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R3T: Rapidly-exploring Random Reachable Set Tree for Optimal
Kinodynamic Planning of Nonlinear Hybrid Systems

Albert Wu, Sadra Sadraddini, Russ Tedrake

Abstract— We introduce R3T, a reachability-based variant
of the rapidly-exploring random tree (RRT) algorithm that is
suitable for (optimal) kinodynamic planning in nonlinear and
hybrid systems. We developed tools to approximate reachable
sets using polytopes and perform sampling-based planning
with them. This method has a unique advantage in hybrid
systems: different dynamic modes in the reachable set can
be explicitly represented using multiple polytopes. We prove
that under mild assumptions, R3T is probabilistically complete
in kinodynamic systems, and asymptotically optimal through
rewiring. Moreover, R3T provides a formal verification method
for reachability analysis of nonlinear systems. The advantages
of R3T are demonstrated with case studies on nonlinear, hybrid,
and contact-rich robotic systems.

I. INTRODUCTION

Sampling-based motion planning algorithms such as prob-
abilistic road-maps (PRMs) [1] and rapidly-exploring ran-
dom trees (RRTs) [2]–[5] have been proven powerful in a
broad range of planning problems. However, a number of
limitations exist in these methods.

The bases of RRTs are rapid exploration of the state
space and connection of new states to explored states. When
kinodynamic constraints are present, one needs to solve the
expensive two point boundary value problem of finding an
admissible trajectory to perform connection. For linear sys-
tems, the problem is manageable and implementations exist
[6], [7]. A widely-adopted alternative for general systems is
to simulate trajectories forward, then expand the explored
states with the nearest produced point to the sample state
[3], [8]. Nevertheless, this method may not be probabilis-
tically complete in kinodynamic settings [9]. Existing RRT
approaches also tend to perform poorly in hybrid systems,
such as those in contact-based robotics. Crucial maneuvers
with particular mode sequences may be hard to explore.
Difficulties associated with the choice of extension strategy
and distance metrics exacerbate this issue [10]–[12].

Many variants of RRT have been developed to improve
planning performance in kinodynamic and hybrid systems.
In these systems, the nearest state in the tree to the sample
might not be associated with the nearest reachable state to
the sample (see Fig. 1). Reachability guided methods, such
as reachability guided RRT (RG-RRT) [13], address this
problem by exploring reachable states in advance and then
growing the tree to the nearest reachable state to the sample.
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Fig. 1: RRT extension and system reachability. While xB is
closer to xsample than xA, the reachable set of xA, RA, has
states closer to xsample than any point in RB . A reachability
guided algorithm would extend the tree to xnearest, whereas
traditional RRT would either extend in RB or fail.

However, this requires searching over a much larger number
of points. A number of algorithms in the spirit of RG-RRT
have been developed. Environment-guided RRT (EG-RRT)
[14] combines RG-RRT with a sampling strategy biased
toward more promising parts of the state-space; planning
with motion cones [15] uses the notion of reachability in
configuration space for in-hand manipulation.

In this paper, we take a formal approach to reachability-
guided sampling-based planning. We developed a method
to represent and plan on the whole reachable set. Our
contributions are as follows.
• A framework to represent the forward (or backward)

reachable set of a state as (the union of) polytope(s) using
the linearized local dynamics. (Sec. III).

• Rapidly-exploring Random Reachable Set Tree (R3T)
sampling-based planning algorithm guided by (polytopic)
reachable sets (Sec. IV). The algorithm is probabilisti-
cally complete in kinodynamic settings with approximated
reachable sets. R3T*, the version with rewiring (Sec. IV-
E), retains the asymptotic optimality of traditional RRT*s.
We demonstrate the benefits of planning with reachable
sets using kinodynamic and hybrid systems (Sec. V).

• As a consequence of R3T, a tool for approximate (subject
to linearization errors) reachability verification, as opposed
to RRT-based falsification [16], [17].

A video summary of this paper is available on YouTube1.

