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Abstract

This thesis addresses the modeling and control of large signal be-
havior in switching power converters. Most present day control schemes
for switching converters are based on small signal, linearized models,
and hence do not easily handle large transients. The aim here is to
obtain readily implementable control laws that result in globally stable
dynamics and satisfactory behavior in the case of both large and small
signal operation.

State-space averaged models are first introduced for switched non-
linear circuits that may contain multiple switches. An approach to syn-
thesizing a natural averaged circuit model is then obtained. Such an
averaged circuit synthesis provides intuition on the converter operation
and permits the use of circuit based analysis methods.

The nominal open-loop operation of a broad class of switching con-
verters is next shown to be stable in the large via a Lyapunov argument.
Globally stabilizing control schemes, based on Lyapunov functions, are
derived. These include adaptive controllers that handle uncertainties
in parameter values. A dual approach to estimating the converter state
from incomplete or noisy measurement data, using observers, is also
developed. It is demonstrated that the Lyapunov-based schemes can
provide satisfactory control performance in terms of robustness, reduced
sensitivity, and improved transient response. Simulations of several ex-
amples of controlled converters amplify these conclusions.

An alternative approach for large signal control design based on
state-space transformations is also considered. A coordinate transfor-
mation that arises in feedback linearization is used to facilitate a sliding
mode control design. Numerical simulations and experimental results
indicate the feasibility of such a design.

Thesis Supervisor: George C. Verghese, Associate Professor of Electrical
Engineering and Computer Science
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Chapter 1

Introduction

Switching power converters are finding wide applications in the area of electri-
cal energy conditioning, and are therefore of increasing importance. A switching
power converter is composed essentially of switches and energy storage elements,
since it is designed to achieve high efficiency energy conversion. The nominal
steady state operation of a DC-DC converter involves a cyclic operation of the
switches to produce a commanded average output voltage or current from a spec-
ified DC input source. By modulating the nominal cyclic switching operation,
DC-AC operation (inversion) can be obtained. In the case of an AC input source,
AC-DC conversion (rectification) and AC-AC conversion (cyclo-conversion) can
also be obtained by appropriately modulating the switching operation. Because
of the nearly lossless design and construction, the open-loop dynamical behavior

of a converter is often poorly damped.

The control of switching power converters is an interesting and challeng-
ing research topic for many reasons. Most importantly, the control schemes in
present use are based on small signal models obtained by linearizing about a
given steady state operating point or trajectory. Large signal transients such
as those that occur at power-up or on overload recovery are handled in an ad
hoc manner. Designers analyze each circuit individually to prescribe a scheme
to accommodate a designated set of large signal transients. The challenge here

is to explore how one might do better.
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Contents and Contributions of This Thesis

This thesis studies switching converter control schemes that are nonlinear and
not limited to small signal behavior. In particular, the thesis develops design
methodologies for prescribing easily implemented control algorithms that pro-
vide satisfactory global behavior, including robustness with respect to uncer-
tain circuit parameters. Further, these control schemes permit variable or user-
programmable output waveforms.

Chapter 2 gives some background information on the operation of switching
converters and on control via linear state feedback based on small signal models.
Some of the main results of this thesis are also previewed in Chapter 2 with
simple examples. A discussion of the relevant literature is given in Chapter 3,
but note that details on the literature are included throughout the thesis as
appropriate.

An ixﬁportant approach to analysis of switching power converters using aver-
aged circuit models is studied in Chapter 4. In particular, earlier and incomplete
results on averaged circuit models for these converters are extended significantly,
and now also cover converters whose non-switch components include nonlinear
circuit elements. The other main area of this thesis is the development of large
signal and adaptive control laws for switching converters, using ideas from dis-
sipative systems theory and feedback linearization.

One of our main approaches for large signal control design is based on a Lya-
punov function for the switching converter. In order to carry out such a design,
it is required to establish that the open-loop behavior of the converter is stable,
and to determine the explicit form of a suitable Lyapunov function. For this
purpuse, Chapter 4 develops certain fundamental results on open-loop stability
by demonstrating the existence of an internal energy-like function, termed the

energy in the increment, which constitutes a natural Lyapunov function.

The basic idea underlying control design using Lyapunov functions is pre-
sented in Chapter 5. This chapter also demonstrates some particular advantages

of using the natural Lyapunov function. The chapter shows how to apply this
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type of control to converters that have nonlinear circuit elements, that handle
time-varying source and/or load waveforms, and that operate in the discontin-
uous conduction mode. A dual approach for designing observers that estimate
the converter state from incomplete or noisy measurement data is also developed

in Chapter 5, again based on the energy in the increment.

One of the main contributions of this thesis is the unification of certain
network theoretic properties with a framework for control design. An important
aspect of this unification is the formulation of control designs based on the
energy in the increment, as captured in Chapter 5. Another aspect, contained
in Chapter 6, involves the interpretation of a Lyapunov based control scheme as
a network interconnection. Such a point of view suggests the use of dynamical
compensators (whereas static ones were used in Chapter 5) to improve control
performance. In particular, Chapter 6 shows how to deal with uncertain circuit
parameters (such as unknown nominal state values) with a globally stable self-
tuning adaptation scheme. It is also demonstrated that this type of scheme
can re.sult in satisfactory performance in terms of reduced system sensitivity
and transient response. A novel but heuristic approach, motivated by circuit
based principles, is developed for obtaining fast transient behavior in a system
modeled as a network interconnection. The background on nonlinear network
theory necessary to support the discussions in Chapters 4, 5, and 6 is included

in Appendix A.

Chapter 7 explores an entirely different approach to control with coordi-
nate transformations that are used to simplify control design. Such coordinate
transformations arise in the so-called feedback linearization approach to control
design for nonlinear systems. Most of this chapter focuses on an example up-
down converter (introduced in Chapter 2). Rather than obtaining an explicit
feedback linearization for the up-down converter, the transformation required
in such a linearization is used to facilitate a sliding mode control design for
this converter. Results of a hybrid experiment/simulation for this control, using

an experimentul controller in conjunction with the MIT Parity Simulator, are

14



reported.

A summary and suggestions for future research are given in Chapter 8.
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Chapter 2

Background and Preview of
Main Results

This chapter presents some background on the operation, modeling, and control
of switching power converters. After giving the necessary introductory informa-

tion, the main results of the thesis are previewed with some simple examples.

2.1 - State-Space Models for Power Electronic
Circuits

This section develops a state-space model for an up-down converter to illustrate
the nature of state-space models for power electronic circuits. The model is used
extensively as an example in the remainder of the thesis. For more details on
modeling of power electronic circuits, see [1,2,3,48].

Consider the up-down converter shown in Figure 2.1a). The nominal steady
state operation of such a converter involves a cyclic process. The transistor is
turned on in the first part of the cycle, so that the inductor current ramps up.
During this time, the diode is reverse biased (a non-conducting state) so that
the capacitor voltage decays into the load. Then, in the second part of the cycle,
the transistor is turned off and the diode becomes forward biased (a conducting
state), so that the inductor current flows through the diode into the capacitor
and the load. Typical waveforms are displayed in Figure 2.1b). With this type

of cyclic operation, the average value of the capacitor voltage v in the steady
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Figure 2.1: a) Up-Down Converter and b) Typical Waveforms

state can be made either larger or smaller in magnitude than the source voltage
V.. (This is why the circuit is termed an up-down converter.) One can determine
the.steady state transfer ratio from source voltage to average capacitor voltage
by noting that the average voltage across the inductor is zerc in steady state,

and hence
(dV,+ (1 -dh, =0 (2.1)

where v, is the nominal steady state value of the capacitor voltage and d is the
duty ratio, that is, the fraction of each cycle that the transistor is on. From
(2.1), we readily obtain

d

= — iV, 2.2
U= —75Vs (2.2)

Under the restriction that the inductor current ¢ is always positive (so-called
continuous conduction), we can model the transistor-diode pair as a single pole,
double throw (SPDT') switch. Note that the position of the switch can always be
dictated by turning the transistor on (v = 1) or off (v = 0). When either switch
position is specified, the circuit can be characterized by a linear, time-invariant

(LTI) model. Suppose that under « = 1, the model is given by

' = Az + Byw (2.3)
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and under u = 0, is given by
' = Agr + Bow (2.4)

where x is the state vector of the capacitor voltage and the inductor current, z’
is its time derivative, and w is the vector of voltage and current source values.
Note that we have not explicitly noted the time dependence in the state = and
its derivative z', and we shall continue this omission throughout the thesis when
such dependence is clear from the context. An ensemble model can be obtained

by combining (2.3) and (2.4) as
(L" = [Ao + ‘u(Al - Ao)](ﬂ + [Bo {- ‘lt(Bl - Bo)]w. (2.5)

This is termed a bilinear state-space model because the control u enters mul-
tiplicatively with the state, as well as linearly. For the up-down converter of

Figure 2.1, the state-space representation takes the form:

1 ([0 1/L 0 -1/L i
[v’} = {[-1/0 —I/RC] ‘"[1/0 0]}[17]+
L] 2

Note that the control variable u takes on only the values 0 and 1.
In the more general case where nonlinear circuit elements are present in a

switching converter, the ensemble model (2.5) would take the more general form

z’ = fo(z) + u(fi(x) — fo(x)). (2.7)

Note that terms corresponding to independent sources may be absorbed into
fo(e) and fi(e) in (2.7). In some applications involving time-varying source
and/or load waveforms, the vector-valued functions fy(e) and fi(e) may be
time dependent. For all cases of interest in this thesis, fo(®) and f,(e) will be
continuous functions of their arguments. We shall be interested in a still more
general case where the switched circuit admits an arbitrary, finite number of
distinct switch configurations. In the case where the circuit has m + 1 distinct

switch configurations, the state-space model takes the form
=1 —u — ... —un)fo(z) + ur fi(z) + ... + U (). (2.8)
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Each of the inputs u, can take on only the discrete values 0 and 1, with at most
one input equal to 1 at a given time instant. Note that the m + 1 instances of
the right-hand side of (2.8) correspond to the m + 1 switch configurations and

to the inputs u in the following way:

fo(T) U= ... = Uy =0

filg) = u =1

fm(®) &= uy =1L (2.9)

State-Space Averaged Models

To facilitate the use of well established control design methods based on state-
space models that have a continuously variable input, state-space averaged mod-
els for switching converters have been developed [17,23,48]. A state-space aver-
aged model is an approximation to a model such as (2.6), that contains discrete
control inputs, and can be obtained by replacing the instantaneous values of all

state and control variables by their one-cycle averages, i.e.

(1) = %/:T:c(s)ds, (2.10)
d(t) = E(t):%/'t_Tll.(s)ds, (2.11)

in the case where the converter is operated cyclically with period T. The symbol
d is used to represent the duty ratio, that is the one-cycle averaged value of wu.
See [46,48] for discussions on the use of one-cycle averaging for developing state-
space averaged models.

