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ABSTRACT

The following distributed detection problem is formulated. We consider a team that
comprises of two decision makers, who are referred to as Decision Maker A (DMA) and
Decision Maker B (DMB). Both decision makers receive uncertain measurements or
observations, and the goal of the team is to make a decision with the objective of trying to
minimize the probability of making an incorrect decision. DMA processes his measurement
first and communicates to DMB one of K messages, M;, M,, ..., Mg. Based on this
message and his own observation, DMB makes the final decision of the team.

The goal is to analyze the performance of the above scheme (using values of K greater
than two) and compare it with the well known case where only two messages, M; and M,,
are used by DMA. It is interesting to see how the performance of the team approaches that
of the centralized version of the problem (i.e., two independent observations available to a
single decision maker) with increasing values of K. Furthermore, results for the General K
case have been presented and can be used to evaluate the performance of a team where K
messages (K taking on any value) are used for communication between DMA and DMB.

Thesis Supervisor : Dr. Michael Athans
Professor of Systems Science and Engineering
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Chapter 1

INTRODUCTION

This thesis addresses the design and performance evaluation of a special class of team
decision problems, where each member of a team of decision makers receives conditionally
independent observations about some underlying binary hypothesis. The objective of the
team is to make an optimal decision. We study the effects of increasing the communication

between the team members.

1.1 Problem Definition

The problem can be formulated as one of target detection. The decision team consists
of two decision makers, namely Decision Maker A (DMA) and Decision Maker B (DMB).
Each decision maker receives conditionally independent observations and the goal of the
team is to make an optimal decision to choose between two hypotheses, Hy and H;. Ina
target detection context, Hy may mean no target, while H; denotes the presence of a target.

The operation of the team is described as follows. DMA processes the measurement

from his sensor and arrives at a decision. This preliminary decision, which can be one of



K messages, My, My, ..., Mg (K = 2, 3, ..)), is passed on to DMB. Using his own
measurement and the message from DMA, DMB arrives at the final decision of the team.
In other words, DMB has the final responsibility for declaring the presence or absence of a
target.

The objective of the team is to make an optimal decision, i.e., one that minimizes both
the probability of missed detection and the probability of false alarm. In this context, as the
number (K) of messages increases, we are providing DMB with more accurate information
about DMA's observation. We study the implications of this on the probabilities of missed
detection and false alarm of the final team decision.

The theme of this research is to evaluate the performance of the K-message (using
values of K greater than two) Distributed Detection Network shown in Figure 1b, and
compare it with that of the two-message (K = 2) Distributed Detection Network shown in
Figure 1a. In order to accomplish this, the linear Gaussian case is considered (i.e., where
the observations are linear and their probability distributions are Gaussian). In addition,
we perform sensitivity analyses for the linear Gaussian case to gain some insight into the
behavior of the team. Varying key parameters such as the quality of the observations that
the decision makers receive and the a priori probabilities of the hypotheses, we see the
effect this has on the performance of the team.

Finally, the results for the General K case are presented, where the number of
messages used by DMA (i.e., K) can take on any value. This provides the framework to
evaluate the performance of a team that uses K messages for communication between DMA
and DMB. Increasing the communication between the team members in this manner results
in the performance of the team approaching that of the centralized version of the problem,

where a single decision maker receives two independent observations.



(a) Two-message (K=2) Tandem Distributed Detection Network, (uy, = {M;, M,})

Phenomenon
Hq or Hy

y
\yd' Y [3
My
u u
DMA I!IZ .| pm P>
Mg

(b) K-message Tandem Distributed Detection Network, (u, = {M;, M,, ..., M¢})

Figure 1 Problem Formulation

10



1.2 Motivation for this Research

Hypothesis-testing problems in the field of Command and Control are one of the many
areas where this research can be applied. More specifically, we discuss the target detection
problem where the two hypotheses, Hy and H;, are defined as before. Two geographically
distributed sensors (or DM's) receive independent noisy measurements. Based on these
measurements, the team has to declare the presence or the absence of a target. The final
decision of the team, however, is made by the downstream DM and there is a one-way
communication between the DM's (from DMA to DMB). It is possible to allocate different
costs to the probabilities of false alarm and missed detection and attempt to minimize this
cost, which in turn minimizes the probability of error of the detection team. It is evident
that if the downstream DM relied only on the measurement from his sensor, we have a
classical centralized detection problem. Furthermore, if the upstream DM were to
communicate his entire observation to the downstream DM, we once again are dealing with
a classical centralized detection problem where the decisive DM has two measurements with
which he can make the final decision of the team. In the latter case, however, the
communication of raw data is involved which could be expensive from a channel
bandwidth point of view. In addition, communication of this type could easily be
intercepted by the enemy.

To minimize the cost and the potential risks involved, the communication mechanism
described in the previous section is employed. As a consequence, communication is cheap
and is more likely to escape enemy interception.

The need for communicating with a few bits rather than with raw data can be
appreciated if we consider detecting an enemy airplane using radar as depicted in Figure 2.
We associate DMB with the control room in the building and DMA with our surveillance

airplane (both having means through which they can receive measurements). In this
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Figure 2 Target Detection Example
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situation, a short communication message can be used to transmit the surveillance aircraft
message to the ground center, who in turn makes the final decision of the team.

Although the primary motivation for this research stemmed from military surveillance
problems, distributed detection problems are also prevelant in civilian air traffic control

systems and many other areas.
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1.3 Literature Survey

The area of distributed detection is relatively new and there are only a few papers that
deal with solutions to such problems. One of the first papers to consider the distributed
detection problem was the paper by Tenney and Sandell [5]. They demonstrated the
difficulties encountered in solving a two-sensor problem, and showed that the optimal
decision rule for each sensor is deterministic and is a likelihood ratio test. The decision
thresholds were, in general, coupled. Eckhian [1] analyzed the decision rules for
Distributed Detection Networks and investigated organizational issues in such networks.
He derived the solution to the two-sensor problem where DMA uses two messages (K = 2)
to communicate with DMB. The problem where DMA uses more than two messages (K =
3, 4, ...), however, has not been solved as yet. He also considered problems in which
more than two sensors made a team. Eckhian and Tenney [2] pointed out that individual
DM's make decisions based on their own observations and decisions passed down by the
"upstream" DM's. In Papastavrou [3] and Papastavrou and Athans [4], the notion of
communication cost was introduced. A two-sensor problem was considered where the

- primary decision maker could solicit the opinion of the consulting decision maker at a cost.
The final decision, however, was made by the primary decision maker. The optimal
decision rules were shown to be tightly coupled and numerical sensitivity analyses
provided valuable insight on the overall behavior of the team. Tsitsiklis [6] and Tsitsiklis
and Athans [7] dealt with distributed hypothesis-testing problems and showed that they
were NP-complete; they demonstrated the computational complexity of solving optimal
distributed decision problems while showing that the solutions to the centralized versions
were trivial. Kushner and Pacut [9] introduced a delay cost (somewhat similar to the
communications cost in [3] and [4]) in the case where the observations have exponential

distributions. They performed a simulation study and presented the results. In Chair and

14



Varshney [10], the results of [5] have been extended to more generalized settings.
Boettcher [11] and Boettcher and Tenney [12], have shown how to modify the normative
solutions in [2] to reflect human limitation constraints, and arrive at a normative/descriptive
model that captures the constraints of human implementation in the presence of decision
deadlines and increasing human workload; experiments using human subjects showed
close agreement with the prediction of their normative/descriptive model. In Reibman and
Nolte [13], using the minimal global cost criterion, it is shown that the optimal structure of
the local processor in a general distributed detection network is a likelihood ratio test when
the input observations are statistically independent. In addition, it is shown that the local
thresholds and the network performance can be expressed as a function of the receiver
operating characteristics (ROCs) of the local processors. The performance of five
distributed nerworks are compared numerically using local ROCs from the conic ROC
family. Vishwanathan, Thomopoulos and Tumuluri [14] consider a serial distributed
decision scheme (also called a tandem network) and carry out a performance analysis of
such a scheme to compare it to the performance of a parallel decision scheme. Finally,
Polychronopoulos [15] dealt with the decentralized detection problem in which a large
number of identical sensors transmit a finite-valued function of their observations to a
fusion center which then decides which one of the M hypotheses is true. An asymptotically
optimal solution to the problem is presented for the case where observations are generated

from one of a simple set of discrete symmetric distributions.
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Through this research, we see the degree of improvement in the performance of the
detection team when DMB (the decision maker making the final decision of the team) is
given more information than if it were operating in isolation. When operating in isolation,
DMB has its own observation yg, with which to make a decision. We now provide a
message from DMA to assist DMB in making a more accurate decision. The optimal
decision thresholds with the DM's operating as a team are different from those of DMB
operating in isolation. In particular, these decision thresholds are tightly coupled. Hence,
DMA and DMB are operating as team members. We see the difference in the performance
of the team if DMA can use three messages, as opposed to two messages, to assist DMB.
As expected, the three message case provides more information to DMB (regarding DMA's
observation), and the performance is better.

On the other hand, we compare the overall distributed team performance to that of the
centralized version of the problem, in which DMB has access to both sets of observations,
Yo and yg. This shows the performance degradation due to enforcing the distributed
decision making process. If the number of messages used by DMA is increased to four,
we see that the performance of the team gets closer to that of its centralized counterpart. If,
for instance, the number of messages used by DMA is allowed to approach infinity, it is
expected that the performance of such a scheme would approach that of the centralized
version. However, we see that there is not much room for improvement in performance
beyond the use of two bits of information.

The overall behavior of the team is studied by varying the quality of the observations of
the decision makers and the a priori probabilities of the hypotheses. This study is very
informative and answers questions regarding the positioning of the DM's (i.e., upstream or

downstream), and the allocation of communication capability to the DM's (depending on

16



whether the decision maker is "smart” or not). It also shows how the team members

operate intuitively and in the best interest of the team.
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Chapter 2

THE GENERAL PROBLEM

In this chapter we extend the well-known two-message case to one where three
messages are used by DMA to communicate with DMB. In addition to summarizing the
results of the three-message case, we also include the results of the two-message case for
the sake of completeness. Once we have understood the three-message case completely, in
Chapter 4 we will further extend the problem to one where four or even K messages (K

taking on any value) are used for communication by a detection team.
2.1 Notation

The problem studied is one of hypothesis testing, where the detection team has to

choose between two hypotheses, Hy and H;, with a priori probabilities

P(H)  and  P(H)

Each of the two decision makers, DMA and DMB, receives an uncertain measurement

18



Yo and yg respectively, distributed with known joint probability density functions

P(yy, g | Hy) fori=0,1

The objective of the decision strategies is to minimize the expected cost incurred, where
the minimization is done over the decision rules of the two decision makers. The cost
function is written as J(ug, H;), and is the cost incurred by the detection team choosing ug,

when H; is the true hypothesis.

