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PROBABILISTIC GUARANTEES IN ROBUST OPTIMIZATION\ast 

DIMITRIS BERTSIMAS\dagger , DICK DEN HERTOG\ddagger , AND JEAN PAUPHILET\S 

Abstract. We develop a general methodology for deriving probabilistic guarantees for solutions
of robust optimization problems. Our analysis applies broadly to any convex compact uncertainty
set and to any constraint affected by uncertainty in a concave manner, under minimal assumptions
on the underlying stochastic process. Namely, we assume that the coordinates of the noise vector
are light-tailed (sub-Gaussian) but not necessarily independent. We introduce the notion of robust
complexity of an uncertainty set, which is a robust analogue of the Rademacher and Gaussian
complexities encountered in high-dimensional statistics, and which connects the geometry of the
uncertainty set with an a priori probabilistic guarantee. Interestingly, the robust complexity involves
the support function of the uncertainty set, which also plays a crucial role in the robust counterpart
theory for robust linear and nonlinear optimization. For a variety of uncertainty sets of practical
interest, we are able to compute it in closed form or derive valid approximations. Our methodology
recovers most of the results available in the related literature using first principles and extends them
to new uncertainty sets and nonlinear constraints. We also derive improved a posteriori bounds, i.e.,
significantly tighter bounds which depend on the resulting robust solution.
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1. Introduction. Over the past decades, robust optimization (RO) has emerged
as an effective framework accounting for uncertainty in optimization problems (see
[5, 22] for a review). Consider a single linear constraint of the form

a\top x \leq b,(1.1)

where the parameter a is subject to uncertainty, and b \in \BbbR is certain, without loss
of generality. In a robust approach, a is described as a deterministic yet unknown
vector belonging to a so-called uncertainty set \scrU , and constraint (1.1) is imposed to
hold for all values of a \in \scrU , i.e., we consider its robust counterpart

a\top x \leq b \forall a \in \scrU .(1.2)

For theoretical as well as practical considerations, a central question in the RO litera-
ture has been how to derive probabilistic guarantees for robust solutions, namely how
to bound the probability of constraint violation, \BbbP \~\bfa 

\bigl( 
\~a\top x > b

\bigr) 
, for x satisfying (1.2).

Historically, connecting a deterministic model of uncertainty (1.2) with probability
theory was needed to endorse RO as a competitive framework compared to stochastic
optimization.

In practice, a priori bounds, i.e., bounds that only depend on the uncertainty set
\scrU without knowledge of the robust solution x, are useful for calibrating and sizing
the uncertainty set according to a desired protection level. Clearly, \BbbP \~\bfa 

\bigl( 
\~a\top x > b

\bigr) 
\leq 
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\BbbP \~\bfa (\~a /\in \scrU ), yet much tighter bounds can be obtained. For instance, the authors of [4]
proved that \BbbP \~\bfa 

\bigl( 
\~a\top x > b

\bigr) 
\leq exp( - \rho 2/2) for their proposed box-ellipsoidal uncertainty

set \scrU = \{ a : \| a\| \infty \leq 1, \| a\| 2 \leq \rho \} , under the assumption that the coordinates of
\~a are independent bounded random variables with mean 0. The bound above is
notoriously independent of the number of uncertain parameters L, which is typically
not the case for \BbbP \~\bfa (\~a /\in \scrU ). To guarantee that the robust solution is feasible with
probability at least 1 - \varepsilon , for example, this bound prescribes taking \rho =

\sqrt{} 
 - 2 ln(\varepsilon ).

A posteriori bounds, i.e., bounds that depend on the robust solution x, are also
useful for auditing the resulting solution after it has been computed and assessing its
performance.

Results for other classes of uncertainty sets \scrU , or a more general constraint, such
as f(a,x) \leq 0, have been derived, yet in a disparate and unsystematic way. Attempts
have been made to report existing bounds in a unified manner [35, 26, 27, 28] for
various uncertainty sets. In particular, they provide a catalog of the known a priori
and a posteriori bounds for specific uncertainty sets and linear constraints. Little if
no work, however, has provided a disciplined methodology that enables us to derive
probabilistic guarantees for any uncertainty set \scrU and any constraint function f .
In addition, a clear relationship between the geometry of the uncertainty set and
the resulting guarantee is still needed to understand the connection between robust
optimization and its out-of-sample performance on random instances. Such is the
contribution of the present paper.

1.1. Literature review. Safe approximation of the ambiguous chance
constraint. In this setting, the goal is to reformulate a given chance constraint
\BbbP \~\bfa 

\bigl( 
\~a\top x \leq b

\bigr) 
\geq 1  - \varepsilon , with \varepsilon > 0. In most cases, the distribution of \~a is not known

precisely but rather assumed to belong to a certain class, and the objective is to
reformulate the ambiguous chance constraint

inf
\BbbP \~\bfa \in \scrP 

\BbbP \~\bfa 

\bigl( 
\~a\top x \leq b

\bigr) 
\geq 1 - \varepsilon ,(1.3)

where \scrP is a class of allowable probability distributions for \~a. Given some assumption
on \scrP , the ambiguous chance constraint (1.3) can be proven to be equivalent to a robust
constraint of the form (1.2), where the uncertainty set \scrU depends on \scrP . Notably, exact
reformulations have been derived in cases where \~a is normally distributed [17, 47, 48]
or has known mean and bounded second-order moments [47, 48, 30]. The authors of
[3, Chapter 2] derive such reformulations for a general class of probability distributions
and in a disciplined manner. For example, if the coordinates of \~a are independent
random variables in [ - 1, 1] and unimodal with respect to 0, meaning that 0 is the
only mode of the distribution, then constraint (1.2) with

\scrU =
\Bigl\{ 
a = a1 + a2 : \| a1\| \infty \leq 1/2, \| a2\| 2 \leq 

\sqrt{} 
ln(1/\varepsilon )/6

\Bigr\} 
yields \BbbP \~\bfa 

\bigl( 
\~a\top x > b

\bigr) 
\leq \varepsilon [3, Theorem 2.4.4 applied to Example 2.4.7]. This approach,

which takes assumptions on the distribution of \~a as the primitive and provides a
corresponding uncertainty set, has two main shortcomings. First, it cannot provide
any probabilistic guarantee for the uncertainty set \scrU whenever \~a satisfies different as-
sumptions. Instead, different assumptions on \~a would lead to a different uncertainty
set. In this setting, probabilistic assumptions dictate the type of uncertainty set to
use, rather than tractability considerations, and impede modeling. Second, their ap-
proach systematically results in uncertainty sets involving the Euclidean norm, which
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is closely related to the notion of variance but excludes more general uncertainty sets,
such as polyhedral or budget uncertainty sets [8], despite their tractability and wide
use in practice. More recently, the authors of [6] propose a data-driven extension of
this procedure. Starting from assumptions on the distribution of \~a and given past ob-
servations a(1), . . . ,a(N), they leverage hypothesis testing to construct an uncertainty
set with a probabilistic guarantee of level \varepsilon . Their setting is fully data-driven and
applies to a general concave robust constraint. However, the shape of the uncertainty
set is still dictated by the distributional assumptions made---and the corresponding
hypothesis test. Also, their uncertainty sets are calibrated using a single constraint.
If multiple constraints are affected by uncertainty, their method fails to provide guar-
antees for the ones that were not used during calibration. The latter limitation is
partially addressed by [32], which develops a data-driven approach for calibrating a
set \scrU \varepsilon such that \BbbP (\~a /\in \scrU \varepsilon ) \leq \varepsilon , leading to an \varepsilon -level probabilistic guarantee for any ro-
bust constraint. However, as mentioned in the introduction, the resulting uncertainty
set can be prohibitively large.

Distributionally robust optimization. Probabilistic guarantees and concen-
tration results have been the fundamental building blocks in the distributionally ro-
bust optimization (DRO) literature. In the DRO setting, reformulations of ambiguous
chance constraints (1.3) have been derived in cases where the ambiguity set \scrP is con-
structed from bounds on moments of the distribution [18, 24, 51, 48] or is defined as
a ball around the empirical distribution according to the f -divergence [49, 38], the
Wasserstein distance [23, 15, 21, 45, 34], or the relative entropy [43]. We refer the
reader to [29] and references therein for a comprehensive review. Despite powerful
out-of-sample performance guarantees and moderate conservatism, DRO approaches
are usually more computationally expensive than simple robust approaches, especially
in data-driven settings. Notorious exceptions to this claim are [38], which solved DRO
problems using first-order methods, and [21], which formulated DRO problems with
the Wasserstein distance as linear and second-order cone problems. Finally, Gupta
[25] extends the data-driven approach of [6] to ambiguity sets; specifically, he consid-
ers a DRO setting with a parametric class of distributions and uses Bayesian updating
of the parameters of the distribution to construct relevant ambiguity sets. However,
this approach suffers from limitations similarly to [6].

Scenario approach. A general way to deal with chance constraints is the sce-
nario approach, i.e., generate N samples a(i), i = 1, . . . , N , of \~a and replace the chance
constraint by N deterministic constraints f(a(i),x) \leq 0. Assuming that the function
f is convex in x, [11, 12] prove that this approach yields a feasible solution to the
chance constrained problem with probability 1 - \delta (over the N samples) if

N \geq 2L+
2L

\varepsilon 
ln

\biggl( 
2

\varepsilon 

\biggr) 
+

2

\varepsilon 
ln

\biggl( 
1

\delta 

\biggr) 
.

This approach was later refined [39, 36, 13, 33] and extended to ambiguous chance
constraints [20, 16]. The scenario approach, however, suffers from two limitations.
First, while the number of constraints to be sampled, N , scales favorably with respect
to the protection level \varepsilon , it grows linearly in the dimension of the uncertainty, L,
which makes the approach difficult to apply to medium-sized problems. Second, the
probabilistic guarantee is obtained with respect to the sampling distribution, which
should be as close as possible to the ``true"" and potentially unknown distribution
of \~a.
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1.2. Contributions and structure. In this paper, we start from a general
robust constraint,

f(a,x) \leq 0 \forall a \in \scrU , \Leftarrow \Rightarrow max
\bfa \in \scrU 

f(a,x) \leq 0,

and derive valid probabilistic guarantees for any solution x satisfying the robust con-
straint. We will assume that \scrU is convex and f(a,x) is concave in a for any x. Under
this assumption, the maximization problem above is well defined, and the robust
constraint can be reformulated in a tractable way [2].1 We restrict our attention to
uncertainty sets \scrU of the form

\scrU = \{ a : \exists z \in \scrZ s.t. a = \=a+Pz\} ,

where \=a is the nominal value of a, and \scrZ is a given nonempty, fully dimensional
convex and compact set, with 0 \in ri(\scrZ ), as in [2]. Our main contribution is a simple
methodology for deriving probabilistic guarantees for solutions of robust optimization
problems, which provides a unifying perspective on existing results from the literature
and extends them significantly.

