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Abstract

The asymptotic elastic behavior of interfacial cracks occurring between two dis-
similar isotropic media is reviewed. Distinct solutions, based on differing assumptions
regarding crack-tip boundary conditions, can be generated. The assumption of traction-
free crack-tip faces generally leads to oscillatory singular asymptotic fields which math-
ematically cause crack-face interpenetration, an inconsistency which can be alleviated
by alternatively assuming asymptotic (frictionless) contact. Both cases produce singu-
lar crack-tip stresses which cannot be sustained in materials capable of limited plastic
fiow, and small scale yielding (SSY) should be considered.

Conditions for SSY within surrounding dominant elastic regions of both traction-
free and frictionless contact are considered, and the subset of admissible loads producing
physically realistic conditions are identified for each crack-tip idealization. Approxi-
mate closed form expressions for the plastic zone size and shape are obtained as the
locus of points where the elastically-calculated Mises stress equals the tensile yield
strength, o,,. In defining elastic and plastic traction-free crack-tip fields, both a mag-

nitude and phase angle are required. The SSY interfacial load phase angle (ILPA),
defined as ¢ = ¢K + ¢ln (KI—{/af,,w coshz(ms)) where /K is the phase angle of the

complex traction-free stress intensity factor K and ¢ is the bi-material constant, nat-
urally arises when calculating the approximated plastic zone and conveniently defines
the phase angle of the inelastic traction-free fields. The traction-free crack-tip plastic
zone size and shape as well as ¢ periodically evolve as |K| increases, while the closed
crack-tip plastic zone shape differs little from the homogeneous mode Il shape and only
depends functionally on the closed bi-material stress intensity factor K, and weakly
on the bi-material constant.

Precise SSY numerical calculations for an elastic/perfectly-plastic material atop a
rigid or elastic substrate indicate that the plane-strain asymptotic traction-free crack-
tip stress fields in the plastically-deforming material are composed of various elastic
and plastic sectors. Deep within the plastic zone, no oscillatory stress variations oc-
cur, however, a cusp in the slip-line field couples portions of the siress state to the
radial distance for certain loads. Generally the maximum interfacial tractions occur
for negative ¢; when inelastic sectors completely surround the crack-tip. For positive ¢
an elastic crack-face sector grows as the ¢, increases, and the interfacial shear strains
in the plastically deforming medium are small, independent of the actual interfacial
sector type. Crack-face contact within the plastic zone may occur at values of ¢; when
elastic contact outside the plastic zone does not occur. The closed bi-material crack-tip
asymptotic stress fields in plane-strain for an elastic/perfectly-plastic material bonded



to a rigid substrate are composed of two fan and two constant state sectors in the de-
forming region. Compressive crack-face tractions persist even when couintained inelastic
deformation is included.

Asymptotic interfacial and crack-face tractions appear constant in the crack tip
region, but both normal and shear tractions jump at the crack-tip. The asymptotic
elastic potential for the lower-elastic stress state is logarithmically singular for non-
zero asymptotic interfacial shear tractions, thus inelastic crack-tip deformation in the
“elastic” region is anticipated for deformable media. Validity conditions regarding use
of an elastic lower half-space and linearized kinematics and the formation of a blunted
crack-tip are presented.

Thesis Supervisor: Dr. David M. Parks

Title: Associate Professor of Mechanical Engineering
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Chapter 1

Introduction and Statement of

Problem

1.1 Introduction

Efforts in the creation, design, and manufacturing of advanced materials, such as metal
matrix composites (MMC), laminated composites, ceramics, and metallic polycrys-
tallines, which may or may not contain second phase particles, have been hampered,
from the viewpoint of mechanical performance, due to a lack of knowledge about the
prucesses occurring along the interfaces separating the individual constituents or mi-
crostructural boundaries. It is widely recognized that laminated materials can have
unique failure modes attributable solely to their layered structure. For example, multi-
layered electronic boards are known to fail from thermal cycling along their lamination
joints. In MMC, the fiber-matrix interface is the controlling factor in overall composite
strength and toughness (Cooper and Kelly, 1969; Ochiai and Murakami, 1981). The
approaches used to assess the interfacial stresses have been either: to assume a per-
fect mathematical interface, which allows the evaluation of the necessary interfacial
tractions to preserve overall integrity of the interface; or to postulate the existence of
a crack-like defect and analyze it using conventional linear elastic fracture mechanics
(LEFM) approaches (e.g., in MMC see Buchholz and Herrman, 1983; Ioakimidis and
Theocaris, 1979). No extreme analytical problems are typically encountered in invest -

gating ideal interfaces, but that approach sheds little light on the actual chain of events

10



in the failure process. On the other hand, LEFM does describe the strength of the sin-
gularity, but it also predicts infinite interfacial stresses upon extrapolation to the crack
tip. Additionally, the linear material behavior and infinitesimal strain assumptions
may be violated near the crack tip. From the mechanical property design viewpoint
(e.g., types and thicknesses of fiber coatings in MMC, desirable second phase particles
in metallic alloys, binder properties for ceramics), knowledge of the actual interfacial
stresses are important, especially in front of a crack, in order to prevent catastrophic
material failure or tc control the failure mode.

Since the exact failure sequence of bonded dissimilar media remains as yet not fully
understood, two major issues pertaining to interfacial separation remain. Of course the
primary question is: “what are the interfacial bi-material crack-tip tractions leading to
separation?” Because crack deflection is also a possibility, identifying the local crack-tip
stress and strain fields are important, especially when non-linear material constitutive

relations are used.

1.1.1 Interfacial Fracture Mechanics Length Scales

The size scales associated with problems in which some form of interfacial separation
is experienced span a very large range. The geophysical size scale in plate tectonics
represents a reasonable upper bound. Here the crust of the earth, which is made up
of plate-like structures floating atop a viscous jelly-like mantle, continuously moves,
causing massive quantities of potential energy to be stored up as elastic strain energy
and released at local premordial fracture or fault sites (Hobbs, Means, and Williams,
1976). In these circumstances the transition or interfacial zone between the two plates
may be many meters wide and consist of a variety of different geomorphic media.
At more common engineering size scales are the fracture phenomena associated with
welding metal structures together. In the welding process two separate pieces are
joined together by fusing their common boundary, possibly introducing a filler agent.

Due to the melting and solidification process during fusing, the material properties of
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the weld usually differ substantially from that of the surrounding bulk material, and
flaws may be introduced and embedded into the weld. (Attention is specificly focused
upon those flaws which are in or adjoint to and lay parallel to the weld.) The size of the
interfacial zone is the weld thickness, which may or may not be small compared to the
surrounding structure or flaw. For many diffusion type interfaces, such as seen in Gr/Al
MMC, where reactive fiber or coating material is consumed by the matrix, the fracture
path is thought to follow the weakest portion of the deteriorated interface. In these
cases the interfacial size is governed by the diffusion and product reaction kinetics of the
coating and matrix species, and the interface size may be relatively small. For example,
Everett et al. (1986) determined that a thin aluminum coating, applied by physical
vapor deposition to a polycrystalline pyrolitic graphite sample, creates an “intermixing
zone” approximately 70 to 80 nm thick. A slightly smaller interfacial zone length is
obtained for brittle intergranular fracture, as often occurs in polycrystalline metals and
ceramics. In metallic polycrystallines there often exist grain boundary defects, such as
decoherent boundaries, carbides or sulfides, which weaken the boundary. In ceramics,
the consolidation process never yields perfectly dense ceramics, thus many voids exist
along the grain boundaries which act as nucleation sites. The size of the interfacial
zone in intergranular fracture is approximately the size of the grain boundary, and for
metallic polycrystallines the grain boundary is typically on the order of ten Burger’s
vectors (approximately 2.5 nm). At about the same size scale are the initial phenomena
associated with certain types of ductile fracture in metals. Here a second phase particle,
such as a carbide or oxide, embedded in the matrix acts as a nucleation site for void
formation. When sufficient tractions exist along the particle surface or the necessary
deformation accumulates in the matrix, the boundary between the particle and the
matrix separates, and after sufficient additional loading, gives way to a completely
separated particle and a micro void. Again, the interfacial zone thickness may be on
the order of several Burger’s vectors.

The ability to resolve the fracture phenomena is limited to the minimum size scale
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chosen to describe the individual constituents. In continuum mechanics, a representa-
tive volume is chosen whose macro-response sums up all the individual micro features
within it (Fung, 1977). For inelastic deformation in metals, the nature of discrete slip
events requires a representative volume which has a characteristic dimension of several
hundred to several thousand Burger’s vectors. (For metals, an average Burger’s vector
is approximately 2.5 x 107°m.) This means that deformable metallic or intermetallic
based interfacial zones which are only several Burger’s vectors thick cannot be accu-
rately represented by the usual continuum models and require additional considerations
to he properly modeled. For thicker interfaces, such as in the Gr/Al system discussed
earlier, an average material response may be obtainable and used to define a “thin”,
but finite, transitional layer between the constituents. However, defining the material
constitutive behavior across this diffusion zone must be accomplished by use of a dis-
crete “averaged” layer, rather than by a continuous boundary layer. As the thickness
of the interfacial zone increases, the use of continuous “continuum interfaces” becomes

justifiable.

1.1.2 Considerations of Interface and Crack-Tip Idealizations

For many physical situations, several continuum modeling simplifications can be made.
If the interfacial constitutive behavior is not substantially different from that of either
one of the adjoint media, it can be approximated by using the properties of that ad-
joint medium and by merely extending that material’s domain. The interface can be
idealized as a perfect zero-thickness mathematical interface which is required to carry
the interfacial tractions and maintain the local strain compatibility requirements. For
weaker interfaces, interfacial sliding or opening may be allowed after sufficient traction
or sirain levels are achieved. An alternative approach to interfaces is to prescribe a
traction-displacement relationship along the interface, which allows for different shear
and normal traction-displacement behavior and allows the interface to separate (Nutt

and Needleman, 1987). Use of these continuum models requires that the flaw mod-
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eled and the limit of stress and strain resolution be very large compared to the actual
interfacial thickness and the appropriate continuum length scale.

For relatively “thin” and “strong” interfaces, a perfect zero-thickness mathematical
interface can be used to obtain “upper” limits to the stress and deformation in the crack-
tip vicinity. An upper limit is produced in the sense that in order for the interface and
surrounding regions to maintain their integrity, they must be capable of withstanding
these stresses and defoermations. Although such interface models are not capable of
accurately describing the entire crack-tip deformation process, they do provide some
insight into the conditions just prior to crack growth.

In the study of homogeneous fracture mechanics, attention is typically focused upon
the asymptotic behavior of the fields as the crack tip is approached. Under certain
conditions the crack-tip fields are described for a wide range of loadings, materials,
and geometries by a single set of field equations whose magnitudes are scaled by the
material properties and a stress intensity factor. Small scale yielding (SSY) is the most
commonly referred class of crack-tip loading conditions for materials capable of inelastic
deformation. In SSY use of asymptotic solutions is acceptable as long as the extent of
non-linear deformation is contained within a region which is “small” compared to the
next characteristic geometrical dimension in the problem. Crack and ligament length,
specimen thickness or width, and distance to the point of load application are just a few
examples of characteristic geometrical dimensions in a problem. In SSY the fields far
away from the inelastic crack-tip deformation, but at distance small compared to the
geometrical dimension, are well reproduced by the elastic asymptotic solutions (Rice,
1974). Within the SSY crack-tip idealization, a variety of work describing the fields
within the inelastic zone has been performed.

In continuum fracture mechanics, the crack tip is commonly modeled as mathemati-
cally sharp. In actuality, crack-tip opening and blunting occurs in many microscopically
ductile materials (e.g., cast iron, aluminum, and copper), resulting from continuous de-

formation or discrete slip steps. For strain hardening meterials in SSY, McMeeking
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(1977) showed that the crack-tip opening displacement (CTOD) is linearly dependent
upon the strength of fhe surrounding singularity, as measured by the J-Integral (Rice,
1968a). McMeeking also showed that by normalizing the radial distance from the
crack-tip by the CTOD, the steady state values of the normalized stress and strain
distributions are independent of J. In general, at radial distances large compared to
the blunted CTOD, the crack-tip stress and strain behavior appears as if the crack tip

is mathematically sharp, even though local crack-tip blunting may be occurring.

1.1.3 Homogeneous Fracture Mechanics

In conventional homogeneous fracture mechanics, the next step after LEFM in de-
terLiining continuum crack-tip stresses has been to account for contained material
non-nsaearity effects. For the homogeneous mode III case, Hult and McClintock (1956)
solved exactly the sinall scale yielding continuum crack-tip stress field for an elastic/
perfectly-plastic material idealization. They analytically calculated the actual size and
location of the plastic zone along with the stress and strain distribution in the crack-tip
plastic zone and in the surrounding elastic region. Recognizing that similar behavior
should occur in the planar modes I and II, various approximate methods were developed
in an attempt to account for crack-tip plasiicity. In order to correct the plane-stress
mode I stress intensity factor for local crack-tip inelastic deformation, which mathemat-
ically lengthens the apparent crack size, Dugdale (1960) postulated that the crack-tip
yielded region could be idealized as a concentrated zero-thickness yield strip extend-
ing from the crack tip. He postulated that the only non-zero stress component was
the stress normal to thg crack face and that its value was equal to the tensile flow
strength of the material. To determine the actual crack-tip stress intensity intensity
factor K;, Dugdale first calculated che size of the yield strip, ¢, and defined an effective
crack length, /., to be equal to the original crack length, I, plus the length of the yield
strip(s); s.e., [l =1 + ¢]. To model the yield strip, he imposed the appropriate closing

tractions on the effective crack tip(s) over a distance which corresponded to the yield
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strip length (c¢). By superimposing the actual far-field loads, he was then able to de-
termine the elastic stress intensity factor for his crack model. Using different crack-tip
plasticity idealizations, others [Barenblatt (1962); Bilby, Cottrell, and Swinden (1963))
have used similar “matched asymptotic boundary layer” approaches to alter the ef-
fective crack to achieve better elasticity solutions. For an in-depth explanation and
historical review of crack-tip “strip” models for contained inelastic deformation and
their physical interpretation, the reader is referred to Kanninen and Popelar (1985).
To describe the continuum crack-tip fields deep within the actual crack-tip plastic
zones, other methods were utilized. Based upon various assumptions, Rice (1968b)
postulated thﬁt the Prandtl (slip-line) distribution represented the stress state at a
plane-strain mode I crack tip, and numerical calculations performed by Rice and Tracey
(1973) showed that the crack-tip stress distribution for an elastic/perfectly-plastic mode
I crack was indeed well characterized by the Prandtl distribution. The Prandtl slip-
line model assumes the material is perfectly plastic and that a stress potential can be
constructed which satisfies the necessary boundary conditions (traction-free crack tips)
and equilibrium requirements. Although this model allowed for determination of the
finite stress field, the strain field is undefined. However, in certain regions of the stress
field, a portion »f the strain field behavior could be inferred. For e2xample, in a fan
region the behavior of the ~,y strain component is found to be singular (y,4 o 1/r,
where r is the radial distance from the crack tip). Thus, the inclusion of material
non-linearities was not sufficient to remove all crack-tip stress and strain singularities.
Hutchinson (1968) and Rice and Rosengren (1968) considered the continuum st-uc-
ture of the planar crack-tip fields for power-law strain-hardening materials using de-
formation theory [strain oc (stress)”|. (These fields shall henceforth be referred to as
HRR fields.) From the compatibility, constitutive, and equilibrium relationships, the
necessary requirements for the existence of a strain potential and a stress potential
were established. By using the boundary conditions and assuming a separable form, an

eigenvalue problem emerged whose solution determined the radial dependences of the
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stress, displacement, and strain fields. Using the characteristic root, a fourth order dif-
ferential equation was numerically solved to determine the actual angular dependences
of these fields. The overall magnitude of the stress and strain fields were determined
by their radial and angular dependences and scaled by the strength of the crack-tip
singularity, as measured by the path independent J-Integral (Rice, 1968a). For finite
values of the strain-hardening exponent, both the stress and strain fields were found
to be singular as the crack tip was approached, and as observed previously, the inclu-
sion of non-linear material constitutive behavior does not remove all singularities at
the mathematically sharp crack tip. Although perfect plasticity can be considered by
taking the limit as n — oo, no unique strain field was identifiable.

Development of HRR type singularity fields involves several key assumptions. A
total deformation theory of plasticity is used along with linear kinematics (small strain
theory) and a monotonically increasing stress-strain relationship. For deformation the-
ory to accurately describe the constitutive behavior, no local stress unloading is admis-
sible and the loading at all material points must be nearly radial. Thus the application
of deformatiorn theory is generally restricted to proportional loading. Since small strain
theory is used, these solutions do not incorporate any field characteristics which are
attributable to crack-tip blunting, and they are only applicable at limited, finite dis-
tances from the crack tip. Also, it should be noted that the HRR fields are obtained

by retaining only the dominant term in the stress and strain potentials.

1.2 Statement of Purpose

The basic interfacial SSY crack tip characteristics for a specific set of loading and geo-
metric conditions and material idealizations will be provided. The stationary crack-tip
fields for specific material idealizations will be represented via closed form expressions,
based upon natural dimensional and dimensionless variable groupings. First, a general
non-linear idealized bi-material boundary value (BV) problem will be identified, includ-

ing specific constitutive relationships. Known solutions to the linear elastic BV problem
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will be reviewed and implications concerning the non-linear BV problem behavior and
associated natural groupings will be extracted from the asymptotic elasticity solutions.
From this assembled parametric framework, far-field loadings which produce the ge-
ometrical idealizations considered in the BV problem (traction-free crack-tip faces or
closed crack-tip faces) will be stated. Next, a discussion of the solution technique for
solving the non-linear problem will te presented. Representative forms for the general
crack-tip fields will be presented and assembled to construct the complete crack-tip
fields for various material choices. Inferred trends of the constructed fields, as func-
tions of material variables, will be identified. Limitations regarding the applicability
of these results, will be expressed in terms of the mathematical assumptions made in
solving the BV problem and in terms of physical material characteristic associated with
interfacial crack problems. Finally, speculative implications, relevant to all interfacial

fracture mechanics problems, concerning separation mechanisms will be made.

1.2.1 Statement of Boundary Value Problem

The mechanics problem considered herein is a plane-strain interfacial crack between two
isotropic solids, as depicted in Figure 1.1. The interface or diffusion boundary layer be-
tween the two solids is idealized as having zero thickness. The constitutive response for
the material in the upper half (Region 1) is idealized as being elastic/perfectly-plastic,
and the material in the lower half is considered to have a linear elastic constitutive
relationship. Far-field applied loads are restricted to SSY and to those which result
in either traction-free crack faces or crack faces which have (frictionless) contact over
a large region, compared to their plastic zone size. (This restriction is enforced only
from the edge of the plastic zone outwards away from the crack tip.) The far field
loads are assumed to produce a set of displacements near the crack tip which can be
represented by a continuous family of self-similar modes whose magnitudes are scaled
by the crack-tip singularity. Hence, the family of boundary condition modes which

are considered are limited to those which satisfy the general isotropic bi-material crack
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problem with either traction-free crack faces or closed crack-tip faces.

The objectives of analyzing these BV problems are: (a) to determine the size,
shape, and growth characteristics of the plastic zone in Region 1; (k) to identify the
SSY asymptotic elastic and plastic fields deep within the plastic zone; {c) to identify
the evolution of strains near the interface as well as the evolution of interfacial tractions

with applied load.
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Region 1

¢/9

M2, Va
Region 2

Figure 1.1 Schematic traction-free bi-material interfacial crack-tip region, including
polar (r,0) and Cartesian (z,y) coordinates and domain numbering convention.
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Chapter 2

Elastic Interfacial Cracks

2.1 History and Solution Discussion

Applied mechanics can provide a framework for modeling interfacial cracks. Within this
framework, there currently exist two specific geometric idealizations which are used to
investigate the local interfacial crack-tip fields around a mathematically perfect zero-
thickness interface. Both idealizations require continuity of interfacial tractions and
displacements, with the basic difference between the two being the physical interpre-
tation given to the near-tip crack faces. The first model assumes that the crack faces
are “traction-free” while the other assumes that the crack faces are in “contact,” but
free to slide relative to one another (frictionless). The following sections review the

important aspects of each crack-tip model.

2.1.1 Traction-Free Crack Faces

The asymptotic solution for a traction-free crack tip located between two elastically
dissimilar isotropic media was first addressed and partially solved by Williams (1959).
He used for the Airy stress function a general power series expansion about the crack

tip of the form
¢ = r? EA,-"'\"F}(O, ’\J')’ (2°1)
J

where r is the radial distance from the crack tip, 6 is the angle measured from the

interface, A; and ); are admissible constants, and F;(4, A;) is an admissible function.
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Enforcing displacement and traction continuity across the interface and traction-free
crack-tip faces lead to an eigenvalue problem composed of eight simultaneous equa-
tions from which ); and acceptable forms of ¥;(8, ;) were deternined. Williams first
assumed that A; was a real number and was unable to obtain a solution to the char-
acteristic equation. He concluded that A; must be a complex number and found that

two possible series solutions exist:

C 1
A = { J(Ji;éffi: ffn)h_l(p) j=0, +1, +2, £3,..., (2.2)
where for plane strain
2m (1 - ) - 2#2 (1 - ) (11 — 2)
N 213 (1 — £2-) + 2u, (1 - 4) ' (2:3)

Here p is the shear modulus, v, is Poisson’s ratio, and the subscript k is 1 in the upper
domain and 2 in the lower domain. In Eq.(2.2), both sets of roots exist only when D = 1,
and both have infinite imaginary components (coth™(+1) = tanh™!(£1) = 400). For
commonly used engineering materials (s.e., those with positive Poisson’s ratio less than
1/2), |D| < 1/2; thus, only the series associated with tanh™!(D) is defined. Since coth™!
is not defined for arguments with a magnitude less than unity, the set of roots with
integer real portions (R()\;) = j) must be excluded from the total solution.

In deriving the characteristic equation for the case of purely real roots, it is specu-
lated that at some point Williams incorrectly divided through by sin(7),). This lead
him to conclude erroneously that no purely real roots [R()\;) = A;] exist, when, quite
to the contrary, the solution to sin(m);) = 0 actually produces an acceptable set of
whole integer roots. (Note, division by sin(7r);) is only valid if sin(7 ;) # 0!) Thus,
the complete solution to the bi-material interfacial crack problem with traction-free
crack tips consists of half-integer complex powers of r, termed “Williams type,” and
real whole integer powers of r. For cracks with D = 0, the complete set of roots for the
homogeneous crack problem is recovered.

Rice (1988) has subsequently assembled the asymptotic expansion of a complete

interfacial crack solution consisting of the Williams series [with eigenvalues \; = (5 +
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1/2)+1(1/x) tanh™'(D)] and a material dependent constant multiplying the real whole-
integer power series {A; = j). In terms of standard Muskhelishvili (Muskhelishvili,

1953) functions the general sclution is given by

2C,

' — oW, —3—ie N .

Ble) = i Cas 4 S22 S e, 4

e, — L tie P— 2C 1 =

ﬂ'l(z) = ez a2t %:aNzN — Cl +2cz %:bMZM, (2.5)
! e, —Lje N 2Cl

#a(2) = e™273 Eanz + ZszM, (2.6)

N Cl + Cz M
and
1L 2C -

O — p—%e —3+ic = =N _ 1 b EM 2.

2(2) e Zz 2 %:aNz Cl n 02 % M ( 7)

In these expressions, the bi-material constant, € (imaginary part of the complex root

};), is defined as

T w T
and
1
ce=2%1 k=12). (2.9)
Hi

Here z = z + 1y = re is the location measured from the crack tip, n, = 3 — 41 for
plane strain and n; = (3 — 14)/(1 + 14) for plane stress, and the subscript k is used
again to refer to the material in the upper half when equal to 1 and to the material
in the lower half when equal to 2. The individual stress components are related to the

Muskhelishvili stress potentials by the following relationships:

0z + 0y = 2(¢' + ¢] (2.10)
and

Oy — 0zz + 120,y =2[(2 - 2)¢" — ¢' + '] (2.11)
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Discarding infinite energy terms and retaining only the most dominant term as r — 0,

the local crack-tip stresses behave as follows:

1

\r/2a

where r/2a is the radial distance from the crack tip normalized with respect to crack

length, @ is the angle measured from the interface, and A(6), B(6), C(8), and D(8) are

o(r,0) ~ {A(ﬂ) cos[B(0) + €ln 2La] + C(0) sin[D(6) + €ln -2%]} . (2.12)

functions dependent upon loading, material constants, and angle 6.

Complete solutions to various problems concerning cracks between dissimilar me-
dia were obtained by England (1965), Erdogan (1965), and Rice and Sih (1965) using
Kolosov-Muskhelishvili and other transformations to express the stress potentials. Ad-
ditionally, Rice and Sih calculated stress intensity factors for a semi-infinite crack with
point loads and for a finite crack between two semi-infinite media loaded by wedge
forces or remote far-field loads.

The in-plane two-dimensional bi-material stress intensity factor, K, as defined by

Hutchinson, Mear, and Rice (1987), is given by

K = lim v/arr (%(7:0 = 0) + i0%,(r,8 = 0)] (2.13)

r—0 rie

where o,,(r,0 = 0) and o,,(r,0 = 0) are the interfacial normal and shear stresses,
respectively. Note, the elastic material properties enter into the stress intensity factor
via the bi-material constant, unlike the homogeneous case. Since K is a complex

number, it can be written as
K =K;+ 1Ky, (2.14)

where K; and K;; are the real and imaginary components of the stress intensity factor,

respectively. Using the definition
K= (kr + t'k")\,/1_rcosh(1rc), (2.15)

Rice and Sih’s (1965) original stress intensity factors, k; and k;; are interpreted in a
consistent manner. Table 2.1 contains the stress intensity factors for several geometries

(Shih and Asaro, 1987).
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Crack Geometry Stress Intensity Factor Reference |

Infinite Plate

I~ - K =T(1+12¢) x England,
M, Vq Vv7a(2a)™" 1965
T
}
128,
M2, Va2

Semi-Infinite Plate
K = (P + Q) cosh (me) x Rice and Sih,

Uy, V, (2a)7* /\/7a 1965
P
Q| 2"
P
M2, Va2
Infinite Plate
.- For crack tip at £ = a, Rice and Sih,
o, K = (1 +i2¢) (033 + i0%) x | 1965
Vra(2a)7"
an-l- [~ O xx- lu
M1 Vy
0::-2-- B Un-z-
Ha, V2
Txy | 5
Tyy

Table 2.1 Bi-material stress intensity factor for various interfacial crack geometries.
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Using Griffith’s virtual work argument, Willis (1971) formally calculated the incre-
ment of elastic energy dissipation associated with an increment of crack-face advance-
ment for the general anisotropic crack. (He evaluated the elastic energy release rate.)
Willis did this by formulating a “stress concentration vector,” whose components are
Kr, K1, and K5, and equated it with the the specific surface energy to establish
a “stability relationship.” For the planar isotropic case, Rice (1988) gave the energy

release rate in terms of the complex stress intensity factor as

C,+C; _
= —— KK 2.16
16 cosh?(me) (2.16)

where § is the energy release rate per unit thickness.

Although the asymptotic stress fields and stress intensity factors are easily cal-
culated, their interpretation is not straightforward as in the homogeneous case. For
example, the elasticity solution for the bi-material traction-free crack-tip problem pos-
sesses some unusual characteristics. Asymptotically, the stress, strain, and displace-
ment fields oscillate with radial distance, and this oscillation in the displacement field
causes the crack faces to contact and mathematically interpenetrate. England (1965),
using the asymptotic solution for an internally pressurized Griffith crack with length
2a, calculated the crack-face contact length, 8, by determining the distance from the
crack tip to where crack-face interpenetration would occur. For this geometry he found

that

6
og = 1:26 X 1074, (2.17)

Since England’s calculation was evaluated for ¢ = 0.1748, the maximum value of the
bi-material constant in plane strain for materials with positive Poisson’s ratio, he con-
cluded that for more realistic property choices the contact distance would be even
smaller. For the same Griffith crack geometry but loaded by remote tensile and shear
tractions, Rice (1988) calculated values of §/2a which were appreciably larger than
Eq.(2.17) for certain loading conditions.

Additional complications exist in the definition of the stress intensity factor K. Rice

(1988) pointed out that the interpretation of K; and K/, is ambiguous since Ky and Ky,
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individually do not correspond nhysically to a pure opening mode or a pure suear mode.
Furthermore, the choice of physical units used in determining the numerical value of
the stress intensity factor affects the ratio of K; and K;; for any given boundary value
problem. Using the definition of K given by Hutchinson, Mear, and Rice (1987) in

Eq.(2.13) results in the following generic stress intensity factor:
K = g®Ce " "!V/xl, (2.18)

where g is a resultant traction expressed as a complex number with the dimensions
of stress, C is a non-dimensional complex geometric constant, and ! is the characteristic
geometric length of the problem, such as crack or ligament length, distance from the
crack tip to point of load application, etc. Examining Eq.(2.18) reveals that when
different length units (e.g., m, inches, cm) are assigned to I, /K changes. [Here /( )
refers to the phase angle of the complex argument ( ), and the /K is chosen such
that —m < (K < .| Thus, an infinite number of stress intensity factors, all with
different ratios of K, to K;; (and different units), could exist which all yield identical
stress states. Thss smplies that the decomposition of K is meaningless since only in
the degenerate case, when ¢ = 0, does modal decomposition of K; and Ky take on any
unique or significant meaning.

The units associated with the bi-material stress intensity factor are unique in that
they differ from the homogeneous stress intensity factor by {=. For example, typical
units of X may be MPa(m)%5-%033%_ To remove this uncommon dimension, (m)~0-033%
Shih and Asaro (1987) defined a stress intensity vector Q such that, asr — 0O on 6 =0,
oy + 10z, — Q(r/1)* /\/27r. This expression differs from Eq.(2.13) by the factor [~*.
This approach uniquely identifies /K, and when used in Shih and Asaro’s elasticity
expressions produces, at a fixed point, the identical stress state as compared with the
previous definition. However, several problems arise in using Shih and Asaro’s stress
intensity vector Q. The choice of ! becomes ambiguous when several geometric lengths
exist. For example, in a compact tension specimen (CTS), at least three lengths exist

which could be used, namely the thickness, the width, and the crack or ligament length,



and uncertainties clearly exist regarding the appropriate choice of the normalizing
length dimension. Second, Shih and Asarc’s definition may yield confusion because two
different loadings which produce identical stress intensity vectors only produce identical
crack-tip stress fields when € is the same for both cases. Although the definition of
Hutchinson et al. requires additional unusual dimensions to be carried along; the
possible non-uniqueness problem is totally circumvented. Therefore, for convention,
the definition given by Hutchinson et al., Eq.(2.13), is used in the remainder of this
study.

2.1.2 Closed Crack-Tip Faces

In an attempt to eliminate the unsatisfactory aspects of the oscillatory singularity in
the traction-free crack-tip model, various other crack-tip models have been proposed.
Comninou (1977a) included a frictionless contact zone at the crack tip of a Griffith crack
which transmitted only compressive normal tractions and required both traction and
displacements to be continuous over the intact interface. Comninou then formulated
a singular integral equation to describe the dislocation density which was necessary
to produce closed crack tips. She also used the Williams technique of expressing a
general power series Airy stress function, Eq.(2.1), about a closed crack tip with crack-
face friction (Comninou, 1977b) and without crack-face friction (Comninou, 1977a).
By enforcing continuity of tractions and displacements across ihe interface and by
requiring continuous (compressive) normal tractions and normal displacements on the
closed crack face, an eigenvalue problem of eight simultaneous equations arose from
which acceptable values of \; and forms of F;(0, \;) were determined.

The results of her numerical solution of the singular integral equation and her
frictionless crack-tip expansion agreed, demonstrating that as r — 0, the dominant

stress field around the closed crack tip is given by

[

Oy = %{S(Iq:ﬂ)sing—@:tﬂ)sin%}, (2.19)
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Css = ;\};2;_: {3(1 :F,B)sing+(3:tﬂ)sin§22}, (2.20)

and

Opp = 415/’2’_’_ {(1¥ﬂ)cosg+(3ﬂ:ﬂ)cos3?o}, (2.21)

‘where, using Comninou’s convention for numbering materi»l domains,

_#a(m—1) — g1 (n: —1)
T pam A1) (1) (2.22)

Here K%, is the strength of the singularity, and the upper and lower signs are used in

the lower and upper material domains, respectively. To ensure compressive tractions
in the contact zone, loadings are restricted such that K§, > 0 for 8 > 0 and K§; < 0
for g <O.

A note of caution: Comninou reversed the ordering of the material domains as
compared to the convention used by Williams (1957), and others. Figure 2.1 shows the
crack-tip geometry Comninou assumed. In her work the material sn the upper dormnain
18 referred to by the subscript 2, and the material in the lower domain is referred to by
the subscript 1. Switching the ordering of the material domains changes the sign of the
bi-material constants § and e. For convention, in the present work § will be defined
with the subscript 1 in the lower domain, and ¢ will be defined with the subscript 1 in
the upper domain. Using this convention, J is related to € via

1l 1-p

- Lm[12f). (2.23)

€

Along the interface, the shear component is the only dominant asymptotic stress
term that is non-zero, and it behaves as o,4(r,# = 0) = K$,/+/2r. This implies that the
additional load carried by the interface, which results from the presence of the crack,
is asymptotically only supported by interfacial shear tractions. Note that the interface
still supports normai tractions which arise from the far-field loading and from the
complete local solution, even in the crack-tip vicinity, and these normal tractions may be

on the order of 25 times the tensile far-field opening traction (Comninou, 1977a). The
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Figure 2.1 Schematic closed bi-material interfacial crack-tip region, including polar
(r,0) and Cartesian (z,y) coordinates and domain numbering convention.
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(compressive) normal traction in the contact zone is singular — oy, = —K¢,8/v/2r as
the crack tip is approached — and is bounded as the crack opening (gap) is approached.
To be precise, Comninou mathematically requires the normal traction to be equal to
zero in the contact zone at the point where crack opening initiates. [A standard moving
Hertzian contact boundary condition (Johnson, 1985).]

The complete set of admissible roots for Comninou’s Williams type crack-tip ex-
pansion contains two series with real values. The two admissible series of roots which

produce finite crack-tip strain energy and no concentrated crack-tip forces are

;= J 9
Aj { i+, (2.24)

where j is a non-negative integer. (Note, this spectrum of admissible roots is the
same as that found for the homogeneous crack problem.) The other roots of interest
are A = 0, which corresponds to a uniform (domain wise constant) stress field, and
A = 1/2, which represents a positive square-root stress field (o &< \/r). The constraints
on the uniform stress field are that 0,,, 0.,, and €., are continuous along the interface.
To satisfy these conditions a “stress jump across (the) interface” (Rice and Sih, 1965)
is generally required, and because the crack faces are free of shear traction, o,, = 0.
It is interesting to note that all half-integer roots (A = 7 + 1/2) in the closed crack-tip
expansion, produce no normal interfacial tractions [o,,(r,# = 0) = gge(r,0 = 0) = 0].
Comninou calculated a stress intensity factor, K, for her model. It is obtained by

taking the limit as r — 0 in the crack-tip region, and is given as
Ki; = !1:%{\/5; 0zy(r,0 = 0)} . (2.25)

Note, Eq.(2.25) produces stress intensity factors having the same dimeusions as in
the homogeneous case, but differs from the usual homogeneous stress intensity factor
definitions by a factor of /7. (Comninou (1977a) actually calculates two stress inteusity
factors for her model, however the stress intensity factors are always proportional to
each other for # # 0 and are used nearly interchangeably to scale a single set of

crack-tip field equations.) Excluding the compressiv. contact tractions, the crack-tip
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fields can be regarded as being quasi-homogeneous “mode II.” In other words, for the
homogeneous case, § = 0, the stress state expressed in Egs.(2.19) to (2.21) reduces to
that found for homogeneous mode II loading (Comninou, 1977a).

Gautesen and Dundurs (1987) were able to solve exactly an additional integral
in Comninou’s formulation for the case of remote tensile loading of a Griffith crack
geometry. By writing equivalent series expansions and using some appropriate small
argument approximations, they found that, for # > 0 (e < 0), the total normal stress

directly ahead of the closed crack tip is equal to

0,y(r = 0%,8 = 0) = ‘%’?ﬂ\/ug [1+0 (k)] (2.26)

where

fo=1In [i :L z] = —2me (2.27)
and

k? = 16exp {—;—: [; tan~! (%) + 1} } . (2.28)

Here o3 is the far-field opening stress. They show that for opening loads, as § — 0
(or alternatively as € — 0), the extent of the crack-tip contact vanishes. Additionally,
the stress intensity factor K§; for 8 > 0 (e < 0) of such a Griffith crack loaded by the

far-field stress oy} is given by

2

2
Kj; = o2 a{ 1+%+o(k3)}, (2.29)

where 2a is the crack length. For the range 0 < 8 < 0.5 (0 > ¢ > —-0.175), K§;/(050+/a )
varies by less than 6%.

When the contact zone is small compared to crack length, results from Comninou’s
model are consistent with those found by others. For remote tensile loading, she de-
termined that the contact zone is smaller than the maximum first contact calculated

by England. She further found that the global stress field away from the immediate

32



crack-tip region still contains the oscillatory singularity and is not significantly differ-
ent from the stress field previously obtained. Also, the inclusion of contact zones in
Comninou’s model eliminates the oscillatory nature of the singularity in the very near
crack-tip field.

For arbitrary far-field shear, 0}, and normal, 0}, loading of a Griffith crack geom-
etry, the crack-face contact length is not always small compared to crack length and
the oscillatory stress field may never be recovered, even at relatively large distances
from the crack-tip. Comninou and Schmueser (1979) found that for a Griffith crack

geometry with 8 > 0, at fixed values of 02, the contact length at the right hand crack

w?
tip increases when positive remote shear is applied, and for fixed values of 0, increases
as the level of remote normal stress decreases to compressive levels. Simultaneously, as
the contact length at the right hand crack tip increases, the contact length at the left
hand crack tip decreases. Table 2.2 lists the right hand zontact length § for various
combinations of far-field loads applied to a Griffith crack geometry. (The notation used
is the same as that used previously to define K for the infinite plate in Table 2.1.) For
a pure far-fielc. shear load (of = 0) and for a compressive normal load, substantial
contact lengtl.s exist. Any predictions based upon a “traction-free crack-tip” model
for the right hand crack tip under positive shear, with even modest levels of applied

normal stress (say for § = 0.5, oge < 303), are ill-founded and clearly unjustifiable,

since the contact length is so large (e.g., for 8 = 0.5, §/2a > 0.1).

or/ox | §/2a
0.50 |0.068
0.25 0.23
0 0.33
-0.25 0.60
-0.50 | 0.78
-0.75 0.88
-1.00 | 0.92

Table 2.2 Contact lengths at the right hand crack tip of a Griffith crack geometry
loaded by far-field stress; = 0.5 ond og) > 0 (Comninou and Schmueser, 1979).
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In addition to Comninou, others have included various crack-tip models in an at-
tempt to remove the oscillatory singularity and accurately account for contact. For
certain geometries and loadings, Atkinson (1982) showed, by several examples, that
the elastic energy release rate is virtually unaffected by the precise details of the very
near crack-tip model used. In general, such crack-tip modeling may remove the oscil-
latory behavior locally, but does not remove all the singularities at the crack tip. As
with all infinitesimal elasticity solutions, they are only valid in the region where the
assumptions of linear material response as well as small strains and rotations, are not

violated.

4.2 Inferred Plastic Behavicr

From the expressions for the local elastic asymptotic crack-tip stresses, it is clear that
unbounded stresses arise as the crack tip is approached. The applicability of linear
elastic models must therefore be examined in terms of the mathematical assumptions
and the material idealizations used in deriving them. Based upon the tensile behavior
of most polycrystalline metals, it is clear that linear elasticity is not an appropriate
idealization very near the crack tip, where unbounded stresses are predicted, because
nonlinear deformation is anticipated. The inclusion of continuum non-linear material
behavior, such as power law strain-hardening or elastic/perfectly-plastic, allows for
better representation of the actual material response for many materials and situa-
tions. When continuum length assumptions apply, local crack-tip plasticity is typically
found embedded within the singular elasticity fields and separated by a transitional
“boundary layer.” The parametric framework which describes the non-linear to linear
material transition should be obtainable by considering the elastic field along the tran-
sition boundary. The aim of this section is to describe the boundary characteristics
of the continuum non-linear zone in terms of far-field loads and material properties
by assuming that the non-linear zone boundary can be approximated by the loci of

points whose elastically—calculated Mises equivalent stress, &, is equal to the tensile
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yield strength of the material, o,,. Using this assumption and the two asymptotic
elasticity solutions, Egs.(2.4) to (2.7) and Egs.(2.19) to (2.21), a consistent parametric
framework for describing the plastic-zone characteristics is ass mbled.

