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Hussein Hazimeh 1 Natalia Ponomareva 2 Petros Mol 2 Zhenyu Tan 3 Rahul Mazumder 1 

Abstract 

Neural networks and tree ensembles are state-of-
the-art learners, each with its unique statistical 
and computational advantages. We aim to com-
bine these advantages by introducing a new layer 
for neural networks, composed of an ensemble 
of differentiable decision trees (a.k.a. soft trees). 
While differentiable trees demonstrate promising 
results in the literature, they are typically slow in 
training and inference as they do not support con-
ditional computation. We mitigate this issue by 
introducing a new sparse activation function for 
sample routing, and implement true conditional 
computation by developing specialized forward 
and backward propagation algorithms that exploit 
sparsity. Our efficient algorithms pave the way 
for jointly training over deep and wide tree en-
sembles using first-order methods (e.g., SGD). 
Experiments on 23 classification datasets indicate 
over 10x speed-ups compared to the differentiable 
trees used in the literature and over 20x reduction 
in the number of parameters compared to gradi-
ent boosted trees, while maintaining competitive 
performance. Moreover, experiments on CIFAR, 
MNIST, and Fashion MNIST indicate that replac-
ing dense layers in CNNs with our tree layer re-
duces the test loss by 7-53% and the number of 
parameters by 8x. We provide an open-source 
TensorFlow implementation with a Keras API. 

1. Introduction 
Decision tree ensembles have proven very successful in var-
ious machine learning applications. Indeed, they are often 
referred to as the best “off-the-shelf” learners (Hastie et al., 
2009), as they exhibit several appealing properties such as 
ease of tuning, robustness to outliers, and interpretability 
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(Hastie et al., 2009; Chen & Guestrin, 2016). Another natu-
ral property in trees is conditional computation, which refers 
to their ability to route each sample through a small number 
of nodes (specifically, a single root-to-leaf path). Condi-
tional computation can be broadly defined as the ability of 
a model to activate only a small part of its architecture in 
an input-dependent fashion (Bengio et al., 2015). This can 
lead to both computational benefits and enhanced statisti-
cal properties. On the computation front, routing samples 
through a small part of the tree leads to substantial training 
and inference speed-ups compared to methods that do not 
route samples. Statistically, conditional computation offers 
the flexibility to reduce the number of parameters used by 
each sample, which can act as a regularizer (Breiman et al., 
1983; Hastie et al., 2009; Bengio et al., 2015). 

However, the performance of trees relies on feature engineer-
ing, since they lack a good mechanism for representation 
learning (Bengio et al., 2013). This is an area in which 
neural networks (NNs) excel, especially in speech and im-
age recognition applications (Bengio et al., 2013; He et al., 
2015; Yu & Deng, 2016). However, NNs do not naturally 
support conditional computation and are harder to tune. 

In this work, we combine the advantages of neural networks 
and tree ensembles by designing a hybrid model. Specifi-
cally, we propose the Tree Ensemble Layer (TEL) for neural 
networks. This layer is an additive model of differentiable 
decision trees, can be inserted anywhere in a neural net-
work, and is trained along with the rest of the network using 
gradient-based optimization methods (e.g., SGD). While dif-
ferentiable trees in the literature show promising results, es-
pecially in the context of neural networks, e.g., Kontschieder 
et al. (2015); Frosst & Hinton (2017), they do not offer true 
conditional computation. We equip TEL with a novel mech-
anism to perform conditional computation, during both train-
ing and inference. We make this possible by introducing 
a new sparse activation function for sample routing, along 
with specialized forward and backward propagation algo-
rithms that exploit sparsity. Experiments on 23 real datasets 
indicate that TEL achieves over 10x speed-ups compared to 
the current differentiable trees, without sacrificing predictive 
performance. 

Our algorithms pave the way for jointly optimizing over 
both wide and deep tree ensembles. Here joint optimization 
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refers to updating all the trees simultaneously (e.g., using 
first-order methods like SGD). This has been a major com-
putational challenge prior to our work. For example, jointly 
optimizing over classical (non-differentiable) decision trees 
is a hard combinatorial problem (Hastie et al., 2009). Even 
with differentiable trees, the training complexity grows ex-
ponentially with the tree depth, making joint optimization 
difficult (Kontschieder et al., 2015). A common approach 
is to train tree ensembles using greedy “stage-wise” proce-
dures, where only one tree is updated at a time and never 
updated again—this is a main principle in gradient boosted 
decision trees (GBDT) (Friedman, 2001)1. We hypothesize 
that joint optimization yields more compact and expressive 
ensembles than GBDT. Our experiments confirm this, indi-
cating that TEL can achieve over 20x reduction in model 
size. This can have important implications for interpretabil-
ity, latency and storage requirements during inference. 

Contributions: Our contributions can be summarized as 
follows: (i) We design a new differentiable activation func-
tion for trees which allows for routing samples through 
small parts of the tree (similar to classical trees). (ii) We 
realize conditional computation by developing specialized 
forward and backward propagation algorithms that exploit 
sparsity to achieve an optimal time complexity. Notably, 
the complexity of our backward pass can be independent 
of the tree depth and is generally better than that of the 
forward pass—this is not possible in backpropagation for 
neural networks. (iii) We perform experiments on a collec-
tion of 26 real datasets, which confirm TEL as a competitive 
alternative to current differentiable trees, GBDT, and dense 
layers in CNNs. (iv) We provide an open-source TensorFlow 
implementation of TEL along with a Keras interface2. 

