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ABSTRACT
We combine theory and empirics to (i) show that some buyers in on-

line advertising markets are financially constrained and (ii) demon-

strate how to design auctions that take into account such financial

constraints. We use data from a field experiment where reserve

prices were randomized on Google’s advertising exchange (AdX).

We find that, contrary to the predictions of classical auction theory,

a significant set of buyers lowers their bids when reserve prices

go up. We show that this behavior can be explained if we assume

buyers have constraints on their minimum return on investment

(ROI). We proceed to design auctions for ROI-constrained buyers.

We show that optimal auctions for symmetric ROI-constrained buy-

ers are either second-price auctions with reduced reserve prices

or subsidized second-price auctions. For asymmetric buyers, the

optimal auction involves a modification of virtual values. Going

back to the data, we show that using ROI-aware optimal auctions

can lead to large revenue gains and large welfare gains for buyers.
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1 INTRODUCTION
Second-price auctions under financial constraints. Online ad-
vertisement is a large and growing business, having generated US

revenues greater than 70 billion dollars in 2016 and 80 billion in

2017. Most online ad markets are based on second-price auctions. A

key feature that makes second-price auctions so appealing to both

market designers and market participants (buyers) is that they are

truthful. That is, it is a dominant strategy for buyers to report their

true valuations as their bids. This statement, however, is predicated

on an important and underappreciated assumption: the truthful-

ness of second-price auctions depends on buyers having quasilinear

preferences. A buyer’s utility is quasilinear if it can be computed by

subtracting the amount paid from the expected value from winning

the auction.
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Quasilinearity is a stronger assumption than might appear at

first sight. In particular, it implies the buyers are not financially con-

strained. When a buyer is financially constrained, existing theory

shows that he should shade his bid in a second-price auction ([14]

and [3]).
1
That is, a financially constrained buyer should submit a

bid below his true value in such an auction.

Our empirical findings. In this paper, we show empirically

that a fraction of the buyers in online ad markets behave as if they

are financially constrained. We do this by using data from a field

experiment that was run by Google on its advertising exchange

(AdX). In the experiment, impressions were offered for sale via

second-price auctions with randomized reserve prices. For a quasi-

linear buyer, there are two sensible answers to a reserve price being

increased: to maintain or to raise his bid. However, we show that in

practice many buyers lower their bids in response to higher reserve

prices! While such shading behavior is inconsistent with quasilin-

ear utilities, we show in Theorem 3.1 that this is in accordance with

equilibrium behavior under financial constraints.

We detect shading behavior by focusing on a group that we call

performance buyers, which are buyers that are focused on the short-

term returns they gain from their ads (as opposed to brand buyers,

who care more about the long-term visibility of their brands). Some

categories of performance buyers include in-app advertisers and

retargeting advertisers (advertisers that show consumers products

they previously browsed). This finding is consistent with a perfor-

mance buyer’s goal being tomaximize returns from his ad purchases

given his financial constraints.

Return on investment. The prior literature regarding auctions
with financially constrained buyers typically assumes buyers have

budgets ([15], [7], [16], and [19]). That is, the typical assumption is

that buyers have finite resources and no access to capital markets. A

more standard business approach to modeling financial constraints

is to assume that firms see online ads as one of several available

investment opportunities and that they avail themselves of the in-

vestments that generate the highest returns. With this formulation

in mind, we propose a framework where buyers require a certain

return on investment (ROI) in order to participate in the system.

That is, each buyer has a target ROI, and he will not participate

unless he obtains a certain return on his investment. As we show in

Section 4, ROI-constrained behavior better matches our empirical

evidence than budget constraints.

Auction design under ROI constraints. Given our empirical

findings, we focus on the problem of how to optimize an auction

given that buyers have ROI constraints. We consider first the case of

symmetric buyers, with all buyers having the same target ROI. We

show in Theorem 5.3 that an optimal auction for ROI-constrained

1
Throughout the paper, we use female pronouns to refer to the seller and male ones to

refer to the buyers.
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buyers takes one of three forms, depending on the value of the

target ROI. The first form is the standard second-price auction

with the Myersonian reserve price (optimal for low target ROIs), the

second one is a second-price auction with a reduced reserve price

(optimal for moderate target ROIs), and the third one is a second-

price auction without reserve plus a participation subsidy for each

buyer (optimal for high target ROIs). With asymmetric buyers and

different target ROIs for the different buyers, the optimal auction is

a bit more complex, as is true in classical auction theory. As we show

in Theorem 5.5, the optimal auction for ROI-constrained buyers

can be interpreted in terms of modified virtual values, where the
modification is designed to make a buyer’s ROI constraint binding

when appropriate.

Counterfactual analysis. Combining our empirical data with

our optimal auction design, we estimate the potential practical ef-

fects of accounting for ROI constraints when designing ad auctions.

We use the optimal auction design for symmetric buyers due to

its simplicity and practicality, and we assume multiple indepen-

dent copies of real-world buyers are present. Accounting for ROI

constraints leads the designer to reduce reserve prices. Therefore,

using an ROI-aware auction not only increases revenues but also

increases the welfare of the buyers.

1.1 Related Literature
Auctions with financially constrained buyers. The first paper
to argue that auction designers should take into account the fi-

nancial constraints of buyers was [15]. They considered a setting

with symmetric buyers with identical budgets and showed that an

all-pay auction with reserve is optimal. Over time, a long series of

papers in economics and computer science [5, 7, 8, 10–12, 16, 17, 19]

has improved this result and extended it in various directions. The

most complete of these results is [19], which considers a multidi-

mensional setting where both valuations and budgets are private

information.

Shading in second-price auctions. A key idea that enables

us to empirically identify financially constrained buyers is that

such buyers shade their bids in second-price auctions. That is, they

bid less than their true valuations in equilibrium. While we prove

this result for our specific model, this idea has been previously

introduced in the literature on repeated second-price auctions with

budget-constrained buyers [3, 4, 9, 14].

Return on investment. Most papers on auctions with finan-

cially constrained buyers assume budgets, but there are a few that

consider ROI instead, as we do. The first papers to do so are [20]

and [6], which consider an ROI-based heuristic for deciding on how

to bid across different keywords in search advertising. Both papers

approach the problem from the dynamical systems view and find

that such a heuristic leads to cyclic behavior. More recently, [22]

studied auction design for buyers that do not care about payments

as long as they are under budget or satisfy an ROI constraint. Their

main result is that any monotone allocation can be implemented

truthfully in such settings.

Empirical evidence. The only empirical work we could find on

financial constraints in auctions is by [2]. Using search advertising

data from Yahoo, they find that most buyers behave consistently

with the ROI-constrained heuristic described in [6]. Our empirical

work differs from [2] in several ways. First, we use 2017 data from a

display advertising exchange, instead of 2002-2003 data from search

advertising. Display and search are roughly equally large markets,

but they are vastly different in terms of how the markets operate.

Second, our paper analyzes a setting with second-price auctions,

while theirs considers first price auctions. [7] show that financially

constrained buyers behave in very different ways in first and second-

price auctions and that the revenue equivalency theorem does not

hold in such settings. Third, perhaps most importantly, we use

data from a field experiment, rather than observational data. Field

experiments allow us to determine causality with greater certainty.

Performance buyers. Our paper focuses on a set that we call

performance buyers, which are buyers that focus on short-term

financial performance above long-term outcomes. This idea is bor-

rowed from [13].

2 MODEL
We consider a model that consists of a seller, who owns an indi-

visible item, and n interested buyers. Each buyer i ∈ [n] has a
valuation for the item being sold that is represented by vi , where
[n] = {1, 2, . . . ,n}. Each valuationvi is independently drawn from a

probability distribution Fi : [v, v̄] → [0, 1] for some 0 ≤ v < v̄ ≤ ∞,

with a continuous probability density function fi . While the distri-

butions Fi ’s are common knowledge, the valuationvi is known only
to buyer i . We denote the vector of valuations (v1,v2, . . . ,vn ) by v.
Furthermore, we let v−i denote the vector of valuations of all buyers
except for buyer i’s; that is, v−i = (v1,v2, . . . ,vi−1,vi+1, . . . ,vn ).

Let ϕi (vi ) = vi − (1− Fi (vi ))/fi (vi ) be the virtual value of buyer
i ([18]). We make the standard assumption that virtual values are

non-decreasing. This assumption is satisfied by many commonly

used distributions, including the normal, lognormal, uniform, and

exponential distributions. Next, we define the space of the selling

mechanisms. By the revelation principle, we focus without loss of

generality on direct mechanisms, where buyers are asked to report

their valuations (or types). A direct mechanism M consists of a

pair (q,p), where qi : Rn+ → [0, 1] maps from the reported types to

buyer i’s allocation probability, and pi : Rn+ → R maps from the

reported types to buyer i’s payment to the mechanism. In a typical

mechanism design paper, once the revelation principle is invoked,

only incentive-compatible (IC) mechanisms are considered. In our

work, we also wish to consider the equilibrium outcome of some

non-IC mechanisms. Therefore, we will allow for arbitrary strategy

profiles in our analysis.

