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ABSTRACT

AMPLIFICATION OF GENERALIZED SURFACE WAVES

EVANGELOS MICHALOPOULOS

Submitted to the Department of Civil Engineering on May 20,

1976 in partial fulfillment of the requirements for the

degree of Master of Science.

The effect of a horizontally stratified deposit of

soil layers in amplifying and filtering Generalized Surface

Waves is studied. A condition of Plane Waves is considered

and the soil is assumed to be a linear, viscoelastic material.

Displacements and amplification functions for an

elastic half-space and a uniform soil layer resting on the

half-space (representing the rock) are obtained. Results are

given for SV waves travelling upwards through the rock at

arbitrary angles of incidence and for stress waves generated

at the surface by unit line loads (normal and shear).

The application of the one dimensional amplification

theory in obtaining displacements and amplification function

is examined. The theory can be used for determining signifi-

cant frequencies in amplification studies of the motion.
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CHAPTER 1

INTRODUCTION

The effects of local soils conditions on the dynamic

response of structures to earthquake motions has been recog-

nized for some time. Traditionally this problem has been

analyzed by decomposing it into two parts:

1) soil amplification; and

2) soil-structure interaction.

The first part examines the effects of the soil on

the characteristics (amplitude and frequency) of earthquake

motions. The second part is further subdivided into the

determination of soil stiffnesses from the response of rigid

massless foundations under harmonic excitations and the dyna-

mic analysis of structures resting on "springs" with the

obtained soil stiffnesses under the motion computed in 1.

Both soil amplification and soil structure interaction

belong mathematically to the family of wave propagation pro-

blems in continuum, with mixed boundary conditions (force

and displacement compatibilities). While it is possible for

any particular situation to solve the total problem in one

step, the importance of different parameters is better under-

stood by conducting parametric studies on each part separately.
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The solution of the wave problem is a difficult one

due to the complexity of the boundary conditions and the

representation of key parameters (i.e., the geometry of the

constituents, uncertainties in soil properties, etc.).

Various methods, such as finite elements, discrete or contin-

uous models, have been used to attack this problem. Analyti-

cal solutions, though, have been possible only for a limited

number of cases with simple geometries.

Here the interest lies in such solutions for the soil

amplification case. Historically the soil amplification pro-

blem started from the analysis of one dimensional amplifica-

tion of SH waves propagating vertically through the soil.

The soil was considered first as an elastic half-space but

later included horizontally layered profiles (9). Then the

studies proceeded into consideration of SH waves at arbitrary

angles of incidence (10) and were extended to plane P waves

at arbitrary angles of incidence and plane SV waves at angles

less than the critical (3).

This work is a logical continuation of studies pre-

sented in references 9, 10 and 3. First an analytical solu-

tion is given for P, SV and SH waves propagating in three

dimensions. The solution is obtained by direct integration

of the differential equations of motions in terms of ampli-

tudes, for the three dimensional case (chapter 2) as opposed

to potentials used in References 1 and 3 for plane waves. This

is applied to Plane Waves propagating in both an elastic half
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space and a layered profile. The waves are the result of:

incoming waves propagating upwards through1)

the bottom of the stratum at arbitrary

2)

angles of incidence (Chapters 3 and 4); and

stress waves generated at the surface and

propagating downwards through the soil

(Chapter 5).

The boundary conditions are imposed directly or by

means of Fourier Transforms, depending on the case considered.

Displacements and amplification ratios are given in

the first case for SV waves at arbitrary angles of incidence

with the emphasis being on angles greater than the critical.

Results are obtained for an elastichalf space and for a uni-

form layer of soil resting on a half space. A one dimen-

sional geometry is imposed, that is the motion is independent

of the horizontal coordinate. Thus the motion is function

of depth as well as frequency (Chapter 4).

In case 2 the displacements and amplification ratios

are obtained for unit line loads (normal and shear). They

are now functions of frequency and both vertical and hori-

zontal coordinates. Amplification ratios are obtained only

for the points directly under the load
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CHAPTER 2

BASIC FORMULATION IN THREE DIMENSIONS

2.1 Wave Equations

The dynamic equilibrium equations for the three-

dimensional case in cartesian coordinates are:

30 dT OT oy 524 .
XxX + _XxXy + ——= p —— pu

9 9 9 2
Y ~r z at

AT, do, BT, s2v ~
SL + ot + po = emg = eV

&lt; v Z ot

(2.1)

My, Tg, Bo 3
Sot ot Tey = OW

oe y A t

where 0 , 0 and o_ are the normal stresses, t__, T and
xX Y Zz xy XZ

Tyz are the shear stresses and u, v and w are the displacements

in the x,y and z directions respectively. p is the mass den-

sity of the material. For definition of the coordinate system

see Fig. 2.1.

ions

The strain displacement relations for small deforma-

(linear geometry) are:

uv
. Y By

" X Z X

0
Ww

—

0 Og
Yyz=573,y = y

(2.2)
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X.u

a,

l £
-—

«WW

Fig. 2.1 Definition of coordinate system
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Finally the stress-strain relations (constitutive

equation) for a linear elastic, homogeneous isotropic material

are given by:

~~

~~

L

1
(0. - vo.

7

4

= (-vo + a

A

w
(-vo _ - YI

JC
7

vo)
 &gt;»

5
7

(2.3a)

¥
El

 oT
3 XV

= de
"xz GCG xz

v= =1
YZ G yz

where E is Young's modulus of elasticity, v is Poisson's

ratio and G is the shear modulus.

Alternatively solving for the stresses in terms of the

strains Eg. (3a) becomes:

Y

 Xx

5

A e + Zz

A e pui

A e 3 J

G
Y vy

2 r

2 G €
\’

G
7

(2. 3b)
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= Cysx7

Ce Gy
YZ

where A» and G are Lame's constants and e is the volumetric

strain:

\

(3

oS
oy -¢

vE

(1+v) (1-2v)

 5B
2 (1+4Vv)

~

9 ISvHE Ix Y Zz

By substituting Eq. (3b) into Eg. (1) the equations of

motion in terms of displacements (stiffness formulation) are

obtained.

3

(A + 6) = + G vu = oil
 Yr

with

9] ’
. -

CA + G)
I 2 .
s— +t GV v= pv

(x
3 ]

+ G) = + G Vw
7

OW

v2 = 9 9 d

v7 5252 being the Laplace operator.

Introducing a rotation vector {@} with components Q_,

9
—y
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9 a

0 = Ll (lw _ Cv
w 2 ‘9 0

Y Zz

Q JL Cul
’ 2 0 0

Zz xX

0 9
a =i (¥- 9

Z 2 0 9
¥ 7

the equations of motion become:

2)

"2

(A

-

a

 +}

dg CJ) 3%, }
2G) =+2G(=&lt;-=) = ou

h'd Zz Y

3g 0, 8%, }
2G) = + 2G (—— - 5) = pV

7 v t

da 90, oy .
2G) 3 + 2G (—— - —%) = PW

Zz 7 xX

or in vector form

(A + 2G) {grad €}l+ 2G rot {Q} = 0 {U3

It is possible to uncouple the volumetric strain e and

the rotation vector {Q}. This can be accomplished by differ-

entiating the first equation with respect to x, the second

equation with respect to y and the third with respect to z

and adding them to uncouple the volumetric strain e. In a

similar manner differentiating the first equation with respect

to y, the second with respect to x etc., the rotation vector

(@} is uncoupled. The above procedure leads to
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2 32
(A + 2G) vie =p £5 = 0&amp;

Nt

~

 yr

gv
 ~~

or alternatively in vector

»

2a
5, 2 = ph,

320

0

nN
Y

320
A

R

 Pp —— = pf
-

form

NY = op (0)

(2 4)

with the additional condition

A 4 0} =
fy

3
1 00g of,

—L+2 =0
Vv Z

Calling

v 2 = M26 gpa v 2 = €
= 0 Ss o

2a oo

4
7 (Q} =

1 ve

2
ani]

A
p) {8}

{
i

2 5)

\/

Equations (2.5) are the three dimensional Wave Equa-

tions for a linear elastic, homogeneous and isotropic material.

Vo and Vy are the velocities of propagation of dilational (P)

waves and shear (S) waves respectively
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2.2 Solution of the Wave Equations

The general solution of the wave equation

J
EL a

i
i

can be obtained employing D'Alembert's solution or by separa-

tion of variables (3,5,6,7,8) and is of the form

[a ith

patil (2x + my + nz

2 A
&lt;

m

al

In this work only steady state harmonic motion is

considered and thus the solution is taken to be of the com-

plex exponential form.

Consequently the general solution of the wave equa-

tion (2.5) for a steady state harmonic motion with frequency

 yw becomes

Wivr

D

/
Q

~. A exp

A
+Mm +

iw
Sa (Vt w- 2X

n“ si 1

my nz)}

aild

'x = m'y — n'z)] (2.6)(2} = {Bl} exp £4 (Vet - 2'x - m'y

W - +t L

2 2 Z
Q' m' +4 n' |

2 4 Bx + m' By + n' Bz = 0



19

The last constraining equation is the result of the

dependence between the rotation vector components imposed by

the condition div {Q} = o (Eg. 2.4).

The constants (%2,m,n) and (2',m',n') are vectors with

norms of 1. If the three components have modulus equal to or

less than unity, they can be interpreted as director cosines

and they represent then unit vectors indicating the direction

of propagation of body waves (dilatational and shear waves

respectively).

Considering first the dilatational (p) wave and calling

ow 1Ww
= eXp SN vt Ix mv nz)

\

" Ww

from the definition of e

u =A 2 f
P Pp P

v =A mf
P P P

(2.7)

w =A nf
P P P

which indicates that the motion uy Vo Wy, due to a P-wave

propagating in the direction (%2,m,n) takes place entirely

along that direction, with amplitude A_ and velocity of pro-

pagation v
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Similarly for the shear (S) wave defining

= e ——Xp plus (Vat - AR

1  Vv
(B} = 2 —

a w

Q
 _— {B}

— m! \%4 - n'z)]

from the definition of the rotation vector{Q]

(n' Bys - m' Bzs) £_

4
Q

 Ww &lt;

(2° Bzsg -MN xs) £
S

(m' Bxs -— 2! Bys) f£

From these equations it can be seen that the displace-

ment vector (ug, Ver Ww) is orthogonal to the vector (&amp;', m',

n') indicating the motion has no components along the direc-

tion of propagation. Consequently it is possible to find

components of the motion in two orthogonal directions in a

plane perpendicular to the direction of propagation.

Alternatively defining

] 2 i Vg Bz

) w —

Yo' +m!

Ay
= —  —————— 2° By -— m BX—n y m' Bx

Jo 12
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1s
2 m

me’

Agy oo on | 2
Y2' +m"

m' n'

| 842, 12  a £
Boy tT ——— su .

SV 842, 12 |

N Jor’ + 2un 2 Agy E,

(2 8)

Combining equations 2.7 and 2.8 the total motion due

to both P and § waves

Jd

x7

4 + u
S

v_ +  Vv
 QS

t
1 ey

- - 2)

 Ww =w_ + w
n S

Summarizing the previous results the motion in an infinite

space occurs:

a)

5)

~)

in the direction of propagation - for a

Dilatation (P) wave with amplitude By and

velocity of propagation Ve

in a vertical plane, perpendicular to the

direction of propagation - for a shear (SV)

wave with amplitude Agy and velocity Vee

in a horizontal plane, orthogonal to the

direction of propagation - for a shear wave

(SH) with amplitude Bon and velocity
&gt;
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These are illustrated in figure 2.2 for awave propaga-

ting in the x-z plane. The arrows describing the dis-

placement are in two directions to demonstrate that the mo-

tion is periodic.

It is interesting to notice that if ¢' = m' = 0, n' =

+ 1, which corresponds to a direction of propagation coinci-

ding with the z-axis (a=0°), a distinction cannot be properly

made between SH and SV waves.

The equations developed in this section are valid for

both real and complex values of ¢,m,n and %', m', n' provided

they satisfy equation 2.6. When all of these coefficients

are real the case of Body Waves, which occur in an infinite

medium, is obtained. If some of the coefficients are complex

the equations represent Generalized Surface Waves (Generalized

Love Waves if there is only shear distortion, Generalized

Rayleigh Waves when there are both volumetric changes and

shear distortions). The existence of Generalized Surface

Waves arises from the boundary conditions or from discontinui-

ties in material properties.
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Fig. 2.2 Particle motion for P, SV and SH waves
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CHAPTER 3

PLANE WAVES

3.1 Equations of Motion for Plane Waves

The condition of Plane Waves (x-z plane) can be directly

sbtained from the Three Dimensional Case (Chapter 2) by making

oy 0, m=m' = 0 and 3 = 0.

Then the dynamic equilibrium equations become

90 3m .

5 tT, eu

oT dT
xy YZ _ i

5 7 3, ov
(2.1)

OT 30,
—— —— = Ww)

3 3 pW
i'd 2

The strain-displacement relations are

=

fr
-—

d
u

ad
wr

J
wW

J
z

3)

Sa CL
i — lr —

"xz 3 3
7 YX

Lo
Y2 a,

3
[ my
Ty 9

bd

{.?2)
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The stress-strain relations are

0 =

g =

Y

re + 2 ‘a

re

 co = xe + 2 G ¢
Zz Z

(. 3)3

C = GXZ Yxz

Per TC S Yxy

r
VvZ

ltl G vy
YZ

where now e = ¢ + ¢ since ¢ = 0.
% Z vy

The equations of motion for P and SV are

(A + 2G) v2e = pe

~~

— MN = 08
{2 4)

and for SH waves are

whe re now

~

"3

’

"X\¥ =— AN;

2 3 32
A i

A 3
2

The general solution of a steady state harmonic motion

is given by Equations 2.7, 2.8 and 2.9. Substituting m = m' = 0

a = A f_ + n' A
qv I

\/ Aor 94

 Ww  nN - 1

A f 2 Agy fg

(.vy
va 5)
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where ? + n% = 1 21% +n? = 1 2"? + nl = 1

iw
f = ex — (Vt=4x-nz” p Ig (Vy )]

1Pp rie (V.t = 2'x = n'z2)]f = ex =

J. = exp
1w

 To
co

(V_t - 2"x
 Ss n"z) ]

These equations show that the study of P and SV waves

must be considered simultaneously since it involves coupled

in-plane displacements. On the other hand, the study of SH

waves is independent of P and SV wave and can be performed

separately.

The motion described by Equation 3.5 can be due to a

system of plane waves propagating through an arbitrary layered

medium. The system of waves, in turn, can be the result of

a)

b)

incoming waves travelling upwards through

the bottom of the stratum profile.

stress waves generatingatthesurface and

propagating downwards through the stratum

profile.

Because the boundary conditions and the characteristics,

in the two situations, are different they are considered sep-

arately. The first case is examined in the following sections

and Chapter 4 and the second in Chapter 5
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3.2 One Dimensional Geometry

The study of plane waves propagating upwards through

the bottom of the layered profile can be further simplified

by assuming the same variation in time of all displacement

components in the horizontal direction (x-axis). For this to

be valid one must have a one dimensional geometry, that is

the variation in soil properties must be a function only of

the vertical coordinate (horizontally layered stratum profile).

In mathematical terms the above assumption implies that

£, and f_ must have the same variation with respect to x, that
.

iwg iw! 2 2!

Vs Vg Vo Vg
( - 6)

When P and S waves arrive at an interface, every inci-

dent dilatational or shear wave will produce two reflected

and two refracted waves. There will be therefore a system of

dilatational and shear waves propagating in the positive and

negative x and z directions. (Figure 3.1)

The total motion of a point within any layer with con-

stant properties must be obtained by adding the components of

all waves in the proper directions in conjunction with Equa-

tions 3.5 and 3.6.

