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Abstract

Trellis coded modulation schemes are designed for band-limited communication
channels to reduce errors caused by noise. Applications include telephone channels,
digital radio, and satellite channels. In this work, we first study “regular” trellis
codes, for which the performance analysis is much simplified. It is shown that for
m-dimensional rectangular constellations partitioned into more than 22™ subsets,
regular binary trellis codes do not exist. The general structure of regular labelings
for rectangular constellations are discussed. Also, we search over one- and two-
dimensional Ungerboeck-type codes with a performance measure taking into account

the minimum distance and the first three error coefficients. Codes with improved

performance are found.
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Chapter 1

Introduction and Outline

On a communication channel, noise limits the performance by producing errors at
the receiver, and thus makes the transmission unreliable. Shannon defined chan-
nel capacity, C, as the maximum rate at which data can be transmitted reliably
on a noisy channel. Channel coding, or error control coding, is a technique used
to combat noise such that data can be transmitted at higher rates reliably. The
goal is to approach channel capacity with modest complexity. Coding schemes for
power-limited channels have been designed successfully since the Sixties. However,
for band-limited channels such as telephone channels, coding used to be considered
impractical. The reasons were: first, the major channel impairments used to be
dispersion and phase jitter, and second, it cost too much to do the signal process-
ing for coding. The situation changed in the Seventies. Development of adaptive
equalization techniques(adaptive filtering) eliminated most dispersion, and newer
lines reduced phase jitter. Thus, additive noise became a major cause of errors.
Modern VLSI technology also reduced the system cost for coding. Coding then be-
came a practical and promising way to improve error performance on band-limited
channels.

For band-limited channels with Added White Gaussian Noise(AWGN), channel
capacity Cis given by W log(1+S/N), where S/N is the signal to noise ratio(SNR),
and W is the allowable signal bandwidth[3]. On band-limited channels with high
S/N, sending data reliably at rate C with simple uncoded pulse amplitude modu-



lation requires 9 dB more power than the power S in the above formula. This 9 dB
gap between the theoretical limit and PAM can be partly closed by coded modula-
tion, i.e. combining channel coding and bandwidth-efficient modulation techniques.
Ungerboeck proposed some coded modulation schemes in the late Seventies[1][2]..
His results created great interest in both research and practical applications. This
work also originated from a study of Ungerboeck codes. However, the study of
regular labelings for rectangular constellations in section 4.1 turns out to be more
general.

In chapter two, some principles of digital transmission over band-limited chan-
nels are reviewed, including bandwidth-efficient modulation methods, coded and
uncoded. The basics of Ungerboeck coding are reviewed in chapter three with an
example; previous improvements on Ungerboeck codes are also described. In chap-
ter four, the performance of trellis codes is studied. In particular, we study the
requirements for trellis codes to be “regular” [6][9]. “Regularity” largely simplifies
the code design. The error coefficient effect and a method to find error coefficients
are discussed. In chapter five, some new Ungerboeck-type codes are presented and

compared with previous results.



Chapter 2

Background

When transmitting digital data over analog channels, the following events take place:
the source generates digital data bits; the modulator maps each consecutive set of
n bits to a signal waveform; the signal waveform is transmitted through the noisy
channel, and at the receiving end the demodulator converts the signal back to the
most likely digital data bits; the destination receives these bits. A communication

system is shown below.

Source | Modulator {+ Channel }|+Demodulator~ Destination

Figure 2.1: Model of a Communication System.

2.1 Bandwidth-efficient modulation methods

When channels are band-limited, bandwidth instead of signal power is often the
expensive resource. An example is the telephone channel, which is band-limited
between 300-3000 Hz, with high signal-to-noise ratios at 28 dB or more. On these
channels, efficient modulation schemes that trade signal power for bandwidth are
implemented. Modulation schemes for band-limited channels, coded or uncoded,

are summerized in a tutorial paper by Forney, et al[3].
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Bandwidth efficient modulation schemes can be implemented using a quadrature
amplitude modulator(QAM). In QAM, the quadrature components of the chan-
nel signal waveform (sine and cosine waves at carrier frequency) are amplitude-
modulated, as shown in Fig. 2.2. Techniques such as amplitude modulation, phase

modulation and phase/amplitude modulation can be viewed as special cases of

QAM.

cosw.t
% I LPF | =+
stnw,.t + s(t)

Z¢,Y:: pulse sequences
LPF: low pass filter
we: carrier frequency
s5(t): line signal

Figure 2.2: QAM modulator.

Assuming the only channel impairment is Gaussian noise and the receiver achieves
perfect timing, the channel can be modeled as a discrete time channel as shown in
Fig. 2.3. Discrete time signals are specified by pairs (z:,y:), where each pair can be
thought of as a symbol or a “signal point” lying on a two-dimensional space. The
two coordinates z,; and y; are sent independently and perturbed by Gaussian noise
variables (ﬁ,,,n,,g).

The “signal constellation” for QAM schemes is the collection of all possible signal
points. An important and popular class is that of rectangular constellations. These
constellations are composed of signal points drawn from the rectangular lattice.

Others such as hexagonal constellations are discussed in [3]. It is shown that when

7



n,t

Figure 2.3: QAM channel model.

coding is used, gain that comes from choice of signal constellation is relatively small
compared to coding gain. In this work our attention is restricted to rectangular
constellations.

Digital signaling through QAM can be done by using one-dimensional pulse
amplitude modulation(PAM) independently for each signal coordinate. In PAM,
to send n bits, the signal point coordinate takes on one of 2" equi-spaced levels.
Therefore, 2n data bits are mapped to one of 22" points in the two-dimensional
QAM constellation. The resultant constellation is a square. Alternatively, one
can select signal points from the two-dimensional plane keeping in mind that a
constellation with circular boundary is more desirable due to a smaller average
power, and a smaller peak to average power ratio. The “cross” constellation, for
example, as shown in Fig. 2.4 for 32-QAM, has a more circular boundary, and is
better than the square. Some PAM and QAM rectangular signal constellations are

shown in Fig. 2.4.

By using a large signal constellation, transmission rate is increased without
bandwidth expansion. For example, doubling the size of the signal constellation

while signaling rate is fixed means an additional 1 bit/symbol is sent. The price
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2_PAM ............
o——0 - <
4-PAM - _16-QAM
- = -32-QAM
8-PAM
0—0—0—0—0—0—0—0

_ __ 64-QAM

Figure 2.4: PAM/QAM signal constellations

for this increased throughput is a larger signal power. Therefore, we trade signal
power (larger signal constellation) for bandwidth, or signaling rate. For rectangular
constellations, approximately 4 times as much power(or 6 dB) is required to send an
additional 1 bit/ dimension[3]. As a result, doubling the size of signal constellations
requires an additional average power of 6 dB for PAM and 3 dB for QAM.

The operation of the receiver is to decide from the received signal which of the
possible signals was actually used. The best strategy is the Maximum Aposteriori
Probability Receiver(MAP), and it answers the question: “Given the received sig-
nal, what is the most likely signal to have been sent?” However, provided that all
the signals are equally likely to have been used, we can answer this question in-
stead: “Which of the possible transmitted signals makes the signal that was received
the most likely?” The Maximum Likelihood Receiver(ML) answers this question
and has the advantage of making the receiver independent of the signal probabil-
ities. Assuming the minimum Euclidean distance between any two signals is [,
the probability of a wrong decision is upper bounded and approximated by the
probability that the Gaussian noise vector(n, ny) lies outside a circle of radius

lo/2, which is P, = exp(—I3/262), where 6? is the noise variance per degree of free-
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dom(3]. If the spacing betwe»en signals is increased, P, decreases. Thus, the larger
the “distance” between sign;.l points is, the less likely that a decision error will
occur. Therefore, it is desirable to have the minimum distance between signals or
sequences of signals as large as possible, while not violating the power constraint.
One way to achieve this is by coding. In the following whenever “distance” is men-

tioned, squared Euclidean distance is implied. Notice that this “distance” is named

for convenience of discussing these coding problems; it’s properties are different

from those of the distances we are familiar with.

2.2 Coded Modulation

For systems with uncoded modulation, to send n bits/symbol, a 2"-point constel-
lation is used. We can think of a sequence of two-dimensional symbols as a point
in a higher dimension, lying on the lattice defined as the Cartesian product of two-
dimensional rectangular lattices. The minimum distance between points in that

higher dimension is the same as that in two dimensions. Therefore, decisions made

based on sequences of received signals are no better than decisions made for each

received signal independently.

However, channel coding techniques can be used to add redundancy to the sig-
naling, and introduce interdependencies between sequences of signal points such
that not all sequences are possible. One can then choose a code that generates
only a set of “good sequences” where the minimum distance d,,;, between any two
sequences is large. Therefore, the maximum likelihood receiver can make decisions
by selecting the coded signal sequence that makes the received sequence most likely.

The combination of efficient modulation and coding gives rise to “coded modu-

lation”. The general structure of a coded modulation scheme is given in Fig. 2.5. To

-send n bits/symbol, a redundant 2"+ -point signal constellation is used, partitioned

into subsets. The basic process as pointed out by Forney, Gallager,et al. is the
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k Binary k+r Select
uncoded bits Encoder | coded bits a subset
!
n—k Select a point Signal
uncoded bits from subsets points

Figure 2.5:' General coded modulation scheme.

following:

1. Arate k/(k+r) binary encoder encodes k bits of the incoming data into k+r
coded bits.

2. The k + r coded bits select one of the 2*+" subsets of the partitioned signal

constellation.

