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ABSTRACT

AMPLIFICATION OF GENERALIZED SURFACE WAVES
by

EVANGELOS MICHALOPOULOS

Submitted to the Department of Civil Engineering on May 20,
1976 in partial fulfillment of the requirements for the

degree of Master of Science.

The effect of a horizontally stratified deposit of
soil layers in amplifying and filtering Generalized Surface
Waves is studied. A condition of Plane Waves is considered
and the soil is assumed to be a linear, viscoelastic material.

Displacements and amplification functions for an
elastic half-space and a uniform soil layer resting on the
half-space (representing the rock) are obtained. Results are
given for SV waves travelling upwards through the rock at
arbitrary angles of incidence and for stress waves generated
at the surface by unit line loads (normal and shear).

The application of the one dimensional amplification
theory in obtaining displacements and amplification function
is examined. The theory can be used for determining signifi-

cant frequencies in amplification studies of the motion.

Thesis Supervisor Jose’M. Roesset

Title Professor of Civil Engineering
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CHAPTER 1

INTRODUCTION

The effects of local soils conditions on the dynamic
response of structures to earthquake motions has been recog-
nized for some time. Traditionally this problem has been
analyzed by decomposing it into two parts:

1) so0il amplification; and

2) soil-structure interaction.

The first part examines the effects of the soil on
the characteristics (amplitude and frequency) of earthquake
motions. The second part is further subdivided into the
determination of soil stiffnesses from the response of rigid
massless foundations under harmonic excitations and the dyna-
mic analysis of structures resting on "springs" with the
obtained soil stiffnesses under the motion computed in 1.

Both soil amplification and soil structure interaction
belong mathematically to the family of wave propagation pro-
blems in continuum, with mixed boundary conditions (force
and displacement compatibilities). While it is possible for
any particular situation to solve the total problem in one
step, the importance of different parameters is better under-

stood by conducting parametric studies on each part separately.
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The solution of the wave problem is a difficult one
due to the complexity of the boundary conditions and the
representation of key parameters (i.e., the geometry of the
constituents, uncertainties in soil properties, etc.).
Various methods, such as finite elements, discrete or contin-
uous models, have been used to attack this problem. Analyti-
cal solutions, though, have been possible only for a limited
number of cases with simple geometries.

Here the interest lies in such solutions for the soil
amplification case. Historically the soil amplification pro-
blem started from the analysis of one dimensional amplifica-
tion of SH waves propagating vertically through the soil.

The soil was considered first as an elastic half-space but
later included horizontally layered profiles (9). Then the
studies proceeded into consideration of SH waves at arbitrary
angles of incidence (10) and were extended to plane P waves
at arbitrary angles of incidence and plane SV waves at angles
less than the critical (3).

This work is a logical continuation of studies pre-
sented in references 9, 10 and 3. First an analytical solu-
tion is given for P, SV and SH waves propagating in three
dimensions. The solution is obtained by direct integration
of the differential equations of motions in terms of ampli-
tudes, for the three dimensional case (chapter 2) as opposed
to potentials used in References 1 and 3 for plane waves. This

is applied to Plane Waves propagating in both an elastic half
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space and a layered profile. The waves are the result of:

1) incoming waves propagating upwards through

the bottom of the stratum at arbitrary
angles of incidence (Chapters 3 and 4); and

2) stress waves generated at the surface and

propagating downwards through the soil
(Chapter 5).

The boundary conditions are imposed directly or by
means of Fourier Transforms, depending on the case considered.

Displacements and amplification ratios are given in
the first case for SV waves at arbitrary angles of incidence
with the emphasis being on angles greater than the critical.
Results are obtained for an elastichalf space and for a uni-
form layer of soil resting on a half space. A one dimen-
sional geometry is imposed, that is the motion is independent
of the horizontal coordinate. Thus the motion is function
of depth as well as frequency (Chapter 4).

In case 2 the displacements and amplification ratios
are obtained for unit line loads (normal and shear). They
are now functions of frequency and both vertical and hori-
zontal coordinates. Amplification ratios are obtained only

for the points directly under the load.
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CHAPTER 2

BASIC FORMULATION IN THREE DIMENSIONS

2.1 WwWave Equations

The dynamic equilibrium equations for the three-

dimensional case in cartesian coordinates are:

3o 9T 9T 2
% + _..ﬂ + Xz = p .3——2 — p{i
3 9 9 2
X Yy z 2t
3T 3o 3T 2
z v 5
axy g ay + BY - 9_2_3 = p¥ (2.1)
b4 3% 2 ot
2
T 9T 90
XZ Z 3 W
+ —LE2 4 E=p2 ¥ = o
9 9 9,2
X Y Z il
where o , o and o_ are the normal stresses, 1__, T and
X y A Xy X2z

Tyz are the shear stresses and u, v and w are the displacements
in the x,y and z directions respectively. p is the mass den-
sity of the material. For definition of the coordinate system
see Fig. 2.1.

The strain displacement relations for small deforma-

tions (linear geometry) are:

.o U _ 2w
x 9 y 3 2 ~ 3

X y z

3 ] 0 3 3 9 (k)
Xy By BX XZ Bz Bx YZ az ay



Fig.

v ZJW

2.1 Definition of coordinate system

13
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Finally the stress-strain relations (constitutive
equation) for a linear elastic, homogeneous isotropic material

are given by:

g == (6. = vo_ = vo_)
X E x b
g = L (=vo_ + o = vo_)
Yy E z
=1 . _
€, = & ( vox vcy + oz)
(2.3a)
=1
Yxy ~ G 'xy
=1
sz G xz
I
sz G yz

where E is Young's modulus of elasticity, v is Poisson's
ratio and G is the shear modulus.
Alternatively solving for the stresses in terms of the

strains Eqg. (3a) becomes:

o =i e+ 2 G ¢
X

Q
Il

A e + 2 G e
y

g =2 e+ 2 G e, (2.3b)

]
!
<

T
Xy xy
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Xz Xz

Tyz - Gsz

where ) and G are Lame's constants and e is the volumetric

strain;
A vE
(1+v) (1-2v)

- B

G = 511
Bu BV Bw
e = +eg_+eg =-—+ 77—+ —
b4 b Zz Bx ay az

By substituting Eq. (3b) into Eq. (1) the equations of

motion in terms of displacements (stiffness formulation) are

obtained.
0
(A + G) <= + G vy = pii
X
ae 2 W
(?\+G)a—+GVv=pV
Yy
)
()\.+G)a—e+GV2W = pw
z
with V2 = =t + 9 + 2 being the Laplace operator
) ayﬁ 5,2 g P P .

Introducing a rotation vector {Q} with components &_.,
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1 w v
Q= (e =~ )
4 2 By Bz
Q = l. (a_u - .?_W.)
Yy 2 Bz BX
a = 1 (av - au)
z 2 9 9
X Yy

the equations of motion become:

3 30 50
(A + 26) 5=+ 26 (¥ - —2) = ol
X z y
9 o0 o
(A + 2G) 3= + 26G (—= - —2) = oV
Y X t
9 22, 80 )
(A + 26) 5 + 26 (T"“ﬁy" = ow
z y b4

or in vector form
(A + 2G) {grad e}l+ 2G rot {a} = p{U}

It is possible to uncouple the volumetric strain e and
the rotation vector {Q}. This can be accomplished by differ-
entiating the first equation with respect to x, the second
equation with respect to y and the third with respect to z
and adding them to uncouple the volumetric strain e. 1In a
similar manner differentiating the first equation with respect
to y, the second with respect to x etc., the rotation vector

{o} is uncoupled. The above procedure leads to



: Jor)

(x + 2G) vle

2t

828'2

Gv-Q —;>§—§§ = ol (2.4)
t

329

Y
GV Q - R B
Y 9t

il

;
Py

8292
V. a = = Q
G o D—;:T p '

or alternatively in vector form

Gv? {a} = p {8}

with the additional condition

3 0 an
daiv (o} = =2+ L+ EZ =0
d ) P
y z
Calling
A% . = A+2G and V == 9
P P s o}
ve = L5 & (2.5)
v
P
v2 (g} = —55 {§1}
v
S

Equations (2.5) are the three dimensional Wave Equa-
tions for a linear elastic, homogeneous and isotropic material.
V_ and VS are the velocities of propagation of dilational (P)

waves and shear (S) waves respectively.
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2.2 Solution of the Wave Equations

The general solution of the wave equation

can be obtained employing D'Alembert's solution or by separa-

tion of wvariables (3,5,6,7,8) and is of the form

u=F (#x + my + nz + vt)
with

LT+ n2 + m =1

In this work only steady state harmonic motion is
considered and thus the solution is taken to be of the com-
plex exponential form.

Consequently the general solution of the wave equa-
tion (2.5) for a steady state harmonic motion with frequency
w becomes

e = A exp [%ﬂ (th - X = my - nz)]
P

]
[

with £2 + m2 + n2
and
{e} = {B} exp [~ (Vgt - ¢'x - m'y - n'z)] (2.6)
2 2 K

with L' 4+ m'” + n = 1

2" Bx + m' By + n' Bz = 0
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The last constraining equation is the result of the
dependence between the rotation vector components imposed by
the condition div {Q} = o (Eq. 2.4).

The constants (¢,m,n) and (&',m',n') are vectors with
norms of 1. If the three components have modulus equal to or
less than unity, they can be interpreted as director cosines
and they represent then unit vectors indicating the direction
of propagation of body waves (dilatational and shear waves
respectively).

Considering first the dilatational (p) wave and calling

iw
f = — (V.t - 4x - my -
b exp [v ( & y nz) ]
P
1V
A =12 P
P w
from the definition of e
u = A 1 f
p P p
v. = A mf (2.7)
P P P
w =A n f
P P P

which indicates that the motion up, vp, wp due to a P-wave
propagating in the direction (2,m,n) takes place entirely
along that direction, with amplitude Ap and velocity of pro-

pagation vp.
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Similarly for the shear(S) wave defining
P j_-i-’_ e 1 . ] - 1
fS = exp [VS (Vst L'x m'y n'z)l
iv

S
w

{B}S = 2 {B}

from the definition of the rotation vector{ql

u, = (n' Bys - m' Bzs) fS

<
I

(2' Bzs - n' Bxs) fS
w_ = (m' Bxs - ' Bys) fs

From these equations it can be seen that the displace-
ment vector (uS, VS, ws) is orthogonal to the vector (&', m',
n') indicating the motion has no components along the direc-
tion of propagation. Consequently it is possible to find
components of the motion in two orthogonal directions in a
plane perpendicular to the direction of propagation.

Alternatively defining

2 iV

s Bz
Psu T o )
Ye' +m'
A - 2 3 Vs L' By - m' Bx

SV w —-——'-?
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21 nl A m! f
u, = ———— - ——— A
(S —5 % SV — SH S
Vo' +m' /o' +m' ,
m' nl R"
v, =\ ——— A + —_— A £ (2.8)
S sV s SH
JL'2+m'2 2'2+m'2 ®
2 2
e [} '
Wg = Y2 +m'" Agy fs

Combining equations 2.7 and 2.8 the total motion due

to both P and § waves

v=v + Vv (2.9)

Summarizing the previous results the motion in an infinite
space occurs:

a) in the direction of propagation - for a
Dilatation (P) wave with amplitude Ap and
velocity of propagation Vp’

b) in a vertical plane, perpendicular to the
direction of propagation - for a shear (SV)

wave with amplitude A and velocity V-

SV
c) in a horizontal plane, orthogonal to the

direction of propagation - for a shear wave

(SH) with amplitude A and velocity v, -

SH



a2

These are illustrated in figure 2.2 for awave propaga-
ting in the x-z plane. The arrows describing the dis-
placement are in two directions to demonstrate that the mo-
tion is periodic.

It is interesting to notice that if &' = m' = 0, n' =
+ 1, which corresponds to a direction of propagation coinci-
ding with the z-axis (0=0°), a distinction cannot be properly
made between SH and SV waves.

The equations developed in this section are valid for
both real and complex values of &,m,n and &', m', n' provided
they satisfy equation 2.6. When all of these coefficients
are real the case of Body Waves, which occur in an infinite
medium, is obtained. If some of the coefficients are complex
the equations represent Generalized Surface Waves (Generalized
Love Waves if there is only shear distortion, Generalized
Rayleigh Waves when there are both volumetric changes and
shear distortions). The existence of Generalized Surface
Waves arises from the boundary conditions or from discontinui-

ties in material properties.
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CHAPTER 3

PLANE WAVES

3.1 Eqguations of Motion for Plane Waves

The condition of Plane Waves (x-z plane) can be directly

obtained from the Three Dimensional Case (Chapter 2) by making
9

e =0, m=m"=0 and — = 0.
Yy BY

Then the dynamic equilibrium equations become

Box BTXZ .

5. f 5.~ Pu

X z
oT AT

=L+ BYZ = ot (3.1)

X z
9T 2 Xe)

Bx + = pwW

X Z

The strain-displacement relations are

0 9 9

b4 ax X2z az BX

9 9

w v
g = — 'Y = e (3°2)
z az Yz az

BV

E -9 ¥ o
y Xy ko

b



The stress—-strain relations are

where now e

ya

€

X

re + 2 G ¢
X

Ae

re + 2 G ¢
z

+

€
A

XZ
Xy

vZ

since ¢
Y

0.

The equations of motion for P and SV are

where now

(A + 2G)

V2e = pé

25

(3.3)

(3.4)

The general solution of a steady state harmonic motion

is given by Equations 2.7, 2.8 and 2.9.

1
QAp fs + n ASV
Ay 9s
= v
n A £, - 2 Agy

£

S

£

S

Substituting m

m' =

(3.5)

0
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where £2 + n2 =1 2'2 + n‘2 =1 2"2 + n"2 =1
fp = exp [%ﬁ (th - 2x = nz)]
fS = exp [%: (Vst - 4'x - n'z)]
gy = exp [%E (Vst - "2 - n"z)]

These equations show that the study of P and SV waves
must be considered simultaneously since it involves coupled
in-plane displacements. On the other hand, the study of SH
waves 1is independent of P and SV wave and can be performed
separately.
The motion described by Equation 3.5 can be due to a
system of plane waves propagating through an arbitrary layered
medium. The system of waves, in turn, can be the result of
a) incoming waves travelling upwards through
the bottom of the stratum profile.

b) stress waves generating at the surface and
propagating downwards through the stratum
profile.

Because the boundary conditions and the characteristics,
in the two situations, are different they are considered sep-
arately. The first case is examined in the following sections

and Chapter 4 and the second in Chapter 5.



3.2 One Dimensional Geometry

The study of plane waves propagating upwards through
the bottom of the layered profile can be further simplified
by assuming the same variation in time of all displacement
components in the horizontal direction (x—-axis). For this to
be valid one must have a one dimensional geometry, that is
the variation in soil properties must be a function only of
the vertical coordinate (horizontally layered stratum profile).
In mathematical terms the above assumption implies that
fp and fS must have the same variation with respect to x, that
is

iwe _ iwe 2 _ !

P S p s

When P and S waves arrive at an interface, every inci-
dent dilatational or shear wave will produce two reflected
and two refracted waves. There will be therefore a system of
dilatational and shear waves propagating in the positive and
negative x and z directions. (Figure 3.1)

The total motion of a point within any layer with con-
stant properties must be obtained by adding the components of
all waves in the proper directions in conjunction with Equa-
tions 3.5 and 3.6.

Considering first the case of P and SV waves and de-
fining Ap as the amplitude of a P wave travelling in the nega-
tive z direction, Ap' as the amplitude of a similar wave

A__.' representing

travelling in the positive z direction and Agyr Agy
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the amplitudes of SV waves

u= [ A_ exp (iﬂ nz) + 2 A_' exp (- =2 ng)
P Vp P Vp

v - ﬂj_ [
gy SXP ( 7R z)] .

