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ARTICLE OPEN

Machine learning for the discovery of molecular recognition
based on single-walled carbon nanotube corona-phases
Xun Gong1,4, Nicholas Renegar 2,4, Retsef Levi3✉ and Michael S. Strano 1✉

Nanoparticle corona phase (CP) design offers a unique approach toward molecular recognition (MR) for sensing applications.
Single-walled carbon nanotube (SWCNT) CPs can additionally transduce MR through its band-gap photoluminescence (PL). While
DNA oligonucleotides have been used as SWCNT CPs, no generalized scheme exists for MR prediction de novo due to their
sequence-dependent three-dimensional complexity. This work generated the largest DNA-SWCNT PL response library of 1408
elements and leveraged machine learning (ML) techniques to understand MR and DNA sequence dependence through local (LFs)
and high-level features (HLFs). Out-of-sample analysis of our ML model showed significant correlations between model predictions
and actual sensor responses for 6 out of 8 experimental conditions. Different HLF combinations were found to be uniquely
correlated with different analytes. Furthermore, models utilizing both LFs and HLFs show improvement over that with HLFs alone,
demonstrating that DNA-SWCNT CP engineering is more complex than simply specifying molecular properties.

npj Computational Materials           (2022) 8:135 ; https://doi.org/10.1038/s41524-022-00795-7

INTRODUCTION
Antibodies are the most well-known nano-scale constructs
capable of molecular recognition (MR) through adsorption to an
intended target. Their generation and implementation since 1975
have enabled paradigm shifts in the biomedical sciences1. As the
MR component of a large proportion of rapid tests and laboratory
assays2, they are integral in chemical detection, food safety, and
physiological sensing. One of their most recognizable applications
is the home pregnancy test, where monoclonal antibodies against
the human chorionic gonadotropin is used in a lateral flow assay3.
As targeted therapeutics, or biologics, they are a widely produced
class of pharmaceuticals that enable precision treatment of cancer
and autoimmune conditions4. However, despite extensive use,
their design still involves a selection process based on biological
machinery5. Recently work has also explored synthetic MR design,
including: nucleotide aptamers6, non-immunoglobulin protein
scaffolds7, and molecularly imprinted polymers8. Potential limita-
tions of these alternative approaches include: high cost, low
stability, inability to detect different classes of molecules, and
mostly importantly, the lack of a data driven method for design
that is able to learn from past experimental results.
An emerging area of synthetic MR that involves the design of

the nanomaterial corona phases (CP) is corona phase molecular
recognition (CoPhMoRe)9. The CP of a nanoparticle is the
thermodynamically-controlled coverage of a material’s surface
formed from adsorbed molecules. These non-covalent modifica-
tions, whether from synthesis or the environment, often serve as
the interface that determines a material’s properties10. In the case
of single-walled carbon nanotubes (SWCNTs), their aqueous
dispersion through adsorption of small molecules or polymers
form surface CPs that can be capable of MR. Furthermore, the
discovery that binding events can be transduced through the
SWCNT’s intrinsic band-gap photoluminescence (PL)11 led to a
series of studies that demonstrated promising photophysical
detection of multiple classes of analytes, including: reactive

species12, metal ions13, small molecules14, and biological macro-
molecules15. One advantage of such a system is that the SWCNT
material functions of both MR and optical signal transduction
sensor component, minimizing interfacial losses in other two-
component designs.
SWCNT CoPhMoRe generation also faces a similar challenge of

an enormous design space, starting with the need to formulate of
a large library of unique CPs that can also stably disperse single
SWCNTs in the solution phase16. Fortunately, single-stranded DNA
molecules have been demonstrated to stably disperse SWCNTs
and also are a common class of polymers that can be synthesized
rapidly with molecular precision. Thus, DNA-SWCNTs have been a
rich resource for MR design17,18. The nucleotide base (NB)
dependent nature of interactions between DNA and SWCNTs
have been studied both computationally19,20 as well as experi-
mentally at the single-molecule21 and short motif level22.
However, there currently exists no intuition to effectively design
DNA CPs for the purposes of MR. The most common approach is a
systematic enumeration of the sequence design space guided by
global intuitions on sequence composition23. Considering that
there are 4L permutations of DNA sequences (L being the
sequence length), which then encodes for complex secondary
and tertiary DNA structures that are also influenced by unique
interactions from adsorption to the low-dimensional SWCNT,
intuitive or random screening-based search methods are highly
inefficient for converging on to promising targets.
Recently, machine learning (ML) techniques have been of

considerable interest in exploring these complex materials design
spaces. The goal of these methods are to perform classification
and prediction tasks to optimize predefined metrics related to
materials properties. In 2018, Yang et al. performed the first ML-
based study of DNA-SWCNT, specifically for the application of
sequence dependent SWCNT chirality separation in aqueous two-
phase systems24. By limiting the DNA strand length to 12 NBs,
82 strands were modeled using a panel of learning algorithms to
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demonstrate a higher than 50% success rate of finding chirality
separation sequences. To date, no such computational study or
uniformly controlled large dataset exist for the evaluation of DNA-
SWCNT CoPhMoRe development.
This work demonstrates an approach using ML in order to

identify and inform DNA-SWCNT MR. Specifically, the goal is to use
ML to predict which DNA sequences enable better SWCNT PL
analyte responses for each specific experimental condition. A
panel of previously untested analytes (cadmium, enrofloxacin,
chloramphenicol and semicarbazide) were selected based on the
need for rapid and quantitative testing technology for adultera-
tion in the aquaculture supply chain25. To enable this ML
approach, DNA-SWCNT PL spectra change from analyte exposure
were collected to create the largest sensing response library to
date for 176 randomly chosen DNA sequences in eight different
experimental conditions. From this training data, ML predictions
for DNA sensor responses were made using the following three
steps. First, a convolutional neural network (CNN) was used to
predict shorter-length DNA motifs correlated with photophysical
responses, which we refer to as local structure predictions26–28.
Second, independent features were created based on a principal
components analysis (PCA) vectorization of 40 high-level features
(HLFs) (e.g., molecular weight, melting point, dimers, etc.)29. Third,
these HLF and CNN model outputs were then both used as
independent features for gradient-boosted decision trees (GBDTs)
in order to produce the final predictions regarding whether DNA
sequences can produce promising sensor candidates for each
analyte and sensing environment30. The study demonstrated that
these ML models can significantly predict DNA-SWCNT MR with
relatively few data points. Through interpretation of the HLFs
significantly correlated with improved MR, general properties that
increases sensor response can also be identified (e.g., decreasing
melting temperatures, increasing adenine content, and decreasing
thymine content). As a whole, we show that DNA-SWCNT sensors
offer unique NB dependent MR capable of differentiating analytes
and measurement conditions. While still a computationally and
experimentally challenging problem, this work offers the systema-
tic insights into DNA sequences effects and experimental design
considerations for future computationally driven CoPhMoRe
studies.