2.2 Assumptions

Assumption 1: J(1,Hg) > J(0,Hy) ; J(O.Hy > J(1,H,) (D
or the cost incurred for making an error is greater than that for being
correct.
This logical assumption is made in order to motivate the team members to avoid
making errors and in order to enable us to put the optimal decisions in the form of

likelihood ratio tests.

Assumption 2 : P(yq | yg, Hy) = P(yg | Hy) ; P(yp | Yo, Hy) = P(yg | H) fori=0,1(2)
or the observations y, and yg are conditionally independent.
This implies that one observation is not dependent on the other and enables us to

write the optimal decision rules as likelihood ratio tests with constant thresholds.

Assumption 3 : Without loss of generality we assume that
P(ua= M, IHy) . P(ua= M, IHy) o P(ua= M, I H)
P(ua= M, IH)) P(ua= M, H) P(ua= M, I1H,)

3

19



This assumption is made in order to distinguish between the messages of DMA.

2.3 Two-message Case

Given P(Hy), P(H),), the distributions P(y, yp | H) fori =0, 1 with y, € Y,,
yp€ Yp, and the cost function J(ug, Hj), the optimal decision rules (one that minimizes the
expected cost) of DMA and DMB are derived. DMA can use one of two messages, M; or
M,, to communicate his decision to DMB. DMB has his own observation and the message
from DMA to make the final decision of the team.

The proofs of the theorems of the two-message case appear in Optimal Design of
Distributed Detection Networks, which is listed in the References section. Hence, they

will not be repeated here.

Theorem 1

Given the decision u, of DMA, the optimal decision rule of DMB is a deterministic

function

’Yﬁ :YB X [Ml’ M2] e d {0, 1}

defined by the following likelihood ratio tests:

! 0, iAWy 2B

1, otherwise

V(¥ V) = @

20



where

_P(H) Py, 1Hy
Aglyg) = PEH,) Py, 1H) 5)

and

P(u | H) [ JOH,) - J(LH)]
P = P(u I Hp) [J(1LH - JOH) ]

fori=0,1 (6)

Theorem 2

Given the decision ug € {0, 1} of DMB, the decision rule of DMA is a

deterministic function
Ya: Ya_){Ml’M2}={O’1}

defined by the following likelihood ratio tests:

[ *
i >
I‘Il’ ifA (y )—a

YoYo) = 4 (7)
[ M2, otherwise
where
P(HO) P(yal Ho)
Ay = P(Hl) P(yal Hl) 3

21



and

2. JugH,) [Pl u =0, H,) - Plu v = 1, H))]
or = 2 ©)
Zup‘ JugH) [P(ulu = 1 Hy) - Pl u =0, H)]

Although the structure of the decision rules above seem simple, the computation
of the thresholds is quite complex. It is necessary to solve a system of non-linear
simultaneous equations since the threshold equations are coupled. This can be done
iteratively using a computer algorithm. In addition, the computation of the
thresholds require certain quantities that are not easy to determine. For example,
the computation of B, requires the calculation of the conditional density

p(uy =0 | Hy), which requires the calculation of p(uy =0 | y,) as shown below :

Plug=01Hy = | pu =01y )p(y, IHp dy, (10

2.4 Three-message case

Given P(Hy), P(H,), the distributions P(y, yg | Hy) fori=0, 1 with y, € Y,
¥p € Yp, and the cost function J(ug, H;), the optimal decision rules of DMA and DMB are
derived. DMA can use one of three messages, M;, M,, or M3, to communicate his
decision to DMA. DMB has his own observation and the message from DMA to make the
final decision of the team.

The detailed proofs of the theorems for the three-message case appear in the appendix.

22



Theorem 3

Given the decision uy of DMA, the optimal decision rule of DMB is a deterministic

function
YB: YBX{MlsMZ’MB' } '—>{O’ 1}

defined by the following likelihood ratio tests :

J 0, if Ay, 2 B;

T(pia) = a1
1, otherwise
where
P(Hy) P(y,| Hy)
B608) = B PGy, ) (12

and

P(u =ilH)[JO, H)-J(1,H)]
Pi= Pu =i1Hy) [J(1,Hp -0, Hy]

fori=M;,M,, M, (13)

Theorem 4

Given the decision ug € {0, 1} of DMB, the decision rule of DMA is a

deterministic function

Yo: Yo = {M;, My, M3}

23



defined by the following likelihood ratio tests:
i >
M1 , if Aa(ya) 20,
VoY) = {l M, ifo SA (y) <o

M, ifA (v ) <o,

where

P(H,) P(y_I Hy)
Aol¥o) = B ) Py TH))

and

2 ¥y H) [Pyl u =M, H)) - Plaglu = M, H)

o, = —
2 g, Hy) [Pl v =M, Hy - P ju = M,, Hp

b

D Jug, H)) [Pl u =M, , Hy) - P lu =M, , H)) ]
%
o

3 =
Y g Hp [Pl u =M, ,H) -P(ulu =M, Hp ]
k

(14)

(15)

(16)

a7

Once again, the nature of the above equations neccessitates an iterative solution.
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Chapter 3

THE GAUSSIAN CASE

This chapter contains the detailed threshold equations for the cases where the
observations of DMA and DMB are linear and their probability distributions are Gaussian.

The Gaussian distribution, despite its cambersome algebraic formulae, is chosen due to its

generality.
1 Th ian Problem

The distribution of the observations of the decision makers are Gaussian and are given
by
Ya~ N, 6,3 5 yp~N(y, 6p?) (18)

The hypotheses, namely Hy and H;, are described by
Ho: u=py ; Hy:p=p (19)

It is assumed that L, < W, (with no loss of generality).

25



It can be shown that the decision thresholds for the Gaussian case are on the
observation axes. These thresholds appear in Figure 3. For the two-message case, the
thresholds are referred to as Y,,*, YgM1 and YgM2 (where "*' refers to the only threshold of
DMA). For the three-message case, the thresholds are referred to as Y.}, Y9, YBMl,
Y M2 and YgM3 (where '1' and 'u' refer to the lower and upper thresholds of DMA

respectively). The threshold equations are written in terms of the error function which is

given by
Y-y
G
: 0.5 2
DJ (k) = J. 2m) exp(-0.5x7) dx (20)
where i=a, B

i=*M,M, forK=2
= 1, u, Ml’ Mz, M3 forK=3

k=0,1

It is useful to note that the centralized maximum likelihood estimations of the thresholds

are given by
TR c? P(H,)
DMA : YML = 0 ! + < In 1- P(H ) (21)
o 2 HLo—U 0
1 Yo
N o2 P(H)
pm: v-toH o, % | —% 22)
B 2 _ 1-P(H)
B~ M

26



These are the estimations of the thresholds in an isolated setting (i.e., DMA or DMB in

isolation rather than as team members).

3.2 Two-message Case
The decision rules that follow are applicable to the case where DMA uses two

messages, M; and M,, to communicate with DMB.

A discussion for the corollaries of this case appears in the appendix.

Corollary 1

Given the decision uy, by DMA, the optimal decision rule of DMB is a deterministic

function defined by
0,ify <Y fori=1,2
, ify < ori=1,
Yp(yps Ug) = { BB (23)
1,ify >Y '
87 s
where
M G2 1 @ (0) , o2 1[ P(H,) ]+u0+u o
= M ot M1-PH
TR L) TR o] 2
M, o2 |1-®O| o2 [ P(H,) } e
Y *= 2 In| T + (25)
P (1| 1-P(Hy)

27



DMB

(a) Two-message case

DMA

—_——— ———

DMB

DMA

(b) Three-message case

Figure 3 The Gaussian Example
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Corollary 2

Given the decision ug of DMB, the optimal decision rule of DMA is a deterministic

function defined by

!Ml, ify <Y_

Yoo = C (26)
L Mz, 1fya>Ya
where
M M
. o2 @, 1(0)"1’52(0) 2 P(H,) e
Y = @ In| M +—2 In TPa |t 02 27)
Rt A (LR CORE SOV I 0

1 0

The coupling of the equations appearing in Corollary 1 and Corollary 2 can be seen by

writing out the error functions using the definition in Section 3.1.

Ya-pk

)

D_* (k) = J' em)®® exp(-0.5x) dx  fork=0, 1 (28)

v
i B 3

G,
B
DM (k) = _[ @m*° exp(-0.5x%) dx  fork=0, 1 (29)

-0

v

- Wy
G

B
DMz (k) = _[ em % exp(-05x) dx  fork=0,1 (30)

29



Hence, we see that both YBMl and YBMZ are functions of Y,*, which in turn is a
function of both YgM1 and YgM2. The equations are, therefore, tightly coupled.
hree-m
The decision rules that follow are applicable to the case where DMA uses three
messages, M;, M, and M3, to communicate with DMB.

The corollaries of this case have been proven to illustrate how the Gaussian equations

are derived. These proofs appear in the appendix.