- n' A exp (%ﬂ n'z) + n' A
s S

sV

-E (3:t) (3.7)

w= [-nA_exp (%ﬂ nz) + n Ap' exp (- 22 nz)

v
£ p p
- g lo vpy Z g _dle
[ ASV exp (Vs n'z) 2 ASV exp ( VS n'z)l
.F o(x,t)
with
L}
éL = %— n = /& = 22 n' = v1 - &'
P s
and %L constant with depth.
p

2 or &' are arbitrary and if they possess a value be-

tween 0 and 1 they represent a train of P and SV waves at

1
various angles. 1In this case the condition %L-= %— can be
sina sinas p s
written as 7 = where o_ and B are the angles of P
P s

and SV waves respectively, measured from the z-axis.
Since the dilatational wave velocity, Vp' is larger
than the shear velocity, VS, an incident P wave at any angle

will always produce reflected and refracted P and SV waves.
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On the other hand, for an incident SV wave, & can be

greater than 1 making n = v1 - 22 imaginary. The angle, O

at which n first becomes imaginary is termed the critical

calling m = sz -1

). For ao_ >

angle (acrit s Yeorit’

The function appearing in Equation 3.2 multiplying

the Ap term is then

= Nz + mz

L
v
e =e P

In order for the solution to be bound, as z tends to infinity,

it is required that
n=-mi.

The term exp (%ﬂ nz) with n real represents a periodic

p
shape whereas exp (- %— mz) represents an exponential decay

p
of amplitude with depth. Thus the condition 2 > 1 gives rise

to Generalized Surface Waves. The same occurs if both 2 and
' are larger than 1.

Investigating further the solution it is observed that
the motion is periodic and is described by the function f(x,t).

The function reproduces itself at a point x' = x + Ax at a

time t' = t + %éﬁ . This furnishes an additional significance

p
of the parameter %, being associated with the apparent velo-

v

city of propagation in the horizontal direction 7?.
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Turning now to the case of SH waves the corresponding

type solution would be of the form

iw

_ ' o lw iw
vV = [A gy ©XP ( v n) + ASH exp (vs n)] £(x,t)
with
5= = 32
and éL constant with depth.
s

The limitation of the foregoing solutions is the varia-
tion with respect to x. A more general case where the boun-
dary conditions, at z = constant, had an arbitrary variation
with respect to x could be solved, however, as a superposi-
tion of these simple solutions with different values of 2.

3.3 Motion and Stresses as a Function of Depth

In order to compute the motions and stresses in one or
more layers of soil resting on an elastic half space (repre-
senting the rock), due to a train of waves with frequency w
travelling upwards through the rock, boundary conditions must

be introduced.

The stresses o r T, are given by
%y % Bu
o =xe + 2 = A(—+ =) +2GC —
z X 2 3 a

X z X

I

= = —  —

Txz € Yxz G(a 3 )
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Differentiating Eq. (3.7)

g = - iﬂ-[(l + 2 an) A_ exp (i-ui nz)
z \Y P v
P P
+ (2 + 2 Gn2) A ' exp (- 2 hz)
P Vp

' i“_’_ '
+ 2 Gin ASV exp (v n'z)

P
- 2 Gen' A? exp (- iw n'z)] f(x,t)
SV Vs 4
and
1) - iw
Ty = ¥ [2 Goa'n Ap exp (V nz)
S P
- 2 Gt'nA_"' exp (- 19 nz)
je Vp
+ G(2’2 - de) ASV exp (%ﬂ n'z)
s
2 2 iw
& ] ] - 1
+ G(2 n'") ASV exp ( 7P 2] E{x.t)-

S

These equations together with Egq. (3.7) provide the

displacements and stresses in terms of the amplitudes Ap, Ap‘,

av ’ASV" Defining h as the depth of a layer and dropping

the term f(x,t) the above equations become:

A

a) For the top of the layer

X =TA (3.8)

b) For the bottom of the layer

X, = BA = THA (3.9)
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where the subscript o is used to denote the top of the layer

and h the bottom.

The explicit expressions of Equations (3.8) and (3.9)
are given in the next two pages.

Imposing continuity of stresses and displacements at

the interface between two layers, j and j'+1,

(Xl y = X sy

In order to satisfy these equations for any x,

TR -(2' _ 2')

v v I AT A T

Pls A Ph+1 V350 | Fla
(Shell's law of refraction)

From Egs. (3.8) and (3.9)

(X)) = T, A, = T, H, A,
°" 4541 j+l o J+l J 303
Therefore

= o7t H. A

A. R .
j+1 j+l "3 73 73

Proceeding down from layer to layer and noting that at

the very first (top) layer Al = Til (Xo)l, then for the nth
layer
_ w1 -1
A =T T 4 H j....T, T, H A
(X,)_ =T H A =T H_ T LT H 71
h'n n n ' n n n n n-1l "n~1 "n=1"""
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n
Calling F = T (Ti Hi Til)
i=1
(Xh)n =F - (XO)1 (3.10)
or
~ w )
“h Yo
W w
h _ o
O S PR S
°h °o
5 s
\.h)ﬁ ko/]_

Equation 3.10 relates stresses and displacements at
the surface to those occurring at the bottom of any layer of
the stratum. It is only required to calculate the matrices
T, and Hi for each layer. These are specified by Egs. (3.8)
and (3.9) in terms of the layer properties (moduli X + 2 G,
G, depth and angular parameters %, n, %', n').

An explicit expression for T_l can also be obtained.
Rather than inverting a 4x4 matrix, if one works with the
parameters Ap # Ap', Ap - Ap', ASV + ASV' and Agy ~ ASV' only
a 2x2 matrix needs to be inverted.

Writing Eqg. (3.8) in terms of the above parameters 2

uncoupled systems of two equations are obtained.
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N
2 -n A + A"
“ p “p >
_ iw 2 _ lw ' - '
o T (» + 2 Gn“) 7 2 G&n ASV ASV
Y, P P P
~ .
w -n -2 A - A
P P >
“ w5 s i oy o2, 1 :
T 7 2 G¢'n 7 G(2 n'") ASV + ASV
=3 S v

Inverting the two 2x2 matrices separately the above

equations become:

. -
f—Ap + Ap' - %ﬂ 2 Gin' n' u
_ 1 £ <
q = 5o
1 .
o ' 1o 2
\AW’ %V l V,p(>\+2Gn) L \O
. ’
- ' 1w
AP AP VS G (2'2 - n‘z) [ ('w
I
{ - D, : |
' ) '
kASV + ASV Vs 2 Ga'n n LT

where D. and D2 are the determinants given by

1
e . B o
Dl = 70 (r+ 2G)
P
_ ie
D2 =5 Gn

1

Combining these equations the matrix T © is obtained.

The complete relation is given in the next page.
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3.4 Determination of Amplification Functions

3.4.a Definition of Amplification Functions

From Eq. (3.10) the displacements and stresses at any
level within the soil deposit can be obtained in terms of
the displacements and stresses at the surface. Alternatively
one can solve the inverse problem and determine the amplitudes
of motion and stresses at the surface or within any point of
the soil stratum produced by a specified harmonic motion at
any given depth.

If a harmonic motion is specified at bedrock, the mo-
tion produced at the free surface can be related to the input
motion simply by amplification ratios which are functions of
the frequency w. Two different amplification ratios can be
defined (9, 10).

The first amplification ratio, called elastic rock
amplification, is defined as the ratio of the amplitude of
displacement at free surface to the amplitude of displace-
ment that would occur at the top of the rock if there was no
soil (hypothetical outcropping of rock).

The second amplification ratio, called rigid rock
amplification, is defined as the ratio of the amplitude of
displacement at the free surface of the soil to the corre-
sponding amplitude at bedrock, that is at the interface be-
tween the rock and the bottom layer of soil. This motion is
different from the motion of the outcropping of rock since
it is affected by the presence of soil. It would coincide

with the elastic case if the rock were infinitely stiff.
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Since two amplification ratios have been defined and
since there are two motions involved (vertical and horizontal)
one obtains a total of four different amplification functions.

3.4.b Rigid Rock Amplification

Partioning the 4x4 F-matrix into four 2x2 matrices

Eg. (3.10) becomes

s
4 ™ OO0
Uy Fi1 : Fi12 u,
wh : Wo
I i ahh I oA
°h 21 - 22 %
|
T | T
\ hJIl | b 74 1

Calling

h'n s h n
u (o}
O (@]
UO = WO SO = 00
A 1
Ug = F17 Up * F12 S5

The subscript n indicating the number of the layer considered

has been dropped and substituted by the subscript s to repre-

sent the interface between the bottom layer of soil and rock.
Since the stresses at the free surface of the soil

deposit are zero, SO =0
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s 11 "o
or
v =F.1uy (3.11)
o 11 s

Thus by specifying the amplitude of the motion at bed-
rock, Us' the amplitude of the motion at the surface of the
soil, Uo’ can be determined. The horizontal and vertical am-

plification ratios for the rigid rock case are then

u A
o) o)

e and =
s

3.4c Elastic Rock Amplification

In a similar way the motion that would occur at bed-
rock if there were no soil on top (outcropping of rock), Uy

can be related to the motion at the top of the soil deposit,

U -
o
Again from Eg. (3.10)
(Xh)n - Fn ) (Xo)l
or
(Xh)n - Tn Hn An
also
(XO)n = Tn An

Introducing the subscript r to represent the rock
layer and n the bottom layer of the soil then the above equa-

tions lead to



therefore

= F - —
A T (X )1 G (Xo)l

where the G matrix defined by the above expression relates the
amplitudes of the waves in the rock to the motion and stresses
at the surface of the soil.

Partioning the G-matrix, similarly to the F-matrix and

noting that the stresses at the free surface are zero

A
P
= G U (3.12)

A
SV -

If there were no soil on top of the rock (elastic half
space) the motion would be described by Egq. (3.8) which in the

present notation is

() (9 r T Fa
u i
U, (11) ; (12)r p
i
w A
Y I TR ke h
- 1
Sg| | © Ten, | Tae, Ao
T A__'
./ \ g 1 \. 5V J,
Since SS would be zero
A A !
p P

0

=T A
= (21)

SV +T(zz)r SV

or
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P 1 p
= T(zz) o T(21) Y (3.13)
a r r A
SV SV 3
and
A
[T T o1 T ] i
U = .
s (ll)r (12)r (22)r (21)r A
sV
r
A
P
= R
Agy
r
substituting Egq. (3.13)
Us = R Gll Uo
or
=1 _-1
0., = Gll R U - (3.14)

This expression provides the amplification ratios for
the elastic rock case.

3.4d Description of Computer Program

A computer program was written in Fortran IV utilizing
the formulas developed in the preceding sections. By speci-
fying the amplitudes of P and S-waves (AP, ASV) and the angle
incidence of the latter (as), the program computes amplitudes
of stresses and displacements (vertical and horizontal) at the
interfaces of the layers. The program also plots (with a
Stromberg Carlson plotter, SC 4020) the four amplification

ratios as function of fregquency.
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Any type of soil and rock profile can be studied by
specifying the parameters that describe the stratum (height,
shear wave velocities, Poisson's ratio, fraction of critical
damping and unit weight).
The program proceeds from top to bottom and calculates

the T, H, 1

and F matrices for each layer and finally the
G-matrix. Knowing these the motion, stress and amplification
ratios are calculated from the relation developed in the pre-
vious sections. This procedure is repeated for a selected
number of frequencies, as required to obtain a good represen-

tation of the above quantities.

3.5 Consideration of Damping

In the foregoing formulation a linear elastic material
was assumed. In reality, however, all materials and particu-
larly soils are nonlinear and experience an internal dissipa-
tion of energy when undergoing cyclic loadings. This effect
is taken into account by assuming the material to be linear
viscoelastic with a viscosity function of frequency. A con-
stant viscosity coefficient corresponds to the usual concept
of viscous damping and produces a loss of energy per cycle
which increases with frequency.

Experimental results indicate however that the energy
dissipation in soils is almost independent of frequency (while
a function of strain). For an assumed or expected amplitude
of motion, this situation is better reproduced by considering

a viscosity coefficient inversely proportional to frequency.
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While the equations of motion can be developed by
taking into account the viscosity coefficient, the same effect
is obtained by working with complex soil parameters of the

form

A* = X (1 + 218)

g% G (1 + 2 iB)

where B is the amount of critical damping considered.

Thus all the equations developed in the preceding sec-
tions are valid provided all related parameters (i.e., Vp, Vs’
£, n, &', n' etc.) are also considered as complex quantities.

The interpretation of ¢, n, 2', n' as director cosines be-

comes difficult but they may be thought of as mathematical

. 2 2 2 2
parameters related by the condition &°, n” =1, 2'" + n'" = l.
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CHAPTER 4

AMPLIFICATION OF SV WAVES

4.1 Cases Considered

Although the program described in section (3.4d) is
general and applies to both P and SV waves, in this work only
SV waves will be considered. Jones (3) obtained amplifica-
tion functions for P waves at an arbitrary angle of incidence
and SV waves with angles of incidence less than the critical.
Here the emphasis has been in examining amplifications for
SV waves propagating with angles of incidence greater than
the critical.

For the purpose of comparison the properties of the
stratum profile were maintained the same as those used in

References (4, 9, 10). These are:

v, (ft/sec) i B v (1bz£e3)
apil 750 0.25055 0.05 125
rock 4500 0.2857 0 140

It should be noticed that only a single value of damp-
ing was considered. The effect of damping for one-dimensional
amplification was studied by V.C. Liang (5).

Two stratum profiles were examined in this work:

a) Elastic Half Space - A stratum composed of layers

all of them with the same properties as the under-

lying rock.
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b) Uniform soil layer upon rock - A 100 ft. uniform

soil layer resting on elastic rock.
Of particular interest in this study was the consider-

ation of SV waves incoming with angles larger than the criti-

cal. The critical angle occurs when the parameter n = /i - £2
switches from being real to imaginary, that is when & = 1.
Since
I
- - . -
L = T % T sin % srit 1
s s
v
sin o __., = "
crit \Y
p

the corresponding dilatational wave velocities for the soil
and rock are 1300 ft/sec and 8000 ft/sec respectively. Sub-
stituting the shear and dilatational wave velocities for the

rock

or
— o
“crit 34.23 -

4.2 Presentation and Discussion of Results

4.2a Motion - Elastic Half-Space

Figures 4.1 and 4.2 show the amplitudes of the hori-
zontal and vertical motion, respectively, for the Elastic
Half-Space. Results are presented for angles of incidence
of 0, 30, 40, 45, 40, 60° and frequencies of 1.75, 3.25, 5.75

and 9.25 cps down to a depth of 100 ft.
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The motion varies nearly periodically with depth with
a wavelength (A) that is given by

Vv

_ s
A= = for shear waves
A= f% for dilatational waves
For normal incidence (as = 0°) since n'=n=1 (see table

4.1) the wavelengths are

Frequency Shear Wavelength Dilat. Wavelength

1.75 cps 2571 ft 4571 £t
3.25 cps 1384 ft 2561 ft
5.75 cps 782 Et 1391 ft
9.25 cps 486 ft 865 £t

One of the effects of the angle of incidence is to
change the wavelength through the parameters n and n'. The
values of &, &', n and n' are shown in table 4.1.

The second effect of the angle of incidence is to
ﬁodify the shape of the curve describing the motion by intro-
ducing a phase shift. For angles of incidence less than the
critical the maximum amplitude occurs at the surface, whereas

for o the depth at which the maximum amplitude

s = %erit
occurs varies with the angle of incidence.