3. Theremaining n—k uncoded data bits select one signal point from the selected

subset.

When the binary encoder used is a convolutional encoder[4], the scheme is a
“trellis coded modulation” scheme. The set of all possible sequences of signal points
generated by such a scheme.is a “trellis code”. Ungerboeck codes are a class of
trellis codes. These codes can be described by the code trellis(Fig. 2.6) in much
the same way as conventional convolutional codes. However, transitions in this
trellis represent subsets, and each transition actually implies 2"~* parallel transitions
for all signals in the same subset. A “codeword” is a sequence of coded signals
that compose a “path” in the code trellis. In conventional convolutional coding
schemes, the signal constellations are the same as for the uncoded schemes; the
coded bits with redundancy from coding are used to transmit signals for more

times, which means that a higher data rate or a larger bandwidth is required to
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—0——X—— 0

Figure 2.6: Code trellis diagram(4 state, rate 1/2 code)

achieve the same throughput as the uncoded schemes. In coded modulation schemes
where bandwidth is considered expensive, coded bits are used to select signals from
expanded signal constellations, which contain more signal points than those for the
uncoded schemes; the data rate and bandwidth are kept the same.

Let the received signals be Thn=an+wW,, Where the a, are the discrete signals sent
by the modulator, and the w, represent samples of an additive white Gaussian noise -
process. The decision rule is to choose, among the set C of all possible coded signal

sequences, the sequence {&,.}f which satisfies
Zﬂ: Itn — @n|* = {E.l}lgcg iTn — an|?

The “soft decision” ML decoder determines the sequence {@,} closest to the unquan-
tized received sequence {ra} in terms of distance, i.e., squared Euclidean distance.
The distance between two sequences [@n,@ny1,...] and [fnsTnt1,...] is the sum of
the distances between symbols [@n, Tn], [@n41,7n+1]y --.. The Viterbi algorithm(5]
can be used in the decoder to find the “nearest” sequence to the received sequence.

The error event probability P, characterizes the performance of a code. It is

the probability that at any given time the decoder either makes a wrong decision

among the signals within the same subset, or starts to make a sequence of wrong

12




- decisions along some path diverging for more than one transition from the correct
path. This will be discussed in more detail in section 4.2.

The following are important parameters for error event probability:

dpmin : minimum squared Euclidean distance between codewords. The most proba-
ble errors made by the optimum soft-decision decoder occur between signals
or sequences of signals {a,} and {b,}, one transmitted and the other decoded,

that are closest together. The minimum distance of a code is:

d,m'n= i n_bnz; n’bn ecC.
@5 2 lan = bal% {an}, {ba}

For a “distance invariant” code[9] where each codeword has the same distance
properties as any other one, the all zero codeword can be chosen as the ref-
erence; therefore, dp,, is equal to the minimum distance between the all zero
sequence and any coded signal sequence; in other words, d,,;, is equal to the
minimum “norm” of all codewords of a trellis code. Ungerboeck codes are

distance invariant.

Error Coefficient Nj: number of coded signal sequences that start with a nonzero
signal and have the minimum norm dmin. When the all zero sequence is
transmitted, and assuming the receiver is in the correct state, an error event
occurs when the receiver chooses a sequence that starts with a nonzero signal.

A large Np implies a large number of possibilities of error.

At high signal to noise ratio » P can be approximated by

Vdmin
P, ~ NoQ[T]

where 6 is the Gaussian noise standard deviation in each dimension, and

Q(z) = \/_%?/:o exp(—y?/2) dy.

To achieve the same error event probability for coded and uncoded modulation,

coded schemes have a power saving known as “coding gain”. Coding gain is another

13



way to measure performance for a trellis code, and it is also a function of signal to
noise ratio. At high SNR, the “asymptotic coding gain” 4 can be evaluated in dB
by:

v = 10log,o[(dmin/d)/ E./ E,)),

where dpin, and d are minimum distances of the coded and uncoded schemes, and E,
and E\, are average signal energies of the coded and uncoded schemes, respectively.

At moderate SNR, coding gain may be lost due to a large number of nearest
neighbors No. Define Ny, N; as the number of codewords with Euclidean weight
Amin + 1, and dpip + 2, respectively. If Ny and N; are very large, they will also
increase P, subsequently, and thus reduce coding gain. The “error coefficient effect”
is considered in this work. It is shown that by a slight modification of the Viterbi

algorithm, N; and N; can be evaluated easily. Therefore, they can be taken into

account in the search for good codes.
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Chapter 3

Ungerboeck codes

3.1 Working Principles

Ungerboeck’s trellis coded modulation schemes[1](2] were proposed in the late Sev-
enties. Using one-dimensional PAM, two-dimensional QAM , and PSK! signal con-
stellations, coding gains of 3 to 6 dB can be achieved for digital transmission over
band-limited channels without compromising bandwidth efficiency. Later schemes
such as higher dimensional codes and codes based on lattices and cosets were pro-
posed in [3][6][7][8]. Given all the later results, Ungerboeck’s codes still stand out
as a performance benchmark in terms of coding gain versus complexity|[9].

In Ungerboeck’s schemes, to send n bits in each signaling interval, a one- or two-
dimensional constellation of 2"+1 points is used. The constellation is partitioned into
2k+1 subsets with enlarged intra-subset minimum Euclidean distance. Out of the n
bits that arrive in each signaling interval, k bits enter a rate k /k + 1 convolutional
encoder, and the resulting k + 1 coded bits specify which subset is to be used. The
remaining n — k data bits specify which point from the selected subset is to be
transmitted.

The mapping from encoder output to subsets is called a “labeling”, and the
coded k + 1 tuple is a “label” [9]. Ungerboeck’s labeling comes from “mapping by

set partitioning”. The signal constellation is partitioned into subsets by a sequence

1Ungerboeck codes for PSK signals, with similar working principles, are not discussed in this work.
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of 2-way partitions. This is done in such a way that points in the same subset are
placed as far apart as possible, and the minimum intra-subset distance grows as the
number of partitions increases. The 2*+! subsets are labeled, bit by bit, by results of
these 2-way partitionings . Therefore, starting from the last bit, which indicates the
result of the first 2-way partitioning, the more bits on which two labels agree, the
larger the minimum distance between these two subsets is. Ungerboeck used one-
dimensional 4-way partitioned PAM and two-dimensional 8-way partitioned QAM
signal constellations for his codes, where the minimum distance between any two
subsets can be determined by the number of bits two labels agree on. However, this
method to find minimum distance between subsets does not work in one dimension
for more than 4-way partitioned constellations and in two dimensions for more than
8-way partitioned constellations. Ungerboeck labelings for one-dimensional 4-way
partitioned PAM and two-dimensional 8-way partitioned QAM constellations are

shown in Fig. 3.1.

When the signal constellation is finite, problems of “outer points” that lie close
to the boundaries arise. Comparing with the inner points, outer points have fewer

“near neighbors” and thus have a smaller chance of being in error. When designing

trellis codes, this means that points in the same subset are “different”, and all pairs

of codewords need to be considered in order to find the “real” d,, No,...etc. A
huge amount of work is thus required in the code design. In the following we shall

assume the signal constellations to be infinitely large. This assumption is reasonable

when the constellation is large. It separates the choice of constellation size from the
code design, and largely simplifies the code design. The error coefficients assuming
the constellation is infinite will be larger than those for finite constellations.

In Ungerboeck’s schemes, if labels of two subsets agree in the last ¢ positions but
not in the ¢ + 1th bit, then the minimum distance between signal points from these

two subsets is independent of the particular subsets and will be denoted A,. For one-
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dimensional PAM and two-dimensional QAM 2, A, is 2%? and 27, respectively; and
Apjy is set to zero. For subsets corresponding to a and a', the minimum squared
distance is a function only of the number of trailing zero’s of a & a'. Therefore,
Ungerboeck codes have the “distance invariant” property. That is, the distribution
of distances from any given code sequence to all other code sequences is the same
as the weight distribution of the code. Therefore, minimum distance and error
coefficients can be found using the all zero sequence as the reference, and the code

design is largely simplified.

3.2 Example: Ungerboeck 4-state 1D code

This code uses a 2"*!'-point PAM constellation, divided into 4 subsets of 2"~! points
each. A rate 1/2 convolution code is used to select the subsets. The scheme is shown
in Fig. 3.2. We shall find the minimum distance d,;, and error coefficient Ny for
this code.

The minimum distance can be expressed as
dm.'n = min[dl, dz]

where d; is the minimum distance between points in the same subset, which corre-
sponds to parallel transitions in the code trellis; d; denotes the minimum distance
between nonparallel paths in the code trellis diagram. Ny is the number of paths
at distance d,,, away from a given path on the code trellis, assuming an infinite
constellation. Ungerboeck codes are regular; therefore, the all zero path can be
taken as the reference.

