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Predictive and Prescriptive Analytics toward
Passenger-centric Ground Delay Programs

Alexandre Jacquillat
Sloan School of Management, Massachusetts Institute of Technology, Cambridge, Massachusetts

Ground Delay Programs (GDP) comprise the main interventions to optimize flight operations in congested

air traffic networks. The core GDP objective is to minimize flight delays, but this may result in optimal

outcomes for passengers—especially with connecting itineraries. This paper proposes an original passenger-

centric approach to GDP by leveraging data on passenger itineraries in flight networks. First, we identify

analytical drivers of passenger-centric operations in transportation systems. Second, we develop an integer

program that balances flight delays and passenger delays in large-scale GDP operations. A rolling procedure

decomposes the problem while ensuring global feasibility, enabling the model’s implementation in short

computational times. Third, we propose statistical learning models to predict passenger itineraries and

optimize GDP operations accordingly, enabling the model’s implementation when passenger itineraries are

unknown by air traffic managers. Computational results based on real-world data suggest that our modeling

and computational framework can reduce passenger delays significantly at small increases in flight delay

costs, and that these benefits are robust to imperfect knowledge of passenger itineraries. Results highlight

two major levers of passenger-centric operations: (i) delay allocation (which flights to delay vs. prioritize),

and (ii) delay introduction (whether to deliberately hold flights to avoid passenger misconnections).

Key words : Integer programming; Analytics; Passenger-centric operations; Air traffic management

1. Introduction

Most transportation networks involve two interconnected layers: vehicles and users. For instance,

public transit systems operate subways and buses to transport riders; logistic systems operate

ships, aircraft and trucks to transport packages; and air transportation systems operate aircraft to

transport passengers. Extensive routing and flow management research has focused primarily on

optimizing vehicle operations. But optimal vehicle operations might not lead to optimal outcomes

from the end users’ perspectives, especially when itineraries involve connections between multiple

vehicles (e.g., multi-line transit itineraries, multi-modal logistics, and connecting flights).

This paper proposes an original passenger-centric approach to air traffic flow management, com-

bining predictive and prescriptive analytics. The proposed approach leverages data on non-stop

and connecting passenger itineraries to balance flight delays and passenger delays in large-scale

networks of operations. In practice, however, passenger itineraries are not available to air traffic

managers. We thus propose statistical learning models to predict passenger itineraries from his-

torical data and optimize operations accordingly. Results suggest that, under perfect information,
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passenger delays can be reduced very significantly (by 60–80% under good weather and by 20–60%

under poor weather) through limited increases in flight delays (by 1–3%). Equally important, these

benefits are very robust to imperfect information on passenger itineraries. Specifically, passenger-

centric operations mitigate congestion costs by (i) selecting which flights to delay vs. prioritize,

and (ii) deliberately adding departure delays to avoid passenger misconnections.

1.1. Background and Literature Review

Air Traffic Flow Management

Demand-capacity imbalances at busy airports can result in significant congestion, imposing costs

in excess of $30 billion annually in the United States alone (Ball et al. 2010). The most obvious

remedy—capacity expansion—is very expensive and not always feasible. A second option is to con-

trol peak-hour schedules through demand management (e.g., slot control, slot auctions, congestion

pricing). These interventions can mitigate congestion (e.g., Swaroop et al. 2012, Vaze and Barnhart

2012, Jacquillat and Odoni 2015) but also impose economic costs due to output restrictions. Their

implementation has thus been limited in the United States. A third option is to optimize flight

operations through air traffic flow management (ATFM). This is the focus of this paper.

The core ATFM initiative is known as Ground Delay Programs (GDP). GDP optimize flights’

departure and arrival times in capacitated networks. Their main objective is to absorb delays at

departure airports rather than in the airspace, where they are most costly, challenging to operate

and environmentally damaging. Odoni (1987) formalized the ground-holding problem. Richetta

and Odoni (1993) and Terrab and Odoni (1993) optimized network-wide operations when a sin-

gle airport is subject to GDP interventions. Vranas, Bertsimas, and Odoni (1994) tackled the

multi-airport GDP problem. Ball et al. (2003), Mukherjee and Hansen (2007), Jones, Lovell, and

Ball (2017) captured uncertainty on flight demand and airport capacities by means of stochastic

optimization models. Bertsimas and Stock Patterson (1998), Bertsimas, Lulli, and Odoni (2011)

developed ATFM models that optimize airport operations as well as en-route operations in capac-

itated air traffic control sectors. Thanks to advances in computing power, strong formulations and

tailored algorithms, ATFM problems can now be solved for the full US and European networks

(Lulli and Odoni 2007, Bertsimas, Lulli, and Odoni 2011, Balakrishnan and Chandran 2018).

In practice, GDP are now routinely implemented, with significant benefits for airlines, airports

and passengers. A key success factor is the Collaborative Decision Making (CDM) paradigm, which

fosters participation from the airlines through data sharing and communication (Ball et al. 2007,

Vossen, Hoffman, and Mukherjee 2012). Two core CDM principles are to facilitate intra-airline

and inter-airline slot exchanges (Wambsganss 1996, Vossen and Ball 2006, Pellegrini, Castelli, and

Pesenti 2012) and to ensure inter-airline equity (Barnhart et al. 2012, Bertsimas and Gupta 2016).

Electronic copy available at: https://ssrn.com/abstract=3734008



Jacquillat: Passenger-centric Ground Delay Programs
3

All ATFM and CDM developments optimize flight delays and other flight-centric metrics such as

equity (e.g., Barnhart et al. 2012), capacity utilization (e.g., Bertsimas and Gupta 2016), and service

predictability (e.g., Ball et al. 2015). However, the ultimate costs of congestion do not depend

solely on flight operations, but also on their effects on passenger itineraries. A first, and direct

reason is that the same delays can induce higher costs if they are borne by flights carrying more

passengers. To capture these effects, Vossen and Ball (2006) and Bertsimas, Farias, and Trichakis

(2012) mentioned weighting each flight’s delay by the number of passengers in it. But a second, more

complex reason is that flight delays can disrupt connecting itineraries—through misconnections.

Ball et al. (2010) and Barnhart, Fearing, and Vaze (2014) showed that passenger delays are mostly

driven by a small fraction (2% to 5%) of itineraries being disrupted, especially when connecting

airports are congested, when flights are full, and when re-accommodation opportunities are limited.

Evidence thus suggests that GDP outcomes could be improved by capturing passenger accom-

modations across flight networks. Yet, passenger-level information has not been incorporated into

ATFM models. A likely reason is that passenger itineraries are known by airlines but not by air

traffic managers. But Barnhart, Fearing, and Vaze (2014) built a database that estimates histor-

ical passenger flows in flight networks, based on a discrete-choice model. We leverage these data

to develop a passenger-centric GDP approach that balances flight and passenger delays. We first

assume perfect information, characterizing passenger-centric GDP operations in a hypothetical

setting where passenger itineraries were shared by the airlines as part of the existing CDM environ-

ment. We then relax this assumption by using statistical learning to predict passenger itineraries

and optimize GDP operations accordingly—thus characterizing passenger-centric GDP operations

in the current environment where passenger itineraries are not available to air traffic managers.

Our results show that passenger delays can be reduced very significantly at limited costs in

terms of flight delays. From a practical standpoint, this suggests opportunities to enhance GDP

initiatives, even under imperfect information on passenger itineraries. Yet, the proposed approach

does not intend to overhaul current decentralized practices, under which the airlines can re-optimize

their operations as part of their disruption management processes. Instead, it aims to improve

upstream ATFM decisions by making them more consistent with downstream passenger flows.

Data-driven decision-making

By combining predictive and prescriptive analytics, our approach falls into the broad umbrella

of data-driven decision-making. This relates to many papers using a similar “Predict then Opti-

mize” approach. Sample applications include supply chain management (Gallien et al. 2015), pric-

ing (Ferreira, Lee, and Simchi-Levi 2016), assortment planning (Aouad, Farias, and Levi 2015),

online advertising (Besbes, Gur, and Zeevi 2016), school bus routing (Bertsimas, Delarue, and
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Martin 2019), disaster response (Dahan et al. 2020), smart cities (Liu, He, and Shen 2020), etc.

Methodologically, Bertsimas and Kallus (2019) developed a stochastic optimization approach, by

constructing data-driven scenarios that express each unknown parameter as a weighted average of

training observations. In a similar spirit, Elmachtoub and Grigas (2017) proposed a “Smart Predict

then Optimize” method where the learning model is trained—and evaluated—in view of the value

of the optimization objective, as opposed to the prediction error.

This paper follows a similar philosophy—leveraging historical data to learn an uncertain com-

ponent and to solve a downstream optimization problem accordingly. One particularity though is

that, in our paper, uncertainty lies in the set of flight pairs with connecting passengers. From a

predictive standpoint, this is treated as a categorical classification problem as opposed to a numer-

ical regression problem. But from a prescriptive standpoint, the classifier is used to determine the

set of active constraints and the resulting dynamics of the system—as opposed to a parameter.

1.2. Contributions and Outline

This paper develops an original passenger-centric approach to Ground Delay Programs. First, we

identify analytical drivers of passenger-centric transportation operations. Second, we propose an

integer programming model and a rolling horizon algorithm to optimize passenger-centric GDP

operations in large-scale networks, assuming perfect information on passenger itineraries. Third,

we predict passenger itineraries using statistical learning models, and optimize GDP operations

accordingly. We show that the benefits of passenger-centric GDP operations are robust to data

unavailability on passenger itineraries. Specifically, this paper makes the following contributions:

• Deriving analytical insights on the trade-off between vehicle and passenger delays in transporta-

tion (Section 2). We propose a Markov decision process that optimizes vehicle operations to

balance passengers’ wait times vs. misconnections. The optimal policy identifies two passenger-

centric levers: (i) delay allocation (which vehicles to prioritize to minimize passenger delays),

and (ii) delay introduction (whether to deliberately delay vehicles to avoid misconnections).

• Formulating a bi-objective integer programming model that incorporates passenger accommo-

dations into GDP optimization (Section 3). The model optimizes flights’ departure and arrival

times in a network of capacitated airports, by trading off flight delay costs vs. passenger delays.

It augments existing GDP models by capturing the impact of flight operations on passenger

accommodations and delays, in the presence non-stop and connecting passenger itineraries.

• Developing a dynamic rolling horizon algorithm to solve the passenger-centric GDP model effi-

ciently (Section 4). Consistently with the literature and practice, we optimize GDP operations

with a rolling algorithm. At each hour, the model optimizes flight operations for a look-ahead

window, while tracking passenger accommodations across the day. We add constraints to
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ensure consistency in passenger accommodations and global feasibility. The algorithm yields

high-quality solutions in short runtimes consistent with practical requirements.

• Characterizing the benefits of passenger-centric GDP using real-world data (Section 5). We

implement our model at the 30 busiest US airports. Results show that, as compared to a

flight-centric baseline, passenger delays can be reduced very significantly (by 60–80% under

good weather and by 20–60% under poor weather) through comparatively small increases in

flight delay costs (by 1–3%). Results also provide interpretable guidelines to capture passenger-

level objectives: flights with many non-stop passengers, many outgoing connections, and few

incoming connections should be prioritized, while others should be de-prioritized or delayed.

• Developing a predictive model of passenger itineraries, and showing the robustness of our

passenger-centric approach to data unavailability (Section 6). Using historical data, we use

predictive analytics to infer the number of non-stop passengers on each flight and the flight

pairs with connecting passengers. The models achieve strong out-of-sample performance, with

an R2 of 0.945 and an area under the curve of 95%, respectively. To our knowledge, this is

the first application of statistical learning methods to predict passenger itineraries in flight

networks. Results suggest that the benefits of passenger-centric GDP operations are extremely

robust to imperfect information on passenger itineraries: the GDP model based on predicted

itineraries achieves most of the benefits of the one based on perfect information.

2. Analytical Model of Passenger-centric Operations

We propose a continuous-time Markov decision process, capturing a general setting where vehicles

are operated at a facility to transport passengers (or packages). We characterize the optimal policy

to identify the main drivers of passenger-centric operations. All proofs are reported in Appendix A.

2.1. Model Development

Consider a facility where arriving vehicles are incoming and departing vehicles need to be oper-

ated. We consider (i) departing passengers (in a departing vehicle), (ii) arriving passengers (in

an arriving vehicle), and (iii) connecting passengers (transferring from an arriving vehicle to a

departing vehicle). We optimize which vehicle to operate, if any, to minimize the delay borne by

all—departing and connecting—passengers. All costs are discounted at rate β > 0.

Notations are shown in Figure 1. Let n and m denote the number of vehicles yet to depart and

arrive, respectively. We index them by i, k = 1, · · · , n and j, l = 1, · · · ,m. Let γij be the number

of passengers connecting from vehicle i to vehicle j. We assume that the arrival of each incoming

vehicle i follows an exponential distribution with rate λi. Similarly, the service time to operate each

departing vehicle j follows an exponential distribution with rate µ. Each passenger misconnecting

on departing vehicle j bears a cost cj (in time units). Practically, λi, µ and cj reflect the scheduled
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arrival of vehicle i, the facility’s capacity, and the inverse frequency of vehicles substituting vehicle

j, respectively. We assume that λi <µ for all i (it is faster to operate a departure than to wait for

the next arrival) and cj >
1
µ

for all j (it is cheaper to operate a vehicle than to miss a connection).
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Figure 1 Setting and notations for the analytical model.

The state variable, denoted by (x, y), characterizes which vehicles have arrived and departed,

and tracks the number of passengers in departing vehicles. It is defined as follows:

xi =

{
1 if vehicle i is yet to arrive
0 otherwise

yj =

{
number of passengers in vehicle j if vehicle j is yet to depart
T otherwise (terminal state)

Let A(x) and B(y) denote the set of vehicles yet to arrive and depart, respectively:

A(x) = {i= 1, · · · , n |xi = 1} and B(y) = {j = 1, · · · ,m | yj 6= T}

For each state (x, y), we denote by fi(x, y) and gj(x, y) the state following the arrival of vehicle

i∈A(x) and the departure of vehicle j ∈B(y), respectively. Upon arrival of vehicle i, we track all

passengers that connect from vehicle i to all the departing vehicles j ∈ B(y). Upon the departure

of vehicle j, the arrival vector is unchanged. We thus have:

fi(x, y) = (x̂, ŷ) with:

{
x̂i = 0
x̂k = xk, ∀k 6= i

and:

{
ŷj = yj + γij, ∀j ∈B(y)
ŷj = T, ∀j /∈B(y)

gj(x, y) = (x, ȳ) with:

{
ȳj = T
ȳl = yl, ∀l 6= j

We denote by π∗(x, y) the optimal policy and by J∗(x, y) the optimal cost-to-go function. Each

time a vehicle arrives to or departs from the facility, the decisions involve operating a departing

vehicle j ∈B(y) (referred to as π∗(x, y) = j) or operating no vehicle (referred to as π∗(x, y) = 0).

The objective of the model is to minimize total passenger delays. Lemma 1 elicits the discrete

Bellman equation for this problem. It includes: (i) the continuous delay cost borne by all passengers
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in B(y) waiting to depart, (ii) the costs of misconnections upon vehicle arrivals, (iii) the cost-to-go

upon the next arrival, and (iv) the cost-to-go reflecting the decision of operating no vehicle (and

staying in (x, y) at rate µ) or operating vehicle l ∈B(y) (and transitioning to gl(x, y) at rate µ).

Lemma 1. The Bellman equation of the model is given by:

J∗(x, y) =
1

β+µ+
∑

i∈A(x) λi

[ ∑
j∈B(y)

yj +
∑
i∈A(x)

λi

 ∑
j /∈B(y)

γijcj

+
∑
i∈A(x)

λiJ
∗ (fi(x, y))

+µmin

{
J∗(x, y), min

l∈B(y)
(J∗ (gl(x, y)))

}]
(1)

We first derive the optimal policy in small-scale settings (with one arriving vehicle and up to two

departing vehicles) to identify the main levers employed in passenger-centric operations. Results

also show that the problem does not admit a simple index policy. We thus focus next on the high-

capacity regime where µ→∞, i.e., when the time to operate each vehicle is infinitesimally small

compared to the waiting times to avoid misconnections and to the costs of misconnections.

2.2. Optimal Policy in Small-scale Settings

Proposition 1 elicits the optimal policy when n=m= 1. When the incoming vehicle has arrived,

the departing vehicle should always be operated—there is no more value in waiting. Otherwise,

the departing vehicle is operated if and only if y1 ≥ λ1γ11(c1(β+µ)−1)
β+µ+λ1

. That is, it is more beneficial

to operate the departing vehicle as (i) it carries more departing passengers y1, (ii) it is waiting

for fewer incoming connections γ11, (iii) the costs of waiting are higher (i.e., the arrival rate λ1 is

smaller and/or the capacity µ is smaller), and (iv) the misconnection cost c1 is lower. Otherwise,

it is more beneficial to hold the departing vehicle until the arrival of the incoming vehicle.

Proposition 1. If n=m= 1, then for any y≥ 0, the optimal policy is given by:

π∗(0, y) = 1

π∗(1, y) =

{
1 if y1 ≥ λ1γ11(c1(β+µ)−1)

β+µ+λ1

0 otherwise

Proposition 2 turns to the case where n= 1 and m= 2. Once the incoming vehicle has arrived, the

optimal policy simply prioritizes the vehicle with most passengers. Prior to the incoming vehicle’s

arrival, the optimal policy prioritizes the vehicle j with the highest value of yj−
λ1γ1j(cj(β+µ)−1)

β+µ+λ1
. As

in Proposition 1, this reflects the difference between delay vs. misconnection costs. But there are

two novelties. First, a vehicle might depart even if the cost of misconnections exceeds the delay cost.