Considering first the case of P and SV waves and de-

fining A, as the amplitude of a P wave travelling in the nega-

tive z direction, A! as the amplitude of a similar wave

travelling in the positive z direction andTV Any! representing
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the amplitudes of SV waves

nN .eg ‘'h

1 [ 2
iw iw

mom + ’ —A. exp (TF nz) 2 A exp ( v_ nz)

a Aayr 2Xp
LW
\y

 oS

n'z ) + n' Roy SYD (=

i x.TT

WwW [= n A_ exp (£2 nz) + n A_' exp (- =2 nz)
° V_ » Vo

/
lw _, _

Ay EXP (7 n'z) Q T n
~~
y of

"Xp {(—

 wg )

2pvv n= 1-0
P S

n' = fi gr

lw n'z)]
Vi

( 1

3 7)

— 1iw n'‘z)
v

constant with depth
je)

2 or &amp;' are arbitrary and if they possess a value be-

tween 0 and 1 they represent a train of P and SV waves at
1

various angles. In this case the condition = tl can be
sino sina Pp S

: Pp _ S

written as 7 =&lt; where Ze and ag are the angles of P
Pp Ss

and SV waves respectively, measured from the z-axis.

Since the dilatational wave velocity, Vp is larger

than the shear velocity, Vor an incident P wave at any angle

will always produce reflected and refracted P and SV waves.
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On the other hand, for an incident SV wave, % can be

greater than 1 making n = v1 - 22 imaginary. The angle, ov

at which n first becomes imaginary is termed the critical

: / 2
angle (a _5¢)° For Og &gt; 0 ier calling m = v¢= =- 1

3 mi

The function appearing in Equation 3.2 multiplying

“he A
”3

term is then

iw Ww
= nz + — mz

7 — V_
, Pp = a =

In order for the solution to be bound, as z tends to infinity,

it is required that

n -m1

The term exp F nz) with n real represents a periodic
p

shape whereas exp (- mz) represents an exponential decay
p

of amplitude with depth. Thus the condition 2 &gt; 1 gives rise

to Generalized Surface Waves. The same occurs if both 2 and

%.' are larger than 1.

Investigating further the solution it is observed that

the motion is periodic and is described by the function f(x,t).

The function reproduces itself at a point x' = x + Ax at a

time t' = t + SX . This furnishes an additional significance

of the IR 2, being associated with the apparent velo-

city of propagation in the horizontal direction p
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Turning now to the case of SH waves the corresponding

type solution would be of the form

Ltr

~o ]ZK

J

y
ig A

~ovy XP

 Nn = /q

Se constant with depth.
S

The limitation of the foregoing solutions is the varia-

tion with respect to x. A more general case where the boun-

dary conditions, at z = constant, had an arbitrary variation

with respect to x could be solved, however, as a superposi-

tion of these simple solutions with different values of 2.

3.3 Motion and Stresses as a Function of Depth

In order to compute the motions and stresses in one or

more layers of soil resting on an elastic half space (repre-

senting the rock), due to a train of waves with frequency w

travelling upwards through the rock, boundary conditions must

be introduced.

The stresses o,r T,, are given by

+

woof

re +

= G {
X7

2 9.3 dg Bu
c = A= + 5) + 2 G 3

b'¢ 7 rp

3. By
= G(5— ‘3 5)

7. Z
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Differentiating Eg. (3.7)

 9) Loo 2 cn?) A_ exp (£2 nz)
J P Vy

[A 4 2 Gn*) A" exp (- iw nz)
Vv

D

~an nN
iw y

xX — n'z)Asy XP (

~ A
TT axp (- Ly n'z)] f(x,t)

J _

and

Tr
XZ

1.0)

J .
[2 G'n A exp

4 ‘Nn A exp (-

‘== nz)

FR
— Nz+2 nz)

J ( &gt;

~~

| xX
/

n ) n

These equations together with Eg. (3.7) provide the

displacements and stresses in terms of the amplitudes Aor Bp

Acy y Boy Defining h as the depth of a layer and dropping

the term f(x,t) the above equations become:

3) For the top of the layer

J~)

\ ——
%

m A

For the bottom of the layer

4  = BA = THA

( iJ . 3)

ySe +
- J
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where the subscript o is used to denote the top of the layer

and h the bottom.

The explicit expressions of Equations

are given in the next two pages.

(3 3) and (3.9)

Imposing continuity of stresses and displacements at

the interface between two layers, j and j'+1,

'X.). =ns = (XQ)

In order to satisfy these equations for any x,

5), [5 L, [) - 2),
(Shell's law of refraction)

From Egs. (3.8) and (3.9)

(X
0

= T, A, = T,6 H. A,
eT +1 j+1 3 Jj J

Therefore

-1
A. = T,. T. H. A.

Jj+1 j+1 "3 73 3

Proceeding down from layer to layer and noting that at

the very first (top) layer A, a v1 (X45) 4+ then for the nF

laverxr

~1, -1n = * eo oo eo. Ty, T.-1 H.1 T, T, Hy A,

— -~ -1

(X4) Ta ®, Ay, Pa Ba CI
-1

Hy T,7 (X))
1.

-1
Th-1 Hoq T-1° * &amp;
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Calling
n -1

F = 1 (Tr. H. T.7)
n . i i Ti

i=1

(x),
r

—— (X) (2.10)

SY

”~

u,|

Wel

| oy |

Ln)

a!
- ,

a)
Wo

o
 oD

TTo)
Equation 3.10 relates stresses and displacements at

the surface to those occurring at the bottom of any layer of

the stratum. It is only required to calculate the matrices

T. and H, for each layer. These are specified by Egs. (3.8)

and (3.9) in terms of the layer properties (moduli » + 2 G,

G, depth and angular parameters &amp;, n, 2', n').

An explicit expression for 71 can also be obtained.

Rather than inverting a 4x4 matrix, if one works with the

1 —_ ! ¥ -— v
parameters A, + 3, , A, 3 ; Agy + Agy and Agy Agy only
a 2x2 matrix needs to be inverted.

Writing Eg. (3.8) in terms of the above parameters 2

ancoupled systems of two equations are obtained.
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uh
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 1-

iw .
vo 2 Gn

D

iw 2 2.

v_ 6 -1n |

A + A[2, p
+ A - A!

SV SVL y

A - A[2 - 2,
,

1

| ov + “sv

Inverting the two 2x2 matrices separately the above

2aquations become:

7
A + A

\

A - Agy']_ sv 7 fgy

r
| Ap = A,

\ 2sv + Ay!

where D., and D,

LW 2 Gn
J

D
\ 1

D,
Lo (0 4 2 Gn

)
)

Le G (p12 — n'?%)
=

$y
iw
v_

2 Go 'n

are the determinants given by

 ND lw (7 4 NT2's)

D, =
iw
— Gn
Vv

«

G

Tu

}
J

Lo

B|

Combining these equations the matrix p71 is obtained.

The complete relation is given in the next page.
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3.4 Determination of Amplification Functions

3.4.a Definition of Amplification Functions

From Eg. (3.10) the displacements and stresses at any

level within the soil deposit can be obtained in terms of

the displacements and stresses at the surface. Alternatively

one can solve the inverse problem and determine the amplitudes

of motion and stresses at the surface or within any point of

the soil stratum produced by a specified harmonic motion at

any given depth.

If a harmonic motion is specified at bedrock, the mo-

tion produced at the free surface can be related to the input

motion simply by amplification ratios which are functions of

the frequency w. Two different amplification ratios can be

defined (9, 10).

The first amplification ratio, called elastic rock

amplification, is defined as the ratio of the amplitude of

displacement at free surface to the amplitude of displace-

ment that would occur at the top of the rock if there was no

soil (hypothetical outcropping of rock).

The second amplification ratio, called rigid rock

amplification, is defined as the ratio of the amplitude of

displacement at the free surface of the soil to the corre-

sponding amplitude at bedrock, that is at the interface be-

tween the rock and the bottom layer of soil. This motion is

different from the motion of the outcropping of rock since

it is affected by the presence of soil. It would coincide

with the elastic case if the rock were infinitely stiff.
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Since two amplification ratios have been defined and

since there are two motions involved (vertical and horizontal)

one obtains a total of four different amplification functions.

3.4.b Rigid Rock Amplification

Partioning the 4x4 F-matrix into four 2x2 matrices

Eg. (3.10) becomes

Ww,

| oh |
Tth)

g
11

"51

&amp;
12

Fs

| Yo
v_|

o

| o6]
| “o -

L

Calling

on)U,) =U =\w
h'n S hj

u o
oO oJs =fel Sq = os

A 1

0, = Fy OU, + Fyy 5
0)

The subscript n indicating the number of the layer considered

has been dropped and substituted by the subscript s to repre-

sent the interface between the bottom layer of soil and rock.

Since the stresses at the free surface of the soil

deposit are zero, S ak
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Us = Fi11 Ys

NY

J Fi, 0. (3.11)

Thus by specifying the amplitude of the motion at bed-

rock, Ug» the amplitude of the motion at the surface of the

soil, Ug» can be determined. The horizontal and vertical am-

plification ratios for the rigid rock case are then

a Ww
O O

a, oaS S

3.4c Elastic Rock Amplification

In a similar way the motion that would occur at bed-

rock if there were no soil on top (outcropping of rock), Ug

can be related to the motion at the top of the soil deposit,

J

Again from Eq (3 10)

'Xal = 2. : (X,)

“TT

'Xh) = T
») nN

H_ A
 nn n

alac

X md( o Th 2,

Introducing the subscript r to represent the rock

layer and n the bottom layer of the soil then the above equa-

tions lead to
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= ~ )(xX= T A = PB

O r Yr n Oo 1]Tr (x, n

therefore

 a —

AL = TUF. (KX) = G(X) 1

where the G matrix defined by the above expression relates the

amplitudes of the waves in the rock to the motion and stresses

at the surface of the soil.

Partioning the G-matrix, similarly to the F-matrix and

noting that the stresses at the free surface are zero

A[ pl .
- 7112 r

J
-
 u

(3.12)

If there were no soil on top of the rock (elastic half

space) the motion would be described by Eg. (3.8) which in the

present notation is

,. :: |
Ta)

T
(21)

|

iT
| (12)

-—

mn
CT (22),

| A A(2
-

Ag v

oe
A ¥

Pr

Since S_ would be zero

0 A
(21) sv

T

A t

p 1+ Ti22) Ce)
r T

nYy
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[2
(22) °3 T ( 21)3

A +

\

ll 2sv)
(3.13)

and
A \

[T T ol T ] °
J. = -

s (11) (12), "(22)" (21) Ay)

MlR

substituting Eq. (3.13)

J R J
O

NY

_-1 _-1
J, =G,] RU (3.14)

This expression provides the amplification ratios for

the elastic rock case.

3.44 Description of Computer Program

A computer program was written in Fortran IV utilizing

the formulas developed in the preceding sections. By speci-

fying the amplitudes of P and S-waves (A, Ag) and the angle

incidence of the latter (a) , the program computes amplitudes

of stresses and displacements (vertical and horizontal) at the

interfaces of the layers. The program also plots (with a

Stromberg Carlson plotter, SC 4020) the four amplification

ratios as function of frequency.
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Any type of soil and rock profile can be studied by

specifying the parameters that describe the stratum (height,

shear wave velocities, Poisson's ratio, fraction of critical

damping and unit weight).

The program proceeds from top to bottom and calculates

the T, H, rt and F matrices for each layer and finally the

G-matrix. Knowing these the motion, stress and amplification

ratios are calculated from the relation developed in the pre-

vious sections. This procedure is repeated for a selected

number of frequencies, as required to obtain a good represen-

tation of the above quantities.

3.5 Consideration of Damping

In the foregoing formulation a linear elastic material

was assumed. In reality, however, all materials and particu-

larly soils are nonlinear and experience an internal dissipa-

tion of energy when undergoing cyclic loadings. This effect

is taken into account by assuming the material to be linear

viscoelastic with a viscosity function of frequency. A con-

stant viscosity coefficient corresponds to the usual concept

of viscous damping and produces a loss of energy per cycle

which increases with frequency.

Experimental results indicate however that the energy

dissipation in soils is almost independent of frequency (while

a function of strain). For an assumed or expected amplitude

of motion, this situation is better reproduced by considering

a viscosity coefficient inversely proportional to frequency.
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While the equations of motion can be developed by

taking into account the viscosity coefficient, the same effect

is obtained by working with complex soil parameters of the

Feo nmv"]

\* = A (1 + 2 1B)

G* = G (1 + 2iB)

where RB is the amount of critical damping considered.

Thus all the equations developed in the preceding sec-

tions are valid provided all related parameters (i.e., Vp v. ,

2, n, 2', n' etc.) are also considered as complex quantities.

The interpretation of ¢&amp;, n, 2', n' as director cosines be-

comes difficult but they may be thought of as mathematical
CL 2 2 , 2 , 2

parameters related by the condition 2 , n = 1, ¢ + n ]
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CHAPTER 4

AMPLIFICATION OF SV WAVES

4.1 Cases Considered

Although the program described in section (3.4d) is

general and applies to both P and SV waves, in this work only

SV waves will be considered. Jones (3) obtained amplifica-

tion functions for P waves at an arbitrary angle of incidence

and SV waves with angles of incidence less than the critical.

Here the emphasis has been in examining amplifications for

SV waves propagating with angles of incidence greater than

the critical.

For the purpose of comparison the properties of the

stratum profile were maintained the same as those used in

References (4, 9, 10). These are:

SOL.

rock

V_ (ft/sec)

70, )

1500

0.25055 0.65

0.2857

v (1b/£t3)

125

140

It should be noticed that only a single value of damp-

ing was considered. The effect of damping for one-dimensional

amplification was studied by V.C. Liang (5).

Two stratum profiles were examined in this work:

3) Elastic Half Space - A stratum composed of layers

all of them with the same properties as the under-

lying rock.
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b) Uniform soil layer upon rock - A 100 ft. uniform

soil layer resting on elastic rock.

Of particular interest in this study was the consider-

ation of SV waves incoming with angles larger than the criti-

cal. The critical angle occurs when the parameter n = A - %

switches from being real to imaginary, that is when f&amp; = 1.

Since

J

v Vv
2 rT = BP 1 =

VL 3 A Sin “eorit 4

V
sin o _. = =

crit Vi

the corresponding dilatational wave velocities for the soil

and rock are 1300 ft/sec and 8000 ft/sec respectively. Sub-

stituting the shear and dilatational wave velocities for the

roc’”J

sin ao . =
crit

4500
8000

NY

% rit = 34.23°

4.2 Presentation and Discussion of Results

4.2a Motion - Elastic Half-Space

Figures 4.1 and 4.2 show the amplitudes of the hori-

zontal and vertical motion, respectively, for the Elastic

Half-Space. Results are presented for angles of incidence

of 0, 30, 40, 45, 40, 60° and frequencies of 1.75, 3.25, 5.75

and 9.25 cps down to a depth of 100 ft.
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The motion varies nearly periodically with depth with

a wavelength (A) that is given by

 }

2 for shear waves

J
PP
fn

for dilatational waves

For normal incidence (a =

4.1) the wavelengths are

0°) since n'=n=1 (see table

Frequency Shear Wavelength Dilat. Wavelength

1.75 cps

3.25 cps

5.75 cps

0.25 cps 486 ft 865 ft

One of the effects of the angle of incidence is to

change the wavelength through the parameters n and n'. The

values of 2, ¢', n and n' are shown in table 4.1.

The second effect of the angle of incidence is to

modify the shape of the curve describing the motion by intro-

ducing a phase shift. For angles of incidence less than the

critical the maximum amplitude occurs at the surface, whereas

for CE the depth at which the maximum amplitude

occurs varies with the angle of incidence.

This phenomenon is better illustrated by looking at

the explicit equations of the motion for the elastic half-

space. The horizontal motion as a function of depth is given

V2
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a = 2 A + A ') cos 2 nz
[A +2") v_ re]

n - A_ . nz]') sin 7

(4 1)

1 r i -o A‘Bry : ay) cos
w 1
— z7 n'z]

a7
A.

SV ) 311
ul

f
n’ Z |

For the case of normal incidence substituting the

appropriate parameters from tables 4.1 and 4.2 (2,=0, _ Mad

Agy=Llr Agy =-1,n'=1) the amplitude of the horizontal motion

becomes

ul = 2 cos @
7

ia] 2

On the other hand for ag = 45° substituting (A, = By,’

n' = 0.70711)J, A.y = Acy = 1,

u| = 2 n' sin oT n'z = 1.414 sin
a

$ nrg
VV

These results are shown in fig. 4.1, as obtained from

the computer program using a number of rock layers.

As the angle of incidence increases from 0° a phase

angle is introduced into the periodic shape of the motion

which becomes 90° for the case of a =45° (sin function).