The minimum squared Euclidean distance between different points in the same
subset, for example, between different points labeled A, is d;, = 16 as seen in Fig. 3.1.
Define the minimum squared distance between subset 7 and subset A to be d(z), then

d(A) =0,d(B) =1, d(C) = 4, d(D) = 1. Also define n(?) as the number of points

2The distance between neighboring points is set to one.
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Figure 3.2: One-dimensional 4-state Ungerboeck code
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in subset ¢ at the minimum distance away from the zero subset; therefore, n(A) =2,
n(B) =1,n(C) =2, n(D) = 1. The minimum distance path away from the all zero
path is the path {C,B,C}. The distance is d(C)+d(B)+d(C) = 9 = dy, and number
of those paths is n(C) n(B) * n(C) = 4. Therefore, dp;, = min[d;,d;] = d, = 9,
and N, = 4.

3.3 Improved Ungerboeck-type codes

While some simple Ungerboeck codes were hand-designed, most were found by a
nearly exhaustive computer search. The performance measure in the search was the
asymptotic coding gain. Thus, codes with the largest possible d,.,, were considered
best. Error coefficients were not taken into account in the search, although their
significance was recognized. 3 It is therefore possible to find better codes with the
same do,, and smaller error coefficients.

Recently, Honig[10], and Pottie and Taylor[11] proposed improved Ungerboeck-
type one- and two-dimensional codes for PAM and QAM signals, respectively. Tak-
ing into account error coeﬂiéients, they both found codes with the same dmin but

smaller Ny than Ungerboeck codes. Their approaches are the following:

* Honig[10] improved Ungerboeck-type codes for one-dimensional 4-PAM and
8-PAM constellations. A feedback-free(feedforward) encoder was used. The
performance measure in the search was an upper bound for P,. Codes with
maximum possible d,,;, were chosen first. For each of these codes the upper
bound of P, was computed. Codes that minimize the upper bound were

considered best.

* Pottie and Taylor[11] improved Ungerboeck-type codes for two-dimensional

QAM constellations, assuming the signal constellations are very large. A

3The error coefficients Ny for Ungerboeck codes were later computed and appeared in [2].
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feedback-free encoder was used. Codes with good d,n;, were found, and among

them the ones with minimum N, were selected as best. After the codes were
found, the first five error coefficients* were computed and used in an approx-
imate upper bound of P,; the coding gain was evaluated accordingly. They
recognized that codes with slightly smaller d,,;, might have a significantly
smaller Ny, and thus perform better. This idea was applied when searching
for complicated codes with large Ny. They found a 128-state code in this way
which performs better at moderate signal to noise ratio where P, is at the

range of 1075 to 107¢.

These improvements dembnstrated the importance of error coefficients in code
design. When searching for good codes, it will be desirable to take more error co-
efficients into account in a reasonable way. The upper bound for P, that Honig
used requires knowledge of all error coefficients, and is not very good as a perfor-
mance measure. This will be discussed in section 4.2. Although Pottie and Taylor
cosidered several error coefficients at the performance evaluation after the code
search, they only cosidered Ny in the code search. In this work, the first three error
coeflicients are considered in the code search. Instead of bounding or approximating
P., dmin, No, N1, and N, are used to compute an “effective coding gain” as defined
by Forney|[9], which is a simple and yet realistic performance measure.

While Ungerboeck searched over codes implemented by a systematic feedback
encoder, Honig, and Pottie and Taylor looked at feedforward codes. There should
be no difference using one kind over the other. However, the heuristic rejection
rules used to save search time are not the same for feedback and feedforward codes
and might lead to different results. Searching over systematic feedback codes has
several benefits: firstly, catastrophic codes are ruled out; secondly, Ungerboeck’s

heuristic to guarantee large dn. can be used, which cuts down search time by a

4The way they computed error coefficients is correct for finding the first four error coefficients, but

not the fifth.
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factor of 4 for 1D and 8 for 2D codes; thirdly, there is no need to worry about how
to divide memory elements into two queues, which must be done for feedforward

codes. As a result, the search in this work is done over systematic feedback codes.
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Chapter 4

Performance of Trellis Codes

4.1 Regular Labelings for Rectangular

Constellations

4.1.1 Introduction

In coded modulation schemes, at each time interval some of the input bits (k bits)
enter the encoder, and the coded k + r bits are used to select subsets from a parti-
tioned signal constellation. The 2**" binary k + r tuples are called “labels” , and the
mapping from labels to subsets is called a “labeling” according to Forney in “Coset
Codes I”[9].

Forney defined a labeling to be “regular” if the minimum squared Euclidean
distance between points in two subsets is a function of the mod-2 sum of their labels
only, independent of the individual labels. To understand the definition of “coset
codes” let’s look at a few terms. An m-dimensional “lattice” is a discrete set of m-
dimensional vectors(points) that forms a group under ordinary vector addition. A
“coset” is a translation of a lattice. A lattice can be partitioned into subsets that are
cosets of some lattice. A coset code is one where the signal constellation is a finite
set of points taken from an infinite lattice, and the partitioning of the constellation
into subsets corresponds to the partitioning of that lattice into a sublattice and its

cosets. Practically all known good constructive coding techniques for band-limited
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channels[9] are coset codes, including Ungerboeck-type codes.

In this work, we do not restrict ourselves initially to cosets of a given lattice;
rather, we study methods to build sensible labeling schemes for partitioned rectan-
gular signal constellations. Since the labels are binary k + r tuples, the number of
subsets must be a power of two. We restrict ourselves to partitions that are struc-
tured in such a way that for each point in a given subset a, the minimum distance
to points in subset b is the same for all points in a, denoted as d(a,b). d(a,a) =0
Va. Also, each point in subset a¢ has the same number of points in b at distance
d(a,b) away, and we define n(a,b) to be this number. These conditions are true
when the subsets are cosets of a lattice.

Define D(I) = d(0,!) to be the norm of the subset labeled [, or the minimum
distance between the subset labeled 0 and subset /; define N(l) = n(0,!) to be the
multiplicity of subset [, or the number of points in subset ! at distance D(l) away

from a given point in subset zero. According to Forney, a labeling is regular if
d(a,b) = D(a®b), Va,be L,

where L is the set of all possible labels, or equivalently, the set of 25*" binary k+r
tuples. The minimum distance between subsets a, b, instead of being determined
by the pair of two labels a and b, is determined by the label-difference a @ b, which
is itself a label. Since the labels are binary strings where sum is equal to difference,
the mod-2 sum of labels will also be referred to as label-difference later on. We use
Forney’s definition of regular labeling, but, as mentioned above, we do not restrict
ourselves to cosets of a lattice.

A trellis code is regular, as defined by Calderbank and Sloane[6], if the squared
Euclidean distance between two coded signal sequences is a function of the mod-2
sum of the input sequences only, independent of the individual sequences. For a
regular trellis code, the distribution of distances from any given code sequence to
all other code sequences is the same as the norm distribution of code sequences.

Therefore, regular trellis codes are distance-invariant[9]. When a code is distance
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invariant, dm:n, and Ny, N; and N; can be found using the all zero sequence as the
reference; it is unnecessary to look at all pairs of codewords . In section 4.3 we
will show that regardless of the size of the signal constellation, only a small portion
of the signal constellation (a basic set) needs to be considered to find dmin, No,
N, and N,. This, together with the distance-invariant property, largely simplifies
the design of a regular coset code, making it essentially no harder than designing
a binary code using antipodal or QPSK signals. Therefore, as with conventional
convolutional codes, regular coset codes are of special interest to code designers. A
regular coset code must be based on a partition with a regular labeling[9]. Thus, it
is important to understand structures of regular labelings.

In the following, we discuss structures for regular labelings when signal con-
stellations are rectangular. Firstly, it is shown that for m-dimensional rectangular
constellations, no regular binary labeling exists for more than 2’™.way partitions.
Actually, we shall see that if the label-differences of an m-dimensional point and
it’s 2m nearest neighbors are given and are linearly independent, this uniquely de-
termines the labels for all points in the space. Ungerboeck’s labelings[1] and those
~used by Calderbank and Sloane[6] follow this structure, and are “equivalent” label- .
ings in the sense that there is a one to one linear relation between the two sets of
labels. Secondly, it is shown that for less than 16-way partitions in two dimensions,
the structure for regular labelings is not unique. In addition, it is shown that even
though d(a,b) = D(a @ b) Va,b, n(a,b) = N(a @ b) is not necessarily true. Equiva-
lently, a regular labeling is not sufficient to guarantee that the number of points in
one subset at minimum distance away from a point in another subset is also a func-
tion only of the label difference of the two subsets. This is because there are many
coded signal sequences corresponding to one label sequence. If n(a,b) # N(a & b)

it will be difficult to find error coefficients. Thus “strong regularity” for labelings

will be defined to be:
d(a,b) = D(a®b) n(a,b)=N(a®b) Va,beL
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4.1.2 Regular Labelings for m-dimensional Partitions

with 22™ Subsets

Consider an m-dimensional rectangular constellation where the distance between
neighboring points is one. Let L; be the set of label differences(binary strings)
between a point labeled zero and it’s 2m nearest neighbors at distance one. The
same label differences are counted only once. Under these assumptions, the following

results come from the definition of regular labeling.

