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Learning An Explainable Trajectory Generator Using The Automaton
Generative Network (AGN)

Xiao Li1, Guy Rosman3, Igor Gilitschenski3,5, Brandon Araki1, Cristian-Ioan Vasile4,
Sertac Karaman2 and Daniela Rus1

Abstract— Symbolic reasoning is a key component for en-
abling practical use of data-driven planners in autonomous
driving. In that context, deterministic finite state automata
(DFA) are often used to formalize the underlying high-level
decision-making process. Manual design of an effective DFA
can be tedious. In combination with deep learning pipelines,
DFA can serve as an effective representation to learn and
process complex behavioral patterns. The goal of this work is to
leverage that potential. We propose the automaton generative
network (AGN), a differentiable representation of DFAs. The
resulting neural network module can be used standalone or
as an embedded component within a larger architecture. In
evaluations on deep learning based autonomous vehicle plan-
ning tasks, we demonstrate that incorporating AGN improves
the explainability, sample efficiency, and generalizability of the
model.

Index terms - learning automata, robot learning, au-
tonomous systems,

I. INTRODUCTION

With a growing fleet of sensor-equipped vehicles on the
road constantly collecting driving data, developing data-
driven trajectory planners for autonomous driving applica-
tions is becoming increasingly attractive. Data-driven plan-
ners have the potential to learn complex interactive maneu-
vers that can otherwise be difficult to model. However, policy
learning methods usually require extensive exploration. This
is usually infeasible for safety-critical applications such as
safe-driving. It can also be difficult to develop a single
objective that fully describes the desired behavior. Therefore,
developing task-oriented model structures capable of efficient
learning from static datasets can significantly enhance the
practicality and performance of data-driven planners.

In order to deploy a data-driven planner on a vehicle, we
need to be able to understand its decision-making process.
Current state-of-the-art data-driven planners based on deep
neural networks are expressive and versatile in the behaviors
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Fig. 1. The motivation of AGN is to develop a differentiable architecture
that encodes an explainable structure that can be learned from data. In this
example, we want the trajectory generator to not only output the correct
behavior but also exhibit an internal structure that is analyzable.

they exhibit, but their blackbox nature prevents effective
analysis of their inner workings.

Although we emphasize the potential of learning from
data, we also wish to take advantage of the wealth of human
knowledge that we have defined for and accumulated from
driving. Therefore, we need a structured and expressive
means of incorporating prior knowledge into our learning
agent such that it does not need to start from scratch.

Our goal is to leverage the deterministic finite state
automata (graphical transition models similar to a state
machine) and develop a differentiable architecture that is
able to extract explainable structures from data. In this work,
explainability refers to the network having an interpretable
structure which activations have a clear correspondence to
physical world behaviors. A high-level schematic of such
an architecture is shown in Figure 1. In this example, we
wish to generate a trajectory for a vehicle approaching a
stop sign. The desired behavior can of course be generated
using a fully connected network. Our method in comparison
encodes an interpretable and differentiable representation



of an automaton and can be used as a component of a
larger architecture. In this paper, we evaluate our method on
autonomous driving tasks. The method is equally applicable
to other robotic tasks where a high-level behavior policy is
needed.

To summarize our contributions, we
1) propose the automaton generative network (AGN),

which encodes the definition of an automaton and
allows for learning a high-level planner from driving
data;

2) show that by incorporating AGN in existing data-
driven trajectory planners we are able achieve im-
proved explainability, sample efficiency, and general-
ization;

3) evaluate AGN on a simulated driving environment as
well as a real-world driving dataset.

In the remainder of this paper, we refer to the vehicle
controlled by our planner as the ego vehicle and all others
as ado vehicles.