To develop some intuition on the approximations involved, consider applying

the one-cycle average to the model (2.7). We obtain

@' = fo(z) + u(filz) — folx)). (2.12)

Note that the one-cycle averaging operation commutes with differentiation, and

hence the left-hand side of (2.12) is equal to #'. Under the conditions that the
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states do not vary much over the period of length 7' (small rinple assumption),
and that the functions fy(e), f,(®) are continuous, the right-hand side of (2.12)

can be approximated as

fo(T) + d(fi(T) — fo(T)). (2.13)

This approximation can be justified by first noting that the small ripple and con-

tinuity conditions assure that the relative variation in the functions fo(e), fi(e)

is small over the period T, and hence

u(fi(z) - fo(z)) = 2 (fi(z) - folz) = d(fi(x) — fo(z). (2.14)

The small ripple and continuity conditions also permit the approximations

folz) = fo(T)
fz) =~ fi(@). (2.15)

which lead to our result. (Note that in the case where the functions fo(e), fi(e)
are linear or affine, (2.15) involves no approximatioﬁ.) In summary, the state-

space averaged model for (2.7) takes the form

T = fo(T) + d(f1(T) — fo(T)). (2.16)

In the remainder of the thesis, we shall omit (except where otherwise indicated)
the 6verbar notation when considering state-space averaged models, to simplify
the presentation. The nature of the model of interest should be clear from the
context.

For sufficiently small T, the trajectories of the averaged model can be shown
to approximate those of the underlying switched system model on a finite interval
with arbitrarily small error, in the case where the functions fo(e) and fi(e)
possess bounded and continuous first partial derivatives with respect to r, as
demonstrated in [84]. Further, [84] proves that the underlying switched system
is ‘exponentially stable if the state-space averaged system is exponentially stable

(provided T is sufficiently small). A direct application of the results of [84]
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would require that the switched system be operated in an open-loop manner.
(The results in [84] are actually stronger than what is needed here for the case
where the system is operated periodically.) However, technical difficulties can
arise if one considers a closed-loop control system with the control defined in

the form

< r(t
w = { (1), :g; N :’E:; (2.17)
where 7(t) is the ramp function shown in Figure 2.2. This is a typical approach
to implementing a control law of the form d = —h(zx) that is based on the state-
space averaged model. The problem here is that « is no longer even a continuous
function of the state  at any instant of time, and hence the resulting closed-
loop system will violate the assuinptions required in [84]. There is some relevant
literature on sliding mode control (i.e. [4,91]) that treats averaging for state-
space models with discontinuities on their right-hand sides. For the present case,
it is poséible to circumvent this technicality by noting that any well designed
control system of this form will execute at most two switch transitions per cycle
(once “on” and once “off”). Therefore, the required smoothness conditions can
be satisfied at every time instant, except exactly when the switch transitions

occur. Consequently, the results of [84] could be carried over to this case by

replacing the control law (2.17) with a smoothed version such as

h — r(t
u=10.5-— ltan'l{M

W - }. (2.1R)

Of course, this control scheme cannot actually be implemented. But for suffi-
ciently small ¢, it converges (pointwise) to the control law (2.17) for all values
of h(z) — r(t) except h(z) — r(t) = 0. Therefore, this control law can result
in identical behavior to that obtained with (2.17) if h(x) — r(#) is almost never
zero. This will be the case if only a finite number of switch transitions occur
during each period.

For the up-down converter, the state-space averaged model has an identical
form to that of (2.6), except that we replace the discrete input w with the

continuous duty ratio d, which can take on any value satisfying 0 < d < 1.

21



N

N ()

A Aot

Figure 2.2: Ramp Waveform Used to Implement Clontrol Based on State-Space
Averaged Model

The state-space averaged model for a switching converter with m + 1 switch
configurations takes a form identical to that of (2.8), except that each of the
inputs u; is replaced by its duty ratio di. The m + 1 duty ratios satisfy the

constraints

0<d, <1

0<d,<1

0<di+...+dn<1. (2.19)

Note that the right-hand side of the state-space averaged model for (2.8) is
a convex combination of the m + 1 instances of the right-hand side of (2.8),
determined by the duty ratios di. This fact will be of some importance in

Chapter 4, where averaged circuit models are discussed.

As mentioned in the Introduction, present day control designs for switching
converters are usually based upon linear state feedback for small signal models
obtained by linearizing large signal state-space averaged models. In this thesis,
we shall be mainly concerned with control designs based upon the large signal
model (e.g. (2.5), (2.7),(2.8)) where the control is constrained to discrete vai-
ues, or the large signal state-space averaged model where the control satisfies a

constraint such as 0 < d <1 or (2.19).
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2.2 Preview: Averaged Circuits
One of the questions this thesis will answer is the following:

Does there ezist a non-switched, averaged circuit that corresponds to
the state-space averaged model of a switching converter in a natural

way?

By a natural correspondence, we mean that the state-space averaged model
should exactly describe the dynamical behavior of the averaged circuit. Fur-
ther, the averaged circuit should topologically resemble the underlying switched
circuit as closely as possible. In Chapter 4, we shall describe procedures for
synthesizing averaged circuits that are closely related to the underlying circuit,

with the main differences arising from the switch elements.

(1-d)/d:1

Figure 2.3: Averaged Circuit Model for Up-Down Converter
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An averaged circuit synthesis is useful for purposes of analysis (e.g. circuit-
based simulation) and obtaining insight into the operation of the switching con-
verter. An averated circuit model for the up-down converter of Figure 2.1 is
shown in Figure 2.3. Many calculations can be performed by inspection with
the averaged circuit. For instance, for the up-down converter operated with con-
stant duty ratio, one can readily determine the characteristic polynomial that
determines the natural frequencies of the state-space averaged model. To obtain
the characteristic polynomial, one would first replace the voltage source with

a short circuit and replace the current source with an open circuit, and then
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analyze the resulting L — R — C circuit. This polynomial is given by

1 (1 —d)?
= 2 9
p(s) =s°+ R(!8+ e (2.20)

It is therefore evident that in the case where R is large, or infinite because the
load is a pure current source, that the open-loop dynamics is poorly damped.
For the case where R = oo, the purely imaginary eigenvalues (roots of p(s) in
(2.20)) are given by

1-d

A=+ ——. 2.21
Ve (2.21)

Many previous researchers have dealt with the question of existence and
synthesis of averaged circuits. Wester and Middlebrook [46] used an approach
that could be termed in-place averaging to develop averaged circuit models for
switching converters. Our development in Chapter 4 will pick up on the ap-
proach of [46]. In this approach, an averaged circuit is realized that has branch
variables that are consistent with the one-cycle averaged values of those of the
underlying circuit. The results in [46] were not quite correct since the averaged
element(s) required to replace the switch branches were not adequately realized.
More recent researchers [45] have taken a similar approach to that of [46], and
unfortunately made the same error. A somewhat different approach was taken
in the work of Middlebrook and Cuk [23,44]. References [23,44] derived averaged
circuit models for a fundamental set of switching converters by studying the av-
eraged state-space equations and synthesizing the circuit models by inspection.
The circuit models obtained in [23,44] are equivalent to those obtained by the
methods of this thesis. However, this thesis will give a methodical approach
to synthesis which can be applied to any converter, including those containing
nonlinear circuit elements.

We reserve for Chapter 4 a more detailed exposition on averaged circuit
models. In the next subsection, we briefly investigate two relatively simple
approaches (constant duty ratio and small signal linear state feedback) to the
control of switching converters, for comparison with the large signal control

schemes to be developed in Chapters 5, 6, and 7.
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2.3 Linear State Feedback Control

Why consider feedback control at all? We shall demonstrate in Chapter 4 that
all switching converters of a large and important class are stable when a- con-
stant nominal duty ratio is applied as input. However, the resulting dynamical
behavior is not satisfactory in nearly all cases, and can be shown to exhibit a pro-
nounced ringing transient response in the case of the example up-down converter.
Under the constant nominal duty ratio d,,, the transient response corresponding
to the state-space averaged model of a converter modeled by (2.5) is governed

by the eigenvalues of the matrix
Ag + dn(A; — Ao). (2.22)

In the case of the up-down converter of Figure 2.1 and (2.6), these are given
by A = +;20rad/sec, where numerical values for the circuit parameters are as

follows:

C = b5400uF
L = 180mH
R = o

d = 3/8

A simulation on the MIT Parity Simulator [24] shown in Figure 2.4 exhibits
transients in the state variables, namely inductor current and capacitor voltage,
due to a perturbation in the load current I,. Note that these transients die very
slowly under constant duty ratio control, and the rate of decay is controlled
by parasitic open-loop resistance in the circuit. This is typical of a switching
converter, since these converters are designed to have as little internal loss as
possible.

The discussion above indicates the necessity of closed-loop control to damp
the transient behavior of a switching converter. Another equally important

function of closed-loop control is the reduction of the sensitivity to disturbances
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Figure 2.4: Transient under Constant Duty Ratio

and/or uncertainties. The disturbances that typically need to be dealt with are
variations in the load and source. Feedback controls can be designed to reject
or reduce sensitivity to these disturbances. However, since a control design
is inherently model based, the resulting closed-loop system may be sensitive
to parameter uncertainties and/or variations. A first cut at dealing with the
sensitivity problem can be made with a linear feedback control design, since the
small signal model will adequately model the effects of small disturbances. We
discuss some of the problems encountered with linear feedback controls based

on small signal models, below.

2.3.1 Linear State Feedback Control Based On Small Sig-
nal Model

In the following discussion, we consider linear state feedback control laws for the

state-space averaged model
' =(A+dB)x +bd + f (2.23)

where the input d is the duty ratio that satisfies the constraint 0 < d < 1, and

the model parameters are defined in terms of those of (2.5) by

A = Ao
B = Al - Ao
f = Bow
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b = (Bl — Bo)'"’.

Typically, to each constant value of d = d,, (apart from the limits 0 and 1), there

corresponds an equilibrium point z,,, given by
, = ~(4 +d,B)"'(bd,, + f) (2.24)

By defining variables that reflect variations centered about (%n,d,), an equivalent

model is obtained as follows:
&' =(A+d.B)z +dBz + (Bz, + b)d (2.25)
where 2 =2 —z,, I=d— d,, and d satisfies the constraint
~d,<d<1-d,. (2.26)

A linear state feedback control for (2.25) takes the form d = k% (for a vector

k), and results in the closed loop system

Az + (Bz, + b)(—d,,) —d, > k# (2.27)

[A+ duB + (Bz, + b)k]z + Bi(ki) —d, <ki<1-d,
3=
(A + B)i + (Bz, + b)(1 — d,) 1-d, < ki

In the case where the pair {(A+d,B),(Bz, + b)} is controllable, the eigenvalues
of the small-signal linearization of (2.27) about # = 0 can be assigned arbitrarily
(in conjugate pairs) by choice of k. However, the behavior of ( 2.27) in the case
of large perturbations from the origin cannot be predicted by the small-signal
linearization.