Proposition 1 For a regular labeling, each point has the same set of label differ-

ences between itself and it’s 2m nearest neighbors as each other point.

Proof: Let L be the set of label differences between an arbitrary point labeled e
and it’s nearest neighbors. L,, as defined, is the set of label differences between zero
and it’s nearest neighbors. If there exists ¢ € L but ¢ not in Ly, then dle,edc) =
1 # D(c) = d(0,0® ¢) > 1. This contradicts the fact that the labeling is regular,
since from the definition of regularity, d(e,e & ¢) = D(c) Ve € L, where L is the set
of all possible labels. As a result, all elements in L{ must be in Ly, or L§ C L.
Conversely, if any element in L, say a,, is not in L3, then d(e,e ® a;) > 1, while
d(0,0 @ a;) = D(a;) = 1 and thus d(e,e ® a;) # D(a;), which violates regularity.
Thus any element in L, must be in L, or L; C Lt. We therefore conclude that

L, = L3. Since e is arbitrary, our proof is complete.
Q.E.D.

Proposition 2 All labels for a regular labeling scheme can be expressed as linear -
combinations of elements in Ly, where L, is the set of label differences between any

point and it’s nearest neighbors.

Proof:  According to Proposition 1, the set of label differences between any point

and all it’s distance one neighbors must be L;. Therefore, the label difference
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between any two points at distance one apart must be in L;. If we “label” the edge
between any two points at distance one apart by the label difference of the points,
labels of all edges have to be in L,. If labels for all edges are determined, the label
for any point is just the mod-2 sum of labels for all edges on the path from point
zero to it. Labels for all points must therefore be expressed as linear combinations -

of elements in L,.

Q.E.D.

Proposition 3 For an m-dimensional rectangular constellation, binary regular la-

beling does not exist for more than 2?™-way partitions.

Proof: . From Proposition 2, all labels can be expressed as linear combinations of
elements in L,. When the elements of L;: ai,b; t = 1...m are linearly indepen-
dent, the largest number of different labels can be generated. Since labels are binary
strings, 2m linearly independent binary strings have 2?™ different linear combina-
tions. Therefore, regular labelings do not exist for partitions with more than 22™

subsets.

Q.E.D.

In this section we try to “build” regular labelings for m-dimensional rectangu-
lar constellations with 22™-way partition, m = 1,2,.... From Proposition 3, the
elements of L, for these labelings must be linearly independent. It turns out that
there is a unique and simple structure. Once a;, b; are determined and are linearly
independent, labels for all points are fixed. Although we do not restrict ourselves to
partitions where subsets are cosets, and we intend to find regular labelings instead
of strongly regular labelings, the labeling turns out to be strongly regular, and the
subsets correspond to cosets of a magnified rectangular lattice.

Let’s start from the one-dimensional PAM constellation (Fig. 4.1). Let L, =

{a,b}, a, b are linearly independent using mod-2 operations, which means that
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Difference Structure(Labels of Edges)

Labels of Points

Figure 4.1: Structure of Regular Labelings for 1D 4-way Partition

a # b. We can arbitrarily select a point and label it zero, and then label it’s two
nearest neighbors a and b. From the three labeled points, we have the conditions
d(a,0) = D(a) = 1, and d(b,0) = D(b) = 1. If we label each edge in Fig. 4.1 by
the label difference of it’s two end points, to satisfy D(a) = D(b) = 1, the sequence
of label differences (the “difference structure”) must be an alternating sequence of
{a,b,a,b,...}. The sequence of labels is therefore {0,a,a ®b,6,0,a,a ®b,...}, as
seen in Fig. 4.1.

Checking the minimum inter-subset distances and multiplicities centered at any
point, the above construction indeed leads to a regular labeling where D(a) =
D(b) =1, N(a) = N(b) = 1, D(a®b) = 4, and N(a®b) = 2. This can be explained
as follows: looking out from any point, the sequences of label differences must be
either a,b, a,b.. to the left and b, a,b, a... to the right, or a,b,a,b... to the right and
b,a,b,a... to the left. If from a point of subset zero one can go to exactly one point
of subset ¢ by moving z segments to the right, with a one to one correspondence
one can go from any point of subset e to a point e @ ¢ by moving either z or —z
segments, with the same distance. Thus, d(e,e ® ¢) = D(c) = z, n(e,e®c) = N(c)
for all e in L, and the labeling is not only regular, but strongly regular. In addition,
points in the same subset form a magnified and shifted one-dimensional rectangular
lattice with minimum distance 16.

Next, look at the two-dimensional QAM constellation. Let L, = {ay,b1,a,,b,},

a1, by1,az,b; are linearly independent. We can thus label point (0,0) to be 0, and
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it’s nearest four neighbors (+1,0), (0,+1) to be ay, b1, az, b (see Fig. 4.2). D(a;) =
D(b1) = D(az) = D(b;) = 1. Consider the corner point (1,1) adjacent to a;,az(see
Fig. 4.2). For a;, this neighbor could be labeled by either a; & a3,a; ® b;, or
a1 @ b, according to Proposition 1. Similarly, for a3, a valid label for this point
is either a; ® a;,a; ® by, or ay @ b,. Since aj, b1, ay, by are linearly independent,
two linear combinations of a;, b; cannot be the same unless they contain identical
components; therefore, a1 @ az # a; ® by, a1 D a; # az ® by, ..., etc. The only
possible label for this point is thus a; @ a;. Labels for the other three corners can
be found in the same way. Once this square is filled, proceed to label the four next
nearest points (£2,0), (0, +£2). These are the only unlabeled nearest neighbors of
points a1, b1,a2,b;, and thus their labels are a; @ b;,a; @ b, from Proposition 1.
Up to now, we have learned that once the point at position (z,y) and it’s nearest
neighbors (z + 1,y), (z,y + 1), (z — 1,y), and (z,y — 1) are labeled, labels for the
nearest neighbors of (z +1,y), (z,y + 1), (z — 1,y), and (z,y — 1) are also fixed;
by repeating the above procedure to new center points with four labeled nearest

neighbors, labels for all points in the two-dimensional plane can be determined.

- We can check the regularity by looking at the “difference structure” as in one
dimension. Labels for the edges are ordered as seen in Fig. 4.2. Notice that mov-
'ing horizontally from any point in the plane, one sees an alternating sequence of
differences given by a;,b1,ay,by,..., and similarly moving vertically the sequence
is az,bs,az2,b;,.... If one can go from a point of subset zero to the nearest point
of subset ¢ by moving a distance z horizontally and y vertically, then one can go
from any point of subset e to the nearest point of subset e @ ¢ by moving either
(z,9),(—2,9), (—z,—y), or (z,—y), all with the same distance z? + y%. Therefore,
d(e,e®c) = D(c) = z? +y®. Notice the one to one relation between paths from 0 to
c and from e to e@c. This says that n(e,e®c) = N(c). Thus the labeling is strongly
regular. Also, each subset corresponds to a magnified and shifted rectangular lattice

with distance 16 between neighboring points.
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Figure 4.2: Structure of Regular Labelings for 2D 16-way Partition
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The structure in Fig. 4.2 is, as seen by construction, the only way to regularly
label a 16-way partitioned two-dimensional constellation when a, by, a;,b, are lin-
early independent; when ay, by, as, b, are dependent(i.e., when there are less than 16
subsets), this structure still works. Labeling schemes for 4-way, 8-way and 16-way
partitions used by Ungerboeck[1] and Calderbank and Sloane[4] both follow this
structure, although they associate different binary strings with ai,by,as,b,.

When generalized to m dimensions, similar procedures can still be used to find
the structures of regular labeling. First label a point at (0,0,..0) to be zero, and
label it’s 2m nearest neighbors at (1,0,0,..0), (-1,0,0,..0), (0,1,0,..0), (0,-1,0,..0),
--+(0,0,...1), (0,0,...-1) by a1,b1,a2,b3,...0m,bn. Then L, = {ai,biy ¢ = 1...m}.
All elements in L, are linearly independent. Let & be the unit vector of the ith
coordinate, then we have labeled € to be a; and —€;tobeb; fori=1...m.

Consider point (1,1,0,...0) adjacent to (1,0,0,...0) and (0,1,0,... 0) that are
labeled as a;, a;. From Proposition 1, when (1,1,0,...) is viewed as a neighbor of
a3, possible labels are a; ®a; or a; ®b;, where i # 1,5 =1... m; and when viewed as
a neighbor of a,, possible labels are a; @ a; or a; ® bj, where t # 2,7 =1...m. The
valid label must be in the intersection of the two sets. Since all a; and b; are linearly
independent, the only valid label is a; & a,. Similarly for point (1,0,1,0,...0), or,
€1+ €3, which is a neighbor of both @, and a3, the label can only be a; @ a3. For point
(1,1,1,0,...0), the label must be a;®a, @ as since it is adjacent to a; ®az, a;Pas and
a3 ®a,. In general, point & +€; —€;+. .. is labeled by a; ® a; ®br®.... In this way,

we can label all points whose coordinates are between +1. Next proceed to label
| the points with one coordinate 2 and all the rest zero, or, +2¢€;,, 1 = 1...m. The
point (2,0,...0), for example, is the only unlabeled nearest neighbor for point a,.
Since a; @ by is the only possible label not yet used, this point is labeled as a; & b;.
Similarly, (-2,0,0...0) is the only unlabeled nearest neighbor of b,, it also must be
labeled as a; @ b;. In general, points +2¢; are labeled by a; ® b;, i =1,...m. Now

that all the nearest neighbors of points a;, b; are labeled, labels for their distance
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two neighbors can also be found, as we have done this for point zero. This can then
be “propagated” to any point in the m-dimensional space, and labels for all points
are fixed as a result.

