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Counter-example guided synthesis of neural network Lyapunov
functions for piecewise linear systems

Hongkai Dai1, Benoit Landry2, Marco Pavone2 and Russ Tedrake1,3

Abstract— We introduce an algorithm for synthesizing and
verifying piecewise linear Lyapunov functions to prove global
exponential stability of piecewise linear dynamical systems.
The Lyapunov functions we synthesize are parameterized by
feedforward neural networks with leaky ReLU activation units.
To train these neural networks, we design a loss function that
measures the maximal violation of the Lyapunov conditions
in the state space. We show that this maximal violation
can be computed by solving a mixed-integer linear program
(MILP). Compared to previous learning-based approaches, our
learning approach is able to certify with high precision that
the learned neural network satisfies the Lyapunov conditions
not only for sampled states, but over the entire state space.
Moreover, compared to previous optimization-based approaches
that require a pre-specified partition of the state space when
synthesizing piecewise Lyapunov functions, our method can
automatically search for both the partition and the Lyapunov
function simultaneously. We demonstrate our algorithm on both
continuous and discrete-time systems, including some for which
known strategies for partitioning of the Lyapunov function
would require introducing higher order Lyapunov functions.

I. INTRODUCTION

Proving stability of dynamical systems has been a central
theme in the control community. One particular criterion,
Lyapunov stability, has attracted tremendous interests. This
criterion guarantees the convergence of dynamical system
states through the existence of a Lyapunov function, which
can be pictured as a bowl-shaped function with positive val-
ues everywhere except at the equilibrium, and function values
decreasing along trajectories following the system dynamics.
Various approaches have been developed to synthesize Lya-
punov functions for different types of systems. Lyapunov
functions for linear systems can be obtained through solving
Algebraic Lyapunov equation or Linear Matrix Inequalities
(LMI) [5]. For some nonlinear systems, it is possible to
compute Lyapunov functions through sum-of-squares (SOS)
optimization [19].

In this paper, we are interested in a particular type of
hybrid dynamical systems, piecewise linear (PWL) systems,
and synthesizing their Lyapunov functions. A PWL system
has hybrid dynamics, where each of the mode is defined by
a conic polyhedron region, and the dynamics remain linear
within each mode [10]. PWL systems have attracted attention
in the control community, as these systems retain much of the
simplicity of linear systems, while being able to approximate
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Fig. 1: (left) Learned Lyapunov function for a continuous
piecewise linear dynamical system with 2 states. (right) The
phase portrait of the system. We also draw contours of
Lyapunov function V (x) = 0.005, 0.01, 0.015 in green lines.
The boundaries between each piece in the piecewise linear
Lyapunov function is drawn in black, and the red line is the
boundary between the hybrid modes.

complicated (hybrid) nonlinear systems by partitioning the
state space of nonlinear systems into smaller regions, and
linearizing their nonlinear dynamics within each of those
regions. One approach to synthesize Lyapunov functions for
PWL systems is to look for common Lyapunov functions,
where a single smooth Lyapunov function is shared across
all modes [24]. But many stable PWL systems do not admit
a common Lyapunov function [10]. An alternative is to
search for piecewise linear or piecewise quadratic Lyapunov
functions [4], [11]. With piecewise Lyapunov functions, the
state space is cut into different partitions; a linear/quadratic
Lyapunov function is synthesized within each partition, and
then stitched together along their borders. One challenge in
synthesizing piecewise linear/quadratic Lyapunov functions
is determining how to partition the state space. A common
choice is to align the boundary of each partition in the
Lyapunov function with the boundary of each hybrid mode
of the system, i.e., each mode has a linear/quadratic Lya-
punov function. However, many stable systems do not admit
piecewise linear or quadratic Lyapunov functions in which
the partition aligns with the hybrid modes [28]. In this paper,
we propose a novel method to overcome this challenge. Our
method can synthesize piecewise linear Lyapunov functions
without requiring explicit partitioning of the state space.
Instead, it is able to search for the partition automatically.
As a result, we can find piecewise linear Lyapunov functions
for stable systems which requires more partitions in the
piecewise linear Lyapunov function than the number of
hybrid modes.

With recent advances in deep learning, many researchers
have proposed learning Lyapunov-like functions for dynam-
ical systems using feedforward neural networks [17], [22],



[13], [2]. In [22], the authors attempt to learn a Lyapunov
function using gradient descent and a loss function which
encourages the Lyapunov function to decrease over a set of
randomly sampled states. In [2], the authors use a similar
approach as [22], but the training set contains counter- exam-
ple states (states where the Lyapunov condition is violated).
These counter-example states are generated using an SMT
solver [6] at each iteration. When using the SMT solver, [2]
allows a small violation (≈ 0.01) of the Lyapunov conditions,
and doesn’t certify the satisfiability within a neighbourhood
around the equilibrium state. In our approach, we also gen-
erate a training set containing the counter-examples, namely
the worst adversarial states (the states with the maximal
violation of Lyapunov conditions). In the previous work, the
counter-example states are generated from simulation [12],
SMT solvers [2] or solving LMI relaxations [20]. Thanks to
the special structure of PWL dynamical systems and of our
neural networks, we show that it is possible to find these
states through mixed-integer linear programming (MILP),
which can globally certify the Lyapunov condition with high
accuracy (≈ 10−5 with modern MILP solvers), much higher
than SMT solvers.