II. PROBLEM STATEMENT AND APPROACH

First, we provide the necessary background on polytopes.
An H-polyhedron is a set defined by a finite number of linear
inequalities H = {x ∈ Rn|Hx ≤ h}, where H ∈ Rq×n, h ∈
Rq , and the inequality vector is interpreted element-wise.

1https://youtu.be/E8TICePNqE0



A bounded H-polyhedron is called an H-polytope [18]. An
AH-polytope is a set in the form of an affine transformation
of an H-polytope H ⊂ Rp [19], [20] A(x̄, G,H, h) :=
x̄ + GH, where G ∈ Rn×p is the linear transformation
and x̄ ∈ Rn is the offset term. In general, an AH-polytope
can be transformed into an H-polytope, but its number of
hyperplanes may be exponentially large [20]. As such, we
do not use the H-polytope representation in this paper.

Consider the following continuous-time hybrid system:

ẋ = f(x, u, σ), (x, u) 6∈ G, (1a)

(σ, x)+ = r(x, u, σ), (x, u) ∈ G, (1b)

where x ∈ X ⊂ Rn is the continuous system state, u ∈ U ⊂
Rm is the control input, σ ∈ Σ is the system mode with Σ
being a finite set, and G is the (zero-measured) set of guards
where mode transitions happen. For instance, the guard may
represent the ground in a hopping robot.

Problem 1. Given system (1), an initial state x0 and a goal
state xG, find a trajectory ζ : [0, T ]→ (x, u) respecting (1),
x(0) = x0, x(T ) = xG, x(t) ∈ X , u(t) ∈ U,∀t ∈ [0, T ], and
T is finite. If optimality is desired, find the optimal trajectory
such that it minimizes J =

∫ T
0
c(x, u)dt, where c : X×U →

R is the running cost.

Using a time step τ ∈ R+ and a time-integration scheme
such as time-stepping ( [21]), we bring (1) into the following
discrete time form:

x+ = Fi(x, u), (x, u) ∈ Si, (2)

where Si, i = 1, · · · , N , are interior-disjoint sets corre-
sponding to N modes described by a number of inequalities
Si(x, u) ≤ 0. The constraint (x, u) ∈ X×U is also included
in each Si, i = 1, · · · , N .

The continuous-time trajectory between two consecutive
states in (2) is often approximated by a straight-line. This
approximation is valid in continuous systems with small time
steps, and is also reasonable in certain classes of (1), where
discrete jumps only occur in the mode and not in the state.
Examples include soft contact models where impacts are
modeled with springs instead of instantaneous bouncing.

III. POLYTOPIC REACHABLE SET APPROXIMATIONS

In this section, we develop a framework to approximate
the forward (or backward) reachable sets of (2).

Definition 1. The forward reachable set of state x̄ is defined
as the set of all states that can be reached from x̄ in less
than time τ using valid control inputs

R(x̄) := {x ∈ X|∃[0, τ ]→ U, x(0) = x̄, (1)}. (3)

While R3T supports planning with exact R(x̄) (see Sec.
V-B), finding an explicit representation for R(x̄) is generally
difficult. However, an approximation can be found with time
discretization and linearization. We linearize the dynamics
and the constraints of each mode of the system. Given η =
(x̄, ū), the linearized dynamics is x+ = Aηi x + Bηi u + cηi ,

x̄RDT1

(mode 1)

RDT2

(mode 2)

RCT2
RCT1

Fig. 2: Schematic illustration of the reachable sets of a hybrid
system. RDT1

and RDT2
represent discrete time reachable

sets of x̄ in 2 different modes. RCT1
(red) and RCT2

(blue),
the continuous-time reachable set of each mode, is computed
by taking the convex hull of x̄ and the respective RDT .

where Aηi = ∂Fi

∂x |η, B
η
i = ∂Fi

∂u |η , and cηi = Fi(x̄, ū)−Aηi x̄−
Bηi ū. The set of constraints Si(x, u) ≤ 0 is linearized to
obtain the following polyhedral set in X × U :

Dη
i x+ Eηi u ≤ ζ

η
i , (4)

where Dη
i = ∂Si

∂x |η, E
η
i = ∂Si

∂u |η , and ζηi = Dη
i x̄ + Eηi ū −

Si(x̄, ū). Note that (4) is an H-polytope if X and U are
bounded sets, which is often the case. An approximation of
the reachable set in discrete time is the following set:

RDT (x̄) =

N⋃
i=1

(Aηi x̄+cηi )+Bηi {u | E
η
i u ≤ ζ

η
i −D

η
i x̄}, (5)

which is a union of AH-polytopes. It is possible that some of
the polytopes in (5) are empty—not every mode is attainable
at a given state. Following the straight line continuous-
time approximation discussed earlier, the polytopic reachable
set in continuous time RCT is approximated by taking the
convex hull of RDT with x̄. The convex-hull of a point and
an AH-polytope is still an AH-polytope [20]. We have

RCT (x̄) =

N⋃
i=1

A(x̄, [Bηi , A
η
i x̄+ cηi − x̄], [Eηi , D

η
i x̄− ζ

η
i ], 0),

where [·, ·] stands for concatenating matrices horizontally.
This construction of reachable sets is illustrated in Fig. 2.

IV. SAMPLING-BASED PLANNING WITH REACHABLE
SETS

Algorithm 1 provides an overview of R3T. First, the
tree is initialized with the start state. The tree is then
expanded through sampling the state space and per-
forming the Extend routine. Whenever a new node is
added, R3T may check for more optimal paths through
Rewire if optimality is flagged true. R3T then checks
whether the goal is reachable from the new node with
ExtendToPoint. If it is the case, a path is found and
R3T terminates.

A. Guiding Tree Growth with Random Sampling

R3T’s extension routine is entirely based on the reachable
set. First, the nearest reachable set in the tree Rc ∈ T to
the random state sample xs is found. If xs ∈ Rc, the tree
is extended toward xs. Otherwise, extension is performed
through finding the nearest state xc ∈ Rc. This sampling
method favors states that are feasible and prevents sample
rejection, similar to RG-RRT [13]. Moreover, the extension



Algorithm 1 R3T

Require: R, S , x0 and xg . reachable set oracle, sampling
function, start state, goal state

Require: optimality, imax, ε . whether to rewire, max
iterations, tolerance for reaching xg

1: T .add(x0,R(x0)) . initialize tree with start state
2: i← 0 . reset iterations count
3: if xg ∈ R(x0) then
4: g ← ExtendToPoint(R(x0), xg)
5: if g 6= ∅ then
6: T .add(g)
7: return BuildPath(T, g) . found path to goal
8: while i < imax do
9: xs ← S() . sample the state space

10: Rc, xc ← FindNearest(T, xs)
11: xn ← Extend(Rc, xc)
12: if xn 6= ∅ then . successful extension
13: T .add(xn,R(xn)) . add new node
14: if optimality==True then
15: Rewire(T,R(xn)) . optional rewiring
16: if xg ∈ R(xn) then
17: g ← ExtendToPoint(R(xn), xg)
18: if g 6= ∅ ∧ Dist(g, xg) < ε then
19: T .add(g)
20: return BuildPath(g) . found path
21: i← i+ 1

22: return ∅ . R3T failed

routine of R3T avoids an explicit distance metric if at least
one reachable set contains xs.

B. Finding the Nearest Reachable Set

FindNearest finds the nearest reachable set Rc to a
sample state xs, and the nearest state xc ∈ Rc to xs. The
nearest state is xs if xs ∈ Rc. Otherwise, an explicit distance
metric is necessary to find the nearest reachable set. This is
the only part of R3T that relies on an explicit distance metric.
L2 distance was used in Sec. V. FindNearest is critical
to R3T’s performance as it is called on every extension. In
this paper, the method based on axis-aligned bounding boxes
from [22] was used.

C. Computing Reachable Sets

In general, the reachable set oracle R(·) computes reach-
able sets with AH-polytope approximations (Sec. III). Some
systems such as Dubins car (Sec. V-B) have exploitable prop-
erties that allow system-specific reachable set computation.

D. Extension

Extend routine is trivial if R is a conservative approx-
imation, as the target state must be reachable. Otherwise,
Algorithm 2 can be used to ensure the extended path is
indeed reachable. We emphasize that xn may be obtained
by a more precise simulation than when generating R.