This phenomenon is better illustrated by looking at
the explicit equations of the motion for the elastic half-

space. The horizontal motion as a function of depth is given

by:
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u= 2 A + A ') cos Y _ nz
(@2, + 2" v 0]

+ i (A - A ') sin 5. nz ]
P &)

v
P
(4.1)
] | I w '
+ n [(ASV ASV) cos Vs n'z]
e b ' in Wt
i (ASV + ASV ) sin Vs n'z]

For the case of normal incidence substituting the

appropriate parameters from tables 4.1 and 4.2 (Ap=0, Ap'=0,

AS =1, A_..'"=-1,n"=1) the amplitude of the horizontal motion

v sV

becomes

n'z

On the other hand for a_= 45° substituting (A_ = A ' =

S P p
= T = r =
0, Agy = Bgy 1, n 0.70711)
- ' . w ' - . w =
lul = 2 n' sin v n'z = 1.414 sin v, n'z

These results are shown in fig. 4.1, as obtained from
the computer program using a number of rock layers.

As the angle of incidence increases from 0° a phase
angle is introduced into the periodic shape of the motion
which becomes 90° for the case of as=45° (sin function).
Thus the point at which the maximum amplitude occurs varies

with L Also for « a term with exponentially

> 0 .
s crit



TABLE 4.1. Parameters for the Elastic Half-Space
ag L 2!
real imag. real imag. real imag. real imag.

0° 0 0 1 0 0 0 1 0
30¢ 0.8889 0 0.45813 0 0.5 0 0.8660 0
40° L1427 0 0 -0.5530 0.6428 0 0.7660 0
45° 1.2570 0 0 -0.7617 0.7071 0 0.70711 0
50° 1.370 0 0 -0.9244 0.7660 0 0.6428 0
60° 1.5396 0 0 -1.1706 0.8661 0 0.500 0
02 1.6706 0 0 -1.3382 0.4397 0 0.34202 0
go° 1.75076 0 0 -1.437 0.9848 0 0.17365 0

s
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TABLE 42. Amplitudes of the Wavesg
Ap - P Ap’ Agy’
real | imag.(i] real | imag. real [imag. | real fmag.
of O 0 1 0 0 0.0 -1.0 0
10| O 0 1 0 ~: 38 0 ~.87 0
20, © 0 1 0 -.71 0 ~«50 0
30 O 0 1 0 -1.0 0 -.057| 0O
35 0 0 1 0 ~1:5 -1.5 .033]-1.0
40| O 0 1. 0 -.037 | —-.49 +.99 | =0.15
45| 0 0 1 0 0 0 1.0 0
50| O 0 1 0 .0094 +.24 | +1.0 -.077
60| O 0 1 0 .12 .46 .88 ~-.48
70! O 0 1 0 w8 .43 .41 ok
80| O 0 L 0 .30 1.8 -.45 -.89
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decaying amplitude is added to the motion due to the imagin-
ary components of Ap', ASV' and n (see tables 4.1, 4.2).

Similar results can be obtained for the vertical motion.

4.2b Motion - Uniform Soil Layer upon Rock

Figures 4.3 and 4.4 show the horizontal and vertical
motion for a 100 ft. uniform soil layer upon a rock base.
Results are shown for a depth of 200 ft. (100 ft. into rock
base).

The motion in the rock exhibits the same characteris-
tics observed in the elastic half-space. In the soil layer
the motion is amplified and the wavelength of the propagating
waves changes. The ratio of the wavelength in the soil to
that of the rock is

A(soil) _ V(soil)
X (rock) V(rock)

which corresponds to % for the shear wave and 17%75 for the
dilatational.

The depth in the soil layer at which the maximum ampli-
tude occurs changes only slightly with the angle of incidence.

The variation is small because the wavelengths in the soil

does not vary greatly with ag-

4.2c Particle Motion as a Function of Time

The formulation in section 3.4 provides only the ampli-
tudes of the motion. The term f(x,t) was dropped since it
was constant for all points on a horizontal plane. Including
now the time component of f(x,t) the particle motion is de-

scribed by
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fn iwt

e}
Il

4o
R i uI) e

B . iwt
w o= (wR + i WI) e

where the subscripts R and I refer to the real and imaginary

components, respectively, of the amplitudes at a point.

Taking the real parts of the above equation we obtain

u = uR coswt - uI sinwt

w = WR coswt - WI sinwt .

The combined motion is shown in figures 4.5 and 4.6
at surface of the uniform soil layer for frequencies (1.75
cps, 6.25 cps) and ag= (0°, 30°, 45°, 50°).

It is seen that the particle motion is an ellipse.
The shape of this ellipse is determined by the relative mag-
nitudes of the real and imaginary components of the motion.
It should be noticed that for «g= 0° there is only horizontal
motion since, as mentioned in section 2.2, at normal incidence
p and SV waves are uncoupled.

4.2d Amplification Functions

Figures 4.7 - 4.28 show the amplification ratios as a
function of frequency for the 100 ft. uniform soil profile.
By definition there is no amplification (amplification ratio =
1) in the elastic half-space.

Comparing first the amplification ratios for o = 0°
and 30° with references (3) and (10), respectively (a differ-
ent formulation was used in those references) the same results

are obtained.
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Due to the uncoupling of p and SV waves at By = 0,
one dimensional wave propagation theory can be used to cal-
culate the natural frequencies of the soil. They are deter-

mined from

Substituting the wave velocities and the height of the soil

we obtain

Shear Wave Dilatational Wave
1.875 cps 3.25 cps
5.625 cps 9.75 cps
9.375 cps

As seen in the case of SH waves (10) the natural fre-
quencies are slightly modified by the angle of incidence.

For non-zero angles of incidence an incoming SV wave
will generate both shear and dilatational waves in the soil,
and will produce both horizontal and vertical motion. There-
fore as illustrated in these figures the amplification func-
tion will display both sets of natural frequencies. The
significance, though, of each natural frequency depends
greatly on the angle of incidence.

For angles of incidence less than the critical the
overall shape of the curves is similar for all angles with
the peaks (occurring at the natural frequency) decreasing

with increasing angle and frequency (3).
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For a the overall shapes are different with

s = %erit
the peak values being highly dependent on the angle of inci-
dence. For By = 45°, the elastic rock horizontal amplifica-
tion becomes infinite since in this case the motion at the
surface of the elastic half space is zero (Fig. 4.1) Also

for o the elastic rock amplification is not always

s = %erit
smaller than the corresponding function for rigid rock as

ohserved for o (3).

s © %crit
In summary it can be concluded that one dimensional
wave propagation theory can be used to provide a good approxi-
mation of the natural frequencies for all angles of incidence.
It will still provide a reasonable estimate of the shape and
magnitude of the amplification functions for angles of inci-

dence smaller than the critical, but for a the actual

s = “crit

peak values will vary greatly with the angle of incidence.
The same conclusions can be derived by examining the

variation of the motion with respect to depth (figs. 4.1-

4.4). This should be expected since the amplification re-

lates the motions at various points.
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CHAPTER 5

SURFACE WAVES

5.1 Basic Formulation

In this chapter, plane stress waves generated by a line
load applied at the surface and propagating within the layered
medium are considered. The situation is similar to that stu-
died in chapters 3 and 4 with different boundary conditions.

Equation (3.10) relates the stresses and displacements
at the surface to the corresponding ones at the interfaces of
the layers. Instead of specifying the motion at the bottom
of the soil profile and calculating the stresses and displace-
ments at any point in the stratum, these are determined from
the stresses, c(x)O and r(x)O given at the surface. The one
dimensional geometry (section 3.2) condition is also relaxed
so that the stresses and displacements are functions of the z
as well as the x axis.

Two solutions as in the previous case can be obtained:

a) Rigid Rock Case

From the equation

(X'h)n = Fn (Xo)l (3:19)

or in partioned form



i
Fi1 1 Fi2
e pra— pu— -—'_’ - - .
|
h For  Fa2
n "

substituting the zero displacements at bedrock,

F11 Uo * F12 So =4
or
-1
Uo F11 F12 So
where
u(x)o
U =
e w(x)O
1
o(x)O
SO“—'
T (%)
o 1

84

(Uh)n =0,

{5.1)

represent the displacements and stresses at the surface.

b) Elastic Rock

Similarly for the elastic rock the relation

Afr =G (XO)1

holds.

the stratum profile, that is Ap = ASV

or

Since there are no incoming waves from the bottom of

0

{5.2)
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Equations (5.1) and (5.2) relate the stresses‘and dis-
placements at the surface for the rigid and elastic rock,
respectively. Having these the stresses and displacements
at any depth can be obtained from Eg. (3.10).

The difficulty of imposing the boundary conditions,
So’ is overcome by the use of Fourier transforms, that is

400

co

igx de

N =
=

o(x)o { S(E)O e

with

I+w o(x)o e_gx dx

-0

I

S(8)

and similarly for t(x), T(E)O-

One can solve Equations (5.1), (5.2) and (3.10) for

any particular g, by setting for each layer

[l -(], -

leading to U(g), W(E), S(g), T(&).
Then the displacements are obtained from
iEx

M™ue) e

-0

N
=]

u(x) de

2 wie) e

- 00

igx

| -
=

w (x) dg

and similarly for the stresses.
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5.2 Definition of Amplification Functions

The definition of amplification functions in this case
becomes more difficult since for each loading condition (nor-
mal and shear loads) there exist both horizontal and vertical
motions which are functions of the frequency and spatial coor-
dinates x and z. Thus for every point on the horizontal axis
similar amplification functions as in section 3.4 could be
defined.

Limiting the discussion to the points under the loads
(x=0), an elastic rock amplification could be defined as the
ratio of the amplitude of the displacement at the surface of
the soil, under the load, to the corresponding amplitude of
the outcropping rock, that is at the free surface of the rock
without any soil on top (assuming the load applied at the
rock) .

Because two motions are involved for each loading con-
dition, amplification functions could be defined for each
combination of load and motion. By selecting the point under
the load, though, the horizontal amplification corresponds to
the shear load and the vertical to the normal load. Due to
symmetry (or antisymmetry) the shear load produces no verti-
cal motion at this point and similarly the normal load pro-
duces no horizontal motion.

Finally the amplification ratios were normalized by
dividing with the corresponding displacement at small freguen-

clies.
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5.3 Cases Studied

The same two stratum profiles described in section 4.1
were subjected to unit harmonic stresses (normal and shear) ,
applied at the origin of the coordinate system. That is,

the boundary stresses are

]
l_l

G(X=O)O T(X=0)O = 1

Il
o

Il
o

G(X#O)O G(X#O)O

Displacements are obtained as a function of x and 2z
for the elastic and rigid rock cases. Amplification functions
are given only for the elastic rock case.

5.4 Description of Computer Program

A second computer program in FORTRAN IV was written
utilizing the relations developed in the preceeding sections.
It calculates the amplitudes of the displacements as a func-
tion of x and z due to the specified boundary conditions. It
also plots (with a Stromberg Carlson plotter) the amplifica-
tion ratios as a function of frequency. Input parameters are
the necessary properties to specify the stratum profile and
the case considered (rigid rock or elastic rock).

Considering unit stresses, applied at the origin of
the coordinate axis, it obtains the Fourier Transforms by
the use of the Cooley-Tukey algorithm. It then calculates the
parameters %, n, &', n' for each layer and each horizontal

point from the relations
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and

g = 2 nlAx

where n represents the number of points used for the Fourier
Transform and Ax is the length increment along the x-axis.

Based on Ref. 1 the above values were selected as

Vs A
n = 256 Ax = 10 = 10

[

The length increment is a function of the wavelength since at
high frequencies, or small wavelengths, the motion fluctuates
more rapidly and therefore more points are required to repro-
duce the motion. It was determined (R. 1) that about ten
points per wavelength give a good representation of the motion.

Having determined the values of ¢, n, &', n' the pro-
gram calculates the corresponding matrices T, H, T"l, F and
G for each layer.

Finally the displacements and amplifications are cal-
culated using sections 5.1, 5.2 and the Cooley-Tucker algor-
ithm.

A listing of the program with the input format is given

in Appendix A.
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5.5 Presentation and Discussion of Results

Figure 5.1 shows the amplitude of the vertical motion
at the surface of a 100 ft. uniform soil layer resting on
elastic or rigid rock as a function of the horizontal dis-
tance from the line of application of the load. The motion
is the outcome of a unit normal periodic line load with fre-
quency of 2 cps.

The maximum amplitude occurs under the load, and is

given in the above figure as w for both elastic and rigid

x=0
rock. For the elastic rock the motion is nearly periodic

with each consequetive peak along the x-direction decreasing
due to damping. Most of the decay in the motion with respect
to distance occurs near the line of application of the load.
For the rigid rock case the motion reduces to essentially

zero at a short distance.

Similarly Fig. 5.2 shows the amplitude of the horizon-
tal motion due to a unit shear line load as a function of the
horizontal distance. It applies to the same frequency and
soil profile as in Fig. 5.1 and results are shown for both
rigid and elastic rock. The curve for the elastic rock exhi-
bits the same characteristics as the corresponding one for
the vertical motion in the previous figure. The rigid rock,
however inrthis case, produces larger horizontal displacements
than the elastic rock. This is the effect of the frequency
(2 cps) which corresponds approximately to the first natural

frequency of the soil layer in shear (see Chapter 4). At the



-5
10

X

AMPLITUDE

14
3]

[wix=0)] =11v6 X 10% R. PocK

2?2 CPS
Yo ELASTIC ROCK
--.\\

\'\
\ RIGID POCK - T
\
\\.

900"
Fig. 5.1

load

1800°

Vertical motion at the surface due to unit normal line

06



AMPLITUDE X 10>

3 luix=0l] z16.1X 10* =L, RoCK
\ |u(x=o){ - 19.4X 16% R, RoCK
\
\
1.0} \ 2 CPS
\ \
\ \
\ RIGID POCK
X \l
\ X
\ \
\
\ \
\ \
\ "
N\ AN
0.5 N e
\‘__ __“__-lc'--.\
- N ~
O S\ ELASTIC RoCcK
NN ./
N~ N\ _
SN .
~ s & -~
\.\"*-_.__._ \\\ "//
™ s —_—
i - i - I.
0 500 1800 X
Fig. 5.2 Horizontal motion at the surface due to unit line shear load

6



92

resonant frequency damping plays an important role on the
motion. Thus in the elastic rock case since energy is
dissipated through the rock the motion is smaller. Rigid rock
implies no energy is lost through the soil-rock interface.
The same phenomenon is not observed in Fig. 5.1 for the ver-
tical motion because in this case the first resonance does
not occur until a frequency of 3.25 cps (see Chapter 4 for
natural frequencies in dilatation).

Fig. 5.3 shows the amplitude of the motion as a func-
tion of depth, in the soil layer, directly under the load.

It is observed that the motion decreases rapidly with depth
even for the case of elastic rock (rigid rock motion is zero
at the interface of soil and rock by definition).

It can be concluded, therefore, that when a stress
wave 1s generated at the surface the greatest effect is near
the location of the loads. The decay of the motion with
respect to distance depends on the type of load considered,
frequency and properties of the underlying rock (elastic or
rigid).

Figures 5.4 and 5.5 show the elastic rock amplifica-
tions for horizontal and vertical displacements of the points
directly under the application of the load. The shape of the
curves is similar to those obtained in Chapter 4. The peaks
occur near the natural frequencies as obtained from one dimen-
sional amplification theory. For the horizontal motion the

dominant peaks correspond to natural frequencies in shear since
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the vertical motion of the point considered due a shear load
is zero due to symmetry. Similarly for the vertical motion
the significant peaks correspond to natural frequencies in

dilatation.
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CHAPTER 6

CONCLUSIONS AND RECOMMENDATIONS

This work is a logical continuation of the studies
performed in references 3,9 and 10. Displacements and ampli-
fication functions were presented for an elastic half-space
and a uniform soil layer resting on bedrock. Two situations
of plane waves were considered:

1) SV waves propagating upwards through the

bedrock at an arbitrary angle of incidence.