One must consider the effects of the nonlinear (quadratic) term in (2.27)
and of control saturation in the case of a large perturbation. The paper [16] of
Erickson, Cuk, and Middlebrook provides an example of a linear state feedback
controller for a boost (up) converter that locally stabilizes the circuit, but ex-
hibits instability in the case of large perturbations. As noted in [16], quadratic
systems such as (2.27) can exhibit multiple equilibria, and the presence of mul-
tiple equilibria would preclude the possibility of global asymptotic stability. In

the analysis of a feedback control law, the duty ratio constraints need to he
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considered, and may potentially be used to some advantage, as [16] indicates.
It may be possible to place any “virtual” equilibrium point (i.e. an equilibrium
of the unsaturated system) in a region of the state-space where the control is
saturated, and hence avoid any undesired equilibria.

i

TN

Figure 2.5: Up-Down Converter with Input Filter
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Another difficulty with a linear state feedback ccontrol is that such a controller
must stabilize the converter for all possible nominal operating conditions, i.e.
all possible load levels and all possible nominal duty ratios. One might make
separate distinct feedback designs for various output levels (e.g. output voltages)
that may be commanded, but it is usually required that the control scheme
stabilize the converter for all possible loads. One crucial step in implementing
the feedback control is in supplying the appropriate nominal state values to the
controller. A standard way to treat this problem for a LTI system is through
the use of integral control, where all the uncertain nominal values are lumped
into a single unknown constant that is reconistructed by the controller. (Such a
control design can also result in excellent low frequency sensitivity properties.)
This approach can be taken for the switching converter model (2.23), but the
resulting small signal dynamics will depend upon the operating point. This
dependence can lead to instability for certain operating points.

As an example of this, we have designed a linear feedback controller that
incorporates integral control for the fourth order up-down converter of Figure
2.5. The additional filter section in the converter of Figure 2.5 reduces current
ripple in the line, generated by the switching action of the converter. The control

design was made via a pole-placement scheme for a nominal load current level

28



of 2amps where the load was entirely stiff (R = oo). The closed loop poles were
placed at —20Krad/sec, —20 + j5Krad/sec, and —20 + j10Krad/sec. However,
in the case where the load current is doubled to 4amps, the small signal hehavior
becomes unstable. Figure 2.6 illustrates this with a numerical simulation of a

transient that occurs when the load increases from 2amps to 4amps.
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Figure 2.6: Instability due to Change in Operating Condition with Linear Feed-
back Control

The control techniques to be investigated in the remainder of this thesis are
based on the large signal nonlinear models that have control inputs that are
either constrained to a continuous interval or are constrained to take on discrete
values. Further, we shall develop methods (e.g. self-tuning schemes) that permit
stable operation at a wide range of operating conditions. In the following two
sections, we preview two of the main approaches to large signal control to be

taken in Chapters 5, 6, and 7.
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2.4 Preview: Control Design via Lyapunov
Functions

Consider the up-down converter shown in Figure 2.5. The state-space aver-
aged model for this converter takes the form (2.23) where the state vector
x = [ip vo i) 11]*. (Note that the superscript * indicates the transpose of the
associated vector or matrix throughout this thesis.) It can be readily verified
that a Lyapunov function for operation at the nominal steady state (x,,d,) is
given by

V= (e - 2)Qx - 2, (2.28)

where

Q = dzag{Lo Co L1 C’l}'

In Chapter 4 it will be demonstrated that a broad class of switching converters
has a Lyapunov function of this form for open-loop operation. Note that this
function has the form of energy with respect to the nominal operating condition
z,. In the remainder of the thesis, we shall refer to this as the energy in the
increment. A control scheme can be obtained by differentiating the energy in

the increment along an arbitrary state-control trajectory:

'.%V = #Q(A + d,B)z + 3 Q(B# + Bz, + b)d (2.29)

where # = = — z, and d = d — d,. It turns out that the first term on the
right-hand side of (2.29) is always non-positive (since V is a Lyapunov function
for open-loop operation (d = 0)). It is then possible to make the second term
on the right-hand side non-positive by choice of d. One particular choice that
gives this result is

-ay, —-d,<-ay<l-d,

—dn’ —ay < _dn (230)
l_dn) "092 1 —dn

1=
i

where y takes the form

y = 2'Q(B% + Bz, + b), (2.31)
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which in this example is given by

y= ('Ul — V1n )il + (il - ’iln)(‘l'o - 'Ux) + (l-‘o - 'l’o,,)(—'iy )

One of the nice features of this control law is that it is independent of all circuit
parameter values. The control is dependent only upon the state variables that
are directly affected by the switch action, i.e. vg,7;,v;, and the nominal values
of these variables. Accurate information regarding the nominal state values is
crucial for the success of this control scheme. In Chapter 6, we shall describe a
self-tuning adaptation mechanism that permits stable on-line estimation of the
nominal values required when using this scheme.

Note that the dependence upon only the above mentioned variables would
hold even if the switch structure of Figure 2.5 were embedded in a larger network
composed of (incrementally) passive elements. Such an embedding is illustrated
in Figure 2.7. This feature is discussed further in Chapter 6.
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Figure 2.7: Up-Down Converter with Additional Filter Structures

This control scheme can easily be extended to switching power circuits that
have numerous controllable switches with the duty ratios dy,ds,...,d; being
selected as functions of certain variables y;,ys,...,yr (analogous to the single
input case). This extension is considered in Chapter 5, along with other topics

such as the control of switching converters containing nonlinear circuit elements.

The following section previews another approach for large signal control de-
sign that is taken in this thesis. This approach bases control designs on coordi-

nate transformations.
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2.5 Preview: Control Design Using Coordinate
Transformations

In Chapter 7, we shall show how to obtain coordinate transformations for certain:
switching converters, which can facilitate control designs for these converters.
The up-down converter of Figure 2.1 (modeled by (2.6)) will serve as our main

example. For this converter, a useful state-space transformation takes the form

_ !‘_ e — 17)2 l -2
T, = ;C(e-V)!+3Li
T, = iV, +(v/R— L)V, - v). (2.32)

If we were to use T} and T as alternate state variables to model the converter,

the state-space model would assume the form

Tll = Tz
T, = f(T1,Ts,u) (2.33)

for son.le function f(e,e,e), for values of the state in the region of the state-space
that corresponds to usual converter operation.

The utility of the transformation (2.32) for control design purposes is evident
from the transformed model (2.33). With a model in the canonical form of (2.33),
it is straightforward (if u enters f(T},T,u) in an appropriate way) to make a
feedback control design along the lines of the so-called feedback linearization. For
this, we would need to consider the state-space averaged model corresponding

to (2.33) (obtained by replacing u by d), and to select the duty ratio d such that
f(T1,T2,d) = —as(Ts = T;) - a5 . (2.34)

With this control, the variables T} and T, would exhibit the behavior of an
LTI system, and the eigenvalues could be placed arbitrarily (at self-conjugate
locations) by choice of a, and a,.

Another route for the control design based on the transformed model (2.33)

is through a sliding mode control design. This is the main control technique to
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be explored in Chapter 7. It is possihle to implement a sliding mode control

design by using a sliding curve of the form
0=s=c (T} -T)+ T (2.35)

Sliding behavior can be obtained on a portion of this curve by using a control
that turns the transistor on (u = 1) if s < 0 and off (« = 0) it s > 0. A nice
feature of this control is that each switch transition is commanded in a direct
way. Such a control scheme can also be designed to yield excellent robustness
properties, as will be demonstrated in Chapter 7.

In the next chapter, we review some of the relevant literature on fundamental
limitations of switching converters, on averaged circuit representations, and on

nonlinear control of switching converters.
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Chapter 3

Literature Review

In this chapter, we examine the literature that is relevant to the topics investi-
gated in this thesis. The chapter is divided into three sections. The first, Section
3.1, considers the literature on fundamental limitations of power conversion in
electrical networks. Many of the neiwork theoretic concepts introduced in Ap-
pendix A are essential for the early results on fundamental limitations discussed
in Section 3.1. Section 3.2 studies previous work on the synthesis of averaged
circuits that approximate the behavior of an underlying switched circuit. Pre-
vious work on nonlinear control for switching power converters is reviewed in
Section 3.3. Note that many comments on the relation between the results of

this thesis and those in the literature are distributed throughout the thesis.

3.1 Fundamental Constraints on Operation of
Switching Converters

In the early work of Duffin [25], necessary conditions for the conversion of DC
power to AC power were established. In particular, the article [25] applied
Tellegen’s theorem and concepts of passivity and incremental passivity to es-
tablish that at least one incrementally active resistance must be present in the
DC network of a power conversion circuit. Here, the DC network is defined as
the network obtained by open-circuiting capacitors and eliminating branches in

series with the capacitors, and by short-circuiting inductors and combining the
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nodes to which each inductor is connected. This result was extended in the
doctoral thesis of Wolaver [26], as discussed below.

Wolaver [26] proved three very general theorems, later termed the four-
basket, three-basket, and two-basket theorems in [27]. The proofs of these theo-
rems relied mainly on Tellegen’s theorem. These theorems were first applied to
the steady state values of branch currents and voltages in a switching converter
(or equivalently to the DC network) to determine fundamental constraints on
the circuit resistances. Then, constraints on the reactances were deduced by
first applying one of the basket theorems, and then time-averaging the obtained
relations. We summarize some of the results of [26] in the following discussion.

To begin, we introduce some of the terminology from [26] for a circuit op-
erating in the steady state. Let each branch variable (i.e. branch current and
branch voltage) be represented as the sum of a constant time-averaged compo-
nent and a zero-mean time-varying component. For instance, a branch voltage

can be expressed in the form
o(t) = T+ 5(1). (3.1)

where ¥ is the (constant) time-averaged value of the voltage and #(f) = 0. A
branch element in the converter is termed DC active if it supplies average DC
power in the steady state, i.e.

v < 0.

Note that an element that is DC active does not necessarily supply any average
real power to the rest of the circuit. (An example is the diode in the up-down
converter introduced in Chapter 2.) A branch element is termed AC active if it

supplies average AC power, i.e.
5= (v-D)i—3)=vi—5 <0.

Among the results obtained in [26] is the fact that every operating DC-DC
conversion circuit formed from interconnections of two-terminal devices must

contain at least two nonlinear and/or time-varying resistances. In particular,
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one of these must be DC active to supply average power to the load. This
element is often a diode. The other nonlinear/time-varying resistance must be
AC active to convert power from the DC source to AC power which in turn can
be rectified by the DC active resistance. The second nonlinear/time-varying
resistance is often a controlled switch such as a transistor. The necessity of
an AC active resistance is equivalent to the result stated by Duflin [25]. (A
time-invariant resistive element that is AC active is necessarily incrementally

active.)

Further results of [26] on the resistances in a switching converter give lower
bounds on the average DC power (—7%1) that must be supplied by the DC active
resistances and on the average AC power (—i"_;) that must be supplied by the AC
active resistances. These bounds are stated in terms of the average real power
delivered to the load and the DC current or voltage gain. Lower bounds on
the magnitudes of the average currents and voltages of the DC active and AC
active resistances (e.g. transistors and diodes) are also given. In a subsequent
paper [69], Wolaver obtained lower bounds on the peak currents and peak voltages
handled by the nonlinear/time-varying resistances in a DC-DC converter. These
bounds are important for circuit design purposes when considering switching

device stresses.