A unified perspective on the literature. Our approach unifies existing results from
the literature in terms of assumptions, proof techniques, and result statements. First,
we observe that most results from the literature assume that the coordinates of \~z are
sub-Gaussian and independent random variables. Under these generic assumptions,
probabilistic guarantees follow directly from elementary concentration inequalities. In
particular, for linear constraints of the form a(z)\top x \leq b(x) \forall z \in \scrZ , we show that an
uncertainty set \scrZ yields a probabilistic guarantee of

\BbbP 
\bigl( 
\~a\top x > b(x)

\bigr) 
\leq exp

\bigl( 
 - 1

2\rho (\scrZ )2
\bigr) 
,

where we define the robust complexity of \scrZ , denoted \rho (\scrZ ), as

\rho (\scrZ ) := min
\bfy :\| \bfy \| 2=1

max
\bfz \in \scrZ 

y\top z.

This single and simple result recovers all known probabilistic guarantees for robust
linear constraints, with minimal assumptions on the underlying distribution of the
uncertain parameter. In particular, for the box-ellipsoidal set of [4] and the budget
uncertainty set of [8], we show that \rho (\scrZ ) \geq \Gamma and \rho (\scrZ ) \geq \Gamma /

\surd 
L, respectively, and

hence show matching existing bounds.
Significant extensions. As summarized in Table 1, our approach is also a powerful

tool for extending existing results in significant ways:
\bullet First, we readily generalize all results to the case where the constraint is
nonlinear in the uncertainty. Under the same assumptions, for constraints of
the form f(a,x) \leq 0, where f is concave in a, we show that an uncertainty
set \scrZ yields the same probabilistic guarantee of

\BbbP (f(\~a,x) > 0) \leq exp
\bigl( 
 - 1

2\rho (\scrZ )2
\bigr) 
.

1When f(a,x) is convex in a, however, an equivalent tractable reformulation of the robust con-
straint is out of reach. Safe approximations based on scenario sampling [12] or linear approximation
[9] have been proposed but remain significantly less tractable. Correspondingly, the probabilistic
guarantees obtained in the convex case would require more stringent assumptions on the underlying
distribution; see, e.g., Conjecture 10.1 in [3].

D
ow

nl
oa

de
d 

07
/2

7/
22

 to
 1

8.
10

.7
1.

23
1 

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

PROBABILISTIC GUARANTEES IN ROBUST OPTIMIZATION 2897

Table 1
Summary of our main findings. Here, \delta  \star (\cdot | \scrZ ) and \rho (\scrZ ) denote, respectively, the support func-

tion and the robust complexity of the uncertainty set \scrZ , defined as \delta  \star (y| \scrZ ) = max\bfz \in \scrZ z\top y and
\rho (\scrZ ) = min\bfy :\| \bfy \| 2=1 \delta 

 \star (y| \scrZ ). For the concave case, f \star (v,x) := inf\bfa 
\bigl[ 
a\top v  - f(a,x)

\bigr] 
is often re-

ferred to as the concave conjugate of f(\cdot ,x).

Constraint type Linear Concave in a

Nominal constraint a\top x \leq b(x) f(a,x) \leq 0
Robust counterpart \=a\top x+ \delta  \star (P\top x| \scrZ ) \leq b \exists v, \=a\top v + \delta  \star (P\top v| \scrZ ) - f \star (v,x) \leq 0
A priori probabilistic guarantee

exp
\bigl( 
 - 1

2
\rho (\scrZ )2

\bigr) 
exp

\bigl( 
 - 1

2
\rho (\scrZ )2

\bigr) 
(Corollary 3.9, 3.11)
A posteriori probabilistic guarantee

exp

\biggl( 
 - (b(\bfx ) - \=\bfa \top \bfx )2

2\| \bfP \top \bfx \| 22

\biggr) 
exp

\biggl( 
 - (f \star (\bfv ,\bfx ) - \=\bfa \top \bfv )2

2\| \bfP \top \bfv \| 22

\biggr) 
(Theorem 3.4, 3.10)

\bullet We show how to tighten these x-independent probabilistic guarantees a pos-
teriori, i.e., given the resulting robust solution x. In particular, in the linear
case, we prove an a posteriori bound of the form

\BbbP 
\bigl( 
\~a\top x > b(x)

\bigr) 
\leq exp

\Biggl( 
 - 1

2

\biggl[ 
b(x) - \=a\top x

\| P\top x\| 2

\biggr] 2\Biggr) 
,

and an analogous result in the case where the constraint is concave in the
uncertainty, as summarized in Table 1. Besides being tighter, a posteriori
bounds can be computed for any general convex uncertainty set and serve as
a useful auditing tool for the robustness of a solution.

• As summarized in Table 2, we are able to compute in closed form or derive
valid approximations of the robust complexity \rho (\scrZ ) for a variety of uncer-
tainty sets of practical interest. In particular, we provide the first results
for polyhedra defined with a finite number of linear inequalities and for the
Minkowski sum of norm balls. From a geometric perspective, sum sets are
very similar to intersection sets while being computationally more tractable
and leading to competitive probabilistic guarantees when properly scaled.

\bullet Finally, we analyze the case where the coordinates of \~z are no longer assumed
to be independent. For sub-Gaussian uncertainty, we derive exponential prob-
abilistic guarantees that still depend on the robust complexity, yet at a weaker
rate. Among others, we prove that

\BbbP (f(\~a,x) > 0) \leq exp
\bigl( 
 - 1

2L\rho (\scrZ )2
\bigr) 
.

We also derive polynomial bounds when only assumptions on the first two
moments of \~z are made.

The rest of the paper is structured as follows. Section 2 recalls equivalent refor-
mulations for general uncertain constraints. When \~z has independent sub-Gaussian
coordinates, we provide a posteriori and a priori bounds for general constraints and
uncertainty sets in section 3. Section 4 provides some closed form expressions and
valid approximations for the robust complexity of a set, which drives a priori guar-
antees. In section 5, we challenge the independence assumption on the coordinates
of \~z and provide two sets of generalized results: when the components of \~z are not
necessarily independent and when \~z has zero mean and bounded second moments.
Finally, we illustrate how our results can be applied in practice on a facility location
problem in section 6.
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Table 2
Valid lower bound on robust complexity of \scrZ , defined as \rho (\scrZ ) := min\bfy :\| \bfy \| 2=1 max\bfz \in \scrZ y\top z, for

some common uncertainty sets. For each set, we also provide sufficient conditions (s.c.) to obtain

a probabilistic guarantee of at least \varepsilon , i.e., \rho (\scrZ ) \geq \gamma (\varepsilon ) :=
\sqrt{} 

2 ln(1/\varepsilon ). Instances denoted by * are
valid under the extra assumption that the true uncertain parameter \~z satisfies \| \~z\| \infty \leq 1.

Uncertainty set Definition \rho (\scrZ ) \geq . . . s.c. for \varepsilon -guarantee Ref.

Norm-set \{ z : \| z\| p \leq \Gamma \} if p \geq 2: \Gamma \Gamma \geq \gamma (\varepsilon )
Sec. 4.1

if p \leq 2: \Gamma L1/2 - 1/p \Gamma \geq L1/p - 1/2\gamma (\varepsilon )

Budget set* \{ z : \| z\| \infty \leq 1, \| z\| 1 \leq \Gamma \} \Gamma /
\surd 
L \Gamma \geq 

\surd 
L\gamma (\varepsilon ) [8]

Box-ellipsoidal set* \{ z : \| z\| \infty \leq 1, \| z\| 2 \leq \Gamma \} \Gamma \Gamma \geq \gamma (\varepsilon ) [3]

\ell \infty +\ell 1 set
\{ z1 + z2 : \| z1\| \infty 
\leq \rho 1, \| z2\| 1 \leq \rho 2\} 

\rho 1 + \rho 2/
\surd 
L

\rho 1 \geq \alpha \gamma (\varepsilon ), \alpha \in [0, 1]

\rho 2 \geq (1 - \alpha )
\surd 
L\gamma (\varepsilon )

Sec. 4.3

\ell \infty +\ell 2 set
\{ z1 + z2 : \| z1\| \infty 
\leq \rho 1, \| z2\| 2 \leq \rho 2\} 

\rho 1 + \rho 2
\rho 1 \geq \alpha \gamma (\varepsilon ), \alpha \in [0, 1]
\rho 2 \geq (1 - \alpha )\gamma (\varepsilon )

[3]

Polyhedral set \{ z : Dz \leq d\} min
i

di
\| \bfD \top \bfe i\| 2

di \geq \| D\top ei\| 2\gamma (\varepsilon ) \forall i Sec. 4.4

Notation. In the remainder of the paper, we use nonbold (x), lowercase bold
(x), and uppercase bold (X) characters to denote scalars, vectors, and matrices,
respectively. Calligraphic characters such as \scrX denote sets. We use a tilde symbol
(e.g., \~x) to indicate a random variable. We let e denote the vector of all 1's, 0
denote the vector of all 0's, and ei denote the ith vector of the canonical basis, with
dimension implied by the context. For any p \in \BbbN , we define the \ell p-norm of x \in \BbbR n

as \| x\| p := (
\sum n

i=1 | xi| p)1/p. For p = \infty , \| x\| \infty := maxi | xi| . Any function f : \BbbR n \rightarrow \BbbR 
is defined on a subset of \BbbR n, called its domain and denoted dom(f). Similarly, f can
be extended to the whole space \BbbR n by setting f(x) = \infty if x /\in dom(f). For any
convex nonempty set \scrZ , its relative interior is defined and denoted by ri(\scrZ ) := \{ x \in 
\scrZ : \forall y \in \scrZ \exists \lambda > 1,y + \lambda (x - y) \in \scrZ \} . We denote by \scrS n

+ the cone of n\times n positive
semidefinite matrices, \scrS n

+ := \{ A \in \BbbR n\times n : A \succeq 0\} .

2. Robust counterparts of general uncertain constraint. In this section,
we recall useful results from [2] about tractable reformulations of the robust constraint

f(\=a+Pz,x) \leq 0 \forall z \in \scrZ ,(2.1)

when the function f(a,x) is concave in the uncertain parameter a.

2.1. Case when the constraint is linear in the uncertainty. We first con-
sider a case where f is linear in a, namely f(a,x) = a\top x - b(x).

Proposition 2.1. The decision variable x satisfies \=a\top x+z\top P\top x \leq b(x)\forall z \in \scrZ 
if and only if it satisfies

\=a\top x+ \delta  \star 
\bigl( 
P\top x| \scrZ 

\bigr) 
\leq b(x),

where \delta  \star (y| \scrZ ) := sup\bfz \in \scrZ y\top z is the so-called support function of \scrZ [41, Chapter 13].

Proposition 2.1 uncovers the role played by the uncertainty set \scrZ through its
support function \delta  \star (\cdot | \scrZ ). Though general, Proposition 2.1 is also a practical state-
ment, because the support function can be computed for a wide range of uncertainty
sets (see [2, section 3]). We report some of these results in Table 3. Observe that
whenever the support function is expressed as a minimization problem, the ``min""
operator can be omitted in the robust counterpart of Proposition 2.1, given the sense
of the inequality. We illustrate this point with the following example.
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Table 3
Examples of uncertainty sets and their associated support function.