For the polytopic reachable set approximation discussed
in Sec. III, CalcInput can be implemented using (6).

Algorithm 2 Extend with approximated R(·)
Require: R, x . Approximated reachable set, target state
Require: τ . Time horizon

1: u← CalcInput(R, x) . Control input to get to x
2: xn ←

∫ t=τ
t=0,x(0)=R.x

f(R.x, u)dt . Simulate trajectory
using u. R.x is the state from which R is generated.

3: if CollisionFree(R.x, xn) then
4: return xn
5: return ∅

Algorithm 3 ExtendToPoint with input enumeration

Require: R, x . Approximated reachable set, target state
Require: U , τ . Possible control inputs, time horizon

1: u← Sample(U) . Sample control inputs
2: for ui ∈ u do
3: xi ←

∫ t=τ
t=0,x(0)=R.x

f(R.x, ui)dt .
Simulate trajectory using ui. R.x is the state from which
R is generated.

4: if Dist(x,xi) ≈ 0 ∧ CollisionFree(R.x, x)
then

5: return x
6: return ∅

u = (Bη)†(xc − x−Aηx− cη)|x=Rc.x, (6)

where (.)† stands for Moore-Penrose inverse. Equation (6)
is implemented in all subsequent experiments. For proving
probabilistic completeness, another CalcInput is proposed
and discussed in Section IV-H.

A variant of Extend, ExtendToPoint, has
an additional constraint that Dist(xn, xc) is small.
ExtendToPoint is used in rewiring and goal checking.
This routine is also trivial if the R is a conservative
approximation. If R is an over-approximation, solving
the two-point boundary value from R.x to xn problem is
necessary. Algorithm 3 provides an approach where the
solution is obtained through sampling the input space. Note
that by keeping a reachable set approximation, we can
weed out most unreachable states with little computation.
Generally, the explicit trajectory between tree nodes only
needs to be calculated during the BuildPath routine.
Even with rewiring, the algorithm can maintain optimality
as long as the cost-to-go is consistent. If there are obstacles
in addition to the system dynamics, the collision checking
routine CollisionFree is performed during extension.
Standard collision checking routines used by other RRT
algorithms may be applied.

E. Rewiring

R3T may maintain asymptotic optimality (Sec. IV-I)
through a rewiring procedure similar to [8]. Rewire consists
of finding the best parent of a newly added node, and using
the new node as a potential parent. Algorithm 4 describes
Rewire in detail.



Algorithm 4 Rewire

Require: T , R . R3T, newly added reachable set
Require: C . Cost-to-go function

1: RR ← Contains(T.R, R.x) . Find all reachable sets
containing R

2: for Ri ∈ RR do
3: if C(R.x) > C(Ri.x) + C(Ri.x, R.x) then
4: x′ ← ExtendToPoint(Ri, R.x)
5: if x′ 6= ∅ ∧ Dist(x′, R.x) ≈ 0 then
6: R.x.parent ← Ri.x . Rewire R.x with Ri
7: xR ← Contains(R, T.x) . Find all explored states

contained in R
8: for xj ∈ xR do
9: if C(xj) > C(R.x) + C(R.x, xj) then

10: x′j ← ExtendToPoint(R, xj)
11: if x′j 6= ∅ ∧ Dist(x′j , xj) ≈ 0 then
12: xj .parent ← R.x . Rewire xj with R
13: return

F. Goal Checking

Whenever a new reachable set is added to the tree,
ExtendToPoint is performed to see whether the goal state
is in the new reachable set. If it is, the goal node is added
to the tree, and the algorithm terminates.

G. Optimizations

Information from the reachable sets can be exploited to
accelerate R3T. As discussed in Sec. III, taking the convex
hull of the discrete time reachable set and the originating
state allows choosing a coarse τ . Another useful technique is
to exploit deterministic dynamics. If the input matrix B = 0
in some dynamic modes, the control inputs do not affect
state evolution, and the node can be explored further cheaply
through simulating forward dynamics until B 6= 0. Both
techniques were implemented in Sec. V.