In this work, we represent Lyapunov functions using fully
connected neural networks with leaky ReLU activation units
[18]. Based on the universal approximation theorem, such
neural networks can approximate any continuous functions
if the network is big enough [16], and hence can approximate
complicated Lyapunov functions, including the piecewise
linear/quadratic Lyapunov functions synthesized with pre-
vious approaches. [26], [27] have shown that for many
supervised learning tasks (like image classification), it is
possible to find counter examples for a classifier with (leaky)
ReLU activation functions by solving an MILP. Similarly
in our approach, for each neural network representing a
candidate Lyapunov function, we solve an MILP to find
the maximal violation of the Lyapunov conditions together
with the worst adversarial states. Our approach improves the
candidate Lyapunov function using gradient descent, and a
loss function made up of two major components. The first is
an empirical Lyapunov condition violation on all adversarial
states detected in the previous iterations (similar to [2]); the
second component, taking insight from bilevel optimization
[1], [14], is the maximal violation of the Lyapunov conditions
in the entire state space as the MILP optimal costs. We show
that using both components simultaneously, our training
converges faster than using either one separately.

Interestingly, in the event that the system turns out to be
unstable, the adversarial states produced by our method can
be efficiently used as initial states from which to simulate
it and potentially prove its instability. This is similar to the
other counter-example guided approaches, but contrasts with
many optimization-based approaches that would simply fail
to find Lyapunov functions without providing any informa-
tion with respect to the stability of the underlying system.

It is worth mentioning that some previous approaches can
also find the partition of the state space automatically and
synthesize a piecewise Lyapunov function [25], [8]. These

approaches adopt a multi-step process, that they first attempt
certain partition of the state space, and then try to find
a piecewise Lyapunov function for this given partition. If
the Lyapunov function is not found, then the partition is
refined for another trial. Unlike these multi-step approaches,
our approach find the partition and the Lyapunov function
simultaneously, by optimizing the neural network which
encodes both the state partition and the piecewise Lyapunov
function.

II. PROBLEM STATEMENT

We are interested in finding the Lyapunov function for the
following continuous-time or discrete-time piecewise linear
(PWL) systems

Continuous-time ẋ = Aix if Pix ≤ 0 (1a)
Discrete-time xn+1 = Aixn if Pixn ≤ 0 (1b)

Notice that the domain of the i’th mode is a conic polyhedron
Pi = {x|Pix ≤ 0}, that all mode boundaries pass through
the origin. We denote the total number of modes as N .

We aim to show the global exponential stability of PWL
systems by finding piecewise linear Lyapunov functions
V (x) satisfying

V (x) ≥ ε1|x|1 ∀x 6= 0 (2a)
dV (x) ≤ −ε2V (x) ∀x (2b)

V (0) = 0 (2c)

where ε1 and ε2 are given positive constants, |x|1 is the
l1 norm of vector x. In (2b) we use dV (xn) to denote
V (xn+1) − V (xn) for discrete-time system, and dV (x) =
V̇ (x) for continuous-time system. It is straightforward to
verify that condition (2a)-(2c) imply LaSalle’s theorem [15],
and hence global exponential stability.

Note that special care must be taken when enforcing the
Lyapunov conditions on functions that are not smooth [23],
like the ones produced by our approach. For example, at their
non-differentiable points, our method enforces the Lyapunov
condition for all valid subgradients.

III. APPROACH

In this section, we describe how to represent the Lyapunov
function using neural networks with leaky ReLU activation
functions. We then show that we can compute the adversarial
states (counter-example states with the worst violation of the
Lyapunov conditions) through mixed-integer linear program-
ming (MILP). Finally, we show how to use adversarial states
and MILP results to learn a Lyapunov function.

A. Neural networks as Lyapunov functions

We can prove that if a piecewise affine Lyapunov function
exists for the PWL system in (1a)(1b), then there always
exists a fully connected neural network with leaky ReLU
activation functions and no bias terms, whose output is also
a Lyapunov function (The proof can be found in the appendix
section VI) Such neural network is illustrated in Fig.2a.
Suppose that our network has K hidden layers, if we denote
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(a) A fully connected network with
2 hiddlen layers.

(b) A leaky ReLU unit. We
use a binary variable β to
indicate whether the leaky
ReLU unit is active (β =
1, y ≥ 0) or inactive (β =
0, y ≤ 0).

the output of the i’th hidden layer as zi (with z0 denoting
the input x, and zK+1 denoting the network output V (x)),
then the neural network can be formulated as

zi+1 = σ(Wizi), i = 0, . . . ,K − 1 (3)

V (x) = zK+1 = wTKzK (4)

where Wi is the linear weight matrix of the i’th layer. σ(•)
denotes the leaky ReLU activation function

σ(y) = max(cy, y) (5)

where c < 1 is a given constant. The leaky ReLU function
σ is drawn in Fig.2b. Since leaky ReLU is piecewise linear,
the network output V (x) also becomes a piecewise linear
function of the input state x. Note that our network doesn’t
have bias terms in each linear layer, hence the network output
satisfies V (kx) = kV (x) for any positive scalar k, and the
condition (2c) is trivially satisfied.

In order to enforce that the network output V (x) satisfies
the Lyapunov condition (2a)-(2b) for the entire unbounded
state space, we only need to enforce the conditions within
a bounded neighbourhood around the origin. This holds
because both the system dynamics and Lyapunov function
are homogeneous function of x, so if V (x) satisfies condition
(2a)(2b) when x is restricted to a bounded region S around
the origin, these conditions are also satisfied for the region
{kx|x ∈ S, k > 0}, which is the entire state space. In this
paper, we use a bounded polytope as this set S , and we
denote the intersection of the i’th mode domain Pi with this
bounded polytope S as P̄i

P̄i = Pi ∩ S = {x|P̄ix ≤ qi} (6)

P̄i is a bounded polytope with the origin on the boundary
of each polytope. We are interested in the bounded region
instead of the unbounded entire state space, because when
restricted to a bounded domain, a piecewise linear function
can be converted to mixed-integer linear constraints (for
more details, refer to the big-M trick in [9]). As the network
output is a piecewise linear function of the input state, we
can thus obtain mixed-integer linear constraints on x, when
the state is restricted to the bounded domain ∪Ni=1P̄i.