Related Work: Table 1 summarizes the most relevant re-
lated work. Differentiable decision trees (a.k.a. soft trees) 
are an instance of the Hierarchical Mixture of Experts in-
troduced by Jordan & Jacobs (1994). The internal nodes 
of these trees act as routers, sending samples to the left 
and right with different proportions. This framework does 
not support conditional computation as each sample is pro-
cessed in all the tree nodes. Our work avoids this issue 
by allowing each sample to be routed through small parts 
of the tree, without losing differentiability. A number of 
recent works have used soft trees in the context of deep 
learning. For example, Kontschieder et al. (2015) equipped 
soft trees with neural representations and used alternating 
minimization to learn the feature representations and the 

1There are follow-up works on GBDT which update the leaves 
of all trees simultaneously, e.g., see Johnson & Zhang (2013). 
However, our approach allows for updating both the internal node 
and leaf weights simultaneously. 

2https://github.com/google-research/ 
google-research/tree/master/tf_trees 

Table 1: Related work on conditional computation 

Paper CT CI DO Model/Optim 

Kontschieder et al. (2015) N N Y Soft tree/Alter 
Ioannou et al. (2016) N H Y Tree-NN/SGD 
Frosst & Hinton (2017) N H Y Soft tree/SGD 
Zoran et al. (2017) N H N Soft tree/Alter 
Shazeer et al. (2017) H Y N Tree-NN/SGD 
Tanno et al. (2018) N H Y Soft tree/SGD 
Biau et al. (2019) H N Y Tree-NN/SGD 
Hehn et al. (2019) N H Y Soft tree/SGD 
Our method Y Y Y Soft tree/SGD 

H is heuristic (e.g., training model is different from inference), 
CT is conditional training. CI is conditional inference. DO 
indicates whether the objective function is differentiable. Soft 
tree refers to a differentiable tree, whereas Tree-NN refers to 
NNs with a tree-like structure. Optim stands for optimization 
(SGD or alternating minimization). 

leaf outputs. Hehn et al. (2019) extended Kontschieder 
et al. (2015)’s approach to allow for conditional inference 
and growing trees level-by-level. Frosst & Hinton (2017) 
trained a (single) soft tree using SGD and leveraged a deep 
neural network to expand the dataset used in training the 
tree. Zoran et al. (2017) also leveraged a tree structure with 
a routing mechanism similar to soft trees, in order to equip 
the k-nearest neighbors algorithm with neural representa-
tions. All of these works have observed that computation 
in a soft tree can be expensive. Thus, in practice, heuristics 
are used to speed up inference, e.g., Frosst & Hinton (2017) 
uses the root-to-leaf path with the highest probability during 
inference, leading to discrepancy between the models used 
in training and inference. Instead of making a tree differ-
entiable, Jernite et al. (2017) hypothesized about properties 
the best tree should have, and introduced a pseudo-objective 
that encourages balanced and pure splits. They optimized 
using SGD along with intermediate processing steps. 

Another line of work introduces tree-like structure to NNs 
via some routing mechanism. For example, Ioannou et al. 
(2016) employed tree-shaped CNNs with branches as weight 
matrices with sparse block diagonal structure. Shazeer et al. 
(2017) created the Sparsely-Gated Mixture-of-Experts layer 
where samples are routed to subnetworks selected by a 
trainable gating network. Biau et al. (2019) represented a 
decision tree using a 3-layer neural network and combined 
CART and SGD for training. Tanno et al. (2018) looked 
into adaptively growing an NN with routing nodes for per-
forming tree-like conditional computations. However, in 
these works, the inference model is either different from 
training or the router is not differentiable (but still trained 
using SGD)—see Table 1 for details. 

https://github.com/google-research/google-research/tree/master/tf_trees
https://github.com/google-research/google-research/tree/master/tf_trees
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2. The Tree Ensemble Layer 
TEL is an additive model of differentiable decision trees. In 
this section, we introduce TEL formally and then discuss 
the routing mechanism used in our trees. For simplicity, we 
assume that TEL is used as a standalone layer. Training 
trees with other layers will be discussed in Section 3. 

We assume a supervised learning setting, with input space 
X ⊆ Rp and output space Y ⊆ Rk . For example, in the 
case of regression (with a single output) k = 1, while in 
classification k depends on the number of classes. Let m be 
the number of trees in the ensemble, and let T (j) : X → Rk 

be the jth tree in the ensemble. For an input sample x ∈ Rp, 
the output of the layer is a sum over all the tree outputs: 

T (x) = T (1)(x) + T (2)(x) + · · · + T (m)(x). (1) 

The output of the layer, T (x), is a vector in Rk containing 
raw predictions. In the case of classification, mapping from 
raw predictions to Y can be done by applying a softmax 
and returning the class with the highest probability. Next, 
we introduce the key building block of the approach: the 
differentiable decision tree. 

The Differentiable Decision Tree: Classical decision trees 
perform hard routing, i.e., a sample is routed to exactly one 
direction at every internal node. Hard routing introduces dis-
continuities in the loss function, making trees unamenable 
to continuous optimization. Therefore, trees are usually 
built in a greedy fashion. In this section, we present an 
enhancement of the soft trees proposed by Jordan & Jacobs 
(1994) and utilized in Kontschieder et al. (2015); Frosst & 
Hinton (2017); Hehn et al. (2019). Soft trees are a variant of 
decision trees that perform soft routing, where every internal 
node can route the sample to the left and right simultane-
ously, with different proportions. This routing mechanism 
makes soft trees differentiable, so learning can be done using 
gradient-based methods. Soft trees cannot route a sample 
exclusively to the left or to the right, making conditional 
computation impossible. Subsequently, we introduce a new 
activation function for soft trees, which allows conditional 
computation while preserving differentiability. 