RESULTS
Study organization and data collection
Many primary food supply chains (FSCs) are often a source of
serious quality and safety problems. These issues can arise from
substandard practices and poor operational conditions, but also
intentional or economically motivated adulteration. Some of the
specific agents presenting threats to human health in the
aquaculture FSC include heavy metal contamination of water
sources from industrial mining and antibiotic adulteration above
acceptable levels25. Since FSCs are typically complex and change
dynamically over time, part of determining the appropriate
regulatory actions and ensuring consumer safety involves devel-
oping rapid testing capabilities to detect adulterants of interest.
This study, based on a survey of aquaculture markets25, focuses on
developing sensor elements against cadmium ions and three
small molecule antibiotic species: enrofloxacin, chloramphenicol,
and nitrofuran’s degradation product, semicarbazide. An analyte
concentration of 100 μM was chosen for this study based on
previous experience that kd values of SWCNT CoPhMoRes can be
typically found in this range31,32. Optimization of sensitivity is
usually a step performed after identifying promising targets.
Additionally, a dataset containing previous published results of
DNA-SWCNT sensors against arsenite (AS3+) and arsenate (AS5+)33,
two other candidates of interest, were included in the computa-
tional analysis as comparison.

An overview of the paper’s methodological approach is shown
in Fig. 1. This work revolves around computationally studying the
DNA sequence dependence of DNA-SWCNT photophysical sensor
constructs against the analytes of interest. SWCNTs synthesized
from the high-pressure carbon monoxide (HiPco) method were
used, which contain a range of different chirality small diameter
SWCNT species that can be concurrently probed. Each sensor
construct consisted of a colloidal aqueous dispersion of SWCNT
using a single unique sequence of randomly generated single-
stranded DNA, with the design space constrained to all DNA
strands of length between 12 and 40 NBs. Shorter DNA lengths
were not considered due to poor dispersion stability, potentially
resulting in aggregation after analyte addition34. Longer DNA
were not chosen due to increased CP stability with polymer
length. While DNA stability may not be correlated with dispersion
PL35, we hypothesize that a stable CP is potentially less likely to
adsorb an analyte in a manner than modulate SWCNT emissions.
However, despite using the limited sequence range, the design
space is still considered innumerable from an experimental point
of view at >1 × 1024 permutations just for DNA molecules of
length 40.
Each chosen DNA sequence was used individually to disperse

SWCNT in aqueous solution via tip ultrasonication and purified
through centrifugation using methods previously described36.
While previous methods have utilized systemic evolution by
dispersing SWCNT with a mixture of DNA sequences37, we chose a
more homogeneous approach to eliminate additional complexity
from interactions between library elements on the SWCNT.
UV-vis-nIR absorption spectroscopy was used to assess disper-

sion quality and concentration prior to sensing studies. The
experiment itself was performed using a custom high throughput
nIR spectroscopy setup, exciting samples consisting of either
control or analyte at chosen experimental conditions with a
785 nm laser, and measuring PL in the range of 950–1250 nm.
Recent studies showed that SWCNT PL and analyte responses

can be strongly dependent on solution and experimental
conditions. To achieve the best controlled results and to minimize
experimental variation from method error, the following standard
experiment was developed:

● The DNA CP is highly dependent of on solution pH, and likely
adopts two different equilibrium conformations36. Specifically,
pH 6 and 8 conditions were chosen for each DNA-SWCNT as
two independent sensing states.

● The test solution was buffered to 0.1 M ionic strength in
sodium phosphate, and allowed to equilibrate for a minimum
of 6 h against known dilution effects.

● We have recently found that DNA-SWCNT PL quantum yield,
defined photons emitted per particle, decreases with increas-
ing excitation fluence. To mitigate this effect maximally
without significantly increasing experimental time, excitation
fluence at the sample was limited to and controlled at
1.67 mW μm^-2 for all experiments.

● DNA-SWCNT is also known to associate to form loosely
structured aggregates in solution38. To mitigate these effects,
SWCNTs were diluted to 0.5 mg L^-1, lower than previous
studies and were continuously agitated during analyte
incubation.

● SWCNT PL responses can also have kinetics on the order of
hours39, especially in the case involving DNA and metal ions40.
Thus, measurements were timed to be after exactly after 1 h
incubation to assure both reproducibility and sufficient
measured responses.

A total of 176 unique sequences were chosen as CP sensor
candidates to test against 8 experimental conditions (combina-
tions of 2 pHs and 4 analytes). One portion of the library was
chosen randomly with respect to each NB, where each base
choice was drawn with 1/4 probability. Another portion of the
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library was constructed from random pairs of NBs (e.g.,
AATTGGCC...). This bias was chosen due to the larger relative size
of the SWCNT diameter to an individual NB, making two
consecutive NBs more likely to modulate physical effects. To
apply the newly proposed methods to an existing dataset in
literature, sensor screening results against As3+ and As5+ was
extracted from previous work, having 22 and 14 unique non-
random DNA sequences, respectively.

Data processing and model inputs
In the PL experiments, a sensor response was defined as the
change in PL emission spectra between a control condition and
one incubated with analyte. Since the HiPco SWCNT sample
contained a distribution of semiconducting SWCNT chiralities, the
nIR emission spectra is a linear combination of individual chirality
emission peaks. Given that each SWCNT chirality species’ emission
peak can change in intensity, wavelength and/or broaden after
analyte interactions, it was decided not to fit, or deconvolute, the
spectra during analysis due to the number of fitting variables.
To convert optical spectral responses into optimizable numer-

ical values (i.e., the dependent variable for the ML models), we
defined two types of observably modified spectral features after
analyte interaction: PL intensity and PL wavelength. To capture
intensity modulations, an integrated normalized intensity change
between the experimental and control was calculated. To capture
the trend in wavelength modulations or peak shifts, a term
describing the overall shape change of given a similar intensity
change was calculated. The shape term was designed to be
smaller when either one of the following conditions hold, based

on a review of the typical variation between DNA-SWCNT sensor
responses in our data sets:

● The sensor response curve intensity is shifted up or down
proportionally at all wavelengths (i.e., c(λ)= b*f(λ), 8λ, where
b 2 R).

