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Programmable photonic circuits of reconfigurable interferometers can be used to implement arbitrary operations on
optical modes, providing a flexible platform for accelerating tasks in quantum simulation, signal processing, and arti-
ficial intelligence. A major obstacle to scaling up these systems is static fabrication error, where small component errors
within each device accrue to produce significant errors within the circuit computation. Mitigating this error usually
requires numerical optimization dependent on real-time feedback from the circuit, which can greatly limit the scalabil-
ity of the hardware. Here we present a deterministic approach to correcting circuit errors by locally correcting hardware
errors within individual optical gates. We apply our approach to simulations of large scale optical neural networks and
infinite impulse response filters implemented in programmable photonics, finding that they remain resilient to compo-
nent error well beyond modern day process tolerances. Our results highlight a potential way to scale up programmable
photonics to hundreds of modes with current fabrication processes. © 2021 Optical Society of America under the terms of the

OSA Open Access Publishing Agreement

https://doi.org/10.1364/OPTICA.424052

1. INTRODUCTION

Integrated photonics is a key technology for optical commu-
nications and is advancing rapidly for applications in sensing,
metrology, signal processing, and computation. Programmable
photonic circuits of optical interferometers, which can implement
arbitrary filters and passively compute matrix operations on optical
modes, are the optical analog to field programmable gate arrays
(FPGAs) and enable photonic circuits to be flexibly reconfigured
post-fabrication by software [1,2]. Experimental demonstrations
of these circuits have already shown working systems operating
on up to tens of optical modes, which have been used to accelerate
tasks in quantum simulation [3–7], mode unscrambling [8–12],
signal processing [13,14], combinatorial optimization [15], and
artificial intelligence [16].

While scaling up these systems to hundreds or thousands of
modes would be immensely beneficial, doing so will require pre-
cise fabrication of tens of thousands of optical interferometers.
Unfortunately, static component errors induced by process varia-
tion introduce errors that rapidly accrue for larger systems, limiting
their usefulness for many applications. This is because the decom-
position [17,18] and optimization techniques used to program
these circuits assume that all of the components are ideal; thus, any
component errors result in a programming of the wrong operation.
Component imprecision therefore has serious implications for
the future of these systems; for example, beam splitter variation as
small as 2%, which is a typical wafer-level variance [19], has been
shown to degrade accuracy by nearly 50% for feedforward circuits
used to implement classifiers for the MNIST image recognition

task [20]. Alternative programmable architectures, such as recir-
culating waveguide meshes consisting of triangular or hexagonal
Mach–Zehnder interferometer (MZI) lattices [13,21,22], are
similarly susceptible to component-induced error; device variation
within these circuits introduces errors that will alter the response of
phase-sensitive filters [23]. These systems’ degrees of sensitivity to
component variation make their control challenging when scaling
up to large numbers of modes.

Hardware errors are usually compensated for with numerical
optimization. A number of global optimization approaches have
been proposed in the past, including nonlinear optimization
[24–28], gradient descent [29], and in situ backpropagation and
training for neural networks [30]. These strategies, however, are
time consuming and can scale poorly with circuit size. Moreover, it
is often inefficient to retrain hardware settings for each individual
chip. For many tasks, such as machine learning, model training
is energy intensive; if the same model parameters are broadcast to
thousands of chips within a data center, retraining the model for
each chip with a unique set of component imprecisions will be very
costly. One can instead employ progressive algorithms making
use of local feedback [31,32]; however, these algorithms, which
iteratively optimize the settings of one device at a time, require
O(N2) tap photodiodes to monitor the optical power within each
individual interferometer. This requirement greatly increases the
number of electrical lines and overall power consumption of the
system.

This focus on in situ approaches reveals a critical roadblock
for programmable photonics compared to electronic FPGAs.
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An FPGA does not optimize hardware settings in real-time off
readings taken directly from the chip; rather, control software takes
for granted that the logic gates are ideal and maps the requested
function into a netlist that can be placed and routed within the
chip. A similar capability for programmable photonics would
greatly improve the scalability of these systems; if this were the case,
a desired optical function could be trained once on an idealized
software model and ported over to many chips. The challenge for
programmable photonics is that unlike FPGAs, photonic circuits
are analog systems that are far more sensitive to errors within indi-
vidual components. Enabling this level of scalability will therefore
require the ability to deterministically correct hardware errors in
photonic chips.