We consider a single tree in the additive model (1), and 
denote the tree by T (we drop the superscript to simplify the 
notation). Recall that T takes an input sample and returns 
an output vector (logit), i.e., T : X ⊆ Rp → Rk . Moreover, 
we assume that T is a perfect binary tree with depth d. We 
use the sets I and L to denote the internal (split) nodes and 
the leaves of the tree, respectively. For any node i ∈ I ∪ L, 
we define A(i) as its set of ancestors and use the notation 
{x → i} for the event that a sample x ∈ Rp reaches i. A 
summary of the notation used in this paper can be found in 
Table A.1 in the appendix. 

Soft Routing: Internal tree nodes perform soft routing, 

where a sample is routed left and right with different propor-
tions. We will introduce soft routing using a probabilistic 
model. While we use probability to model the routing pro-
cess, we will see that the final prediction of the tree is an 
expectation over the leaves, making T a deterministic func-
tion. Unlike classical decision trees which use axis-aligned 
splits, soft trees are based on hyperplane (a.k.a. oblique) 
splits (Murthy et al., 1994), where a linear combination of 
the features is used in making routing decisions. Particu-
larly, each internal node i ∈ I is associated with a trainable 
weight vector wi ∈ Rp that defines the node’s hyperplane 
split. Let S : R → [0, 1] be an activation function. Given a 
sample x ∈ Rp, the probability that internal node i routes x 
to the left is defined by S(hwi, xi). 

Now we discuss how to model the probability that x reaches 
a certain leaf l. Let [l . i] (resp. [i & l]) denote the event 
that leaf l belongs to the left (resp. right) subtree of node 
i ∈ I. Assuming that the routing decision made at each 
internal node in the tree is independent of the other nodes, 
the probability that x reaches l is given by: Y 

P ({x → l}) = ri,l(x), (2)
i∈A(l) 

where ri,l(x) is the probability of node i rout-
ing x towards the subtree containing leaf l, i.e., 
ri,l(x) := S(hx, wii)1[l.i](1 − S(hx, wii))1[i&l]. Next, 
we define how the root-to-leaf probabilities in (2) can be 
used to make the final prediction of the tree. 

Prediction: As with classical decision trees, we assume 
that each leaf stores a weight vector ol ∈ Rk (learned during 
training). Note that, during a forward pass, ol is a constant 
vector, meaning that it is not a function of the input sam-
ple(s). For a sample x ∈ Rp, we define the prediction of the 
tree as the expected value of the leaf outputs, i.e., X 

T (x) = P ({x → l})ol. (3)
l∈L 

Activation Functions: In soft routing, the internal nodes 
use an activation function S in order to compute the rout-
ing probabilities. The logistic (a.k.a. sigmoid) function 
is the common choice for S in the literature on soft trees 
(see Jordan & Jacobs (1994); Kontschieder et al. (2015); 
Frosst & Hinton (2017); Tanno et al. (2018); Hehn et al. 
(2019)). While the logistic function can output arbitrarily 
small values, it cannot output an exact zero. This implies 
that any sample x will reach every node in the tree with a 
positive probability (as evident from (2)). Thus, computing 
the output of the tree in (3) will require computation over 
every node in the tree, an operation which is exponential in 
tree depth. 

We propose a novel smooth-step activation function, which 
can output exact zeros and ones, thus allowing for true 
conditional computation. Our smooth-step function is S-
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shaped and continuously differentiable, similar to the logis-
tic function. Let γ be a non-negative scalar parameter. The 
smooth-step function is a cubic polynomial in the interval 
[−γ/2, γ/2], 0 to the left of the interval, and 1 to the right. 
More formally, we assume that the function takes the para-
metric form S(t) = at3 + bt2 + ct + d for t ∈ [−γ/2, γ/2], 
where a, b, c, d are scalar parameters. We then solve for the 
parameters under the following continuity and differentia-
bility constraints: (i) S(−γ/2) = 0, (ii) S(γ/2) = 1, (iii) 
S 0(t)|t=−γ/2 = S 0(t)|t=γ/2 = 0. This leads to: ⎧ ⎪0 if t ≤ −γ/2⎨ 

3 1S(t) = − γ 
2 
3 t

3 + t + if − γ/2 ≤ t ≤ γ/2 (4)⎪ 2γ 2⎩
1 if t ≥ γ/2 

By construction, the smooth-step function in (4) is contin-
uously differentiable for any t ∈ R (including −γ/2 and 
γ/2). In Figure 1, we plot the smooth-step (with γ = 1) 
and logistic activation functions; the logistic function here 
takes the form (1 + e−6t)−1, i.e., it is a rescaled variant of 
the standard logistic function, so that the two functions are 
on similar scales. The two functions can be very close in 
the middle of the fractional region. The main difference is 
that the smooth-step function outputs exact zero and one, 
whereas the logistic function converges to these asymptoti-
cally. 

−6t)−1Figure 1: Smooth-step vs. Logistic (1 + e . 

Outside [−γ/2, γ/2], the smooth-step function performs 
hard routing, similar to classical decision trees. The choice 
of γ controls the fraction of samples that are hard routed. 
A very small γ can lead to many zero gradients in the in-
ternal nodes, whereas a very large γ might limit the extent 
of conditional computation. In our experiments, we use 
batch normalization (Ioffe & Szegedy, 2015) before the tree 
layer so that the inputs to the smooth-step function remain 
centered and bounded. This turns out to be very effective 
in preventing the internal nodes from having zero gradi-
ents, at least in the first few training epochs. Moreover, we 
view γ as a hyperparameter, which we tune over the range 
[10−4 , 1]. This range works well for balancing the train-
ing performance and conditional computation across the 26 
datasets we used (see Section 4). 