Consider the case where 0> y1 − λ1γ11(c1(β+µ)−1)
β+µ+λ1

≥ y2 − λ1γ12(c2(β+µ)−1)
β+µ+λ1

and y1 − λ1γ11(c1(β+µ)−1)
β+µ+λ1

+

λ1µmin(y1+γ11,y2+γ12)

(β+µ)(β+µ+λ1)
≥ 0. If vehicle 1 was the only vehicle, we would wait for the incoming arrival
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(Proposition 1). But with two departing vehicles, we operate vehicle 1 (Proposition 2): the facil-

ity’s limited capacity results in higher delay costs with multiple departing vehicles, hence in a

more aggressive policy. Second, the priority order between the two departing vehicles may change

upon the arrival of the incoming vehicle. This occurs, for instance, if y1 − λ1γ11(c1(β+µ)−1)
β+µ+λ1

> y2 −
λ1γ12(c2(β+µ)−1)

β+µ+λ1
and y1 + γ11 < y2 + γ12. In this case, the facility prioritizes vehicle 1 before the

incoming vehicle’s arrival, but vehicle 2 after the incoming vehicle arrives.

Proposition 2. If n= 1 and m= 2, then for any y1, y2 ≥ 0, the optimal policy is given by:

π∗(0, y1 + γ1, y2 + γ2) =

{
1 if y2 + γ12 ≤ y1 + γ11
2 if y1 + γ11 ≤ y2 + γ12

π∗(1, y1, y2) =



1 if y1− λ1γ11(c1(β+µ)−1)
β+µ+λ1

≥ y2− λ1γ12(c2(β+µ)−1)
β+µ+λ1

and y1− λ1γ11(c1(β+µ)−1)
β+µ+λ1

+ λ1µmin(y1+γ11,y2+γ12)

(β+µ)(β+µ+λ1)
≥ 0

2 if y2− λ1γ12(c2(β+µ)−1)
β+µ+λ1

≥ y1− λ1γ11(c1(β+µ)−1)
β+µ+λ1

and y2− λ1γ12(c2(β+µ)−1)
β+µ+λ1

+ λ1µmin(y1+γ11,y2+γ12)

(β+µ)(β+µ+λ1)
≥ 0

0 if max
{
y1− λ1γ11(c1(β+µ)−1)

β+µ+λ1
, y2− λ1γ12(c2(β+µ)−1)

β+µ+λ1

}
+λ1µmin(y1+γ11,y2+γ12)

(β+µ)(β+µ+λ1)
< 0

These results outline two main strategies employed to minimize passenger costs. First, delay

allocation prioritizes departing vehicles to minimize the impact of delays on passenger wait times.

It also involves delay re-allocation, i.e., updates in the priority order upon the arrival of incoming

vehicles based on the number of realized connections. Second, delay introduction deliberately adds

departure holds to avoid misconnections, when resulting benefits outweigh added delay costs.

2.3. Optimal Policy with µ→∞
Practically, the high-capacity regime is motivated by the small time required to operate departures,

as compared to waiting for arrivals or re-accommodating misconnecting passengers. Technically,

it ensures tractability by avoiding operating vehicles with a “deficit” of departing vs. connecting

passengers (as in Proposition 2)—instead, the optimal policy follows a simpler index rule.

By taking the limit in Equation (1) as µ→∞, we obtain Equation (2). The first term corresponds

to the instantaneous transition from state (x, y) to state gl(x, y) if vehicle l ∈ B(y) is operated.

The second term captures the expected cost if no vehicle is operated, including passenger delays,

misconnection costs, and the cost-to-go from vehicle i’s arrival onward.

J∗(x, y) = min

{
min
l∈B(y)

J∗ (gl(x, y)) ,

1

β+
∑

i∈A(x) λi

 ∑
j∈B(y)

yj +
∑
i∈A(x)

λi

 ∑
j /∈B(y)

γijcj

+
∑
i∈A(x)

λiJ
∗ (fi(x, y))

} (2)

In the high-capacity regime, the decision involves “which vehicles to operate vs. hold” rather

than “which vehicles to prioritize”. Indeed, operating vehicles j and l is equivalent to operating
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vehicles l and j. We thus denote by Π∗(x, y) the set of optimal decisions in state (x, y). Consistently,

we focus here on the delay introduction insights rather than on the delay allocation insights.

The optimal policy is elicited in Proposition 3. The main result is that departing vehicle j ∈B(y)

should be operated if and only if yj ≥
∑

i∈A(x) λiγijcj, i.e., if the cost borne by the passengers

waiting in vehicle j exceeds the cost of misconnections (across all arriving vehicles). The second

part of the proposition simply asserts that the system instantaneously transitions from state (x, y)

to a state δ(x, y) where all the vehicles j ∈B(y) satisfying yj ≥
∑

i∈A(x) λiγijcj have departed. The

proof is more technical, and proceeds by double induction over |A(x)| and |B(y)|.

Proposition 3. We denote by D(x, y) =
{
j ∈B(y) | yj <

∑
i∈A(x) λiγijcj

}
, and by δ(x, y) the

m-vector defined by [δ(x, y)]j = yj if j ∈D(x, y) and [δ(x, y)]j = T if j /∈D(x, y). We have:

Π∗(x, y) =B(y) \D(x, y) i.e., j ∈Π∗(x, y) ⇐⇒ yj ≥
∑
i∈A(x)

λiγijcj

J∗(x, y) = J∗ (δ(x, y)) =
1

β+
∑

i∈A(x) λi

 ∑
j∈D(x,y)

yj +
∑
i∈A(x)

λi

 ∑
j /∈D(x,y)

γijcj

+
∑
i∈A(x)

λiJ
∗ (fi(x, δ(x, y)))


This result shows that the benefits of operating vehicle j ∈ B(y) increase with yj, but decrease

with λi, γij and cj. This extends the insights from Section 2.2 to a setting with several vehicles.

Moreover, the benefits of operating any vehicle j ∈ B(y) increase whenever an incoming vehicle

i ∈ A(x) arrives—the cost of misconnections decreases by λiγijcj. The optimal policy is thus to

wait for incoming vehicles just until the number of passengers ready to depart in vehicle j exceeds∑
i∈A(x) λiγijcj, and operate vehicle j immediately thereafter.

2.4. Synthesis of Insights

Passenger-centric operations involve two strategies: (i) delay allocation (i.e., which departures to

prioritize), and delay re-allocation (i.e., whether to update priorities upon vehicle arrivals), and

(ii) delay introduction (i.e., whether to deliberately hold departing vehicles to avoid misconnec-

tions). Delay allocation and re-allocation reduce passenger delays without adding vehicle delay,

whereas delay introduction trades off vehicle vs. passenger delays. Results also identified the main

drivers underlying passenger-centric operations: any departure is more beneficial with more depart-

ing passengers, fewer incoming connections, closer incoming vehicle arrivals, and less costly miscon-

nections. As we shall discuss, these insights will be applicable in the more complex GDP setting.

3. Integer Programming Model of Passenger-centric GDP

We now develop an integer programming model, referred to as (GDP-PAX), to optimize passenger-

centric GDP operations. Unlike in our analytical setting, the decision to operate vs. delay a depart-

ing flight is now complicated by combinatorial complexities arising in air traffic networks. Consider
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for instance a flight with many incoming connections. From Section 2, one may wish to hold this

flight to avoid misconnections if inbound flights are delayed. But this decision now depends on

ripple effects on airport, aircraft and passenger networks. For the airport, flight schedules may be

such that operations will be capacity-constrained shortly thereafter, so any departure hold might

create further delays. For an aircraft, a departure hold might induce further delays at the desti-

nation if the turnaround time is insufficient. For passengers, the departure hold may enable more

connections at the origin airport, but may also create new misconnections at the destination air-

port if the flight was booked as the second leg by some passengers, but as a first leg by others. The

(GDP-PAX) model captures these interdependencies across networks of operations.

In this paper, we focus on the deterministic multi-airport ground-holding problem. This restric-

tion enables us to capture the trade-off between flight and passenger delays, while retaining

tractability. Our passenger-centric approach can be integrated in future research into ATFM mod-

els that capture en-route capacities (e.g. Bertsimas and Stock Patterson 1998, Bertsimas, Lulli, and

Odoni 2011) and operating uncertainty (e.g. Ball et al. 2003, Balakrishnan and Chandran 2018).

3.1. Presentation

The (GDP-PAX) model takes as inputs flight schedules, aircraft connections, airport capacities,

and passenger itineraries. Flight schedules and aircraft connections are available from the published

schedule or updated flight plans. Airport capacities can be estimated from historical data. We first

assume that passenger itineraries are known by air traffic managers—for instance, they can be

provided by the airlines as part of the Collaborative Decision Making (CDM) program. We relax

this assumption in Section 6 by predicting passenger itineraries from historical data. Due to data

unavailability, the model does not capture crew connections but these could be easily added (like

aircraft but unlike passengers, crews induce a one-to-one mapping between flights).

The model determines each flight’s departure and arrival times (direct variables), and replicates

network-wide passenger flows (indirect variables). We assume that each connecting passenger trav-

els on his/her planned first-leg flight, and gets re-accommodated on a different second-leg flight

if and when the connection becomes infeasible. We say that a passenger is “accommodated” on a

flight if the flight is used as a second leg. Passenger delays include the arrival delays of non-stop

passengers, as well as the added travel time resulting from the re-accommodation of passengers trav-

eling on disrupted itineraries. Ultimately, the formulation captures the overall impact of itinerary

disruptions across passenger networks, given flight frequencies, aircraft capacities and load factors.

3.2. (GDP-PAX) Formulation

Inputs

K= set of airports subject to GDP initiatives, {1, · · · ,K}
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T = set of 15-minute time periods, {1, · · · , T}
F = set of flights, {1, · · · ,F}

Fak /Fdk = subset of flights i∈F scheduled to land / take off at airport k ∈K
T di /T

a
i = earliest time period in T when flight i∈F can depart / arrive

T
d

i /T
a

i = latest time period in T when flight i∈F can depart / arrive

C = set of flight pairs (i, j)∈F ×F such that an aircraft connects between i and j

P = set of passenger itineraries, {1, · · · , P}
PN/PC = subset of non-stop / one-stop passenger itineraries in P

f1(p)/f2(p) = first / second flight leg of one-stop passenger itinerary p∈PC
f0(p) = flight associated with non-stop passenger itinerary p∈PN
Rp = subset of flights i∈F that can accommodate passengers on itinerary p∈P
Skt = set of segments of the capacity envelope at airport k ∈K in period t∈ T

Cd
it/C

a
it = delay cost of flight i∈F if it departs / arrives in period t∈ T

∆min
i /∆max

i = minimum / maximum block times of flight i∈F
τij = minimum aircraft turnaround time between flights i and j, for all i, j ∈ C
σpi = minimum connecting time between f1(p) and i∈Rp for passengers on itinerary p∈PC
np = number of passengers traveling on itinerary p∈P
Ωi = number of passengers that can be accommodated on flight i∈F
δ0it = arrival delay of flight i∈F if it arrives in period t∈ T
δCpi = connection delay of passengers on itinerary p∈P if accommodated on flight i∈Ri
δSp = connection delay of passengers on itinerary p∈P if accommodated on a “sink” option

αkst, βkst, γkst = parameters defining the capacity envelope at airport k ∈K in period t∈ T

The set K comprises the airports subject to GDP initiatives—all other airports are assumed

to be uncapacitated. The set F includes all flights that are flown by an aircraft or a passenger

that visits one of the airports in K. For instance, if an aircraft flies from JFK to MSP to LAX,

and a passenger flies from JFK to MSP to SEA, the three flights JFK→MSP, MSP→LAX and

MSP→SEA need to be included (even if, for instance, only JFK and LAX are included in K).

Regarding flight operations, we allow for variations in en-route times between ∆min
i and ∆max

i for

each flight i. The gap between ∆min
i and ∆max

i captures flexibility in flying speeds, aircraft routing,

and flying altitude. Next, T di is set to flight i’s scheduled departure time (flights are not allowed to

depart early), but T ai may not coincide with its scheduled arrival time (due to en-route flexibility).

The inputs C and τij track aircraft rotations to maintain aircraft connectivity.

We use the expressions from Bertsimas, Lulli, and Odoni (2011) to compute flight delay costs. Let

di and ai denote the periods when flight i is scheduled to depart and arrive, respectively. For each

i∈F and t∈ T , we set: Cd
it = (max(t− di,0))

1+ε1 and Ca
it = (max(t− ai,0))

1+ε2 . We set ε2 > ε1, to

reflect that airborne delays are more costly than ground delays (so the model will absorb delays on

the ground rather than in the air, whenever possible). The non-linearities ensure inter-flight equity

by preventing that disproportionate delays will be assigned to any flight.
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We represent airport capacities with convex and piecewise-linear capacity envelopes, which cap-

ture the non-increasing relationships between arrival and departure throughput (Gilbo 1993). The

envelope at airport k ∈ K in time period t ∈ T is characterized by a set Skt of linear segments of

the form αktsXkt+βktsYkts ≤ γkts, where Xkt and Ykt denote the number of arrivals and departures

that can be operated at airport k in period t. The time-dependency reflects variations in weather

conditions, runway configurations, and other operating conditions.

The set of passenger itineraries is partitioned between non-stop and one-stop itineraries which,

collectively, account for 97.5% of itineraries in the United States (Barnhart, Fearing, and Vaze

2014). Each non-stop itinerary p∈PN is booked on exactly one flight f0(p). We measure the delay

of non-stop passengers as their arrival delay, i.e., δ0it = max(t− ai,0) for all i ∈ F and t ∈ T . For

each one-stop itinerary p ∈ PC , f1(p) and f2(p) denote its first-leg and second-leg flights. The set

of accommodation options Rp is defined as the set of flights that can accommodate passengers

on itinerary p ∈ PC , i.e., flights on the same origin-destination pair as f2(p), departing after the

scheduled arrival time of f1(p) plus a minimum connecting time, and operated by the same airline

or a partner airline. The connection delay δCpi is defined as the difference between the second-leg

flight’s scheduled arrival time and the itinerary’s scheduled arrival time, if positive, i.e., δCpi =

max
(
ai− af2(p),0

)
for all p ∈P and i ∈Rp. Passenger accommodations are constrained by “effec-

tive” aircraft capacities Ωi, equal to the number of aircraft seats minus the number of non-stop

passengers on flight i and the number of one-stop passengers with flight i as their first leg (who

will always travel on flight i). Finally, we consider a “sink” accommodation to ensure feasibility. It

corresponds to an equivalent flight the following day, and it is associated with a high cost δSp .

Decision Variables

wait/w
d
it =

{
1 if flight i∈F is rescheduled to land / take off by period t∈ T
0 otherwise

λpi =

{
1 if the accommodation of passenger itinerary p∈PC on flight i∈Rp is infeasible
0 otherwise

zpi = number of passengers on itinerary p∈P accommodated on flight i∈Rp
zSp = number of passengers on itinerary p∈P accommodated on the “sink” itinerary

Using notations from Bertsimas and Stock Patterson (1998), each row wdi,· and wai,· takes the

form (0,0,0,1,1,1,1). By convention, we assume that wai0 =wdi0 = 0 for each flight i. The variables

λpi, zpi and zSp track passenger accommodations—they do not capture actual decisions made by air

traffic managers, but quantify the impact of GDP decisions on passenger flows in flight networks.

Mathematical Formulation

min
∑
i∈F

(∑
t∈T

Ca
it

(
wait−wai,t−1

)
+
∑
t∈T

Cd
it

(
wdit−wdi,t−1

))
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+ ρ

∑
p∈PN

∑
t∈T

npδ
0
f0(p),t

(
waf0(p)t−waf0(p),t−1

)
+
∑
p∈PC

∑
i∈Rp

δCpizpi + δSp z
S
p

 (3)

s.t. wait ≥wai,t−1 and wdit ≥wdi,t−1 ∀i∈F ,∀t∈ T (4)

wd
i,Td

i
−1 = 0,wai,Ta

i
−1 = 0 ∀i∈F (5)

wd
i,T

d
i

= 1,wa
i,T

a
i

= 1 ∀i∈F (6)∑
t∈T

wdit−
∑
t∈T

wait ≥∆min
i ∀i∈F (7)∑

t∈T

wdit−
∑
t∈T

wait ≤∆max
i ∀i∈F (8)∑

t∈T

wait−
∑
t∈T

wdjt ≥ τij ∀(i, j)∈ C (9)

αkts
∑
i∈Fa

k

(
wait−wai,t−1

)
+βkts

∑
i∈Fd

k

(
wdit−wdi,t−1

)
≤ γkts ∀k ∈K,∀t∈ T ,∀s∈ Skt (10)

∑
t∈T

waf1(p),t−
∑
t∈T

wdit−σpi +M
(1)
pi λpi ≥ 0 ∀p∈PC ,∀i∈Rp (11)∑

t∈T

waf1(p),t−
∑
t∈T

wdf2(p)t−σp,f2(p)−M (2)
p (1−λp,f2(p)) + 1≤ 0 ∀p∈PC (12)

zpi ≤ np(1−λpi) ∀p∈PC ,∀i∈Rp (13)

np(1−λp,f2(p)) = zp,f2(p) ∀p∈PC (14)∑
i∈Rp

zpi + zSp = np ∀p∈PC (15)

∑
p∈P

zpi ≤Ωi ∀i∈F (16)

wa,wd binary (17)

λ binary, z, zS integer (18)

Equation (3) optimizes the trade-offs between flight delay costs and passenger delays, weighted by the

parameter ρ (when ρ = 0, (GDP-PAX) reduces to baseline flight-centric GDP models). Flight delay costs

capture arrival and departure delays, weighted by the parameters Ca and Cd. Passenger delays include the

arrival delay of non-stop passengers
∑

p∈PN

∑
t∈T a

i
npδ

0
f0(p),t

(
waf0(p)t−waf0(p),t−1

)
, and the added trip times of

one-stop passengers
∑

p∈PC

(∑
i∈Rp

δCpizpi + δSp z
S
p

)
. Recall that the connection delay measures the difference

between the scheduled arrival times between planned vs. realized itineraries. Ideally, we would consider the

arrival delay of re-accommodated passengers, by replacing the term δCpi by δCpi +
∑

t∈T a
i

(
wait−wai,t−1

)
. But

this would lead to a non-linear objective, thus significantly increasing the model’s computational complexity.

Since each flight’s delay is typically much smaller than the added travel times due to misconnections, this

simplification does not alter the structure of the optimal solution—in fact, our results will show that the

insights are consistent when considering the added trip times or the arrival delay of one-stop passengers.