II. RELATED WORK

We focus on a setting where the agent has access to
a dataset but not a reward function and is not allowed
to explore. Learning a data-driven trajectory planner from
datasets without exploration falls largely in the topic of
imitation learning (IL)/learning from demonstrations. Within
imitation learning, a branch called behavior cloning (BC)
treats policy learning as a supervised learning problem that
tries to find the correct mapping between states and actions.
Recent work in BC includes [1], [2] where the authors
train a convolutional neural network (CNN) based policy
to generate steering commands which are sent to a model-
based controller. BC does not assume the sequential decision-
making nature of trajectory generation and learns to directly
map states to actions. This can lead to problems such as error
compounding, distribution shift and causal confusion[3].
Authors of [4] provide a summary of issues associated with
BC. As alternatives, the authors of [5] also use a CNN-
based network that takes as input a bird’s-eye view image
but outputs a trajectory instead of a single action. This
trajectory is subsequently corrected using a safety controller.
In [6], the authors use a neural network to imitate a model
predictive controller and devise a batch IL objective which
takes into account the multi-timestep nature of the task. In
[7], the authors use a generative adversarial network (GAN)
to learn high-level intentions in terms of a potential map.
The map is passed into a neural trajectory generator to
generate a continuous trajectory. Our method can be used
with existing IL methods to serve as a differentiable and
explainable component within a policy network. Depending
on the data available in the dataset, we can learn from
both action and trajectory data (existing IL methods often
require access to expert actions). As shown in later sections,
a policy integrated with the AGN achieves improved sample
efficiency and generalization.

In terms of learning an explainable/automaton-like struc-
ture within a neural network, the authors of [8] proposed a

method to synthesize a deterministic finite automata (DFA)
from a dictionary of a formal language using a neural net-
work. However, their method suffers from vanishing gradi-
ents and does not scale well with the automaton’s complexity.
An in-depth review of active automata learning is provided
in [9], [10]. However, this body of work assumes a ground
truth automaton ready for query and learns in a discrete
state space (in terms of atomic propositions). The authors
of [11], [12] propose methods that learn automata for use
as guidance in a hierarchical reinforcement learning setting.
In their work, the edges of the automata are labeled by
propositions representing sub-goals that constitute the overall
task. The automata can be learned from demonstrations and
serve as either a reward function or a high-level policy.
In [13], [14], [15], the authors were able to learn a finite
state automaton (FSA) along with an imitative policy using
discrete and continuous demonstration signals. Compared
with existing work in automata learning which primarily
focuses on learning from sequences of propositions (discrete
features), our method is able to learn from continuous
state/action trajectories and scales well with the size of the
automaton.

III. BACKGROUND

In this section, we briefly introduce the deterministic finite
state automata (DFA) that serve as a basis for our work. For
a detailed exposition, please refer to [16], [17].

Deterministic Finite State Automaton (DFA): The for-
mal definition of DFA is

Definition 1. A deterministic finite state automaton is a tuple
A = (Q, qinit,Σ, δ, F ), where:
• Q is a finite set of states;
• qinit ∈ Q is the initial state;
• Σ is the input alphabet;
• δ : Q× Σ→ Q is the transition function;
• F ⊆ Q is the set of accepting states.

A trajectory of A q0q1 . . . qN is generated by a finite
sequence of symbols (word) σ = σ0σ1 . . . σN−1, σk ∈ Σ,
where q0 = qinit and qk+1 = δ(qk, σk) for all k ≥ 0. Given
a set of propositions (variables with binary values) Π, the
input alphabet is constructed from the powerset of Π (i.e.
Σ = 2Π). A finite input word σ over Σ is said to be accepted
by A if σ generates a trajectory q of A such that the terminal
state is accepting, i.e., qN ∈ F . The set of input symbols
g(q, q′) ⊆ Σ of all transitions between states q, q′ is the
guard of the transition, i.e., g(q, q′) = {σ | q′ = δ(q, σ)}.In
the remainder of this work, we will also use the Boolean
operators ∧ (and), ∨ (or) and ¬ (not).

Example 1. Consider the scenario in Figure 2(a), where our
vehicle is approaching an unprotected intersection. Taking an
excerpt from the California driver handbook: “at an intersec-
tion without STOP or YIELD signs, yield to traffic already in
the intersection”. First, we define four propositions Π: { cii
- whether there is a car in the intersection, cs - whether that
car has stopped (sometimes vehicles in the intersection may



stop for our vehicle), F (faster) - our vehicle speeding up,
S (slower) - our vehicle slowing down }. The input alphabet
is Σ = {cii∧ cs∧F ∧S,¬cii∧ cs∧F ∧S, ...,¬cii∧¬cs∧
¬F ∧ ¬S} which contains all possible combinations of the
propositions (the number of elements in |Σ| = 24). The DFA
depicted in Figure 2(b) represents a high-level policy that
describes the aforementioned traffic rule.