Thus the point at which the maximum amplitude occurs varies

with o_. Also for ao_ &gt; o__., a term with exponentially
a S crit



TABLE 4.1. Parameters for the Elastic Half-Space

N as

real imag. real imag. real | imag. real

3

imag.

-

{
J

1.)°

10°

15°

50°

650°

70°

3°

0.8889

1.1427

1.2570

1.370

1.5396

1.6706

1.75076 |

y
J

3)

)

J

 JF

")

0

0.45813

3

3

J

J

0

-0.5530

~0.7617

0.9244

~1.1706

-1.3382

-1.437

0.5

0.6428

0.7071

0.7660

0.8661

0.4397

0.9848 |[

J

0

0

db

0

0 {

0.8660

0.7660

0.70711

0.6428

0.500

0.34202

0.17365

0)

0

oa

\J

\ J

(]

0

Ul
NY
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TABLE 42. Amplitudes of the Waves

real

J) 0

10 9

20 o

30!  Nn

35 0

10/ 0

i5 5)

50 J

50 0

701 0

20) 0

2

imag.(i] real | imag.!

A ayy

j y

I )

3 N

Nn  Nn

I 9

\ 0

3

0
~

n
‘

¥

1 Nn

| 0 4 | 0 |

a
he Aay

real lhmag. Teal Fmag.

1 0.0 -1.0 0

38 0 -.87 0

-. 71 0 -.50 0

-1.0 0 -,. 057 0

-1.5 -1.5 .033 -1.0

-.037 -.49 +_.99 -0.15

Nn 0 1.0 0

0094) + .24 +1.0 -.077

12 46 .88 -_.48

28 43 41 -.9]1

. 30 .18 -.45 -.89
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decaying amplitude is added to the motion due to the imagin-

ary components of AL Agy' and n (see tables 4.1, 4.2).

Similar results can be obtained for the vertical motion.

4.2b Motion - Uniform Soil Layer upon Rock

Figures 4.3 and 4.4 show the horizontal and vertical

motion for a 100 ft. uniform soil layer upon a rock base.

Results are shown for a depth of 200 ft. (100 ft. into rock

base) .

The motion in the rock exhibits the same characteris-

tics observed in the elastic half-space. In the soil layer

the motion is amplified and the wavelength of the propagating

waves changes. The ratio of the wavelength in the soil to

that of the rock is

A(soil) _ V(soil)
A (rock) V (rock)

which corresponds to = for the shear wave and oe - for the

dilatational.

The depth in the soil layer at which the maximum ampli-

tude occurs changes only slightly with the angle of incidence.

The variation is small because the wavelengths in the soil

does not vary greatly with a.

4.2c Particle Motion as a Function of Time

The formulation in section 3.4 provides only the ampli-

tudes of the motion. The term f(x,t) was dropped since it

was constant for all points on a horizontal plane. Including

now the time component of f(x,t) the particle motion is de-

scribed by
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. int

a = (uy + i u;) e

WwW =
oo int

(w, + 1 Ww.) e

where the subscripts R and I refer to the real and imaginary

components, respectively, of the amplitudes at a point.

Taking the real parts of the above equation we obtain

1 Jd, coswt - u. SI1NW

 Ww = wo coswt - wo sinwt

The combined motion is shown in figures 4.5 and 4.6

at surface of the uniform soil layer for frequencies (1.75

cps, 6.25 cps) and og= (0°, 30°, 45°, 50°).

It is seen that the particle motion is an ellipse.

The shape of this ellipse is determined by the relative mag-

nitudes of the real and imaginary components of the motion.

Tt should be noticed that for «s= 0° there is only horizontal

motion since, as mentioned in section 2.2, at normal incidence

p and SV waves are uncoupled.

4.2d Amplification Functions

Figures 4.7 - 4.28 show the amplification ratios as a

function of frequency for the 100 ft. uniform soil profile.

By definition there is no amplification (amplification ratio =

1) in the elastic half-space.

Comparing first the amplification ratios for ao = 0°

and 30° with references (3) and (10), respectively (a differ-

ent formulation was used in those references) the same results

are obtained.
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RIGID ROCK HORIZONTAL MOTION

 fF

0°|
i$

2
 Oo
 rl
fore
&lt;&lt;
QO
Jama

LL
-—

wd
a.
2

J

—

Raad \
 gel
7

FREQUENCY

\'
]

—  wn

Cr
m—

10

ERE—  | 7

Fig. 4.8 Amplification functions - SV wave
oN
—t



Z
 oO
Jd

J
-g

LL

ELASTIC ROCK

MA
SEE aah’
orFN

\
N/|

J

HORIZONTAL MOTION

\/ 7
7

*

»

od
Q.
&lt;
&lt;&lt;

FREQUENCY L‘PS

Fig. 4.9 Amplification functions - SV wave

ON
ND



RIGID ROCK HORIZONTAL MOTION

I
IT,

30°

2
wd
ssf

(J

kee
sd

wd
QO.
z
&lt;

—
agp

L

Ed

i

\
~

~~ |

A
7

I

 ——

x
-

Po _

/\

Rr

Fig. 4.10

FREQUENCY CPQ

Amplification functions - SV wave
aN
{,°



ELASTIC ROCK - VERTICAL MOTION

0°
7

|

2 ’.
O

fuve
&lt;
5)
 _—
lL
LL]

-
a.
=
&lt;&lt;

j

&gt;

—

/ \
“a

C-|

FREQUENCY L“PS

 _— «ul

A

/

Cr
IS

Fig. 4.11 Amplification functions - SV wave



RIGID ROCK - VERTICAL MOTION

&lt;
=
bonne

2)
a—

LL.
Job

ad
0.
z
&lt;

bh

k

—

J
—,

Fig. 4.12

-ad
«,a.

1

A

/ \
i

|

FREQUENCY LPQ

Amplification functions - SV wave

—

N
Un



ws

ELASTIC ROCK

40°

HORIZONTAL MOTION

-

Rd

&lt;

—

ol
0
——

LL
 1

J
Q.
2
&lt;

9

¢

4

~~

Ne
No

| Te
7

- J

FREQUENCY C‘oC9

Fig. 4.13 Amplification functions = SV wave

Zs
-

|

aN
CN



RIGID ROCK HORIZONTAL MOTION

1

-

—

ac

|Z
O
—
o
J
pa)

LL

J
I=
i
&lt;&lt;

Ema ies

A\_
CN Na

-

| A

FREQUENCY
wile

L‘pa

Fig. 4.14 Amplification functions - SV wave

/

ni

/

5
1



ELASTIC ROCK - VERTICAL MOTION

A0°

\

&lt;
O
hannar

.
4

Ll.
uel

wd
Q.
b
l«

|

/ /
rr \. \

Ng

J

J

t

FREQUENCY Cro+ ¢

Fig. 4.15 Amplification functions - SV wave
Oo
~



RIGID ROCK - VERTICAL MOTION

40°
y

{¢

2
0
——y

od
md

LL
He

)
A.
bn

4

¢

;

——

!
-~

fl

r

\
\

-

 “©

 -— od
&gt;”

ania

FREQUENCY C:3c
waft

Fig. 4.16 Amplification functions - SV wave

Nr

N
OO



ELASTIC ROCK HORIZONTAL MOTION

fi
1

:

=
 oO
perl

-
&lt;
O
ind}

LL.
Fa
J
a.
z
L

i

}

- x

-

/ 50°|

i o—

EATE—
il

AL.
“——

 —p—————

A—

a

)

tp —

\

B

\

Nsi
KY

EN lle

FREQUENCY CPQ

Fig. 4.17 Amplification functions - SV wave ~J
CC)



Z
Oo
nd

&lt;
 oO
 lt
LL
Ny
J
a.
=
&lt;&lt;

 —

fesse

RIGID ROCK HORIZONTAL MOTION

i!
- Ta

*) yg
»’

"

Cx a A

i

a NY,
1.

\

n_/
’

7
=

”

FREQUENCY C.oe
-

Fig. 4.18 Amplification functions - SV wave
hn

LJ



ELASTIC ROCK - VERTICAL MOTION

Ad
if

|

Z
o
pot

rd
a

uh

wd

 ys£.
&lt;

Pha
/|

\

\
NA

a “N J

|

FREQUENCY C‘DQ

Fig. 4.19 Amplification functions - SV wave ro



RIGID ROCK - VERTICAL MOTION

|

ise?)

z
oO
ed

fe
~~

O
J

LL
anf

J
0
b=
&lt;&lt;

{

mm Cai
lL  _— a

\
-r

~

~ sz

FREQUENCY L“PS

ge-
—

Fig. 4.20 Amplification functions - SV wave
~J
{;°



ELASTIC ROCK HORIZONTAL MOTION

N 80°
—

»

-

B

&lt;
oO 8.
[So

fee
&lt;
O
par

LL
mad 3.
wl
Oo.
2
 «&lt;

1
en

N
2

-

f
“waa

iNI1 “—m——
» ——-

/

 oN1
LA

reePeEES

RA J

FREQUENCY C.‘PQ

Fig. 4.21 Amplification functions - SV waves

—~

f

~
IS



 ®

1 ¢

RIGID ROCK

60°
——

f

mma

HORIZONTAL MOTION

1 4
Z
O
 -

fume
-

2
.
Joand

wd
a.
=
&lt;

—_
Ea

g
v

1

!

’

!

nae

amen—1 -a oT—

———-

Av- /
»

=.
y/  Sv ;

aS

7
ry

Ea

Fig. 4.22

FREQUENCY CPQ

Amplification functions - SV waves
~



ELASTIC ROCK = VERTICAL MOTION

oo

30°
A

&lt;
oO
Jd

—
-

J
tind

LL
Id

-
a.
=
&lt;&lt;

B.

k.

\

\
NU

:

-

FREQUENCY “PShe

Fig. 4-23 Amplification functions - SV wave

b

y

~J
oN



RIGID ROCK - VERTICAL MOTION

sQ°
if

pr
Oo
[-—)

—
 JD
——h

LL

-
A.
z
 «£

-

|

%

\
A NL! |

FREQUENCY

”
a |

LL~pQ

—

Fig. 4-24 Amplification functions = SV wave
 |
 |



ELASTIC ROCK HORIZONTAL MOTION

rQ°

-

L

 =&lt;
()
 ro
oe
&lt;
O
Jug

LL
bod

J
oO.
=
&lt;

8.

4.

La

AAT

ya

N= J

\
\

1
3

G
12

FREQUENCY “pgLL

u

Cee

“w &gt;

/

Fig. 4-25. Amplification functions - SV wave
~J
00)



]
 qd

RIGID ROCK

200

HORIZONTAL MOTION

|

Zu
pd

be
LL
C
and

LL.
bad

 -—
A.
z
&lt;

— |

a

\ ES\!
———

J

 ~~
/

FREQUENCY L

Fig. 4-26. Amplification functions - SV wave

—_—

~
RW



RIGID ROCK - VERTICAL MOTION

a

f1U)

Z
 Oo
indy

fe
-
-)
p—

FS
—t

-)
a.
2
&lt;&lt;

1

d

 ~~

\

 JT —J_

FREQUENCY C

f+ gq. 4-27 Amplification functions - SV wave 0
 oO



ELASTIC ROCK - VERTICAL MOTION

O70
A

2
oO
jo
J
LS
&amp;
= 2.

Lhe
had

-
Q.
2
&lt; }a

'~

\ 1

r

NVA

EREQUENCY u“PS

rp

&lt;7N\
ta

Fig. 4-28 Amplification functions - SV wave
CO
es



 2?

Due to the uncoupling of p and SV waves at a, = 0,

one dimensional wave propagation theory can be used to cal-

culate the natural frequencies of the soil. They are deter-

mined from

[ zn=-1 V
4 H

Substituting the wave velocities and the height of the soil

we obtain

Shear Wave

1.875 cps

5.625 cps

Dilatational Wave

3.25 cps

9.75 cps

9.375 cps

As seen in the case of SH waves (10) the natural fre-

quencies are slightly modified by the angle of incidence.

For non-zero angles of incidence an incoming SV wave

will generate both shear and dilatational waves in the soil,

and will produce both horizontal and vertical motion. There-

fore as illustrated in these figures the amplification func-

tion will display both sets of natural frequencies. The

significance, though, of each natural frequency depends

greatly on the angle of incidence.

For angles of incidence less than the critical the

overall shape of the curves is similar for all angles with

the peaks (occurring at the natural frequency) decreasing

with increasing angle and frequency (3).
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For og, &gt; o_,i¢ the overall shapes are different with

the peak values being highly dependent on the angle of inci-

dence. For a, = 45°, the elastic rock horizontal amplifica-

tion becomes infinite since in this case the motion at the

surface of the elastic half space is zero (Fig. 4.1) Also

for a_ &gt; a +4 the elastic rock amplification is not always

smaller than the corresponding function for rigid rock as

observed for o_ &lt; a __.. (3).
S crit

In summary it can be concluded that one dimensional

wave propagation theory can be used to provide a good approxi-

mation of the natural frequencies for all angles of incidence.

It will still provide a reasonable estimate of the shape and

magnitude of the amplification functions for angles of inci-

dence smaller than the critical, but for al &gt; 0 ay the actual

peak values will vary greatly with the angle of incidence.

The same conclusions can be derived by examining the

variation of the motion with respect to depth (figs. 4.1-

4.4). This should be expected since the amplification re-

lates the motions at various points.
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CHAPTER 5

SURFACE WAVES

5.1 Basic Formulation

In this chapter, plane stress waves generated by a line

load applied at the surface and propagating within the layered

medium are considered. The situation is similar to that stu-

died in chapters 3 and 4 with different boundary conditions.

Equation (3.10) relates the stresses and displacements

at the surface to the corresponding ones at the interfaces of

the layers. Instead of specifying the motion at the bottom

of the soil profile and calculating the stresses and displace-

ments at any point in the stratum, these are determined from

the stresses, o (x) J and T(x) J given at the surface. The one

dimensional geometry (section 3.2) condition is also relaxed

so that the stresses and displacements are functions of the z

as well as the x axis.

Two solutions as in the previous case can be obtained:

a) Rigid Rock Case

From the equation

(Xp), = Fg (x5) (3.10)

or in partioned form
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2-
i -

Fi1 1 Frio Us
re a—— — -— aw M—

|
Fai + T22 Pe .

substituting the zero displacements at bedr =

Rt
13 U_ + F 12 S_ oN

“J

“NY

T
= pi

= -Fi1 Fig Sg (7.1) —~

where

U
 OD

u(x) J

) w(x) o-/ .

0 (x)
S =

© T(x) J

represent the displacements and stresses at the surface.

0D) Elastic Rock

similarly for the elastic rock the relation

A . G xX)

holds. Since there are no incoming waves from the bottom of

the stratum profile, that 1is A_ = Any =  Nn

~~
-

11 J i G,5 S )

“31

_.~—1
I, = G1 Gyo 5, {= - 2)
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Equations (5.1) and (5.2) relate the stresses and dis-

placements at the surface for the rigid and elastic rock,

respectively. Having these the stresses and displacements

at any depth can be obtained from Eq. (3.10).

The difficulty of imposing the boundary conditions,

S
~

Tn 91H?

is

A

overcome by the use of Fourier transforms, that is

§ {
p-~

ie
21

pre
-— 0 S(&amp;) ro

T

1 2

Y £- -

~-

 a.

S(8) = pre 0 (x) e °¥ ax

and similarly for T(x). T(E)

One can solve Equations (5.1), (5.2) and (3.10) for

any particular ££, by setting for each layer

[)- (5)-
leading to U(g), W(&amp;), S(&amp;g), T(&amp;).

Then the displacements are obtained from

1: x) = Luce) oF a:
T2I i &amp;

wix) = Sy owe) eX dg

and similarly for the stresses.



Q6

5.2 Definition of Amplification Functions

The definition of amplification functions in this case

becomes more difficult since for each loading condition (nor-

mal and shear loads) there exist both horizontal and vertical

motions which are functions of the frequency and spatial coor-

dinates x and z. Thus for every point on the horizontal axis

similar amplification functions as in section 3.4 could be

defined.