Equations (4) to (10) are flight operating constraints. Constraint (4) ensures that wa and wd are non-

decreasing in t, consistently with their definition. Constraints (5) and (6) state that each flight departs

and arrives within the specified time windows. Constraints (7) and (8) impose the minimal and maximal
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block-times. Constraint (9) maintains sufficient turnaround times for all aircraft connections. Constraint (10)

applies each airport’s capacity by restricting the number of arrivals and departures that can be operated in

each time period. All these constraints are consistent with the ATFM literature.

Turning to passenger accommodations, Constraint (11) defines the feasibility of connections between first-

leg and second-leg flights and Constraint (12) ensures that λp,f2(p) = 0 if the connection between f1(p) and

f2(p) is feasible. Indeed,
∑

t∈T w
a
f1(p),t −

∑
t∈T w

d
it characterizes the connecting time between the first-leg

flight f1(p) and flight i. To ensure that Constraint (11) is satisfied whenever λpi = 1 and that Constraint (12)

is satisfied whenever λp,f2(p) = 0, we define the scalars M
(1)
pi = σpi + T

a

f1(p) − T
d
i for all p ∈ PC and all

i∈F , and M (2)
p = σp,f2(p) +T af1(p)−T

d

f2(p) for all p∈PC . Proposition 4 (proved in Appendix B) shows that

Constraints (11) and (12) together ensure that λpi = 1 if the connecting time is lower than the minimum

connecting time σpi, and 0 otherwise. It also shows that Constraint (12) is critical to obtain this result.

Proposition 4. There exists an optimal solution to (GDP-PAX) such that λpi = 0 for each p∈PC , i∈Rp
that satisfies

∑
t∈T w

a
f1(p),t−

∑
t∈T w

d
it ≥ σpi. This property is not satisfied if Constraint (12) is omitted.

Next, Constraint (13) ensures that no passenger gets assigned to a second-leg flight if the connection is not

feasible. In airline disruption management, Bratu and Barnhart (2006) and (Marla, Vaaben, and Barnhart

2017) use variables λ̃p = 1 if itinerary p ∈ PC is disrupted, and 0 otherwise, and z̃pr equal to the number of

passengers re-accommodated from itinerary p ∈ PC to itinerary r ∈ PC . They write constraints of the form∑
p∈PC

z̃pr ≤
(∑

p∈PC
np

)
(1− λ̃r),∀r ∈PC . Constraint (13) improves them in two ways. First, Proposition 5

(proved in Appendix B) shows that the constraints z̃pr ≤ np(1− λ̃r),∀p, r ∈ PC are valid inequalities with

a tighter linear programming relaxation. Second, we use our assumption that all passengers travel on their

original first-leg flight to re-formulate these constraints using matrices of size |P|× |F| rather than |P|2.

Proposition 5. Let us consider the variables λ̃p = 1 if itinerary p∈PC is disrupted, and 0 otherwise, and

z̃pr equal to the number of passengers originally planned on itinerary p∈PC and re-accommodated on itinerary

r ∈ PC. Then, if z̃pr ≤ np for all p ∈ PC, the constraint z̃pr ≤ np(1− λ̃r),∀p, r ∈ PC is a valid inequality that

yields a tighter linear programming relaxation than the constraint
∑

p∈PC
z̃pr ≤

(∑
p∈PC

np

)
(1− λ̃r),∀r ∈PC.

The remaining constraints ensure that passengers get accommodated on their planned itineraries if they

are not disrupted (Equation (14)), that all passengers get accommodated on one flight or the “sink” option

(Equation (15)), and that passenger accommodations meet effective aircraft capacities (Equation (16)).

Constraints (17) and (18) define the domain of definition of the variables.

3.3. Size of the Formulation

We compare our (GDP-PAX) model to a baseline flight-centric GDP model, referred to as (GDP), obtained

by considering only the decision variables wa and wd and the flight operating constraints (Equations (4)

to (10)). Table 1 reports the number of variables and constraints of both models, where |PC | denotes the

number of one-stop passenger itineraries and S̄ denotes an upper bound on the number of segments in each

airport’s capacity envelope. The size of (GDP-PAX) scales up with the number of itinerary-flight pairs,

resulting in O(|PC |F ) variables and constraints. In theory, |PC | scales up quadratically with the number of
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flights F . However, the set of passenger itineraries is sparse because feasible itineraries can only be created by

a handful of flight pairs in F ×F (i.e., (i, j) pairs such that the departure airport j is the same as the arrival

airport of i, with sufficient connecting time, and flown by the same airline or partner airlines). Similarly, for

each one-stop itinerary p∈PC , the only relevant variables are related to the flights in the subset Rp rather

than in the full set F . This set is also sparse, for the same reasons. The number of non-zero variables and

constraints can thus be ultimately significantly lower than F 3, or even than |PC |F .

Table 1 Size of the (GDP) and (GDP-PAX) models.

Metric (GDP) (GDP-PAX)

# binary variables 2FT 2FT +O (|PC |F )
# integer variables – O (|PC |F ) + |PC |
# constraints (upper bound) 2FT + 4F +F 2 + S̄KT 2FT + 5F +F 2 + S̄KT + 2 |PC |F + 2 |PC |

4. Solution Algorithm

Any realistic GDP model results in large-scale optimization problems, with huge memory and solution

time requirements. We adopt a rolling approach to solve the model iteratively for a limited look-ahead

window. This approach is consistent with practice and the recent literature (e.g. Bertsimas, Lulli, and Odoni

2011). Our passenger-centric approach complicates this rolling procedure, however, because we need to link

flight operations and passenger itineraries across the full day to maintain feasibility in passenger flows and

accurately estimate passenger delays. We describe next our algorithmic procedure and the adjustments to

the (GDP-PAX) formulation that make it amenable to implementation in a rolling horizon.

We apply (GDP-PAX) in successive decision epochs, indexed by u= 1, · · · ,U for a look-ahead window of

length w (set to 4, 5 or 6 hours). At each epoch u, we denote by Tu the set of time periods corresponding to

the interval [u,u+w], plus additional “buffer” periods to maintain feasibility in case some flights need to be

delayed beyond the look-ahead window. We denote by d̃i and ãi the planned departure and arrival times of

flight i∈F at time u (obtained from the schedule of flights or the model’s output in the preceding decision

epochs). Let F̃d =
{
i∈F |u≤ d̃i ≤ u+w

}
and F̃a = {i∈F |u≤ ãi ≤ u+w} track the flights planned to

depart and arrive, respectively, during the look-ahead window. We include in the model the set F of all

flights yet to arrive across the full day, in order to track passenger flows beyond the look-ahead window

[u,u+w]. However, the flight decision variables wd and wa are restricted to the sets F̃d and F̃a, respectively.

At each decision epoch, we include all one-stop itineraries subject to the flight operating decisions within

the look-ahead window [u,u+w], and whose passengers have not all been provided final accommodations.

We define final accommodations through parameters ζpi (resp. ζSp ) that denote the number of passengers

booked on itinerary p∈PC , accommodated on flight i∈Rp (resp. on the sink option) and who can no longer

be provided any other accommodation. Specifically, ζpi takes the value zpi (obtained from the model at the

preceding epoch) if flight i departed before time u (in which case the passenger is already en-route to the

destination), or if flight i corresponds to the second-leg flight f2(p) and passengers will make their connection

with certainty. The latter condition occurs if the first-leg flight f1(p) already arrived and sufficient connecting
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time is available (even if f2(p) is not delayed), or if f1(p) already departed and sufficient connecting time will

be available (even if the en-route time of f1(p) takes its maximal value and f2(p) is not delayed). Similarly,

ζSp takes the value zSp if the accommodation of all passengers on itinerary p is final, or if all the candidate

second-leg flights have departed already. The logic is summarized in Equations (19) and (20).

ζpi =


zpi if d̃i <u

zpi if i= f2(p), ãf1(p) <u and ãf1(p) +σpi ≤ d̃i
zpi if i= f2(p), d̃f1(p) <u and d̃f1(p) +σpi + ∆max

i ≤ d̃i
0 otherwise

(19)

ζSp =

{
zSp if

∑
i∈F ζpi = np, or if d̃i <u for all i∈Rp

0 otherwise
(20)

The subset of one-stop passenger itineraries included in the model, denoted by P̃C , is then given by:

P̃C =

{
p∈PC | d̃f1(p) ≤ u+w and

∑
i∈F

ζpi + ζSp <np

}
(21)

We then update the parameters np and Ωi by the number of passengers booked on itinerary p ∈ P̃C that

remain to be accommodated and the remaining seating capacity on the aircraft used to fly flight i∈F :

np← np−
∑
i∈F

ζpi− ζSp ∀p∈ P̃C (22)

Ωi←Ωi−
∑
p∈PC

ζpi ∀i∈F (23)

We can implement the flight operating constraints (Equations (4) to (10)), restricted to time periods in

Tu and flights in F̃a and F̃d. We can also implement the passenger flow constraints (Equations (13) to (16)),

using one-stop itineraries in P̃C and all flights in F . But we need to redefine the passenger accommodation

constraints (Equations (11) and (12)) because the first-leg and second-leg flights of each itinerary in P̃C are

not necessarily included in F̃a and F̃d. To this end, we partition the set P̃C into three subsets, denoted by

P̃AC , P̃DC , and P̃0
C (Equations (24) to (26)), and formulate the related constraints in Equations (27) to (33).

• Subset P̃AC includes itineraries whose first-leg flights are scheduled to arrive within the look-ahead

window. For each flight i∈Rp∩Fdt (scheduled to depart during the look-ahead window), Equation (27)

is identical to Equation (11). Similarly, if f2(p)∈Fdt , Equation (28) is identical to Equation (12). Then,

for each flight i∈Rp \Fdt , Equation (29) states that passengers on itinerary p can be accommodated on

flight i if and only if f1(p) arrives by d̃i−σpi (the latest arrival time to enable passenger connections).

• Subset P̃DC includes itineraries whose first-leg flights are scheduled to depart within the look-ahead

window, but to arrive after u+w. For each flight i ∈Rp ∩Fdt , Equations (30) and (31) are analogous

to Equations (11) and (12), except that the arrival time of flight f1(p) is not controlled. We thus state

that accommodations on flight i are infeasible if the connecting time is insufficient even if the en-route

time of f1(p) takes its minimal value ∆min
f1(p). Then, for each flight i∈Rp \Fdt , Equation (32) states that

passengers on itinerary p can be accommodated on flight i if and only if f1(p) departs by d̃i−σpi−∆min
f1(p)

(the latest departure time to enable passenger connections if the en-route time takes its minimal value).
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• Subset P̃0
C includes itineraries whose first-leg flights are not controlled by the model at epoch u, either

because f1(p) leaves before u and arrives after u+w, or because f1(p) already arrived by time u. For

each flight i ∈Rp ∩Fdt , Equation (33) states that passengers can be accommodated on flight i if and

only if flight i departs no earlier than ãf1(p) + σp,f2(p) (the earliest departure time to enable passenger

connections). For each flight i∈Rp \Fdt , we enforce the constraints by fixing the variables λpi.

Note that Equations (29), (32) and (33) capture that λpf2(p) = 1 if and only if the connecting time between

f1(p) and f2(p) is insufficient, so there is no need for a constraint analogous to Equation (12) in these cases.

P̃AC =
{
p∈ P̃C | f1(p)∈ F̃a

}
(24)

P̃DC =
{
p∈ P̃C | f1(p)∈ F̃d \ F̃a

}
(25)

P̃0
C =

{
p∈ P̃C | f1(p) /∈

(
F̃a ∪ F̃d

)}
(26)

∑
t∈T

waf1(p),t−
∑
t∈T

wdit−σpi +M
(1)
pi λpi ≥ 0 ∀p∈ P̃AC ,∀i∈Rp ∩ F̃d (27)∑

t∈T

waf1(p),t−
∑
t∈T

wdf2(p)t−σp,f2(p)−M (2)
p (1−λp,f2(p)) + 1≤ 0 ∀p∈ P̃AC | f2(p)∈ F̃d (28)

λpi = 1−wa
f1(p),d̃i−σpi

∀p∈ P̃AC ,∀i∈Rp \ F̃d (29)∑
t∈T

wdf1(p),t−
∑
t∈T

wdit−σpi−∆min
f1(p) +M

(1)
pi λpi ≥ 0 ∀p∈ P̃DC ,∀i∈Rp ∩ F̃d (30)∑

t∈T

wdf1(p),t−
∑
t∈T

wdf2(p)t−σp,f2(p)−∆min
f1(p)−M (2)

p (1−λp,f2(p)) + 1≤ 0 ∀p∈ P̃DC | f2(p)∈ F̃d (31)

λpi = 1−wd
f1(p),d̃i−σpi−∆min

f1(p)
∀p∈ P̃DC ,∀i∈Rp \ F̃d (32)

λpi =wdi,ãf1(p)+σp,f2(p)−1 ∀p∈ P̃0
C ,∀i∈Rp ∩ F̃d (33)

Algorithm 1 summarizes our full rolling procedure to solve (GDP-PAX).

Algorithm 1 Rolling horizon algorithm to solve (GDP-PAX).

– Inputs: flight schedule, passenger itineraries, aircraft capacities airport capacities

– Initialize final itineraries ζpi = 0,∀p∈PC , i∈Rp, and ζSp = 0,∀p∈PC
– Define rolling periods u= 1, · · · ,U and duration of each look-ahead window w

for u= 1, · · · ,U do

– Define flight sets: F̃a = {i∈F |u≤ ãi ≤ u+w} and F̃d =
{
i∈F |u≤ d̃i ≤ u+w

}
– Define passenger sets: P̃C =

{
p∈PC | d̃f1(p) ≤ u+w and

∑
i∈F ζpi + ζSp <np

}
, and subsets P̃AC , P̃DC , and P̃0

C

(Equations (24) to (26))

– Solve the (GDP-PAX) model: Equations (3) to (10), Equations (27) to (31), and Equations (13) to (18)

– Update the arrival schedule ãi for i∈ F̃a, and the departure schedule d̃i for i∈ F̃d

– Fix final itineraries; update parameters ζpi for p∈PC , i∈Rp, and ζSp for p∈PC (Equations (19) and (20))

– Update the number of remaining passengers and effective aircraft capacities (Equations (22) and (23))

end for
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We could solve the baseline (GDP) model with Algorithm 1, by setting ρ= 0. But this approach would

artificially increase the computational complexity of (GDP) by computing passenger flows—hence, underes-

timate the computational costs of (GDP-PAX) in comparison. Moreover, it would not necessarily provide

optimal passenger flows, given the flight-level decisions wa and wd—hence, overestimate the benefits of

(GDP-PAX) in comparison. To ensure a fair assessment of (GDP-PAX), we implement Algorithm 2, which

first solves (GDP) without passenger-centric constraints and then optimizes passenger accommodations (by

solving a passenger-flow model equivalent to (GDP-PAX) where the variables wa and wd are fixed).

Algorithm 2 Rolling horizon algorithm to solve (GDP) with separate passenger flow model.

– Inputs: flight schedule, passenger itineraries, aircraft capacities and airport capacities

– Define rolling periods u= 1, · · · ,U and duration of each look-ahead window w

for u= 1, · · · ,U do

– Define flight sets: F̃a = {i∈F |u≤ ãi ≤ u+w} and F̃d =
{
i∈F |u≤ d̃i ≤ u+w

}
– Define passenger sets: P̃C =

{
p∈PC | d̃f1(p) ≤ u+w and

∑
i∈F ζpi + ζSp <np

}
, and subsets P̃AC , P̃DC , and P̃0

C

(Equations (24) to (26))

– Solve the (GDP) model:

min
wa,wd

∑
i∈F

(∑
t∈T

Cait
(
wait−wai,t−1

)
+
∑
t∈T

Cdit

(
wdit−wdi,t−1

))
s.t.: Eq. (4)–(10), (17)

– Update the arrival schedule ãi for i∈ F̃a, and the departure schedule d̃i for i∈ F̃d

– Solve a passenger-flow model to reconstruct passenger itineraries:

min
λ,z,zS

∑
p∈PC

∑
i∈Rp

δCpizpi + δSp z
S
p

 s.t.: Eq. (27)–(31), (13)–(16), (18)

– Fix final itineraries; update parameters ζpi for p∈PC , i∈Rp, and ζSp for p∈PC (Equations (19) and (20))

– Update the number of remaining passengers and effective aircraft capacities (Equations (22) and (23))

end for

5. Experimental Results

We implement (GDP-PAX) using real-world data. Throughout this section, we report results from the full

rolling horizon algorithm described in Section 4, thus capturing the overall performance of our model and

algorithm over a full day of GDP operations—as opposed to a single iteration at a point in time.

5.1. Experimental Setup

We use data from the US National Aviation System from 2007. This year was chosen because it was one of the

busiest years in aviation, and because of the availability of original and reconstructed data (e.g., passenger

itineraries, airport capacities). Given the low variability in flight schedules from one day to another, we use

scheduling inputs for one representative day, September 18, 2007. The set of airports K includes up to all

the “CORE 30” airports—the 30 most busiest US airports. We first consider instances where the 6 most

congested airports (i.e., JFK, EWR, LGA, ATL, ORD and PHL) are subject to GDP initiatives and thus
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included in K; we then consider 18-airport GDP instances and instances with all 30 airports. Ultimately,

this setting captures GDP instances of the size of the full US and European networks—the largest ones

encountered in practice. We vary the look-ahead window w from 4 hours to 6 hours.

Data on flight schedules, aircraft connections and fleet types are obtained from the Aviation System

Performance Metrics (ASPM) database, maintained by the Federal Aviation Administration (2013). We set

the upper bound of arrival delays to 6 hours.We use flight delay coefficients of ε1 = 1.05 and ε2 = 1.1. We

assume that each flight has a 10% block-time flexibility (e.g., if a flight is scheduled with a 120-minute

block time, its actual block time may vary between 108 and 132 minutes). We use the minimum aircraft

turnaround times estimated by Pyrgiotis (2011). We obtain passenger itineraries from Barnhart, Fearing,

and Vaze (2014). We consider a minimum passenger connecting time of 30 minutes at each airport, which

corresponds to the 5th percentile of the distribution of planned connection times.