Several quantities are needed in this framework. First, a representative plastic zone
characteristic dimension r,, given in terms of the far-field applied load and material
properties, is required in order to determine if SSY conditions are satisfied. It will be
shown that a natural choice for the characteristic dimension is r, = KK /02,7 cosh®(me)
for the traction-free crack-tip model and r; = 3K5,? /203, for the closed crack-tip face
model. In general, oy, is the tensile yield strength of the material in either domain, but
henceforth shall refer to the tensile yield strength of the plastically deformable material
in the upper domain of Figures 1 1 and 2.1. Next, it is necessary to determine the size
and shape of the plastic zone, in terms of the applied load. It will be shown that
traction-free crack-tip plastic zone growth occurs in a periodic manner with respect to
increasing stress intensity factor K, and the tractions along the plastic zone boundary
also change in a periodic manner, because the tractions simultaneously evolve with
the plastic zone. In the closed crack-tip model, it will be shown that the plastic zone
growth is self-similar, and that the size of the plastic zone can be scaled by the closed
crack-tip characteristic plastic zone dimension r;. Because a single unique plastic zone
shape does not exist during loading for the traction-free model, as it does for the closed
crack-tip model, an additional quantity describing the phase of the plastic zone will be
introduced. The interfacial load phase angle (ILPA), ¢, defined as

KK ]
o2, cosh®(me) |’

accounts for all possible loading combinations while it compensates for plastic zone

¢ =.K+e¢€ln [ (2.30)

growth within the oscillatory field. It uniquely characterizes the plastic zone shape,
plastic zone tractions, and determines whether crack-face contact is occurring at the
plastic zone edge.

Finally, and most importantly, conditions defining the applicability of each model as

well as any possible combination of models, will be identified. It will be azsumed that
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the traction-free crack-tip model is the governing model, in regards to identifying when
each model is appropriate. It is chosen because it analytically exists in closed form and
all necessary quantities used in the closed crack-tip face model can be approximated
from it when the contact length is small compared to crack length. For certain loading
conditions, it will be shown that the closed crack-tip face model is applicable because
significant crack-face contact exists. Based upon the value of the ILPA, explicit domains
for which the characteristic plastic zone dimension in each model is acceptable, as
compared to the length of the crack-face opening or closure, will be identified.

It will be shown that these two continuum interfacial crack-tip models will describe
most, but not all, possible crack loadings. For certain circumstances, even when the
size of the plastic zone is small compared to crack length, neither of these interfacial
crack-tip models will appropriately describe the actual crack-tip behavior. Justification
for use of this framework will be made by comparing its elastically based predictions
against various precise solutions for actual strain hardening materials. This agreement
will warrant the use of this framework for all monotonically increasing strain hardening
constitutive relationships [strain oc (stress)"| which include an initial linearly elastic

(n = 1) range.

2.2.1 Traction-Free Crack Faces

The following section is a paper submitted to the Journal of Applied Mechanics by the
author and Prof. D. M. Parks which derives an approximate expression for the plastic
zone from the asymptotic Williams type oscillatory elasticity solution. It discusses
predicted plastic zone size, shape, and growth characteristics, introduces various key
bi-material interfacial variables, and gives formal validity conditions, in terms of K,
material properties, geometry, and bi-material interfacial variables, for the applicability
of the traction-free crack tip BV problem outlined in Chapter 1.

For consistency, all equations, figures, and sections referenced from this paper will

be identified using the prefix (P2.).
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ELASTIC YIELD ZONE AROUND
AN INTERFACIAL CRACK TIP

by
Edward Zywicz

and
David M. Parks

Department of Mechanical Engineering
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139 USA

Abstract

A closed form approximate solution for a small scale yielding (SSY) plastic zone
around a planar interfacial crack-tip, occurring between two dissimilar ideally-bonded
elastic half-spaces, is obtained by equating the elastically-calculated Mises equivalent
stress with the material yield strength, 0,,. The dimensionless parameter ¢(#), which
is defined as ¢(0) = /K + e¢ln7p(0), where /K is the phase angle of the complex stress
intensity factor K, € is the bimaterial constant, and r,(f) is the polar representation of
the plastic zone radius, naturally arises. The SSY interfacial load phase angle (ILPA),
defined as ¢ = /K + €ln (KK/U:.W coshz(we)), leads to periodic zone growth. The
ILPA characterizes the overall applied load phase by combining the oscillatory radial
phase shift, attributable to the increase in zone size due to increased loading, with
(K. At a particular angle 8, from the uncracked interface, the plastic zone radius thus
calculated is independent of /K, proportional to KK, and has no oscillatory radial
phase dependence. The derived plastic zone expression reproduces the shape charac-
teristics, and it modestly reproduces the zone size when compared with solutions for
an elastic/perfectly-plastic solid adjoint to an elastic solid. As the strain hardening
exponent in the plastically deforming medium decreases, agreement between the ap-
proximation and various accurate numerical solutions improves. In the limiting case
when ¢ = 0, the well-known homogeneous elastic solutions for pure mode I and mode
II are recovered, as well as all possible mixed mode combinations. Approximate valid-
ity conditions for the existence of Williams type asymptotic fields (traction-free crack

faces) are presented.
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1 Introduction

Much effort has recently been focused on interfaces which exist between dissimilar me-
dia, with specific attention being directed toward media separation or fracture events.
Publications on the subject, such as Shih and Asaro (1987), Hutchinson et al. (1987),
and Rice (1988) clarify several aspects of the original oscillatory strcss solution ob-
tained by Williams (1959) for an interfacial crack and attempt to apply or further
extend traditional (homogeneous) fracture mechanics approaches to interface cracking
phenomena. Elastic interfacial crack-tip fields between isotrepic media are well charac-
terized, although only a limited number of geometries have had their stress fields and
stress intensity factors solved exactly. Ting (1986) has presented a rigorous framework
for determining the degree of singularity and the asymptotic characteristics for the
general interfacial crack between two elastic anisotropic materials. When non-linear
material responses are included, no explicit unifying characterization presently exists
to unite the various fracture parameters. However, dimensional analysis by Rice (1988)
and by Shih and Asaro (1987) lead to symbolic functional relationships consistent with
the present results.

Insight concerning contained crack-tip inelastic deformation zones (in the small
scale yielding, SSY, sense) can be obtained by considering the characteristics con-
tained within the elasticity solution. One approximate method which has been used
to determine the plastic zone shape and size around a crack tip in a homogeneous
medium is equating the elastically-calculated Mises or Tresca equivalent stress with
the yield stress of the material (McClintock and Irwin, 1965; Rooke, 1963). The locus
of all points satisfying this condition is considered to be the plastic zone boundary
which separates the exterior elastic region from the interior plastically yielding region.
The changes in plastic zone size and shape with respect to the applied load or stress
intensity factor(s) can then be estimated from this expression.

The goal of this work is to present a closed form approximate plastic-zone solu-
tion for an interfacial crack between isotropic linear elastic media, and propose various
dimensional and dimensionless quantities, which naturally arise in the derivation, as
interfacial fracture parameters that uniquely characterize the interface crack-tip region.
Comparisons will be made between the approximate solution and various precise nu-
merical solutions to demonstrate its accuracy. Conditions which determine the validity

of this expression will be stated.
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2 SSY Plastic Zone Approximation

The problem considered is a planar interfacial crack, as shown in Figure 1, whose
constituents have shear moduli p; ( = 1,2) and Poisson’s ratios v;. (Subscripts 1 and
2 refer to the upper and lower domains, respectively.) Far field loads produce a local
elastic stress field which is well characterized by the complex stress intensity factor K
and asymptotic interfacial crack-tip stress fields. Following Hutchinson et al. (1987),
the stress intensity factor is defined such that as, as r = O on 6 = 0, oy, + 10, —
Kr"‘/\/ﬂ—r. For the interfacial “Griffith” crack configuration, this definition for K
differs from that given by Shih and Asaro (1987) by the complex term e *!"22. (See
Rice (1988) for calculated examples of K for various geometries and for the interfacial
stress fields.) The bimaterial constant, ¢, which modulates the stress and displacement

oscillation period, is defined as

e=-—In [———(; “l’)] ’ (1)
(52+3)

where ; = 3 — 4v; for plane strain and x; = (3 — v;)/(1 + v;) for plane stress.

The general stress field for an isotropic elastic solid can be represented by the

Muskhelishvili potential representation (Rice, 1988),

0ue + 0 = 2[4 + 8] (2
and

Oyy — Ozz + 1205, = 2[(2 — 2)¢" — ¢' + Q']. (3)

Retaining only the dominant asymptotic term as r — 0, the plane strain elastic poten-

tials in the upper domain are

¢, = aoe™ ™23, (4)
and

N, = ape™z" 3. (5)

Using Eqgs.(2) to (5), an expression for the Mises equivalent stress in region 1 can be
obtained. (Appendix A contains the complete general series potential functions and
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formally calculates the Mises equivalent stress.) Equating the Mises equivalent stress,
&, Eq.(A.27) with the material yield strength, o,,, and solving for the radius yields

() = KK L
P 02,7 cosh?(me) 8
{cos 2¢(9) [—3(1 + cos 20) — 6€sin 20 + (8D — 6)e*(*~™) cos 0]

+ sin 2¢(6) [3 sin 20 — 6¢(cos 20 — 1) — (8D — 6)e(* ™ gin 0]

+e%(6-7) [(g — 6€%)(cos 26 — 1) + 6esin20 + (8D — 3)] + 362‘('—0)} {6)
where
D=vi-y+1 (7)
and
¢(6) = (K + elnry(6). (8)

Here 6 is the angle measured from the interface, r,(0) is the plastic zone radius from
the crack tip, and /K is the phase angle of the (complex) stress intensity factor defined
with a branch cut at # = 7 such that 7 > /K > —nx. ((K = arctan(3K/RK), which
in the homogeneous case, ¢ = 0, reduces to /K = arctan(K;s/K;)). For plane stress
conditions, Egs.(6) and (8) are still valid; however, Eq.(7) is redefined as D = 1 and
the plane stress value for ¢ must be used.

This approximation is valid only when a dominant elastic crack field exists and the
maximum extent of the plastic zone is small compared to crack length (I) or other
characteristic dimensions (maximura r, < !). Further clarification will be stipulated in

section 3.4.

3 Discussion

3.1 Mathematical Considerations

Several interesting mathematical features arise from Eq.(6). Foremost, the dimension-
less ¢(#) is naturally obtained in the derivation. It removes the dimensional problems
associated with assigning length units in K definitions (Rice, 1988) since ¢(0) is invari-
ant as long as r,(#) and K are expressed with the same length units. Recall the generic
K,
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K= gooce—iclnl‘/ﬁ’ . (9)

where g® is the far field load expressed as a complex number, C is a dimensionless
complex geometric constant, and ! is the characteristic dimension. Examination of
Eq.(9) reveals that when different length units are used to express [/, the /K changes.

Eq.(9) can be rewritten as

= lle™|l x lIClle®=<)/l, (10)
where | || denotes the magnitude of a complex expression,
¢=1(0"+LC, (11)
and
(K=¢—clnl. (12)

Substituting Eqs.(6), (11), and (12) into Eq.(8) yields
KK

o2, cosh®(me)

() =¢-ennz+eln{ g(o,e,D,s(o))}, (13)

where g (8,¢,D,¢ (6)) is a non-dimensional function. Using Eq.(10), KK can be ex-

pressed as
KK = |lg|* x ||C]|* . (14)

Furthermore, Eq.(13) can be rearranged and simplified by using Eq.(14), and it reduces

to

¢(8) = ¢ + 2¢In {”- I ”C”\/g(ﬂ e, D, §(0))} (15)

oy, cosh(me)

From Eq.(15) it is clear that ¢(f) is dimensionless and independent of length units used
to express K. This is true as long as a single length measure is assigned to all | used
when evaluating K in, e.g., Eq.(10).

For a wide range of engineering interface material properties, an angle 8, exists for

which the coefficients
Py = —3(1 + cos 20) — 6¢sin 20 + (8D — 6)e* "™ cos 8 (16)

and
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P, = 35sin 20 — 6¢(cos 20 — 1) — (8D — 6)e*(*~")sin 4, (17)

which multiply the trigonometric functions of 2¢(6) in Eq.(6), are both zero. Alterna-
tively, a single expression for determining 6, is obtained by requiring the magnitude of
the coefficient multiplying the term JJ in Eq.(A.22) to be zero. Thus, when 6 = 8,

4(8D — 6)e*"o~™)(—3 cos B, — 6€sin 8;) + (18 — T2€) cos b,
+72¢*sin 20, + (8D — 6)2e*(~") 4+ 722 + 18 = 0. (18)

Figure 2 shows the plane strain 8y, numerically obtained from Eq.(18), for various v
from 0 to 0.5 for the complete range of ¢, assuming non-negative v in each material.
Note that, 6y is generaily not the same under plane strain conditions as it is under
plane stress conditions since, under each condition € and D have different definitions.

The existence of §, indicates that radially, at angle 6,:

(a) Plastic zone growth is independent of the applied loading phase, /K.
(b) The elastically-calculated Mises equivalent stress does not oscillate.

(c) The plastic zone radius is proportional to KK.

Substituting Eq.(6) into Eq.(8), and defining the SSY interfacial load-phase angle
(ILPA), ¢, as
KK

¢o=(K+¢€ln ,
° 02, cosh®(me)

(19)

rields
¢(0) =q+eln {cos2() [-—3(1 + cos 26) — 6€ain 20 + (8D — 6)e*(*~™) cos 6]
+ 8in 2¢(6) [3 8in 20 — 6¢(cos 20 — 1) — (8D — 6)e*(*™ gin 0]
+e2(0-m) [(g ~ 6¢*){cos 20 — 1) + 6esin 20 + (8D — 3)]
+3c2‘("')} —eln(8). (20)

Eq.(20) reveals that ¢(6) can be additively decoupled into a load-phase dependent
quantity, ¢, and a transcendental angular dependent function. Alternative definitions
of ¢, differing trivially by a pure constant, are possible. Such a constant could be
chosen, e.g., to approximately normalize the angular function to unity. Eq.(19) is a

convenient expression for the SSY ILPA since it is an explicit single term representing
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the total load-phase angle and is common in all ¢(8). The ILPA totally describes the
phase angle of the ioad by summing the loading phase shift, which is attributable to the
change in zone size due to sncreases tn loading, and the load-phase angle ((K).

Another useful expression is obtained by evaluating Eq.(20) at § = 6, in which case
¢(6o) = ¢ +eln {—;— (3e"("‘°)

te2(fo=7) [(; — 6€%)(cos 20, — 1) + 6€sin 20, + (8D — 3)])} : (21)

This expression may prove to be beneficial in investigating the effects of various material
dependent parameters, since it does not contain any radially oscillatory terms, and it

represents a real value of ¢(8).

3.2 Zone Growth Considerations

From the above expressions, the overall plastic zone growth characteristics with respect
to increasing applied load (K) during SSY, can be outlined. After sufficient initial
loading has been applied to produce a continuum size plastic zone, the expressions
for r, become valid and applicable. Examination of Egs.(6) and (20) shows that zone
growth is quasi-proportional to (KK /02,), and that the zone shape periodically repeats
itself with every = increase in ¢o. For (very) large cracks, it is possible that the plastic
zone may repeat its shape during loading. For every discrete value of ¢, a unique
zone shape and a unique set of tractions along r, exist. Figure 8 shows the plastic
zone at various values of ¢, for ¢ = .170 and v = .342. This suggests that ¢, uniquely
describes the very local crack-tip fields within the zone as long as all previous loading
experiences affect the current plastic state in the same manner. For the loading case
where several cycles of ¢, have occurred, this would appear to be true. Since two
loadings with unequal tractions can produce identical plastic zones, (e.g. ¢ = 90° and
o = —90° produce tractions with opposite signs), a full 27 evaluation of ¢, is required
to determine all the local fields.

3.3 Comparisons

In the limiting homogeneous elastic case (¢ = 0), comparison with numerical solutions
(Shih, 1974) indicate that the plastic zone shape and size for pure mode I and mode
II, as well as for various mixed modes, are recovered. Comparing the approximate
homogeneous plastic zones with plastic zones numerically obtained for strain hardening
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material shows that as the strain hardening exponent, n, increases (strain oc (stress)"),
the elastic approximation overestimates the plastic zone size behind the crack tip and
underestimates it ahead of the crack tip. This is accompanied by slight distortional
effects which tend to rotate the strain hardening plastic zone lobes toward the region
in front of the crack as compared to the eiastic approximation.

Figures 4 to 7 show finite element (FE) calculations of SSY plastic zones for an in-
terfacial crack tip with an elastic/perfectly-plastic mediura adjoint to an elastic medium
(Zywicz, 1988), and the approximate plastic zones for several values of €, vy, u;, and
(K. Although the precise shape is not reproduced, the general size and distribution of
the lobe(s) as well as their position(s) are well represented by the simple approxima-
tion. Examining Figure 5 shows that the size scale is significantly different from that
of the other figures, demonstrating the accuracy of the approximation in predicting
overall size. Figures 4 to 7 represent the worst case comparisons since perfect plasticity
formally represents a strain hardening exponent of n = co. The jaggedness of the finite
element calculated plastic zones is attributable to extrapolation/approximation errors
and mesh discretization. Thus, the jaggedness should only be interpreted as an artifact
of the discretization and plotting procedure. Figures 8 and 9 show FE calculations of
plastic zones for a Ramberg-Osgood strain hardening material, with strain hardening
exponents n = 3 and n = 10, respectively, adjoint to a rigid material (Shih and Asaro,
1987), and the approximate plastic zones for several load levels. These FE calculations
were performed for a Griffith type crack, similar to the one shown in Figure 11, with
€ = .0935, 2a = 2m, and v, = .3, where the stress intensity factor for the geometry
and loading is K = 1.8030™¢%120%(1m)3-00935  Here 0™ represents the remote stress
normal to the crack face (the o,, stress as shown in Figure 11), and oy is the refer-
ence stress (or yield stress). The overall sizes and shapes are well characterized by the
(asymptotic) approximation. As in the homogeneous case, when the strain hardening
exponent is decreased, the elastic approximation becomes more precise. (Recall, the
Ramberg-Osgood material idealization produces a linear elastic response for n = 1.)
Although the plastic zone radii are not all identically the same at 6;, the extent of the

plastic zone in the vicinity of 0, is indeed approximately the same for all loadings (¢).

3.4 Valid Solution Domain

The plastic zone approximation is based upon the assumption that a dominant (Williams
type) field exists, as defined in Egs.(4) and (5), near the crack tip and transitionally
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along the plastic zone boundary. This section develops a methodology, based upon
exact elasticity solutions for a Griffith crack, for determining approximately when such
a Williams type field exists, and thus defining the valid domain for the characterization
of the plastic zone in terms of ¢, K, and material parameters.

In examining the exact elasticity solution for an interfacial crack between two semi-
infinite media (Rice and Sih, 1965), the stress potentials can be additively decoupled
into singular terms and homogeneous far field terms, and reduced to obtain the domi-
nant asymptotic potentials. Consider &, the ¢} stress potential for the Griffith crack,
given by Rice and Sih (1965) which is,

o — (z — 12¢a) (z + a)“ oy —iogy

VA-a \z—a) 1te
+a::1 + 0:: _ U:Z : 0:; + 2p,lw§’° . (22)
4 1+ e27e 1+e% 14k,

Here the crack tips are located at z = +a, and w{° is the far field rotation in Region 1.

In the region near the crack tip, the stress potential can be represented by

o |(z—12€a) [z +a)\*
@ B = P | T2 (z ! a) , (23)
where
02 — 10
P — vy zy .
1 + 82'" (24)

To obtain the asymptotic potential, substitute z = a + z in to Eq.(23) and assume
|lz]| < a which yields

a(l — £2¢) (2a)“ Y BT |
Qa. mp. = P - —— - = K . 25
yme [ 2az T ] V2rz 1+ e (25)

Using Eq.(A.23), Eq.(25) can be shown to be identical to Eq.(4).
By considering one potential of the exact elasticity solution for a Griffith type

crack, Eq.(22), an error parameter can be constructed which represents the discrepancy
between the exact solution and the (Williams type) dominant asymptotic solution,
Egs.(4) and (5). Normalizing Eq.(25) by the singular poriion of Eq.(22), Eq.(23),
yields

o z \? :
N = 2ume _ [ 1+ )5, 26
( + 5 - ic) (1+32) (26)

54



Here Z = z/2a is the normalized distance with respect to crack length, and N represents
the portion of the singular potential term represented by the asymptotic potential, given
by Eq.(25). Evaluating Eq.(26) along the interface at £ = 0.1 yields N = 0.874 for
e = 0 while for the extreme values ¢ = +0.1748 (positive v), N = 0.889¢*0%, For
all ¢, as £ — 0, N — 1. This, in conjunction with the previous observations, indicates
that the asymptotic expression reproduces the singular term reasonably well over the
entire domain where the singular potential term dominates. (From Eq.(22), it can be
shown that at z =~ 0.13, the singular term contributes to the total stress potential an
amount, equal in magnitude, to that of the homogeneous term. For |Z| < 0.13, the
singular portion dominates.)

Based upon the previous discussion, the asymptotic representation, Egs.(4) and (5)
or Eq.(25), is representative in the crack-tip region where

L >r>0. (27)
10 — —
Here [ is the characteristic dimension. (Note, a slight modification has been made for
convenience, and that is to limit the domain to //10 instead of {/8.) Such a conculsion
is also typical of homogeneous crack solutions.

A second condition must also be satisfied if Egs.(4) and (5) are to depict the actual
dominant asymptotic behavior; namely, that any perturbations within the dominant
asymptotic solution domain must be small compared to that domain and occur near the
crack tip. Using a St. Venant’s type argument, this can be expressed mathematically
as

3

Tperturbationmas S m (28)

Such perturbations could include plastic zones and crack-face contact and interpene-
tration, if present. (Note, Williams type fields, Egs.(4) and (5), are based upon the
condition that the crack faces are traction-free.) Eq.(28) represents a very conservative
restriction and, depending upon the actual conditions, it may be appropriate to relax
it somewhat.

The asymptotic crack-tip opening displacement (CTOD), Au, as a function of r
(Hutchinson et al., 1987) is

Au(r) =u(r,0 = 7) —u(r,0 = —7) = (C1 + Co)Kri\/fF

~ 2v/2n(1 + §2¢) cosh(e)’ (29)

where
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u(r) = uy(r) + tu.(r), (30)

and C; are defined according to Eq.(A.7). Following Eq.(A.24), ¢ is introduced and is
defined as

¢=(K+e¢€lnr. (31)
Substituting Eq.(21) into Eq.(29) yields
(C1+ Co)|K|| /T e

Au(r) = . 39
(r) 2v/27 cosh(me)(1 + 12¢) (32)

Crack face interpenetration occurs when, Au, < 0 = RAu < 0 or,
cos¢ + 2esin¢ < 0. (33)

The critical values ¢, the beginning and ending points of interpenetration, occur when
cos¢ + 2¢esing =0 (34)
or,

tang = — (35)

2¢
Note that for the homogeneo 1s case, the condition represented by Eq.(33) occurs any
time a negative mode I loading is applied.

The previous condition on r, Eqs.(27) and (28), coupled with the oscillatory crack
face behavior, can be restated as valid solution domain conditions in terms of ¢ (via
Eq.(31)), K, and material parameters. Thus, Williams type fields, Eqs.(4) and (5), will
exist transitionally along the plastic zone boundary if and only if

. €>0 ¢ <¢<¢max
cos¢ + 2¢esin¢ > 0 { €<0 G <o<n (36)
and
KK _
<.03!, 37
02,7 cosh®(me) ~ (37)
where
smaz = (K + €ln(.11). (38)
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The condition depicted by Eq.(36) requires that no crack face contact or interpenetra-
tion occurs between the plastic zone boundary and the maximum valid extent of the
dominant asymptotic domain. It also assumes that the size of the plastic zone along
the crack face can be approximated by the characteristic length, KK /02,7 cosh?(me).
Figure 10 shows for plane strain the values of ¢, as a function of ¢, which will not pro-
duce crack face interpenetration. For Eq.(36) to be true, both ¢, and ¢maz, as well as the
entire path which connects them, must be in the unshaded region of Figure 10. Note
that for € = 0 (homogeneous case) the admissible range is |¢| < 7/2, corresponding to
K; > 0.

Conditions represented by Egs.(36) to (38) are necessary, but not sufficient con-
ditions for a Williams type field to exist. Crack closure beyond [/10 is possible and
must be ruled by other considerations such as global geometrical and loading factors
or oy other solutions. However, for a (remotely loaded) Griffith crack, Comninou and
Schmueser (1979) showed crack closure is continuous from the crack tip outwards; thus
if closure exists beyond 1/10, it will occur within //10 (with respect to one crack tip).
Henceforth, Eqs.(36) to (38) are also sufficient validity conditions for a Griffith type
crack.

4 Conclusion

An approximate expression for the plastic zone around an interfacial crack-tip has been
presented. It modestly reproduced the characteristic size and shape, as compared to
various precise numerical solutions, with increasing accuracy as the strain hardening
exponent approached unity. The overall crack-tip plastic zone size was found to be
quasi-proportional to (KK / 03,). Plastic zones were found to change shape with applied
load in a periodic manner dependent upon interfacial load-phase angle (ILPA), ¢. The
ILPA was identified as a comprehensive single load-phase angle which determines the
zone shape and tractions along the zone boundary, and may uniquely identify the
behavior within the zone. Conditions for determining applicability of this expression
were stated in terms of ¢ and ¢naz, Where ¢na: is dependent upon the characteristic
length in the problem.

From the previous derivations it appears that the ILPA (), €, (possibly v), and
the magnitude of K (expressed as KK or J, where J is the J-Integral), are the local
interfacial fracture mechanics variables needed to describe interfacial SSY behavior.
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Following homogeneous fracture mechanics, it seems natural to construct interfacial
fields analogous to HRR or slip-line fields, utilizing the same material idealizations and
similar framework, but with the degree of local (plastic) mode mixity being now depen-
dent upon ¢. Using ¢ and the magnitude of the singularity as conditions describing the
plastic zone boundary, the characteristics deep within the zone should be identifiable.

To familiarize the readers with the application of these concepts to interfacial frac-
ture mechanics, a hypothetical example is included in Appendix B. It demonstrates

how to determine various local crack-tip quantities.
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Appendix A Mises Equivalent Stress Derivation

An asymptotic expression for the Mises equivalent stress around an interfacial plane
strain crack tip, as a function of r and 4, is derived.
The general series potential functions for an interface crack, as expressed by Rice

(1988), are

¢, = e 2717 f(2) + 2C29(2)/(C1 + Ca), (A.1)

¢, = €273 f(2) + 2C1g(2)/(C1 + Ca), (4.2)

0 = 273 (2) — 2C43(2)/(Cy + Ca), (A.3)
and

Q) = e ™27 (z) — 2C13(2)/(C1 + Ca), (A.4)
with

1) = >°f (A.5)

9(z) = é buz" (A.6)
and

Cj = (1+ ;) /u;. (A.7)

Here u; are the shear moduli, x; = 3 — 4v; for plane strain and £; = (3 — v;)/(1 + v;)
for plane stress, v; are the Poisson’s ratios, and the subscripts 1 and 2 refer to the
domains above and below the interface, respectively.

From Egs.(2) and (3) the individual stress components can be expressed as

0w =75 (B+B), (A.8)
oy = % (A+4), (A.9)

and
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sy = _ (a-4), (A.10)

A=(z-2)¢"+¢'+ 10, (A.11)
and
B=2¢'+¢' -0 —(z-2)¢". (A.12)

Here 1+ = 4/—1 and a bar denotes the complex conjugate. For plane strain isotropic

elastic solids, the Mises equivalent stress is

8’ = (07, +0,)D + (0220, F + 302, (A.13)
with

D=1 -v+1 (A.14)
and

F=22-2v-1, (A.15)

where v is the Poisson’s ratio of the solid. For plane stress isotropic elastic solids
Eq.(A.13) is still valid, but Eqs.(A.14) and (A.15) are redefined as D = 1 and F = —1,
respectively. After substituting Egs.(A.8) to (A.10) into Eq.(A.13) and doing some
complez algebra, Eq.(A.13) is written as

a* = %m {(D-3)AA+ (D +3)AA+DBB + DBB + FAB+FAB). (A.16)
Further simplification is obtained by using Eqs.(A.11) and (A.12), so that Eq.(A.16)
becomes

a = R {3(2 —z)(2 ~2)¢"9" —6(z — 2)¢"¢' +6(z — 2)¢"Q)

+(8D - 6)4'¢' + (8D — 3)¢'¢' + 30'0Y — 601’3’} . (A.17)

The asymptotic potential functions for the upper domain, Egs.(4) and (5), are
obtained by considering the dominant term in Egs.(A.1) and (A.3) as r — 0. At this
point attention shall be focused upon the solution in the upper domain since the lower

domain solution is obtainable by substituting —e for €. Differentiating Eq.(4), using

z = re", expanding out Eqgs.(4) and (5), and defining
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J = a,r %, (A.18)

we obtain
¢ = Jcc(e—t)e—i%r—%’ (A.19)
# = S i (2 o), (A.20)
and
Q) = Jer=0e=i%p3, (A.21)

Substituting Eqs.(A.19) to (A.21) into Eq.(A.17) yields
g =% {JJ[(-3-i6e)(e™ —1) -6+ *C7)(8D - 6)(cos 8 — isin )]
+J7 [e"(‘"")(l ~ cos 20)(% 1 66%) — <=7 (=3 — i6e) (e~ — 1)
+e2*=7)(8D — 3) + 32|} (A.22)

The constant aq is related to the complex stress intensity factor K (Rice, 1988) via

K

= . A.23
%o 2v/27 cosh(me) ( )
Defining ¢ as
¢=/.K+e€lnr, (A.24)
and using Eq.(A.18), we find
KK
P — —8in?2 A 25
JJ 87 coshi(ne) (cos2¢ — 8in2¢), ( )
and
Jj=_ BK (A.26)

8 cosh?(me)”
The complete expression for the Mises equivalent stress is obtained by substituting
Eqs.(A.25) and (A.26) into Eq.(A.22) and is

& = KR — {cos2 [-3(1 + cos26) — 6esin26 + (8D — 6)e**~™) cos
+8in 2¢ [3 sin 20 — 6¢(cos 20 — 1) — (8D — 6)e*(*~") gin 0]
+e2(0-7) [(g — 6€*){cos 20 — 1) + 6esin 20 + (8D — 3)]
+3e*(-N1, (A.27)

63



Appendix B Interfacial Crack Example

A detailed hypothetical example demonstrating the procedures to characterize a
plane strain interfacial Griffith-type crack between 1100-O Aluminum and 1080 Steel is
presented. The geometry considered is shown in Figure 11, and the material properties
are listed in Table 1. From Eq.(1), e = .03373. For this geometry, with the appropriate
0.:; imposed such that the interface remains straight, the stress intensity factor for the

right hand crack tip in terms of the far field stresses is (Rice, 1988)
K = (o, + 105,) (1 + $2¢) (2a) ™ /7a.

The stress intensity factor for the left hand crack tip is the same as for the right hand
crack tip because the applied load is symmetric. Substituting in for the numerical

values o, = 1 MPa, € = 0.03373, and 2a = 0.0508 m yields,
K = 2831 e—O.OSSlSiMPa(m)%—0.03818:'.

Using Eq.(19), the ILPA is ¢, = —.33982 radians (—19.47°). The characteristic plastic
zone length KK /o2, 7 cosh?(me) = 1.577 x 10°m. Evaluating Eq.(37) indicates that
the characteristic plastic zone length is sufficiently small compared to crack length.
(Alternatively, from Eqs.(6), (19), and (20) the maximum size of the plastic zone is
8.88 x 107®m and occurs at § = 122°. Comparing 7, to the crack length gives, r,/2a =
1.748 x 107%.) From Eq.(38), ¢msz = —.2113 radians (—12.11°). Checking Eq.(36)
indicates that no crack face interpenetration is anticipated. Thus, at this loading all

the SSY conditions and the assumption of no crack face interpenetration are satisfied

Material | (GPa) | v |o,, (MPa)
1100-0 Al 26.1 342 42.1 4
1080 Steel 80.7 .300 585.

Table 1 Material properties for 1100-O Aluminum and 1080 Steel (Hertzberg, 1976).
tBrown et al., 1987.
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Additional Discussion

Several additional comments can be made concerning the traction-free crack-tip plastic
zone approximation. The oscillatory characteristic plastic zone dimension (r,) is chosen
to be equal to KK /o?,mcosh?(me). This choice of r, for the plastic zone size is a
compromise because it roughly corresponds to twice the size of the smallest plastic
zone (1.e., ¢ ~ 0°) and half the size of the largest plastic zone (i.e., ¢ =~ +£90°). This
compromise in the choice of r, affects the definition of ¢, Eq.(P2.19), and the admissible
loading conditions expresced in Eqs.(P2.36) and (P2.37). As pointed out earlier, the
precise additive decomposition of ¢ into ¢, and the transcendental angular function is
arbitrary. Altering the chosen characteristic dimension r, only adds a constant to ¢ for
fixed values of . The actual choice of ¢; appears rather insignificant because changes
in loading conditions (i.e., altering the ratio of far-field shear stress to normal stress)
and zone growth show up as relative changes in ¢.

Since ¢ is used in Eq.(P2.36) to define the extent of the plastic zone along the crack
face, any overestimation of r, may allow elastic contact to occur between the edge
of the actual plastic zone and the radius identified by the (overestimated) nominal
plastic zone. Based upon the elastic approximation for ¢ = 0.1748, the maximum
difference in ¢ between using the characteristic plastic zone dimension r, and the
maximum actual r,(0) from the elastic approximation is less than 7°. For smaller
magnitudes of ¢, the difference in ¢ is less. Additionally, the inclusion of a strain-
hardening material idealization, n > 1, produces plastic zones which are greater than
the elastic approximation. For example, when an elastic/perfectly-plastic constitutive
idealization is used, the maximum “actual” plastic zone calculated is nearly equal to
rp for values of ¢, near 0°. (See Figures P2.6 and P2.7.) Thus, overestimation of r,
may not pose a problem in all circumstances. Finally, when loading conditions produce
an elastically predicted plastic zone size which marginally does or does not satisfy the
non-contact crack-face conditions, Eq.(P2.36), a more accurate determination of plastic

zone size and actual contact length is necessary.
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In consideration of the actual plastic zone size predicted by the elastic approxima-
tion, the maximum plastic zone limitation expressed by Eq.(P2.37), is not as conser-
vative as might first appear. The maximum size of the plastic zone for ¢ = 0° and
$o = 60°, from Figure P2.3, is approximately 0.5r, and 2ry, respectively. Because little
difference exists between the actual maximum plastic zone size and Tp, use of r, is ac-
ceptable in the condition requiring the plastic zone size be small compared to the size

of the zone where the asymptotic elastic field is valid, Eq.(P2.37).

2.2.2 Closed Frictionless Crack-Tip Fields

Following the derivation of the approximate plastic zone for the asymptotic traction-
free crack-tip (Williams type) elastic field, an asymptotic elastic approximation for
the plastic zone around a closed frictionless crack tip between two dissimilar isotropic
elastic media will be derived. From it, growth characteristics and validity conditions

will be obtained and expressed in terms of K%, material properties, and geometry.

Plastic Zone Approximation

The problem considered here is a planar interfacial crack, as shown in Figure 2.1,
whose constituents have skear modulj k5 (7 = 1,2) and Poisson’s ratio vj. Note that
in the definition of 8 , the subscripts 1 and 2 now refer to the lower and upper material
domains, respectively. Far-field loads produce a closed crack-tip region, and the closed
crack-tip field is well characterized by the dominant asymptotic stress field given by
Comninou (1977a), Eqgs.(2.19) to (2.21).

For isotropic linear elastic plane-strain conditions, the second invariant of the stress

tensor, the Mises equivalent tensile stress, &, is expressed as
8* = (02 + 03D + (0,v000) F + 303, (2.31)
where, as before,

D=v-p+1 (2.32)
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and
F=2,—2v-1. (2.33)

Since the stress field for the upper region is obtained by substituting “—g” in place of
“B” into the expressions for the lower region, attention is focused upon the lower region
only. Substituting the dominant stress expressions, Eqgs.(2.19) to (2.21), into Eq.(2.31)
yields

a%(r,0) = I_(i’_z.l (1 - B)* |3 + (64D — 48) sin® % +3(3+ B)?
) { r 32}X{+6(1—[£)(3+ﬂ)cos(20) Ol }’(2-34)

where 3, the Dundurs constant, is given by Eq.(2.22). The approximate plastic zone
shape is taken to be the locus of points satisfying = o,,, where oy, is the tensile yield

strength of the material. The polar description of the plastic zone shape is given by

o= (K1 (1 - B)* 3+ (64D — 48) sin’ (§)| + 3(3 + B)’
0= g { e e e O f @

Here 6 is the angle measured from the intact interface. For plane-stress conditions,
Eq.(2.35) is still valid, but Eq.(2.32) is redefined as D = 1 and the plane-stress value
for # must be used.

In deriving the plastic zone approximation, Eq.(2.35), it is assumed that the stress
state along the plastic zone boundary is completely characterized by the dominant
asymptotic stress field, given by Egs.(2.19) to (2.21), and that all other stress con-
tributions are negligible compared to the leading asymptotic term. At the tip of a
Griffith crack loaded by remote tension, large normal interfacial tractions, as high as
25 times the remote far-field tensile stress, are obtained (Comninou, 1977a; Gautesen
and Dundurs, 1987), and the presence of the normal interfacial traction is thought to be
attributable to the admissible constant stress field (A = 0). Evaluating the dominant
asymptotic radial stress, Eq.(2.19), at # = 90°, and using the value of K, for a Griffith

crack loaded in remote tension, Eq.(2.29), the dominant asymptotic stress component

behaves as
Orr(r,0 = 90°) = —0% g (2.36)
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where 2a is the crack length. Assuming that the observed normal interfacial tractions
represent the magnitude of the o, stress component in the constant stress field, the
constant stress field contribution to the overall stress field is small for radial distances
\/;/—r > P, where P is the maximum normal interfacial traction normalized by oy7. In
light of these possibly high normal interfacial tractions, the validity of Eq.(2.35) in SSY
may be limited to loadings where \/W > P, for o,y # 0. Inclusion of the

A = 0 term in the description of the crack-tip fields, as described in the homogeneous

mazimum

case by Larsson and Carlsson (1973) and Rice (1974), could significantly enlarge the

range of load amplitudes for which SSY analyses remain accurate.

Mathematical Features

The mathematical features describing the plastic zone are relatively simple and straight-
forward, as compared to those describing the oscillatory traction-free crack-tip plastic
zone. Plastic zone growth is self-similar with similarity length scale K§,? /o?,, and no
oscillatory effects exist within the plastic zone region. The plastic zone shape and
growth characteristics for the bi-material closed crack-tip solution are nearly identical
to the well known homogeneous mode II solution, and in fact, in the degenerate case,
B = 0, the asymptotic homogeneous mode II solution is completely recovered. Figure
2.2(a) shows the approximated plastic zone shapes for various values of 3, with fixed
Poisson’s ratio, while (b) shows these shapes for several values of the Poisson’s ratio, for
B = —0.20. The approximated plastic zone shape differs little from that obtained in the
homogeneous case, even for the extreme cases of f§ = +0.5. From Figure 2.2, it appears
that the plastic zone shape and growth characteristics are only weakly dependent upon

B and v.

Valid Solution Domain

The plastic zone approximation is based upon the assumption that a dominant field,

as defined by the asymptotic expressions Egs.(2.19) to (2.21), exists near the closed
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Approximate Plastic Zone
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Figure 2.2 Approximate contact SSY plastic zones [Eq.(2.35)] (a) for various values of
p with v = 0.342 and (b) for 8 = —0.20 with v ranging between 0 and 0.5.
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crack tip and transitionally along the plastic zone boundary. For this to be true, two
conditions must be satisfied. First, crack-tip closure must exist and the crack-tip closure
length must be the relevant characteristic dimension. Using the CTOD expression for
the oscillatory stress field given in Eq.(P2.32), crack-face contact is estimated, in terms

of ¢, by assuming that it occurs whenever Au, <0 or
cos¢ + 2esin¢ < 0. (2.37)

The second condition which must be satisfied, if Egs.(2.19) to (2.21) are to describe
the actual field existing transitionally along the plastic zone, is that any perturbations
within the field must be small and be centered about the crack tip. Again, such
perturbations include non-linear crack-tip zones. Using a conservative restriction, this
is mathematically expressed, via a St. Venant’s type argument, as

36
rperlurbation...., S T(Ea (238)

where 6 is the length of the closed crack-tip face. The numerical value used in Eq.(2.38)
is based upon the same assumptions as Eq.(P2.28), namely we suppose that the dom-
inant asymptotic solution is appropriate for radial distances r < 6/10 and restrict
perturbations within this dominant field to at most ~ 1/3 of the latter dimension.
The characteristic plastic zone dimension r{ chosen for the clossd crack-tip model is
3Ks,?/ 203,, which roughly corresponds to the approximated maxinrum radial extent of
the plastic zone.

The previous conditions of closure and (plastic) perturbation zone length are now
restated in terms of ¢. Closed crack-tip fields exist transitionally along the plastic zone

boundary if and only if

. €>0 ¢<¢<¢
< .
cos¢ + 2e8in¢ <0 { €<0 ¢G<c<c (2.39)
and
3Ks,? 36
— < — 2.40
202, ~ 100’ (2.40)
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where

c 2
3K¢,
2
UP.

