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Air traffic disruptions result in flight delays, cancellations, passenger misconnections, and ultimately high

costs to aviation stakeholders. This paper proposes a jointly reactive and proactive approach to airline disrup-

tion management, which optimizes recovery decisions in response to realized disruptions and in anticipation

of future disruptions. The approach forecasts future disruptions partially and probabilistically by estimating

systemic delays at hub airports (and the uncertainty thereof) and ignoring other contingent disruptions. It

formulates a dynamic stochastic integer programming framework to minimize network-wide expected disrup-

tion recovery costs. Specifically, our Stochastic Reactive and Proactive Disruption Management (SRPDM)

model combines a stochastic queuing model of airport congestion, a flight planning tool from Boeing/Jeppe-

sen and an integer programming model of airline disruption recovery. We develop a solution procedure based

on look-ahead approximation and sample average approximation, which enables the model’s implementation

in short computational times. Experimental results show that leveraging even partial and probabilistic esti-

mates of future disruptions can reduce expected recovery costs by 1–2%, as compared to a myopic baseline

approach based on realized disruptions alone. These benefits are mainly driven by the deliberate introduction

of departure holds to reduce expected fuel costs, flight cancellations and aircraft swaps.

Key words : airline disruption management, stochastic optimization, integer programming, queuing model

1. Introduction

The formation and propagation of operating disruptions across spatial-temporal networks create

missed revenue opportunities, resource wastage, employee overtime shifts and reduced customer

satisfaction, leading to financial and welfare losses in industries such as supply chains, transporta-

tion, telecommunications, and medical services. As a prime example, flight delays and cancellations

create significant costs across air traffic networks—estimated at over $30 billion in the United

States in 2007 (Ball et al. 2010). Disruption management thus lies at the core of airline operations.

Airline disruption management interventions can be broadly classified into two categories: reac-

tive and proactive interventions. Proactive interventions stem from the airline robust planning

literature: they provide a priori operating plans (e.g., flight schedules, aircraft routings and crew
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pairings) that can respond effectively to future disruptions. However, they do not adjust operat-

ing plans dynamically as operating disruptions are realized. Reactive interventions stem from the

airline recovery literature: they provide a posteriori recovery plans in response to observed disrup-

tions (e.g., whether, when and with which aircraft to operate each flight) to minimize the costs

of bringing operations back to normal. However, they do not anticipate future disruptions that

are likely to occur across the airline’s network of flights—thus potentially resulting in sub-optimal

decisions when future operations themselves depart from planned operations.

Instead, this paper proposes an original approach to disruption management that is jointly

reactive and proactive—by simultaneously responding to past disruptions and anticipating future

disruptions. A major challenge is that future disruptions can only be characterized probabilistically

and partially. First, air traffic operations are subject to significant uncertainty, so disruptions cannot

be anticipated in advance exactly and with certainty. Second, operating disruptions stem from

systemic and contingent sources. Systemic disruptions arise from congestion resulting from more

flights being scheduled than available capacity at busy airports. These disruptions can be estimated

by means of stochastic queuing models, as shown by Pyrgiotis et al. (2013) and Jacquillat and

Odoni (2015b). Contingent disruptions include other delay sources, such as aircraft maintenance,

late crews, late passenger boarding, etc. In comparison, contingent disruptions are very difficult to

anticipate. This paper integrates probabilistic forecasts of systemic disruptions across networks of

operations into a dynamic and stochastic optimization framework for airline disruption recovery.

Specifically, this paper makes the following contributions:

It develops an original approach to network-wide disruption management that proactively lever-

ages partial and probabilistic disruption forecasts into reactive disruption recovery. The approach

relies on a dynamic and stochastic optimization model that optimizes recovery decisions, given

observed disruptions and the probability distribution of future systemic disruptions. This paper

thus integrates, for the first time to our knowledge, principles from the robust airline planning

literature into the disruption recovery literatures. As compared to existing disruption recovery

approaches, the proposed framework results in larger and more complex optimization problems,

but can reduce expected disruption costs through more flexible and robust disruption management.

It formulates a Stochastic Reactive and Proactive Disruption Management (SRPDM) model to

optimize network-wide airline disruption recovery under airport queuing stochasticity. SRPDM is

formulated as a stochastic integer program using a probabilistic time-space network representation.

It combines: (i) the stochastic and dynamic queuing model from Jacquillat and Odoni (2015a),

which yields the probability distribution of delays over time at each hub airport; (ii) a flight

planning tool from Boeing/Jeppesen, which provides routing, speed and altitude options for each

flight, along with corresponding flying times and fuel costs; and (iii) the deterministic model of
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recovery optimization from Marla et al. (2017). This provides the first model of network-wide air

traffic optimization that applies a stochastic queuing model at multiple airports simultaneously.

It develops an efficient approximate algorithm that can solve the SRPDM within reasonable

computational times, consistent with the airline disruption recovery literature and with practical

implementation requirements. The size of SRPDM increases with the scale of the network, the time

horizon of recovery, and the number of systemic disruption scenarios. In realistic instances, the

model’s sheer size makes direct implementation highly intractable. To solve it efficiently, this paper

develops an approximate solution algorithm based on look-ahead approximation (by optimizing

recovery decisions for a restricted time window) and sample average approximation (by leveraging

a sampled set of disruption scenarios). The algorithm solves SRPDM iteratively over a rolling

horizon (we use a one-hour rolling horizon in this paper, but the proposed algorithm can be applied

more or less frequently in practice). Using real-world scheduling data from Delta Air Lines, we

show that, at any point in time, the proposed algorithm can solve SRPDM in 3-5 minutes—which

is consistent with earlier airline recovery models and with practical requirements. Ultimately, these

computational results demonstrate the model’s implementability in practice.

It shows that our jointly reactive and proactive approach to disruption management can signifi-

cantly enhance recovery decisions, as compared to purely reactive approaches. Since our approximate

algorithm does not yield solution quality guarantees, we compare the recovery solutions obtained

with our modeling and computational framework to those obtained with a myopic baseline approach

that does not leverage forecasts of future disruptions. For this comparison, we use disruption real-

izations derived from real-world data. Results suggest that our approach reduces expected recovery

costs by 1–2%. Moreover, we find no disruption instance in which our approach increases recovery

costs (it performs either as well as or better than the baseline). Stated differently, our stochastic

optimization approach reduces expected operating costs without introducing additional risk in air-

line recovery. These benefits are mainly driven by deliberately introducing departure holds at key

points in the network to reduce expected fuel costs, flight cancellations and aircraft swaps. This

approach is particularly beneficial for airlines with concentrated operations at hub airports and

with congested hubs. Ultimately, these case study results demonstrate the benefits of proactively

leveraging even partial and probabilistic information on future disruptions and applying even an

approximate stochastic optimization algorithm to enhance airline recovery decisions.

We review the literatures on robust airline planning and disruption recovery in Section 2. We

describe our dynamic decision-making approach in Section 3. Section 4 formulates SRPDM and

describes our solution algorithm. Our experimental setting is detailed in Section 5. Section 6 reports

computational results, showing the benefits of the proposed modeling and computational approach.

Section 7 summarizes our findings and outlines opportunities for future research.
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2. Literature Review

The management of flight disruptions is one of the foremost objectives of air traffic management

and airline operating systems. Major air traffic management interventions include the optimization

of airport operations (Balakrishnan and Chandran 2010, Simaiakis et al. 2014, Jacquillat and

Odoni 2017), air traffic flow management (Bertsimas et al. 2011, Vossen et al. 2012), and airport

demand management (Zografos et al. 2012, Jacquillat and Odoni 2015a, Ribeiro et al. 2017).

From an airline’s perspective, minimizing disruptions comprises two main steps: (i) robust airline

planning—to reduce its vulnerability to future disruptions (a proactive method) and (ii) disruption

recovery—to re-allocate resources and minimize the impact of observed disruptions (a reactive

approach). We review these two bodies of work in this section.

Robust airline planning involves optimizing planning decisions (such as flight schedules, fleet

assignments, aircraft routings and crew schedules) to minimize the cost of operating disruptions,

if and when they occur. This literature includes two main approaches: (i) those that minimize the

impact of delays, and (ii) those that minimize the occurrence of (propagated) delays.

The first category designs strategic plans to respond effectively to future disruptions. Rosen-

berger et al. (2004) create fleet assignments with “short cycles” to minimize the ripple effects of

cancellations. Smith and Johnson (2006) restrict the number of aircraft types at airports to create

swapping opportunities. Sohoni et al. (2011) formulate probabilistic service level constraints, under

block-time uncertainty. Arıkan et al. (2013) propose robust scheduling and network planning strate-

gies, under delay propagation uncertainty. Pita et al. (2012) integrate airport congestion estimates

into flight scheduling and fleet assignment. Froyland et al. (2013) optimize aircraft routing, given

the uncertainty of future disruptions and resulting recovery. Other studies incorporate robustness

into crew pairing (Schaefer et al. 2005, Yen and Birge 2006, Shebalov and Klabjan 2006).

The second category designs strategic plans to minimize delay propagation across flight networks.

Lan et al. (2006) distinguish primary vs. propagated delays, and propose optimization models

to prevent delay propagation through aircraft routing (by allocating schedule slack where it is

most critical) and schedule retimings (by adjusting flights’ departure and arrival times to reduce

passenger misconnections). Ahmadbeygi et al. (2010) and Borndörfer et al. (2010) optimize air-

craft routings and schedule re-timings to minimize propagated delays. Cadarso and Maŕın (2011)

optimize flight scheduling and fleet assignment to avoid passenger misconnections, by allocating

schedule slack accordingly. Dunbar et al. (2012) and Dunbar et al. (2014) optimize aircraft routings

and crew pairings to minimize propagated delay—assuming deterministic and stochastic primary

delays, respectively. Yan and Kung (2016) use robust optimization to capture the uncertainty

on primary delays into the optimization of aircraft routings. Marla et al. (2018) compare chance

programming, stochastic programming and robust optimization for aircraft routing.
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This paper departs from this literature in two ways. First, robust airline planning focuses on

strategic decisions, made prior to the day of operations in anticipation of future disruptions. In

contrast, this paper optimizes airline recovery decisions, made during the day of operations in

response to observed disruptions. Second, the vast majority of the robust airline planning literature

focuses on propagated delays (due to insufficient buffers). In this work, we further break down non-

propagated (primary) delays into “systemic” and “contingent” delays, and use a queuing model of

airport congestion to capture systemic disruptions—in addition to propagated delays.

Airline disruption recovery involves optimizing operating decisions in response to observed

disruptions during the day of operations, in order to minimize the costs of bringing operations

back to normal. The main recovery levers include, from the least to most disruptive, aircraft

and crew swaps (i.e., changes in aircraft-flight assignments and crew pairings), departure holds

(i.e., voluntary introduction of flight departure delays), passenger re-accommodations, and flight

cancellations (see Barnhart and Vaze 2015). Typical trade-offs involve operating flights close to

their schedule to minimize delays vs. introducing departure holds to ensure connectivity.

Starting with initial aircraft recovery heuristics from Teodorović (1984), researchers have

designed large-scale optimization algorithms to deal with realistic problem instances (see, e.g., Jar-

rah et al. 1993, Cao and Kanafani 1997, Clarke and Naryadi 1995, Yan and Yang 1996). Thengvall

et al. (2000) extend basic aircraft recovery models to minimize changes in aircraft routings and

to capture airlines’ preferences. Rosenberger et al. (2003) jointly optimize departure holds (i.e.,

flight rescheduling) and aircraft reroutings. Eggenberg et al. (2010) add operational constraints

to ensure that the airline can comply with aircraft maintenance, crew recovery, and passenger

accommodation requirements. Other studies focused on crew recovery, following aircraft recovery

decisions (Wei et al. 1997, Lettovský et al. 2000, Yu et al. 2003).