If a unitary operation is realizable by an imperfect photonic
circuit, it should not require optimization to deduce the required
settings; rather, a small perturbation in the device behavior due to
component deviation should translate directly to a small pertur-
bation in the interferometer’s phase settings to recover the original
unitary. This insight has led us to consider a local approach that
corrects hardware errors one at a time within each optical gate
composing the circuit. In this paper, we present an approach to
directly correct hardware errors for a programmable photonic
circuit. Our algorithm outperforms previous approaches in several
key respects: (1) it is flexible, requiring only a one time device
calibration to directly compute the hardware settings for any given
unitary; (2) for sufficiently low hardware errors, the computed set-
tings yield the exact unitary desired; and (3) our approach requires
minimal overhead and does not make use of additional interfer-
ometers or internal detectors within every device. Our analysis is
focused on feedforward programmable circuits that implement
arbitrary unitary matrices, as these systems have the most demand-
ing requirements for fabrication precision. However, our approach
is a local error correction strategy that individually corrects each
2× 2 optical gate within the circuit. It therefore does not assume
any particular structure to the circuit and can be generalized to any
programmable architecture making use of interferometers, includ-
ing feedforward circuits with redundant devices and recirculating
waveguide meshes.

2. HARDWARE ERROR CORRECTION

Local error correction requires characterization of each phase
shifter and passive splitter in the photonic circuit. The calibration
is performed once with the results stored in a lookup table; any
arbitrary function can then be programmed by computing the set-
tings for an ideal set of MZIs and converting them, one by one, to
the corresponding settings for an imperfect device. In Supplement
1, Section I, we describe how to calibrate these parameters using
detectors only at the circuit outputs; assuming these errors are
known, we can proceed with error correction as follows.

The fundamental optical gate of a programmable photonic
circuit is a 2× 2 MZI composed of an external phase shifter on one
input, two 50-50 beam splitters, and an internal phase shifter on
one of the modes between the splitters [Fig. 1(a)]. This device is
an electrically programmable beam splitter capable of performing
a 2× 2 unitary operation Tij(θ, φ) on optical modes i, j param-
eterized by the external phase shift φ and the internal phase shift
θ .

On an integrated photonics platform, the 50-50 splitters can
be realized by a directional coupler or multimode interferometer

(MMI); the operation of these splitters can be described by a 2× 2
matrix: [

cos(π/4+ α) i sin(π/4+ α)
i sin(π/4+ α) cos(π/4+ α)

]
, (1)

where α describes the deviation from an ideal 50-50 splitting
behavior. For an ideal splitterα = 0, this matrix reduces to

1
√

2

[
1 i
i 1

]
. (2)

The overall operation Tij(θ, φ) performed by a single ideal MZI is
therefore

Tij(θ, φ)=
1

2

[
1 i
i 1

] [
e iθ 0
0 1

] [
1 i
i 1

] [
e iφ 0
0 1

]

= i e iθ/2
[

e iφ sin(θ/2) cos(θ/2)
e iφ cos(θ/2) − sin(θ/2)

]
, (3)

where θ, φ are single-mode phase shifts on the top arm.
Higher dimensional matrix operations can be implemented

with this unit cell by applying the Clements [18] and Reck [17]
decompositions [Fig. 1(b)]. These algorithms decompose an arbi-
trary N-dimensional unitary U into a product of N(N − 1)/2
two-dimensional unitaries computed by interference between
nearest-neighbor optical modes, followed by phase shifts on the
output modes corresponding to a diagonal matrix D:

U = D
∏

Tij(θ, φ). (4)

We now analyze the impact of fabrication error. If the MZI
has imperfect splitters with errors α, β, the operation of the MZI
must now be parameterized with four variables T ′ij(θ, φ, α, β)
[Fig. 1(c)]:

i e iθ/2


e iφ(cos(α − β) sin(θ/2)+

i sin(α + β) cos(θ/2))
cos(α + β) cos(θ/2)+
i sin(α − β) sin(θ/2)

e iφ(cos(α + β) cos(θ/2)−
i sin(α − β) sin(θ/2))

− cos(α − β) sin(θ/2)+
i sin(α + β) cos(θ/2)

 (5)

=

[
cos β i sin β
i sin β cos β

]
T̂(θ, φ)

[
cos α i e−iφ sin α

i e iφ sin α cos α

]
. (6)

In the limit α, β→ 0, the second term of each entry in the matrix
T ′ij(θ, φ, α, β) drops out and we recover the expected transfor-
mation for an ideal device. Naturally, implementing the usual
decomposition on these imperfect devices will not yield the desired
unitary:

D
∏

T ′ij(θ, φ, α, β) 6= D
∏

Tij(θ, φ). (7)

To program into an imperfect circuit a desired unitary
U =

∏
Tij
(θ, φ), we apply local corrections θ→ θ ′, φ→ φ′

to each device such that T ′ij(θ
′, φ′, α, β)= Tij(θ, φ).