Uncertainty region Definition Support function \delta  \star (y| \scrZ )

Box \| z\| \infty \leq \rho \rho \| y\| 1
Ball \| z\| 2 \leq \rho \rho \| y\| 2
Norm \| z\| \leq \rho \rho \| y\|  \star 

Budget
\| z\| \infty \leq 1 min

\bfv 
\| v\| 1 + \rho \| y  - v\| \infty \| z\| 1 \leq \rho 

Polyhedral Dz \leq d min
\bfv \geq \bfzero :\bfD \top \bfv =\bfy 

d\top v

Intersection \scrZ 1 \cap \scrZ 2 min
\bfv 

\delta  \star (v| \scrZ 1) + \delta  \star (y  - v| \scrZ 2)

Minkowski sum \scrZ 1 + \scrZ 2 \delta  \star (y| \scrZ 1) + \delta  \star (y| \scrZ 2)

Example 2.2. If \scrZ = \{ z : Dz \leq d\} is a polyhedron, then the support function of
\scrZ is given by \delta  \star (y| \scrZ ) = min\bfv \geq \bfzero :\bfD \top \bfv =\bfy d\top v, and according to Proposition 2.1, the
robust linear constraint is equivalent to the existence of a feasible vector v, v \geq 0,
and D\top v = y satisfying \=a\top x+ d\top v \leq b(x).

2.2. Case when the constraint is concave in the uncertainty. We now
consider the case where f(a,x) is a concave function in a. Indeed, constraint (2.1) is
equivalent to

max
\bfz \in \scrZ 

f(\=a+Pz,x) \leq 0,

and the inner maximization problem is well posed. In this case, [2] provides an
equivalent reformulation under the technical assumption that \=a is regular, that is,
when \=a is within the relative interior of the domain of f , \=a \in ri(dom(f(\cdot ,x))) in short.
From a high-level perspective, they require f to be properly defined in the vicinity of
the nominal value \=a. So \=a should not lie at the boundary of the domain of f . For the
rest of the paper, we will make this assumption when needed.

Proposition 2.3. If \=a \in ri(dom(f(\cdot ,x))) and f(a,x) is concave in a, then x
satisfies

f(\=a+Pz,x) \leq 0 \forall z \in \scrZ 

if and only if there exists some vector v such that (x,v) satisfies

\=a\top v + \delta  \star 
\bigl( 
P\top v| \scrZ 

\bigr) 
 - f \star (v,x) \leq 0,

where \delta  \star (\cdot | \scrZ ) is the support function of \scrZ and f \star (v,x) := inf\bfa a\top v  - f(a,x).

Remarkably, Proposition 2.3 provides a robust reformulation of the nonlinear
constraints (2.1) where the terms involving \scrZ are independent from those involving
f . In this regard, the auxiliary variable v plays a critical role: v is linearly impacted
by the uncertainty on z while being coupled with x through the concave conjugate
f \star . Proposition 2.3 shows that a concave robust constraint in the decision variable
x can be expressed as a linear robust constraint in the variables (x,v). In the special
case where f(a,x) = a\top x - b(x) is linear in a, we recover Proposition 2.1.

We refer the reader to [2, section 4, Table 4] for examples.
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3. Probabilistic guarantees for independent sub-Gaussian uncertainty.
Most probabilistic guarantees in the literature are valid under some light-tail assump-
tion on the random vector \~z, in particular that \~z is bounded almost surely or follows
a Gaussian distribution. All our results in this section hold under the weaker assump-
tion that the random vector \~z is sub-Gaussian.

Definition 3.1 ([40, Definition 1.2]). A random variable \~z \in \BbbR is said to be
sub-Gaussian with parameter \sigma 2, denoted \~z \sim subG(\sigma 2), if \~z is centered, i.e., \BbbE [\~z] = 0,

and \forall s \in \BbbR , \BbbE 
\bigl[ 
es\~z
\bigr] 
\leq e

s2\sigma 2

2 .

Many random variables encountered in practice are or can be assumed to be
sub-Gaussian. Naturally, centered Gaussian random variables are sub-Gaussian. Un-
bounded random variables with Gaussian tails are sub-Gaussian (see [44, Theorem
2.6]). Bounded random variables are also a special case of sub-Gaussian random
variables, as a consequence of Hoeffding's inequality (see Appendix A, Lemma A.2),
irrespective of the distribution on their bounded support (e.g., uniform, triangular).
Finally, the image of a random vector X with independent coordinates by some func-
tion f , f(X), is sub-Gaussian if one of the following three conditions holds: (a) f
satisfies the bounded difference property [44, Corollary 2.21]; (b) X is Gaussian and
f is a Lipschitz function [44, Theorem 2.26]; (c) X is bounded and f is a convex and
Lipschitz function [44, Theorem 3.24]. The parameter \sigma 2 is usually referred to as
a variance proxy, because in the case where \~z is normally distributed, the inequal-
ity above holds with \sigma 2 = Var(\~z). In the rest of the paper, we make the following
assumption on the randomness \~z.

Assumption 3.2. We assume that the coordinates of the uncertain parameter
\~z \in \BbbR L are L sub-Gaussian random variables with variance proxy 1.

Assumption 3.2 holds in particular if the coordinates of \~z are (a) Gaussian random
variables with mean 0 and variance 1 or (b) centered random variables in [ - 1, 1],
which is a common assumption in the RO literature (see [4, 8], for instance). As
summarized in Table 4, common assumptions on the uncertainty parameter \~z found
in the literature all can be seen as assuming sub-Gaussian random variables for some
well-chosen variance proxy. We report some useful properties of sub-Gaussian random
variables in Appendix A.

In this section, we also require \~z to have independent coordinates.

Assumption 3.3. We assume that the coordinates of the uncertain parameter
\~z \in \BbbR L are independent.

In the Gaussian case, for instance, Assumption 3.3 implies that the mean and the
covariance of \~a are known to the decision maker and equal to \=a and PP\top , respectively.
As a result, it is an admittedly strong assumption---although made in many of the
previous analysis on probabilistic guarantees for RO. In practice, parameters of the
linear model \~a = \=a+P\~z are typically unknown and need to be estimated from data.
In section 5, we will depart from this independence assumption and allow for model
misspecification---at the expense of weaker probabilistic guarantees.

3.1. A posteriori guarantee when the constraint is linear in \bfita . First,
we consider the linear case where f(a,x) = a\top x - b(x) and prove a solution-specific
probabilistic guarantee.

Theorem 3.4. Under Assumptions 3.2 and 3.3, for any x \in \scrX satisfying \=a\top x+
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Table 4
Summary of relevant assumptions on \~z found in the literature and the corresponding variance

proxy. Proofs for the last three lines can be found in [3, Chapter 2.4]. If \~z has variance proxy \sigma 2

instead of 1, then the rate 1/2 in the probabilistic guarantee should be replaced by 1/2\sigma 2.

Assumption on \~z Variance proxy

\BbbE [\~z] = 0
| \~z| \leq 1, a.s.

1

\~z \sim \scrN (0, 1) 1

\BbbE [\~z] symmetric w.r.t. 0
\BbbE [\~z] unimodal w.r.t. 0
| \~z| \leq 1, a.s.

1/3

\BbbE [\~z] symmetric w.r.t. 0
| \~z| \leq 1, a.s.
Var(\~z) \leq \nu 2

minc\geq 0

\bigl\{ 
c : \forall t, c2t2 \geq 2 ln(\nu 2 cosh(t) + 1 - \nu 2)

\bigr\} 
\leq 1

\BbbE [\~z] symmetric w.r.t. 0
\BbbE [\~z] unimodal w.r.t. 0
| \~z| \leq 1, a.s.
Var(\~z) \leq \nu 2 \leq 1/3

minc\geq 0

\bigl\{ 
c : \forall t, c2t2 \geq 2 ln(3\nu 2 sinh(t)/t+ 1 - 3\nu 2)

\bigr\} 
\leq 1

\delta  \star (P\top x| \scrZ ) \leq b(x), we have

\BbbP 
\bigl( 
\=a\top x+ \~z\top P\top x > b(x)

\bigr) 
\leq exp

\biggl( 
 - (b(x) - \=a\top x)2

2\| P\top x\| 22

\biggr) 
\leq exp

\biggl( 
 - \delta  \star (P\top x| \scrZ )2

2\| P\top x\| 22

\biggr) 
.

Proof. Consider a robust solution x \in \scrX . We have

\BbbP 
\bigl( 
\=a\top x+ \~z\top P\top x > b(x)

\bigr) 
= \BbbP 

\bigl( 
\~z\top P\top x > b(x) - \=a\top x

\bigr) 
.

Let us denote t := b(x) - \=a\top x \geq \delta  \star (P\top x| \scrZ ). If P\top x \not = 0, then \delta  \star (P\top x| \scrZ ) > 0, since
\scrZ is full dimensional. Under Assumptions 3.2 and 3.3, \~z\top P\top x is sub-Gaussian with
variance proxy \| P\top x\| 22 (see Proposition A.4(a)). Hence, we have the following tail
bound (Proposition A.3):

\BbbP 
\bigl( 
\~z\top P\top x > t

\bigr) 
\leq exp

\biggl( 
 - t2

2\| P\top x\| 22

\biggr) 
.

In the case where P\top x = 0, we have \=a\top x + \~z\top P\top x = \=a\top x \leq b(x) \forall \~z, so that
the probability of constraint violation is 0, and our bound holds with the convention
0
0 = \infty .

Note that the bound in Theorem 3.4 is a consequence of a tail bound for sub-
Gaussian random variables (Proposition A.3). For Gaussian random variables, this
bound is sharp up to polynomial-factor corrections (see [44, Exercise 2.2, Mills ra-
tio]). The probabilistic guarantee of constraint violation in Theorem 3.4 depends on
the specific solution x. As a result, this bound cannot be used a priori to scale the
size of the uncertainty set \scrZ . Yet, given a robust solution x, the bound only involves
quantities which can be easily computed and can provide a useful a posteriori guar-
antee, as we discuss in section 6. From a practical standpoint, the bound involving
the slack term b(x) - \=a\top x is systematically tighter and hence preferable. Yet, from a
theoretical perspective, it is very satisfying to elicit how the uncertainty set impacts
the probabilistic guarantee, through its support function at P\top x, which also appears
in the reformulation of the robust constraint. The latter bound will be instrumental
in deriving set-specific but solution-independent a posteriori bounds.
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z1

z2

\scrZ \=a\top x+ z\top Pz = b(x)

\=a\top x+ z\top Pz > b(x)

a priori bound

Fig. 1. Geometrical interpretation of the a posteriori (Theorem 3.4) and a priori (Corollary
3.9) bound in dimension L = 2.