¢ = LK + €ln( (2.41)

and
¢s = (K + €ln(6). (2.42)

The conditions expressed in Eq.(2.39) require that continuous crack-face contact exists
from the edge of the plastic zone to the end of the contact length. Eq.(2.39) assumes
that the plastic zone, along the crack face, can be approximated by the closed crack-tip
plastic zone dimension r;. For a more consistent and convenient relationship in small
scale contact (SSC), but a somewhat more conservative restriction, ¢; can be used in
place of ¢§ in Eq.(2.39). (SSC will be discussed in Section 2.3 ) Use of ¢ in SSC is more
conservative because the oscillatory characteristic plastic zone dimension r, is smaller
than the closed crack-tip characteristic dimension r;, thus requiring that crack-face

closure exist, theoretically, deeper within the plastic zone.

Comparisons

Plastic zones for precise solutions of an elastic/perfectly-plastic material idealization
and for the elastic approximation correlate reasonably. The location of yielding integra-
tion points, obtained from a finite element calculation for an elastic/perfectly-plastic
medium bonded to a rigid medium, and the associated approximated plastic zone are
shown in Figure 2.8 for a closed interfacial crack tip. In the figure, the yielding points
near the crack-tip are not plotted. The approximation does not reproduce the exact
shape, but the general size and distributions of the various features are well repre-
sented. The scale of this dgure shows that the closed crack-tip characteristic plastic
zone dimension of r; = 3K§,’/2az, is indeed appropriate. Since perfect plasticity for-
mally represents a strain hardening exponent of n = oo, Figure £.3 depicts a “worst
case” comparison. As observed previously in the traction-free crack-tip case, an elas-

tic approximation increasingly overestimates the plastic zone behind the crack tip and
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underestimates the plastic zone size ahead of the crack tip as the strain hardening
exponent, n, increases | strain « (stress)”]. For materials with smaller values of n, the

discrepancy between the elastic approximation and the exact solution should be less.

Contact Length Approximation

At this point no attention has been given to determining the exact length of the contact
zone, 6. An estimation of § can be made using the definition of ¢, Eq.(P2.31), and the
critical value ¢, Eq.(P2.34), which represent the beginning and endiag points of inter-
penetration. By setting ¢ = ¢ and assuming contact occurs any time interpenetration

is predicted, the contact length is estimated to be

6 = exp [1 {t::m_1 (—12——) +mm — ZK}] , (2.43)

€ —2¢
where m is an integer determining the branch cut used for the tan~! function, which is
obtained by considering the sign of € and the length of 6. Verification of the branch cut

can be made by checking if ¢; satisfies the contact closure conditions given in Eq.(2.37).

Conclusion

An asymptotic planar approximation for the plastic zone around an interfacial crack tip
with closed frictionless crack-tip faces has been presented. This approximation captures
the general plastic zone characteristics with increased accuracy as the strain-hardening
exponent approaches unity. Under SSY assumptions, plastic zone growth was found
to be proportional to the characteristic plastic zone dimension 3K¢,? /20%,, and the
plastic zone shape was uniquely determined by the bi-material constant ¢ expressed in
an alternative fashion as #, and the Poisson’s ratio of the yielding material. Conditions
for determining the applicability of this plastic zone expression and for approximating
the crack-tip closure length § were derived from the traction-free crack-tip model.
Explicit conditions for the existence of closed crack-tip zones and fheir associated
inelastic crack-tip behavior were assembled. However, no analytical relation between

K{; and the far-field loads or K was made. This means that for a particular geometry,
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the characteristic crack-tip field is identifiable, but the magnitude and extent of any
non-linear behavior can not be quantified. Thus, the precise conditions necessary for
SSY for a particular geometry were not determined. (Section 2.3 formulates explicit
relationships between K§; and K for a limited subset of loading conditions for which
SSC exists.)

Based upon this derivation, it appears that the governing local interfacial fracture
mechanics variables needed to investigate SSY behavior for closed crack-tip faces are ¢
(or B), the ILPA (¢), the magnitude of K§;, and possibly v. Because the magnitude
of K§; enters only in determining the plastic zone size and appears as K¢,?, it can
be replaced by J, where J is the value of the J-Integral. Using the same parametric
framework assembled here to approximate the plastic zone and the conditions along
the plastic zone boundary, the SSY behavior deep within the plastic zone should be

addressable.

2.3 Small Scale Contact

Thus far the traction-free crack-tip model and the closed crack-tip model have been
analyzed separately. There exist circumstances for which the elastic (and plastic) closed
crack-tip model exists embedded within the traction-free crack-tip model. Under the
appropriate loading conditions, the crack-face contact is appropriately small such that
the traction-free crack-tip model describes the fields within a small proximity near the
crack tip. The actual asymptotic crack-tip fields are defined by the closed crack-tip face
model. Separating the two crack-tip models is a boundary layer which transmits the
surrounding traction-free crack-tip stress field as “pseudo far-field” loads to the local
closed crack-tip model. ‘This section formally addresses small scale contact (SSC) and

the correspondence of the various individual model parameters for such a circumstance.
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2.3.1 Loading Restrictions for SSC

The requirements for SSC are that the elastic oscillatory traction-free crack-tip field
exists in a region surrounding the crack tip and that the resulting contact is small
compared to the distance over which that the oscillatory elastic field dominants. It
was established in Section P2.3.4 Eqs.(P2.26), that the asymptotic oscillatory elastic
field represents the actual crack-tip behavior for radial distances r from the crack tip

[Eq.(P2.27)] such that

Tperturbationmas <& T < 1/10, (244)

where [ is the characteristic geometric length dimension in the problem. Eq.(2.44) is
applicable if all perturbations within the crack-tip vicinity are small. Expressing this

perturbation limit in terms of the contact length size §, yields

3!
< —.
6_100

(2.45)

The previous SSC conditions, Eqs.(2.44) and (2.45), are now restated in terms of ¢,
K, and the material properties. First, no (additional) contact may exist from the end
of the contact zone, r = §, to the outer edge of the oscillatory field, r = {/10. Using
the definition for the value of ¢ at the outer edge of the elastic field, ¢ma. [Eq.(P2.38)],
and the definition of ¢ at the end of the contact length, ¢; [Eq.(2.42)], SSC exists if and
only if

€e>0 fmzsgsg

€<0 ¢ <¢< ¢maxs (2.46)

cos¢ + 2¢esin¢ > 0{

and Eq.(2.45) is satisfied. Although multiple crack-tip contact zones do not actu-
ally occur [Shield (1982) showed that Comninou’s solution for the contact length was
unique.|, the approximate asymptotic expression for Au, Eq.(P2.32), predicts multiple
contact zones as r — 0, and thus Eq.(2.46) is a necessary mathematical condition when
Eq.(P2.32) is used as a closure criterion. |

Within the framework of SSC, the admissibility of SSY is not excluded. The SSY

requirements established for the general closed crack-tip model must be met in addition
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to the SSC requirements. [i.e., The characteristic plastic zone size r, must be small
compared to the contact length 6, Eq.(2.40).] For SSY to exist during SSC, Egs.(2.40),
(2.45), and (2.46) must all be satisfied. Using the relationship between K, and K
derived in the next section, the characteristic plastic zone sizes in SSC are related to
one another by rf/r, = (3/2) cosh®(re). Also, for SSY in SSC, the maximum difference
between ¢, Eq.(2P.19), and ¢§, Eq.(2.41), is less than 7°.

2.3.2 Correspondence of K§; to K

Unfortunately, since the singular integral formulation presented by Comninou cannot
be totally evaluated in closed form, no connection between the elastic K and K$, has
been made, under any conditions. However, for a Griffith crack under far-field tensile
stress, K{; can be directly related to K by using the exact solution of Gautesen and
Dundurs (1987), Eq.(2.29), and the expression for K from Table 2.1. Solving for o7

from the stress intensity factor K and substituting it into Eq.{2.29) results in

K1+ (%) (20% :
Vrli+izg Cowvevitad, (2.47)

for 0 < f < 0.5. [The predicted contact length é for this geometry is §/2a < 1.2 x 104

IR

¢
K!l

(England, 1965; Comninou, 1977a), thus SSC conditions exist for this geometry.]
Connections between the elastic K and K§; can be made for other SSC cases by
taking advantage of the path independent nature of the J-Integral (Rice, 1967). For
the Griffith crack geometry it has been shown that, with sufficient loading to produce a
small contact zone compared with crack length, the oscillatory stress field is recovered
sufficiently far away from the contact zone (Comninou, 1977a; Atkinson, 1982); i.e.,
SSC conditions exist. Since both crack-tip models have path-independent J-Integrals
and both fields dominate over some distance, a direct evaluation of K{; is obtainable
from K by evaluating the J-Integral in regions where each model is dominant, and
equating them. Recall that for elastic materials the J-Integral is equ#l to the energy
release rate §. After some manipulation of material constants, the energy release rate

given by Comninou (1977a) for the closed crack-tip face model, is
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_ Ks*m (Cy + Cy)
16 cosh? (7e)

g (2.48)

Recalling the energy release rate given by Rice (1988) for the tracticn-free crack-tip
model, Eq.(2.16), and assuming that such a crack-tip configuration as just described

exists, we find that for SSC

K§; = :h\/%KK, (2.49)

where the sign of K§; must be determined by other conditions. [See discussion following
Eq.(2.22).]

To verify Eq.(2.49), the Griffith crack described above was considered. The stress
intensity factor K, was evaluated by Eq.(2.29) and then used to calculate the energy
release rate via Eq.(2.48). Simultaneously, K was evaluated using its value for a Griffith
crack from Table 2.1, and then the energy release rate was calculated with Eq.(2.16).
The two energy release rates were identical, proving that Eq.{2.49) was indeed correct
for a Griffith crack in SSC.

Using this approach, a generalization of Eq.(2.47) to include far-field shear loading
of a Griffith crack in SSC is made. First, all assumptions regarding SSC must be met.
Using Eq.(2.49) and the value of K for a Griffith crack from Table 2.1, the closed
crack-tip stress intensity factor for the right hand crack tip of a Griffith crack in SSC

is

K;, = :t\/ (0% + 0%2) x (1+4€?) a. (2.50)

The sign of K§; is determined using the conditions for compressive normal crack-face
tractions on the right hand crack tip of a Griffith crack, namely K$; < 0 for ¢ > 0 and
Kj; > Ofor € < 0. Observe that for o) = 0, Eq.(2.50) reduces to Eq.(2.29). Verification
that the contact zone length is small compared to crack length is done by using the
approximation for 6, Eq.(2.43), and the contact conditions given by E(i.(2.39).
Unfortunately, due to the non-uniqueness in defining /K, obtaining K from from

Kj is not as simple. If K§; and 6 are known and §/2a is “small,” K can be estimated
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by determining ||K| from Eq.(2.49) and by determining /K by inverting Eq.(2.43).
For certain geometries, K can be estimated at one crack-tip, and then inferred values
of K for the other crack-tip can be obtained by consideration of the stress intensity
factor for that geometry. However, further work on closed form definitions of (K¢;, 6)
will allow for more complete relaticnships between K¢; and K.

Finally, due to the unfortunate numbering of material domains describing 8 in the
closed crack-tip face model and ¢ in the traction-free crack-tip model, various minus
signs may enter into the analytical solution when converting from one model to the
other. Extreme caution must be used to prevent accidental sign errors, as the author

discovered.

2.3.3 Accuracy of Contact Length Estimation

This section considers the accuracy of the asymptotic prediction for crack-face contact,
as expressed by Eqs.(P2.33), (2.37), and (2.43). Using the stress intensity factor K for
a Griffith crack (geometry and loading) from Table 2.1, Eq.(P2.33), and the condition
represented by Eq.(P2.35), the crack-face contact length for the right hand crack tip,

normalized by crack length, is given by

L3 =exp{""’+'p}, (2.51)
2a €

where
tang = ¥ (—§2E <¥<3) (2.52)

and m is an integer. The actual branch cut, which determines the value of m, is
obtained by considering the sign and magnitude of ¢ and ¢, and the range of §/2a of
the crack tip being investigated. (The restriction on admissible values of i is chosen
so that approximately |/K| < 7.) Figure 2.4 shows the crack-tip contact length for
e = —0.1748 (8 = 0.5), as a function of p [p = (2/7) tan"? (6% /0%)] for the asymptotic
traction-free crack-tip approximation (with branch cut m = 0) and for Comninou’s

solution (Comninou and Schmueser, 1979). Agreement between the two solutions is
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Figure 2.4 Normalized crack-face contact length & /2a for the right hand crack-tip of a
Griffith crack geometry with far-field positive shear (0g;) and tensile normal (03
loads. The solid line is the back extrapolated contact length from the traction-free
crack-tip model [Eq.(2.37)] and the dashed line is the solution the for frictionless
closed crack-tip model from Comninou and Schmueser (1979).
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clearly sufficient to justify using the approximation for p < 0.85. Since the asymptotic
expression Egs.(2.43) and (2.51) overestimate the contact length, the validity condition
represented in Eq.(P2.33) is also conservative with respect to crack-face contact.
Based upon the previous comparison, the contact length approximations, Eqs.(2.43)
and (2.51), yield reasonable results for ¢ = —0.1748 when ¢ or & (& = {tan™'(1/ —
2¢) + mm — (K — €In(l)}) are greater than 0.24 (13.5°). For this range, the previous
comparison shows that the predicted contact length only overestimates the “actual”
contact length by less than a factor of two. F¥or values of ® and ¢ less than 0.24,
closure length predictions for ¢ = —0.1748 are no longer reasonable. However, for &
and 1 less than 0.24 and ¢ = —0.1748, a minimum contact length of 6/2a¢ = 0.13
exists. For ¢ = +0.1748 with branch cut m = —1, & and ¢ must be greater than
-0.24 (—13.5°) in order for Egs.(2.43) and (2.51) to yield reasonable overestimated
contact lengths (within a factor of two). As the magnitude of the bi-material constant
¢ approaches zero, the minimum (or maximum) angles of & and 1, for which reasonable
overestimated contact lengths are obtained, also approaches zero. If loading conditions
produce a plastic zone size which marginally violates or satisfies the restriction given by
Eq.(P2.36) or Eq.(2.39), or the contact conditions in Eqs.(2.45) and (2.46), more precise
solutions for § should be consulted, e.g., Comninou (1977a, 1978) and Comninou and

Schmueser (1979).

2.3.4 SSC Summary

Explicit conditions which produce SSC were formally identified in terms of ¢, K, and
material properties. Under SSC conditions, an explicit relationship between the closed
crack-tip face stress intensity factor, K§;, and the traction-free crack-tip stress intensity
factor, K, was derived for a specific geometry. Based upon equal energy release rates,
a more general extension of this relationship was given. Finally, the accuracy of the
predicted contact length, in terms of the oscillatory traction-free crack-tip field, was

compared against that of precise full-field closed crack-tip solutions. This comparison
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identified the loading range for which the contact length approximation, Eq.(2.43), was

sufficiently accurate to provide useful results and define SSC.

2.4 Overview

2.4.1 Load Map

To help visualize when crack-tip conditions exist for each model, with or without plas-
ticity, consider the load map shown in Figure 2.5 (conceived by Prof. D. M. Parks).
This map denotes the various model domains for the right hand crack tip of a Griffith
crack geometry, as a function of the far-field loading combinations. The appropri-
ate crack-tip model for monotonically and proportionally increasing far-field loads is
obtained by constructing a ray from the origin the desired load point. For all load
excursions which terminate in the SSY traction-free crack-tip dornain, an undefined
intermediate state exists when the plastic zone r, is less than, but nearly the same size
(order of magnitude) as, the contact length dimension §. The crack-tip behavior in this
intermediate state is not defined by either model. Although rot clearly visible in Figure
2.5, all traction-free crack-tip loadings produce SSC unless plasticity is included.

In the load map, the loadings which produce acceptable SSY conditions are those
contained within the r,/2a = 0.03 circle. The line separating the SSY traction-free
crack-tip region from the intermediate undefined region, r, = 36, is the locus of points
producing plastic zones three times larger than the accompanying elastically predicted
contact length. The corresponding boundary of the closed crack-tip SSY region is
defined by the ri/2a = 0.03 circle, where r{ is approximated by r,, and the r, = 0.36
line. (The closed crack-tip boundary is defined by r, = 0.36 instead of r, = 0.036, as
suggested by Eq.(2.40), because K§, is not explicitly known nor is the extent that the
K;,-field represents the far field solution known.) Between the r, = 36 and r, = 0.36
lines is an “uncertain” region where it is unclear whether sufficient plastic deformation
would occur under the dominance of either elastic crack-tip model.

The precise location and distribution of each sector in the load map is significantly
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Figure 2.5 Load map for right crack-tip of a Griffith crack geometry with far-field
normal (¢57) and shear (03;) loads, showing approximate SSY limits for traction-
free and closed frictionless crack-face conditions; § = 0.5 and € = —0.1748.
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influenced by the value of €. For smaller magnitudes of ¢, the family of boundary-
contact lines compress toward the abscissa, eventually coinciding there for ¢ = 0. For
positive values of ¢, the family of boundary-contact lines appear as mirrored reflections
across the ordinate axis. For all values of ¢, the SSC region is a very small subset of
the closed crack-tip domain with the SSC SSY domain being even smaller.

The load map is constructed in the following manner. The characteristic plastic zone
size r, is obtained, as a function of far-field load, by substituting the stress intensity
factor for the Griffith crack, from Table 2.1, into the characteristic plastic zone size

rp = KK /02,7 cosh®(me). This yields

o0\ 2 oo\ 2 .
o ([ L (9m) | _L+4e (2.53)
2a Oys Oys 2cosh?(me)

To maintain SSY conditions Eq.(P2.37) requires r, < 0.032a. The set of points which
satisfy Eq.(2.53) when r,/2a = 0.03 defines the SSY limit, to within the approximation
that r, can be used to define the maximum extent of the plastic zone. The boundary
lines are obtained by determining the appropriate loads which produce a characteristic
plastic zone size f times the contact length (r,/2a = f X 6/2a), for a fixed ratio of
oy /0%. Using the contact length approximation for a Griffith crack, Eq.(2.51), and
Eq.(2.52), the equation describing the boundary lines is given by
2 0o\ 2 0o\ 2

ot [onzo) (5] (5]
In Figure 2.5 the branch cut is chosen to be zero since ¢ < 0.

It was noted by Rice (1988) that for a Griffith crack, the behavior at the left hand
crack tip with negative applied shear stress is identical to that at the right hand crack
tip when an equivalent positive shear stress and normal stress is applied. By considering
the work of Comninou and Schmueser (1979) and the observation made by Rice, it is
concluded that for € < 0 the contact length at the right hand crack tip, &,, decreases as
negative shear stress is applied, but the left hand crack-tip contact lengt".h, 6, increases.
This increase in §; reduces the actual open crack length to an effective crack size of

2a.;y = 2a — §. The (modified) SSY boundary for 0.y < 0 shown in Figure 2.5, is
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constructed by determining the locus of points which satisfy r,/2a.;; = 0.03. [When
0% < 0, the value of § used is based upon the more precise values of Comninou and
Schmueser (1979).] Additionally, when o;, = 0 and oy, < 0, the crack is completely
closed and no singularities exist at either crack tip.

Finally, in constructing the load map, 10° was added to the actual value of 1 used in
Eq.(2.54) to calculate §/2a. For small angles of ¢, the additional 10° produced contact
lengths which were closer to those determined by Comninou and Schmueser (1979) and
allowed for a bett<s representation of the closed crack-tip and SSC boundaries. For
large angles of 1, no noticeable effects were produced in the load map because of the

actual size of §/2a.

2.4.2 Conclusion

From examination of the elasticity solutions for the two crack-tip models considered
and the load map, it is evident that a single crack-tip model is not completely capable
of capturing the linear elastic portion ot crack-tip behavior under arbitrary loading
conditions. Rather, one must first identify the relevant characteristic dimensions in
the problem; s.e. crack length, contact length and plastic zone size, and then choose a
model which gives the correct physical interpretation on these size scales. As pointed
out earlier, both models produce physically unrealistic predictions when extrapolated
outside their applicable (linear elastic) domain. For example, under the appropriate
far-field loads, the traction-free crack-tip solution produces crack-face interpenetration.
Additionally, singularities exist at the crack tip in both models, clearly invalidating
their linear elastic material assumptions in the very near crack-tip region; i.e., isotropic
linear elastic material response, small strains, and small rotations. Obviously additional
crack-tip models are necessary to bridge the gap between these two elasticity models,
such as closed crack-tip models with crack-face friction, as well as other models which
incorporate more physically realistic material idealizations.

At this juncture, plastic zone growth for two continuum crack-tip models has been
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investigated by using elastic approximations for the plastic zone. Loadings have been
only loosely restricted to those which produce a plastic zone that is small compared to
the next relevant characteristic dimension (e.g., contact length or crack length) in the
problem and to those which have crack faces continuously apart or in continuous contact
from the plastic zone edge to the end of the next relevant characteristic dimension.
(Henceforth, the set of admissible planar interfacial cracks is limited to those which
fit the two models discussed.) Plastic zone size, shape, and growth characteristics,
with respect to applied increasing loads, have been identified and parametrized into
convenient dimensional and dimensionless quantities. In terms of these quantities,
explicit conditions which approximately determine the applicability of each model have
been given. In fact, these models remain appropriate outside their identified domains
providing the underlying conditions on which the governing assumptions are based
(s.e., contacting or traction-free crack-tip faces), are not violated. Since the validity
conditions are based upon asymptotic or approximate formulae, certain geometries may
warrant more precise analyses.

The elastically-calculated yield zone and associated inelastic characteristic lengths
are based on a Mises yield criterion, but the mathematical approach of determining
the loci of points in an elastic field which satisfies a yield criterion is not limited to
the Mises criterion. Any other yield criteria, such as the single crystal Schmid criteria,
the generalized (anisotropic) Hill criterion, or pressure sensitive transformation criteria,
that describes the initiation of an inelastic deformation mechanisin, like transformation
plasticity, micro-cracking, single crystal slip, and Coulomb friction controlled slidirg (in
granular materials), can be used to estimate the extent of non-linear behavior contained
in an elastic field and qualstatively correlate far-field and local-field quantities. This
approximate approack may be quite useful in investigating other phenomena like bi-
crystal grain boundaries, micro-delamination or damage in fiber reinforced composite
laminates, and any other system where difficulties arise in precisely determining the

complete exact response.
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Chapter 3

Description of Solution Technique

In this chapter, the individual components which are assembled together to solve the
BV problem outlined in Chapter 1 are described. The first section discusses the numer-
ical model in terms of imposed boundary conditions, elastic and plastic domains, and
the governing global variational principle, along with modeling simplification-reduction
techniques. The second section presents the elastic/perfectly-plastic constitutive rela-
tionship along with discussion concerning notation, kinematics, and the constitutive
integration operator used. The final section discusses the details of the actual finite

element (FE) procedures and meshes used for each of the crack-tip models.

3.1 Crack-Tip Model Formulation

The asymptotic local crack-tip behavior of all numerical models are numerically inves-
tigated using, tc some extent, the FE approach proposed by Hilton and Hutchinson
(1971) for cracks in homogeneous media. Consider the schematic crack-tip region shown
in Figure $.1. Near the crack tip, as compared to the characteristic geometric dimen-
sion, unique “K”-fields emerge, that asymptotically describe the elastic stress, strain,
and displacement fields (within the limits outlined in Section 2.2). The core region is
defined to lie within I'*® such that the value of K, along with Egs.(P2.2) to (P2.5), or
the value of K§,, along with Eqs.(2.19) to (2.21), completely characterizes the linearly

elastic fields in the region enciosed by I',. The core region is then extracted by cutting
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Figure 8.1 Schematic bi-material interfacial crack-tip region, showing core region and
domain numbering convention.

I-‘Plemt.ic

S

Figure 8.2 Schematic traction-free bi-material interface crack-tip core region, including
the elastic (R) and plastic (S) domains and the crack-face (T.), plastic (Tpiantic),
and core (I'x) boundaries.
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along 'y, as shown in Figure $.1. By imposing tractions along I',, of the extracted
core region consistent with Egs.(P2.2) to (P2.5) or Egs.(2.19) to (2.21) and scaled by
the appropriate K or K§;, the fields within the core region are totally recovered. Al-
ternatively, displacements can be imposed on Ty, to yield the same results. For the
traction-free crack-tip model, the displacements are obtained using Egs.(P2.4), (P2.5),
and the following (Muskhelishvili, 1953)

21 (u, + iuv) = ngPr + (2 - z)qt;k' — ﬁk, (3.1)

where z = z + iy = re' is measured from the crack tip, u, and u, are Cartesian
based displacements, and the remaining terms have the same meaning as before. For
the closed crack-tip face model, the dominant asymptotic displacement field can be

obtained from the power series expansion (Comninou, 1977a), and in polar coordinates

is given by
o ;B’f{(%,-—l) (mﬂ)sing—(siﬂ)sin%f} (3.2)
and
up = — ?éf{(2n,-+1)(1$ﬂ)cosg—(3:i:ﬂ)cos¥}, (3.3)

where the upper and lower signs are used in the lower and upper material domains,
respectively.

This approach eliminates the need to model the entire structure containing the crack
and allows more mesh refinement in the immediate crack-tip vicinity. Local crack-tip
material non-linearities are acceptable, via a St. Venant type argument, as long as
they are confined to a zone which is small (~ 10%) with respect to I',, (Larsson and

Carlsson, 1973; Rice, 1974).

3.1.1 Traction-Free Crack-Tip Faces: Boundary Layer Ap-
proach

In addition to the model reduction technique proposed by Hiltorn and Hutchinson,
a further model simplification was used for the traction-free crack-tip model. What

follows is a theoretical interpretation and description of this additional method.
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Theoretical Considerations

Additional model reduction and computational savings were obtained for the traction-
free crack-tip model using Sham’s beundary layer method (Sham, 1983). Figure 3.2
shows a schematic crack-tip core region where I'o, and I'pjs,ic denote the outer edge
of the model and the maximum extent of the plastic zone, respectively. The region R,
by definition of I'pjs4¢ic, remains elastic during the entire analysis. The boundary layer
method reformulates this problem while maintaining the stress, strain, and displace-
ment fields and taking advantage of the elastic region R. For brevity, a short outline
of Sham’s boundary layer method follows, and the reader is referred to Sham (1983)
for a more complete description.

The boundary layer method recasts the simplification proposed by Hilton and
Hutcliinson (1971) by altering the physical model depicted in Figure 8.2. Consider the
boundaries ', and Tpiauic to be circles of radii ro, and rpia.ec, respectively, centered
about the crack tip. For any value of ro, chosen such that ro, > rpia.ic, the elastic field
within I'e is reproduced by enforcing Egs.(2.4) and (2.5) via Eq.(3.1) along I'c. For
convenience, the boundary Ty, will be relocated to ro, = 0o. Therefore the restriction
that I'paeec be located at a distance close to the crack tip, with respect to ', shall
be trivially satisfied for all finite values chosen for rpja,;c.

To describe the elastic region between I', and I'pja.iic, additional series terms which
account for the non-linearities altering the fields within I'pi.ic must be included in
addition to Eqgs.(P2.4) and (P2.5). Using the general series potential identified by
Rice (1988), Eqgs.(P2.A.1) to (P2.A.4), an inner or Laurent series expansion for the
potentials can be constructed. This is accomplished by redefining Eqs.(P2.A.5) and
(P2.A.6) to be

f(2) = 20: anz", (3.4)
N=-o00
and
g(z)=M§ by M. (3.5)



Note that an outer series expansion would produce unbounded stresses, strains, and
displacements as r — oo, while an inner series yields terms wh:ch are bounded or tend
to zero as r — oo. Also, the first term, M = —1, for the g(z) expression is excluded
since it physically represents point loads applied at the crack tip. For convenience,

Eq.(3.4) additively decomposes into

f(2) = f5(2) + fT(2) = a0 + f7(2), (3.6)
where
T(2) = i anzV. (3.7)
N=-00

Since Eq.(3.5) contains no terms associated with the K-field, Eq.(3.5) should be inter-
preted as the definition of g7 (z); i.e., gT(2) = g(z). All terms with the superscript
K shall refer to quantities, which assume that only the K-field is present (terms of
order r(~1/2)%i in stress) and those with the superscript T shall be used to identify all
the quantities associated with the remaining outer expansion of the inner series terms.
Using the potentials represented by Egs.(P2.A.1) to (P2.A.4), along with Egs.(3.4) and
(3.5), and the displacement relationship, given by Eq.(3.1) the complete field in S can
be expressed in terms of the coefficients ay and by.

The boundary layer method requires solving the field equations within I'o, by min-
imizing the modified rate potential function, given by Sham (1983) as

fi= /S 8(£)dS + f, 8@)ds - [ (n-o¥(t)) -ids. (3.8)

T pieotic
Here ® is the strain rate potential, ¢ is the strain tensor, n is the unit outward normal
vector, 6% (t) is the stress rate tensor attributable to the K-field, and 1 is the velocity
vector.
The modified potential can be interpreted on a term by term basis. The integral
Iz Q(ér)ds corresponds to the elastic strain rate energy in the region between I'pigaic
and I', attributable to the lower order terms. It can be given explicitly in the form

247SqT, where q*7 is the vector of generalized degrees of freedom [the unknown
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coefficients ay and by from Eqgs.(2.2) and (2.3)], 7 is time derivative of q°7, and S is
an appropriate stiffness matrix. Since the region R is elasti-, the stiffness matrix S is
independent of time and is more conveniently evaluated from the associated relationship
1a7Sq‘T = [, ®(€7)dS where ® is now the strain energy density function. In Appendix
A.1 the stiffness matrix S is calculated using the known analytical expressions found in
Egs.(P2.A.1) to (P2.A.4), (3.4), and (3.5). (Note, in Appendix A the stress potential
X is used instead of 1. The two stress potentials are related via x" = ' — ¢' — 2¢".)
An equivalent line integral along the boundary I', 'pigstic, and the crack face (T.),
Eq.(A.7), is used to evaluate the surface integral. In evaluating the line integral, it
can be shown [Egs.(A.13) and (A.14)] that the only non-zero contribution arises along
the Tpiasic boundary. The next integral in Eq.(3.8), fr, . (n-6%(t)) -ulds, can be
explicitly expressed as Q‘TF‘(t), where F¢(t) is the vector of integrated work conjugate
forces to the (T-terms) generalized degrees of freedom. The time derivative of the work

conjugate force vector, F‘(t), can be written in component form as

FEo=[ (a-a%)-dds, (3.9)

Plastic
where ﬁ',-T(r,O, €) is the jth component of the known velocity mode shape vector; (s.e.,
the components of the velocity mode shape vector are related to the velocity vector via
ul(r,0,¢) = d;Téj(r,ﬂ, €), with no summation on j.) The term 6% (t) is dependent only
on time via the scaling variable K(t) and is otherwise known. Since K(t) is known,
and is chosen to be of the form K (t) = KoL(t), where L(t) is a real scalar function of
time, ¥*(t) need only be evaluated as F¢ at K(t = 0) = K, and then scaled by L(t) as
F¢(t) = F;L(t). The remaining integral in Eq.(3.8) corresponds to the standard rate
potential such that 6 = 9®(¢)/d¢é within the region inside I pjgpc, and is evaluated
using finite elements.

To maintain a well posed mathematical BV problem, the additional lower order
terms in R must be accompanied by additional mode shapes along the I pjq,tic boundary.
In region R, 2(N + M — 1) additional unknowns, contained in the vector q°T, are added

to give the complete representation. The addition of these terms compensates for any
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deviations from K-fields which may occur in R due to nonlinearities within S. At the
same time, 2(N +M —1) additional constraint equations are iniposed along I pigatic, thus
making it a well posed mathematical problem. As the behavior in region S deviates
from the asymptotic dominant field, Eqs.(2.4) and (2.5), lower order mode shapes are
activated by making armplitude coeflicients in q°7 non-zero. However, this occurs at
the expense of adding additional strain deformation in region R such that equilibrium
and compatibility between the two regions is achieved via Eq.(3.8).

By consideration of the previous observations, the modified potential energy func-
tion was incorporated into the FE code ABAQUS (Hibbitt, 1984). At the outer edge of
the FE boundary, taken to be (I'piasc), constraint equations, written in the form of a
user-defined multiple point constraint (MPC) subroutine, were used to enforce nodally
the admissible displacement eigenmodes in accordance with Egs.(P2.A.1) to (P2.A.4),
(3.1), (3.4), and (3.5). The amplitudes for the dominant singular (K-field) modes
were externally prescribed, K = KyL(t), while for the other modes, the coefficients
(generalized degrees of freedom — q°T) were considered solution dependent unknowns.
Connected to the lower order coefficients, q°7, was a spring-element network which had
equivalent stiffness S. The complete boundary condition and spring network derivation
is formally given in Appendix A. The actual MPC subroutine is listed in Appendix C.
The integrated work conjugate forces F§ were obtained from the reaction forces of an
initial elastic FE analysis, which had all the lower order generalized degrees of freedom
zeroed (q‘T = 0) and an appropriate K, value imposed. The vector of generalized

reaction forces required to sustain q°7 = 0 was taken as F§,.

Boundary Layer Verification

To verify the boundary layer method implementation, two homogeneous test problems
were first performed. These were the same two problems considered by Needleman and
Sham (1980): (a) a semi-infinite crack with point loads applied normal to the crack

face at £ = —a; and (b) a semi-infinite crack with the crack tip translated such that it
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was located at z = a. Figures 3.8 and 8.4 show the two geometries.
An equivalent inner series expansion about the origin (z = 0) which exactly repre-
sents their potentials can be explicitly given ior these geometries. For the point load

the stress potential functiuns are given by

P n= oo a(n 1/2)

P_ ntl 3.10)

o' =0 = — a) \/’ 5 z(n+l/2)( 1) (3.10)

By comparing these potentials with those used in Eqs.(A.1) to (A.4), the series coefi-
cients are related to the components in q°T via

T _ P a"'i( 1)n+l

I T 2r2(n - 3)(n - 1)’ (3:11)

for n =1 to co. For the translated crack tip the stress potential functions are

b Kl n=o00
$=m= 2\/2n(z - a) 2\/27r Z ) ("“/2)’ (3.12)

where f, are known constants. Again, by comparing these potentials with those used

in this analysis, Eqs.(A.1) to (A.4), the coefficients ¢¢T can be obtained in terms of f,.
Unlike Eqs.(2.4) and (2.5), neither of these expansions contain any whole powers of z.
To verify the boundary layer implementation, homogeneous elastic FE analyses
were performed and comparisons between the analytically determined coefficients and
the FE calculated coefficients, q°7, were made. Table 8.1 lists the analytical and FE
determined coefficients for the two geometries. In both problems the outer boundary of
the FE mesh had a radius of 1.0(m). Thus the ratio of a/|z| in the series expansion was
0.3981 for the point load example and was 0.10 for the translated crack tip example.
The FE determined coeflicients shown in Table 8.1 are in good agreement with
the analytically determined coefficients for the higher order terms, but the agreement
diminishes for lower order terms. (Note that lower order terms correspond to compo-
nents in q°7 with “larger” subscripts.) For the translated crack, this deterioration is
attributed to inaccuracies in determining F¢(t), mesh construction, series truncation,
and numerical noise. The reaction forces F§ for the translated crack were obtained by

sewing up the crack face such that the crack tip was artificially located at = 0 and by
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Figure 3.8 Schematic homogeneous crack-tip region with opening crack-face point loads
(P) applied at a distance a from the crack-tip.

Yy
A

K;
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Figure 3.4 Schematic homogeneous crack-tip region and coordinates, showing trans-
lated crack tip at z = a.



applying Kj in an initial elastic analysis. Since, in the translated crack case, the mesh
was designed to have the crack tip at £ = a, and no refinement of the mesh existed
at z = 0, inaccuracies in F§ may have arisen. Similarly, the mesh used in the point
load case was not refined where the point loads were applied. (This will not be an
issue during the actual SSY analysis because the forces F§ will be found for the actual
unsewed and untranslated meshes.) It was assumed that si..ce the higher order terms
matched, the implementation was performed correctly and the dominant behavior was

captured even though numerical noise existed.

| Coefficient | Analytical [Eq.(3.11)]| FE |

U} -.2008 -.20084

92 -2.6559E-2 -2.6651E-2
gs 2.0731E-2 2.1220E-3
a4 -3.2279E-4 -3.6204E-4
gs 5.6005E-5 8.0071E-5
de -3.3130E-6 -2.0285E-5

(a)
| Coefficient | Analytical [Eq.(3.12)] | FE |

U)1 -1.9394E-2 -1.9947E-2
g 4.6966E-4 4.9868E-4
qs 7.2501E-6 8.3145E-6
Q4 6.5413E-8 3.1183E-7
ds -1.2820E-8 1.5504E-8

(6)

Table 8.1 Analytical and numerical coefficients for a plane-strain crack-tip prob-
lem with: (a) opening normal point loads applied at £ = —0.3981; (b) the crack tip
translated to a = 0.1 .

To verify that the bi-material portion of the boundary layer formulation was cor-
rectly implemented, various independent tests were conducted. First, several (bi-
material) elastic cases with various material combinations were loaded by prescribing

a specific value of K and setting all inner series coefficients equal to zero (q‘T = 0).
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Boundary node displacements, which correspond to the dominant asymptotic solution,
were compared with the known analytical solution. Because the user written MPC
subroutine, used in prescribing the displacements, was coded in a manner such that
one index determined all the powers of the root being imposed (s.e., A; = (5 +1/2) +1¢
where j is the index of interest), it was felt that, the coding for that entire family of
roots was performed correctly, as long as the limits on this index were chosen correctly
and one specific index value yielded the correct results. In a similar fashion, the whole-
integer (real) root set {R(A;) = A; = j| was verified by prescribing K and setting all
but one value of q°T equal to zero. The coefficient not set equal to zero was the one
producing a domain-wise uniform stress parallel to the interface (M = 0 term). (In the
actual potentials used, Egs.(A.1) to (A.4), the constants multiplying the coefficients
(g°T) in the displacement relationship were not trivially zero when M = 0.) Again,
since the results ot this one specific case were correct and the coding was written in an
unbiased manner with respect to indices, it was felt that the coding for the entire set
of whole-integer real roots was performed correctly.

In a similar spirit, the spring stiffness constants were verified. For the homogeneous
case, several specific spring stiffnesses were analytically and numerically integrated
to ensure proper coding. Once again, a single index was used to generate the stress
potentials, thus guaranteeing that the entire set of spring stiffness coefficients were
determined correctly. Complez FORTRAN coding was utilized in such a manner that
if the homogeneous case was performed correctly and the bi-material potentials were
correct, then the bi-material spring constants would also be determined correctly. Ad-
ditionally, several spring constants were integrated via other methods to provide an
additional check. All homogeneous tests were performed using the actual bi-material
subroutines and programs, but with identical elastic properties in each domain.

A crack-face point load elasticity problem, similar to the one used previously, was
considered to ensure that the boundary layer extension for bi-materials was imple-

mented correctly. Figure 3.5 shows the crack-tip geometry and the direction and loca-
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Figure 8.5 Schematic bi-material interfacial crack-tip region with crack-face opening
(P) angd shearing {Q) point loads applied at a distance a from the crack-tip,
showing coordinates and domain numbering conventions.
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tion of the crack-face point loads P and Q. From Rice and Sih (1965), the ¢} stress

potential function for this configuration is given by

P—1iQ 1 (a)%‘”‘

2me™ z+4+a

'=nl___
¢l 1 z

(3.13)

and the equivalent inner series expansion about the origin (z = 0) is expressed as

= D ORE o

nE
2we™ 2z \z o1

By comparing this expansion of the ¢} potential with the general potential used in
Egs.(A.1) to (A.4), the series coefficients q°T in the general potential, Eqs.(A.1) to
(A.4), are determined to be

T = P—~1Q [cos(elna) +isin(elna)]
e 1) -] [(n- -

for n = 0 to oo.

a™ti (-1)", (3.15)

A plane-strain FE analysis was used to evaluate the bi-material point load problem.
It used the elastic properties of aluminum in the upper region and steel in the lower
region, and the bi-materia! constant was ¢ = 0.03220. (See Table 4.3 for the elastic
constants used.) The crack face was loaded with several different combinations of points
loads P and Q, while maintaining K = 0, and only positive values of P were considered.
The values of the analytical and FE determined coefficients for the case where loads
of magnitude P = Q = 1 are applied at z = —0.3981 are listed in Table 3.2. (The FE
mesh had a radius of 1.0(m) which yielded a ratio of a/|2| = 0.3981.) The discrepancy
between the coefficients can be attributed to the coarse mesh, lack of mesh refinement
near the point loads, and the fact that the Laurent series expansion was truncated after
only six terrns. it was assumed that since each individual component and the complete
implementation was verified for both homogeneous and bi-material cases, the boundary

layer method was extended and implemented correctly for the bi-material problem.



| Coefficient | Analytical [Eq.(3.15)] | FE |

'R —.17456 + 1.18557 —0.1747 + 10.1855

G2 —2.0939 x 10792 4 §2.6627 x 107°% | —2.1073 x 107 °% + 12.6346 x 107°?
s 1.7809 x 1079 — 12,0330 x 107°% | 1.7875 x 1079 — ¢1.9540 x 1073
Qs —3.0828 x 107%% + 13.4306 x 107% | —3.1094 x 10~% +12.9619 x 10~
% 6.8632 x 107% — §7.5474 x 107 | 6.3699 x 10~% — 15.2252 x 107%
s —1.7453 x 107% + ¢1.9061 x 107% | —1.4279 x 107% + £3.4650 x 1078

Table 8.2 Analytical and numerical coefficients for a plane-strain bi-material crack-
tip problem with point load, P = Q = 1, applied at z = —0.3981.