For a given sample x, we say that a node i is reachable if 
P (x → i) > 0. The number of reachable leaves directly 
controls the extent of conditional computation. In Figure 2, 
we plot the average number of reachable leaves (per sample) 
as a function of the training epochs, for a single tree of depth 
10 (i.e., with 1024 leaves) and different γ’s. This is for the 
diabetes dataset (Olson et al., 2017), using Adam (Kingma 
& Ba, 2014) for optimization (see the appendix for details). 
The figure shows that for small enough γ (e.g., γ ≤ 1), the 
number of reachable leaves rapidly converges to 1 during 
training (note that the y-axis is on a log scale). We observed 
this behavior on all the datasets in our experiments. 

Figure 2: Number of reachable leaves (per sample) during 
training a tree of depth 10. 

We note that variants of the smooth-step function are pop-
ular in computer graphics (Ebert et al., 2003; Rost et al., 
2009). However, to our knowledge, the smooth-step func-
tion has not been used in soft trees or neural networks. It 
is also worth mentioning that the cubic polynomial used 
for interpolation in (4) can be substituted with higher-order 
polynomials (e.g, polynomial of degree 5, where the first 
and second derivatives vanish at ±γ/2). The algorithms we 
propose in Section 3 directly apply to the case of higher-
order polynomials. 

In the next section, we show how the sparsity in the smooth-
step function and in its gradient can be exploited to develop 
efficient forward and backward propagation algorithms. 

3. Conditional Computation 
We propose using first-order optimization methods (e.g., 
SGD and its variants) to optimize TEL. A main computa-
tional bottleneck in this case is the gradient computation, 
whose time and memory complexities can grow exponen-
tially in the tree depth. This has hindered training large 
tree ensembles in the literature. In this section, we develop 
efficient forward and backward propagation algorithms for 
TEL by exploiting the sparsity in both the smooth-step func-
tion and its gradient. We show that our algorithms have 
optimal time complexity and discuss cases where they run 
significantly faster than standard backpropagation. 
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Setup: We assume a general setting where TEL is a hidden 
layer. Without loss of generality, we consider only one sam-
ple and one tree. Let x ∈ Rp be the input to TEL and denote 
the tree output by T (x) ∈ Rk, where T (x) is defined in (3). 
We use the same notation as in Section 2, and we collect the 
leaf vectors ol, l ∈ L into the matrix O ∈ R|L|×k and the in-
ternal node weights wi, i ∈ I into the matrix W ∈ R|I|×p. 
Moreover, for a differentiable function h(z) which maps 
Rs → Ru , we denote its Jacobian by ∂h ∈ Ru×s . Let L be∂z 
the loss function to be optimized (e.g., cross-entropy). Our 
goal is to efficiently compute the following three gradients: 
∂L ∂L , , and ∂L . The first two gradients are needed by the ∂O ∂W ∂x 
optimizer to update O and W . The third gradient is used to 
continue the backpropagation in the layers preceding TEL. 
We assume that a backpropagation algorithm has already 
computed the gradients associated with the layers after TEL 
and has computed ∂L .∂T 

Number of Reachable Nodes: To exploit conditional 
computation effectively, each sample should reach a rel-
atively small number of leaves. This can be enforced by 
choosing the parameter γ of the smooth-step function to be 
sufficiently small. When analyzing the complexity of the 
forward and backward passes below, we will assume that 
the sample x reaches U leaves and N internal nodes. 

3.1. Conditional Forward Pass 

Prior to computing the gradients, a forward pass over the tree 
is required. This entails computing expression (3), which 
is a sum of probabilities over all the root-to-leaf paths in 
T . Our algorithm exploits the following observation: if a 
certain edge on the path to leaf l has a zero probability, then 
P (x → l) = 0 so there is no need to continue evaluation 
along that path. Thus, we traverse the tree starting from the 
root, and every time a node outputs a 0 probability on one 
side, we ignore all of its descendants lying on that side. The 
summation in (3) is then performed only over the leaves 
reached by the traversal. We present the conditional forward 
pass in Algorithm 1, where for any internal node i, we de-
note the left and right children by left(i) and right(i). 
Time Complexity: The algorithm visits each reachable 
node in the tree once. Every reachable internal node requires 
O(p) operations to compute S(hwi, xi), whereas each 
reachable leaf requires O(k) operations to update the out-
put variable. Thus, the overall complexity is O(Np + Uk) 
(recall that N and U are the number of reachable internal 
nodes and leaves, respectively). This is in contrast to a 
dense forward pass3, whose complexity is O(2dp + 2dk) 
(recall that d is the depth). As long as γ is chosen so that U 
is sub-exponential4 in d, the conditional forward pass has 

3By dense forward pass, we mean evaluating the tree without 
conditional computation (as in a standard forward pass). 

4A function f(t) is sub-exp. in t if limt→∞ log(f(t))/t = 0. 