Subsequent studies integrate the problems of aircraft, crew and passenger recovery. Zhang et al.

(2015) address aircraft and crew recovery in sequence. Jozefowiez et al. (2013) and Zhang et al.

(2016) present three-step heuristics that sequentially solve schedule recovery, aircraft recovery and

passenger recovery. Bratu and Barnhart (2006) combine aircraft and passenger recovery. Petersen

et al. (2012) propose a fully integrated model of schedule, aircraft, passenger and crew recovery,

solved with Benders decomposition, column generation and row generation. Follow-up studies have

developed algorithms for large-scale integrated recovery problems, using large-scale neighborhood

search (Sinclair et al. 2014), a reduced time-band representation (Hu et al. 2015), greedy random-

ized adaptive search (Hu et al. 2016), and row-and-column generation (Maher 2016). Marla et al.

(2017) integrate flight planning (i.e., aircraft routing, flying altitude and speed) into aircraft and

passenger recovery—showing that flight planning provides an additional recovery lever.
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In contrast with this body of work, our paper leverages forecasts of future systemic disruptions—

and the uncertainty thereof—into recovery optimization. To our knowledge, the literature on

recovery optimization under uncertainty is limited. Abdelghany et al. (2004) propose a heuristic

simulation to project flight delays and Abdelghany et al. (2008) integrate delay uncertainty into

a myopic optimization model of disruption recovery. Jafari and Zegordi (2010) dynamically opti-

mize aircraft recovery and passenger re-accommodation, on a relatively small-scale network and

with two disruption scenarios. McCarty and Cohn (2018) propose a two-stage stochastic program

to pre-emptively change passenger itineraries, before misconnections occur, under uncertainty on

delay propagation. Our paper shares similarities with this approach but also exhibits two differ-

ences: (i) we focus on aircraft recovery, as opposed to passenger recovery, and (ii) we incorporate

forecasts of propagated delays as well as systemic delays resulting from airport congestion.

Summary. This paper augments the prior literature in two major ways:

1. We propose the first jointly reactive and proactive approach to airline disruption management

that optimizes aircraft recovery in response to observed disruptions, while anticipating future

disruptions (partially and probabilistically). This approach differs from the airline disruption

recovery literature by proactively leveraging forecasts of future disruptions. As such, it shares

similarities with the robust airline planning literature, but it deals with a tactical disruption

recovery problem—as opposed to a strategic planning problem.

2. We integrate probabilistic forecasts of systemic delays arising from demand-capacity imbal-

ances at busy airports—in addition to propagated delays—into disruption management. This

is achieved by embedding future disruption scenarios obtained from a stochastic queuing model

of airport congestion into a prescriptive optimization framework of disruption recovery.

3. Modeling Framework

We now formulate our dynamic decision-making framework for aircraft recovery. The model opti-

mizes recovery and flight planning decisions. Recovery decisions include departure times (i.e.,

when to operate each flight), aircraft-flight assignments (i.e., whether to “swap” aircraft or not),

and flight cancellations. Flight planning decisions include aircraft routing, flying altitude and fly-

ing speed. Together, these two sets of decisions determine recovery costs (i.e., delay costs, swap

costs and cancellation costs) and flight operating costs. Unlike existing approaches, our framework

optimizes these decisions in response to observed disruptions as well as given forecasts of future

disruptions—thus providing a jointly reactive and proactive approach to disruption management.

Specifically, disruptions observed at any point in time can be classified into three categories:

• Propagated disruptions: past disruptions spreading across spatial-temporal networks, due to

insufficient buffers in the schedule to absorb upstream delays.
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• Systemic disruptions: congestion at hub airports induced by demand-capacity imbalances.

• Contingent disruptions: other inefficiencies within airline and passenger operations (e.g., air-

craft maintenance, late crews, late passenger boarding).

At any decision time, the decision-maker observes all operating disruptions. However, future

disruptions are only known partially and probabilistically. First, our approach (like existing ones)

captures propagated disruptions resulting from recovery decisions. Second, our approach (unlike

existing ones) considers probabilistic forecasts of systemic disruptions—obtained from a stochas-

tic and dynamic queuing model at hub airports. Third, our approach ignores future contingent

disruptions in the optimization, but these still realize randomly at each decision point.
Our modeling architecture is shown in Figure 1. It starts by applying the stochastic queuing

model to generate probabilistic forecasts of systemic disruptions, using data on flight schedules and

airport capacities (Section 3.1). It then optimizes recovery decisions dynamically. We divide the

day into T periods, indexed by t= 1, · · · , T . In each period, the state of the system is determined

from past operations and observed (propagated, systemic and contingent) disruptions. Flight plan-

ning options are generated with an engineering tool provided by Boeing/Jeppesen called JetPlan

(Section 3.2). We represent recovery and flight planning options in a probabilistic time-space net-

work of operations (Section 3.3). We then optimize airline recovery decisions to minimize expected

recovery costs. This is cast as a dynamic program (Section 3.4). However, the size of the problem

makes it intractable, so we propose in Section 4 a solution procedure based on look-ahead approx-

imation and sample average approximation. This procedure relies on the Stochastic Reactive and

Proactive Disruption Management (SRPDM), which optimizes recovery decisions across a sampled

set of disruption scenarios for a given look-ahead window. The recovery plan is used to define the

state of the system in the next period. The process is repeated until the end of the horizon.

A few observations on our problem are noteworthy. First, the approach developed in this paper

can be applied to any airline network but is likely to be most beneficial for hub-and-spoke airlines.

Second, this paper focuses on schedule and aircraft recovery. We leave the integration of other

recovery decisions, such as passenger and crew recovery, into our stochastic optimization framework

for future research. In practice, passenger and crew recovery can be optimized subsequently, given

the aircraft recovery plan. Last, we solve the aircraft recovery problem for each fleet type inde-

pendently. This is consistent with the existing literature and current practice—as aircraft swaps

typically occur within each fleet to minimize interference with passenger and crew itineraries.

3.1. Queuing Model of Systemic Disruptions at Hub Airports

The stochastic and dynamic queuing model is applied at each hub airport to forecast future sys-

temic disruptions. This approach characterizes the airport as a queuing system, in which service is

provided by the runway system and aircraft join the system when they are ready to take off or to

Electronic copy available at: https://ssrn.com/abstract=3082518



Lee, Marla and Jacquillat: Dynamic Airline Disruption Management
8

p p p p p p p p p pp p p p p p p p p pppp ppp Input Model �� �� Output Algorithm steps

p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p
ppppppp
ppp
p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p pppppppp

ppp
Flight schedules

-

p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p
ppppppp
ppp
p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p pppppppp

ppp
Airport Capacities

?

Stochastic dynamic queuing model

?
�
�
��

�
�
��

Forecast of Systemic Disruptions

-

?

Initialization: t= 1

?
Observation of total disruptions

(propagated, systemic and contingent disruptions)

? ?
Flight Planning Tool
(Boeing/Jeppesen)

Probabilistic time-space
network representation

?
�
�
��

�
�
��

Time-space networks
(across all disruption scenarios)

?

Stochastic Reactive and Proactive Disruption Management (SRPDM)

?
�
�
��

�
�
��

Recovery decisions at time t

?�����
PPPPP

PP
PP

P
��

��
�t= T − 1?

YES
�
�
�
�END

NO

t= t+ 1

�

Figure 1 Modeling architecture.

land. The model takes as inputs the schedule of flights and the runway capacity at each airport. It

returns the probability distribution of flight delays at each time of the day, which is then used to

sample disruption scenarios and to construct our time-space networks (see Figure 1).

Specifically, we model arrival and departure delays at each airport by means of dynamic and

stochastic M(t)/E3(t)/1 queuing models. In other words, the arrival and departure demand pro-
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cesses are both modeled as Poisson processes, and the arrival and departure service processes are

modeled as Erlang processes of order 3. The model is non-stationary, i.e., demand and service

rates are time-varying to reflect changes in flight schedules and airport capacities over the day.

We divide the day of operations into periods of length S = 15 minutes. The demand rates (λs in

period s) are determined by the number of flights scheduled. The service rates (µs in period s)

are constrained by the airport’s capacity. To reflect air traffic operating procedures, we integrate

a dynamic programming model that optimizes arrival and departure service rates, under capac-

ity constraints, by selecting runway configurations (i.e., the set of active runways) and balancing

arrivals and departures (Jacquillat et al. 2016). This approach approximates the dynamics and

magnitude of delays at busy airports with good accuracy (Jacquillat and Odoni 2015b).

The state-transition diagram of the M(t)/E3(t)/1 queuing system is shown in Figure 2. It relies

on the characterization of an Erlang process of order 3 and rate µ as the succession of 3 Markovian

“stages of work”, each completed at rate 3µ. The state i defines the number of remaining stages of

work. Let u be a time index that varies continuously, and Pi(u) be the probability of being in state

i at time u. Equations (1)–(5) show the system of Chapman-Kolmogorov first-order differential

equations describing the evolution of Pi(u) in period s, with u varying between (s− 1)S and sS.

The practical queue capacity is denoted by N . The system is empty at the beginning of the day.

We solve Equations (1)–(5) using the built-in differential equation solver ode45 in MATLAB 8.1.
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0 �

3µt��
��
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3µt��
��
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3µt��
��
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3µt��
��
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Figure 2 State-transition diagram of the M(t)/E3(t)/1 queuing system.

dP0(u)

du
=−λtP0(u) + kµtP1(u) (1)

dPi(u)

du
=−(λt + kµt)Pi(u) + kµtPi+1(u) ∀i∈ {1, · · · , k} (2)

dPi(u)

du
= λtPi−k(u)− (λt + kµt)Pi(u) + kµtPi+1(u) ∀i∈ {k+ 1, . . . , (N − 1)k} (3)

dPi(u)

du
= λtPi−k(u)− kµtPi(u) + kµtPi+1(u) ∀i∈ {(N − 1)k+ 1, . . . , kN − 1} (4)

dPkN(u)

du
= λtPk(N−1)(u)− kµtPkN(u) (5)

We denote the sample space of systemic disruption profiles by Q̃, indexed by q̃= 1, · · · , Q̃, each

occurring with a probability ξq̃. The set Q̃ includes all queue length combinations in all time periods
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and at all airports. Across T periods and in a network of K airports, the cardinality of Q̃ is thus

(N +1)2TK (since the arrival and departure queue lengths can each take any of the values 0, · · · ,N

in each period and at each airport). Even for a short horizon and a small network, integrating the

full range of airport congestion outcomes into recovery optimization is highly intractable. Therefore,

we will proceed by Monte Carlo sampling to generate representative scenarios from this probability

distribution. We denote by Q the set of such sampled scenarios, indexed by q= 1, · · · ,Q.

Two comments on this queuing model are noteworthy. First, the model is applied independently

at each airport. This is motivated by the fact that airport operating stochasticity primarily stems

from local factors (e.g., variations in flight operations, weather, aircraft mix, etc.). Second, look-

ahead stochastic disruption scenarios are generated once for all periods t= 1, · · · , T . In practice,

delays occurring from period t onward obviously depend on realized congestion at period t. How-

ever, our approach aims to capture delay forecasts that are available to an airline. In the current

environment, the level of collaboration between traffic managers and airlines is such that informa-

tion on the exact number of queuing aircraft at each airport is not publicly shared in real time.

Therefore, we adopt a conservative approach that only leverages the information that is available

before the day of operations (e.g., the schedule of flights) or can be estimated from historical records

of operations (e.g., airport capacity estimates). In future work, this assumption can be relaxed by

integrating a dynamic queuing update mechanism into the framework shown in Figure 1—thus

identifying the benefits resulting from real-time information sharing between operating entities.

