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Semi-Cooperative Control for Autonomous Emergency Vehicles

Noam Buckman1, Wilko Schwarting1, Sertac Karaman2, and Daniela Rus1

Abstract— Autonomous control of an emergency vehicle will
save lives through faster transport and shorter response.
Towards this goal, it must overcome the challenge of inter-
acting with existing human drivers on the road. We present
a game-theoretic approach for semi-cooperative control of an
autonomous emergency vehicle that can interact efficiently with
humans on the road. We model the interactions between au-
tonomous and human driven cars with Social Value Orientation,
a metric from social psychology, that allows the controller
to leverage their influence on the trajectories of neighboring
human drivers. In addition, by using a modified version of
iterative best response, we direct the algorithm to converge
to Nash equilibria that are cooperative. We demonstrate the
efficacy of our algorithm in simulations of drivers in traffic,
with a variety of traffic densities and driver personalities. In
simulations of prosocial human drivers, our algorithm provides
an 8% improvement in distance-traveled compared to egoistic
human drivers.

I. INTRODUCTION

Autonomous vehicles show the potential to improve the
efficiency and safety of transportation. The benefits are
even more promising for emergency vehicles. Consider
an autonomous ambulance that can arrive at the hospital
faster, with additional medical personnel to help the patient,
and a reduction in accidents with other vehicles [1], [2].
However, to achieve these performance gains in the near
term, the autonomous ambulance must be able to interact
with human drivers on the road and leverage the impact
of their own actions on the actions of other drivers. This
creates a challenging control problem for the planner: it must
simultaneously find safe and efficient control inputs to avoid
collisions while anticipating various levels of cooperation
with humans.

This work focuses on designing controllers that allow
the autonomous vehicle to seamlessly cooperate with other
agents on the road, without the need for strict traffic rules or
full control of the surrounding vehicles. Current approaches
focus on either predicting human trajectories using learning-
based approaches [3] or assuming simple dynamics for
obstacle-avoidance [4]. Other approaches that consider the
system-wide optimization are either restricted to full team
control, as in vehicle platooning [5], or game theory [6],
[7], where humans are modeled as competitive. In contrast,

*This work is supported by the Department of Defense (DoD) through
the National Defense Science & Engineering Graduate (NDSEG) Fellowship
and Toyota Research Institute (TRI). This article solely reflects the opinions
and conclusions of its authors and not TRI or any other Toyota entity.

1Computer Science and Artificial Intelligence Laboratory, Massachusetts
Institute of Technology, Cambridge, MA 02139, USA [nbuckman,
wilkos, rus] at mit.edu

2Laboratory of Information and Decision Systems, Massachusetts Insti-
tute of Technology, Cambridge, MA 02139, USA sertac@mit.edu

Fig. 1: Humans cooperate with the emergency vehicle by
modifying their own control inputs to accommodate the
ambulance’s traversal through traffic.

we take inspiration from social psychology and naturalistic
driving data to model human drivers as semi-cooperative [8],
enabling an autonomous ambulance to work with human
drivers on the road.

Our approach formulates the control problem for each
vehicle on the road as a non-linear optimization that includes
both efficiency costs and safety constraints that can be solved
by a nonlinear model predictive control (MPC). However,
rather than modeling humans as simply self-interested ra-
tional agents who consider only their own performance,
we incorporate a metric from social psychology behavioral
decision theory, Social Value Orientation, which models
each driver’s willingness to cooperate with a neighboring
agent. This pairwise metric leads to a semi-cooperative
utility function for each agent that linearly combines its
own reward with the reward of other agents, including the
ambulance. Finally, we solve for control inputs that satisfy
Nash Equilibrium using a modified version of Iterative Best
Response, where vehicles can imagine shared control with
other agents. This dynamic game yields a controller for the
ambulance that can plan for semi-cooperative drivers, leading
to highly interactive emergent behavior where the ambulance
and human drivers work together to allow the ambulance to
pass quickly and safely.

A. Contributions

In summary, the contributions of this paper are:
1) A semi-cooperative optimal control formulation for

autonomous control that models human drivers using
Social Value Orientation

2) An iterative best response algorithm that considers
shared control of neighboring vehicles to obtain tra-
jectories that are cooperative and Nash Equilibrium

3) Validation of our approach in a simulated multi-lane
highway under a variety of human personalities, traffic



densities, and number of vehicle (up to 100 drivers),
with baseline comparisons and ablation study.

