.2 Related Work

	3 Lower Bounds
	3.1 Impossibility
	3.2 Connected Model
	3.3 Disconnected Model

	4 Making one shape with snips and resets
	4.1 Connected Model
	4.2 Disconnected Model

	5 Adding the undo operation
	5.1 Connected Model
	5.2 Disconnected Model

	6 Open Problems