Remark 3.5. Theorem 3.4 can be used to obtain a robust solution x, which would
violate the uncertain constraint with probability at most \varepsilon by adding the second-order
cone constraint,

b(x) - \=a\top x \geq 
\sqrt{} 
2 ln

\bigl( 
1
\varepsilon 

\bigr) 
\| P\top x\| 2,

to the original optimization problem. This corresponds to the robust counterpart of

the robust constraint with the ball uncertainty set, \scrZ =
\Bigl\{ 
z : \| z\| 2 \leq 

\sqrt{} 
2 ln (1/\varepsilon )

\Bigr\} 
.

Remark 3.6. The first inequality in Theorem 3.4,

\BbbP 
\bigl( 
\=a\top x+ \~z\top P\top x > b(x)

\bigr) 
\leq exp

\biggl( 
 - (b(x) - \=a\top x)2

2\| P\top x\| 22

\biggr) 
,

is valid as long as x satisfies the linear constraint at a = \=a: \=a\top x < b(x).

3.2. A priori guarantee and robust complexity. Theorem 3.4 can be ex-
tended to give an a priori probabilistic guarantee which does not depend on a specific
solution x. Among others, these inequalities are largely used in practice to determine
the size of the uncertainty set. Graphically, from Theorem 3.4, every robust solution
x defines a half-space, \{ z : \=a\top x+x\top Pz > b(x)\} , and the probability of constraint vio-
lation corresponds to the area (measured in terms of probability) of this half-space, as
depicted in Figure 1. Since \scrZ \subseteq \{ z : \=a\top x+ x\top Pz \leq b(x)\} , \{ z : \=a\top x+ x\top Pz = b(x)\} 
is at worst a supporting hyperplane of \scrZ . Hence, a conservative estimate for the
probability of constraint violation can be obtained by taking the worst (in terms of
resulting probability) supporting hyperplane. In this section, we rigorously support
this geometrical intuition.

We first define the robust complexity of a set \scrZ .

Definition 3.7. For any set \scrZ \subseteq \BbbR L, we define the robust complexity of \scrZ , and
denote \rho (\scrZ ), the quantity

\rho (\scrZ ) := min
\bfy :\| \bfy \| 2=1

\delta  \star (y| \scrZ ) = min
\bfy :\| \bfy \| 2=1

max
\bfz \in \scrZ 

z\top y.

In statistics, the Rademacher complexity of a set \scrZ is defined as \scrR (\scrZ ) :=
\BbbE \~\bfy 

\bigl[ 
sup\bfz \in \scrZ z\top \~y

\bigr] 
, where the coordinates of \~y are independently drawn from a

D
ow

nl
oa

de
d 

07
/2

7/
22

 to
 1

8.
10

.7
1.

23
1 

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

PROBABILISTIC GUARANTEES IN ROBUST OPTIMIZATION 2903

Rademacher distribution, i.e., \BbbP (\~yj = \pm 1) = 1/2 (see [44, Example 2.25]). This
quantity describes the size of the set \scrZ and drives the so-called uniform law of large
numbers (see [44, Chapters 4 and 5]. In this regard, our proposed complexity metric
\rho (\scrZ ) is a robust analogue of the Rademacher complexity, replacing expectation by
worst-case value. Indeed, for any Rademacher vector \~y, we have \| \~y\| 2 =

\surd 
L so that\surd 

L\rho (\scrZ ) \leq \scrR (\scrZ ).
Another measure of complexity studied in high-dimensional statistics is the Gauss-

ian complexity, defined as \scrG (\scrZ ) := \BbbE \~\bfy 

\bigl[ 
sup\bfz \in \scrZ z\top \~y

\bigr] 
, where the coordinates of \~y are

independent Gaussian random variables with mean 0 and variance 1 (see [44, Exam-
ple 2.30 and Chapter 5]). Since \scrR (\scrZ ) \leq 

\sqrt{} 
\pi 
2\scrG (\scrZ ) (see [44, Exercise 5.5]), we have

\rho (\scrZ ) \leq 
\sqrt{} 

\pi 
2L\scrG (\scrZ ). Alternatively, by decomposing \~y into \~r\~u where \~u is a unit vec-

tor uniformly distributed over the unit sphere and \~r an independent scaling factor,
we obtain \scrG (\scrZ ) \geq \rho (\scrZ )\BbbE [\~r], where \BbbE [\~r] is the expectation of a chi distribution with
parameter L, i.e., \BbbE [\~r] =

\surd 
2\Gamma ((L+ 1)/2)/\Gamma (L/2) with \Gamma (\cdot ) denoting Euler's Gamma

function. For large L, Stirling's approximation yields \BbbE [\~r] \sim 
\surd 
L, which is tighter

than the previous bound.
To familiarize ourselves with the notion of robust complexity, we derive some of

its basic properties.

Proposition 3.8. The robust complexity of a set satisfies the following proper-
ties:

(a) Monotonicity: For any sets \scrZ ,\scrZ \prime , if \scrZ \prime \subseteq \scrZ , then \rho (\scrZ \prime ) \leq \rho (\scrZ ).
(b) Positive homogeneity: For any set \scrZ and \alpha > 0, \rho (\alpha \scrZ ) = \alpha \rho (\scrZ ).
(c) Invariance by orthogonal transformation: For any orthogonal matrix U and

any set \scrZ , \rho (U\scrZ ) = \rho (\scrZ ), with U\scrZ := \{ Uz : z \in \scrZ \} .
(d) Lipschitz continuity: The robust complexity is 1-Lipschitz continuous with

respect to the Hausdorff distance [19], i.e., for any convex sets \scrZ ,\scrZ \prime , | \rho (\scrZ ) - 
\rho (\scrZ \prime )| \leq dH(\scrZ ,\scrZ \prime ).

Proof. (a) For any y, \scrZ \prime \subseteq \scrZ yields \delta  \star (y| \scrZ \prime ) \leq \delta  \star (y| \scrZ ).
(b) For any \alpha > 0,

\rho (\alpha \scrZ ) = min
\bfy :\| \bfy \| 2=1

max
\bfz \in \alpha \scrZ 

y\top z = min
\bfy :\| \bfy \| 2=1

max
\bfz \prime \in \scrZ 

\alpha y\top z\prime = \alpha \rho (z).

(c) The matrix U being orthogonal, the change of variable y = Uy\prime satisfies
\| y\| 22 = \| y\prime \| 22, and

\rho (\scrZ )= min
\bfy :\| \bfy \| 2=1

max
\bfz \in \scrZ 

z\top y= min
\bfy \prime :\| \bfy \prime \| 2=1

max
\bfz \in \scrZ 

z\top U\top y\prime = min
\bfy \prime :\| \bfy \prime \| 2=1

max
\bfz \prime \in \bfU \scrZ 

z\prime \top y\prime =\rho (U\scrZ ).

(d) The Hausdorff distance between two sets \scrZ ,\scrZ \prime can be expressed in terms of
their respective support functions as dH(\scrZ ,\scrZ \prime ) = sup\bfy :\| \bfy \| 2=1 | \delta  \star (y| \scrZ )  - \delta  \star (y| \scrZ \prime )| .
The result follows.

Observe that monotonicity and homogeneity are also properties satisfied by the
Rademacher and Gaussian complexities. Invariance by orthogonal transformation,
however, is satisfied by the Gaussian complexity but not by the Rademacher complex-
ity since the transformed random variable \~y\prime = U - 1\~y is not a Rademacher random
variable.

Relevant to our analysis, the robust complexity is the key quantity controlling a
priori probabilistic guarantees.
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Corollary 3.9. Under Assumptions 3.2 and 3.3, for any x \in \scrX satisfying
\=a\top x+ \delta  \star (P\top x| \scrZ ) \leq b(x), we have

\BbbP 
\bigl( 
\=a\top x+ \~z\top P\top x > b(x)

\bigr) 
\leq exp

\Bigl( 
 - 1

2\rho (\scrZ )
2
\Bigr) 
.

Proof. Taking the worst over all feasible x in the right-hand side of Theorem 3.4
yields

\BbbP 
\bigl( 
\=a\top x+ \~z\top P\top x > b

\bigr) 
\leq exp

\biggl( 
 - 1

2
min
x\in \scrX 

\delta  \star (P\top x| \scrZ )2

\| P\top x\| 22

\biggr) 
.

Then,

min
x\in \scrX 

\delta  \star (P\top x| \scrZ )2

\| P\top x\| 22
=

\biggl[ 
min
x\in \scrX 

\delta  \star 
\biggl( 

P\top x

\| P\top x\| 2

\bigm| \bigm| \bigm| \bigm| \scrZ \biggr) \biggr] 2 \geq 
\biggl[ 

min
\bfy :\| y\| 2=1

\delta  \star (y| \scrZ )

\biggr] 2
.

In section 4, we analyze properties of the robust complexity and provide explicit
analytic expressions of \rho (\scrZ ) for uncertainty sets found in the literature, such as the
budget [8] and the box-ellipsoidal [4] uncertainty sets, which hence unify most of the
known probabilistic guarantees and their proofs.

3.3. Case when the constraint is concave in the uncertainty. According
to Proposition 2.3, a robust constraint that depends on the uncertainty in a concave
manner, as in (2.1), can be seen as a linear constraint in the new decision variables
(x,v). Correspondingly, we can now state and derive an analogue of Theorem 3.4 for
this general case.

Theorem 3.10. Under Assumptions 3.2 and 3.3, for any x \in \scrX and v satisfying
\=a\top v + \delta  \star (P\top v| \scrZ ) - f \star (v,x) \leq 0, we have

\BbbP (f(\=a+P\~z,x) > 0) \leq exp

\biggl( 
 - (f \star (v,x) - \=a\top v)2

2\| P\top v\| 22

\biggr) 
\leq exp

\biggl( 
 - \delta  \star (P\top v| \scrZ )2

2\| P\top v\| 22

\biggr) 
.

A formal proof of Theorem 3.10 is given in Appendix B.1. We graphically explain
the intuition behind the result in dimension L = 2 in Figure 2. Assume (\~z1, \~z2) \in 
[ - 1, 1]2 (black squared box), which is a special case of Assumption 3.2. The shaded
blue region corresponds to the uncertainty set \scrZ . Let x be a robust solution. It
induces a constraint on z, f(\=a + Pz,x) \leq 0, which is satisfied by all z \in \scrZ . By
concavity, the region \{ z : f(\=a+Pz,x) > 0\} admits a supporting hyperplane (in red)
and is contained within a halfspace. Theorem 3.10 provides an explicit description of
this halfspace, \{ z : \=a\top x+ v\top Pz - f \star (v,x) > 0\} .

Theorem 3.10 displays exactly the same probabilistic guarantee as in the linear
case except that the bound now involves the extra variable v instead of x. Recall that
in the special case where f is linear, the conjugate f \star enforces v = x, and we recover
Theorem 3.4. In the general case, the variable v is introduced to express the robust
constraint in a tractable manner, so solving the robust optimization problem provides
a vector v alongside a vector x, and our bound can be computed a posteriori. Taking
the worst case over all potential vectors v, we get exactly the same a priori bounds
as in the linear case.