Corollary 3

Given the decision u, of DMA, the optimal decision rule of DMB is a deterministic

function defined by
Jo ify, <y fori=1,2,3
Yp(Yp> Ue) = | Rt. (31)
1,ify >Y
87 'p
where
]
M 02 1 @ (0) G2 1[ P(HO)] T -
T A O TRt R

M, o2 |®O-30 g2 ln|: P(H&} RN

In + T _pasy |t
H—H a( ) a( ) H—H °

30



0
5 (34)

Corollary 4

Given the decision ug of DMB, the optimal decision rule of DMA is a deterministic

function defined by
M,, ify <Y
= .|
TalYo) 4| M,, fY <y <Y (35)
[ M,, ifya>Y:
where
2 | @ 20)-@ 1 0) 2 P(H,)
o - c: VY + U
Y = —o I |+ Inl TRy | * ”0 (36)
Hi=Hy [ @ W-2 (M| K~ K,
o2 |9°©-97© o2 [ PE) +
- H
Y‘; = o In 11343 E’Iz + ln[l P( )} + 0 ul (37)
W=k [0 M- (M) 1y~ H

Having listed the error functions in detail for the two-message case, we can see by

inspection that the equations for the three-message case are also coupled in the similar
manner.
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3.3 Computation of Thresholds

It is clear that the threshold equations for both the two-message and three-message
cases are coupled. However, the equations can be solved numerically using an iterative
method. This iterative method is implemented using a computer algorithm that receives as
input initial estimates of the thresholds of the downstream decision maker, and yields the
optimum thresholds for both decision makers. In other words, for the three-message case,
the algorithm is given initial estimates of YpM1, YgM2 and YgMs. It then computes Y,! and
Y," using these estimates and completes one iteration. Given Y ! and Y, the thresholds
of the downstream decision maker are computed and this iterative process is carried on until
the threshold values converge (i.e., the values from the Nth iteration have not changed by
more than a specified percentage from those of the N-1st iteration). The solutions have
found to be unique (i.e., they are not merely locally optimal).

The algorithm was coded using Microsoft Basic. Due to the nature of the program it is
essential that the initial estimates of the downstream decision maker be unequal. Equal
estimates would result in the program terminating in one iteration. Although the number of
iterations required for convergence depends on the initial estimates provided to the
program, a typical computation usually takes about 15-20 iterations.

The two-message case entails solving a system of three equations (i.e., (25)-(26) and
(28)) while the three-message case involves solving five equations (i.e., (33)-(35) and
(37)-(38)).

In order to get numerical results, the following baseline parameter values were used for

the problem :

UnderHp: p=p,=0 o2 =100
UnderH;: p=p;=10  o32=100
P(Hy) =0.5
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Using the values on the previous page, the thresholds for the two-message and three-

message cases are computed.

Two-message Case :

Y =50
[0 4
M, M,
Y|3 = 13.0697 Y|3 = -3.0697
Three-message Case :
Y = 01922 Y® = 10.1922
ol oL
M, M, M,
YB = 16.6188 YB =50 YB = -6.6188
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Chapter 4

THE EXTENDED PROBLEM

The general problem is extended to cases where the number of messages used by the
upstream decision maker is greater than three (i.e., K > 3). More specifically, in this
chapter we consider the four message case. Both the general problem and its Gaussian
version have been studied. Results for the case where K can take on any value are also

presented.

4.1 The Four-message Case

Given P(Hy), P(H,), the distributions P(y,, yg | H;) fori=0, 1 with y, € Y,
yp€ Yp, and the cost function J (ug, H;), the optimal decision rules (one that minimizes the
expected cost) of DMA and DMB are derived. DMA can use one of four messages, M;,
M,, M3 or My, to communicate his decision to DMB. DMB has his own observation and
the message from DMA to make the final decision of the team.

The assumptions for the four-message case are the same as those for the three-message

case (a four-message version of Assumption 3 is used). The proofs of the theorems in this
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section have not been included in the appendix since they are similar to those for the three-

message case.

Theorem 5

Given the decision u, of DMA, the optimal decision rule of DMB is a deterministic

function

YB: Yﬂx{Ml’M23M3aM4} __){0’1}

defined by the following likelihood ratio tests :

0, ifA (y)=20.
vﬁ(yﬁ,ua)J A0y =P

(38)
1, otherwise
where
A B P(HO) P(yBI Hy 30
KO8 = By PGy, ) &)

and

P(u =ilH) [JO, H,)- (1, H,)] .
"B =11y (10, Hy IO HyJ o Mo Mo My My (40
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Theorem 6

Given the decision ug € {0, 1} of DMB, the decision rule of DMA is a

deterministic function
Y(X. : YU. - { Ml’ Mz, M3, M4 }

defined by the following likelihood ratio tests:

M, , ifA (y) 2o

M2 , if o, < Aa(ya) < o

Yoo = 3 (41)
M3 , if oc6 < Aa(ya) < a4
(M, if Aa(ya) <o
where
A P(Hy) P(y | Hp) @
oY= P(H)) P(y_IH))
and
z J(uB, Hl) [ P(uBI u = M,, Hl) - P(uBI u = M,, Hl) 1
o = —2 (43)
2. 3, Hy) [P u = M, Hy) - P(u = M, Hp)

B
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% Jug, H)) [Puu =M, H) - Pulu =M, , H,)]
o =

.=
2.3 Hy) [P lu =M, ,H) - Palu =M, , Hy
B

(44)

D Jug, H)) [Jug lu =M, H)) - Pu lu = M, H))]
u

otg = —= (45)
2 Jug, Hy) [P(ug lu = My, Hy) - P(ug lu = M, Hp ]
%

4.2 ian Version for K = 4

The decision rules that follow are applicable to the case where DMA uses four
messages, My, M,, M3 and My, to communicate with DMB.

The decision thresholds for the Gaussian case are once again on the observation axes
and can be seen in Figure 4. For the four-message case, the thresholds are referred to as
Yol Y™, Y,Y, YﬁMl, YM2, YgM3 and YBM4 (where 'l', 'm' and 'u' refer to the lower,
middle and upper thresolds of DMA respectively). The threshold equations are written in

terms of the same error function

Yo,

C.

1

@ (k) = J @) *® exp(-0.5x%) dx (46)
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(a) Decision Thresholds for DMA

(b) Decision Thresholds for DMB

Figure 4 Gaussian Example for K = 4
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where i=a, B

j = 1, m, u, Ml’ Mz, M3, M4

k=0,1

A discussion for the corollaries of this case appears in the appendix.

Corollary 5

Given the decision uy, of DMA, the optimal decision rule of DMB is a deterministic

function defined by
0, ify SYMi fori=1,2,3,4
'YB(YBs ug) = B R'I 47)
, if Y '
L, iy, >Yy
where
2 @' (0) 2 P(H,)
M (6 o 0 +
Y '= B g —2— +—B  In|lv=m +“-0 - (48)
1 Fo o 1 Yo
M o? @™(0) - ' (0) o2 P(H,) +
YBZ= B_1n ) ot —B—nf - P(I"{) +u02u1 (49)
A R IS CORT. S eO) AT 0
2 u m 2
M o O () -D(0) e} P(H,) +
Y53 = B In| — o + B ln[ 1 P(IO-I )} + uoz M (50)
_ U m - -
R~ K, CDa(l) -0 ()| K M 0
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Corollary 6

Given the decision ug of DMB, the optimal decision rule of DMA is a deterministic
function defined by
(M, ify <Y'
1 Y=ty
P | m
J M,, 1me<ymsYm

Yol¥o) = e * (52)
M,, 1fYa<ya$Ya
. u
(M, 1fya>Ya
where
2 cDMz(O) o (0) 2 P(H)
(¢ - (o) 0 +
Yl =09 Jn B B + & _Inl 7T~ + ul (53)
“ -k, |@m-atm| w - LPE
1 70 B B 1 70

M M
2 ® *@)-D >0 2 P(H
o % o © B()+ % ln—( v STH o
; L PR I TR
by [0 M- M by g

o? OO0 -D )| o? PH) ] p+u
Y = o anIid & + o ln[l-P(IO-I)]F 02 L (55)
MmHy | @ '-0 M| HTH 0

40



4.3 Computation of Thresholds

The threshold equations for this case are also coupled. They are solved using the
iterative method described in the previous chapter. The four-message case involves solving
a system of seven non-linear simultaneous equations.

In order to get numerical results, the parameters of the problem are assigned values that

appear in Section 3.3. The thresholds for the four-message case are computed. The results

are shown below.

Four-message Case :

Y =315 Y"=50 Y =13.15
o o,

[0

M, M, M, M,
YB = 18.8454 YB = 8.8548 Y[3 = 1.1442 YB = -8.8462

A comparison of the thresholds of DMA for the two-message, three-message and four-

message cases appears in Figure 5. The following observations regarding the behavior of

the thresholds are made :

(i) The thresholds for the four-message case consist of one threshold placed on either

side of, and equidistant from, the stationary threshold, Y,", for the two-message

case.

(i) The thresholds of the three-message case are pulled apart (each by the same

amount) and the stationary threshold, Y,", is placed exactly in the middle to give

the thresholds for the four-message case.
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(a) Two-message Case

1 u
YOL YOL
-0.1922 10.1922

(b) Three-message Case

-3.15 5.0 13.15

(c) Four-message Case

Figure 5 Threshold Comparison
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(iii) We can make conjectures about the positions of the thresholds for cases where
K = 6, 8, 10 and so on. The thresholds for the six-message Case, for example,
would consist of one threshold placed on either side of , and equidistant from, the

three stationary thresholds for the four-message case.

(iv) We can also make conjectures about the positions of the thresholds for cases
where K =35, 7,9 and so on. The thresholds for the five-message case, for
example, would consist of one threshold placed on either side of , and equidistant

from, the two stationary thresholds for the three-message casc.

44 Th neral

In this section we present results for the general problem where K messages (K can
take on any value greater than two) are used by DMA to communicate his decision to DMB.
Given P(Hg), P(H1), the distributions P(yq, Yp I H;) fori=0, 1 withyg € Yo,
Yp€ Yg, and the cost function J(ug, H,), the optimal decision rules (one that minimizes the
expected cost) of DMA and DMB are derived. DMA can use one of K messages, My, My,
M, ..., Mg, t0 communicate his decision to DMB. DMB has his own observation and the
message from DMA to make the final decision of the team.

The detailed proofs of the theorems for the K-message case appear in the appendix.