Buyers are allowed to play mixed strategies σi : [v, v̄] →

∆([v, v̄]), where ∆([v, v̄]) represents the space of possible ran-

domizations over possible reports. We denote strategy profiles by

σ = (σ1,σ2, ...,σn ) and strategy profiles that exclude player i by
σ−i = (σ1, ...σi−1,σi+1, ...,σn ). We use qi,σ−i (v̂i ) and pi,σ −i (v̂i ) to
respectively represent buyer i’s interim expected allocation and pay-

ment given a report of v̂i and assuming other buyers play according

to strategy profile σ−i ; that is, qi,σ−i (v̂i ) = E[qi (v̂i ,σ−i (v−i ))] and
pi,σ−i (v̂i ) = E[pi (v̂i ,σ−i (v−i ))]. Here, the expectation is with re-

spect to (w.r.t.) valuation of other buyers v−i and any randomness

in the strategy profile of other buyers; that is, σ−i .
If buyer i were quasilinear, his utility given type vi and report

v̂i would be given by ui,σ−i (vi , v̂i ) = vi · qi,σ−i (v̂i ) − pi,σ−i (v̂i ),
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assuming others were playing according to σ−i . We call this ex-

pression buyer i’s unadjusted utility. We define buyer i’s ROI as his
expected adjusted utility divided by his expected payment, assum-

ing the expected payment is positive. Formally, we define buyer

i’s ROI as follows: ROIi,σ is E[ui,σ−i (vi ,σi (vi ))]/E[pi,σ−i (σi (vi ))]
if E[pI,σ−i (σi (vi ))] > 0 and∞ otherwise. Here, the expectation is

w.r.t. valuation of all the buyers, including buyer i , and any any

randomness in the strategy profile of buyers. The ROI determines

how much utility a buyer expects to get as a fraction of his cash

outlay; that is, E[pi,σ−i (σi (vi ))]. If the expected payment is non-

positive, we let ROIi,σ be infinity, since financial constraints are

not applicable in this case.

The ROI we compute is an ex-ante measure (it is not a function

of the valuation vi ), since we assume a buyer will make a decision

whether or not to participate in the auction before knowing his

precise value for that auction. Our definition of ROI represents an

empirical measure of ROI as perceived by a buyer over many auc-

tions: ROI computes the predicted utility earned from an auction

divided by the predicted monetary cost of participating in the auc-

tion. This notion of ROI is inspired by display advertising markets

where buyers participate in millions of auctions each day. In these

markets, buyers are less sensitive to their obtained ROI in a single

auction but are instead chiefly concerned about their expected ROI

across many auctions. Put differently, this definition is consistent

with a buyer who has an outside option with a known aggregate

ROI (for example, television ads or an alternative platform) and

needs to plan his marketing campaign multiple times a year without

knowing his valuation for every single auction.

Each buyer i is assumed to have a target ROI, denoted by γi ≥ 0.

Buyer i will only agree to participate in the auction if he expects his

ROI to match or exceed γi . We can formalize this notion by letting

buyer i’s adjusted utility given his valuation vi and report v̂i be

Ui,σ (vi , v̂i ) =

{
ui,σ−i (vi , v̂i ) if ROIi,σ ≥ γi ;
−∞ if ROIi,σ < γi .

(1)

We assume that the ROIs of all buyers are common knowledge.

This assumption greatly simplifies our problem, as making γi ’s
private would make the seller’s mechanism design problem mul-

tidimensional. In Section 6, we show how a seller can design an

experiment to try to estimate the buyers’ target ROIs.

A strategy profile is a (Bayes Nash) equilibrium if no buyer can de-

viate to a better strategy given his type v . That is, a strategy profile

σ is an equilibrium if E[UI,σ (v,σi (v))] ≥ E[Ui,(σ ′
i ,σ−i )(v,σ

′
i (v))

for all i and any deviation σ ′
i , where the expectation is taken with

respect to any randomness in the valuation of other buyers; that is,

v−i , and their strategy profiles σ−i . When clear from context, we

will suppress the subscripts σ and σ−i to lighten the notation.

3 ROI AND SECOND-PRICE AUCTIONS
Before we turn our attention to auction design, we first focus on the

kind of auctions that are most commonly used in online advertising:

second-price auctions with reserve (SPA). We will now analyze

how ROI-constrained buyers behave when faced with second-price

auctions. In Section 4, we will build on the theoretical analysis we

develop here to argue that some buyers behave in practice as if they

are ROI-constrained.

Second-price auctions are truthful mechanisms when buyers are

utility maximizers. But, as we will show in this section, this is not

the case when buyers have ROI constraints. With ROI constraints,

buyers may have an incentive to shade their bids. With bid shading,

buyers win fewer bids, but earn greater surplus on the bids they

win.

We now focus on the equilibrium bidding strategy of a buyer

i in an SPA. Buyer i wins the item in an SPA when his submitted

bid is greater than the reserve price r and the highest competing

bid maxj,i {bj }. That is, the buyer wins if his bid is greater than

the highest competing bid D = max{r ,maxj,i {bj }}. Let G(·) be
the distribution of the highest competing bid D. In an SPA, the

distribution G of the highest competing bid is a sufficient statistic

of σ−i for buyer i .
The distributions of valuations being regular implies that that

the distribution of vi is atomless for all i . Therefore, it is natural
to assume that players will choose strategies that do not assign

point masses to bids above the reserve price r . We say that G is

well-behaved if the players other than i choose strategies σ−i such
that in the interval (r ,∞), the distribution G is differentiable.

Consider a buyer i with target ROI γ . Let D be the random

variable that represents the highest competing bid generated by a

well-behaved G. Then, strategy σi (·) = b(·) is a best response by
buyer i if and only if b(·) solves

max

b(·)
E [(v − D)1{b(v) ≥ D}] s .t .

E[(v − D)1{b(v) ≥ D}]

E[D1{b(v) ≥ D}]
≥ γ .

(Bid-SPA)

We now introduce the ROI functionR(·), whichwewill use in our

shading theorem. For any β ∈ [0, 1], let R(β) = E[(v − D)1{vβ ≥

D}]/E[D1{vβ ≥ D}] if E[D1{vβ ≥ D}] > 0, and ∞ otherwise.

We point out that R(·) is continuous almost everywhere, given a

well-behaved G. Note that R(β) = ∞ when β ≤ r
v̄ and positive

otherwise. In addition, R is discontinuous only at β = r
v̄ . If v̄ = ∞,

then R is continuous everywhere.

Theorem 3.1. Consider a buyer with a target ROI of γ . Assume
the highest competing bid D is drawn from a well-behaved G. Let
γ̄ = maxβ ∈[0,1]{R(β)} and γ = R(1). Then, the buyer’s best response
is characterized by:

• If γ ≤ γ , then the buyer bids truthfully, i.e., b(v) = v .
• If γ ∈ (γ , γ̄ ], then buyer’s bidding strategy is b⋆(v) = βv

where β ∈

(
1

1+γ , 1
)
is the unique solution of R(β) = γ .

• If γ > γ̄ , then the buyer does not participate in the SPA.

Theorem 3.1 shows that when the target ROI is low (γ < γ ),

the buyer bids truthfully. This occurs when ROI is not a binding

constraint. In this case, the buyer’s ROI is γ . When the target ROI is

moderate (γ ∈ (γ , γ̄ ]), the buyer shades his bid by a constant factor.

In this scenario, the ROI constraint is binding. Finally, when the

target ROI is too large and cannot be obtained under any shading

rule, the buyer does not participate in the SPA.

Proposition 3.2. Consider buyer i ∈ [n] bidding according to
Theorem 3.1. Let the buyer’s value be v and consider two possible
reserve prices rL < rH , and assume that the buyer chooses to partici-
pate in the SPA under rH . AssumeG(·) above the higher reserve price
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rH is the same in the two cases. Then, the buyer’s bid will be strictly
lower under rH than under rL unless the ROI constraint is not binding
under the higher reserve price, in which case, the buyer’s bid will be
the same under both reserve prices.

In contrast, shading is not how a rational player in a standard

auction model behaves. In a standard (non-ROI) auction model,

there is no reason for a buyer to lower his bid in an SPA when the

reserve price goes up. We will take advantage of this difference in

behavior to empirically demonstrate that some real-world buyers

behave as if they face ROI constraints.

4 EMPIRICAL EVIDENCE
In this section, we provide empirical evidence that demonstrates

that a significant subset of the buyers in online advertising ex-

changes shade their bids in SPAs. Specifically, we empirically show

that buyers shade their bids in SPAs when reserve prices are high.

As argued in Section 3, shading is consistent with buyers being

financially constrained but inconsistent with buyers being quasilin-

ear. We also argue that, based on the data, ROI constraints seem to

better capture buyer behavior than budget constraints.