The difference structure is still highly ordered. Looking out from any point,
the sequences of differences along axis ¢ must be either {a.-,b,-,a,-,b,-,...} in ‘the
positive direction and {b;,a;,b;,4a;...} in the negative direction, or the other way
round. This structure assures regularity, since if one can go from a point of subset
zero to the nearest point of subset ¢ by moving in each dimension (1,225 T ),
one can surely go from any point of subset e to the nearest point in subset e @ ¢
by moving (+z,,+z,,.... + z,,), with the same distance z} + 22 + ..z% in any
way. The multiplicity is also preserved since there is a one to one relation between
the shortest paths starting from the zero point and those starting from point e.
Therefore d(e,e @ c) = D(c) = 2} + 2} +...z%, n(e,e®c) = N(c), and the labeling is
indeed regular and strongly regular. Points in the same subset form a magnified and

shifted rectangular lattice, where the neighboring points are at distance 16 apart.

4.1.3 The Ungerboeck Labelings

Ungerboeck’s labelings[1] for one-dimensional PAM and two-dimensional QAM sig-
nals are generated by successive 2-way partitions of the constellation, and by use of
one bit to represent the result of each partition. F orney|[9] further explains Unger-
boeck’s labeling by a partition tower and a partition tree corresponding to a chain of
coset decompositions, where each bit selects one of the two cosets in each level. Al-
ternatively, Ungerboeck’s labelings can be analyzed using the structures we found.
The structures of Ungerboeck’s labelings agree with the ones shown in Fig. 4.1 and
Fig. 4.2. For the one-dimensional 4-way partition, ¢ = 01, b = 11; for the two-
dimensional 4-way partition, a; = b, = 01, a; = b, = 11; for the two-dimensional
8-way partition, a; = 101, a; = 011, b, = 001, b, = 111. Although never used,

Ungerboeck proposed the labeling for the two-dimensional 16-way partition as well,
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which has a; = 0101, a; = 1011, b; = 0001, b, = 0111.(Fig. 4.3, Fig. 4.4)

The fact that for Ungerboeck’s labeling, the “minimum distance between subsets
is a function of only the number of trailing zeros in the label-difference” contributes
to heuristic rules that reduce code search time. This “trailing zero method” breaks
down, though, for the Ungerboeck labeling of the 2D 16-way partition[1]. Never-
theless, that labeling is still regular. Obviously we can find other regular labelings
by associating a;,b;, ¢ = 1,..m with different binary strings. For 2D 4-way, 8-way
and 16-way partitions, both Ungerboeck’s and Calderbank and Sloane’s labeling
schemes([4] used the same structure as in Fig. 4.2!. Labels in one scheme and the
other can be related by a linear one to one mapping(Fig. 4.3, Fig. 4.4), and there is
a one to one relation between codes with the same performance using one labeling
and the other. Therefore, Ungerboeck’s labeling and Calderbank/Sloane’s labeling
are essentially equivalent.

A careful choice of labeling could simplify the code design, as in the case of
Ungerboeck. However, when trying to design a very complicated code, the time
saved by choice of labeling is limited.

The complexity of a code is roughly proportional to 2Yxk,where 2% is the number
of encoder states, and k is the number of transitions entering each state in the code
trellis. The largest gain achievable by coding is bounded by the minimum intra-
subset distance. This gain can be achieved by increasing the complexity of coding.
However, it is very hard to design a complicated code. It is also hard to design a
code that is not regular, in which case all pairs of codewords must be considered
to find dmin and error coefficients. For 8-way partition in two dimensions, the
largest gain is achieved by a code so complicated that one would not consjder going

beyond the 16-way partition. A similar situation occurs in one dimension, where the

! Calderbank and Sloane’s labeling for 2D 16-way partition is a regular binary labeling, and actually
the product of two one-dimensional regular labelings. However, they used it as a quadrature(mod-
4) linear labeling. Their labeling for two-dimensional 4-way partition corresponds to that for

standard binary codes.
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- Relation between Ungerboeck and Calderbank/Sloane’s labelings:

for any point point labeled as Y by Ungerboeck,
Z by Calderbank/Sloane,
YM=72

where M is a nonsingular binary k by k matrix for 2%¥-way partition.

2D 16-way partition
Note: labels are in decimal to save space

Ungerboeck(Y) Calderbank/Sloane(Z)
1010
M = 0010 YM=727
0101
0011
R I L i
9|8 13129 8 |13 - *9 (10 11 8 9 10|11 -
*~14|15 10 11 14 15|10 - 13114 15 12 13 14115
"5 (4 1 0 5 4|1 112 3 0 1 2
213 6 7T 2 3|6 5|6 7T 4 5 6 |7
9 |8 13129 8 (13- *9 (10 11 8 9 10|11

+14 15 10 11 14 15 10 13 14 15 12 13 14 15

Figure 4.3: Equivalent Ungerboeck and Calderbank/Sloane Labelings:1
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2D 8-way partition

YM=2
Calderbank/Sloane(Z)

J

010
1 01
011

|

"2 3 6 7 2 3 6

M

Ungerboeck(Y)

"5 6 7 4 5 6 7T -

..7- 4- 5 6- 7 4 5 e

6T 236 7 2

2D 4-way partition

YM =

213 2 3|2 -

2 (3 2 3|2

oo

..3 2 3 2 3 " e .

-.3 2 3 2 3 e

0 “ e

1

Figure 4.4: Equivalent Ungerboeck and Calderbank/Sloane Labelings:2
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code achieving the maximum gain for 4-way partition is already very complicated.
As we have seen, regular labelings exist for up to one-dimensional 4-way and two-
dimensional 16-way partitions only. Codes with further partitions cannot be regular.
It is thus extraordinarily difficult to design m-dimensional codes for more than 22™-
way partitions. The time spent for code search would be enormous since good codes

are complicated, and no regular labeling exists.

4.1.4 Regular Labelings for m-dimensional Partitions

with Fewer than 22™ Subsets

In the previous section, we concluded that there is a unique structure for regular
labeling for m-dimensional 2?™-way partition, and that no regular labeling exists
if the constellation is partitioned further. Actually, constellations for all existing
coset codes are partitioned into 2™ and fewer subsets in m dimensions. It is thus
useful to also understand regular labelings for less than 2™.way partitions.

For m-dimensional partitions with fewer than 22™ subsets, L; = {a;,b;, ¢ =
1...m} are not linearly independent anymore. However, Proposition 1 still holds,
which says that the set of label differences between any point and it’s nearest neigh-
bors must be the same. Let dintra(a) be the minimum distance between points in
subset @, then the minimum intra-subset distance dintra = ming dintra(a). Since
dintre limits the largest d,,;, achievable by coding, structures where d;,;,, is maxi-
mized are primarily considered. In the following, we use the definition of regularity,
Proposition 1, and the requirement that d;,.,4 is to be maximized to build regular
labelings. Structures for regular labelings of the one-dimensional 2-way partition, .
and two-dimensional 2-way, 4-way and 8-way partitions are found.

For a one-dimensional 2-way partition, let the two labels be 0,A. In order to
have d;nsr, larger than one, the same labels cannot be placed next to each other.
Therefore, the only regular labeling is shown in Fig. 4.5. Since n(e,e®a) = N(a) =

2, for all e in L, the labeling is strongly regular. This structure is the same as that
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in Fig. 4.1 where a = b.

Labels of edges

o o T T P P Py
o A 0 A 0 A 0 A4 o0

Labels of Points

Figure 4.5: Structure of Regular Labeling for 1D 2-way Partition

The structure of regular labeling for two-dimensional 2-way partition is very
similar to that in one dimension, as shown in Fig. 4.6. Again, the condition that
the same labels cannot be placed next to each other is enough to determine the

whole structure. This structure is also strongly regular.

For the two-dimensional 4-way partition, let’s call the four different labels 0,A,B,C.
These labels correspond to binary strings “00, 01, 10, 11”7, and thus A@ B C = 0.
While O corresponds to “00”, we shall not specify the correspondence between
A,B,C and “01, 10, 11”. Later we will see that all choices of A, B, C work equally
well.