One of the results obtained for the reactances indicates a lower bound on
the time-average of the magnitude of the power handled by the reactances. This
bound is stated in terms of the average real power delivered to the load and the
DC current or voltage gain. A consequence of this bound is that every operating
DC-DC converter must contain at least one reactive element. Further, this
bound allows the computation of a lower bound on the maximum total energy
stored in the reactive elements in terms of the period and the number of zero
crossings per cycle of the total reactive power. Similar lower bounds on the
time-averaged magnitude of the currents and voltages in the reactive elements
are given. These in turn permit computation of a lower bound on the maximum

total current and voltage that must be handled by the reactive elements in terms
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of the period and relevant zero crossing data.
In the following section, we examine the literature on averaged circuit rep-

resentations for switched circuits.

3.2 Previous Work on Averaged Circuits

The earliest work on averaged circuit models for switching converters was that
of Wester and Middlebrook [46]. In [46], the technique used to obtain an av-
eraged circuit realization for a given switching converter could be termed an
tn-place averaging scheme, where the averaging is performed directly on the cir-
cuit. In particular, [46] suggested the construction of an averaged circuit model
whose branch variables are one-cycle averages (see Chapter 2) of the corre-
sponding branch variables of the underlying switched circuit. This very physical
approach results in an averaged circuit that closely resembles the underlying cir-
cuit. Ho'wever, [46] did not adequately realize the elements required to replace
the switch branches. Rather, each ideal switch pair was simply replaced by an
ideal transformer. A consequence of this is that the state-space model that gov-
erns the dynamics of the obtained averaged circuit is not always equivalent to
the state-space averaged model for the underlying circuit.

The later synthesis method of Middelbrook and Cuk [23,44], termed ‘hybrid
modeling’, is based on the state-space averaged model (and proceeds apparently
by inspection). This technique results in circuit syntheses that do indeed realize
the state-space averaged models for their underlying models. The development
by Cuk and Middlebrook in [68] illustrated an analogous approach for synthe-
sizing averaged circuits for switching converters operating in the discontinuous
conduction mode. It is claimed in [23,44,68] that the technique is applicable to
any converter; however, syntheses are only given for a set of example converters.
A more recent paper of Tymerski et al. [45] reverts to the technique of simply
replacing an ideal switch pair by an ideal transformer.

Averaged circuit models have also been developed for the analysis of switched

capacitor filters. In particular, the paper of Tsividis [71] illustrates the replace-
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ment of a capacitor and switch pair by a simple resistor. This equivalent circuit
modeling involves a reduction of the order of the state-space, as is required in
modeling a switching converter in the discontinuous conduction mode. Similar
ideas were applied by other authors [72,73] for the analysis of switched capacitor
circuits.

In Chapter 4, we shall apply the niethod of in-place averaging to obtain aver-
aged circuit models that do indeed realize their appropriate state-space averaged
models. Our approach will be based on compact network representations for var-
ious subnetworks in a given converter, and will typically permit the replacement
of a switch pair with a simple non-switched two-port network. This development

will also permit nonlinear circuit elements to be present in the converter.

3.3 Previous Work on Nonlinear Control of
Power Circuits

This section is divided into two parts, one on switching law control, where each
control input assumes a discrete value corresponding'to a switch position, and a
second on control design based on state-space averaged models, where each input
takes on a value from a closed interval of the real line. The distinction between
the two approaches is often blurred, however, since similar design methods may
be applied with either approach. Further, practical implementation schemes of
switching law controls may impose periodic switching patterns as is often done
for state-space averaged control approaches. It is also possible that a control
algorithm designed for the state-space averaged model may demand extreme
values of the control inputs, and hence be indistinguishable from a switching

law control.

3.3.1 Literature on Switching Law Control

A switching law control determines the discrete-valued input to the model (2.5)
(or (2.7) ) at each instant, using partial or full state information. This method

of control is presently in use in various power electronic circuits. A relatively
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simple application area is in the inductor current control loops of some DC-DC
converters that use current mode programming [10,11,33]. Here, the pasition of
a switch is set by comparing the current level in the inductor with a commanded
current level. Different schemes may be used to decide the commanded current
level, see for example [67] for a method based on ‘power equalization’. A chat-
tering (or sliding) type behavior can be effected if one switch position leads to
increasing current while the other switch position causes the current to decrease.
This control technique has been used to generate AC current waveforms by sup-
plying a time-varying current command signal. More sophisticated methods of
generating time-varying waveforms have been explored in the work of Sabonovic
et al. [12]. The controls presented in [12] rely on full state information to effect
the control decisions. The use of full state information has been considered in

numerous other studies, as reported below.

In his doctoral thesis, Wood [1] developed a sliding mode control algorithm
for down converters with second and fourth order output filters. He demon-
strated the global stability of these power circuits under his sliding mode control
algorithm, and proposed the extension to converters with higher order output
filter stages. The class of down converters without an input filter stage is gov-
erned by state-space models that are essentially linear and controllable. 1t is a
fact that all controllable linear state-space systems can be transformed to the
phase canonical form (see (3.9)) via a linear change of coordinates [13]. Hence,
it is not surprising that sliding mode control can be successfully implemented
for the class of down converters. A sliding mode controller for a down converter
was also proposed in the work of Venkataramanan, Sabanovic, and Cuk [8].
One interesting feature of the sliding curve proposed in [8] is that the switch
(i.e. transistor, diode) current can be limited to a design value during transients

if sliding operation is maintained.

The paper [8] also deals with the more involved problem of designing sliding
surfaces for converters beyond the down converter. In particular, a sliding mode

control law is derived for a boost converter. The sliding curve used is a straight
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line in the i — v plane that is designed using a dynamical madel linearized about
an equilibrium point. The authors show this sliding mode control algorithm
results in a relatively large region of stability by considering large and small
perturbations separately. It is also pointed out that this design method can be

applied to other power circuits such as an up-down converter.

The development of sliding mode control laws for switching power electronic
circuits is also treated in the recent papers of Sira-Ramirez (9], Sira-Ramirez
and Ilic {70], and of the author [43]. (See Chapter 7 for details concerning [43].)
Although the presentation in [9] is made in a more general setting, all of the
sliding surfaces considered in [9] for DC-DC converters are of the form z; = K,
for some state variable z; that is desired to be regulated at the level K. The
restriction to this type of surface has disadvantages. Notably, the dynamical
behavior on the surface cannot be tailored for a given application, and in some
cases can be unstable (e.g. output voltage regulation of the up-down converter).
(Results in [66] indicate that the presence of right-half plane zeros in the small
signal transfer function from duty ratio to the variable s leads to instability
in the sliding mode on the surface s = K.) The sliding mode control scheme
of [70] uses the slow manifold of the open-loop state-space averaged model as
the sliding surface. This control method requires that the open-loop switching
converter circuit has a dominant real eigenmode, which is not always true. With
such a scheme, the dynamical behavior in the sliding mode is governed by the
same dynamics that asymptotically governs the open-loop behavior. This can

be quite sluggish in many cases.

In another direction, [1] and (9] have considered the stabilization of lossless
switched power electronic circuits whose states evolve on a generalized sphere.
Wood [1] has given general theorems for cqntrolling such a system on its mani-
fold, while Sira-Ramirez [9] has proposed the use of sliding surfaces to govern the
transition from one state configuration to another on the manifold. The possibil-
ity of generating AC waveforms by constraining the state of a lossless converter

to evolve on a certain surface has also been considered in these references.
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B 10 ' f2
Figure 3.1: Switching Curve that Divides Current-Voltage State Plane into “On”

(Above the Curve) and “Off” Regions. Trajectory Shown Begins in the “Off”
Region.

Results on non-sliding switching law controls for converters with intrinsically
nonlinear state-space models (e.g. up-down and up converters) have been ob-
tained using state-plane methods [14,15]. In particular, Burns and Wilson [14]
have made complete and detailed studies of state-plane control laws for three
basic converters (down, up-down, and up converters). The following discussion
will center on their approach to control of the up'-down converter.

Figure 3.1 shows one state trajectory plotted in the inductor current - ca-
pacitor voltage (¢ — v) plane for the up-down converter of Figure 2.1 under a
state trajectory control law as proposed in [14]. The dark curve is the switching
curve that divides the state-plane into an “on” region {¢ = 1) and an “off”
region (u = 0). For initial states in the “off” region (as shown in Figure 3.1),
the trajectory using the control « = 0 runs into the switching curve, where the
control switches to u = 1 so that the trajectory follows the switching curve to a
final limit cycle. Analogous behavior occurs for initial states in the “on” region,
but with the sequence of control reversed. Note that the steady state operation
is a limit cycle determined by the switching curve. Figure 3.2 depicts the limit
cycle behavior. The state follows the “on” section of the switching curve to
point A where the control changes to “off” since the trajectory enters the “oft”
region. The state then cycles back to the switching curve at point B where the

control changes to “on”. Note that the size of the contour followed in the limit
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cycle determines the switching frequency. Smaller contours (resulling in smaller
peak-to-peak current and voltage ripple) require higher switching frequencies.
This elegant control algorithm minimizes the number of switch transitions for a
given transient, and precisely determines the steady state operation. However,

there are drawbacks, as pcinted out below.

vlr A

A\ %

Figure 3.2: Limit Cycle Behavior

A serious problem lies in the necessity of accurate parameter and state in-
formation. The authors of [14] have demonstrated with simulations the relative
insensitivity of (k= converter behavior under this control algorithm to variations
in load conditions, and the saine insensitivity was experimentally verified in [15].
However, if some circuit parameters are not very precisely known, behavior that
appears to be chaotic can result. Figure 3.3 shows a simulation using the controi
law proposed in [14] with a capacitor value that is ten percent smaller than the
design value. Note that the state trajectory does not settle to the desired steady
state operation, but appears to approach a non-periodic steady state or strange
attractor. Another drawback is in the complexity of the hardware and software
required to implement the control law, since the stored switching curve consists
of sections of spiral and exponential trajectories. In Chapter 7, where control
designs based on state-space transformations are considered, we shall investigate

a sliding mode control scheme that can solve these problems.
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Figure 3.3: Instability that Results when the Circuit Value of the Clapacitor is
Ten Percent Smaller than the Nominal Value.

3.3.2 Literature on Control Design for Large Signal State-
Space Averaged Models

As previously discussed in Chapter 2, some pitfalls of control designs based on
small signal models obtained by linearizing large signal averaged models are
outlined in the paper of Erickson, Cuk, and Middlebrook [16]. After discussing
the development of large signal averaged models for switching converters, which

take the form

z' = Az + (Bz + b)d, (3.2)

[16] considers the effects of the quadratic nonlinearity introduced into the bilin-
ear state-space madel (3.2) by linear state feedback (see (2.27)). It is noted that
the transient response to a strong perturbation can be substantially different
from the transient expected from the small signal design. One noted feature
of the feedback system with quadratic nonlinearity is the possible presence of
mu'tiple equilibria, which prohibit global stability. The effect of saturation due
to the constraints on the duty ratio is also noted in [16]; one obtains the dy-
namical behavior of a linear time-invariant system corresponding to (3.2) with
the control d fixed at one of its extremes.