● The highest peak of the sensor response curve, and the rest of
the curve, are each shifted up or down proportionately at all
wavelengths, but by different amounts (i.e., c(λ*)= b1*f(λ*) for
λ*= arg maxλ(c(λ)), but c(λ)= b2*f(λ), 8λ ≠ λ*, where b1; b2 2 R)

The combined sensor response function is defined in Eq (1),
with two components, an intensity term (left) and a shape term
(right) Eqs. (2–3):

SensorResponse �
R b
a jf ðλÞ � cðλÞjdλ

R b
a cðλÞdλ

þ α

Z b

a
jgðλÞ � βjdλ (1)

gðλÞ � ðf ðλÞ
f max

� cðλÞ
cmax

Þ (2)

β � 1
a� b

Z b

a

f ðλÞ
fmax

� cðλÞ
cmax

dλ (3)

where the data wavelength range is between a and b, c(λ) is the
PL spectra of the control DNA-SWCNT at wavelength λ, cmax is the
maximum PL spectra of the control across all wavelengths, f(λ) is
the PL spectra of the experiment sample at wavelength λ, fmax is
the maximum PL spectra of the experiment sample across all
wavelengths, and α the linear proportionality constant between
the two sides of the sensor response function. The shape term is

Fig. 1 Overall experimental and computational scheme for data generation, including the collection, processing, modeling and analysis
of the photophysical response data from our sensors. 1 First, DNA-SWCNT dispersions from a library of sequences. These sensor candidates
were then tested against the analytes of interest under different pH conditions in this study, resulting in nIR spectral changes measured
between 850 and 1250 nm. The model input is created by converting the before and after spectra from each analyte incubation into an
optimizable score, Eq. (1) and Eq. (2), through the sensor response function. 2 The DNA sequences were encoded via 2 methods: direct
vectorization/one-hot encoding or through calculations of common high-level features (HLFs). Using these two types of inputs, predictive
models using gradient-boosted decision trees (GBDTs) were created. 3 Finally, the model is used to score potential MR designs and evaluated
in out-of-sample analysis against laboratory results.
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comprised of g(λ) and β, where g(λ) represents the proportional
difference in intensity at wavelength λ compared to the highest
peak, between the analyte and response curves, and where
subtraction of the β term ensures a small shape term for the
motivating examples described above.
The PL data was from this work was collected between 850 and

1250 nm. Since analyte interactions from MR can result in both PL
intensity and/or wavelength changes as a function of experimental
condition, an intuitive decision was made to assign both sides of
the sensor response function with equal weight as to maximally
capture any optimizable features. The value of α= 0.0113 was
empirically determined by matching the ranges of measured
values of the intensity and shape terms for the entire experimental
dataset. (For more motivation and examples regarding the sensor
response function, see Supplemental Materials).
To create the covariates (i.e., independent features) for the ML

predictions, HLFs were calculated for all DNA sequences. These are
commonly derived biophysical metrics for DNA molecules41,42.
Some HLFs were directly calculated from the sequence primary
structure, including strand lengths and percentages of each base
type, while others required existing models of DNA structure. We
assumed 25 °C and 0.1 M salt concentration when calculating non-
covalent DNA interactions such as strand hybridization and
hairpin formation. Lastly, thermodynamic properties were also
predicted for the solution phase single-stranded DNA strands
using well known models for ΔS ΔH, ΔG, and melting temperature.
While it is difficult to know the exact influence of these derived
solution features on DNA-SWCNT CPs, due to the close proximity
of the strand to the unique hydrophobic and curved surface of the
SWCNT, this prior knowledge likely significantly biases the CP
structure and behavior. A description of each of the 46 HLFs is
detailed in Supplementary Table 1.
Finally, the multiple HLFs defined in the form above are correlated

with underlying physical properties, many of which in an
interdependent manner. For example, changing sequence length
modulates melting temperature and other thermodynamic proper-
ties in a similar underlying manner. We use PCA as a transform to
simplify model inputs into orthogonal parameters. To perform this
step in a manner that is representative of solution phase DNA, the 46
HLFs were calculated for one million randomly generated sequences
of lengths 12–40 NBs. The resulting PCA coefficients were then used
as a look-up to convert experimental HLFs into model inputs for each
sequence that we refer to as HLF-principle components or HLF-PCs.
As an added benefit, the first 9 principle components were able to
capture over 95 percent of the total variation, and were chosen to
reduce the number of features needed which can benefit ML model
accuracy27. (See Supplementary Fig. 1 and Supplementary Fig. 2 for
HLF-PC coefficients and variance.)

Model specification and training
The ML analysis relied on two-stage modeling for each experi-
mental condition, summarized in Fig. 2. The rest of the section
describes model specification, hyperparameters, and training in
more detail.
CNNs were used to evaluate the effect of DNA local structure

sequence dependence on analyte PL responses26,27. CNNs excel at
certain tasks (e.g., image recognition) by identifying local
structures in inputs (e.g., curves within images) and have
successfully previously been utilized to predict transcription factor
binding DNA motifs43. For this work, it was hypothesized that
CNNs can identify DNA motifs responsible for binding sites against
the target analyte, thus identifying features correlated with larger
photophysical changes. Specifically, the hypothesis is that DNA
motifs of 2–8 successive NBs might form some type of local
-’binding point’ for the analyte to attach to based on relative
molecular size or shape. To capture this relationship, CNNs with a
single intermediate layer were chosen for evaluation. While a

deeper CNN might be able to capture more complicated dynamics
in sensor response, it would likely require significantly more
training data than is available today.
Our CNN architecture is detailed in Fig. 2. CNNs were fit

separately for each experimental condition using the sensor
response in Eq. (1) as the dependent feature, one-hot encoding
(OHE) of the DNA NBs as independent features, using rectified
linear unit activation functions, minimizing mean squared error,
and implemented with Tensorflow44. OHE refers to the direct
vectorization of the DNA sequence into n × 4 matrices where n is
the sequence length. By being trained separately on each
experimental condition (analyte and pH), these CNNs are able to
implicitly learn what DNA-SWCNTs produce better sensor
responses for the chemical structure of each specific analyte.
Various architectures of single-layer CNNs were considered,
including number of convolutional filters cf∈ {2, 4, 8, 16, 32, 64},
and motif sizes n∈ {4, 6, 8} (filter size for pooling layers is set
proportional to motif size). Multiple regularization hyperpara-
meters were considered, including dropout d∈ (0, 0.5) and number
of training epochs ne∈ {100, 150, 200, 250, 300, 350, 400, 450, 500}.
Model hyperparameters were selected out-of-sample, using
Bayesian optimization implemented with GPyOpt28,45. The CNNs
architecture and independent feature encoding are displayed in
Fig. 2. Out-of-sample CNN predictions were made for each
experimental condition (analyte/pH) and DNA sequence, and used
as an input to GBDTs. See the methods section for detailed
information about how the CNNs were trained, hyperparameters
were selected, and out-of-sample predictions were made.
Final predictions on DNA-SWCNT outcomes were made with

GBDTs implemented with XGBoost30. GBDTs are ensemble models
that fit decision trees stage-wise to minimize residual error. GBDTs
were selected based on their ability to fit any function arbitrarily
well given enough data (universality), and for their strong ability
to learn complex interactions on small sized data sets that has
been empirically supported by strong performance in data science
competitions46. GBDTs were fit with the sensor response as the
dependent feature, and HLF-PCs and local structure CNN
predictions as independent features. GBDTs were also trained
separately on each experimental condition (analyte and pH),
therefore implicitly learning what DNA-SWCNTs produce better
sensor responses for the chemical structure of each specific
analyte. Hyperparameters to control model complexity and
regularization included tree depth td∈ {3, 4}, learning rate rho ∈
{0.01, 0.025, 0.05, 0.1}, and number of trees tn ∈ {100, 250, 500}. See
the methods section for detailed information about how the
GBDTs were trained, hyperparameters were selected, and out-of-
sample predictions were made.