We define airport capacity envelopes in Visual Meteorological Conditions (VMC) and Instrument Mete-

orological Conditions (IMC)—proxies for “good” and “poor” weather, respectively. At the airports in the

New York area (JFK, EWR and LGA), we use the envelopes estimated empirically by Simaiakis (2012) and

the pattern of runway configuration utilization from Jacquillat, Odoni, and Webster (2017). At the other 27

airports, we approximate the VMC and IMC capacity envelopes with three segments capturing the arrival,

departure and total capacities in 2007 estimated by the Federal Aviation Administration (2004).

We consider two extreme weather scenarios by assuming that weather conditions are either good or bad

at all airports in all time periods. Of course, most instances fall between these extremes. But these two

scenarios enable to characterize passenger-level GDP under moderate and strong congestion, respectively.

We implement the models using CPLEX 12.7 on an Intel(R) Core(TM) i5 running at 3.1 GHz 16 GB

RAM. We look for solutions within an optimality gap of 1% with a one-hour limit.

5.2. Computational Performance

Figure 2 shows the number of flights and passenger itineraries included in the model in each rolling period,

in the largest setting (i.e., 30 airports in K and w= 6 hours). Note that (GDP-PAX) involves very large-scale

optimization problems, even with the rolling horizon algorithm. At each period, the model optimizes the

arrival and/or departure times of up to 14,000 flights and the accommodation of passengers booked on over

60,000 itineraries—resulting in millions of decision variables and constraints.

Table 2 reports the computational performance of (GDP-PAX), with 6, 18 and 30 airports in K and a look-

ahead window w =4, 5 and 6 hours. The “total cost” metric refers to the model’s objective (Equation (3))

obtained from the full rolling algorithm. The table also shows the minimum, median and maximum runtimes

and the maximal optimality gap across all integer programs solved in the 13–15 iterations of the algorithm.

In all but two instances, (GDP-PAX) derives solutions within the 1% optimality gap. With 6 airports in

K, the median runtime is on the order of one minute. Obviously, as the number of airports in K increases, so

do computational times. Nonetheless, median computational times remain reasonable, on the order of 1–3

minutes—enabling the real-time implementation of the model in practice.

Moreover, longer look-ahead results in larger problems and longer computational times. Increasing the

look-ahead window from 4 to 6 hours increases median runtimes moderately but increases maximal runtimes
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(a) Number of flights (b) Number of passenger itineraries

Figure 2 Size of the model in each iteration of the rolling horizon algorithm.

more significantly (which can be alleviated by setting a larger optimality tolerance, say 2-3%). At the same

time, longer look-ahead windows do not necessarily change the quality of the solution dramatically. In some

cases, longer look-ahead even leads to slightly higher total costs, due to the approximate rolling horizon

algorithm and to variations in solution qualities within the 1% optimality gap. Longer look-ahead is most

beneficial for larger values of ρ, i.e., when passenger delays become more prominent—thus underscoring the

ripple effects of flight operating decisions on passenger itineraries over the full day of operations.

Most importantly, passenger-centric considerations result in moderate increases in computational times,

as compared to the baseline flight-centric model. Despite larger model instances, the runtimes of (GDP-PAX)

remain of the same order of magnitude as those of (GDP). For example, with 18 airports, the median runtimes

increase from 41-78 seconds to 68-147 seconds. In other words, considering passenger accommodations does

not make the GDP problem intractable. Ultimately, this suggests that passenger-centric considerations can

be incorporated into existing ATFM decision support systems at limited computational costs.

5.3. Impact of Passenger-centric GDP Operations

We now evaluate the performance of (GDP-PAX) in terms of solution quality. Table 3 reports flight delay

costs and the delays of non-stop and one-stop passengers, for different values of ρ.

The most striking observation is that (GDP-PAX) yields very large reductions in passenger delays at

comparatively small increases in flight delay costs, as compared to the (GDP) baseline. As expected, higher

values of ρ generally induce lower passenger delays and higher flight delay costs (a few exceptions are due

to the rolling approximation and variations of the solutions within the 1% optimality gap). Most critically,

the percent-wise reduction in passenger delays far outweighs any increase in flight delay costs across all test

instances. In VMC, passenger delays can be reduced by up to 50%–90% by increasing flight delay costs by

3%. In IMC, passenger delay reductions amount to 20% by increasing flight delay costs by 1%, and to 60%

by increasing flight delay costs by 3%. For large values of ρ, passenger delays can be cut even more, obviously

through higher increases in flight delay costs (by 10% in VMC and 35%–40% in IMC).

Additional insights can be derived from these results. First, non-stop passenger delays can decrease sig-

nificantly, even when flight delays go up. That is, the choice of which flights to delay—by prioritizing flights

carrying more passengers—can have significant impacts on non-stop passenger delays. Second, the mecha-

nisms of passenger delay mitigation vary with the extent of congestion. Under moderate congestion (VMC),
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Table 2 Computational results.

(GDP) (GDP-PAX)—ρ= 0.0001 (GDP-PAX)—ρ= 0.01

Weather w Metric |K= 6| |K= 18| |K= 30| |K= 6| |K= 18| |K= 30| |K= 6| |K= 18| |K= 30|

VMC 4 hrs. Total cost 1,836 2,378 3,006 1,877 2,355 2,936 2,241 2.827 3,568
(base) (base) (base) (base) (base) (base) (base) (base) (base)

Min. CPU (s) 13 21 39 14 27 39 15 29 41
Med. CPU (s) 23 41 53 35 68 82 37 73 83
Max. CPU (s) 64 105 510 132 227 319 165 287 241
Max. Gap <1% <1% <1% <1% <1% <1% <1% <1% <1%

VMC 5 hrs. Total cost 1,900 2,300 2,915 1,874 2,383 2,928 2,105 2,678 3,446
(+3.5%) (-3.3%) (-3.0%) (-0.1%) (+1.2%) (-0.3%) (-6.0%) (-5.3%) (-3.4%)

Min. CPU (s) 16 26 45 20 36 56 36 36 57
Med. CPU (s) 28 52 71 55 93 119 90 90 116
Max. CPU (s) 111 516 225 1,439 382 426 3,600 2,232 463
Max. Gap <1% <1% <1% <1% <1% <1% 1.4% <1% <1%

VMC 6 hrs. Total cost 1,853 2,357 2,914 1,814 2,340 2,907 2,065 2,699 3,451
(+0.9%) (-0.9%) (-3.1%) (-3.3%) (-0.6%) (-1.0%) (-7.8%) (-4.5%) (-3.3%)

Min. CPU (s) 15 33 51 22 51 75 24 56 74
Med. CPU (s) 32 75 84 57 124 157 57 113 154
Max. CPU (s) 119 227 376 331 630 554 3,600 630 784
Max. Gap <1% <1% <1% <1% <1% <1% 1.2% <1% <1%

IMC 4 hrs. Total cost 35,579 39,973 42,203 37,214 41,631 43,650 58,395 65,029 69,307
(base) (base) (base) (base) (base) (base) (base) (base) (base)

Min. CPU (s) 15 30 36 17 34 58 18 32 52
Med. CPU (s) 21 43 58 37 76 100 41 76 94
Max. CPU (s) 31 73 107 51 129 184 387 268 393
Max. Gap <1% <1% <1% <1% <1% <1% <1% <1% <1%

IMC 5 hrs. Total cost 35,844 39,867 42,237 37,291 41,605 43,814 57,386 64,880 70,736
(+0.7%) (-0.3%) (+0.1%) (+0.2%) (-0.1%) (+0.4%) (-1.7%) (-0.2%) (+2.1%)

Min. CPU (s) 17 34 46 22 45 72 21 47 70
Med. CPU (s) 29 57 73 51 102 154 53 106 134
Max. CPU (s) 135 109 198 91 182 330 274 409 547
Max. Gap <1% <1% <1% <1% <1% <1% <1% <1% <1%

IMC 6 hrs. Total cost 35,343 39,434 41,648 36,728 41,039 43,424 54,462 61,920 67,283
(-0.7%) (-1.3%) (-1.3%) (-1.3%) (-1.4%) (-0.5%) (-6.7%) (-4.8%) (-2.9%)

Min. CPU (s) 21 42 68 47 62 92 27 67 93
Med. CPU (s) 33 78 105 92 147 150 74 145 174
Max. CPU (s) 64 133 246 206 311 687 552 1,075 2,751
Max. Gap <1% <1% <1% <1% <1% <1% <1% <1% <1%

non-stop passenger delays and one-stop passenger delays both go down significantly. Under strong congestion

(IMC), tackling non-stop passenger delays is much harder: there is less flexibility in allocating flight delays

to reduce non-stop passenger delays so most benefits stem from avoiding misconnections.

Recall that, to retain linearity, our model estimates the delay of re-accommodated one-stop passengers

as the difference between the scheduled time of the new second-leg flight and the original second-leg flight

(as opposed to their actual arrival times). To justify this simplification, we report in Table 4 (i) the added

scheduled trip times due to misconnections (“misconn”), i.e.,
∑

p∈PC

∑
i∈Rp

δCpizpi; (ii) the added arrival

delays (“arr. delay”), i.e.,
∑

p∈PC

∑
i∈Rp

(∑
t∈T a

i

(
wait−wai,t−1

))
zpi; and (iii) the costs of re-accommodations

to the sink option (“sink”), i.e.,
∑

p∈PC
δSp z

S
p . Accordingly, the term in the objective function (“obj.”) is
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Table 3 Flight delay costs and passenger delays (w= 5 hours).

VMC IMC

Size Model Flight Non-stop One-stop All PAX Flight Non-stop One-stop All PAX

6 AP (GDP) 1,900 20,534 225,308 245,842 35,844 874,404 6,250,435 7,124,839
ρ= 0.00001 1,844 13,614 82,804 96,418 36,117 867,260 4,711,420 5,578,680

(-3.0%) (-33.7%) (-63.2%) (-60.8%) (+0.8%) (-0.8%) (-24.6%) (-21.7%)
ρ= 0.0001 1,869 12,982 37,674 50,656 37,030 852,925 1,762,994 2,615,919

(-1.6%) (-36.8%) (-83.3%) (-79.4%) (+3.3%) (-2.5%) (-71.8%) (-63.3%)
ρ= 0.001 1,902 12,929 11,939 24,868 39,115 783,183 615,535 1,398,718

(+0.1%) (-37.0%) (-94.7%) (-89.9%) (+9.1%) (-10.4%) (-90.2%) (-80.4%)
ρ= 0.01 1,994 9,994 1,102 11,096 49,030 641,356 194,262 835,618

(+5.0%) (-51.3%) (-99.5%) (-95.5%) (+36.8%) (-26.7%) (-96.9%) (-88.3%)

18 AP (GDP) 2,300 24,335 238,536 262,871 39,867 982,036 7,412,038 8,394,074
ρ= 0.00001 2,364 19,687 117,646 137,333 40,077 966,196 5,941,537 6,907,733

(+2.8%) (-19.1%) (-50.7%) (-47.8%) (+0.5%) (-1.6%) (-19.8%) (-17.7%)
ρ= 0.0001 2,376 18,367 55,483 73,850 41,231 968,295 2,774,310 3,742,605

(+3.3%) (-24.5%) (-76.7%) (-71.9%) (+3.4%) (-1.4%) (-62.6%) (-55.4%)
ρ= 0.001 2,370 16,097 17,276 33,373 43,715 882,211 886,268 1,768,479

(+3.0%) (-33.9%) (-92.8%) (-87.3%) (+9.7%) (-10.2%) (-88.0%) (-78.9%)
ρ= 0.01 2,524 14,041 1,303 15,344 54,713 722,116 294,544 1,016,660

(+9.7%) (-42.3%) (-99.5%) (-94.2%) (+37.2%) (-26.5%) (-96.0%) (-87.9%)

30 AP (GDP) 2,915 34,577 603,468 638,045 42,237 1,044,339 8,614,036 9,658,375
ρ= 0.00001 2,914 25,537 183,235 208,772 42,410 1,022,636 6,531,777 7,554,413

(-0.0%) (-26.1%) (-69.6%) (-67.3%) (+0.4%) (-2.1%) (-24.2%) (-21.8%)
ρ= 0.0001 2,916 27,004 85,270 112,274 43,429 1,026,757 2,828,429 3,855,186

(+0.0%) (-21.9%) (-85.9%) (-82.4%) (+2.8%) (-1.7%) (-67.2%) (-60.1%)
ρ= 0.001 2,987 24,322 27,173 51,495 46,256 940,132 867,430 1,807,562

(+2.5%) (-29.7%) (-95.5%) (-91.9%) (+9.5%) (-10.0%) (-89.9%) (-81.3%)
ρ= 0.01 3,223 19,316 3,073 22,389 59,688 775,223 329,670 1,104,893

(+10.5%) (-44.1%) (-99.5%) (-96.5%) (+41.3%) (-25.8%) (-96.2%) (-88.6%)

(i)+(iii), whereas the “true” arrival delay of one-stop passengers (“total”) is (i)+(ii)+(iii). Table 4 shows

that the arrival delay is indeed much smaller than the costs of misconnections and that, as a result, the

impact of (GDP-PAX) is similar on the simplified objective function and on the total arrival delay. This

confirms that the insights derived from our results do not depend critically on this modeling simplification.

Table 4 One-stop passenger delay: objective (added connecting time) vs. total arrival delay (w= 5 hours).

VMC IMC

Model Miscon. Arr. delay Sink Obj. Total Miscon. Arr. delay Sink Obj. Total
(i) (ii) (iii) (i)+(iii) (i)+(ii)+(iii) (i) (ii) (iii) (i)+(iii) (i)+(ii)+(iii)

(GDP) 181,548 2,394 421,920 603,468 605,862 1,683,316 121,636 6,930,720 8,614,036 8,735,672
ρ= 0.00001 62,275 2,974 120,960 183,235 186,209 1,337,697 121,445 5,194,080 6,531,777 6,653,222

(-65.7%) (+24.2%) (-71.3%) (-69.6%) (-69.3%) (-20.5%) (-0.2%) (-25.1%) (-24.2%) (-23.8%)
ρ= 0.0001 44,950 2,347 40,320 85,270 87,617 888,749 99,075 1,939,680 2,828,429 2,927,504

(-75.2%) (-2.0%) (-90.4%) (-85.9%) (-85.5%) (-47.2%) (-18.5%) (-72.0%) (-67.2%) (-66.5%)
ρ= 0.001 19,973 2,447 7,200 27,173 29,620 311,590 108,057 555,840 867,430 975,487

(-89.0%) (+2.2%) (-98.3%) (-95.5%) (-95.1%) (-81.5%) (-11.2%) (-92.0%) (-89.9%) (-88.8%)
ρ= 0.01 3,073 4,151 0 3,073 7,224 94,950 227,463 234,720 329,670 557,133

(-98.3%) (+73.4%) (-100%) (-99.5%) (-98.8%) (-94.4%) (+87.0%) (-96.6%) (-96.2%) (-93.6%)
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A potential concern about passenger-centric operations is that they could favor a subset of airlines (e.g.,

hub-and-spoke carriers) over others (e.g., point-to-point carriers). Figure 3 shows that this is not the case: the

delay distribution across airlines is similar with ρ= 0 (i.e., under (GDP)) and ρ> 0 (i.e., under (GDP-PAX))

and each airline’s shared of delayed flights also remains roughly identical (we partition airlines into 7 groups

based on alliances). Whereas future research could capture equity considerations explicitly in passenger-

centric operations (e.g., Barnhart et al. 2012, Bertsimas and Gupta 2016, Jacquillat and Vaze 2017), these

results suggest at least that (GDP-PAX) does not induce more inequitable outcomes than (GDP).

(a) Total delay per airline (b) Average delay per airline

Figure 3 Airline equity: delay distribution under (GDP) and (GDP-PAX) (|K|= 30, w= 5 hours, VMC).

Overall, these results show that integrating passenger-level considerations into existing ATFM technologies

could alleviate the negative impact of air traffic congestion on passengers very significantly, at limited costs

in terms of flight delays and inter-airline equity. By adjusting flight operating decisions based on passenger

itineraries, one can avoid passenger misconnections and (especially under moderate congestion) absorb a

higher share of delays on flights carrying fewer non-stop passengers. These benefits come at the cost of a

(comparatively much smaller) increase in flight delay costs. Note, importantly, that airlines’ costs depend both

on flight delays (e.g., crew compensation, fuel burn) and passenger delays (e.g., passenger compensation).

Ultimately, these results can thus support the determination of appropriate levels of flight and passenger

delays—ideally in a collaborative decision-making environment involving the airlines and air traffic managers.

5.4. Flight-centric vs. Passenger-centric Decisions

We now characterize the optimal solution of (GDP-PAX) to discuss the drivers of passenger-centric GDP

decisions. For any flight i ∈ F , let di denote its scheduled departure time and let d̂i (resp. âi) be its actual

departure (resp. arrival) time. Also, let
¯
di denote its earliest departure time as the scheduled departure time

di or the time when the aircraft is ready to operate flight i, whichever comes last:

¯
di =

{
max (di, âj + τji) if there exists j ∈F such that (j, i)∈ C
di otherwise
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We define the effective departure delay (EDD) as the difference between actual and earliest departure times:

EDDi = d̂i−
¯
di, ∀i∈F

Inspired from the analytical insights from Section 2, we define the following three flight-level variables:

– number of non-stop passengers: The number of non-stop passengers in flight i is denoted by Ni and

defined in Equation (34) (1 denotes the indicator function). We posit that, as ρ increases, flights with

more non-stop passengers will be subject to lower average EDD.

Ni =
∑
p∈PN

1 [i= f0(p)]np, ∀i∈F (34)

– number of active outgoing connections: For any flight i ∈ F , we define an outgoing connection as a

passenger on a one-stop itinerary with flight i as its first leg. For example, all passengers booked on

the LGA-ATL-LAX itinerary are counted as outgoing connections on the LGA-ATL flight. An “active”

outgoing connection is defined such that the connection will be missed if flight i is subject to an EDD

of 2 hours (8 periods) and the second flight is not delayed. The number of active outgoing connections

of flight i is denoted by Oi and defined in Equation (35). We posit that, as ρ increases, flights with

more active outgoing connections will be subject to lower average EDD.