II. RELATED WORKS

A. Control Around Humans

Recently, learning-based control has shown promise in
utilizing naturalistic data to generate control policies for
autonomous vehicles [9], [10], [11] and predicting human
trajectories [12]. While learning-based approaches allow
robots to navigate around humans, they do not provide
insight on how to cooperatively work with humans. For
predicting human pedestrian and driver trajectories, Social-
LSTM [12], [13], [14] uses recurrent neural networks to
learn from previous trajectories and predict future motion.
[15] uses inverse reinforcement learning to learn a hierar-
chical model of learned rules from driving demonstrations.
For a probabilistic approach, [16], [17] incorporate agent
prediction with planning for autonomous vehicles. In So-
cially Aware CADRL [3], a reinforcement learning algorithm
simulates multiple agents to generate collision avoidance
policies while complying with social norms by biasing the
reward to a predetermined set of social rules. Alternatively,
explicit models for human driving, such as the Intelligent
Driver Model (IDM) [18] for acceleration and MOBIL [19]
for lane changes, can be used to predict the high-level
maneuvers of humans, however, they struggle with complex
multi-agent interactions since they are designed primarily for
”normal” speed-following settings. In all these approaches,
while robots can tolerate humans, they do not take advantage
of the potential to cooperate with humans drivers. In addition,
they are fragile to scenarios where fixed rules do not apply
and limited training data is available.

B. Distributed MPC

The most efficient and cooperative approach would be
to control all the vehicles on the road, something that is
only possible if all the vehicles are autonomous and choose
to form an explicit team. In such scenarios, a platoon of
vehicles or team of robots share a joint cost function and can
implement a distributed model predictive control across the
team. In [20], they propose a Decentralized Model Predictive
Control (MPC) framework for a team of robots to jointly
optimize a shared cost function, while sharing plans with
neighboring agents. Similarly, [21], [22], [23] proposed
variants of distributed MPC that include shared collision
avoidance constraints to achieve complex formations and
maneuvers. In all of these, each individual agent is assumed
to share a cost function and constraint. Human drivers,
however, can not join explicit teams and rarely share a single
joint utility function across vehicles.

More recently, MPC approaches have been applied specif-
ically to self-driving cars in traffic where an agent’s own
utility is considered. [24], [25], [26], [27] applied distributed
MPC to controlling fully autonomous vehicles at intersec-
tions and highway-merging. Additionally, MPC has been
used to control platoons of autonomous vehicles driving on
highways with the goal of maximizing road efficiency and

safety [28], [5]. In these approaches, the vehicles maintain
their own agent-specific cost, however, must also maintain
vehicle ordering or priority. This extra level of coordination
limits our ability to model more competitive behaviors and
requires full autonomy and centralized coordination.

C. Game-Theoretic Planners

For more competitive driving scenarios, game theory pro-
vides a framework for designing controllers that can consider
each agent’s competing utility function. In addition, it does
not assume an explicit team or centralized planner in gen-
erating control. [29] implemented a best response algorithm
for agile interactions between two autonomous cars, where
each vehicle optimizes their own distance traveled and an
inter-vehicle cost to maintain a desired distance between
the two vehicles. [6] extends this to a more competitive
scenario, where the autonomous vehicles are directly com-
peting against each other for distance traveled. They use a
modified iterative best response with an additional sensitivity
cost that accounts for the potential negative effect of the
adversarial agent. In contrast to [29] and [6], we motivate our
cost functions based on human preferences, assuming more
cooperative cost functions that are derived by considering
each agent’s own performance and effort cost.

In [30], an autonomous vehicle interacts with humans by
modeling the interaction as a Stackelberg game, which is then
used to learn a utility function of the human using inverse
reinforcement learning. In [7], a Nash game is used instead
to remove the assumption that an autonomous vehicle has
a strategic advantage in selecting actions. The controller is
broken down into an offline high-level strategic planner and
a low-level tactical MPC for control. Our method combines
these two levels so that we can explore more interactive
trajectories that are dynamically feasible. In addition, we do
not assume that the agents are inherently competitive and
focus on cooperating with multiple humans at a time. [8] first
introduced the concept of modeling human drivers using
Social Value Orientation. They demonstrate the usefulness
of semi-cooperative rewards for prediction of vehicles and
validate using highway data. In this work, we take advantage
of SVO to enhance control of the ego vehicle in highly
interactive scenarios where agents may work together in a
semi-cooperative manner to help the ambulance. In addition,
we introduce a pairwise SVO to account for heterogeneous
cooperation between different agents.