Limiting the discussion to the points under the loads

(x=0), an elastic rock amplification could be defined as the

ratio of the amplitude of the displacement at the surface of

the soil, under the load, to the corresponding amplitude of

the outcropping rock, that is at the free surface of the rock

without any soil on top (assuming the load applied at the

rock)

Because two motions are involved for each loading con-

dition, amplification functions could be defined for each

combination of load and motion. By selecting the point under

the load, though, the horizontal amplification corresponds to

the shear load and the vertical to the normal load. Due to

symmetry (or antisymmetry) the shear load produces no verti-

cal motion at this point and similarly the normal load pro-

duces no horizontal motion.

Finally the amplification ratios were normalized by

dividing with the corresponding displacement at small frequen-

~ieg
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5.3 Cases Studied

The same two stratum profiles described in section 4.1

were subjected to unit harmonic stresses (normal and shear),

applied at the origin of the coordinate system. That is,

the boundary stresses are

eo} (¥»=0) = 1
0

7 (x#0) = 0

\  gL — nN, =1

0 (x#0) = 0

Displacements are obtained as a function of x and z

for the elastic and rigid rock cases. Amplification functions

are given only for the elastic rock case.

5.4 Description of Computer Program

A second computer program in FORTRAN IV was written

utilizing the relations developed in the preceeding sections.

It calculates the amplitudes of the displacements as a func-

tion of x and z due to the specified boundary conditions. It

also plots (with a Stromberg Carlson plotter) the amplifica-

tion ratios as a function of frequency. Input parameters are

the necessary properties to specify the stratum profile and

the case considered (rigid rock or elastic rock).

Considering unit stresses, applied at the origin of

the coordinate axis, it obtains the Fourier Transforms by

the use of the Cooley-Tukey algorithm. It then calculates the

parameters ££, n, &amp;', n' for each layer and each horizontal

point from the relations
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i) 1),
and

E 2 nlIAx

where n represents the number of points used for the Fourier

Transform and Ax is the length increment along the x-axis.

Based on Ref. 1 the above values were selected as

. 1 IBA
10f 10

The length increment is a function of the wavelength since at

high frequencies, or small wavelengths, the motion fluctuates

more rapidly and therefore more points are required to repro-

duce the motion. It was determined (R. 1) that about ten

points per wavelength give a good representation of the motion.

Having determined the values of %&amp;, n, 2', n' the pro-

gram calculates the corresponding matrices T, H, rt, F and

G for each layer.

Finally the displacements and amplifications are cal-

culated using sections 5.1, 5.2 and the Cooley-Tucker algor-

ithm.

A listing of the program with the input

in Appendix A

format 1s given
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5.5 Presentation and Discussion of Results

Figure 5.1 shows the amplitude of the vertical motion

at the surface of a 100 ft. uniform soil layer resting on

elastic or rigid rock as a function of the horizontal dis-

tance from the line of application of the load. The motion

is the outcome of a unit normal periodic line load with fre-

quency of 2 cps.

The maximum amplitude occurs under the load, and is

given in the above figure as Wo—0 for both elastic and rigid

rock. For the elastic rock the motion is nearly periodic

with each consequetive peak along the x-direction decreasing

due to damping. Most of the decay in the motion with respect

to distance occurs near the line of application of the load.

For the rigid rock case the motion reduces to essentially

zero at a short distance.

Similarly Fig. 5.2 shows the amplitude of the horizon-

tal motion due to a unit shear line load as a function of the

horizontal distance. It applies to the same frequency and

soil profile as in Fig. 5.1 and results are shown for both

rigid and elastic rock. The curve for the elastic rock exhi-

bits the same characteristics as the corresponding one for

the vertical motion in the previous figure. The rigid rock,

however in this case, produces larger horizontal displacements

than the elastic rock. This is the effect of the frequency

(2 cps) which corresponds approximately to the first natural

frequency of the soil layer in shear (see Chapter 4). At the
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resonant frequency damping plays an important role on the

motion. Thus in the elastic rock case since energy is

dissipated through the rock the motion is smaller. Rigid rock

implies no energy is lost through the soil-rock interface.

The same phenomenon is not observed in Fig. 5.1 for the ver-

tical motion because in this case the first resonance does

not occur until a frequency of 3.25 cps (see Chapter 4 for

natural frequencies in dilatation).

Fig. 5.3 shows the amplitude of the motion as a func-

tion of depth, in the soil layer, directly under the load.

It is observed that the motion decreases rapidly with depth

even for the case of elastic rock (rigid rock motion is zero

at the interface of soil and rock by definition).

It can be concluded, therefore, that when a stress

wave is generated at the surface the greatest effect is near

the location of the loads. The decay of the motion with

respect to distance depends on the type of load considered,

frequency and properties of the underlying rock (elastic or

rigid).

Figures 5.4 and 5.5 show the elastic rock amplifica-

tions for horizontal and vertical displacements of the points

directly under the application of the load. The shape of the

curves is similar to those obtained in Chapter 4. The peaks

occur near the natural frequencies as obtained from one dimen-

sional amplification theory. For the horizontal motion the

dominant peaks correspond to natural frequencies in shear since
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the vertical motion of the point considered due a shear load

is zero due to symmetry. Similarly for the vertical motion

the significant peaks correspond to natural frequencies in

dilatation.
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CHAPTER 6

CONCLUSIONS AND RECOMMENDATIONS

This work is a logical continuation of the studies

performed in references 3,9 and 10. Displacements and ampli-

fication functions were presented for an elastic half-space

and a uniform soil layer resting on bedrock. Two situations

of plane waves were considered:

1) SV waves propagating upwards through the

bedrock at an arbitrary angle of incidence.

2) Shear waves generated at the surface by

unit periodic line loads (normal and shear).

A comparison of the results obtained in the first

situation with those of the references shows that the one

dimensional amplification theory can be used to predict the

natural frequencies of the soil layer. The effect of the

angle of incidence is to modify slightly these frequencies.

The overall shape of the amplification functions is similar

only for SV waves with angles of incidence less than the cri-

tical. For SV waves with larger angles the magnitude and the

shape of the amplification functions depends significantly on

the angle of incidence.

The same observation applies to the variation of dis-

blacements with depth. The overall shape of the curves is
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similar only for A pe The motion is nearly periodic

with respect to depth. The effect of the angle of incidence

is to influence the wavelength and to introduce a phase shift

in the curve describing the motion vs. depth.

In the second case, surface waves, the natural fre-

Juencies, as obtained from one dimensional propagation theory,

can be used to determine the peaks at the amplification func-

tions. The significance of each frequency depends on the mo-

tion and load considered. As for the motion it decays rapidly

with the distance, measured from the point of application of

the line load, due to damping.

While this work has been concerned with displacements

and amplification, the stresses can also be calculated. This

should be the next logical step in the series of studies of

soil amplification. Also, here the soil was assumed to be a

linear viscoelastic material. It has been recognized, how-

ever, that an important factor in the application of soil

amplification theories to practical situations is the consi-

deration of nonlinear soil behavior. The variation of the

amplification with the level of excitation for different types

of waves (and cycles of incidence) should be studied.
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APPENDIX A

COMPUTER PROGRAM

A.l1 Computer Program - Case 1

a) Input Format

In order to use computer program described in

Section 3.439 , the following input scheme must be followed.

The first data card contains an integer right justi-

fied to card column 10 which represents the number of the

layers (n) wished to specify the soil profile.

Next a group of n+l containing the data for each

soil layer (n) plus the last card the data of the underlying

rock. The forms of these cards in decimal number is as

follows:

For Soil Layers (n cards)
B.0 l e&amp;——— 10 11 ¢—— 20

1 J

21 « “&gt;

31] «—3 40 4] « 530

For Rock Layer (1 card)

c.C. 1 «+ 10 11 « — 20 2] «-—

SU

350
7

31 40 41 &lt;« © 0

Any number of angles and type of waves can be tested

by putting
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i) one card representing the number of angles

considered. FORMAT (I10).

Li) two cards for each angle. The first card

gives the angle considered, the amplitude

of P-wave (A, ) and the amplitude of SV-

wave (Ay ). FORMAT (3F10.0). The second

card containing the number of frequencies

for which the analysis wished to be per-

formed, the first frequency at which the

analysis starts, and the increment of the

frequency. FORMAT (I10, 2F10.0).

b) Listing of Program



IMPLICIT REAL*8(A-H,0-2)
DIMENSION H (20), VS(20) , ANU(20), BETA(20), GAM (20)
DIMENSION DAUX (2), CG(20), CL(20), CVP(20), CVS (20)
DIMENSION AL(20), ALP(20), AN(20), ANP(20)
DIMENSION EE(4), FMAT(4,4,20), GMAT (4,4)
DIMENSION TOP (4,4), BOT (4,4)
DIMENSION FREQ(100),RRHA (100) ,RRVA (100) ,ERHA (100) ,ERVA (100)
DIMENSION TEX1(4),TEX2(4),TBX3(9) ,TEXY4 (8), TEXS5(8),TEXS (8) NAME (2)

COMPLEBX*16 AUX,C3,CL,CVP,CVS,AL,AN,ALP,ANP
COMPLEX*16 EE,AIM,GMAT,DET,UT,VT,UA,UB,US,VSI
COMPLEX*16 TOP,BJT,FMAT
COMPLEX*16 APP,ASVP

EOUIVALENCE (AUX, DAUX(1))
DATA NAME/'EVAN' ,'MICH'/
DATA TEX1/'PREQ','UENC','Y ',' CPS'/
DATA TEX2/'AMPL','IFIC*','ATIO','N '/
DATA TEX3/'ELAS','TIC *','ROCK',’ ', ' HOR','IZON','TAL ','MOTI'

1,*ON Y'/
DATA TEX4,/'RIGI','D RO','CK ',! H' ,'DRIZ','ONTA','L MO','TION'/
DATA TEXS/'ELAS','TIC ','ROCK',* ~- *',' VER','TICA','L HO',' TION'/
DATA TEX6/'RIGI','D RO','CK ','- V'!,'ERII'*,*CAL *','MOTI','ON 1/

oJ]

Ego Rao kokok kok kok deok ok fk ok Rokok kok sok kok kokokok xD oyokkkkokda kokokokokakeod obs LT
THIS PROGRAM IS FOR THE CASE OF INCOMING WAVES THROUGH THE BOTTOM
OF THE LAYERED PROFILE, IT CALCULATES THE DISPLACEMENTS AS A
FUNCTION OF FREQJENCY AND DEPTH.IT ALSO CALCULATES AND PLOTS
(WITH A CARLSON-STROMBERG PLOTTER) THE AMPLIPICATION RATIOS AS
A FUNCTION OF FREQUENCY

© x deste eredicedkCR

-;

-

~

~

ho 2 DD B® ©&amp;

xk

SET VARIABLE AIM= SQRT(-1) =I
DAUX(N= O.
DAUX (2)= 1.
AIM= AUX

~ READ NUMBER OF LAYERS OF SOIL TO BE STUDIED

"
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100

re
Nw ® 5 8

READ(5,100) NLAY
FORMAT (110)
NLAY1=NLAY#+1

-» »  ?T ® ®

DO 10 I=1,NLAY1
e
CeessoREADHEIGHT,SHEARWAVE VELOCITY, POISSIONAS RATIO, DAMPING
TeesseoANDUNITWEIGHTPOR ZACH LAYER OF SOIL PLUS LAST DATA CARD FOR
 ees «ELASTIC ROCK

READ({5,101) H(I), VS({(I), ANU(I), BETA(I), GAM(I)
101 FORMAT (5F10.0)
10 CONTINUE
CeessCALCULATELAMEXRSCONSTANTSANDWAVE-VELDCITIESINCOMPLEXFORM

20 11 1I=1,NLAY1
R0= GAM({I)/32.2
5= RO*VS (I) *VS (I)
B= 2.%G*ANU(I)/(1.-2.*ANU(I))
DAUX(1)= G
JAUX (2) = 2.*BETA (I) *G
CG (I) =AUX
DAUX (1) = E
DAUY (2)= 2.*BETA (I) *E
CL{I)= AUX
CYP (I)= (CL(I)+2.*CG(I))/RO
“VS (I)= CG (I) /RO

CVP(I)=CDSORT(CVP(I))
CVS {I)Y=CDSQRT(ZVS(I))1

Ceessss READ ANGLE OP INCIDENCE OP SHEAR WAVE-WAVE IN DEGREES.
Zsssess READ ANGLE OF INCIDENCE OF SHEAR WAVE- IN DEGREES.
Ceese+ANGLEISMEASUREDFROMZ-AXES
4

"
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NANGC=0
READ (5, 100) NANG
NANGC= NANGC+1
READ (5,99) ALFA,AMPP,AMPS
?OKMAT (3F10.0)
ANG= ALPA* 3,14159/180.

ALP (NLAY1) =DSIN{ANG)
ANP(NLAY1)=1,-ALP(NLAY1) *ALP(NLAY1)
ANP (NLAY1) =CDSQRT (ANP(NLAY 1))

AL(NLAY1)= CVP(NLAY1)*ALP (NLAY1) /CVS {NLAY1)
AN (NLAY1)= 1.-AL(NLAY1)*AL(NLAY1)

AN (NLAY1) =CDSQRT (AN (NLAY1))
AUX= AN(NLAY1)
IP(DADX (2)) 1,1,2
AN(NLAY1)= -AN(NLAY1)
CONTINUE

pO 12 I=1,NLAY
ALP (I)= ALP (NLAY1)*CVS(I)/CVS(NLAY?)
AL(I)= AL(NLAY1) *CVP(I) /CVP (NLAY1)
ANP (I)= 1.-ALP (I)*ALP (I)
ANP (I)=CDSQRT (ANP (I))

AN (I)= 1.-AL (I) *AL (I)
AN (I) =CDSQRT(AN(I))

AUX= AN (I)
[FP (DAUX (2)) 12,12,13
AN(I)= -AN(I)
CONTINUE

f esses READ NO. OF PREQUENCIES, INITIAL FREQ. AND INCREMENTAL FREQ.

102

19gi

READ (5,102) NF, F1, DF
FORMAT (I10,2F10.0)
DO 300 I=1,NF
AI=I-1
FREQ(I)=F1+AI*DF —

Cc
{a



200
WRITE(6,200) NLAY
PORMAT (1H1,50X,I5, 2X, LAYERS! ,//)
WRITE(6,201)
FORMAT (2X, *LAYER',3X,'THICKNESS' ,1X,*SHEAR VEL? ,1X,'POISS RAT‘, 3X,

"DAMPING?! ,2X,'UNIT WEIGHT',/)
iIRITE(6,202) (I, H{(I),VS{(I),ANU(I),BETA(I),3AN(I),I=1,NLAY)
PORMAT (15,5X,5F 10, 2)
WRITE(6,203) VS(NLAY?1) ,ANU (NLAY1),BETA(NLAY1) ,GAM(NLAY1)
FORMAT (2X, 'ROCK' ,14X,4F10.2,//)
dRITE(6,204) ALFA
PORMAT (10X, ANGLE OF INCIDENCE OF WAVE IN ROCK',F10.0.,°?
WRITE(6,205)
FORMAT (2X, *LAYER*,13X,'L*',14X,*'N?,18X,*'LP',18X,*'NP?,//)
IRITE(6,206) (I,AL(I),AN(I) ,ALP(I),ANP(I),I=1,NLAY)
FORMAT{ I5,5X,8F10.5)
YRITE(6,207) AL(NLAY1) ,AN(NLAY1!) ,ALP (NLAY1) ,ANP(NLAY1)

FORMAT {2X *'ROCK',4X,8F10.5,//)
NRITE (6,208) AMPP
PORMAT (10X, AMPLITUDE OF P WAVE IN ROCK',F10.2,/)
WRITE(6,209) AMPS
FORMAT (10X,*AMPLITUODE OF S WAVE IN ROCK',F10.2,/)