3.2. Flight Planning

We leverage in this paper the JetPlan tool from Boeing/Jeppesen—a flight planning software used

by many airlines to plan their flight trajectories prior to departure. JetPlan takes as inputs the

flight’s scheduled departure and arrival times, anticipated weather patterns, aircraft and engine

configurations, and the aircraft’s payload (including cargo, passengers, luggage, and fuel). It gener-

ates flight planning options (including aircraft routing across waypoints from origin to destination,

flight speeds, and flying altitudes) and estimates the resulting fuel costs and travel times. In our

framework, JetPlan is used to generate flight copies in the time-space networks (see Figure 1).

Specifically, the flight trajectories generated by JetPlan are expressed as a function of an

engineering-based metric called the cost-index (CI). CI is defined as the ratio of the flight’s time-

related costs (determined by the flight’s duration and aircraft, passenger and crew connectivities)

divided by the fuel cost. CI can be interpreted as the amount of additional fuel worth burning

(relative to the minimum fuel burn to operate the flight) to save one unit of time. The most fuel-

efficient flight plan is referred to as CI0. The larger the CI value, the higher the fuel costs and the

lower the flying times. Oftentimes, operating all flights at CI0 result in delays and lost connectivity,
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especially under disruptions; therefore, flights are planned at a slightly higher CI, typically around

CI30. In our experiments, we use as discrete inputs corresponding to CI0 (a conservative flight

plan), CI30 (the baseline option), CI70, CI100, and CI700 (increasingly aggressive flight plans).

3.3. Time-space Network Representation

In each period, we construct a time-space network for each aircraft, comprising all flights that the

aircraft can operate by the end of the horizon (period T ). This representation starts with the air-

craft’s current location, observed disruptions, probabilistic forecasts of future systemic disruptions

(Section 3.1), and possible flight plans (Section 3.2). For each flight, the network defines several

copies, each associated with departure and arrival times and with a flight plan. It is then used to

formulate a multi-commodity network flow model, with each aircraft treated as a commodity—

enabling to optimize flight-aircraft pairings among a huge number of options (see Figure 1).

Figure 3 shows an example of such time-space network representation in periods t (Figure 3a) and

t+ 1 (Figure 3b). Let us denote by N̂W
t

a the time-space network in period t= 1, · · · , T for aircraft

a ∈ A. Each node in N̂W
t

a represents a combination of time and location. Each arc represents a

possible flight arc (straight line in Figure 3) or a ground arc, that is, the aircraft’s turnaround

from one arrival node to a subsequent departure node at the same airport (curved line). We add

a supply node ns denoting the location and time where the aircraft is currently available, and a

demand node nd representing the end of the aircraft’s operation.

Flight copies are widely used in airline recovery, but we highlight here two particular features

of our approach. First, flight copies differ not only by departure time (thus capturing recovery

decisions, such as departure times, aircraft-flight assignments, and cancellations) but also by flight

duration (thus capturing flight planning decisions, such as route, altitude, speed). This is consistent

with the model from Marla et al. (2017). For instance, in Figure 3, flight f1 has four copies (f1s1c0,

f1s1c1, f1s1c2 and f1s1c3), where f1s1c2 and f1s1c3 involve larger departure delays than f1s1c0 and

f1s1c1, and f1s1c1 and f1s1c3 have a longer en-route time than f1s1c0 and f1s1c2. Second, our time-

space networks are subject to uncertainty regarding future disruptions. Thus, N̂W
t

a represents a

probabilistic time-space network at this point. In Section 4, we shall develop scenario-based time-

space network representations. This probabilistic time-space network representation lies at the core

of the stochastic approach to airline recovery and flight planning developed in this paper.

The time-space network representation captures the evolution of the system over time by track-

ing each aircraft’s movement over time and space and creating flight copies based on the latest

(propagated, systemic and contingent) disruptions observations. To illustrate the dynamics of the

system, the figure shows two scenarios, assumed to be equally probable. Flight f1 is scheduled

to operate in period t, before uncertainty is resolved. Decisions related to flight f1 thus need to
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(a) N̂W
t

aq: f1’s operation is realized at time t

(b) N̂W
t+1

aq : f2’s operation is realized at time t+ 1

Figure 3 Example of probabilistic time-space network representation.
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be identical across all scenarios; in our example, copy c1 is selected. Then, the model anticipates

to operate copy c1 of flight f2 in scenario 1 (a slower option since departure delay is small) and

copy c0 in scenario 2 (a faster option since departure delay is larger). Figure 3b shows the state

of the system at time t+ 1; the supply node ns updates the aircraft’s availability, depending on

prior decisions and realized disruptions. The model is solved again to optimize recovery decisions

in period t+ 1—at that point, the operating decision for flight f2 (namely, operating copy c3) is

identical in scenario 1 and in scenario 2. The process is repeated until the end of the horizon.

3.4. Stochastic Optimization Approach

Finally, our stochastic optimization model determines, in each period t = 1, · · · , T , the airline’s

recovery and flight planning decisions. It takes as inputs the probabilistic time-space networks

(Section 3.3) of all aircraft (see Figure 1). For each flight, it selects at most one copy across all

time-space networks—thus ensuring that each flight is either covered by one aircraft or cancelled.

We cast this problem as a finite-horizon dynamic program. We describe it in this section, and

motivate our look-ahead and sample average approximations (detailed in Section 4).

Let Ft denote the set of flights scheduled to depart in period t = 1, · · · , T . Let K̂tfa be the set

of copies in the time-space network N̂W
t

a associated with flight f ∈ Ft. Let ρk be the fuel cost

associated with copy k ∈ K̂tfa (obtained from the flight plan). Let δk be its delay cost (obtained

from its departure time). Let σk be its swap cost, incurred if aircraft a is different from the one

that was originally planned to operate flight f . Let γf be the cost of cancelling flight f ∈Ft. Note

that these cost parameters can capture non-linearities (e.g., non-linear costs of delays).

State variable: The state variable tracks the physical state of the airline’s fleet and observed

disruptions. The physical state can be represented by two vectors θt and lt, each defined over

a∈A. For each aircraft a∈A, θta and lta denote, respectively, its latest arrival time and its arrival

airport. Note that θta can either correspond to a past time stamp (if aircraft a is on the ground at

time t) or a future one (if aircraft a is in the air at time t). Observed disruptions are represented

by a vector Dt defined over f ∈Ft, where Dt
f denotes the departure delay of flight f ∈Ft observed

at time t. The state variable, denoted by Rt, is thus given by:

Rt =
(
θt, lt,Dt

)
. (6)

The vector Rt is used to construct the time-space networks N̂W
t

a for all a∈A.

Decision variables: All recovery and flight planning decisions are captured by the set of copies

selected across all time-space networks N̂W
t

a for a∈A. We capture them with two decision vectors

x̂t and ẑt, where x̂t is defined over a∈A and k ∈∪f∈FtK̂tfa and ẑt is defined over f ∈Ft. Specifically,

Electronic copy available at: https://ssrn.com/abstract=3082518



Lee, Marla and Jacquillat: Dynamic Airline Disruption Management
14

x̂tka is equal to 1 if copy k is selected and flown by aircraft a, and 0 otherwise; and ẑtf is equal to 1

if flight f is cancelled, and 0 otherwise. Our decision variable, denoted by U t given by:

U t =
(
x̂t, ẑt

)
. (7)

Recovery and flight planning decisions are subject to a set of constraints (detailed in Section 4).

We denote here the decision space by U t.

Objective function. Our cost function, denoted by Ct(R
t,U t), is defined as the total cost of

recovery across all flights f ∈Ft, including fuel, delay, swap and cancellation costs. It is given by:

Ct(R
t,U t) =

∑
a∈A

∑
f∈Ft

∑
k∈K̂t

fa

(ρk + δk +σk) x̂
t
ka +

∑
f∈Ft

γf ẑ
t
f . (8)

Transition function: The transition function describes the recovery process and the dynamic

realization of disruptions between t and t+ 1. It can be represented by a function ft as follows:

Rt+1 = ft
(
Rt,U t

)
. (9)

The recovery process updates the arrival airport and arrival time of each aircraft a. For example,

if a flight is operated by aircraft a from airport K to airport L, then lta is updated to airport L

and θta is updated to its planned arrival time at airport L. Conversely, if an aircraft is not assigned

to any departing flight at time t, then its availability remains unchanged. Specifically, we have:

(θt+1
a , lt+1

a ) =

{
(θta, l

t
a), if x̂tka = 0, for all k ∈∪f∈FtK̂tfa,

(θk, lk), if x̂tka = 1, for some k ∈∪f∈FtK̂tfa,

where θ
k

f and l
k

f denote the time and location of arrival of flight copy k, respectively.

Realized disruptions are written as the sum of propagated, systemic and contingent disruptions,

denoted respectively by PD
t+1

, SD
t+1

and CD
t+1

. Specifically, we have:

Dt+1 =PD
t+1

+SD
t+1

+CD
t+1

, with:


PD

t+1
realized from disruption decisions,

SD
t+1

realized from ξ (Section 3.1),

CD
t+1

realized from an unknown distribution.

(10)

Bellman Equation: Let Jt(R
t) be the optimal cost-to-go in period t. The terminal cost in period

T + 1 is 0. Therefore, the Bellman equation is given as follows, where the expectation of the future

cost-to-go is taken over the probability distribution ξ of future systemic disruptions (Section 3.1):

Jt(R
t) = min

Ut∈Ut


∑
a∈A

∑
f∈Ft

∑
k∈K̂t

fa

(ρk + δk +σk) x̂
t
ka +

∑
f∈Ft

γf ẑ
t
f +Eξ

[
Jt+1

(
ft
(
Rt,U t

)
|Rt
)] , (11)

JT+1(R
T+1) = 0. (12)

Electronic copy available at: https://ssrn.com/abstract=3082518



Lee, Marla and Jacquillat: Dynamic Airline Disruption Management
15

Unfortunately, this Bellman equation is too complex to be solved exactly by backward induction.

Indeed, the state space grows exponentially as a function of the number of aircraft and the sample

space of systemic disruptions (itself exponentially large), and the decision space grows exponentially

as a function of the number of flights, the number of recovery options and the number of flight

plans. The dynamic program can thus quickly become computationally intractable for real-sized

instances—a well-known “curse of dimensionality” (Powell 2007).

4. Solution Approach and SRPDM Formulation

We propose a solution procedure based on look-ahead approximation and sample average approxi-

mation to solve the decision-making problem from Section 3. Look-ahead approximation involves

estimating the cost-to-go function using a restricted time window, rather than the full horizon

(Powell 2007, Bertsekas 2005, 2012). Sample average approximation involves estimating the cost-

to-go function using a sampled set of scenarios of future systemic disruptions, rather than their

full probability distribution (Kleywegt et al. 2002). At each decision point, we apply our Stochas-

tic Reactive and Proactive Disruption Management (SRPDM) model, formulated as a stochastic

integer program in Section 4.1. SRPDM optimizes recovery decisions for the look-ahead horizon

based on the sampled disruption scenarios. Similar solution approaches have been applied to such

problems as vehicle routing (Secomandi 2001) and job shop scheduling (Meloni et al. 2004).

Figure 4 Look-ahead framework for dynamic disruption management.

Our look-ahead procedure is shown in Figure 4, with decision points indexed by t = 1, · · · , T .