Figure 2(a) illustrates our approach. We begin by finding θ ′ such
that the magnitudes of the entries of T ′ij(θ

′, φ′, α, β) equal those of
Tij(θ, φ). This condition produces the following expression for θ ′

(Supplement 1, Section III.A):

θ ′ = 2arcsin

√
sin2(θ/2)− sin2(α + β)

cos2(α − β)− sin2(α + β)
. (8)
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(a)

(c)

(b)

Fig. 1. (a) A Mach–Zehnder interferometer (MZI) on the silicon-on-insulator platform is composed of two 50-50 splitters, implemented with direc-
tional couplers, and an external phase shifter φ and internal phase shifter θ implemented with thermo-optic phase shifters. These devices act as electrically
controlled 2× 2 optical gates in programmable photonics. (b) Arbitrary higher-dimensional matrix operations can be implemented by connecting N(N −
1)/2 MZIs in a rectangular (top) or triangular (bottom) configuration. The Reck (triangular) and Clements (rectangular) decompositions [17,18] describe
a procedure for computing the phase settings for each MZI, but they assume the components are ideal. (c) A realistic MZI implemented on a photonics
platform will have splitting errors α, β for the two directional couplers within the interferometer. The effect of these hardware errors is to left- and right-
multiply each programmable 2× 2 unitary Tij(θ, φ) implemented by an MZI by error matrices βij, αij(φ). Applying the standard decomposition for ideal
components to these imperfect optical gates will not produce the correct gate operation.

Component errors restrict the range over which θ is physi-
cally realizable. The above expression has a solution only if
sin2(θ/2) > sin2(α + β) and if sin2(θ/2) < cos2(α − β). This
restricts θ to the range

2|α + β|< θ <π − 2|α − β|. (9)

If the matrix decomposition requires θ outside this range, the error
is minimized by setting θ ′ = 0 (if θ < 2|α + β|) or θ ′ = π (if θ >
π − 2|α − β|).

Assuming we can physically implement the required value
of θ ′, the magnitudes of the elements of T ′ij(θ

′, φ′, α, β) and
Tij(θ, φ) are now the same, but each element of T ′ij will have an
undesired extraneous phase ξa , ξb, ξc , ξd relative to the corre-
sponding term in Tij that must be corrected. We can therefore
rewrite T ′ij(θ

′, φ′, α, β) as

T ′ij = i e iθ ′/2
[

e iφ′e iξa sin(θ/2) e iξb cos(θ/2)
e iφ′e iξc cos(θ/2) −e iξd sin(θ/2)

]
(10)

= i e iθ ′/2
[

e iξb 0
0 e iξd

] [
e i(φ′+ξa−ξb) sin(θ/2) cos(θ/2)
e i(φ′+ξa−ξb) cos(θ/2) − sin(θ/2)

]
,

(11)
where the simplification in the second line originates from unitar-
ity requiring that ξa + ξd = ξb + ξc . We correct the phase errors in
T ′ij by setting φ′ = φ + ξb − ξa and by applying additional phases
ψ1 =−ξb + (θ − θ

′)/2, ψ2 =−ξd + (θ − θ
′)/2 to the top and

bottom output modes, respectively. Applying these corrections sets
T ′ij(θ

′, φ′, α, β) exactly equal to Tij(θ, φ).

Expressions for the phase errors ξa , ξb, ξd can be constructed by
setting the complex arguments of the elements of Tij equal to those
of T ′ij(θ

′, φ′, α, β). From this, we find that

φ′ = φ + arctan

[
sin(α − β)

cos(α + β)
tan

(
θ ′/2

)]

− arctan

[
sin(α + β)

cos(α − β)
cot

(
θ ′/2

)]
, (12)

ψ1 =−arctan

[
sin(α − β)

cos(α + β)
tan

(
θ ′/2

)]
+
(
θ − θ ′

)
/2, (13)

ψ2 = arctan

[
sin(α + β)

cos(α − β)
cot

(
θ ′/2

)]
+
(
θ − θ ′

)
/2. (14)

The errors θ − θ ′, φ′ − φ, ψ1, ψ2 as a function of θ for an
example MZI with two 52-48 (α = β = 0.02) splitters are shown
in Fig. 2(b). While the corrections to θ andψ1 are small (∼0.1 rad),
the errors for φ and ψ2 are quite substantial. In particular, for low
device reflectivities (θ ≈ 0), the phase corrections required can
exceed 1 rad.