Evaluating predictive power and significant features
Out-of-sample predictions were evaluated for each experimental
condition. Specifically, Pearson correlations of predicted and
actual sensor responses were calculated for GBDTs trained with
HLF-PCs as independent features. Corresponding p values were
used to assess whether HLF-PCs can predict DNA-SWCNT
outcomes. The analysis was repeated for GBDTs trained with both
HLF-PCs and local structure CNN predictions as independent
features. A p value was calculated for the difference of these two
correlated Pearson correlation coefficients, to assess model
improvement from the addition of CNNs47. Because the entire
DNA-SWCNT library was randomly selected, this leave-one-out
cross validation methodology gives an approximately unbiased
estimator of the predictive power when generalizing the model
across all possible DNA sequences of length 12–4048 [Chapter 7].
To determine significant features for the HLF-PCs, linear

regression models were fit for each experimental condition, using
HLF-PCs as independent features and sensor response function as
the dependent feature. Linear regressions were selected due to
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their interpretable p values for each fitted model coefficient. This
allows the HLF-PCs to be qualitatively evaluated in order to
understand how HLFs impact DNA-SWCNT outcomes. As a
robustness check, an ablation study was also performed for each
experimental condition to evaluate the importance of each HLF-
PC. Specifically, for each experimental condition one HLC-PC
feature was removed at a time, and the increase in AIC score was
recorded. HLF-PCs were then ranked based on the improvement
in AIC score that each feature provides.
To assess the predictive power of the GBDTs as a function of the

number of samples, the following analysis was performed. For each
experimental condition where predictive power was previously
established, and for any number of samples n∈ {11, 16, 21, . . . ,
176}, n DNA-SWCNT samples were randomly chosen and GBDTs
were retrained to produce out-of-sample results for each sequence
using the same methodology described. The Pearson correlation
coefficient was then calculated for the predicted vs. actual sensor
response. This process was repeated for 100 random samples for
each value of n ≤ 36, and 25 random samples for all values of n ≥
41 (to account for there being more variation in the Pearson
correlation coefficient for smaller sample sizes).

Experimental output interpretation
One representation of the entire dataset’s PL response for each
experimental condition is shown in Fig. 3. Here, HLFs of each
sequence were first calculated. The Pearson correlation coefficient

between HLFs and sensor response function (intensity, shape or
total) is graphically shown for the cases where the p value < 0.05.
The following set of observations can be made directly

regarding the experimental results:

● The pH 6 and 8 conditions, while using the same DNA CP,
have different photophysical response correlations with the
HLF panel and likely different surface structure interactions.
Thus, these pHs were appropriately treated as separately
optimizable experimental conditions.

● Decreased DNA length, increased adenine content, and
decreased cytosine content were positively correlated with
improved PL responses. These properties were previously
known to results in with more responsive and less stable DNA
CPs13,36, supporting our choice of limiting sequence search to
shorter strands.

● While the intensity and shape sensor responses were
generally congruent, they differed sufficiently and thus were
necessary to provide orthogonal information to the algorithm.

● The observed correlation between sensor response function
and DNA secondary structure implies that strand-strand
interactions play a major role in organizing the SWCNT CP.

● Each experimental condition and analyte response appeared
to have a unique HLF correlation combination, generally
suggesting that the MR is mechanistically different and can be
differentiable between the individual cases. Changes in PL
emission spectra associated with these experimental

Fig. 2 The top shows an overview of the three Machine Learning (ML) models used for each experimental condition: the convolutional
neural network (CNN), the HLF-PC GBDTs, and the HLF-PC & CNN GBDTs. The figure includes details regarding the dependent and
independent variables used, and the purpose of each model in the analysis. The bottom shows the CNN architecture. First, DNA sequences
were vectorized to create the model input using one-hot-encoding (OHE). Then the model input is run through a series of convolutional filters
and pooling filters, where the number of such filters is a hyperparameter selected out-of-sample. The intuition behind the use of the CNN is to
identify DNA motifs (small sub-sequences of DNA within the strand) that are involved in analyte responses by forming a 'local' structure for
analyte adsorption.
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conditions as populations were also observed to be uniquely
different from each other (see Supplementary Fig. 3). This
observed variation based on analyte composition and CP
structure highlights the depth and utility of a CoPhMoRe
system for engineering specific interactions.

Generally, if a HLF associated with a DNA CP is correlated to
sensor responses for an experimental condition given a sufficient
number of data points, then such sensors were likely DNA
sequence optimizable. However, the lack of correlation does not
necessarily entail poor sensing because there can exist photo-
physical PL modulating mechanisms that are DNA sequence
independent and intrinsic to that of the SWCNT alone (for
example, analytes that react directly with the SWCNT chemically
while bypassing any selectivity imposed by the CP). While less can
be concluded about the arsenic data due to the significantly lower
number data points and the intuitive manner from which they
were chosen, the observed correlation of sensor response with
guanine and length were consistent with the conclusions of our
previous study.
An analysis similar to Fig. 3 was also performed by separating

sequences randomized via single vs. pairs of NBs (see Supple-
mentary Fig. 6). The correlation maps from the two conditions are

visually significantly different, indicating that they likely explore
difference regions of the search space. A thorough investigation of
nucleotide repeats should a topic for future work with larger
sample numbers.

Result predictive power
For each experimental condition, GBDTs were trained and used to
predict the out-of-sample sensor response for each DNA sequence
(see methods section for model hyperparameters). Table 1
displays R2 and Pearson correlations between the predicted and
actual sensor responses, and their corresponding p values. This
was done with or without the local structure CNN predictions as
model inputs.
GBDTs achieved statistically significant predictions for six of

eight experimental conditions in the study, both with and without
the local structure predictions from the CNN as model inputs.
Predictions were significant for all analytes at pH 6, and for
chloramphenicol and semicarbazide at pH 8. Pearson correlation
coefficients were as high as 0.413 for semicarbazide at pH 8, with
the corresponding R2 of 0.171 indicating that 17.1% of the
variation in the sensor response can be explained by the model
predictions. The corresponding p value of p= 1.22E−08 is

Fig. 3 HLF Correlation with Sensor Response Function for Each Experimental Condition. A color map is shown for the Pearson correlation
coefficients (p value < 0.05) between each HLF based on experimental DNA sequences and sensor response function (Eq. (1)) that describes
photophysical changes with analyte addition (red denotes positive correlation and blue with negative correlation). Sensor responses are
further delineated as intensity, shape or total sensor response function for each experimental condition. Sections representing unique HLF
groups are highlighted. Additional details for each individual HLF can be found in the Supplemental Materials.
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convincing for the current study design. Furthermore, evidence
was found that local structure CNN predictions can improve
performance, and their inclusion as a model input improved
correlations with statistical significance for two experimental
conditions at the p < 0.05 significance level (semicarbiazide pH6
and enrofloxacin pH8). For the previously published arsenic data,
with a smaller sample size, AS3+ achieved significant predictions
and model improvement at the p < 0.1 significance level.