(a) (b)

Ego

Fig. 2. A simulated environment. (a) Our vehicle is navigating through an
unprotected intersection whose high-level policy associated DFA is shown
in (b).

IV. AUTOMATON GENERATIVE NETWORK (AGN)

The DFA introduced in Section III is constructed using
propositions (binary variables) which is difficult to use in
a gradient-based optimization problem. In this section, we
introduce the AGN that encodes the definition of a DFA into
a differentiable structure whose transition function (edges
and guards) can be learned. The number of nodes is preset
and is a hyperparameter.

A. Predicate DFA (Ap)

The DFA in Definition 1 operates over sets of atomic
proposition that take binary values. To enable the AGN to
learn from continuous data, we modify the DFA definitions.
Instead of propositions, we use predicates of the form p(s) :
fp(s) < c, where s is a continuous state, c is a constant,
and fp is a real-valued function over s. In Example 1, the
predicate for cs is defined as |v| < ε, where the state s = v
is the velocity and ε is a threshold. The predicate is true iff
c − fp(s) > 0 (similar to the robustness degree in Signal
Temporal Logic (STL) [18]).

To allow a DFA to transition on continuous system states
(e.g., vehicle position, velocity), we need to modify its
transition function δ. In the original definition, a transition
between two automaton states occur if the formula guarding
their edge evaluates to true. For example, in Figure 2(b), q0

transitions to q1 if ¬cii∨cs evaluates to true. Since we wish
to work with predicates instead of propositions, we redefine
the guards as predicate Boolean formulas, i.e., predicates
connected by Boolean operators. We denote the predicate
Boolean guard formula governing the transition from qi to
qj by b(qi, qj).

Again taking inspiration from STL, we define the robust-
ness of a predicate guard. Given two predicates p1(s) :
fp1(s) < c1 and p2(s) : fp2(s) < c2, the robustness degree
of predicate guards is defined recursively as

r(s, p) = c− fp(s)
r(s,¬p) = −r(s, p(s))
r (s, p1 ∧ p2) = min(r(s, p1), r(s, p2))

r (s, p1 ∨ p2) = max(r(s, p1), r(s, p2)).

(1)

A predicate guard is true at state s iff its robustness de-
gree is greater than zero at s. We define the predicate
transition function δp such that qi transitions to qj at s
iff r(s, b(qi, qj)) > 0. We refer to the DFA defined over
predicates with transition function δp as the predicate DFA
Ap.

B. Constructing an AGN

To construct a differentiable representation of the predicate
DFA, we first describe the representation of a predicate DFA.
Given a set of predicates P = {pi | i ∈ [0, n)}, we construct
the alphabet of the automaton as the powerset of P , i.e. Σ =
2P . Each symbol σ ∈ Σ is a conjunctive predicate Boolean
formula over the predicates in P . Let L : Q×Σ×Q→ {0, 1}
be a labeling function with L(qi, σk, qj) = 1 indicating that
σk constitutes as a component guarding the transition from
qi to qj . The guard of (qi, qj) in Boolean formula form is

b(qi, qj) =
∨

k∈[0,n)

L(qi, σk, qj)σk. (2)

Here the multiplication between an integer and formula σ is
loosely defined such that 1 · σ represents existence and 0 · σ
represents absence in b(qi, qj).

Example 2. Figure 3 illustrates the automaton construction
process with the predicate set P = {cii, cs}. The alphabet is
Σ = {cii∧¬cs, cii∧ cs,¬cii∧ cs,¬cii∧¬cs} that contains
all possible combinations of cii and cs and their negations.
For each σ ∈ Σ, we construct a sub-automaton that contains
edges that only σ has influence on. The final automaton
is obtained by applying Equation (2) to all edges among
the sub-automata. Note that in Figure 3, the entries in the
matrices represent the labeling function L, where column and
row indices represent source and target automaton states,
respectively. They can be interpreted as transition matrices.
Also, for all edges with target state q1, we have ¬cii∨ cs =
(cii ∧ cs) ∨ (¬cii ∧ cs) ∨ (¬cii ∧ ¬cs) as a shorthand.