Theorem 7

Given the decision ug, of DMA, the optimal decision rule of DMB is a deterministic

function
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Vg Ypx (M, Mg, M3,.., Mg} —{0,1}

defined by the following likelihood ratio tests :

{ 0, if Ay, 2 B;

Tp(¥p» Ue) = (56)
1, otherwise
where
A P(Hy) P(y | Hy) 5
s = B ) P(y,TH,) 7

and

P(ua=iIHl)[J(O, H))-J(1,H)] _
= p(ua= ilHy) [J(1, Hy)-J0,Hy] fori=M,;, M,, M,, .., M (58)

Theorem 8

Given the decision ug e {0, 1} of DMB, the decision rule of DMA is a

deterministic function

Yo: Yo = {M1,Mp, M3, .., Mg }

defined by the likelihood ratio tests on the following page.
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M,, A (y)Za

2’
,ifo <A (y)<a
Yol¥o) = 3 1\0/[3 3 oTa 2 (59)

M,, if o, < Aa(ya) <oy

My, if oy SA () <oy,

L My, A (v ) <o

where
P(H) P(yal Hp
Ay = P(Hl) P(yal Hl) (60)
and
Z J(uB, H) I P(uBI u = M,,H)) - P(uBI u = M, H)]
o = L (61)
Z J(uB, HO) [ P(uBI u = Ml, HO) - P(uBI u = M,, HO) 1

B

; Y, H) [P(alu =M, H)) - Pulu =M, , H) ]

o, = —2 (62)
%J(uﬁ, Hy [ P(uBI u = M, .Hy) - P(uBI u = M,,H)]
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D Jug H) L3 lu = M, Hy) - PG, lu = My, H))]
oy = —2 (63)
% Yoy, Hy) [ PCug | u = My, Hy) - P, lu = M,, Hp)

Z J(uB, H)I P(uB | u = M. H)) - P(uB I u = Mg ,H) ]
(64)

Ogq =
D Ju, Hy) [B(ug lu = My 1 H) - P, lu = My, Hy) ]

u

B

4.5 Gaussian Version for Any K

The decision rules that follow are applicable to the case where DMA uses K messages
(K>2), My, My, Mg, ..., Mg, to communicate with DMB.

A discussion for the corollaries of this case appears in the appendix.

Corollary 7

Given the decision u, of DMA, the optimal decision rule of DMB is a deterministic

function defined by
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!0, ify <y fori=1,2,3,..,K
Yp(Yps Uo) = B P% (65)
(1, ify,>Y,

SCICONEIE T
In )+

Y 'le B |, TET| +—2—L  (66)
B _ q)l 1 _ 1-P(H 2
K —Hy a( ) H —H °
M o2 @%0) - ®' (0 o2 P(H +
YB2= B In g() g() +—B _In T ;(ﬁ)}+u"2u1 (67)
TR T R OO ¢V BT 0
M o2 @ (0) - X0 o2 P(H +
YB3= B__In g( g() +—B _In . P(g) +u02u1 (68)
O O K S(CORT () I AR T 0

K-1 K-2
Mg, o2 : ® _"(0)- D "(0) . 0% . P(H,) By + By )
ol - o)y | p -, [ 1PHEY| 2

2 K-1 2
M (4] 1-0™7(0) (6]
K _ 1 . + B 1In

K-1 _
-9 | -y

(70)

PH) | 1+,
T-pHy |7 2

47



Corollary 8

Given the decision ug of DMB, the optimal decision rule of DMA is a deterministic

function defined by
, . 1
M,, if yaSYa
ool 2
M,, 1me<ymSYOL
M, ifY <y <Y
YolYo) = 9§ o3 o e« (71)
° o K2 K-1
Mg, 1fY]; <y, sY_
. K-1
L MK , if ym>Y0l
where
2 d)Mz(O) <1>M‘(0) 2 P(H,)
Y ) o, 0 Ll +u
YL: @ _In ﬁ,[z f,ll + 111[1 P, | * L (72)
BmHy [0 -0 D) K K
M3 MZ
2 Gaz 8 0) _(I)B (0) c? P(H)) L o+p
s D N AT " T-PEH)) 73)
bomHy [0 (-0 (M) By
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o? Ma
Yi : _a | 28 ©0)- @ *0) o? P(H

1 uo (DB 4(1) - (DM3(1) + u —0. In - 0) + u’o + u’l

B B 1 T Hy - P(Hy) 2 7
1 Z S’ ® 5 N
« u e 1 O (0) - <I>B (1) o2 P(H
- M —= :
B B M| H K 1-PHy T2 -9
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Chapter 5

PERFORMANCE OF THE DETECTION TEAM

We can get an indication of how well a distributed detection team is doing by evaluating
its performance. In this chapter, the performance is evaluated by computing the probability
of error for the final team decision and generating ROC curves for the detection team. We
compare the performances (by computing the probability of error) of the isolation, two-
message, three-message, four-message and centralized cases to study the effect of
increasing communication on the detection team. In addition, we generate ROC curves for
the two-message and three-message cases to study the performance enhancement due to the

increase of half a bit of information.

3.1 _The Probability of Error

The computation of the probability of error of the final decision of a detection team
(i.e., the probability that an incorrect decision is made) helps us evaluate the performance

of the team. There are two types of errors that the team could concievably make.
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I Declaring the presence of a target when in actuality there is no enemy target present.
This type of error could result in firing a missile that would serve no purpose and

result in a financial loss.

I Declaring the absence of a target when in actuality there is an enemy target present.
This type of error could be very fatal in the event that the enemy detects you and

consequently fires a missile.
The probability of error is expressed as a function of the probabilities of false alarm and
miss (which is a function of the probability of detection). These probabilities are defined

below.

Probability of False Alarm (Pg) : The probability that the team says that the target is

present when it is not.

Probability of Miss (Py) : The probability that the team says that the target is absent

when it is present.

Probability of Detection (Pp) : The probability that the team says that the target is

present when it is.

The Probability of Miss is a function of the Probability of Detection. The equation that

relates the two quantities is given by

PM= 1 -PD (76)
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Aevrmre——————— &

In general, the probability of error is given by the following equation :
Pr(E) = P(Ho) Pr + P(H;) Py an

Using error functions, we have computed the probabilities of error for the two-
message, three-message, four-message, isolation and centralized cases. The equations for
the general K case have also been presented. The values used for the parameters of the

problem are identical to those used in Section 3.3.

Two-message Case

Given that DMA can use two messages, M, and M,, to communicate with DMB,

the probability of error is given by

P(H) [Pr(M,H,) (1-<1>2”1(0)) + Pr(M,H,} (141:242(0))]

+ P(H)) [Pr{M,H,} (@2“(1)) + Pr(M,H,} (@2‘2(1))] (78)

where
Pr(M,/Hy} = @ (0) and Pr(M,H,} =@ (1)
Pr(M,lH,} =1 - cp;(O) and Pr(M,lH,} =1- c1>:(1) (79)

Note : Pr{M;lH;} is the probability that DMA says M, given that the hypothesis H; is

the true hypothesis.

Numerically, Pr(E) = 0.25758.
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Three-message Case
Given that DMA can use three messages, M;, M, and M3, to communicate with

DMB, the probability of error is given by

Pr(E) = Py [ Pr(MyHy) (1-0'O) + Pr(MH,} (1-@)%0)

+ Pr(MH,) (141)2‘3(0))] + P(H) [Pr(M,H,) @2“(1)

+ Pr(MH,) cp:f’u) + Pr(MJH, ) @1;4’(1)] (80)
where
Pr{M,Hy) = @’ (0) and Pr(M,H,) = @' (1)
Pr(M,H} =®"(0)-®.(0)  and Pr(M,lH,} = @%(1) - ®. (1)
Pr{M,H )} =1 -(I);(O) and Pr{M,H,} =1 -(D';(l) (81)

Numerically, Pr(E) = 0.24779.

Four-message Case

Given that DMA can use four messages, M;, M,, M3 and My, to communicate with

DMB, the probability of error is given on the following page.
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Pr(E) = P(H,) [Pr(M,H,) (141)2“1(0)) + Pr(M,H,} (1@2‘2(0))
M3 M4
+ Pr(MHy) (1-0,°0) + Pr(MH,) (1-0)"(0)]

M, M
+ PE) [PriMIH} @ (1) + Pr(M,H} @ *(1)

+ Pr{M,IH, ) cp;d3(1) + Pr{M,H,} cpr“(l)] (82)
where

Pr(M, [Hy} = @ (0) and Pr(M,H,} = @ (1)

Pr(M,lHy} = ®7(0) - d)L(O) and Pr{M,/H, } = ®"X1) - @La)

Pr{M;Hy} =®"(0) - ®7(0)  and Pr(M,H, } = ®"(1) - @7(1)

Pr(M,H} = 1- ©"(0) ~ and Pr(M/JH } =1-@(1)  (83)

Numerically, Pr(E) = 0.24430.

Isolated Case

Given that DMB is in isolation (i.e., it receives no message from DMA), the

probability of error is given by

P(Hy [1-®y0)] + P(H) (2] (84)

The error functions in the expression above are computed using the formula
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presented in Section 3.1. However, the threshold used in the computation is given by

2
vy o htHh % lnl Pty (85)
uO

B 2 b - 1-PH,)

Numerically, Pr(E) = 0.30854.
Centralized Case

Given that DMA can communicate his entire observation to DMB, the probability of

error is given by

P(Hy) [1-@(0)] + P(H) (@ D)] (86)

The error functions in the expression above are computed using the formula

presented in Section 3.1. However, the threshold used in the computation is given by

Y2 G <2 ln[ P(H,) }

+ (87)
B 2 [2 (ul _ ”0) 1- P(HO)
where
2 _ <2 — 2
0% = O'a = GB (88)

55



In addition, the upper limits of the integrals in the computation of the error

functions are given by

C C
Y -J2 Y -J2 u
B 0 and —B — 1 respectively. (89)
. o

Numerically, Pr(E) = 0.23975.