It is worth mentioning that the leaky ReLU function σ(y)
is not differentiable at y = 0. Here we consider all possible
subgradients of the leaky ReLU function dσ ∈ [c, 1] at y = 0

when we compute the gradient V̇ = ∂V
∂x ẋ on a continuous-

time PWL system. Namely we require the Lyapunov function
to decrease with any possible subgradients.

B. Find adversarial states through solving MILP

We aim to find the worst adversarial states for a given
neural network, by solving the following two optimization
problems whose costs are the violation of Lyapunov condi-
tions (2a)

max
x∈∪Ni=1P̄i

ε1|x|1 − V (x) (7a)

and (2b)

max
x∈∪Ni=1P̄i

dV (x) + ε2V (x) (7b)

If the maximal costs of these two optimization problems are
0 (obtained at x = 0), then the Lyapunov conditions are
satisfied globally. Note that as we mentioned in the previous
subsection III-A, we only need to consider the state x within
the union of bounded region P̄i defined in (6).

In the subsequent paragraphs, we will show that both
optimization problems (7a) and (7b) can be cast as mixed-
integer linear programs, whose global optimal solution can
be readily computed with off-the-shelf solvers [7].

1) Cast (7a) as an MILP: We first show that the network
output V (x) and the input x satisfy mixed-integer linear
constraints. We adopt the idea in [27], and introduce binary
variable vectors βi, i = 1, . . . ,K to indicate whether the
leaky ReLU units in the i’th hidden layer are active or not
(as mentioned in Fig.2b). Namely

βi(j) = 1⇒Wi(j, :)zi ≥ 0, zi+1(j) = Wi(j, :)zi (8a)
βi(j) = 0⇒Wi(j, :)zi ≤ 0, zi+1(j) = cWi(j, :)zi (8b)

Here we use the notation Wi(j, :) to denote the j’th row
of matrix Wi. The symbol ⇒ means “implies”. There are
standard procedures (like big-M1 or convex hull approaches)
in mixed-integer formulation literature to convert the impli-
cation relationship in (8) to mixed-integer linear constraints
[21], [9]. In the subsequent presentation, we will present
only the implication relationship with “⇒” symbol, since the
corresponding mixed-integer linear constraints can be readily
obtained.

By replacing the nonlinear (piecewise linear) relationship
in the network hidden layers (Eq.(3)) with the mixed-integer
linear constraints (8), we obtain the mixed-integer linear con-
straints on the decision variables zK+1 (in Eq.(4), zK+1 is
the network output), the network input x, the slack variables
zi, and the binary variables βi. The readers could refer to
[27] on the mixed-integer linear constraint formulation of
ReLU network for more details.

The objective in (7a) also contains the l1 norm |x|1. We
can also write this l1 norm as mixed-integer linear constraints

1For example, to convert the relationship β = 0⇒ aT x = b to mixed-
integer linear constraints, we could use the big-M trick as −Mβ ≤ b −
aT x ≤Mβ where M is a big number



with the binary variable α

α(i) = 1⇒ x(i) ≥ 0, |x(i)| = x(i) (9a)
α(i) = 0⇒ x(i) ≤ 0, |x(i)| = −x(i) (9b)

Since both |x|1 and V (x) satisfy mixed-integer linear con-
straints, the nonlinear objective in (7a) can be converted to
linear objective subject to mixed-integer linear constraints.
Finally, the constraint x ∈ ∪iP̄i in (7a) can also be formu-
lated as mixed-integer linear constraints below, with binary
variable ζ indicating the active hybrid mode

x =

N∑
i=1

si, 1 =

N∑
i=1

ζ(i) (10a)

P̄isi ≤ qiζ(i), i = 1, . . . , N (10b)

Note that si is the slack variable. The mixed-integer linear
constraint (10) requires that when mode i is inactive, ζ(i) =
0, si = 0; when mode i is active, ζ(i) = 1, si = x. This
formulation is also used to partition the state space in [3].

The optimization problem (7a) is cast as a mixed-integer
linear program with constraints (8)(9)(10).

To show that the optimization problem (7b) can be cast as
an MILP, we will discuss the discrete-time and continuous-
time PWL systems separately, as dV has different forms.

2) Cast (7b) as an MILP for discrete-time systems: For
discrete-time systems, dV (xn) = V (xn+1)−V (xn). We can
first write the constraints on xn+1 as

xn+1 =

N∑
i=1

Aisi (11)

where si is the slack variable introduced in Eq.(10), si = xn
when the i’th mode is active, and si = 0 for inactive hybrid
mode. Constraint (11) is linear.

In the same way we can derive the mixed-integer linear
constraint for the network output V (x) and input x in (8), we
can obtain the mixed-integer linear constraints on V (xn+1)
and xn+1. As a result, we cast (7b) as an MILP.

3) Cast (7b) as an MILP for continuous-time systems: For
continuous-time systems, dV (x) = V̇ (x) = ∂V

∂x ẋ, which is a
piecewise linear function of x. To see this, note that ∂V∂x is a
piecewise constant function. ẋ is a piecewise linear function
of x, so the product becomes a piecewise linear function.
Given this intuition, in the next few paragraphs we present
the detailed mixed-integer linear constraint formulation.

Similar to the discrete-time systems constraint (11), we
impose the constraint on ẋ as

ẋ =

N∑
i=1

Aisi (12)

where si is introduced as slack variables in formulating the
hybrid mode constraint (10).