Evaluating significant features
To evaluate significant features and understand high-level proper-
ties that contribute to photophysical responses, a linear regression
was fit for each experimental condition with HLF-PCs as
independent features and the sensor response function as the
dependent feature. This was done for all six experimental
conditions from Table 1 with significant predictions at p < 0.05.
Fitted model coefficients and statistical significance were shown in
Table 2 below.
As a robustness check, an ablation study was performed for

each experimental condition to evaluate the importance of each
HLF-PC. Table 3 shows the most important features for each
experimental condition ranked from most important to least
(based on the relative improvement in AIC score due to each
feature). The importance rankings support the significance
analysis in Table 2.

Interpretation and overall observations
To interpret the significantly correlated HLF-PCs, the HLFs with
higher magnitude coefficients for each PC were examined (See
Supplementary Fig. 2 for graphical presentation). Each HLF-PC and
some of their related physical properties are listed below (arrows
represent the direction of correlation with the HLF-PC, letters ’A, T,
G, C’ show the composition of individual or pairs of NBs, brackets
’()’ group base compositions that are modulated together):

● HLF-PC 1: ↓ melting temperature with ↑ΔS, ΔH, and ΔG.
● HLF-PC 2: ↑ melting temperature with ↑ (GC) and ↓ (A, T) in

secondary structures.
● HLF-PC 3: ↑ (G, C, GC) in dimers.
● HLF-PC 5: ↓ G and ↑ (C, AC, TC).
● HLF-PC 6: ↓ (A, AC) and ↑ (T, TC).
● HLF-PC 8: ↑ (A,T) and ↓ (G, C, GC) in hairpins, and ↑ # of dimers.
● HLF-PC 9: ↑ # of hairpins and dimers, ↓ A, T in hairpins, and ↓ #

of NB in dimers.

For the set of experimental conditions, HLF-PC 2 and 6 were
generally negatively correlated to sensor responses, which
implicates increased photophysical responses for: decreased
melting temperatures, increased adenine content, and decreased
thymine content. HLF-PC 5 had the largest change in correlation
between the two pH condition for a single analyte, chloramphe-
nicol. The strongly negative correlation at pH 6, and strongly
positive at pH 8, suggests significant effects of protonation on the
CoPhMoRe constructs.
As a whole, these significant correlations with HLF-PCs can be

used to improve the detection level of sensors while preforming
fewer experimental iterations as compared to a random search.
For example, the detection of semicarbazide at pH 8 is correlated
with ↑HLF-PC 3, ↓HLF-PC 6 and ↑HLF-PC 9. Thus, subsequent
sequence search libraries should bias toward: ↑ (G, C, GC) in
dimers, ↑ (A, AC), ↓ (T, TC), ↓ # of hairpins and dimers, ↑ A, T in
hairpins, and ↑ # of NB in dimers. It is important to note that while
these characteristics were significantly correlated to the sensor
response, they only explain a small portion of the variance within
the known dataset. Thus, future guided searches must also include
a large component of exploration.
The overall differences between the HLF-PC preferences for

experimental conditions showed that DNA-SWCNT MR offered
unique NB dependent selectivity. It is unsurprising that HLF of
DNA molecules play a major role in their SWCNT-adsorbed
structure, and thus subsequent analyte interactions. The improve-
ment from the combined HLF-PC & CNN model from that of the
HLF-PC alone is an objective demonstration of the intuitive idea
that CP-based MR is more complex than simply specifying a
polymer with a set of general properties. Even though, this
improvement was only shown in 2 of the 8 cases, it is possible that
a similar trend can be seen for the rest of the experimental
conditions given a large enough sample size.

Assessing number of samples for predictive power
To study the effect of sample size on out-of-sample correlation for the
6 significant experimental conditions, we plot the average Pearson
correlation coefficient between predicted and actual sensor response
vs. the number of samples considered for the HLF-PC GBDTs (Fig. 4).
From Fig. 4, it was observed that the four experimental

conditions at pH 6 all exhibit continued and steady improvement
in the out-of-sample predictions as the number of samples
increased. In contrast, both significant experimental conditions at

Table 1. GBDT out-of-sample predictive power for each experimental condition.

Experimental HLF-PC CNN & HLF-PC Improvement

Condition R2 Correlation p value R2 Correlation p value p value

Enrofloxacin - pH 6 0.039 0.198 8.64E−03** 0.029 0.171 2.31E−02* 4.69E−01

Chloramphenicol - pH 6 0.089 0.299 5.46E−05*** 0.070 0.265 3.86E−04*** 1.11E−01

Cadmium - pH 6 0.096 0.310 2.77E−05*** 0.086 0.293 7.78E−05*** 3.08E−01

Semicarbazide - pH 6 0.066 0.256 6.02E−04*** 0.129 0.358 1.05E−06*** 1.95E−02*

Enrofloxacin - pH 8 0.001 0.035 6.45E−01 0.014 0.119 1.15E−01 3.36E−02*

Chloramphenicol - pH 8 0.120 0.346 2.64E−06*** 0.138 0.372 3.66E−07*** 3.08E−01

Cadmium - pH 8 0.002 −0.0524 6.19E−01 0.001 −0.0377 4.90E−01 7.49E−01

Semicarbazide - pH 8 0.171 0.413 1.22E−08*** 0.160 0.400 3.87E−08*** 6.12E−01

AS3+ - pH 7.6 0.054 0.232 3.00E−01 0.158 0.398 6.65E−02 7.81E−02

AS5+ - pH 7.6 0.003 −0.051 8.62E−01 0.011 −0.103 7.25E−01 4.27E−01

R2 and Pearson correlations were calculated between the actual observed sensor response function and the out-of-sample GBDT sensor response predictions,
using both HLF-PC and HLF-PC plus CNN predictions as independent features.
*Significant at p < 0.05; **Significant at p < 0.01; ***Significant at p < 0.001.
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pH 8 achieved higher correlations earlier at around 75−
100 samples, but then had decreasing marginal returns in
predictive power thereafter.
Generally, this sample size analysis can be used to aid the

design of future studies against new analytes using the DNA-
SWCNT system. The average number of samples to reach
statistical significance was 126 for pH 6 and 49 for pH 8
experimental conditions (not including the pH 8 experimental
conditions that did not reach statistic significance after 176 DNA-
SWCNT experiments). Due to the size of the current dataset, the
high-dimensionality of the search space and the nature of
extrapolation, we are cautious to estimate the sample size
required for a significant iterative improvement for the current
experimental conditions. However, given the few samples
required to arrive at models with significant correlations, this
work can be used as an order-of-magnitude estimate of sample
size for future unknown analytes.