Corollary 3.11. Under Assumptions 3.2 and 3.3, for any x \in \scrX and v satis-
fying \=a\top v + \delta  \star (P\top v| \scrZ ) - f \star (v,x) \leq 0, we have

\BbbP (f(\=a+P\~z,x) > 0) \leq exp
\bigl( 
 - 1

2\rho (\scrZ )2
\bigr) 
.
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z1

z2

\scrZ \=a\top x+ v\top Pz - f \star (v,x) = 0

f(\=a+Pz,x) = 0

Fig. 2. Geometrical proof of Theorem 3.10 in dimension L = 2. (See online version for color.)

4. Robust complexity of a set. The previous section elicited the central role
of the robust complexity of the uncertainty set, \rho (\scrZ ), in obtaining a priori proba-
bilistic guarantees. In section 4.1, we derive a closed-form expression for the robust
complexity of norm balls and analyze the robust complexity of their intersection and
Minkowski sum in section 4.2 and 4.3, respectively. By doing so, we recover most
existing results found in the literature. Finally, we provide a geometric interpretation
of the robust complexity in section 4.4, which in turns leads to an analytical expres-
sion for polyhedral uncertainty sets and an optimization problem to evaluate \rho (\scrZ )
numerically in general. We also discuss how those bounds should guide modeling in
practice.

4.1. Norm-ball uncertainty sets. In practice, \scrZ is often chosen as an \ell p ball
for which one can compute its robust complexity explicitly.

Proposition 4.1. \scrZ =
\bigl\{ 
z \in \BbbR L : \| z\| p \leq \Gamma 

\bigr\} 
has a robust complexity of

\rho (\scrZ ) = \Gamma \kappa (p), with \kappa (p) :=

\Biggl\{ 
1 if p \geq 2,

L
1/2 - 1/p if p \leq 2.

Proof. Since the support function for an \ell p-norm ball is given by its dual norm,
the \ell q-norm with q \in [1,\infty ] satisfying 1/p + 1/q = 1, we derive

min
\bfy :\| \bfy \| 2=1

\delta  \star (y| \scrZ ) = \Gamma min
\bfy :\| \bfy \| 2=1

\| y\| q.

If q \leq 2, then 1 = \| y\| 2 \leq \| y\| q, which is tight for y = ei for some i \in \{ 1, . . . , L\} . If

q \geq 2, H\"older's inequality yields 1 = \| y\| 2 \leq L
1/2 - 1/q \| y\| q, which is tight for y =

\surd 
Le.

Hence, we have the result.

This result generalizes results obtained in the literature. In particular, if the 2-
norm is used, the bound is notably independent of the dimension L, and a priori and
a posteriori bounds match. As intuition suggests, the bound monotonically decreases
with \Gamma . Equivalently, in order for the constraint to be violated with probability at
most \varepsilon , it suffices to take \Gamma \geq 1

\kappa (p)

\sqrt{} 
2 ln(1/\varepsilon ).

Proposition 4.1 applies to norm balls which are isotropic, i.e., invariant by per-
mutation of the coordinates. For uncertainty sets which weight each coordinate zi
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by a specific weight \lambda i > 0, we can prove the following extension (see the proof in
Appendix B.2).

Proposition 4.2. Let \Lambda = Diag(\lambda ) be a diagonal matrix with \lambda > 0, and let

p \in [1,\infty ]. Then the set \scrZ =
\Bigl\{ 
z \in \BbbR L : \| \Lambda z\| p = (

\sum 
i | \lambda izi| p)1/p \leq 1

\Bigr\} 
has a robust

complexity of

\rho (\scrZ ) = 1/\| \lambda \| \infty if p \geq 2,

\rho (\scrZ ) \geq 

\Biggl( 
L\sum 

i=1

\lambda 
1/(1/p - 1/2)
i

\Biggr) 1/2 - 1/p

if p \leq 2.

4.2. Intersection of norm balls. Uncertainty sets defined as the intersection
of norm balls have attracted much attention, because of their tractability and re-
duced conservatism. For such sets, one can compute an explicit a priori probabilistic
guarantee.

Proposition 4.3. Let \scrZ i, i = 1, 2, be two uncertainty sets such that ri(\scrZ 1) \cap 
ri(\scrZ 2) \not = \emptyset .

(a) The robust complexity of \scrZ 1 \cap \scrZ 2 satisfies \rho (\scrZ 1 \cap \scrZ 2) \geq mini=1,2 \rho (\scrZ i).
(b) If, in addition to Assumptions 3.2 and 3.3, \~z \in \scrZ 1 almost surely, then the

probabilistic guarantee is driven by \rho (\scrZ 2).

Proposition 4.3(a) is nontrivial. Since \scrZ 1 \cap \scrZ 2 \subseteq \scrZ i, i = 1, 2, the constraint
violation probability induced by \scrZ 1 \cap \scrZ 2 can only be worse than the ones induced by
\scrZ 1 and \scrZ 2. Yet, Proposition 4.3(a) states that, as far as upper bounds are concerned,
\scrZ 1 \cap \scrZ 2 is no worse than \scrZ 1 and \scrZ 2 separately. Proposition 4.3(b) improves upon
Proposition 4.3(a) under the additional assumption that \~z \in \scrZ 1 almost surely, stating
that \scrZ 2 alone controls the upper bound for constraint violation.

Proof. (a) If \scrZ = \scrZ 1 \cap \scrZ 2 with ri(\scrZ 1) \cap ri(\scrZ 2) \not = \emptyset , we have [2, Lemma 6.4]
\delta  \star (y| \scrZ ) = min\bfv \delta  \star (v| \scrZ 1) + \delta  \star (y  - v| \scrZ 2). In addition, by definition of the robust
complexity, \delta  \star (\cdot | \scrZ i) \geq \rho (\scrZ i)\| \cdot \| 2 so that

\delta  \star (y| \scrZ ) \geq min
i=1,2

\rho (\scrZ i) min
\bfv 

[\| v\| 2 + \| y  - v\| 2] \geq min
i=1,2

\rho (\scrZ i) \| y\| 2,

where the last inequality follows from the triangle inequality.
(b) We sketch the proof for the linear case only; the concave case is similar. Let x

be a robust solution, and let v \in \BbbR L so that \delta  \star (P\top x| \scrZ ) = \delta  \star (v| \scrZ 1)+\delta  \star (P\top x - v| \scrZ 2).

\BbbP 
\bigl( 
\=a\top x+ \~z\top P\top x > b(x)

\bigr) 
\leq \BbbP 

\bigl( 
\~z\top P\top x > \delta  \star (P\top x| \scrZ 1 \cap \scrZ 2)

\bigr) 
\leq \BbbP 

\bigl( 
\~z\top v + \~z\top (P\top x - v) > \delta  \star (v| \scrZ 1) + \delta  \star (P\top x - v| \scrZ 2)

\bigr) 
= \BbbP 

\left(  \~z\top (P\top x - v) > \delta  \star (v| \scrZ 1) - \~z\top v\underbrace{}  \underbrace{}  
>0 for \~\bfz \in \scrZ 1

+\delta  \star (P\top x - v| \scrZ 2)

\right)  
\leq \BbbP 

\bigl( 
\~z\top (P\top x - v) > \delta  \star (P\top x - v| \scrZ 2)

\bigr) 
.

Applying a Chernoff bound and uniformly bounding the right-hand side concludes
the proof.
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Remark 4.4. The proof of Proposition 4.3(b) is informative for an a posteriori
bound as well. Indeed, we have

\BbbP 
\bigl( 
\=a\top x+ \~z\top P\top x > b

\bigr) 
\leq exp

\biggl( 
 - \delta  \star (P\top x - v| \scrZ )2

2\| P\top x - v\| 22

\biggr) 
,

which might be tighter than the bound from Theorem 3.4.

Example 4.5. The budget uncertainty set. The budget uncertainty set defined as

\scrZ \ell \infty \cap \ell 1 :=
\bigl\{ 
z \in \BbbR L : \| z\| \infty \leq 1, \| z\| 1 \leq \rho 

\bigr\} 
,

with 1 \leq \rho \leq L, and introduced by [8], is the intersection of the \ell \infty unit-ball with an
\ell 1-ball. The robust constraint \=a\top x+ z\top P\top x \leq b \forall z \in \scrZ \ell \infty \cap \ell 1 is then equivalent to

\exists v, \=a\top x+ \| v\| 1 + \Gamma \| P\top x - v\| \infty \leq b,

requiring the introduction of the L new variables v, in addition to L + 1 auxiliary
variables and 4L constraints, to linearize the \ell 1- and \ell \infty -norms. With m constraints
involving the same uncertain vector a, there is a total of (2L+1)m new variables and
4Lm new constraints needed. According to Proposition 4.3(b), \scrZ \ell \infty \cap \ell 1 induces a prob-
abilistic guarantee of exp ( - \rho 2/2L), recovering the original result from [8]. Our result
holds whenever \~z is sub-Gaussian with variance proxy 1 (Assumption 3.2) and \| \~z\| \infty \leq 
1 but does not require \~z to be symmetrically distributed. Similarly, for the so-called
box-ellipsoidal uncertainty set from [4], \scrZ \ell \infty \cap \ell 2 :=

\bigl\{ 
z \in \BbbR L : \| z\| \infty \leq 1, \| z\| 2 \leq \rho 

\bigr\} 
, we

recover their e - \rho 2/2 guarantee.

4.3. Minkowski sum of norm balls. We now provide explicit a priori proba-
bilistic guarantees for sets defined as the Minkowski sum of norm balls, later referred
to as sum sets. Compared to intersection sets, sum sets have not received the attention
they deserve, despite their improved tractability.

Proposition 4.6. Let \scrZ i, for i = 1, 2, be two uncertainty sets. Then

\rho (\scrZ 1 + \scrZ 2) \geq \rho (\scrZ 1) + \rho (\scrZ 2).

Proof. If \scrZ = \scrZ 1 + \scrZ 2, then \delta  \star (y| \scrZ ) = \delta  \star (y| \scrZ 1) + \delta  \star (y| \scrZ 2) [2, Lemma 6.3].
Hence,

\delta  \star (y| \scrZ ) \geq \rho (\scrZ 1)\| y\| 2 + \rho (\scrZ 2)\| y\| 2.

Taking the minimum over all y such that \| y\| 2 = 1 concludes the proof.

Example 4.7. Alternative to the budget uncertainty set. From a modeling perspec-
tive, the budget uncertainty \scrZ \ell \infty \cap \ell 1 set is geometrically very similar to the \ell \infty + \ell 1
set, defined as

\scrZ \ell \infty +\ell 1 :=
\bigl\{ 
z \in \BbbR L : z = z1 + z2, with \| z1\| \infty \leq \rho 1, \| z2\| 1 \leq \rho 2

\bigr\} 
.