We notice that V̇ = ∂V
∂x ẋ can be computed using the chain

rule between subsequent layers of the neural network as

V̇ =
∂V

∂x
ẋ =

(
K∏
i=0

∂zi+1

∂zi

)
ẋ (13)

where we use the notation zK+1 = V (x), z0 = x. We
also introduce the slack variable yi defined in the following
recursive manner

y0 = ẋ (14a)

yi+1 =
∂zi+1

∂zi
yi, i = 0, . . . ,K (14b)

Combining (13) and (14), it is easy to see that V̇ = yK+1.
Next we show that yi and yi+1 satisfy mixed-integer linear
constraints. As zi+1 = σ(Wizi) (Eq.(3)), we can compute
the gradient as

∂zi+1

∂zi
=
∂σ(t)

∂t

∣∣∣∣
t=Wizi

Wi (15)

Substituting ∂zi+1

zi
in (14b) with the right hand-side of (15)

we obtain

yi+1 =
∂σ(t)

∂t

∣∣∣∣
t=Wizi

Wiyi (16)

For the leaky ReLU function σ(t), its subgradient has the
following form

∂σ(t)

∂t

∣∣∣∣
t=Wi(j,:)zi

=


1 if Wi(j, :)zi > 0

c if Wi(j, :)zi < 0

[c, 1] if Wi(j, :)zi = 0

(17)

As we introduced binary variables βi to indicate the acti-
vation of the ReLU units in the i’th layer, combining the
subgradient in (17) and (16), we obtain the following mixed-
integer linear constraints

βi(j) = 1⇒ yi+1(j) = Wi(j, :)yi, Wi(j, :)zi ≥ 0 (18a)
βi(j) = 0⇒ yi+1(j) = cWi(j, :)yi, Wi(j, :)zi ≤ 0 (18b)

With the mixed-integer linear constraints (18) on yi, βi and
the linear constraint (12), we cast the optimization problem
(7b) as an MILP.

For both discrete-time and continuous-time PWL systems,
we can solve the MILPs in (7a) and (7b) to global optimality.
The optimal costs are the worst violation of the Lyapunov
conditions (2a) and (2b), and the optimal solution x are the
worst adversarial states.

C. Computing gradients of MILP costs w.r.t network param-
eters

Since our goal is to find the network parameters so as
to decrease the Lyapunov condition violation to 0, we need
to understand how the optimal costs of MILPs in (7a)(7b),
representing the worst violation of the Lyapunov conditions,
would change when the network parameters vary. To this end,
we aim to compute the gradient of the MILP optimal cost
w.r.t the network parameters. This gradient will be used when
training the network. By descending the network parameters
along this gradient direction, we can decrease the violation
of the Lyapunov conditions. The network parameters show
up as coefficients in the cost and constraints in the MILPs
(for example, in constraint (8) and (18)), hence we need to



understand how the MILP optimal cost changes when the
cost/constraint coefficients vary.

For a generic MILP

ηθ = max
x,γ

aTθ x+ bTθ γ (19a)

s.t Aθx+Bθγ ≤ cθ (19b)
γ are binary (19c)

where its cost/constraint coefficients a, b, A,B, c are all dif-
ferentiable functions of θ (θ are the neural network weights).
Its optimal cost ηθ also becomes a differentiable function
of θ. To see this, consider when we solve this MILP to
optimality, with optimal solution x∗, γ∗, and the active linear
constraints at the solution are Aact

θ x
∗ +Bact

θ γ
∗ = cact, where

we select the rows in Eq.(19b) that the left hand-side equal to
the right hand-side. The optimal continuous variables x∗ can
be computed as x∗ = (Aact

θ )
†

(cact
θ −Bact

θ γ
∗), where (Aact

θ )†

is the pseudo-inverse of Aact
θ . We substitute this x∗ to the cost

function in (19), and obtain the optimal cost as a function
of θ

ηθ = aTθ
(
Aact
θ

)† (
cact
θ −Bact

θ γ
∗)+ bTθ γ

∗ (20)

Since a, b, c, A,B are all differentiable function of θ, we
can compute the gradient ∂ηθ

∂θ , namely the gradient of the
MILP optimal cost w.r.t the weights of the neural network
through back propagation. It is worth mentioning that when
computing this gradient ∂ηθ∂θ , we assume that an infinitesimal
change of θ does not change the binary variable solution γ∗

nor the indices of active constraints.
Since the maximal violation of Lyapunov condition can

be computed as the optimal costs of MILPs (7a)(7b), we
can also compute the gradient of the maximal violation w.r.t
the network parameters. This gradient will be used in the
training procedure in the next sub-section.

D. Training

Our goal is to learn a neural network such that the output
satisfies the Lyapunov conditions. We define the following
loss function, such that by decreasing this loss function to
zero, the violation of Lyapunov condition will diminish

loss(θ,X1,X2) =w1

∑
x∈X1

max(0, ε1|x|1 − Vθ(x))+

w2

∑
x∈X2

max(0, dVθ(x) + ε2Vθ(x))+

w3 max
x∈∪iP̄i

ε1|x|1 − Vθ(x)︸ ︷︷ ︸
MILP in (7a)

+

w4 max
x∈∪iP̄i

dVθ(x) + ε2Vθ(x)︸ ︷︷ ︸
MILP in (7b)

(21)

where w1, . . . , w4 are all given non-negative weights. X1,X2

are training data sets. The first two terms in Eq.(21) penalize
the violation of the Lyapunov conditions (2a)(2b) on the
training sets X1,X2 respectively. The last two terms are

the MILPs introduced in III-B, which compute the maximal
violation of Lyapunov conditions and the adversarial states.