Control design for the large signal state-space averaged model using the so-
called quantative feedback synthesis was explored in the paper of Horowitz,

Sidi, and Erickson [92]. The method of [92] characterizes a class of plant inputs
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(duty ratio waveforms) for each member of a set of possible plant models. The
plant inputs are selected to produce a given desired output behavior (such as a
start-up transient). The obtained input waveforms associated with the selected
output waveforms are then used to determine approximate input-output transfer
function relations. A control design is then based on these approximate input-
output transfer functions. Simulation results in [92] indicate the feasibility of

this approach.

Control Design Based on the Theory of Dissipative Systems One im-
portant approach to control of dynamical systems is via the theory of dissipative

systems (28,29]. An n-input, n-output system modeled by

g = f(z,u)

y = h(z,u) (3.3)

ic said to be dissipative with respect to the supply rate w(u,y) if there is a
nonnegative definite internal storage function V(z) such that

d
EiV —w(u,y) <0. (3.4)

The supply function that will be of main interest here is given by
w(u,y) = u'y. (3.5)

In the case where (3.3) models the immittance function of an n-port network,
the supply function (3.5) corresponds to the power supplied to the network at
its ports. For the purposes here, the immittance function of an n-port network
modeled by (3.3) is passive (see Appendix A) if and only if the system (3.3)
is dissipative with respect to the supply function (3.5). It is straightforward
to demonstrate that a system that is dissipative with respect to this supply
function is passive. The converse also holds although it is not always easy to
explicitly determine a suitable internal storage function. (One such function is

the available energy as defined in Appendix A.)
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Some of the important features of dissipative systems are: (i) a point in the
state space where the storage function attains a local minimum defines a stable
equilibrium and the storage function is a Lyapunov function for this equilibrium;
and (ii) feedback interconnections of dissipative systems are dissipative (the sum
of the storage functions is a storage function for the interconnected system). See

[28,29] for more details.

The theory of dissipative systems was applied by Wood [1] to obtain feedback
control schemes for switching converters. The approach used in [1] was to view
a closed-loop system (switching converter and controller) as the feedback inter-
connection of two dissipative systems. Wood (1] began with an input-output
model for a given switching converter from duty ratio to a selected averaged
output variable (although neither the term duty ratio nor state-space averaging
were used). Such a model is not necessarily nor usually dissipative. In Cthapter
6, we shall show how to pick an appropriate output variable that results in a
dissipative model. The controller in [1] was selected to be linear, time-invariant,
and such that its transfer function could be factored into two factors: one which
combined with the plant input-output model to form a dissipative operator (pas-
sive system), and a second which combined with the saturation constraint to also

result in a passive input-output model.

The stability of the resulting closed-loop system was concluded by using
the Lyapunov function corresponding to the sum of the storage functions of
the two interconnected dissipative systems. The set of passive, linear, time-
invariant transfer functions which result in passive operators when cascaded with
a monotone nonlinearity were termed 0’Skea functions in (1]. (These functions
were characterized in the paper of O'Shea [52].) Wood worked mainly with
down converters for which input-output models are essentially linear. Some
consideration of down converters which have essential nonlinearities in their
state-space models (e.g. converters with series resistance in the DC' source) was

made in [1}, but a thorough treatment was not given.

An intriguing approach to the control of the type of bilinear system that
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arises in switching power circuits, i.e. (3.2), was explored in the work of Brockett
and Wood [17]. In particular, a control scheme outlined in [17] is closely related
to the dissipative system approach. The paper [17] notes that if the 4 matrix in
the bilinear state-space model (3.2) is similar to a skew-symmetric matrix, and

hence satisfies the Lyapunov-type equation
QA+ A4'Q=0, Q=0Q" >0, (3.6)

then a feedback control law can be specified by examining the Lyapunov candi-

date V = 2*Qx. Differentiating V with respect to time, one finds
d
de {=*(QB + B*Q)z + (b*Qz + = *Qb)}d, (3.7)

which can always be made negative provided d can take on positive or negative
values, and the quantity multiplying d does not become identically zero along
trajectories of the system. The state-space model (2.6) for the example up-down
converter of Figure 2.1 (Chapter 2) does not satisfy ( 3 6) for any matrix Q, but

there does exist a matrix Q satisfying
QA+ A4'Q <0, QB+ B*'Q =0, Q=Q" >0. (3.8)

In this case, it is still straightforward to take the approach to control design
that is outlined above. In Chapter 4, we shall characterize the class of switching
converters that have state-space models with 4 and B matrices that satisfy
Lyapunov equations such as ( 3.8). The connection with dissipative systems is
evident if the Lyapunov function V(z) is thought of as a storage function. Of
course, an appropriate input-output model with an associated supply function

must be considered. We shall give this idea more consideration in Chapter 6.

Control Design Based on State-Space Transformations There has heen
significant work on the problem of characterizing s, stems that are controllable

linear equivalents, i.e. those that can be brought to the phase canonical form

[
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z, = f(r1,...,%n,u) (3.9)

via some nonlinear change of coordinates; see the develoments in [18,19,20,30]
and in Chapter 7. The recent paper of Sira-Ramirez and Tlic [65] investigates the
problem of feedback linearization for various DC-DC: converters. With a system
in the form (3.9), one can consider picking the feedback control u(z,..,z,) so
that the system behaves as a prescribed linear time-invariant model. Other
possibilities exist. For instance, in Chapter 7 we shall investigate a sliding mode
control scheme that is based on a model of the form (3.9).

An approach to the feedback control problem for power electronic circuits
along the lines of this so-called feedback linearization was taken in Salut et
al. [21].: Rather than attempting to find alternate state variables so that the
state-space model for the example boost converter can be transformed to the
form of (3.9), [21] selects a simple feedback law so that the capacitor voltage
obeys a stable first order linear, time-invariant differential equation. It is then
demonstrated in [21] that the other state variables (i.e. inductor current ) exhibit
stable behavior. This approach along with that of [9] have the common feature
of focusing on just one key state variable, and demonstrating overali stability
through other considerations.

It turns out that many state-space systems including those modeling switch-
ing converters cannot be brought to the form (3.9) by some state-space trans-
formation. A similar approach termed pseudo linearization that may have wider
applications has been developed in [31]. This approach involves determining
nonlinear transformations of the state and control inputs so that the tangent
model (small signal linearization) of the transformed system is in phase canoni-
cal form (3.9). This approach to controi has been applied by Sira-Ramirez [32]
to second order up and up-down converters. One advantage of this approach
(over simple linearization) is that a feedback control which stabilizes an entire

class of equilibria can be specified. However, it is generally difficult to make
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conclusions on the global stability and large signal hehavior of control systems
designed with this approach.

For a different application in the control of a series resonant converter, a
nonlinear state transformation involving energy-like variables was developed in
(33]. The method of [33] is to characterize each arc of the state plane trajec-
tory by its radius which corresponds to an energy-like quantity. The instant of
each controlled switch transition is then determined by continuously monitor-
ing the radius of the trajectory arc of the subsequent circuit configuration, and
comparing to the desired arc radius. The controlled switch transition is then
commanded when the monitored quantity reaches the threshold value. This
scheme results in very fast resonant tank control transients, transients that are
time optimal in many cases. This approach has in common with the control
schemes of [14,15,67] for switching converters the feature of using the desired

state plane trajectory as the control law.
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Chapter 4

General Properties of Switching
Converter Dynamics

In this chapter, we examine some general properties of the dynamical behavior
of switching power converters. In particular, we study the topic of existence and
synthesis of non-switched circuits that exhibit the dynamics described by the
state-space averaged model of a switched circuit. Then, the open-loop stability

of switching converters is investigated.

4.1 Existence of Averaged Circuits for Switch-
ing Converters

In this section, we address an aspect of the question introduced in Chapter 2,

namely:

Does there ezist a non-switched “averaged” circuit that corresponds
in a natural way to the state-space averaged model of a switching

converter?

By the phrase “in a natural way,” it is meant that the state-space averaged model
of the underlying converter exactly describes the dynamical behavior of the
averaged circuit, and that the averaged circuit should topologically resemble as
closely as possible the underlying switched circuit. Specific synthesis techniques

for averaged circuit models will be considered in the following section.
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The question of averaged circuit existence for a general switched power circuit
that includes nonlinear circuit elements and an arbitrary, finite number of switch
configurations will be considered here. Recall from Chapter 2 that the form of
the switched state-space system modeling a switching converter with m + 1

distinct switch configurations is

= (1w~ —un)fol2) + w fil@) + ... + U () (4.1)

where the state z is typically the vector of inductor currents and capacitor
voltages or the vector of inductor fluxes and capacitor charges. In the model
(4.1), the control inputs u, can take only the discrete values 0 and 1, with at
most one input equal to 1 at a given time instant. The correspending state-space

averaged model takes the form

r=01-dy-...— m)fo(z) + difi(z) + ... 4 dpp frn(T) (4.2)
where the m duty ratios satisfy the constraints

0<4,<1

0<dy+...+d, <1. (4.3)

Note that the state-space averaged model (4.2) is a convex combination of the
m + 1 extreme models contained in (4.1) that correspond to the m + 1 switch
configurations.

Now consider the partitioning of a given switching converter system (includ-
ing source and load) into nonlinear reactive znd nonlinear resistive n-ports as
shown in Figure 4.1. A nonlinear circuit element is indicated with a box sur-
rounding the element. The resistive n-port includes the independent sources and
is generally dependent upon the switch configuration determined by u,,..., u,,.
We shall assume that the resistive n-port has a well defined hybrid represen-

tation H,(e) for each switch configuration with the current-controlled ports
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Figure 4.1: React .ace Extraction Pariitioning of Switching Clonverter

connected to inductive ports and the voltage-controlled ports connected to ca-
pacitive ports. We also assume that all inductors are flux controlled and that
all capacitors are charge controlled. These assumptions are consistent with the
assumption that the switching converter has a well defined state-space model,
with the state consisting of inductor fluxes and capacitor charges.

The state-space model governing the dynamical behavior of such a parti-
tioned circuit is obtained by imposing Kirchhoff’s Voltage Law (KVL) at the
inductive ports and Kirchhoff’s Current Law (KCL) at the capacitive ports,
yielding

¢ = -H,{Q ()} (4.4)

where the elements of the vector z are inductor fluxes and capacitor charges. The
function Q~'(e) maps the inductor fluxes and capacitor charges to the inductor
currents and capacitor voltages, respectively. Note that coupled inductances are
permitted in the development here. By identifying the m + 1 values of the hybrid
resistive n-port function H,(e) with the m + 1 distinct circuit configurations as

follows

Ho & uyy=...=u, =0
Hl — U =1
Hn & up= 1, (4.5)
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we can write the state-space averaged model

=—(1-dy —... - A )Ho{Q ()} — dyH {Q Y (2)} — ... - dmnH.{Q ' (x)}.