It is evident that there is an inverse relationship between the increase in communication
and the probability of error of the detection team. In particular, the isolation case has the
greatest probability of error associated with it. When DMA is allowed to communicate bits
of information to DMB, the probability of error of the team decreases with the increase of
each half bit of information. The numerical value of the probability of error tends to
approach the centralized version of the problem (which has the least probability of error

associated with it).
The General K Case

Given that DMA can use K messages, M;, My, Mg, ..., Mg, to communicate with

DMB, the probability of error is given by

Pr(E) = P(Hy) [Pr{M,/H} (141)?1(0)) + Pr(M,IH,) (1-<1>:IZ(0))
M M
+ Pr(MylH) (1-0 0)) + ... + Pr{M,/H,} (1-<I>BK(O))]
M, M
+ PE) [Pr(MH} @) +Pr(MyH,} @ (1)

+ Pr{M,H,} @?’(1) + ... + Pr{MH,} <I>:'K(1)] (90)
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where

Pr(M,IH} = q’; () and Pr(M,H ) = CD;(I)
Pr{M,[Hy} = @2(0) - ®'(0)  and Pr{M,IH,} = (1) - @ (1)
Pr{M;lHy} =@3(0) - @2(0)  and Pr{MIH, } = ®>(1) - ®2(1)

Pr{M, ,[H,} = cp:-l(O) - @5‘2(0) and  Pr{M, H )= q,z-l(l) ) q)li-z(l)

Pr(Mg/Hy) = 1- @57(0) and  Pr{MglH ) =1- @) 1)

3.2 The ROC Curve

The Receiver Operating Characteristic (ROC) Curve is a plot of Ppy vs. Pg. This curve
gives us a good indication of the team's performance. It is derived by plotting the points
(Pg, Pp) that are obtained by varying a parameter such as the decision threshold for the
team. Given a specific point (Pg, Pp), it is possible to derive the numerical value of the
Pr(E). However, it is usually easier to calculate the Pr(E) as described in the previous
section. In general, greater concavity of the ROC curve is associated with better
performance.

Before the ROC curves for the detection team are presented, we will look at the ROC
curves of the individual decision makers to give an indication of how they can measure

performance. In order to generate the ROC curves in Figure 5, the decision makers have
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+1.0000

+0.7500
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+0.5000

+0.2500

+0.0000

0.00

+1.0000

0.25 0.50 0.75 1.00

Py

(a) ROC curve for DMA (6,2 = 100)

+0.7500

]

Py

+0.5000

/

+0.2500

+0.0000

0.00

0.25 0.50 0.75 1.00

Py

(b) ROC curve for DMB (GB2 = 1000)

Figure 6 Individual DM's ROC Curves
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been placed in isolation and their decision thresholds have been varied to obtain a set of
(Pg, Pp) points. The means of the observations under the hypotheses H, and H, have
been chosen to be 0 and 10 respectively. From Figure 5 we see that when a decision maker
(DMA) has a better quality of observations, his performance is better than one whose
observations are of poor quality (DMB). Not only is this deduced by looking at the
concavity of the ROC curves, but it also makes intuitive sense.

In the case of team ROC curves, we will compare the curves of the two-message and
three-message cases to see if the increase in communication capability has any effect on the
team performance. The points, (Pg, Pp), for these curves have been generated by varying
the thresholds (which is accomplished by varying P(Hy)) once again, even though the
expressions for Pg and Py are significantly more complex for the team scenario. The ROC
curves for the two-message and three-message cases appear in Figure 6. Since it is
difficult to compare the curves when looking at them individually, we have superimposed a
portion of one curve onto a portion of another. Looking at Figure 6c, we see the
performance enhancement we have achieved by providing DMA with an extra half bit of

communication capability.

59
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(¢) Two-message and Three-message Cases

Figure 7 Team ROC Curves
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Chapter 6

NUMERICAL SENSITIVITY ANALYSES

We now investigate the behavior of the detection team by performing sensitivity studies
to the solution of the linear Gaussian example. Our objective is to analyze the effects of
varying the parameters of the problem on the team performance. We vary the quality of
observations of each decision maker and the a priori probability of each hypotheses to see
the effect on the probability of error and the thresholds of the decision makers.

The values of the parameters employed in the sensitivity analyses are the baseline

parameter values given below.

UnderHp: p=py=0 0,2 =100
UnderH; : p=u, =10 032 =100

The value of P(Hg) used for the analysis will be specified for each case. Also, any

changes from the above values will be brought to attention.

61



1 Eff f varvin ram n the P

Here we vary P(Hp), 6,2 and 652 and see the effect it has on the probability of error of

the final decision of the team in the three-message case.
Effects of varying P(Hy) on the Pr(E) :

In Figure 8, families of curves (obtained by holding each of the variances of the
observations of the DM's constant while varying the other) have been presented. It is clear
that the Pr(E) is the largest when there is the most prior uncertainty (i.e., when P(Hg) =
0.5). The curves in Figure 8a were obtained by holding 62 at 100 and varying 6,2 from
100 to 200 (using increments of 25). The largest value of the Pr(E) is obtained for the case
where 6,2 = 200 and O'BZ = 100. In order to get the family of curves that appear in Figure
8b, 0,2 is held at 100 while 642 is varied from 100 to 200 (once again using increments of
25). The performance is worst when 6,2 = 100 and 62 = 200. It is interesting to note
that when DMB is the "smarter” DM the worst performance is given by Pr(E) = 0.2758.
However, when DMA is the smarter DM the largest error is given by Pr(E) = 0.2779.
Hence, we can conclude that the smarter decision maker should be "downstream". Since

the downstream DM makes the final decision of the team, this result makes intuitive sense.
Effects of varying 0'2 and 0'5 onthe Pr(E) :

Figure 9a shows the results of varying 6,2 from 100 to 5000. There is a steep increase
in the Pr(E) initially and it finally levels off with the increase in 62. In other words, there
is a point (6,2 = 5000) beyond which the performance of the team is insensitive to the

extremely poor quality of observations of DMA. The behavior of the team when Gﬂz is
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varied in the same manner is similar to the above case. The results appear in Figure 9b.

By comparing the two plots, we see once again that the smarter DM should be placed

downstream.

Using the plot of Pr(E) vs. P(H) it is possible to compare the performance of the
isolation, two-message, three-message, four-message and centralized cases. The goal is to
see the effect increasing communication has on the team performance. In Figure 10 we
have presented all the cases plotted together for the sake of comparison. It can be seen that
with the increase in information, the performance of the team approaches that of the
centralized version of the problem, which corresponds to an infinite number of messages.

The improvement expressed as a percentage is as follows :

Isolation to the Two-message Case : 17%
Two-message to the Three-message Case : 4%
Three-message to the Four-message Case : 1.4%

Four-message to the Centralized Case : 1.8%

Hence, there is a significant improvement in performance when the team members
communicate as opposed to being in isolation. However, there is no point in using more
than a few bits of information to communicate from DMA to DMB since there is not much
room for improvement (only 1.8%). It can also be shown that decision makers operating
as a team acknowledge their team member's capability and make decisions that benefit the

team. We compute the Pr(E) for three different scenarios to prove this.
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(i) A decision maker in isolation with 65,2 = 100.

Pr(E) = 0.18615

(i) DMA and DMB operating as a team with DMA using three messages (K=3) to

communicate with DMB. In this case, 6,2 = 20,000 and 6[32 = 100.
Pr(E) = 0.18605

(iii) The centralized version of the problem where DMA passes on his entire

observation to DMB. Once again, 6,2 = 20,000 and O‘BZ = 100.
Pr(E) = 0.18602

Thus, we see that the performance of the three cases are comparable. Comparing (i)
and (ii), we see that DMB does not consider DMA's information as being of any value
when the quality of DMA's observation is poor. Hence, DMB acts as though it were in
isolation. Comparing (ii) and (iii), we conclude that if DMA's observations are of poor
quality, the amount of communication capability given to DMA does not matter since DMB
is going to ignore his observation anyway.

Finally, we compare the Pr(E) for two different scenarios to see the effect of increasing

communication.

(i) The decision makers operating as a team, with DMA being the smarter one. The

two-message, three-message and centralized cases are considered for comparison.
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(ii) The decision makers operating as a team, with DMB being the smarter one. Again,
the two-message, three-message and centralized cases are considered for

comparison.

From Figure 11, we conclude that the improvement in performance from the two-
message to the three-message case is greater if DMA is the smarter decision maker. Hence,
we show again that there is no point in giving more communication capability to a decision

maker who is not smart.

6.3 Threshold Analysis

Here we study the thresholds of the decision makers for the three-message case as we
vary 6,2, GBZ and P(Hy). The thresholds of the decision makers is another way of
representing probabilities of decision makers' decisions since decision regions are
characterized by thresholds. Thus, performing a threshold analysis proves to be very

informative.
Effects of varying 0'2 on the thresholds of the DM’s :

In Figure 12, the quality of DMA's observations (i.e., 6,2) has been varied to study
the behavior of DMA's thresholds. Figure 11a shows the symmetric behavior of the
thresholds for the case when P(Hy) = 0.5. We can see in Figure 11b (when P(Hg) = 0.8)
that DMA tends to be biased towards the more likely hypothesis as 6,2 increases.

In Figure 13, we vary the quality of observations of DMA (i.e., Gaz) to study the

behavior of DMB's thresholds. Again, there is symmetry in the case where P(Hg) = 0.5.
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The threshold, YBMZ (when DMA declares M,), coincides with the maximum likelihood
threshold of DMB since DMA is not giving any indication regarding the absence or
presence of a target to DMB. For both cases (P(Hp) = 0.5 and P(Hg) = 0.8), as Gaz
increases, all the thresholds approach the maximum likelihood threshold of DMB. This is
due to the fact that the quality of information from DMA is very poor and DMB tends to

give it less importance. Thus, DMB uses logic and intuition in making his decision.

Effects of varying 0'5 on the thresholds of the DM's :

In Figure 14, the quality of DMB's observations (i.e., O'BZ) has been varied to study the
behavior of DMA's thresholds. Figure 14a shows symmetry due to the chosen value of
P(H,) = 0.5. In Figure 14b, we see that DMA tends to declare M, more often than in 14a
since the a priori probability of the target being absent is greater (i.e., P(Hgp) = 0.8). For
both cases (P(Hy) = 0.5 and P(Hg) = 0.8), as 032 increases, DMA tends to be more
decisive (by declaring M, or M) and gives a more definitive message since he knows
DMB's quality of information is poor. Hence, the lower and upper thresholds of DMA
tend to converge together for high 6[32. In Figure 14b, we see that DMA decides not to rely
on DMB's observations after 052 = 1000 and hence the thresholds converge rather rapidly
after this point. We conclude that DMA is demonstrating team behavior by acknowledging
the capability of DMB.