Oi =
∑
p∈PC

1
[
i= f1(p) &

¯
di + 8>df2(p)

]
np, ∀i∈F (35)

– number of active incoming connections: For any flight i ∈ F , we define an incoming connection as a

passenger on a one-stop itinerary with flight i as its second leg. For example, all passengers booked on

the LGA-ATL-LAX itinerary are counted as incoming connections on the ATL-LAX flight. An “active”

incoming connection is defined such that the connection will be missed if flight i is operated at time

¯
di, due to the delayed arrival of the first flight. The number of active incoming connections of flight i

is denoted by Ii and defined in Equation (36). We posit that, as ρ increases, flights with more active

incoming connections will be subject to higher average EDD.

Ii =
∑
p∈PC

1
[
i= f2(p) &

¯
di < âf1(p) +σpi

]
np, ∀i∈F (36)

Figures 4, 5 and 6 plot the histograms of average EDD (in 15-minute periods) at the six busiest airports for

different values of ρ, as a function of the number of non-stop passengers, outgoing connections and incoming

connections, respectively. Absolute delays are highly sensitive to our (approximate) airport capacity estimates

and should thus not be interpreted too literally. Instead, our insights focus on relative EDD variations.

The figures confirm our three hypotheses: all else equal, passenger-centric operations prioritize flights

with more non-stop passengers, more outgoing connections and fewer incoming connections. Starting with

non-stop passengers (Figure 4), the average EDD increases for flights with 50 non-stop passengers or less as

ρ gets larger (by a factor of 2 at ATL, EWR and JFK). Vice versa, flights with most non-stop passengers

have lower average delays. This is particularly striking at New York’s airports (EWR, JFK, LGA), which

face strong local demand and do not rely primarily on hub operations. Similarly, the average EDD of flights

with no active outgoing connections increases with ρ, while that of flights with 40 or more active outgoing
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Figure 4 Average EDD at six airports, as a function of non-stop passengers (|K|= 18, w= 5 hours, IMC).

Figure 5 Average EDD at six airports, as a function of outgoing connections (|K|= 18, w= 5 hours, IMC).

connections decreases with ρ (Figure 5). This effect is, by far, the strongest at LGA. Turning to Figure 6,

we observe the opposite effect: as ρ increases, EDD increase, on average, for the flights with most active
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Figure 6 Average EDD at six airports, as a function of incoming connections (|K|= 18, w= 5 hours, IMC).

incoming connections. This effect is particularly strong at ATL and ORD, two major hubs of operations

where passenger connectivity is critical. Note the one exception at LGA, where few passengers are connecting

and passenger-centric operations are thus primarily driven by non-stop passengers and outgoing connections.

To synthesize these insights, Table 5 reports summary statistics across the full network. First, the number

of passenger misconnections decreases dramatically as ρ gets larger. Even with the smallest values of ρ,

(GDP-PAX) can cut misconnections by over 15% from the (GDP) baseline. As ρ increases, over 90% of

system-wide misconnections are avoided. Next, as ρ gets larger, the mean EDD decreases for the flights with

100 or more non-stop passengers, and increases for the other flights. Similarly, it decreases for flights with

active outgoing connections, but increases for the other flights. Last, and conversely, the mean EDD increases

a lot for flights with active incoming connections, but remains essentially unchanged for the other flights.

These results confirm the analytical insights from Section 2 in large-scale networks of operations.

Passenger-centric traffic flow management prioritize operations with many non-stop passengers, many outgo-

ing connections, and few incoming connections. The other flights are de-prioritized, or even held deliberately

on the ground if the benefits of avoiding misconnections outweigh the associated delay increases.

6. Integration of Predictive Analytics to Handle Data Unavailability

So far, we have assumed perfect knowledge of passenger itineraries. Ideally, such information could be pro-

vided by the airlines as part of Collaborative Decision Making (CDM) practices. But this also raises questions

on the design of data-sharing mechanisms and airline participation. We thus investigate the robustness of

the benefits of passenger-centric GDP when passenger itineraries are unknown. We thus predict passenger
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Table 5 Summary statistics.

(GDP-PAX)

Metric (GDP) ρ= 0.00001 ρ= 0.0001 ρ= 0.001 ρ= 0.01

Missed passenger connections 9,511 8,066 4,603 2,044 670

Mean EDD, 100+ non-stop PAX 0.81 per. 0.81 per 0.81 per. 0.68 per. 0.53 per.
Mean EDD, ≤100 non-stop PAX 0.45 per. 0.45 per. 0.46 per. 0.50 per. 0.61 per.

Mean EDD, 1+ outgoing connections 0.47 per. 0.45 per. 0.38 per. 0.32 per. 0.29 per.
Mean EDD, no outgoing connections 0.52 per. 0.53 per. 0.57 per. 0.62 per. 0.75 per.

Mean EDD, 1+ incoming connections 0.66 per. 0.75 per. 0.90 per. 1.27 per. 2.50 per.
Mean EDD, no incoming connections 0.48 per. 0.47 per. 0.47 per. 0.47 per. 0.48 per.

itineraries based on historical data, and embed the resulting predictions into GDP optimization. Results

suggest that this more realistic approach yields most of the benefits achieved under perfect information.

6.1. Predictive Analytics for Passenger Itineraries

We propose analytics models to predict the number of passengers booked on each itinerary. To be conser-

vative, we only leverage supply-side predictors (e.g., origin, destination, departure time, arrival time, etc.).

With no doubt, the quality of the prediction could be enhanced with demand-side predictors (e.g., airfares,

lag variables depicting historical passenger bookings). But, exactly like today’s passenger itineraries are not

necessarily known by air traffic managers, yesterday’s demand-side features are not necessarily known either.

We separate the prediction task into two problems: (i) predicting the number of non-stop passengers on

each flight and (ii) predicting the number of one-stop passengers on each flight pair. For both problems, the

main challenge lies in feature engineering—building predictors that capture the patterns of passenger flows.

Features for predicting non-stop itineraries:

– temporal information: departure time, arrival time, scheduled block time;

– spatial information: origin airport (O), destination airport (D), O−D distance;

– airline information: major airlines’ names, each airline’s traffic share in the network (measuring its

size) and traffic shares at O and D (measuring its dominance at the origin and destination airports);

– aircraft information: number of seats in the aircraft;

– traffic intensity : traffic (number of flights over the previous week) at O, at D, and on the O−D route;

number of non-stop routes served by O and D; and

– competition: number of non-stop flights on the O−D route during the day.

Features for predicting one-stop itineraries. We develop a dataset comprising all potential one-stop

itineraries—all “compatible” flight pairs to/from the same connecting airport with a sufficient turnaround

time. We eliminate all flight pairs flown by two airlines with very few passenger connections historically. To

predict the number of passengers on each resulting one-stop itinerary, we consider the following features,

where O, K and D refer to the origin, connection and destination airports:

– temporal information: departure time from O, departure time from K, arrival time at D;

– spatial information: O−D distance, airport K, and indicator of whether K is a hub for the airline;
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– airline pair (also indicative of the two flights are flown by the same airline or by partner airlines);

– quality of connection: layover duration, ratio between the connecting O−K−D distance vs. the direct

O−D distance, ratio between the O−K−D distance vs. the distance of the shortest available itinerary,

and ratio between the O−K−D distance vs. the distance of the shortest available connecting itinerary;

– traffic intensity : traffic at O and D; non-stop routes served by O and D; delays at O and D; and

– competition: number of non-stop flights and other one-stop options from O to D during the day.

Modeling. Armed with these features, we apply statistical learning methods to predict the number

of passengers on each itinerary. We build a training set comprising all observations for the day immedi-

ately before the day under consideration—with 29,399 observations and 22 dependent variables for non-stop

itineraries, and with 2,324,885 observations and 26 dependent variables for one-stop itineraries. We then

evaluate the predictions on a test set comprising all observations during the day under consideration—with

29,061 observations for non-stop itineraries and 2,346,045 observations for one-stop itineraries. Given the

problem size, we focus on simple—and scalable—methods: linear/logistic regression, ridge regression (Hoerl

and Kennard 1970), Lasso (Tibshirani 1996), classification and regression trees (CART)(Breiman 2017), and

random forests (Breiman 2001). We perform model selection via cross-validation (or out-of-bag estimation,

for random forests), based on data from the previous day only but not from the day under consideration.

We first apply regression methods to predict the number of passengers on each non-stop itinerary.

We then strive to predict one-stop passenger itineraries on each flight pair. This problem, however, is

more complex due to (i) the much larger number of observations (one per compatible flight pair vs. one per

flight), (ii) imbalanced data (passengers connections occur on 5–7% of flight pairs), and (iii) noise in the data

(depending on whether individuals vs. one family vs. several families are traveling, for instance). We first

consider a one-step approach (“1S”) for this problem, where we treat the problem as a regression problem.

We then propose a two-step approach (“2S”), broken down into two-subproblems:

SP1. A classification subproblem (“2S–SP1”) to predict the subset of all compatible flight pairs with at least

one connection. Given the huge size of the training set (with over 2 million observations), we train the

models on a stratified random sample of 10% of observations.

SP2. A conditional regression problem (“2S–SP2”) to predict the number of one-stop passengers. We train

the models on all flight pairs with at least one connecting passenger (156,845 training observations).

Results. Results are reported in Table 6. For non-stop itineraries, we obtain the best performance with

the random forest. Figure 7a plots the predicted vs. actual values—most values fall near the 45-degree line.

Ultimately, we get an out-of-sample R2 of 0.945, a Mean Absolute Error (MAE) of 9 passengers and a Root

Mean Squared Error (RMSE) of 15 passengers, suggesting excellent predictive performance.

For one-stop itineraries, the model predicts very well which flight pairs have connecting passengers but

not the number of connecting passengers. Indeed, direct regression (1S approach) yields a relatively poor fit,

with an R2 of 0.15–0.30 with CART and random forests. The two-step (2S) approach, in contrast, shows

that the classification outputs (SP1) are strong. Figure 7a plots the receiver operating characteristic (ROC)

curves for each model. The out-of-sample area under the curve (AUC) reaches 95% for the random forest

model. Stated differently, by leveraging only supply-side predictors and only 10% of observations from the
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previous day, the model reliably distinguishes which flight pairs have connecting passengers and which ones

do not. Then, the exact number of passengers remains more noisy, with an out-of-sample R2 of only 0.25

(SP2). Yet, this remains a minor concern in view of our optimization problem because, first, the absolute

error remains small (one passenger per itinerary on average) and, moreover, passenger-centric GDP mainly

depend on the flight pairs with connecting passengers rather than the exact passenger count.

Table 6 Cross-validated (“c.v.”) and out-of-sample (“o.o.s.”) performance of the predictive models.

Problem Metric Evaluation Linear model Lasso Ridge CART Random forests
Non-stop R2 (c.v.) 0.857 0.859 0.859 0.904 0.938

R2 (o.o.s.) 0.856 0.865 0.865 0.920 0.945
MAE (o.o.s.) 17.3 16.5 16.5 10.7 8.9
RMSE (o.o.s.) 24.3 23.6 23.6 18.2 15.1

One-stop (1S) R2 (c.v.) 0.143 0.144 0.144 0.300 0.237
R2 (o.o.s.) -0.874 0.053 0.053 0.140 0.276
MAE (o.o.s.) 0.24 0.22 0.22 0.15 0.15
RMSE (o.o.s.) 0.83 0.58 0.58 0.56 0.51

One-stop (2S–SP1) AUC (c.v.) 0.953 0.953 0.953 0.862 0.955
AUC (o.o.s.) 0.898 0.922 0.920 0.858 0.950

One-stop (2S–SP2) R2 (c.v.) 0.203 0.205 0.205 0.244 0.166
R2 (o.o.s.) 0.153 0.146 0.146 0.152 0.254
MAE (o.o.s.) 1.0 1.0 1.0 1.0 0.9
RMSE (o.o.s.) 1.5 1.5 1.5 1.5 1.4
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Figure 7 Out-of-sample results for prediction of non-stop and one-stop passenger itineraries.

We report the variable importance from our random forests in Figure 8. For non-stop itineraries, the main

drivers of the predictions are the aircraft size, characteristics of the origin-destination pair, and the airline.

For one-stop itineraries, the main drivers are the quality of the connection (layover duration and distance of

connecting itinerary) and, to a lesser extent, characteristics of the origin-destination pair and the airlines.

Predictions. We now use the models to make test-set predictions. Note that the classification model SP1

does not return a single prediction but a probability of passenger connections on each flight pair. Accordingly,

we build a range of predictions, corresponding to different true and false positive rates (Figure 7b).
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(b) Classification for one-stop itineraries (2S–SP1)

Figure 8 Variable importance for the random forest models.

One challenge remains: the predicted number of passengers on each flight can exceed the (known) capacity

of the aircraft. We address these instances using two simple rules: for each flight with excess passengers, we

first reduce the number of non-stop and one-stop passengers proportionally, and we then retain those one-stop

passenger itineraries with the highest predicted probabilities. We detail this procedure in Algorithm 3.

Algorithm 3 Procedure to comply with aircraft capacities in passenger itinerary predictions.

– Define Pall
C as the set of all potential one-stop itineraries in the test set

– Define q(i) as the non-stop itinerary coinciding with flight i∈F

– Define QC(i) = {p∈P | f1(p) = i or f2(p) = i} as the subset of potential one-stop itineraries involving flight i∈F

– Inputs: Probability p̂rob(p) that at least one passenger will connect on each potential one-stop itinerary p ∈ Pall
C ;

number of predicted passengers n̂p on each itinerary p∈PN ∪Pall
C ; aircraft capacity Ωi for each flight i∈F

– On each flight with excess passengers, reduce the predicted number of non-stop passengers proportionally:

n̂q(i)←

⌊
n̂q(i)

n̂q(i) +
∑
p∈QC(i) n̂p

Ωi

⌋
, ∀i∈F such that n̂q(i) +

∑
p∈QC(i)

n̂p >Ωi

while there exists i∈F such that n̂q(i) +
∑
p∈QC(i) n̂p >Ωi do

– Find flight with the largest number of excess passengers: i∗← arg max
{
n̂q(i) +

∑
p∈QC(i) n̂p−Ωi

}
– Sort QC(i) by non-increasing connection probability: QC(i) = {p1, · · · , pr} so that p̂rob(p1)≥ · · · ≥ p̂rob(pr)

– Update the predicted number of one-stop itineraries accordingly from most likely to least likely itineraries:

n̂pk ←

{
n̂pk if

∑k
l=1 n̂pl ≤Ωi− n̂q(i)

0 otherwise

end while

6.2. GDP Optimization based on Predicted Passenger Itineraries

We now leverage our predicted non-stop and one-stop passenger itineraries to optimize GDP operations—

using a similar rolling approach as in Algorithms 1 and 2. Specifically, we define two sets of passenger-level

inputs: those based on actual itineraries (PN , PC , f1(p), f2(p), Rp, np, δCpi, δSp and σpi, defined in Section 3),
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and those based on predicted itineraries (denoted by PprN , PprC , f̂1(p), f̂2(p), Rprp , n̂p δ̂
C
pi, δ̂

S
p and σ̂pi). At

each iteration, we apply (GDP-PAX) to optimize flight operations based on predicted passenger itineraries.

We then apply a passenger flow model to replicate passenger accommodations given the actual itineraries.

Throughout, we track the final passenger accommodations, update the remaining number of passengers,

and update the remaining aircraft capacities—using both predicted itineraries (for later optimization) and

actual itineraries (for later passenger accommodations). That way, the optimization of flight-level operations

remains blind to actual passenger itineraries throughout the algorithm—actual itineraries are solely used to

track the impact of flight operations on passenger accommodations. We detail this procedure in Algorithm 4.

Algorithm 4 Rolling horizon algorithm to solve (GDP-PAX) with predicted passenger itineraries.

– Inputs: flight schedule, actual passenger itineraries (PN , PC , f1(p), f2(p), Rp, np, δCpi, δSp and σpi), predicted

passenger itineraries (PprN , PprC , f̂1(p), f̂2(p), Rprp , n̂p δ̂
C
pi, δ̂

S
p and σ̂pi), aircraft capacities, and airport capacities

– Initialize final itineraries based on actual itineraries ζpi = 0, ∀p∈PC , i∈Rp, and ζSp = 0, ∀p∈PC
– Initialize final itineraries based on predicted itineraries ζ̂pi = 0, ∀p∈PprC , i∈R

pr
p , and ζ̂Sp = 0,∀p∈PprC

– Define rolling periods u= 1, · · · ,U and duration of each look-ahead window w

for u= 1, · · · ,U do

– Define flight sets: F̃a = {i∈F |u≤ ãi ≤ u+w} and F̃d =
{
i∈F |u≤ d̃i ≤ u+w

}
– Define passenger sets based on predicted itineraries: P̃prC =

{
p∈PprC | d̃f1(p) ≤ u+w and

∑
i∈F ζ̂pi + ζ̂Sp < n̂p

}
,

and subsets P̃pr,AC , P̃pr,DC , and P̃pr,0C (Equations (24) to (26))

– Solve (GDP-PAX) based on predicted itineraries: Equations (3)– (10), (27) (31), (13)– (18)

– Update the arrival schedule ãi for i∈ F̃a, and the departure schedule d̃i for i∈ F̃d

– Fix final predicted itineraries; update ζ̂pi for p∈PprC , i∈R
pr
p , and ζ̂Sp for p∈PprC (Equations (19) and (20))

– Update the number of remaining passengers and effective aircraft capacities based on predicted passenger

itineraries (Equations (22) and (23))

– Solve a passenger-flow model to reconstruct passenger itineraries, based on actual itineraries:

min
λ,z,zS

∑
p∈PC

∑
i∈Rp

δCpizpi + δSp z
S
p

 s.t.: Eq. (27)–(31), (13)–(16), (18)

– Fix final actual itineraries; update ζpi for p∈PC , i∈Rp, and ζSp for p∈PC (Equations (19) and (20))

– Update the number of remaining passengers and effective aircraft capacities based on actual passenger

itineraries (Equations (22) and (23))

end for

6.3. Experimental Results

We compare GDP performance when we ignore passenger itineraries (Algorithm 2), when we consider actual

itineraries under perfect information (Algorithm 1), and when we consider predicted itineraries from historical

data (Algorithm 4). We predict one-stop itineraries with the one-step (1S) and two-step (2S) approaches.

For the 2S approach, we denote by κ the probability threshold above which we classify a flight pair as having

at least one connecting passenger—a larger κ means fewer predicted connections and smaller true and false
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Table 7 Summary statistics on predicted vs. actual passenger connections.