In dimension L = 2, with proper scaling, those two sets are indeed identical as shown
in Figure 3, while this is no longer the case in a higher dimension (see Figure 4 for
L = 3).

In terms of tractability, however, the sum is preferable over the intersection be-
cause it does not require additional variables v. The robust constraint \=a\top x+z\top P\top x \leq 
b \forall z \in \scrZ \ell \infty +\ell 1 is equivalent to

\=a\top x+ \rho 1\| P\top x\| 1 + \rho 2\| P\top x\| \infty \leq b,
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(a) Intersection set with \rho = 1.5. (b) Sum set with \rho 1 = \rho  - 1, \rho 2 = 2 - \rho .

Fig. 3. Comparison of the intersection and sum set in dimension L = 2.

(a) Intersection set with \rho = 2.5. (b) Sum set with \rho 1 = (\rho  - 1)/2, \rho 2 =
(3 - \rho )/2.

Fig. 4. Comparison of the intersection and sum set in dimension L = 3.

which requires L + 1 extra variables and 3L extra constraints to linearize the \ell 1-
and \ell \infty -norms of P\top x. This gain is particularly sizable when the uncertainty affects
multiple constraints, since the extra variables and constraints can be shared across
constraints: With m uncertain constraints involving the same uncertain vector a,
we need only a total of (L + 1) new variables and 3L new constraints. Applying
Proposition 4.6, we can show that the \scrZ \ell \infty +\ell 1 set yields a probabilistic guarantee of

exp( - 1
2

\bigl\{ 
\rho 1 + \rho 2L

 - 1/2
\bigr\} 2

). Consequently, in the case of the \ell \infty - and \ell 1-norms, the
sum set dominates the intersection set in terms of tractability and can still provide
probabilistic guarantees. The intersection set, however, could be used for intuition
and scaling of \rho 1 and \rho 2. We will concretize this comparison in a numerical example
in section 6.3.

Example 4.8. Alternative to the box-ellipsoidal uncertainty set. Similarly, we pro-
pose an analogous sum set for the box-ellipsoidal uncertainty set \scrZ \ell \infty \cap \ell 2 , namely we
consider

\scrZ \ell \infty +\ell 2 :=
\bigl\{ 
z \in \BbbR L : z = z1 + z2, with \| z1\| \infty \leq \rho 1, \| z2\| 2 \leq \rho 2

\bigr\} 
.

For similar reasons, the robust counterpart associated with \scrZ \ell \infty +\ell 2 is more tractable
in terms of additional variables and constraints. In addition, according to Proposition
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4.6, it yields a probabilistic guarantee of exp( - 1
2 \{ \rho 1 + \rho 2\} 2), which is independent of

the number of uncertain parameters L.

Remark 4.9. Sets of the form \scrZ \ell \infty +\ell 2 have been consider by [3, Chapter 2] in the
context of tractable reformulations of scalar chance constraints. Interestingly, sum
sets emerge naturally in this context when the mean of the uncertainty quantity \~z is
assumed to be bounded rather than equal to 0 (see [3, Theorem 2.4.4 and Examples
2.4.6, 2.4.7, 2.4.9, 2.4.11]. Alternatively, uncertainty on the expected value of \~z can
be modeled by decomposing \~z into \~z1 +\~z2, where \~z1 and \~z2 are unknown parameters
with mean 0. Intuitively, given \~z1, \~z has mean \~z1 \not = 0, and \~z2 represents deviation
from the mean. From a practical standpoint, these two interpretations lead to similar
uncertainty sets.

4.4. Numerical computation using the maximum-volume inscribed
sphere. For general uncertainty sets \scrZ , an analytical expression for the robust com-
plexity might be out of reach. Monotonicity of the robust complexity (Proposition
3.8(a)) suggests a numerical approach to lower bound \rho (\scrZ ): First, compute \scrZ \prime such
that \scrZ \prime \subseteq \scrZ and \rho (\scrZ \prime ) is reasonably known. Then, use the a priori probabilistic guar-
antee of \scrZ \prime for \scrZ . Intuitively, the closer \scrZ \prime is to \scrZ , the tighter the approximation.
Actually, this procedure can produce the exact value of the robust complexity of \scrZ 
when \scrZ \prime is chosen as an \ell 2-sphere centered at 0. Denote \scrB (0, r) = \{ z : \| z\| 2 \leq r\} .

Proposition 4.10. For any fully dimensional convex set \scrZ \subseteq \BbbR L containing 0 in
its interior, the robust complexity of \scrZ is the radius of the maximum inscribed sphere
centered at 0 contained within \scrZ , i.e., \rho (\scrZ ) = maxr\geq 0 \{ r : \scrB (0, r) \subseteq \scrZ \} .

Proof. Denote by r \star the objective value of the optimization problem on the left-
hand side. Note that r \star > 0 since 0 lies in the interior of \scrZ . By definition, \scrB (0, r \star ) \subseteq 
\scrZ , so \rho (\scrZ ) \geq \rho (\scrB (0, r \star ) = r \star , where the last equality follows from Proposition 4.1.
We consider a vector z \star , \| z \star \| 2 = r \star , which lies on the boundary of \scrZ . Such a vector
exists by optimality of r \star . Then, z \star defines a hyperplane that is tangent to \scrZ , and
hence proves that the linear optimization problem max\bfz \in \scrZ z\top z \star admits z = z \star as an
optimal solution. As a result, by considering y = z \star /r \star we have \rho (\scrZ ) \leq r \star .

The optimization problem in Proposition 4.10 is a special case of the maximum
inscribed ellipsoid [50] or the maximum inscribed sphere problem [46]. Although we
fix the center of the ellipsoid to 0 and only allow for shape matrices of the form
rIL, solving this optimization problem can be challenging in general. For polyhedral
uncertainty sets defined with k linear constraints, \scrZ = \{ z : Dz \leq d\} , however, it can
be solved in closed-form as follows:

\rho (\scrZ ) = min
i=1,...,k

di
\| D\top ei\| 2

.

5. Probabilistic guarantees for dependent uncertainty. In the preceding
section, we leveraged the assumption that coordinates of \~z are independent (Assump-
tion 3.3) to derive our probabilistic guarantees. We now discuss how this assumption
can be relaxed and its impact on the resulting guarantees. In section 5.1, we show that
exponential, yet weaker, bounds can be derived when \~z is sub-Gaussian (Assumption
3.2), but its coordinates are not necessarily independent. In section 5.2, we depart
from both Assumptions 3.2 and 3.3 and derive polynomial probabilistic guarantees
under first and second moment conditions.

5.1. Exponential guarantees for sub-Gaussian random variables. From
a high-level perspective, the proofs of Theorems 3.4 and 3.10 are essentially a tail-
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Table 5
Valid lower bound on \rho 1(\scrZ ) := min\bfy :\| \bfy \| 1=1 max\bfz \in \scrZ y\top z, for some common uncertainty sets.

For each set, we also provide sufficient conditions (s.c.) to obtain a probabilistic guarantee of at

least \varepsilon , i.e., \rho 1(\scrZ ) \geq \gamma (\varepsilon ) :=
\sqrt{} 

2 ln(1/\varepsilon ). Instances denoted by a * are valid under the assumption
that the true uncertain parameter \~z satisfies \| \~z\| \infty \leq 1.

Uncertainty set Definition \rho 1(\scrZ ) \geq . . . s.c. for \varepsilon -guarantee

Norm-set \{ z : \| z\| p \leq \Gamma \} \Gamma L - 1/p \Gamma \geq L1/p\gamma (\varepsilon )

Budget set* \{ z : \| z\| \infty \leq 1, \| z\| 1 \leq \Gamma \} \Gamma /L \Gamma \geq L\gamma (\varepsilon )

Box-ellipsoidal set* \{ z : \| z\| \infty \leq 1, \| z\| 2 \leq \Gamma \} \Gamma /
\surd 
L \Gamma \geq 

\surd 
L\gamma (\varepsilon )

\ell \infty +\ell 1 set \{ z1 + z2 : \| z1\| \infty \leq \rho 1, \| z2\| 1 \leq \rho 2\} \rho 1 + \rho 2/L
\rho 1 \geq \alpha \gamma (\varepsilon ), \alpha \in [0, 1]
\rho 2 \geq (1 - \alpha )L\gamma (\varepsilon )

\ell \infty +\ell 2 set \{ z1 + z2 : \| z1\| \infty \leq \rho 1, \| z2\| 2 \leq \rho 2\} \rho 1 + \rho 2/
\surd 
L

\rho 1 \geq \alpha \gamma (\varepsilon ), \alpha \in [0, 1]

\rho 2 \geq (1 - \alpha )
\surd 
L\gamma (\varepsilon )

bound \BbbP 
\bigl( 
\~z\top P\top x > t

\bigr) 
for some t \geq \delta  \star (P\top x| \scrZ ) > 0. When the coordinates of \~z are

L independent sub-Gaussian random variables with parameter 1, the random vari-
able \~z\top P\top x is itself sub-Gaussian, with parameter \| P\top x\| 22. Without independence,
\~z\top P\top x remains sub-Gaussian (Proposition A.4(b)), with a higher parameter, how-
ever. We formalize this line of proof in the following theorem.

Theorem 5.1. Under Assumption 3.2, for any x \in \scrX satisfying \=a\top x+\delta  \star (P\top x| \scrZ )\leq 
b(x), we have

\BbbP 
\bigl( 
\=a\top x+ \~z\top P\top x > b(x)

\bigr) 
\leq exp

\biggl( 
 - (b(x) - \=a\top x)2

2\| P\top x\| 21

\biggr) 
\leq exp

\biggl( 
 - \delta  \star (P\top x| \scrZ )2

2\| P\top x\| 21

\biggr) 
.

Proof. We follow the proof of Theorem 3.4. Under Assumption 3.2, \~z\top P\top x is
sub-Gaussian with variance proxy \| P\top x\| 21 (see Proposition A.4(b)). Hence, we have
the following tail bound (Proposition A.3):

\BbbP 
\bigl( 
\~z\top P\top x > t

\bigr) 
\leq exp

\biggl( 
 - t2

2\| P\top x\| 21

\biggr) 
.

Since \| P\top x\| 2 \leq \| P\top x\| 1, the bound obtained from relaxing Assumption 3.3
is weaker than the one from Theorem 3.4 but shares a similar flavor. From the a
posteriori bound, we derive an a priori probabilistic guarantee (the proof is omitted).

Corollary 5.2. Under Assumptions 3.2, for any x \in \scrX satisfying \=a\top x+
\delta  \star (P\top x| \scrZ ) \leq b(x), we have

\BbbP 
\bigl( 
\=a\top x+ \~z\top P\top x > b(x)

\bigr) 
\leq exp

\Bigl( 
 - 1

2\rho 1 (\scrZ )
2
\Bigr) 
,

where \rho 1 (\scrZ ) = min\bfy :\| \bfy \| 1=1 \delta  \star (y| \scrZ ).