DISCUSSION
The CoPhMoRe design space spans a large range of molecular
compositions as well as physical interactions between the

analytes, kinetically trapped molecules and the nanoparticle.
While there exist a large portfolio of studies on the development
of SWCNT-based CoPhMoRe sensors, the complex and often
transient mechanisms of interactions between the analyte and the
sensor constructs present major challenges for both rational
design and optimization of such systems. While the DNA CPs offer
a molecularly defined library for sensor discovery, the number of
sequence permutations, let alone secondary and tertiary structure
from material adsorption, significantly complicates the search and
optimization within this design space. Furthermore, the general
knowledge gained in recent years regarding DNA and SWCNT
interactions has not led to reliable methods of generating sensor
elements.
While sensor candidates can be found through systematic or

random searches, a ML guided method is potentially more adept
at solving such a high-dimensional problem. We applied ML
techniques in combination with a library of DNA-SWCNTs to study
sensor development against analytes of interest in aquaculture.
We restricted our search to DNA strand length of 12–40 NBs, and
performed the largest CoPhMoRe screen to-date consisting of
176 sensors with 8 experimental conditions. Nevertheless, the
number of unique sequences is currently innumerable from an

Table 2. Significant features for each experimental condition.

Experimental condition

pH6 pH8

Model Coefficient Cadmium Chlor. Enro. Semi. Chlor. Semi.

(Intercept) 24.019*** 57.73*** 38.067*** 49.18*** 50.568*** 26.899***

HLF-PC 1 0.464* 0.032 0.668** −0.219 0.209 0.004

HLF-PC 2 −0.261 −1.552*** −0.276 0.158 −0.947** −0.323

HLF-PC 3 0.513 −0.733* −0.998** −0.601 −0.296 1.299**

HLF-PC 4 −0.553 −0.601 −0.368 0.79 −0.809 −0.385

HLF-PC 5 −1.729** −1.362* −1.218* −1.896** 1.978*** −0.164

HLF-PC 6 −1.539** −0.093 −0.687 −1.15 −1.546** −2.383***

HLF-PC 7 0.395 −0.182 1.603 0.971 0.334 −0.346

HLF-PC 8 −0.034 −2.609** −1.904 −0.568 0.626 −1.069

HLF-PC 9 1.418 0.285 1.294 −0.667 0.119 3.012***

Linear regression model coefficients fit using maximum likelihood estimation.
*Significant at p < 0.05; **Significant at p < 0.01; ***Significant at p < 0.001.

Table 3. Importance ranking of features for each experimental condition.

Experimental condition

pH6 pH8

Importance ranking Cadmium Chlor. Enro. Semi. Chlor. Semi.

1 HLF-PC 5 HLF-PC 2 HLF-PC 1 HLF-PC 5 HLF-PC 5 HLF-PC 6

2 HLF-PC 6 HLF-PC 8 HLF-PC 3 HLF-PC 6 HLF-PC 6 HLF-PC 9

3 HLF-PC 1 HLF-PC 5 HLF-PC 5 HLF-PC 3 HLF-PC 2 HLF-PC 3

4 HLF-PC 9 HLF-PC 3 HLF-PC 8 HLF-PC 4 HLF-PC 4 HLF-PC 8

5 HLF-PC 3 HLF-PC 4 HLF-PC 7 HLF-PC 7 HLF-PC 1 HLF-PC 2

6 HLF-PC 4 HLF-PC 9 HLF-PC 9 HLF-PC 1 HLF-PC 3 HLF-PC 4

7 HLF-PC 2 HLF-PC 7 HLF-PC 6 HLF-PC 9 HLF-PC 8 HLF-PC 7

8 HLF-PC 7 HLF-PC 6 HLF-PC 2 HLF-PC 8 HLF-PC 7 HLF-PC 5

9 HLF-PC 8 HLF-PC 1 HLF-PC 4 HLF-PC 2 HLF-PC 9 HLF-PC 1

Importance is ranked descending based on the increase in AIC score obtained by removing each HLF-PC from the full linear regression model.
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experimental point of view. Our results showed that significant
predictions can be made for 6 out of the 8 experimental
conditions even for our extremely sparse number of data points
compared to the dimension of the search space.
The DNA sequences for this study were modeled separately

through HLF-PCs or CNNs, incorporating high-level or local
structure features respectively. The CNN was constructed through
OHE of DNA-NBs, with Bayesian hyperparameter optimization
used to find appropriate model architecture and regularization
given the amount of available data. HLF-PCs were constructed
through PCA vectorization of broadly applied HLFs. Then they
were then analyzed together via GBDTs, with out-of-sample
predictions showing substantial promise in being able to predict
sensor responses.
The fundamental difference between the HLF-PC and the CNN

models is one of general known DNA properties vs. local sequence
features. Interestingly, the combined HLF-PC & CNN model
showed improvement over the HLF-PC model in two of the cases.
This is statistical evidence for the importance of local features.
While it is likely that most DNA-SWCNT CoPhMoRe photophysical
responses were dictated by global DNA properties, there may exist
an analyte dependent subset that hosts a more specific local
feature dependent mode of MR.
Our results also reinforce the idea that each DNA-SWCNT offer

multiple independent sensing states as a function of pH. In this
study, sensors in pH 6 or pH 8 can be optimized uniquely against
each of the analytes through the same sensor response function.
Through HLF-PCs, we also found that general properties that

improve the photophysical response of DNA-SWCNT such as:
decreased melting temperatures, increased adenine content, and
decreased thymine content. Additionally, the raw PL emission
changes and the combination of significant HLF-PCs showed that
the DNA-SWCNT platform interacted with different analytes in a
spectrally and physically differentiable manner. Finally, our results
showed that significant predictive models can be created with
only about 50–100 samples, providing a starting point for future
explorations into the design space. The fact that our model
architecture achieved similar outcomes for different analytes and
experimental conditions implies a degree of transferability for the
utilization of this platform against future targets. In these future
studies, we recommend that the methodological controls devel-
oped here be implemented to minimize the effect of experimental
method error on model predictive power.
From an experimental point of view, the generation and testing

of CPs is currently a bottleneck for the execution of ideal studies
consisting of thousands of samples. Methods will need to be
developed to bypass or automate the process of library SWCNT CP
synthesis, sonication and centrifugation. A second area of
potential improvement is the interpretation or vectorization of
DNA sequences by taking into account additional information.
Development of these methods will aid in re-scaling of the search
space to focus on regions of interest. For example, the well-
defined molecular structure of SWCNT should present CP
structural biases. CP polymers can also self-self interact in
adsorbed states on the SWCNT surface by wrapping around as a
function of tube diameter. This opens up a new type of length-