Algorithm 1 explains our training process. When com-
puting the gradient of the loss function in line 10 of the
algorithm, the gradient of the first two terms in (21) are
computed through back propagation on the training sets
X1,X2. The gradients of the last two terms in (21) can be
computed through the procedure explained in sub-section
III-C. Note that in each iteration, the newly discovered
adversarial states x1

adv, x
2
adv are added to the training sets.

Our algorithm is similar to those in bilevel optimization [1],
in which in the outer level a loss function is minimized
using gradient descent; in the inner level, the loss function
is computed by solving a maximization problem (MILP in
our case), and the gradient of the maximal cost is used in
the outer level.

Algorithm 1 Learning Lyapunov function

1: pre-train a neural network Vθ(x)
2: success = FALSE
3: while not success do
4: Solve MILP maxx∈∪iP̄i ε1|x|1−Vθ(x) (Eq.(7a)) with

optimal solution x1
adv and optimal cost η1(θ)

5: Solve MILP maxx∈∪iP̄i dVθ(x) + ε2Vθ(x) (Eq.(7b))
with optimal solution x2

adv and optimal cost η2(θ)
6: if η1(θ) == 0 and η2(θ) == 0 then
7: success = TRUE. Return
8: else
9: Compute loss(θ,X1,X2) defined in (21).

10: Compute the gradient of the loss ∂loss
∂θ .

11: Descend the network parameter θ along the gradient
direction θ = θ − step size ∗ ∂loss

∂θ .
12: Add x1

adv to X1, x2
adv to X2.

13: end if
14: end while

In order to start the training process with a good initial
network, in line 1 of Algorithm 1, we pre-train the network
with Algorithm 2. Note that the loss function (22) in the pre-
training algorithm 2 is just the Lyapunov condition violation
on the randomly generated training state X4. It doesn’t
require solving MILP as in (21) hence the pretraining is
significantly faster than the actual training in Algorithm 1.

IV. RESULTS

In this section we show that our approach successfully
learns Lyapunov functions with non-trivial partitions on a
set of discrete-time and continuous-time systems. We include
systems which do not admit piecewise linear or quadratic
Lyapunov functions by partitioning it according to the hybrid
modes. All leaky ReLU units have slope c = 0.1 in the
negative region. In all examples (except one case in Example
2), our approach finds the Lyapunov function in the first trial,
without any tuning on the network structure. We regard the
Lyapunov condition being satisfied when the MILP losses
are less than 10−5.



Algorithm 2 Pre-train the network on sampled states

1: Generate a set of random states X4.
2: iter = 0
3: while iter < iter max do
4: Compute the total violation of Lyapunov condition on

the training set X4 as

loss(θ,X4) = w1

∑
x∈X4

max(0, ε1|x|1 − Vθ(x))+

w2

∑
x∈X4

max(0, dVθ(x) + ε2Vθ(x))

(22)

5: Compute the gradient of the loss in (22) w.r.t θ through
back propagation.

6: θ = θ − step size ∗ ∂loss(θ,X4)
∂θ .

7: iter = iter + 1.
8: end while
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(a) Lyapunov function value.
We also draw the boundaries of
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and the boundaries of hybrid
modes (red lines).
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−ε2V (xn)∀xn by the learned
Lyapunov function.

Fig. 3: Lyapunov function for discrete-time system in Eq.(23)

A. Example 1 (discrete-time)

We consider the discrete-time system introduced in [4]

xn+1 =



[
−0.999 0

−0.139 0.341

]
xn, xn ∈ (0,∞)× (−∞, 0)[

0.436 0.323

0.388 −0.049

]
xn, xn ∈ [0,∞)× [0,∞)[

−0.457 0.215

0.491 0.49

]
xn, xn ∈ (−∞, 0]× (−∞, 0][

−0.022 0.344

0.458 0.271

]
xn, xn ∈ (−∞, 0)× (0,∞)

(23)

We learn a neural network with 2 hidden layers, each layer
is of width 4. We show the Lyapunov function in Fig.3. As
shown in the plot, the boundaries of the Lyapunov function
(black lines) produced by our method are not trivial and do
not align with the boundaries (red lines) of each hybrid mode.
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(a) Lyapunov function value.
We also draw the boundaries of
each piece in the piecewise Lya-
punov function (black lines),
and the boundaries of hybrid
modes (red lines).
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(b) Satisfaction of the con-
dition V (xn+1) − V (xn) ≤
−ε2V (xn)∀xn by the learned
Lyapunov function.

Fig. 4: Lyapunov function for discrete-time system in Eq.(24)

B. Example 2 (discrete-time)

We consider the discrete-time system introduced in [28],

xn+1 =



[
1 0.01

−0.05 0.897

]
xn, |xn(1)| ≤ |xn(2)|[

1 0.05

−0.01 0.897

]
xn, |xn(1)| > |xn(2)|

(24)

The learned Lyapunov function for this system is shown in
Fig. 4. The network has two hidden layers; the first hidden
layer has 8 units, and the second hidden layer has 4 units.

In [28], the authors further showed that by modifying the
dynamics to

xn+1 =



[
1 0.01

−0.05 0.997

]
xn, |xn(1)| ≤ |xn(2)|[

1 0.05

−0.01 0.998

]
xn, |xn(1)| > |xn(2)|

(25)

this new system doesn’t have a piecewise linear or quadratic
Lyapunov function when each piece is determined by the
domain of each hybrid mode. (However they could synthe-
size a piecewise 4-th order Lyapunov function). On the other
hand, using our approach, we could find a piecewise linear
Lyapunov function for the system in (25). We visualize our
Lyapunov function in Fig.5. Our network has 3 hidden layers
with 8 units on each of the first two hidden layers, and 2 units
on the last hidden layer.