The interval between periods t and t+ 1 is referred to as the rolling period. At each decision point,

we observe realized disruptions for the rolling period and derive scenarios of systemic disruptions

for a given look-ahead period. SRPDM is applied to derive disruption recovery and flight planning

decisions for the rolling and look-ahead periods. We add a buffer period to handle cases in which
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the disruptions are too large to accommodate all flights within the look-ahead period. The buffer

period also ensures consistency of near-term operating decisions with flight schedules beyond the

look-ahead window. We denote by TR the length of the decision-making window and by TLA(<TR)

the length of the look-ahead period. The objective at time t is given by:

min
Ut∈Ut

···
Ut+TR∈Ut+TR

t+TR∑
τ=t

Eξ

∑
a∈A

∑
f∈Fτ

∑
k∈K̂τ

fa

(ρk + δk +σk) x̂
τ
ka +

∑
f∈Fτ

γf ẑ
τ
f

 (13)

We now use our sample average approximation to approximate Equation (13). As mentioned in

Section 3.1, we proceed by Monte Carlo sampling to approximate the expectation operator, using

the set Q of disruption scenarios. As detailed in the next section, we define a time-space network for

each aircraft a∈A in each scenario q, and denote by Ktfaq be the set of copies in the corresponding

time-space network associated with flight f ∈ Ft. We also introduce variables xtkaq and ztfq as the

counterparts of x̂tka and ẑtf in scenario q. These decision variables are scenario-dependent, thus

capturing the flexibility of adapting future recovery and flight planning decisions as a function of

the scenario realization. We also define non-anticipativity constraints in Section 4.1 to ensure the

consistency of near-term decisions across all scenarios. The objective function becomes:

min
Ut∈Ut

···
Ut+TR∈Ut+TR

t+TR∑
τ=t

1

Q

∑
q∈Q

∑
a∈A

∑
f∈Fτ

∑
k∈Kτ

faq

(ρk + δk +σk)x
t
kaq +

∑
f∈Fτ

γfz
t
fq

 (14)

We now use Equation (14) to develop the mathematical formulation of our SRPDM. We calibrate

our look-ahead and sample average approximations in Section 5.4. Like any approximation scheme,

our algorithm induces a trade-off between speed and solution quality. In our implementation,

we strive to obtain solutions within a few minutes of computation—consistently with practical

requirements and with earlier studies in airline recovery (see, e.g., Petersen et al. 2012, Maher 2016,

Marla et al. 2017). Note, moreover, that our solution algorithm does not provide solution quality

guarantees. We shall thus compare in Section 6 its solution to that of a myopic baseline (defined

in Section 4.3)—underscoring the benefits of our modeling approach and approximate algorithm

as compared to existing recovery approaches that do not leverage forecasts of future disruptions.

4.1. Stochastic Reactive and Proactive Disruption Management (SRPDM)

SRPDM builds upon the model from Marla et al. (2017), but extends it to capture partial and

probabilistic forecasts of future disruptions. SRPDM optimizes disruption recovery decisions (i.e.,

departure holds, aircraft swaps, flight cancellations) and flight planning decisions (i.e., flying alti-

tude, speed and route) to minimize expected recovery costs across all disruption scenarios (Equa-

tion (14)). It is formulated as a stochastic integer program, based on non-anticipativity constraints

for first-stage decision variables and scenario-dependent constraints for subsequent periods.
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Sets

Fτ : Set of flights scheduled to depart in period τ = t, · · · , t+TR

A : Set of available aircraft

Q : Set of sampled disruption scenarios

NWt
aq : Time-space network corresponding to aircraft a in scenario q at time t

Ktfaq : Set of copies of flight f ∈FRt in network NWt
aq from aircraft a in scenario q at time t

Gtaq : Set of ground arcs connecting pairs of nodes in NWt
aq

N t
aq : Set of nodes in NWt

aq

Itnaq : Set of incoming arcs to node n∈N t
aq in NWt

aq

Otnaq : Set of outgoing arcs to node n∈N t
aq in NWt

aq

We define here a time-space network NWt
aq in each scenario q ∈Q for each aircraft a ∈A. The

earlier probabilistic network representation N̂W
t

a is equivalent to the collection
(
NWt

aq

)
q∈Q. The

same observation applies to Ktfaq. By construction, the time-space networks coincide for all flights

in the rolling period across scenarios, i.e., Ktf,a,q1 = Ktf,a,q2 for all f ∈ Ft, a ∈ A and q1, q2 ∈ Q.

However, the networks may differ for the flights scheduled in the look-ahead and buffer periods to

reflect the various operating conditions across disruption scenarios.

Parameters

δk : Delay cost associated with copy k ∈Ktfaq, over all f ∈∪τ=1,··· ,TRFτ , a∈A, q ∈Q

ρk : Fuel cost associated with copy k ∈Ktfaq, over all f ∈∪τ=1,··· ,TRFτ , a∈A, q ∈Q

σk : Aircraft swap cost associated with copy k ∈Ktfaq, over all f ∈∪τ=1,··· ,TRFτ , a∈A, q ∈Q

γf : Cost of cancellation of flight f ∈∪τ=1,··· ,TRFτ

stnaq =

 1 if aircraft a∈A starts in NWt
aq at node n

−1 if aircraft a∈A ends in NWt
aq at node n

0 otherwise
The swap cost σk depends only on which aircraft is used to operate copy k. Specifically, we have

σk1 = σk2 for k1, k2 ∈NWt
aq for all a and q; and σk = 0 if k ∈NWt

a0q
for all q ∈Q, if the flight was

originally planned to be operated by a0. Moreover, stnaq = 1 (or -1) indicates that node n is the

supply (or demand) node for aircraft a in NWt
aq, and stnaq = 0 means node n is an intermediate

airport location. These parameters will be used to formulate the flow balance constraints.

Decision Variables

xtkaq =

{
1 if copy k ∈∪τ=1,··· ,TR ∪f∈Fτ Ktfaq is selected with aircraft a in scenario q at time t
0 otherwise

ytgaq =

{
1 if ground arc g in NWt

aq of aircraft a is selected in scenario q at time t
0 otherwise

ztfq =

{
1 if f ∈∪τ=1,··· ,TRFτ is cancelled in scenario q at time t
0 otherwise

The decision variables include first-stage variables, which are determined at time t before any

scenario is realized, and scenario-dependent variables throughout the look-ahead and buffer periods.
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This structure enables different decisions to be made across scenarios in periods t+ 1, · · · , t+ TR.

But decisions made for the rolling period (period t) will be subject to non-anticipativity constraints.

Only those decisions in the rolling period are to be executed at time t.

Formulation

min
x,y,z

t+TR∑
τ=t

1

|Q|
∑
q∈Q

∑
a∈A

∑
f∈Fτ

∑
k∈Kt

faq

(ρk + δk +σk)x
t
kaq +

∑
f∈Fτ

γfz
t
fq

 (15)

s.t. xtk,a,q1 = xtk,a,q2 ∀k ∈Ktf,a,q1 ,∀f ∈Ft,∀q1, q2 ∈Q,∀a∈A (16)

ztf,q1 = ztf,q2 ∀f ∈Ft,∀q1, q2 ∈Q (17)∑
a∈A

∑
k∈Kτ

faq

xtkaq + ztfq = 1 ∀f ∈Ft ∪ · · · ∪Ft+TR ,∀q ∈Q (18)

∑
g∈Itnaq∩Gtaq

ytgaq +
∑

k∈Itnaq\Gtaq

xtkaq + sτnaq =
∑

g∈Otnaq∩Gtaq

ytgaq +
∑

k∈Otnaq\Gtaq

xtkaq

∀n∈N t
aq,∀a∈A,∀q ∈Q (19)

xtkaq ∈ {0,1} ∀k ∈Ktfaq,∀f ∈Fτ ,∀a∈A,∀q ∈Q,∀τ = t, · · · , t+TR (20)

ytgaq ∈ {0,1} ∀g ∈ Gtaq,∀a∈A,∀q ∈Q (21)

ztfq ∈ {0,1} ∀f ∈Fτ ,∀q ∈Q,∀τ = t, · · · , t+TR (22)

The objective function (15) minimizes expected recovery costs, averaged across all |Q| sampled

scenarios. Constraints (16) and (17) are non-anticipativity constraints that ensure that first-stage

decisions in the rolling period are identical across all scenarios. Constraints (18) ensure that a copy

of each flight is selected or the flight is cancelled. Constraints (19) maintain flow conservation: if an

aircraft is incoming to a node, it must also be outgoing from that node—except at the source and

destination, which have an outgoing and an incoming aircraft, respectively. This formulation also

ensures that each aircraft reaches its final destination by the end of the day—in high-disruption

instances where this would lead to infeasibility, this formulation could be easily modified by impos-

ing aggregate constraints ensuring, for instance, that a minimal number of aircraft would end their

routes at each given airport. Constraints (20)–(22) define the domains of all variables.

4.2. Rolling Algorithm

We synthesize our dynamic solution procedure in Algorithm 1. The algorithm iterates over the

recovery horizon {1, · · · , T}. At each time period t, it generates the time-space networks NWt
aq,

and solves SRPDM. From one period to the next, our state variable Rt = (θt, lt,Dt) is updated

based on prior recovery decisions and revealed disruptions. We discuss below the creation of the

time-space networks and other steps ensuring the feasibility and practicality of the solution.
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Algorithm 1 Solution algorithm.

1: get R1;

2: for each t∈ {1,2, . . . T} do

3: get Ft, · · · ,Ft+TR

4: maxWindow = initialHoldingWindow;

5: holdingInterval = 10 minutes;

6: set feasibleSolution = false;

7: while feasibleSolution = false and maxWindow≤ maxWindowLimit do

8: for each a∈A, each q ∈Q do

9: Generate NWt
aq; . See Figure 5

10: end for

11: Solve SRPDM, (see Equations (15) to (22)) . See Section 4.1

12: if SRPDM feasible and less than Γ cancellations then

13: feasibleSolution = true;

14: for each a∈A, each f ∈Ft, each q ∈Q, each k ∈ K̂tfaq do

15: if xtkaq∀q ∈Q≡ xtka = 1 then

16: Update Rt with new location and time of all aircraft a∈A;

17: end if

18: end for

19: else

20: maxWindow=maxWindow+δ

21: end if

22: end while

23: if feasibleSolution = false then

24: Ã = set of aircraft that cause infeasibility

25: maxWindow = initialHoldingWindow;

26: for each a∈A\ Ã, each q ∈Q do

27: Generate NWt
aq; . See Figure 5

28: end for

29: Solve SRPDM . See Section 4.1

30: for each a∈A, each f ∈Ft, each q ∈Q, each k ∈ K̂tfaq do

31: if xtka = 1 then

32: Update Rt with new location and time of aircraft a;

33: end if

34: end for

35: end if

36: end for

Time-space network generation. The process underlying the creation of the time-space networks

NWt
aq is shown in Figure 5. It starts by reading the flight schedule, the flight planning options, the

latest availability of each aircraft (which depend on its past flight assignments, past disruptions,
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Figure 5 Process used to create time-space networks NWt
aq.

and turnaround times), and the disruption scenario considered. This information is used to generate

a set of flight copies that can be operated by the aircraft in the decision-making window. For each

flight, the first copy departs at the flight’s scheduled departure time shifted by its delay observed at

time t, or at the time when the aircraft becomes available—whichever comes later. The additional

copies correspond to added departure delays and/or alternative flight plans.

Generating flight copies requires assumptions on the granularity and scope of the time-space

network. Granularity refers to the interval between consecutive copies, named holding interval. The

smaller the holding interval, the larger the decision space but the better the solution. We use a

holding interval of 10 minutes. Scope refers to the largest allowed departure hold, named maximum

holding window. For instance, a maximum holding window of 1 hour implies that at most 7 copies

of each flight can be created for a given flight plan (associated with holds of 0,10, · · · ,60 minutes).