2) Shear waves generated at the surface by

unit periodic line loads (normal and shear).

A comparison of the results obtained in the first
situation with those of the references shows that the one
dimensional amplification theory can be used to predict the
natural frequencies of the so0il layer. The effect of the
angle of incidence is to modify slightly these frequencies.
The overall shape of the amplification functions is similar
only for SV waves with angles of incidence less than the cri-
tical. For SV waves with larger angles the magnitude and the
shape of the amplification functions depends significantly on
the angle of incidence.

The same observation applies to the variation of dis-

placements with depth. The overall shape of the curves is
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similar only for o The motion is nearly periodic

s © %crit’
with respect to depth. The effect of the angle of incidence
is to influence the wavelength and to introduce a phase shift
in the curve describing the motion vs. depth.

In the second case, surface waves, the natural fre-
gquencies, as obtained from one dimensional propagation theory,
can be used to determine the peaks at the amplification func-
tions. The significance of each frequency depends on the mo-
tion and load considered. As for the motion it decays rapidly
with the distance, measured from the point of application of
the line load, due to damping.

While this work has been concerned with displacements
and amplification, the stresses can also be calculated. This
should be the next logical step in the series of studies of
soil amplification. Also, here the soil was assumed to be a
linear viscoelastic material. It has been recognized, how-
ever, that an important factor in the application of soil
amplification theories to practical situations is the consi-
deration of nonlinear soil behavior. The variation of the

amplification with the level of excitation for different types

of waves (and cycles of incidence) should be studied.
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APPENDIX A

COMPUTER PROGRAM

A.l1 Computer Program - Case 1

a) Input Format

In order to use computer program described in

Section 3.449 , the following input scheme must be followed.

The first data card contains an integer right Jjusti-
fied to card column 10 which represents the number of the
layers (n) wished to specify the soil profile.

Next a group of n+l containing the data for each
soil layer (n) plus the last card the data of the underlying
rock. The forms of these cards in decimal number is as

follows:

For Soil Layers (n cards)

c.cC. l] e&e— 10 11 &— 20 2.y, Ay
h \Y% v
s
31 «—— 40 41 «— 50
B Y

For Rock Layer (1 card)

C.C- l «——— 10 11 «<——— 20 21 «— 30

31 &—— 40 41 ¢<——3 50

Any number of angles and type of waves can be tested

by putting



i)

ii)

b)

one card representing the number of angles
considered. FORMAT (Il0).

two cards for each angle. The first card
gives the angle considered, the amplitude
of P-wave (Ap') and the amplitude of SV-
wave (ASV'). FORMAT (3F10.0). The second
card containing the number of frequencies
for which the analysis wished to be per-
formed, the first frequency at which the
analysis starts, and the increment of the

frequency. FORMAT (I10, 2F10.0).

Listing of Program

100



IMPLICIT REAL*8(A-H,0-%)

DIMENSION H(20), VS(20), ANU(20), BETA(20), GAM(20)
DIMENSION DAUX(2), CG{20), CL(20), CVP(20), CVS(20)
DIMENSION AL(20), ALP(20), AN(20), ANP(20)

DIMENSION EE(4), FMAT(4,4,20), GMAT (4,4)

DIMENSION TOP (4,4), BOT(4,4)

DIMENSION FREQ(100),RRHA(100),RRVA(100),ERHA (100) ,ERVA (100)
DIMENSTON TEX1(4),TEX2(4),TEX3(9) ,TEX4(8),TBXS5(8) ,TEX6 (8) (NAME (2)
COMPLEX*16 AUX,C3,CL,CVP,CVS,AL,AN,ALP,ANP

COMPLEX*16 EE,AIM,GMAT,DET,UT,VT,UA,UB,US,VSI

COMPLEX*16 TOP,BJT,FMAT

COMPLEX*16 APP,ASVP

EOUIVALENCE (AUX, DAUX({1))
DATA NAME/'EVAN','MICH'/

DATA TEX1/'PREQ','UENC','Y *,' CPS'/
DATA TEX2/'AMPL','IFIC','ATIO','N '/

DATA TEX3/'ELAS','TIC ','ROCK',"* ', ' HOR','IZON',*'TAL *','HMOTI®
1,08 '/

DATA TEX4/'RIGI','D RO','CK ',' H','DRIZ','ONTA','L MO','TION'/
DATA TEXS/'ELAS','TIC *,'ROCK',* - *,' VER','TICA','L MOt ,*TION'/

DATA TEX6/'RIGI','D RO','CK ','- V', ,'ERTI','CAL *','MOTI','ON '/

¢
c s ok 2 o 2k 3 e e ok ok e 3k ok ok ok K e ook ok o ok e ok e ok ok Rk Kk s 2k e ¢ 2k o3¢ ok o a3k ok ok e o 3k o 3 ok ok ke ok ok ok ok ok ok ke ok ke ok ok ko 332222228 834
3 THIS PROGRAM IS FOR THE CASE OF INCOMING WAVES THROUGH THE BOTTOM
c OF THE LAYERED PROFILE. IT CALCULATES I'HE DISPLACEMENTS AS A
C PUNCTION OF FREQJENCY AND DEPTH.IT ALSO CALCULATES AND PLOTS
c (KITH A CARLSON-STROMBERG PLOTTER) THE AMPLIPICATION RATIOS AS
c A FUNCTION OF FREQUENCY
5 2 2k 3 ke 2 ok 2 ke e ok e ke 3 e o o ok ok ok ko ok ok ke ook Kk ok ###*******####Ft*****************##***#****t#t*
o
Cevess SET VARIABLE AIM= SQRT(-1)=I
DAUX (1) = 0.
DAUX (2)= 1.
AIM= AUX

C
CuesssosREAD NUMBER OF LAYERS OF SOIL TO BE STUDIED

T0T



C

READ(5,100) NLAY
10C FORMAT (I10)

NLAY1=NLAY+1
c-.l.......I.'C.l.ltl.'ll.ll....I‘I..Il..".I.l..'..l.llll'..ll!

DO 10 I=1,NLAY?
c
CisesREAD HEIGHT, SHEAR WAVE VELOCITY, POISSONRS RATIO, DAMPING
CeessssAND UNIT WEIGHT POR ZACH LAYER OF SOIL PLUS LAST DATA CARD FOR
Cess o« ELASTIC ROCK
G

READ(5,101) H(I), VS(I), ANU(I), BETA(I), GAM(I)
101 FORMAT (5F10.0)
10 CONTINUE
CeeesoCALCULATE LAMERS ZONSTANTS AND WAVE-VELOCITIES IN COMPLEX FOERM
Cl".O...‘..D.O...'...I.h.-...'..Oll."O..O'O.l...l.........ll.'

DO 11 I=1,NLAY1

RO= GAM(I)/32.2

G= ROX*VS (I)*VS(I)

B= 2.%G*ANU (I) /(1.-2.*ANU(I))

DAUX(1)= G
DAUX (2) = 2.*BETA (I) *G
CG (I) =AUX
DAUX (1)Y= E
DAUX (2)= 2.*BETA(I)*E
CL{I)= AUX

CVP(I)= (CL(I)+2.*CG(I))/RO
CVs (I)= CG(I) /RO
CVP(I)=CDSORT(CVP(I))

11 CVS {I)=CDSQRT(CVS(I))
C
Cesssss READ ANGLE OF INCIDENCE OF SHEAR WAVE-WAVE IN DEGREES.
Cseeses READ ANGLE OF INCIDENCE OF SHEAR WAVE- IN DEGREES.
Coes.+ANGLE IS MEASURED FROM Z-AXES

e

k=0

¢0T



NANGC=0
READ (5, 100) NANG
40 NANGC= NANSC+1
READ (5,99) ALFA,AMPP,AMPS
99 PORMAT (3F10.0)
ANG= ALFA* 3.14159/180,
ALP (NLAY1) =DSIN (ANG)
ANP(NLAY1)=1,-ALP (NLAY 1) *ALP (NLAY1)
ANP (NLAY1) =CDSQRT (ANP[NLAY 1))
AL(NLAY1)= CVP(NLAY1)*ALP (NLAY1) /CVS (NLAY1)
AN (NLAY1)= 1.-AL(NLAY1) *AL (NLAY1)
AN (NLAY1) =CDSQRT (AN (NLAY1))
AUX= AN (NLAY1)
IP(DAUX (2)) 1,1,2
2 AN (NLAY1)= -AN(NLAY1)
1 CONTINUE
C.Oll.l’.I....l'."..‘..l‘Il..!l..t.lll.."ll.ll'l'....l‘..l....
DO 12 I=1,NLAY
ALP (I)= ALP (NLAY1)*CVS (I) /CVS(NLAY1)
AL(I)= AL(NLAY1) *CVP(I) /CVP (NLAY1)
ANP (I) = 1.=ALP (I)*ALP (I)
ANP (I)=CDSQRT (ANP(I))
AN (I)= 1.-AL(I) *AL(I)
AN (I) =CDSQRT (AN(I))
AUX= AN (I)
IP (DAUX (2)) 12,12,13
13 AN(I)= -AN(I)
12 CONTINUE

Covssess READ NO, OF PREQUENCIES, INITIAL FREQ. AND INCREMENTAL FREQ.

READ(5,102) NF, F1, DF
102 FORMAT (110,2F10.0)

po 300 1I=1,NF

AI=I-1
300 FREQ(IY=F1+AI*DF

€0T



200

201

202
203
204
205
206
207
208

209

WRITE(6,200) NLAY

PORMAT (1H1,50X,I5,2X, ' LAYERS',//)

WRITE(6,201)

FORMAT (2X, *LAYER',3X,' THICKNESS',1X, *SHEAR VEL',1X,'POISS RAT', 3X,

1"DAMPING®,2X, 'UNIT WEIGHT',/)

WRITE(6,202) (I,H(I),VS(I),ANU(I),BETA(I),3AM(I),I=1,NLAY)
FORMAT (I5,5X,5F10, 2)

WRITE(6,203) VS(NLAY1) ,ANU (NLAY1),BETA (NLAY1) ,GAM(NLAY1)
FORMAT (2X, 'ROCK' , 14X, 4F10.2,//)

WRITE(6,204) ALFA

FORMAT (10X, 'ANGLE OF INCIDENCE OF WAVE IN ROCK',F10.0,' DEG',//)
WRITE(6,205)

FORMAT (2X, 'LAYER',13X,*L", 14X, 'N", 18X, 'LP', 18X, 'NP',//)
WRITE(6,206) (I,AL(I),AN(I),ALP(I),ANP(I),I=1,NLAY)

FORMAT{ I5,5X,8F10.5)

WRITE(6,207) AL(NLAY1) ,AN (NLAY1) ,ALP (NLAY1) ,ANP(NLAY1)
FORMAT {2X 'ROCK',4X,8F10.5,//)

WRITE(6,208) AMPP

PORMAT (10X, 'ANPLITUDE OF P WAVE IN ROCK',F10.2,/)
WRITE(6,209) AMPS

FORMAT (10X, "AMPLITUDE OF S WAVE IN ROCK',F10.2,/)

\v.'l"'...ll...'....Ol..‘..l...t..l'll.'...‘..l..I.II‘I..I.Q.I..

210

DO 1000 J=1, NF
AI= J-1
FR= F1 ¢ AI*DF
OM= 6,28318*FR
WRITE(6,210) FR,OM
FORMAT (1H1,20X, *PREQUENCY',F6.2,"' CPS *,F6.2," RAD/SEC!,//)

c.l.l‘l.....‘!'....’....'.ll‘lll‘.l.l.’..'.l...'l.........-.l..l

30

31

DO 30 L=1,4
DO 30 M=1,4
PMAT (L,M,1) =0,
DO 31 L=1,4
FMAT (L,L, 1) =1,

\-'.-.J............'I-..‘.C'.....'l.....‘....‘..'..'....-...I-.Ill

Do 1001 I=1,NLAY

vO0T



Cesses DEFINE T-MATRIX

TDP(1¢1‘)=
TOP{1,2)=
T0P{1,3)=
TOP(I'Q’=
TOP(2,1)=
TOP (2,2)=
TOP{2,3)=
TOP (2,U4) =

AL (1)
-ANP(I)
AL(D)
ANP(I)
-AN({I)
-ALP(I)
AN (I)
-ALP (I)

AUX= AIN*OH/CVP(I)

TOP (3,1) =
TOP({3,2)=
TOP (3,3)=
TOP (3,4) =

~AUX* {CL (L) +2.%*C5 (I)*AN(I)*AN(I))
-AUX*2,*#CG (I) *AL (I) *ANP (I)

TOP (3,1)

-TOP(3,2)

AUX= AIM*OM/CVS(I)

TOP(4,1)=
TOP(4,2)=
TOoP (4,3)=
TOP(4,4) =

AUX*2,*C5 (1) *ALP (I) *AN(I)

AUX*CG (I)* (ALP (I) *ALP (I)~-ANP (I)*ANP(I))
-TOP(4,1)

TOP {4,2)

Ceeses DEFIME THE INVERSE OF T-MATRIX
AUX= (CL (I)+2.%CG (L)) *2.

BOT(1,1)=
BOT (2,1)=
BOT (3'1)=
BOT (4,1)=
BOT (1,2)=
BOT (2,2)=
BOT (3,2)=
BOT {4,2) =
BOT (1,3)=
BOT(2,3)=
BOT(3,3)=
BOT (4,3)=

2.%2G (I)*AL (1) /AUX

- (CL{I)#+2.%CG (I)*AN(I)*AN(I))/ (AUX*ANP(I))
BOT (1,1)

-BOT (2, 1)

(ALP (I) *ALP (I)-ANP(I)*ANP(I)) /(2.*AN(I))
-ALP (1)

-ALP(I)

AIM*CVP (I) /(ON*AUYX)
AIM*AL(I) *CVP (I) / (OM*ANP (I) *AUX)
BOT(1,3)

-BOT (2, 3)

AUX= 2,*ATM*OM*CG(I) /CVS{I)

BOT (1,4)=
BOT {2,1) =

ALP(I)/ (AUX*AN(I))
=1./A0X

GO0T



BOT (3,4)= -BOT(1,%4)
BOT (4,4)= BOI (2,4)
Cesess MULTIPLY T~MATRIX BY H-MATRIX
IF (I-NLAY) 225,225,1001
425 CONTINUE
Cessss DEFINE THE ' H-MATKIXH OR EE= DIAGONAL OP H-MATRIX
AUX= -OM*AN (I)*H (1) /CVP(I)
AUX= AUX*AILHN
EE (3) =CDEXP (AUX)
EE(1)= 1./EE(3)
AUX= -OM¥*ANP (1) *H (I)/CVS{I)
AUY= AUX*AIN
EE (4) =CDEXP {AUX)
EE(2)= 1./EE(W)

cl'..Il..'..llllll..l.l.‘..ll‘.l..."..‘...l.Il......‘l..l.l.l..