3.1.2 Closed Crack-Tip Faces

The asymptotic local crack-tip behavior for the closed crack-tip face model was nu-
merically investigated with the FE method proposed by Hilton and Hutchinson (1971).
Since no parametric study was to be performed and no numerically difficult oscilla-
tory stress fields exist in the closed crack-tip elasticity solution, Sham’s boundary layer
approach was not utilized. The displacements were obtained via Egs.(3.2) and (3.3),
rotated into a Cartesian coordinate frame, and imposed along I',, the FE mesh bound-
ary. For the FE analysis, the displacements, Egs.(3.2) and (3.3), were incorporated into
a user-written MPC subroutine and nodes along I',, were constrained with a free node,
whose displacement was associated with the value of K§;, via the MPC. As before, the
magnitude of K§; was scaled with L(t). Appendix C contains a listing of the MPC

subroutine used.

3.2 Elastic/Perfectly-Plastic Constitutive Relation-
ship

This section describes the constitutive relationship used, as well as the integration
operator and the associated notation. The material relationship was incorporated in
the FE analysis via a user-written subroutine called UMAT. A listing of the UMAT

subroutine is included in Appendix C.
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3.2.1 Kinematics

It is assumed that infinitesimal strain theory (linearized kinematic theory) is used. It
is therefore assumed a priori that all strains and physical rotations are small such that
all rotation tensors can be approximated by the identity tensor and that the symmetric

part of the (spatial) velocity gradient can be approximated by the strain rate.

3.2.2 Notation

Using Gurtin’s notation convention (Gurtin, 1981), the evolution equation and the
definition of various relevant variables are as follows. The Cauchy stress rate tensor,

0, is given by

o = L[é— &), (3.16)
with the fourth order elasticity tensor L, defined as,

L=2ul + (k- gu)l ®1, (3.17)

where ¢ is the total strain rate tensor, ¢° is the plastic strain rate tensor, I is the fourth
order identity tensor, 1 is the second order identity tensor, and « is the bulk modulus.
(Note that the strain tensor is designated with ¢ since the usual symbol associated with
it is used to define the bi-material constant.) The deviatoric stress rate tensor, d', is

given by
1
d'=0- 5tr(f;-) 1. (3.18)

Similarly, the strain rate tensors can also be decoupled into deviatoric and hydrostatic

parts. The Mises equivalent stress, , is defined as

o= \/ %o' -0, (3.19)

and N, the instantaneous normal to the yield locus at the current stress state, is given

!
N= /32, (3.20)
20
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3.2.3 Constitutive Relationship

The elastic/perfectly-plastic continuum constitutive relationship is based upon several
assumptions. It assumes that elastically, as well as plastically, the material is isotropic
and that all plastic deformation is volume preserving (incompressible). The yield locus,
in the 7-plane, is spherical (s.e., not pressure sensitive) and does not translate or change
size with plastic flow (i.e., no isotropic or kinematic hardening). All plastic flow occurs
only in the direction instantaneously normal to the yield locus, at the current point.

The flow rule, A, is defined as

A:{ 1 If 6=0,, and N-{L[{]} >0 (3.21)

0 Otherwise.

where oy, is the tensile yield strength of the material. The interpretation of the flow
rule is that é? is non-zero only when A = 1. The portion of this constitutive relationship

describing plastic straining, written in rate form, is
& =A{NQ@N}[¢. (3.22)

The stress rate ¢ is obtained by substituting the definition for é°, Eq.(3.22), directly
into Eq.(3.16) as

&= {L}{I -NoN}[]. (3.23)

To facilitate the incorporation of this constitutive relationship into the numerical model,

an incremental form is utilized. This incremental form is exact only in the limit that

. Oc .. .
A?—?o (Ag) = aAt = eAl. (3.24)

3.2.4 Constitutive Integration Operator

The elastic/perfectly-plastic material response is numerically integrated using the Rice-
Tracey Mean Normal integration operator (Rice and Tracey, 1973). The material
response is integrated under the assumption that during an increment in time, At,

between the nth and (n + 1)th state, ¢ remains constant such that
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n+1
€np1 — €n = / édt ~ eAt = Ac. - (3.25)

n

The deviatoric stress o),,, at the (n + 1) state is given by

0,41 =0, + Ad' (3.26)
and, when A =0,

Acd' = 2pA¢€, (3.27)

where o', is the deviatoric stress at the nth state, Ao’ is the deviatoric stress increment,
and A¢ is the postulated deviatoric strain increment tensor.

An increment in stress where the initial stress state is elastic and the final state
is yielding (A = 1) is now considered, and Figure 8.6 schematically shows such a
stress state in the m-piane. The initial elastic stress state o], does not satisfy the yield
condition and lies within the R = oy, sphere. The increment in deviatoric stress, Ao,
is obtained by traveling form the original stress state along the path of the elastic
predictor, 2uA¢€, until the yield surface is reached. The fraction of the total elastic

predictor which must be traveled to reach the yield surface is c, and « is given by

— (A€ -0l £ \/ (A€ -a1)? — (Be - A€) [(0], - o) — a2,]
1 (A€ - Ag)

The correct root of a is the one that lies between 0 and 1. Once the yield surface is

a(A€') = (3.28)

reached, an intermediate state T* is constructed using the remaining portion of the
elastic predictor (1 — a)2pA¢' and the stress state at the yield surface, ol + a2uA¢.

The intermediate state T* is defined as
T*(A¢) = 20!, + (1 + @)2uA€, (3.29)

where N*, the normalized direction of T", is defined as
T*(A¢)
2,/1T*(A¢) - T*(Be)

The deviatoric stress increment A¢’ is then obtained by projecting (1 — a)2pA€, the

(3.30)

N*(A¢) =

remaining fraction of the elastic predictor, onto a vector normal to N* such that
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Figure 8.6 Schematic m-plane representation of a stress increment obtained by the Rice-

Tracey mean normal integration operator; showing the various vectorized (tensor)
stress states and the yield sphere.
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Ac' =2p{] — (1 - a)2N' @ N"} [A€]. (3.31)

This operator always places o,,,, exactly on the yield surface for any strain increment

with & < o,, and elastic predictor state having \/% (0!, + 2uA¢€) - (0!, + 2uA€) > oy,.
To obtain the updated total stress, 0,41, the hydrostatic stress must also be integrated.
Since €, is postulated as being known (given), the hydrostatic stress is trivially ob-

tained and is
Ont1 = Opyy = {£ 1® 1} [€011] - (3.32)

Using Eqgs.(3.26), (3.31), and (3.32), the total (n + 1)th stress state, when A = 1 during

an increment, is given by

Ont1 = { wlz-0 _+‘1(£Af)2)§12)1?1 gi)) BN (Ad) } [A¢] + on. (3.33)
Eq.(3.31) is general and valid for all stress states except when both o, and 0,4, lie
within the yield radius. In conjunction with Eq.(3.27), Egs.(3.28) to (3.33) describe
the stress state for all possible loading increments.

In addition to calculating the final stress state, a material Jacobian, defined as

dAo

J= dA¢€’

(3.34)

is also required for the global Newton-Rapson (FE) iteration procedure (Hibbit, Karls-

son, and Sorensen, 1987). The Jacobian for this operator is given by,

G
J = GII+(n—?‘)1®1+GzN‘®N'+G3N‘®1

+GN* ® A€ + G5A€ ® v, (3.35)
where,
4’ e A
G, = 2u—(1+a)(1—a)r—_(N - A€'), (3.36)
16”'2 L !
G, = 4pu(a—-1)—(1+a)(l-a) (N*- A€, (3.37)

1-‘

Gs = 4u(N*-A€)+(1- a)li—t‘z (N*-A€)’ - (1 - a)i—‘:z- (A€ - A€'), (3.38)
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2

Gi = —(1+a)(1- a)4r’f , (3.39)
Gs = (1- a)“T—‘f2 (N*- A¢), (3.40)
y [2ua’A€ + aa)] (3.41)

" 2pa (A€ - A€') + (0!, - A€)’

/1
T' = ET' - T, (342)

Use of the mathematically exact (generally) non-symmetric Jacobian would require

and

that the FE procedure solve the complete set of equations, as opposed to a symmetric
subset. This procedure would be considerably more costly, and thus a symmetrized
(approximate) Jacobian is used (Bathe, 1982). The symmetrized Jacobian, Jyym, is

defined as

G 1
Jum = Gl +(s- )1@1+GN @N' + Gz (N @7+ 70O N')
+G4%(N‘ ® Ad + A¢ ®N°) + Gs%(’Y ® A€ + A€ ® 7). (3.43)

The use of this Jacobian yielded nearly quadratic global convergence, as would be
expected in a Newton-Raphson method. (Aside: A radial return operator [Krieg and
Krieg, 1977] was also tried, but yielded very poor convergence. It is speculated that
because the Jacobian for the Mean-Normal operator is based upon an intermediate
stress state halfway between o,,,; and o), it does not result in the same sort of radial
softening that would be predicted using a radial return Jacobian. This (relative) radial
stiffening is thought to retard small to modest changes in the direction of o}, ,, during

iterations.)

3.3 FE Model Considerations

This last section is divided into three parts. The first part discusses the “simplified,”
but efficient, FE model used to obtain the characteristics of the traction-free crack-tip

model for different loadings (/K) and material combinations considered. Since this
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mesh would subsequently be used many times and each run represents a substantial
investment in CPU time (due to the complexity of the oscillatory elastic fields), much
effort was spent on designing it. The second FE model discussed is again a traction-
free crack-tip model, however, the purpose this model was to unequivocally determine
whether or not oscillatory stress fields, analogous to those found in the elastic solution,
exist within the elastic/perfectly-plastic deformation zone. Material properties were
chosen and the mesh design was performed in such a manner to yield the maximum
amount of information with only a relatively modest investment in computational time.
Although many of the same details from the first model were utilized, the goal was to
maintain simplicity and thereby ensure an unquestionable result. The third section
concerns itself with the FE model assembled to investigate the closed crack-tip face
model. Since little complexity was anticipated based upon the elastic solution, a simple,

but sufficient, FE model was assembled.

3.3.1 Traction-Free Crack-Tip Face Model
Boundary Layer Implementation

Various common features were incorporated in all the traction-free crack-tip FE models
that used the boundary laye: method. The FE code ABAQUS (Hibbitt, 1984) was used
with the user-added subroutines UMAT and MPC. Slight modifications when needed
were made in the UMAT to obtain only an elastic response. The boundary layer
formulation series were truncated after the first seven half-integer (Williams type) terms
(N =0,-1,-2,---,-6), and after five even-integer terms (M = —2,-3,—4,---,-6),
where the variables N and M refer to the indices in Egs.(3.4) to (3.7) or Egs. (A.1) to
(A.4). The term N = 0 corresponds to the dominant asymptotic power, and the power
M = —1 was excluded from the formulation since it represents an applied concentrated
crack-tip force and produces infinite far-field elastic strain energy in the boundary layer
formulation. The vector q°7 was represented by 24 degrees of freedom (12 “free” nodes

each with two active degrees of freedom). These free nodes, which actually behave as
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Lagrange multipliers in the FE program, were the vertices in the spring network and

the nodes to which all outer FE boundary nodes were constrained.

FE Mesh

Prior to elaborating on the actual meshes used, the procedure used to evaluate mesh
accuracy will be outlined.

In order to judge the capability of the FE meshes to reproduce at least the elastic
K-fields, elastic test runs were performed on each mesh by imposing assorted values of
K with g°7 = 0. The averaged nodal stresses were then examined in the radial and cir-
cumferential directions and compared to the dominant asymptotic stress expressions.
To evaluate the radial dependence, the stress components were plotted against the
natural logarithm of the radial distance r. Excluding the first and last elements, the
numerical and analytical results were usually indistinguishable. For a better compar-
ison, the stresses were normalized (multiplied by 1/r) and plotted against the natural
logarithm of the radial distance. In this way, any discrepancy existing in the phase
or period between the analytical and numerical solutions would be immediately ob-
vious. One particularly beneficial result emerged from this plotting procedure. The
numerically obtained stresses alternatively overestimated and then underestimated the
analytical solution, from node to node, with a mean value which was coincidental with
the analytical solution. The magnitude of these oscillations (local maximum to mini-
mum) decreased as the number of elements used in the radial direction increased. The
oscillation magnitude is thought to represent the actual discretization error attributable
to the inability of the element to reproduce the approximate 1/./r stress distribution.
This parameter was used to estimate when sufficient mesh refinement was achieved. In
addition to this measure, the interfacial tractions between the domains were examined
to ensure continuity. Finally, numerically obtained elastic energy release rates were
compared against theoretical values.

All traction-free crack-tip models had the same geometrical mesh design. An actual

108



mesh is shown in Figure 3.7 without the inner core elements. All crack-tip elements
were collapsed into a triangular geometry. To maintain physical significance, interface
elements were incorporated into the crack-face region, as necessary, to prevent crack
face interpenetration during the transient portion of the analysis. (Prior to “steady-
state.”) The mesh contained 18 and 25 elements circumferentially in the elastic and
elastic/perfectly-plastic regions, respectively, with a high concentration of elements
around the interface. The mesh contained five logarithmically spaced elements per
each of its three concentric rings. Each ring spanned a decade, with the inner ring
extending all the way to the crack tip. The outer mesh boundary was located at R = 1.0
m in order to circumvent computational difficulties associated with the boundary layer
formulation. Plane-strain elements were used.

Two different meshes, differing only in element type, were employed. The initial
mesh consisted of 8-node isoparametric elements with full 3 x 3 Gaussian integration
in the elastic region and 8-node isoparametric fully integrated linear pressure hybrid
elements in the elastic/perfectly-plastic domains. This mesh was run on ABAQUS,
version 4.5.174, and was used for almost all ¢, and material combinations considered,
since it was relatively small (645 elements) and efficient to run. (Each iteration required
approximately 8 minutes per iteration on a FX-8 Alliant mini-supercomputer running
on one computational element. Typical job times were around 100 CPU hours.) If
sufficient global convergence or resolution of stresses was not achievable, which often
happened due to oscillatory pressure noise, the following alternative model was used.

This FE model used plane-strain 9-node isoparametric elements with selective in-
tegration in both domains. Full 3 x 3 Gaussian integration was performed on the
deviatoric stresses along with 2 x 2 Gaussian integration of the pressure, values of
which were interpolated—extrapolated to the 3 x 3 Gaussian points. This model was
analyzed with ABAQUS, version 4.6.160, and reduced the time per iteration to about
4 minutes on the Alliant FX-8 mini-super computer. Use of this model significantly

reduced the pressure noise as compared to the hybrid 8-node elements used previously.
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Representative Mesh

Crack » Interface

Figure 3.7 Representative finite element crack-tip mesh (excluding actual crack-tip el-
ements), showing circumferential element distribution, crack-face and interface
locations, and radial spacings of elements.
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Due to the substantial time savings, this model completely replaced the initial model

described above.

Procedures

The procedures used in all analyses performed with the boundary layer method were
identical. An initial linear run, in terms of constitutive and kinematic theories, was
done with the appropriate K, applied to determine the reaction force vector F§ and
to check the assemblage of the model. Comparisons between the numerically obtained
J-Integral by the virtual crack extension method (VCEM) and the theoretical value,
Eq.(2.16), were made and typically only differed by 0.1%. The actual non-linear anal-
ysis used a “STATIC” time procedure with infinitesimal strain theory (HKS, 1987).
Loading was accomplished by prescribing “displacements” to the K-term free nodes,
in a square root fashion with respect to internal analysis time, to achieve quasi-linear
plastic zone growth. The reaction forces from the initial elastic run v.ere imposed as
concentrated loads on the T-term free nodes and were scaled using the same amplitude-
time function as the K-term displacements. The static parameter CYCLE, which is
the maximum number of iterations that can be performed during a time increment
before a smaller time increment is tried, was set to 9. This parameter also controls
the increase in time increment size by reviewing the number of iterations in the pre-
vious two increments necessary to achieve an acceptable solution, and if the number
of iterations is less than ((CYCLE/2| — 1), the time increment size is increased. An
initial suggested time increment size was provided such that at no time during the first
increment was the yield condition satisfied anywhere in the mesh. The error tolerance
PTOL, which is the maximum acceptable residual nodal force after all element contri-
butions and applied loads are summed up, is set to 1.0 x 10~8 MN. This value of PTOL
corresponds to 0.02% of oy, - I - t, where I and t are the radial length and thickness of
the smallest (radial) element, respectively. The solution procedure iterates until the

PTOL condition is satisfied throughout the mesh, cutting back the time increment
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size as necessary. Loading was done until the plastic zone nearly touched the FE mesh

boundary.

3.3.2 Traction-Free Crack-Tips: Existence of Stress Oscilla-
tions Within The Plastic Zone

This section describes the FE model used to investigate the extent of stress oscillations
occurring within the plastic zone of a traction-free crack tip. It was assumed that the
lower region was rigid (u2 = 00), and that the upper material had the elastic properties
of aluminum [ = 26.1 MPa and 1 = .342 (Hertzbreg, 1976)] with a yield strength of
32.5 MPa. This results in a bi-material constant of ¢ = 0.07796. Based upon this value
of ¢, a mesh spanning 36 decades in the radial direction would be required to achieve
0. ccmplete period of elastic stress oscillation. It was felt that plastic deformation
extending one-quarter of the elastic period would be sufficient to determine the extent,
if any, of plastic stress oscillations. Therefore, mesh spanning 12 decades, which allowed
for 3 decades of elastic material outside the plastic zone, was utilized.

Since this model considered the bottom medium to be rigid, only the upper re-
gion needed to be modeled. To simulate the rigid lower region, all nodes along the
intact interface were pinned. The mesh has 25 elements spanning the circumferential
direction, with the same distribution as shown in Figure 8.7. Because of the appre-
ciable radial extent of this mesh, only three logarithmically spaced, 9-node selectively
reduced elements spanned each of its twelve concentric rings. Crack-tip element ge-
ometry, identical to that described previously, was used at the crack-tip. To avoid
numerical solver problems associated with large differences in element stiffnesses, the
boundary layer method was not employed. Instead, displacements consistent with the
dominant asymptotic K-field were imposed along the ', boundary. The T',, boundary
itself was located at r = 1.0 x 10° m. All nodes along this boundary were constrained
via a user written MPC to prescribe the nodal displacements.

The procedural aspects of this model were basically the same as before. Again,

the elastic/perfectly-plastic material behavior was incorporated with the same UMAT.
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The error tolerance PTOL used for this analysis was set to 5.0 x 1078 MN and was
0.7% of o, - I - t. The value of CYCLE was varied between 7 and 9, depending upon
the progress of the analysis. Loading was applied by scaling the displacement of the
K-field node in a square root fashion with respect to internal analysis time, to achieve
quasi-linear plastic zone growth. The /K prescribed was chosen to be /K = 35.0°.
This was necessary to keep the value of ¢, within the valid domain during loading; t.e.,

¢o always satisfied the no crack-face contact conditions predicted by Eq.(P2.33).

3.3.3 Closed Crack-Tip Faces

The FE model used to investigate the crack-tip fields around the closed crack tip
utilized many of the same features as the previous FE model. The subroutines UMAT
and MPC were included in the analysis. The material in the lower region was assumed
to be rigid (u2 = 00), thus only the upper crack-tip region was modeled. The actual
mesh used 25 9-node isoparametric elements in the circumferential direction. Radially,
the mesh had four concentric rings with five logarithmically spaced elements per each
of its four rings. Again, the outer boundary of the mesh was set at r = 1.0 m. Since
the lower half was rigid, the edge of the mesh corresponding to the intact interface
was clamped. Along the crack face, interface elements were attached, thus allowing for
possible gap formation. The nodes along the outer edge of the mesh were constrained
in accordance with Egs.(3.2) and (3.3) by a closed crack-tip user-written MPC. Loading
was accomplished by prescribing the displacement to the K§,-term node in a square
root fashion with respect to internal analysis time. The FE model was loaded until the
maximum extent of the plastic zone reached r = 0.1 m. Since the “STATIC” analysis
procedure was used, the CYCLE parameter was set to 9, and the error tolerance

parameter PTOL was set to 1.0 x 10~ MN (0.02% of o, - | - t).
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Chapter 4

Elastic-Plastic Interfacial Crack-Tip
Fields

In this chapter the results obtained from the various numerical crack-tip calculations
for the BV problem stated in Chapter 1 will be described. The behavior of each
crack-tip model will be outlined along with the assumed material idealizations. In
order to organize the vast quantity of numerically obtained information into a more
manageable format, explicit representation forms will be used which reconstruct all or
portions of the actual solution in terms of only a few variables. The characteristics
and notation of the representative forms will be introduced and discussed. The local
crack-tip fields for all the various material combinations and loadings will be presented
via these representasive forms and in terms of the dimensional framework outlined in
Chapter 2. “Geographical” inner bounds of inelastic crack-tip fields are established

from evaluating limitations imposed by the underlying mathematical assumptions.

4.1 Asymptotic Crack-Tip Forms

The purpose of this section is to present the anticipated asymptotic crack-tip forms
by reviewing in detail those forms obtained for the cases of a homogeneous stationary
crack and for homogeneous quasi-static crack growth. This review is focused solely upon
isotropic elastic/perfectly-plastic media whose yield criteria are described by the Mises

yield condition. In general, the only restriction placed on the value of the Poisson’s
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ratio is that it must be positive (0 < v < 0.5). Anticipated differences between the
homogeneous and bi-material behavior of the crack-tip forms is discussed along with
the conditions necessary to properly assemble these forms into the complete crack-tip
fields. Finally, because slip-line theory is used extensively to describe various deforming

portions of the crack-tip regions, a brief review of slip-line notation is made.

4.1.1 Summary of Slip-Line Theory

To familiarize the reader with slip-line theory and to assign notation, a short summary
follows. The reader is referred to Hill (1983) and Kachanov (1974) for a more complete
description and comprehensive derivation.

For a plane-strain rigid/perfectly-plastic material state, two families of curves, re-
ferred to as a-lines and f-lines, uniquely describe the material stress state and are
derived from equilibrium arguments and the yield criterion. (Slip-line theory is loosely
analogous to stream functions used to describe inviscid flow in fluid dynamics.) Along

an a-line

p+2k¢p =C,, (4.1)
while along a f-line

p—2k¢ = Cp. (4.2)

Here p is the mean pressure [p = —(1/3)tr (0)], k the material yield strength in shear
k = 0,,/V3), ¢ is the angle measured from the positive x-axis to the o-line in an
anti-clockwise direction, and C, and Cjy are constants associated with each a-line and
B-line, respectively. The stress components are obtained by considering the angle ¢ of

the a-line or S-line at the material point of interest and are given by Hill (1983) as
0:: = —p — ksin2¢, (4.3)
oy = —p + ksin2¢, (4.4)
and
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02y = kcos2¢. (4.5)

The value of p is determined from Egs.(4.1) and (4.2) and by the slip-line constants,
C. and Cjs. Once the constants C, and Cp along an a— and a f-line are determined
at some point, usually via boundary conditions, the complete stress state within the
slip-line field can be evaluated. Figure 4.1 shows a representative element with respect
to a family of slip lines along with the associated stress state. Although slip-line theory
does not completely describe the strain state in a body, it does describe certain features
of the deformation. The a and 8 characteristic slip-lines are orientated parallel to the
direction of maximum shear stress, and they represent directions of zero extension.
(i.e., no normal strain is produced in directions parallel to slip lines.

Rigid-plastic slip-line theory is often used to describe elastic/perfectly-plastic ma-
terials capable of compressible elastic deformation (v # 0.5) and incompressible plastic
deformation. To use rigid-plastic slip-line fields for these materials, it is assumed that
the effect of elastic strains are negligible. This assumption is only valid in the asymp-

totic sense that
& = { lim f}, (4.6)

where ET is the total strain rate, and &° and EP are the total plastic strain and strain
rate components, respectively. In general, the use of slip-line theory and accompanying
representative forms for elastically compressible materials does not necessitate that the

elastic strain components are zero.

4.1.2 Stationary and Quasi-Static Crack-Tip Forms

The admissible plane-strain asymptotic crack-tip fields have been reviewed extensively
for stationary and quasi-static homogeneous cracks in isotropic elastic/perfectly-plastic
media; e.g., Rice (1982), Rice, Drugan, and Sham (1980), Rice and Tracey (1973), and
Nemat-Nasser and Obtata (1984). For a stationary crack with v = 0.5, Nemat-Nasser

and Obtata identified that three distinct crack-tip sectors may exist; namely an elastic
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Y B—line a—line

Figure 4.1 Schematic slip-line field element, showing the normal pressure (P) and shear
(k) stress states, the orientation of a— and B— lines and the inclination angle ¢
with respect to the coordinates.
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sector, a yielding constant state sector, and a yielding centered fan sector. (Nemat-
Nasser and Obtata showed all the admissible combinations of these sectors, but their
asymptotic analysis does not determine which assemblage is appropriate for a specific
problem.) An elastic sector which has not experienced any prior plastic deformation
is representable by a planar elastic wedge with constant, but not necessarily identical,
tractions on each of its sides. To produce finite stresses at the crack-tip and to eliminate
any net crack-tip forces, the angular function associated with the singular radial stress
component is taken to be zero; i.e., o, (r,0) = P(8) + Q(0)/r = Q(6) = 0. Appendix
B contains the Airy stress potential and stress distribution for such a wedge. The
yielding sectors, formally identified by Rice and Tracey (1973), are obtained from the
equilibrium equations and the yield criterion. The stress distribution in the constant
state is characterized as having stress components o0,,, 0,,, and o, constant everywhere
in the sector such that the yield criterion is satisfied. Generally, in constant state
regions o44(r,0) # o.,(r,0). In centered fan sectors, however, the stress distribution is
0rr(r,0) = 0pe(r,0) and o, = constant, where in the absence of the other deviatoric
stress components, o,y alone satisfies the yield criterion. When elastic strains are
negligible compared to plastic strains or when v = 0.5, the stress distribution in a
centered fan is given by 0,4 = +k, and o,,(r,8) = g4s(r,8) = {A — 2¢/+/3)0,,, where A
is a constant. In terms of rigid-plastic slip-line theory (Hill, 1983), a centered fan is a
sector where a-lines emanate radially from the crack tip with circular and concentric
f—line arcs (or vice versa), while in constant state sectors the a— and f—lines are
straight and normal to each other. Thus in a fan region ¢ = 8 + b, where b is a
constant.

Rice (1982) summarizes the asymptotic distribution of velocities and strain rates for
quasi-static crack growth in each of the three previcusly identified sectors. By setting
the crack-tip velocity equal to zero, the predominant behavior of each sector is obtained
for the stationary case. Excluding rigid rotations, the non-zero velocity components in

a stationary centered fan are
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_ 976,19

v a9

(4.7)

and
Vo= —1(6,t), (4.8)

and the only non-zero strain rate component is

5o (Z550 4 s0.). ()

(17]

Here V, and V; are the radial and hoop velocity components, respectively, ¢ is time,
and f(0,t) is a function whose form cannot be determined from an asymptotic analysis.
Integration of the strain rates over a finite period of time produces finite strain for all
strain components except for the ¢, component. Integration of Eq.(4.9) with respect

to time yields
_ 71'0('10) _ _]_- E ’
en(0,r) = P20 = 2 a0, 2 + (o) (.10)

In this equation, A(6,t) is defined such that dA(8,t)/0t = [(8%f(6,t)/8%6) + f (9,t))
and represents the unknown angular distribution of shear strain, while 7 is the shear
yield strain of the maiterial, C,(6) is a bounded constant of integration usually taken
to be equa! to zero, and R = r/r,, where r, is the characteristic plastic zone dimension
and r is the radial distance from the crack tip. In a centered fan ¢4 ox 1/r as r — 0.
At the plastic zone boundary, R = 1, the shear strain must be approximately equal to
Yo, thus A(8,1) is of order unity.

The non-singular yielding constant state sector behaves in a significantly different
manner. It is best described in an auxiliary (m,n) coordinate system whose axes are
chosen to lie parallel to the a— and B— lines and whose origin is at the crack tip. The
z and y components of the (z,y) coordinate frame, shown in Figure 4.1, are related to

the components in the m — n coordinate frame by
T =mcos¢ — nsing (4.11)
and
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y = msin¢ + ncos ¢. (4.12)
As r — 0, the constant state velocity components in the m and n directions are given
by

Vm = g(n) (4.13)
and

Va = h(m), (4.14)

respectively. Here g(n) and h(m) are functions whose precise forms cannot be deter-
mined from an asymptotic analysis. In a constant state region, tlie only non-zero strain

component as r — 0 is ¢,,,,,, and it is related to the velocity field via
. _ 1(dg(n)  h(m)
€mn — '2" ( an + am . (415)

Integration of the strain rates over a discrete time interval produces finite strains for

all components. Plane-strain conditions require that ¢,, = 0, but for elastically com-
pressible materials (those with v # 0.5) a transient period exists for which & /2% £ 0.
During this transient period finite plastic strains accumulate, and therefore in a con-
stant state region it is generally expected that ef!***c # 0.

The strain rates in an isotropic elastic sector are obtainable from the elastic wedge
potential, given in Appendix B, by interpreting the boundary tractions H, T, @, and
K as applied traction rates; s.c., H, T, Q, and K. From Egs.(B.9) to (B.11) and by

use of the elasticity tensor L defined in Eq.(3.17), the non-zero strain rate components

for an isotropic elastic wedge are

) 1-02 : - . . (o
&, = ( I3 ){K—2T'7—2az(cos2'1+1)—2cg(sm2'1+2'y)}

_ (v(l; V)) {K — 2T + 285(cos 2y — 1) + 285(sin2y — 27)},  (4.16)

: 1-2 . : .
€ = {K — 2T~ + 2a3(cos 2y — 1) + 2¢5(sin 27y — 2'7)}

E

_ (V(IE"" V)) {K — 21‘7 — 2a;(cos 2y + 1) — 2¢2(sin 2y + 2’1)} y  (4.17)
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and

€9 = (%ﬂ) {2¢2(cos 2y — 1) — 24, sin 2} . (4.18)
In these expressions the coefficients a, and ¢, are given by Eqgs.(B.7) and (B.8) when
H, T, @, and K are interpreted as H y T, Q, and K. Integration of the strain rates,
Eqgs.(4.16) to (4.18), over a finite time interval produces finite strains in elastic sectors.

Having identified the three basic admissible sectors, asymptotic crack-tip behavior is
obtainable by assembling a combination of these sectors in a manner consistent with the
far-field conditions. Rice (1982) states that the necessary requirements for assembling
these sectors are that “o,4, 045, and u, must be continuous along radial lines emanating
from the crack tip and that any discontinuities in yielding sectors must be consistent
with the flow rule.” An additional constraint, given by Kachanov (1974), is that “the
[energy| dissipation be positive everywhere in the slip-line field.”

Before proceeding, several additional observations regarding the behavior and as-
semblage of the sectors should be made. In yielding regions with incompressible plas-
ticity where the plastic strains are large compared to the elastic strains, the “apparent”
Poisson’s ratio is v, =~ 0.5; t.e., (1/3)tr(0) = (0, + 04s)/2. In general, fan sectors have
large plastic strains as r — 0 (¢,4 o 1/r); therefore in a fan region the apparent Pois-
son’s ratio is v, = 0.5, and 0,9 ~ +k. Compressible elastic sectors in which there are no
residual strains cannot be adjacent to fan sectors (when, at the border, A(6,t) # 0 in
the fan region). If 0,4 is equal to Lk at the elastic sector boundary, the requirement of
continuous gy produces an Mises equivalent stress greater than the yield stress in the
elastic sector. This is true even if a jump in o,, is allowed between the fan and elastic
sector. In general, it is necessary to have a constant state sector between an elastic
sector (with no residual strains) and a fan, and the apparent Poisson’s ratio across this
constant state varies from v, # 0.5 on the elastic boundary, where plastic strains are
negligible, to v, = 0.5 on the fan border, where plastic strains dominate.

To verify that an elastic sector with no residual strains and v # 0.5 cannot exist

next to a fan which has an apparent Poisson’s ratio of v, = 0.5, consider the following
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argument. Evaluate the Mises equivalent stress in the elastic sector at the postulated
elastic-fan border. At such a point 0,y must be equal to +k. Substituting this value

into the expression for the Mises equivalent stress, Eq.(2.31), yields
6% = (0} + 055) D + (0rr005) F + 03, (4.19)

where D(v) and F(v) are given in Eqs.(2.32) and (2.33), respectively. For & < oy, (
for 04 # 0),

(ﬁ)2 +F (0—) +1<0. (4.20)

) D \oyy
For positive values of v, the ratio F/D varies from -1 to -2, and the condition required

by Eq.(4.20) has real solutions only when F/D = -2 (v = 1/2) and o,, = 0.

Prior to discussing the bi-material asymptotic crack-tip fields, it is useful to exam-
ine several additional features present in the homogeneous analysis. For a stationary
homogeneous plane-strain crack subjected to tensile opening loads (mode I), the crack-
tip field is that of the classic Prandtl distribution (Hill, 1983). In the Prandt! field, all
crack-tip material points are in either yielding constant states or centered fan regions
and remain in their respective sectors during the entire loading history. Additionally,
the Prandtl stress distribution is independent of the far-field load magnitude as long as
SSY conditions exist, although the actual extent of the distribution is dependent on the
load magnitude. In the growing quasi-static (opening) case, the crack-tip distribution
remains constant with respect to the moving crack tip; however, any material point
which does not lie in the plane of the advancing crack front accumulates strains in each
of the four quasi-static crack-tip regions (Rice, 1982). Therefore, it is necessary to ac-
count for these accumulated residual strains when assembling the crack-tip fields from
an instantaneous stress distribution. In general the instantaneous stress distribution
of a plane-strain elastic sector with fixed tractions is different for regions which do or
do not have out-of-plane residual strains. (In plane strain the out-of-plane stress must
account for any residual out-of-plane strains.)

It is anticipated that the major difference between the homogeneous and traction-

free bi-material crack-tip fields will result from the continuous shift, in plastic zone
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shape and tractions along the plastic zone boundary, whicl: arises with increasing load.
The shift between solutions should occur in a continuous fashion with respect to ¢, in a
manner analogous to the continuous shift observed in homogeneous crack-tip fields by
Shih (1974) for mixed-mode loading between pure mode I and mode II. A continuous
evolution with increasing applied load has the potential to alter residual strains and
thereby significantly influence stresses in elastic sectors. Also, such continuous evolution
may produce oscillatory plastic bi-material crack-tip fields, as observed by Shih and
Asaro (1987) for nonlinear elastic strain hardening bi-material interfacial cracks.
Thus far, discussion has been limited to asymptotic forms which are typically in-
terpreted as occurring “at” the crack tip. This interpretation is only a first order
approximation and does not address the possibility that away from the crack tip a cusp
may form between different sectors. Although such cusps are not found in stationary
homogeneous crack solutions, recent work by Narasimhan, Rosakis, and Hall (1987) in-
dicates that a cusp forms ahead of a growing plane-stress homogeneous crack tip, and
that the boundary of the cusp separates the regions in which the equations of stress

are hyberbolic and elliptic, respectively.

4.2 Traction-Free Crack-Tip Model

The numerical results for the traction-free crack-tip model will be presented in this
section, and in conjunction with the previously identified asymptotic forms, approxi-
mate local crack-tip fields will be assembled. Discussion will be initially focused on the
“high resolution,” quarter wave-length model so that the transitional period of plastic
flow can be quantified from the elastic-plastic boundary towards the crack-tip to the
establishment of a “steady-state,” and so that the extent of oscillatory behavior, if
any, can be identified. Interfacial tractions and strain distributions will be tracked as
a function of ¢y, as well as the finite crack tip opening displacement, éctop. A general
elastic potential which describes the lower elastic domain will be identified, although

not directly from the quarter wave-length model. All results will be analyzed at an
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instantaneously fixed value of ¢. In general, steady state and transitional behavior

shall refer to spatial and not chronological (analysis or loading time) behavior.

4.2.1 Deformable Upper Half-Plane
Asymptotic Crack-Tip Behavior

The behavior within the deforming bi-material crack-tip zone is similar to that found
in homogeneous crack-tip plastic zones. Figures 4.2 to 4.6 show the location of yield-
ing integration points (6 > 0.990,,), as a function of angle # from the interface and
normalized radial distance R = r/r, from the crack tip, at several values of ¢ be-
tween 1.34° and 30.04° for ¢ = 0.07796 and v = 0.342. In these figures, the location
of integration points whose stress state is that of a fan sector, namely |o,9| > 0.99k
and |(o4s — 0,,)/0ys| < 0.02, are identified by + marks. The fan region dominates the
yielding crack-tip fields at small values of R, and once a fan has developed, the stresses
along a ray are independent of radial distance. Radially as R — 0, oscillatory stress
fields do not exist after a fan sector develops. As is common in the homogeneous fields,
a transitional layer exists between the plastic zone boundary and the steady-state fan
region. Figure 4.7 shows the development of stress as a function of R at 6§ = 3.1° from
the elastic region (R > 1) to deep within the plastic zone (R < 1) for ¢, = 30.04°. As
seen from Figures 4.2 to 4.6 and 4.7, the establishment of a fan usually occurs only
deep within the plastic zone at radial distances smaller than approximately 1% to 5%
of the actual plastic zone radius at that angular location. The behavior of the inelastic
transition region between the plastic zone boundary and the establishment of fans or
“steady-state” constant state sectors is similar to that of a constant state region, how-
ever in such transition regions the associated a— and #— lines have a large but finite
radius of curvature. Henceforth, regions where the curvature of a— and #—lines is very
small with respect to unity shall be identified as “quasi-constant state regions.”

All features seen in the bi-material fields are not present in the homogeneous asymp-

totic fields. A large elastic sector exists from the crack face (6 = 180°) to 8 ~ 135° for
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Figure 4.2 Locations of actively yielding (¢ > 0.990,,) integration points around a
traction-free bi-material crack-tip for e = 0.07796 and ¢, = 1.34°; elastic /perfectly-
plastic material bonded tc a rigid substrate. Locations indicative of a fan stress

Bi—material Crack Tip
Plastic Zone €=0.07796

4 I 1 1 l T 1 1 T T I

Yielding
Fan

1 I

&.=1.34°

§%§§ 3 g t51 g%f g Eggﬁ §
- SRR ae ISt I I H I
oW I IHIHIHIHIY
sBIiniminIRinIinidn
I B IMIHINIMIMNIHIHININERS
Soggetr ittt ittt Ittt ittt iiggs
| GO O+t + 4+ + 4+ 4 ++ + 4+ + 44+ + ++ + 4+ + ++ + ++ + ++ 0 +O

PO O 00 OO0 O ++ + ++ + ++ + 4+ + ++ + ++ + 4+ + ++ + 4+ + ++ + ++ + +0 O

50

6 (Degrees)

state (|oys| > 0.99k and |(o4s — 0r+)/0ys| < 0.02) are shown by a “+”.

125



Bi—material Crack Tip

0.07796

Plastic Zone ¢

r

T
&,=8.72°

Yielding
Fan

o

-+

Q00-Q0AICO-AWOAWOAWOWO T OO 00 ©

$OO-CO-UO-QOO-AI OO GO0 ¢ ©
QOWO H-+ H+H+H+H+H+ +H+ ++ +

QAOOQ0O-A0O COO-YWOAWO-AWO-WO0+ +++ ++ +

QWOAWOAWO 1 H+ 4+t i+ H+ -+ 4+ +4 +
QOOQOWO H+ +H+ H+ H+ H++H+ ++ ++ +

QOGOOAWOMWOW H+ H+HHH++H+ +H+ ++ +

OOQOOQOWOW+ H+ +H+ H+ H++H+ +H+ ++ +
00WOWOWOUH H+ H+H+ H+H+ +++ ++ +

Q0O-Q00-WO-WOCOT H++H+ Ht H+++ +H+ ++ +

QAOQWOTOOGC-GO+ +Ht -+ Ht Hb H-+ ++ 4 +4+ +
QOO-AO-GWO-TWOCO+ H+ H+H+ +Hb-H+ +++ ++ +

OGO WCAWOWOO+ H+ H+ +H+ H+++ +++ ++ +

OO-WOAOQOOO+ H+ H+H+H++H+ +++ ++ +
000000000 H-+ H+H+ H+ +H+ +H+ ++ +

OU0OQWOAWOVWO H-+ H+ Hb H+ M+ +H+ +++ ++ +

QOAUCOGOOVOOOQO+ +H-+ H+ -+ Ht++++ +++ ++ +
0OQ00-TOOUOMWOWO H+ H+ HE+H++++ +++ ++ +

COGOMOMWOWO H+ H+ H+H+ H+ 44+ H+ ++ +

CO-G0O-TOCO-MWOMF H+ H+ +H+ H+ -+ 4 ++ +
QOG0OAO-AOAWOMWO H+H++HH+ H+ +H+ +++ ++ +

©OQOAWOCOOAO H+ H+ -+ +H Ht 4 +++ ++ +

OQ00U00MO WO+ H+H++H+ H++++ +++ ++ +
©OAOQOG0+ +H-+ QO+ H++H+ H+ +H++ +++ ++ +

QWO-WOWOWOOH +Hr+ H+H+H+ 4+ +H+ ++ +

OOOAOQOWO H+ H+H+ H+H+ +H+ ++ +
OGO+ H -t Ht 4+ +++ ++ +

0O00O-WOMWOWOOH H+ H++H+ +++ ++ +

OGO WOWO QO+ H-+ ++ +++ +4++ +4+ +
0000 WOWOWOWO-OH H++H+ +H+ ++ +

0G0OCO-AWOMOOAWOWO +H+ +H+ +++ ++ +

Ht
4+ o+

Q00-G0I-G0OAOO GO0 AWOMWOAWO 0O+ GO +

90O 90O-GOO-N0O WO-WOCOHOAOQ QOO ++ +
00 00 +

<00 00 ©

GEEBO O ++ + ++ + ++ + ++ + ++ + ++ + 4+ + F+ 4+ 4+ b+ + 4+ + 40 O

—e

0.0 |-

(4)° 507

LA

wn

100

50 |
6 (Degrees)

Figure 4.8 Locations of actively yielding (
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¢ = 1.34° and to 8 =~ 73° for ¢, = 30.0°. Such elastic sectors are not observered in sta-
tionary homogeneous crack fields nor are they predicted from the elastically-calculated
plastic zone boundary derived in Section 2.2.1. The location of actively yieiding in-
tegration points and the corresponding elastically-calculated plastic zone shape [from
Eq.(P2.6)] for ¢ = 0.07796 (v = 0.342) at ¢ = 1.34° and ¢ = 30.0° are plotted in
Figures 4.8 and 4.9, respectively. (Due to the presence of the crack-face elastic sec-
tor, the plastic zone shape predicted by the elastic approximation when ¢, > 0 is less
representative of the actual zone shape, especially near the crack-face region.) Recall
that for € > 0, ¢ increases at fixed /ZK when ||K|| increases. At material points in the
crack-face elastic sector which are very near the crack tip, prior plastic deformation
would produce residual strains. At radial distances far from the crack tip relative to
the characteristic plastic zone size, no residual plastic strains accumulate in the crack-
face elastic wedge. Furthermore, an unloaded elastic sector exists along the interface
spanning 2 maximum of about 22° for ¢, = 1.34° and approximately 8° for ¢, = 8.72°.
The interfacial elastic sector is small and barely visible in Figure 4.8 , but is more easily
seen in Figures 4.2 and 4.9. (Again, this feature is not predicted by the elastically-
calculated plastic zone; however, for ¢, ~ 0, the approximated plastic zone does have
a local minimum or rounded “kink” in its shape near # ~ 30°, and this rounded kink
may be related to the development of the interfacial elastic wedge.) Active plasticity
exists both radially ahead and behind this elastic sector, indicating that the material
points within this elastic region once reached yield, deformed plastically, unloaded to
an elastic state, and will again yield and deform plastically.