(4.6)
Note that (4.6) is equivalent to (4.2), and that (4.6) explicitly displays the form
of the state-space averaged system. In particular, (4.6) could be rewritten in

terms of a single averaged resistive hybrid n-port function, i.e.

ll = —Havg{Q_l(z)} (4‘7)

where the form of ,,,() is evident. The model (4.7) suggests the form of an
averaged circuit synthesis, namely one that interconnects the original reactive n-
port with a resistive n-port represented by Hauy(e). If it is possible to synthesize
a nonlinear resistive n-port with hybrid representation H,,,(e), the question of
average circuit existence is answered.

One of the interesting features of this approach to averaged circuit synthe-
sis is that the structure of the reactive elements of the underlying circuit is
preserved. The averaging is performed only on the resistive portion (including
sources) of the circuit. This point will be brought out in the next section where a
synthesis technique based on in-place averaging [46] is considered. Naturally, the
approach here applies to circuits with time-varying sources and/or time-varying
duty ratios. One would simply compute the averaged hybrid representation at.
each time instant. We now comment on some particular cases.

In the case where the non-reactive circuit elements include only passive linear
resistances, independent sources, and switches, it is always possible to synthe-
size a circuit realization of Haug(®) using only passive linear resistive elements
(including multiport transformers and gyrators) and independent sources [36].

Note that in this case, the hybrid function Havg(®) takes the form
Havg(z) = Hopgz + Eoug- (4.8)

Methods for synthesizing a passive linear resistive network realizing H,,, are
given in [36]. (Syntheses for linear, passive, resistive multiports were instrumen-

tal in [36] for the synthesis of dynamical, passive, LTI networks.) The constant
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term E,,, in (4.8) can be realized by including appropriate sources in serics
and/or in parallel with the ports of the resistive network realizing H,,,. (Gyra-
tors are only required in the case where nonreciprocal resistances are present.)
In the more general case of nonlinear resistances, there is not a well known
method for synthesizing a circuit realization of a given nonlinear hybrid repre-
sentation. However, it is true that certain fundamental network properties that
are common to each of the representations H,(e) are exhibited by the averaged
hybrid representation H,,4(e). For instance, if each of the resistive hybrid repre-
sentations },(e) is passive (respectively incrementally passive, reciprocal), then
so is the average hybrid representation, and hence, so is a synthesis of Havg(e).
(See Appendix A for definitions of these network properties.)

In the following section, we address the question of how one can synthesize
an averaged circuit (namely the resistive portion of such a circuit), so that it is

simply related to the underlying switched circuit.

4.2 Averaged Circuit Synthesis

Here, we develop a synthesis procedure for averaged circuit models using the
method of in-place averaging pioneered by Wester and Middlebrook [46]. Our
development will be rather broadbased at first, considering general nonlinear
circuit elements, but will then focus on particular classes of circuits to ease
the presentation. The in-place averaging method is outlined in the following
paragraph.

The in-place averaging method is based on the application of the one-cycle

averaging operation to each branch variable in a switched circuit, e.g.

i) = %/:T i(s)ds (4.9)

for some branch current where the averaging interval T is selected to be equal to
the fundamental period of the cyclic operation of the switches. A fundamental
property of the resulting averaged branch variables is that these variables satisfy

the same topological constraints (i.e. KCL and KVL) as in the non-averaged
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circuit. This follows from the facts that the constraints imposed on the circuit
branch variables by KCL and KVL are inherently linear algebraic constraints,
and apply identically at each time instant. A first step in the synthesis of an
averaged circuit is then to consider a circuit that is topologically equivalent
to the underlying switched circuit. (For the present time, we can regard each
switch as a two-terminal branch element. Later, the switch elements will be
treated somewhat differently.) In order to complete the synthesis, we need to
specify ‘averaged’ circuit elements that are consistent with the one-cycle aver-
aged branch variables. We consider below the different types of circuit elements
to clarify this procedure.

In the preceding section, we argued that if it is possible to obtain an av-
eraged circuit model, such a model should include all the reactive elements of
the underlying circuit. Here, we reconsider this, but from the viewpoint of in-
place averaging. A nonlinear multiport capacitor can be represented by the

state-space description (see Appendix A)

/

g =i

v = f(q) (4.10)
where f(e) (assumed to be continuous) is the gradient of a scalar function, i.e.
f(q) = VW(q) where W(q) is the internal energy of the capacitor (to within an

additive constant). Consider the application of the one-cycle averaging operation

to this element, i.e.
-1 d
a(t) = —
a(t) T /f-T 9(s)ds

() = %/:Ti(s)ds

1
(t) = T/t_Tv(s)ds. (4.11)
The averaging operation commutes with differentiation with respect to time
since
d1 g gt)—gt-T) 1 ¢ —
q(t) === ds = == [ dlodds =g8), (412
q(t) =3 [_,9(s)ds T T ) _pd8)ds=¢q(t), (4.12)
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and therefore, we have ¢’ = i. In general © # f(§). However, because of the small
ripple assumption and the continuity of f(e), this will be a good approximation
(see the discussion in Chapter 2). For sufficiently small T, this approximation
approaches equality arbitrarily closely. Since we are concerned with inﬁnitesi-
mally small T in the case of state-space averaging, it is an appropriate step in
the construction of the averaged circuit model to include in the averaged cir-
cuit each nonlinear capacitor of the underlying circuit. An analogous argument
applies for the nonlinear inductors. (Obviously, this argument is applicable to

linear reactive elements.)

Let us note at this point that if it is possible to synthesize an averaged circuit
via the method of in-place averaging, the resulting circuit will be a synthesis of
the state-space averaged model. This follows from the facts that such a circuit
will include all the reactive elements of the underlying circuit, and that the
port variables of these elements will exhibit the one-cycle averaged waveforms.
Therefore, the time derivatives of all inductor fluxes and all capacitor charges in
the averaged circuit will coincide with those of the state-space averaged model

that has as its state variables the fluxes and charges.

We have seen that the reactive elements do not pose any significant problems
in the synthesis of an averaged circuit. However, the nonlinear resistive elements
can present some difficulties. Assume that the constitutive relations for all non-
linear resistive elements are continuous, e.g. for a two-terminal resistor modeled
by v = r(z), the function r(e) is assumed to be continuous. In a given switched
circuit, it is possible to identify two types of resistive branch elements: (i) those
with continuous current or continuous voltage waveforms and (ii) those with
discontinuities in both their current and their voltage waveforms. It is in the
latter branch type that difficulties can arise. (Note that the switch branches can

be thought of as elements of this type.)

To see that those resistive branch elements that have continuous current
and continuous voltage waveforms present no difficulties, consider such a two-

terminal resistor with constitutive relation v = (). For such a resistor, the
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approximation ¥ = r(i) approaches an equality for infinitesimally small T'. This
is a consequence of the small ripple assumption and the continuity of r(e).
Hence, the corresponding resistive element of the averaged circuit can be realized
with a resistive component that is identical to that of the underlying circuit. This
argument is applicable to a multiport resistor, as well. Any resistive branch that
has a discontinuity in only one of its waveforms for all admissible operation must
be a source, either independent or dependent. (If the element was not a source,
the normally continuous waveform would necessarily exhibit a discontinuity for
some discontinuity in the complementary waveform.) These source branches can

be replaced with identical ones in the averaged circuit.

b 30 T I,

<
s+

Figure 4.2: Switched Circuit that Violates Conditions for In-Place Averaging

In the case of nonlinear resistive branches that have discontinuities in both
their current and voltage waveforms, there may not exist an approximate consti-
tutive relation that is consistent with the one-cycle averaged waveforms. To see
this, consider the up-down converter of Figure 4.2 that has a nonlinear resistor
with relation i = g(v), in parallel with the inductor. The average voltage across
this resistor is given by

v, = (d)V, + (1 - d)g,
while the average current takes the form
i = (d)g(V,) + (1 - d)g(v).

It is clear that for this resistor i, # g(7,), in general, and that there is no
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general relationship between the a..rage current and the average voltage. The
relationship depends upon the particular values of the capacitor voltage and the
voltage source voltage. Hence, for this example, it is 1.0t possible to construct an
averaged circuit that simply replaces this two-terminal resistor with some other
two-terminal element. Therefore, it is not possible in general to directly apply
the in-place averaging procedure to switched circuits that contain nonlinear
resistive elements that have discontinuities in both branch waveforms. Later, we
shall demonstrate that it is typically possible to obtain averaged circuit models
for switched circuits that violate this condition. We simply treat the nonlinear
resistive branches that have discontinuous waveforms in the same manner as the

switch branches are handled.

Note that any LTI resistive element can be replaced in the averaged model
by an ide.:ntica.l resistive element. This is a consequence of the fact that the one-
cycle averaging operation commutes with any LTI constitutive relation. For the
example above, if g(e) was linear, we would have obtained i, = ¢(7,), despite

the discontinuous waveforms.

Keeping the preceding discussion in mind, we can proceed to develop the
in-place averaging synthesis technique. The crucial step in obtaining an aver-
aged circuit synthesis is in modeling the elements that correspond to the switch
branches. As mentioned earlier, it is possible to treat the switch branches as
nonlinear resistive elements that have discontinuities in both their current and
voltage waveforms. However, in our development, we shall treat the switch el-
ements as being essentially different from the other circuit elements. This will
facilitate the presentation, which will be divided into two subsections and one
appendix (Appendix B). The first subsection will treat the case where all re-
sistive elements are LTI and the circuit has one controlled switch pair (a two
configuration circuit). The second subsection will consider the case where non-
linear resistive elements are present. Appendix B generalizes to the case where

there are multiple switch configurations, but only LTI resistive elements.
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4.2.1 Averaged Circuit Synthesis: LTI Resistive Elements,
Ideal Sources, and One Controlled Switch

In this subsection, a rather simple and elegant result for a switched circuit with
a single controlled switch will be demonstrated. However, the method to be used
is not as rigorous as that of the following subsection (and Appendix B) since an
assumption concerning the existence of a particular hybrid representation of a
multiport network will be made. In Appendix B and in the following subsection,
we give more general results on the synthesis of averaged circuits using constraint

relations for multiports.
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Figure 4.3: Partitioned Switching Converter

Here, we take an approach reminiscent of the method of reactance extraction
[36] for impedance synthesis, where a given passive LTI circuit is partitioned into
purely reactive and purely resistive multiports. However, the circuit diagram for
a given switching converter will be partitioned further into reactive, resistive,
source, and switch multiports as shown in Figure 4.3. It was already argued
earlier in this section that an averaged circuit synthesis should include all the
reactive elements, all the linear resistive elements, and all the source elements of
the underlying switched circuit. The motivation for the partitioning in Figure
4.3 is to allow us to focus on the switch subnetwork, since it is no longer required

to examine the internal behavior of any other subnetwork. All that remains is
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to determine a resistive two-port network that can replace the switch two-port
in Figure 4.3, and have the resulting circuit exhibit waveforms consistent with

the one-cycle averaged waveforms of the underlying converter.