The experiment.We use bids submitted to Google’s advertising

exchange (AdX) over the course of two days. We use data generated

from an internal AdX online experiment, which we did not design

or control. The experiment was run on a small fraction of AdX’s

traffic, but one that was randomly sampled and that still amounted

to hundreds of millions of queries (auctions) per day. For each

auction, we have access to all the submitted bids and the winner’s

payment. The auctions are all second-price auctions with reserve.

In addition to the bids and payment, our dataset also includes the

specific ad slot being sold in each auction.

The queries that are selected for the experiment are randomly

partitioned into treatment and control groups. The only difference

between the two groups is how the reserve prices are set. For a given

query q, let rc (q) and rt (q) be the reserve price under the control
and treatment groups, respectively. We are not at liberty to discuss

the algorithm used to compute rc (·) and rt (·) for a given query.

For our purposes, it is sufficient to know that rt (q) ≥ rc (q) for any
query q. That is, if a query is assigned to the treatment group, rather

than to the control group, the query will carry a higher reserve price

(in Google’s AdX, buyers are informed of reserve prices up front).

On a typical query q, the fraction (rt (q) − rc (q))/rc (q) is within the

range of 1%-4%, so these exogenous shocks to the reserve prices

are fairly modest. Using this data, we seek to understand whether

buyers respond to reserve price increases as predicted by classical

theory (by maintaining their bids) or by the ROI constraint theory

we presented in Section 3 (by shading their bids). Buyers may also

interpret a higher reserve price as a signal that a given query is

particularly valuable, and thus buyers would increase their bids in

response to increased reserve prices. As we will show, this signaling

behavior is not borne out in our dataset.

Buyers, ad slots, and shading factors. We did not collect data

on all buyers but only on those that we term performance buyers.
Performance buyers are advertisers that we believe seek immediate

rewards from their campaigns, as opposed to long-term benefits

such as, brand awareness ([13]).We focused on these buyers because

we do not believe all buyers are likely to be responsive to short-term

financial constraints. Buyers focused on long-term brand awareness

might not be able to even measure the financial return from their

ad purchases. The selection of the buyers was not random: we

selected 35 buyers from among the 200 largest buyers onAdXwhose

bidding behavior was indicative of a focus on performance. Typical

examples of performance buyers in our dataset include retargeting

advertisers, who show ads to consumers displaying products they

previously shopped for (in an attempt to get consumers to purchase

those products), and mobile app advertisers attempting to maximize

app installs. Retargeting is a significant fraction of the online ad

business. According to a survey by [1], 24% of large marketers

spend at least 50% of their online ad budgets on retargeting.

Different ad slots have very different values to buyers. In order

to avoid confounding, we focus on the top 40 ad slots for each

buyer, and we estimate the shading factor for each ad slot. We then

average the 40 values to compute our estimated shading factor

for each buyer, on each day of the experiment. More formally, for

each buyer and day, we let bat and bac be the average submitted bid

for ad slot a under the control and treatment groups, respectively.

The estimated shading factor for ad slot a is sa = bat /b
a
c , and the

estimated shading factor of a buyer on a given day is simply the

average over all 40 top ad slots.

The shading factors we estimate are with respect to control

reserve prices. That is, they are not the exact same shading factors

as discussed in Section 3, which are with respect to true buyer

valuations. We discuss in a bit more detail the distinction between

these two shading factors in Section 6. The shading factors we

estimate here can be interpreted as price elasticity results. That is,

they reflect how bids change as reserve prices change.

Experimental results. Figure 1 depicts the estimated shading fac-

tors of the 35 performance buyers for the two consecutive days of

the experiment. The figure shows both point estimates and their

95% confidence intervals.
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(a) Day 1
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(b) Day 2

Figure 1: Average shading factor of performance buyers
across two consecutive days.

A shading factor of 1 or greater would indicate no shading be-

havior, while a shading factor strictly below 1 indicates shading. All

70 point estimates are below 1. For 47 of the point estimates (67%),

the 95% confidence interval does not include 1. That is, according to

the 95% confidence intervals, we can establish shading on 2/3 of the

buyer-day pairs. All 35 buyers have estimates below 1, according to

their 95% confidence intervals, when we aggregate submitted bids

across both days.

As the plots demonstrate, there is great consistency across the

days: buyers who shaded their bids more on day 1 were also more

likely to shade more on day 2. We let (xi ,yi ) be the day 1 and
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day 2 point estimates of each buyer i’s shading factor, and we

ran a linear regression on this data. We found the R2
to be 0.88,

indicating that most of the variability in the day 2 shading factor

can be explained by the variability in the day 1 shading factor.

In other words, the shading factors across two days are highly

correlated. This consistency demonstrates that the shading factors

are a product of the buyers’ bidding strategies, not the random

assignment of queries.

Budgets versus ROI. There are different ways to model finan-

cial constraints. The most common model in the literature is to

assume buyers have budgets. In the business world, due to the avail-

ability of capital markets, companies tend to think in terms of ROI

instead. Given an investment’s ROI and prevailing interest rates,

a financially constrained company can decide whether borrowing

money to pursue that investment is a good idea.

We nowmake the case that the performance buyers in our dataset

seem to be behavingmore like they are ROI constrained than budget

constrained. Whichever metric a buyer targets (budget or ROI) is

likely to fluctuate less than the other metric. We argue that ROI

is the financial metric that buyers target by showing that buyers’

total spending (budget) fluctuates more than ROI.

We compare the budget of the 35 performance buyers and their

ROIs across all their ad slots. In particular, we compare the volatility

of the budget and of the ROI of the buyers over time. To compute

the ROI of each buyer, we consider all the auctions in which the

buyer wins. We are not able to observe buyers’ true valuations,

and as a result, their true ROIs cannot be computed. To overcome

this obstacle, we report a proxy for to the buyer’s ROI. This proxy

is defined as the ratio of expected submitted bids divided by his

expected payment in all the auctions in which the buyer wins. We

note that if the buyer is truthful, this proxy is equal to buyer’s ROI

plus one. Further, when the buyer shades his bid by a factor of β ,
this proxy simply scales with the same factor. Thus, showing that

the proxy is stable across multiple days implies that the buyer’s

ROI is stable. In the rest of this section, we refer to this proxy as

the buyer’s ROI.

To compare the volatility of the amount spent and of the ROI

of the buyers, we compute the coefficient of variations of the daily

amount spent and the estimated ROI across seven consecutive days.

We use all the queries in these days, including those that did not

go through the online experiment. We observe significantly higher

volatility in the buyers’ expenditures than their ROIs. The average

coefficient of variations of the budget is 37% higher than that of

the ROI. For 27 buyers, the coefficient of variation of the budget

is higher than the coefficient of variation of the ROI, while the

opposite is true for eight buyers.

To better visualize these fluctuations, we now focus on two buy-

ers: buyers 15 and 23, and present their daily expenditures and ROIs

across seven days. We first focus on one of the top ad slots for each

of these buyers, and we compute their total spending and ROI; see

Figures 2a and 2b.Then, in Figures 2c and 2d, we present the total

spending and ROI of these buyers across all of his ad slots. Due

to the sensitivity of the data, we do not reveal the absolute values

of spending and ROI of the buyers, reporting normalized values

instead. Figure 2 shows that the ROIs of the buyers are relatively

stable across different days, while total spending fluctuates signif-

icantly. For instance, Figure 2a shows that the total spending of

buyer 1 in his top slot changes by almost 36% when we move from

day one to day six. However, his ROI only changes by 4%. Similarly,

in Figure 2c, we observe that the total spending of buyer 1 across all

the ad slots changes by 85% when moving from day one to day four.

But, the change in his ROI is less than 22%. These figures illustrate

that the buyers do not have to spend a fixed amount each day but

that the buyers do seem to attempt to maintain a constant ROI over

time.

5 OPTIMAL MECHANISM DESIGN
Thus far, we have established that a second-price auction with the

monopoly price as reserve is not the revenue-maximizing mech-

anism when buyers are ROI-constrained (see Example 1). In this

section, we characterize the structure of the optimal mechanism

when buyers are ROI-constrained.

By the revelation principle, we focus on direct incentive com-

patible and individually rational mechanisms. A direct mechanism

M consists of a pair (q,p) where qi : [v, v̄]n → [0, 1] is an al-

location rule for buyer i and pi : [v, v̄]n → R is his transfer

to the mechanism. With a slight abuse of notation, we denote

Ev−i [qi (vi , v−i) | vi ] by qi (vi ).

Definition 5.1. A direct mechanism is incentive compatible (IC)

if for each buyer i , truth-telling is a best response given that

all other buyers report truthfully, i.e.,viqi (vi , v−i) − pi (vi , v−i) ≥
viqi (v̂i , v−i) − pi (v̂i , v−I) for all vi , v̂i and ROI constraints under

truthful reporting are satisfied. That is,
E[qi (v)vi ]
E[pi (v)]

≥ γi +1, i ∈ [n].