25 DO 20 L=1,4
DO 20 H=1,4

20 TOP{L,M)= TOP{L.,H¥)*EE (4)
I1= I+1

Ceesss . CALCULATE T'HE F-MATRIX FOR EACH LAYER OF SOIL
CALL MATMUL (TOP,BJIT,BOT)
CALL MATMUL (BOT, FMAT(1,1,I), FAAT(1,1,I1))
1001 CONTINUE
CALL MATMUL (BOT,PMAT(1,1,NLAY?Y) ,GMAT)
DET= GMAT (1,1) *GMAT(2,2) -GMAT (1,2)*GMAT(2,1)
C eesese-HERE UT AND VI CONTAIN THE HOR, & VERTI. MOTION AT THE SURFACE
UT= AMPP*GMAT(2,2)-AMPS*GMAT(1,2)
VI= AMPS*GMAT(1,1) -AMPP*GMAT(2,1)
T= UT/DET :
VT= VI/DET
Ceseses CALCULATE APP AND ASVP IN TERMS OF AP AND ASV USING THE BOUNDARY
Ceseses CONDITION THAT THE STRESSES AT THE TOP ARE ZERO
TA= TOP(3,1) *AMPP+TOP (3,2) *AMPS
UB= TOP([4,1) *ANPP+TOP (4,2) ¥ANPS
DET= [OP(3,3)*TOP (4,4)-TOP(3,4)*TOP (4, 3)
Js= (TOP({4%,4)*UA-TOP(3,4) *UB) /DET

SO0T



217

218

VSI= (TOP(3,3)*0B~TOP(4,3) *UA) /DET

APP= -US
ASVp= =-VSI
WRITE(6,217)

PORMAT (17X,'AP' ,18X,*ASV"' , 27X, "APP', 26X, 'ASVP!,/)
WRITE(6,218) AMPP,AMPS,APP,ASVP
FORMAT (10X,E10.2,10X,E10.2,10X,2E10,2,10X,2E10.2,//)

Ceesese CALCULATE IHE DISPLACEMENTS U AND W BY KNOWING AP,APP,ASV,ASVP

UA= TOP (1,3)*US+TIP(1,4)*VS1
UB= TOP(2,3) *US+TIP(2,4)*VSI

Ceeseeso.HERE US AND VSI CONTAIN U AND W AT THE TOP OF THE ROCK

US= TOP(1,1) *AMPP+TOP(1,2) *KAMPS~-UA
VSI=TOP {2, 1) *ANPP+TOP (2,2) *AMPS-UB

Ceesses IF THE ANGLE OF INCIDENCE IS ZERO WE HAVE MOIION ONLY IN ONE DIRECTION.
Cesssse (HOR.OR VERT. FOR P AND SV-WAVES RESPECTIVELY) . THEREFORE IN CALCULATING
Ceosees s AMPLIFICATIONS WE DIVIDE BY ZERO, THIS PART AVOIDS THAT.

399
398
400

J9b
409

395

397

401

IF(ALFA-0.0) 401,399,401
IFP (AMPP-0.0) 393,400,398
IF (AMPS-0,0) 401,397,401
DAUX (1) =0.

DAUX(2)=0.0

UB=AUX

IFP(AMPS-0,0) 395,396,395
WRITE (6,409)

FORMAT (' **ERROR*¥%, NO WAVE WAS INPUT (AP=ASV=0). TERMINATION OF

1 THIS CASE CALLED.')

G0 TO 1003

UA=UT/US

50 TO 402

DAUX (1) =0.0

Daux (2)=0.90

UA=AUX

UB=VI/Vs5I1

GO TO 402

UA=UT/US

UB=VT/VSI

LOT



402 CONTINUE
AUX= UA
ABA= DAUX (1) *DAUX (1)+DAUX (2) *DAUX (2)
ABA=DSOQRT (ABA)
C sssssesERHA= ELASTIC ROCK HORIZONTAL AMPLIFICATION
ERHA (J) =ABA
WRITE(6,211) DAUX(1),DAUX (2),ABA
211 FORMAT (10X ,*HOR AMPL', 3F20,5,/)
AUX= UB
ABA= DAUX (1) *DAUX (1) +DAUX (2) *DAUX (2)
ABA=DSOQRT {ABA)
C svesess ERVA= ELASTIC ROCK VERTICAL AMPLIFICATION
ERVA {(J) =ABA
WRITE(6,212) DAUX(1),DAUX(2),ABA
212 PORMAT(10X,*'VER ANMPL',3F20.5,///)
WRITE (6,213)
213 FORMAT(10X,'HOR ¥JTION®,13X,'REAL',13X,'IMAGLNARY",11X,"AMPLITUDE
%4 .7
ADX= UT
ABA= DAUX (1) *DAUX (1) +DAUX (2) *DAUX (2)
ABA=DSORT (ABA)
Cesessess HERE AABA CONIAINS THE AMPLITUDE OF HOR. MOTION AT THE SURFACE
AABA=ABA
WRITE (6,214) DAUX (1) ,DAUX(2) ,ABA
214 FORMAT (20X,3(10X,£10.3))
CessosssTHIS DO LOOP CALCULATES THE HORIZONTAL MOTION VS. DEPTH
DO 1100 I=1, NLAY

Ii= I+
UA= FMAT({1,1,I1)*UT+PMAT(1,2,11)*VT
AJX= UA

ABA= DAUX (1) *DAUX (1) +DAUX {2) *DAUX (2)
ABA=DSORT (A3A)
WRITE(6,214) DAUX (1) ,DAUX(2),ABA

1100 CONTINUE

C veseses RRHA= RIGID ROZK HOR., AMPLIFICATION

IF (ALPA-0,0) 820,421,420

80T



421 IF (AMPP-0.0) 419,420,419

419 RRHA (J)=0.0
GO TO 422

420 RRHA (J) =AABA/ABA

422 CONTINUE
AUX=1S
ABA= DAUX (1) *DAUX (1) +DAUX (2) *DAUX (2)
ABA=DSQORT (ABA)
WRITE(6,215) DAUX(1) ,DAUX (2),ABA

215 PORMAT (2X,'OUTCROP',11X,3(10X,E10.3),//)
WRITE(6,216)

216 PORMAT (10X,'VER MOIION',13X,'REAL', 13X, 'IMAGINARY',11X,"'AMPLITUDE

¥,/
AUX= VT
ABA= DAUX (1) *DAUX (1) +DAUX (2) *DAUX (2)
ABA=DSQRT (ABA)

(@]

AABA=ABA

C eeeese TIIS DO LOOP CALCULAIES THE VERT. MOTION

#RITE(6,214) DAUX (1) ,DAUX(2),A3A
DO 1200 I=1,NLAY

I1=I+1
UB= FMAT(2,1,I1) ®*UT+FMAT(2,2,I1)*VT
AJX= UB

ABA= DAUX (1) *DAUK (1) +DAUX (2) *DAUX (2)
ABA=DSOQRT (ABA)
#RITE(6,214) DAUX (1) ,DAUX(2),ABA
1200 CONTINUE
C vveeeesRRVA= RIGID ROCK VERT. AMPLIFICATION
IF(ALFA-0,0) 410,411,410
411 IF (AMPS-0.0) 414,410,414
414  RRVA (J)=0.0
GO TO 412
410  RRVA (J)=AABA/ABR
412  CONTINUE
AUX= VSI

sesess s HERE AABA CONTAINS THE AMPLITUDE OF THE VERT.

Vs,

MOTION AT THE SUFRACE

DEPTH

60T



424

425
1000

41

ABA= DAUX (1) *DAUX (1) +DAUX (2) *DAUX (2)
ABA=DSQRT (ABA)
WRITE(6,215) DAUX(1),DAUX (2),ABA
WRITE(6,424)  REHA (J)
FORMAT(' RIGID-HOR AMPL',F22.5,///)
WRITE(6,425) RRVA (J)
FORMAT(' RIGID-VER AMPL',F22.5,///)
CONTINUE
CALL STOIDV (NAME,7,3)
CALL PLOT (ERHA,FREQ,TEX1,TEX2,TEX3,225,36,NF,K)
CALL PLOT (RRHA,PREQ,TEX1,TEXZ,TEX4,260,32,NF,K)
CALL PLOT (ERVA,FREQ,TEX1,TEX2,TEX5,260,32,NF,K)
CALL PLOT(RRVA,PREQ,TEX1,TEX2,TEX6,260,32,NF,K)
IF (NANGC-NANG) 40,41,41
CONTINUE
CALL PLTND (N)
CALL EXIT
END

01T



SUBROUTINE MATMOUL (1,B8,C)

IMPLICIT REAL*8(A-H,0-2)

DIMENSION A(4,4), B(4,4), C(4,4), D(4)
COMPLEX*16 A,B,C,D,SUM

Coevses THIS SUBROUTINE MULTIPLIZS TWO MATRICES. C = A . B
po 10 I=1,4

DO 11 J=1,4

SOUM= 0.

DO 12 K=1,4
12 SUM = SUM+A(J,K)*B(K,I)
11 D{J)= SUAM

DO 10 J=1,4
10 C(d,I)= D(J)

RETURN

END

11T



15

16

20

21
23

SUBROUTINE PLOT(A,B,TIT1,TIT2,TIT3,N1,N2,N3,K)
DIMENSION A (100),B(100) ,TIT1(10),TIT2(10),TIT3(10)
CALL SETHMIV(150,73,250,223)
AMAX=0.
po 10 I=1,N3
IF (AMAX-A(I)) 11,10,10
ANAX=A(I)
CONTINUE
DY=2.0
J=1
GO TO 16
DY=1.0
J=1
CONTINUE
K=K+1
IF(K-1) 20,:20,21
L=2
GO TO 23
L=4
CONTINDE
AMAX=AMAX+1.
IMAX=AMAX
AMAX=IMAX
BMAX=DB(N3) +1,
IMAX=BMAX
BHAX=IMAX
CALL GRID1V(L.0.0,BHBX,0.0.AHAX.1.0,DY.0,0,1,J,2.2)
CALL RITE2V(410,200,1023,0,3,16,1,TIT1,IDON)
CALL RITE2V(100,375,1023,90,3,16,1,TIT2,100H)
CALL RITEB2V(N1,850,1023,0,3,82,1,TIT3,1IDUM)
CALL GRAF1V(B,A,IERR,N3,1)
RETURN
ZND

AN



113

A.2 Computer Program - Case 2

a) Input Format

In order to use the computer program described in
section 5.5 the following input scheme must be followed.

The first cards contains the number of soil layers
considered. FORMAT (I10).

Then a group of cards containing h, Vs' v, B and vy
for each soil layer plus one card for the underlying rock.
FORMAT (5F10.0).

The next card specifies the type of rock considered.
If the number 1 appears in c¢.c 10, elastic rock is considered.
If 0 appears in c.c. 10, rigid rock is considered. FORMAT
(130} .

The last card contains the number of frequencies de-
sired in the analysis, the first frequency at which the analy-
sis starts, and the increment of the frequency. FORMAT (Il0,
2F10.0).

b) Listing of Program




INPLICIT RE
REAL*4 FRH
REAL*4 NAM
DIMENSION

DIMENSION H

DIMENSION T

DIMENSION A

DIMENSION F

DIMENSICHN T

DIMENSION T

DIMENSION P

DIMENSION C

AL*8 (A-H,0-2)
A,ERVA,RRHA,FEVA, FREQ
E,TEX1,TEX2,TEX3, TEXL, TEX5,TEX6

FREQ (100)

(20), VS(20), ANU(20), BETA(2zC), GAM(20)

AUX(2), CG(20), CL(20), CVP{(20), CVS (20)

L{20), ALP(20), AN(20), ANP(20)

E{(4), FMAT(4,4,20), GHAT (4,4)

CP(4,4), BOT(4,4)

EX1(4) ,TEX2 {4) ,TEX3(9) ,TEX4 (8) ,TEX5 (8) ,TEX6 (8) , NAME (2)
(520) ,T(520),U1(52¢,5) ,v1(52€,5),U2(520,5),V2(520,5)
P (260),CT (26C) ,CU1 (260,5) ,CV1({260,5) ,CU2(260,5)

DIMENSION CV2(260C,5)

DIMENSION
DIMENSICN E
COMPLEX* 16
COMPLEX* 16
COMPLEX*16
COMPLEX* 16
COMPLEX* 16
COMPLEX*16
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE

*,1))
EQUIVALENCE
ZQUIVALENCE
DATA NAME/'
DATA TEX1/!
DATA TEX2/'
DATA TEX3/'

1,'00 Y/
DATA TEXU4/'
DATA TEX5/*
DATA TEX6/'

UR(520), CUR(2€0), VR(520),CVR(260)
RHA (100) , ERVA (100) , RRHA (100) ,RRVA (100)
AUX,CG,CL,CVP,CVS, AL,AN,ALP,ANP
FE,AIM,GMAT,CET,VUT,VT, UA,UB, US,VSI
TCP, BOT, FMAT

APP,ASVP

cp,CT,Cl1,CV1,C02,CV2

CUR, CVR
(AUX, DAUX (1))
(CP(1) ,E(1)), (CT(N),T(1)),(CUT(1,1),U1(1,1))
(cvi(1,1),vi(1,1)), (Cu2(1,%),02(1,1)), (Cv2(1,1),v2(1
{CUR(1) ,UR(1)), (CVR(1),VR(1))
(P(1),T(1))

EVAN' ,"MICH'/
FREQ','UFNC','Y ',' CPS'/

AMPL' ,*IFIC','ATIO",'N !/

ELAS',"TIC *,'KGCK',! *, ' HGR','IZGN','TAL ','MCTI®

RIGI','D RC','CK ',! H',"ORIZ","ONTA','L MO','TION'/
ELAS? ,"TIC ',YHOCK"," =~ %,% VER",'TICA',"'L MO',*TION'"/
EIGI',*D RO*,'CK ',*'- V', 'YERTI','CAL ','MOTI','ON '/

PTT



C sk ook o o ok okok 30K ok 30k ok ok ok ok ok sk ok 3 i 0k e ok koo Ak ok ok ok ok o ok 3k kAR K 30R0OK Ak e 3k ok Kk ak  ok ko K ok ok % ok
C THIS PROGRAM IS FCR THE CASE OF STRESS WAVES GENERATED AT THE

C SURFACE AND PROPAGATING THROUGH THE MELCIA. IT CALCULATES THE

C DISPLACEMENTS AS A FUNCTION CF PREQUENCY AND SPATIAL COORDINATES

C X AND Z. IT ALSO CALCULATES AND PLOTS(WITH A STROMBERG CARLSON
C
C
C
C

PLCTTER) THE AMPLIFICATICN RATIOS AS A FUNCTICN OF FREQUENCY.
AR o o R R o SR o ok ok 0 3 o ok kK o o o oo o o ko o ok ok 3k o oKk o ok o o o ok o o

ssnes SET VARIAELE AINM= SQB’I (-1) =1

DAUX (1)= 0.
DAUX (2)= 1,
AIM= AUX

e
C % skt ek ke ok ok ok ook 3k o ok ok ok 3k oK ak ok ok ok afe K K 3K 3k o e i ke ok sl o sl ek sk o ol sl ok ¥k 5 ok ok ke i ok 3k o ke el ok ki ok ok e OR sk ok R ok Kk
Ceesss .READ NUMBER OF LAYERS CF SOIL TO BE STUDIED
C % 3okote dook gk ak ok o A ok o ook 3 ok ok ok ok ok 2k ok ok ok koo i e e e ol ke ofe o sk e ol ol ke ok o e oK K ok i sk % 3 ok 3k ke ke ok vk ke ok o ke ke ok ke g e ok o o 3o O
c

READ (5,100) NLAY
100  FORMAT (I110)

NLAY 1=NLAY +1
C.lI.l..l......-.'.IO-I‘.C"..-..-‘.I...'...Il..l'..'....ll'.-‘.