201

202

203

204

205

206

207

208

209

DO 1000 J=1, NF
Al= J-1
FR= F1 + AI*DF

OM= 6,283 18*FR
WRITE(6,210) FR,OM

210 FORMAT (1H1,20X, YPREQUENCY?, Fb. 2," cps ',F6.2,' RAD/SEC?,//)

DO 30 L=1,4
DO 30 M=1,0

10 PMAT (L,4,1)=0,
DO 31 L=1,4

31 FMAT (L,L, 1) =1.

- DO 1001 I=1,NLAY1
(-
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Cesses DEFINE T-MATRIX
TOP (1, 1)= AL (I)
TOP (1,2) = =ANP(I)
TOP{1,3)= AL{I)
TOP (1,4) = ANP (I)
TOP (2, 1)= =AN({I)
TOP (2,2)= ~-ALP({I)
roP(2,3)= AN(I)
TOP (2,4)= -ALP (I)
AUX= AIN*OM/CVP (I)
TOP (3,1) = =-AUX* (CL (I) +2.%C5 (I) *AN (I) *AN(I))
TOP{3,2)= -AUX*2,%CG (I) *AL (I) *ANP (I)
TOP (3,3)= TOP (3,1)
TOP (3,4)= -TOP(3,2)
AUX= AIM*OM/CVS (I)
TOP (4,1)= AUX*2,*CG (I) *ALP (I) *AN (I)
TOP (4,2)= AUX*CS(I)* (ALP (I) *ALP (I)-ANP(I)*ANP(I))
[OP (4,3)= -TOP (4,1)
TOP (4,u4)= TOP (4,2)

DEFIME THE INVERSE OF T-MATRIX
AUX= {CL (I) #2.%CG(I)) *2.
30T{1,1)= 2,*CG(I)*AL(I)/AUX
BOT (2,1)= = [CL (I) +2.*CG (I) *AN(I)*AN(I))/ (AUX*ANP(I))
30T (3,1)= BOT (1,1)
BOT (4,1)= -BOT (2,1)
BOT (1,2)= (ALP (I)*ALP(I)~-ANP(I)*ANP(I))
30T (2,2) = =ALP (I)
B0T (3,2)= =-BOT (1,2)
30T {4,2)= -ALP(I)
30T{1,3)= AIMXCVP (I) /(ON*AUX)
30T(2,3)= AIM*AL(I) *CVP (I) / (OM*ANP (I) *AUX)
30T(3,3)= BOT{1,3)
30T (4,3)= =-BOT (2,3)
AUX= 2,*ATM*OM*CG(I)/CVS{I)
BOT (1,4)= ALP (I)/(AUX*AN(I))
BOT {2.,4)= =1./A0X —

o
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BOT {3,4)= -BOT(1,4)
BOT (4,4)= BOI (2,4)

Ceesse MULTIPLY T~MATRIX BY H-MATRIX
IF (I-NLAY) 225,225,1001

225 CONTINUE
Ceesse DEFINE THE ' H-MATRKRIXH OR EE= DIAGONAL OF H-MATRIX

AUX= -OM*AN (I)*H(I)/CVP(I)
10X= AUX*AINM

EE (3) =CDEXP (AUX)
EE(1)= 1./EE(3)
AUX= ~-OM*ANP (I)*H(I)/CVS{I)
AUYX= AUX*AIM

EE (4) =CDEXP (AUX)
EE(2)= 1./EE (4)

25 DO 20 L=1,4
DO 20 #H=1,4

20 TOP {L,M)= TOP (L,H)*EE (4)
Il= I+1

++ CALCULATE THE F-MATRIX FOR EACH LAYER OF SOIL

CALL MATMUL (TOP,BJITI,BOT)
CALL MATMUL (BOT, FMAT(1,1,I), FHAT(1,1,1I1))
CONTINUE
CALL MATMUL (BOT ,PMAT(1,1,NLAY?1) ,GMAT)
DET= GMAT (1,1) *GHMAT (2,2) -GMAT(1,2) *GMAT(2,1)
+e» HERE UT AND VI CONTAIN THE HOR. &amp; VERT. MOTION AT THE SURFACE

JT= AMPP*GMAT(2,2)-AMPS*GMAT(1,2)
YT= AMPS*GMAT (1,1) -AMPP*GMAT (2,1)
JT= UT/DET
IT= VI/DET

Ceseses CALCULATE APP AND ASVP IN TERMS OF AP AND ASV USING THE BOUNDARY
Ceseses CONDITION THAT THE STRESSES AT THE TOP ARE ZERO

TA= TOP (3,1) *AMPP+TOP (3,2) *AMPS
JB= TOP {4,1) *AMPP+TOP (4,2) AMPS
DET= [OP (3,3) *TOP (4,4)-TOP(3,4)*TOP (4,3)
JS= (TOP (4,4) *UA-TOP (3,4) *UB) /DET

» =
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VSI= (TOP (3,3)*0UB-TOP (4,3) *UA) /DET
APP= =-JS
ASVP= -VSI
WRITE(6,217)

217 PORMAT (17X,'AP' ,18X, "ASV! ,27X,'APP',26X,'ASVP!,/)
WRITE(6,218) AMPP,AMPS,APP,ASVP

218 FORMAT (10X,E10.2,10X,E10.2,10X,2E10.,2,10X,2E10.2,//)
Ceesese CALCULATE IHE DISPLACEMENTS U AND Ww BY KNOWING AP,APP,ASV,ASVP

JA= TOP (1,3) *US+ToP (1,4) *VS1I
UB= TOP (2,3) *US+TIP (2,4) *VSI

Ceesse. HERE US AND VSI CONTAIN U AND W AT THE TOP OF THE

JS= TOP (1,1) *AMPP+TOP (1,2) KAMPS-UA
7TSI=TOP (2, 1) *AMPP+TOP (2,2) *AMPS~-UB

Cesesss IF THE ANSLE OF INCIDENCE IS ZERO WE HAVE MOTION ONLY IN ONE DIRECTION,
Cesssss (HOR,OR VERT, FOR P AND SV-WAVES RESPECTIVELY). THEREFORE IN CALCULATING
Ceeseos AMPLIFICATIONS WE DIVIDE BY ZERO, THIS PART AVOIDS THAT.

IF (ALFA-0.0) 401,399,401
IF (AMPP-0.0) 398,400,398
IF (AMPS-0.0) 401,397,401
DAUX (1) =0.
DAUX(2)=0.0
JB=AU0X
[P(AMPS-0,0) 395,396,395

WRITE (6,409)
FORMAT (' **ERROR*%, NO WAVE WAS INPUT (AP=ASV=0), TERMINATION OF

THIS CASE CALLED.?')
50 TO 1003
UA=UT/US
30 TO 402
DAUX (1) =0.0
VAUX (2) =0.0
JA=AUX
UB=VI/VSI
30 TO 402
JA=UT/US
UB=vVT/VSI

—
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402 CONTINUE
AUX= UA
RBA= DAUX(1)*DAUK(1)+#DAUX (2) *DAUX (2)

ABA=DSOQRT (ABA)
+o ERHA= ELASTIC ROCK HORIZONTAL AMPLIFICATION

ERHA (J) =ABA
WRITE(6,211) DAUX (1) ,DAUX (2) ,ABA

FORMAT (10X,*HOR AMPL',3F20.5,/)
AUX= UB
ABA= DAUX (1) *DAUX (1) +DAUX (2) *DAUX (2)

ABA=DSORT (ABA)
 oo ERVA= ELASTIC ROCK VERTICAL AMPLIFICATION

ERVA {J) =ABA
ARITE (6,212) DAUX(1),DAUX(2),ABA
PORMAT(10X,*VER ANPL',3F20.5,///)
NRITE (6,213)
FORMAT (10X,'HOR MDTION',13X,'REAL',13X,'IMAGINARY',11X," AMPLITUDE

¥'./)
ADX= UT
ABA= DAUX (1) *DAUX (1) +DAUX (2) *DAUX (2)

ABA=DSORT (ABA)
«s+ HERE AABA CONTAINS THE AMPLITUDE OF HOR. MOTION AT THE SURFACE
AABA=ABA
ARITE (6,214) DAUX (1) ,DAUX (2) ,ABA

214 FORMAT (20X,3(10X,E10.,3))
Ceesesses THIS DO LOOP CALCULATES THE HORIZONTAL MOTION VS.

DO 1100 I=1, NLAY
I1= I+1
JA= FMAT(1,1,I1)*UT+FMAT(1,2,I1)*VT
AUX= UA
ABA= DAUX (1) *DAUX (1) +DAUX (2) *DAUX (2)

ABA=DSORT (ABA)
ARITE(6,214) DAUX (1) ,DAUX(2).ABA

1100 CONTINUE
C veseses RRHA= RIGID EOCK HOR. AMPLIFICATION

IF (ALFA-0,0) 420,421,420

»

fet
oOo
on



421
419

420
422

215

216

re

ne?

r.

at

1200

411
310

410
412

IF {(AMPP-0.0) 419,420,419
RRHA (J)=0.0
GO TO 422
RRHA (J) =AABA/ABA
CONTINUE
AUX=1TS
ABA= DAUX (1) *DAUX{1) +DAUX (2) *DAUX (2)
ABA=DSQRT (ABA)

WRITE(6,215) DAUX(1) ,DAUX(2),ABA
PORMAT (2X,'OUTCROP' ,11X,3(10X,E10.3),//)
WRITE(6,216)
FORMAT (10X,*VER MOTIION',13X,'REAL',13X,"IMAGINARY',11X,'AMPLITUDE

1,7)
AUX= VT
ABA= DAUX (1) *DAUX (1) +DAUX (2) *DAUX (2)

ABA=DSQRT (ABA)
sess HERE AABA CONTAINS THE AMPLITUDE OF I'HE VERT. MOTION AT THE SUFRACE

AABA=ABA
sos THIS DO LOOP CALCULATES THE VERT. MOTION VS. DEPTH

IRITE(6,214) DAUX (1) ,DAUX (2) ,A3A
DO 1200 I=1,NLAY
L1=I+1
JB= PMAT(2,1,I1)*¥UT+FMAT(2,2,11)*VT
AJX= UB
ABA= DAUX (1) *DAUX (1) +DAUX (2) *DAUX (2)

ABA=DSQRT (ABA)
dRITE(6,214) DAUX (1) ,DAUX{2),ABA
CONTINUE
 see RRVA= RIGID ROCK VERT. AMPLIFICATION

IF{ALFA-0.0) 410,411,410
IF (AMPS-0.0) 414,410,414
RRVA (J)=0.0
GO TO 412
RRVA (J)=AABA/ABA
CONTINUE
AUX= VSI

=
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424

425
1000

i v

ABA= DAUX(1)*DAUX (1) +DAUX (2) *DAUX (2)
ABA=DSQRT (ABA)

WRITE(6,215) DAUX (1) ,DAUX (2) ,ABA
WRITE (6,424) RERHA (J)
FORMAT(' RIGID-HOR AMPL!,F22.5,///)
WRITE (6,425) RRVA (J)

FORMAT(' RIGID-VER AMPL',F22.5,///)
CONTINUE
CALL STOIDV (NAME,7,3)
CALL PLOT (ERHA,FREQ,TEX1,TEX2,TEX3,225,36,NF,K)
CALL PLOT (RRHA,FREQ,TEX1,TEXZ,TEX4,260,32,NF,K)
CALL PLOT (ERVA,FREQ,TEX1,TEX2,TEXS5,260,32,NF,K)
CALL PLOT (RRVA,FREQ,TEX1,TEX2,TEX6,260,32,NF,K)
[F (NANGC-NANG) 40,41,41
CONTINUE

CALL PLTND(N)
CALL EXIT
END

“
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SUBROUTINE MATMUL (i,B,C)
IMPLICIT REAL*8(A~-H,0-Z)
DIMENSION A(4,u4), B(4,4), C(4,4), D(H)

COMPLEX*16 A,B,C,D,SUM

Cveees THIS SUBROUTINE MULTIPLIZS TWO MATRICES. CC =A ., B

DO 10 I=1,4
DO 11 J=1,4
S5UM= 0,
20 12 K=1,4
SUM = SUM+A{J,K)*B(K,I)

D{J)= SUM
DO 10 J=1,4
C(Jd,I)= DJ)
RETURN
END

[a
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SUBROUTINE PLOT (A,B,TIT1,TIT2,TIT3,N1,N2,N3,K)
DIMENSION A (100) ,B(100) ,TIT1(10),TIT2(10),TIT3(10)
CALL SETMIV(150,73,250,223)

AMAX=0.
DG 10 I=1,N3
IF (AMAX-A (I)) 11,10,10
AMAX=A (I)
CONTINUE
IF (AMAX-10.) 15,15,14
DY=2.0
3=1
30 TO 16
2Y=1.0
J=1
CONTINUE
K=K+1
I[F(K-1) 20,20,21
L=2
30 TO 23
L=4
CONTINUE
AMAX=ANAX+1.
[MAX=AMAX
AMAX=IMAX

3MAX=B (N3) +1.
IMAX=BMAX

BHA X=IMAX
CALL GRID1V(L,0.0,BMAX,0.0,AMAX,1.0,DY,0,0,1,3,2,2)
CALL RITE2V (410,200,1023,0,3,16,1,TIT1,IDUM)
CALL RITE2V(100,375,1023,90,3,16,1,TIT2,IDUM)
CALL RITE2V (N1,850,1023,0,3,82,1,TIT3,IDUM)

CALL GRAF1V (B,A,IERR,N3,1)
RETURN
2ND
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A.2 Computer Program —- Case 2

a) Input Format

In order to use the computer program described in

section 5.5 the following input scheme must be followed.

The first cards contains the number of soil layers

considered. FORMAT (Il0).

Then a group of cards containing h, Vr v, B and vy

for each soil layer plus one card for the underlying rock.

FORMAT (5F10.0).

The next card specifies the type of rock considered.

If the number 1 appears in c.c 10, elastic rock is considered.

If 0 appears in c.c. 10, rigid rock is considered. FORMAT

(I10) .

The last card contains the number of frequencies de-

sired in the analysis, the first frequency at which the analy-

sis starts, and the increment of the frequency. FORMAT (I10,

2F10.0).

b) Listing of Program



IMPLICIT REAL*8 (A-H,0-2)
REAL*Y4 FRHA,ERVA,RRHA,FEVA,FREQ
REAL*Y4 NAME,TEX1,TEX2,TEX3,TEX4, TEX5,TEXG
DIMENSION FREQ (100)

DIMENSION H(20), VS(20), ANU (20), BETA (ZC), GAM (20)
DIMENSION CAUX(2), CG(20), CL{20), CVP(20), CVS (20)
DIMENSION AL{20), ALP(z0), AN (20), ANP (20)
DIMENSION EE (4), FMAT(4,4,20), GHAT (4,64)
DIMENSION TCP (4,4), BOT{(U,4)
DIMENSION TEX1(4),TEX2(4),TEX3(9),TEX4(8),TEX5(8),TEX6(8),NAME(2)
DIMENSION P(520),T(520),u1(520,5) ,v1(52C,5),U02(520,5),V2(520,5)
DIMENSION CP (260),CT (260) ,CU1(260,5),CV1{260,5),CU2(260,5)
DIMENSION CV2(260,5)
DIMENSION UR(520), CUR(2€0), VR(520),CVR (260)

DIMENSICN ERHA (100), ERVA (100) ,RRHA (100) ,RRVA (100)
COMPLEX*16AUX,C6,CL,CVP,CVS,AL,AN,ALP,ANP
COMPLEX*16 EE,AIM,GMAT,CET,UT,VT,UA,UB,US,VSI
COMPLEX*16 TCP,BOT,FMAT
COMPLEX*16 APP,ASVP
COMPLEX*16 CP,CT,CU1,CV1,CU2,CV2
COMPLEX*16 CUR,CVR
EQUIVALENCE (AUX, DAUX(1))
EQUIVALENCE (CP(1),F(1)), (CT(1),T(1)),(CU1(1,1),U1(1,1))
EQUIVALENCE (CV1(1,1),V1(1,1)), (Cu2(1,1),02(1,1)), (CVv2(1,1),Vv2(1