Fig. 4 Correlation between model prediction and experimental results versus sample number. The effect of sample number is shown for
the 6 significant experimental conditions: a Cd - pH 6, b Semicarbazide - pH 6, c Semicarbazide - pH 8, d Enrofloxacin - pH 6,
e Chloramphenicol - pH 6, and f Chloramphenicol - pH 8. Each plot shows the average Pearson correlation coefficients produced by the GBDTs
across random samples of size n drawn from the full database of 176 DNA-SWCNT experiments. The shaded regions show the 95% confidence
interval for the average correlation coefficient for each value of n. Dashed lines show the sample size when statistical significance of p < 0.05
was reached for each experimental condition.
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dependent interaction analysis. In these cases, having an
adequate CP structural understanding through experimentation
or simulation20,49,50 is needed. Similarly, additional information
regarding DNA tertiary structure with or without a nanomaterial
can be incorporated as independent variables in the model input.
Third, while our results inform largely on interpretation of HLFs
related to the influence of DNA on CP sensor development, model
predicted NB sequences can ultimately be leveraged for more
granular analysis provided that the models are derived from a
larger dataset with higher predictive capability. For example,
outputs from such models can be used to generate large
sequence prediction libraries as input into deep-learning algo-
rithms commonly employed in bioinformatics for the discovery of
nucleotide-protein binding motifs51. Finally, with the capability of
generating and testing large libraries, an application focused
investigation into the effect of solvents and other solutes of the
sensing mixture will allow for the optimization of sensor
characteristics. This is especially important consideration prepro-
cessing steps are often required for field samples, such as those
collected in aquaculture testing.
To conclude, while nanomaterials’ unique physical and chemical

properties provide promising environments for MR design, the
size of the parameter search spaces and throughput of experi-
ments are challenges well-suited for ML-based studies. This study
demonstrated the feasibility of using ML models to analyze
relatively few tightly controlled CoPhMoRe sensor studies to
predict sensor-analyte interactions, contributing to the eventual
goal of sequence-prescribed CP design.

METHODS
Materials
All chemicals were purchased from Sigma-Aldrich (USA) unless stated
otherwise. ssDNA sequences were purchased from Integrated DNA
Technologies (IDT, USA). HiPCO Raw SWCNTs were used for all experiments
and were purchased from Nanointegris (Batch HR27-104).

Preparation and characterization of SWCNT dispersions
SWCNT dispersions were prepared by combining 1mg of SWCNTs and 1
mg of ssDNA in 1mL of 100mM NaCl solution. This mixture was tip
sonicated (Qsonica Q500 with multi-tip add-on) while cooled by a pre-
chilled rack with 0.125 in. probes for 30min at a power of ~22 W (8 tips).
Crude SWCNT dispersions were centrifuged two times at 16,000 g for
90min to remove SWCNT bundles and other solid impurities. The top 80%
of supernatant was collected after each round of centrifugation.
Absorption spectra of SWCNT dispersions were collected (Cary 5000,
Agilent Technologies) to approximate the concentrations of the post-
dispersion stock solutions using the absorbance at 632 nm and an
extinction coefficient of ϵ632= 0.036(mg/L)−1cm−1 36.

SWCNT near-infrared fluorescence measurements
SWCNT stock solutions were diluted to a concentration of 0.5 mg/L in
solutions of varying pH. These solutions were incubated at room
temperature overnight to allow the systems to reach equilibrium prior to
collecting fluorescence and/or absorbance measurements. Fluorescence
measurements were conducted in triplicate in 96-well plates (Tissue
Culture Plates, Olympus Plastics) using volumes of approximately 200 μL.
SWCNT solutions were excited using a 785 nm diode laser (Invictus, Kaiser
Optical Systems, MI), and a 20×/0.4 N.A. objective LD Plan Neofluar (Zeiss,
Germany), and inverted microscope (Zeiss AxioVision). PL was collected
using the same objective with using the same gratings and detector as
above. Exposure time was held constant across was 60 s to have significant
signal to noise. In all cases, fluorescence spectra were background
corrected using SWCNT-free solution in an equivalent volume. During
experiments in which an analyte was added, 2 μL of analyte solution was
added to each well for the desired concentration and mixed on a rocking
shaker for 1 h incubation at room temperature prior to collecting
fluorescence measurements. Separate wells were designated as analyte-
free controls.

PCA and HLF analysis
PCA was performed using the standard package in MATLAB via the SVD
method (Natick, MA). Each HLF was first normalized by both the mean and
standard deviation prior to PCA. Part of the HLF features were extracted
using the oligoprop function in matlab. Additional references are provided
in supplement.

Sensor response function-dependent variable
The combined sensor response function is defined as Eqs. (4–6):

SensorResponse �
R b
a jf ðλÞ � cðλÞjdλ

R b
a cðλÞdλ

þ α

Z b

a
jgðλÞ � βjdλ (4)

gðλÞ � ðf ðλÞ
fmax

� cðλÞ
cmax

Þ (5)

β � 1
a� b

Z b

a

f ðλÞ
fmax

� cðλÞ
cmax

dλ (6)

The first term of the sensor response is designed to capture intensity
modulations, by summing the normalized intensity change at each
wavelength between the experimental and control was calculated. The
second term is meant to capture total wavelength modulations or peak
shifts, through a term describing the overall shape change of the same
intensity change vector was calculated.
The second term (the shape term) is designed to be small when either

one of the following conditions hold, based on a manual review of the
noise typical of DNA-SWCNT sensor responses:

● The sensor response curve intensity is shifted up or down
proportionally at all points (i.e., c(λ)= b*f(λ), 8λ, where b 2 R).

● The highest peak of the sensor response curve, and the rest of the
curve, are each shifted up or down proportionately at all points, but by
different amounts (i.e., c(λ*)= b1*f(λ*) for λ*= arg maxλ(c(λ)), but c(λ)=
b2*f(λ),8λ ≠ λ*, where b1; b2 2 R).

The shape term accomplishes this by summing at each wavelength the
difference in proportion between intensity for the wavelength and the
highest peak of the analyte and response curves. This is accomplished with
the g(λ) term. The subtraction of the β term ensures that when the highest
peak of the curve is the same intensity, but the rest of the curve is shifted
down proportionately at all points (i.e., c(λ*)= f(λ*) for λ*= arg maxλ(c(λ)),
but c(λ)= b*f(λ), 8λ ≠ λ*, where b 2 R), that β= g(λ), 8λ ≠ λ*.
Supplementary Fig. 5 shows sensor response curves for four cases. In

case (a), the sensor response curve is all shifted upwards proportionally, in
case (b) the peak shifts up while the rest of the curve stays the same, in
case (c) the peak stays the same while the rest of the curve shifts down, in
case (d) the shape of the entire response curve is more visibly different
than the rest, where the first and third peaks are lower while the second
and fourth are higher. Intuitively, we would like the shape term of the
sensor response function to be larger for case (d) than for other cases. This
is true of the sensor response function defined in the paper, whose values
are shown in Table 4 below. As expected, the shape term is much larger for
curve (d), leading to the total sensor response function to be the largest,
despite the intensity term being smaller for curve (d) than for curves (a) or
(b).

Table 4. Sensor response function terms.