DO 10 I=1,NLAY1
£
C e o ok ke sl e i sk e ke ke i ol okoale ke ok oK sk 2 3 e o e kol Ok e ok e ke ok i ke e R e o i o ok Rk ak ok R Ak K ek itk R it ki ko R p Rk ROk R X
Cees..READ HEIGHT, SHEAR WAVE VELOCITY, POISSCN%S RATIO, DAMPING
CesesssAND UNIT WEIGHT FOR EACH LAYZR OF SOIL PLUS LAST DATA CARD FOR
Cee...ELASTIC ROCK
C % Aok o o ol ok o o e sk ok e ok 3k K e e ok oK 3 ok ok ok R KK ok K 3K ke i ke ok ok b ko ke o ok e ook o Om i ok e ok ke e ok ok e e e el ok o e 3k kR K K
C

READ (5,101) H(I), VS(I), ANU(I), BETA{I), GAM(I)
101  FORMAT (5F1C.0)
10 CONTINUE

C‘D-...-.I.l...‘....-.Q.'l....."ll‘.’......'I....I.'.‘..II......

C ¥ekkkxeRkekkhbkd bk hk bRk r kR kR kR kR Rk Rk KRR R kR MR A R RN ARk KRR R R AR R F Rk kKX

Ceese.CALCULATE LAME%S CONSTANIS AND WAVE-VELCCITIES IN COMPLEX FCRY
C % dekokokom ook 30K a0 3 ok ok akok ok e ok K o oK 3 0 o ok ARk ke ok ok ok o ke ook ok kol sk o ok 300K K K KOR ko oK K kR R K 20K KOR K

STT



C".-‘...‘..'....'.....Iﬂ.......'.l.l..'.l.‘.-.‘-..--.l.'I.‘.IDC

DO 11 I=1,NLAY1

RO= GAM(I)/32.2

G= RO*VS(L)*V5(I)

E= 2.%G*ANU(I)/(1.-2.%ANU(I))

DAUX (1) = G
DAUX (2)= 2.*BETA (I)*G
CG(I) =AUX
DAUX (1)= E
DAUX (2)= 2.*BETA (1) *F
CL(I)= AUX

CVP (I)= (CL(I)#2.*CG(I)) /KO
CVS{I)= CG (I) /RO
CVP (I) =CDSGRT (CVP (1))
11 CVS(I)=CDSCRT (CVS(I))
c..'....."."‘.----- LA B I B BN B B R B B I B B B B Ik BN BN BN BN BN BN BE OB R BE B BE BN BE BE BN B BN BN NI BE R NN NN BN
K=0
C %k ok oo e ok ol ok ok ok ok sk siok 3 ok ke ok o o e ke dkokok o ko leooke e oo ook ak ke ok o ok i ko ko 3 i 3k ok ek ik ke ke ol sk ke ofe e o i o Ko 3k
Ceesse P= VERTICAL STRESS, T= SHEAR STRESS

Ceeeees INITIALIZE STRESSES TO ZERO AT EVERY POINT ON THE X-AXIS
C ok 3ok ok ol o sk ok o ok O A oK 0K o KR o o 3 ko K ROR sk ook o o ok o o e o ok kR ok K kK o K kK Kok ok

CI.."...I'..'....‘......I...--.l‘-.‘-.-...“-.."."...I.Oliﬂ.l
DO 600 I=1,520
P(I)=0.
C-....'9.......'..'...'...0'..l...l...l.....-..-...--......-l...

DO 600 J=1,NLAY1

U1(1,J)=0.
02(I,J)=C.
vi(I,J)=0.

600 V2(I,J)=0C.
CI.-‘.I-.‘.-.IQICII.I...‘-'l.‘.l.'..'-..-.‘...-...Ol..l.-..I-l..
NPP=256
NPS=256
NPT=256
NCPS=2%NPS
NCPT=2%NPT

91T



NPR=NPP/2
C
C ® %30k ook u fokoR o sk sk ki ok 3 o 3ol ok ok ok 330K 3000k ke ook kol 3ok ok ko ok ol ok ok R o iR ok ok IO 30k ok ok ok kok ok ok Kokl ok ok ok
L a3 SET VERTICAL AND SHEAR STRESS TG UNIT AT MIDPCINT OF TH(
Coeeees X-AXIS(Z2*NPR-1),
Cwnman (2%¥NPR-1) IS THE MILPCINT BECAUSE THE VARIABLE P & T ARE LEFINED AS
Cesesess REAL BUT THE DISPLACEMENTS ARE DEFINED AS COMPLEX. A CCMPLEX VARIABLE
= —— REQUIRES TWO STORAGE LOCATION INSTEAD OF ONE AS IS THE CASE FOK REAL.
C ******#**#**####**t**********#****t*##t#*****t#******#*******#*#**###****#**tt
P(1)==-1.
CALL FQUR2 (E,NPF,1,-1,1)
ANPP=NPP .
Ceewsss DSI=1/( TOTSL NO. OF BCINTS)
DSI=1./ANPP
C
C **#***tt**tt****t**#**t*&**#*t**********t***#*#*#**m###*#*t***t*#******#****x*
C..O-... READ IROCK
Cesesee IROCK=0 KEPRESENTS RIGID ROCK CASE
Ceeeses IROCK=1 REPRESENTS ELASTIC ROCK CASFE
3wy READ NO. OF FREQUENCIES, INITIAL PRE¢. AND INCREMETAL FREyY.
C % dkkok ook ek R ok sk ok ook ko ki 2 ok o ok ok ok ok 3 e ook ke sk e o ok ok ok ook sk ook ook ok 0K 3 s 3k ok ok i ol ok ke ok ok e ok ok ok K ok
C
READ (5,100) IROCK
IF(IROCK) 802,802,803
802 WRITE(6,810)
810 PORMAT (1H1,50X, "RIGLIL ROCK CASE?)
GO TO 815
803 WRITE(6,811)
811 FORMAT (141,5CX, "ELASTIC RCCK CASE')
815 WRITE(6,816)
816 FORMAT (50X, " ¥ xkxknkihkxhhxxxt //)
READ (5,102) NF,F1,DF
102 FORMAT (I10,2F10.0)
WRITE(6,20C) NLAY
200 FORMAT (50X ,15,2X,'LAYERS',//)
WRITE (6,201)

LTT



201  FORMAT (2X, *LAYER',3X,'THICKNESS', 1X, 'SHEAR VEL',1X,'EOISS RAT',3X,
1'DAMPING', 2X,"UNIT WEIGHT',/)
WRITE(6,202) (I,H(I),VS(1),ANU(I),BETA(I),GAM(I),I=1,NLAY)
202  PORMAT (I5,5X,5F10.2)
WRITE(6,203) VS(NLAY1),ANU(NLAY1),BETA(NLAY1),GAN (NLAY1)
203 FORMAT(2X,'ROCK',14X,4F10.2,//)
c."’l...l...-.IO'I.....'I-.'.IC..'.'...OI.QOQIOUOOICOOOOO'I'D.l
DO 1000 JF=1, NF
AI=JF-1
FR= F1 + AI*DF
FREQ (JF) =FR
OM= 6.28318%FR
ALIM=VS(1) /FR
C *****t**#***#*****************#************#*****¥¥¥#**#*#**********#**#******
Ceesse SELECT INCREMENTAL LENGTH(DX)= VS/( 10%FR)
Ceveeees TOTX= TOTAL LENGTH CF X-AXIS
Ceeees DXI=1./( TCTAL LENGTH CF X-AXIS )
C dekakok akokoak ok 3k ok ook ok ook ok i ok ok o ok ok i e ol o gk koK ok aok kol o e sk i ok 3k e ok ok 3k 3 ok ok ok ok ak ok ol ok ok ok ok koK sk o 3 ok ok e ok ok ok K
DX=ALIM/10.
TOTX=ANPP*DX
DXI=1./TOTX
C %ok ook dokode e o ok ok ok Ak oK 3 20K o 0 ok ok ok ik ok ok o o ok K 3k ok ok oK 3 3k ok ak o ok o e 3k 9K ok ok koK sk ok o o 53K S o ke ke kR
Cevosss THIS DO ICCP CALCULATES THE MOTION AT EACH INTERFACE FOR A SPECIFIC
Cevsses POINT ON THE XI-AXIS (POINT CALLED JOSE). IT STARTS FRGM BOINT 1

Ceconnn AND ENIS AT MIDPCINT( NPR).
C %Ko o o o K e oK 2 0K o Ok 3 o ok e ok o K ok R A K KK 3 ROK R R ok 3 ok ok AR R R R Rk

C....I.....0-...'-......-".....'I..........-.........O....‘--..

DO 700 JOSE=1,NPR

AJ=JO0SE-1

MARY=1

LUIS=JCSE
C % e Kok o koo sk ook ok ok ok ko ok % R 3k o ok ko 3k ok ok ok Rk ok 0 3k o w3k A YOk ok ik 3k i ok o ok e ok ok ok ke e aie e N i ok R ok ke sk ok o
Ceseoes XI= TRANSFORMED COORDINATF FROM FOURIER TRANSFORM
Ceewes NOTE THF INCREMENT IN THIS NEW TRANSFCEMED XI-AXIS IS DXI=N2%P1/ (NPP*DX
C ook e ok o ek ok kR Sk ok ok ok ke ke i ok e X ak i o ke ok Skoaioke e e i ik o i R ke ke ok ok e ook K S o ok i ok K vk i ok Rk KR oK ¢ ok ok K kK 3K K ko ok ok K ok

{I=AJ*DXI

8TT



710 CONTINUE
C‘...Ql.."..-.O'......‘l'........l‘.".!...‘.".'...'I.....'....

DO 30 L=1,4

DO 30 M=1,4
30 FMAT (L,M,1)=0.

DO 31 L=1,4
31 FMAT (L,L,1)=1.

XI=6.2831853*)I
C *****#******************#****#***t*****#*##******#******#***#******#****#*****
C.ee.. THIS DO IOOP CALCULATES THE PARAMETERS L,LP,N,NP FOR EACH LAYER.
C *#X***************#**************t*t*******i***#****%#*******#K****tﬂtt*#****¥

DO 701 I=1,NLAY1

AL (I)=-XI*CVP(I)/OM

ALP (I) =-XI*CVS(I)/0HM

AN (I)=1.-AL (I)*AL (I)

AN (I) =CDSQRT (AN (I))

ANP(I)=1.-ALP(I)*ALP(I)

ANP (I)=CDSQRT (ANP (1))

AUX=0OM*AN (I) /CVP (I)

AA=DABS (DAUX (2))

AA=DAUX (2) /AA

AN(I)=-AN(I)*AA

AUX=0M*aANP (I)/CVS (I)

AA=DABS (DAUX (2))

AA=DAUX (2) /AA
701  ANP(I)=-ANP{I)*AA
C".."..........C‘.‘.......‘....II'..O ® 8 8 8 89 89 *H 88 T O N SR ED e B O

DO 1001 I=1,NLAY1
C MR O o RO K R K R KA KK R ke K K K K 38 o R SR oK Rk ko ok ok ok KK K oK ok Kk ok

Ceev.. DEFINE T-MATRIX
C **#*****#*!*i##*#****#***********#*******##**ﬁ***#************t****#*********$
TOP (1,1)= AL (1)
TOP (1,2)= -ANF(I)
TOP(1,3) = AL (I)
TOP (1,4) = ANF(I)
TOP(2,1)= =-AN(I)

6TT



TOP(2,2)= =-ALP(I)
TOP(2,3)= AN(I)
TOP(2,4) = -ALP(I)
AUX= AIM*0M/CVP(I)
TOP(3,1)= =~AUX* (CL (L) +2.#%CG(I)*AN (I)*AN(I))
TOP(3,2) = -AUX*2.%CG (I)*AL (I)*ANP (I)
TOP (3,3)= TCP(3,1)
TOP (3,4)= -TOP(3,2)
AUX= AIM*OM/CVS (I)
TOP (4, 1) = AUX*2,%CG (I)*ALEF (I)*AN(I)
TOP(4,2) = AUX*CG (I)* (ALP (I)*ALP (I)-ANP (I)*ANP (1))
TOP (4,3)= -TOP{4,1)
TOP (4,4)= TCP(4,2)
C 2k sok e ke A ok ok koo ok ok e ok ok ok ok e ke o ok ok ok ok ok e e ik koo ok e ok ol 0O o0 ok e ok 0%k O o sk o ok ok Rk R R R R R o Rk oK

Cewess DEFIMF THE INVERSE OF T-MATRIX
C ok ook ok okogok st o ok okoon ok ok ok o o ok S SRR e ok ke oh o o sk ok O kK ok 0k K ke R KoK X KK K KRR K

AUX= (CL (I)+2.*CG(I)) *z.
BOT (1, 1) = 2.%*CG (I)*AL (I) /AUX
BOT(2,1)= =(CL(I)+2.*CG(I)*AN(I)*AN(I))/(AUX*ANP(I))
BOT (3,1)= BOT(1,1)
BOT(4,1)= -BOT(2,1)
BOT (1,2)= (ALP(I)*ALP (I)-ANP (I)*ANP (I))/ (2.*AN(I))
BOT (2,2)= -ALP(I)
BOT{3,2)= -BCT(1,2)
BOT (4,2)= -ALP(I)
BOT (1,3)= AIM*CVP (I)/(CH*AUX)
BOT (2,3) = AIM*AL (I)*CVP (I)/(OM*ANP (I)*AUX)
BOT (3,3)= BCT{1,3)
BOT (4,3)= -BOT(2,3)
AUX= 2.%ALM*CM*CG (I)/CVS (I)
BOT (1,4) = ALP(IL)/(AUX*AN (1))
BOT (2,4)= =-1./AUX
BOT (3,4) = -BCT(1,4)
BOT(U,4)= BOT(2,4)
IF (I-NLAY) 225,225,10601
225  CONTINUE

0ZT



C % sk ok ok ok ok o ook ok ok ok ok okl ok o ok e ok ok e ok ok ok ok ok ok 3Rk ook K ok Rk ok ok b o ok 55 ok R Rl k%K K o ok ok N ke ok kol e ok ok K o Ok ek ok R X

Ceee.. DEFINE THE ' H-MATRIXH CK EE= DIAGONAL CF H-MATRIX
Ceevses MULTIPLY T-MATRIX BY H-MATRIX
C ok o o ok ok o ok ok ok ks ok kK ok ok 0K ok ok 3k o ok KRR KR kK R o b kR ok o R R R KK R R R K X
AUX= -OM*AN (I)*H(I)/CVP (I)
AUX= AUX*AIM
EE(3) =CDEXP (AUX)
EE(1)= 1./EE(3)
AUX= -OM*ANP (I) *H(I)/CVS (I)
AUX= AUX*AIM
EE (4) =CDEXE {AUX)
EE(2)= 1./EE (4)
25 DO 20 L=1,4
DO 20 M=1,4
20 TOP (L,M)= TCP(L,H)*EE (¥)
I1= I+1
C 3 e 3 o & o ok 3k ko 3 ok ok ok sk e ok ok ok 3k ok ok 3 ok A0k o % ki ol ok 3k k ke ko o ik ok o R O K oK ok o oK Kok o koo e ok o R RO R K
Cevvess CALCULATE THE F-MATRIX FCE EACH LAYER CF SOIL
C 3 3 3 o ok 3 2K ok 2K 3 3 3k ok 2 ok kA ok ok ok i 3k ak o 2 ok ook s ok ok ok ok ek 2k e e K Rk R I kK ek R K i ok ok OK K ok i g i R ok R 3Rk R ok ok
CALL MATMUL (TOP,BOT,BOT)
CALL MATMUL (BOT, FMAT(1,1,I), FMAT(1,1,11))
1001 CONTINUE

C-----.na.--.-..-a--ooa--.'a'o--oo'tvt-----OOOCiOOOIO0!-'000----

CALL MATMUL (BOT,FMAT (1,1,NLAY1) ,GMAT)
IF (IROCK) 702,702,703
C ook ke ok ok ook 3 0k ok ok ook oo ok 3k KK o ok oKk KR K KKK RO R KK R K K R K ok R K K Kk R R