III. PROBLEM STATEMENT

An autonomous emergency vehicle i is driving in a traffic
environment that contains surrounding human-driven vehi-
cles j = 1 . . . N where N is the number of vehicles in the
agents planning horizon. The goal is to design controls ui

for the autonomous vehicle that is safe (i.e. collision free)
and semi-cooperative so that it can quickly traverse through
traffic (i.e. travel the greatest distance). We denote the set of
vehicles that excludes an ego vehicle i, simply as ¬i (or ado
vehicles) and the ambulance as i = 0. We denote a trajectory,
a sequence of control inputs and states over time, as ui,xi.
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Fig. 2: Social Value Ring. The Social Value Orientation
of human subjects are plotted (red), where size of circle
corresponds to proportion of subjects. Adapted from [32]

We assume that a model of the non-linear dynamics of each
vehicle, ẋi = fi(xi,ui) is known among all vehicles on the
road.

A. Agent-Specific Reward

We first begin with a typical, non-social reward model for
human drivers, where the reward is primarily a function of
the agent’s control and state. We denote this agent-specific
reward as

Ri(ui,xi,x¬i) = Pi(xi) + Ei(ui) + Ci(xi,x¬i) (1)

where Pi(xi) is the performance reward as they travel down
the lane (e.g. how fast they progress), Ei(ui) is a control
effort cost related to how much they accelerate and steer.
Ci(xi,x¬i) is an (optional) interagent cost between the ego
vehicle (i) and all other ado vehicles (¬i). Examples of
interagent costs include collision costs based on the distance
between vehicles or risk costs that are a function of both
velocity and position [31].

To account for path tracking along an arbitrary lane, we
augment the state of the vehicle with an additional state s
that can parameterize the desired path ξD such that ξD =[
XD(s), YD(s),ΦD(s)

]T
where XD, YD,ΦD are the 2D

components of the path at point s on the path. For simplicity,
we include s in the state xi and note that the performance
reward Pi(xi) will primarily be a function of s and ξD.

B. Modeling Human Cooperation

For the ambulance to efficiently navigate through traffic,
it must be able to model and anticipate the planning and
cooperation of human drivers on the road. Our approach
takes inspiration from social psychology which observes that
humans are not purely egoistic, as typically assumed, but
rather show certain traits of cooperation and even altruism.
Specifically, this human personality or Social Value Orien-
tation, θi [33] encodes a human’s willingness to consider
the other person’s reward. The value function of an agent i

becomes a combination of their own reward Ri and the
reward of others Rj . This can alternatively be thought as a
joint utility function that each individual human considers
when optimizing their actions Vi = cos θiRi + sin θiRj .
Figure 2 shows the Social Value Ring, along with real-
world data from human subjects playing a monetary trade-off
game [32].

In [8], SVO is successfully used to predict driver behavior
by first calculating a driver’s SVO from their past trajectories
and then using SVO to predict the future actions of the
agents, observing a range of cooperative and competitive
SVOs in highway data. While other behavior models ex-
ist [34], [35], SVO provides a compact representation of
human behavior that works well in practice [8] and is a
standard metric for cooperation in the social psychology
community. Emergency vehicles in particular have the poten-
tial to improve their own performance by cooperating with
human drivers since humans are observed to increase their
SVO in emergency scenarios [36]. For that reason, in this
work we focus on incorporating SVO in a longer horizon
planner so that the autonomous vehicle can achieve more
cooperative trajectories.

In addition, in contrast to the psychology games of [33]
which include only two participants, vehicles on the road
interact with many other vehicles at the same time and may
have different personalities for each vehicle. For example, a
human driver may act more cooperatively towards an ambu-
lance than a neighboring driver. Similarly, drivers may feel
differently towards autonomous drivers than human drivers.
To account for the pairwise nature of social preferences,
we represent the SVO of agent i as a pairwise property
θij which captures the agent’s personality with respect to
agent j. This allows a human i to be cooperative with
an ambulance θi,j=0 = π/4 while egoistic towards other
humans θi,j 6=0 = 0. We augment the social value function
in [8] to account for multiple vehicles and SVOs

Vi =
1

N

∑
j 6=i

cos θijRi + sin θijRj (2)

where Vi is agent i’s utility, θij is the Social Value Orien-
tation between agent i and j, Ri and Rj are the respective
agent-specific rewards. For brevity, (2) does not include the
control and state inputs of each agent, however, by expanding
Ri and Rj we can see that a single agent’s utility Vi will be
a function of the surrounding control inputs and states.