Generally, we cannot apply the auxiliary phases ψ1, ψ2 locally
to the device being corrected, since the output modes do not have
phase shifters. In most cases, one of the two can be incorporated
into the external phase shifter setting of an MZI in the subsequent
column. The other phase can be applied by observing that
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(a)

(c)

(b)

Fig. 2. (a) Fabrication-induced errors within each MZI can be corrected by applying local corrections θ→ θ ′,φ→ φ′ to the device. We first correct θ to
set the magnitudes of the elements of Tij equal to T ′ij. Once the amplitude terms are set correctly, we apply phase corrections to the input and outputs of the
device to correct phase errors between Tij and T ′ij. (b) Corrections φ′ − φ, θ − θ ′,ψ1,ψ2 applied to an MZI with two 52-48 beam splitters (α = β = 0.02).
The arrows on the plot indicate which vertical axis each curve corresponds to. (c) Procedure for programming a unitary with hardware errors on a 4× 4 rect-
angular unitary circuit. We first program each MZI to the (θ, φ) setting obtained with the standard decomposition in [18]. Each MZI is then converted
Tij→ T ′ij to the settings for an imperfect device one column at a time. At each step we propagate the output phase shiftsψ1, ψ2 forward in the circuit until
the entire network is corrected.

Tij(θ, φ)

[
e iψ1 0

0 e iψ2

]
=

[
e iψ2 0

0 e iψ2

]
Tij (θ, φ +ψ1 −ψ2) .

(15)
Using this fact, we can propagate the auxiliary phases forward,
through all of the columns of the network, out to the phase shifters
D located on the output modes of the circuit. This procedure,
illustrated in Fig. 2(c), produces a modified output phase screen D′

such that

U = D
∏

Tij(θ, φ)= D′
∏

T ′ij
(
θ ′, φ′, α, β

)
. (16)

Depending on the component imperfections and the
required value of θ , we may also be able to program θ ′ such that
|T ′ij(θ

′, φ′, α, β)| = |Tij(θ, φ)| if the condition in Eq. (9) is satis-
fied. If every MZI in the circuit satisfies the condition in Eq. (9),
we can recover the exact unitary desired. However, if some MZIs in
the circuit cannot realize the required splitting, that exact unitary
is not physically realizable by the device. In this case, correcting the
phases φ′, ψ1, ψ2 and setting θ ′ as close to the required value as
possible minimizes the gate error ‖ Tij − T ′ij ‖.

We can summarize the algorithm for programming of a matrix
U as follows:

(1) Calibrate all phase shifters and splitter errors α, β with the
procedure in Supplement 1, Section I and store in a lookup
table.

(2) Calculate the required values for θ, φ assuming ideal com-
ponents, using the procedure described by Reck [17] or
Clements [18].

(3) For each device, set θ→ θ ′ using the expression in Eq. (8). If
θ < 2|α + β|, set θ ′ = 0; if θ > π − 2|α − β|, set θ ′ = π .

(4) Apply phase correctionsφ′, ψ1, ψ2 as given in Eqs. (12)–(14).
Propagate ψ1, ψ2 forward to the output phase screen D with
the expression in Eq. (15).

We have illustrated this procedure for the example of feed-
forward unitary circuits, but the same principles apply for other
architectures. Each optical gate within any programmable circuit
can be corrected to the required 2× 2 unitary operation Tij with
the aforementioned procedure. The expressions provided assume a
specific form for the MZI (Fig. 1), but they can be easily modified
to apply to other designs, such as the dual-drive tunable basic unit
(TBU) used in recirculating architectures [33].

3. DISCUSSION

A. Hardware Performance

We analyzed the performance of error correction through numeri-
cal simulations of programmable photonic circuits with fabrication
imperfections. Results were obtained with a custom simulation
package written using NumPy [34]. Further details are included
in Section V of Supplement 1. Our results assume that the circuits

https://doi.org/10.6084/m9.figshare.15221988
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are unitary (lossless); we have also considered the effect of variable
optical losses in hardware in Section IV of Supplement 1.

Figure 3(a) shows the matrix error (relative error per entry)
ε = (

∑
ij |Uhardware, i j −Uij|

2/N)1/2 for 100 Haar random
unitaries implemented on 100 randomly generated N = 32-
mode unitary circuits with mean beam splitter transmission
η= (50± σBS)%. The beam splitter errors are independently
sampled from a Gaussian distribution; for large N, the distribution
shape will not greatly affect the results. We find that error correc-
tion reduces ε significantly, sometimes by more than an order of
magnitude. This improvement is larger for circuits with small split-
ting errors, as they are more likely to satisfy Eq. (9) and program the
required θ ′ for all devices within the circuit. However, even for cir-
cuits with large σBS, where many MZIs may not be programmable
to the required θ , the improvement in ε is substantial, as all errors
inφ, ψ1, ψ2 can always be corrected.