Let’s start from a point labeled as 0 located at (0,0). Our first attempt is to
label it’s four distance one neighbors (£1,0), (0, £1). To make d;psq larger than
one, these points cannot be labeled zero. Therefore, the four points have to be
labeled by A, B,C, and at least one label has to be used twice. The same labels
should be placed as far apart as possible to achieve large dintra. Therefore, (1,0),
(-1,0) can share the same labels, as can (0,1), (0,-1). Since the distance between the
two uses of the same label is 4, the largest d;p,, for a 4-way partition is 4. We shall
restrict ourselves to structures where d;n,, = 4. Fig. 4.7 shows two ways to label
the near neighbors of point 0. Other labeling choices can be converted to them by
interchanging A, B, C(which are actually arbitrary) and perhaps by rotating by 90

degrees (“flipping” the structure with respect to the z or y axis).
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Figure 4.6: Structure of Regular Labeling for 2D 2-way Partition
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Type 1 Type 2

B A B, | C A B, |
c o0 C. B o C .
B A B C A B,

Figure 4.7: Partial Structures for 2D 4-way partition

In structure 1(Fig. 4.7), A and C are both used twice for the nearest neighbors;
the four points at (:l:l,:l:l) must be labeled B, since otherwise dintra Will be less
than 4. Actually, any four corner points of a square with unit sides must be labeled
A, B, C,0 for d;p;, to be greater than 2. In structure 2, (0,£1) are both labeled
4, but (1,0), (-1,0) are labeled C, B. Labels for points at (£1,%1) are determined
since each point is the only unlabeled corner for a side-one square. These partial

structures are completed in the following.

For any point, say (z,y), in the type one structure, only two labels are used to
label it’s four neighboring points at distance 1: (zx1,y+ 1). To make d;pyp, = 4,
- the label for (z + 1,y) must be the same as that for (z — 1,y). Also, labels for
(z,y + 1) and (z,y — 1) must be the same. This says that the same label repeats
every two steps along both z and Y axis. As a result, given the partial structure in
Fig. 4.7, the complete structure is found as in Fig. 4.8.

For the type 2 structure, we start from the partial structure in Fig. 4.7. Labels
can be found from Proposition 1 and from the constraint that di,;,, = 4. For
example, point (1,0) has been labeled C, and the three neighbors of C at (0,0),
(1,1), (1,-1) are labeled as 0, B, B, respectively. Since L, = {4,B,C}, from
Proposition 1 the neighbors of (1,0) should be labeled by C® A=B,CoB = A,
and C @ C = 0. Therefore, the point (2,0) must be labeled as A. Point (-2,0) is
labeled A for the same reason. The points (0,£2) are both labeled 0, since any
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Figure 4.8: Structures of Regular Labelings for 2D 4-way partition
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other label will make d;nsre < 2. Continuing labeling, we observe after a while that
the same label repeats every two steps along the y axis and every four steps along
the r axis. The complete type 2 structure is shown in Fig. 4.8.

Both structures in Fig. 4.8 can be shown to be strongly regular, regardless
of the choice of A,B,C as 10,01,11. Structure 1, where subsets correspond to
cosets of a magnified rectangular lattice, is the one used by Ungerboeck and Calder-
bank/Sloane. It is a special case of Fig. 4.2 where a; = b;, az = b;. For structure
2, the 0 points correspond to a lattice which is not rectangular; other subsets cor-
respond to cosets of that lattice. Given a structure, the six choices of A, B,C as
01,10, 11 result in essentially the same labelings. Define n;y,, as follows: for a
point in a subset where the intra-subset distance is din¢rg, Mintra is the number of
points in the same subset at distance d;n;, away from it. Thus structure 1 has
Nintra = 4, structure 2 has n;pa = 2, and both structures have diniq = 4. When
coding complexity is so high that dmin = dintra; No = Mintra, and the signal to noise
ratio is large enough, the code labeled by structure 2 will have a larger coding gain
due to the smaller error coefficient. The trade-off is that for structure 2, all subsets
have norms of no more than one, while structure 1 has one subset with norm two.
This can lead to a smaller d;, given that the complexity of the codes using either
structure are the same and are moderate.

The two-dimensional 8-way partition is of special interest since it is used in
most two-dimensional codes, including those proposed by Ungerbock, Calderbank
and Sloane. As discussed earlier, their labeling schemes are actually special cases of
the structure in Fig. 4.2 where a; ®a;®b; ®b; = 0. In the following, other structures
of regular labelings are discussed, including structures that are not strongly regular,
and structures in which subsets are not cosets of one lattice.

Label the four nearest neighbors of point zero to be a;, a3, b;,b; as before. From
Proposition 2 the eight labels for this 8-way partition are linear combinations of

ai, az,by,b2. Therefore, out of a;,as, b;, b2, three must be linearly independent, and
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the other is a linear combination of the first three. Without loss of generality, let
a1, az, b; be linearly independent. To find b,, let’s check d;nrq for different choices
of b, and select the one that maximizes d;nsrq. If by is @y, a2, or by, dintra is 2, 4,
2, respectively. If by is a; @ a3, from Proposition 1 it’s four neighbors must be 0,
as, a1, a1 ® az @ b;. This says that at least one point at distance 2 from point zero
must be labeled a; or az, which make dintro(@1), dintra(@2), and thus d;nirq no more
than 5. Similarly, d;nsre is no more than 5 when b; is a; @ b; or a; @ b;. At last look
at by = a; ® az @ b;. The equivalent relation a; ® a; ® b; ® by = 0 implies that the
shortest path between two points with the same labels contains four edges, labeled
ay,as, by, by, respectively. Each edge has length one; therefore, d;n:rq is at least eight
when the two point are different by (£2,+2). Thus, b, is chosen to be a; ® a; & by,
and L; = {a1,as,b1,b2}. We will show later that the largest d;pnsrq is actually 8.
Among the eight labels for the 8-way partition, apart from 0, a,, as, b;, b2,
thgre are three other labels, let’s call them A, B,C. The set {A, B,C} corresponds
to {a; ® az,a; ® b1,a; @ b1}, but we shall not specify the correspondence for now.
Notice that for any point labeled a,, a3, b; or bz, from Proposition 1 it’s four nearest
neighbors must be 0, A, B, C. Similarly, for any point labeled 0, A, B, or C, it’s four
nearest neighbors must be a;,az,b,,b;. The eight labels are thus broken into two
sets, {a1, a3, b1,02}, {4, B, C,0}. In these sets, a; Baz ®b; = by, and A B C = 0.
Consider the four corner points at distance 2 away from point zero, which must
be labeled by A, B,C. To label these points, at least one label must be used twice.
Since the distance between these two uses of the same label is 8, the largest dintrq
for an 8-way partition is 8. Similar to the 4-way partition, there are again two
possible structures for labeling near neighbors of point zero, as shown in Fig. 4.9.
The sets of norms for both structures contain D(a;) = D(a;) = D(b1) = D(b;) =1,
D(a; ® az) = D(az ® b)) = 2 and for type one structure, D(A) = D(B) = 2,
D(C) = 4, while D(A) = D(B) = D(C) = 2 for type two structure. Given the

-norms, labels for all points in the space that satisfy the condition for regularity can
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Figure 4.9: Partial Structures for 2D 8-way partition

be found. The complete structures are shown in Fig. 4.10 and Fig. 4.11.

The type one structure in Fig. 4.10 has the property that each subset looks like a
magnified and shifted rectangular lattice, rotated by 45 degrees. Thus, each subset
corresponds to one coset of a rotated rectangular lattice. 0, A, B, C actually follow
structure 1 for the 4-way partition, magnified and rotated by 45 degrees, and so
do a;,az,b;,b;. For the structure to be completely determined, 4, B, C have to be
specified in terms of linear combinations of a;,as,b;. Since D(C) =4 = D(a; & b1)
and there is only one subset with norm 4, C must be ¢, ®b,. When A = a,®a,, and
B = a;®b,, the labeling is the popular 8-way partition labeling used by Ungerboeck
and Calderbank/Sloane. It is also a special case of the structure in Fig. 4.2, and is
strongly regular. Alternatively, when A = a; ® b;, and B = a; & a3, the labeling
is also strongly regular. Since the sets of norms and multiplicities are the same
in both cases, one cannot tell the difference in terms of d,,;, and error coefficients
whether a code is using one labeling or the other. Therefore, these two choices of
A, B result in equivalent labelings.

There are two ways to complete type two structures. The first one, on the
top of Fig. 4.11, has the property that all subsets correspond to cosets of a lattice
which is not rectangular. In this case, subsets 0,4, B,C and a,,a;,b,,b; both
follow structure 2 of the two-dimensional 4-way partition, magnified and rotated

by 45 degrees. For this structure to be regular, all six choices of 4, B,C in terms
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Figure 4.10: Structure of Regular Labeling for 2D 8-way Partition: Type 1
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of a; ® az,a; @ by, a;,b; will do. However, for the labeling to be strongly regular,
N(a1 ® az) = N(ai ® b)) =1 = N(B) = N(C), and N(az & b)) = 2 = N(A).
Therefore, A must be a; @ b, while B, C can be either a; @ a3, a; ® b; or the other
way round. The other four choices of A, B, C result in structures that are regular

but not strongly regular, while subsets correspond to cosets of a lattice.

Similarly, for the bottom structure in Fig. 4.11, 0, A, B, C follow structure 2 in
Fig. 4.8, magnified and rotated. However, a,, az, by, b; correspond to that structure
flipped with respect to the y axis. Since structure 2 for the 4-way partition is not
symmetrical with respect to the y axis, a;,a,b;,b; correspond to cosets of some
lattice that is different from the lattice 0. In this case the multiplicity N(4) =2 =
N(ay @ a;). Therefore, there are two strongly regular labelings where A = a, & a5,
and four other regular labelings that are regular but not strongly regular. We
thus have found structures that are strongly regular, but in which subsets do not
correspond to cosets of one lattice. The four strongly regular labelings for the top
and bottom structures are equivalent in the sense that they all have four subsets
with norm 1 and multiplicity 1, three subsets with norm 2, and among them two
subsets have multiplicity 1 and the other one has multiplicity 2.