C. Nash Equilibrium Conditions

We assume that every driver on the road is rational and
thus chooses their actions to maximize their own value
function

u∗i = arg max
ui

Vi(·) (3)

where Vi is the social value function and ui are all possible
control inputs of the ego vehicle. Note that we do not assume
a single, explicit joint reward function across all vehicles, but
rather a value function for each agent that may include the
reward of other drivers. During planning, we assume that



the ambulance has learned the reward functions of the other
vehicles, V¬i which includes the agent-specific reward Ri

and each agent’s SVO θij , similar to [8], [30]
We desire control policies that are stable with respect to

the other agents. More specifically, we assume that controls
executed by agents meet the Nash equilibrium constraint

Vi(u
∗
i , u

?
¬i) ≥ Vi(ui, u∗¬i) ∀ui 6= u∗i (4)

where u?¬i are the optimal control policies of the other agents.
Intuitively, if the Nash Equilibrium condition is met, agents
will not have an incentive to deviate from their chosen
control actions. In general, it is very difficult to solve for
a (4) and the subsequent section, we present our approach
for obtaining a local Nash Equilibrium.

IV. ITERATIVE BEST RESPONSE WITH SHARED
CONTROL

A. Obtaining a Nash Equilibrium Controller

The non-linear optimization for each agent i is solved
using model predictive control (MPC), where at step m of
MPC an optimization for a subsequence of control input um

i

is formulated

um
i = arg max

ui

Vi(ui,u
m
¬i) (5)

s.t. ẋi = fi(xi,ui) (6)
Gi(x

m
i ,x

m
i ,x

m
¬i,x

m
¬i) ≥ 0 (7)

where um
i and um

¬i are the control sequences for the ego
agent and ado agents at MPC iteration m, respectively, and
Gi(xi,ui,x¬i,u¬i) contains all agent-specific constraints
such as actuation limits and inter-agent constraints (such as
collision avoidance). For brevity, we exclude xi,x¬i from
utility Vi since they can be inferred by the control inputs
ui, u¬i and dynamics fi. As is typical in MPC, at each
round m, the agent solves for a subtrajectory um

i over time
horizon T , then executes a subset of control inputs nexec
and re-initializes the optimization. This receding horizon
optimization makes the optimization more computationally
efficient and allows for replanning in case of uncertainty in
dynamics.

However, just solving this optimization does not ensure
that um

i satisfies the Nash Equilibrium. In general, it is diffi-
cult to obtain a Nash Equilibrium controller for an arbitrary
problem. A popular algorithm for obtaining a local Nash
Equilibrium is Iterative Best Response (IBR) (Algorithm 1)
where each agents solves a relaxed open-loop Nash game.
At each iteration k of IBR, the agent solves their own best
response um,k

i while fixing the controllers of the other agents
ūm,k
¬i

um,k
i = arg max

ui

Vi(ui, ū
m,k−1
¬i ) (8)

where k is the round of IBR and m is the current step
in the MPC. Note that at a given IBR iteration k, an ego
vehicle’s best response is solved with respect to potentially
sub-optimal ado vehicle controls, uk

m,¬i 6= u?
m,¬i. However,

as multiple iteration of IBR proceeds, the controls of each
agent improves, approaching a locally optimal solution.

Algorithm 1 Iterative Best Response

T : planning horizon
ui,m := [ui,m∆T , ui,(m+1)∆T , . . . , ui,(m+T )∆T ]
u0
¬i,m = Extend(u¬i,m−1) // Extend previous MPC

for k = 1 . . . nIBR do
for i = 0 . . . Nagents do
uk
i,m = arg maxui

Vi(ui,u
k−1
¬i,m)

end for
end for
return unIBR

i,m

Algorithm 2 Iterative Best Response with Shared Control

T : planning horizon
m: MPC step
n: Maximum number of agents in Shared Control
um
i := [ui,m∆T , ui,(m+1)∆T , . . . , ui,(m+T )∆T ]

um,0
¬i = Extend(um−1

¬i ) // Extend previous MPC
for k = 1 . . . nIBR do

for i = 0 . . . Nagents do
N i

sc ← ClosestVehiclesBehind(i, n,m)
um,k
i = arg maxui,uj∈Ni

sc

Vi(ui,uj ,u
m,k
¬(i∪N i

sc))