Algorithm 1 Conditional Forward Pass 

1: Input: Sample x ∈ Rp and tree parameters W and O. 
2: Output: T (x) 
3: {For any node i, i.prob denotes P (x → i).}
4: {to traverse is a stack for traversing nodes.}
5: output ← 0, to traverse ← {root}, root.prob ← 1 
6: while to traverse is not empty do 
7: Remove a node i from to traverse 
8: if i is an internal node then 
9: left(i).prob = i.prob ∗ S(hwi, xi) 

10: right(i).prob = i.prob ∗ (1 − S(hwi, xi)) 
11: if S(hwi, xi) > 0, add left(i) to to traverse 
12: if S(hwi, xi) < 1, add right(i) to to traverse 
13: else 
14: output ← output + i.prob ∗ oi 
15: end if 
16: end while 

a better complexity than the dense pass (this holds since 
N = O(Ud), implying that N is also sub-exponential in d). 

Memory Complexity: The memory complexity for infer-
ence and training is O(d) and O(d + U), respectively. See 
the appendix for a detailed analysis. This is in contrast to a 
dense forward pass, whose complexity in training is O(2d). 

3.2. Conditional Backward Pass 

Here we develop a backward pass algorithm to efficiently 
∂L ∂L ∂L compute the three gradients: , , and , assum-∂O ∂W ∂x 

ing that ∂L is available from a backpropagation algorithm. ∂T 
In what follows, we will see that as long as U is suffi-

∂L ciently small, the gradients ∂L and will be sparse, and ∂O ∂W 
∂L can be computed by considering only a small number ∂x 
of nodes in the tree. Let R be the set of leaves reached 
by Algorithm 1. The following set turns out to be criti-
cal in understanding the sparsity structure in the problem: 
F := {i ∈ I | i ∈ A(l), l ∈ R, 0 < S(hx, wii) < 1}. In 
words, F is the set of ancestors of the reachable leaves, 
whose activation is fractional. 

In Theorem 1, we show how the three gradients can be 
computed by only considering the internal nodes in F and 
leaves in R. Moreover, the theorem presents sufficient 
conditions for which the gradients are zero; in particular, 
∂L = 0 for every internal node i ∈ Fc and ∂L = 0 for∂wi ∂ol 

every leaf l ∈ Rc (where Ac is the complement of a set A). 
∂S(hx,wii)Theorem 1. Define µ1(x, i) = /S(hx, wii),∂hx,wi i 

∂S(hx,wi i)µ2(x, i) = /(1 − S(hx, wii)), and g(l) = ∂hx,wii 
P ({x → l})h ∂L , oli. The gradients needed for backpropa-∂T 
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gation can be expressed as follows: 

∂L X h X X i 
T = w µ1(x, i) g(l) − µ2(x, i) g(l)i∂x 

i∈F l∈R|[l.i] l∈R|[i&l]⎧ ⎪0 i ∈ Fc ⎨∂L h X X i 
= T x µ1(x, i) g(l) − µ2(x, i) g(l) o.w. ∂wi ⎪⎩ 

l∈R|[l.i] l∈R|[i&l] 

∂L ∂L 
= P ({x → l}), ∀ l ∈ L 

∂ol ∂T 

In Theorem 1, the quantities µ1(x, i) and µ2(x, i) can be 
obtained in O(1) since in Algorithm 1 we store hx, wii for 
every i ∈ F . Moreover, P ({x → l}) is stored in Algorithm 
1 for every reachable leaf. However, a direct evaluation 
of these gradients leads to a suboptimal time complexity P P 
because the terms l∈R|[l.i] g(l) and l∈R|[i&l] g(l) will 
be computed from scratch for every node i ∈ F . Our condi-
tional backward pass traverses a fractional tree, composed 
of only the nodes in F and R, while deploying smart book-
keeping to compute these sums during the traversal and 
avoid recomputation. We define the fractional tree below. 

Definition 1. Let Treachable be the tree traversed by the con-
ditional forward pass (Algorithm 1). We define the fractional 
tree Tfractional as the result of the following two operations: 
(i) remove every internal node i ∈ Fc from Treachable and (ii) 
connect every node with no parent to its closest ancestor. 

In Section C.1 of the appendix, we provide an example of 
how the fractional tree is constructed. Tfractional is a binary 
tree with U leaves and |F| internal nodes, each with ex-
actly 2 children. It can be readily seen that |F| = U − 1; 
this relation is useful for analyzing the complexity of the 
conditional backward pass. Note that Tfractional can be con-
structed on-the-fly while performing the conditional forward 
pass (without affecting its complexity). In Algorithm 2, we 
present the conditional backward pass, which traverses the 
fractional tree once and returns ∂L and any (potentially) ∂x 

non-zero entries in ∂L and ∂L .∂O ∂W 

Time Complexity: The worst-case complexity of the al-
gorithm is O(Up + Uk), whereas the best-case complexity 
is O(k) (corresponds to U = 1), and in the worst case, 
the number of non-zero entries in the three gradients is 
O(Up+Uk)—see the appendix for analysis. Thus, the com-
plexity is optimal, in the sense that it matches the number 
of non-zero gradient entries, in the worst case. The worst-
case complexity is generally lower than the O(Np + Uk) 
complexity of the conditional forward pass. This is because 
we always have U = O(N), and there can be many cases 
where N grows faster than U . For example, consider a tree 
with only two reachable leaves (U = 2) and where the root 
is the (only) fractional node, then N grows linearly with the 
depth d. As long as U is sub-exponential in d, Algorithm 2’s 

Algorithm 2 Conditional Backward Pass 

1: Input: Sample x ∈ Rp, tree parameters, and ∂L .∂T 
∂L 2: Output: ∂L and (potential) non-zeros in and ∂L .∂x ∂W ∂O 

3: ∂L = 0∂x P 
4: {For any node i, i.sum g denotes l∈R|i∈A(l) g(l)}
5: Traverse Tfractional in post order: 
6: Denote the current node by i 
7: if i is a leaf then 

∂L ∂L 8: = P ({x → i})∂oi ∂T 
9: i.sum g = g(i) 

10: else 
11: a = µ1(x, i) (left(i).sum g) 
12: b = µ2(x, i) (right(i).sum g) 

∂L T13: += wi (a − b)∂x 

14: ∂L = xT (a − b)∂wi 

15: i.sum g = left(i).sum g + right(i).sum g 
16: end if 

complexity can be significantly lower than that of a dense 
backward pass whose complexity is O(2dp + 2dk). 