C. Example 3 (continuous-time)

We consider a continuous time system introduced in [10]

ẋ =



[
−0.1 1

−10 −0.1

]
x, x(1)x(2) ≥ 0[

−0.1 10

−1 −0.1

]
x, x(1)x(2) < 0

(26)

This system does not have a piecewise linear Lyapunov
function when the partition aligns with the mode (certified
by the approach in [10]). On the other hand, because our
method is able to search over the partitions, it successfully
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(a) Lyapunov function value.
We also draw the boundaries of
each piece in the piecewise Lya-
punov function (black lines),
and the boundaries of hybrid
modes (red lines).
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(b) Satisfaction of the con-
dition V (xn+1) − V (xn) ≤
−ε2V (xn)∀xn by the learned
Lyapunov function.

Fig. 5: Lyapunov function for discrete-time system in Eq.(25)
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(a) The phase portrait of system (26). The green lines are the
contours of V = 0.05, 0.1, 0.15. All trajectories point inward w.r.t
the contours. The boundaries of the pieces in the piecewise linear
Lyapunov function (black lines) do not align the with boundaries of
the hybrid modes (red lines).
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(c) Satisfaction of condition
V̇ ≤ −ε2V ∀x by the learned
Lyapunov function.

Fig. 6: Lyapunov function for system in Eq.(26).
.

identifies a piecewise linear Lyapunov function. We use a
network containing 2 hidden layers, with width 8 in the first
hidden layer, and width 4 in the second hidden layer. The
results are shown in Fig.6.

D. Example 4 (continuous-time)

We consider the continuous-time PWL system in [10]

ẋ =



[
−5 −4

−1 −2

]
x, x(1) ≤ 0[

−2 −4

20 −2

]
x, x(1) > 0

(27)

Again, this system does not have a piecewise linear Lyapunov
function, if each piece is aligned with each hybrid mode
(since the origin is not a vertex of the hybrid modes, a
Lyapunov function with pieces aligned with each mode
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(a) The phase portrait of system (27). The green lines are the
contours of V = 0.005, 0.01, 0.015. All trajectories point inward
w.r.t the contours. The boundaries of the pieces in piecewise linear
Lyapunov function (black lines) do not align the with boundaries of
the hybrid modes (red lines).
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learned Lyapunov function.
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Fig. 7: Learned Lyapunov function for continuous-time sys-
tem in Eq.(27).

.

Adversarial
states
only

MILP
costs
only

Adversarial
states +
MILP
costs

Example 1 110 119 117
Example 2 4156 4027 3074
Example 3 3256 2751 1311
Example 4 77 60 54

TABLE I: Number of iterations to converge with different
loss functions.

would never have the origin as a unique global minimum.)
Once again, our approach can easily learn a piecewise linear
Lyapunov function. We use a network with 2 hidden layers,
with width 4 on the first hidden layer, and width 2 on the
second hidden layer. The results are shown in Fig.7.

Finally, we perform an ablation study to compare the
convergence rate of our method using three different loss
functions 1) Only training on adversarial states (w3, w4 are
zero in Eq (21)). 2) Only training with MILP costs (w1, w2

are zero in Eq (21)). 3) Training with both adversarial
states and MILP costs (all w1, . . . , w4 are non-zero). The
result is summarized in Table I. For the majority of the
experiments the learning process converges fastest with both
adversarial states and MILP costs. Even though our algorithm
involves solving several MILPs, its runtimes remain well
within acceptable ranges for each of the examples provided.
Specifically, their computation times range from 9s (example
1) to 780s (example 2) on a laptop with Intel Xeon processor.



V. DISCUSSION AND CONCLUSION

In this paper, we showed that we can synthesize and certify
Lyapunov functions to prove global exponential conver-
gence of piecewise linear dynamical systems. Our Lyapunov
functions are the outputs of neural networks with leaky
ReLU activation functions and no bias terms. To learn this
Lyapunov function, we apply gradient descent algorithm on
the network weights. In each iteration of the gradient descent
, we solve MILPs to compute the maximal violation of the
Lyapunov conditions, and the worst adversarial states. We
append these worst adversarial states to our training set, and
compute the gradient of the loss function by differentiating
the MILP optimal cost w.r.t the network weights. We demon-
strate that our approach can be applied to both continuous-
time and discrete-time systems. Unlike previous approaches
which require a pre-specified partition of the state space, our
approach can freely search the boundary of each piece in the
piecewise linear Lyapunov function.

One major limitation of our approach is that we need
to solve nonlinear nonconvex problems through gradient
descent. This is contrary to previous approaches in which
the piece boundaries are fixed, and the Lyapunov function
is synthesized through convex optimization. Hence we do
not guarantee convergence to a Lyapunov function even if
one exists. Moreover, since we need to solve MILPs at each
iteration of the learning process, and the number of binary
variables scales proportionally with the number of leaky
ReLU units in the network, it is computationally expensive
to use large neural networks.

We note that our approach can be readily extended to
piecewise affine dynamical systems whose hybrid mode
boundaries do not need to pass through the origin, and we
can also verify the region of attraction for these systems. We
will include these results in future work.

VI. APPENDIX

In the appendix, we aim to prove that if a stable piecewise
linear dynamical system has continuous piecewise affine
Lyapunov function, then it has a Lyapunov function that
can be represented by a neural network with (leaky) ReLU
activation units and no bias terms. To prove this, we first
show that we can construct a continuous piecewise linear
Lyapunov function from the continuous piecewise affine
Lyapunov function, then we prove that this piecewise linear
Lyapunov function can be represented by the neural network
with zero bias terms.