For incentive compatible mechanisms, the definition above is

equivalent to our definition in Section 2. To ensure that amechanism

is IC, we also need to guarantee that the buyers can reach their

target ROI by bidding truthfully. The following lemma identifies

necessary and sufficient under which a direct mechanism is IC.

Proposition 5.2. A mechanism M with allocation rule q(·) is
IC if and only if for any i = 1, 2, . . . ,n, qi (vi ) = E[qi (vi , v−i)] is
weakly increasing in vi , the expected utility of buyer i with valu-
ation vi , denoted by ui (vi ), is given by ui (v) +

∫ vi
v qi (x)dx , and
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(b) Buyer 23—his top ad slot
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(c) Buyer 15—all of his ad slots

1 2 3 4 5 6 7
Day

0.75

0.8

0.85

0.9

0.95

1

Fr
ac

tio
n 

of
 M

ax

Normalized ROI
Normalized Spending

(d) Buyer 23—all of his ad slots

Figure 2: Normalized spending and ROI of buyers 15 and 23.

3945



WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Golrezaei, et al.

the ROI constraint is satisfied under truthful reporting. That is,
E[ui (vi )]

E[viqi (vi )−ui (vi )]
≥ γi for i ∈ [n].

The proof follows from the fact that buyers aim to maximize

their utilities after their ROI constraints are satisfied. The proof

follows Myerson’s classical proof and is, thus, omitted.

An IC mechanism is individually rational (IR) if for each buyer i ,
the expected utility under the truthful reporting is non-negative,

that is, viqi (vi , v−i) − pi (vi , v−i) ≥ 0 for any (vi , v−i) ∈ [v, v̄]n .
The IR constraints ensure that the buyers participate in the mecha-

nism.

Having defined the IC and IR constraints, we now define the

revenue-optimal mechanism. An IC and IR mechanism is revenue-

optimal if it yields the highest revenue among all IC and IR mech-

anisms; that is, it maximizes E[
∑n
i=1

pi (v)]. Using the standard

Myersonian technique, we have

E[pi (v)] = E
[
ϕi (vi )qi (v) − ui (v)

]
. (2)

The seller’s revenue optimization problem can thus be written as:

max

qi (·),ui (v)
E
[ n∑
i=1

(
ϕi (vi )qi (v) − ui (v)

) ]
s .t . ui (vi ) = ui (v) +

∫ vi

v
qi (x)dx , i ∈ [n],vi ∈ [v, v̄]

qi (vi ) is weakly increasing in vi , i ∈ [n]

E[viqi (vi )] − (γi + 1)E[viqi (vi ) − ui (vi )] ≥ 0, i ∈ [n]

ui (vi ) ≥ 0, i ∈ [n],vi ∈ [v, v̄]

n∑
i=1

qi (v) ≤ 1, v ∈ [v, v̄]n , (OPT)

The first three sets of constraints follow from Proposition 5.2, where

we identify the necessary and sufficient conditions for incentive

compatibility. In particular, the third set of constraints ensures that

the buyers obtain their target ROI. The fourth set of constraints

guarantees that the mechanism is IR. The last set of constraints

ensures that the mechanism does not allocate the item to more than

one buyer.

5.1 Symmetric Buyers
In this subsection, we assume that the valuation of each buyer

i = 1, 2, . . . ,n is independently drawn from distribution F with

probability density f . We need a few definitions before presenting

our result. Assume that the seller runs an SPA with the monop-

oly reserve rm = ϕ−1(0) and all the buyers bid truthfully. Let γL
be the ROI of a truthful buyer under this mechanism. Precisely,

γL =
E[vqi (v)]
E[pi (v)]

− 1 =

∫ v̄
rm vFn−1(v)dF (v)∫ v̄

rm ϕ(v)Fn−1(v)dF (v)
− 1, where Fn−1(v) is the

probability that a buyer with valuation v has the highest valuation

among n buyers. The numerator is the expected value the buyer

gains from possibly winning the item, while the denominator cor-

responds to the expected virtual value from possibly winning the

item. Similarly, let γH be the ROI of a buyer when the seller runs

a SPA with zero reserve price and all buyers bid truthfully. That

is, γH = (
∫ v̄
0
vFn−1(v)dF (v))/(

∫ v̄
0

ϕ(v)Fn−1(v)dF (v))−1. For any

γ ∈ [γL ,γH ], let rγ be the value that solves the following equation:

γ =

∫ v̄
rγ

vFn−1(v)dF (v)∫ v̄
rγ

ϕ(v)Fn−1(v)dF (v)
− 1. (3)

The above definition implies that when all buyers are truthful and

the seller runs an SPA with reserve rγ , any truthful buyer earns

ROI of γ , for γ ∈ [γL ,γH ]. As we will show in Theorem 5.3, the

reserve price rγ ∈ [0, rm ] and is decreasing in γ . Note that rγH = 0

and rγL = rm . For any γ ∈ [γL ,γH ], let λγ be the value that solves

¯ϕ(rγ , λγ ,γ ) = 0, where

¯ϕ(x , λ,γ ) = λx + ϕ(x)(1 − λ(1 + γ )). (4)

The term
¯ϕ(rγ , λγ ,γ ) corresponds to a modification of the virtual

value function, which takes into account a Lagrangian relaxation of

the ROI constraint. Under this interpretation, the optimal Lagrange

multiplier of the ROI constraint corresponds to:

λ⋆ =


0 if γ ≤ γL ;

λγ if γ ∈ (γL ,γH );

1/(1 + γ ) if γ ≥ γH .
(5)

We are now ready to present the optimal mechanism.

Theorem 5.3. Consider a setting with symmetric buyers with
regular value distributions. The following mechanism maximizes the
seller’s revenues: If γ < γL , then run an SPA with reserve price rm ;
If γ ∈ [γL ,γH ], then run an SPA with reserve price rγ , where rγ is
defined in Eq. (3); If γ > γH , then run an SPA with reserve price 0. In
addition, provide a subsidy s to each buyer, where s solves∫ v̄

0
vFn−1(v)f (v)dv

−s +
∫ v̄
0

ϕ(v)Fn−1(v)f (v)dv
= (1 + γ ). (6)

In addition, the optimal revenue of the seller is equal to

E[(max

i ∈[n]
¯ϕ(vi , λ

⋆,γ ))+] .

Theorem 5.3 shows that when buyers are ROI-constrained, the

seller needs to reduce the reserve price or even provides buyers with

a positive subsidy in order to maximize revenue. The theorem has

three parts. When the target ROI is low (γ < γL ), the ROI constraint
is not binding and the optimal mechanism is the standard SPA

with the monopoly reserve rm . When the target ROI is moderate

(γ ∈ [γL ,γH ]), the optimal mechanism is again an SPA. However,

the reserve price should decrease so that the ROI constraints of the

buyers are satisfied. When the target ROI is high (γ > γH ), reducing

the reserve price alone is not sufficient to produce a solution that

satisfies the ROI constraint. To make sure that the ROI constraints

are satisfied and the buyers participate, the seller needs to run an

SPA without a reserve price, and give each buyer a subsidy. The

amount of subsidy is chosen so that the ROI constraints are binding.

Welfare and revenue implications. In the moderate target ROI

case, γ ∈ [γL ,γH ], the seller’s optimizes revenues by choosing a

reserve price below the monopoly rm . This implies that seller that

ignores ROI constraints creates a situation that is worse off for

everyone: both seller revenues and buyers’ surpluses would go up

if the seller reduces the reserve price below rm .

For the high target ROI case, γ > γH , an intuitive answer might

have been that if the seller cannot get the buyers to participate even
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without a reserve price, there is nothing for the seller to do. Theorem

5.3 proves this is false. In fact, with the proper choice of subsidy,

the seller optimizes revenues by ensuring participation even if

the target ROI is sky high. The following corollary formalizes this

notion. This corollary follows from the fact that
¯ϕ(vi ,

1

1+γ ,γ ) =
vi

1+γ
and the expected revenue of the seller in the optimal mechanism

is equal to E
[
(maxi ∈[n] ¯ϕ(vi , λ

⋆,γ ))+
]
.It shows that, under a high

target ROI, the optimal revenue of the seller decreases linearly in γ .
It also shows that even with a high target ROI, the seller obtains a

constant fraction of the consumer surplus.

Corollary 5.4. Assume the target ROI is high, i.e., γ ≥ γH . Then,
the optimal revenue of the seller is equal to 1

1+γ E[maxi ∈[n]{vi }].

5.2 Asymmetric Buyers
We now present the optimal mechanism for the case when buyers

are asymmetric with respect to their valuation distributions and

target ROIs. We will show that the heterogeneity among buyers

leads to distortion in the allocation rule of the optimal mechanism,

in the sense that the item is not allocated to the buyer with the

highest submitted bid. We further show that the allocation rule of

the optimal mechanism remains distorted even if buyers are only

heterogeneous in their target ROIs.