In Fig. 3(b), we show ε with and without error correction for
circuit sizes N = {64, 128, 256}. For these simulations, we chose a
beam splitter variation of σBS = 2%, which is a typical wafer-level
variance [19]. While the improvement in ε diminishes for larger
N, we still find substantial improvement gained in our approach
for up to 256 modes. For large unitary circuits, most MZIs need to
be programmed to reflectivities close to θ ≈ 0 [35]; the increasing
fraction of devices that cannot be programmed to the required
splitting accounts for the increase in ε with N. Nevertheless, there

(a)

(b)

Fig. 3. (a) Matrix error ε before and after correction for 100 ran-
dom unitaries implemented on 100 random circuits with varying beam
splitter statistics. (b) Matrix error ε before and after correction for
N = {64, 128, 256}with a beam splitter variation σBS = 2%.

is always some improvement in ε, as any phase errors introduced
by the components can be corrected. Our results suggest that
substantial performance improvements can still be achieved by
error correction for circuits with hundreds of modes, which is
well beyond the size of the current state of the art (N = 64) in
programmable photonics [36].

B. Application: Optical Neural Networks on
Feedforward Programmable Circuits

To further benchmark the performance of our error correction pro-
tocol, we applied this approach to simulations of a programmable
photonic system, namely, a two-layer neural network conducting
inference with a feedforward programmable photonic circuit.
The architecture of the neural network is similar to that studied
in [16,20,32], where forward inference is optically computed
through passive interference within a unitary photonic circuit cou-
pled with an electrical or electro-optic nonlinearity [37]. Optical
machine learning is a key application area for photonic error cor-
rection, as model training is both time consuming and energy
intensive, making it impractical to retrain on each individual piece
of hardware with a unique set of fabrication errors. Preferably, a
model would be highly optimized once in software, after which
corrections are applied within the hardware to restore the original
software-trained model from any fabrication-induced errors.

The neural networks we benchmark are based on the architec-
ture described in [32]. Using the Neurophox package, we trained
two-layer neural networks with N = {36, 64, 144, 256} neurons
to recognize low-frequency Fourier features of handwritten digits
from the MNIST task. The activation function between layers
was assumed to be a modReLU function implemented using an
electro-optic nonlinearity [37,38]. Further details on the network
architecture and training are included in Supplement 1.

Figure 4 shows the median classification accuracy for 300 ran-
domly generated circuits as a function of the beam splitter statistics
η= (50± σBS)%. The smaller circuits (N = 36, 64) exhibit
roughly 95%–96% accuracy after training, while the larger circuits
(N = 144, 256) exhibit a slightly higher model accuracy of∼97%.
The larger circuits, however, are less resilient to errors; without
error correction, classification accuracy drops to below 90% for all
circuit sizes at a splitter variation as low as∼3%.

Hardware error correction extends this cutoff to more than
6%, which is well beyond modern-day process tolerances [19].
Moreover, without correction the classification accuracy drops
significantly at even typical wafer-level variances (2%). However,
with error correction there is almost no drop in accuracy at these
variances and less than 1% accuracy loss for beam splitter variations
as high as 4%. We expect this margin for fabrication error will
prove important as optical neural networks scale up. These results
suggest that error correction in programmable photonics can
enable high-accuracy neural networks of up to hundreds of modes
within current-day process tolerances.

C. Application: Tunable Dispersion Compensators on
Recirculating Waveguide Meshes

While our analysis has focused on feedforward programmable
photonic meshes, our results can also be applied to recirculating
architectures useful in RF and optical signal processing. These
recirculating meshes, which are usually configured in hexagonal
or triangular lattices, enable implementation of finite impulse

https://doi.org/10.6084/m9.figshare.15221988
https://doi.org/10.6084/m9.figshare.15221988
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(a)

(b)

Fig. 4. (a) We simulated the effect of component error on two-layer
optical neural networks for the MNIST task. Matrix–vector products
are calculated optically in the photonic circuit, and modReLU-like acti-
vation functions are implemented electro-optically [37,38]. (b) Median
accuracy for 300 unitary circuits as a function of σBS with and with-
out correction for a photonic image classifier for the MNIST task with
N = {36, 64, 144, 256} neurons. Error correction significantly improves
the fabrication tolerance of the neural network to beyond current-day
process tolerances, even for systems with hundreds of modes. As the
inset shows, even circuits with 4% splitter error preserve the baseline
performance within 1%.

response (FIR) and infinite impulse response (IIR) filters by con-
figuring waveguides into asymmetric MZIs and ring resonators,
respectively [13,21,22]. Unlike the feedforward architectures, the
programming of these structures usually cannot be determined
analytically and must be found through optimization [26–28].
Since optimization can be time consuming for complex systems,
error correction can enable optimizing these circuit parameters on
idealized models and then porting them over to hardware without
retraining. As an example, we simulated the performance of an IIR
filter functioning as a tunable dispersion compensator (TDC) on
a hexagonal waveguide lattice [22]. TDC modules are of interest
for numerous applications, including compensating for chromatic
dispersion in optical communication links [39] and enabling high-
dimensional quantum key distribution (QKD) with temporal
modes [40].