In Figure 15, we vary the quality of observations of DMB (i.e., O'BZ) to study the
behavior of DMB's thresholds. Again, in Figure 15a we see the symmetry due to the
chosen value of P(H,) = 0.5. We can see the bias of DMB towards declaring the absence
of the target since P(Hg) = 0.8 in Figure 15b. It is evident that, for high Gﬁz, DMB is
biased towards what DMA declared since its own observation is of poor quality. We

conclude that DMB acts in the best interest of the team.
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Effects of varying P(H,) on the thresholds of the DM’s :

In Figure 16, the a priori probability of the hypothesis Hy, P(Hg), has been varied to
study the behavior of the thresholds of the decision makers. There is symmetry in the
behavior of the thresholds for DMA and DMB about P(Hy) = 0.5. From Figure 16a, we
see that DMA favors declaring M, around P(Hy) = 0.5. Towards the extreme values of
P(Hy) (both low and high values), DMA tends to be more decisive. In other words, for
low values of P(Hy) DMA is biased towards declaring M and for high values of P(Hy)
DMA is biased towards declaring M;. In Figure 16b, the point X represents the threshold
when P(Hy) = 0.5 and DMA declares M,. The point X also represents the maximum
likelihood threshold for P(Hy) = 0.5. This makes intuitive sense and is not surprising. The
point Y, in Figure 16b, shows how the decision makers operate as a team rather than in
isolation. If DMB were in isolation, point Y is associated with a target being present.
However, if DMA were to declare M, in a team setting, DMB would declare the absence of

a target given point Y.

The following observations summarize the results of the numerical studies.

(i) For optimum performance, it was found that the smarter decision maker should be

placed downstream.

(i) We realized that there was no point in increasing the communication capacity of a

dumb decision maker (i.e., DMA in our case).
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(iii) The benefits of the team structure are best seen around P(Hy) = 0.5 (i.e., where

the prior uncertainty is the greatest).

(iv) It was found that the decision makers of a team make decisions that are in total
contrast of their decisions that they would make if placed in isolation. In other

words, they operate as a team and make decisions that benefit the team.
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Chapter 7

CONCLUSIONS AND SUGGESTIONS FOR
FUTURE RESEARCH

This chapter contains the conclusions of this research and suggestions for future

research.
7.1 lusion

A distributed detection problem, one of the simplest forms of decentralized decision
making, has been studied. The detection team consists of two decision makers, DMA and
DMB, each receiving an observation. There is a one-way communication between the
decision makers (from DMA to DMB). The goal of the team is to make a decision
regarding the presence or absence of a target, while trying to minimize the probability of
error (i.e., minimizing the cost function, which depends on the team decision and the true
hypothesis).

We extended the two-message case, where DMA uses two-messages, M; and M,, to

communicate with DMB, to one where three-messages, M;, M, and M3, are used by DMA
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for communication. We showed that by invoking the conditional independence assumption
the optimal decision rules of both decision makers are given by deterministic functions,
expressed as likelihood ratio tests with constant thresholds. The optimum decision
thresholds of the two decision makers for the three-message case are coupled and cannot be
expressed in closed form. In the linear Gaussian case the optimal decision rules reduce to
threshold tests on the observation axes. We studied the improvement in performance
achieved by increasing the communication capacity of DMA by half a bit. Furthermore, the
Gaussian example was used to perform sensitivity studies to enhance our knowledge of
team behavior.

We concluded that in order to optimize performance, the smarter DM (if there exists
one) should be placed downstream. This result was expected since the downstream
decision maker makes the final decision of the team. In addition, we found that there was
no point in increasing the communication capability of a "dumb" decision maker.
Regardless of the communication capability of DMA, DMB is going to give less importance
to his message knowing DMA's observation is of poor quality.

Through the sensitivity analysis we leamnt that the benefits of the team structure are best
seen around P(Hy) = 0.5. This is not surprising since in an isolated setting a decision
maker is most uncertain at P(Hy) = 0.5, and communication between decision makers of a
team would be very helpful. It was also found that decision makers operate as a team and
make decisions that benefit the team. For instance, a team member makes decisions which
are in total contrast with the decision he would make if he were in isolation and not a
member of the team.

Finally, the number of messages used by DMA to communicate with DMB is increased
beyond three. The Four-message Case is solved and its performance is evaluated. In
addition, the General K Case is solved and the threshold equations have been presented.

The goal was to see how quickly increasing communication between the team members in
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this manner results in the performance of the team approaching that of the centralized
version of the problem (a single decision maker receiving two observations). We conclude
that on the basis of these numerical studies, there is not much potential for improvement in

performance beyond the use of two bits.

1.2 Suggestions for Future Research

Using the same team structure, it would be interesting to assign a cost to each of the
messages used by DMA (i.e., using four messages would be more expensive than using
three messages) and find an optimum point (i.e., number of messages) without sacrificing
the performance of the team. In other words, the cost and the performance of the team
would have to be chosen optimally.

Another extension would be to consider the problem where the observations that the
decision makers receive are n-dimensional, or rather, more complex vector-valued
quantities (as opposed to mere scalars such as y, and yg). It would be interesting to see
what implications this has on the structure of the decision rules of the members of a
detection team. This generalization results in a more realistic problem and will prove to be

a building block for more complex organizations.
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Appendix

The detailed proofs of the various theorems and corollaries are presented in this

appendix.
Proof of Theorem 3 :

The objective is to minimize the expected value of the cost function which can explicitly

be written as

E{J(u, H)} = 2 _[ PQu , Uy Hy., yB) J(uB,H)dyady

u uB, H Yy yB

p

- 2 j P(u lu Hoy ) P, ¥y, H) PAD Jug, HD) dy dy

B
U g H oy Ly

Invoking the appropriate independence assumptions (Assumption 2) yields

Y j Plug lu,, ¥,) P(u,, v, | ED Py, | E) PGED J(u, HD dy, dy,

u uB, H Yy yB
Substituting P(ug = 1 ug, yp) = 1 - P(ug = 01 uy, yp) and ignoring the constant term

yields

=Z j P(ug=01lu,y) P(u,y, | H) Ply, |H) PE) [JO, ) - (1, H) 1 dy dy

it oy, Y

B

B

u

-2 [Pg=01u, 7)., [Py, 110 PO, 10 POD 130,301 01 dy 05
Y

GyB

o
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To minimize the expression on the previous page, let

0 if "INNERSUM" >0
P(uB =01ug, yB) =
| 1 otherwise

where

"INNERSUM" = Z JP(ua, Y, | H) P(y, 1 H) P(H) [ JO, H) - (1, H) 1 dy |
Hy

o

The above expression can be written as

- j D P IH) Ply, | E) PGD [ 1O H) - J(L, ) ] dy,
y H

41

Expanding the integrand (which must be negative) over H and invoking Assumption 1
yields
P(uoL I Hy) P(yB IHy P(Hy) [J(1, Hy - JO, Hy ]

u =0
> P(u, IH) Py, | H,) P(H,) [JO, H)) - J(1, H)) ]

Rearranging terms we get

P(y,I1Hy) u=0 P(H)P@_ IH)[JO,H)-I(1,H)]
Ply, IH,) P(H,) P(u_THy) [J(1, Hy - (O, H) ] ©2)

where the quantity on the right hand side of the inequality is referred to as 3, when
u, =1ifori=M;, M, and M;.

This is the optimal decision rule for DMB appearing in Theorem 3.
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Lemmal :

If the optimal decision rule presented in Theorem 4 is employed for u,, then, whenever

the following conditional probabilities are defined, we have

P(uB= 0l u = M, Ho) > P(uB= 0l u = M,, HO) 2 P(u B= 0l u = M,, Ho)

Proof :

Using Assumption 3 and the thresholds derived in Theorem 3 we find
By, < Bu, < Bu, 93)

From Theorem 3 we get the equality that appears below.

P(ug =0 lug =i, Hp) = J ZP(H)P(yBIH) (94)

H
Aﬁ(yﬁ) 2p;

Since P(H) P(yg I H) is always positive, (97) and (98) yield

P(uB= 0l u = M, H) 2 P(uB= 0l u = M,,Hy 2 P(uB= 0l u = M;, Hy)

2’

This corollary has been used in the proof of Lemma 2.
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Lemma 2 :

If the optimal decision rule, derived in Theorem 4, is employed for ug, then, when the

following conditional probabilities are defined, we have

z Jug, Ho) [P(ay lu =M, Hp) - Pa lu =M, H)] < 0
Y

IA
]

D Sy, Ho) [P(ug 1 u =My, Hp) - Pug lu =M, , Hp) ]
s

2. Juy Hy) [P lu =M, H) - Pu, lu =M H)] < 0

Only the following equation will be proved since the proofs of each of the three

equations appearing above is similar.
Z J(uB, Hy [ P(uB I u = M,,H) - P(uB I u = M, .H)] = O
%
Expanding the above we get
J(O, Hy P(uB= 0l u = M,, Hp + (1, Hy P(uB= 11 u = M,,Hp

- 30, Hy) P(ug= 0 lu = My, H) - (1, Ho) P(ag=11u = My, Hy)

Substituting P(ug =11u, =1, Hy) =1 - P(ug =0 I uy =i, Hy) for i = M;, M3 and
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combining terms yields

[P(u,=01u =M, Hy -P(u,=01u =M, H) ][I0, Hy) - J1, H)]

Using Lemma 1 and Assumption 1 we see that the above expression is less than or

equal to zero.