We first consider the standard case where the valuation distri-

butions of the buyers are heterogeneous, and buyers are not ROI

constrained. Without ROI constraints, it is optimal to sort buyers

based on their virtual values, ϕi (vi ), and allocate the item to the

buyer with the highest nonnegative virtual value [18]. We will

show that when buyers are ROI constrained, the structure of the

optimal mechanism bears some resemblance to the aforementioned

mechanism. However, the mechanism needs to be modified so that

the buyers’ ROI constraints are satisfied. We start by presenting a

parametrized mechanismM(Λ, Γ, S):
MechanismM(Λ, Γ, S)
Subsidies: Each buyer i receives a subsidy of si ≥ 0 from the

seller.

Bids: Each buyer i submits his bid bi .
Modified virtual values: For each buyer i , his modified vir-

tual value, denoted by
¯ϕi (bi , λi ,γi ), is calculated according to

¯ϕi (x , λi ,γi ) = λix + ϕi (x)(1 − λi (1 + γi )).
Winner determination: The item is allocated to a buyer i⋆ with

the highest nonnegative modified virtual value; that is,

i⋆ = arg max

i ∈[n], ¯ϕi (bi ,λi ,γi )≥0

¯ϕi (bi , λi ,γi ). (7)

The item is not allocated if the modified virtual values of all the

buyers are negative.

The winner’s payment: Define
¯ϕ(2) =(

maxj ∈[n], j,i⋆ { ¯ϕ j (bj , λj ,γj )}
)+

as the second highest modi-

fied virtual value. Let θi (x , λi ,γi ) be the inverse of
¯ϕi (vi , λi ,γi )

with respect to its first argument vi . Then, buyer i⋆ pays

pi⋆ = θi⋆ ( ¯ϕ(2), λi⋆ ,γi⋆ ), and for any other buyer i , i⋆, the
payment pi is set to zero.

MechanismM(Λ, Γ, S), which can be described by Lagrangian

multipliers Λ = (λ1, . . . , λn ), target ROIs Γ = (γ1, . . . ,γn ), and
subsidy levels S = (s1, . . . , sn ). Note that mechanism M(Λ, Γ, S)
sorts buyers based on their modified virtual value and allocates the

item to the buyer with the highest nonnegative modified virtual

value. When (1 − λi (1 + γi )) ≥ 0 and distribution Fi is regular,
then the modified virtual value,

¯ϕi (x , λi ,γi ), is increasing in its first

argument. The monotonicity of the modified virtual value implies

that the allocation probability of buyers increases as they submit

higher bids.

The mechanism M(Λ, Γ, S) is similar to Myerson’s optimal non-

ROI-constrained mechanism, with the key distinction being that

modified virtual values
¯ϕi (vi , λi ,γi ) replace virtual values ϕi (vi ).

This change in the allocation is designed to ensure the target ROIs

of the buyers are met. In order to meet the target ROIs, each buyer

is assigned a Lagrangian multiplier λi ∈ [0, 1/(1+γi )]. As the target
ROI of a buyer increases, the mechanism will assign the buyer a

larger Lagrangian multiplier. If the target ROI cannot be achieved

even at λi =
1

1+γi , then the mechanism needs to provide buyer i a

subsidy si .
In mechanism M(Λ, Γ, S), buyer i does not get the item when

his value is less than his personalized reserve price ri = θi (0, λi ,γi ).
In addition, when buyer i wins the item, his payment is at least ri .
In fact, the payment of the winning buyer is the minimum bid that

he needs to submit in order to win the item.

We need to define some terms we will use to describe the optimal

mechanism. Let

Λ⋆ = (λ⋆
1
, λ⋆

2
, . . . , λ⋆n )

= arg min

λi ∈[0, 1

1+γi
],i ∈[n]

E
[ (

max

i ∈[n]
{ ¯ϕi (vi , λi ,γi )}

)+ ]
(8)

be the optimal Lagrangian multipliers of the ROI constraints. By

duality theory, the above optimization problem is convex for any

set of functions
¯ϕi and can be computed via standard convex opti-

mization algorithms. Furthermore, let S⋆ = (s⋆
1
, ..., s⋆n ) be defined

as

s⋆i =

{
E
[
(−vi + (γi + 1)ϕi (vi ))qi (v)

]
/(1 + γi ) if λ⋆i = 1/(1 + γi );

0 if λ⋆i < 1/(1 + γi ).
(9)

Here, qi (v) = 1 if i = arg maxj ∈[n] ¯ϕ j (vj , λ
⋆
j ,γj ) and

ϕi (vi , λ
⋆
i ,γi ) ≥ 0. Otherwise, qi (v) = 0.

Theorem 5.5. Consider a setting with asymmetric buyers with
regular value distributions. The mechanismM(Λ⋆, Γ, S⋆)maximizes
the seller’s revenues, where Λ⋆ and S⋆ are respectively defined in
equations (8) and (9). In addition, the optimal revenue of the seller is

equal to E
[ (

maxi ∈[n] ¯ϕi (vi , λ
⋆
i ,γi )

)+]
.

The intuition for this result is similar to the one for symmetric

buyers. Under a low target ROI, the ROI constraint is not binding,

and λ⋆i = 0. In this case, the modified virtual values revert to the

virtual value. Under a moderate target ROI, the virtual value is

modified to make the ROI constraint feasible. Under a high target

ROI, the virtual value is maximally modified, with λ⋆i = 1/(1 + γi ),
but this is not sufficient to ensure buyer participation. Therefore, a

buyer subsidy is also necessary in this final case. As in the symmet-

ric case, it is always better for the seller to subsidize a buyer than

to have the buyer not participate in the auction, regardless of the

buyer’s target ROI.
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6 COUNTERFACTUAL ANALYSIS
In this section, we combine the theoretical results on optimal auc-

tion design under ROI constraints from Section 5 with the data

from Section 4 to estimate how much is being left on the table due

to not accounting for ROI constraints.

The optimal auctions for asymmetric buyers are complex and

not very practical. This is true not only of our ROI-constrained opti-

mal auctions (see Subsection 5.2), but also of Myerson’s auction for

asymmetric buyers. We therefore focus on the ROI-constrained opti-

mal auctions for symmetric buyers from Subsection 5.1. Optimizing

an ROI-constrained symmetric auction requires only choosing a

reserve price or a subsidy level (if the optimal reserve price is zero).

We use the two buyers for whom we estimated the bid distri-

butions for their top ad slots —buyers 15 and 23— and construct

optimal auctions for these buyers. To maintain the auction symme-

try, we do not combine the buyers into a single auction. That is, we

create an auction for a setting with multiple versions of buyer 15,

and a different auction for a setting with multiple versions of buyer

23.

Estimating value distributions. We are not able to directly ob-

serve buyer value distributions and target ROIs. All that we can

observe is buyer bidding under treatment and control reserve prices,

and create estimates based on those. We call the empirical distri-

butions of submitted bids F̂t (x) and F̂c (x) under treatment and

control, respectively, F̂t (x) =
1

|T |

∑
t ∈T 1{bt ≤ x}, and F̂c (x) =

1

|C |

∑
t ∈C 1{bt ≤ x}, where T and C represent the sets of bids

under treatment and control.

Based on the theory we developed, we know that buyers are

more likely to be ROI-constrained when reserve prices are high,

which corresponds to the treatment group. Therefore, the empirical

control distribution is likely to be more similar to the true value

distribution.We therefore assume F̂c (·) is the true value distribution
for the purposes of this counterfactual analysis. The auctions in

our dataset vary widely in quality and reserve prices. In order to

maintain some quality consistency, we will use only auctions where

the reserve price lies within one standard deviation of its mean, i.e.,

the reserve price of query q satisfies rc (q) ∈ [E[rc ] − σ (rc ),E[rc ] +
σ (rc )].
Estimating shading factors and target ROIs. Before estimating

target ROIs, we estimate the shading factor used by the buyers.

We estimate shading factors via structural estimation. We assume

buyers are shading their bids as prescribed by Theorem 3.1 and that

F̂c (v) is their true value distribution. If a buyer with value distribu-

tion F̂c (v) uses a shading factor β under treatment prices, we should

observe bids distributed according to F̂c (v/β) under treatment

prices. We therefore compute our estimate β of the shading factor

via the following regression:
ˆβ = arg miny

∑
n (F̂t (bn )− F̂c (bn/y))

2.

We find estimated shading factors of 0.93 and 0.88 for the top ad

slots of buyers 15 and 23, with standard errors of 0.012 and 0.015.

Our theory predicts that the buyer is more likely to be ROI-

constrained under high prices. We thus determine a buyer’s target

ROI by assuming the ROI constraint is binding under treatment

prices. We can therefore compute our estimated target ROI γ̂ by

computing γ̂ =
∑
t∈ ˆT

wt (bt / ˆβ−pt )∑
t∈ ˆT

wtpt
, where pt is the payment of the

buyer in auction t andwt ∈ {0, 1} is one if the buyer wins auction

t , and is zero otherwise. Here,
ˆT is the set of all the auctions in

the treatment group that have a reserve price in the range [E[rt ] −
σ (rt ),E[rt ] + σ (rt )]. For competitive reasons, we do not disclose

the estimated γ̂ of the buyers.