“,1))
SQUIVALENCE (CUR({1),UR(1)), (CVR{1),VE(1))
ZQUIVALENCE (P(1),T(1))
JATA NAME/'EVAN','MICH'/
DATA TEX1/'FREQ®,'UFNC','Y !',' CPS'/
DATA TEX2/'AMPL','IFIC','ATIO','N '/
DATA TEX3/'ELAS','TIC ','ROCK',"* *, ' HGR',"IZON','TAL ','HMCTI®
(ON My
DATA TEX4/'RIGI*,'D RO',*CK ',' H','"ORIZ','ONTA','L MO','TION'/
DATA TEX5/YELAS','TIC !,'KOCK',' ~- ',' VER','TICA','L MO','TION'/
DATA TEX6/'RIGI','D ROY, "CK ','- VY, VERTI','CAL ',"MOTI','ON 1'/
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Ct rake koko kok ok dk AR ook dk 3K ok 3K ok ROK KOR JR el AK Hk kk of dk OK KK RACK RRR Rk Rk ko 0 4
THIS PROGEAM IS FCR THE CASE OF STRESS WAVES GENERATED AT THE
SURFACE AND PROPAGATING THROUGH THE MELIA. IT CALCULATES THE
DISPLACEMENTS AS A FUNCTION CF FREQUENCY AND SPATIAL COORDINATES
I AND Z. IT ALSO CALCULATES AND PLOTS (WITH A STROMBERG CARLSON
PLCTTER) THE AMPLIFICATICN RATIOS AS A FUNCTICN OF FREQUENCY.

kok Ft eel oie dk ail dk OK iok Oikos de + sos fot Re et dt sk des cee gph be ade kwh ow kkk gt

tof dhe of

~

1
-

A

-r  &gt; ® ® 5» » SET VARIABLE AIM= SQRI(-1)=I
DAUX (1)= 0.
DAUX (2)= 1.
AIM= AUX

C
OD kkEAkkk ee ee. +

Cesesses READ NUMBER OF LAYERS CF SOIL TO BE STUDIED
o KkkkA TT Edesgkakkd? CAC kak pakke wakaokdedkukdickorkobkokokakkoki+CCelA

FTFELE"

de ow pu

READ (5,100) NLAY
100 FORMAT (I10)

NLAY 1=NLAY +1
Sgn

DO 10 1I=1,NLAY1

c dkkkok dk get kolole dog JK A of 3 ie de viesfcaie ok KR RR ROR RR ROK ok RoR Rk KR RRR kkk kK RR ke ke wy

Ceewes READ HEIGHT, SHEAR WAVE VELOCITY, POISSCN%S RATIO, DAMPING
Ceevess AND UNIT WEIGHT FOR FACH LAYER OF SOIL PLUS LAST DATA CARD FOR
Zee sss ELASTIC ROCK
oO kRkF ET ’

 I) kK

J

r

READ (5,101) H(I), VS(I), ANU{(I), BETA{I),
101 FORMAT (5F1C.0)
10 CONTINUE

- dekkk cos comokedkokakakookokokkokekoRakaaekedehonoxgetaxolokok9opofdidieokokaKdleakakRok3KakakookeokokdkoROKRoeokiokofKX
Ceesas CALCULATE LAME%S CONSTANTS AND WAVE-VELCCITIES IN COMPLEX FCRH
~ Ae se Aeok 3k 3k ole sk ak ok a de 3K a ok ak ak ok ke ok a dk 3 a a aK akeak of dk ae ak deok ole ake sik a sk dk ok si aieak ok ak i de ie ai ai ok ak ok ae ak al aK koa ike kk Kk i tie ke ge OK RK BIRR
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DO 11 I=1,NLAY!?
RO= GAM(I)/32.2
G= RO*VS(I)*VS(I)
E= 2.%G*ANU(I)/(1.-2.%ANU(I))
DAUX (1) = G

DAUX (2)= 2 .*BETA (I)*G
CG (I) =AUX
DAUX (1)= E
DAUX (2)= 2.*BETA(I)*F
CL(I)= AUX
CVP (I)= (CL(I)+2.*CG(I))KOC
CVS{I)= CG (I) /RO
CVP (I) =COSQRT(CVP(I))

11 CVS (I) =CDSCRT(CVS(I))

K=0
Cdk desk soo feoskokoi dkookokok dk Sok 3 3k 0k 2koFak 3 3K ak ok kk XK kokok dk ok kop
Ceesse P= VERTICAL STRESS, T= SHEAR STRESS
Ceeesss INITIALIZE STRESSES TO ZERO AT EVERY POINT ON THE X-AKIS
ORR RAR RY RRR RR RRIF RK RRA RH Rw + Sh ohhh ok fd TC wk hd hws ke ed Ah ko

Cae a

DO 600 I=1,520
P(I)=0.

DO 600 J=1,NLAY1
g1(1,J)=0.
g2(1,J)=C.
v1(I,J)=0.

500  V2(I,J)=0.

(i.

Cow -

NPP=2506
NPS=256
NPT=256
NCPS=2*NPS
NCPT=2%NPT

‘r dr dk aedroe ed
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NPR=NPP/2
C
TOR kk ok dk okok dk ok ok ok KK ok 3 KOK ok 3K 3K 3K kK kkk okokok ok ak ok ok KK
Cevene SET VERTICAL AND SHEAR STRESS TO UNIT AT MIDPCINT OF TH(
Coesees X-AXIS(2%NPR-1).
Cevose (2*NPR-1) IS THE MILCPCINT BECAUSE THE VARIABLE P &amp; T ARE CEFINED AS
Ceosessce REAL BUT THE DISELACEMENTS ARE DEFINED AS COMPLEX. A COMPLEX VARIABLE
cE AES REQUIRES TWO STORAGE LOCATION INSTEAD OF ONE AS IS THE CASE FORK REAL.
C koko Sb 7 © 7 poo obook a kok ok okok kok ok 0k kok ak Ok Fk Kk Ak 3 kok 3k kai kkok AK SK OKok ok ok dkok ee ok kkaf 4 ok ok okak kok ck

P(1) =-1.
CALL FCUR2 (E,NPF,1,-1,1)
ANPP=NPP
&gt; DSI=1/( TOTSL NO. OF PCINTS)

DSI=1./ANPP
C
C kkk.  Lokakmokdkok=h kokkkx"~ ~~

Cesessse READ IRCCK
Cessssese IROCK=0 REPRESENTS RIGID RCCK CASE
Ceessee IROCK=1 REPRESENTS ELASTIC ROCK CASF
cesses READ NO. OF FREQUENCIES, INITIAL PREC. AND INCREMETAL FREQ.
C *x%kkxk'’ ) Ch kkkokk RARE tw EET bd hdd bd a RR RRR RK RK RRok ed ky

READ (5,100) IROCK
LF(IROCK) 802,802,803
WRITE (6,810)
PORMAT (1H1,50X, "RIGIL ROCK CASE!)
50 TO 815

WRITE (6,811)
FORMAT (1d 1,5CX, "ELASTIC RCCK CASE?)
WRITE (6,816)
PORMAT (50X, V¥®kkkkx cokRERRL [7]
READ (5,102) NF,F1,DF
FORMAT(I10,2F10.0)
WNRITE(6,20C) NLAY
FORMAT (50X,I5,2X, LAYERS, //)
WRITE (6,201)

802
B10

803
811
815
816

102

200

-
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FORMAT (2X, "LAYER", 3X, THICKNESS', 1X, '*SHEAR VEL',1X,' EOISS RAT',3X,
1*DAMPING?',2X,UNITWEIGHT',/)
WRITE (6,202) (I,H(I),VS(1),ANO(I),BETA{(I),GAM(I),I=1,NLAY)
FORMAT (I5,5X,5F10.2)
WRITE(6,203) VS (NLAY1),ANU(NLAY1),BETA(NLAY1),GAM(NLAY1)

203 FORMAT (2X, 'ROCK',14X,4F10.2,//)
CE Pr ICRU TE REE CC ERS TT as a

70 1000 JF=1, NF
AI=JF-1
PR= F1 + AI%DF

 ?PREQ (JF) =FR
OM= 6.28318%FR
ALIM=VS(1) /FR

C *kskkaokkk RRR EEK ER KRRRR Rk ARR kkk RK K Re kK. 3 .

Ceeeee SELECT INCREMENTAL LENGTH (DX)= VS/( 10*FR)
Ceveees TOTX= TOTAL LENGTH CF X-AXIS

Ceeeee DXI=1./( TCTAL LENGTH CF X-AXIS )
 OC kkk tkv ok kkk Rok kk RR KK KK Kk Rak Rok oe de de Loy

DX=ALIM/10.
TOTX=ANPP*LX
DXI=1./TOTX

 OC 3 Rk Yok teak geiko okok ok 3k oakok a ook kKok kok oi sk koko ok x bak oo ok aK ak A ki AK oR3K ak be Nie lek RR lo i OR RR mS ohooh ok
Ceseees THIS DO ICCP CALCULATES THE MOTION AT EACH INTERFACE FOR A SPECIFIC
Ceeeses POINT ON THE XI-AXIS (POINT CALLED JOSE). IT STARTS FRCM BOINT 1
Ceeeses AND ENLS AT MIDPOINT( NPR).
Ck 30k dk ok 3 ok ok 3KaK fk ok deaieskale sie akeof 3 cKok ak rk dokodk sek koi ko NCR FC
Cee sn

201

DO 700 JOSE=1,NPR
AJ=JOSE-1
MARY=1
LUIS=JCSE

C *xx%xx Cob dk skal doo ak ak ok aki db of OK 3% 3k Ok ok XK 2k kK akak kde Rok uk aK ROR 30 KK ROKK kh ho qc ROOK ROROR
Cessees  XI= TRANSFORMED COORDINATF FROM FOURIER TRANSFORM
Coeese NOTE THE INCREMENT IN THIS NEW TRANSECRMED XI-AXIS IS DXI=N2%PI/ (NPP*DX
Ck kok sie of a 30K kook kok ok ok 3k kok dk ook i ak al ok sk ak akok dk alo koi dd ik ke dk ob ke okak RE dR Ai Pk Kl FT ikokoo lk SO dk RoR ek KE

XT=AJ*DXI
—

oo)



710 CONTINUE
Ceevsesssnnssssencsese 2 a

DO 30 L=1,4
DO 30 M=1,4
PMAT (L,M,1)=0.
DO 31 L=1,4
PMAT (L,L,1)=1.
XI=6.2831853*XI

Cer akdodok ok ok hook ok 3k kkok RoR kok ok Ok KO 2kOk kok 4 4 AR HK KOK RK ok KEOF30 OK KK Kak Kk a ok OR Ok ok ok oo 3K KK KK 3 ak
Ceesee THIS DO 100OP CALCULATES THE PARAMETERS L,LP,N,NP FOR EACH LAYER.
co HHA AK KK ok ok OK okoook ok 3 OF 3 ak 0K KOK ok 3 3k dk lk kK Kok ok okOk 3 Kk 3K9K 3 30K Kk KK HK ke 3 3ok A oR aK ok Kf kK

DO 701 I=1,NLAY1
AL (I)=-XI*CVP(I)/OM
ALP (I) =-XI*CVS (I)/0OHM
AN (I)=1.-AL(I)*AL(I)
AN (I) =CDSQRT (AN (I))
ANP (I) =1.-ALP(I)*ALP(I)

ANP (I)=CDSQRT(ANP(I))
AUX=O0M*AN(I)/CVP(I)
AA=DABS (DAUX (2))
AA=DAUX (2) /AA
AN(I)=-AN(I)*aA
AUX=0M*ANP (I) /CVS (I)
AA=DABS (DAUX (2))
AA=DAUX(2)/AA

701 ANP (I)=-ANE{(I)*AA
vo 9 oes &gt;» 9 ® POS PO OW SL OO ID

DO 1001 I=1,NLAY1
Cd dor dk Kokookok kokok dc kok kok ok kok kok ok
Ceeee. DEFINE T-MATRIX
CT kokmokkirikox kokmkkokk kkk

TOP (1,1) = AL (I)

TOP (1,2)= =-ANF(I)
TOP (1,3) = AL (I)
TOP (1,4) = ANF (I)
TOP (2,1) = =-AN(I)

—
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TOP (2,2)= -ALP(I)
TOP (2,3) = AN(I)
TOP (2,4) = -ALP(I)
AUX= AIM*OM/CVP(I)
TOP(3,1)= ~-AUX* (CL (I)+2.*CG(I)*AN{I)*AN(I))
TOP (3,2) = -AUX*2.%CG(I)*AL(I)*ANP(I)
TOP (3,3) = TCP (3,1)
TOP (3,4) = -TOP(3,2)
AUX= AIM*OM/CVS(I)
TOP (4,1) = AUX*2.%CG (I)*ALE (I) *AN(I)
TOP (4,2) = AUX*CG (I)* (ALP (I)*ALP (I) -ANP (I)*ANP(I))
TOP (4,3) = -TOP (4,1)
TOP (4,4) = TCP(4,2)

Ck doko oko ok ok kk kok kok okokokdokokok ok KROkok kkk FoR
Ceeeo. DEFIMF THE INVERSE OF T-MATRIX
C or ok oe de kk dk ok ak di iak Soak of ok leaks ROK a KR aK kok dkok Rk kok AR Kk Rw TC

AUX= (CL (L)+2.*%CG(I))*z.
30T (1,1) = 2.*CG(I)*AL(I)AUX
BOT (2,1) = = (CL(I)+2.%CG(I)*AN(I)*AN(I))/(AUX*ANP(L))
BOT (3,1) = BOT(1,1)
30T (4,1) = -BOT (2,1)
BOT (1,2)= (ALP(I)*ALP(I)-ANP(I)*ANP(I))/(2.*AN(I))
30T (2,2) = —ALP (I)
30T (3,2) = -BCT (1,2)
BOT (4,2) = -ALP(I)
30T (1,3) = AIM*CVP (I)/(CM*AUX)
BOT (2,3) = AIM¥AL(I)*CVP (I)/(OM*ANP (I)*AUX)
BOT (3,3)= BCT {1,3)
BOT (4,3) = -BOT(2,3)
AUX= 2.%AIM*OM*CG(I)/CVS(I)
BOT (1,4) = ALP(I)/(AUX*AN (1))
BOT (2,4)= =-1./AUX
BOT (3,4) = -BCT(1,4)
BOT (4,4) = BOT (2,4)
IF (I-NLAY) 225,225,16G01

CONTINUE

-  k a. 5 §
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C kkk kkRkeREkkkvakokgkkg »kvogiokokBEKOKTFEELERKRRKEES
Ceeeoo DEFINE THE ' H-MATRIXH CK EE= DIAGONAL CF H-MATRIX
Cesess MULTIPLY T-MATRIX BY H-MATRIX
Cs sokoak 3k ak okok 3k of ok ok ok ok 3Kae oi 3 ok ok aK dkok iakokof kok Rk okoE kok ok

AUX= -OM*AN(I)*H(I)/CVP(I)
AUX= AUX*AIM

EE(3) =CDEXP (AUX)
EE(1)= 1./EE(3)
AUX= -OM*ANP(I)*H(I)/CVS(I)
AUX= AUX*AIM
SE (4) =CDEXEF(AUX)
EE (2)= 1./EE (4)
DO 20 L=1,4
DO 20 M=1,4
TOP (L,#)= TCP (L,M) *EE (¥)
I1= I+1

C ®xkxXx¥ Ek RR RK ER RRR Rk kA RF kok wok pk kk kK. Kahk | KpkXF

Ceeeeso CALCULATE THE F-MATRIX FCB EACH LAYER CF SOIL
I= RokkF| ak ok a ok okok ok dk ako ok 3K ok 0K okak aK Rk Wk RROR Rk i kok legk 4 bck 0 deseo ak kk kok kok Te Th kkkagakifFhkke

CALL MATMUL (TOP,BOT,BOQT)
CALL MATMUL (BOT, FMAT(1,1,I), FMAT(1,1,11))

1001 CONTINUE

CALL MATMUL (BOT,FMAT (1,1,NLAY1),GMAT)
IP (IROCK) 702,702,703

Cc 3 Wak ok vk ok ok ok 3 3k ok ak 3 sk dak ok ak okok ak 3k ok OK ak dk 3 ok dk J kak ok a ok dk okoFak 3 Kk OK ROKOR RK oROKOk 3k xkok oe kok ok RKOk ROR ROK Rkok
Ceeeeeess THIS PART CALCULATES THE MOTION FCR THE RIGID-ROCK CASE
o 3k fe 3 3 0k Jk ok ae 3 3k 3k ok fk 9kok dk de dk ok 3k ok ok kt 3K dk 3k 3k alc 3 ok 3 5 ok ok Kk kex 3 ak aK oR ok ok ak dk ak eA aK ie kok kK ie KKSE OK Kf KK KKK KR KOR xk kK
702  DET=FMAT (1,1,NLAY1) *FNAT (2,2, NLAY1) -FMAT (1,2,NLAY 1) *FMAT (2, 1, NLAY

f

JT=FMAT(1,3,NLAY1)*CP(LUIS)
YT=FMAT(2,3,NLAY1)*CP(LUIS)
JA=-UTXFMAT (2,2,NLAY1) +VI*FMAT (1,2,NLAY1)
JB=UT*FMAT {2,1,NLAY1)-VI*FMAT(1,1,NLAY1)
CU1(LUIS,1)=UA/DET
CY1(LUIS,1)=UB/DET =

nN
on?