Ceeeseses THIS PART CALCULATES THE MOTION FCR THE RIGID-ROCK CASE
C *#*#t***t*****t#*##***#*****#*******!****##**#*****#**********#****###*#**#**K
702  DET=FMAT (1,1,NLAY1) *FNAT (2,2, NLAY 1) -FMAT (1,2,NLAY1)*FMAT (2, 1,NLAY1

*)

UT=FMAT(1,3,NLAY1)*CP (LUIS)

VT=FMAT (2, 3,NLAY1)*CP (LULS)

UA=-UT*FMAT (2,2,NLAY1) +VI*FMAT (1,2,NLAY1)

UB=UT*FMAT (2,1,NLAY 1) -VI*FMAT (1,1, NLAY1)

CU1(LUIS,1)=UA/DET

CV1(LUIS,1)=UB/DET

IeT



UT=FMAT{1,4,NLAY 1) *CT (LUIS)
VT=FMAT (2,4,NLAY1) *CT (LUIS)
UA=-UT*FMAT (2,2,NLAY 1) +VI*FMAT (1,2, NLAY 1)
UB=UT*FMAT (2,1, NLAY1) -VT*FMAT (1,1,NLAY1)
CU2 (LUIS,1)=UA/DET
CV2(LUIS,1)=0B/DET
GO TO 704
C **##*t##****#***************#*#**i*****#***********#*i*****************3******
C ..... THIS PART CALCULATES THE MOTION FOR THE ELASTIC CASE.
gy ****#*******##*t#****t#*#**#****************#!*******#*********#******#****#*#
703  DET=GMAT (1, 1) *GMAT (2,2) -GMAT (1,2) *GMAT (2, 1)
UT=GMAT (1, 3) *CP (LUIS)
VT=GMAT (2,3) *CP (LUIS)
UA=-UT*GHAT (2,2) +VI*GMAT (1,2)
UB=UT*GMAT (2, 1) ~VT*GHAT (1,1)
C **************#******#*****#**t****#*#**#**#************#t#******#*#*#*#***tm*
Ceweu. HERE CU1 & CV1 CONTAIN THE HOR. & VEET. MOTICN AT THE SURFACE
i e & FOR THE POINT (JOSE®=LUIS) ON THE XI-AXIS.
C *#t#*****t*#****#*#**##***#****#***t*#**#**#1******#****!**&*#t*#***k**i**#***
CU1(LUIS,1)=UA/DET
CV1(LUIS,1)=UB/DET
UT=GMAT (1, 4) *CT (LUIS)
VT=GMAT (2, 4) *CT (LUIS)
UA=-UT*GMAT (2,2) +VT*GMAT (1,2)
UB=GT*GMAT (2, 1) -VI*GMAT(1,1)
CU2(LUIS,1)=UA/DET
CV2(LUIS,1) =UB/DET
704  IF(NLAY-1) 707,706,706
C ¢ o e e ok ok R R R ok K o ok kR K KK K AOK OK R R R RO KOk A K R OOk Rk kR R kR K
C..... KNOWING THE MOTION AT THE SURFACE THE MOTION AT THE INTERFACES IS
Cissens OBTATNED
C ok e ok ok oK ok kK R o R KRR KKK K R K 3 K KKK 6 ROk KR o OK K KK Kok ok kK
766 DO 705 I=2,NLAY1
CU1(LUIS,I)=FMAT(1,1,I)*CC1(LUIS, 1) +FMAT (1,2,I)*CVI(LULS, 1) +FHAT(1
*,3,1)*CP (LUIS)
CV1(LUIS,I)=FMAT(2,1,I)*CU1(LUIS, 1) +FNAT (2,2,I)*CV1(LUIS, ) +FHAT (2

¢TT



*,3,I)*CP (LULS)
CU2(LUIS ,I)=FMAT(1,1,1)*CU2(LULS,1)+FMAT(1,2,I)*CV2(LUIS,1)+FMAT (
*1,4,I) *CTI(LUIS)
705  CV2(LUIS,I)=FMAT(2,1,1)*CU2(LUIS, 1) +FMAT(2,2,1)*CV2(LUIS, 1) +FMAT (2
*,4,I)*CT (LULS)
C #*#k***#**#**#*t*******#**#******#*****#*###*#*******t*******#*********#**?***
Ceeeses THIS PART CALCULATES THE MOTION FOR THE ELASTIC HALF-SPACE.
Ceeees CVR= VERTICAL MOTICN AT POINT LUIS CN THE XI-AXIS DUE TO A UNIT VERT.
Ceesee  STRESS '
Ceew.. CUR= HORIZONTAL MOTION AT EACH POINT ON THE XI-AXIS DUE TO A SHEAR STR.
C #*t****#*#*##t***t**#*****##**##*******#*t***#***#**#********#****************
707  DET=BOT(1,1)*B0T(2,2)-EOT (1,2)*BOT (2,1)
UT=BOT (1, 3) *CP (LUIS)
VT=BOT (2,3) *CP (LULS)
UB=UT*BOT (2,1)-VI*BOT (1, 1)
CVR(LUIS) =UB/DET
UT=BOT (1,4) *CT (LUIS)
VI=BOT (2,4) *CT (LUILS)
UA=-UT*BOT (2,2) +VIT*BOT (1,2)
CUR (LULS) =UA/DET
C *****##*##*******t*******##*****#*********i#********¥*****#************#******
Ceewe. THIS PART USES THE SYMMETRY ABOUT THE MIDPOINT TO CALCULATE THE MCTICN
Ceewee AT THE OTHER END OF THE XI-AXIS STARTING FKOM THE LAST PCINT (NPP)
C t**********************t##**************#**##********#***#*********#******#*!#
GO TO (7068,700),MARY
708 MARY=2
AJ=JOSE
XI=-AJ*DXI
LUIS=NPP+ 1-JCSE
GO TO 710
700 CONTINUE
C *ttt*#*****#*******#**F#K****t********¥*#**#*2****$#*¥******#*t****t**m*#*****
Cosnns AT THIS POINT THE MOTICN IS TRANSFCEMED FROM THE XI-AXIS(FOURIZR-
Ceesees TRANSF.) BACK INTO THE ORIGINAL X-AXIS BY MXANS OF FOURIER TRASFOMS.
C ***t********t*******t*****#******l**#******##*******#****3*******#M#t*ﬁ******ﬁ
DO 711 I=1,NLAY1

€CT



CALL FOUR2 (U1(1,I),NPP,1,1,1)
CALL FOUR2 (V1(1,I),NEE,1,1,1)
CALL FOUR2 (U2(1,I),NPP,1,1,1)
711 CALL FOUR2 (Vv2(1,I),NEP,1,1,1)
DO 712 I=1,NLAY1
DO 712 J=1,NPP
U1(J,I)=U1(J,I)*DSI
U2(J,I)=U2 (J,I)*DSI
V1(J,I)=V1(J,I)*DSI
712 V2(J,I)=V2(J,I)*DSI
C % ok ok ok ok ok o ok o OF ok K R o o o ok ok A ROK R R KK K K K K K K o K K R K K K o KK ek 3 K K ok ok KK K
Ceeesss CU1(J,2) CONTAINS U-CISPLACEMENT OF POINT J AT LAYER INTERFACE I
Ceesees DUE TO A UNIT VERTICAL STRESS
Ceseseee SIMILARLY CV1 CONTAINS W(VERTICAL) DISPLACEMENT
Ceeees CU2 & CV2 ARE THE DISPLACEMENTS DUE TO A UNIT SHEAR STRESS.
C ok sk o o o ok K 0K 0K K 0K 3 3 oK 3 K o o 3 ok o R o o o e R e o R O K o ke K K KK K 0K R 0 ok ok oKok o R K R Rk R X
CALL FOUR2 (UR,NPP,1,1,1)
CALL FOUR2 (VR,NPP,1,1,1)
CUR (1) =CUR (1) *DSI
CVR (1) =CVR (1) *DSI
WRITE (6,21C) FE,OH
210  FORMAT (1H1,20X,'FREQUENCY',F6.2,!' CPS ',F6.2,' RAD/SEC',//)
WRITE(6,880) DX
880  FORMAT(/,1X,*' DX FOR THIS FREQUENCY IS ',F10.3)
DO 920 I=1,NLAY1
WRITE(6,91C) I
910  PORMAT (1H1,20X, 'INTERFACE NO ', I2,/20X xkkxaxsickrknset /)
WRITE(6,911)
911  PORMAT (20X,'UNIT VERTICAL STRESS', /20Xt ¥xkkxkxkssmrkkxrkkxkl //)
WRITE (6,912)
912  FORMAT(' PCINT NC ',' X-COORD. *,20X,'HORIZONTAL MOTION',42X,'VER
1TICAL MOTICN?Y)
DO 901 J=1,NPR
AJ=J-1
X=AJ *DX
AUX=CU1(J, I)

FeT



901
913

914

502
920

717
713
718

123

714

724

ACU1= DAUX (1)*DAUX (1) +CAUX (2) *DAUX (2)
ACU1=DSQRT (ACU1)
AUX=CV1(J,I)
ACV1= DAUX (1) *DAUX (1) +CAUX (2) *DAUX (2)
ACV1=DSQRT {ACV1)

NRITE(6,913) J,X,CU1(J,I),ACU1,CV1(J,I),ACV1
PORMAT (2X,13,5X,F10.3,5X,3(5X,E10.3),1C0%, 3(5X,E10.3))
WRITE (6,914)
FORMAT (///,20X, " ONIT SHEAR STRESS',/20X " *#kkxxickkkkxhkkkx?  //)
WRITE (6,912)
DO 902 J=1,NPR
AJ=J-1
X=AJ*DX

AUX=CU2(J, I)
ACU2= DAUX (1) *DAUX (1) +LAUX (2) *DAUX (2)
ACU2=DSQRT (ACU2)
AUX=CV2(J, 1)

ACV2= DAUX (1) *DAUX (1) +CAUX (2) *DAUX (2)
ACV2=DSQRT (ACV2)

WRITE(6,913) J,X,CU2(J,I),ACUH2,CV2(Jd,I) ,ACV2
CONTINUE
N=0

N=N+1
GO TO (713,714,715,716) (K

AUX=CU2 (1,1) /CUR (1)

AMPL=DAUX (1) *DAUX (1) +DAUX (2) *DAUX (2)
AMPL=DSQRT (AMPL)
GO TO (723,724,725,726),N

ERHA (JF) =AMPL

IP (JF.EQ. 1) SERHA=ERHA (1)

ERHA (JF)=ERHA (JF) /SERHA

GO TO 717

AUX=CV1(1,1)/CVR(1)

GO TO 718

ERVA (JF) =AMPL

IF(JF.EQ.1) SERVA=ERVA (1)

SCT



11

5

725

716

726

10

<)

ERVA (JF)=ERVA (JF) /SEEVA
GO TO 717
AUX=CU2(1,1) /CU2{(1,NLAY1)
GO TO 718
RRHA (JP) =AMPL
IF(JP.EQ. 1) SRRHA=RRHA (1)
RRHA (JF) =RRHA (JF) /SRREA
G0 TO 717
AUX=CV1(1,1)/CV1(1,NLAY1)
G0 TO 718
RRVA (JF) =AMPL
IF (JF.EQ.1) SRRVA=RRVA (1)
RRVA (JF) =RRVA (JF) /SRRVA
CONTINUE
CALL STCIDV (NAME,7,3)

CALL PLOT(ERHA,FREQ,TEX1,TEX2,TEX3,225,36,NF,K)
CALL PLCT (RRHA,FREQ,TEX1,TEX2,TEX4,260,32,NF,K)
CALL PLOT(ERVA,FREQ,TEX1,TEX2,TEX5,260,32,NF,K)
CALL PLCT (RRVA,FREQ,TEX1,TEX2,TEX6,260,32,NF,K)

CALL PLTND (N)
CALL EXIT
END

9CT



C

Ceeess THIS SUBRCUTINE MULTIELIES TWO MATRICES.

12
11

10

IMPLICIT REAL*B (A-H,0-2)

DIMENSION A (4,4),

B(4,4), C(4,4),

COMPLEX*16 A,B,C,D,SUH

DO 10 I=1,4
DO 11 J=1,4
SUM= 0.

DO 12 K=1,4

SUM = SUM+A(J,K)*B(K,I)

D(J)= SUM
DO 10 J=1,4
CJ,I)= D(J)
RETURN

END

D (4)

LCT



SUBROUTINE PLOT(A,B,TIT1,1IT2,TIT3,N1,N2,N3,K)
DIMENSION A(100),B(100),TIT1(10),TIT2(10),TIT3(10)
CALL SETMIV(150,73,25C,223)

AMAX=0.

J=1

DO 10 I=1,N3

IP (AMAX-A(I)) 11,10,10

1 AMAX=A (I)
10 CONTINUE
Ceveeaee. ADVANCE FRAME (L=4), EXCEPT FIRST FEAME(L=2)
K=K+ 1
IF(K-1) 20,20,21
20 1=2
GO TO 23
21 L=4
23 CONTINUE

Ceevses SELECT INCREMENT DY ANC MAXIMUM VALUES ON HOK. AND VERT. LINES (AMAX,
Cos wv we »  FHAT)
Cevee.. DY IS SELECTED SC THAT WE HAVE ABOUT 6 (NSQ) VERTICAL LINES. IF A
Ceeees. DIFFERENT VALUE CF NS¢ IS CESIREC JUST CHANGE NSC CARD

NSQ=6

ANSQ=NSC

IMAX=AMAX/ANSQ

IDY=IMAX+1

BMAX=NSQ*ILY

IDIFF=BMAX-AMAX

IF (IDIFF-ILCY) 4,4,5
5 NSQ=NSQ-1
4 CONTINUE

AMAX=NSQ*ILY

DY=IDY

BHAX=B (N3) +1.