end for
end for
um
i ← um,nIBR

i

return um
i

In contrast to [29], we run multiple rounds of IBR at each
step m of the MPC to ensure that the ado vehicle controls
are ”up-to-date” with respect to the ego vehicle’s controls.
This allows the ego vehicle to plan for more interactive
maneuvers and not just reacting to the ado vehicle’s past
actions. In the case of an ambulance, we can further add
structure and assume the ambulance takes the first action in
the IBR, since it initiates the cooperative maneuvers by either
explicitly signalling an emergency or implicitly, by simply
entering the field of view of the other vehicles. While IBR
does not guarantee convergence to a solution, we show in
the results in Sec. V that it converges to a fixed point.

The benefits of Iterative Best Response are two-fold: it
reduces the optimization variables in the MPC (5) by only
solving a single vehicle’s controls at each round of IBR,
and it provides a level of confidence to the ambulance, by
ensuring that human drivers do not have an incentive to
deviate from the their predicted trajectories. This is critically
important because if ado vehicles deviate from their plan
um
¬i then the ego vehicle’s trajectory xm

i may no longer be
collision free.

B. Imagining Shared Control

One limitation of the open-loop relaxation in IBR is its
limited ability to anticipate the response of other vehicles
to one’s own actions, since IBR fixes the controls of ado
vehicles at each round of the optimization. This can lead
IBR to converge to a Nash Equilibrium that includes little
cooperation or consideration of the other agent’s action. The



following lemma demonstrates such a scenario, where IBR
converges to a Nash Equilibrium that is agnostic to the
neighboring vehicle’s utility.

Lemma 1: Consider only two agents, and Ci(xi,xj) =
Cj(xi,xj) = 0, then iterative best response converges to a
solution that ignores Vj (and thus uj ,xj) for all θij

Proof: We first substitute the agent-specific reward
function (1) with the social reward function (2)

Vi =
(
Pi(xi)+Ei(ui)

)
cos θij +

(
Pj(xj)+Ej(uj)

)
sin θij .

(9)
For IBR, the ado vehicle’s control is fixed as ūj , x̄j and
agent i’s optimization (8) becomes

u∗i = arg max
ui

(
Pi(xi) + Ei(ui)

)
cos θij

+
(
Pj(x̄j) + Ej(ūj)

)
sin θij

= arg max
ui

(
Pi(xi) + Ei(ui)

)
cos θij

= arg max
ui

(
Pi(xi) + Ei(ui)

)
s.t. G(xi,ui,xj ,uj) ≥ 0.

where x̄j , ūj and θij become constants and can be ignored
when optimizing over ui. Note that while xj and uj are
included in the final constraint G(·), they do not enter the
value function. Which means that while the agent i’s opti-
mization is aware of the ado vehicle trajectories, it will not
value their trajectories since value function is independent
of θij and xj ,uj .

To counter this effect and encourage a cooperative Nash
equilibrium, we allow vehicles to “imagine” sharing control
with the ambulance during the first nsc < nIBR rounds of
iterative best response to encourage considering a more co-
operative Nash Equilibrium. Specifically, each agent selects
a neighborhood of vehicles N i

sc to control during iterative
best response. The modified IBR is now

u∗i = arg max
ui, uj∀j∈N i

sc

Vi(ui,uj , ū¬(i∪N i
sc)) (10)

where u∗i is the new control trajectory for the planning
agent i, uj is the “imagined” control of the other agents,
and u¬(i∪N i

sc) are the fixed control inputs of the remaining
ado vehicles. Algorithm 2 describes the full Iterative Best
Response with Shared Control algorithm that is executed
at each round of MPC. The control trajectories of each
vehicle are initialized with the solution from the previous
time-step and extended assuming a line-following controller.
Each vehicle selects nsc vehicles behind it, including the
ambulance, and chooses the optimal best response control.
We limit Nsc to vehicles behind the best response vehicle
so to not optimistically control a vehicle in front i. Finally,
the “best response” vehicle only executes its own control u∗i
and does not store uj ∀j ∈ N i

sc, since it is only used for
guiding their own control.