Similar to the 4-way partition, type two structures for 8-way partitions are
special because of the reduced ninirq. While diners = 8 for both type one and type
two structures, nntrq = 4 for type one and n;nss = 2 for type two structures. There
is again a trade-off: while all subsets of the type two structures have norms of no
more than two, the type one structure has one subset with norm four. All structures

found so far have dintra = dintra(a) and ninsra = Nintra(a), Va € L.

4.2 Error Event Probability

The performance of a trellis code is measured by its ability to reduce error rate due

to noise. Therefore, probability of error is of key importance.
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At each time interval, the Maximum Likelihood decoder conditionally selects a
sequence of channel symbols, but only the first symbol of that sequence is sent out as
the decision. Therefore, an “error event” occurs when a sequence with a wrong first
symbol is selected. It is not considered an error if the selected sequence is not the
correct sequence but has the correct first symbol. For conventional convolutional
codes, the “error event probability” P, is also called the “node error probability”.
It is the probability that, given the decoder is at the correct state(node) in time
k, the decision it makes leads to an incorrect state at time k + 1. For trellis codes
with multiple transitions, the state sequence does not correspond one to one to the
symbol sequence. An “error event” can either start with a node error or a “parallel
transition ” error where the decoder remains in the correct state at time k+1 but the
first transition of the selected sequence is parallel to that of the correct sequence.
Thus, P, is the conditional probability that, given the decoder is in the correct
state, the next symbol decoded will be incorrect. Equivalently, P, is the probability
that, given the correct state, the decoder will start to make a sequence of errors.
Notice that this is not the same as the fraction of symbols received incorrectly.
However, what we really care about is not the ratio of symbols received incorrectly,
but how often do error events occur. This is because every error event, long or
short, usually requires a retransmission. Therefore, P, is important, and has been
used as a performance measure when searching for trellis codes.

On the code trellis, a state transition that contains parallel transitions corre-
sponds to a subset; each transition among the parallel transitions corresponds to
a symbol or equivalently a signal point, and a path corresponds to a sequence of
channel signals. For regular trellis codes, P, can be analyzed without loss of gener-
ality assuming that the all zero path is the correct transmitted sequence. Define 4
as the set of infinitely long paths with the first transition equal to zero, including
the all zero sequence, and also define A’ as the set of infinitely long paths with an

incorrect first transition, including the ones starting with a transition parallel to the
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correct transition. Then P, is the probability that a sequence a' € A’ is chosen by
the decoder given that the all zero sequence is transmitted. The received sequence
r is an independent Gaussian random vector with zero mean and standard devia-
tion 6 in each dimension. Define AM(a',a) to be T2 |r* — a™|* — T2, |r* — a*|?,
AM(d',a) < 0 means that the squared distance between r and a' is less than that
between r and a; this means that r is more likely to be received if a' is the trans-

mitted sequence than if a is transmitted.

P. = Pr| 'UA'[ﬂA{AM(a'sG) <oj] -
Pr| ’UA'{AM(a.',O) < 0}]

< > Pr[aM(d,0) <0]

> N.-Q(‘f)

d;2dmin

IA

In general, A contains many more paths “close” to the correct path than A’ does.
When upper bounding P. as above, the probability of the event “ a' is more
likely than all @ ” is first upper bounded by that of the event  a' is more likely
than the all zero sequence”, then the union bound is applied for the probability of
union of the later events. Therefore, the union bound for P, is not tight.
At high SNR, P, will be small and composed mostly of error probability from the
nearest error events at distance dpy,. P. can be approximated by taking into account

only the nearest error events and using the union bound on their probability:

V dmin ]
26

In practice, the communication system is often operated at a signal to noise ra-

P, >~ NoQ|

tio(SNR) where P, is in the range of 10~° to 107%. In this range, the error events
with slightly larger distances come into the picture. If N;, N;,... are relatively
large, they might contribute more to P, than the nearest error events and dominate

the performance. It is therefore useful to find a few terms of N;’s in the code search.
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The complete sequence [N;] or the “weight distribution” for some trellis codes
can be found from their generating functions[12][13]. They can be used to find
the upper bound for P.. However, in order to find [NV;] for a 2¥ state code, a
v by v matrix with symbolic entries is required to be inverted. In addition, the
distance between any two signal points in the signal constellation must be known.
This becomes quite difficult when v is large or when the signal constellation is
large. Fortunately, the leading terms Ny, N;, N; can be found rather easily. This
is because all the individual symbol errors comprising these “near” error events
are between symbols that are close together. Thus, only a small portion of the
signal constellation need to be considered, with a size determined by the number
of subsets, independent of the actual size of the constellation. Methods to find
Ny, N1, N; will be discussed in section 4.4. Due to its simplicity, No, N1, and N,

can be computed when searching for good codes.

4.3 Coding Gain

Another way to characterize the performance of a trellis code is from its ability
to save power over an uncoded system while achieving the same error probability.
The “coding gain” is defined as the power saving when using a trellis code over an
uncoded system. It is a function of P, and SNE.

The “asymptotic coding gain” ~ is the coding gain when P, is very small, or,

when SNR is large. ¥ can be evaluated in dB by

7 = 10logyo[(dmin/d)/(Ec/Eu));

which is the gain in signal power that comes from coding minus the power loss
for signal set expansion. 4 was used originally as the performance measure when
searching for trellis codes. It takes into account dm,, only, without considering any
error coefficient. This has been shown to be too optimistic. Recent works have all

included at least Ny together with « in code search[8][9][10][11].
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From simulation[2] it is observed that if P, is in the range of 10°, when the
error coefficient is double that of uncoded modulation,( e.g., when Ny is 8 for a 2D
code using a rectangular signal constellation ) the asymptotic coding gain is reduced
by about 0.2 dB. From the approximation P, = NoQ(v/dmin/26), it is found that a
doubling of N, from 4 to 8 reduces coding gain by about 0.269 dB when P, = 10~%
and 0.224 dB when P, = 107%. The “effective coding gain” ~.s; is defined by
Forney|9] as ~ subtracted by 0.2 dB whenever the error coefficient doubles. If more
than one error coefficient is known, ey = min{y,Virs V2], Where 7/, is the
efiective coding gain for a code with 3,,,.-,, = dpmin + 1, and J'Vo = N;.

In this work, Ny, N;, N; are computed in the code search. The effective coding
gain ~.ss is used instead of asymptotic coding gain as a simple and more realistic

performance measure.

4.4 Algorithm To Find Error Coefficients

Before finding any error coefficient, we shall first show that only a small portion of

the signal constellation needs to be considered if we want to find Np, Ny, N,.

In a signal constellation partitioned into subsets, a “basic set” contains a symbol
at the center, and all symbols from other subsets that are nearest to the center
symbol %. Basic sets for signal constellations used in Ungerboeck codes are shown
in Fig. 4.12. Each signal is labeled by the corresponding subset. The labeling
should be regular, which is the case for Ungerboeck’s codes. Under the assumption
of infinite constellation, basic sets centered at different symbols has the same size.
From the basic set, norms and multiplicities of all subsets can be found.

Say {a} is a transmitted coded signal sequence. The subset sequence corre-

sponding to {a} is {z}, where symbols a°,a!,... belong to subsets z° z!,.... An

ZPottie and Taylor[11] defined the “basic set” to contain only one symbol from each subset, which
has enough information for finding d,ui,,. In order to find error coefficients, basic set here is defined

to contain more symbols.
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Figure 4.12: Basic Sets with Ungerboeck Labelings
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error event occurs if the decoder selects a sequence {b} instead of {a} where ° # a°.
Let the subset sequence for {b} be {y}. If z° # y°, this error event starts with a
node error; otherwise it starts with a parallel transition error. For the node error
case, if it is a nearest error, i.e., Si=01.. 6" — b'|> = dpmin, and z° # ¢, the indi-
vidual symbol errors that occur between (a‘,5") for all 7 must be those where b is
a symbol within the basic sets centered at a'. If this is not true, then there exists
another error event where the decoder selects sequence {c} that belongs to subset
sequence {y}, and each symbol ¢' is within the basic set centered at a'. The squared
distance between {a} and {c} will be less than that between {a} and {b}, which is a
contradiction. If the error event starts with a parallel transition error, z° = y°, the
distance between (a%, %) must be dinirq(2°). Actually, all error events at distances
domin, dm,-nv+ 1,...dmin + S — 1 are composed either of errors within the basic set or of
intra-subset errors. S is the minimum, over all subsets, of the difference in energy of
a nearest point outside the basic set and a point inside the basic set. An equivalent
statement is that, given norms and multiplicities of all subsets(which can be found
from the basic set), and dintras Mintra, €rror coefficients from Ng to Ns—; can be de-
termined. The one-dimensional 4-way partition has S = 8, and the two-dimensional
8-way partition has S = 4(see Fig. 4. 4). As a result, Ny, N1, N; for one- and two-
dimensional Ungerboeck-type codes can be found with knowledge of the basic set
and diptra, Mintra, Tegardless of the actual size of the signal constellation.