We implemented the TDC using an architecture similar to
the tunable-coupling ring array described in [14]. Programmable
dispersion is achieved by individually tuning the coupling and
resonance of each ring in a chain of 15 resonators coupled serially
to one another. Each ring is implemented with a single MZI (often
referred to as the TBU) in a hexagonal mesh acting as the coupler,
while five other TBUs are programmed to the bar state to imple-
ment feedback. For simplicity we do not simulate routing within
the hexagonal mesh, but instead simulate the transfer function
of each individual filter implemented using TBUs with fabrica-
tion imperfections. Using the constrained optimization by linear
approximations (COBYLA) routine in SciPy [41,42], we trained
the TBU parameters on an idealized model to implement a group

Fig. 5. Top: simulations of a tunable dispersion compensator (TDC)
implemented on a recirculating waveguide mesh with 15 tunable-
coupling ring resonators coupled serially to one another. Bottom: after
training the mesh parameters to implement a fixed linear group delay
dispersion on an ideal model, small beam splitter errors will introduce
variations in the implemented group delay τ profile. Plotted are the
group delay profiles for 500 randomly generated circuits before and
after correction. Correcting the settings of each TBU restores the desired
performance, eliminating the need to retrain on the hardware. Also dis-
played is the distribution of the group delay dispersion before and after
correction.

delay dispersion of −85 ps/nm over the bandwidth of a 50 GHz
channel.

Figure 5 shows the group delay τ profiles for 500 randomly
generated TDC modules implemented using TBUs with
σBS = {2, 4}% before (top) and after (bottom) error correc-
tion. Similar to optical neural networks, precise implementation
of a TDC requires accurate phase control throughout the circuit.
Fabrication errors introduce spurious phases at each resonance,
which results in significant variation of the dispersion profile for
even slight component errors. As our results show, correcting the
parameters of each TBU locally is sufficient to restore the desired
dispersion profile.

While we can correct the coupling and phase parameters for
each ring, we cannot correct for errors in the closed feedback
loop, which is implemented by programming each TBU to the
bar state. Any error α 6= β will introduce some loss at each TBU
programmed to the bar state, as the bar transmission is reduced to
cos2(α − β). The remainder of the light is directed into unused
couplers in the circuit, effectively incurring loss. This alters the
critical coupling condition, resulting in the slight spread in the cor-
rected dispersion profile observed in our simulations forσBS = 4%.
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Our simulations assume α, β are independent, Gaussian ran-
dom variables; in practice, however, α, β for a single device are
strongly correlated [43,44] and the bar state will be nearly perfect.
Therefore, our simulations likely overestimate the loss incurred at
each TBU programmed to the bar state.

D. Scalability and Outlook

We have presented an approach for characterizing and correcting
for hardware errors in programmable photonic circuits. To con-
clude, we analyze the expected improvement our technique enables
and how it will perform as these circuits scale up.

For a unitary photonic circuit, applying the Reck or Clements
decomposition produces an average matrix error ε of (Supplement
1, Section II.A)

〈ε〉 ≈ σBS

√
2(N − 1). (17)

If we can correct all errors in θ , then εcorrected→ 0. We can therefore
estimate the expected εcorrected by computing the fraction of MZIs
that cannot be programmed to the required splitting value, i.e., the
condition in Eq. (9).

The distribution of phase shifter settings for a unitary circuit
can be related to the Haar measure on the unitary group [35].
The probability that an MZI is programmed to a value θ < ξ is
(Supplement 1, Section II.C)

P (θ < ξ)=
N−1∑
k=1

2(N − k)
N(N − 1)

(
1− cos2k(ξ/2)

)
(18)

≈
N + 1

12
ξ 2. (19)

We disregard the probability that an MZI is programmed to a
splitting θ > π − 2|α − β|, which is negligibly small for large N
[35]. Error correction cannot fix the splitting error if θ < 2|α + β|;
therefore,

〈εcorrected〉 ≈

(
1

2
P (θ < 2|α + β|)

〈
ε2〉)1/2

(20)