C. Limitations

Our approach assumes that each agent is playing the same
Nash game with the autonomous vehicle. If some humans do

Fig. 3: Autonomous ambulance travels between vehicles
while anticipating that prosocial vehicles (magenta, blue)
vehicles will let them through. Egoistic vehicles (red) are less
likely to move out of the way for the autonomous ambulance.
Ellipses shown are used for collision avoidance

not act rationally or the prediction of each agent’s SVO is
incorrect, then the agents may be playing incorrect games,
leading to diverging controls. In the absence of communica-
tion, our approach does not guarantee safety, however, our
approach does ensure that the controls of the ambulance are
dynamically feasible, collision free, and rational assuming
consistency in game. Furthermore, by adding additional
risk or collision costs, the autonomous ambulance can bias
controls towards trajectories that provide a safety buffer.

Another limitation is that our framework requires multiple
rounds of iterative best response for each agent, for each
round of MPC. This limits the planning horizon and number
of agents that can be included in the optimization while
running quickly. While runtime is not the primary focus of
this work, we can return solutions more quickly by placing
some computations offline or parallelizing.

V. RESULTS

A. MPC Details

We implement our algorithm for an emergency vehicle
traversing a highway with N = 10, 30, 50, 100 vehicles on
roads with 2 or 3 lanes, while varying the density traffic and
SVO of human drivers. The ambulance is egoistic towards
all other vehicles θij = 0 whereas the surrounding vehicles
have various SVOs θi,j=0 ∈ {0, π/6, π/4, π/2} and θi,j = 0
for j 6= 0 (i.e. humans are egoistic towards other humans).
Each vehicle plans for a horizon time Tmpc = 5s discretized
by dt = 0.2s and 40% of the MPC is executed at a time
(i.e, 2s). For larger scale simulations, we limit the rounds
of iterative best response to nIBR = 3, shared control ends
after k = 2 rounds of IBR, and agents can imagine up
to nsc = 2 agents in shared control. Fig. 3 shows an
example maneuver executed by the ambulance, anticipating
cooperative maneuvers from the altruistic agents (θij = π/2).

We use a contour controlling model predictive controller
(CC-MPC) [4] to control the autonomous vehicle’s non-



Fig. 4: Convergence of ambulance steering control. The mag-
nitude of steering control converges to a Nash Equilibrium
after two rounds of IBR.

linear dynamics while optimizing the value function of the
vehicle as it traverses a lane. We utilize a kinematic bicycle
model [37] to model the dynamics of each vehicle, where
the state is its 2D pose (X,Y,Φ), speed (V ), and front
wheel angle (δf ) and the control inputs are acceleration
(V u) and steering rate (δuf ). For collision avoidance, we
approximate each car with an ellipse and compute the
Minkowski sum using the minimum trace ellipse method
in [38] to obtain a collision ellipse Qij(β) for constraining
the ego vehicle’s position. In addition, we add a collision
cost that is inversely proportional to the squared distance
from the collision constraint and a cost related to lateral
deviations from the lane centerline. The entire optimization
is implemented in CASADI [39] with an interior point solver
(IPOPT) for solving the non-convex optimization.

B. Iterative Best Response Convergence to Nash

To measure the convergence of IBR, we increase the
rounds of IBR and measure the difference in control inputs
between rounds of IBR. Specifically, we inspect the first
steering control command δuk

f at each round k of IBR and
compute the difference between subsequent rounds of IBR

∆k = δ
uk+1

f − δuk

f (11)

where δ
uk+1

f is the front wheel steering control at the kth
round of IBR.

Fig. 4 shows the convergence of IBR for the ambulance
and Fig. 5 plots the same convergence for the six closest
vehicles to the ambulance for 9 random experiments (with
50 rounds of MPC each). We see the ambulance converges
after 2 rounds of IBR and ado vehicles in 3 rounds.

C. Ablation Studies

We vary the size of shared control neighborhood |N i
sc|

and rounds of shared control nsc to understand the effect on
the level of cooperation between ambulance and surrounding
vehicles. In Fig. 7a, as number of vehicles in the shared
control neighborhood increases, the cooperation increases
and the ambulance traveled additional distance. Similarly,
Fig. 7b shows that as more rounds of iterative best response
include shared control, the performance of the ambulance
improves. Both ablation studies show that the ambulance’s
IBR performs better with larger shared control teams by

Fig. 5: Convergence of ado vehicles’ steering control inputs.
Human drivers converge to a Nash Equilibrium after 3 rounds
of best response. Six closest vehicles shown for multiple
rounds of MPC and experiments.