We proceed to derive a constitutive relation for a resistive two-port network
that can replace the switch two-port in Figure 4.3. The derivation will demon-
strate the existence of such a network. Assume that each branch voltage and
current in the underlying switching converter circuit has a unique solution cor-
responding to each value of the state vector. In the approach outlined here, we
shall require hybrid representations for some of the multiports of Figure 4.3.
For this purpose, select the controlling port variables of the reactive multiport
to be the inductor currents and the capacitor voltages (elements of vector =),
the controlling port variables of the source multiport to be voltages for voltage
sources and currents for current sources (elements of vector z3), and select one
of the two ports of the switch network to be current-controlled and the other to
be voltage-controlled. The controlling variables of the two-port switch network
form the vector z,. Each port of the resistive multiport is designated to be of the
same type (current- or voltage-controlled) as the port to which it is connected.

Next, let us determine the required hybrid representations for the multiports
in the partitioned network. For the present, assume that for the selected set
of controlling port variables, the resistive multiport has a well defined hybrid
representation Hp. (This assumption is not generally valid, nor necessary for
synthesis purposes as is demonstrated in Appendix B.) We. partition Hp to

reflect the three sets of ports to which it is connected, i.e.

Hll HIZ H13
Hp=| Hy Hy Hy (4.13)
H31 H32 H33

where the first set of ports are those connected to the reactive network, the
second set consists of the ports connected to the switch network, and the third
set corresponds to the ports connected to the source network. Now, for the

two-port switch network, with the controlling variables and switch positions
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(u =0,1) indicated in Figure 4.3, we obtain for © = 0

H,(0) = [ g g ] . (4.14)

For u = 1, the hybrid representation is not well defined, but it is clear that the
controlling port variables are constrained to be zero, i.e. x; = 0.
A first step in deriving the required constitutive relation is to determine the

explicit solution for the vector of switch port variables for each switch configu-

zZIu
yZ'u ’

where z,|, is the vector of controlling port variables and y,|, is the vector of

ration, i.e.

complementary non-controlling port variables. (The subscript u indicates which
switch configuration is present.) For this purpose, consider the application of

the network constraints (KCL and KVL) at the switch ports, i.e.
Hyzy + [Hy(u)+ Hp)zz|ly + Hzazz = 0. (4.15)

With (4.15) and the relations imposed by the hybrid model Hp for the resistive
subnetwork in Figure 4.3, it is possible to solve for z,|, and y,|,. In particular,

for u = 0 we have

Talu=o = —Hy'[Haz) + Haxs)

Y2lu=o = 0. (4.16)
The first line in (4.16) is obtained by noting that H,(0) = 0 in (4.15), and that
H3;' must exist, or else there would not exist an unique solution #|,—o. The

second line is a simple consequence of the fact that H,(0) = 0, or equivalently,

that yz|,—¢ is constrained to be zero by the switch network. For u = 1, we obtain
$z|u=1 =0
Yolu=1 = Hyzy + Hpzs (4.17)

The first line in (4.17) is a consequence of the constraint imposed by the switch
network, and the second line is obtained by considering the hybrid relationship

for the resistive subnetwork.
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With the above formulas for the switch port variables in each switch config-
uration, it is possible to determine the one-cycle averaged values for the switch

port variables, i.e.

Tz = (1 =d)azlu=o + (d)z2|u=1 = —(1 -~ d)H;;}0
Y2 = (1 —d)yz|u=0 + (d)y2|u=r = (d)w. (4.18)

where w = [Hyz, + Hj3z3). Note that (4.18) gives an explicit parametrization
of the subspace of R* that contains the vector of one-cycle averaged switch
port variables. This subspace is parametrized by the vector w € R? (This
type of parametrization will be essential in the case where nonlinear resistive
elements are present in the switched circuit.) In the actual operation of the
circuit, the port variables may not attain any arbitrary point in the subspace
parametrized by w in (4.18), since evidently w may not assume any arbitrary
value in R?. For our purposes, it is adequate to characterize a two-port resistive
network that constrains its port variables to lie in the defined subspace. Such
a characterization is sufficient because it constrains the averaged switch port
variables as required in the averaged circuit. It will be demonstrated that such
a characterization will result in an averaged circuit that realizes the state-space
averaged model.

A more familiar functional relationship can be obtained by elimination of w

in (4.18), i.e.
_ d
y2 - 1— d

; (4.19)

for d # 1. The relationship (4.19) suggests that the two-port switch network
should be replaced in the averaged circuit by a resistive two-port with hybrid
representation

H,(d) = I_L_’dﬂzz (4.20)

for d # 1. (A sign reversal is required to account for the opposing polarities
of the non-controlling port variables of the switch and resistive subnetworks in

the original switched circuit.) To obtain the averaged model, one therefore only
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needs to compute the hybrid immittance Hy, seen by the switch two-port, and
then determine a synthesis for a scaled version of this immittance Junction.

To see that the resulting averaged circuit model is a realization of the state-
space averaged model, consider the following explicit solution for Y, the negative
of the averaged vector of inductor voltages and capacitor currents (the non-

controlling reactive port variables):

Y1 = HuTy + Hy%y + Hya7,
= Hu%; — (1 —d)HH;,' [Hy 7, + Ha3%3) + Hi373 (4.21)

where the form of %, in the second line of (4.21) is obtained from (4.18). The

state-space averaged model can be obtained from (4.21) by simply writing
0 = -7 (4.22)

since ¥, can in turn be written in terms of Z; = Q7'(gq,) and T3 using (4.21).
This is readily verified to be the form of the state-space averaged model, by
noting that it varies with d on the chord connecting the two extreme state-space
models obtained by solving the network equations under « = 0 and v = 1. These
two extreme models were assumed to be well defined at the outset.

Under the conditions mentioned above, we conclude that the two-port switch
network in Figure 4.3 can be replaced by a linear resistive two-port so that the
resulting network has the dynamical behavior of the state-space averaged model.
Further, this linear resistive two-port is passive (reciprocal) if the resistive mul-
tiport Hp is also passive (reciprocal), since scaling a hybrid matrix by a positive
real number preserves these properties. This result gives rise to a relatively
simple approach to circuit-based analysis since one may use the non-switched
average circuit model for analytical or computer-aided studies. There are many
other ways to formulate the above problem by re-orienting the switch branches
inside their two-port representation. We have used one of the possible orienta-
tions that leads to a relatively uncluttered result. The approach taken here for
switched circuits with a single controlled switch can be generalized in a straight-

forward manner to switched circuits admitting more than two distinct switch

62



configurations. However, this development is omitted, since in Appendix B we
present an alternative formulation that is applicable to the multi-switch case.
The following subsection addresses the averaged circuit synthesis problem for
the case where nonlinear resistive elements are present. The formulation used in
the following subsection and in Appendix B is more rigorous since no assump-
tions concerning hybrid existence will be required. Before moving on, we study

an example.

—

- Figure 4.4: Partioning of Up-Down Converter with Source Resistance

Example: Up-Down Converter Figure 4.4 shows how we would partition a
version of the up-down converter introduced in Chapter 2. This particular model
includes parasitic resistance in series with the voltage source. It is straightfor-
ward to evaluate the immittance seen by the switch two-port:

, -1
H,,:["l 0 ] (4.23)

To realize the resistive two-port that replaces the switch network, we synthesize
a resistive two-port (see (36]) for H,(d) = ;%;Hj,. The resulting averaged cir-
cuit is shown in Figure 4.5. Note that the averaged circuit includes one more
two-terminal resistor than the original switched circuit. This ‘extra’ resistance
is required to appropriately realize the one-cycle averaged behavior. Some pre-
vious work [45,46] on this problem resulted in averaged circuit models that did

not include this resistance, but simply replaced the switch pair with an ideal
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Figure 4.5: Averaged Circuit for Up-Down Converter with Source Resistance

transformer. Wester and Middlebrook [46] used a similar approach, but did
not adequately model the averaged network required to replace the switch ele-
ments. Middlebrook and Cuk [23,44] synthesized averaged circuit models that
included this resistance for certain example switched circuits, but their approach
to averaged circuit synthesis was not as general as that given here.

Note that this averaged circuit can be used in applications where the duty
ratio is a function of time (or other time-dependent variakles) by inserting the
appropriate time-varying value for d in the averaged circuit. One such appli-
cation is in the simulation of a transient under a closed-loop control scheme.

4.2.2 Nonlinear Circuit Elements

Here we deal with the synthesis of a non-switched resistive network that can
replace the switched resistive multiport in a partitioned switched circuit (see
Figure 4.1) under more general conditions than considered in the previous sub-
section. In particular, nonlinear resistances (as well as nonlinear reactances) are
permitted in the circuits to be considered. Our development will proceed along
the lines of the in-place averaging method [46] outlined earlier in this section,
and will rely on constraint relations (discussed below) for multiports whose in-
ternal behavior is not of interest. This will permit a simple replacement of the

switch network in certain cases, as in the previous subsection, but when this is
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not possible, we shall also consider replacement of a larger portion of the resis-
tive network than that consisting of just the switch branches. In the interest
of keeping the presentation uncluttered, we shall restrict attention to the case
where there are only two distinct switch configurations. The extension to the
case where there are more than two switch configurations can be treated in a
straightforward manner, but will not be given here. See Appendix B for the
multi-switch case where all resistive elements are linear.

A constraint relation is a rather general way to characterize a nonlinear (or
linear) resistive multiport network. As an example, consider a two-terminal
resistive element whose branch variables v and i are constrained by the ele-
ment to lie on the unit circle in the v — ¢ plane, i.e. v? 4+ :2 = 1. Obviously,
this element has neither a global current-controlled representation, nor a global
voltage-controlled representation, and ther:fore illustrates the possible utility of
the constraint representation. Constraint relations are also useful for LTI resis-
tive multiport networks since it can be rather difficult to determine which subset
of the port variables can serve as the controlling variables in a hybrid represen-
tation (see [47]). In general, the constraint relation for an n-port network takes

the form

C(z)=0. (4.24)

In the sequel, we shall consider only the case where the constraint relation (4.24)
is continuous and possesses at least first partial derivatives, i.e. C(e) is (.
The constraint relation (4.24) is termed regular [81] if it imposes n independent

constraints on the 2n components of . That is, the Jacobian matrix

dc
dz
To
has rank n at every xo that satisfies (4.24). The regularity condition essentially
eliminates the possible presence of unusual network types such as norators and
nullators. An equivalent way to characterize a nonlinear resistive network is with

an explicitly parametrized manifold embedded in R?" that contains the port

variables. For the example above (the circular resistor), such a parametrization
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takes the form

v = sin(o)

i = cos(o) (4.25)

where o € [0,27). See [81] for more on this. This type of characterization will
also be of use in our development.
To carry out the averaged circuit synthesis, we shall require the following

three assumptions:

1. The state-space model for the switching converter is well defined in each

switch configuration.

2. For each switch configuration and for any admissible state and source
values, each branch voltage and current in the converter circuit has a

unique solution.
3. All network constitutive relations are (.

Note that the first assumption is weaker than (but similar in nature to) the
assumption of the preceding subseciion concerning the existence of a particular
hybrid representation for the resistive multiport in Figure 4.3.