Before Algorithm 3 After Algorithm 3

Itineraries Accuracy TPR FPR |PprC | Accuracy TPR FPR |PprC |
Ignored 94.0% 0% 0% 0 94.0% 0% 0% 0
Perfect info. 100% 100% 0% 145,159 100% 100% 0% 145,159
Predicted (1S) 93.2% 62.8% 4.9% 195,458 93.4% 61.7% 4.6% 187,621
Predicted (2S, κ= 0.1) 85.8% 90.3% 14.5% 445,750 91.9% 75.9% 7.1% 262,486
Predicted (2S, κ= 0.3) 94.0% 69.0% 4.5% 194,933 94.3% 64.7% 3.8% 173,940
Predicted (2S, κ= 0.5) 95.2% 46.1% 1.7% 102,043 95.2% 45.3% 1.6% 99,577
Predicted (2S, κ= 0.7) 95.0% 23.5% 0.5% 43,294 95.0% 23.4% 0.5% 43,006
Predicted (2S, κ= 0.9) 94.2% 3.4% 0.03% 5,489 94.2% 3.4% 0.03% 5,489

Table 8 Flight delay costs and passenger delays with predicted vs. actual itineraries (|K|= 30, w= 5 hours).

VMC IMC

Instance Itineraries Flight PAX Flight PAX

ρ= 0 Ignored 2,915 (baseline) 638,045 (baseline) 42,237 (baseline) 9,658,375 (baseline)

ρ= 0.00001 Perfect info. 2,914 (-0.0%) 208,772 (-67.3%) 42,410 (+0.4%) 7,554,413 (-21.8%)
Predicted (1S) 2,911 (-0.2%) 255,000 (-60.0%) 42,062 (-0.4%) 7,707,405 (-20.2%)
Predicted (2S, κ= 0.1) 2,917 (+0.1%) 270,036 (-57.7%) 42,167 (-0.2%) 7,547,482 (-21.9%)
Predicted (2S, κ= 0.3) 2,914 (-0.0%) 225,113 (-64.7%) 41,872 (-0.9%) 7,637,880 (-20.9%)
Predicted (2S, κ= 0.5) 2,981 (+2.2%) 257,187 (-59.7%) 42,113 (-0.3%) 7,741,064 (-19.9%)
Predicted (2S, κ= 0.7) 2,976 (+2.1%) 321,082 (-49.7%) 42,150 (-0.2%) 8,411,055 (-12.9%)
Predicted (2S, κ= 0.9) 2,978 (+2.1%) 446,748 (-30.0%) 42,023 (-0.5%) 8,996,071 (-6.9%)

ρ= 0.0001 Perfect info. 2,916 (+0.0%) 112,274 (-82.4%) 43,429 (+2.8%) 3,855,186 (-60.1%)
Predicted (1S) 2,928 (+0.4%) 168,865 (-73.5%) 43,719 (+3.5%) 4,592,322 (-52.5%)
Predicted (2S, κ= 0.1) 2,865 (-1.7%) 136,028 (-78.7%) 44,354 (+5.0%) 3,998,088 (-58.6%)
Predicted (2S, κ= 0.3) 2,893 (-0.8%) 173,305 (-72.8%) 43,866 (+3.9%) 4,122,429 (-57.3%)
Predicted (2S, κ= 0.5) 2,967 (+1.8%) 202,342 (-68.3%) 43,270 (+2.4%) 4,777,335 (-50.5%)
Predicted (2S, κ= 0.7) 2,944 (+1.0%) 277,570 (-56.5%) 42,671 (+1.0%) 6,195,492 (-35.9%)
Predicted (2S, κ= 0.9) 2,944 (+1.0%) 519,157 (-18.6%) 42,294 (+0.1%) 8,754,018 (-9.4%)

ρ= 0.001 Perfect info. 2,987 (+2.5%) 51,495 (-91.9%) 46,256 (+9.5%) 1,807,562 (-81.3%)
Predicted (1S) 3,025 (+3.8%) 124,513 (-80.5%) 46,511 (+10.1%) 2,996,205 (-69.0%)
Predicted (2S, κ= 0.1) 3,082 (+5.7%) 97,624 (-84.7%) 48,162 (+14.0%) 2,492,435 (-74.2%)
Predicted (2S, κ= 0.3) 2,994 (+2.7%) 116,631 (-81.7%) 46,683 (+10.5%) 2,821,288 (-70.8%)
Predicted (2S, κ= 0.5) 3,052 (+4.7%) 143,548 (-77.5%) 45,519 (+7.8%) 3,074,194 (-68.2%)
Predicted (2S, κ= 0.7) 3,026 (+3.8%) 242,746 (-62.0%) 44,559 (+5.5%) 4,338,981 (-55.1%)
Predicted (2S, κ= 0.9) 2,993 (+2.7%) 539,179 (-15.5%) 43,005 (+1.8%) 7,851,957 (-18.7%)

ρ= 0.01 Perfect info. 3,223 (+10.5%) 22,389 (-96.5%) 59,688 (+41.3%) 1,104,893 (-88.6%)
Predicted (1S) 3,334 (+14.4%) 100,973 (-84.2%) 57,712 (+36.6%) 1,938,715 (-79.9%)
Predicted (2S, κ= 0.1) 3,476 (+19.3%) 69,031 (-89.2%) 65,355 (+54.7%) 1,797,646 (-81.4%)
Predicted (2S, κ= 0.3) 3,268 (+12.1%) 88,116 (-86.2%) 59,646 (+41.2%) 1,940,665 (-79.9%)
Predicted (2S, κ= 0.5) 3,166 (+8.6%) 97,790 (-84.7%) 55,025 (+30.3%) 2,478,973 (-74.3%)
Predicted (2S, κ= 0.7) 3,083 (+5.8%) 210,171 (-67.1%) 52,630 (+24.6%) 3,903,246 (-59.6%)
Predicted (2S, κ= 0.9) 3,107 (+6.6%) 484,536 (-24.1%) 50,081 (+18.6%) 7,014,553 (-27.4%)

positive rates (Figure 7b). Table 7 reports the accuracy, true positive rate, false positive rate, and number

of connections with each predictive model, before and after correcting for aircraft capacities (Algorithm 3).

We now report the optimization results in Table 8 and in Figure 9. To ensure an apples-to-apples com-

parison, we report the actual passenger delays in all cases. The main observation is that the benefits of

(GDP-PAX) are extremely robust to imperfect information on passenger itineraries. Indeed, the passenger

delays obtained with predicted itineraries bridge most of the gap between those obtained with the baseline
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(a) Flight delay costs (VMC) (b) Passenger delays (VMC)

(c) Flight delay costs (IMC) (d) Passenger delays (IMC)

Figure 9 Flight delay costs and passenger delays with predicted vs. actual itineraries (|K|= 30, w= 5 hours).

flight-centric model and those obtained with perfect knowledge of passenger itineraries. For instance, in

VMC, passenger delays decrease by 55%–65% or by 70%–80% with predicted itineraries when they decrease

by 67% and 82% with actual itineraries. In IMC, (GDP-PAX) yields virtually the same outcomes with pre-

dicted vs. actual itineraries, for smaller values of κ and ρ. Ultimately, our main observation holds: even under

imperfect knowledge of passenger itineraries, passenger-centric operations can reduce passenger delays very

significantly at moderate costs in terms of flight delays—by combining predictive analytics for reconstructing

passenger flows and prescriptive analytics for GDP optimization.

Moreover, these benefits are very robust to the choice of the predictive model. Both the 1S and the 2S

models achieve similar benefits. Yet, the 2S model generally results in lower aircraft delay and/or passenger

delay, thus validating the practical benefits of the two-stage classification/regression approach considered in

this paper. Moreover, the performance of the 2S approach depends on the probability threshold κ. Basically

any value of κ ≤ 0.5 reduces passenger delays significantly at moderate costs in terms of flight delays, as

compared to the (GDP) baseline. The best results are obtained with small values of κ. With κ = 0.9, we

consider a few connecting itineraries in the set PprC , so the outcome is closer to the baseline flight-centric

(GDP) model. When κ≤ 0.5, the (GDP-PAX) model anticipates more one-stop itineraries. The prediction

accuracy does not necessarily increase (e.g., it is lowest with κ= 0.1) but passenger delays can decrease very

significantly (at the cost of slightly higher flight delays). Ultimately, the benefits of preserving passenger

connectivity (by predicting more connections) can outweigh the costs of prediction errors.
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Finally, the value of information on passenger itineraries increases with ρ. Consider for instance the results

with κ= 0.3, which lead in all cases to almost-identical flight delays with predicted vs. actual itineraries. With

predicted itineraries, passenger delays are higher than with actual itineraries by 8% when ρ= 0.00001, by 54%

when ρ= 0.0001, by 126% when ρ= 0.001, and by 294% when ρ= 0.01, in VMC (in IMC, the corresponding

numbers are 1.1%, 7%, 56%, and 76%). In other words, our predict-then-optimize approach captures the

first-order effects of passenger-centric operations. For instance, if one flight has incoming connections from

dozens of incoming flights and another one has only one incoming connection, even imperfect predictions

will likely prioritize the departure of the latter flight. But when one attempts to avoid nearly all passenger

misconnections, the knowledge of actual itineraries becomes much more critical—there is only so much one

can do with predicted itineraries. For instance, if one flight has one incoming connection and another flight

has none, the operating decision becomes much more sensitive to prediction quality.

From a practical standpoint, these results suggest that the proposed passenger-centric approach to GDP

operations can provide strong benefits even in the current operating environment where passenger itineraries

are not necessarily known by air traffic managers. The combination of predictive and prescriptive analyt-

ics can still make operations more consistent with passenger preferences—by leveraging historical data on

passenger flows, statistical learning methods, and a passenger-centric optimization approach. Yet, additional

benefits could be derived from the knowledge of actual itineraries, highlighting the value of data sharing

between airlines and air traffic managers—for instance through the Collaborative Decision Making paradigm.

7. Conclusion

Vehicle-centric operations may not lead to optimal outcomes from the perspective of passengers, especially

with connecting itineraries. To address this challenge, this paper balances vehicle-level and passenger-level

objectives in traffic flow management, by combining predictive and prescriptive analytics. We formulated a

large-scale integer optimization model that captures passenger accommodations in ground delay programs

(GDP). We also addressed issues of data unavailability by predicting passenger itineraries using statistical

learning methods and embedding the predictions into GDP optimization. Results suggest that passenger-

level considerations can be incorporated into GDP optimization at limited computational costs, yielding very

large reductions in passenger delays at comparatively small increases in flight delay costs. These benefits

are driven by prioritizing flights carrying more non-stop passengers, more outgoing connections and fewer

incoming connections—resulting in a decrease in non-stop passenger delay and a sharp reduction in pas-

senger misconnections. Moreover, these results are robust to imperfect information—most of the benefits of

passenger-centric operations hold with predicted (as opposed to actual) passenger itineraries.

These results suggest GDP initiatives can be enhanced by explicitly accounting for information on passen-

ger itineraries—with significant benefits to airlines, passengers and other stakeholders. Even in the current

operating environment where passenger itineraries are privately known by the airlines, these benefits can

be captured by leveraging historical data, state-of-the-art statistical learning methods, and a passenger-

centric optimization approach such as the one proposed in this paper. Preferably, passenger itineraries could

be added to the data exchange underlying the existing Collaborative Decision Making paradigm to make

resulting operations more consistent with air traffic managers’, airlines’ and passengers’ preferences.
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Finally, the limitations of this motivate further research on passenger-centric transportation. First, this

paper has focused on the deterministic multi-airport ground-holding problem. The passenger accommodation

model could be incorporated into more complex air traffic flow management (ATFM) models that capture

en-route routing and operating uncertainty. Second, this paper has shown the benefits of data sharing on

passenger itineraries between the airlines and air traffic managers. An open question involves designing effi-

cient and equitable mechanisms to support such data sharing. Third, this paper has showed that passenger

connectivity could be largely maintained through minor adjustments in ATFM interventions. In practice,

however, many operating decisions are decentralized to the airlines, which can swap and cancel flights fol-

lowing ATFM decisions—based on flight-level as well as passenger-level information. The purpose of this

research is not to fundamentally alter this well-accepted operating paradigm, but to show the benefits of

accounting for passenger-level information at the upstream level. One might expect that these benefits would

carry over at the downstream level, once the airlines re-optimize their own networks of flights as part of their

disruption management processes. Yet, this question opens important avenues for future research to combine

the proposed passenger-centric ATFM approach with downstream airline disruption recovery processes. This

paper provides the methodological foundation to address such problems—with the ultimate objectives of

mitigating delay costs borne by operators, providers and passengers across transportation systems.
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Appendix A: Proof of Statements from Section 2

A.1. Proof of Lemma 1

Let ts be the time of the sth transition, for s= 0, · · · , n+m (by convention, t0 = 0). Let (x̃s, ỹs) be the state

at time ts. Finally, 1(i)
(x̃s,ỹs) takes the value 1 if the next event is the arrival of vehicle i.

The duration between decision epochs is exponentially distributed, with rate
∑

i∈A(x) λi if π(x, y) = 0, and

rate µ+
∑

i∈A(x) λi if π(x, y) ∈ B(y). The continuous-time cost function given below. The first term reflects

the wait times accrued between ts and ts+1 by the ỹsj passengers waiting for vehicle j to depart, for each

j ∈B (ỹs). The second term captures misconnection costs: if the next event is the arrival of vehicle i∈A (x̃s),

then, for each already-departed vehicle j /∈B (ỹs), γij passengers miss their connection at cost cj .

min E


n+m∑
s=0

∫ ts+1

ts

e−βt×

 ∑
j∈B(ỹs)

ỹsj

+
∑

i∈A(x̃s)

1(i)
(x̃s,ỹs)×

∑
j /∈B(ỹs)

γijcj

 (37)

We follow the procedure outlined by Bertsekas (2012) for continuous-time Markov Decision Processes.

We decompose the time interval [0, ts] by writing [0, ts] = ∪sq=1 [tq−1, tq]. We first express E (e−βts), as

follows. We use the facts that the transition rate from tq−1 to tq is equal to µ+
∑n

i=1 λi, that E (e−βτ ) = ξ

β+ξ

if τ follows an exponential distribution with parameter ξ, and that all transition processes are independent.

E
(
e−βts

)
=E

[
e−β

∑s
q=1(tq−tq−1)

]
=

s∏
q=1

e−β(tq−tq−1) =

(
µ+

∑n

i=1 λi
β+µ+

∑n

i=1 λi

)s
We now use this result to derive E

(∫ ts+1

ts
e−βtdt

)
:

E

(∫ ts+1

ts

e−βtdt

)
=
E (e−βts)−E

(
e−β(ts+1)

)
β

=E
(
e−βts

) 1−E
(
e−β(ts+1−ts)

)
β

=

(
µ+

∑n

i=1 λi
β+µ+

∑n

i=1 λi

)s 1− µ+
∑n

i=1 λi

β+µ+
∑n

i=1 λi

β
=

(
µ+

∑n

i=1 λi
β+µ+

∑n

i=1 λi

)s
1

β+µ+
∑n

i=1 λi

Finally, E
(

1(i)
(x̃s,ỹs)

)
is equal to the transition probability from (x, y) to fi(x, y), i.e., λi

µ+
∑n

k=1 λk
. Therefore:

z =

n+m∑
s=0

( µ+
∑n

i=1 λi
β+µ+

∑n

i=1 λi

)s ∑
j∈B(ỹs) ỹ

s
j

β+µ+
∑n

i=1 λi
+

(
µ+

∑n

i=1 λi
β+µ+

∑n

i=1 λi

)s+1 ∑
i∈A(x̃s)

λi
µ+

∑n

k=1 λk

 ∑
j /∈B(ỹs)

γijcj


z =

1

β+µ+
∑n

i=1 λi

n+m∑
s=0

(
µ+

∑n

i=1 λi
β+µ+

∑n

i=1 λi

)s ∑
j∈B(ỹs)

ỹsj +
∑

i∈A(x̃s)

λi

 ∑
j /∈B(ỹs)

γijcj


We now use this formula to derive the Bellman equation given the transitions of the system given by:

if π(x, y) = j ∈B(y) then:


p(x,y)→(x,y) =

∑
k/∈A(x) λk

µ+
∑n

k=1 λk
∀i∈A(x)

p(x,y)→fi(x,y) = λi

µ+
∑n

k=1 λk

p(x,y)→gj(x,y) = µ

µ+
∑n

k=1 λk

if π(x, y) = 0 then:

{
p(x,y)→(x,y) =

µ+
∑

k/∈A(x) λk

µ+
∑n

k=1 λk
∀i∈A(x)

p(x,y)→fi(x,y) = λi

µ+
∑n

k=1 λk

For notational ease, we denote by J̃0(x, y) and J̃l(x, y) the future cost-to-go (from the next transition

onward) assuming that the current decision is 0 and l ∈B(y), respectively. We have:

J̃0(x, y) =
µ+

∑
k/∈A(x) λk

µ+
∑n

k=1 λk
J∗(x, y) +

∑
i∈A(x)

λi
µ+

∑n

k=1 λk
J∗ (fi(x, y))
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J̃l(x, y) =

∑
k/∈A(x) λk

µ+
∑n

k=1 λk
J∗(x, y) +

∑
i∈A(x)

λi
µ+

∑n

k=1 λk
J∗ (fi(x, y)) +

µ

µ+
∑n

k=1 λk
J∗ (gj(x, y)) ∀l ∈B(y)

J∗(x, y) =
1

β+µ+
∑n

i=1 λi

 ∑
j∈B(y)

yj +
∑
i∈A(x)

λi

 ∑
j /∈B(y)

γijcj

+
µ+

∑n

i=1 λi
β+µ+

∑n

i=1 λi
min

{
J̃0(x, y) min

l∈B(y)

(
J̃l(x, y)

)}

J∗(x, y) =
1

β+µ+
∑n

i=1 λi

[ ∑
j∈B(y)

yj +
∑
i∈A(x)

λi

 ∑
j /∈B(y)

γijcj

+
∑
i/∈A(x)

λiJ
∗(x, y) +

∑
i∈A(x)

λiJ
∗ (fi(x, y))

+µmin

{
J∗(x, y), min

l∈B(y)
(J∗ (gl(x, y)))

}]
After eliminating the J∗(x, y) terms on both sides of the equation above, we obtain:

J∗(x, y) =
1

β+µ+
∑

i∈A(x) λi

[ ∑
j∈B(y)

yj +
∑
i∈A(x)

λi

 ∑
j /∈B(y)

γijcj

+
∑
i∈A(x)

λiJ
∗ (fi(x, y))

µmin

{
J∗(x, y), min

l∈B(y)
(J∗ (gl(x, y)))

}]
This completes the proof. �

In the remainder of this appendix, we use the notation of J̃0(x, y) and J̃l(x, y) to refer to the future

cost-to-go assuming that the current decision is 0 and l ∈B(y), respectively.