Fig. 6: Ambulance blocked behind two egoistic agents who
do not consider the benefit of allowing the ambulance pass.
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(a) Vehicles in Shared Control
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(b) Rounds of Shared Control

Fig. 7: Ablation Study of Shared-IBR. Improvement in dis-
tance traveled compared to common baseline strategy of no
shared control for random SVOs. Shaded region corresponds
to values within one standard deviation of the mean.
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Fig. 8: Baseline comparisons. Performance of our approach
(green) compared to zero-sum IBR (gray) and IDM/MOBIL
(yellow) for various SVO populations. Shaded region corre-
sponds to values within one standard deviation of the mean.

allowing ado vehicles to considering cooperative maneuvers
such as proactive lane changes to allow the ambulance to
pass.

D. Comparison to Baselines
We compare our semi-cooperative SVO controller to two

baselines: IDM/MOBIL [18], [19] and fully cooperative
zero-sum game. In the first, human drivers’ acceleration
is assumed to follow the Intelligent Driver Model’s (IDM)
velocity-following assumption and lane changing is deter-
mined using the MOBIL criteria which considers the required
accelerations of surrounding vehicles. For MOBIL, we com-
pare against different levels of ”politeness”, from p = 0.0
to p = 1.0 corresponding to egoistic and altruistic SVO
personalities, and solve the low-level steering control using
MPC. In the zero-sum setting, we repeat our own simulations
with θij = −π/4 which corresponds to a zero-sum reward
function. Fig. 8 plots the ambulance improved performance
of various approaches compared to IBR with all egoistic
agents (θij = 0). IBR with Shared Control performs better
than IDM/MOBIL even in environment with only egoistic
agents and improves as human drivers become pro-social
(π/2). Overall, we observe that IDM/MOBIL struggles to
allow cooperative lane changes necessary for the ambulance
to pass multiple vehicles simultaneously.

E. Effect of Human SVO

Ambulance Mean (m) Median (m) Std. Dev. (m)
0 (Egoistic): 473.19 466.94 27.37

π/6 (Prosocial): 500.85 505.69 12.57
π/4 (Prosocial): 505.69 505.69 0.19
π/2 (Altruistic): 504.51 505.69 3.53

TABLE I: Distance traveled in 38s for different 30 human
SVO over 10 simulations with varied initial positions.

We measure the performance of our algorithm under
different SVOs by first generating 10 different random place-
ment of vehicles (using a Poisson distribution) and then for

each scenario, varying the SVO of an entire population of
vehicles, θi = 0, π/6, π/4, π/2, for a total of 40 simulations.
We limit the experiments to two lane roads with a high
density of traffic to make the ambulance control problem
more difficult. Table I reports the distance traveled by the
ambulance in a fixed time span. We see that the ambu-
lance travels further with higher SVOs, traveling 8% further
than scenarios with all egoistic agents. One reason for this
improvement is that the ambulance can get stuck behind
groups of egoistic vehicles who do not have an incentive
to move out of the way, as seen in Fig. 6. This also leads
to high variation in performance with egoistic populations.
In all these scenarios, the human drivers are not required to
brake and stop, rather they are able to continue driving while
cooperating with the ambulance.

F. Effect of Vehicle Density

To test the effect of traffic density, we generate scenarios
under different vehicle arrival rates and re-initialize each
scenario with a different SVO (θi = 0, π/4). In Table II,
we report the mean distance traveled by the ambulance over
a fixed run time for 18 experiments. In lower density traffic,
there is little performance difference between SVO types.
However, as traffic density increases, the performance gap
between prosocial and egoistic populations increases.

Vehicle Arrival Rates
SVO Low Medium High

0 (Egoistic): 1283m 1223m 1182m
π/4 (Prosocial): 1283m 1280m 1239m

TABLE II: Mean distance traveled by ambulance for varying
traffic densities. Largest performance improvements achieved
with high density traffic in prosocial populations.

VI. CONCLUSION

We show that modeling the semi-cooperative nature of
humans enables autonomous vehicles to plan along-side
human drivers on the road. Central to this approach is a
semi-cooperative value function for human drivers grounded
in psychology and a game-theoretic algorithm that explicitly
explores cooperative maneuvers, while ensuring stability.
This yields a result where prosocial human drivers help
the autonomous ambulance even without explicitly forming
a team. This suggests there is a system-wide benefit to
autonomous control of vehicles even in the absence of their
full adoption by drivers.
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