Note that we are probably undermeasuring the true target ROI

using our technique. That is, γ̂ is possibly higher than true γ since

our structural estimation procedure assumes the ROI constraint

is not binding under control prices. If we were able to measure

true target ROIs, the measurements would most likely be more

pronounced, and the implications for revenue and welfare would

be even more stark.

Counterfactual analysis results.We now consider a setting with

n = 1, ..., 8 buyers having valuation distribution F̂c (·) and target

ROI γ̂ . We do this exercise twice, the first time with data from buyer

15, and the second time with data from buyer 23.
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Figure 3: Normalized revenue and welfare of the optimal
mechanism and the SPA with monopoly reserve price as a
function of the number of buyers, assumingmultiple copies
of buyers 15 and 23 are present.

For these set of problem parameters, when the number of buyers

is small, we find that the optimal mechanism according to Theo-

rem 5.3 is an SPA with a positive reserve price which is below the

monopoly price. In contrast, when the number of buyers is large,

the optimal mechanism is an SPA with no reserve and a positive

subsidy. This is so because by increasing the number of buyers, com-

petition among buyers gets more severe and the ROIs of the buyers

decrease. In Figure 3, we plot the normalized revenue and welfare

of the optimal mechanism. To normalize revenue (welfare), we set

the revenue (welfare) of Myerson’s optimal non-ROI-constrained

mechanism with one buyer to be equal to one. As a benchmark,

we also plot the revenue and welfare under an SPA with monopoly

price, where buyers are assumed to shade according to Theorem

3.1.

In Figure 3a, we see that the revenue gain from taking ROI into

account can be as low as 0.5% (n = 8) to as high as over 200% (n = 1).

These numbers are based on buyers who behave like buyer 15. For

this case, the average and the median revenue gain are 85% and 51%,

respectively. The range of outcomes is not as wide for the buyer 23

model (Figure 3b). In this scenario, revenue gains range from 4%

(n = 8) to 46% (n = 1), with mean 17% and median 12%. In Figure
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3c, we see that the welfare gains for the buyer 15 also span a wide

range, starting from 0.4% (n=8) going up to 150% (n=1), with mean

and median 51% and 29%, respectively. In Figure 3d, we see the

welfare gains for the buyer 23 model, which ranges from 4% and

39%, with mean 16% and median 12%. Overall, the revenue gains

and welfare improvement are smaller when the market is thick,

i.e., the number of buyers is large. Interestingly, the revenue and

welfare gains are highly correlated. The situations where the ROI-

aware auction performs much better than the standard auction are

settings where ROI constraints are causing buyers to significantly

shade their bids. In such situations, a reduction in the reserve price

can simultaneously greatly improve revenue and generate a very

large surplus for buyers.
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7 APPENDICES: PROOFS OF MAIN RESULTS
The proof of lemmas in this section is presented in Section 8.

7.1 Proof of Theorem 3.1
The proof is divided into three segments. In the first and second

segments, we assume that the target ROI is low and moderate,

respectively. In the last segment, we assume that the target ROI is

high.

Low target ROI (γ ≤ γ ) Here we need to show that for any

γ ≤ γ , the buyer bids truthfully. Recall that γ is the ROI of the

buyer in the SPA with the monopoly reserve when the buyer bids

truthfully. When the target ROI is less than γ , the ROI constraint

is non-binding under truthful bidding. Thus, the utility maximizer

buyer bids truthfully.

Moderate target ROI (γ ∈ (γ ,γ ]) Here, we construct an upper

bound on ProblemBid-SPA by dualizing the ROI constraint.We then

show that the bidding strategy presented in Theorem 3.1 achieves

the upper bound and is, thus, optimal.

We start with by adding a constraint to Problem Bid-SPA:

max

b(·)
E [(v − D)1{b(v) ≥ D}]

s .t . E[(v − (1 + γ )D)1{b(v) ≥ D}] ≥ 0,

E[v1{b(v) ≥ D}] > 0. (Modified)

The second constraint in Problem Modified ensures that we do not

pick a bidding strategy under which the buyer does not win at all.

This ensures that the buyer’s ROI is finite. We show in Lemma 7.2

that at the optimal bidding strategy, this constraint is satisfied if

the target ROI is moderate.

By the weak duality theorem, for any λ ≥ 0, the optimal solution

of Problem Modified is upper bounded by maxb(·) L(b, λ) where

L(b, λ) = E [(v − D)1{b(v) ≥ D}] + λ (E[(v − (1 + γ )D)1{b(v) ≥ D}])

= (1 + λ)E

[(
v −

(λ(1 + γ ) + 1)

(1 + λ)
D

)
× 1{b(v) ≥ D}

]
.

(10)

The second equation implies that the effective payment of the buyer

is not D; it is
(λ(1+γ )+1)

(1+λ) D instead. Therefore, to maximize L(b, λ),

the buyer needs to shade his bid by a factor of
(1+λ)

(λ(1+γ )+1)
, i.e.,b(v) =

v (1+λ)
(λ(1+γ )+1)

= vβ(λ,γ ), or alternatively, β(λ,γ ) = (1+λ)
(λ(1+γ )+1)

. Pre-

cisely, (10) can be written as

L(b, λ) = (1 + λ)E

[(
v −

D

β(λ,γ )

)
× 1

{
v ≥

D

β(λ,γ )

}]
. (11)

To complete this part of the proof, we show that there exists a

unique λ under which the ROI constraint is binding given that

b(v) = vβ(λ,γ ). We use the following definition in the rest of the

proof:

˜R(β) = E[(v − D(1 + γ ))1{vβ ≥ D}]. (12)

Assuming R(β) is finite, R(β) = γ if and only if
˜R(β) = 0. We can

also have
˜R(β) = 0 when R(β) = ∞, which correspond to values of

β around zero. We say β is an “isolated root" of
˜R(·) if ˜R(β) = 0 and
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there exists an open ball around β such that R(x) , 0 for every x in

the open ball. When β is an isolated root of
˜R(·), the ROI constraint

is binding at the bidding strategy b(v) = βv , and thus R(β) is finite
and R(β) = γ .

In the following, we show that
˜R(·) has a unique isolated root.

Let us denote this solution by β0. We can then choose λ⋆ as the

unique solution of β(λ⋆,γ ) = β0 since β(λ,γ ) is increasing in λ.
Considering the fact that bidding strategy b(v) = β0v maximizes

L(b, λ⋆) and the ROI constraint is binding at b(v) = β0v , we can
conclude that this bidding strategy is optimal.

We complete our result by proving that
˜R(·) has a unique isolated

root via a sequence of lemmas.

Lemma 7.1.
˜R(β) is non-decreasing in β when β ≤ 1

1+γ .

Lemma 7.1 shows that
˜R(β) grows as β increases from 0 to

1

1+γ .

Then, considering the fact that
˜R(0) = 0, we have

˜R( 1

1+γ ) ≥ 0.

Thus, if we can show that
˜R( 1

1+γ ) > 0, we can conclude that there

exists at most one β ∈ ( 1

1+γ , 1) that solves
˜R(β) = 0. This follows

from the fact that γ > γ , and as a result
˜R(1) < 0.

The next lemma shows that
˜R( 1

1+γ ) is strictly positive. In partic-

ular, it shows that
1

1+γ >
r
v̄ , which implies that

˜R( 1

1+γ ) , 0 and,

thus,
˜R( 1

1+γ ) is strictly positive.

Lemma 7.2. Let γ ≤ γ̄ . Then, 1

1+γ >
r
v̄ and ˜R( 1

1+γ ) > 0.

So far, we have established that there exists at most one β ∈

( 1

1+γ , 1) that solves
˜R(β) = 0. The following lemma shows that

such a solution is unique.

Lemma 7.3. There exists a unique solution β0 ∈ ( 1

1+γ , 1) that

solves ˜R(β0) = 0.

Lemma 7.3 shows that there
˜R(·) has a unique isolated root in

the range of ( 1

1+γ , 1). By Lemma 7.2, we have β0 >
1

1+γ >
r
v̄ ,

which implies that β0v̄ > r , and as a result, the second constraint

in Problem Modified is satisfied; that is, E[v1{β0v ≥ D}] > 0.

High target ROI (γ > γ ) Here, we first show that when γ > γ̄ ,
then the buyer does not participate. To this aim, we show that the

upper bound of ProblemModified, defined below, is −∞:

min

λ≥0

max

b(·)
L(b, λ). (13)

This implies that Problem Modified is infeasible. To see why as-

sume, contrary to our claim, that ProblemModified has a feasible

solution. Then, considering the fact the objective function of Prob-

lemModified at any feasible solution is positive, the upper bound

of Problem Modified cannot be −∞. This contradicts that Problem

is feasible.