Memory Complexity: We store one scalar per node in 
the fractional tree (i.e., i.sum g for every node i in the 
fractional tree). Thus, the memory complexity is O(|F| + 
U) = O(U). If γ is chosen so that U is upper-bounded by 
a constant, then Algorithm 2 will require constant memory. 

Connections to Backpropagation: An interesting obser-
vation in our approach is that the conditional backward pass 
generally has a better time complexity than the conditional 
forward pass. This is usually impossible in standard back-
propagation for NNs, as the forward and backward passes 
traverse the same computational graph (Goodfellow et al., 
2016). The improvement in complexity of the backward 
pass in our case is due to Algorithm 2 operating on the 
fractional tree, which can contain a significantly smaller 
number of nodes than the tree traversed by the forward pass. 
In the language of backpropagation, our fractional tree can 
be viewed as a “simplified” computational graph, where the 
simplifications are due to Theorem 1. 

4. Experiments 
We study the performance of TEL in terms of prediction, 
conditional computation, and compactness. We evaluate 
TEL as a standalone learner and as a layer in a NN, and 
compare to standard soft trees, GBDT, and dense layers. 

Model Implementation: TEL is implemented in Tensor-
Flow 2.0 using custom C++ kernels for forward and back-
ward propagation, along with a Keras Python-accessible 
interface. The implementation is open source2. 

Datasets: We use a collection of 26 classification datasets 
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(binary and multiclass) from various domains (e.g., health-
care, genetics, and image recognition). 23 of these are from 
the Penn Machine Learning Benchmarks (PMLB) (Olson 
et al., 2017), and the 3 remaining are CIFAR-10 (Krizhevsky 
et al., 2009), MNIST (LeCun et al., 1998), and Fashion 
MNIST (Xiao et al., 2017). Details are in the appendix. 

Tuning, Toolkits, and Details: For all the experiments, we 
tune the hyperparameters using Hyperopt (Bergstra et al., 
2013) with the Tree-structured Parzen Estimator (TPE). We 
optimize for either AUC or accuracy with stratified 5-fold 
cross-validation. NNs (including TEL) were trained using 
Keras with the TensorFlow backend, using Adam (Kingma 
& Ba, 2014) and cross-entropy loss. As discussed in Section 
2, TEL is always preceded by a batch normalization layer. 
GBDT is from XGBoost (Chen & Guestrin, 2016), Logistic 
regression and CART are from Scikit-learn (Pedregosa et al., 
2011). Additional details are in the appendix. 

4.1. Soft Trees: Smooth-step vs. Logistic Activation 

We compare the run time and performance of the smooth-
step and logistic functions using 23 PMLB datasets. 

Predictive Performance: We fix the TEL architecture to 
10 trees of depth 4. We tune the learning rate, batch size, 
and number of epochs (ranges are in the appendix). We as-
sume the following parametric form for the logistic function 
f(t) = (1 + e−t/α)−1, where α is a hyperparameter which 
we tune in the range [10−4 , 104]. The smooth-step’s param-
eter γ is tuned in the range [10−4 , 1]. Here we restrict the 
upper range of γ to 1 to enable conditional computation over 
the whole tuning range. While γ’s larger than 1 can lead to 
slightly better predictive performance in some cases, they 
can slow down training significantly. For tuning, Hyperopt 
is run for 50 rounds with AUC as the metric. After tuning, 
models with the best hyperparameters are retrained. We 
repeat the training procedure 5 times using random weight 
initializations. The mean test AUC along with its standard 
error (SE) are in Table 2. The smooth-step outperforms the 
logistic function on 7 datasets (5 are statistically significant). 
The logistic function also wins on 7 datasets (4 are statisti-
cally significant). The two functions match on the rest of the 
datasets. The differences on the majority of the datasets are 
small (even when statistically significant), suggesting that 
using the smooth-step function does not hurt the predictive 
performance. However, as we will see next, the smooth-step 
has a significant edge in terms of computation time. 

Training Time: We measure the training time over 50 
epochs as a function of tree depth for both activation func-
tions. We keep the same ensemble size (10) and use γ = 1 
for the smooth-step as this corresponds to the worst-case 
training time (in the tuning range [10−4 , 1]), and we fix the 
optimization hyperparameters (batch size = 256 and learning 
rate = 0.1). We report the results for three of the datasets in 

Table 2: Test AUC for the smooth-step and logistic functions 
(fixed TEL architecture). A ∗ indicates statistical signifi-
cance based on a paired two-sided t-test at a significance 
level of 0.05. Best results are in bold. AUCs on the 9 
remaining datasets match and are hence omitted. 