This a priori probabilistic guarantee involves the quantity \rho 1 (\scrZ ) =
min\bfy :\| \bfy \| 1=1 \delta  \star (y| \scrZ ) that is almost identical to the robust complexity \rho (\scrZ ) except

that y has unit \ell 1-norm instead of \ell 2-norm. In particular, we have \rho (\scrZ )/
\surd 
L \leq 

\rho 1(\scrZ ) \leq \rho (\scrZ ), and can provide closed-form expressions for the most widely used
uncertainty sets by conducting an analysis similar to that in section 4 (see Table 5).

5.2. Polynomial guarantees for bounded covariance matrix. In this sec-
tion, we depart from the sub-Gaussian assumption and provide polynomial proba-
bilistic guarantees under some restrictions on the first two moments of \~z, as in [7].
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Assumption 5.3. We assume that the coordinates of the uncertain parameter
\~z \in \BbbR L are L random variables with zero mean and covariance matrix bounded by
some semidefinite positive matrix \Sigma \succeq 0, i.e., \BbbE [\~z\~z\top ] \preceq \Sigma .

We consider the case where the constraint is linear, f(a,x) = a\top x  - b(x), and
the general case and treat sequentially the a posteriori and a priori bounds. We first
derive a posteriori guarantees that depend on the robust solution x.

Theorem 5.4. Under Assumption 5.3, for any x \in \scrX satisfying \=a\top x+\delta  \star (P\top x| \scrZ )\leq 
b(x), we have

\BbbP 
\bigl( 
\=a\top x+ \~z\top P\top x > b(x)

\bigr) 
\leq 

\Biggl[ 
1 +

\biggl( 
b(x) - \=a\top x

\| \Sigma 1/2P\top x\| 2

\biggr) 2
\Biggr]  - 1

\leq 

\Biggl[ 
1 +

\biggl( 
\delta  \star (P\top x| \scrZ )

\| \Sigma 1/2P\top x\| 2

\biggr) 2
\Biggr]  - 1

.

Proof. We follow the proof of Theorem 3.4. Instead of a Chernoff bound, we
apply a tight version of Chebyshev's inequality due to [37],

\BbbP 
\bigl( 
\~z\top P\top x > t

\bigr) 
\leq 
\biggl[ 
1 +

t2

\| \Sigma 1/2P\top x\| 22

\biggr]  - 1

,

with t = b(x) - \=a\top x \geq \delta  \star (P\top x| \scrZ ) \geq 0.

Remark 5.5. Since [1 + 1/t] - 1 \leq t for t \geq 0, the bound in Theorem 5.4 is always
tighter than Chebyshev's. Actually, [37] exhibits distributions for which the bound is
tight. Consequently, this bound could be (and has been) used to derive equivalent re-
formulations of ambiguous chance constraints with first- and second-order information
[47, 30].

Let \lambda max(\Sigma ) denote the maximum eigenvalue value of \Sigma . Then, for any vector
y, \| \Sigma 1/2y\| 22 \leq \lambda max(\Sigma )\| y\| 22, and we can derive a priori probabilistic guarantees.

Proposition 5.6. Under Assumption 5.3, for any x \in \scrX satisfying \=a\top x+
\delta  \star (P\top x| \scrZ ) \leq b(x), we have

\BbbP 
\bigl( 
\=a\top x+ \~z\top P\top x > b(x)

\bigr) 
\leq 
\bigl[ 
1 + \rho (\scrZ )2/\lambda max(\Sigma )

\bigr]  - 1
.

We omit the proof for brevity. Notice that the a priori bound is again driven
by the robust complexity of the uncertainty set, \rho (\scrZ ), yet in a polynomial way. The
proof techniques can be straightforwardly adapted to the general case, where f(a,x)
is a concave function of a.

6. Numerical experiments on a facility location example. In this section,
we illustrate how our results materialize on a facility location example. In particular,
some decision variables are binary, and multiple constraints are subject to uncertainty.
In this context, a posteriori bounds are significantly tighter due to discreteness of x
and hence are especially valuable when considering the probability of multiple con-
straints being violated. We also implement and compare uncertainty regions described
as intersections and sums of norm balls.

6.1. Problem formulation. Given a set of n potential facilities and m cus-
tomers, the facility location problem consists of constructing facilities i = 1, . . . , n at
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cost ci in order to satisfy demand at minimal cost, i.e., solve

min
\bfx \in \{ 0,1\} n,\bfX \in \BbbR n\times m

+

n\sum 
i=1

cixi +

m\sum 
j=1

n\sum 
i=1

CijXij s.t.

n\sum 
i=1

Xij = 1 \forall j = 1, . . . ,m,

m\sum 
j=1

djXij \leq uixi \forall i = 1, . . . , n.

In this formulation, Xij corresponds to the fraction of the demand of customer j
produced in and shipped from facility i, at a marginal cost Cij , ui is the production
capacity of facility i, and dj is the demand of customer j. The first set of constraints
ensures that all demand is satisfied, while the second set of constraints corresponds
to production capacity constraints. The latter are linear constraints of the form
``a\top x \leq b,"" \biggl( 

 - ui

d

\biggr) \top \biggl( 
xi

Xei

\biggr) 
\leq 0 \forall i = 1, . . . , n,(6.1)

which we want to protect against uncertainty in the demand vector d. Values for the
nominal problem are taken from the p1 instance of [31] with n = 10 facilities and
m = 50 customers. As in [1], we assume that the true demand can deviate within \epsilon 0
of its nominal value (we take \epsilon 0 = 20\%); namely for each customer j = 1, . . . ,m,

\~dj = (1 + \epsilon 0\~zj) \=dj ,

where \~z satisfies Assumptions 3.2 and 3.3. For simulation purposes, we will consider
three particular distributions for \~z:

\bullet Uniform, where each \~zj is uniformly distributed on [ - 1, 1].
\bullet Normal, where \~zj 's are independently sampled from a standard distribution.
\bullet Rademacher, where \BbbP (\~zj = \pm 1) = 1/2.

For each facility i, we replace the production capacity constraint by its robust
counterpart \biggl[ \biggl( 

 - ui
\=d

\biggr) 
+

\biggl( 
0\top 

\epsilon 0Diag(\=d)

\biggr) 
z

\biggr] \top \biggl( 
xi

Xei

\biggr) 
\leq 0 \forall z \in \scrZ ,

which is of the form ``[\=a+Pz]
\top 
x \leq b,"" and consider a different uncertainty set. In

the expression above, Diag(\=d) denotes the m \times m diagonal matrix whose diagonal
entries are given by \=d.

6.2. Box uncertainty set. We first consider a box uncertainty set

\scrZ box
\Gamma = \{ z \in \BbbR m : \| z\| \infty \leq \Gamma \} ,

as in [1]. According to Corollary 3.9, the uncertainty set \scrZ box
\Gamma a priori induces a

probabilistic guarantee of exp( - \rho (\scrZ box
\Gamma )2/2) with \rho (\scrZ box

\Gamma ) = \Gamma (Proposition 4.1). As
for posteriori bounds, given a robust solution (x,X), we have a probabilistic guarantee
of

exp

\biggl( 
 - 1

2

| Diag(\=d)\top Xei  - uixi| 2

\epsilon 20\| Diag(\=d)\top Xei\| 22

\biggr) 
.
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(a) Facility i = 4. (b) Facility i = 9.

Fig. 5. Comparison of a priori and a posteriori bounds with empirical probability of constraint
violation as the budget of uncertainty \Gamma increases for two production capacity constraints.

(a) Facility i = 4. (b) Facility i = 9.

Fig. 6. Comparison of a priori and a posteriori bounds with and without the unimodal assump-
tion as the budget of uncertainty \Gamma increases for two production capacity constraints.

Figure 5 compares these a priori and a posteriori bounds to the empirical prob-
ability of constraint violation for three different distributions and two different con-
straints. The a posteriori bound brings a material improvement over the a priori one
and better approximates the empirical probability as \Gamma increases. This should come
as no surprise, since our bounds are consequences of concentration inequalities which
are tighter as we shift further away from the mean.

These bounds can be improved by imposing more assumptions on \~z. For instance,
if we assume that \~zj admits a bounded symmetric unimodal distribution (such as the
uniform distribution), then, as reported in Table 4, \scrZ box

\Gamma induces an a priori guarantee
of exp( - 3\Gamma 2/2) instead of exp( - \Gamma 2/2), and the a posteriori guarantee is affected by
a factor of 3 as well. Figure 6 compares the a priori and a posteriori guarantees with
and without this assumption for the two previous constraints.

6.3. Budget and sum uncertainty sets. In this section, we compare the
budget and sum uncertainty sets, defined as

\scrZ budget
\Gamma = \{ z \in \BbbR m : \| z\| \infty \leq 1, \| z\| 1 \leq \Gamma \} ,
\scrZ sum

\Gamma = \{ z1 + z2 \in \BbbR m : \| z1\| \infty \leq \Gamma 1, \| z2\| 1 \leq \Gamma 2\} ,

in terms of a priori and a posteriori guarantees, as discussed in section 4.2. To
derive useful conclusions, probabilistic guarantees need to be viewed in contrast to
the conservatism of the corresponding solutions. Figure 7 represents the trade-off
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(a) A priori.
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A posteriori bound on the constraint violation probability
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(b) A posteriori. (c) Empirical.

Fig. 7. Comparison of the trade-off worst-case cost vs. a priori (left) and a posteriori prob-
abilistic guarantee (middle) and an empirical probability of constraint violation (with uniform dis-
tribution) (right) for the budget (in red) and sum (in blue) uncertainty sets and varying budget of
uncertainty. For the sum uncertainty sets, we connected the points corresponding to sets with the
same value of \Gamma 1. (See online version for color.)

between the probability of constraint violation and the worst-case cost of the solution
for the two uncertainty sets. For every protection level, the budget uncertainty set
a priori leads (left panel) to a less conservative solution than the sum uncertainty
set by nearly 10\%. A posteriori and empirically, this gap is generally confirmed yet
weaker, in particular when \Gamma 1 is close to 0. This conclusion is of course valid for this
particular problem only, and we do not claim any generalization to other contexts.
Yet, we believe that comparing uncertainty sets in terms of the trade-off between
conservatism and risk level is a useful tool. Because of the absence of theoretical
guarantees for uncertainty sets defined as Minkowski sums, these comparisons were
previously unavailable. Our experiments illustrate that sum sets can be a viable
alternative to budget uncertainty sets and provide a comparable conservatism-risk
trade-off at the expense of being parametrized by two hyperparameters. In addition,
as previously discussed, their robust counterpart is more tractable, especially when
multiple constraints are affected by uncertainty. In our experiments, solve times for
the sum uncertainty set were two orders of magnitude smaller than for the budget
uncertainty set: Table 6 reports summary statistics on computational time required
to solve one instance of the robust facility location problem with budget vs. sum sets,
using the commercial solver Gurobi v.9.1.1 on an Intel i7@3.1GHz processor with
16GB of RAM. Since the sum uncertainty set involves two hyperparameters, while
\scrZ budget

\Gamma involves only one, we had to solve more instances of the robust optimization
problem with a sum uncertainty set to generate Figure 7.