The presence of a cusp in the crack-tip field is another feature of the bi-material
fields which is not observed in the stationary homogeneous asymptotic fields. At small
to modest angles from the interface, the length of the transition region from the elastic-
plastic boundary to the fan region increases with decreasing 8, producing a cusp in the
slip-line field. The cusp itself is not a characteristic slip-line, but merely a boundary

line separating two regions. The characteristic a— and #— lines appear continuous and
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Figure 4.8 Approximate plastic zone, along with the location of actively yielding in-
tegration points, from a finite element calculation of traction-free SSY in an
elastic/perfectly-plastic material atop a rigid substrate; ¢ = 0.07796 and ¢ =

1.34°.
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smooth across the cusp. The behavior of the material between the interface and the fan
sector; t.e., the material between the cusp and interface, behaves as a quasi-constant
state region or, for values of ¢, between 1.34° and about 11°, as an unloaded elastic
sector. (The value of 11° is obtained by linearly extrapolating the maximum angular
extent of the elastic sector as a function of ¢, from data at ¢, = 1.34° and ¢, = 8.72°.)

Even with a cusp present, the local angular stress distribution at a given value
of R is reconstructed by properly assembling the three asymptotic forms identified in
Section 4.1.2. Figure 4.10 shows a schematic crack-tip field for a traction-free crack-tip.
The crack-tip distribution deep within the plastic zone is determined by the values of
the slip-line angles £, ~, 7, a, and £1 as a function of R. From Figures 4.2 to 4.6, it
appears that the slip-line angles £ and '7 are independent of R for R < 1, but due to
the presence of the cusp, the slip-line angles a, 1, and £1 are dependent upon R. In the
limit as R — 0, it appears that a = 0, suggesting from a purely mathematical point of
view, the asymptotic crack-tip fields should be constructed with a = 0.

At this point, a definition of “asymptotic SSY bi-material crack-tip field” is neces-
sary. In homogeneous fracture mechanics, the asymptotic fields are those which emerge
as r tends toward zero, with the restriction that r remains large as compared to the
CTOD. [This restriction on r is necessary because at radial distances smaller than sev-
eral times the CTOD, the asymptotic field around the now blunted “circular” crack-tip
is that of the logarithmic spiral (Rice, 1968b; Kachanov, 1974).] Furthermore, it is
implicitly understood that such asymptotic fields are only valid in regions where their
fundamental assumptions of linear kinematics and a mathematically sharp crack tip
are not violated. It will be shown in Section 5.1 that use of linear kinematics is only
valid in fan sectors for radial distances R > ~p, where ~p, the initial shear yield strain,
typically ranges from 1074 to 10~2 for polycrystalline metals. For values of R smaller
than ~4p, the resulting strains are no longer small; s.e., less than unity. Henceforth,
asymptotic SSY bi-material crack-tip fields shall be defined as those which emerge as
R — ~.
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Figure 4.10 Slip-line field at a traction-free interfacial crack for an elastic/perfectly-

plastic upper region bonded to a rigid (or elastic) substrate. See Table 4.1 and
4.5 for numerical values of indicated angles.



Assemblage of Crack-Tip Fields

The asymptotic crack-tip fields are assembled from the numerical results in the following
manner. The elastic wedge coefficients a; and c¢; along the crack face are obtained
by matching the analytical elastic wedge expressions for stress and pressure with the
numerical results over the range of § where no prior inelastic deformation has occurred.
With these coefficients, the elastically predicted location where & = o,, is identified,
and the corresponding angle is taken to be £. The stress state at £ in the elastic
and constant state sectors are assumed to be equal, and from the elastically predicted
stress state at £, a Mohr’s circle calculation is performed to estimate the rotation
in the constant state region necessary to achieve a state of pure shear (o,, = 04).
This rotation angle is interpreted as 4 — £. In making this estimate, it is assumed
that o,, is continuous from the elastic-wedge/constant-state border through the entire
constant state sector, up to the constant-state/fan border. To determine the angle n,
the pressure distributions in the fan and the adjacent constant state sectors are fit to
linear expressions (with respect to 6), and their extrapolated intersection defines the
angle . This approach circumvents problems associated with a lack of mesh refinement
and numerical noise at boundaries between constant state and fan sectors. The angle
a is then back calculated as a = # — 4 — v, and is compared to the angular location of
the last node or integration point whose stress state is indicative of a centered fan.

In assembling the assumed asymptotic fields, the stress distribution in the unloaded
elastic sector is obtained by projecting the stress distribution from the “virgin” elastic
sector. Although such an extrapolation is not strictly acceptable since it does not
account for the residual ef!*** strain, modest agreement between the numerical and
elasticity solutions does exist for the o,y and o4y components. This extrapolation is
done for several reasons. For the smaller values of ¢, it is not clear that the initial
(numerical) transient period accumulates the same amount of strain as it would have
had the analysis been initially started from a smaller value of ¢;. Second, if ¢, uniquely

defines the assemblage of the asymptotic crack-tip fields independently of v and ¢, then
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these results are directly applicable for negative values of €. (For € < 0, ¢, decreases as

[iK]| increases, and no prior plastic deformation would occur in the elastic sector.)

Interfacial Tractions and Crack-Tip Fields

Due to the elastic/perfectly-plastic constitutive assumption, the interfacial tractions are
bounded and are constant as R — 0. The maximum magnitude of the shear traction,
t,, is |t,| = k, and for a fully plastic crack tip the maximum value of the normal traction,
tn, is tp, = 3.2980,,. The development of the asymptotic interfacial tractions is identical
to that of the asymptotic crack-tip fields. At normalized radial distances several times
greater than R = 1, the elastic interfacial tractions are recovered, and the asymptotic
interfacial tractions are fully established at radial distances less than 2% to 10% of the
actual plastic zone radius along the interface. The interfacial tractions appear to reach
their steady state values slightly faster than the crack-tip fields, except when a cusp or
an interfacial elastic sector is present. The stress state shown in Figure 4.7 is indicative
of the transient period necessary to establish asymptotic interfacial tractions when a
cusp is present.

The assembled asymptotic crack-tip fields for six values of ¢, ranging from 1.34° to
30.04° are summarized for R = 7, in the Table 4.1. Included in the table are the far-field
values of the J-Integral, the numerical values of the slip-line angles a, 7, v, £, and £1,
the elasticity potential coefficients a; and c¢; for the interfacial elastic sectors denoted
by the angle &, and the normalized hoop [H = o0¢s(6 = © — £)/0y,] and shear stress
[K =0,4(0 = m— £)/0,,] components at § = £1. The first value of  corresponds to the
value obtained by the previously described procedure, and the value of 1 in parentheses
represents the value based solely upon the last node or integration point whose stress
state is that of a centered fan. Also included in the table are the normalized interfacial
traction coefficients P and S which are related to the interfacial shear, ¢,, and normal,

t,, tractions by
ta(R = Y0) = Po,, (4.21)
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and
t,(R = ) = Soy,. (4.22)

From Table 4.1, the schematic bi-material crack-tip configuration shown in Figure 4.10,

and the elasticity potential given in Appendix B, the stress distribution in the de-

formable upper half-plane is completely described.

<o J MPam a n ~ £ 3
1.34° { 1.12x 107" || 40° |90° (82°) | 50" | 45° | 23°
8.72° | 5.83 x 10°® || 26° |[88°(79°)| 66° | 61° | 6°
18.2° (449 x 107* || 14° |[68°(74°) | 98° | 92° | 0°
25.7° | 2.63 x 1073 || 13° |58°(59°) | 109° | 79° | 0°
30.0° | 6.90 x 1073 6° | 64° (57°) | 110° | 87° | ©0°

$o as 2 P S H K
1.34° -0.234 -0.0348 | 2.89 [ 0.103 | 2.71 | 0.448
8.72° -0.104 -0.113 2.86 | 0.298 | 2.77 | 0.372
18.2° 0.063 -0.136 241 |0.462| - -
25.7° 0.157 -0.133 1.99 |0.524| - -
30.0° 0.185 -0.115 1.74 | 0546 | - -

Table 4.1 Crack-tip slip-line angles, crack-face elastic wedge and interfacial traction co-
efficients, and the stress state at the interfacial elastic-wedge/constant state boundary;
R = ~p, e = 0.07796, and v = 0.342.

Comparison

The accuracy of the slip-line angles identified in the manner discussed previously is
very good when no elastic sectors are nearby, however, the accuracy is significantly
reduced when elastic sectors are present. The transition from an elastic sector to a
fan sector usually spans only 2 to 4 elements (each element covers approximately 8°)
and seldom occurs at an element boundary. Sector boundaries which occur within
an element are poorly resolved because the deviatoric and hydrostatic stress states
within an element are only bi-quadraticly and bi-linearly represented, respectively.
Consequently, accurate data from constant state sectors needed to precisely determine

the elastic/constant-state/fan boundaries is not available.
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The numerical and analytically inferred stress states are compared for ¢, = 30.0°
at R = v (e = 0.07796) and are plotted in Figure 4.11. Substantially away from the
fan/elastic-wedge transition, little discrepancy exists between the inferred analytical
solution, represented by solid lines, and the FE calculations, whose values at integra-
tion points are plotted with symbols. Near the constant-state elastic-wedge transition,
accumulated residual strains influence the stress state, especially the o,, component,
and the inferred stress state is not continuous at the actual boundary. In the con-
struction of this figure, rigid-plastic slip-line theory is used in the plastically deforming
regions, and the pressure distribution is arrived at by matching a point within the
fan region. The constant-state elastic-wedge transition shown in the figure is not ac-
curate because it fails to reflect the elastically compressible material behavior in the
constant state region and the effect of residual strains in the elastic sector. Also, the
stress states in elastic and plastic regions are i .¢ched from different conditions, and
therefore continuity of stress is not guaranteed. Furthermore the apparent “almost
continuous” stress state at § = m — - results from the technique used to approximate
~. Overall, the asymptotic crack-tip fields reproduce the stress distribution accurately

near a fan/elastic-wedge transition, with the exception of the o,, component

Asymptotic Strain Distribution and CTOD

At plastically deforming crack tips, knowledge of the stress distribution is not sufficient
to completely characterize the crack-tip regions because the strain distribution is not
uniquely defined from the stress distribution. Unfortunately, convenient asymptotic
forms to describe the strain distribution do not exist as they do to describe the stress
distribution. Due to the asymptotic nature of deformation in a centered fan sector (s.e.,
Ars i8 the only non-zero strain rate component) |v,4| is generally large compared to all
other strain components. In constant state regions, large strains are not anticipated
gsince they must occur uniformly throughout the region or along crack-tip rays where

0,9 = 1k (Rice and Tracey, 1973), and, in general, strains in constant state regions are
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small compared to those found in centered fans. For these and other reasons, the most
significant strain component in the crack-tip region is the ~4,4 component, and therefore
7re is the only strain component considered.

The 4,5 strain distribution is normalized by considering its functional form within a
centered fan sector. From Eq.(4.10), the shear strain distribution is given approximately
by RArs/v = A(6), when R < 1. Figure 4.12 shows the normalized distribution
of 4,9 for € = 0.07796 at six values of ¢ between 1.34° and 30.0°. Comparing the
radial shear strain distributions with the asymptotic crack-tip forms, the largest strains
occur in fan regions approximately 15° away from the fan-elastic boundary, and from
Figure 4.12, the maximum shear strain increases as ¢o increases. Although not shown,
the normalized shear strain distributions deep within the plastic zone (R < 0.01) are
independent of R. Thus the presence of a cusp strongly influences the entire asymptotic
crack-tip deformation, even in regions where the cusp is not present.

An additional quantity directly related to the strain field is the CTOD. The bi-
material CTOD is defined as

6CTOD Eu(R=0,0=7l')—II(R=0,0= —7l'), (4.23)

where u is the displacement vector. The CTOD physically represents the displacement
of the crack faces relative to one another and also represents an integrated vector sum
of the strain field on a path about the crack tip. To uniquely define §crop, both its
magnitude and orientation are required. In Figure {.18 a schematic crack tip and the
associated coordinate system used to define écrop are sketched. Figure {.14 shows
the normalized magnitude of écrop and w, the angle of écrop, for € = 0.07796 as a
function of ¢;. Also plo:ted in the figure is the angle wga.eic, which is the angle of §crop
obtained from the elasticity solution by evaluating Eq.(P2.32) at ¢ = ¢ and r = r,.
The difference between w and wgiqueic i8 less than 15° for the range of ¢ shown. The

corresponding elastically-calculated magnitude of 6crop, defined as

bcToDYys _ 42
I lptatic  TV1+4€¥

i8 |6ctop0oys/J|Etastic = 1.779 for € = 0.07796 and is independent of ¢.

(4.24)

141



‘96LL0°0 = 3 ‘05 Jo san[eA £nolleA je sjeljsqns
p18u ® 03 papuoq uoidar zaddn orjse[d-A[3d9j1ad /o13se[d Ue I0) (L = y) auoz
onyserd a1} ut deap urel}s Ieays ¢‘L PazijeWIOU JO UOIRlIRA [RIJUIIJWINIII) ZI'f 24nbiy

(se0433(q) 4

061 00T 0G 0
T T T T T T T T T T T T T T T =
000
, N
- W/
<
10071
A
]
B N—
FET =72 7/ 96LL00=3 ]
L | | 1 ] 1 I ] ] ] ] j | | | L 1 002

urea}s Jeoays di]—3oed) [eliojeui—Ig

142



Schematic Crack Tip

)

CTOD

o

Figure 4.18 Schematic interfacial crack-tip region showing the crack-tip opening dis-
placement (6crop) and its associated angle w.
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Figure 4.14 Traction-free bi-material écrop from a finite element calculation of an
elastic /perfectly-plastic upper region atop a rigid substrate for ¢, between —20°
and 30° € = 0.07796. (a) shows the magnitude normalized with respect to yield
strength and the far-field elastic J-Integral and (b) shows the crack-tip angle w
from the finite element calculations and from Eq.(P2.32) evaluated at r = r, and
¢ = So-
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Path Dependence of J-Integral

The J-Integral is evaluated within the asymptotic crack-tip fields by considering the
contributions to it from each of the various sectors. Rice (1968b) states that since the
strains are bounded as B — 0 in a constant region, constant state sectors produce no
contribution to J. Extending this rationale, it is concluded that no contributions to J
are made from either the rigid lower half or from any of the (non-singular) crack-tip
elastic sectors. Therefore, the entire local contribution to J comes from the centered

fan region(s) and is given by (Rice, 1967)
J= /o ryes(r, 0) [k cos 8 + o, (r, 8) sin 8] d6. (4.25)
Fan

Here the integration path is chosen to be a circular arc about the crack tip, and in
terms of the schematic slip-line field shown in Figure 4.10, the upper and lower limits
of integration are § = n and § = a + n, respectively.

Local J-Integral estimates were calculated by the virtual crack entension method
(VCEM). The VCEM uses the divergence theorem to convert the contour integral of J
to a surface integral and then calculates the change in energy associated with a virtual
extension of the crack front. The J estimate is interpreted as J ~ —An/Aa, where A7
is the change in energy and Aa is the virtual increment of crack advancement. 7able
4.2 summarizes the local Jycgam normalized by Jgia.ic, the far-field elastic J-Integral,
for e = 0.07796 and ¢, between 1.34° and 30.0°. Included in the table are the average
values of the second, third, and fourth contour values of J. A considerable amount of
non-proportional loading occurs, especially with the presence of the cusps and growth
of the crack-face elastic wedge, thus local J values which are appreciably lower than the
far-field J are expected. The contour values of J typically decreased slightly from the
second contour to the ninth contour. Growth of J as R — 0 is not anticipated, but may
be attributable to both the stress and strain distributions asymptotically approaching

a steady state as R — 0.
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| ¢ [ Jvcem/IBiamic |

30.0° 0.86
25.7° 0.75
18.2° 0.61
8.72° 0.49
1.34° 0.41

Tahle 4.2 Local J-Integral estimates, normalized by the elastic far-field value of J,
obtained by the VCEM for various values of ¢ with ¢ = 0.07796.

4.2.2 Solution in the Lower Elastic Half-Plane

Due to the use of a rigid material adjoint to the elastic/perfectly-plastic material in
the quarter wave-length calculation, no results are obtained for the lower elastic half-
plane. The nature of the elastic half space is instead obtained from one of the other,
less focused, analyses. Because contact between the upper and lower half-planes is
made only via the interface, the behavior of the asymptotic interfacial conditions very
deep within the plastic zone, described previously, are reflective of the stress behavior
in the elastic half-plane.

Unlike the upper yielding region, no significantly different behavior is observed in
the elastic region at r;, the plastic zone radius along the interface [r; = r,(6 = 0°)], and
at distances much closer to the crack-tip, r ~ r;/10, certain dominant features begin
to emerge. Consider the results obtained for the material combination of yielding
aluminum in region 1 and graphite in region 2, (¢ = —0.07923) loaded until ¢, =
—2.70°. (Table 4.4 contains the elastic properties of all material used.) Figure 4.15
shows the normalized stress components in the elastic interfacial region as a function
of the logarithm of the normalized radial distance Ry (R; = r/r;). The normalized
hoop and shear components experience a transitional period from log,,(R;) = 0 up to
log,o(Rr) = —1.0, at which point they level off and achieve a steady state behavior as
R; — 0. The normalized radial stress experiences a similar transitional period, but
it increases linearly in the region where the other components reach their steady-state

values (R; < —1). This indicates that the radial stress component is logarithmically
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singular. Figure 4.16 shows the normalized elastic stress components plotted versus
normalized radial distance R at § = —86°. At this angle, all the stress components
experience some transitional behavior at R; > —1 before they reach a linear region.
In Figure 4.17 the angular distribution of the normalized stress components at R =
0.00551, R = 0.0138, and R = 0.0.0551 are plotted. It is obvious that the asymptotic
stress distribution does not generally reach a steady-state as R — 0 (or R; — 0),
as is observed in the upper domain, nor does it reach a self similar distribution as
is observed in homogeneous asymptotic elastic and plastic crack-tip fields (Rice and

Rosengren, 1968; Hutchinson, 1968).

Formulation of an Elasticity Potential

To describe the stress field very near the crack tip, beneath the region where the solution
in the upper domain has achieved a steady state, a closed form elasticity solution will be
formulated. The planar elasticity solution will describe the asymptotic characteristic
as R — 0 in the lower field and will be expressed in the form of an elasticity potential.
It has been shown that any planar stress function, ¢(z,y), which satisfies the dif-
ferential equation
¢ ¢ 8¢
9zt T 20 T oyt

0, (4.26)

also satisfies the basic equations of isotropic linear elasticity, namely the constitutive,
equilibrium, and the compatibility equations (Timoshenko and Goodier, 1970). In
addition to satisfying Eq.(4.26), the stress function must also satisfy all accompanying
boundary conditions. The individual stress components for a body with stress function,

¢ (with negligible body forces) are:

0::(z,y) = sz(y;';y)’ (4.27)
ow(z,y) = ?i%,’i), (4.28)

and
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o) = 22 o

The strain field is found by inverting the appropriate isotropic elasticity tensor, [,
defined in Eq.(3.14), and using it to operate directly on the stress field. Assumptions
regarding plane-strain (or plane-stress) conditions are necessary to fully define the stress
and strain fields. Integration of the strain field uniquely determines the displacement
field, to within a rigid body motion. Therefore, the determination of ¢, in conjunction
with the planar assumptions and two elastic material properties, completely describes
the elastic fields.

The stress function ¢ need not be expressed in Cartesian coordinates. It can be
found in any coordinate frame and, via the proper coordinate transformation, trans-
formed into any other coordinate frame. For example, it is more convenient to express
the stress components aiound the crack tip in a polar coordinate frame. The polar

stress components can be obtained from ¢ by (Timoshenko and Goodier, 1970):

2o(r
'0'”(7',0) = a—g(r—zﬂ, (4.30)
d (104 (r,0
ors(r,0) = — o (%4’—;;—)) , (4.31)
and
o
0vr(r,0) = éw + rl—,a—‘f;(,'ojﬂ, (4.32)

where r is the radial coordinate and @ is the angular coordinate.

In general, the stress potential ¢ is obtained by considering the assorted boundary
conditions and the desired asymptotic behavior. In an attempt to find ¢ for the problem
at hand, the contributions to ¢ from the local crack-face and interfacial tractions are
first examined.

The major factor which governs the behavior of the elastic domain is the interfacial
traction. Because of the elastic/perfectly-plastic material idealization used in the upper
domain, and to within the limits discussed previously, the asymptotic crack-face and

interfacial tractions, ¢, as R — =, assume constant values of:
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_J Poy, 6=0°
t, = { 0 6= —180°, (4.33)
and
_ ) Soy, 0=0°
t, = { 0 6 = —180°. (4.34)

Here oy, refers to the yield strength of the material in the upper domain o,,,, and the
subscripts n and s designate the normal and shear components, respectively. Although
these asymptotic interfacial tractions extend only over a “short” distance within the
plastic zone, the actual traction distribution is approximated by considering that these
tractions exist over the entire interface within the plastic zone. Outside the plastic
zone region, the asymptotic elastic stresses are small with respect to o,, and decay
rapidly as the radial distance r increases. To describe the asymptotic behavior in the
crack-tip region it is assumed that the interfacial tractions in the elastic portion of the
upper region are negligible. The interfacial iractions are idealized as being ecqual to
zero everywhere beyond the plastic zone and within the plastic zone are equal to t,
and ¢,, as given by Eqs.(4.33) and (4.34). This idealized traction distribution around
the crack tip is drawn in Figure 4.18.

By consideration of this idealized interfacial traction distribution, an elasticity po-
tential is assembled which asymptotically reproduces the stress and strain state in the
elastic lower domain as r — 0. From the known solutions for semi-infinite bodies with
constant normal and shear surface tractions across half of their free surface (Timo-
shenko and Goodier, 1970), the stress potential, ¢, for the lower crack-tip domain is
assembled by superposition of the various known solutions and is expressed as

¢ = —% [%y’ In ((z ::;zy:_ yg) + zy arctan (%)
+ (z — r1) yarctan (z _:'_’ r,)]

+£& [(:l:2 + yz) arctan (%) —zy+(z+r)y

27
)] . (4.35)

- ((1: +r)? + y’) arctan (

T+ry
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Here r; is the plastic zone radius along the interface. (The stress potential for a semi-
infinite body is a special case of the general wedge solution with the enclosed wedge
angle equal to 180°.) Since only the asymptotic crack-tip elastic stress field is desired
and the traction distribution outside the crack-tip region is only approximate, attention
is focused upon the very near crack-tip field. By dividing Eq.(4.29) by r/?, defining
two new relative coordinate measurements X = z/ry and Y = y/r;, and by assuming
X < 1and Y < 1, the local asymptotic stress potential is obtained, as Ry — 0 (where
R} = X* +Y?), and it is given by

_ Soys [1,, 2 2 Y 2
¢ = —T[EY In (X +Y)+XYarctan(E)—Y]
+ [(X +Y?) arctan %)~ XY|- (4.36)

At small distances along the interface relative to the interfacial plastic zone radius,
r;, the tractions appear to remain constant for increasing or decreasing z. Thus, by
observation of the traction behavior, the stress potential for a semi-infinite body with
constant normal and shear surface tractions across half of its free surface could be
obtained directly. Note, Eq.(4.36) is the stress potential for such a semi-infinite body,
except that the coordinates X and Y are normalized by the plastic zone racius along
the interface.

Timoshenko and Gnodier (1970) pointed out that prescribing only the surface trac-
tions and determining their resultant stress potential does not always uniquely charac-
terize the stress field. Stress fields which require no surface tractions or displacement
boundary conditions on the free surface (y = 0) can be arbitrarily superimposed. Due
to these boundary constraints, certain restrictions are irnposed on the otherwise arbi-

trary fields. Since no free-surface shear tractions are allowed in these fields,

az
z ] = = g - ] == = 9 4.37
ony(X,Y =0)=0 = aan¢(XY 0)=0 (4.37)
and because no normal tractions are admissible,
3°
va(X,Y = 0) =0 = m ¢(X,Y = 0) =0. (4.38)
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For small values of X and Y as R; — 0, the most dominant field which satisfies these
conditions is that of a uniform stress field parallel to the interface, defined such that

0.z = To,,. The stress potential for this uniform field is given by
1 2
¢ = 3To,[Y’]. (4.39)

The total asymptotic stress potential for the elastic lower domain as Ry — 0 is
now assembled. Summing the various stress potentials, Egs.(4.30) and (4.33), the total

stress potential, expressed in a polar coordinate frame, is

¢ = — S:'w [Rf In(R;) sin®(v) + R¥~sin(y) cos(y) — R} sin('y)]
+P;:’ [R;’Y — Ejsin(y) COS('Y)] + %T%. [Rf sinz('y)] : (4.40)

Asymptotic Characteristic

The stress components are obtained from Eq.(4.40) using Egs.(4.30) to (4.32), and
are converted to the polar coordinate frame used shown in Figures 1.1 and 2.1 (via

§ = v — m). The normalized stress components are expressed as

20— S +2in(R)sin’(6) + (x + ) sin(26)]
+£ [7 + 8 — sin(6) cos(8)] + T [sin’(6)] , (4.41)
Orr S : in?
ovr = - [2 In (R) cos? (6) — (7 + 6) sin(26) — sin (0)]
4L [+ 0.+ sin(8) cos(8)] + T [cos?(9)] (4.42)
and
:" = g [% (1 + 21n (R))sin(20) + (7 + 6) cos(20)]

~L [sin?(0)] ~ T [sin(0) cos(s)]. (4.43)

It is assumed here that the plastic zone radius along the interface, ry, can be approxi-

mated by the characteristic plastic zone dimension, r,, such that Ry ~ R.
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The total stress state at any point in the elastic domain can be decomposed into
the three individual compcnents which describe the entire field. From both a physical
and mathematical point of view, the uniform T-stress produces no startling or unusual
features. The field which results from a uniform normal interfacial traction (Poy,)
produces normalized stress components of order P/7 which are solely a function of
angular location. The third field which arises, due to the uniform interfacial shear
traction, is logarithmically singular as R — 0 (and mathematically as R — oo*). The
stress components behave as ¢ ~ [(S/7)oy,In(R)] as R — 0, indicating that large
stresses are present and that yielding in the lower material domain is expected near
the crack tip. This means that the snclusion of non-linear deformation sn the upper
region does not completely eliminate the stress singularity at the crack tip; rather st only
changes the relatsve degree of ssnugularsty at the crack tip.

The actual asymptotic stress field is completely defined by substituting in the ap-
propriate numerical values for S, P, and T. The numerical values of S and P are
solely determined by the deformation pattern of the upper domain; however, the value
of T is a function of the local asymptotic deformation and the far-field loads. In the
traction-free crack-tip analyses the M = 0 “T-term” and associated eigenmode directly
correspond to the uniform in-plane T stress. (In the boundary layer formulation the
coefficient of the T-term is set to zero.) The value of T arrived at here does not include
far-field loading effects and only reflects the interaction of the local crack-tip elastic-
plastic fields with the elastic K-fields. The elastic far-field contribution in homogeneous
cracks is typically small compared to the yield stress, but as pointed out by Larsson
and Carlsson (1973), a non-zero T-stress does alter the local plastic fields.

The individual elastic stress fields are completely characterized when the precise
numerical values of P, S, and T are determined from the numerical analyses. From the
slip-line model used to describe the plastically deforming upper region, the interfacial
traction coefficients P and S are extracted, and the value of T is obtained by matching

the predicted behavior in the lower elastic region with the actual numerical results.

156



To determine the value of T, any number of matches can be made which theoretically
should produce identical results; e.g., matching the radial strain, ¢,,, along the interface.
In the work described herein, T represents the average of matching o,, at 8 = 0° and
0 = —180°, typically at R = 0.01. This is done in an attempt to minimize the effects

of numerical noise.

Comparison

Comparisons between the asymptotic fields based upon the elasticity potential and
those numerically calculated are now made. Figure 4.19 shows the angular distribution
of the normalized stress components for the case of a deformable aluminum medium
atop a graphite substratum loaded with /ZK = 0 until ¢; = —2.70° (e = —0.07923). In
judging this comparison, one should bear in mind that oy and 0,4 are mathematically
required to match by definition of the boundary conditions imposed in obtaining the
stress potential. The radial strain along the interface as a function of the InR is
plotted in Figure 4.20 for the same conditions as in Figure {.19. Here development
of the asymptotic “logarithmically singular” solution is evident. The fields described
by the elasticity potential, Eq.(4.40), represent the actual crack-tip fields at radial
distances where R; < 0.05 or (in terms of the normalized radial distance R) where R <
0.01. The additional restriction on R, as compared to Rj, is necessary to compensate
for any overestimation that the assumption r; ~ r, causes, since the charactersstic
dimension in the lower half-plane s r;, not r,. Clearly, sufficient agreement exists
between the numerical result and the stress potential to justify use of the stress potential

for describing the lower half-plane asymptotic crack-tip fields in SSY.

4.2.3 Parametric Study

This section explores the dependence of the SSY asymptotic crack-tip field on the ILPA
(¢o) and on material properties, namely € and v;. The stress intensity factor angle (ZK)

is varied in an attempt to cover the full range of admissible ILPA for several values
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of . Various materials and material combinations are used to span nearly the entire
plane strain range of ¢ for positive Poisson’s ratio (—0.170 < € < 0.170). By use of six
materials, whose isotropic elastic properties are listed in Table 4.8, the various values of
€ obtained by pairing the materials are shown in Table 4.4. It is not possible to isolate
the dependence upon the Poisson’s ratio vy, since varying v, simultaneously alters ¢,

except in the degenerate case € = 0.

u (GPa) | E (GPa) { x (GPa) | v | Reference
“Soft” 1.00 2.04 0.708 0.02
Graphite 5.48 13.7 9.13 0.25 | Chamis, 1984
Aluminum 26.1 70.1 73.9 0.342 | Hertzberg, 1976
Steel 80.7 210.0 175.0 | 0.293 | Hertzberg, 1976
“Stift” 249.2 722.7 2409.0 | 0.45
“Rigid” 00 00 oc 0.0

tApproximate isotropic (transverse) properties from a Pitch-55 fiber.

Table 4.3 1dealized elastic material properties.

€ B Region 1 Region 2
Upper Domain | Lower Domain

-0.1700 | 0.4885 | “Stiff” “Soft”
-0.07923 | 0.2439 | Aluminum Graphite

0 0 Aluminum Aluminum
0.03320 | -0.1039 | Aluminum Steel
0.07796 | -0.2400 | Aluminum “Rigid”
0.07923 | -0.2439 | Graphite Aluminum
0.1700 | -0.4885 | “Soft” “Stiff”

Table 4.4 Material combinations used in analyses to obtain the various e.

For all the cases considered, the evolution of steady-state solutions, interfacial trac-
tions, and strains are fundamentally the same as discussed previously. In the upper do-
main, the plastic zone boundary separates the elastic and yielding regions. The shape,
size, and growth characteristics of this boundary, along with its dependence upon ¢, /K,
and v, are essentially represented by the plastic zone approximation, Eq.(P2.6), and

thus the ILPA, ¢. The plastic zone grows in a periodic fashion with respect to ¢, which,
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along with ¢, completely determines the plastic zone shape. Figures P2.4 to P2.7 show
the actual numerically calculated plastic zones for the various values of ¢; and € along
with the elastically approximated plastic zone shapes. The actual plastic zone features
are always elongated ahead of the crack tip, as compared to the elastic approximation,
while the features in the region along the crack face are “stunted” as compared to the
elastic solution. In combinations of ¢; and ¢ in which the elastic approximation predic‘s
small crack-face plastic zone lobes (usually ¢ > 0), the elastic/perfectly-plastic material
idealization totally suppresses the formation of any crack-face lobes. The suppression
of these crack-face plastic zone lobes has a pronounced effect on the asymptotic SSY
crack-tip fields, as elaborated upon earlier. Subsequent discussion is, therefore, limited
to describing the asymptotic fields via representative forms and discussing unique or

unusual features that arose in specific cases.

Plastic Crack-Tip Fields and Interfacial Tractions

The tensile yield strength used for all analyses is 32.5 MPa, however, the numerical
value used for o, is irrelevant in slip-line representation, because all stress components
are linearly dependent upon oy,. In the interpretation of these results, it is the initial
shear strain to yield, <y, which is important, since ~ is used to judge where the
elastic strains are small relative to total strains, thereby defining the domain where the
asymptotic slip-line solution accurately represents the stress field. In this parametric
study the initial tensile yield strain ranges between 1.6% for the elastically “soft”
material, and 0.0045% for the elastically “stiff” material.

The asymptotic crack-tip field can now be assembled for each individual case. From
Figure 4.10, the schematic slip-line field, and Table 4.5, which lists tile slip-line field
angles, all the asymptotic stress fields considered are defined. As alluded to earlier,
an elastic wedge with uniform surface tractions along its sides is necessary to complete
some of the slip-line fields. Included in Table 4.5 is the elastic far-field value of J.

The stress potential and stress components for the elastic wedge are given in Appendix
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B. Table 4.6 contains the values of the elastic wedge coefficients a; and ¢; required
to match the numerical stress states. Although the general stress potentia! for such
a wedge, Eq.(B.4), allows for singular radial stresses (o,, &~ 1/r), no such behavior is
found in the numerical calculation. Because of this, the coefficients a; and ¢; in the

potential, Eq.(B.4), are zero.

€ o (K J MPam a n ¥ ¢
-0.07923 | 29.1° | 26.6° [7.713 x 10" %2 || 0° 83° (76°) |[97° | 84°
-0.07923 | 4.62° 0° |4.853x1072 | o0° 135° 45° | 0°
-0.07923 | —25.0° | -26.6° [ 9.552 x 103 || 0° 135° 45° | 0°
-0.07923 | —41.4° | -45.0° | 6.094 x 1072 || 61° 74° 45° | 0°
-0.07923 | —57.2° |-63.4° | 3.428 x 10~% | 80° 55° 45° | 0°
-0.07923 | —81.8° | -90.0° | 2.191 x 102 || 90° 45° 45° | 0°
0 0° 0° |5.066x 1072 0° |129° (115°) | 51° | 49°
0.03320 | 0.127° 0° |2986x1072 | 0° |123°(117°) | 57° | 56°
0.03320 | —46.2° | -45.0° | 1.453 x 102 || 88° 47° 45° | 0°
0.07923 | —0.980° | 0° 0.1159 47°t | 83 ° (77°) | 50° | 44°
| 0.1700 | —1.08° 0° 0.7291 74° 61° 45° | 0°

€ S0 P S T
-0.07923 | 2.91° | 1.83 | 1/v/3 | 0.42
-0.07923 | 4.62° | 3.30 | 1/v/3 |-0.48
-0.07923 | —25.0° || 3.30 | 1/v/3 | -2.3
-0.07923 | —41.4° | 1.99 | -0.31 | -0.9
-0.07923 | —57.2° || 1.88 | —0.54 | -1.2
-0.07923 | —81.8° || 1.48 | —-1/v/3|-0.95

0 0° 3.21 | 1/v3 [-1.10
0.03320 { 0.127° | 3.14 | 1//3 |-1.56
0.03320 | —46.2° || 1.69 | —0.57 | -0.68
0.07923 | —0.980° || 2.681 { 0t |-0.96
0.1700 | —1.08° || 2.11 | —0.49 |-0.55

Table 4.5 Traction-free crack-tip slip-line angles and traction coefficients for various
values of € and applied K. The slip-line angle {1 = 0 except as noted; t — £1 = 20°.

Hydrostatic noise present in the deforming constant state sectors limited the anal-
yses resolution for certain cases. Crack-tip fields which contained interfacial elastic

wedges or interfacial constant state sectors (with a < 90°), probably contained cusps.
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The stress state weakly depended upon R along the interfacial constant-state/fan bor-
der (6 = a), however conclusive verification of a cusp presence was not possible due to
the limited extent of the mesh. For some cases hydrostatic noise in interfacial constant
state regions perturbed interfacial normal tractions and stresses in the lower elastic
region appreciably, and this limited the resolution of the T-stress. It should be noted
that in inelastic sectors hydrostatic noise alone did not severly restrict identification of
asymptotic crack-tip fields because deviatoric stresses and the shear strain, which were
unaffected by hydrostatic pressure, were used.
The asymptotic traction-free crack-tip fields and interfacial tractions for an

elastic /perfectly-plastic media adjoint to an elastic substratum are qualitatively identi-
fiable for the full range of admissible ¢;, and are outlined for the material combination
where the upper region is aluminum (v = 0.342). The foliowing discussion is only
schematic, and based upon the data, the actual asymptotic slip-line fields are (only)
mildly dependent upon v and e. Figure 4.21 qualitatively depicts the anticipated slip-
line angles as a function of ¢, and (selective) known data points are represented by a
“4+”., The associated assemblage of asymptotic crack-tip sectors, sketched schemati-
cally in Figure 4.22, shows the evolving generic crack-tip behavior with respect to the
ILPA and simulates the crack-tif. evolution for monotonically increasing proportional
loading. For positive values of € and fixed /K, the crack-tip fields evolve with increas-
ing load in the direction of increasing ¢,. The arrows on the sector boundaries indicate

the direction that each boundary moves as ¢ increases.

€ ) a; C2
-0.07923 29.1° 0.153 | -0.113
0 0 -0.221 | -0.053

0.03320 | 0.127¢ | -0.185 | -0.080
0.07923 | —0.980° || -0.228 | -0.040

Table 4.6 Interfacial elastic wedge coefficients.

A natural separation in the asymptotic crack-tip fields occurs at ¢ =~ 0°. For negative

ILPA (¢ < 0) the crack-tip fields are fully plastic and consist of only fan and constant
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Fan

sHEs. Q.C.S.

<'0<—3OO CS

0°">¢ >—30°

Q.CS.
Elastic

$o=0° Elastic

Oo+<¢°<300 Elastic
Q.CS.

{>30° Elastic

Figure {.22 Schematic evolution of asymptotic slip-line, fields as a function of ¢, for
an elastic/perfectly-plastic material bonded atop an elastic or rigid substrate.
Figure based upon data for ¢ = —0.07923 when ¢ < 0 and ¢ = 0.07796 when
¢ > 0 with v = 0.342.
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state sectors. To meet the traction-free crack-face boundary condition, a constant state
sector always exists along the crack face which extends 45° (v = 45°). For % between
—90° and —30°, an interfacial quasi-constant state region is present whose angular
extent (a) varies from 90° when ¢ = —90° to 0° when ¢ ~ —30°. The interfacial
tractions vary from their minimum (¢, = —k and t, = 1.480,,,) at ¢ = 90° to their
maximum (¢, = k and ¢, = 3.300,,) when ¢ equals —30°. The interfacial tractions and
assemblage of crack-tip sectors remain unchanged as the ILPA increases from ¢, ~ —30°
to some critical value near zero.