= σ 2
BS

√
2
(
N2 − 1

)
3

. (21)

We find that error correction effectively reduces the hardware error
from ε to≈ (1/

√
6)ε2. The expected error improvement is

〈ε〉

〈εcorrected〉
≈

√
3

σBS
√

N + 1
. (22)

〈ε〉 and 〈εcorrected〉 as a function of N are plotted in Fig. 6(a). We
consider σBS = 1.2%, which is the state of the art reported in [19],
as well as more relaxed tolerances σBS = {2, 4}%. For σBS as high
as 4%, error correction produces at least a factor of two (and often
more) improvement in the error for circuits as large as N = 500.
We therefore expect our approach to have wide applicability in the
near term as the size of programmable photonic circuits scale up.

Error correction also greatly improves the optical bandwidth of
unitary circuits. Since directional couplers are highly wavelength
sensitive, dense wavelength-division multiplexing (DWDM)
requires re-fabricating the same circuit with components opti-
mized at each wavelength channel. Our approach, however,

(a)

(b)

(c)

Fig. 6. (a) 〈ε〉, 〈εcorrected〉 as a function of circuit size N for
σBS = {1.2, 2, 4}%. (b) Average circuit error as a function of wavelength
for N = {64, 128, 256} using the optimal directional coupler design in
[19]. (c) Redundant MZI for implementing perfect optical gates. One of
the two beam splitters is an MZI that can be tuned to implement an error
α(θα) that compensates for an errorβ.

enables the use of the same hardware across a wide wavelength
range. In Fig. 6(b), we show the expected hardware errors for large
circuits across a 100 nm bandwidth using the optimal splitter
(σBS = 1.2%) design in [19]. We find that the corrected error for
an N = 256 circuit across a 60 nm bandwidth (1520–1580 nm)
will be lower than the uncorrected error at the design wavelength
λ= 1550 nm. Even lower errors could be achieved using multi-
mode interferometer (MMI) couplers; these devices have large
bandwidths but often suffer from static splitting imbalances [45],
i.e., α, β are invariant to wavelength, but 〈α〉, 〈β〉 6= 0. A circuit
with large-bandwidth MMI couplers can thus use error correc-
tion to achieve a large instantaneous bandwidth, for instance to
compute over many parallel wavelength channels.

The results in Fig. 6(a) suggest a fundamental error bound
achievable with local correction for unitary circuits. Our approach
yields results comparable to those achieved with self-configuration
procedures [9,32] but does not require a specific structure for
the circuit or photodiodes within each device. If the condition in
Eq. (9) is satisfied, local correction obtains εcorrected = 0 in O(1)
time. If this condition is not satisfied, it is sometimes possible
to achieve a larger reduction in error with a global optimization
approach [24,29]. However, these approaches, which require
photodiodes within each device or output measurements whose
number scales nonlinearly with the number of modes, become
increasingly inaccessible experimentally as N scales up. Local cor-
rection requires minimal overhead and can guarantee a minimum
error given certain guarantees on the component performance,

https://doi.org/10.6084/m9.figshare.15221988
https://doi.org/10.6084/m9.figshare.15221988
https://doi.org/10.6084/m9.figshare.15221988
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making it ideal for standardizing performance across large numbers
of chips.

Moreover, this error bound applies only to feedforward, uni-
tary circuits with no redundant devices. ε lower than this bound
can be achieved by incorporating additional, redundant MZIs;
for instance, one can implement “perfect” optical gates by incor-
porating an additional phase shifter into the MZI, as shown in
Fig. 6(c). This device can be trained with optimization to imple-
ment any desired unitary Tij(θ, φ) perfectly [46,47]. The error
correction formalism enables calculation of these settings analyti-
cally. One of the two constituent splitters is a passive component
with error β, while the other splitter is an MZI that implements
a tunable error α(θα). Any desired 2× 2 unitary with a required
splitting θ can then be implemented by setting θα such that
2|α(θα)+ β|< θ < 2|α(θα)− β| and correcting the resultant
phase errors (Supplement 1, Section III.B).

Not all optical gates within the circuit necessarily need to
incorporate redundancy. High accuracy unitary circuits have been
demonstrated by incorporating only a few extra MZIs into the
circuit, which can be trained using nonlinear optimization [24]
or gradient descent [29]. Error correction serves an important
purpose for these circuits, as one can optimize the hardware set-
tings once on an ideal model and port the settings over to many
devices. For recirculating meshes the phase shifter settings are not
constrained by the Haar measure, and so the benefit gained from
error correction is not expected to diminish with increasing N.
We therefore expect error correction to play an important role in
scaling up the size of these circuits as well.