This information is used to generate the flight arcs and ground arcs across the network.

Ensuring global feasibility. Under large disruptions, the flow balance constraints in SRPDM may

lead to infeasibility or result in inadequately large numbers of flight cancellations, due to the

maximum holding window. This happens when no aircraft is available until the end of the allowed

holding window for a given flight, thereby violating the flow balance constraint at the supply node.

In practice, airlines need to balance objectives of minimizing the largest flight delays (captured by

the maximum holding window) and of minimizing the number of cancellations. For this reason,

we impose an upper bound Γ to the number of cancellations, and increase the maximum holding

window iteratively until a solution with fewer than Γ cancellations is obtained. In our computations,

we use a value Γ equal to 5% of the total number of flights in SRPDM at each time t.

We initialize the maximum holding window value and, if a feasible solution that cancels fewer

than Γ flights is found, we update the state variable and proceed to the next period. If the problem
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is infeasible or results in more than Γ cancellations, we increase the maximum holding window by

increments of δ. As soon as a feasible solution that cancels fewer than Γ flights is found, we update

the state variable and proceed to the next period. If no such solution is found after the maximum

holding window reaches a pre-specified upper bound, we remove the restriction on the number of

cancellations and re-solve the model. We report these parameters in Section 5.4.

4.3. Myopic Baseline

Before proceeding to the computational implementation of the modeling and computational frame-

work developed in this paper, we outline the baseline approach used as a benchmark. Specifically,

we consider a baseline that optimizes recovery decisions myopically, without considering future

disruptions. This follows the approach from Marla et al. (2017). Under this approach, the decision-

maker observes disruptions at time t, and optimizes recovery decisions over the full planning hori-

zon. It does capture propagated disruptions, but ignores the creation of future primary (systemic

or contingent) disruptions. Since the baseline approach is less computationally complex than our

stochastic optimization approach, it can be solved as a single integer program from period t up to

the terminal period T at each decision point. We still implement it on a rolling basis to capture

the realizations of (systemic and contingent) disruptions—observed at each period.

This myopic baseline relies on a single time-space network for each aircraft, captured by sets

K̃tfa—analogous to Ktfaq. Similarly, the decision variables are written as x̃tka and z̃tf , defined for all

flights f ∈ Ft ∪ · · · ∪FT (or their copies). The variables x̃ and z̃ are subject to similar constraints

as Equations (16)–(22). The objective function becomes:

min
x,z

T∑
τ=t

∑
a∈A

∑
f∈Fτ

∑
k∈K̃τ

fa

(ρk + δk +σk)x̃
t
ka +

∑
f∈Fτ

γf z̃
t
f

 . (23)

5. Experimental Setup

We now implement our approach computationally to quantify the benefits of SRPDM, as compared

to the myopic baseline. All models are implemented in the Java programming language interfaced

with IBM ILOG CPLEX 12.6.1 on a workstation running at 1.8 GHz with 80 GB RAM.

5.1. Network Description

We consider the network of flights of Delta Air Lines, a major US hub-and-spoke airline. This

choice is arbitrary, and does not reflect Delta’s operating practices. While our model is expected

to bring stronger benefits for hub-and-spoke carriers, it can be applied to any airline network.

Delta Air Lines leverages six airports as hubs of operations (New York’s LaGuardia (LGA) and

John F. Kennedy (JFK), Atlanta (ALT), Detroit (DTW), Minneapolis-Saint Paul (MSP), and
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Salt Lake City (SLC)). We obtain flight schedules and fleet assignments from the Aviation System

Performance Metrics (ASPM) database maintained by the Federal Aviation Administration (FAA).

We consider 3 fleet types: Airbus 319 (A319), Airbus 320 (A320), and Boeing 757-200 (B752).

Table 1 Summary statistics for each network.

July 15 July 16 July 17 July 18

Metric A319 A320 B752 A319 A320 B752 A319 A320 B752 A319 A320 B752

# flights 256 260 306 266 247 312 279 254 311 276 262 314
percentile (2014) 33 80 40 80 30 60 100 50 60 95 80 65

# arr. – JFK 2 3 20 4 3 21 4 4 4 4 3 24
# arr. – LGA 19 9 1 20 9 2 23 10 4 23 8 2
# arr. – ATL 24 25 122 25 21 121 26 23 91 24 21 128
# arr. – MSP 26 38 27 27 37 27 28 38 24 28 34 29
# arr. – SLC 19 41 21 20 39 22 22 39 21 22 38 22
# arr. – DTW 36 25 16 38 22 18 37 22 16 37 22 16
Total 126 141 207 134 131 211 140 136 160 138 126 221

# dep. – JFK 2 3 20 4 3 24 4 4 7 4 3 24
# dep. – LGA 20 9 1 20 9 2 23 10 4 22 10 2
# dep. – ATL 24 25 117 26 21 123 26 22 89 24 22 124
# dep. – MSP 26 38 25 27 37 31 28 38 24 28 38 27
# dep. – SLC 19 40 22 21 39 21 22 38 20 22 38 22
# dep. – DTW 37 24 16 37 24 18 33 21 16 38 21 17
Total 128 139 204 135 133 219 136 137 160 137 132 216

less than 1 hour 9 2 0 10 0 0 9 0 0 9 0 0
1–2 hours 157 100 105 160 93 104 165 89 103 169 97 98
2–3 hours 54 72 75 57 64 74 63 65 71 57 71 78
3–4 hours 34 56 38 35 58 45 40 63 41 39 57 43
4–5 hours 2 25 42 4 27 42 2 28 48 2 29 49
5–6 hours 0 5 32 0 4 33 0 7 32 0 6 30
6+ hours 0 0 14 0 0 14 0 0 16 0 0 16
avg. flight time (min) 119 153 184 120 155 186 120 161 189 119 157 189

We consider the schedule of flights on four weekdays in July 2014. Table 1 reports characteristics

of each fleet’s network, and the corresponding percentile of the distribution of the number of daily

flights from Delta Air Lines in 2014. Note, first, that our experimental setup captures the variability

in Delta Air Lines’ schedules: the four days under consideration range from the blue33rd percentile

to the 100th percentile for the A319 fleet, from the 30th percentile to the 80th percentile for the

A320 fleet, and from the 40th percentile to the 65th percentile for the B752 fleet. In terms of spatial

concentration, the airline’s network is tightly connected to the six hub airports—with around 50%

of the arrivals and departures operated to or from a hub. Finally, the A319, A320 and B752 fleets

cover increasingly long flights on average—thus offering different recovery opportunities.

5.2. Stochastic Model Inputs

We generate disruption scenarios at each of the six hubs (see Section 3.1). We use capacity data from

Simaiakis (2012) and the Federal Aviation Administration (2004). We capture weather variations
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by means of a two-state Markov chain with “Visual Meteorological Conditions” and “Instrumental

Meteorological Conditions” states (used as proxies of “good” and “poor” weather, respectively).

We estimate the transition probabilities from historical data.

Figure 6 shows the expected departure delays at each of the six hub airports, for each 15-minute

period of the day. As expected, congestion levels exhibit significant variability from one airport

to another, due to differences in underlying scheduling and capacity patterns. JFK and LGA are

the most congested airports and SLC is the least congested one, with ATL, DTW and MSP lying

in-between. Moreover, delay patterns also vary across airports. Some airports (e.g., DTW, SLC

and MSP) operate a strongly “peaked” schedule, with alternating arrival and departure banks—

resulting in a sequence of periods with high delays and periods with low delays (see Figure 8 in

Appendix A). At other airports (e.g., LGA), the schedule of flights is relatively evenly distributed

over the day, resulting in more steady congestion levels throughout the day. The other two airports

(JFK and ATL) lie somewhat in-between: airport queues are less variable but still exhibit peaks

and valleys. These different patterns underscore the potential value of capturing the dynamics of

formation and propagation of delays by means of our queuing model for disruption recovery.

Figure 6 Expected departure delay at the six hubs.

5.3. Generation of Disruption Instances

In each period t= 1, · · · , T , we generate disruption instances (i.e., the departure delay of each flight

i ∈ Ft). We aim here to replicate the dynamics of the system (captured by the variable Dt) and

assess the performance of our modeling and computational framework against the myopic baseline.

For unbiased comparisons, we do not sample disruptions among the set of systemic disruption

scenarios considered in our stochastic optimization framework, but instead we generate disruption
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realizations from real-world data. This procedure captures all disruptions: we optimize recovery

decisions based on delay propagation dynamics and probabilistic forecasts of systemic disruptions,

but assess the resulting decisions against all (propagated, systemic and contingent) disruptions.

We use the departure delays from the Bureau of Transportation Statistics (BTS) database. But

these delays result from combined propagated, systemic and contingent disruptions, so using them

directly would result in double-counting propagated disruptions (which would carry over from

previous time periods as well as appear in the newly generated disruptions). We thus need to infer

the “new” (systemic and contingent) disruptions by subtracting propagated disruptions.

To this end, we use the inference method from Lan et al. (2006). We first sort the sequence of

flight legs operated by each aircraft. We assume a minimum turnaround time of 30, 35 and 40

minutes for A319, A320 and B752 aircraft, respectively. For every pair of consecutive flights i and

j operated by the same aircraft, we define the slack between i and j as the difference between the

planned and minimum turnaround times between the two flights. The propagated delay of flight j is

then computed as max(Arrival Delay of Flight i − Slack, 0). By subtracting this propagated delay

from total delays, we obtain the newly created delays (from systemic and contingent disruptions).

Finally, for interpretability, we classify all disruption instances into “small”, “medium” and

“large” disruptions. The procedure is detailed in Appendix B.

5.4. Additional Settings and Parameters

In Algorithm 1, we use a rolling period of 1 hour and a decision-making window TR of 7 hours. At

each time period t, disruptions are observed for the one-hour rolling period. Systemic disruptions

are forecasted for a look-ahead period TLA, ranging from 0 to 4 hours. The remainder of the

decision-making window is the buffer period, for which no new disruptions are considered.

Note that the hourly time discretization only plays a minor role computationally. As we shall see,

the main driver of the problem’s complexity is the look-ahead period TLA, which impacts the set of

flights Ft and the resulting number of scenario-dependent decision variables. The one-hour rolling

period (which impacts the number of scenario-agnostic decision variables) restricts the number of

iterations required to simulate the recovery dynamics over the full day of operations. In practice,

however, an airline could implement the proposed model on a more frequent basis.

As described in Section 4.2, the departure holding window is set to an initial value and extended,

in case of infeasibility, up to a maximum possible holding window. Table 2 reports the initial and

maximum departure holding windows for each fleet type, used to balance computational runtimes

and solution quality. This results in longer holding windows for B752, intermediate ones for A320,

and shorter ones for A319—similar to the process applied at airlines’ Operations Control Centers.

Aircraft swap costs (σk) are set to $500. Cancellation costs (γf ) are estimated as the cost of re-

accommodating passengers on the next available flight—assuming 129, 155 and 291 seats for A319,
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Table 2 Initial and maximum holding window by fleet type.

Fleet Initial Holding Window Maximum Holding Window

A319 30–40 minutes 90–360 minutes

A320 30–60 minutes 120–480 minutes

B752 50–110 minutes 400–550 minutes

A320 and B752 aircraft respectively, a load factor of 85%, and a cost of $37.5 per hour of passenger

delays (Cook and Tanner 2008b). Fuel costs (ρk) are set to $0.53–$0.73 per lb (International Air

Transport Association 2010). We use a baseline value for the flight delay cost (δk) of $10 per

minute. This captures the direct costs of delays to the airline. We conduct sensitivity analyses by

varying the parameter δk from its baseline value of $10 per minute to a maximum value of $77

per minute—obtained by fully internalizing the cost of passenger inconvenience, calculated as the

product of the number of passengers on the flight and a value of time of $37.5 per hour. This setup

considers linear delay costs, consistent with the airline recovery literature (Maher 2016, Marla et al.