As described in the previous section, transition between
nodes qi and qj within Ap is governed by the robustness
r(s, b(qi, qj)). Plugging Equation (2) into the robustness
definition in Equation (1) results in

r(s, b(qi, qj)) = max
k∈[0,n)

L(qi, σk, qj)r(s, σk) (3)

With the above insights, we proceed to introducing the
AGN. Given the set of predicates P and the number of
automaton nodes N , we represent the current automaton state
qt ∈ IRN as an N -vector with each entry corresponding
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Fig. 3. An example construction of DFA from alphabet sub-automata. Here we have a predicate set P = {cii, cs}. The alphabet is Σ = {cii ∧
¬cs, cii ∧ cs,¬cii ∧ cs,¬cii ∧ ¬cs} that contains all possible combinations of cii and cs. For each σ ∈ Σ, we can construct a sub-automaton that
contains edges that only σ has influence on. The final automaton is obtained by applying Equation (2) to all edges among the sub-automata. Note that in
Figure 3, the entries in the matrices take values of the labeling function L, where column indices represent source nodes and row indices represent target
nodes (can be interpreted as adjacency matrices).
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Fig. 4. An example reconstruction of a Ap. (a) Learned weights WΣ

for an AGN of two predicates σ1, σ2 and 2 nodes. (b) The reconstructedAp

with the inequality expressions on each edge constructed from WΣ using
Equation (5). To recover the predicate guards, we need to set a threshold
η, where σk exists on edge (qi, qj) if wΣ

k,i,j > η. The predicate Boolean
formula in square brackets are obtain with η = 0.15.

to the probability of being in qi. We construct the alphabet
vector vΣ with elements vσ = r(s, σ), σ ∈ Σ, where r is
the robustness degree from Equation (1). Define

WΣ = sigmoid(WL) (4)

where WL is a matrix of size |Σ| × N × N that contains
learnable weights. |Σ| is the cardinality of set Σ. An element
wσk,i,j of WΣ determines how strong an influence σk has on
the transition from qi to qj . Define an N × N robustness
matrix R such that each element rij ∈ R is calculated from

rij = max
k∈[0,n)

wσk,i,jv
σ
k = max

k∈[0,n)
wσk,i,jr(s, σk) (5)

Equation (5) is a scaled version of Equation (3). To obtain
the edges that are activated with robustnesses greater than
zero, we apply a ReLU activation of R. Finally, transition
from qt to qt+1 is achieved by

qt+1 = softmax (ReLU(R) · qt) . (6)

In order for AGN to have well defined gradients, all
max(·) functions in the equations above are replaced with
softmax(·). Given the vector vΣ as input, AGN functions
like a transition system (state machine), and can be trained
recurrently similar to a recurrent neural network.

Figure 5 shows a schematic of the AGN and its use within
a trajectory generator. In this architecture, high level features
such as agent positions, velocities, lane representations, goal
poses, etc., serve as states needed to calculate the vector vΣ

for the AGN. The bird-view image is also passed through
a CNN feature extractor to obtain other relevant feature
necessary for effective trajectory generation. The AGN out-
put (i.e., the automaton state distribution) along with the
bird-view features are passed into a trajectory generation
module to generate the output trajectory. The user is free to
choose/design the trajectory generation module, which can
be as simple as an LSTM or more complex architectures (our
choice is an LSTM). The AGN decoder is used and trained
recursively similar to a recurrent network.

Algorithm 1 describes the process of learning an AGN
trajectory generator. On line 2, θAGN = WL. The samples
on line 5 consists of x0 - inputs at the current timestep
(i.e. bird-view image, agent poses, velocities, etc); y0 - ego
vehicle’s current positions; y1:T - ego vehicle’s target future
trajectory.

C. The Predicate DFA Corresponding To A Learned AGN
Having learned the matrix WΣ, we can reconstruct its

corresponding Ap. Figure 4(a) shows a simple example WΣ

matrix and Figure 4(b) shows the reconstructed Ap. The in-
equality expression on each edge governs the corresponding
transition and is constructed from WΣ using Equation (5).
To compute the predicate guards, we need to set a threshold
η, where σk exists on edge (qi, qj) if wΣ

k,i,j > η. In
Figure 4(b), the predicate Boolean formula in square brackets
are obtain with η = 0.15. If the dataset contains only positive
examples (expert data), we recover the accepting automaton
states by simply computing the DFA state trajectory q0, ..., qn
corresponding to each trajectory in the dataset, and setting
qn as an accepting state (Definition 1).