Since Problem Modified is infeasible, for any β ∈ [0, 1], we have

E[(v − (1 + γ )D)1{βv ≥ D}] < 0. This implies that the Lagrangian

multiplier λ that minimizes Eq. (13) is ∞; see the definition of

L(b, λ) in Eq. (10). Since the objective function of Eq. (13) is −∞,

we conclude that the buyer does not participate in the auction.

7.2 Proof of Proposition 3.2
Assume that under the higher reserve price rH , the buyer partici-

pates in the SPA and his ROI constraint is binding. If the buyer’s ROI

constraint under reserve price rL is non-binding, then the result

holds. This follows from Theorem 3.1, where we show the buyer’s

shading factor is one when the ROI constraint is non-binding. Thus,

we will focus on the case where the buyer’s ROI constraint is also

binding under the SPA with reserve price rL .
By Theorem 3.1, the shading factor under the SPA with reserve

price r ∈ {rL , rH } is the unique solution of
˜R(β) = 0, see Eq. (12),

where

˜R(β) = E[(v − D(1 + γ ))1{vβ ≥ D}] = Ev

[∫ vβ

r
(v − x(1 + γ ))dĜ(x)

]
=

∫ v̄

r
β

∫ vβ

r
(y − x(1 + γ ))dĜ(x)dF (y) for r ∈ {rL , rH },

where Ĝ is the distribution of maxj,i {bj }. Note that ˜R(β) implicitly

depends on the reserve price r . From the proof of Theorem 3.1, we

know that the unique solution of
˜R(β) = 0 in the range ( 1

1+γ , 1)

determines the equilibrium shading behavior. Since the right-hand

side of the equation above is decreasing in r , the shading factor is
greater under rH than rL .

7.3 Proof of Theorem 5.3
The proof is divided into three parts, each corresponding to low,

moderate and high target ROIs.

Low target ROI (γ < γL) Recall that γL is the ROI of a buyer

when an SPA with the monopoly reserve is run and buyers bid

truthfully. This implies that for any γ < γL , the optimal mechanism

is an SPA with the monopoly reserve price rm . To see why, note

that when γ < γL and the seller runs the SPA with reserve of rm ,

the ROI constraints are not binding under truthful bidding, and as

a result, buyers’ weakly dominant strategy is to bid truthfully.

Moderate target ROI (γ ∈ [γL ,γH ]). To characterize the opti-

mal mechanism, we first construct an upper bound on ProblemOPT.
To construct an upper bound, we dualize the ROI constraint using a

particular Lagrangian multiplier. We then show that the revenue of

the SPA with reserve rγ matches the upper bound. This shows that

this mechanism is optimal. To do so, we use the following three

lemmas.

Lemma 7.4 (ROI Decreases in Reserve Price). Assume that the
seller runs an SPA with reserve r ∈ [0, rm ] and buyers bid truthfully.
Then, the ROI of a buyer, which is between γL and γH , is decreasing
in r .

Lemma 7.4 shows that for any γ ∈ [γL ,γH ], there exists rγ that

solves Eq. (3). In other words, for any moderate target ROI, there

exists a reserve price rγ that binds the ROI constraints. In the next

lemma, we use rγ to construct a Lagrange multiplier.

Lemma 7.5 (Optimal Lagrange Multiplier). Let
¯ϕ(x , λ,γ ) = λx + ϕ(x)(1 − λ(1 + γ )). Then, there exists
λ⋆ ∈ [0, 1

1+γ ] that solves
¯ϕ(rγ , λ

⋆,γ ) = 0.
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We use λ⋆ to construct our upper bound. By weak duality, Prob-

lem OPT is upper bounded by:

max

(qi (·),ui (v))∈Ti ,i ∈[n]
E
[ n∑
i=1

ϕ(vi )qi (v) − ui (v)

+ λ⋆
(
− γviqi (vi ) + (γ + 1)ui (vi )

)]
, (14)

where ui (vi ) = ui (v) +
∫ vi
v qi (x)dx and the feasible region

(ignoring the constraints

∑n
i=1

qi (v) ≤ 1 for any v ∈ [v, v̄]n )

is given by Ti =
{
(qi (·),ui (v))

�� q′i (vi ) ≥ 0, ui (v) ≥ 0

}
. We

know from Myerson [18] that ui (vi ) = ui (v) +
∫ vi
v qi (x)dx and

E[ui (vi )] = E[α(vi )qi (vi )] + ui (v), where α(vi ) =
1−F (vi )
f (vi )

. There-

fore, Eq. (14) can be rewritten as

max

(qi (·),ui (v))∈Ti ,i ∈[n]
E

[ n∑
i=1

qi (v)
(
vi (1 − λ⋆γ ) − α(vi )(1 − λ⋆(1 + γ ))

)]
−

n∑
i=1

ui (v)(1 − λ⋆(γ + 1))

= max

(qi (·),ui (v))∈Ti ,i ∈[n]
E

[ n∑
i=1

qi (v) ¯ϕ(vi , λ
⋆,γ )

]
−

n∑
i=1

ui (v)(1 − λ⋆(γ + 1)). (15)

By Lemma 7.5, λ⋆ ≤ 1

1+γ . This implies that to maximize the

above expression, we need to set ui (v) to zero. Furthermore, the

item needs to get allocated to a buyer with the highest non-negative

modified virtual value
¯ϕ(vi , λ

⋆,γ ). Observe that themodified virtual

value,
¯ϕ(vi , λ

⋆,γ ), is increasing in vi when the distribution F is

regular. The monotonicity of
¯ϕ(vi , λ

⋆,γ ) follows from the fact that

ϕ(vi ) is increasing and λ⋆ ≤ 1

1+γ . The fact that
¯ϕ is monotone

implies that the item should be allocated to a buyer with the highest

submitted bid/valuation as long as his valuation is greater than

rγ . Recall that by Lemma 7.5, rγ is the unique solution of {x :

¯ϕ(x , λ⋆,γ ) = 0}.

Now, consider an SPA auction with reserve price rγ . This mech-

anism is a feasible solution of Problem OPT as the ROI constraint

is binding in this mechanism; see Lemma 7.4. Furthermore, the

revenue of this mechanism matches the upper bound given in Eq.

(14). This implies that this mechanism is optimal.

High target ROI (γ > γH ) Similar to the previous part, we first

construct an upper bound on Problem OPT by dualizing the ROI

constraint. We then show that the revenue of the SPA with no

reserve and subsidy of s matches the upper bound.

Let λ⋆ = 1

1+γ be the Lagrangian multiplier of the ROI con-

straints. Then, the upper bound, given in Eq. (15), can be written as

max(qi (·),ui (v))∈Ti ,i ∈[n] E
[∑n

i=1
qi (v) vi

1+γ

]
. The above optimiza-

tion problem is not a function of ui (v). Furthermore, the above

expression gets maximized if we allocate the item to the buyer with

the highest submitted bid. To complete the proof, we need to show

that there is a feasible mechanism that obtains this upper bound.

Consider an SPA with no reserve and positive subsidy (s =
ui (v)) that solves Eq. (6). For this mechanism, the seller’s revenue,

which is equal to n
∫ v̄
0

ϕ(v)Fn−1(v)f (v)dx − ns , needs to be equal

to the upper bound max(qi (·),ui (v))∈Ti ,i ∈[n] E
[∑n

i=1
qi (v) vi

1+γ

]
=

n
1+γ

∫ v̄
0
vFn−1(v)f (v)dv . By the definition of the subsidy s given in

Eq. (6), we conclude that the revenue of the seller in this mechanism

matches its upper bound, and thus, the mechanism is optimal.

7.4 Proof of Theorem 5.5
By dualizing the ROI constraints and in particular, by Eq. (15) in

the proof of Theorem 5.3, Problem OPT is upper bounded by

min

λi ≥0

max

(qi (·),ui (v))∈Ti ,i ∈[n]
E

[ n∑
i=1

qi (v) ¯ϕi (vi , λi ,γi )

]
−

n∑
i=1

ui (v)(1 − λi (γi + 1))

= min

λi ≥0

max

(qi (·),ui (v))∈Ti ,i ∈[n]
L(q,u(v),Λ) ,

whereL(q,u(v),Λ) = E
[∑n

i=1
qi (v) ¯ϕi (vi , λi ,γi )

]
−
∑n
i=1

ui (v)(1−
λi (γi + 1)) and with a slight abuse of notation, q = (qi (·), . . . ,qn (·))
and u(v) = (u1(v), . . . ,un (v) >). We note that the outer optimiza-

tion is always convex even if the inner one is non-convex. This

is the case because L(q,u(v),Λ) is linear in λi ’s. Thus, the outer
optimization problem can be solved polynomially using convex

stochastic optimization techniques; see for example Uryasev and

Pardalos [21]. Also observe that when λi >
1

1+γi , then we can set

ui (v) to ∞ in order to maximize L(q,u(v),Λ). This implies that at

any λi >
1

1+γi , max(qi (·),ui (v))∈Ti ,i ∈[n] L(q,u(v),Λ) = ∞. There-

fore, we have

min

λi ∈[0, 1

1+γi
]

max

(qi (·),ui (v))∈Ti ,i ∈[n]
L(q,u(v),Λ) (16)

= min

λi ∈[0, 1

1+γi
]

max

(qi (·),ui (v))∈Ti ,i ∈[n]
E

[ n∑
i=1

qi (v) ¯ϕi (vi , λi ,γi )

]
,

(17)

where the inequality follows because λi ∈ [0, 1

1+γi ]. In fact, when

λi ∈ [0, 1

1+γi ), to maximize L(q,u(v),Λ), we need to set ui (v) to

zero, and when λi =
1

1+γi , L(q,u(v),Λ) does not depend on ui (v).