2017). However, delay costs may have increasing penalties (Cook and Tanner 2008a, Ball et al.

2010). We thus also consider a non-linear delay cost function in Section 6.4.2 to capture this.

6. Computational Results

We now evaluate the performance of SRPDM, as compared to the myopic baseline from Section 4.3.

Unless otherwise specified, we implement the model with data from July 17, 2014, using 30 scenarios

capturing delays at all six hubs for a look-ahead window of TLA = 4 hours. First, we show that the

proposed approach significantly reduces expected recovery costs (Section 6.1). We then demonstrate

that, to be beneficial, the proposed approach needs to capture disruption forecasts over the full-scale

network of operations and over an extended time horizon (Section 6.2). In Section 6.3, we discuss the

computational performance of our approximate solution approach, showing that SRPDM is solved

in reasonable computational times that are consistent with practical requirements. Section 6.4 then

shows the robustness of the model’s benefits to the schedule of flights and to the specification of

the objective function. We synthesize the main insights in Section 6.5.

Before proceeding further, Table 3 shows outputs in three disruption instances to highlight the

three main recovery mechanisms employed by SRPDM—and the various trade-offs. Instance 1

illustrates the speed change mechanism: if subsequent flights are likely to be delayed, SRPDM may

deliberately slow down earlier flights to reduce fuel burn without impacting connectivity—albeit

at a higher delay cost. Conversely, SRPDM can speed up some aircraft to maintain connectivity

or facilitate swaps. Instance 2 illustrates the departure hold mechanism: SRPDM can deliberately

delay departing flights (in conjunction with speed ups) to preserve connectivity. Instance 3 illus-

trates the aircraft swap avoidance mechanism. While aircraft swaps may be myopically less costly
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than departure holds, they can also lead to cancellations at later times; the SRDPM can avoid this

situation by anticipating future disruptions earlier, resulting in lower cancellation and swap costs.

Table 3 Experimental results of SRPDM vs. baseline in three disruption instances.

Experiments Model
Total # Total Fuel Total # of Total Dep. Total Arr. Cost Savings

Cancellations Burn (lb.) Swaps Delay (min) Delay (min) Per Day (%)

Instance 1 Baseline 2 1,511,000 0 556 1,418 –

SRPDM 2 1,508,025 0 586 1,476 0.16%

Instance 2 Baseline 14 1,457,276 6 714 1,313 –

SRPDM 10 1,457,276 6 950 1,433 6.16%

Instance 3 Baseline 13 1,424,447 4 1,312 1,320 –

SRPDM 11 1,446,258 2 1,318 1,335 3.60%

Throughout this section, we report the total costs obtained with the baseline model vs. the

SRPDM over the full day of operations. Unless otherwise specified, we consider stochastic disrup-

tions at the six hubs for a look-ahead period TLA of 4 hours, and consider 30 disruption scenarios.

6.1. SRPDM Benefits

Table 4 reports the results of SRPDM and the myopic baseline across all disruption instances and

fleet types. Note that SRPDM yields significant improvements over the myopic baseline: SRPDM

reduces expected recovery costs by 1.5%, 1.8% and 1.9% for the A319, A320 and B752 fleets,

respectively (calculated as the relative difference between the baseline and SRPDM costs over all

disruptions). These expected savings can result in large financial gains for major airlines, under-

scoring the benefits of anticipating future disruptions into disruption recovery—even with partial

and probabilistic forecasts of future disruptions and even with an approximate solution algorithm.

Under small disruptions, the strongest benefits are derived for the B752 fleet and, to a smaller

extent, for the A320 fleet. In contrast, SRPDM does not lower costs of recovery for the A319

network. This mainly stems from the fact that the A319 network primarily consists of short-haul

flights, which limits flexibility in terms of flight speed changes. Moreover, the A319 network is

significantly smaller than the A320 and B752 ones, and thus less sensitive to disruptions.

When it comes to medium and large disruptions, SRPDM reduces expected recovery costs for

all fleet types—from 1% to 2.5%. Note, again, the variability across disruption instances: SRPDM

yields the same costs as the myopic baseline in some instances but large cost reductions in other

instances. Such variability underscores the importance of capturing stochastic airport delays in

airline recovery in instances where future disruptions at hub airports can be significant.

These results also highlight that the performance improvements from SRPDM mainly stem from

an increased number and magnitude of departure holds—reflected by larger departure delays than
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Table 4 Comparison of SRPDM over myopic baseline, for each fleet type and each disruption category.

Disruption Total Cost Dep. Delay Arr. Delay Fuel Burn Num. Speed Num. Num.
Category Fleet Model ($) (min) Delay (min) ($) Change Cancel. Swaps Savings

Small A319 Baseline (avg.) 310,587 951 543 257,608 15 11 0.25 –
Baseline (min.) 255,425 604 410 257,261 15 6 0 –
Baseline (max.) 352,312 1,245 688 258,647 15 15 1 –
SRPDM (avg.) 310,587 951 543 257,608 15 11 0.25 0%
SRPDM (min.) 255,425 604 410 257,261 15 6 0 0%
SRPDM (max.) 352,312 1,245 688 258,647 15 15 1 0%

A320 Baseline (avg.) 1,169,750 1,015 1,540 1,502,723 72 3 0.6 –
Baseline (min.) 1,117,555 574 1,314 1,457,276 70 0 0 –
Baseline (max.) 1,279,491 1,783 1,925 1,523,659 74 10 6 –
SRPDM (avg.) 1,149,427 1,073 1,578 1,503,788 72 2 0.6 1.7%
SRPDM (min.) 1,117,555 574 1,314 1,457,276 70 0 0 0%
SRPDM (max.) 1,279,491 1,783 1,925 1,523,659 74 10 6 6.2%

B752 Baseline (avg.) 982,914 1,517 1,334 1,658,401 50 2.4 0.25 –
Baseline (min.) 928,083 579 1,009 1,657,556 49 1 0 –
Baseline (max.) 1,114,213 2,616 1,910 1,662,632 50 6 2 –
SRPDM (avg.) 943,657 1,575 1,367 1,658,401 50 1.3 0.08 3.9%
SRPDM (min.) 928,083 579 1,043 1,657,556 49 1 0 0%
SRPDM (max.) 1,008,525 2,750 1,972 1,662,632 50 3 1 19.7%

Medium A319 Baseline (avg.) 500,281 1,929 1,284 458,580 23.8 7.2 1.4 -
Baseline (min.) 314,116 727 585 281,761 16 0 0 -
Baseline (max.) 1,174,571 3,900 3,134 1,502,174 73 14 4 -
SRPDM (avg.) 490,556 1,978 1,331 457,260 23.7 6.7 1.3 2.4%
SRPDM (min.) 314,116 727 602 296,284 17 0 0 0%
SRPDM (max.) 1,174,571 3,900 3,134 1,502,174 73 14 4 27.1%

A320 Baseline (avg.) 1,211,508 1,880 1,909 1,492,283 72 5 0.8 -
Baseline (min.) 1,124,625 850 1,404 1,256,011 60 0 0 -
Baseline (max.) 1,499,232 3,998 2,944 1,523,437 74 28 5 -
SRPDM (avg.) 1,185,928 1,942 1,939 1,495,583 72 3.7 0.47 2.2%
SRPDM (min.) 1,124,625 850 1,404 1,256,011 60 0 0 0%
SRPDM (max.) 1,499,232 3,998 2,944 1,523,437 74 28 5 16.3%

B752 Baseline (avg.) 1,033,625 2,452 1,694 1,658,712 50 3.53 1 -
Baseline (min.) 930,693 1,219 1,061 1,657,556 48 1 0 -
Baseline (max.) 1,605,263 4,042 3,080 1,665,240 50 19 9 -
SRPDM (avg.) 1,020,740 2,464 1,702 1,658,613 50 3.2 1 1.1%
SRPDM (min.) 930,693 1,239 1,122 1,657,556 48 1 0 0%
SRPDM (max.) 1,495,119 4,042 3,080 1,665,240 50 16 8 7.4%

Large A319 Baseline (avg.) 536,473 2,718 1,165 366,123 19.8 11.9 2.2 -
Baseline (min.) 338,946 1,796 691 306,153 17 2 0 -
Baseline (max.) 859,662 4,526 2,155 377,477 21 30 7 -
SRPDM (avg.) 527,945 2,771 1,179 366,123 19.8 11.4 2.1 2.0%
SRPDM (min.) 338,946 1,796 691 306,153 17 2 0 0%
SRPDM (max.) 859,662 4,526 2,155 306,153 21 30 7 9.5%

A320 Baseline (avg.) 1,241,417 2,679 2,273 1,483,771 72 6.4 1.7 -
Baseline (min.) 1,143,749 1,208 1,320 1,424,447 69 2 0 -
Baseline (max.) 1,339,418 4,710 3,236 1,524,743 74 14 4 -
SRPDM (avg.) 1,223,880 2,744 2,307 1,486,887 72 5.4 1.4 1.4%
SRPDM (min.) 1,143,749 1,182 1,335 1,446,258 70 2 0 0%
SRPDM (max.) 1,293,446 4,710 3,236 1,524,743 74 11 4 6.4%

B752 Baseline (avg.) 1,203,155 5,026 2,590 1,597,024 48 8.3 4 -
Baseline (min.) 946,623 1,610 942 1,491,546 45 1 0 -
Baseline (max.) 1,688,686 1,610 4,966 1,657,556 50 20 13 -
SRPDM (avg.) 1,191,148 5,278 2,708 1,590,140 47 8 4.4 1.0%
SRPDM (min.) 946,623 1,556 931 1,491,546 45 1 0 0%
SRPDM (max.) 1,659,628 13,419 5,818 1,657,556 50 19 15 5.6%
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with the myopic baseline. These departure holds can stem from “new” disruptions in the cur-

rent period and/or the propagation of earlier events (e.g., earlier disruptions and earlier departure

holds). Ultimately, the larger departure delays result in fewer cancellations and swaps (especially for

the medium- and long-haul flights in the A320 and B752 networks, which offer stronger flight plan-

ning flexibility). Moreover, as long as disruptions remain relatively small, the airline can maintain

network connectivity through departure holds. Ultimately, SRPDM increases low-impact recov-

ery measures (departure holds) and decreases higher-impact recovery measures (cancellations and

swaps)—thus mitigating expected recovery costs through more flexible and robust recovery.

Table 5 details the distribution of the SRPDM benefits across disruptions instances, for each

fleet and disruption category. Except for the three small-disruption instances with the A319 fleet,

the SRPDM reduces recovery costs in 8% to 43% of disruption instances but never increases them.

This can be explained as follows. First, the SRPDM adds robustness into airline recovery through

departure holds and slower flight plans—which are only applied if they markedly reduce the future

likelihood of flight cancellations or aircraft swaps. In other words, the SRPDM plans for scenarios

in the lower tail of the delay distribution. Second, in any time period, realized disruptions (which

account for propagated, systemic and contingent disruptions) are unlikely to be much smaller than

forecasted ones (which ignore contingent disruptions). Third, realized disruptions are even less

likely to be much smaller than forecasted ones throughout the recovery horizon. So even if in a

certain time period the SRPDM costs are higher than baseline costs, the added robustness resulting

from SRPDM can be exploited at later decision points. From a practical standpoint, this result

shows that our approach not only reduces expected recovery costs without increasing worst-case

recovery costs—thus enhancing the average recovery efficiency without introducing additional risk.