Curve Intensity term Shape term Sensor response function

(a) 1.25 0.00 1.25

(b) 0.48 0.17 0.65

(c) 0.53 1.02 1.55

(d) 0.51 1.53 2.04

The shape term is defined in Eq. (1) as α
R b
a jgðλÞ � βjdλ, where

gðλÞ � ð f ðλÞf max
� cðλÞ

cmax
Þ, and β � 1

a�b

R b
a

f ðλÞ
fmax

� cðλÞ
cmax

dλ. The intensity term is defined

in Eq. (1) as

R b

a
jf ðλÞ�cðλÞjdλ
R b

a
cðλÞdλ

. The combined sensor response function is the

sum of these two terms.
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Model specification - Gradient-boosted decision trees
The primary model used in this paper for DNA-SWNCT predictions,
selected for its good performance on ML problems for small-scale data, is
gradient-based boosting on decision trees (GBDTs)46. A simplified overview
of how the model is trained is as follows. For a given experimental
condition (analyte/pH), let y denote the vector of sensor responses for all
DNA sequences, and let X denote the matrix of features (including either
HLF-PCs, or HLF-PCs in addition to the local structure CNN predictions). The
model is then iteratively built with simple decision trees trained on residual
errors:

1. Fit the stage 1 model (decision tree) f1(. ) on X, y, to minimize the
residual sum of squares error.

2. Calculate the first-stage residual errors Resid1= S− f1(X).
3. Fit a first-stage residual decision tree g1(. ) on X, Resid1, where the

tree weights are fit to minimize the residual sum of squares error of
f1(. )+ g1(. ) on X, y46.

4. Set f2(. )= f1(. )+ ρ*g1(. ), where ρ is the learning rate.
5. Calculate the second-stage residual errors Resid2= y− f2(X).
6. Fit a second-stage residual decision tree g2(. ) on X, Resid2.
7. Repeat until fM(. ) is trained.

Where the depth of each decision tree, the number of stages M, and the
learning rate ρ are model hyperparameters to be set with cross-validation.
This model is implemented using the XGBoost library. The details for this

Python package can be found in the conference paper accompanying the
library30.

Model hyperparameters
This section provides additional details related to model hyperparameters,
including selection methodology and the final hyperparameters used in
the analysis.

Hyperparameter Selection - CNNs. The CNN in this paper uses the sensor
response from Eq (1) as the dependent feature, and OHE of each DNA NB
as the independent features. Various hyperparameters of single-layer CNNs
are considered that relate to model complexity, including number of
convolutional filters cf∈ {2, 4, 8, 16, 32, 64}, and motif sizes n∈ {4, 6, 8} (The
filter size for the pooling layers is set proportional to the motif size, to
reduce the number of model hyperparameters to be trained). Several
regularization hyperparameters are also considered, including dropout d∈
(0.0, 0.5) and number of training epochs ne∈ {100, 150, 200, 250, 300, 350,
400, 450, 500}.
These CNN hyperparameters are selected out-of-sample, using Bayesian

optimization implemented in Python with with GPyOpt and a 70%/30%
training/test split in order to minimize residual squared-error28,45. It should
be noted that while the final CNN model predictions were made out-of-
sample by fitting the CNN separately on each experimental condition, the
hyperparameters were selected using Bayesian optimization on the entire
dataset at once to reduce computational time. The CNNs structure and the
independent feature encoding are displayed in Fig. 2. Specifically, the
following steps are taken:

1. Bayesian hyperparameter optimization is initialized with motif size n
= 6, number of convolutional filters cf= 32, dropout d= 0.0, and
training epochs ne= 150.

2. For a set of five trials, a 70%/30% training/test split of the DNA
sequences is randomly produced, the CNN is trained using the
current set of hyperparameters, and R2 is calculated out-of-sample
on the test dataset for various experimental conditions.

3. Based on the average R2 for all previous sets of trials in Step 2, a new
set of hyperparameters is proposed using Bayesian optimization. At
a high-level, these hyperparameters are selected to optimize the
expected positive gain in R2, assuming that for unobserved sets of
parameters the expected R2 can be predicted based on observed
points, while the variation in this measure is proportional to how far
away it is from observed points. Full mathematical details are given
in28.

4. Steps 2 and 3 are repeated for 20 iterations.
5. The hyperparameter set achieving the highest out-of-sample R2 is

selected for the final model.

Hyperparameter Selection - GBDTs. The final predictions for DNA-SWCNT
outcomes were made with GBDTs, implemented with XGBoost. Various
hyperparameters are considered to control model complexity and

regularization, including tree depth td ∈ {3, 4}, learning rate rho∈ {0.01,
0.025, 0.05, 0.1}, and number of trees tn∈ {100, 250, 500}. Hyperparameters
were then selected out-of-sample by performing a grid search. Specifically,
the following steps were taken to select hyperparameters:

1. Select an experimental condition, and all corresponding DNA-
SWCNT data.

2. For each possible set of model hyperparameters, do the following:
3. For each DNA sequence in Step 1, a gradient-boosted decision tree

is trained using the remaining DNA sequences as the training set
(leave-one-out cross validation).

4. Using the predicted sensor response from Step 3, and the actual
experimental sensor response, calculate the Pearson correlation
coefficient for the experimental condition and hyperparameters.

5. Repeat Steps 1–4 for all experimental condition and all sets of model
hyperparameters.

6. For a given experimental condition, model hyperparameters are
then selected to maximize the average Pearson correlation
coefficient for all other analytes at the same pH (e.g., the model
hyperparameters for chloramphenicol at pH 8 are selected to
maximize the average Pearson correlation coefficient for enroflo-
caxin at pH 8, semicarbazide at pH 8, and cadmium at pH 8).

Final Hyperparameters - CNNs. Hyperparameters for CNNs were selected
using the methodology described previously in this section. While the final
CNN model predictions were made out-of-sample by fitting the CNN
separately on each experimental condition, the hyperparameters were
selected using Bayesian optimization on the entire dataset at once to
reduce computational time. The final hyperparameters selected were
convolutional filters cf= 4, motif size n= 4, dropout d= 0.027 and number
of training epochs ne= 250. The small number of convolutional filters and
motif sizes selected is unsurprising, given the fairly small number of
laboratory experiments for different DNA sequences. However, even these
simple CNNs were shown to be able to improve statistical power in some
cases (see the results section in the main paper).

Final Hyperparameters - GBDTs. Hyperparameters for GBDTs were selected
using the methodology described previously in this section. The final
hyperparameters are shown in Table 5 below. The approach selected more
sophisticated models (with a higher tree depth and lower learning rate) for
the DNA-SWCNT sensors at pH6 than at pH8, which is consistent with the
fact that the sensors exhibited greater responses at pH6.

DATA AVAILABILITY
Data generated in the current study are displayed in the supplementary information.
Experimental and processed data are available upon reasonable request addressed to
the corresponding author.

CODE AVAILABILITY
Code generated follow steps detailed in methods and supplementary information.
Implementation code can be available upon reasonable request addressed to the
corresponding author.

Table 5. Hyperparameters selected for gradient-boosted
decision trees.

Experimental condition Tree depth Learning rate Number of trees

Enrofloxacin - pH6 4 0.025 250

Chloramphenicol - pH6 4 0.01 500

Cadmium - pH6 4 0.025 250

Semicarbazide - pH6 4 0.01 500

Enrofloxacin - pH8 3 0.1 500

Chloramphenicol - pH8 3 0.1 250

Cadmium - pH8 3 0.1 100

Semicarbazide - pH8 3 0.1 500

Arsenite - pH7.6 4 0.01 500

Arsenate - pH7.6 3 0.01 100
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