H. Correctness and Probabilistic Completeness (PC) of R3T

The correctness of R3T follows by construction. Algo-
rithms 2 and 3 ensure feasibility of the solution path whether
the exact or approximated reachable sets are used.

Assume there exists a robustly feasible (see [4]) solution P
to Problem 1. We consider Lipschitz continuous systems with
1 dynamic mode. We require the support of the sampling
function S to contain ∪{R(x) | ∀x ∈ P}.

Theorem 1. R3T with exact reachable sets is PC.

Proof: Leveraging the results and notations from [23],
we only need to show the probability of a successful prop-
agation into Bκδ(x1) from x′0 ∈ Bδ(x0) is nonzero. Since
the path is robustly feasible, Bκδ(x1) ∩ R(x′0) has nonzero
volume and nonzero probability of being sampled.

For R3T with approximated reachable sets R̄(·) as dis-
cussed in Algorithm 3, we add the following assumptions:

Assumption 1. There exists Mx : R̄(x) → R(x) defining
the following relationship: for ∀y ∈ R(x),∃ȳ ∈ R̄(x) such

that if ȳ is sampled, y is extended to from x. An alternative
assumption is every feasible input u ∈ U and time t ∈ [0, τ ]
has a nonzero probability of being sampled.

Assumption 2. In the case where a state is contained in
multiple R̄(x), we break ties randomly. For convenience, we
assume the tie breaking probability is uniform.

Theorem 2. R3T with reachable set approximations satisfy-
ing Assumptions 1 and 2 is still PC.

Proof: By Assumption 1, ∃B̄κδ(x1) := {y | Mx′
0
(y) =

x, x ∈ Bκδ(x1)∩R(x′0)} 6= ∅. Denote the probability of sam-
pling in B̄κδ(x1) as p, 0 < p ≤ 1. There may be tree nodes
Z = {z1, z2, . . . , zm} ⊂ T such that B̄κδ(x1) ∩ R̄(zi) 6= ∅.
By Assumption 2, the probability of choosing x′0 is at least

1
m+1 . The probability of propagating from x′0 into B̄κδ(x1)
is p

m+1 ≥
p
|T | , where |T | is the tree size. Suppose initially

|T | = k and n extensions are performed. The probability
of failing to propagate into B̄κδ(x1) is upper bounded by∏n−1
i=0 (1− p

k+i ). For 0 < a < 1,

ln (1− a) = −a− a2

2(1− ε)2
≤ −a, 0 < ε < a. (7)

The logarithm of the failure probability after infinite steps is

lim
n→∞

n−1∑
i=0

ln (1− p

k + i
) ≤ lim

n→∞

n−1∑
i=0

− p

k + i
= −∞, (8)

thus

lim
n→∞

n−1∏
i=0

(1− p

k + i
) = 0. (9)

In virtue of (9), after infinite steps, the propagation to
B̄κδ(x1) succeeds almost surely.

To achieve PC with polytopic reachable set R̄(·), consider
an alternative CalcInput satisfying Assumption 1. Ob-
serve that extending to xs ∈ R̄(xc) is a polytopic constraint
on the time step t̄ = βτ and reparameterized input v := βu.

xs = (Aηx+ cη)β + (Bη)v + xc, v ∈ βU, β ∈ [0, 1]. (10)

Since xs may be any state in R̄(·), if a random polytope
sampler such as [24] is used to choose u, t̄ for Algorithm 2,
all feasible u, t̄ can be chosen and the setup is PC.

I. Asymptotic Optimality with Rewiring

Definition 2. An R3T tree T is “optimal” if the edges
connecting the root xr and all xt ∈ T form a path no
more costly than any other path from xr to xt via waypoints
{xi} ∈ T , where each xi+1 ∈ R(xi).

Theorem 3. Given an R3T tree T constructed with the
rewiring procedure, the tree is optimal.