Table 5 SRPDM results statistics.

Small disruptions Medium disruptions Large disruptions

Num. Num. Total Num. Num. Total Num. Num. Total
Fleet Worse Better instances Worse Better instances Worse Better instances
A319 0 0 3 0 1 12 0 2 10

(0%) (0%) – (0%) (8.3%) – (0%) (20%) –
A320 0 7 16 0 3 11 0 2 7

(0%) (44%) – (0%) (27%) – (0%) (29%) –
B752 0 3 12 0 5 17 0 2 8

(0%) (25%) – (0%) (28%) – (0%) (25%) –

6.2. Impact of Spatial and Temporal Scale

We now show the importance of capturing systemic disruptions at scale in space (i.e., across all hubs

in the networks of the airline’s operations versus a subset of hubs) and time (i.e., for sufficiently long
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look-ahead windows). Table 6 reports SRPDM results from the A320 fleet when future disruptions

are captured (i) at a subset of three hubs (at JFK, ATL and MSP, but not at LGA, DTW and

SLC); (ii) for a 2-hour look-ahead window (rather than a 4-hour look-ahead window); and (iii) for

the full set of six hubs and a 4-hour look-ahead window (referred to as “full size”).

Table 6 Performance of SRPDM, for different spatial and temporal scopes of disruptions predictions.

Total Cost Dep. Delay Arr. Delay Fuel Burn # Speed # #
Model ($) (min) (min) (lb.) Change Cancel. Swaps Savings

Baseline (avg.) 1,212,395 1,975 1,960 1,491,618 72 5 1 –
Baseline (min.) 1,117,555 574 1,314 1,256,011 60 0 0 –
Baseline (max.) 1,499,232 4,710 3,236 1,524,743 74 28 6 –
SRPDM, 3 hubs (avg.) 1,191,783 2,679 2,402 1,508,036 73 11 4 0.05%
SRPDM, 3 hubs (min.) 1,117,555 1,015 1,284 458,580 24 2 0 0.00%
SRPDM, 3 hubs (max.) 1,499,232 4,710 3,236 1,524,743 74 13 4 1.54%
SRPDM, TLA = 2 hrs (avg.) 1,191,783 2,342 2,230 1,498,243 72 7 2 0.46%
SRPDM, TLA = 2 hrs (min.) 1,117,555 574 1,281 458,580 24 0 0 0.00%
SRPDM, TLA = 2 hrs (max.) 1,319,100 4,710 3,236 1,524,743 74 13 6 6.17%
SRPDM, full size (avg.) 1,191,764 2,037 1,994 1,494,200 72 4 1 1.8%
SRPDM, full size (min.) 1,117,555 574 1,314 1,256,011 60 0 0 0.0%
SRPDM, full size (max.) 1,499,232 4,710 3,236 1,524,743 74 28 6 16.3%

First, the benefits of SRPDM increase significantly as stochastic disruptions forecasts are devel-

oped at 6 hub airports, as compared to a subset of 3 hubs. Around 25% of flights in the A320

network depart from or arrive at the subset of three hubs (JFK, ATL and MSP), while about 50%

of flights depart from or arrive at the full set of six hubs. The results show that SRPDM provides

minimal improvements over the myopic baseline when disruptions are only forecasted at the subset

of three hubs—with average cost reductions of 0.05%. In contrast, SRPDM reduces expected costs

by 1.8% on average when delays are predicted at the full set of six hubs, with reductions of up to

16% in some instances. These results demonstrate the value of capturing network-wide disruptions,

and their stochasticity, by applying the queuing model at several hub airports simultaneously.

Recall, also, that each look-ahead disruption scenario relied on independent disruption forecasts

across airports—ignoring potential network-wide correlations. But this restriction is conservative,

as any benefits obtained with independent scenarios (as compared to the myopic baseline) can also

be achieved with correlated scenarios. This is because we test the model on real-world disruption

instances, which contain any correlations observed in practice. Ultimately, our results provide a

lower bound of the benefits that could be obtained with correlated disruptions.

Finally, developing scenarios over extended time periods can further reduce recovery costs.

Indeed, the benefits of SRPDM are larger with a longer look-ahead window of 4 hours than with a

smaller look-ahead window of 2 hours (1.8% vs. 1.54% on average). This difference mainly stems
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from the much lower recovery costs in the largest disruption instances—with a maximum cost

reduction of 16.3% over the baseline with a 4-hour look-ahead, as opposed to 6.17% with a 2-hour

look-ahead. By anticipating broader ranges of future disruptions, longer look-ahead windows TLA

mitigate expected recovery costs through added flexibility and robustness in decision-making.

6.3. Computational Performance

The main determinants of the model’s size—and hence, of its computational performance—are the

scope of the flight plans (determined by the maximum holding window and the holding interval,

as described in Section 4.2) and the number of scenarios. Note that the size of SRPDM remains

unchanged as disruptions are forecasted at more airports and/or over longer look-ahead windows.

Figure 7 shows the sensitivity of the solution quality and the runtimes as a function of the

number of scenarios, over five randomly-generated disruption instances. The runtimes are given

here for each iteration of the algorithm—thus reflecting its relevant computational requirements

for the airline at any decision point. Figure 7a indicates that solution quality improves with 30 vs.

10 scenarios, but remains unchanged with 30 vs. 70 scenarios. At the same time, computational

requirements increase non-linearly at each iteration with the number of scenarios (Figure 7b)—from

3–5 minutes with 30 scenarios to over 15 minutes with more scenarios. This indicates a “sweet spot”

in the model’s implementation with 30 scenarios, which yields a sample space that is large enough

to ensure high solution qualities and small enough to derive solutions in reasonable runtimes.

(a) SRPDM performance (b) Average computation times per time period

Figure 7 SRPDM performance vs. computation times over increasing numbers of scenarios.

Ultimately, SRPDM can be implemented in short computational times—consistent with earlier

models of disruption recovery and with airline requirements. This strong computational perfor-

mance would enable the implementation of SRPDM in practice. Our model could also provide

close-to-optimal solution in shorter runtimes, should the airline need to (e.g., by considering a

smaller scenario set, or by imposing a maximum runtime).
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6.4. Robustness

At this point, we have shown that the proposed modeling and computational framework can mit-

igate expected recovery costs by 1–2%, as compared to the myopic baseline. We now establish

the robustness of these findings. We first vary the schedule of flights by considering inputs from

different days in July 2014. We then vary the delay cost parameter, thus changing the weights

attributed to the different components of the objective function.

6.4.1. Impact of Flight Schedule. First, we consider flight schedules for four weekdays of

July 2014 (July 15–18)—which are representative of the distribution of flight schedules over the

entire year of operations (see Table 1). For each day, we generate the disruption instances from

historical delays (Section 5.3) and future scenarios at each of the six hubs (Section 5.2).

Table 7 Results for the A320 fleet and a 4-hour look-ahead for multiple weekdays in July.

Day in Total Cost Dep. Delay Arr. Delay Fuel Burn # # # Speed
July Model ($) (min) (min) ($) Swaps Cancel. Changes Savings

15th Baseline (avg.) 908,701 467 719 815,755 1 3 42 –
Baseline (min) 864,396 185 582 800,320 0 2 38 –
Baseline (max) 971,778 865 944 832,796 3 4 54 –
SRPDM (avg.) 896,457 511 745 821,671 1 2 42 1.4%
SRPDM (min) 858,852 223 582 799,903 0 0 38 0.0%
SRPDM (max) 971,778 865 962 832,796 3 4 54 4.6%

16th Baseline (avg.) 901,364 774 725 735,552 3 5 35 –
Baseline (min) 814,419 140 514 695,086 0 2 32 –
Baseline (max) 994,649 1,747 1,095 760,847 5 8 36 –
SRPDM (avg.) 890,434 811 719 735,306 3 5 35 1.3%
SRPDM (min) 787,796 278 539 695,086 0 0 32 0.0%
SRPDM (max) 994,649 1,747 1,120 760,461 5 8 37 3.4%

18th Baseline (avg.) 1,378,449 1,531 1,335 1,069,890 3 10 56 –
Baseline (min) 1,333,659 830 1,109 1,038,907 1 7 52 –
Baseline (max) 1,429,588 2,421 1,523 1,094,065 4 14 68 –
SRPDM (avg.) 1,358,686 1,566 1,351 1,069,263 3 9 57 1.5%
SRPDM (min) 1,314,221 918 1,133 1,038,907 1 7 53 0.0%
SRPDM (max) 1,410,578 2,431 1,523 1,093,679 4 13 68 3.0%

Table 7 reports the outputs of SRPDM and the myopic baseline for July 15, 16 and 18 (the

corresponding results for July 17 are shown in Table 4). The results confirm that SRPDM reduces

expected recovery costs by 1–2%, as compared to the myopic baseline. As earlier, SRPDM increases

departure delay to reduce the number of aircraft swaps, the number of cancellations and, in some

cases, fuel burn. The largest recovery cost reduction, over all disruption instances, is lower than the

corresponding one for July 17. This stems from the difference in realized disruptions: the benefits

of SRPDM tend to be higher when realized disruptions occur in peak periods, resulting in higher

delays at hub airports and higher downstream impacts throughout the network. In such instances,
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the myopic baseline tends to increase aircraft speeds to ensure connectivity, while SRPDM leverages

information on future disruptions to strategically introduce departure holds. As it turns out, July

17 had a higher incidence of such large peak-hour disruptions than other days. Nonetheless, the

average recovery cost savings are consistent across all days—thus highlighting that our approach

does not solely provide benefits during the busiest or least busy days of the year.

6.4.2. Impact of Delay Costs. Next, we establish the robustness of the benefits of SRPDM

with respect to the objective function. Recall that SRPDM and the myopic baseline are formulated

as multi-objective optimization problems that trade off fuel, delay, aircraft swap, and flight cancel-

lation costs (Equation (15) and (23)). We keep all cost parameters unchanged, but vary the unit

delay cost from $10 to $77 per minute (as described in Section 5.4). Table 8 reports the results of

these experiments, for a random subset of “small” disruption instances.

We also consider non-linear (convex) delay costs: following Cook and Tanner (2008a), we set, for

each copy k ∈Ktfaq, δk =C ×Dk× ln(Dk), where C is a constant and Dk is the delay (in minutes)

of copy k. We choose C such that the average delay cost is equal to $10/minute when applied to

the solution obtained with a linear delay cost of $10/minute—so that we change the distribution

of delay costs but not their overall magnitude. These results are also presented in Table 8.

These results show that the relative reduction in recovery costs achieved by SRPDM, as compared

to the baseline, is remarkably consistent across all (linear or non-linear) delay cost functions—

ranging from 2.3% to 3.1% on average. As delay costs increase, both models reduce the incidence

of departure holds—reducing average delays but increasing the number of flight cancellations and

aircraft swaps. But regardless of the delay cost function, SRPDM results in higher departure and

arrival delays than the myopic baseline but in fewer cancellations and (with one exception) fewer

aircraft swaps. Ultimately, these results confirm that SRPDM reduces recovery costs by introducing

strategic departure holds, over the full range of delay cost functions under consideration.

6.5. Summary

Our results suggest that the SRPDM can enhance airline disruption recovery decisions—by reduc-

ing recovery costs by 1–2% on average, as compared to a myopic baseline that does not anticipate

future disruptions. These results are driven by reductions in flight cancellations and aircraft swaps,

partially offset by increases in flight delays. In other words, SRPDM leverages information on

a range of disruption scenarios by strategically introducing departure holds and adjusting flight

plans, to avoid resorting to flight cancellations and aircraft swaps in subsequent time periods.