This is under the assumption that all trajectories in the
dataset are accepted by the automaton. In its current state,
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Fig. 5. An example architecture that shows the AGN (in dashed box) and its use within a trajectory generator. In this architecture, high level features
such as agent positions, velocities, lane representations, etc., are extracted from a bird-view image and serve as states needed to calculate the alphabet
robustness vector vΣ for the AGN. The bird-view image is also passed through a CNN feature extractor to obtain other relevant features necessary
for effective trajectory generation. The AGN output (i.e., the automaton state distribution) along with the bird-view features are passed into a trajectory
generation module to generate the output trajectory. The user is free to choose/design the trajectory generation module, which can be as simple as an
LSTM or more complex architectures. The AGN decoder is used and trained recursively similar to a recurrent network.

AGN does not explicitly use accepting states to affect the
model’s behavior.

Algorithm 1 Learning an AGN trajectory generator
1: Inputs: number of AGN nodes N ; the set of predicates
P ; dataset X; number of iterations I; future trajectory
length T ; trajectory generator module TG; learning rate
α

2: θAGN ← InitializeAGN(N) . using Equations
(4)-(5)

3: θTG ← θTG0 . initialize trajectory generator module
4: for i=0 . . . I-1 do
5: Sample a minibatch of m data samples

(x0,y0),y1:T . 0 is the current time-step
6: ŷ ← [y0] . initialize generated trajectory with y0

7: f = FeatureExtractor(x0)
8: for t=0 . . . T-1 do
9: vΣ

t = AlphabetVector(x0, ŷ[t])
10: qt+1 = AGN(qt,v

Σ
t ) . Equation (6)

11: ŷt+1 = TrajectoryGenerator(qt+1,f)
12: ŷ.append(qt+1)
13: end for
14: L = MSE(y1:T , ŷ)
15: (θAGN , θTG)← (θAGN , θTG)− α 1

m∇L
16: end for

V. EXPERIMENTS

Simulated Intersection. We use the Highway Environ-
ment [19] as the simulator to construct a synthetic dataset.
The environment is depicted in Figure 2 and the task is to
safely navigate the ego vehicle through the intersection as
described in Example 1. When constructing the dataset, the
ego vehicle is controlled using the ground truth automaton
in Figure 2 (b) to output a longitudinal velocity which is

passed to a low-level controller that governs the motion of
the ego vehicle. The goal of this environment is to test
whether we are able to learn the ground truth automaton
from the synthetic dataset and to study the characteristics of
the learned automaton.

NuScenes Dataset. We use the NuScenes dataset [20] for
training and evaluation. The dataset contains 1000 scenes of
20s each collected in Boston and Singapore. It also includes
rich semantic information including 23 object classes (pedes-
trian, vehicle, etc) and HD maps with 11 annotated layers
(lanes, walkways, etc). Since real-world driving dataset can
not provide a ground truth automaton, our goal here is
to show that AGN is capable of learning an explainable
representation that can guide the ego vehicle.

NuScenes Environment.
Method of Evaluation. The first metric we use is the

average displacement error (ADE) - average L2-norm be-
tween the generated trajectories and ground truth trajectories.
ADE measures how well our model is able to generate
trajectories that mimic those from the human demonstrators
in the dataset. Our second metric is the minimum distance
to other agents along the generated trajectory (also referred
to as safety distance). This measures how well our planner
has learned to avoid collisions. Our third metric is the goal
distance, which calculates how close the planned trajectory
is able to reach its goal. Goals are defined by the end
positions of vehicles in the dataset.

Comparison Cases. For the NuScenes experiments, we
use 4 different settings - NO AGN: this corresponds to the
architecture in Figure 5 without the AGN module; AGN - this
is nominal setting in Figure 5; MTP - this is the architecture
proposed in [21] ; Covernet - this is the architecture proposed
in [22]. We reference [20] for the implementations of MTP
and Covernet.