Proof: We prove by induction. Suppose we start from
an optimal tree T , and a new node xn is added. If a
suboptimal path appears after adding xn, it must contain
xn. The rewiring procedure checks for better paths involving
{x | xn ∈ R(x) ∧ x ∈ T} and {x | x ∈ R(xn) ∧ x ∈ T},
which covers all path segments involving xn with duration



≤ τ . Therefore, T ∪{xn} is still optimal. The “base case” of
a tree with 1 node is optimal, so the proof is complete.

With PC, all possible paths will be explored by R3T given
a long enough running time. We therefore speculate that R3T
posses the asymptotic optimality given in [4], [25]. While we
do not bound the complexity of rewiring, empirical evidence
suggests that rewiring is beneficial in practice.

V. CASE STUDIES

We implemented R3T, RG-RRT [13], and RRT [3] for
testing. Our RRT and RG-RRT implementations sample 3
evenly-spaced inputs for tree extension using their respective
strategies. All scripts are available on GitHub2. All tests were
performed on a personal computer with i7-7820HQ CPU.

A. Pendulum Swing-Up
We consider a single-link torque-limited pendulum system

with damping. The pendulum was started at rest, and the goal
is to swing up the pendulum to rest at θ = π. The tolerance
for reaching the goal is ||x−xg||2 ≤ 0.05. For R3T and RG-
RRT, a reachable set time horizon of 0.2s was used. The
time step size for RRT and forward dynamics was 0.01s.
10 consecutive planning tries were done, and the results are
summarized in Table I.

TABLE I: Path Planning Statistics with Pendulum.

R3T RG-RRT RRT
Time(s) Nodes Time(s) Nodes Time(s) Nodes

Mean 5.92 559 21.4 4352 45.8 11134
Median 4.07 472 6.6 1381 31.0 8349

Max 17.26 1218 110.8 22600 97.5 19360
Min 2.14 284 1.5 336 28.0 7677
S.D. 5.09 326 33.8 4353 23.6 4273

R3T significantly outperformed RG-RRT and RRT in both
runtime and nodes explored. This is attributed to the large
simulation timestep allowed by planning with reachable sets.
Moreover, by using the convex hull technique discussed in
Sec. IV-G, choosing a large simulation time step does not
cause R3T to “overlook” the goal states, unlike in RG-RRT
and RRT where the exploration often passed by the goal but
not terminate. One way to mitigate this pitfall is to add a
possibly expensive routine in RG-RRT and RRT to check if
the goal lies on the path between two nodes. Fig. 4 shows
the reachable sets explored by R3T as time progresses.

B. Dubins Car
To demonstrate asymptotic optimality of R3T, we consider

the “Dubins car” problem. The problem is to find a path
subject to a car’s kinematic constraints. The problem can be
simplified to finding a path that consists of curvature-limited
Dubins curves [26]. Observing that the reachable set from
each state is just a linear transformation of a “base” reachable
set, a fixed-horizon exact reachable set was precomputed
through simulating the system dynamics forward. Fig. 5a
and 5b shows the solution improvements as time progressed.
Fig. 5c plots the path length against time. As expected from
asymptotic optimality, the cost is monotonically decreasing.

2https://github.com/wualbert/r3t

(a) Optimal trajectory from a
bang-bang controller.

(b) Trajectory found by R3T.

(c) Trajectory found by RG-
RRT.

(d) Trajectory found by RRT.

Fig. 3: Pendulum swing-up trajectories found by various
algorithms. R3T found a solution significantly faster with
fewer nodes explored.

(a) Reachable set with |u| < 1N
after 5 seconds.

(b) Reachable set with |u| < 1N
after 3905 seconds.

(c) Reachable set with |u| <
0.25N after 5 seconds.

(d) Reachable set with |u| <
0.25N after 3905 seconds.

Fig. 4: Polytopic approximation of the pendulum reachable
set as explored by R3T. Swing-up is impossible with the
input limit and the damping coefficient in 4c and 4d. As the
runtime increased, nearly all feasible states were covered,
proving probabilistic completeness empirically.

(a) First path found.
Cost-to-go is 60.9.

(b) Path after 132s.
Cost-to-go is 38.6.

(c) Cost-to-go plotted
over time.