Table 6
Summary statistics of the solve time (in seconds) to solve one instance of the robust facility

location problem for the budget and sum uncertainty set. The different instances correspond to the
different values of the budget of uncertainty (\Gamma for the budget, (\Gamma 1,\Gamma 2) for the sum uncertainty set)
used to generate Figure 7.

Uncertainty set \# instances Min Median Average Max

Budget 41 0.51 4.82 4.99 6.57
Sum 121 0.0041 0.0137 0.0160 0.0655

6.4. Extension to multiple constraints. So far, we only looked at the proba-
bility of one constraint being violated. To extend our analysis to multiple constraints,
we could use a simple union bound technique, alternatively called the Bonferroni
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(a) A posteriori vs. a priori. (b) A priori vs. empirical.

Fig. 8. Comparison of a priori and a posteriori bounds on the joint probability of at least
one constraint being violated, with the empirical constraint violation probability, as the budget of
uncertainty \Gamma increases.

inequality [10], to bound the probability of at least one constraint being violated by
the sum of the individual constraint violation probabilities. In the presence of k linear
constraints subject to uncertainty, for instance, we have

\BbbP 
\Bigl( 
\exists i \in \{ 1, . . . , k\} : x\top \=a(i) + x\top P(i)\~z > 0

\Bigr) 
\leq 

k\sum 
i=1

\BbbP 
\Bigl( 
x\top \=a(i) + x\top P(i)\~z > 0

\Bigr) 
.

We apply this reasoning to the k = n = 10 production capacity constraints
(6.1) for the budget uncertainty set \scrZ budget

\Gamma . We compute a priori and a posteriori
guarantees in Figure 8(a), with and without the assumption that \~z is unimodal with
respect to 0. For small values of \Gamma , these bounds, and a priori bounds especially, are
uninformative because they are greater than 1. A posteriori bounds, on the other
hand, are prominently tighter. This is mainly due to the fact that many facilities are
turned off (xi = 0), in which case the corresponding constraints are no longer subject
to uncertainty, and the a posteriori bounds equal 0, whereas the a priori bounds
are strictly positive. We further compare our bounds (capped at 1) to empirical
probabilities (Figure 8(b)). These bounds are noticeably weak for small values of
\Gamma , because the Bonferroni approximation did not account for correlations between
the different constraints. Let us remark that the robust counterpart of the capacity
constraints (6.1) similarly computes the worst case for each constraint independently.

6.5. Numerical bounds for dependent uncertainty. Finally, we numerically
assess the quality of the bounds when the coordinates of \~z are no longer assumed to
be independent, as in section 5.1. In particular, we sample \~z from a multivariate
normal distribution with mean 0 and a spiked identity covariance matrix \Sigma (\theta ) =
(1  - \theta )IL + \theta ee\top . Among others, the eigenvalues of \Sigma (\theta ) are within 1  - \theta and
1+ \theta (L - 1). We consider an ellipsoidal uncertainty set \scrZ ell

\Gamma = \{ z \in \BbbR m : \| z\| 2 \leq \Gamma \} ,
which, according to Corollary 5.2 and Table 5, yields a probabilistic guarantee of
exp( - \Gamma 2/2L). Figure 9 compares these a priori bounds to a posteriori ones from
Theorem 5.1 and empirical probability of constraint violation. For this setting, we
believe a Bernstein-type inequality could provide exponential probabilistic guarantees
that depend explicitly on the level of correlation between coordinates and would
constitute an interesting extension of our results.
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(a) Facility i = 4. (b) Facility i = 9.

Fig. 9. Comparison of a priori and a posteriori bounds when \~z admits dependent coordinates.
We consider an ellipsoidal uncertainty set, various budgets of uncertainty \Gamma , and two production
capacity constraints.

7. Concluding remarks. In this work, we developed a principled methodology
for deriving strong a priori and a posteriori probabilistic guarantees for solutions of
robust optimization problems. Our analysis applies broadly to any convex compact
uncertainty set and to any constraint affected by uncertainty in a concave manner,
and it combines theoretical appeal with practical relevance. Constraints where the
uncertainty appears in a convex way are notably harder to account for in robust opti-
mization and call for tractable safe approximations [9, 42], a topic which constitutes
an exciting area for future research. In line with the present paper, probabilistic guar-
antees for such safe approximations would be particularly beneficial in practice. This
question intimately relates to approximation of chance constrained conic or matrix
inequalities [3, Chapter 10], which has received revived interest recently under the
lens of distributionally robust optimization [14, 51, 15].

Appendix A. Preliminary results from probability theory. In this ap-
pendix, we recall some useful definitions and results from probability theory regarding
sub-Gaussian variables. We refer the reader to [40, 44] for a comprehensive treatment.

Definition A.1 ([40, Definition 1.2]). A random variable \~x \in \BbbR is said to be
sub-Gaussian with parameter \sigma 2, denoted \~x \sim subG(\sigma 2), if \BbbE [\~x] = 0 and \forall s \in \BbbR ,

\BbbE 
\bigl[ 
es\~x
\bigr] 
\leq e

s2\sigma 2

2 .

Naturally, centered Gaussian random variables are also sub-Gaussian. Of partic-
ular interest for the RO literature, bounded random variables are a special case of
sub-Gaussian random variables, a consequence of Hoeffding's inequality.

Lemma A.2 ([40, Lemma 1.8]). Let \~x be a random variable such that \BbbE [\~x] = 0

and \~x \in [a, b] almost surely. Then, \~x \sim subG( (b - a)2

4 ).

The parameter \sigma 2 is usually referred to as a variance proxy for any sub-Gaussian
random variable \~x with parameter \sigma 2 satisfying Var(\~z) \leq \sigma 2---the equality is tight
for Gaussian random variables. Note that the definition of sub-Gaussian random
variables is essentially a Gaussian bound on the moment generating function of \~x and
is very similar to Property P2 in [3, section 2.4]. Examples from Table 2.3 in [3] for
which \mu \pm = 0 satisfy Definition A.1. This definition can be extended to noncentered
random variables as well (see [44, Definition 2.2]) and accounts for examples with
\mu \pm \not = 0.
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A bound on the moment generating function leads to a bound on the tail of the
distribution.

Proposition A.3 ([40, Lemma 1.3]). If \~x \sim subG(\sigma 2) \forall t > 0,

\BbbP (\~x > t) \leq e - 
t2

2\sigma 2 and \BbbP (\~x <  - t) \leq e - 
t2

2\sigma 2 .

Actually, all these tail bounds can be used as equivalent definitions of sub-
Gaussian random variables [44, Theorem 2.6].

Relevant for our analysis is the fact that sums of sub-Gaussian random variables
are themselves sub-Gaussian as proved in Proposition A.4. The extension to linear
combinations of sub-Gaussian random variables is straightforward after observing that
if \~x \sim subG(\sigma 2), then \alpha \~x \sim subG(| \alpha | 2\sigma 2).

Proposition A.4. Let \~xi, i = 1, . . . , n, be n sub-Gaussian random variables with
respective parameter \sigma 2

i .
(a) If the xi's are independent, then

\sum 
i \~xi is sub-Gaussian with parameter

\sum 
i \sigma 

2
i .

(b) In general,
\sum 

i \~xi is sub-Gaussian with parameter (
\sum 

i \sigma i)
2
.

Proof. (a) The first part of the proposition follows from the definition of sub-
Gaussian random variables and a Chernoff bound as proved in [40, Theorem 1.6].

(b) We now prove the second part of the result for n = 2. Fix s \in \BbbR . For any p, q
such that 1/p + 1/q = 1, H\"older's inequality yields

\BbbE 
\bigl[ 
es\~x1+s \~x2

\bigr] 
\leq \BbbE 

\Bigl[ 
es\~x1/p

\Bigr] p
\BbbE 
\Bigl[ 
es\~x1/q

\Bigr] q
\leq exp

\biggl( 
s2

2

\bigl[ 
p\sigma 2

1 + q\sigma 2
2

\bigr] \biggr) 
.

Minimizing the right-hand side with respect to p indicates taking p = 1 +
\sqrt{} 
\sigma 2/\sigma 1

and q = 1 +
\sqrt{} 

\sigma 1/\sigma 2, leading to the following inequality:

\BbbE 
\bigl[ 
es\~x1+s \~x2

\bigr] 
\leq exp

\biggl( 
s2

2
[\sigma 1 + \sigma 2]

2

\biggr) 
.

The general result follows by induction on n.

Appendix B. Omitted proofs.

B.1. Proof of Theorem 3.10.

Proof. Since

\=a\top v + \delta  \star (P\top v| \scrZ ) - f \star (v,x) \leq 0,

we can apply Theorem 3.4 (with b(x) = f \star (v,x)) and get

\BbbP 
\bigl( 
\=a\top v + \~z\top P\top v  - f \star (v,x) > 0

\bigr) 
\leq exp

\biggl( 
 - (f \star (v,x) - \=a\top v)2

2\| P\top v\| 22

\biggr) 
.

By definition of the conjugate,

\forall a, f \star (v,x) + f(a,x) \leq a\top v,

which in turns leads to

f(\=a+P\~z,x) > 0 =\Rightarrow (\=a+P\~z)\top v  - f \star (v,x) \geq f(\=a+P\~z,x) > 0.
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All in all, we have

\BbbP (f(\=a+P\~z,x) > 0) \leq \BbbP 
\bigl( 
(\=a+P\~z)\top v  - f \star (v,x) > 0

\bigr) 
\leq exp

\biggl( 
 - (f \star (v,x) - \=a\top v)2

2\| P\top v\| 22

\biggr) 
,

which concludes the proof.

B.2. Proof of Proposition 4.2.

Proof. By a change of variable, we have

\delta  \star (y| \scrZ ) = max
\bfz \prime :\| \bfz \prime \| p\leq 1

y\top \Lambda  - 1z\prime = \| \Lambda  - 1y\| q,

with 1/p + 1/q = 1. If q \leq 2 (i.e., p \geq 2),

1 = \| y\| 2 =

\sqrt{}    L\sum 
i=1

\lambda 2
i

\biggl( 
yi
\lambda i

\biggr) 2

\leq \| \lambda \| \infty \| \Lambda  - 1y\| 2 \leq \| \lambda \| \infty \| \Lambda  - 1y\| q,

which is tight for y = ei with i \in argmaxi \lambda i. If q > 2 (i.e., p < 2), H\"older's inequality
yields

1 = \| y\| 2 =

\sqrt{}    L\sum 
i=1

\lambda 2
i

\biggl( 
yi
\lambda i

\biggr) 2

\leq 

\Biggl( 
L\sum 

i=1

\lambda 
1/\alpha 
i

\Biggr) \alpha 

\| \Lambda  - 1y\| q,

with \alpha = 1
2 (1 - 

2
q ) =

1
p  - 1

2 .
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