Results And Discussion.
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Fig. 6. Example Execution trace for the simulated intersection environment. a The evolution of the learned automaton during training. The automaton
starts out uniformly connected. As training progresses, the transitions between q1 and q2 are strengthened whereas the transitions to and from q0 are
weakened. This shows that q1 and q2 learns to be dominant modes of navigation and q0 is transitional. (b) An example rollout that shows trajectories
generated under different distributions of q.

TABLE I
PERFORMANCE METRIC STATISTICS FOR THE NUSCENES DATASET: BOLD HIGHLIGHTS THE DESIRABLE OUTCOME.

ADE (m) Safety Distance (m) Goal Distance (m)
min mean max 90th min mean max 90th min mean max 90th

No AGN 5.39 17.42 38.92 30.80 0.24 5.48 33.7 11.39 0.0 13.20 32.19 25.17
CoverNet 5.32 18.89 52.76 35.73 0.28 26.33 37.20 31.20 0.0 9.85 30.18 28.76

AGN 3.69 12.98 37.68 31.00 0.21 9.83 32.89 24.7 0.0 2.91 28.77 22.72
MTP 15.62 20.55 50.92 38.03 0.31 17.95 40.70 35.27 0.0 18.12 49.12 43.34

Fig. 7. A study of learned AGN modes. Plotting the ego vehicle’s
velocities against corresponding q states confirms that AGN learns 2 control
modes on q1 and q2. The velocities on q0 are values at initialization.

Simulated Intersection. The simulated intersection envi-
ronment serves to evaluate the automaton recovery capability
and explainability of AGN. Recall that Figure 2(b) shows
the ground truth automaton used to generate the synthetic
dataset. Figure 6 (a) shows the learned automaton (recovered
from AGN using the method described in Section IV-C) as
a function of learning epoch. The thickness of the edges
corresponds to the strength of connection. We can observe

that at epoch 0 the AGN is randomly initialized with all edges
having similar presence. As learning progresses, the edges to
and from q0 weakens while those that transition between q1

and q2 (and their self-loops) strengthens. At epoch 100, q0

becomes a transitional initial state and most transitions stay
within q1 and q2. Even though weakened, the transitions to q0

do not disappear (unlike the ground truth automaton) because
their corresponding weights are nonzero. This result shows
that instead of exactly recovering the ground truth automaton,
AGN is able to extract its important functional component.

Figure 6(b) shows an execution trace of a intersection
left turn. Recall that the q state in the AGN is a 3-vector
representing the probability of being in each state. In the
automaton shown on the lower left corner, darker node
corresponds to higher probability. q is initialized at [1,0,0]. It
can be observed from the generated trajectories that q1 serves
as a fast moving mode and q2 as a slow moving (yielding)
mode. q shifts to q1 when the intersection is clear to navigate
and to q2 when there are vehicles in the intersection. Figure
7 confirms this finding. In this test, we fix the q-node values
throughout a trial run and record the distribution of output
velocities (calculated from finite-differencing the planned
trajectories with dt=0.5 sec). In Figure 7 (Top), we show
the trajectories generated by q-distributions q = [0, 1, 0]
and q = [0, 0, 1], which exhibit distinguishable fast and



Our vehicle

Fig. 8. Execution trace for the NuScenes environment. The green vehicle is the ego, the green dotted trajectory is the ground truth and the black
trajectory is generated by the learned model. The dot-dash line represent the desired lane center. Our vehicle (green) is making a right turn and slowing
down as it’s approaching the front vehicle. The upper right automaton shows that the q distribution shifts from q0 to q1 as the vehicle is making the turn
and back to q0 as the turn finishes. Also less mass is placed on q2 as the vehicle is slowing down.
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Fig. 9. q-distribution study. Steering values (interpolated from trajectory)
are plotted as a function of time (top) along with the synchronized q-
distribution (bottom). The figures show that when driving straight (steering
∼ 0), most of the probability mass is aggregated on q0. As turning proceeds,
probability mass shifts from q0 to q1.

slow moving modes. The x-axis of Figure 7 (Bottom) is
obtained by arg max(q). The velocity distribution of q =
0 corresponds to the initialization velocities (sampled in
the range [5, 10]). Those of q1 and q2 corresponds to 2
navigation modes with well-separated velocity distributions.
With meaningful modes of operation learned, AGN allows
users to interpret its decision making process and also the
conditions that trigger the change of modes.