The motivation for photonic error correction assumes the
hardware is re-programmed infrequently, for instance to imple-
ment a weight matrix in a neural network. Other applications,
such as mode unscrambling, require real-time configuration
robust to device error. We have recently discussed error-resilient
self-configuration approaches in [48,49].

4. CONCLUSION

In conclusion, we have presented a protocol to correct for hardware
errors in programmable photonic circuits. Unlike optimization-
based approaches, our protocol utilizes a one-time calibration
procedure to flexibly implement any desired functionality up to
the limits of the hardware. We find that applying our approach to
key application areas of programmable photonics, such as optical
neural networks and programmable coupled-ring systems, enables
resilience to fabrication errors well beyond modern-day process
tolerances. Error correction also greatly reduces the overhead for
programmable photonics that require optimization to deduce the
hardware settings, as it eliminates the need to retrain for each indi-
vidual set of hardware with unknown fabrication errors. Current
process tolerances suggest that our approach enables improved
functionality for systems of up to hundreds of modes, providing a
new avenue for scaling up programmable photonics.

Note: after submission of this manuscript, a related work on error
correction [50] was posted to the arXiv.
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J. Tura, R. Augusiak, L. Mančinska, D. Bacco, D. Bonneau, J. W.
Silverstone, Q. Gong, A. Acín, K. Rottwitt, L. K. Oxenløwe, J. L. O’Brien,
A. Laing, and M. G. Thompson, “Multidimensional quantum entan-
glement with large-scale integrated optics,” Science 360, 285–291
(2018).

5. X. Qiang, X. Zhou, J. Wang, C. M. Wilkes, T. Loke, S. O’Gara, L. Kling,
G. D. Marshall, R. Santagati, T. C. Ralph, J. B. Wang, J. L. O’Brien, M.
G. Thompson, and J. C. F. Matthews, “Large-scale silicon quantum pho-
tonics implementing arbitrary two-qubit processing,” Nat. Photonics 12,
534–539 (2018).

6. C. Sparrow, E. Martín-Lépez, N. Maraviglia, A. Neville, C. Harrold, J.
Carolan, Y. N. Joglekar, T. Hashimoto, N. Matsuda, J. L. O’Brien, D. P.
Tew, and A. Laing, “Simulating the vibrational quantum dynamics of
molecules using photonics,” Nature 557, 660–667 (2018).

7. J. Carolan, C. Harrold, C. Sparrow, E. Martin-Lopez, N. J. Russell,
J. W. Silverstone, P. J. Shadbolt, N. Matsuda, M. Oguma, M. Itoh, G.
D. Marshall, M. G. Thompson, J. C. F. Matthews, T. Hashimoto, J. L.
O’Brien, and A. Laing, “Universal linear optics,” Science 349, 711–716
(2015).

8. D. A. B. Miller, “Self-configuring universal linear optical component,”
Photon. Res. 1, 1–15 (2013).

9. D. A. B. Miller, “Self-aligning universal beam coupler,” Opt. Express 21,
6360–6370 (2013).

10. A. Annoni, E. Guglielmi, M. Carminati, G. Ferrari, M. Sampietro, D. A.
Miller, A. Melloni, and F. Morichetti, “Unscrambling light-automatically
undoing strong mixing between modes,” Light Sci. Appl. 6, e17110
(2017).

11. A. Ribeiro, A. Ruocco, L. Vanacker, and W. Bogaerts, “Demonstration of
a 4× 4-port universal linear circuit,” Optica 3, 1348–1357 (2016).

12. M. Milanizadeh, P. Borga, F. Morichetti, D. Miller, and A. Melloni,
“Manipulating free-space optical beams with a silicon photonic mesh,”
in IEEE Photonics Society Summer Topical Meeting Series (SUM) (2019),
pp. 1–2.

13. L. Zhuang, C. G. H. Roeloffzen, M. Hoekman, K.-J. Boller, and
A. J. Lowery, “Programmable photonic signal processor chip for
radiofrequency applications,” Optica 2, 854–859 (2015).

14. J. Notaros, J. Mower, M. Heuck, C. Lupo, N. C. Harris, G. R.
Steinbrecher, D. Bunandar, T. Baehr-Jones, M. Hochberg, S. Lloyd, and
D. Englund, “Programmable dispersion on a photonic integrated circuit
for classical and quantum applications,” Opt. Express 25, 21275–21285
(2017).

15. M. Prabhu, C. Roques-Carmes, Y. Shen, N. Harris, L. Jing, J. Carolan, R.
Hamerly, T. Baehr-Jones, M. Hochberg, V. Čeperić, J. D. Joannopoulos,
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