When the ILPA is positive, the crack-tip fields consist of both elastic and plastic
sectors. It is speculated that as ¢, increases and approaches zero, the stress state
everywhere in the crack-face constant state region falls simultaneously below the yield
stress, and this produces a crack-face elastic wedge which extends a minimum of 45°.
Along the interface an elastic sector, with a quasi-constant state sector adjacent to it,
emerges and whose appearance is speculated to be linked with formation of a local
plastic-zone boundary kink. [From Eq.(F2.6) it appears that both ¢, and the angular
location at which this kink forms are dependent upon v and ¢.] Adjacent to both elastic
wedges are constant-state regions which in turn border opposite sides of a centered fan.
Near the interface, a cusp boundary separates the fan and the constant state region.
The angular extent of the interfacial constant-state region approaches zero (a — 0)
as R — 0 and as ¢ increases to approximately 35°. The crack-face elastic wedge size
increases with the ILPA from & = 45° at ¢ =~ 1° to £ = 87° at ¢, = 30°, and it is
speculated that the size of the crack-face elastic wedge increases toward { = 180° as
¢o approaches 90°. Because various interfacial zones emerge, the interfacial tractions
fluctuate appreciably over the range of positive ILPAs. The smallest interfacial shear
traction, ¢, = 0.100,,, appears near ¢ = 1°, and then increases to its maximum value,
t, = k, for values of the ILPA equal to or greater than 35°. The normal interfacial

traction decreases from its maximum value at ¢, = 0° as the ILPAs increase.
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Strain Distribution and CTOD

The strain fields are again represented by the ~,s distribution. The normalized strain
distributions at six values of ¢, between —81.8° and 21.9° are plotted in Figure .23
at R = ~ for € = —0.07923. To accommodate plotting, the minimum value on the
ordinate axis is set to -15, which truncates two strain distributions. At § = 0° the
values of 7,4(R/70) are -899 and -49.8 when the ILPA () equals —57.2° and --81.8°,
respectively. Drawn in Figure 4.24 are the normalized strain distributions for four
values of € at R = o and ¢ ~ 0°. Figure 4.24 \b) shows the strain distribution
for € = 0.03220 when the ILPA equals —46.2°. In this figure, the runcated value of
Yre(R/0) at @ = 0° is -41.5.

To further summarize the strain fields, Table 4.7 contains the numerically calculated
magnitude of 6crop, normalized by o,,/J, and its associated angle w. (J is the far-
field elastic J-Integral value.) For comparison, the elastically calculated CTOD angle,
obtained by evaluating Eq.(P2.32) at r = r,, is also given. The difference between w

and wWgiauic is typically less than 30°, and w is always less than wgg,tic-

€ €0 (K J MPa m IO'WJCTOD/JI w WElastic
-0.07923 29.1° 26.6° | 7.713 x 10~2 1.008 21.4° 56.7°
-0.07923 4.62° 0° 4.853 x 1072 0.489 42.5° 76.7°
-0.07923 | —25.0° |-26.6° | 9.552 x 1073 0.621 83.1° 108.4°
-0.07923 | —41.4° | -45.0° | 6.094 x 1072 0.815 98.9° (| 130.1°
-6.07923 | —57.2° | -63.4° | 3.428 x 102 1.086 107.2° || 151.6°
-0.07923 | —81.0° |-90.0° | 1.867 x 102 1.246 165.3° || 179.9°
0 0° 0° 5.066 x 10~* 0.598 81.2° 90°
0.03320 { 0.127° 0° 2.986 x 1072 0.668 88.8° 93.7°
0.03320 | —46.7° |-45.0° | 1.152 x 1073 1.364 130.7° | 136.5°
0.07923 | —0.980° 0° 0.1159 0.759 98.3° 99.9°
0.1700 | —0.568° 0° 0.8387 0.876 107.3° || 109.2°

Table 4.7 Traction-free crack-tip CTOD and CTOD angle (w) for various values of ¢
and applied K.

From the information in the quarter wave-length analysis and this parametric study,

the strain distribution in an aluminum upper region (v = 0.342) is qualitatively de-
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scribed for the full admissible range of the ILPA. When the ILPA is between —90°
and —50°, the largest strains (in magnitude) occur at the interface [v,s(R/70) < —40],
while modest positive strains [y,4(R/v0) ~ 4] are produced in the fan region near the
crack-face constant-state sector (# ~ 130°). As ¢, approaches zero, negligible interfacial
strains are present and the location of maximum strains [ys(R/~) ~ 3] migrates from
0 = 130° to approximately 8 = 90°. For positive ¢, the location of maximum strains
is in the centered fan, about 15° to 20° away from the crack-face elastic wedge, and
moves toward the interface as the fan region shrinks. Finally, the maximum strains for
¢o between 0° and 30° are relatively small [y,4(R/v0) = 2.

When € > 0, large residual plastic shear strains would appear to accumulate and
reside in portions of the non-singular sectors due to the continuously changing angular
extent of the fan region. In centered fans the angular locations of the largest radial shear
strains generally exist 10° to 15° away from the crack-face elastic-fan transition border,
and for small to modest values of ¢ the asymptotic fields and ILPA change slowly with
increasing magnitude of K (A¢/A|K]|| = 2¢/||K]|) as compared to the plastic zone size
(Arp/A|IK]| = 2rp/||K]||). Thus, by the time an elastic sector is positioned in a region
previously occupied by a centered fan (where large strains existed), the plastic zone size
and blunted crack-tip opening size would have grown by at least one order of magnitude
or more. As the plastic zone size and CTOD grow, the inner limit of the radial extent of
the “asymptotic crack-tip fields” (r = r,o), also grows. Therefore only a small portion
of the elastic sector which is very near the crack tip could potentially contain large
(previously singular) residual shear strains (y,s o« 1/r), and, mathematically, these

residual singular strains would be those that accumulated at r > ~or,.

Path Dependence of J-Integral

In the parametric study, local crack-tip J-Integrals were only estimated by the VCEM.
Nine contours centered about the crack tip were evaluated, and the average of the

second to fourth contours are tabulated in Table 4.8 for various ¢ and €. The nine J
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estimates typically vary by less than 5%, and except for the case where ¢ = —57.2°,
no discernible trends are evident; i.e., J does not consistently increase or decrease as
R — 0. In the case where ¢ = —0.07923 and ¢, = —57.2°, the J estimate increases by
89% from the ninth to the first contour (as R — 0). However it is thought that this
increase reflects the limited radial extent of the steady-state solution, and therefore it is
insignificant. In general, the degree of crack-tip shielding or intensification is strongly

dependent upon ¢.

| e | ¢ | Ivcem/JEustic |

—-0.07923 | 29.1° 0.43
—0.07923 | 4.62° 0.77
—-0.07923 | —25.0° 0.94
—0.07923 | —41.4° 1.06
—0.07923 | —57.21° 1.11
-0.07923 | —81.8° 0.25
0 0 0.90
0.03320 | 0.127° 0.92
0.03320 | —46.2° 0.68
0.07923 | —0.980° 0.97
0.1700 -1.08° 0.92

Table 4.8 Local J-Integral values, normalized by the elastic far-field value of J,
estimated by the VCEM for various values of ¢; and e.

Conclusion

The bi-material traction-free crack-tip fields for an elastic/perfectly-plastic material
atop an elastic (or rigid) medium are represented by perfectly-plastic slip-line theory in
the upper region and by an elasticity potential in the lower region. This rcpresentation
is accurate at radial distances less than 1% to 5% of the characteristic plastic zone
dimension r,. The local stress and strain fields are strongly dependent upon the ILPA
(%) and modestly dependent upon the bi-material constant (¢) and the Poisson’s ratio
of the plastically deforming media. No oscillations exist in elastic/perfectly-plastic bi-
material crack-tip fields, however, cusps are found in some crack-tip fields which couple

portions of the stress state to the radial distance from the crack-tip.
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In the upper region, plastic deformation completely surrounds the crack tip for most
values of € when the ILPA is negative, thus the interfacial tractions are bounded between
|ts] < k and 1.48 < t,/0,, < 3.30. In loadings where the ILPA is less than —50°,
extremely large shear strains accumulate near the interface. The crack-tip behavior
is significantly different for positive ILPA in the sense that elastic sectors are present.
Interfacial elastic wedges are found embedded within the plastic zone, and a crack-face
elastic sector grows (for € > 0) in angular extent as |[K| increases. Interfacial tractions
vary between 0 < t, < k and 1.7 < t,/oy, < 2.9, however, the interfacial strains are
typically very small.

The asymptotic fields in the lower elastic region are represented by the superposition
of three individual stress fields. The three stress fields are represented by a semi-infinite

body with uniform:
1. Shear tractions (t, = Soy,) across half of its free surface.
2. Normal tractions (t, - Po,,) across (the same) half of its free surface.
3. Uniform stress (of magnitude T'oy,) in the direction parallel to the free surface.

The free surface tractions simulate the conditions existing along the postulated intact
interface in the immediate crack-tip proximity. Due to the jump in interfacial shear
tractions, the elastic fields in the lower region are logarithmically singular and crack-tip
yielding is expected. The radial strain along the interface is not zero, even though the
interface is a line of zero extension (according to rigid-plastic slip-line theory).

The elastically-calculated and numerically obtained CTOD, the J-Integral, and the
plastic zone shapes can differ appreciably. The CTOD angle w was smaller than its
elastic estimate, and no crack-face contact occurred over the range of ¢ explored. How-
ever, prior to establishing steady-state asymptotic crack-tip fields, oscillations present
during initial plastic deformation may induce crack-face contact within the plastic zone
for vaiues of ¢, less than the elastically predicted critical values ¢, [Eq.(P2.35)]. Al-

though plastic deformation reduces the range of admissible “traction-free crack-tip”
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loadings, for many load states it also helps shield the crack-tip. The local J values are

lower than the far-field elastic J-Integral by as much as 58%, but the significance of

this is unclear.

4.3 Closed Crack-Tip Model

The local behavior around a closed bi~-material crack tip varies much less than the local
behavior around a traction-free crack tip. The approximated plastic zone shape in
Figure 2.2 is relatively independent of the precise values chosen for # and v. Because
a large lobe extends along the crack face, it is anticipated that the actual plastic zone
in the upper medium will always completely surround the crack tip. Even if the same
degree of plastic zone suppression occurs along the crack face, as seen in the traction-free
model, the plastic zone should still completely engulf the crack tip. Figure 2.8 shows
the approximated plastic zone along with the location of actively yielding integration
points from the numerical calculations, represented as black dots. To accommodate
plotting, not all of the actively yielding integration points near the crack tip were

drawn.

4.3.1 Plastic Fields

The transition from the remote K§,-field to the asymptotic plastic field is similar to
that observed in the traction-free crack-tip model. A steady-state solution is achieved
at radial distances less than 1% to 5% of the characteristic plastic zone dimension ry.
During this same transition period, the interfacial tractions and the now non-zero crack-
face tractions also establish themselves. Similarity profiles of the normalized crack-face
and interfacial tractions are shown as functions of the normalized radius, R = r/r},
in Figure 4.25. (The sign convention for positive normal traztion is tensile stress, and
shear traction has the same sign as o,4.) No gaps open along the crack face, and the
minimum crack-face traction occurs prior to reaching its steady state value near the

plastic zone boundary.
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Figure 4.26 Slip-line field at a closed SSY interfacial crack for an elastic/perfectly-

plastic upper region bonded to a rigid substrate. See Table 4.9 for numerical
values of indicated angles.
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As r — 0, the asymptotic interfacial and crack-face tractions t take on constant

values of
_ ) Poy,, 6=0°
tn = { ~Qo,, 0= —180°, (4.44)
and
_J Soy, 60=0°
b= { 0 6= —180° (1.45)

The asymptotic crack-tip stress state is completely constructed from fan and con-
stant state regions. A schematic closed crack-tip slip-line field is sketched in Figure
4.26, while Table 4.9 lists the schematic slip-line angles and the crack face and inter-
facial tractions obtained from the numerical calculations. (The slip-line angles for the
closed crack-tip case were extracted from the numerical calculations in the same way
as the traction-free crack-tip slip-line angles were.) Due to the crack-face contact, it
is necessary to know the precise value of the normal traction on either the crack face
or interface in order to construct the stress field in the upper domain. In this closed
crack-face case, the crack-tip displacement represents sliding parallel to the interface,

w = 180°, and has a normalized magnitude of |§cropoy,/J| = 1.914.

B € al | 41 | a2 | 42 P S T| @
—0.2401 | 0.07796 | 29° { 119° | 16° | 45° | 0.131 —1/\/5 - 10.183

Table 4.9 Asymptotic SSY slip-line angles and traction coefficients for closed crack-
tip model; elastic/perfectly-plastic material atop a rigid substrate.

Computationally, the shear strain at the fan near the crack face extends slightly
beyond its purported angular extent. This is likely an artifact of the mesh discretization
in this region, since the crack-face constant-state zone has no shear traction and there
is no indication of an elastic wedge (see Figure £.3). Thus the transition from constant
state to centered fan must occur at § = 135°. Indeed, the circumferential extent of the
elements is nearly equal to the amount by which the shear zone in Figure .27 extends

beyond the fan/constant-state boundary. The numerical and assumed asymptotic stress
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distributions plotted in Figure 4.28 differ only near the fan/constant-state borders,
again over angular distances which correspond to the angular span of several elements.
Excluding mesh discretization e1ror, the assembled and numerically calculated crack-tip
fields are in excellent agreement.

It is enlightening to compare the slip-line field, plastic zone shape, and the shear
strain distribution. In Figure 2.3, the radial lines emanating from the crack-tip rep-
resent the slip-line field boundaries, and Figure 4.27 is a plot of the asymptotic shear
strain distribution. The shear strains are largest (in magnitude) at § = 0° (negative)
and 130° (positive), which correspond to !oczl maximum plastic zone radii. Near the
center of the constant state regions the plastic zone radius exhibits a local minimum
and the shear strain are nearly zero. It is evident that the radial shear strain distri-
bution significantly influences the plastic zone shape and, to some extent, the local

asymptotic stress field, and vice versa.

4.3.2 Elastic Field

Although the lower region was idealized in this work as being rigid, certain features
of adjacent elastic fields can be ascertained in the same fashion as they were for the
traction-free crack-tip model. Consider the conditions that exist along the common
boundary of the elastic and plastic regions. The traction distribution beneath the
plastic zone can be idealized such that they are described by Egs.(4.22) to (4.23) and
zero elsewhere. Figure 4.29 is a schematic representation of the assumed traction
distribution. The elastic stress potential for the closed crack-tip model is obtainable
by superimposing an additional stress field, attributable to contact traction [t,(0 =
7) = —Qoy,], to that previously obtained for the traction-free model Eq.(4.40). The
total stress potential from the three individual traction contributions and the general

uniform parallel stress field is

_ Soy, (1, 2 + y? (y)
¢ = - [2y ln((z+r1)2+y3 + zyarctan =

y
- t
+ (z — r;) yarc m(z+r1)]
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t,=Poy,
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y

Figure 4.29 Idealized crack-face and interfacial traction distributions for a closed fric-
tionless crack-tip in SSY, showing plastic zone radius along interface (r;) and
crack-face (r.) and polar (r,7) and Cartesian (z,y) coordinates.
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.|. [( + y?) arctan (%) —zy+(z+r)y
(z+r1)]
Q haid 1} [(z +y)arctan< )+zy (z-r)y

1:)] + ETO,,,[yz]. (4.46)

Here r, is the size of the plastic zone along the crack face (§ = 180°) and r; is the size

((z +r) + y’) arctan

- ((:c—rc) +y )a.rcta.n (fc—

of the plastic zone along the interface (6 = 0°).
The asymptotic crack-tip behavior, as r — 0, is found by defining X = z/r; and
Y = y/r;, assuming r, ~ r7, and assuming X < 1 and Y <« 1. The asymptotic stress

potential, as Ry — 0, is given 1.y

_ _Soy 1., 2 2 Y 2
6 = -2 ¥ (X +Y7) +XYa.rcta.n(Y) —y ]
o (% + ¥) arctan () - x7]
+27r .(X +Y)arcta.n e XY
Qoys [ (2 2 Y 1 2
~ 2% [(X" + Y?) arctan (_—Y) + XY] + 3T, V7], (4.47)
or when expressed in a polar coordinate frame is given by
¢ = — S:”' [R? In(Ry) sin?(v) + R2ysin(y) cos(v) — R? sin('y)]
Poy, 1,2 2 .
+o [R;v — Ry sin(v) cos("/)]
Ous [ ) 1 .
—Q2; _R? (m —4) + R?sin(y) cos('y)] + —2-T0,. [Rf sin? ('7)] . (4.48)

The individual stress components can be obtained directly from the potentials via the
relationships in Egs.(4.2) to (4.4) or Eqs.(4.5) to (4.7).

In general, the elastic stress and strain field for the closed crack-tip model differs
fundamentally only slightly from that derived for the traction-free crack-tip model. The
addition of the crack-face tractions only contributes to the individual stress component
terms of order Qo,,/7. For non-zero values of S, the stress field is logarithmically
singular.

Comparison between the stresses based upon the elastic potential and the numerical

calculations are not possible because the lower domain was idealized as being rigid. For
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the same reason, explicit values for T" were not expressed. As for agreement between
the two solutions, one can only speculate that it would be comparable to that achieved
in the traction-free crack-tip model (s.c., very good) and would be accurate at radial

distances less than 1% of R.

4.3.3 Conclusion

The asymptotic stress field around a closed bi-material crac.. tip are completely repre-
sented by deforming s!iz-line fields in the upper domain and by an elastic potential in
the lower domain. The asymptotic solution has interfacial shear tractions equal to the
shear yield strength of the material (k) and small tensile normal tractions (~ 0.130,,).
On the frictionless crack face, the asymptotic compressive normal tractions is also small
(~ 0.180,). The resulting plastic zone shape reflects certain features of the shear strain
distribution and stress distribution.

Although no parametric study was perfermed, it is anticipated that asymptotic
closed-face slip-line fields for an elastic/, :rfectly-plastic medium adjoint to a dissim-
ilar elastic material are only weakly dependent on 8. As discussed previously, the
elastically-calculated plastic zone is rather insensitive to the precise values of 8 and v
used. In the degenerate case § = 0, the far-field elastic homogeneous mode II solution
is recovered, it is therefore expected that as § — 0, t,(8 = £n) — 0. Finally, the
homogeneous mode II slip-line field, whose slip-line angles are al = 36.8°, v1 = 126.8°,
a2 = 8.2° and 42 = 45° for § > 0 (Hutchinson, 1968), does not differ substantially
from the asymptotic field obtained for § = —0.2401.

4.4 Limitations

In this work the terin “asymptotic crack-tip fields” has been extensively used to de-
scribe local crack-tip phenomena, but what are asymptotic fields? Webster (1979)
defines an asymptote as “a line which continually approaches nearer to some curve,

but, though infinitely extended, would never meet it.” Fracture mechanics commonly

182



uses expressions to reproduce the dominant features and near-tip behavior which it
terms as asymptotic. However these relationships are not truly asymptotic by defini-
tion in that they are only representative over a discrete interval because their underlying
assumptions simplify and exclude a portion of the physics and mechanics. This section
defines the limits for which the asymptotic characteristics are appropriate by identify-
ing length scales for which the simplifications or omissions made in the mechanics are
admissible.

In Chapter 2 it is established that the asymptotic elastic field equations [Eqgs.(2.4)
to (2.7)] represent SSY traction-free crack-tips for radial distances between 3r, and
1/10, where r, is the characteristic plastic zone dimension and ! is the characteristic
geometric length. The outer limit defines the point where the local solution reproduces
only 90% (in magnitude) of the full elasticity stress solution. (This happens because
the asymptotic solution excludes the homogeneous far-field contribution.) The inner
limit represents the point where the solution is significantly influenced by the exclu-
sion of inelastic deformation. Deep within the plastic zone “steady-state inelastic”
behavior appears at r & 0.01r,, where deformation in plastic sectors is dominated by
incompressible plasticity and the affects of compressible elasticity are generally negligi-
ble. Therefore inelastic (SSY) asymptotic crack-tip fields composed of some perfectly-
plastic sectors describe the actual fields at radial distances less than 0.01r,. (Recall,
it is necessary to account for compressible elasticity in constant state sectors when an
elastic-wedge/fan transition exists.) Thus by examination of the mechanics or physics
excluded, both bounds of the asymptotic elasticity solution and the outer bound of
the inelastic asymptotic crack-tip solution have been quantified for SSY conditions.
The minimum radial distance at which inelastic asymptotic crack-tip fields depict the
actual crack-tip behavior is dependent upon various material attributes, mathematical
assumptions, and micro or macro phenomena.

The discussion of limiting length scales, used to define the inner bound of the

inelastic crack-tip fields, is divided into two parts. The first part identifies physical ma-
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terial attributes in view of the necessary continuum assumptions to model them, and
it qualitatively elaborates upon their associated mathematical length-scale restrictions.
Quantitative results are not formally stated because the actual size varies consider-
ably between different material systems. The second part quantitatively determines
limitations imposed by modeling assumptions made and by the evolution of crack-tip
features. The largest feature or mechanism is assumed to be the minimum distarce for

which inelastic asymptotic crack-tip fields are appropriate.

4.4.1 Physical Attributes

The physical material structure limits the representative element size necessary for
continuum constitutive relationships to homogenize and accurately describe material
behavior. For example, in crystalline materials deformation is produced by discrete
movement of dislocations which each translate the crystal lattice by the interatomic
distance. When many slip systems are active many discrete slip events must be averaged
over a representative volume which is several hundred or thousand Burger’s vectors
per side, to achieve a continuum. Isotropy, as used in these analyses, poses additional
restrictions because no macro preferential slip directions are allowed. Although many
slip systems exist in metals [i.e., aluminum (FCC) has 12 possible independent slip
directions]|, the representative volume must usually span many grain diameters to yield
an isotropic response. Second phase and intermetallic particles restrict the minimum
continuum volume size, when they exceed the primary grain size or if they preferentially
impede directions of deformation. In non-metallic systems the minimum volume size is
a function of some characteristic material dimension. For example, in particle reinforced
composites the particle diameter or mean particle spacing is the characteristic material
dimension, while in ceramics and polymers the characteristic dimensions are the grain
size and length of the molecular chains, respectively.

In addition to the constraints associated with the bulk materials are those con-

straints which arise from the interfacial thickness and properties. Use of an ideal-
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perfect interface assumes a priors that interfacial mechanical properties are equivalent
or stronger and stiffer than the surrounding bulk media and that perturbations in-
troduced by the actual interface, such as local crack-tip separation, are confined to a
small region. As discussed in Chapter 1 the interfacial make-up and size scale varies
widely and the interfacial resolution limits imposed must be assessed individually for

each material system.

4.4.2 Mathematical and Evolutionary Limitations

When not restrictzd by physical attributes, it is anticipated that the inner range of the

asymptotic solution is limited by:

1. The formation of a blunted crack-tip and the emergence of the CTOD as the

characteristic length in the inelastic (SSY) asymptotic field.
2. The use of linearized kinematics.
3. The idealization that the lower domain behaves elastically.

To ascertain the limitations that these impose, an estimate for the critical length scale
of each is made.
For planar homogeneous cracks, the CTOD (éctop) is typically estimated to be

(Hellan, 1984)

J
éctop = 0.6 —, (4.49)
Tys

and an estimate of écrop for interfacial cracks is made by evaluating Eq.(P2.32) at

¢ = ¢ and r = r, which yields

boron| = —2__
ctop| = —r—m o

Equation (4.50) overestimates the homogeneous écrop by a factor of three, and, based

(4.50)

upon the other data in Chapter 4 for an elastic/perfectly-plastic material atop an

elastic medium, typically overestimates the actual |6crop| by a factor of 2 to 3. For
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comparison purposes, it is convenient to compared écrop to rp. Division of Eq.(4.50)

by r, and by a factor of 2 (to account for the overestimation) gives

6, Oy 2 1—-v 1-v
o 2 V1+4e 41 12
or
bctop V6 [ T3
= 1-uv1 4+ —(1-1v3)]. 4.52
| T avizaa ettt (4.52)

Here ~ is the initial yield strain of the material in the upper region and the sub-
scripts 1 and 2 refer to the upper and lower domains, respectively. For many material
combinations the normalized magnitude of the CTOD is of order |6crop/rp| = O(70)-

Use of linearized kinematics fails when strains and rotations are no longer “small.”
To estimate the size of the strains and thereby infer the relative size of the rotations,
the behavior of the largest strain component in a fan region, ~,¢, is considered. From

Eq.(4.10) the asymptotic shear strain behavior in a fan region is approximately
7
oo R A(o,t)ﬁ, (4.53)

where R is the normalized radial distance from the crack-tip and A(6,t) is the angular
distribution of shear strain. As stated previously, A(0,t) is of order unity because at
the edge of the plastic zone (r = r, or R = 1) the shear strain must just equal the
yield shear strain (v,s = o). With the assumption that A(6,t) ~ 1 and by use of the
rather loose definition that strains of order unity are no longer small, the assumption

of linearized kinematics is valid for radial distances such that
r>~r, or R> . (4.54)

For reference, a typical value of 7 for aluminum is 7.2 x 10~* (Hertzberg, 1976).

In the lower domain use of an elastic material idealization is acceptable as leng
as the stress state is not sufficient to cause inelastic deformation. At the crack-tip
the shear traction jumps by |Soy,| from the crack-face to the interface, and this step-

function jump in t, produces logarithmically singular stresses in the elastic domain
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whenever S # 0. Plastic deformation is anticipated in the elastic half-plane for all
non-zero values of S.

A “rough” interfacial plastic zone size is estimated by evaluating the elastic stress
components at § = 0° and by determining the radial distance where the Mises equivalent
stress equals 0,,,, the yield stress of the “elastic” lower material. Substituting the stress
components, Eqs.(4.41) to (4.23), into the Mises stress expression, Eq.(2.31) (retaining
only the logarithmically singular portion of o,,), and solving for the radial distance r,,

at which a; = o,,, yields (for S # 0)

. FP+ \/(F P)* — 4D (352 + D P! — (0,4, /9,.)")
£2 ~ exp

4.55
Tp 2DS/x (4.59)

Here F and D are defined in Eqs.(P2.A.14) and (P2.A.15), respectively. For Eq.(4.55)

to have physical significance, it is required that

Oy : 2 2 F?
22 - —]. .56
(O'w) >35°+ P (D 4D) (4.56)

When P and S take on their maximum observed values of P = 3.27 and § = 1//3

the actual elastically inferred [not estimated by Eq.(4.55)] size of plastic deforma-
tion along the interface for v = 0.3 is r,,/r, = 1.08 x 10~2 for o,,,/0,, = 3.0 and
Tp./Tp =~ 3.38 x 107 for o,,,/0,, = 4.0. A more intuitive understanding is obtained
from examination of Figure 4.80. By use of the stress expression, Eqs.(4.41) to (4.23)
the elastically-calculated plastic zone in the lower half-plane is plotted for P = 3.27,
S =1/v3, and T = —0.5 for several ratios of o,, to a,; i.e., 0,,,/0,, = 2.5, 3.0, 3.5,
4.0, and 4.5. The characteristic plastic zone size of the upper domain (r,) is used to nor-
malize the scale of this figure. Because the stress fields are logarithmically singular, the
size of the plastic zone decays rapidly as o,,,/0,, increases. The elastically-calculated
plastic zones for o,,,/0,, > 3.5 are not resolvable on this size scale. For material
combinations where oy,,/0,, is greater than 3, the maximum plastic zone radius ex-
tents less than 0.1% of r, for the extreme interfacial conditions and, for many metallic

polycrystallines, rp, /r, < 7o.
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Figure 4.80 Elastically calculated yield zone for lower elastic half-space with constant
normalized shear (t, = 0.57) and normal (t, = 3.27) tractions applied on y =0
for £ > 0. Scales are normalized with respect to the characteristic traction-free
plastic zone radius.
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When the specific material structure is excluded, it is evident that the SSY asymp-
totic crack-tip fields presented in sections 4.2 and 4.3 are usually applicable over the
normalized radial range of v < R < 0.05. At radial distances smaller than this the
assumptions of linearized kinematics and a mathematically sharp crack tip are vio-
lated, and the use of an elastic lower half-space may be inappropriate. When material
structure is considered, the restrictions arise from the minimum representative element
size necessary to model the material behavior as a continuum, and the actual limiting

factor are only established after particular materials and their properties are identified.
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Chapter 5

Summary and Discussion

In this final chapter, a brief summary qualitatively highlighting the major features of
the two interfacial crack-tip models will be presented. It will touch on the major aspects
ot both the elasticity and plasticity solutions. Observations regarding some solution
aspects and associated implications will also be discussed. This includes observations
regarding crack-face conditions and the ILPA, and the anticipated effect that altering
material combinations would have on interfacial separation. Finally, some suggestions

regarding the direction of further work will be made.

5.1 Summary

Before reviewing specific details of the interfacial fracture mechanics, an overview of
the various analyses and components which interconnect, forming a complete interfacial
crack framework, is presented. Reviewing of the two commonly accepted interfacial
crack-tip elasticity soluticns identifies the parameters which quantify the asymptotic
elastic fields, their admissible ranges, and the dominant features present in each. When
appropriate, corresponding relationships between various elastic variables present in
each idealization provide a link between the two models. Using the elasticity solutions,
approximate descriptions of contained inelastic deformation embedded in a dominant
asymptotic elastic crack-tip field (SSY) are given, along with the parameters needed

to describe the plastic zone boundary. Presumably, the same variables which uniquely

190



relate the plastic zone shape to the asymptotic elastic solution also uniquely relate the
asymptotic (inelastic) crack-tip behavior to the asymptotic elastic solution. Far-field
loads producing physically admissible elastic crack-tip conditions are determined by
excluding the crack-face behavior in regions where inelastic deformation is anticipated.
Corresponding limits on the inelastic crack-tip parameters are then formulated, thereby
reducing the spectrum of admissible inelastic crack-tip loadings. Finally, for a specific
constitutive idealization, the complete range of asymptotic inelastic crack-tip fields is
quantified as a function of the inelastic parameters. The discussion which follows details
this schematic overview.

The asymptotic elastic behavior of interfacial cracks which occur between dissimilar
isotropic media is reviewed. Traction-free crack-face boundary conditions result in os-
cillatory elastic fields as well as crack-face contact and mathematical interpenetration.
Use of the complex traction-free bi-material stress intensity factor K requires defin-
ing both a magnitude and phase angle. (Two parameters are necessary to describe
the elastic singularity of a traction-free interfacial crack.) Some ambiguity exists in
expressing K because the phase angle of K changes when different length units are
used. Physically inadmissible crack-face interpenetration is eliminated by considering
a closed (frictionless) crack-tip model. This model contains no oscillatory fields, and
its asymptotic nature is similar to that of the homogeneous mode II sclution. The
sign of the (scalar) closed bi-material stress intensity factor, K{;, is restricted to en-
sure compressive normal crack-face tractions. When defining the elastic singularity of
a closed frictionless interfacial crack, only one parameter is required. Finally, both
elastic crack-tip models predict unbounded stresses as the crack tip is approached.

For both crack-tip models, approximate SSY elastically-calculated plastic zones are
obtained as the locus of points where the elastically-calculated Mises stress equals the
tensile yield stress. This is the first time such an approach has been used to “semi-
formally” extract the inelastic behavior around interfacial crack tips. From this ap-

proach, it is found that traction-free crack-tip plastic zones grow in a periodic manner,
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with respect to the ILPA, ¢ = (K +¢€ln Fgf;c_!i-gh’m’ and scale approximately with the
characteristic plastic zone dimension, r, = KK /(07,7 cosh?(me)); however, the plastic
zone shapes change continuously as ||K!| increases since ¢, also changes with increasing
I'K|:. The elastically-calculated plastic zone expression modestly represents the overall
size and features of the plastic zone for strain hardening and elastic/perfectly-plastic
materials atop rigid or elastic substrates.

For positive ¢, the elastically-calculated plastic zone expression predicts crack-
face plasticity; however. for elastic/perfectly-plastic materials bonded to an elastic or
rigid substrate, no crack-face plastic deformation is observed. (This is an unexpected
feature since in homogeneous plane-strain stationary and quasi-static growing crack
tips, active plastic deformation occurs on the crack flanks.) The closed crack-tip plastic
zone approximation weakly depends upon the bi-material constant and scales with
the characteristic closed plastic zone dimension, r; = 3Ks,? /20%,. No changes in the
closed plastic zone shape occur with increased load, and the homogeneous mode II
characteristics are completely recovered when the bi-material constant is equal to zero.
It is learned from the elastically-calculated plastic zone expressions, that it is necessary
to have both a phase angle and a load magnitude to describe the inelastic traction-free
crack-tip fields, while only a load magnitude and the assurance that a sufficiently large
contact length exists are required to quantify the closed crack-tip fields.

The crack-tip loads which provide traction-free or closed crack-tips are approxi-
mately identified by determining when crack-face contact occurs outside the elastically-
calculated SSY plastic zone. Previously, discussions concerning the admissibility of the
two elastic crack-tip models usually eliminated one crack-face idealization based upon
so called “physical” reasons; e.g., “the crack must be traction-free because the contact
iength is extremely small and on the order of the interatomic spacing distance,” or “the
crack tip is closed since interpenetration is predicted and is physically inadmissible.”
This unified approach shows that both interfacial idealizations are admissible for SSY,

and provides explicit mathematical expressions to define the loads producing traction-

192



free or closed crack tips. For the right hand crack tip of a Griffith crack geometry, the
far-field loads which produce open or closed elastic crack-face conditions are mapped.
A region, termed SSC, exists where, simultaneously, the contact length is small com-
pared to the crack length and the plastic zone size is small with respect to the contact
length. Explicit relationships between K and K§; are estatlished for SSC based upon
equivalent energy release rates. In general, determination of the appropriate elastic
crack-tip model can be made for most geometries, however, the precise contact length
and closed form stress intensity factors are only known for a few geometries.

The numerical procedure used in identifying the SSY asymptotic interfacial crack
fields between an elastic/perfectly-plastic material and an elastic or rigid material re-
quired implementation of an effective inelastic constitutive integration operator and
extension of the boundary layer formulation to bi-materials. These numerical reduction
techniques were necessary, especially when one considers that each parametric analysis
represents an investment of one hundred to three hundred computational hours, and
the quarter wave-length analysis consumed more than seven hundred computational
hours on one computational element of an Alliant FX-8 mini super-computer. To
demonstrate that the boundary layer formulation had indeed been extended correctly
for bi-materials, an example point load elasticity problem was performed.

The asymptotic (inelastic) traction-free crack-tip fields contained some very unusual
features. The cusp and elastic sectors found in the SSY traction-free crack-tip solutions
have not been observed before in homogeneous plane-strain (stationary or quasi-static)
crack fields. These cusps couple the stress state in the quasi-constant state sector to
the radial distance from the crack tip and propagate as ¢, changes or, for proportional
monotonic loading, as |K|| increases. The elastic crack-face and interfacial sectors
evolve with ¢, and may or may not contain residual plastic strain depending upon ¢
and the sign of e.

Qualitatively, the traction-free SSY asymptotic fields for the complete range of

admissible ¢; are assembled, and from this the crack-tip behavior for proportional
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monotonically increasing loads is described. At fixed radial locations deep within the
plastic zone, the SSY asymptotic fields are assembled from centered fans, constant
state, quasi-constant state, and elastic sectors. Excluding the cusp effects, the crack-
tip stress and strain fields are not oscillatory for an elastic/perfectly-plastic material
bonded to an elastic or rigid material, unlike those obtained by Shih and Asaro (1987)
for deformation theory based strain hardening materials. The asymptotic crack-tip
fields continuously evolve with ¢, and, in general, only contain elastic sector(s) for
positive ¢;. Crack-tip shielding lowers the local J-Integral, as compared to the far-
field elastic J, by as much as 75%, but the degree of shielding varies considerably
with ¢. Moreover, for some values of ¢ the local J is actually larger than the far-
field elastic J. As is anticipated, finite crack-tip opening displacements occur for all
cases analyzed. However, the CTOD angle is always less than the elastic estiinate,
indicating that crack-face contact may occur within the plastic zone when no crack-face
contact exists outside the plastic zone. Near the crack tip, deep within the plastically
deforming interfacial region, the triaxiality, defined as oxx/35, may exceed that of the
Prandtl stress distribution and reach 3.30. Because of this, the interfacial tractions are
bounded; i.e., 0 < t,/o0,, < 3.30 and |t,| < k, but depend strongly on ¢.

No unusual features appear in the closed crack-tip model for a rigid medium beneath
an elastic/perfectly-plastic medium. The asymptotic crack-tip fields are composed of
two constant state and two centered fan sectors whose angular extent and arrangement
are similar to homogeneous mode II fields. Compressive crack-face tractions extend
from the elastic asymptotic fields, through the plastic fields, all the way to the crack-
tip. Appreciable interfacial shear strains develop in the deforming medium.

For both crack-tip idealizations, asymptotic crack-tip fields in the lower elastic
medium are completely described by the elastic potential for the closed crack-tip case.
This potential is constructed by idealizing the interfacial tractions as constant beneath
the plastic zone and zero elsewhere. It is also assumed that uniform compressive trac-

tions exist along the crack-face within the plastic zone (the magnitudes of which are
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zero in the traction-free crack-tip model). A uniform tensile field, oriented parallel to
the interface, is superimposed to complete the potential. Due to the jump in shear
traction at the crack-tip, the resulting field is logarithmically singular, and local crack-
tip yielding is anticipated. However, for “elastic” materials with a yield strength three
or more times greater than the yield strength of the perfectly-plastic material, “elastic”
yielding does not restrict the application of these results.

The method used to identify the crack-tip idealization, in conjunction with the
parameters necessary to define elastic and SSY inelastic crack-tip deformation, rep-
resents a rigorous framework usable in systematically quantifying interfacial crack-tip
behavior. Via this framework one can determine the asymptotic stress, strain, and
interfacial behavior, based upon the far-field loads and constitutive assumptions, and
(by inference) provide the requisite interfacial properties necessary for sustaining the
integrity of interfacial cracks. Evaluating the interfacial crack-tip conditions for a par-
ticular geometry (whcse components’ constitutive behavior can be idealized as elastic
and elastic/perfectly-plastic, respectively) is made as follows. First the elastic crack-
tip singularity and contact length must be quantified by either determining K or Kj,
(and/or G) and § via numerical solutions, tables containing known solutions, etc. Some
parameters may not be directly obtainable, however their values might be inferred by
using the approximations and relationships identified in Chapter 2; e.g., approximat-
ing 6 from X by Eq.(2.43). Based upon this information, the bi-material constant,
and the yield strength of the material, the characteristic plastic zone dimension can
be compared to the contact length, thereby establishing if and when either of the two
models are appropriate. Alternatively, for certain geometries and loading conditions
a load map might be consulted to determine the appropriate crack-tip idealization.
If the crack tip is closed (and frictionless), the asymptotic crack-tip fields are those
associated with the particular values of # (and v). On the other hand i{ « traction-free
crack tip exists, ¢ must be evaluated, and then, based upon the values of ¢, ¢, and v,

the asymptotic crack-tip fields can be “looked up.” Section P2.B contains a numerical
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example showing how SSY traction-free crack-tip conditions are established and how

¢o is evaluated for a particular geometry.

5.2 Discussicn

As discussed in Chapter 1, the purpose of doing this work is to quantitatively describe
the material state surrounding an interfacial crack tip. It is believed that since the
largest stresses and strains evolve in this area, interfacial separation or crack deflec-
tion is completely governed by the behavior within the immediate crack-tip proximity.
By analyzing and identifying the deformation patterns accompanying the maximum
stresses, strains, and interfacial tractions, insight might be gained into the mechanisms
and conditions which initiate separation. Unfortunately, this work only provides the
conditions which must be substained prior to unstable crack propagation and is limited
to only one constitutive idealization. However, in conjunction with this study and ex-
perimental observations and measurements, the feasibility and admissibility of specific
failure mechanisms postulated to be active in certain materials can be systematically
evaluated.

Independent of the many observations and classifications made in regard to inter-
facial cracks, the present work is far from conclusive, even for elastic/perfectly-plastic
materials bonded to elastic or rigid substrates. Some final comments will be made
regarding interpretational aspects of the analyses, modifications to various quantities

and definitions, and areas which warrant further investigation.

5.2.1 Crack-Face Contact

Various issues pertaining to the elastic and plastic crack-tip fields have been identi-
fied, with considerable attention to excluding the physically inadmissible phenomenon
of crack-face interpenetration. In SSY the complete asymptotic elasticity solution s
recovered sufficiently far away from regions of snelastic crack-tsp deformation, snde-

pendent of whether the crack-faces are open or closed sn the plastic zone. Therefore,
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crack-face contact within the plastic zone has no consequence upon the elastic crack-
face conditions since it is the elastic solution which drives the inelastic deformation
in SSY, and not vice versa. For proportional monotonically increasing far-field loads,
conclusions based solely upon the asymptotic elasticity solutions are valid at distances
larger than several times the characteristic plastic zone size, but still small compared to
the next relevant characteristic geometric dimension. Within the limitations discussed
in Section 2.3.3, the actual elastic crack face 15 open whenever crack-face contact or
interpenetration is not predicted, independent of the crack-face conditions within the
plastic zone.

In this study only frictionless closed bi-material crack-tips were considered. In
actuality, frictionless crack-tips rarely occur in nature, and friction significantly al-
ters crack-tip behavior. In the bi-material case Comninou (1977b) found that friction
reduced the order of the elastic stress singularity for “closed” interfacial cracks. Ob-
viously, the assumption of frictionless closed crack-tip faces represents a simplification
which is inappropriate for many situations, and further studies which include crack-face

friction are warranted.