Moreover, the benefits of SRPDM increase with the scope of the disruptions under consideration:

capturing systemic disruptions—and their stochasticity—from more hub airports and over longer

look-ahead windows increases the value of SRPDM. This underscores the benefits of the framework
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Table 8 Experimental results for different delay cost parameters.

Delay Cost Total Cost Dep. Delay Arr. Delay Fuel Burn # # # Speed
($/min) Model ($) (min) (min) (lb.) Swaps Cancel. Changes Savings

$10 Baseline (min) 1,133,878 556 1,313 1,449,264 0 2 69 -
Baseline (max) 1,358,403 1,202 1,599 1,523,785 6 14 73 -
Baseline (avg.) 1,205,434 895 1,463 1,495,607 1.1 5.1 72 -
SRPDM (min) 1,121,481 586 1,433 1,457,276 0 0 70 0.03%
SRPDM (max) 1,279,491 1,222 1,750 1,522,769 6 10 74 6.2%
SRPDM (avg.) 1,167,328 1,002 1,535 1,497,605 1 3 72 2.8%

$20 Baseline (min) 1,146,048 536 1,277 1,443,010 0 2 68 -
Baseline (max) 1,366,260 1,192 1,566 1,524,265 6 14 72 -
Baseline (avg.) 1,214,304 864 1,412 1,489,390 1.1 5.4 70 -
SRPDM (min) 1,131,292 566 1,315 1,443,010 0 0 68 0.02%
SRPDM (max) 1,289,708 1,212 1,717 1,523,511 6 10 73 5.9%
SRPDM (avg.) 1,177,269 971 1,484 1,491,388 1.1 3.4 71 3.1%

$30 Baseline (min) 1,158,625 496 1,180 1,443,770 0 2 64 -
Baseline (max) 1,373,611 1,162 1,451 1,526,435 6 14 68 -
Baseline (avg.) 1,223,163 820 1,318 1,484,522 1.1 5.6 67 -
SRPDM (min) 1,140,885 526 1,287 1,443,770 0 0 64 0.0%
SRPDM (max) 1,299,419 1,162 1,520 1,525,214 6 10 68 5.7%
SRPDM (avg.) 1,187,198 923 1,376 1,486,723 1.1 3.6 67 3.0%

$40 Baseline (min) 1,164,992 436 1,028 1,399,814 0 2 58 -
Baseline (max) 1,363,486 1,102 1,261 1,529,358 5 14 63 -
Baseline (avg.) 1,229,222 758 1,168 1,478,142 1 5.9 61 -
SRPDM (min) 1,149,774 456 1,173 1,421,097 0 0 59 0.0%
SRPDM (max) 1,272,351 1,112 1,402 1,528,129 7 9 64 7.2%
SRPDM (avg.) 1,191,866 867 1,246 1,479,936 1.3 3.8 62 3.1%

$50 Baseline (min) 1,170,381 386 889 1,404,649 0 2 51 -
Baseline (max) 1,370,553 1,052 1,120 1,534,742 5 14 57 -
Baseline (avg.) 1,238,187 710 1,005 1,483,210 1.1 5.9 54 -
SRPDM (min) 1,160,776 406 1,026 1,405,701 0 0 52 0.0%
SRPDM (max) 1,301,195 1,062 1,206 1,534,214 5 11 58 5.3%
SRPDM (avg.) 1,207,499 815 1,073 1,482,628 1.3 4.1 55 2.5%

$60 Baseline (min) 1,174,241 386 879 1,384,418 0 2 51 -
Baseline (max) 1,395,891 1,032 1,099 1,535,943 6 16 57 -
Baseline (avg.) 1,253,596 698 988 1,481,443 1.5 6.4 55 -
SRPDM (min) 1,169,464 406 1,024 1,405,701 0 0 52 0.0%
SRPDM (max) 1,328,993 1,042 1,185 1,535,415 6 11 58 5.8%
SRPDM (avg.) 1,218,281 806 1,062 1,483,390 1.4 4.3 56 2.8%

$77 Baseline (min) 1,180,803 386 879 1,384,418 0 2 51 -
Baseline (max) 1,404,425 1,032 1,099 1,536,319 6 16 57 -
Baseline (avg.) 1,265,439 697 987 1,481,550 1.5 6.4 55 -
SRPDM (min) 1,180,485 406 1,024 1,405,701 0 0 52 0.0%
SRPDM (max) 1,341,709 1,042 1,185 1,535,791 6 11 58 5.5%
SRPDM (avg.) 1,231,967 805 1,060 1,483,496 1.4 4.3 56 2.6%

non-linear Baseline (min) 1,142,595 556 1,418 1,447,980 0 2 71 -
cost Baseline (max) 1,193,108 1,372 1,772 1,523,785 7 4 73 -

(equivalent Baseline (avg.) 1,157,004 959 1,529 1,503,547 1 2.9 72 -
to $10) SRPDM (min) 1,111,532 586 1,471 1,447,980 0 0 71 0.0%

SRPDM (max) 1,152,517 1,372 1,772 1,522,892 7 4 74 3.8%
SRPDM (avg.) 1,131,204 1,034 1,582 1,502,920 1 1.6 72 2.3%
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developed in this paper, which proposes a multi-stage decision-making under uncertainty approach

combining, for the first time, a predictive queuing model—applied at several airports of the network

simultaneously—into a prescriptive combinatorial optimization model of airline disruption recovery.

7. Conclusion

This paper proposes a jointly reactive and proactive approach to airline disruption management.

This approach optimizes disruption recovery decisions while leveraging a partial and probabilis-

tic forecast of future disruptions—by characterizing probabilistically future systemic disruptions

(i.e., congestion at hub airports) but ignoring other contingent disruption forecasts (e.g., aircraft

maintenance, late crews, late passenger boarding). We formulate a Stochastic Reactive and Proac-

tive Disruption Management (SRPDM) that combines a stochastic queuing model of congestion

(applied at several airports within a network), a flight planning tool from Boeing/Jeppesen, and

an optimization model of airline disruption recovery. We design an efficient solution procedure

based on look-ahead approximation and sample average approximation, which enables the model’s

implementation at any decision point in reasonable computational times—consistent with earlier

recovery models and with practical airline requirements. Results suggest that leveraging even par-

tial and probabilistic information on future disruptions and an approximate algorithm can enhance

recovery decisions: SRPDM consistently performs as well as or better than a myopic baseline,

ultimately reducing expected disruption costs without creating additional risk in airline recovery.

The implications of these results are threefold. First, airline recovery can be improved through

more flexible and robust decision-making—by deliberately introducing departure holds and speed

changes to mitigate the incidence of flight cancellations and aircraft swaps at later points in time.

Second, airline operations can benefit from the elicitation of systemic disruption scenarios, espe-

cially in instances where flight networks are concentrated at hub airports and where hub airports

are highly congested. Such scenarios can be constructed from information available offline, includ-

ing flight schedules, historical records of airport operations, and weather forecasts. Last, further

cost savings could potentially be achieved through online sharing of operating information between

airline operators, airport operators, and air traffic managers. Most notably, continuous alignment

on operating conditions, real-time congestion and delay forecasts could reduce system-wide uncer-

tainty on future operations, thus permitting more effective recovery.

These results motivate future work on airline recovery optimization under uncertainty. First,

this paper has relied on a simple prediction of future disruptions by applying the queuing model

independently at each hub airport; future research could generate disruption scenarios that cap-

ture cross-airport correlations. Moreover, further research could investigate how to incorporate

dynamic updates of delay predictions into recovery optimization—in line with the real-time infor-

mation sharing paradigm mentioned above. Second, this paper has focused on aircraft recovery. An
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important extension would involve developing a jointly reactive and proactive approach to the inte-

grated problem of aircraft, passenger and crew recovery. Third, the approximate solution algorithm

considered in this paper could be augmented with exact algorithms for multi-stage recovery opti-

mization under uncertainty. The framework, model and algorithm proposed in this paper provide

the foundations to explore these questions—toward more efficient, reliable and robust recovery.
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Appendix A: Flight Schedules at the Hub Airports

Figure 8 plots the number of flights scheduled at each of the six hub airports under consideration on July

17, 2014 per 15-minute period of the day. Note that, at some airports, the schedule of flights is relatively

evenly distributed over the day, whereas other airports operate a strongly “peaked” schedule. At one extreme,

New York’s LaGuardia (LGA) airport faces strong local demand and schedule limits (or “flight caps”),

resulting in high scheduling levels and limited schedule variability throughout the day. At the other extreme,

Detroit (DTW) operates arrival “banks” immediately followed by departure “banks” to enable passenger

connections, resulting in a sequence of peaks and valleys. Similar scheduling patterns are observed at Salt

Lake City (SLC) and, to a lesser extent, at Minneapolis Saint Paul (MSP). The remaining two airports (New

York’s John F. Kennedy (JFK) airport and Atlanta’s (ATL) airport) fall in-between: the schedule exhibits

peaks and valleys but milder variations than at DTW, SLC and MSP. These scheduling patterns are the

primary determinants of the delay patterns shown in Figure 6.

(a) ATL (b) DTW

(c) JFK (d) LGA

(e) MSP (f) SLC

Figure 8 Schedule of flights at each airport on July 17, 2014.
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Appendix B: Disruption Classification

We classify each disruption instance (see Section 5.3) into “small”, “medium” and “large” disruption cate-

gories. We use a multinomial logistic regression with two independent variables: total delay and maximum

delay occurring in the network. Our model is trained with selected scenarios that are a priori classified into

the three categories, as a training step. We then perform a validation step, to predict the groups for all

remaining scenarios. The proportional log-odds of a disruption scenario belonging to the small and medium

category, versus the large category, is defined as the logarithm of the ratio of the two probabilities. The

logistic regression model is provided in Equations (24) and (25), where Ps, Pm and Pl denote the probabilities

of belonging to the large, medium and small delay categories, respectively.

log

(
Ps
Pl

)
= β0 +βs1 total delay +βs2 max delay (24)

log

(
Pm
Pl

)
= β0 +βm1 total delay +βm2 max delay (25)

The model’s coefficients for each fleet type are reported in Table 9. First, all coefficients are negative: the

larger the total delays and/or the maximum delays, the less likely the scenario under consideration is to be

classified in the small or medium category, as compared to the large category. Second, all coefficients are

smaller for the small delay category than for the medium delay category: all else being equal, the larger the

total delays and/or the maximum delays, the less likely the scenario is to be classified in the small category,

as opposed to the medium category. Third, all but one p-values are lower than 0.05, thus suggesting that the

classification model is statistically significant. Last, we perform a cross-validation on a test set, and confirm

zero misclassification. The number of scenarios into each category is reported in Table 10.

Table 9 Parameter estimates for multinomial logistic regression.

small (vs. large) medium (vs. large)

Fleet Predictor Coef. Std. err. p-value Coef. Std. err. p-value

A319 constant 16.729 2.488 0.000 8.485 2.068 0.000
total delay -0.007 0.001 0.000 -0.002 0.001 0.001
max delay -0.016 0.005 0.000 -0.013 0.004 0.001

A320 constant 22.054 3.138 0.000 10.361 2.406 0.000
total delay -0.008 0.001 0.000 -0.002 0.001 0.002
max delay -0.036 0.008 0.000 -0.016 0.005 0.001

A320 constant 21.968 2.902 0.000 11.464 2.293 0.000
total delay -0.002 0.001 0.006 0.000 0.000 0.130
max delay -0.078 0.013 0.000 -0.026 0.006 0.000

Table 10 Number of disruption instances in each category.

Fleet A319 A320 B752

Small disruptions 3 16 12
Medium disruptions 12 11 17
Large disruptions 10 7 8
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