Dataset Smooth-step Logistic 

ann-thyroid 0.997 ± 0.0001 0.996 ± 0.0006 
breast-cancer-w. 0.992 ± 0.0015 0.994 ± 0.0002 
churn 0.897 ± 0.0014 0.898 ± 0.0014 
crx 0.916 ± 0.0025 0.929 ∗ ± 0.0021 
diabetes 0.832 ∗ ± 0.0009 0.816 ± 0.0021 
dna 0.993 ± 0.0004 0.994 ∗ ± 0.0 
ecoli 0.97 ∗ ± 0.0004 0.952 ± 0.0038 
flare 0.78 ± 0.0027 0.784 ± 0.0018 
heart-c 0.936 ± 0.002 0.927 ± 0.0036 
pima 0.828 ∗ ± 0.0005 0.82 ± 0.0003 
satimage 0.988 ∗ ± 0.0002 0.987 ± 0.0002 
solar-flare 2 0.926 ± 0.0002 0.927 ∗ ± 0.0007 
vehicle 0.956 ± 0.0015 0.965 ∗ ± 0.0007 
yeast 0.876 ∗ ± 0.0014 0.86 ± 0.0026 

# wins 7 7 

Figure 3; the results for the other datasets have very similar 
trends and are omitted due to space constraints. The results 
indicate a steep exponential increase in training time for the 
logistic activation after depth 6. In contrast, the smooth-step 
has a slow growth, achieving over 10x speed-up at depth 10. 

4.2. TEL vs. Gradient Boosted Decision Trees 

Predictive Performance: We compare the predictive per-
formance of TEL and GBDT on the 23 PMLB datasets, 
and we include L2-regularized logistic regression (LR) and 
CART as baselines. For a fair comparison, we use TEL as a 
standalone layer. For TEL and GBDT, we tune over the # of 
trees, depth, learning rate, and L2 regularization. For TEL 
we also tune over the batch size, epochs, and γ ∈ [10−4 , 1]. 
For LR and CART, we tune the L2 regularization and depth, 
respectively. We use 50 tuning rounds in Hyperopt with 
AUC as the metric. We repeat the tuning/testing procedures 
on 15 random training/testing splits. The results are in Table 
3. 

As expected, no algorithm dominates on all the datasets. 
TEL outperforms GBDT on 9 datasets (5 are statistically 
significant). GBDT outperforms TEL on 8 datasets (7 of 
which are statistically significant). There were ties on the 6 
remaining datasets; these typically correspond to easy tasks 
where an AUC of (almost) 1 can be attained. LR outper-
forms both TEL and GBDT on only 3 datasets with very 
marginal difference. Overall, the results indicate that TEL’s 
performance is competitive with GBDT. Moreover, adding 
feature representation layers before TEL can potentially 
improve its performance further, e.g., see Section 4.3. 
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Figure 3: Training time (sec) vs. tree depth for the smooth-step and logistic functions, averaged over 5 repetitions. 

Table 3: Test AUC on 23 PMLB datasets. Averages over 15 random repetitions are reported along with the SE. A star (∗) 
indicates statistical significance based on a paired two-sided t-test at a significance level of 0.05. Best results are in bold. 

Dataset TEL GBDT L2 Logistic Reg. CART 

ann-thyroid 
breast-cancer-wisconsin 

0.996 ± 0.0 
0.995 ∗ ± 0.001 

1.0 ∗ ± 0.0 
0.992 ± 0.001 

0.92 ± 0.002 
0.991 ± 0.001 

0.997 ± 0.0 
0.929 ± 0.004 

car-evaluation 1.0 ± 0.0 1.0 ± 0.0 0.985 ± 0.001 0.981 ± 0.001 
churn 0.916 ± 0.004 0.92 ∗ ± 0.004 0.814 ± 0.003 0.885 ± 0.004 
crx 0.911 ± 0.005 0.933 ∗ ± 0.004 0.916 ± 0.005 0.905 ± 0.005 
dermatology 
diabetes 

0.998 ± 0.001 
0.831 ∗ ± 0.006 

0.998 ± 0.001 
0.82 ± 0.006 

0.998 ± 0.001 
0.824 ± 0.008 

0.962 ± 0.005 
0.774 ± 0.008 

dna 0.993 ± 0.0 0.994 ∗ ± 0.0 0.991 ± 0.0 0.964 ± 0.001 
ecoli 0.97 ∗ ± 0.003 0.962 ± 0.003 0.972 ± 0.003 0.902 ± 0.007 
flare 0.732 ± 0.009 0.738 ± 0.01 0.736 ± 0.009 0.717 ± 0.01 
heart-c 0.903 ± 0.006 0.893 ± 0.008 0.908 ± 0.005 0.829 ± 0.012 
hypothyroid 0.971 ± 0.003 0.987 ∗ ± 0.002 0.93 ± 0.005 0.926 ± 0.011 
nursery 1.0 ± 0.0 1.0 ± 0.0 0.916 ± 0.001 0.996 ± 0.0 
optdigits 1.0 ± 0.0 1.0 ± 0.0 0.998 ± 0.0 0.958 ± 0.001 
pima 0.831 ± 0.008 0.825 ± 0.006 0.832 ± 0.008 0.758 ± 0.011 
satimage 
sleep 

0.99 ± 0.0 
0.925 ± 0.0 

0.99 ± 0.0 
0.927 ∗ ± 0.0 

0.955 ± 0.001 
0.889 ± 0.0 

0.949 ± 0.001 
0.876 ± 0.001 

solar-flare 2 0.925 ± 0.002 0.924 ± 0.002 0.92 ± 0.002 0.907 ± 0.002 
spambase 0.986 ± 0.001 0.989 ∗ ± 0.001 0.972 ± 0.001 0.926 ± 0.002 
texture 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 0.974 ± 0.001 
twonorm 0.998 ∗ ± 0.0 0.997 ± 0.0 0.998 ± 0.0 0.865 ± 0.002 
vehicle 0.953 ∗ ± 0.003 0.931 ± 0.002 0.941 ± 0.002 0.871 ± 0.004 
yeast 0.861 ± 0.004 0.859 ± 0.004 0.852 ± 0.004 0.779 ± 0.005 