IMAX=BMAX

BMAX=IMAX

CALL GRID1V(L,0.,0,BMAX,0.0,AMAX,1.0,DY,C,C,1,J,2,2)

CALL RITE2V(410,200,1023,C,3,16,1,TIT1,ILUN)

8CT



CALL RITZ2V(100,375,1023,99,3,16,1,TIT2,1DUN)
CALL RITE2V(N1,850,1023,0,3,N2,1,TIT3,ILUN)
CALL GRAF1V(B,A,IERR,N3,1)

RETURN

END

6CT
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20

30
40

50
60

70

80

90

10C

SUBKOUTINE FCUR2 (DATA,N,NDIM,ISIGN,IFCRHN)

IMPLICIT REAL*8(A-H,0-2)

DIMENSION DATA(1), N(1)

NTOT=1

DG 10 IDIM=1,NDIM

NTOT=NTOT* K (IDIM)

IF (IFORN) 7C,20,20

NREM=NTOT

DO 60 IDIN=1,NDIM

NREM=NREM/N (IDIM)
NPREV=NTOT/ (N (IDIM) *NKEM)

NCURR=N (IDIN)

IF (IDIM-1+IFCRM) 30, 30C,40
NCURR=NCURE/2

CALL BITRY (DATA,NPREV,NCURR,NREH)

CALL COOL2 (DATA,NPREV,NCUER,NREM,ISIGN)
IF (IDIM-1+IFORM) 50,5C, 60

CALL FIXRL (DATA,N(1),NREM,ISIGN,IFCRH)
NTOT= (NTOT/N (1)) *(N(1) y2+1)

CONTINUE

RETURN

NTOT= (ETOT/N{1)) *(N{1) /2+1)

NREM=1

DO 100 JDIM=1,NDIH

IDIM=NDIM+1-JDIN

NCURR=N {IDIM)

IF (IDIM-1) 8(,80,90

NCUKR=NCURE /2

CALL FIXRL (DATA,N(1),NREM,ISIGN,IFORM)
NTOT=NTOT/ (N (1) /2+1) %N {1)
NPREV=NTGT/ (N (IDIM) *NREM)

CALL BITRV (DATA,NPREV,NCUER,NREM)

CALL COOL2 (CATA,NPREV,NCURR,NREH, ISIGN)
NREM=NREZM*N (IDIN)

RETURN

END

FF2

FF2
FF2
FF2
FF2
FF2
FF2
FF2
FF2
FF2
FF2
FF2
FF2
FF2
FF2
FF2
FF2
FF2
FF2
FF2
FF2
FF2
FF2
FF2
PF2
FF2
FF2
FF2
FF2
FF2
fFP2
fFF2
FF2
FF2
FEF2

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
T
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62~
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SUBROUTINE BITRV (DATA,NPREV,N,NREMN) BIT
IMPLICIT REAL*8(A-H,C-2)

sl oNoNeRo XS

10

20
30
40
50

60

SHUFFLE THE DATA BY '"EIT REVERSAL'. BIT
DIMENSION DATA(NPREV,N,NEEHN) BIT
DATA(I1,I2REV,I3) = DATA(I1,I2,13), FOR ALL 11 FROM 1 TO NPREV, BIT
ALL I2 FROM 1 TO N (WHICH MUST BE A PCWER OF TWG), AND ALL I3 BIT
FROM 1 TC NREM, WHERE I2REV-1 IS THE BITWISE REVERSAL OF I2-1. BIT
FOR EXAMPLE, N = 32, I2-1 = 10011 AND I2REV-1 = BIT
DIMENSION DATA(1) BIT
1P0=2 BIT
IP1=IPO*NPREV BIT
IP4=IP1*N BIT
IP5=IP4*NREM BIT
I4REV=1 BIT
L0 60 I4=1,IP4,IP1 BIT
IF (I4-I4REV) 10,30,30 BIT
I1MAX=I4+IF1-1IPO BIT
DO 20 I1=I4,I1MAX,IPO BIT
DO 20 I5=I1,IPS,IP4 BIT
ISREV=I4REV+15-14 BIT
TEMPR=DATA (I5) BIT
TEMPI=DATA (I5+1) BIT
DATA (I5) =DATA (ISREV) BIT
DATA (I5+1) =LATA (I5REV+1) BIT
DATA (ISREV)=TEMPR BIT
DATA (I5REV+1)=TEMPI BIT
IP2=IP4/2 BIT
1P (I4REV-IP2) 60,60,50 BIT
I4REV=I4REV-1P2 BIT
I1P2=1P2/2 BIT
IF (IP2-IP1) 60,40, 640 BIT
I4REV=I4REV+IP2 BIT
RETURN BIT
END

O OOk, EwWwN

10

-

13
14
15
16
17
18
19
20
21
22
23
24
25
26
21
28
29
30
31
32
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SUBEOUTINE CCCL2 (DATA,NEKEV,N,NREM,ISIGN) co2
IMPLICIT REAL*8 (A-H,0-2)
POURIER TRANSFORM OF LENGTH N BY THE CCCLEY-TUKEY ALGORITHH. co2

ey

£
BIT-REVERSED TO NORMAL OKLER. coz2 3
DIMENSION LATA{NPREV,N,NEEN) co2 4
COMPLEX DATA co2 5
DATA (I1,J2,I3) = SUM(DATA(I1,I2,13)*EXP(ISIGN*2%PI*I*((I2-1)% Co2 6
(J2-1) /N))), SUMMED OVER I2 = 1 TO N FOR ALL I1 FROM 1 TO NPREV, C02 7
J2 FROM 1 TO0 N AND 13 FRCE 1 TO NREM. N MUST BE & POWER OF TWO. (€02 8
FACTORING N BY FOURS SAVES ABOUT TWENTY FIVE PERCENT OVER FACTOR- CC2 9
ING BY THOS. co2 10
NOTE--IT IS NOT NECESSARY TO REWRITE THIS SUBROUTINE INTC COMPLEX CO02 11
NOTATION SO LONG AS THE FCRTRAN COMPILEEF USED STOKE5 KEAL AND coz 12
IMAGINARY PARTS IN ADJACENT STORAGE LCCATIONS. IT MUST ALSC co2 13
STORE ARRAYS WITH THE FIRST SUBSCRIPT INCREASING FASTEST. co2 14
DIMENSION CATA(1) co2 15
TWOPI=6.2831853072*DFLOAT (1SIGN)
IP0=2 coz2 17
IP1=IPC*NPREV coz 18
IP4=IP 1*N co2 19
IP5=IPU*NREM coz 20
I1P2=1IP1 coz 21
NPART=N cc2 22
IF (NPART-2) 50,30,20 co2 23
NPART=NPART/4 Co2 24
G0 TO 10 coZ 25
DO A FOURIER TRANSFCRM CF LENGTH TWO co2 26
IP3=IP2%2 co2 217
DO 40 I1=1,IP1,IPC co2 28
DO 40 I5=I1,1IP5,IP3 coz 29
Jo=15 co2 30
J1=30+IP2 co2 31
TEMPR=DATA (J1) c02 32
TEMPI=DATA (J1+1) co2 33
DATA (J1) =DATA (J0) -TEMEF co2 34
DATA (J 1+ 1) =CATA (JO+1) -TEMEI ccz 35

it 54 §



40

50

60

70

80

DATA (JO)=DATA (JO) +TEMPE
DATA(JO41)=CATA (JO+1) +TEMPI
GC TO 140

DO A FOURIFR TRANSFORM OF LENGTH FOUR (EFRCM BIT RazVERSED ORLCER)

IP3=IP2%4
THETA=TWCPI/DFLOAT{IP3/IP1)
SINTH=DSIN (THETA/2)
WSTPR=-2,*SINTH*SINTH

COS(THETA) -1, FOK ACCUBACY.

WSTPI=DSIN (THETA)

4R=1.

WI=0.

DO 130 I2=1,IP2,IP1

IF (I2-1) 70,70,60
W2R=WR*WR-WI*WI

N2I=2.*WNR*WI

W3R=W2R*WR-W2I*WI
W3I=W2R*WI+W2I*WE
I1MAX=I2+¢IF1-1P0

DO 120 I1=I2,I1MAX,IPC

DO 120 I15=I1,IP5,IP3

J9=15

J1=J0+1IP2

J2=J141P2

J3=J2+1IP2

IF (I2-1) 96,90,80

APPLY THE PHASE SHIFT FACTCRS
TEMPR=DATA (J 1)

DATA (J1) =W2R*TEMPR-W2I*CATA (J1+1)
DATA (J14 1) =W2R*DATA (J 14 1) + W21 *TEM PR
TEMPR=TDATA (J2)

DATA (J2) =WR*TEMPR-WI*DATA (J2+1)
DATA (J2+1) =WR*DATA (J2+ 1) + KI*TEMPR
TEMPR=DATA (J3)

DATA (J3) =W3R*TEMPR-W3I*DATA (J3+1)
DATA (J3+1) =W3R*DATA (J3+1) +W3I*TEMPR

co2
coz2
Cc02
Co2
coz2

coz2
Co2

co2
co2
co2
coz2
co2
coz2
CGL
Co2
co2
co2
coz2
Cco2
co2
co2
co2
Co.2
Coz
co2
Co2
co2
co2
Co2
coZ
coz2
co2
C02

36
37
38
39
40

43
44

46
47
43
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
6u
65
66
67
638
69
70

EET



90

100
110

120

130

140

15¢C

TOR=DATA (JO) +DATA (G 1)
TOI=DATA(JC+1) +DATA (J1+1)
T1R=DATA (JC)-DATA (J 1)
T1I=DATA (JO+1) -DATA (J1+1)
T2R=DATA (J2) +DATA (J3)
T2I=DATA (J2+1) +DATA (J3+1)
T3R=DATA {J2) -DATA (J3)
T3I=DATA (J2+1)-DATA (J3+1)
DATA (J0O) =TCR+T2R

DATA (JO+1) =T0I+T2I

DATA (J2) =TCR-T2R

DATA (J2+1) =TOI-T2I

IF (ISIGN) 1€0,100,110
T3R=-T3R

T3I=-T3I

DATA (J1) =T1R-T31I

DATA (J 1+ 1) =T1I+T3R

DATA (J3) =T1R+T3I

DATA (J3+1) =T1I-T3R
TEMPR=WR
WR=WSTPR*TEMPR-WSTPI*WI+TEMPR
WI=WSTPR*WI+WSTPI*TEMPR+WI
1P2=1IP3

IF (IP3-IP4) 50,15C, 150
RETURN

END

co2
co2
Co2
co2
co2
Co2
Cco2
co2
co2
Co2
co2
co2
co2
Cco2
co2
o2
co2
Co2
ccZ
Co2
co2
co2
coz2
co2
coz2
co2
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73
74
75
76
77
78
79
80
81
82
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88
89
30
91
92
93
9y
95
96
SiI=

PET
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SUBROUTINE FIXRL (DATA,N,NREM,ISIGN,IFCEM)

IMPLICIT REAL*8(A~H,C-2Z)

FOR IFORM = 0, CONVERT THE TRANSFORM OF A DOUBLEL-UP RFAL ARRAY,
CONSIDERED CCMPLEX, INIC ITS TRUE TRANSFORM. SUPPLY ONLY THE
FIRST HALF CF THE CCMELEX TRANSFORM, AS THE SECOND HALF HAS
CONJUGATE SYMMETRY. FCR IFORM = -1, CONVERT THE FIRST HALF
OF THE TRUE TRANSFORM INTC THE TRANSFCRM OF A DOUBLEL-UP RHAL
ARRAY. N MUST BE EVEN.

USING COMPLEX NCTATION ANLC SUBSCRIPTIS STARTING AT ZEROC, THE
TRANSFGRMATION IS--

DIMENSION DATA (N,NREM)

ZSTP = EXP (ISIGN*2*PI*]I/N)

DO 10 I2=0,NREM-1

DATA (0,I2) = CONJ(DATA (0,12))%* (1+I)

DO 10 I1=1,N/4

Z = (1+(2%IFORM+1) *I*ZSTE**I11) /2

I1CNJ = N/2-11

DIF = DATA (I1,I2)-CONJ (DATA(IICNI,I2))

TEMP = Z*DIF

DATA(I1,1I2) = (DATA(I1,1Z)-TEMP)* (1-IFOEM)

DATA (I1CNJ,I2) = (DATA (I1CNJ,I2)+CONJ (TEMP))*(1-IFORM)

IF I1=I1CNJ, THE CALCULATION FOR THAT VALUE COLLAPSES INTO
A SIMPLE CONJUGATION OF LCATA(I1,12).

DIMENSION LCATA(1)

TWOPI=6.2831853072*%DFLCAT (ISIGN)

IPO=2

IP1=IP0* (N/2)

IP2=TIP1*NREN

IF (IFORM) 10,70C,7C

PACK THE REAL INPUT VALUES (TWO PER CCLUMN)

J1=IP1+1

DATA (2) =DATA(J1)

J1=J1+IPO0

I2MIN=IP1+1

DO 60 IZ2=IZ2MIN,IP2,IP1

FIX

FIX
FIX
FIX
F1X
FLX
fIX
FIX
FIX
FIX
FIX
PIX
FIX
FIX
FIX
fIX
FIX
PIX
FIX
FIX
FIX
FIX
FIX

FIX
PIX
FIX
FIX
FIX
FIX
FIX
FIX
F1X
FIX
FIX
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30

49
50
60
70

80

90

109

120
13¢C
14¢
15¢C

DATA (I2)=DATA(J1)
J1=J1+1IP0

IF (N-2) 50,50,30
ITMIN=I2+IP(
ITMAX=I2+IP1-IPC

DO 40 IT=I1TMIN,ITHAX,IEC
DATA (I1) =DATA(J1)

DATA (I1+1) =CATA{J1+1)
J1=J1+1IP0
DATA(I2+1)=CATA (J1)
J1=J1+1IP0

DO 80 12=1,1P2,1IP1
TEMPR=DATA (12)

DATA (I2)=DATA(I2) +DATA (I2+1)
DATA (I2+1) =TEMPR-DATA (I2+1)
IF (N-2) 200,200,90
THETA=TWOPI/DFLOAT (N)
SINTH=DSIN (THETA/2)
ZSTPR==2.*SINTH*SINTH
ZSTPI=DSIN (THETA)
ZR=(1.-ZSTPI) /2.

ZI=(1. +ZSTER) /2.

IF (IFORM) 1CC,110,110
ZR=1.-ZR

ZI=-21

ITMIN=IPO+1
ITMAX=IPO* (Ns4) +1

DO 190 IT=I1TMIN,ITMAX,IPC
DO 1890 12=I1,1IP2,IP1
I2CNJ=IPO* (N/2+1) -2%11+12
IF (I2-I2CNJ) 150,120,12C

IF (ISIGN* (2*ILFORM+1)) 130,140,140

DATA (12+41) =-DATA (I2+1)

IF (IFCRM) 17C, 180,180
DIFR=DATA (I2)-DATA (I2CNJ)
DIFI=DATA(L1241) +DATA (L2CNJ+1)

FIX
FIX
FIX
FIX
FIX
FIX
FIX
FIX
FIX
FIX
PIX
FIX
FIX
FIX
FIX
FIX

FIX

FIX
FIX
PIX
FIX
FIX
PIX
FIX
FPIX
FIX
FIX
FIX
FIX
FIXx
FIX
FIX
FIX
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160
170
180

2290

230
240

250

TEMPR=DIFR*ZR-DIFI*ZI
TEMPI=DIFR*ZI+DIFI*ZR

DATA (I2)=DATA(I2)-TEMPR

DATA (I2+1) =DATA (I2+1) -TEKEFI

DATA (I2CNJ) =DATA (I2CNJ) +TENPR

DATA (I2CNJ+1)=DATA (I2CNJ+1) -TEMPI
IF (IFORM) 160,180, 180

DATA (12CNJ)=DATA (12CNJ) +DATA (I2CNJ)
DATA (I2CNJ+ 1) =DATA (I2CNJ+1) +DATA (I2CNJ+ 1)
DATA (I2)=DATA (I2)+DATA (I2)

DATA (I12+1) =DATA (L2+1) +CATA (I2+1)
CONTINUE

TEMPR=ZR-.5
ZR=ZSTPR*TEMPR-ZSTPI*ZI+ZR
ZI=ZSTPR*ZI+ZSTPI*TEMEF+ZI

RECURSICN SAVES TIME, AT A SLIGHT LOSS IN ACCURACY.

USE DOUBLE PRECISION TC CCMPUTE ZR AND ZzI.
IF (IFORM) 270,210,210

UNPACK THE REAL TRANSFCRM VALUES (TWC PER COLUHN)

I2=1P2+1

11=I2

J1=IPO* (N/2+1) *NREM +1
GO TO 250

DATA (J1)=DATA(I1)
DATA (J1+1) =CATA (L 1+1)
I1=11-IP0

J1=J1-1P0

IF (I2-I1) 220,240,240
DATA (J 1) =DATA (I 1)
DATA (J1+1) =0.
I12=12-1IP1

J1=J1-1p0

DATA (J 1) =DATA (I2+1)
DATA (J1+1) =0.
I1=I11-IP0O

J1=J1-1P0

FIX
PIX
FIX
FIX
FIX
FIX
FIX
FIX
FIX
FIX
FIX
FIX
FIX
FIX
FIX
IF AVAILABLE,FIX
FIX
FIX
FIX
FIX
FPIX
FIX
FIX
FIX
FIX
PIX
FIX
FIX
FIX
FIX
FIX
FIX
FIX
FIX
FIX
FIX

LET



260
279

IF (I2-1) 26C,26C,230
DATA (2) =0.

RETURN

END

FIX
FIX
FIX
FIX

108
109
110
111-
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