Then, to maximize E
[∑n

i=1
qi (v) ¯ϕi (vi , λi ,γi )

]
, the item needs to

be allocated to the buyer with the highest non-negative modified

virtual value,
¯ϕi (vi , λi ,γi ). Thus, Eq. (17) can be further simplified

as follows

min

λi ∈[0, 1

1+γi
]
E

[(
max

i ∈[n]
¯ϕi (vi , λi ,γi )

)+]
= E

[(
max

i ∈[n]
¯ϕi (vi , λ

⋆
i ,γi )

)+]
,

(18)

where the equality follows from definition of λ⋆i , given in Eq. (8). Let

q⋆i (v) = 1 when buyer i has the highest modified virtual value, i.e.,

when
¯ϕi (vi , λ

⋆
i ,γi ) ≥ maxj,i ( ¯ϕ j (vj , λ

⋆
j ,γj ))

+
, and zero otherwise.

The next lemma establishes an important property of λ⋆i .

Lemma 7.6 (Complementary Slackness). Let (q⋆,u⋆(v)) be de-
fined by (q⋆,u⋆(v)) = arg max(qi (·),ui (v))∈Ti ,i ∈[n] L(q,u(v), λ⋆).

Then, for any i ∈ [n], we have λ⋆i
(
E
[
(vi − (γi + 1)ϕi (vi ))q

⋆
i (v)

]
+

(1 + γi )u
⋆
i (v)

)
= 0.
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Lemma 7.6 shows that the optimal Lagrangian multiplier, λ⋆i ,
satisfies complementary slackness. That is, for each buyer i , either

λ⋆i = 0, or E
[
(vi − (γi + 1)ϕi (vi ))q

⋆
i (v)

]
+ (1 + γi )u

⋆
i (v) = 0. We

note that the latter implies that the the ROI constraint of buyer i is
binding.

So far, we have fully characterized an upper bound on Prob-

lem OPT. As our last step, we need to show that Mechanism

M(Λ⋆, Γ, S⋆) obtains the upper bound. Mechanism M(Λ⋆, Γ, S⋆)
allocates the item to the buyer with the highest non-negative modi-

fied virtual value
¯ϕi (vi , λ

⋆
i ,γi ). Thus, to show that this mechanism

is optimal, it suffices to show that λ⋆i

(
E
[
(vi−(γi+1)ϕi (vi ))q

⋆
i (v)

]
+

(1+γi )u
⋆
i (v)

)
= 0. Note that the above expression is the extra term

that is added to the objective function of Problem OPT to construct

the upper bound. That is, this term is the Lagrange multiplier times

the ROI of the constraint of buyer i . The above equation holds by

Lemma 7.6 and by observing the fact that s⋆i = u
⋆
i (v). To see the

latter note that both s⋆i and u⋆i (v) are zero where λ⋆i <
1

γi+1
, and

they both solve E
[
(vi − (γi + 1)ϕi (vi ))q

⋆
i (v)

]
+ (1 +γi )y = 0 when

λ⋆i =
1

γi+1
; see the definition of subsidy s⋆i .

8 ADDITIONAL PROOFS
8.1 Proof of Lemma 7.1
Let G(·) and д(·) be the probability distribution and probability

density of D. For any β ≤ r
v̄ ,

˜R(β) = 0. Now assume that

β > r
v̄ . Then, by definition,

˜R(β) =
∫ v̄
r
β
vG(vβ)f (v)dv − (1 +

γ )
∫ v̄
r
β

∫ vβ
r yд(y)dy f (v)dv . By taking derivative w.r.t. β , we get

R ′(β) = r 2

β 3
G(r )f ( rβ ) + (1 − (1 + γ )β)

∫ v̄
r
β
v2д(vβ)f (v)dv . This ex-

pression is positive when β ≤ 1

(1+γ ) .

8.2 Proof of Lemma 7.2
Assume, contrary to our claim, that

1

1+γ ≤ r
v̄ . This implies that γ ≥

v̄−r
r . We will show that this equation cannot hold. Since γ ∈ (γ , γ̄ ),

there exists β such that R(β) = γ . That is,
E[(v−D)1{vβ ≥D }]

E[D1{vβ ≥D }]
= γ .

In addition, by our assumption, we have γ ≥ v̄−r
r . That is,

E[(v − D)1{vβ ≥ D}]

E[D1{vβ ≥ D}]
≥

v̄ − r

r
.

But, this cannot be satisfied because v ≤ v̄ and D ≥ r .

8.3 Proof of Lemma 7.3
Contrary to our claim, suppose that there are β1 < β2 that solves

˜R(β1) = ˜R(β2) = 0. Let λ1 and λ2 solve β1 =
(1+λ1)

(λ1(1+γ )+1)
and

β2 =
(1+λ2)

(λ2(1+γ )+1)
. Then, by weak duality, the maximum utility ob-

tained by the buyer is less than or equal to E [(v − D)1{βiv ≥ D}]+
λi (E[v1{βiv ≥ D}] − (1 + γ )E[D1{βiv ≥ D}]) for i = 1, 2. Since
˜R(βi ) = 0, the maximum utility obtained by the buyer is less than

or equal to E [(v − D)1{βiv ≥ D}] for i = 1, 2. Now assume that

the buyer shades his bids by a factor of β2. In this case, his utility is

given by E [(v − D)1{β2v ≥ D}]. By weak duality again, the util-

ity of the buyer should be less than E [(v − D)1{β1v ≥ D}]; that is,
E [(v − D)1{β2v ≥ D}] < E [(v − D)1{β1v ≥ D}]. But, this cannot
happen because β2 > β1.

8.4 Proof of Lemma 7.4
Consider an SPA with reserve price r . Using the standard Myerso-

nian technique, if all buyers bid truthfully, the ROI of a buyer is

given by

∫ v̄
r vFn−1(v)dF (v)∫ v̄

r ϕ(v)Fn−1(v)dF (v)
− 1. In the following, we show that

when r < rm , the ROI of the buyer decreases in the reserve price

r . Then, the result follows because by definition, the ROI under an

SPA with the monopoly reserve is γL and the ROI under an SPA

with no reserve is γH .

Let V =
∫ v̄
r vFn−1(v)dF (v) and P =

∫ v̄
r ϕ(v)Fn−1(v)dF (v). By

taking derivative of the ROI w.r.t. r , we get
Fn−1(r )f (r )

P 2
(−rP +

ϕ(r )V ) ≤ 0, where the inequality holds because r ≤ rm and

as a result, ϕ(r ) ≤ ϕ(rm ) = 0.

8.5 Proof of Lemma 7.5
We first argue that for any λ > 1

γ+1
,

¯ϕ(rγ , λ,γ ) > 0. This implies

that
¯ϕ(rγ , λ,γ ) can be zero only when λ ≤ 1

1+γ . Then, considering

the fact that
¯ϕ(rγ , 0,γ ) = rγ − α(rγ ) = ϕ(rγ ) ≤ 0, there exists

λ ∈ [0, 1

1+γ ] that solves
¯ϕ(rγ , λ,γ ) = 0. To see why

¯ϕ(rγ , 0,γ ) ≤ 0

note that by Lemma 7.4, rγ ≤ rm . Suppose that λ > 1

γ+1
. By

definition,
¯ϕ(rγ , λ,γ ) = λx + ϕ(x)(1 − λ(1 + γ )) > 0, where the

inequality holds because by Lemma 7.4 and λ > 1

γ+1
.

8.6 Proof of Lemma 7.6
By Eq. (16), λ⋆i , i ∈ [n], solves the following equation

(λ⋆
1
, . . . , λ⋆n ) = arg min

λi ∈[0, 1

1+γi
]
E
[ n∑
i=1

q⋆i (v) ¯ϕi (vi , λi ,γi )
]

−

n∑
i=1

u⋆i (v)(1 − λi (γi + 1)),

Since, the above optimization is convex, λ⋆i satisfies the KKT con-

dition. That is,

λ⋆i

∂
(
E
[∑n

i=1
q⋆i (v)

¯ϕi (vi , λ
⋆
i ,γi )

]
−
∑n
i=1

u⋆i (v)(1 − λ⋆i (γi + 1))

)
∂λ⋆i

= 0

⇒ λ⋆i

(
E
[
(−(1 + γi ) ¯ϕi (vi ) +vi )q

⋆
i (v)

]
+ u⋆i (v)(γi + 1)

)
= 0.
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