A.2. Proof of Proposition 1

For notational ease, we replace λ1, c1, y1 and γ11 by λ, c, y and γ, respectively, By definition:

J∗(0, T ) = 0

J∗(1, T ) =
1

β+λ
[λJ∗(0, T ) +λγc] =

λ

β+λ
γc

J∗(0, y+ γ) =
1

β+µ
[(y+ γ) +µmin{J∗(0, y+ γ), J∗(0, T )}] =

y+ γ

β+µ

J∗(1, y) =
1

β+µ+λ
[y+λJ∗(0, y+ γ) +µmin{J∗(1, y), J∗(1, T )}]

We obtain that J∗(0, y + γ) ≥ J∗(0, T ) = 0 for all y ≥ 0, so the optimal policy satisfies π∗(0, y + γ) = 1

for all y ≥ 0. Moreover, we have: J∗(0, y+ γ) = y+γ
β+µ

. This simply states that, once the incoming vehicle has

arrived, the optimal policy consists of immediately operating the departing vehicle, and the cost-to-go is

then equal to the total discounted time spent by all the passengers in the aircraft during its operation.

We now note that π∗(1, y) = 1 ⇐⇒ J∗(1, T ) ≤ J∗(1, y). First, if π∗(1, y) = 1, then J∗(1, y) =

1
β+µ+λ

[
y+λ y+γ

β+µ
+µ λ

β+λ
γc
]
≥ J∗(1, T ) = λ

β+λ
γc. We obtain that

(
1 + λ

β+µ

)
y ≥ λγc − λγ

β+µ
, or y ≥

λγ(c(β+µ)−1)

β+µ+λ
. Conversely, if π∗(1, y) = 0, then J∗(1, y) = 1

β+λ

[
y+λ y+γ

β+µ

]
<J∗(1, T ) = λ

β+λ
γc. We then obtain

directly that
(

1 + λ
β+µ

)
y < λγc− λγ

β+µ
. This proves that π∗(1, y) = 1 ⇐⇒ y≥ λγ(c(β+µ)−1)

β+µ+λ
. �

A.3. Proof of Proposition 2

For notational ease, we replace λ1, γ11 and γ12 by λ, γ1 and γ2, respectively, By definition:

J∗(0, T,T ) = 0

J∗(0, T, y2 + γ2) =
1

β+µ
[(y2 + γ2) +µmin{J∗(0, T, y2 + γ2), J∗(0, T,T )}] =

y2 + γ2

β+µ
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J∗(0, y1 + γ1, T ) =
1

β+µ
[(y1 + γ1) +µmin{J∗(0, y1 + γ1, T ), J∗(0, T,T )}] =

y1 + γ1

β+µ

J∗(1, T,T ) =
1

β+λ
[λJ∗(0, T,T ) +λ(γ1c1 + γ2c2)]

Let us now derive the optimal in state (0, y1 + γ1, y2 + γ2). We have:

J∗(0, y1 +γ1, y2 +γ2) =
1

β+µ
[(y1 + γ1) + (y2 + γ2) +µmin{J∗(0, T, y2 + γ2), J∗(0, y1 + γ1, T ), J∗(0, y1 + γ1, y2 + γ2)}]

We obtain J̃0(0, y1 + γ1, y2 + γ2) = (y1+γ1)+(y2+γ2)

β
, so J̃0(0, y1 + γ1, y2 + γ2)≥ J∗(0, y1 + γ1, T ) and J̃0(0, y1 +

γ1, y2 +γ2)≥ J∗(0, T, y2 +γ2). Moreover, J∗(0, T, y2 +γ2)≤ J∗(0, y1 +γ1, T ) ⇐⇒ y2 +γ2 ≤ y1 +γ1. Therefore:

π∗(0, y1 + γ1, y2 + γ2) =

{
1 if y2 + γ2 ≤ y1 + γ1

2 if y1 + γ1 ≤ y2 + γ2

We now turn to the optimal policy in states (1, y1, T ) and (1, T, y1). As in Proposition 1, we obtain:

π∗(1, y1, T ) =

{
1 if y1 ≥ λγ1(c1(β+µ)−1)

β+µ+λ

0 otherwise

π∗(1, T, y2) =

{
2 if y2 ≥ λγ2(c2(β+µ)−1)

β+µ+λ

0 otherwise

Finally, we turn to the optimal policy in state (1, y1, y2). We have:

J∗(1, y1, y2) =
1

β+µ+λ
[y1 + y2 +λJ∗(0, y1 + γ1, y2 + γ2) +µmin{J∗(1, T, y2), J∗(1, y1, T ), J∗(1, y1, y2)}]

Without loss of generality, we assume that y2 + γ2 ≤ y1 + γ1. Therefore:

J∗(0, y1 + γ1, y2 + γ2) =
1

β+µ

[
(y1 + γ1) + (y2 + γ2) +

µ

β+µ
(y2 + γ2)

]
We distinguish three cases.

Case 1 y1 <
λγ1(c1(β+µ)−1)

β+µ+λ
and y2 <

λγ2(c2(β+µ)−1)

β+µ+λ

Then, π∗(1, y1, T ) = π∗(1, T, y2) = 0, and we have:

J∗(1, y1, T ) =
1

β+λ

[
y1 +λγ2c2 +λ

y1 + γ1

β+µ

]
and J∗(1, T, y2) =

1

β+λ

[
y2 +λγ1c1 +λ

y2 + γ2

β+µ

]
Then, we obtain:

J∗(1, T, y2)≤ J∗(1, y1, T ) ⇐⇒
(

1 +
λ

β+µ

)
y1−λγ1

(
c1−

1

β+µ

)
≥
(

1 +
λ

β+µ

)
y2−λγ2

(
c2−

1

β+µ

)
⇐⇒ y1−

λγ1(c1(β+µ)− 1)

β+µ+λ
≥ y2−

λγ2(c2(β+µ)− 1)

β+µ+λ

Moreover, J̃0(1, y1, y2) = 1
β+λ

[
y1 + y2 + λ

β+µ

(
(y1 + γ1) + (y2 + γ2) + µ

β+µ
(y2 + γ2)

)]
. We therefore obtain:

J∗(1, T, y2)≤ J̃0(1, y1, y2) ⇐⇒ λγ1c1 ≤ y1 +
λ

β+µ

(
(y1 + γ1) +

µ

β+µ
(y2 + γ2)

)
⇐⇒

(
1 +

λ

β+µ

)
y1−λγ1

(
c1−

1

β+µ

)
+

λµ

(β+µ)2
(y2 + γ2)≥ 0

⇐⇒ y1−
λγ1(c1(β+µ)− 1)

β+µ+λ
+

λµ

(β+µ)(β+µ+λ)
(y2 + γ2)≥ 0

Similarly, J∗(1, y1, T )≤ J̃0(1, y1, y2) ⇐⇒ y2− λγ2(c2(β+µ)−1)

β+µ+λ
+ λµ

(β+µ)(β+µ+λ)
(y2 + γ2)≥ 0.

Thus, π∗(1, y1, y2) = 0 if y1− λγ1(c1(β+µ)−1)

β+µ+λ
+ λµ(y2+γ2)

(β+µ)(β+µ+λ)
< 0 and y2− λγ2(c2(β+µ)−1)

β+µ+λ
+ λµ(y2+γ2)

(β+µ)(β+µ+λ)
< 0.

Otherwise, π∗(1, y1, y2) = 1 if y1− λγ1(c1(β+µ)−1)

β+µ+λ
≥ y2− λγ2(c2(β+µ)−1)

β+µ+λ
, and π∗(1, y1, y2) = 2 otherwise.
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Case 2 y1 ≥ λγ1(c1(β+µ)−1)

β+µ+λ
and y2 <

λγ2(c2(β+µ)−1)

β+µ+λ

Then, π∗(1, y1, T ) = 1 and π∗(1, T, y1) = 0 and J∗(1, T, y2)≤ J(1, T,T )≤ J(1, y1, T ). Moreover, J∗(1, T, y2) =

1
β+λ

[
y2 +λγ1c1 +λ y2+γ2

β+µ

]
and J̃0(1, y1, y2) = 1

β+λ

[
y1 + y2 + λ

β+µ

(
(y1 + γ1) + (y2 + γ2) + µ

β+µ
(y2 + γ2)

)]
. As

in Case 1:

J∗(1, T, y2)≤ J̃0(1, y1, y2) ⇐⇒ y1−
λγ1(c1(β+µ)− 1)

β+µ+λ
+

λµ

(β+µ)(β+µ+λ)
(y2 + γ2)≥ 0

This last inequality is satisfied because y1 ≥ λγ1(c1(β+µ)−1)

β+µ+λ
. Therefore, π∗(1, y1, y2) = 1.

Case 3 y1 ≥ λγ1(c1(β+µ)−1)

β+µ+λ
and y2 ≥ λγ2(c2(β+µ)−1)

β+µ+λ

Then, π∗(1, y1, T ) = 1 and π∗(1, T, y2) = 2, and we have:

J∗(1, y1, T ) =
1

β+µ+λ

(
y1 +λ

y1 + γ1

β+µ
+λγ2c2 +µ

λ

β+λ
(γ1c1 + γ2c2)

)
J∗(1, T, y2) =

1

β+µ+λ

(
y2 +λ

y2 + γ2

β+µ
+λγ1c1 +µ

λ

β+λ
(γ1c1 + γ2c2)

)
Therefore:

J∗(1, T, y2)≤ J∗(1, y1, T ) ⇐⇒ y2 +λ
y2 + γ2

β+µ
+λγ1c1 +µ

λ

β+λ
(γ1c1 + γ2c2)≤ y1 +λ

y1 + γ1

β+µ
+λγ2c2 +µ

λ

β+λ
(γ1c1 + γ2c2)

⇐⇒ y1−
λγ1(c1(β+µ)− 1)

β+µ+λ
≥ y2−

λγ2(c2(β+µ)− 1)

β+µ+λ
J∗(1, T, y2)≤ J̃0(1, y1, y2) ⇐⇒ 1

β+µ+λ

(
y2 +λ

y2 + γ2

β+µ
+λγ1c1 +µ

λ

β+λ
(γ1c1 + γ2c2)

)
≤

1

β+λ

[
(y1 + y2 +

λ

β+µ

(
y1 + γ1 + y2 + γ2 +

µ

β+µ
(y2 + γ2)

)]
⇐⇒ λ(β+λ)γ1c1 +λµ(γ1c1 + γ2c2)≤ (β+µ+λ)y1 +µy2

+ (β+µ+λ)
λ

β+µ
(y1 + γ1) +

µλ

β+µ
(y2 + γ2) +

λµ(β+µ+λ)

(β+µ)2
(y2 + γ2)

⇐⇒ (β+µ+λ)

[(
1 +

λ

β+µ

)
y1−λγ1

(
c1−

1

β+µ

)]
+µ

[(
1 +

λ

β+µ

)
y2−λγ2

(
c2−

1

β+µ

)]
+
λµ(β+µ+λ)

(β+µ)2
(y2 + γ2)≥ 0

⇐⇒ (β+µ+λ)

[
y1−

λγ1(c1(β+µ)− 1)

β+µ+λ

]
+µ

[
y2−

λγ2(c2(β+µ)− 1)

β+µ+λ

]
+

λµ

β+µ
(y2 + γ2)≥ 0

Using the same procedure, we obtain that:

J∗(1, T, y2)≤ J̃0(1, y1, y2) ⇐⇒ (β+µ+λ)

[
y2−

λγ2(c2(β+µ)− 1)

β+µ+λ

]
+µ

[
y1−

λγ1(c1(β+µ)− 1)

β+µ+λ

]
+

λµ

β+µ
(y2 + γ2)≥ 0

The last two inequalities are satisfied since y1 ≥ λγ1(c1(β+µ)−1)

β+µ+λ
and y2 ≥ λγ2(c2(β+µ)−1)

β+µ+λ
. Thus, π∗(1, y1, y2) = 1.

In conclusion, we have shown that:

π∗(1, y1, y2) =


1 if y1− λγ1(c1(β+µ)−1)

β+µ+λ
≥ y2− λγ2(c2(β+µ)−1)

β+µ+λ
and y1− λγ1(c1(β+µ)−1)

β+µ+λ
+ λµ(y2+γ2)

(β+µ)(β+µ+λ)
≥ 0

2 if y2− λγ2(c2(β+µ)−1)

β+µ+λ
≥ y1− λγ1(c1(β+µ)−1)

β+µ+λ
and y2− λγ2(c2(β+µ)−1)

β+µ+λ
+ λµ(y2+γ2)

(β+µ)(β+µ+λ)
≥ 0

0 if y1− λγ1(c1(β+µ)−1)

β+µ+λ
+ λµ(y2+γ2)

(β+µ)(β+µ+λ)
< 0 and y2− λγ2(c2(β+µ)−1)

β+µ+λ
+ λµ(y2+γ2)

(β+µ)(β+µ+λ)
< 0

We proceed similarly in the case where y2 + γ2 ≥ y1 + γ1. This completes the proof. �
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A.4. Proof of Proposition 3

We make use of the following lemmas. Lemma 2 expresses the terminal costs incurred once all the departing

vehicles have left and some vehicles are yet to arrive. In this case, the cost-to-go is simply given by the costs of

misconnections from all arriving vehicles i∈A(x), discounted, for each vehicle i, by a factor λi

β+λi
. Lemma 3

leverages this result to establish the result from Proposition 3 when |B(y)|= 1: when only one vehicle l ∈B(y)

is yet to depart, then the optimal policy is to operate vehicle l if and only if yl ≥
∑

i∈A(x) λiγilcl.

Lemma 2. We denote by T̄ the terminal state where yj = T for all j = 1, · · · ,m. For any arrival state x,

the cost-to-go in the terminal departure state is given by:

J∗(x, T̄ ) =
∑
i∈A(x)

λi
β+λi

(
p∑
j=1

γijcj

)
Lemma 3. Let y be such that yl ≥ 0 and yj = 0,∀j 6= l. Then, we have:

Π∗(x, y) = {l} if yl ≥
∑
i∈A(x)

λiγilcl

Π∗(x, y) = {0} otherwise

An overview of the proof of Proposition 3 is shown in Figure 10 with |A(x)| = 4 and |B(y)| = 5. First,

Lemma 3 shows the proposition when |B(y)|= 1. We then proceed by double induction over |A(x)| ≥ 0 and

|B(y)| ≥ 1 (indicated by the red numbers in the figure). We first show the proposition when |A(x)|= 0, and

then proceed by induction over |A(x)|. For each value of |A(x)|, we proceed by induction over |B(y)|. This

latter induction uses Lemma 3 as a starting point, and then proceeds by increasing order of |B(y)|.

|A(x)|= 0
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
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Figure 10 Overview of the double induction structure in the proof of Proposition 3.

A.4.1. Proof of Lemma 2 We proceed by induction over |A(x)|. The property is trivial when |A(x)|= 0

(the cost-to-go is zero when there is no vehicle). Let us now consider an arrival vector x. Per the induction

hypothesis, we know that for any k ∈A(x), we have J∗ (fk(x, y)) =
∑

i∈A(x)\{k}
λi

β+λi

(∑p

j=1 γijcj

)
. Therefore:

J∗(x, T̄ ) =
1

β+
∑

i∈A(x) λi

 ∑
k∈A(x)

λkJ
∗ (fk(x, y)) +

∑
i∈A(x)

λi

(
p∑
j=1

γijcj

)
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=
1

β+
∑

i∈A(x) λi

 ∑
k∈A(x)

∑
i∈A(x)\{k}

λk
λi

β+λi

(
p∑
j=1

γijcj

)
+
∑
i∈A(x)

λi

(
p∑
j=1

γijcj

)
=

1

β+
∑

i∈A(x) λi

 ∑
i∈A(x)

λi

(
1 +

∑
k∈A(x)\{i} λk

β+λi

)(
p∑
j=1

γijcj

)
=
∑
i∈A(x)

λi
β+λi

(
p∑
j=1

γijcj

)

This completes the proof. �

A.4.2. Proof of Lemma 3 We proceed by induction over |A(x)|. First, let us consider the case where

|A(x)|= 0, i.e., all incoming vehicles have already arrived at the facility. Then the proposition simply states

that the optimal policy is to operate vehicle l, since there is no benefit of waiting. Formally, we have

J∗ (gl(x, y)) = 0 and J̃0(x, y) = yl
β
≥ 0, so we obtain directly that l ∈Π∗(x, y), and yl ≥

∑
i∈A(x) λiγilcl = 0.