NuScenes. Similar to Figure 6(b), Figure 8 shows an
execution trace for the NuScenes environment using the
model trained with AGN. The green vehicle is controlled
by our planner, the green dotted trajectory is the ground
truth and the black trajectory is generated by the learned
model. The dot-dash line represents the desired lane center.

Fig. 10. Sample efficiency study. All comparison cases are trained with
25%, 50%, 75%, 100% of the training set (full validation set is used for
evaluation). The figure shows that more training data yields lower ADE
scores (better human similarity). Comparing to the baseline cases (MTP
and CoverNet), AGN and NO AGN achieves better ADE scores at low
percentage training data. AGN shows a shorter tail overall compared to NO
AGN which translates to better robustness and generalization over validation
scenes.

In this case, our vehicle is making a right turn and slowing
down as it’s approaching the front vehicle. The interesting
phenomenon to observe from the upper right automaton is
that the q distribution shifts from q0 to q1 as the vehicle is
making the turn and back to q0 as the turn finishes. Also less
mass is placed on q2 as the vehicle is slowing down. Figure 9
confirms this observation. In this figure, we plot the steering
values (interpolated from trajectory) as a function of time
(top) along with the synchronized q-distribution (bottom).
We can see that when the vehicle is driving straight (steering
∼ 0), most of the probability mass is aggregated on q0. As
turning proceeds, probability mass shifts from q0 to q1. This
set of results show that AGN learns to map the q-states to
meaningful steering modes.

Figure 10 shows a sample efficiency study where all com-
parison cases are trained with 25%, 50%, 75%, 100% of the
training set (full validation set is used for evaluation). From
the figure we can observe the general trend that more training
data yields lower ADE scores (better human similarity).
Comparing to the baseline cases (MTP and CoverNet), AGN
and NO AGN achieves much better ADEs at low percentage
training data. Between the later two, AGN performs on par



Fig. 11. Node scale study where a set of experiments with varying numbers of q-nodes (from 3 - 45) are conducted and their performance distributions
plotted. As the number of q-nodes increase, performance in general improves (lower ADE and goal distance). Safety distance also decreases (undesirable)
within a reasonable degree as a trade-off. The improvement in performance is most significant before 9 nodes and the margin diminishes with a larger
number of q-nodes.

with NO AGN in most cases but exhibits a shorter tail (above
the upper fence of the box plots). This shows that adding
AGN to the network helps with stabilizing performance
across the validation scenes.

Table I shows the statistics of the evaluation metrics
(trained on the full training set). In this set of experiments,
we trained AGN with 9 nodes. The bold numbers highlight
desirable outcomes (minimum ADE and goal distance, and
maximum safety distance). Out of all comparisons, AGN is
able to achieve the lowest ADE and goal distance. It doesn’t
exhibit the highest safety distance compared to the baseline
methods. This is because AGN needs to make a trade-
off between staying very far away from neighbor vehicles
and reaching the goal while driving similarly to human
demonstrators. In many scenarios achieving the latter means
sacrificing some safety distance.

To study how the performance of AGN scales with the
number of q-nodes, we performed a set of experiments with
varying number of q-nodes (from 3 - 45) and plot their
performance distributions in Figure 11. In the figure, we
can see that as the number of q-nodes increase, performance
in general improves (lower ADE and goal distance). Safety
distance also decreases (undesirable) within a reasonable
degree as a trade-off. The improvement in performance is
most significant before 9 nodes and the margin diminishes
with a larger number of q-nodes. This shows that AGN is
able to distill the important aspects of trajectory planning
into a relatively small number of q-nodes. This is important
as the number of q-nodes trades off explainability, therefore
our goal is to accomplish the planning task with the least
number of q-nodes.

VI. CONCLUSION

In this work, we introduce the automaton generative
network (AGN) that encodes the definition of a predicate
deterministic finite state automaton in a differentiable struc-
ture. We demonstrate the use of AGN in learning a trajectory
generator for planning which results in an explainable high-
level structure with distinctive modes of operation. We also
show that by bridging the gap between temporal logic and
neural networks, we can effectively incorporate logical priors
at AGN initialization and as an auxiliary loss. As AGN is
a general architecture not limited to the autonomous driving

domain, in future work, we will also look at its application
in manipulation tasks.
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