Proof of Theorem 4 :

Once again, the objective is to minimize the expected value of the cost function which
can explicitly be written as
E{J(ug, H)} = Z J P(u_, g By, yB) J(HB, H) d)/mds'B
U U H Yo Y

=), J.P(uBIua, H.y,.¥) Py, ¥, |H) PED Jug, ) dy dy,

Uy Up H Yo Yp

Invoking the appropriate independence assumptions (Assumption 2) yields

- Z | Paylu,y) PG,y 1H) Py, | H) PE) Ju,, H) dy_dy,

o B ya! yB
= > | Py lu, v P, 1y ) POy, TH) P(y, | PED J(uy, H) dy,dy,
u, uﬁ, H Yy yp
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Explicitly summing over u,, and integrating over yg yields

j [ P(ua= M ya) Z P(uB I u = M,, H) P(ya | H) P(H) J(uB, H)

y g H

o

+ Pu=M,ly) Z P(u; | = My, ) P(y,, | ED) PCED J(u, H)
u,H
P

+ P =M, ly) Z Pu; Iu =M, H) P(y | F) P(E) J(u ) | dy,
uB, H

Now set

P = Z P(u; ) u =i, H) B(y, | H) P(H) J(u, FD)

up, H

To minimize the cost we use

P | . M M, M,
1 ifP=min{P ,P ,P "}
P(u =ily ) =
o ¢ 0 otherwise

Hence, the optimal decision rule takes the form
Uy =Y (Yo) =1 ifPug=ilyy) =1 fori=M;, M,, M3
Finally, invoking Assumption 1, it is a matter of simple, but tedious algebraic

manipulations to put the decision rule in the following form

[ M, ifA (y )20 and A (y)20
TolVe) = 1 M,, ifA (y) <o and A (v )20,

LM, if A(y) <o, and A (y)<o,
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where

Y Ju, Hy) [Py lu =M, H) - Pl Tu =M, H))]
- _B
o =

D J(u, H) [Py lu =M, Hp) - Plu Tu = M, H)]
%

(95)

D Y, H)) [P lu =My, H) - Py lu =M, H) ]

o, = 2 96)

Z J(uB, Hy [ P(u|3 I u = M. H)) - P(uB I u = M;,Hy |
b

> Ju, Hy) [Py lu =My, H) - Pl Tu = M, H))]
- _b
o =

3
2 I Hy [P, 15 =My, Hp - Play 1, = My, Hp
B

97

For example, to arrive at the conditions for DMA to declare M; we need both (i) and (ii)

below to be satisfied.
(i) PM1 < PMy (i) PM1 < PM3

(1) PM1 < PM2 can be written as

Z P(u; lu =M, H) P(y_ | H) P J(u,, H)

uB, H

< D PG, lu =M, B) Py, | E) PED) JGu, B

uBH
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Expanding we get
2, PGy lu =M, Hy P(y, | H PEHy) Juy, Hy
"

- P(u, lu =M, H)) Ply_|H,) P(H,) J(u . H)

u

p

< ) P(u; lu = M,, Ho) P(y_ | Hp) P(H) J(u,, Hy)
%

+ Y, Pl lu =M, H)) Py, 1H,) PE,) Juy, H)

u

B

Finally, rearranging the terms

2, T HY [P, lu = M, H)) - Plug 1u, = M, Hy)J

PH) PG, IH) o

PH,)P(y IH
(H) P(y, H,) Z J (uB’ Hp [ P(u'3 lu =M, Hy - P(uB lu =M,, Hy]
!

or

>
AG) 2«
(i) PM1 < PM3 can be written as

Z P(uB I u = M,, H) P(ya [ H) P(H) J(uB, H)

uB, H

< ZH P(u, 1u =My, ) P(y,, | H) PED J(u,, HD
Uge
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Similarly, expanding and rearranging the terms we get
Z Ju ,H) [P lu =M, ,H)-Plu lu=M,H)]
gl B a 1 B « 1’11
L 5
y
Yo e D J(u, Hy) [ P(ug lu =M, H) - Plu, lu =M, , Hy) ]
h

or

ALY 2 @

We have used Lemma 2 to write the inequalities in the manner that they appear above.
Similarly, the conditions for DMA declaring M, and M; can be derived.

Finally, it is easy to show that a., is redundant in the above decision rule by proving
that o, < o) and o, > o3, We will show the proof for o, < o, only, since the proof for
0, > 0 is very similar.

Writing out the expressions for o, and o, we find that we have to show

2 J(uB, Hl) [ P(uBI u = M2’ Hl) - P(uBI u = Ml, H1) 1
b

D 3 Hy) [Pl u =M, Hy) - Pl u = M, Hy) ]
B

Z J(uB, Hl) [ P(uB | u = M,, Hl) - P(uI3 I u = M, H)1

> B
Z J(uB, HO) [ P(uB | u = Ml, HO) - P(uB | u = M3, HO) ]

s
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Expanding and cross-multiplying we get
{JO,H)I P(uB= 0l u = M,,H)) - P(uB= 0l u = M. H)I

+ J(1L, Hy) [P(a=11u =M, H) - Pa=11u =M, H)1)
(1O, Hy) [ P(u=01u = M,, H) - Pu=0 lu = M, Hp) ]
+ J(1, H) [ P(u=11u =M, H) - Pa=11u =M, Hy )

>

(JO,H) [P(a=01u =M, H)-Pa=01lu=M,H)]
+ J(LH) [P(ay=11u =My, H) - Pu,=11u =M, H) 1)
(JO,Hy) [P =0lu =M, Hp-Pa,=0lu =M,,H)]
+ J(1, Hp [Pa,=1 lu =M, Hp) - Plu=11u =M, , H) 1)

Once again, expanding, combining terms and writing the inequality with respect to zero

we write

J(0,H) JO, Hy [ P(uB= 0! u = M,.H) P(uB= 0l u = M,, Hy)
- P(uB= 0l u= M,,H)) P(uB= 0l u = M,,Hy)
+ P(uB= 0l u = M,,H) P(uB= 0l u = M,,H)
- P(uB= 0l u = M,,H)) P(uB= 0l u = M, . Hy
+ P(uB= 0l u = M,, Hl) P(uB= 0l u = M,, HO)

- P(uB= 0l u = M1 , Hl) P(uB= 0l u = M2 , HO) 1
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+J(0, H) J(1, Hy [ P(uB= 0l u = M, H) P(uB= 11 u = M,,Hy)
- P(uB= 0l u = M, ,H) P(uB= 11 u = M, ., Hp
+ P(uB= 0l u = M,.H) P(uB= 11 u = M,;, Hy)
- P(uB= 0l u = M, .H) P(uB= 11 u = M, , Hy
+ P(uB= 0l u = M, . H)) P(uB= 11 u = M,, Hy
- P(uB= 0l u = M, .H)) P(uB= 11 u = M, ,Hp ]
+J(1,H) JO, Hy [ P(uB= 11 u = M,. H) P(uB= 0l u = M,, Hy
- P(uB= 11 u = M, .H) P(uB= 0l u = M, , Hy
+ P(uB= 11 u = M, ,H) P(uB= 0l u = M, , Hy
- P(uB= 11 u = M, .H) P(uB= 0l u = M, ,Hy
+ P(uB= 11 u = M, ,H,)) P(uB= 0l u = M, ., Hy)
- P(uB= 11 u = M, .H) P(uB= 0l u = M, ,Hp]
+J(1, H) J(1, Hy [ P(uB= 11 u = M, H) P(uﬁ= 11 u = M,, Hy)
- P(uB= 11 u = M, ,H)) P(uﬂ= 1 Iua= M, ,H)
+P(uB= 1 Iua= M, ,H) P(uB= 1 Iua= M, ., Hy
- P(uB= 11 u = M, . H,) P(uB= 1 Iua= M, , Hy
+P(uB= 1 Iua=M3 , Hl) P(uB= 1 lua= M,, H)

- P(uB= 11 u = M, . H,) P(uB= 11 u = M,,Hpl > O

91



We can see that the above inequality holds by looking at adjacent terms and using

Lemma 1.

Finally, we can put the decision rule in the form that appears in Theorem 4.

Proof of Corollary 3 :

There are three cases to be derived for the decision rule of DMB.

(i) DMA declares M; (i.e., uq = M;) :

P(y,|Hp w0 PQH) P =M, |H) [JO,H) - I, H)]
Py, 1H) = PMH)P@ =M, THy [I(1,H)-JO,Hy]

Substituting the Gaussian probability density functions and using the minimum error

cost function (i.e., J(0, Hy) = J(1, H;) =0 and J(0, H;) = J(1, Hy) = 1) we have

G-k
202
e B . P(H)) P(ua= M, IH))

oy P(H, P(u_=M, 1H)

202
e B

Taking natural logarithms on both sides we get

2. 2 P =M, |H 1-PH,)
2y M, -2 -2y 0+ . (=M, |H) o (H,
22 P(u =M, 1H) P(H,)
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Finally, multiplying both sides of the equation by 20'B2,using the definition of the error

function and isolating yg we get

Yo = 1 1-PH,)
B _ @ (1 2
T SO T 0
or
u=0 M
£ v
o

(i) DMA declares M, (i.e., ug = M,) :

P(y,|Hy) ug0 PG, P@ =M, IH)[JO,H) I, H)]
P(y,/H) =~ P(H)P@=M, 1H) [, H)- 10 Hy]

Similarly, using the Gaussian probability density functions, the minimum error cost
function, taking the natural logarithm on both sides, substituting the error functions and

isolating yg we get

o o " (0) - @' (0) 2 P(H,) +
yu% _GLln% ° lnl-P—(i){)"'uO M
B po-p | SO - 0 2
or
u =0 M
£ v’
Y8 B
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(iii) DMA declares Mj (i.e., uy, = M3) :

P(y, [Hy w0 P(H) P =M, IH)[JO,H)-I(1,H)]
Py, /H) =~ PHy P =M, TH) [I1,Hy - IO, Hy]

Similarly, using the Gaussian probability density functions, the minimum error cost
function, taking the natural logarithm on both sides, substituting the error functions and

isolating yg we get

SR SO B IR O
T-P(H
B T [ R (O] T (Hy) 2

or

u=0 M
£ v°

Y B

B

This completes the proof of Corollary 3.
Proof of Corollary 4 :

This corollary can be proved by considering the cases when DMA declares M; and
when DMA declares Mj3.
When DMA declares M; we have

P(H,) Y, J(uy, H) [ Plugu, =M, H) - Plujfu = My, H)

P(y | Hp  u M B

P(y 1H)

Py D, uy Hy [Py, = M, Hy) - Puu = My, Hy)
%
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Expanding the right hand side of the above equation we have

P(E,) { J(0, H,) [ Pug=0lu =M, H)) - P(u,=0lu = M, H) ]

+ (1, Hy) [B(uz=11u =M, H) - Pa=11u =M, H) 1}

P(H,) ( 10, Hy) [ P(,=01u =M, Hy - Pag=01lu = My, H)]

+ J(1, Hy [P(u=11u =M, H) - Pag=11u =M, Hp 1)

Substituting error functions we get

M, M, M, M,
_ J(O, H)) [(DB 1 - (DB M1+ IL,H)IA- (I)B ) -(1- (DB (1]