UT=FMAT{1,4,NLAY1)*CT(LUIS)
YT=FMAT(2,4,NLAY1)*CI(LUIS)
JA=-UT*FMAT(2,2,NLAY1)+VI*FMAT(1,2,NLAY1)
UB=UT*FMAT (2,1, NLAY1) -VI*FMAT (1,1,NLAY1)
CU2 (LUIS, 1)=UA/DET
CV2(LUIS,1)=UB/DET
GO TO 704

C sk 32k 3 3 Aok ok dk ok ok ik ak ok ok kK 3k 3k XK KK 3% 2k fe ak ok ak doko dk dk ak dk okOk ak XK3 KOK RokaKak Rk KK KOK doko
C vu... THIS FART CALCULATES THE MOTION FOR THE ELASTIC CASE.
C ke30k se 3K 3K ak 3 ok 3 ok oe ok ok ok ok okak ak ok se 3K Hk 3ok ok ofak ak ok KK KR dkoka Kk a KO Rk KE ROKK ako kok Ak
703  DET=GMAT (1,1) *GMAT (2,2) -GHAT (1,2) *GMAT (2, 1)

UT=GMAT(1,3)*CP(LUIS)
JT=GMAT(2,3)*CP(LUIS)
JA=-UT*GMAT(2,2)+VI*GMAT(1,2)
UB=UT*GMAT(2,1)-VT*GHMAT(1,1)

Cdk Nok oo KR ORK RR ORRaR ROKR RRR RR ok kok ok Xk Lakh kL ok OK
C..... HERE CU1 &amp; CV1 CONTAIN THE HOR. &amp; VEET. MOTICN AT THE SURFACE

Connns FOR THE POINT (JOSE=LUIS) ON THE XI-AXIS.
OC dkdr ss 2 eakokk RT TRA RKRRRKKARRRL TTT RRR RRR RRRRkARK

CU1(LUIS,1)=UA/DET
CV1(LUIS,1)=UB/DET
OT=GMAT(1,4)*CT(LUIS)
VT=GMAT(2,4)*CT(LUIS)
JA=-UT*GMAT(2,2)+VT*GMAT(1,2)
UB=UT*GMAT (2,1) -VI*GMAT (1,1)
CU2(LUIS,1)=UA/DET
CV2 (LUIS,1)=UB/DET

704  IF(NLAY-1) 707,7C6,706
C kkdekkdok kk RE RRA RRRR RR Rk RRR RAR RRR rf ROR RRR Ra deokokkkkokRRRKKK%
C..... KNOWING THE MOTION AT THE SURFACE THE MOTION AT THE INTERFACES IS

Ceveess OBTAINEL
go 0 7k okok oR NK aK Rk kok ok RK OR RR RK KEK RX
1G6 DO 705 I=2,NLAYI1

CU1(LUIS,I)=FMAT(1,1,I)*CC1(LUIS,1)+FMAT(1,2,I)*CVI(LULS,1)+FHAT(1
x,3,I)*CP (LUIS)
CV1{(LUIS,I)=FMAT(2,1,I)*CU1(LUIS,1)+FMAT (Z,2,I)*CVI(LUIS,T)+FUAT(Z -

NO
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*,3,1)*CP (LUIS)
CO2(LUIS ,I)=FMAT(1,1,1)*CU2(LUIS,1)+FMAT(1,2,I)*CV2(LUIS,1)+FMAT(

«1,4,I)*CTI (LUIS)
CV2(LUIS,I)=FMAT (2,1,1)*CU2(LUIS,1)+FMAT(2,2,I)*CV2(LUIS,1)+FMAT(2

®,4,1)*CT (LUIS)
Oo kw o¢ Xeak2okokakvkaeokdkdkoakkok Toh oka oka i ak ok oko ale ak aede doi ofc ke
Ceesees THIS PART CALCULATES THE MOTION FOR THE ELASTIC HALF-SPACE.
Ceweees CVR= VERTICAL MOTICN AT POINT LUIS CN THE XI-AXIS DUE TO A UNIT VERT.
Ceeses STRESS

Cewees CUR= HORIZONTAL MGTION AT EACH PCINT ON THE XI-AXIS DUE TO A SHEAR STR.
r Me 2 3 3k 3k ok 3K ak i ok 2 3 ok ok of oi ak oko ok ok ak ok Xk ok dk kook 3aok ok ol okok ieok 3k oka ak ok of ik ko wk J 3x 300K Nea akeak ok dic de dak ok 3 38K ok ok om ok
707  DET=BOT(1,1)*BOT(2,2)-EOT(1,2)*BOT(2,1)

JT=BOT(1,3)*CP(LUIS)
YyT=BOT (2,3) *CP (LUIS)
JB=UT*BOT(2,1)-VT*BOT(1,1)
CVR (LUIS) =UB/DET
UT=BOT (1,4) *CT (LUIS)
7T=BOT (2,4) *CT (LUIS)
UA=-UT*BOT(2,2)+VI*BOT(1,2)
CUR (LUIS) =UA/DET

C Ae eke dc kok eo ck dkok kok ok oF 3K 3 ok ok Kk ok dR kk ok ok kok kod 30K ek ok sie a ok ok ak ok KKK 3K x 3k ok KK sk I kok kook Kk 3 3k Aok kK ok K
Ceeees THIS PART USES THE SYMMETRY ABOUT THE MIDPOINT TO CALCULATE THE MGCTIGN
Coevee. AT THE OTHER END OF THE XI-AXIS STARTING FROM THE LAST PCINT (NPP)
C  % doko ok sk ak 3k ak 3k dk ok ak ok dk koi 3k ak ok de ok a6 ak ok dk of ok KOROk kaleoko ob Tk 2 a dk ok kK ok 3k ak ke kgok okok ok dk kk dle ak kd dkok Seak kok aK ok Kk

GO TO (708,7CC) ,MARY
MARY=2

AJ=JOSE
KI=-AJ*DXI
LULS=NPP+ 1-JOSE
GO TO 710

700 CONTINUE
Ck ok kokakakakoFoko de ok ak ok ak Sk ak 3K 30k Ou ok KKofak kakok Rokk He3 vk kok ak ok 2 kok doi Fo aK RR KOR dk ler ok ob kok dik Kk Kakok ok dkok XKak
Cavnne AT THIS POINT THE MOTICN IS TRANSFORMED FROM THE XI-AXIS (FOURIZR-
Coeessos TRANSF.) BACK INTO THF ORIGINAL X-AXIS BY MANS OF FOURIER TRASFOMS.
Cd kok dk of ik 3 ak 3k 3kok dk ak dk ak ak ok Ok de 3 de ok ak3K 3 ak sk ak vkokokOKok ak KOR 3 dk kk dk Rf ok ok A dk dK ic kokok kaak disk ok ok 3K Fo ok KK aKaK kok x kk

DO 711 I=1,NLAY1
rm

N



CALL FOURZ2 (u1(1,I),NPP,1,1,1)
CALL FOUR2 (V1(1,I),NEE,1,1,1)
CALL FOUR2 (U2(1,I),NPP,1,1,1)
CALL POUR2 (V2(1,I),NEP,1,1,1)

DO 712 I=1,NLAY1
DO 712 J=1,NFP
U1(J,I)=U1(J,I)*DSI

U2 (J,I)=U2 (J,I)*DSI
V1(J,I)=V1(J,I)*DSI

712 V2 (J,I)=V2(J,I)*DsSI
Cc Ae Ackok ak it boca dk dk i dk alk kak dk ak OK Jk AY ak ok ak Kkck kokokok kk RR XK KRG REKEKY C4 kk %r kK» Dakokdkok

Ceseses CU1(J,2) CONTAINS U-LCISPLACEMENT OF POINT J AT LAYER INTERFACE I
Cessess DUE TO A UNIT VERTICAL STRESS
Coseeees SIMILARLY CV1 CONTAINS W(VERTICAL) LCISPLACEMENT
Ceeess CU2 &amp; CV2 ARE THE DISPLACEMENTS DUE TO A UNIT SHEAR STRESS.
Cc de dak di + ke 4 foal de Iakaiak 3K 0K ak 3k ok ok ai Kak okakook Kk ie ole of ok 3K ie di ak KR oi ok2k of of ole dk a akok KK RK Rk RoR okdesk TTT

CALL FOUR2 (UR,NPP,1,1,1)
CALL FOUR2 (VR,NPP,1,1,1)
CUR(1)=CUR(1)*DSI
CVR (1) =CVR (1) *DSI
WRITE (6,21C) FR,OH
FORMAT (1H1,20X,' FREQUENCY',F6.2,!' CPS ',F6.2,' RAD/SEC!',//)
WRITE(6,880) DX
FORMAT (/,1X,' DX FOR THIS FREQUENCY IS ',F10.3)
DO 920 I=1,NLAY1
ARITE (6,91C) I
FORMAT (1H1,20X, "INTERFACE NO  *,I2,,/20%vx
iRITE(6,911)
PORMAT (20X, "UNIT VERTICAL STRESS',/20Xt*xkirhxrt
IRITE (6,912)
FORMAT(*PCINT NC ',' X-COORD. *,20X,"HORIZONTAL MOTION',u42X,'VER

*TICAL MOTICN')
DO 901 J=1,NPR
AJ=J-1
X=AJ *DX

AUX=CU1 (J, I)

¥
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901
913

914

502
920

T1417

713
718

i23

714

124

ACU1= DAUX (1) *DAUX{1) +CAUX (2) *DAUX (2)
ACU1=DSQRT (ACU1)
AUX=CV1(J,I)
ACV1= DAUX (1) *DAUX (1) +CAUX {2)*DAUX(2)
ACV1=DSQRT {ACV1)
¥RITE(6,913) J,X,CU1(J,I),ACU1,CV1(J,TI),ACV1
PORMAT (2X,13,5X,F10.3,5X,3(5X,E10.3) ,10%,3(5%,E10.3))
IRITE (6,914)
*ORMAT(///,20X,'UNITSHEAEKSTRESS!',/20%"'°°
 AIRITE (6,912)
D0 902 J=1,NPR
AJ=J-1
X=AJ*DX
AUX=CU2 (J, I)
ACU2= DAUX {1) *DAUX (1) +CAUX (2) *DAUX (2)
ACU2=DSQRT (ACU2)
AUX=CV2(J,I)
ACV2= DAUX (1) *DAUX (1) +CAUX (2) *DAUX (2)
ACV2=DSQRT (ACV2)
WRITE(6,913) J,X,CU2(J,1),ACU2,CV2(J,I),ACV2
CONTINUE
N=)

N=N+1
50 TO (713,714,715,716),N

AUX=CU2 (1,1) /CUR (1)
AMPL=DAUX (1) *DAUX (1) +DAUX (2) *CAUX (2)
AMPL=DSQRT (AMPL)
GO TO (723,724,725,726),N

ERHA (JF) =AMPL
[P(JF.EQ. 1) SERHA=ERHA(1)
ERHA (JF) =ERHA (JF) /SERHA

30 TO 717
AUX=CV1(1,1)/CVR{(1)

GO TO 718

ERVA (JF) =AMPL
IFP(JF.EQ.1) SERVA=ERVA(1)

r 4 «2 990m
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715

125

716

7286

1050

ERVA (JF) =ERVA (JF) /SEKVA
G0 TO 717

AUX=CU2(1,1) /CU2(1,NLAY1)
GO TO 718

RRHA (JF) =AMPL
IF(JF.EQ.1)SRRHA=REHA(1)

RRHA (JF) =RRHA (JF) /SRRHA
GO TO 717

AUX=CV1(1,1) /CV1(1,NLAY1)
GO TO 718

RRVA (JF) =AMPL
[F{JF.EQ.1) SRRVA=RRVA(1)

RRVA (JF) =RRVA (JF) /SRRVA
CONTINUE
CALL STCIDV (NAME,7,3)
CALL PLOT (ERHA,FREQ,TEX1,TEX2,TFX3,225,36,NF,K)
CALL PLCT (RRHA,FREQ,TEX1,TEX2,TEX4,260,32,NF,K)
CALL PLOT (ERVA,FREQ,TEX1,TEX2,TEX5,260,32,NF,K)
CALL PLCT (RRVA,FREQ,TEX1,TEX2,TEX6,260,32,NF,K)
CALL PLTND (N)
CALL EXIT
AND

—
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IMPLICIT REAL*8 (A-H,0-2)
DIMENSION A (4,4), B(4,4), C(4,4), D(4)
COMPLEX*16 A,B,C,D,SUM

C
Cesess THIS SUBROUTINE MULTIELIES TWO MATRICES. C = A . B

DO 10 I=1,4
po 11 J=1,4
SUM= 0.
DO 12 K=1,4
SUM = SUM+A(J,K)*B(K,I)
D(J)= SUM
DO 10 J=1,4
C(J,I)= D(J)
RETURN
$ND

 Nn
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SUBROUTINE PLCT(A,B,TIT1,1IT2,TIT3,N1,N2,N3,K)
DIMENSION A{100),B(100),TIT1(10),TIT2(1G),TIT3(10)

CALL SETMIV(150,73,25(C,223)
AMAX=0.

J=1
DO 10 I=1,N3
IF (AMAX-A(I)) 11,10,10

11 AMAX=A (I)
10 CONTINUE
Das annsw ADVANCE FRAME (L=4), EXCEPT FIRST FRAME (L=2)

K=K+1
[F(K-1) 20,20,21
L=2
GO TO 23

21 L=4
23 CONTINUE

I, SELECT INCREMENT DY ANC MAXIMUM VALUES ON HOR. AND VERT. LINES {(AMAX,
Coesvesee BMAX)
Casesen DY IS SELECTED SC THAT WE HAVE ABOUT © (NSQ) VERTICAL LINES. IF A
Cow wom DIFFERENT VALUE CF NSC IS LCESIREL JUST CHANGE NSC CARD

NSQ=6
ANSQ=NS(C
IMAX=AMAX/ANSQC
[DY=IMAX+1
BMAX=NSQC*ILY
IDIFF=BMAX-AMAX

[F(IDIFF-ILY) 4,4,5
NSQ=NSQ-1
CONTINUE
AMAX=NSC*ILCY

DY=IDY
3MAX=B (N3) +1.
[MAX=BHMAX
BMAX=IMAX
CALL GRID1V(L,0.0,BMAX,0.0,AMAX,1.0,DY,C,C,1,J,2,2)
CALL BITE2vV(410,200,1C23,0,3,16,1,TIT1,ILUN)
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CALL RITE2V(100,375,1023,99,3,16,1,TIT2,1DUN)
CALL RITE2V({N1,850,1023,0,3,N2,1,TIT3,ILUN)

CALL GRAF1V({B,A,IERR,N3,1)
RETURN
END
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SUBROUTINE FOUR2 (DATA,N,NDIM,ISIGN,IFORM)
IMPLICIT REAL*8(A-H,0-2)
DIMENSION DATA (1), N(1)
NTOT=1
DG 10 IDIM=1,NDIM
NTOT=NTOT*N (IDIM)
[F (IFORM) 7C,20,20
NREM=NTOT
DO 60 IDIM=1,NDIM
NREM=NREM/N (IDIM)
NPREV=NTOT/(N(IDIM)*NKEM)
NCURR=N (IDIM)
[F (IDIM-1+IFORM) 30,3C,40
NCURR=NCURE/2
"ALL BITRV (DATA,NPREV,NCURR,NREHN)
CALL COOL2 (DATA,NPREV,NCUER,NREM,ISIGN)
IF (IDIM-1+IFORM) 50,5C,¢€C
“ALL FIXRL (LCATA,N(1),NREM,ISIGN,IFORM)
NTOT= (NTOT/N(1)) *(N (1) s2+1)
CONTINUE
RETURN
NTOT= (ETOT/N(1)) *(N{1) /2+1)
NREM=1
50 100 JDIM=1,NDIH
IDIM=NDIM+1-JDIN
NCURR=N {IDIM)
[F (IDIM-1) 8(,80,90
NCURR=NCURE/2
“ALL FIXRL (DATA,N(1),NREM,ISIGN,IFORM)
NTOT=NTOT/(N(1)/2+1)*N{1)
NPREV=NTOCT/ (N(IDIN) *8REM)
CALL BITRV (DATA,NPREV,NCURR,NREM)
CALL COOL2 (DATA,NPREV,NCURR,NRE#,ISIGN)
NREM=NREM*N (IDIM)
RETURN

FF2 1

FF2 29
FF2 30
FF2 31
FF2 ©
FF2 °

FF2
FF2
FF2
FF2
FF2
FF2
FF2
FF2
PF2
FF2 4+
FFPZ2 4u
FF2
FF2 4
FF2 U.
FF2 4;
FF2 U9
FF2 ©)

FF2 ’

 3
FF2 £3
FF2 tu
FF2 5»
PF2 56
FF2 57
FF2 513
FF2 59
FF2 60
FF2 61
*F2 62-
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SUBROUTINE BITRV (DATA,NPREV,N,NREM)
IMPLICIT REAL*8 (A-H,C-2)
SHUFFLE THE DATA BY 'BIT REVERSAL!.
DIMENSION DATA (NPREV,N,NEEM)
DATA (I1,I2REV,I3) = DATA(I1,I2,13), FOR ALL I1 FROM 1 TO NPREV,
ALL I2 FROM 1 TO N (WHICH MUST BE A PCWER OF TWO), AND ALL I3
FROM 1 TC NREM, WHERE I2REV-1 IS THE EITWISE REVERSAL OF I2-1.
FOR EXAMPLE, N = 32, I2-1 = 10011 AND I2REV-1 = 11001.