5.2.2 Unifying ILPA

The ILPA () is a naturally-arising parameter which is convenient for studying and
classifying plastically deformable traction-free crack tips, but it is not comprehensive in
that it does not automatically compensate for different values of € and v. For example,
in the elastic approximation for crack-face closure, the critical value of ¢, is differest for
different ¢. Similarly, the asymptotic inelastic crack-tip fields, for given values of ¢, and
v, differ with e. Deformation near open interfacial cracks is only periodic with respect
to ¢o; s.e., it is not harmonic. (This is apparent when the additive decomposition of
¢, Eq.(P2.21), is substituted back into the plastic zone approximation, Eq.(P2.6), and
the trigonometric functions are expanded. Although ¢ appears only as the argument

of trigonometric functions, the coefficients which multiply the functions of ¢, change
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(periodically) as ¢ changes.) Thus a relative shift in ¢ is not expected to relate the
crack-tip fields’ evolution (with ¢) for different values of €. The ILPAs of the results in
Chapter 4 were modified in an attempt to compensate for the dependence of crack-face
closure on ¢, however, this procedure failed to unify the asymptotic crack-tip fields

(probably for the reason just discussed).

5.2.3 Anticipated Experimental Observations

To aid in experimental identificaticn of bi-material crack-tip behavior, a qualitative
overview describing the anticipated visible crack-tip features follows. Upon application
of load, the extent of crack-face contact should become evident. The contact length
will depend upon the direction of the applied far-field load, the characteristic geometric
dimension and material properties, and it should be independent of the applied load
magnitude. Experimental techniques capable of resolving elastic stress or displacement
states should allow for detection and identification of the elastic asymptotic crack-tip
fields and crack-face displacements. Because the period of oscillation in the traction-free
crack-tip model is so large and experimental resolution and specimen size are limited,
the experimentally obtained near crack-tip fields will appear as having the conventional
square-root dependence on radial distance, whether or not crack-face contact occurs. In
materials capable of inelastic deformation, as the load magnitude is increased the next
resolvable feature should be the plastic zone. Again, due to the large oscillation period
and limited realistic specimen size, the plastic zone shape will appear independent of the
applied load magnitude, however, varying the direction of the load on different specimen
sizes should produce different plastic zone shapes. For materials whose constitutive
behavior is similar to that idealized within this study, plastic zone shapes extending
only partially around the crack-tip (in the deforming medium) could be expected for
certain loadings.

Resolving the asymptotic inelastic fields is not a realistic expectation at this time.

Some materials may localize, s.e., Fe-Si, polycarbonate, leaving traces indicative of the
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asymptotic inelastic field. In addition, experimental observations of surface deformation
are likely to reflect plane-stress conditions, rather than the plane-strain conditions
primarily studied.

In designing experiments, it is important to keep in mind both the types of loads
being applied (usually to simulate some real physical situation) and the particular ma-
terials, because altering either of these can drastically change the crack-tip conditions.
For example, consider the ramifications of evaluating interfacial separation by an inter-
facial Griffith crack geometry loaded by far-field tension. Sketched in Figure P2.11 is
such a geometry. (To facilitate discussion, allow the magnitude of the far-field tensile
load, oy, and material properties to be unspecified.) Following the example shown in
Section P2.B, both K and ¢, can be evaluated for a specific set of material combinations
and load level. Note that because no far-field shear tractions are applied, K and ¢ are
the same at both crack tips. For convention, the material with the lower yield strength
is always located in the upper region, and its yield strength is used in evaluating ¢.
The evolution of ¢ with monotonically increasing SSY loading is shown in Figure 5.1
for several different values of ¢. For material combinations whose constitutive behavior
can be idealizied as an elastic/perfectly-plastic material atop an elastic medium, the
crack-tip fields are those which correspond to the particular values of ¢, (v,) and e.
Note the large range of ¢, produced from this one “simple” test configuration, and that
the actual value of ¢, is strongly dependent upon the actual value of € for a specific
load level of o057 /0,,.

In light of the above example, experimentaliists who simulate interfaces by using al-
ternative material models, must insure that not only chemical similitude exists between
the actual and model systems, but that mechanical properties (namely the elastic con-
stants) are also scaled appropriately. Using only one model material which is elastically
softer than its counterpart in the actual system can change ¢, possibly even changing
its sign, and produce asymptotic crack-tip fields in the model which differ drastically

from those produced in the actual system. Figure 5.1 clearly indicates how sensitive
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the crack-tip parameter ¢ is to load levels and material combinations.

5.2.4 Influence of Material Properties on Separation

On the basis of the limited parametric study considered, it appears that particular ma-
terial combinations do not alter the nature of the asymptotic fields produced, rather,
they shift the fields in the same way that a change in ¢ would, and they distort
the strain distribution. For an elastic/perfectly-plastic material bonded to an elastic
substrate, the phase angle of the applied load, measured by ¢, appears to affect the
asymptotic crack-tip fields more than the choice of elastic material properties. How-
ever, for a specific set of traction-free loading conditions, altering the elastic material
properties and changing the sign of ¢ can significantly alter both the asymptotic crack-
tip stress and strain states, as demonstrated previously. This is extremely important
when interfacial separation criteria are evaluated, because, for certain load states, it
might be more advantageous to bond to a stiffer substrate or to orientate an anisotropic
substrate in a different direction.

Generally, the material combination with the lowest perfectly-plastic flow strength
produces the lowest tractions, since the asymptotic stress state scales with the flow
strength. For a specific flow strength, minimum normal tractions occur when the
material combination is subjected to the largest (positive) ¢ or when the crack-tip is
closed. When the normal tractions are at their minimum level, substantial inelastic
radial shear strains, which scale as 4,5 & 1/R, localize in a small band parallel to or
slightly inclined from the interface. It is somewhat ironic that the minimum interfacial
shear strains are present when normal interfacial tractions are at their maximum values
and vice versa. Interfacial separation criteria for deformable media, which are only
traction or (interfacial) strain based, may seem inappropriate in light of this trend.

In this crack-tip idealization, the resulting interfacial tractions are bounded. This
implies that separation criterion for materials with strong interfaces, s.e., those capa-

ble of sustaining tractions greater than the maximum asymptotic crack-tip interfacial
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tractions, must be strain controlled. (If the coﬁtrolling mechanism is only a maximum
traction criterion, and the tractions are less than the critical traction value, separation
would never occur in SSY.) However, it is impossible to predict separation without a
specific criterion in mind because most separation criteria require the traction and/or
strain level to reach or exceed some threshold value over a critical distance before
separation is said to commence.

Micro fracture mechanisms occurring in the interfacial proximity may be indistin-
guishable from interfacial decohesion. One can easily visualize small particles, whose
size might be 1078 to 107%m, embedded in continuum crack-tip fields and whose pres-
ence does not alter the continuum idealization. The high triaxiality near the interface
which accompanies the maximum tractions will promote (ductile) micro-void formation
and growth in the near crack-tip field. For traction-free crack-tip loadings the maxi-
mum triaxiality always occurs at or within (+)40° of the interface, while in the closed
crack-tip case, the region where the triaxiality is the highest extends from 6 =~ 30°
to § = 120°. Cleavage of brittle particles, which can initiate macro-voids, and micro-
cracking are typically thought to be governed by the maximum principal stress and its
associated direction. The maximum principal stress occurs along the interface [when
o.6(f = 0°) = k] and its direction is orientated approximately 45° from the interface.
Therefore, in the plastically deforming interfacial region one might expect to find mi-
crocracks and the direction of cleaved particles inclined (+)135° from the interface. In
the lower elastic region failure associated with a maximum principal stress criterion
may deflect the crack into the lower elastic medium. At radial distances very close
to the crack tip such a failure criterion predicts crack deflection at an angle inclined
approximately -90° from the interface, while at larger radial distances the deflection

angle would be larger (~ —45°).
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5.2.5 Suggested Additional Work

Several avenues need to be explored to establish concisely the complete bi-material
crack-tip behavior even for the case of an elastic/perfectly-plastic material adjoint to
an elastic or rigid material. An analytical expression defining the cusp in terms of the
far-field load parameters is essential to fully ascertain the evolution of the interfacial
tractions. Incorporation of finite deformation would allow identification of the crack-
tip fields all the way to the blunted crack tip and extend the mathematical range for
which asymptotic inelastic fields are appropriate. Of course, the material restrictions
acknowledged earlier would still limit the applicability of the results from such analyses,
but additional insight may suggest a mathematical bound for the singular interfacial
and the crack-tip strains.

Finite eiement solutions such as these “roughly” estimate the actual slip-line an-
gles, and are severely limited by mesh fineness. Analyses which use discretized repre-
sentations must carefully refine and focus these representative elements to ensure that
important details are not systematically excluded from the solution. For example, in
this study, no jumps in o,, were resolved. It is unclear, however, whether jumps existed
or were just unresolved. To this extent a more precise asymptotic numerical solution
would resolve the issue of stress jumps.

In this study, incremental plasticity is utilized as opposad to deformation theory, as
used by Shih and Asaro (1987). For the constitutive idealization of an elastic/perfectly-
plastic medium atop a rigid or elastic substrate, unloading usually occurred in asymp-
totic crack-tip fields whenever ¢ > 0 and ¢ > 0. In light of this, utilization of de-
formation theory in investigating interfacial cracks which have large strain hardening
exponents must insure that all “plastically deforming” material points do not unload;
ie., Bt + At) > E(t); 2= \/2¢ - €.

As is usually the case, parametric studies are only of limited value, and there
always exist zdditional material combinations and loadings for which information is

sought. The major issues unresolved in this study which still need be addressed are how
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and when does the crack-face constant-state sector become an elestic wedge; how and
why does the interfacial elastic wedge and accompanying constant state region evolve;
and what are the elastic and inelastic asymptotic crack-tip fields when the elastically-
predicted crack-face contact zone is approximately the same size as the plastic zone.
In addition to analyzing more material combinations, extending the assumed material
idealization to include anisotropic material behavior (both elastic and inelastic), and
strain-hardening would also be useful.

Although much attention has been focused upon determining the characteristics
of fields very deep within the plastic zone (specifically, for the traction-free crack-tip
model — nine orders of magnitude smaller than the plastic zone), such informatio is
of little more than academic use unless it reveals the complete asymptotic structure.
From a purely physical point of view, structures larger than geophysical plates must
be considered before the characteristics of fields which are nine orders of magnitude
smaller than the plastic zone would have meaning. [Picture the structure that would
require the twelve orders of magnitude of resolution considered by Shih and Asaro
(1987)!] Additionally, the limitations identified previously, (Section 4.4) would require
very unique material properties in order to achieve a valid solution at that size scale.
For most common engineering applications, resolution and identification of continuum
fields three or four orders of magnit.de smaller than the plastic zone should provide

sufficient and (hopefully) meaningful information at that size scale.
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Appendix A

Boundary Layer Formulation

In order to impose Sham’s boundary layer formulation (Sham, 1983), it is necessary
to calculate consistent energy conjugate stiffnesses and boundary displacements. The
first section derives the far-field stored energy, due to the lower order terms, and for-
mulates an energy equivalent spring network to represent it. Appendix C contains the
actual FORTRAN program used to determine the spring stiffness for a given material
combination. The second section derives the imposed displacements in terms of the
admissible eigenfunctions and coefficients (generalized degrees of freedom). These dis-
placement constraints are then enforced on the FE boundary nodes via a user-written
MPC subroutine. Again, Appendix C contains the actual FORTRAN coding used for
the MPC subroutine.

In this appendix, the two stress potential functions used are ¢ and x instead of the
stress potentials ¢ and {1, as used in the body of the text. Since x is related to ¢ and
Q1 by

x" — nl _ ¢l _ Z¢",

they produce equivalent results. However, the unknown coefficients a, and b, of
Egs.(3.4) and (3.5) are not the same. All Appendices, subroutines, and FORTRAN
coding use B(x) and Dy) as the unknown coefficients, with the Bg) term being adjusted

so that it is interpreted as B = K.
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A.1 Energy Considerations
A.1.1 Formulation of Equivalent Stiffness Matrix

Implementation of Sham’s boundary layer formulation requires the evaluation and in-
clusion of the far-field energy, which is attributable to the T-field terms. This section
evaluates the second term in Eq.(3.8) from its associated strain energy potential rela-
tionship.

The general series potential functions given by Sih and Rice, (1964) and Rice (1988),

which satisfy the bi-material crack, are

— —1je 1 . 1§ N 2C, D(M) M+1
$i(z) = 2273 E[(N+2) e Bayz" + & +02§M+1z , (A9)

— 27e , — 3—ie _ 2C, D(M) +1
$2(2) = 2e E[(N+ ) i€] Bin)z" +C +02§M+1zM , (A.2)

a(e) = 28 S Bya 2™ DIV — 3) — il B

C: 2 D(M)
Ci+C: 4 2 Da2"a — o +czzM+2 E (4.3)
and
x2(2) = 2253 By — 2e?z1 E[(N - —) — i€| Biwyz"
N
Ch M 2 201 D(M)
- D — M2 A4
cl+c,§ 22 C1+02§M+2 (44)
with
="l 1) (A.5)

In these expressions the subscripts (1,2) indicate material domains, € is the bi-material
constant, n; = 3 — 4v; for plane strain or n; = (3 — v;)/(1 + v;) for plane stress, u;
and v; are the appropriate shear modulus and Poisson’s ratio, respectively, and z is
the complex variable measured from the crack tip. The desired lower order Laurent
series displacements, u”, and the associated stresses, 0T , are obtained by letting

N=-1,-2,-3,---and M = —2,-3,—4,---. The M = —1 term is excluded from the
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formulation since it represents an applied concentrated crack-tip force and produces
infinite far-field elastic energy in the boundary layer formulation. For the ¢ and x
stress potentials, this represents the same modifications to the ¢ and {1 potentials as
were made in Egs.(3.4) and (3.5). From these potentials, the far-field elastic strain
energy due to the lower modes, ®(eT), can be evaluated and incorporated directly.

Since uT is an equilibrium solution in the far-field (Region R of Figure $.2),
oM (uT) = 2 /R 8(e7)dS = /r t7 . uTds. (A.6)

Here II is the total strain energy in R, ® is the strain energy density, I represents the
entire boundary around R (Teo, Iplastic, and I'c), and t7 is the resultant tracticn due

to the lower order modes. Lividing the boundary into regions yields

2l (uT) = / tT.uTds+ [ tT-uTds+ | tT.-uTds. (A.7)

rPh-h'c Feo | W8

Recall the Kolosov-Muskhelishvili stress formulas (Sih and Rice, 1964),

ar + 0gp = AR[¢') = 2{¢' + 8], (A.8)
and

040 — O + 120,49 = 2¢"°[2¢" + X"], (A.9)

where a bar indicates the complex conjugate, and R signifies the real portion of the

argument. Subtracting Eq.(A.8) from Eq.(A.9) gives
—20,, + 120, = 26'%°[2¢" + x"] — 2[¢' + ¢'). (A.10)
The displacements obtained via Kolosov-Muskhelishvili transformation are
. 1 U
utiv= zﬂlmﬁ z¢' — ¥'l, (A.11)

where the shear modulus, u, Poisson’s ratio, v, and n are those associated with the
individual material domains. Transforming to a polar coordinate frame, Eq.(A.11)

becomes
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c--iﬂ

2u

[n¢ — 2¢' — x']. (A.12)

u, + tuy =

Examination of the potential functions shows that the stresses, o,,T and o,47, behave
as zP~3% 4 22-P and the displacements, u,T and u,7, behave as 2737 4 271,
where p =0,—1,—2,---and ¢ = 0,—1,—2,---. In general, the term tT -uT behaves like
2Pta-2-%c 4 >-3-p-9 while for large z the dominant component, p = ¢ = 0, acts like

2~(2+12¢)  This means that as r — 0o on [y,
/r tT .uTds = 0. (A.13)

By the problem definition, “traction-free crack-tip faces,” t = 0 on I',, so that Eq.(A.7)

can now be written as

2M(uT) = / t7 - u”ds. (A.14)
rPln.ll'e
The traction, tT, is by definition

tT =0T - m, (A.15)

where n is the unit outward normal. Choosing Tpi..c to be a circle of radius r, ds

becomes rdf, and the cylindrical components of n are (-1,0,0). Eq.(A.14) then becomes

Zﬁ(uT) = / [—a"Tu,T - a,.gTu,;T]rda. (A.16)

PPI..Hc

For convenience, C in Eq.(A.12) is defined as
-io
€= ez_u["d’ —2¢' = x| = u, + iuy, (A.17)

and D is defined by dividing the complex conjugate of Eq.(A.10) by two, which results

in the following:
D=e"324"+ %"~ [¢' + ¢'] = —0rr — 10,5. (A.18)
Eq.(A.16) can then be rewritten as

2Mi(uT) = [ [R(C)R(D) + X(C)S(D)]rdo, (A.19)

Plastic
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or

2[1(u”) = /

rPlluo'c

R(rCD)do = / R(rCD)ds, (A.20)

Plastic

where R and & designate real and imaginary parts, respectively. It is convenient to
factor out the coefficients B and D (these are the vectors which contain B(y) and D)
as their components, respectivley), and to express the potential functions, Eq.(A.1) to

Eq.(A.4), in terms of their individual components as

N+M

¢= ) P (A.21)
i=1
and
N+M N+M
x= Y PN- > PRU, (A.22)
i=1 i=1
where
( Bg) )
Pyim-r = J Loy ( (A.23)
+M-1 D)
\ D(M) )

and the terms ¢;, R;, and U; correspond to the functional parts of Eq.(A.1) to Eq.(A.4).
More specifically, this means that the functions (¢y,---,én), (®1,---,Rx), and

(U1, -+ ,UnN) all correspond to the functions associated with the B coefficients and the
functions (¢n+1, -y dN+M-1)s (RN+1,- -+ s RN+m-1), and (Uy,---,Un4nm—1) correspond
to the functions associated with the D coefficients. (The subscripts indicating the
material domains are implied by the value of z chosen.) Further, four matrices, BB,

Bé, BB, and 55, are defined whose components are given by

BBy = 2|-2BleR] + 233, + DRI - B, (A.24)
BB = z[—z8ie*2¢] + 28V} + 28/4; + Ui z4]

~Bje™U! - U}¢)), (A.25)
BB; = z[ngie™R] — ngid; — nRie¥R! + R3], (A.26)
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and
BBy = zlngic™z4] — ngie™U] — ngud; — Rie™z¢]
+R;e?U) + Rig}). (A.27)
By using Eq.(A.17), Eq.(A.18), and Egs.(A.20) to (A.27), Eq.(A.16) reduces to

2M(”) = [ %m[ra BP + PBBP + PEBP + PBEPds. (A.28)
At this point, the integral [, ®(¢T)d$ has been recast in terms of the complex vector

P, which represents the unknown coefficients, and four matrices containing functions of

the original stress potentials. The remaining formulation consists of various algebraic

manipulations used to recast Eq.(A.28) into an expression which, when integrated,

contains real numbers only. First, the real vector q°T is defined as

( RB(y) )

RB)
RDa)

| RP ) _ | RDuy
{a"} "{ P } “18By, [ (A.29)

SBw)
$D(2)

~

{ $D(m)

Next, the stiffness matrix S is introduced and is defined such that
fi(uT) = %q‘TSq‘T. (A.30)
Using the convention that P; = e;+1f;, factoring out the real components, and equating

Eq.(A.28) to Eq.(A.30), we can express S as

1 [ ®(8B+B83+B8+BB)| 3(88 BB +88—8B)
(88 + BB - BB - BB) [R(-BB + BB + BB - BB)

After integration of Eq.(A.31), the integral f, ®(¢7)dS can be replaced by 1q*TSq*”.

= = df.(A.31)
RPlanic 2“
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A.1.2 Evaluation of Spring Constants

To incorporate this energy into the finite element code, a spring network, with appro-
priate stiffness, was constructed. The spring network vertices corresponded to “free”
nodes and the displacements of these free nodes were governed by the value of the
generalized coefficient vector q°7. It was observed that, since q°7 both pre- and post-
multiplied the stiffness matrix S [in Eq.(A.30)], a new upper triangular stiffness matrix
C can be used to reduce the number of individual stiffnesses. When constructed cor-
rectly, C replaces S in Eq.(A.30) to produce identical results. The new stiffness matrix

C is related to S (after evaluation of S) via

Si; 1= i=1,2,3,---,2(N+M—1)
C.','= S.-,-+S.-,- 1<) j=i.,i.+1,l'+2,"',2(N+M—1) (A.32)
0 otherwise.

The energy associated with a spring is calcuiated in the finite element code as %C.-,-(q.- -
¢;)? as opposed to %C.-,-q.-q,-, as assumed in Eq.(A.30). To rectify this situation, a further
modified spring stiffness matrix C’ is defined whose components are
-1c¢.. 1#J
24 i=1,2,3,---,2(N + M)

t=)
J=tt+1i+2,--- 2(N+M-1).

Finally, the far-field elastic strain energy can now be expressed in terms of spring

Ci; = (A.33)

; 2(N+M-1
%Zi:n kTt % Ezi,' * )C:'l

constants, Cy;, as

2(u") = 3 (¢ ~ )Cs(as — ) (A.34)
with the clarification that the term (g; — g;) is interpreted as g;, when ¢ = ;.

The actual spring stiffnesses for a particular choice of material properties were
obtained by numerically integrating Eq.(A.31) using Simpson’s 1/3 Rule with Af =
7/100. The T piguic boundary was chosen to be a circle, with radius rpigpic = 1.0 m,
centered about the crack tip. This prevented numerical noise associated with evaluating
T Plastic Taised to large power. To reduce other numerical noise, the integration path was
divided and integrated from 6 = +7 to @ = 0 simultaneously. The complez FORTRAN

coding used to evaluate C' is included in Appendix C.
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A.2 Boundary Considerations

The boundary conditions required for Sham’s boundary layer formulation are those of
the general bi-material crack problem. Using the general series potential functions,
Egs.(A.1) to (A.4), and the Kolosov-Muskhelishvili relation Eq.(A.11), the displace-
ments can be expressed in terms of the complex coefficients B(x) and D(»s), and the
location z = re*’. To maintain the K-field dominance at the boundary, again only the
series terms corresponding to N =0,—1,-2,---and M = —2,-3,—4,- -, are used to
determine the displacements. After some algebra, the displacements for the upper half

can be written as:

u= %: %(Felnen + Fe2n fn) + % C;}:H (Geipem + Ge2pdy) (A.35)
and
Q CrM+1
v= %: ;—(Fc3~eN + Fednfn) + % oy (Ge3prenr + Gedpdpr), (A.36)
where (subscripts dropped for brevity),
P = N+3/2, (A.37)
Q = N+1/2, (A.38)
R = PQ-¢é, (A.39)
S = ¢(P+Q), (A.40)
T1 = cos|eln(r))cos(Q0) + sineIn(r)] sin(QF), (A.41)
T2 = cos|eln(r)]sin(Q8) — sin[eIn(r)] cos(QF), (A.42)
T3 = cos|eln(r)] cos(2Q0) — sineIn(r)] sin(2Q0), (A.43)
T4 = cos|eln(r)]sin(2Q6) + sin[eIn(r)] cos(2Q8), (A.44)
T5 = cos|eln(r)] cos(Q) — sin[e In(r)) sin(QF), (A.45)
T6 = cos|eln(r)]sin(Q0) + sin|e In(r)] cos(QF), (A.46)

Fel = ne|PxT1+¢exT2) —e’|RxT3- 8 x T4
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—e"™e [P x T5+ € x T6| + e’[R x T1 + S x T2, (A.47)
Fe2 = nelexT1— P x T2 —e“|S x T3+ R x T4|

—e*™e [P x T6 +¢ x T5| — e[R x T2 - § x T1], (A.48)
Fe3 = ne[PxT2—exT1]— e[S x T3+ R x T4]

+e*™e [P x T6 + € x T5| — e?’[R x T2 — § x T1], (A.49)

and

Fe4 = ne? P xT1+exT2|+e?[RxT3—§ x T4

- —e"™e [P xT5 —exT6| —e’[R x T1+ § x T2]. (A.50)
The coefficients of the integer powers are defined as
D) = eg5) + idy), (A.51)

and the accompanying terms associated with the integer powers are

n+M+1

Gel X cosl(M + 1), (A.52)
Ge2 = —QL—ﬁ-}l sin[(M + 1)6], (A.53)
Ge3 = %—1 sin|(M + 1)8] + 2sin|(M — 1)d], (A.54)
(A.55)

and |
Ged 'I—M—Ai—l_l cos[(M + 1)6] + 2cos[(M — 1)d]. (A.56)

By using the definition proposed by Rice and Sih for the stress intensity factors and
the convention B-io) = e(5) + 1f(0)» B(o) can be expressed in terms of K as

RK (.75 — %) + SK2¢

= A.57
€ 4e*/27[.75 + 3€2) cosh(me) (4.57)
and
RK2¢ — SK(.75 — ¢
oo = ( ) (A.58)

4e**/27(.75 + 3€?] cosh(me)
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It should be noted that the original Rice and Sih (1965) work does not give the ap-
propriate energy release rate unless the definition relating k; and ksr to K, given by
Hutchinson et al. (1987) [Eq.(2.15)], is used.

The displacement relations (A.34) and (A.35) were “coded up” as constraint equa-
tions and used along the I'piq.i.-mnodel boundary of the finite element mesh. Appendix
C contains the user MPC which was used to enforce the nodal displacement boundary

conditions in terms of imposed the K(t) and the unknown vector q°7.
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Appendix B

Elastic-Wedge Stress Potential

The elastic stress potentials for a semi-infinite wedge loaded by constant tractions on
each of its faces is given. The individual stress components are obtained from ¢, the

stress potential, by using the definitions (Timoshenko and Goodier, 1970)

62
om=22, (B.1)
8 (184
Orq = —5- (;5) , (B.2)
and
_19¢ 19 (B.3)

a"_rar+r_2¢9"7'
The stress potential for a wedge loaded along its faces by constant tractions is found
from the general solution given by Timoshenko and Goodier (1970):

¢ = bor? +dor®y + %r'y siny — ;—qu cosy + azr’ cos 2y + car’sin2y.  (B.4)

For the specific problem shown in Fsgure B.1, the stress potential constants are
W

RSy (B.5)
b = “2acT (B.6)
c (H + 2Ty — W)sin 2y — (K — T)(cos 2¢ — 1) 5
2 2(cos2¢p — 1)2 + 2(sin2¢) X (sin2¢ — 2¢)) ’ .
and
az (H +2T¢ — W)(cos 2y — 1) + (K — T)(sin2¢ — 2¢)) ©5)

2(cos 29 — 1)2 + 2(sin 2¢) X (sin2¢ — 2¢)
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Using Egs. (B.1) to (B.3) and Eq. (B.5), the stress components are

04y = 2a3(cos2y — 1) + 2¢;(sin2vy — 29) + W — 2T, (B.9)
Ory = 2a3sin2vy —2¢z(cos2y—1)+ T, (B.10)
and
o, = —2a3(cos2y+ 1) — 2cy(sin2y + 27) + W — 2Ty
1
+;(al cos~y + ¢;sin7). (B.11)

The o,, component is singular with respect to r, and that two constants a;, and ¢;
remain unspecified from the boundary conditions prescribed. The values of these two
constants are determined by matching the o,, stress, and for non-zero values of a, and
¢; concentrat.. forces must exist at r = 0.

A note of caution, when the coordinate frame is rotated to coincide with the crack-
tip coordinate frame (via 4y = 7 — 8), the sign of the o,y component must also be

changed.
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Figure B.1 Elastic wedge showing constant normal (W = ta(y = 0)] and shear [T =
ts(y = 0)] tractions on its lower surface, constant normal [H = ta(y = ¢)] and
shear [K = t,{v = ¢)] on its upper surface, and polar (r,v) coordinates.
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Appendix C

User- Written Software

This appendix contains the the FORTRAN coding for the user-written elastic/perfectly-
plastic constitutive relationship subroutine UMAT as well as the program used to cal-
culate the spring coefficients for the traction-free crack-tip model derived in Appendix
A. The user-written MPC subroutines which impose the boundary displacements are

included for both the traction-free and (frictionless) closed crack-tip models.

C.1 Elastic/Perfectly-Plastic UMAT

This rountines original framework was written by Allen Lush. The author modified the
original subrountine from its radial return operator to the Rice-Tracey mean normal

integration operator.

ok e e e e o oo oo o o o oo i o R ol e o o o o o e o o o ok o o oo o sk ok ok ok ok kol ok KD

c >
c ABAQUS USER MATERIAL FCR >
c RATE INDEPENDENT PERFECT PLASTICITY >
c >

c*##**#**#**#*##*t******#**#********‘#*##*t**#‘***t#*****#***##*******)

c

C Properties common to all material models:
C  PROPS(1) = yield stress TAU Tensile
c PROPS(2) = MU

c PROPS(3) = KAPPA

c

Vv V V V V V

T T T L L T L L Rt e I T I I LTI
C Notes: >
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1. Compile with FORTRAN 77 only.
2. Do not use thie version for plane stress.
3. Use with the *STATIC procedure.

aaooaoaan
vV V.V Vv V

Crenskrbkkrkhnkkkkdhkkrhbhkkkkkkkkphiephk kb kR kR Rk Rk ak)

SUBROUTINE UMAT(STRESS,STATEV,DDSDDE,SSE,SPD,SCD,STRAN ,DSTRAN,
1 TIME,DTIME,TEMP,DTEMP,PREDEF,DPRED ,MATERL ,NDI,NSHR ,NTENS,
2 NSTATV,PROPS,NPROPS,COORDS)

IMPLICIT REAL+#8(A-H,0-Z)

REAL*8 MU,KAPPA

DIMENSION STRESS(NTENS),STATEV(NSTATV) ,DDSDDE(NTENS,NTENS),

1 STRAN(NTENS) ,DSTRAN(NTENS) ,Stresaf(6),Sn(6),Gamma(8),
2 COORDS(3),PREDEF(1),DPRED(1),PROPS(NPROPS)

c
DATA ZERO,ONE,Onep,TWG, THREE/0.CDO, 1.0000000D0, 1.0200000D0
* ,2.0000000D0, 3.00C000D0/

c
NDIPL1=NDI+1

c

TAU=32.6DO 1PROPS(1)
MU=5.48D3 PROPS(2)
_ KAPPA=0.1333333333D3 |PROPS(3)
Chmkkkkkkkkkkkkikhgkkpkkkkkk ok kkkkkkkdk ok kkkkkkkkkkk ok Rk Rkokkkokkorkokkiokk
C Calculate the beginning state SIG1 and P1.
C Note that UMINV converts STRESS to its deviatoric part.
o g T T L T e T T T e
CALL UMINV (STRESS,P1,SIG1,NDI,NTENS)
Ok skoskok sk ok sk 0k 3 ok 3 o ok ok ok o o o ok o ok o oo ke o ok ok o o ol o o o ok o o sk ok o o ok ke e o ook o o ok e ok o ok o o ok o
C Calculate the trace of the strain increment.
(O 8 e s ok o o ook o o ook o ool ke o o ke ok ook e ok ol ok e ok ook ok o ol ke e o ol e ok ok o ok ke ok o ok ke o o koG o ook e o ol e o o ok o o ok e o ok ok
TRACE=ZERO
DO 10 I=1,NDI
10 TRACE=TRACE+DSTRAN(I)
{0 % 28 e 2 e ok ok o o o o o ook o ke 2 ok oo o ok e ook ook ok e o ke o ke ol ok ok o e o e s o e ol o o o o ol o o e s ok ok ok ol ok o ok ook ok ok ok ok
C Convert to deviatoric tensor strain components.
Chmkparkkookkoaokk ko dokokkk ok ok kg kok ok kak koo kok ko gk kkk ke koo ko ok ok k&
DO 16 I=1,NDI
16 DSTRAN(I)=DSTRAN(I)-TRACE/THREE
DO 20 I=NDIPL1,NTENS
20 DSTRAN(I)=DSTRAN(I)/TWO
(2 0 o o e o e o o o o o ok ook o e oo o ale e ol e o e o o i o e o ok e o o e o e ol ke ok ko ol e sk ok s ok e ol e o e o e ol o o o o ok ok
C Calculate the new trial stress.
(39 0 o ke o o s o e s o ke ol ok o e e o ol ok ol o e ol ook oo ol ook o o e ok ok o o oo sk o o ol e o e e a0 o e ol ol o ol o o e ol ook ok o ok

DO 30 I=1,NTENS
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3C SN(I)=TWO*MU*DSTRAN(I)+STRESS(I)
(O ot ke o ke s ok o o o o e o ok o o o o o o e ok e oo ook ool o ol e ok o o o o ol ol e e ol o ok ool e o e oo oo o ol e ol o e ook ok ok
C Calculate SIGTRL.
Crrknbbkkkkrrhkhrkrhgrihphkdarhrkkk Rk ek kR Rk kR hhhk
CALL UMINV (SN,PDUMMY,SIGTRL,NDI,NTENS)
CHx bRk R SRR RRE AR R KRB R KRR RS LR RRRAER kRN R RSk agR Rk kbR Rk
C Calculate the pressure at the end of the increment.
Crerkak kR Rk kRN R R RN RN RNk G ARk kR Rk k&
P2=P1-KAPPA*TRACE
Crrxikkpikphsrdkkkbhbknnkkrkdk Rk kiR kR gk kool ook ok ok o ook ok g ok o

C Determine the state of the initial and final conditions.
ct*#**##*#ttt*#lt#tttt*t#*t**#*#****t*ttt#‘*ttt#*##t#*##*tt*ttt‘t*t#ttt
Iflag=0
Close=(.99990999D0+Tau)
I1f1(Sigtrl.Le.Close) Then
C The final state is elastic.
ETA=0NE
C1=TWO*MU
C2=KAPPA-C1/THREE
C3=ZERO
C Check if the initial state is non-yielding, but the final state is.
Else IF (SIGTRL.Gt.Close.and.SIG1.Lt.Close) then
Iflag=1
Else
C Both initial and final states are plastic. (Use Rice-Tracey)
Iflag=2
End if
Ct****#*****#t***#*****t****t*****t**t‘***##t*#**********t#************
C Decide what method should be used to calculate the stresses and the
C Jacobian. The following section is used if the final state is
C elastic.
(G % 2k o ok e ok e ok 3 ok o ok ok 3k e ok 3 o 3k ok ok s ok ok o 2 o ok sk o ok e o ol s ke s ok ke s o ok ok ade ok ook o ok o ok e ok ok ok ko ok ok ok ok ok ok ok ok ok
1f(Iflag.Eq.0) Then
(O 2 e e e e o e ke o e o o e ok o e ok s ke ol s afe o s ke ol e ok ok oke sk e ol ok e ok sk ol e ol v ke ol e ok ok o ol o e ok o ol ol ok ok ok ke ke ok ke ok ok ke ok ok ok ok ok
C Calculate the deviatoric stress at the end of the increment.
T T Ty T TR R T e e e T
DC 100 I=1,NTENS
100 STRESS(I)=ETA*Sn(I)
(G 2 80 e 7 ke 2ok o e o o o ol e o e o e ok o abe s o e o ok o ke o ok ok o ok o ok sk ol ok ok o o0 o ook ook 2ok o o ook ok ok o ok ok o ol ke o ke o e ok ok
C Calculate the Jacobian.
(O o ke o e e o e ok o ke ok o ke o o e o ok o ol o ok o o ok ke ok kol ok e sk ok kb R okok R o ok R R kR kR ok R ok ok ok ke sk ko gk ok
DO 200 I=1,NTENS
DO 200 J=1,NTENS
200 DDSDDE(I,J)=-C3*STRESS(I)*STRESS(J)
DO 210 I=1,NDI
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DDSDDE(I,I)=DDSDDE(I,I)+C1
DO 210 J=1,NDI
210 DDSDDE(I,J)=DDSDDE(I,J)+C2
DO 220 I=NDIPL1,NTENS
220 DDSDDE(I,I)=DDSDDE(I,I)+C1/TWO0
Crepntd kb bk Rk kSRR RN R ARk RN Rk Rk Rk kxR akof ok
C Convert deviatoric stress to complete stress.
CHut kxR R R Rk R R Xk R R kR R RR RN Rk ke Rk kb gk Rk koo ko
DO 2256 I=1,NDI
226 STRESS(I)=Stress(I)-P2
(C e e st oy o o e ool e o ook ool e ool ol e ool o e o oo o ol e o o oo e o ool o o ool ol ool ol o oo ol ol e ool o o oo ok ok ke ko
Else If (Iflag.Eq.2) Then
(e 230k o e 2 ok o o ok ok ke o ok o o ool o o ol o ol ol ook o ok o ol o ook ok ok o ol ok o o0 oo o ol e o ool o o ook o e o o o ol o ok o o e ok o
C This section is used to implement the Rice-Tracey Mean Normal Operator
Chrrkknkhnmkkkbkkrkrkiokkniokkrhgkkkikgkkkdgok ko kdokikok gk ko kkokok koo kokokkokkok
Ottt e e e e e ool o s oo ok i ok o ol ook ok o ok ke ol ol ok ke ke o ok ok ok e ok ok ook s xRkl ko okt ok ok ok ok ok R ok ok ok ok ok
C Calculate the trail stress and the needed direction.
Cokxnkkmrkkkkkkrkknkkrkkkrkkkhhkkhkkkkbkkrkkkrkdkk ks kkkrkhkrhkkkkkkkkk
Do 230 I=1,Ntens
230 Sn(i)=Two*Stress(i)+Two*Mu+Dstran(i)
Crxtkkkkkkkkd ok kokk ok kokkkokkkkaokkkokkok ko kxkkkkokokk Rk Rk ko gokkok ok kdokkok &
C Normalize the trail stress and the needed direction.
(e e e e e e T
Call Euminv(Sn,Taustar,Ndi,Ntens)
CHokkkiokkkkkokrkkkikkkkkkkkokkdkokdokkkhkkkkkdkkkkkk kg krkkdopkkokkkkforkkkkiok
C Calculate the dot product between the strain increment and stress

C direction.
c**#**#********t*****************************#**#*********#*****t***#t*

RNdotE=Zero
Do 240 I=1 ,Ndi
240 KNdotE=RNdotE + Sn(i)*Dstran(i)
Do 260 I=(Ndi+1) ,Ntens
260 RNdotE=RNdotE + Sn(i)*Dstran(i)*Two

(C 2 s ke o e e o o o e s ke o o o o o o o ol o o e o ke o ok o ol ke ook ook ok ok ke o ke o ke o o e ok o ol o ok e ook ook ok ok o ol ok ok o o o ol ook ok koK
C Calculate the final stress state
(e e o ke ok ke oo o o o e ok o o o o o s o o e o e ook o ke o ok e o e o o o ok ok o e o ke o ol o e o ol e o e ook ook o ok o ok o oo o ke ol ok ok ke
Do 260 I=1,Ntens
260 Stressf(i)=Stress(I) + Two*Mu*Detran(i)
* - Two*Two*Mu*RNdotE*Sn (i)
(T T T T T P T P T P T P T T T
C Calculate the Jacobian - It is symmetric.
O 0 e ok s e o o e o o o o e o o e o o ok o ol o e ol o e o ok o ke o o 0 o o o ool o o ok o e ol oo o o ok o e ol o afe o o ol e ok o ok o o ok ok ok
Alpha=Two*Mu* (One-Two*Mu*RNdotE/Tanstar)
Do 290 I=1,Ntens
Do 290 J=1,Ntens
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Ddsdde(i,j)= -Two*Alpha*Sn(i)*Sn(j)
-(Mu/Taustar)*Sn(i)*(Stressf(j)-Stress(j))
* -(Mu/Taustar)*Sn(j)*(Stressf(i)-Stress(i))
I£(I.Le.Ndi.and.J.Le.Ndi)
* Ddsdde(4i,j)= Ddsdde(i,j) + Kappa - Alpha/Three
If(I.Eq.J.and.I.Le.Ndi)
* Ddsdde(i,j)~ Ddsdde(i,j) + Alpha
If(I1.Eq.J.and.1.Gt.Ndi)
* Ddsdde(i,j)= Ddsdde(i,j) + Alpha/Two
290 Continue
Coeteseoin o ook o ook ok ok o ok o o e ool o o ok ol ok o o o e e oo oo ok o ok o o o koo ok o o o o o ok oo oo ol o o o ok o o ok ok ok
C To prevent numerical drift, the stress will be normalized and the
C equivalent stress scaled to be exactly the yield stress, Tau.
(O ot e s ok ok e s ol e o ol ol s ook o o ool ok o ok e s ol o ok ok ok sk ol kot e s ok ke e ok ok ool ok ok ok ok ok sk ok kol ok ok oK ek ok kR ok
CALL UMINV (Stressf,Pug,Scale,Ndi,Ntens)
Factor=Tau/Scale
C If the new stress is not close to the yield surface, signal it!
If (Factor.lt.(.99).or.Factor.Gt.(1.01)) then
Print #*,'Scaling factor is ’,Factor,
* ‘and Initial Equiv. stress is ',Sigl
End if
Do 2956 I=I ,Ntens
206 Stress(i)=Stresst(i)*Factor
Ckkikkakkskiokkokiy sk dokkiokokkokkokokdokkk ok kb ok mokdok dokok koo ke mkokok kR k
C Convert devia‘ioric stress to complete stress.
ChdkkkkknhrkNgokh khkkyd kokkkkkkkkkkkkkdkkkkkkkkggokkkkkkkkkkkkopkkdkkkkkEkokk
DO 300 I=1,NDI
300 STRESS(I)=Stress(I)-P2
(% % 3k 3 ke sk o o e o 3k o e o o ok ke e ok o s o ok ok o e 3k ok ok o o ok ok ok s ol ok ok ok o ok ke e o ok ok o o ok ok o ool ok e o ot ok kol ol kKoK Rk
Else
(G2 3% e 3k e 3k ke e o 3 ok ok ok ok ok ok ok ok ok ok ok ok ok o o e ok o ok ok ko o ok ok e ok ok o ok ok o ok ok ok ok o o ok ok ok ok ok ok ok kol ok ok ok ok ok akok ok
C This section is used to implement the Rice-Tracey Mean Normal Operator

C when the initial solution ie elastic and the final is plastic.
(G0 6 o e o o o o oo oo ok o ok o o o o ok ok ok o o o o o o o ok ok ok ok o o o o oo o oo ook o e e o o o o o o ok oo o o o o o o ook o ok

e ok st e o o ol e o e e o o ook o ol o o ol ok ok ok R ko ok ke ook ok ok ok ke loR kR Rk ok ok ok ok ok ko ko ok ok ok R ok ok

C Calculate the dot product between the strain increment and itself.
C 5000 5 oo e e e o oo oo oo o o o 2 o ol o ool ol e ol o ool o o0 o oo oo e e oo o o oo oo ol ool o e o o oo ok ok ook o oK o o ok ok

DEdotDE=Zero
Do 305 I=1,Ndi
306 DEdoiDE=DEdotDE + Dstran(i)**Two
Do 310 I=(Ndi+1) ,Ntens
310 DEdotDE=DEdotDE + Dstran(i)*Dstran(i)*Twvo

Crimkbnkkkkhkkkkgkkkkikekiokkkbkkkkkkkkkkkkkkkkkk kR kkkkdkok ko kok &gk kkkk

C Calculate the dot product betwee:r the strain increment and initial
C stress.
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CHEs kb kbR kN R AR R R kR R kR kR R KRR Rk Rk kR Rk Rk Ak kA Rk kK

DEdotS=Zero
Do 315 I=1,Ndi
316 DEdotS5=DEdotS + Stress(i)=*Dstran(i)
Do 82V I=(Ndi+1),Ntens
320 DEdotS=DEdotS + Stress(i)*Dstran(i)*Two

0o o o o oo o oo oo o oo o o o o o oo o o R

C Calculate the dot product between the initial stress and initial

C stress.