# wins 12 14 6 0 

Figure 4: Mean test AUC vs # of trees (15 trials). SE is shaded. TEL and GBDT have (roughly) the same # of params/tree. 
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Table 4: Average and SE for test accuracy, loss and # of params for CNN-Dense and CNN-TEL over 5 random initializations. 
A star ∗ indicates statistical significance based on a paired two-sided t-test at a level of 5%. Best values are in bold. 

CNN-Dense CNN-TEL 

Dataset 
CIFAR10 

Accuracy 
0.7278 ± 0.0047 

Loss 
1.673 ± 0.170 

# Params 
7, 548, 362 

Accuracy 
0.7296 ± 0.0109 

Loss 
1.202 ∗ ± 0.011 

# Params 
926, 465 

MNIST 0.9926 ± 0.0002 0.03620 ± 0.00121 5, 830, 538 0.9930 ± 9e − 5 0.03379 ± 0.00093 699, 585 
Fashion MNIST 0.9299 ± 0.0012 0.6930 ± 0.0291 5, 567, 882 0.9297 ± 0.0012 0.3247 ∗ ± 0.0045 699, 585 

Compactness and Sensitivity: We compare the number 
of trees and sensitivity of TEL and GBDT on datasets from 
Table 3 where both models achieve comparable AUCs— 
namely, the heart-c, pima and spambase datasets. With 
similar predictive performance, compactness can be an im-
portant factor in choosing a model over the other. For TEL, 
we use the models trained in Table 3. As for GBDT, for 
each dataset, we fix the depth so that the number of pa-
rameters per tree in GBDT (roughly) matches that of TEL. 
We tune over the main parameters of GBDT (50 iterations 
of Hyperopt, under the same parameter ranges of Table 3). 
We plot the test AUC versus the number of trees in Figure 
4. On all datasets, the test AUC of TEL peaks at a signif-
icantly smaller number of trees compared to GBDT. For 
example, on pima, TEL’s AUC peaks at 5 trees, whereas 
GBDT requires more than 100 trees to achieve a comparable 
performance—this is more than 20x reduction in the number 
of parameters. Moreover, the performance of TEL is less 
sensitive w.r.t. to changes in the number of trees. These 
observations can be attributed to the joint optimization per-
formed in TEL, which can lead to more expressive ensem-
bles compared to the stage-wise optimization in GBDT. 

4.3. TEL vs. Dense Layers in CNNs 

We study the potential benefits of replacing dense layers 
with TEL in CNNs, on the CIFAR-10, MNIST, and Fashion 
MNIST datasets. We consider 2 convolutional layers, fol-
lowed by intermediate layers (max pooling, dropout, batch 
normalization), and finally dense layers; we refer to this 
as CNN-Dense. We also consider a similar architecture, 
where the final dense layers are replaced with a single dense 
layer followed by TEL; we refer to this model as CNN-TEL. 
We tune over the optimization hyperparameters, the num-
ber of filters in the convolutional layers, the number and 
width of the dense layers, and the different parameters of 
TEL (see appendix for details). We run Hyperopt for 25 
iterations with classification accuracy as the target metric. 
After tuning, the models are trained using 5 random weight 
initializations. 

The classification accuracy and loss on the test set and the 
total number of parameters are reported in Table 4. While 
the accuracies are comparable, CNN-TEL achieves a lower 
test loss on the three datasets, where the 28% and 53% 

relative improvements on CIFAR and Fashion MNIST are 
statistically significant. Since we are using cross-entropy 
loss, this means that TEL gives higher scores on average, 
when it makes correct predictions. Moreover, the number of 
parameters in CNN-TEL is ∼ 8x smaller than CNN-Dense. 
This example also demonstrates how representation layers 
can be effectively leveraged by TEL—GBDT’s performance 
is significantly lower on MNIST and CIFAR-10, e.g., see 
the comparisons in Ponomareva et al. (2017). 

5. Conclusion and Future Work 
We introduced the tree ensemble layer (TEL) for neural net-
works. The layer is composed of an additive model of differ-
entiable decision trees that can be trained end-to-end with 
the neural network, using first-order methods. Unlike dif-
ferentiable trees in the literature, TEL supports conditional 
computation, i.e., each sample is routed through a small 
part of the tree’s architecture. This is achieved by using the 
smooth-step activation function for routing samples, along 
with specialized forward and backward passes for reducing 
the computational complexity. Our experiments indicate 
that TEL achieves competitive predictive performance com-
pared to gradient boosted decision trees (GBDT) and dense 
layers, while leading to significantly more compact models. 
In addition, by effectively leveraging convolutional layers, 
TEL significantly outperforms GBDT on multiple image 
classification datasets. 

One interesting direction for future work is to equip TEL 
with mechanisms for exploiting feature sparsity, which can 
further speed up computation. Promising works in this 
direction include feature bundling (Ke et al., 2017) and 
learning under hierarchical sparsity assumptions (Hazimeh 
& Mazumder, 2020). Moreover, it would be interesting to 
study whether the smooth-step function, along with special-
ized optimization methods, can be an effective alternative 
to the logistic function in other machine learning models. 
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