DIMENSION DATA(1)
[P0=2
IP1=IPO*NPREV
[P4=IP1%N
IP5=IPL4%NREM
[4REV=1
LO 60 I4=1,IP4,IP1
IF (I4-IGREV) 10,30,30
IT1MAX=I4+IE1-IP0
DO 20 I1=I4,I1MAX,IPO
DO 20 I5=I1,IP5,IPY
ISREV=I4REV+I5-14

TEMPR=DATA (I5)
TEMPI=DATA (I5+1)
DATA (I5) =DATA (ISREV)
DATA (I5+1)=CATA(I5REV+1)
DATA (ISREV)=TEMPR
DATA (IS5REV+1) =TEMPI
IP2=IPU4/2
IF (I4REV-IP2) 60,60C,50
I4REV=I4REV~-IP2
[P2=1IP2/2
IF (IP2-IP1) 60,4G, 60
[4REV=I4REV+IP2
RETURN
ND

BIT

BIT
BIT
SIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT ‘

BIT :
BIT 14
3IT 1°
BIT 4°
3IT ©
8IT
s8IT 3
BIT [J
BIT 1
BIT 2°
BIT 2.
BIT 24
BIT 273
BIT 75
BIT 7
BIT 2°
BIT 23
BIT 30
BIT 31
BIT 32
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SUBLOUTINE CCCL2 (DATA,NEKEV,N,NREM,ISIGN)
[MPLICIT REAL*8 (A-H,0-2)
POURIER TRANSFORM OF LENGTH N BY THE COCLEY-TUKEY ALGOERITHM.
BIT-REVERSED TO NORMAL OKLER.
DIMENSICN LATA {NPREV,N,NEEN)
COMPLEX DATA
DATA (I1,J2,1I3) = SUM(DATA (I1,I2,I3)*EXP(ISIGN*2*PI*I*((I2-1)%*
(J2-1) /N))), SUMMED OVER I2 = 1 TO N FOR ALL I1 FROM 1 TO NPREV,
j2 FROM 1 TC N AND 13 FRCE 1 TO NREM. N MUST BE &amp; POWER OF TWO.
*ACTORING N BY FOURS SAVES ABOUT TWENTY FIVE PERCENT OVER FACTOR-
ING BY THOS.
NOTE--IT IS NOT NECESSARY TO REWRITE THIS SUBROUTINE INTC COMPLEX
NOTATION SO LONG AS THE FCRTRAN COMPILER USED STORES KEAL AND
IMAGINARY PARTS IN ADJACENT STORAGE LCCATIONS. IT MUST ALSC
STORE ARRAYS WITH THE FIRST SUBSCRIPT INCREASING FASTEST.
DIMENSION CATA(1)
TWOPI=6.2831853072%DFLOAT(LSIGN)
IP0=2
[P1=IPG*NPREV
[PU=TIP1*N
[P5=IPU*NREN
IP2=IP1
SPART=N
IF (NPART-2) 50,30,20
NPART=NPART/4
30 TO 10
0 A FOURIER TRANSFORM CF LENGTH TWO
IP3=IP2%2
20 40 I1=1,1P1,IPC
DO 40 I5=I11,IP5,IP3
JO=IS
J1=30+1IP2

TEMPR=DATA(J1)
TEMPI=DATA (J1+1)
DATA (J1) =DATA(J0) -TEHEF
DATA (J1+ 1) =LCATA (JO+1) -TEMEI

COZ

COZ
£02
Co2
C02
COZ
COo2
Co2
cece
CeZ
CO2
Coz ,

Co02 2
C02 14
cc? 15

COZ
COz
C02
COZ
coz
CcC2
COZ
co2
COZ
Co2
C02
CG2
CoZ
coz
COZ
$nz2 3°
co2 33
co2 3d
COZ 35
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18
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DATA {(JO)=DATA (JO) + TEMPE
DATA (JO0+41)=CATA (JO+1) +TENPI
GO TO 140
DO A FOURIER TRANSFORM OF LENGTH FOUR (FRCM BIT RzVERSED ORLCER)
IP3=1IP2*4
THETA=TWCPI/DFLCAT(IP3/1P1)
SINTH=DSIN (THETA/2)
AISTPR=-2.*SINTH*SINTH
COS{THETA) -1, FCK ACCUEBACY.
VSTPI=DSIN (THETA)
iR=1.
WI=0.
DO 130 12=1,IP2,1P1
IF (12-1) 70,70,60
H2R=WR*WR-WI*WI
N2I=2.%WNR*V¥WI1
N3R=W2R*WR-W2I*WI
A3I=W2R*WI+W2I*KE
[1MAX=I2+IF1-1IP0
DO 120 I1=I12,I1MAX,IPC
DO 120 I5=11,1P5,1IP3
JO=I1I5
J1=J0+1IP2
J2=J1+4IP2
J3=J2+1IP2
IF (I2-1) 9¢,9¢,80
APPLY THE PHASE SHIFT FACTCRS

TEMPR=DATA (J 1)
DATA (J 1) =W2R*TEMPR-W2I*CATA(J1+1)
DATA (J1¢ 1) =W2R*DATA (J1+41) +W2IXTEM PR
TEMPR=CATA {J2)
DATA (J2) =WE*TEMPR-WI*DATA (J2+1)
DATA (J2+1) =WR*DATA (J2+ 1) + KI*TEMPR
TEMPR=DATA (J3)
DATA (J3) =W3R*TEMPR-W3L*DATA(J3+1)
DATA (J3+1) =W3R*DATA (J3+1) +W3I*TEMPR

Coz 36
coz 37
C02 38
co2 39
C02 uh

C02 43
C02 44

C02 Ub
co2 47
C02 43
Co2 48
coz ¢°
co2 °C
coe ©
Co02 5S.
C02 54
Co2 55
C02 5o
co2 57
C02 58
co02 5%)
C02 60
Co2 ¢€1
C02 6.
C02 623
COZ od
C02 6h
C02 66
C02 67
C02 o8
Co2 ©9
cc2 170
coz 71

pr
vs

 ~~



30

100
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130
140

15C

TOR=DATA(JO)+DATA(G1)
TOI=DATA(JC+1)+DATA(J1+1)
T1R=DATA (JC)-DATA (J1)
T1I=DATA(JO+1)-DATA(J1+1)
T2R=DATA(J2)+DATA(J3)
T2I=DATA(J2+1)+DATA(J3+1)
T3R=DATA{J2)-DATA(J3)
T3I=DATA (J2+1)-DATA (J3+1)
DATA (JO) =TCR+T2R
DATA (JO+1) =T0I+T2I
DATA (J2) =TCR-T2R
DATA {J2+1) =TOI-T2I
IF (ISIGN) 1€0,100,110
T3R=-T3R
T3I=-T31
DATA (J1) =T1R-T3I
DATA (J 1+ 1) =T1I+T3R
DATA (J3) =T1R+T3I
DATA (J3+1) =T1I-T3R
TEMPR=WR
AR=WSTPR*TEMPR-WSTPI*WI+TEMPR
WI=W STPR*WI+WSTPI*TEMPR+WI
[P2=1P3
IF (IP3-IP4) 50,150, 150
RETURN
END

coe 17°
co2 73
C02 74
co02 175
Co2 lo
coz -
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SUBROUTINE FIXRL (DATA,N,NREM,ISIGN,IFCRM)
IMPLICIT REAL*8(A-H,C-2)
FOR IFORM = 0, CONVERT THE TRANSFORM OF A DOUBLED-UP RFAL ARRAY,
CONSIDERED CCHPLEX, INTO ITS TRUE TRANSFORM. SUPPLY ONLY THE
FIRST HALF CF THE COMELEX TRANSFORM, AS THE SECOND HALF HAS
CONJUGATE SYMMETRY. FCR IFORM = -1, CONVERT THE FIRST HALF
OF THE TRUE TRANSFORM INTC THE TRANSFORM OF A DOUBLEL-UP REAL
ARRAY. N MUST BE EVEN.
USING COMPLEX NOTATION ANC SUBSCRIPIS STARTING AT ZERC, THE
TRANSFORMATION IS--

DIMENSION DATA (N,NREM)
ZSTP = EXP (ISIGN¥2%PIXI/N)
DO 10 I2=0,NREM-1
DATA (0,I2) = CONJ (DATA (0,I2))*(1+I)
DO 10 I1=1,N/4
Z = (1+(2*IFORM+1)*I*ZSTE**I11)/2
I1CNJ = N/2-I1
DIF = DATA (I1,I2)-CONJ (DATA(IICNJI,I2))
TEMP = Z*DIF

DATA (I1,12) = (DATA(I1,I12)-TEMP)* (1-IFORM)
DATA (I1CNJ,I2) = (DATA (I1CNJ,I2)+CONJ (TEMP))*(1-IFORH)
[F I1=I1CNJ, THE CALCULATION FOR THAT VALUE COLLAPSES INTO
A SIMPLE CONJUGATION OF LATA(I1,I2).
DIMENSION CATA(1)
IWOPI=6.2831853072%DFLGAT(ISIGN)
[PO=2
[P1=IPO* (N/2)
IP2=IP1*NREN
IF (IFORM) 10,70C,70
PACK THE REAL INPUT VALUES (TWO PER CCLUMN)
J1=IP1+1
DATA (2) =DATA(J1)
[F (NREM-1) 7C,70,20
J1=J1+IPO
[2MIN=IP1+1
D0 60 I2=I2MIN,IP2,IP1

TIX

FIX
FIX
FIX
FIX
FIX
fIX
FIX
FIX
FIX
FIX
FIX
FIX
FIX
FIX
FIX
FIX
PIX 1
FIX 1.
FIX 20
FIX 21
FIX 22
FIX 23

FIX
PIX
FIX
FIX
FIX
FIX
FIX :
FIX
FIX 5.
FIX 34
FIX 35
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27
23
21
 Y)

_
oy
 rr



gf y

40
50
60
70

90

30

100

119

120
13C
14C
150

DATA (I12)=DATA(J1)
J1=J1+1IP0
IF (N-2) 50,50,30
LITMIN=I2+IP(
ITMAX=I241P1~-1IPC
DO 4C IT=I1MIN,I1HAX,IEC
DATA (I1) =DATA(J)
DATA (I1+1) =CATA{J1+1)
J1=J1+IP0
DATA (I2+1) =DATA (J1)
J1=J1+1IP0
DO 80 12=1,IP2,1P1
TEMPR=DATA (12)
DATA (I2)=DATA(12)+DATA(I2+1)
DATA (I2+1) =TEMPR-DATA(I2+1)
IF (N-2) 200,200,90
THETA=TWOPI/LCFLOAT (N)
SINTH=DSIN (THETA /Z)
LSTPR==2.*SINTH*SINTH
ZSTPI=DSIN (THETA)
ZR= (1.-2ZSTPI)/2.
LI=(1.+ZSTER)/2.
IF (IFORM) 1€G,110,110
ZR=1.~-ZR
Z1=-721
ITMIN=IPO+1
[1MAX=IPO* (N/4) +1
00 190 I1=I1MIN,ITMAX,IPC
DO 180 I2=I1,IP2,IP1
I2CNJ=1P0* (N/2+1) -2%T 1412
[F {I2-I2CNJ) 150,120,12C
IF (ISIGN* (2*IFORM+1)) 13C, 140,140
DATA (12+1)=-DATA (I2+1)
IF (I1¥CRM) 17C, 180,180
DIFR=DATA(IZ2)-DATA (I2CNJ)
DIFI=DATA(I241)+#+DATA(IZCNJ+1)

FIX 36
FIX 37
FIX 38
FIX 33
FIX 49
FIX {4
FIX 4
FIX 4°
FIX 41
FIX 4
FIX 4.
FIX 47
FIX 48
FIX 49
FIX 50
FIX 51

FIX 5H§

FIX 56
FIX 57
FIX 58
FIX 59
FIX 60
PIX &amp;1
FIX 62
FIX ¢1}
FIX 64
FIX 65
FIX 65
FIX 67
FIX 68
FIX 69
FIX 7C
FIX 71
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250

TEMPR=DIFR*ZR-DIFI*ZI FIX 72
TEMPI=DIFR*ZI+DIFI*ZR FIX 73
DATA (I2)=DATA(L2)-TEMPR FIX 74
DATA (I2+1) =DATA (I2+1) -TEKEI FIX 75
DATA (I2CNJ) =DATA (I2CNJ) +TENPR FIX 70
DATA (I2CNJ+1)=DATA (I2CNJ+1) -TEMPI FIX 17
[F (IFORM) 160,180,180 PIX 7°
DATA (I12CNJ) =DATA (12CNJ) +DATA (I2CNJ) FIX 7)
DATA (I2CNJ+ 1) =DATA(I2CNJ+1) +DATA(I2CNJ+1) FIX 2"
DATA (I2) =DATA(I2)+DATA(I2) FIX
DATA (I2+1) =DATA (I2+1)+DATA(I2+1) FIX
CONTINUE FIX
TEMPR=%ZR-.5 FIX €4
LZR=ZSTPR*TEMER-ZSTPI*ZI+ZR FIX 8%
ZI=ZSTPR*ZI+ZSTPI*TEMEF+2Z1 FIX 8%
RECURSICN SAVES TIME, AT A SLIGHT LOSS IN ACCURACY. IF AVAILABLE,FIX 87
USE DOUBLE PRECISICN TC CCMPUTE ZR AND ZI. FIX 83
IF (IFORM) 270,210,210 FIX ¢€°
ONPACK THE REAL TRANSFORM VALUES (TWC PER COLUMN) FIX ¢)
[2=1P2+1 FIX 9°
[1=12 FIX §
J1=IPCO* (N/2+1) *NREM +1 FIX a
50 TO 250 FIX 94
DATA (J1)=DATA(I1) FIX ©
DATA (J1+1) =CATA(I1+1) FIX 9¢
[1=11-1IPO PIX G7
J1=J1-1P0 FIX §°
IF (I2-I1) 220,240,240 FIX 9
DATA (J 1) =DATA (I1) FIX 100
DATA {(J1+1) =0. FIX 101
[2=12-1IP1 FIX 10°
J1=J1-1IP0 FIX 103
DATA (J1) =DATA (L241) FIX 104
DATA (J1+1) =0. FIX 105
[1=11-IPO FIX 106
J1=J1-1P0 FIX 107
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IF (I2-1) 26C,26C,230
DATA (2) =0.
RETURN
END

FIX 108
FIX 109
FIX 110
FIX 111-
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