As a first step, we show the existence of a piecewise linear
Lyapunov function. We make the distinction between affine
function and the linear function, that an affine function ax+b
has a constant term b, while the linear function ax does not.
Namely a piecewise linear function V (x) is homogeneous
V (kx) = kV (x) ∀k ≥ 0.

Theorem 1: If a piecewise linear system in (1) has a
piecewise affine Lyapunov function V̄ (x), then there exists
a piecewise linear Lyapunov function V (x).

Proof: For this piecewise affine Lyapunov function
V̄ (x), consider an affine piece containing the origin, namely

(a) (b)

Fig. 8: (left) The domain D̄i is a polyhedron piece in
the piecewise affine Lyapunov function V̄ (x). The origin
(black circle) has to be a shared vertex of the neighbouring
domains D̄1, . . . , D̄6. (right) We construct a new piecewise
linear Lyapunov function V (x), by removing all the domain
boundaries that do not pass through the origin. For the
domains D̄1, . . . , D̄6 neighbouring the origin, we keep the
boundaries that pass through the origin, and extend these
remaining boundaries to infinity.

0 ∈ D̄i, where the polyhedral region D̄i is the domain of
this piece (do not confuse D̄i with the domain of a hybrid
mode). Since V̄ (x) is an affine function on this domain D̄i,
and V̄ (0) is the unique minimum of V̄ (x), the origin must
be a vertex of the domain D̄i, because the unique minimal
of an affine function V̄ (x) on a polyhedron domain D̄i has
to be a vertex of the polyhedron. Hence the origin is the
common vertex of the neighbouring domains, as shown in
Fig.8a. And within each domains neighbouring the vertex,
the Lyapunov function V̄ (x) has to be a linear function of
x, rather than an affine function, since V̄ (0) = 0.

To construct a new piecewise linear Lyapunov function
V (x) from V̄ (x), we remove all the domain boundaries in
V (x) that do not pass through the origin. For the domains
neighbouring the origin, we keep the boundaries that pass
through the origin, and extend these boundaries to infinity.
Namely for each of the domain D̄i neighbouring the origin,
we compute the cone of D̄i as Di = {kx|x ∈ D̄i, k ≥ 0}.
This process is shown in Fig.8b. The newly constructed
function V (x) has the same form in Di as V̄ (x) in D̄i.
Namely if V̄ (x) = aTi x when x ∈ D̄i ∩ Di, then

V (x) = aTi x if x ∈ Di (28)

We need to prove that this newly constructed function
V (x) is a valid Lyapunov function. Here we use the fact
that both the dynamical equation and the Lyapunov function
are homogeneous functions of state x. Specifically, when x ∈
D̄i ∩ Di, V (x) = V̄ (x), hence V (x) satisfies the Lyapunov
conditions when x ∈ D̄i ∩ Di. When x /∈ D̄i ∩ Di (for
example, x in Fig.8b), we shoot a ray connecting the origin
and x. There exists a point x̄ = kx, k > 0, s.t x̄ ∈ D̄i ∩ Di
(shown in Fig.8b). Hence we can prove that V (x) is strictly
positive as V (x) = V (kx)/k = V (x̄)/k = V̄ (x̄)/k ≥
ε1|x̄|1/k = ε1|x|1. The first equality is because V (x) is a
linear function of x in Di; the second equality is because
x̄ = kx by definition; the third equality is because V (x̄) =
V̄ (x̄) as V (x̄) coincides with V̄ (x̄) within x̄ ∈ D̄i ∩Di; the



last inequality is because V̄ is a Lyapunov function thus
satisfying condition V̄ (x̄) ≥ ε1|x̄|1 (Eq.(2a)). Hence we
prove that V (x) also satisfies the strict positivity condition
V (x) ≥ ε1|x|1. Likewise, we can show that dV (x) =
dV̄ (x̄)/k ≤ −ε2V̄ (x̄)/k = −ε2V (x̄)/k = −ε2V (x). The
first equality is because the dynamics satisfies ˙̄x = kẋ;
the inequality is because V̄ is a Lyapunov function thus
satisfying condition dV̄ (x̄) ≤ −ε2V̄ (x̄) (Eq.(2b)); the last
two equalities hold as we explained before. We therefore
prove that the newly constructed piecewise linear function
V (x) satisfies the Lyapunov conditions (2a)-(2c).

Based on universal approximation theorem [16], any con-
tinuous function can be approximated with arbitrarily high
accuracy by a neural network with one hidden layer and
(leaky) ReLU activation functions. Since a neural network
with (leaky) ReLU activation functions represents a piece-
wise affine relationship between the input and the output, the
theorem implies that a piecewise linear Lyapunov function
can always be represented by a neural network with one
hidden layer and (leaky) ReLU activation functions. In this
paper we restrict to neural networks for which the bias
terms are all zero. Next we prove that there is no loss of
generality with this restriction, that a continuous piecewise
linear function can always be represented by a (leaky) ReLU
neural network with zero bias terms. For clarity, we prove the
claim for neural networks with scalar outputs (which is the
network used in this paper), but the theorem is also trivially
extended to networks with multiple outputs.

Theorem 2: If a neural network φ(x) with one hidden
layer, a scalar output layer and (leaky) ReLU activation
function is piecewise linear, namely it satisfied φ(kx) =
kφ(x) ∀k ≥ 0,∀x, then this network has all its biases equal
to 0.

Proof: This network can be formulated as

φ(x) = wT
2 σ(W1x + b1) + b2 (29)

where W1,b1 are the weights/bias in the hidden layer, and
w2, b2 are the weights/bias in the output layer. If any entry
in w2 is zero, then we could just remove that entry and
the corresponding rows in W1 and b1 and obtain a smaller
network with the same output. Hence we can safely suppose
w2(i) 6= 0 ∀i. Our goal is to prove that both b1 = 0 and
b2 = 0.