We now consider an arrival vector x, and assume that the property holds for any arrival vector
¯
x such

that |A(
¯
x)|= |A(x)| − 1. By definition, we have:

J̃0(x, y) =
1

β+
∑

i∈A(x) λi

[
yl +

∑
i∈A(x)

λiJ
∗ (fi(x, y)) +

∑
i∈A(x)

λi

(∑
j 6=l

γijcj

)]

J∗ (gl(x, y)) =
∑
i∈A(x)

λi
β+λi

(
p∑
j=1

γijcj

)
per Lemma 2

J∗(x, y) = min
{
J∗ (gl(x, y)) , J̃0(x, y)

}
We distinguish two cases:

Case 1 There exists k ∈A(x) such that Π∗ (fk(x, y)) = {0}—i.e., l /∈Π∗(fk(x, y)),∀l ∈B(y)

From the induction hypothesis, we have yl ≤
∑

i∈A(x)\{k} λiγilcl, which implies that yl ≤
∑

i∈A(x) λiγilcl. We

aim to show that Π∗(x, y) = {0}, i.e., that J̃0(x, y)≤ J∗ (gl(x, y)). In other words, if it is optimal to wait after

vehicle k has arrived, it is also optimal to wait before vehicle k arrives. For any m∈A(x), we have:

J̃0 (fm(x, y)) = min
{
J∗ (gl (fm(x, y))) , J̃0 (fi(x, y))

}
≤ J∗ (gl (fm(x, y))) = J∗ (fm(x,T ))

=
∑

i∈A(x)\{m}

λi
β+λi

(
p∑
j=1

γijcj

)
per Lemma 2

Therefore:

J̃0(x, y) =
1

β+
∑

i∈A(x) λi

[
yl +

∑
m∈A(x)

λmJ
∗ (fm(x, y)) +

∑
i∈A(x)

λi

(∑
j 6=l

γijcj

)]

≤ 1

β+
∑

i∈A(x) λi

[
yl +

∑
m∈A(x)

∑
i∈A(x)\{m}

λmλi
β+λi

(
p∑
j=1

γijcj

)
+
∑
i∈A(x)

λi

(∑
j 6=l

γijcj

)]

≤ 1

β+
∑

i∈A(x) λi

[ ∑
i∈A(x)

∑
m∈A(x)\{i}

λmλi
β+λi

(
p∑
j=1

γijcj

)
+
∑
i∈A(x)

λi

(
p∑
j=1

γijcj

)]
because yl ≤

∑
i∈A(x)

λiγilcl
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=
1

β+
∑

i∈A(x) λi

 ∑
i∈A(x)

λi

(
1 +

∑
m∈A(x)\{k} λm

β+λi

)(
p∑
j=1

γijcj

)
=
∑
i∈A(x)

λi
β+λi

(
p∑
j=1

γijcj

)
= J∗ (gl(x, y))

Case 2 l ∈Π∗ (fi(x, y)) for all i∈A(x)

We have, for all i ∈ A(x), J∗ (fi(x, y)) = J∗ (gj (fi(x, y))) = J∗ (fi(x,T )), so from Lemma 2, it comes:

J∗ (fi(x, y)) =
∑

k∈A(x)\{i}
λk

β+λk

(∑p

j=1 γkjcj

)
. Therefore:

l ∈Π∗ (fi(x, y)) ⇐⇒
∑

i∈A(x)

λi
β+λi

(
p∑
j=1

γijcj

)
≤ 1

β+
∑
i∈A(x) λi

[
yl +

∑
i∈A(x)

λiJ
∗ (fi(x, y)) +

∑
i∈A(x)

λi

∑
j 6=l

γijcj

]

⇐⇒
∑

i∈A(x)

λi
β+λi

(
p∑
j=1

γijcj

)
≤ 1

β+
∑
i∈A(x) λi

[
yl +

∑
i∈A(x)

∑
k∈A(x)\{i}

λiλk
β+λk

(
p∑
j=1

γkjcj

)
+
∑

i∈A(x)

λi

∑
j 6=l

γijcj

]

⇐⇒
∑

i∈A(x)

λi

(
p∑
j=1

γijcj

)
+
∑

i∈A(x)

∑
k∈A(x)\{i}

λkλi
β+λi

(
p∑
j=1

γijcj

)

≤ yl +
∑

i∈A(x)

∑
k∈A(x)\{i}

λiλk
β+λk

(
p∑
j=1

γkjcj

)
+
∑

i∈A(x)

λi

∑
j 6=l

γijcj


⇐⇒

∑
i∈A(x)

λiγilcl ≤ yl

This completes the proof. �

A.4.3. Proof of Proposition 3 We proceed by induction over |A(x)| ≥ 0 and |B(y)| ≥ 1.

First, note that, for |A(x)|= 0,D(x, y) = ∅, so the property is equivalent to Π∗(x, y) =B(y) and J∗(x, y) = 0.

We know through a simple induction over |B(y)| ≥ 1 that it is clearly satisfied. Indeed, if |B(y)|= 1, then we

can write yl ≥ 0 and yj = 0,∀j 6= l. Then J∗ (gl(x, y)) and J̃0(x, y) = yl
β

, which clearly implies that l ∈ π∗(x, y)

and J∗(x, y) = 0. We now consider y such that |B(y)| ≥ 2, and assume that the property holds for any
¯
y

such that
∣∣B(

¯
y)
∣∣= |B(y)|− 1. Then, for each l ∈B(y), we have J∗ (gl(x, y)) = 0 per the induction hypothesis,

so J∗ (gl(x, y))≤ J̃0(x, y) =
∑

j∈B(y) yj

β
, so l ∈Π∗(x, y) and J∗(x, y) = 0. This completes the proof in the case

where |A(x)|= 0.

We now consider a departure vector x such that |A(x)| ≥ 1 and assume that the property holds in any state

(
¯
x, y) such that |A(

¯
x)|= |A(x)| − 1. We refer to this induction hypothesis as (Hx). To prove the property in

state (x, y), we proceed by induction over |B(y)| ≥ 1.

We first consider a departure vector y such that |B(y)|= 1, i.e., yl ≥ 0 and yj = 0,∀j 6= l. We know from

Lemma 3 that l ∈Π∗(x, y) ⇐⇒ yl ≥
∑

i∈A(x) λiγilcl. Moreover, we have, by denoting by T̄ the terminal state

where yj = T for all j = 1, · · · ,m:

If yl ≥
∑
i∈A(x)

λiγilcl : J∗(x, y) = J∗(x, T̄ ) =
1

β+
∑

i∈A(x) λi

[ ∑
i∈A(x)

λi

(
p∑
j=1

γijcj

)
+
∑
i∈A(x)

λiJ
∗ (fi(x, T̄ )

)]

Otherwise : J∗(x, y) = J̃0(x, y) =
1

β+
∑

i∈A(x) λi

[
yl +

∑
i∈A(x)

λi

(∑
j 6=l

γijcj

)
+
∑
i∈A(x)

λiJ
∗ (fi(x, y))

]
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This completes the proof in the case where |B(y)|= 1, since D(x, y) = ∅ if yl ≥
∑

i∈A(x) λiγilcl and D(x, y) =

{l} otherwise.

We now turn to the case where |B(y)| ≥ 1, and we assume that the property is satisfied in any state (x,
¯
y)

such that
∣∣B(

¯
y)
∣∣= |B(y)| − 1. We refer to this induction hypothesis as (Hy). By definition, we have:

J̃0(x, y) =
1

β+
∑

i∈A(x) λi

[ ∑
j∈B(y)

yj +
∑
i∈A(x)

λiJ
∗ (fi(x, y)) +

∑
i∈A(x)

λi

 ∑
j /∈B(y)

γijcj

]

J∗(x, y) = min

{
min
l∈B(y)

J∗ (gl(x, y)) , J̃0(x, y)

}
For any l ∈B(y), we express J∗ (gl(x, y)) from the induction hypothesis (Hy) as follows:

• If l ∈D(x, y), we have D (gl(x, y)) =D(x, y) \ {l}, which yields:

J∗ (gl(x, y)) =
1

β+
∑

i∈A(x) λi


 ∑
j∈D(x,y)

yj − yl

+
∑
i∈A(x)

λi

 ∑
j /∈D(x,y)

γijcj + γilcl

+
∑
i∈A(x)

λiJ
∗ (fi(x, δ (gl(x, y))))


• If l /∈D(x, y), we have D (gl(x, y)) =D(x, y) and δ (gl(x, y)) = δ(x, y), which yields:

J∗ (gl(x, y)) =
1

β+
∑

i∈A(x) λi

 ∑
j∈D(x,y)

yj +
∑
i∈A(x)

λi

 ∑
j /∈D(x,y)

γijcj

+
∑
i∈A(x)

λiJ
∗ (fi(x, δ(x, y)))


We now proceed to prove the property from the proposition. We distinguish two cases.

Case 1 D(x, y) =B(y)

We show that, in this case, Π∗(x, y) = {0}. Let us consider l ∈B(y). Note that, since D(x, y) =B(y), we have

δ(x, y) = (x, y) and (x, δ (gl(x, y)) = gl(x, y). It comes:

J̃0(x, y)<J∗ (gl(x, y))

⇐⇒ 1

β+
∑

i∈A(x) λi

[ ∑
j∈B(y)

yj +
∑
i∈A(x)

λiJ
∗ (fi(x, y)) +

∑
i∈A(x)

λi

 ∑
j /∈B(y)

γijcj

]<
1

β+
∑

i∈A(x) λi


 ∑
j∈B(y)

yj − yl

+
∑
i∈A(x)

λi

 ∑
j /∈B(y)

γijcj + γilcl

+
∑
i∈A(x)

λi J
∗ (fi(x, δ (gl(x, y))))︸ ︷︷ ︸

=J∗(gl(fi(x,y)))


⇐⇒

 ∑
i∈A(x)

λiγilcl− yl


︸ ︷︷ ︸
>0 because l∈D(x,y)

+
∑
i∈A(x)

λi [J
∗ (gl (fi(x, y)))− J∗ (fi(x, y))]︸ ︷︷ ︸

≥0 (see below)

> 0

This last inequality is satisfied because J∗ (fi(x, y)) = min
{
J∗ (gl (fi(x, y))) , J̃0 (fi(x, y))

}
≤ J∗ (gl (fi(x, y))).

This shows that Π∗(x, y) = {0}. Moreover, we have J∗(x, y) = J̃0(x, y), i.e.:

J∗(x, y) =
1

β+
∑

i∈A(x) λi

[ ∑
j∈B(y)

yj +
∑
i∈A(x)

λi

 ∑
j /∈B(y)

γijcj

+
∑
i∈A(x)

λiJ
∗ (fi(x, y))

]
This completes the proof in the case where D(x, y) =B(y)

Case 2 D(x, y) 6=B(y)
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We consider l ∈B(y)\D(x, y), and show that l ∈Π∗(x, y). We will show, first, that J∗ (gl(x, y))≤ J∗ (gm(x, y))

for any m∈B(y), and, second, that J∗ (gl(x, y))≤ J̃0(x, y).

Let us considerm∈B(y). Note, first, that J∗ (gl(x, y)) = J∗ (gm(x, y)) ifm /∈D(x, y), because the expression

of J∗ (gl(x, y)) does not depend on l when l /∈D(x, y). We now assume that m∈D(x, y). We have:

J∗ (gl(x, y))<J∗ (gm(x, y))

⇐⇒ 1

β+
∑

i∈A(x) λi

 ∑
j∈D(x,y)

yj +
∑
i∈A(x)

λi

 ∑
j /∈D(x,y)

γijcj

+
∑
i∈A(x)

λiJ
∗ (fi(x, δ(x, y)))

<

1

β+
∑

i∈A(x) λi


 ∑
j∈D(x,y)

yj − ym

+
∑
i∈A(x)

λi

 ∑
j /∈D(x,y)

γijcj + γimcm

+
∑
i∈A(x)

λi J
∗ (fi(x, δ (gm(x, y))))︸ ︷︷ ︸

=J∗(gm(fi(x,y)))


⇐⇒

 ∑
i∈A(x)

λiγimcm− ym


︸ ︷︷ ︸

>0 because m∈D(x,y)

+
∑
i∈A(x)

λi [J
∗ (gm (fi(x, y)))− J∗ (fi(x, y))]︸ ︷︷ ︸

≥0 (as in Case 1)

> 0

We therefore obtain that J∗ (gl(x, y)) < J∗ (gm(x, y)) if m ∈ D(x, y). This shows that J∗ (gl(x, y)) ≤

J∗ (gm(x, y)) for all m∈B(y). Finally, we have:

J∗ (gl(x, y))≤ J̃0(x, y)

⇐⇒ 1

β+
∑

i∈A(x) λi

 ∑
j∈D(x,y)

yj +
∑
i∈A(x)

λi

 ∑
j /∈D(x,y)

γijcj

+
∑
i∈A(x)

λiJ
∗ (fi(x, δ(x, y)))

≤
1

β+
∑

i∈A(x) λi

[ ∑
j∈B(y)

yj +
∑
i∈A(x)

λiJ
∗ (fi(x, y)) +

∑
i∈A(x)

λi

 ∑
j /∈B(y)

γijcj

]

⇐⇒
∑

j∈B(y)\D(x,y)

yj − ∑
i∈A(x)

λiγijcj


︸ ︷︷ ︸

≥0 for j /∈D(x, y)

+
∑
i∈A(x)

λi [J
∗ (fi(x, y))− J∗ (fi(x, δ(x, y)))]︸ ︷︷ ︸

=0 per the induction hypothesis (Hx)

≥ 0

This shows that l ∈Π∗(x, y). As a result, we have J∗(x, y) = J∗ (gl(x, y)), which proves that

J∗(x, y) =
1

β+
∑

i∈A(x) λi


 ∑
j∈D(x,y)

yj − yl

+
∑
i∈A(x)

λi

 ∑
j /∈D(x,y)

γijcj + γilcl

+
∑
i∈A(x)

λiJ
∗ (fi(x, δ (gl(x, y))))


This completes the proof. �

Appendix B: Proof of Statements from Section 3

B.1. Proof of Proposition 4

Let us consider an optimal solution (S) to (GDP-PAX) and assume by contradiction that λrj = 1 and∑
t∈T w

a
f1(r),t −

∑
t∈T w

d
jt ≥ σrj for some r ∈ PC and j ∈Rr. First, note that if j = f2(r), then Solution (S)

violates Constraint (12). We thus assume that j 6= f2(r) and build a solution (Ŝ) such that: (i) ŵa = wa

and ŵd = wd (i.e., flight operations remain unchanged), (ii) ẑ = z and ẑS = zS (i.e., passenger accommo-

dations remain unchanged), (iii) λ̂rj = 0 and λ̂pi = λpi for each (p, i) ∈ PC ×F \ {(r, j)}. By construction,

Constraint (11) is satisfied because
∑

t∈T w
a
f1(r),t−

∑
t∈T w

d
jt ≥ σrj . Note that Constraint (13) gets relaxed,
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and Constraints (12) and (14) do not get modified because f2(r) 6= j. Therefore (Ŝ) is a feasible solution

and, since
∑

p∈PC

(∑
i∈Rp

δCpiẑpi + δSp ẑ
S
p

)
=
∑

p∈PC

(∑
i∈Rp

δCpizpi + δSp z
S
p

)
, it is also optimal.

If Constraint (12) is omitted, then we provide in Table 9 a counter-example where the property is not

necessarily satisfied. Let us consider the following set of five flights: two incoming flights into Airport C, and

three outgoing flights on the segment between Airport C and Airport D. We also consider two passenger

itineraries, referred to as p1 and p2: p1 involves a connection from flight 1 to flight 4, and p2 involves a

connection from flight 2 to flight 3 (i.e., f1(p1) = 1, f2(p1) = 4, f1(p2) = 2 and f2(p2) = 3). We also assume

that each of these two itineraries are booked by five passengers (i.e., np1 = np2 = 5), that each of the three

outgoing flights from Airport C have an effective capacity of 5 (i.e., Ω3 = Ω4 = Ω5 = 5), and that the minimal

connecting time between any pair of flights at airport C is 45 minutes (i.e., σp,i = 3 15-minute periods for

each p ∈ {p1, p2} and i ∈ {1,2,3}). Since flight 2 is delayed by 30 minutes (e.g., due to upstream congestion

at Airport B), the connection between flight 2 and flight 3 is no longer feasible and itinerary p2 is therefore

disrupted. This implies per Constraint (11) that λp2,3 = 1. However, passengers on itinerary p2 can still make

the connection to flight 4, i.e., λp2,4 = 0. Since λp1,3 = λp1,4 = 0, we have per Constraint (14) zp1,4 = 5. The

aircraft used to fly flight 4 is therefore at capacity, and passengers on itinerary p2 cannot be re-accommodated

on flight 4. Therefore, they will be re-accommodated on flight 5 and incur a connection delay of 8 hours.

However, this is not the optimal solution. Instead, in the absence of Constraint (12), one can set λp1,4 = 1

(even though the connection remains feasible), and thus zp1,4 = 0 and zp1,3 = zp2,4 = 5. Then the passengers

on itinerary p1 incur a delay of 0 and the passengers on itinerary p2 incur a delay of 1 hour.

Table 9 Counter-example if Constraint (12) is omitted.

Flight ID Origin Destination Planned Dep. Planned Arr. Actual Dep. Actual Arr. Eff. Capacity

1 Airport A Airport C 7:15 am 9:15 am 7:15 am 9:15 am 0
2 Airport B Airport C 8:15 am 9:15 am 8:45 am 9:45 am 0
3 Airport C Airport D 10:00 am 11:00 am 10:00 am 11:00 am 5
4 Airport C Airport D 11:00 am 12:00 am 11:00 am 12:00 am 5
5 Airport C Airport D 6:00 pm 7:00 pm 6:00 pm 7:00 pm 5

Therefore, the inclusion of Constraint (12) enforces that an itinerary-flight pairing is marked as disrupted

if and only if the time between the arrival time of the first-leg flight of the itinerary and the departure time

of the flight under consideration is insufficient for passengers to connect. This completes the proof. �

B.2. Proof of Proposition 5

First, we note that for any positive variables z̃ and λ̃ such that z̃pr ≤ np(1− λ̃r) for each p, r ∈PC , we have∑
p∈PC

z̃pr ≤
(∑

p∈PC
np

)
(1 − λ̃r). Therefore, the constraint z̃pr ≤ np(1 − λ̃r),∀p, r ∈ PC defines a tighter

feasible region than the constraint
∑

p∈PC
z̃pr ≤

(∑
p∈PC

np

)
(1− λ̃r),∀r ∈ PC . Second, we note that both

constraints define the same feasible region when z̃ is an integer variable and λ̃ is a binary variable. To show

this, let us consider r ∈ PC and assume that
∑

p∈PC
z̃pr ≤

(∑
p∈PC

np

)
(1− λ̃r). If λ̃r = 1, this implies that∑

p∈PC
z̃pr = 0, hence z̃pr = 0 for all p∈PC . Conversely, if λ̃r = 0, then we already know that z̃pr ≤ npλ̃p for all

p∈PC because z̃pr ≤ np for all p∈PC (by assumption). Therefore, if
∑

p∈PC
z̃pr ≤

(∑
p∈PC

np

)
(1− λ̃r),∀r ∈

PC , then z̃pr ≤ np(1− λ̃r),∀p, r ∈PC . This completes the proof. �
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