C o o o e oo o oo o oo oo o o o oo oo o o o o oo o o o o e e oo oo oo o o o e
5IdotSI=Sigi*Dsqrt(Two/Three)

O o o e oo e o oo o o oo o e ol oo o o o 0o o o o o o o o oo o o o o oo o o e ool o o e ool ook o

C Find beta, the fraction of the elastic strain needed to cause yield

C In the text beta is called alpha.

Gt o e ol o s oo oo o oo o oo o o o o o o oo e o o o o o ko o o o o oo oo o o ok o

Quad2=Dsqrt ( (DEdotS**Two)

* -DEdotDE* (SIdotSI-Two*Close*Cloase/Three))
Quad3=Two*Mu*DEdotDE
Ibetal=0
Ibeta2=0

Betal=(-DEdotS - Quad2)/Quad3
Beta2=(-DEdotS + Quad2)/Quad3

c Logic to find maximum exceptable root.
If(Betal.Lt.Zero.or.Betal.Gt.Onep) Ibetal=1 |Unexceptable value
If(Beta2.Lt.Zero.or.Beta2.Gt.Onep) Ibeta2=1 |Unexceptable value
If(Ibetal.Eq.1.and.Ibeta2.Eq.1) Then

Beta=One
Print *,’Beta roots exceed the allowable range. Betal ', Betal
* .’ Beta2 °,Beta2

Else If(Ibetal.Eq.1.and.Ibeta2.Eq.0) Then
Beta=Beta2
Else If(Ibetal.Eq.0.and.Ibeta2.Eq.1) Then
Beta=Betal
Else

Beta=Betal

If(Beta2.Gt.Betal) Beta=Beta2
End if

o T T T T T

C Calculate the star stress state.

R T T T LT T T T ey
Do 326 i=1,Ntens

326 Sn(i)=Two*Stress(i) + (One+Beta)*Two*Mu+Dstran(i)

Cor e s s o e s o o oo o ok o o s e e o o o o o o o o ko o oo oo o o e e o e oo o 3 o o ol e o oo o o oo o o o e o o o K

C Find the N star-bar direction and it’'s magnitude. Normalization is

C done in the subroutine.
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c.#*t‘#‘#ltt*t**‘ttt#*tt****tt*t*t*ltttt**#t#*#*##****#t***********#*‘*
Call Euminv(Sn,Taustar,Ndi,Ntens)
C““‘#t##l##‘tt#t#ttl##t*t#i#ttiititt‘tl#tt##t**#**##*##t*****#***#*#t

C Calculate the dot product between the strain increment and N star-bar
€090 e o o oo ool o o o o oot oo o o o o o oo oo e e e e oo o o o o oo o e o o o ol oo o o o o o ok

BNdotDE=Zero
Do 330 I=1 Ndi
330 SNdotDE=SNdotDE+ Sn(i)*Dstran(i)
Do 335 I=(Ndi+1),Ntens
336 SNdotDE=SNdotDE+ Sn(i)*Dstran(i)*Two

Crensekkkkkrrmk ik ki khkokkokd bk okokookokokokskoksok ok dob ok okoslokolok ok kool ok dokok ook ok okok

C Calculate the final stress state.
Crrnkkrrkkdbkbrkkhrkrrhhxrkkkkkkk bk kbhkkkkkkk kR r kR kkekkkkkdokkkkEk
Do 340 I=1,Ntens
340 Stressf(i)=Stress(i) + Two*Mu*Dstrun(i)
* - (One-Beta)*Two*Two*Mu*Sn(1i)*SNdotDE
Coaokokotokoe g e oo o ok o e s o o o ook ok ol e o ok o ok o o ol ook ok e o o o o o o ok ok o ok ol ok ok o ok o ok o o oo ok ok ok ok ok o okl o ok o ok
C Czlculate the Gamma tensor. Determines the change in beta wrt. Dstran
(P R P R 2 2y Y T P I T Y Y1113 1 111 IR
Gammacon=(Two*Beta*Mu*DEdotDE+DEdotS) *(-One)
Do 346 I=1,Ntens
346 Gamma (i) =((Two*Mu*(Beta)**Two) *Dstran(i)
* +Beta*Stress(i))/Gammacon
(% ek e e o o o o o ok o ook e e o o o o o ok ok ok ok 3K 3 o o o ok ok ok o e o ok ok o ok ok ok ok ok ol ok ok ok o ok o o o ok ok ok o ok oK o oK ok o ok ok
C Calculate the Jacobian - It is symmetric.
(O 20 3 o i o e 3 o o e o o o o ok ke o o o oK ok o o ok ok o o ok o o o o o ok ok o o ok ok v o ok o ok ook o o o o ok ook ok o o ok ok ke ok
c*t##****t**t#*************************************#*********#*********
C Useful constants for the Jacobian
c****t*****i***ﬁ**#**************t********************t****#*#*********
Ci=SNdotDE
Di=(One-Beta)*Two*Mu
E1=D1*Two*Mu/Taustar
Fi1=DEdotDE
G1=Two*Mu-E1*C1*(0One+Beta)
G2=Two*Two* (Mu* (Beta-One)+E1*C1*(One+Beta))
G3=Two*Two*Mu*C1+Two*Two*C1#C1*E1-E1*F1
G4=(-Ei)*(DOne+Beta)
G6=(-C1*E1)
Do 390 I=1,Ntens
Do 320 J=1,Ntens
Ddsdde(1i,])=
G2+Sn(1i)*Sn(j)
+G3*Sn(1)*Gamma(j)/Two
+G4*Sn(1i)+*Dstran(j)/Two
+G6*Dstran(i)*Gamma(j)/Two

* % * *
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* +G3*Sn(j)*Gamma(i)/Two

* +G4*Sn(j)*Dstran(i)/Two

* +G6*Dstran(j)=Gamma(i)/Two
I£(I.Le.Ndi.and.J.Le.Ndi)

* Ddsdde(i,j)= Ddsdde(i,j) + Kappa - Gi/Three

I£(I.Eq.J.and.I.Le.Ndi)
Ddsdde(i,j)= Ddsdde(i,j) + Gi
I£(I.Eq.J.and.I.Gt.Ndi)
* Ddsdde(i,j)= Ddsdde(i,j) + Gi/Two
390 Continue
G000 oo oo oo oo o oo oo e o o o o o o o oo e o o o oo oo o e
C To prevent numerical drift, the stress will be normalized and the
C equivalent stress scaled to be exactly the yield stress, Tau.
(© s e 2 o oo o o oo o o o e o ol o o o oo e o o o oo o oo e o oo o oo o o oo o o o oo o ook o ok ool e ko
CALL UMINV (Stressf,Pug,Scale,Ndi,Ntens)
Factor=Tau/Scale
C If the new stress is not close to the yield surface, signal it!
It (Factor.1t.(.99).or.Factor.Gt.(1.01)) Then
Print #,'In mod R-T: Scaling factor is ', Factor,
* ‘and Initial Equiv. stress is ’,8igl
End if
Do 396 I=1,Ntens
306 Stress(i)=Stresstf(i)+*Factor
Correkok ok skdkoobook ok o ok ok skokok ook oo okl ok ok ok ok ok oo ok ok ok ook o 2 ok ok ok ook ok ok koK o sk ok ko ok ok ok Kok ok ok K ok ok ok
C Convert deviatoric stress to complete stress.
CreErkkk kb xkkkk Rk kKR ERRRRRRERRERREREREERRRRKRRFRRFRRRRER KRR F Rk ARk kK k¥
DO 400 I=1,NDI
400 STRESS(I)=Stress(I)-P2
€ 2 s e kot ke ook ol ook o o sk o o ok ok e ke kol ok s s ok o s e ok ke ok ok o o i ok sk ok ok sk ok ok ok ok sk ok o sk o s ok ke o ok ke ok ok ok ol ook ok ok ok ok ok
End if
(% 3 ¢ sk ke o o s ol ke o ok ok e ok ke ok o ook o sk ok ok ok o sk ok ok o ok e o ke ke o ol e o ok o ke ko o sk ok ok o ook o o ok ke e ok e ok ok ok ok kol ROk
RETURN
END

CHrErkkkkkkkdhkkkkkkrkhkkrkkkhkkkkbbrhhkbhkkkrhkkrrkkhkphkkkkkkbkkkkkkkrrkk

*

o T P T T P T T2 eY
SUBROUTINE UMINV (X,XINV1,XINV2,NDI,NTENS)
IMPLICIT REAL*8 (A-H,0-Z)
DIMENSION X(NTENS)

[ T T T T T I T 2

C This subroutine calculates: >
c XINVi=-(1/3)*trace(X), >
C converts X to its deviatoric part X’, and calculates >
C XINV2«DSQRT(1.6*X’'*X") >

ChixkkkhkkdhhkbrkhkkkkhhhhhhrmrkkRkrknnkbkkkkkkkrhkkkkkokkkkkrkrkrkakkid
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NDIPL1=NDI+1
XINV1=0.0DO
XINV2=0.0DO

DO 10 I=1,NDI

10 XINV1=XINV1-X(I)
XINV1=XINV1/3.0DO
DO 20 I=1,NDI

20 X(I)=K(I)+XINV1
DO 30 I=1,NDI

30 XINV2=XINV2+0.6DO*X(I)*X(I)
DO 40 I=NDIPL1,NTENS

40 XINV2=XINV2+X(I)*X(I)
XINV2=3.0DO+XINV2
XINV2=DSQRT(XINV2)
RETURN
END

e T T T S L R P T S L L L e L L L L
CHERRRERERRAR SERRRRRERERRKAEARRARERRRRERERRREEREERERRRREAR RN R R ERER KRR
SUBROUTINE Euminv (X,Xinv2,NDI,NTENS)
IMPLICIT REAL*8 (A-H,0-2)

DIMENSION X(NTENS)
(Ll LI T P T R e R P I L S DS TR L e R LS e S L a s s D

C This subroutine calculates: >
c Xij =Xij /(2.0 *(.6 * Xij Dot Xij)~.5) >
C********#*#*##**#t***##***t**t***************#***t***t**#*t*****#****)
NDIPL1=NDI+1
XINV2=0.0DO
C
DO 10 I=1,NDI

10 XINV2=XINV2+0.5D0*X(I)*X(I)
DO 20 I=NDIPL1,NTENS

20 XINV2=XINV2+X(I)*X(I)
XINV2=Dsqrt (XINV2)
Xinv=2.0000000D0*Xinv?2
Do 30 I=1,Ntens

30 X(1)=Xx(1)/Xinv
RETURN

END
(T3 TTITTT T I IS RR R 2232222233322 2L L2 22 222 S S22 2 AR 2 20 2 Lt da bl bl
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C.2 Traction-Free Crack-Tip Model

C.2.1 Spring Coefficients
Program Mod_Stiffness

C This program calculates the stiffnesses in terms of the eigenmodes.
C It uses the assumption that twice
C the integral of the traction times the displacement is equal to
C the potential energy of the body. The potential energy is then
C just the product of the stiffness matrix and the coefficient vectors.
C This version used the square-root
C oscillatory terms and the integer homogeneous ternms.
c This program has been modified to give the spring format in a
c a manner consistent with ABAQUS 4.6 version.
Complex*16 Phi(20),PhiI(20),PhiII(20),X1(20),X11(20),X11I1(20)
Complex*16 BB(20,20),BcB(20,20),cBcB(20,20),cBB(20,20),Cposs
Complex#*16 X2(20),X21(20),X211(20),21
Complex*18 Coni,Con2,Con3,Con4,Conb,Con6,Z,Zb,Dthe,Ans
IMPLICIT REAL#*8 (A-H,0-Z)
DIMENSION AiAj(20,20),AiBj(20,20),BiAj(20,20),BiBj(20,20)
DIMENSION C(40,40),D(40,40),E(40,40)
c The material identification is such that material-1 is on the
C upper half and material-2 is on the lower half.
Open(Unit=30,File="Springs")
c Set up the material properties
Em2=2.04D3
Em1=7.2267D5
P2=.020000000000000000000D00
P1=,460000000000000000000D0
Mterms=11 1This is the number of terms desired.
Nterms=6 !This is the number of integer terms desired.
Isec=20 {Number of the node corresponding to the KII term.
Zero=0.000000000000000000D0
Two=2.0000000000000000000D0
Three=3 . 00000000000000000D0
Zepo=1.0E-12 IMinizum stiffness for stiffneas to be printed.
c Determine the bi-material Constants and Moduli

G1=Emi/((1.00000000D0+P1)*Two) |Shear Modulus
G2=Em2/ ( (1.00000000D0+P2) *Two) !Shear Modulua
F1=(3.000000000D0- (Two*Two*P1))/G1
F2=(1.000000000D0/G2)

F3=(3.000000000D0- (Two*Two*P2) ) /G2
F4=(1.000000000D0/G1)
Epsil=(1.0000000000D0/(Two*3.14160266368979D0))
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0o n 0o oo

*Dlog ((F1+4F2)/(F3+F4))
Pe1=3.000000000D0- (Two*Two*P1) !Plain strain Poisson's ratio
Ps223.000000000D0- (Two*Two*P2) !Plain strain Poiseson’'s ratio
C1=(Ps1+1.00000000D0)/G1 1Constants needed for the integer terms.
C2=(Ps2+1.00000000D0) /G2

Cc1=Two*C2/(C1+C2)

Cc2=Two*»C1/(C1+C2)

Epitheta=Dexp(6.28318530717068D0*Epsil)

R=.,1000000D1

This sets up the integration rules for Simpson’s 1/3 Rule.
Ninv=50 INumber of intervals per half/should be even
Nsteps=(Ninv#*2)+1 {Number of steps
Tinc=3.14169266368979D0/Dble (Ninv#*2) IIntegration step size.

The integration step is one-half the interval size.
Do 60 i=1,Mterms !Zero out the matrix
Do 60 j=1 Mterms
AiAj (i, j)=Dcmplx(Ze:o,Zero)
AiBj(1,3)=AiAj(4,])
BiAj(i,j)=AiAj(i,j)
BiBj(i,j)=A1Aj(1,j)
Continue
Do 300 KKK=1,Nsteps !Begin the major do loop of the intergration
Do 300 Mi=1,2
This loop is Bet to integrate the lcwer half from -pi to zero
while at the same time integrate the upper half from pi to zero.
The ‘logic’' of this is that terms of similar magnitude will be
accumulated at the same time so that in the case of an anti-
symmetric term it should contain less error. I hope!
It (M1.Eq.1) then !Lower half first.
Theta =(-3.14169266368979D0)+((Dble (KKK-1))*Tinc)
G=G2
Cposs=Dcmplx(Ps82,Zero)
Cc=Cc2
Else 1Upper half second.
Theta =(3.14169266368979D0) - ((Dble (KKK-1))*Tinc)
G=G1
Cposs=Dcmplx(Ps1,Zero)
Cc=Cc1
End if
Dthe=Dcmplx((Dcos(Two*Theta)),
(Dsin(Two*Theta)))
Z=Dcmplx((R*Dcos(Theta)), (R*Dsin(Theta)))
Zb=Dconjg(Z)
Do 100 i=1 Mterms
P=.600000000DC+(1-1)
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Q=(1-1)-.6000000000D0

Coni=Dcmplx(P, (-1.0000000D0*Epsil)) 1P-1e
Con2=Dcmplx(P, (Epsil)) iP+ie
Con3=Dcmplx(Q, (-1.0000000D0*Epail)) 1Q-1e
Cond=Dcrplx(Q,Epsil) 1Q+ie
Con6=Con3-Demplx(1.0000000D0, Zero) 1Q-1-ie

Call Power(R,Theta,Con3,Ans)
Phi(i)=Dcmplx(Two,Zero)*Coni*Ans
If (M1.Eq.1) Phi(i)=Phi(i)*Dcnplx(Epit eta,Zero)
c IThis adjusts for the lower half potential function.
PhiI(1)=Phi(1i)*Con3/Z
PhiII(i)=PhiI(1i)*Conb/Z
Call Power(R,Theta,Con2,Ans)
X1(1)=Dcmplx(Two,Zero)*
* Dcmplx(Epitheta,Zero)*Ans
Call Power(R,Theta,Coni, Ans)
X2(1)=Dcmplx(Two,Zero)*Con3*Ans
It (M1.Eq.1) then
X1(1)=X1(i)/Dcmplx(Epitheta,Zero) !This adjusts the potential
X2(1)=X2(1)*Dcmplx(Epitheta,Zero) !functions for being on the
End If !lower half.
X1I(1)=X1(1)*Con2/Z
X21(1)=x2(1)*Con1/Z
X1II(i)=X1I(i)*Cond/Z
X21I(1)=X2I(i)*Con3/Z
I1£(1.GT. (Mterms-Nterms)) Then
c This section calculates out the terms associated with the integer
c powers of the series expansion starting out at n=-2.
jj=Nterms-1-1
Call Power (R,Theta,(Dble(jj+1)),Ans)
X1I(i)=Dcmplx(-Cc,Zero)*Conjg(Ans/Z)*Z
X1IT(1)=X11(i)/Z
X21(1)=Dcmplx(Cc,Zero)*Ans
X2II(1)=Dcmplx((Dble(jj+1)),Zero)*X2I(i)/Z
PhiI(i)=Dcmplx(Cc,Zero)*Ans/Z
PhiII(1)=Dcmplx((Dble(jj)).Zero)*Phil(i)/Z
Phi(1)=PhiI(41)*Z/Dcmplx((Dble(jj+1)),Zero)
End if
100 Continue
Do 200 i=1,Mterms !The following are the individual terms
c associated with the complex variable bb and is conjugates.
Do 200 j=1,Mterms
BB(1,])=Zb*(
* (Z*Dconjg(PhiI(i)*PhiI(j)))
* ~(Z*Dconjg(PhiI(1i))*Dthe*X1II(}))
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* -(Dconjg(X2I(1)*PhiI(])))
* +(Dconjg(X2I(1))*Dthe*X1II1(j)))
BcB(1,j)=Zb*(

(Z*Dconjg(PhiI(1i))*Dthe*X2II(j))
-(Z*Dconjg(PhiI(i))*Dthe*Zb*PhiII(j))
+(Z*Dconjg(PhiI(1))*PhiI(j))
+(Dthe*Zb*Dconjg(X2I(1))*PhiII(j))
-(Dtne*Dconjg(X2I(1))*X2II(§))
-(Dconjg(X2I(1))*PhiI(})))

¢BB(1,])aZb*(

(Phi(i)*Dthe*X1II(j)*Cposs)
-(Phi(1)*Dconjg(PhiI(j))*Cposs)
-(Dconjg(X1I(1))*Dthe*X1II(j))
+(Dconjg(X1I(1)*PhiI(j))))

cBcB(4,§)=Zb*(

(Phi (i) *Dthe+Zb*PhiII(j)*Cposs)
-(Phi(i)*Dthe*X2II(j)*Cposs)
-(Phi(1)*PhiI(j)*Cposs)
-((Dconjg(X1I(1i)))*Dthe*Zb*PhiII(j)) 1The Problem Term.
+(Dconjg(X1I(1))+Dthe*X2II(j))
+(Dconjg(X1I1(1))*PhiI(j)))

200 Continue

* O X W * # * % * »

LR K R R R

c This section adjusts the weighting factor applied to each point.
c This is in accordance with Simpon’s 1/3 rule.
If (KKK.Eq.1.or.KKK.Eq.Nsteps) Then
Rinc=Tinc/Three
Else
Ki=KKK/2
K2=K1%2

It (K2.Eq.KKK) Then KKK is an even number

Rinc=Two*Two*Tinc/Three

Else

Rinc=Two*Tinc/Three

End If

End If

Do 300 i=1,Mterms
Do 300 j=1,Mterms
AiAj(4i,j)=Dreal(BB(i,j)+cBB(4,j)+BcB(1i,j)+cBecB(4,j))*Rinc/(G*Two)
* + AAj(4,)
BiBj(i,j)=Dreal(BcB(i,j)-BB(i,]j)+cBB(i,])-cBcB(4,]))*Rinc/(G*Two)
* + BiBj(1,])
BiAj(i,j)=Dimag(BB(i,j)+BcB(i,})-cBB(1,j)-cBecB(i,]))*Rinc/(G*Two)
* + BiAj(1,§)
A1Bj(1,])=Dimag(BB(1,})-BcB(i,])+cBB(1,])-cBcB(4,j))*Rinc/(G*Two)
. + AiBj(1,])
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300 Continue 1End of the integration.
Do 400 i=1 Mterms !Form the global stiffness matrix.
Do 400 j=1,Mterms
C(1,j)=A1Aj(4,j)
C(1,(j+Mterms))=AiBj(1i,})
C((1+Mterms),j)=BiAj(1,])
C((1+Mterms), (j+Mterms))=BiBj(i.j)
400 Continue
Do 600 i=1,(2+*Mterms) !Upper triangnlarize the global atiffness
Do 600 j=i,(2*Mterms) Imatrix. Use only one spring per node set.
D(i,j)=C(§.1)+C(i.]) IThe other halZ is being filled in for
If(i.Ne.j) D(j,i)=D(i,j) !convenience only.
I£(1.Eq.}) D(j.1)=D(j,1)/Two
600 Continue

This section adjusts for the springs working on the difference
between the two degrees of freedom, instead of the degree’'s
of freedom’s product. It becomes very important to determine
at this time how many terms are actually going to be used.
Do 650 i=1, (2+Mterms)
Do 660 j=i,(2*Mterms)
If£(1.Ne.j) then
E(1,§)=(-.5000000000D0)*D(i,})
Else
E(i,j)=D(4, j)*(.5000000000D0)
Do 626 K=1, (Mterms*2)
E(i,j)=E(i,})+(.500000000D0)*D(i k)
6256 Continue
End If
660 Continue
Ncount=8999 !Set up elset numbering counter.
Do 600 i=1 ,Mterms
Do 600 j=i,Mterms
Ncount=Ncount+1
II=i+1
JI=j+1
It (Dabs(E(i,})).Gt.Zepo) then
If(i.Ne.j) then
Write (30,1012) Ncount,Ncount,II,JJ
Write (30,1016) Ncount ,E(1,})
Else
Write (30,1011) Ncount,Ncount,II
Write (30,1016) Ncount,E(i,j)
End If
End If

aagaa
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600 Continue
Do 700 i=1 ,Mterms
Do 700 j=(Mterms+1),(2*Mterms)
Ncount=Ncount+1
II=j+1
JJ=j-Mterms+i+Isec
It (Dabs(E(i,j)).Gt.Zepo) then
Write (30,1012) Ncount,Ncount,II,JJ
Write (30,1018) Ncount,E(i,§)
End If
700 Cuntinue

Do 800 i=(Mterms+1i), (2+Mterms)
Do 800 j=i,(2*Mterins)
Ncount=Ncount+1
Il = j+1-Mterms + Isec
JJ = j+1-Mterms + Isec
It (Dabs(E(i,j)).Gt.Zepo) then
I2(1i.Ne.j) then
Write (30,1012) Ncount,Ncount,II,JJ
Write (30,1016) Ncount,F(i,j)
Else
Wrive (30,1011) Ncount,Ncount,II
Write (30,1015) Ncount,E(i,j)
End If
End If
800 Continue
1011 Format (**ELEMENT, TYPE=SPRING1 ,ELSET=SP*,14,/,315 )
1012 Format (* *ELEMENT, TYPE=SPRING2,ELSET=SP*,14,/,3Ib6 )
1010 Format ("’ *SPRING,ELSET=SP',I14 ,/,°'1’,/,E17.11,",")
1016 Format(’*SPRING,ELSET=sP’,I14 ,/,'1,1’,/,E17.11,",")
Fnd

Subroutine Power(R,Theta,Con,Ans)
c This subroutine calculates a complex number Z,( R,Theta),
c raised to a another complex number Con.
Complex*16 Z,Con,Ans
IMPLICIT REAL*8 (A-H,0-Z)
Ans=Dceplx( ( R+*+*Dreal(Con) ) ,0.000000000000D0)
sDempix( (Dexp(-1.0000000D0*Theta*Dimag(Con))),0.000000003000D0)
+ #Dcmplx((Dcos(Dimag(Con)*D1log(R))), (Dsin(Dimag(Con)*Dlog(R))))
* #Dcmplx((Dcos(Dreal(Con)*Theta)), (Dsin(Dreal(Con)*Theta)) )
Return
End
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C.2.2

o000 a0

MPC Subroutine

Subroutine MPC (Ue,A,Jdof,N,Jtype,X,U,Nmpce)

IMPLICIT REAL#*8 (A-H,0-Z)

DIMENSION A(n),JDOF(n),X(6,n),0(6,n)

This program imposes the asymptotic bi-material crack tip
displacements as an MPC. The order of the MPC as it should
appear in the deck is MPC#,Node#,Knode,Knode. Here MPC#
should be 1 for dof 1 and 2 for dof 2 in the upper half.
While 11 should be used for dof 1 and 12 for dof 2 in the
lower half. Note, this means that for every node to be tied
it has to be entered in twice; once for each dof. Node# is
the number of the constrained node while Knode is the number
of the extra node. The desired Ki strength should be given
as Knode's dof 1 displacement while the Kii should be given
as Knode’s dof 2 displacement. The subscript i and 2 refer to
the upper (1) and lower (2) materials respectively. The
Knode numbering are arranged with the first Iinteg minus one
terms corresponding to the square-root order terms while the
following terms correspond to the integer terms. (Starting from
the n=-2 tern.)

Iinteg=7 1I# of square-root terms including the K terms.
Rone =(-1.00000000000000D0) ! Useful constants
Zone =1.00000000000000D0
Two =2.00000000000000DO
Three=3.00000000000000D0
Pie =3.14169266358979D0
Determine the R and theta coordinates.
Theta=Datan2( X(2,1),X(1,1) )
I£(X(1,1).Lt.(0.0DO).and.Dabs(X(2,1)).Lt.(0.0001D0)) Theta=Pie
Theta =Dabs(Theta) | This always gives a positive theta.
If(Jtype.Eq.11.0r.Jtype.Eq.12) Theta=Theta*Rone
R=Dsqrt(X(1,1)*X(1,1)+X(2,1)*X(2,1))

Set up the material properties

Em2=70.1D03

Em1=13.7D03

P2=.342D0

P1=,260D0

Determine the bi-material displacements
G1=Em1/((Zone+P1)*Two) !1Shear Modulus
G2=Emn2/((Zone+P2)*Two) 1Shear Modulus
F1=(Three-(Two*Two*P1))/G1

F2=(Zone/G2)

F3=(Three- (Two*Two*P2))/G2

F4=(Zone/G1)
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Epsil=(Zone/(Two*Pie))*Dlog((F1+F2)/(F3+F4))
Cl=F1+F4 IThese are constante used in the integer
C2=F3+F2 {function expanaion.
Cc1=Two*C2/(C1+C2)
Cc2=Two*C1/(C1+C2)
It (Jtype.EQ.11.0R.Jtype.EQ.12) then
G=G2 1This adjust for the material being on the down side.
Rnj=Three- (Two*Two*P2)
Cc=Cc2
Else
G=G1 ! Assume that the node is on the upper half
Rnj=Three-(Two*Two*P1) I1Plain strain Poisson’s ratio
Cc=Cc1

End If

Uit=0.0DO !Initialize the displacements before the do loop.
Vit=Uit

A(1)=Zone

MM=(N-1)/2 !Adjustment for the due loop

Coshpe=(((Dexp(Epsil*Pie))+(Dexp(Epsil*(Rone*Pie))))/
Two) !Correction of Rice’'s original solution.

Etheta=Dexp(Epsil*Theta)
Epitheta=Dexp(Two*Pie*Epsil)

Re=Epsil*(Dlog(R))

Con3=(Three/(Two*Two)) - Epsil*Epsil

Cond= Two * Epsil

Con7=10.026613D0 * Dexp(Pie*Epsil) =

( Cond * Con4 + Con3 * Con3)
Do 200 I=1,MM | The number of terms involved is the second limit
If (I.LE.Iinteg) then IThese terms are used for the square-
Iroot expansion.

II=2-1

P=Dble(II)+(Zone/Two)

Q=Dble(II)-(Zone/Two)

CRe=DCos (Re)

SRe=DSin(Re)

CQt=DCos(Q*Theta)

8Qt=DSin(Q*Theta)

CQ2t=DCos ({(Two-Q)*Theta)

5Q2t=DSin((Two-Q)*Theta)

Termi=CRe*CQt+SRe*SQt

Term2=CRe*SQt-SRe*CQt

Term3=CRe*CQ2t-SRe*SQ2t

Term4=CRe*SQ2t+SRe*CQ2t

Termb=CRe*CQt-SRe*SQt

Term6=CRe*SQt+SRe*CQt
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Coni=(P*Q) - (Epsil*Epsil)
Con2=(P+Q)*Epsil
End If

C The terms Fel and Fe3 are associated with the 2_n term in my expan.
C The terms Fe2 and Fe4 are associated with the f_n term in my expan.

c

11 ((Jtype.EQ.11.0or.Jtype.EQ.12) .and.I.LE.Iinteg) then
These are done for the lower half.
Fel=(P+Terml + Epsil*Term2)*(Etheta)*Rnj*Epitheta -
(Con1*Term3 - Con2*Term4)#*(Etheta)*Epitheta -
(P*Termb - Epsil*Term6)/Etheta +
(Con1*Term1 + Con2*Term2)+*Etheta*Epitheta
Fe2=(Epsil*Termi - P*Term2)* Etheta*Rnj*Epitheta -
(Con2#Term3 + Conl*Term4)* Etheta*Epitheta -
(P*Term6 + Epsil*Termb)/Etheta -
(Con1*Term2 - Con2+Terml)*Etheta*Epitheta
Fe3=(P*Term2 - Epsil*Term1)*(Etheta)*Rnj*Epitheta -
(Con2*Term3 + Conl*Term4)=*(Etheta)*Epitheta +
(P*Term6 + Epsil*Termb)/Etheta -
(Con1#Term2 - Con2*Term1)* Etheta*Epitheta
Fe4=(Epsil*Term2 + P*Terml)*(Etheta)+*Rnj*Epitheta +
(Con1*Term3 - Con2+Term4)+*(Ftheta)+*Epitheta -
(P«Termb - Epsil*Term6)/Etheta -
(Con1*Term1 + Con2*Term2)*(Etheta)*Epitheta
Rcon=(Zone/(G*Coshpe) ) * (R*x*Q)
Else If ((Jtype.EQ.1.or.Jtype.EQ.2).and.I.LE.Iinteg) then
| These are done for the upper half.
Fel=(P*Terml + Epsil*Term2)*(Etheta)*Rnj -
(Con1*Term3 - Con2+Term4)*(Etheta) -
(P*Termb - Epsil*Term8)*Epitheta/Etheta +
(Con1*Term! + Con2+Term2)+*Etheta
Fe2=(Epsil*Terml - P*Term2)* Etheta * Rnj -
(Con2*Term3 + Conl*Term4)* Etheta -
(P*Term6 + Epsil*Termb)*Epitheta/Etheta -
(Con1*Term2 - Con2*Terml)+*Etheta
Fe3=(P*Term2 - Epsil*Term1)*(Etheta)*Rnj -
(Con2+Term3 + Con1*Term4)*(Etheta) +
(P*Term6 + Epsil#*Termb)+*Epitheta/Etheta -
(Con1*Term2 - Con2+Terml)* Etheta
Fe4=(Epsil*Term2 + P+Termi)#*(Etheta)*Rnj +
(Con1*Term3 - Con2+Termd4)+*(Etheta) -
(P*Termb - Epsil*Term6)*Epitheta/Etheta -
(Con1*Term1 + Con2+Term2)*(Etheta)
Rcon=(Zone/(G*Coshpe) ) * (R**Q)
Else If (I.GT.Iinteg) Then !This begins the integer
| section of the axpansion.

* % * * * * * * » * * *

* * * O *

#* ¥

* *

»*
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Mno=Iinteg-I-1
Rmnoi=Dble (Mno-1)
Rmno3=Dble(Mno+1)
Rcon=Cc*(R**Rmno3) / (Two*G)
Argp=Theta*Rmno3
Argn=Theta*Rmnoil
Fel=((Rnj+Rmno3)/Rmno3)*Dcos (Argp)
Fe2=(-(Rnj+Rmno3)/Rmno3)*Dsin(Argp)
Fe2=((Rnj-Rmno3)/Rmno3)*Dsin(Argp) + Two*Dsin(Argn)
Fe4=((Rnj-Rmno3) /Rmno3)*Dcos (Argp) + Two*Dcos(Argn)
Else
Print *,’'Your are in deep...........
End if
The U(*,*) are the stress intensity factors. Therefore an adjustment
must be made to convert them into the proper form. What follows are
the derivatives of the displacements with respect to the Stress
Intensity factors. Or the unknown degrees of freedom.
The conversion to the Stress Intensity Factors only occurs for
the square root term. The remaining terms are left as the unknowns
a+ib. This is done because the evaluation of the far-field is much
easier using aj+ibj instead of K1j+iK2j. Another separation is
given to the integer terms and the square-root order terms.
I1£(I.Eq.1) then
UK1= Rcon*(Fel*Con3 + Fe2+*Con4)/Con7
UK2= Rcon*(Fe2*Con3 - Fel*Con4)/Con7
VK1= Rcon*(Fe3*Con3 + Fe4*Cond)/Con7
VK2= Rcon*(Fe4*Con3 - Fe3*Con4)/Con7
Else If(I.Gt.Iinteg) then
UK1=Rcon*Fel
UK2=Rcon*Fe2
VK1=Rcon*Fe3
VK2=Rcon*Fe4
Else
UK1= Rcon*Fel*Coshpe
UK2= Rcon*Fe2*Coshpe
VK1i= Rcon*Fe3*Coghpe
VK2= Rcon*Fe4*Coshpe
End If
Jdof (2+I+1)=1 ! node in the expansion.
Jdof(2+#I)=1 1Give the correct degree of freedom for each free
IF (Jtype.Eq.1) then
JDOF(1)=1
A(2+1)=Rone*UK1
A(2*I+1)=Rone*UK2
Else IF (Jtype.Eq.11) then

241



200

Q

C.3

QOO0 a0

JDOF (1) =1
A(2+I)=Rone*UK1
A(2*I+1)=Rone*UK2
ELSE IF (Jtype.Eq.2) then
JDOF(1)=2
A(2*I)=Rone*VK1
A(2*I+1)=Rone*VK2
ELSE ! (Jtype.Eq.12)
JDOF (1) =2
A(2*1)=Rone*VK1
A(2*I+1)=Rone*VK2
END IF
Uit=Uit+{U(1, (2+1))*A(2+T) + U(2,(2*I+1))*A(2%I+1))
VitaVit+(U(1, (2+I))*A(2+I) + U(2,(2%I+1))*A(2+I+1))
Continue
Figure out which dof is being sought and is it in the upper or
lower half. Also, give the total displacement.
IF (JTYPE.EQ.1.0R.JTYPE.EQ.11) THEN
JDOF (1) =1
UE=Uit
ELSE IIF (Jtype.Eq.2.or.Jtype.Eq.12) THEN
JDOF (1) =2
UE=Vit
END IF
Return
End

Closed Crack-Tip : MPC Subroutine

Subroutine MPC (Ue,A,Jdof,N,Jtype,X,U ,Nmpce,Kstep,Kinc,Time)
IMPLICIT REAL*8 (A-H,0-Z)

DIMENSION A(n),JDOF(n),X(6,n),U(6,n)

For ABAQUS - VERSION 4.6

This program imposes the asymptotic bi-material crack-tip
displacements as an MPC. This is the rountine used to enforce
the CLOSED crack-tip model. The order of the MPC as it should
appear in the deck is MPC#,Node#,Knode, Here MPC#

should be 1 for dof 1 and 2 for dof 2 in the upper half.
While 11 should be =used for dof 1 and 12 for dof 2 in the
lower half. Note, this means that for every node to be tied
it has to be eatered in twice; once for each dof. Node# is
the number of the constrained node while Knode is the number
ol the extra rode. The desired Kii strength should be given
as Knode’'s dof 1 displacement. The subscript 1 and 2 refer to

242



c the upper (1) and lower (2) materials respectively.
Rone =(-1.00000000000000D0) ! Useful constants
Zone =1.00000000000000D0
Two =2.00000000000000D0
Tlree=3.00000000000000D0
Pie =3.14159265358979D0
c Determine the R and theta coordinates.
Theta=Datan2( X(2,1),X(1,1) )
I£(X(1,1).Lt.(0.0DO).and.Dabs(X(2,1)).Lt.(0.0001D0)) Theta=Pie
Theta =Dabs(Theta) ! This always gives a positive theta.
I1f(Jtype.Eq.11.0r.Jtype.Eq.12) Theta=Theta*Rone
R=Daqrt (X(i,1)*X(1,1)+X(2,1)*X(2,1))

c Determine the bi-material constant. Caution: use Ccmninou's

c ordering. Give Beta with 1 in the lower region!
Beta=-0.240120000D0

c Set up the material properties

Em1=70.1D03
Em2=211.4D16
Pi=.342D0
P2=_300D0
c Solve for the shear modulus
G1=Em1/({Zone+P1)*Two) !Shear Modulus upper domain
G2=Em2/((Zone+P2)*Two) !Shear Modulus lower domain
If (Jtype.EQ.11.0R.Jtype.EQ.12) then
G=G2 !This adjust for the material being on the down side.
Rnj=Three- (Two*Two*P2)
Else
G=G1 ! Assume that the node is on the upper half
Rnj=Three- (Two*Two*P1) 1Plain strain Poisson’s ratio
Beta=Beta*Rone !Adjust for Beta in the upper domain.
End If
A(1)=Zone
Fi=Rone*((Dsqrt(Two*R))/(Two*Two*Two*G))
F2=(Two*Rnj -Zone) * (Zone-Beta) *Dasin(Theta/Two)
F3=(Three+Beta)*Dein(Three*Theta/Two)
Ur=F1#(F2-F3)
F4=(Two*Rnj+Zone)*(Zone-Beta)*Dcos(Theta/Two)
Fb6=(Three+Beta)*Dcos(Three*Theta/Two)
Uo=F1*(F4-Fb)
C Rotate the displacements into the Cartesian Coordinate frame.
Ux=(Ur*Dcos(Theta)) - (Uo*Dsin(Theta))
Uy=(Uo*Dcos (Theta))+(Ur+«Dsin(Theta))

Jdot(2)=1 | Imposing DOF of K_II node.
IF ((Jtype.Eq.1).or.(Jtype.Eq.11)) then
JDOF(1)=1
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Q

A(2)=RonexUx

ELSE IF ((Jtype.Eq.2).or.(Jtype.Eq.12)) then

JDOF (1)=2

A(2)=Rone*Uy

ELSE

Print #*, "You goofed up!’

END IF

Uit= U(1,2)*A(2) 1Get the actual displacement
Vit= U(1,2)*A(2)
Figure out which dof is being sought and is it in the upper or
lower half. Also, give the total displacement.

IF (JTYPE.EQ.1.0R.JTYPE.EQ.11) THEN

JDOF(1)=1

UE=Uit

ELSE {IF (Jtype.Eq.2.or.Jtype.Eq.12) THEN
JDOF (1) =2

UE=Vit
END IF
Return

End

244