Fig. 5: Results of R3T on Dubins car. Figures 5a, 5b are
snapshots of the explored states (grey) and solution (blue).



(a) Nodes (grey) and trajectory
(cyan) found by R3T.

(b) Reachable set corresponding
to the path in Fig. 6a.

(c) Instance where RG-RRT
failed. With a small goal region,
RG-RRT failed to acknowledge
the goal between two nodes.

(d) Instance where RRT failed.
To match the simulation gran-
ularity of R3T, RRT needed a
much smaller time step.

Fig. 6: 1D hopper trajectories found by various algorithms.
R3T finds a solution consistenly and quickly. RG-RRT and
RRT each suffer from different failure modes.

C. 1D-Hopper

The 1D hopping robot is used to compare R3T and other
method’s ability to plan on hybrid systems. Our model has
2 states, 2 continuous dynamic modes (flight, soft ground
contact), and 1 discrete dynamic mode (inelastic collision
with the ground). For our tests, the hopper should hop from
2m to 3m. The tolerance for reaching the goal is ||s−sg||2 ≤
0.05. For R3T and RG-RRT, a reachable set time horizon
of 0.04s was used. The time step size for RRT and forward
dynamics was 0.01s. 10 consecutive planning tries were done
with a maximum runtime of 100s. The statistics on successful
tries of finding the first path are summarized in Table II.

TABLE II: Path Planning Statistics with 1D Hopper.

R3T RG-RRT RRT
Time(s) Nodes Time(s) Nodes Time(s) Nodes

Mean 2.39 530 47.23 4288

N/A N/A
Median 2.18 497 35.54 3403

Max 5.01 1021 96.49 8006
Min 0.37 75 19.74 2194
S.D. 1.28 265 30.92 2432
Fails 0 2 10

Fig. 6 shows the trees explored by each algorithm. R3T is
the only algorithm that found a path consistently and quickly.
Two properties from planning with reachable sets contribute
to this result. Since the 1D hopper has no control input during
flight phase, R3T can exploit this property using methods
described in Sec. III. In addition, maintaining reachable sets
allows for more accurate distance-to-goal calculation and
goal identification, as discussed in Sec. V-A.

Fig. 7: R3T solution trajectory (cyan) for the 2D hopper.
The tree explored is in grey. Snapshots of the hopper
configurations (red for leg, purple for body) are shown.

Fig. 8: The robot finger positions are shown in blue. [Left]
Initial pose. [Middle] Reachable poses explored by R3T.
[Right] A trajectory where the finger flips the box by tilting
its center of mass to the left of the ground contact point.

D. 2D-Hopper

The 2D hopper robot [27], [28] has 10 states, 2 control
inputs, and 2 contact modes [28]. The task is to make the
robot hop from x = 0 to x = 10. A body-attitude controller
was used in flight and the leg was modeled as a constant-
k spring during compression. R3T was used to plan push-
off and hip torque during contact. 10 consecutive runs were
performed. R3T found a path in all runs using a median time
of 106.3s and 2163 nodes. Fig. 7 shows a successful run.

E. Box Manipulation with a Robot Finger

We consider a contact-rich task of a robot finger manip-
ulating a rigid box. two corner-ground and one finger-box
contact points are modeled. The gravity is downward. Using
Coulomb friction model, each contact point has 4 modes of
sticking, sliding in each direction, and no contact. We use
the hard contact model with time-stepping [21] and use local
piecewise affine approximations in 8 states, 2 inputs, 43 = 64
modes combinations in the state-space. The R3T algorithm
was able to identify a broad range of mode sequences that
correspond to rapid state exploration. Preliminary results on
flipping the box by 90◦ are shown in Fig. 8.

VI. CONCLUSION

We introduced the R3T algorithm, a variant of RRT which
takes advantage of reachable sets. We proposed a framework
for R3T planning in nonlinear hybrid systems using local
linearization, proved probabilistic completeness of R3T in
kinodynamic systems, and presented a rewiring procedure
that provides asymptotic optimality. Case studies showed
R3T outperforms previous methods in speed and nodes
explored and R3T can be applied to planning for complex
hybrid systems.
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