We can prove this claim by by contradiction. First, suppose
b1 6= 0. Without loss of generality, we suppose that the
first m entries in b1 are non-zero, the other entries are
0. We use W1(i, :) to denote the i’th row of matrix W1,
and W̄1 to denote the sub-matrix containing first m rows of
W1; w̄2, b̄1 to denote the sub-vector containing the first m
entries of w2,b1 respectively. We further make the following
assumption

Assumption 1: there are no two rows in the matrix W̄1, b̄1

satisfying W̄1(i, :)/b̄1(i) = W̄1(j, :)/b̄1(j) for 1 ≤ i, j ≤
m. Namely in the matrix [W̄1 b̄1], there is not a row being
a muliplier of another row.
If such two rows exist, we can add the j’th row of W̄1, b̄1, w̄2

to their i’th rows, and remove the j’th row. This new network

has the same output as before. Hence the assumption 1 is
always valid.

The condition φ(kx) = kφ(x)∀k ≥ 0 means that for any
fixed x, the function φ(kx) as a function of k has a fixed
slope, namely

∂φ(kx)

∂k
= constant ∀k ≥ 0 (30)

, in the remaining of the proof we will show that we can
construct certain x such that the slope in (30) is not a
constant if b1 6= 0.

Since b̄1 is supposed to be non-zero, there exists a vector
x∗ such that some entries in W̄1x

∗ take the opposite sign
as the corresponding entries in b̄1, namely there exists 1 ≤
i ≤ m such that sign(W1(i, :)x∗) = −sign(b1(i)). Without
loss of generality we assume such entries are the first n
entries of W̄1x

∗ and b̄1. We can further require that x∗ is
so small such that |W̄1(i, :)x| ≤ |b̄1(i)| ∀i, hence x∗ also
satisfies sign(W̄1x

∗+b̄1) = sign(b̄1), namely adding small
W̄1x

∗ to b̄1 doesn’t change its sign. We will show that there
exists some k > 0 such that along the ray kx∗, the condition
φ(kx∗) = kφ(x∗) does not hold.

To show this, among all the entries i such that sign(W̄1(i, :
)x∗) = −sign(b̄1(i)), we compute the ratio ki =
−b̄1(i)/(W̄1(i, :)x∗). Apparently ki > 0 since the numera-
tor and denominator have different signs. We further assume
the array [ki], i = 1, 2, . . . , n has a unique minimal (if
the minimal is not unique, namely there are two indices
i, j such that ki = kj and both ki, kj are the smallest
entries of the array, then according to assumption 1, we only
need to perturb x∗ a little bit to break the tie, while the
perturbed x∗ still satisfies the sign requirement). Without loss
of generality, we can assume the smallest ki is k1, and the
second smallest ki is k2, namely 0 < k1 < k2 ≤ ki ∀i > 2.
Notice that φ(kx∗) = kφ(x∗) indicates that ∂φ(kx∗)

∂k is a
constant that is independent of k, but we will show that
the slope ∂φ(kx∗)

∂k is different for 0 < k < k1 versus
k1 < k < k2. Notice that when k increases from 0 to k2, the
signs of all entries W̄ (i, :)kx∗ + b1(i) don’t change except
for W̄ (1, :)kx∗ + b1(1), which flips the sign at k = k1.
Since the (leaky) ReLU unit σ(y) takes a different slope as
y changes the sign, and none of the entries in w1 is zero,
the gradient ∂φ(kx∗)

∂k changes when k increases from below
k1 to above k1. Algebraically we see it by writing the slope
using the chain rule

∂φ(kx∗)

∂k
=
∑
i

w2(i)W̄1(i, :)x∗
∂σ(y)

∂y

∣∣∣∣
y=W̄1(i,:)kx∗+b1(i)

(31)

we can see that all the terms in equation (31) don’t change
with k, except for i = 1, which changes when y flips sign at
k = k1. Therefore we obtain the contradiction that ∂φ(kx∗)

∂k
is not a constant, and φ(kx∗) 6= kφ(x∗). So we conclude
that the bias b1 in the hidden layer has to be 0.

If b2 6= 0, then since φ(0) = 0, we obtain

wT
2 σ(b1) + b2 = 0 (32)



(a) The network output as a
function of input x.

(b) The network output φ(kx∗)
as a function of scalar k.

Fig. 9: To illustrate the proof for theorem 2, we draw a simple
neural network φ(x) = 2σ(x + 1) − σ(x + 2) in Fig. 9a.
The output of the network φ(x) passes through the origin.
Here W1 = [1, 1]T ,b1 = [1, 2]T ,w2 = [2,−1]T , b2 = 0.
We can find a small x∗ = −0.1, such that sign(W1x

∗) =
−sign(b1), but sign(W1x

∗ + b1) = sign(b1). We also
draw the function φ(kx∗) as a function of k in Fig 9b. Here
we compute k1 = −b1(1)/(W1(1, :)x∗) = 10 and k2 =
−b1(2)/(W1(2, :)x∗) = 20. When 0 < k < k1, we have
∂φ(kx∗)
∂k = −0.1, but when k1 < k < k2 we have a different

slope ∂φ(kx∗)
∂k = 0.1, this demonstrates that φ(kx) = kφ(x)

cannot hold for this network with non-zero bias.

this implies that b1 6= 0, but from the discussion above b1

has to be a 0-vector, hence b2 = 0.
The idea of the proof is visually illustrated in the Fig 9.
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