To find dmin, No, N1, Nz, a modified Viterbi algorithm is used. It is described as
the follows:

The trellis search starts from state zero at stage zero. The purpose is to find
dmin, the minimum distance of paths that diverge from and merge back to state zero,
and to find Ny, Ny, N,, the numbers of those paths with distances dmin, dmin + 1,
and dpin + 2. At stage k, each state ¢ keep the minimum distance of paths from

and numbers of paths at d* d*, .+1and

state zero to itself in k steps: d* min,i’ Cmini

mini

| dfins + 20 b5, n'{',-, n} .. Initially dJ,,; = oo, nd, =ni; =nj3, =0for all i. The
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search then proceeds to stage 1,2,3..., and stops when d,p;,, No, Ny, and N, are
found. At eachv stage the algorithm iterates over 1, 7, where 7 is the “from state” at
the previous stage, and j is the “to state” at the current stage.

At stage k + 1, for each state 5 (starting from J=0), look at all states 5 that can
be reached back from state 5. Say the transition between state : and J corresponds
to subset /. Let D(!) be the norm, and N(!) be the multiplicitiy of subset /. Let
Qiemp = d,'ﬁ"-n,,- + D(l); dyy = dfm-w-. If{ = 7 = 0 then Qiemp = 00. Let Niempr =
nix N(1), Noldr =nfi r=0,1,2.

Comparing Qiemp With d,yg, if
1. dtemp > dald +2 - dnew = Qo Nnew,r = Nold,ry T = 0, 1,2.

2. dtcmp = dold +2 - dnew = dald-; Nnew,2 = Nold,2 + Ntemp,0,

nnew,r = Nolgyr, T = 0: 1.

3. dternp = dold +1 - dncw = dolds Mnew,2 = Nold,2 + Mtemp,1,

Nnew,1 = Nold,1 + Ntemp,0, Npew,0 = Nold,0-
4. dtemp = dold - dnew = dold: Npew,y = old,r + Rtempyr, 7 = 0, 1; 2,

S. dtemp = dold -1 - dncw = dtcmm Nnew,2 = Noid,1 + Ntemp,2,

Nnew,1 = Nolg,0 + Ntemp,1, Nnew,0 = Ntemp,0-

6. dtemp = dold -2 - dncw = dtempa nn:w,2 = Told,0 + ntemp,zs

Nnew,1 = Ntemp,1, Npew,0 = Ntemp,0-
7. dtcmp < dald -2 g dnew = d!emp) Npew,r = Rtempyr, © = 07 132'

Let d,’:,lu = dpew, nttl = Tnew,s, T = 0,1,2. Repeat the above procedures and

r.j
update dfn",?,i'j, nitl r =0, 1,2 for each state 7, unti] all states 7 connected to state

J are visited. Then, go to state J + 1 and find d,",:,ll.”l, nf;il, r=0,1,2. When

all states j are visited, if for aJ] J#0, ditE > dyir o+ 2 — stop, since no shorter

paths can be found if search further. Otherwise, go to stage k + 2. In general, the
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iteration over k will stop for k < 6 * v when searching for 2”-state codes. When the

iteration stops at stage kg, we find for this code:

ko

L dmin =Clynin09

k k .k
® Nz:nz?o’ Ny=n1%, No—no?o-

This algorithm is used to search for Ungerboeck-type codes with improved ef-

fective coding gain. Results of the search are presented in the next chapter.
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Chapter 5

Code Search Results

Applying the algorithm for finding error coefficients Ny, N3, N3, a code search is
conducted over Ungerboeck-type codes using one- and two-dimensional rectangular
signal constellations.

The nearly exhaustive search procedure follows mostly that of Ungerboeck|1].
The encoder is in systematic feedback form. Search is carried out for one- and
two-dimensional codes up to 256 states. In the search, for each code we build a
code trellis according to it’s parity check polynomials, and then find doin, No, N1
and N,. We proceed to other codes by varying the parity check polynomials. The
minimum distance for each code is compared with the largest value found earlier; if
the new dpmy is larger, the old value is replaced. A few modifications of the search

procedure are:

o Rejection rules that reject codes with the same minimum distances are not
used. Two codes with the same d,., might have different error coefficients,

and thus differ in their effective coding gain.

e For complicated codes where the number of codes to be examined is too large,
dmin is computed first; for codes with “good” dmin, No, N3, and N, are then

computed.

¢ A code with slightly less d,.;» might have significantly smaller error coefficients

compared to a code with larger d,n;,. Therefore, codes with a minimum dis-
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tance that is one less than the largest dp;, found previously are still considered

to have “good” dmin-

Some new codes are found with better effective coding gain than the codes
Ungerboeck proposed, and those found by Honig (one-dimensional), Pottie and
Taylor (two-dimensional). We also computed error coefficients Ny, Ny and N, for
codes found earlier. Honig’s 16-state code was found to be catastrophic!. Pottie
and Taylor’s 4-state code has a Ny of 20 instead of 4.

The following tables and plot for Ungerboeck-type trellis codes are from Forney’s
“Coset Code I”, a comprehensive tutorial of all coded modulation schemes.

The tables are for one-dimensional codes with 4-way and two-dimensional codes
with 8-way partitioned rectangular constellations. 2* is the number of encoder
states, h'’s 1 = 0,1,2 are parity check polynomials(in octal form), dmi, is the min-
imum squared Euclidean distance, ~ is the asymptotic coding gain both in ratio
and in dB, No, Nl, and Nz are error coefficients normalized to two dimensions, and
Yess is the effective coding gain. At the last column “U” indicates Ungerboeck’s
codes; “H” indicates codes found by Honig; “PT” stands for Pottie and Taylor, and
“EL” indicates Eyiiboglu and Li’>. Codes with starred N; or N; have these error
coefficients much larger than Ny, and thus the effective coding gain is determined

by Ni, dmin + 1, or N3, dmin + 2, instead of Ny, dpin.

! Catastrophic codes have two code sequences with finite Euclidean distance that correspond to
input sequences with infinite Hamming distance.
2This code search was done as part of this thesis research in Codex Corporation, Summer 1987,

under supervision of Dr. V. Eyiiboglu and Dr. G. D. Forney.
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Table V-3 Eitestive coding gains for Z/47 codes

B on g2 ox @B Ry Ny No e
2 5 g9 225 252 8 16 32 2.32
04 13 10 25 23.98 8 16 32 3.78
04 23 11 275 438 16 16 32 309 .
10 23 11 275 4.39 8 16 48 4.19
10 45 . 13 225 512 24 56 112 4.50
024 103 14 25 544 72 0 180 461
054 161 14 25 544 16 °"B4 132 494
426 235 16 4 602 132 0 512 5.01
160 267 15 3.75 574 16 68 “200 5.16
.24 207 14 . 35 544 8 16 28 5.24
32 515 16 4  .6.02 4 64 160 5.47
370 515 15 3.75 574 8 12 *80 5.42
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B B g2 z 68 Ny N Ry errldB®)
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The plot of performance versus complexity illustrates clearly the growth of cod-
ing gain when using more complicated codes. The effective coding gain is in dB.
The decoding complexity, defined by Forney|9], is the number of decoding oper-
ations(addition and comparison) needed for deciding one point nearest to the re-
ceived point in each subset, followed by a conventional Viterb, algorithm for the

convolutional code. The normalized complexity is the decoding complexity per two

dimensions.
Ungerboeck-type codes

6
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=
2 s-
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° 4 < 1D
2 =
T
S 4
o

3 T ey

10 100 1000 10000

normalized complexity

Ficure 12-1. Performance vs. cemplexity for Ungerboeck-type one-dimensicnal
and two-dimensional codes (as improved by Eyuboglu and Li).

57




Chapter 6

Conclusion

In this work the following things are done:

e The general structure of binary regular labelings for rectangular constellations
is studied. It is found that the largest number of partitions where regular la-
beling exists is 2°™ for m-dimensional constellations. Structures of regular
labelings for m-dimensional 2°™-way partitions are found. Structures of regu-
lar labelings for fewer than 2?™-way partitions in one and two dimensions are

also determined.

e Performance measures for trellis codes are discussed and compared, includ- -
ing the approximation and upper bound for error event probability P,, the

asymptotic coding gain, and the effective coding gain.

¢ Recognizing that the first few error coefficients can be computed easily, a mod-
ified Viterbi algorithm for finding the first three error coefficients in addition -

to the minimum distance is proposed.

¢ Improved Ungerboeck-type codes with one- and two-dimensional rectangular
signal sets are found by considering the first three error coefficients in addition

to the minimum distance.

Ten years after Ungerboeck proposed his codes, with all the new schemes that

open up new horizons for coded modulations, we still learn by looking at earlier
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schemes. Although the ideas of Ungerboeck-type codes are not new, the improved
codes tell us that it is both necessary and easy to look at more error coefficients

when finding good trelljs codes; also the trade-off between minimum distance and
has used more than 2™ way partitioned m-dimensjonal] rectangular constellations,

where good codes are very complicated. From the structures of regular labeling we

learned that regular trellis codes actually do not exist there.
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