Ml M2 Ml M2
1O, Hy [ @, (0)- @, )1 + 31, H) [(1- @, () - (1-D,50)) ]

Simplifying

(@%(1) - @ (1)) [0, H,) - (1, H,) ]
_ B B * 1 1

T M, M,
(D (0)- @, "O) [I(1, H) - 10, Hy) ]

Now, considering the original inequality, we substitute the Gaussian probability
density function, use the minimum error cost function (i.e., J(0, Hp) = J(1, H;) = 0 and

J(0, H;) = J(1, Hy) = 1) and take natural logarithms on both sides to get

M M
_u?. 2 4= d (1)-d ‘(1 1-P(H
2y po-H2-2y o+ u°>M1 g (D)~ (1) _(_0)
2 In M M +In P(H )
202 . o, 20) - @, '0) 0
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Isolating y, we get

M M

WM 2 | DO-90) 2 PH) | p+n

Yo = oM oM M| T e M TRE)| T2
BmHy | @ D0 D] KK

or

ua: lYl

Yo = a

When DMA declares M5 we have

P(H,) ) J ,H) [P lu =M, ,H)-P@lu =M,,H)]
P(y_IHy) w2 l)zu;‘ (0 F) [P(agl =My, Hy) - Pluglu =My, Hy)
P(y 1H,))
o 1 P, D, Jug, Hy) [ P lu =M, , H) - P(u =My, Hy) ]
%

Similarly, expanding the right hand side, substituting error functions, simplifying,

substituting the Gaussian probability density function, using the minimum error cost

function, taking natural logarithms on both sides and isolating y,, we arrive at the inequality

that appears below.

M M

uM, o e 0) -2 o2 PH) | p +p
y > & In{ M +——Inl Topay| + 01
o p-p o | @ CA)-@ F)| B -n 0 2

1 "o B B 1 o

or

UM
y, > Ya
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Now, to write the conditions when DMA declares M, we need to show that Yl < Y U
Proving this is equivalent to proving the Gaussian version of the proof of a, <o,
appearing in the proof of Theorem 4 (which is the general problem).

Hence, we see that when DMA declares M, we have
Yo > Y! and Yo £ Yq©

This completes the proof of Corollary 4.

Proof of Theorem 7 :

The objective is to minimize the expected value of the cost function which can explicitly

be written as

E{J(up, H)) = Z J. P(u, up Hyy . yp) Jug, H) dy dy

Yoty By, v,

B

-, J' P, lu  Hy . yp) P,y v, |H) PED Jug, H) dy_dy

B
Yoy By,

Invoking the appropriate independence assumptions (Assumption 2) yields

- J Plug lu,, v,) P(u,,y, 1B PGy, | H) P(ED J(u, HD) dy,dy

B
u up. H Yo Vg

Substituting P(uB =11lug, yB) =1- P(uB =01ug, yB) and ignoring the constant term

yields the expression on the following page.
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=z J P(u,=0lu,y,) Pu,y | H) P(y, | H) P(H) [J(O0, H) - J(1, H) ] dy,dy,

u,H
o Yo yp

Y [pag=otu, yB)XH, [Py, 10 pey, 180 PED 130, 1) - 301, 1) Ty
y

u
Gyp o

To minimize the expression above, let

J 0 if "INNERSUM" >0
P(uB =01lug, yp) =

l 1 otherwise

where

INNERSUM" = ), [ P(u,, v, 1D P(y, | ED PCED) [ 30, ED - J(1, KD 1 dy,
H

Yo

The above expression can be written as

_ J D P IH) P(y, | E) PGD [ JO, H) - J(L, ) 1 dy,
H

Yy

o

Expanding the integrand (which must be negative) over H and invoking Assumption 1
yields
P(ua I Hy P(y 8 I'Hyp P(Hy) [J(1, Hy - JO,H) ]

u_=0

> B(u IH)P(y, |H)PH,) [J0,H)- I, H)]

98



Rearranging terms we get

Py, |Hy) u=0 P(H)P(u IH)[JO,H,)-J(1,H)]
P(y, IH,) P(Hy) P(u_T1H) [I(1, Hy - 0, By |

where the quantity on the right hand side of the inequality is referred to as [3; when

Uy = ifori= Ml’ M2, M3, vees MK’

This is the optimal decision rule for DMB appearing in Theorem 7.

Proof of Theorem 8 :

Once again, the objective is to minimize the expected value of the cost function which
can explicitly be written as
E{J(ug, H)} = Z ! I P(“a’ uB, H, Y, yB) J (uB’ H) dyady B
e D A A
= z _[ P(uB lu ,Hy_, yB) P(u .y, Vg | H) P(H) J (uB, H) dlymdlyB
U uB, H Yy yB

Invoking the appropriate independence assumptions (Assumption 2) yields

| Bl tuy) PG,y VED B(y, | H) PH) T, H) dy dy,
u,u,H y yB

= 2 ' P(u, lu , y,) Pl 1y ) B(y, | H) Ply, | ) PED J(u,, H) dy, dy
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Explicitly summing over u, and integrating over yg yields

j [ P(ua= M ya) Z P(uB I u = M,, H) P(yOL I H) P(H) J(uB, H)

y uB, H

o

+ P =M,ly) Z P(u, lu = M,, H) P(y_ | ) P(HD) J(u, HD)
up. H

+ P(uu= M, | ya) Z P(uB | u = M,, H) P(ya | H) P(H) J(uB, H)

H
U

+ Pa =My 1y) D, Pl lu =M, ) PGy, | ED PED T, B | dye
Uy H

Now set

P = Z P, Iu =i, H) P(y, | H) PD) J(u, HD)

uBH

To minimize the cost we use

: M M M M
1 ifP'=min{P P 5P °,..,P °}
Plu =ily ) =
b ¢ 0 otherwise

Hence, the optimal decision rule takes the form

Up =Yy (Y =i ifPug=ilyy) =1 fori=My, My, Ma, ..., Mg
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Finally, invoking Assumption 1, it is a matter of simple, but tedious algebraic

manipulations to put the decision rule in the following form

M,, if Am(ym)ZOL1
M,, if ocZSAa(ya) <oy
, ifa <A (v )<a
Yo(Yo) = J M3 37 %aYe 5% (98)

Mg . ifog < Aa(ya) <0y,

[ My, i A (v) <oy,

where
Z J(uB, Hl) [ P(uBI u = M2, Hl) - P(upl u = M,, Hl) ]
o, = i
Z J(u . HO) [ P(u Bl u = M1’ Hy) - P(uBI u = M2, HO) 1
b
Z J(UB’ H1) [ P(uBI u = M3 , H1) - P(uBI u = M2 , Hl) ]
o, = b
2 J(uB, Ho) [ P(uBI u = M2 , Ho) - P(uBI u = M3 , Ho) ]
b
z J(uB, H)I J(u[3 | u = M, H) - P(uB I u = M,, Hl) ]
0y = k]
Z J(uB, Ho) [ P(uB | u = M,, H) - P(uB I u = M, Hp]l
ki
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D, Jag H) [P 1 =My Hy) - Py 1w =My, H)]
o =h

K1~
Z J(uB, HO) [ P(uB I u = 1\ HO) - P(uB I u = Mg, HO) ]
u
B

The decision rule appearing in (98) has been written with all the redundant o's
removed. The redundancies can be proven in the similar manner as was shown in the
proof of Theorem 4 (i.e., &, > o,, or more generally, in the above case, 0 ; > O).

The conditions for DMA declaring M;, M,, M3, ..., Mg have been derived in the

manner shown in the proof of Theorem 4. Hence, the algebraic manipulations have not

been repeated here.
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Proof of Corollaries 1,2,5,6,7 and 8 :

No actual proof for the Gaussian equations for these corollaries will be presented. The
thresholds for the Gaussian case are obtained by substituting the Gaussian probability
density functions in the threshold equations derived for the general case and solving for y,,
or yg. In other words, the proof is similar to that of the three-message case (Corollary 3
and Corollary 4).

The subscripts of the thresholds indicate the decision maker whose decision they
characterize and the superscripts of the thresholds indicate the content of the decision. For
the thresholds of DMA we use 1 (lower), m (middle) and u (upper) depending on how
many messages DMA is using. For the case of K messages the superscripts are numbered
1 through K-1. For the thresholds of DMB we use M; through Mg as superscripts, which
indicates the message of DMA that the threshold corresponds to.

This completes the discussion of Corollaries 1, 2, 5, 6, 7 and 8.
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Index of Notation

A brief explanation is presented for the symbols that appear most frequently in the text.

Yoo ¥B : observations of DMA and DMB respectively.

Yo, Yp : the set of observations for DMA and DMB respectively.
Uy, Ug : the decisions of DMA and DMB respectively.

Yoo VB : the decision rules of DMA and DMB respectively.

Hy, Hy : the two possible hypothesis.

P(Hy), P(H;) : the a priori probabilities of Hy and H; respectively.
P(yo/H), P(ypHy : known probability density functions of the observations

of DMA and DMB conditional on H; (i=0, 1)

J (uB, H) : the cost incurred by the team choosing ug, when H; is
true.
M, My, ..., Mg : the K possible messages that DMA can communicate to

DMB (K = 2, 3, ..).

N(u, 6%) : denotes a Gaussian distribution with mean p and
variance 62

Hos My : the means under hypotheses Hy and H; respectively.

0,2, 02 : the variances of the observations of DMA and DMB
respectively.

Yo" : the threshold of DMA for the two-message case.

YL Y,© : the thresholds for the isolation and centralized cases.

YL Y™ Y, : the thresholds of DMA for the three-message and

four-message casces.
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Yol Y2, ..., Y K1

Y M Y My Y My

B B B
Y ML, YML
Pr(E)
ROC
Pg, Pp, Py
k)

: the thresholds of DMA for the general K case.

: the thresholds of DMB for the two-message,

three-message, four-message and the general K cases.

: the maximum likelihood thresholds of DMA and DMB

respectively.

: Probability of Error.
: Receiver Operating Characteristic.
. Probabilities of False Alarm, Detection and Miss.

: the error function for Decision Maker i, with j being the

content of the decision and k the underlying given

hypothesis.
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