We can now proceed to develop an averaged circuit synthesis procedure for
those converters that do not contain nonlinear resistive branches having discon-
tinuous current and discontinuous voltage waveforms. For these converters, we
shall obtain a sufficient condition (necessary in the case where all the resistive
elements in the switched circuit are reciprocal) for there to exist a non-switched
resistive network that can replace the switch branches in the underlying con-
verter, and maintain consistency with the in-place averaged circuit variables.
Later, we treat the case where nonlinear resistive elements having discontinu-
ous current and discontinuous voltage waveforms are present in the switching

converter, by grouping these with the switches.
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Case Where All Nonlinear Resistive Branches Have at Least One

Continuous Branch Waveform

As previously discussed, in the synthesis of an averaged circuit model for a
given switching converter, we would include all the reactjve elements, all the
linear resistive elements, and all the resistive branch elements which have a
continuous current waveform, a continuous voltage waveform, or both waveforms
continuous. Therefore, in the case where the converter has no nonlinear resistive
branches with discontinuous current and discontinuous voltage waveforms, the
only work to be done involves the switch branches. Our task is to determine
if there is a non-switched resistive two-port that can be inserted in the place
of the switch branches, and have the resulting averaged circuit exhibit the one-
cycle averaged waveforms. Such a resistive two-port can be characterized by a
constraint relation or an explicitly parametrized manifold, as discussed above.
Now our development can follow along the lines of the preceding subsection, but
with the various subnetworks of the switching converter modeled by constraint

relations. We organize the relevant constraint relations for a switching converter

3. —
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below.
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Figure 4.6: Partitioned Nonlinear Switched Network

Consider the partitioned switched circuit of Figure 4.6 where all sources
are absorbed into the nonlinear resistive multiport. Let = denote the vector of
switch port variables, v denote the vector of inductor currents and capacitor

voltages, and y denote the vector of inductor voltages and capacitor currents.

67



We shall construct the constraint relation for the nonlinear resistive multiport
in two stages. Firstly, denote the constraints imposed by this network on the

switch port variables with the relation
Co(v,z) =0 (4.26)

where the vector of controlling reactive port variables v is viewed as a parameter.
Secondly, let the constraints imposed by the resistive multiport on the reactive

port variables (v,y) be written in the form
-y =Cy(v,z). (4.27)

This can be done by hypothesis since we have assumed that the state-space model
for the switched circuit is well defined, and this necessitates an explicit solution
of y, the vector of inductor voltages and capacitor currents. The constraint

imposed by the switch multiport will be represented by the relation
Csu(z) =0 (4.28)

where the dependence upon the switch configuration is noted with the subscript
u. The constraint imposed by the interconnection of the three multiport net-

works can be represented by the composite constraint relation

—y = Gv2)
0 = Cv,x)
0 = Csu(z). (4.29)

The composite constraint relation ( 4.29) determines the state-space model since
for each value of v, this constraint determines a unique value of y. Further, this
set of constraints uniquely determines the vector z of switch variables for each
value of v.
With the in-place averaging method, the one-cycle averaged switch variables
take the form
T =dzlu=1 + (1 — d)z|u=o (4.30)
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where z|, is the value of the vector of switch branch variables when the switch
configuration is u. Since, by hypothesis, each branch variable in the circuit is
well defined for each switch configuration, we can determine the functional form

of z|, in terms of the vector v from the constraints (4.29), i.e.
2l = gu(v). (4.31)
We conclude that the averaged switch vector T assumes the functional form
T = g4(v) = dg1(?) + (1 — d)go(T). (4.32)

Now we require conditions under which we can characterize a manifold in which
the vector Z is constrained to lie. Such a characterization can be made implicitly

via a constraint relation, i.e.

Csq4(%) = 0, (4.33)

or with an explicit parametrization. Recall that in the previous subsection where
we considered the case in which the resistances were linear, this manifold was a
subspace of R*.

A sufficient condition for the construction of an explicit characterization of
the manifold in which the averaged switch vector ¥ must lie is that the function
Cay(v,z) that appears in the second constraint of (4.29) is separable into two

additive terms, i.e.

0 = Cs(v,z) = Cau(v) + Co(7). (4.34)

Note that the representation for C;(v, z) is not unique, and the separability prop-
erty may depend upon the particular choice for this representation. However,
our statement holds as long as there exists some representation Cy(v,x) that is
separable. This separability condition is necessary as well as sufficient in the
case where all resistances in the circuit are reciprocal. We shall consider the
necessity after demonstrating the sufficiency ot this condition. To demonstrate
that this condition is sufficient, we shall give a procedure for characterizing the

desired manifold. Begin by forming the two functions go(®) and g,(e) which give
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the explicit solution = for each value of v. Note that these functions take the

form (for u = 0,1)

gu(v)=D;‘([ o ]) (4.35)

where -
_ Cz,,(z)

D,(z) = [Cs,,(:t) (4.36)

and w = —Cp,(v). Next, compute the function g4(e) according to (4.32) which

takes the form
94(v) = §u(@) = D;‘([ 0 ] ) ={(1 —d)Dg" + (d)D; ' K \ ° ] ) (4.37)

The image of g4(e) where @ ranges over R? (more properly the subset of R?
where g(e) is well defined) is typically a two dimensional manifold embedded
in R*. This is certainly true for the extreme cases d = 0,1. For those values of
d for which this holds true, we obtain an explicit parametrization of the two di-
mensional manifold in which the vector F of averaged switch port variables must
lie. In many cases, it is possible to determine a global implicit representation for
this two dimensional manifold of the form (4.33) by eliminating the parameter
% in (4.37). We illustrate this procedure with an example, and then discuss the
necessity of the separability condition for obtaining an explicit characterization

of the constraint manifold.

Example: Up-Down Converter with Nonzero Source IImpedance The
purpose of this example is only to illustrate the procedure for constructing the
constitutive relation for ihe vector of averaged switch variables. We use the
example of Figure 4.7, previously considered in Subsection 4.2.1, although it only
contains linear resistive elements. We shall give a more interesting example when
we consider synthesis procedures for circuits that have nonlinear resistances with
discontinuous waveforms. For the circuit of Figure 4.7, we obtain the following
constraint relations imposed by the resistive portion of the circuit, including the

sources:
—iC = '—Ic+i02
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Figure 4.7: Up-Down Converter with Nonzero Source Impedance

S

UL = Ve + vy
0 = iL - ial - i.z
0 = V, — V¢ — Vg — Ti,l + Vg2, (4.38)

As is evident from the final two lines of (4.38), this example satisfies the sufficient

condition given above. These two lines can be recast in the form

isl + ic2 = iL =

V1 + 7y —v,, = V, - Ve = W, (4.39)

To proceed, we form the constraint relations imposed by the switch network:

C.So . i,l =0

v, =0 (4.40)
Csy : v,=0

1,0 = 0. (4.41)

Next form the two functions Dy(e) and D;!(s) by combining (4.39) and ¢ 4.40)
and by combining (4.39) and (4.41), respectively. We obtain

D()—l(.) H i,1=0
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Va1 = W
1,2 = wy

V0 =0 (4.42)

Dil(e) : iy = wy

vy =0
i.z =0
Vs = —Wq + Tw,. (4.43)

The function
’D;l(wl,w,) =(1- d)DJ]("’l,wz) + (d)Dl—l(“’u’wz)

gives an explicit parametrization of the desired two dimensional manifold in

terms of the parameters w; and w,. This function takes the form

i.l = (d)wl

vy = (1-dw,

2 = (1-d)wy

V2 = (d)(—wa + rwy). (4.44)
The characterization (4.44) in terms of the variables w; and w, is an adequate
representation of the two-dimensional manifold (vector space here) to which the
average switch variables are constrained. However, it is possible to eliminate the
parameters by combining the lines of (4.44) to obtain an implicit representation
of the manifold, i.e. a constraint relation. The constraint relation takes the form

(1 - d)i,l — (d)z,z = 0
(d)v,1 + (1 - d)v,g - (1 i d)Ti,l = 0. (4.45)

Now a synthesis of a two-port realizing the constraint (4.45) can be obtained
in various ways, but we shall omit any further details since this example was

already treated in Subsection 4.2.1. The objective here was to demonstrate a

method for characterizing a constraint manifold. )

72




Necessity of Separability Condition In the case where the resistive sub-
network obtained by extracting the reactive and switch multiports is reciprocal,
the separability condition given above is necessary as well as sufficent for the
existence of a constraint manifold in which the vector of averaged switch port
variables must lie. This is demonstrated here. We begin by obtaining a simple
necessary condition on the first constraint of the composite constraint relation
(4.29), i.e. —y =Cy(v,z).

It turns out that C;{e,e) must be linear in its second argument. This is a
consequence of the fact that the state-space averaged model for duty ratio d can

be expressed in terms of the variable y via
7 =7 =—(1-d)Ci{7,90(7)} — (d)C: {7, 0:(7)} (4.46)
and equivalently by
7 =7 = -C{7,(d)g:(7) + (1 — d)go(?)} (4.47)

where g is the vector of inductor fluxes and capacitor charges. Equation (4.46)
results by forming a convex combination of the two extreme state-space models,
while (4.47) is obtained by substituting the form of the averaged switch port
vector T into the first line of (4.29). The separability condition on the second
constraint of (4.29) is a consequence of this condition and the reciprocity of the
resistive network modeled by the first two lines of (4.29).

To see this, consider the manifold determined by the second constraint of the
constraint relation (4.29). Recall that this is the manifold to which the vector of
switch port variables is constrained by the resistive subnetwork, with the vector
v of controlling reactive port variables viewed as a constant parameter. At any
given point in the configuration space, such a manifold must locally have at least

one hybrid description of the form
zy = h(v,z,) (4.48)

where the dependence on the parameter vector v is noted explicitly. (This follows

from the analogous property of linear resistive networks {82,83]. The tangent
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space of the constraint manifold at the point (z,, ;) is a local approximation to
this manifold.) With these coordinates, we can obtain a hybrid representation
(at least locally) for the resistive network described by the first two constraints

in (4.29). Such a representation takes the form

-y = él(“,l'l)=Cx{‘l',(=l'1,1?z)}
z, = h(v,zy). (4.49)

Now the hybrid relation (4.49) must retain the property that the first line in-
volving the variable y is linear in x, or z; in this case. The reciprocity of the
resistive network implies that the Jacobian matrix for this hybrid representation
has certain symmetry jcoperties, as discussed in Appendix A. In particular, this
Jacobian H must satisfy

HY =YH* (4.50)

where T is a diagonal (signature) matrix with all its diagonal elements either
+1 or —1. Consider partitioning the relationship (4.50) commensurately with

the two sets of ports, i.e.
élv élz 2] 0 — El 0 (:'l‘v h:’ (4 51)
h, h, 0 X 0 X c. k) '
An implication of this symmetry constraint is that

Ch2Zy = TR, (4.52)

Because of the linearity of Cy(e,s) in its second argument, the corresponding
entry of the Jacobian matrix, i.e. C,,., is not dependent on z; (or x). The

symmetry constraint (4.52) guarantees that h, is also independent of r,, i.e.

d
d—ml‘h" = 0.

A consequence of this is that h(v,z,} which appears in (4.49) can be expressed

as the sum of two additive terms, namely as

h(v,21) = h*(v) + h¥(z:).
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(This can be seen by considering the first two terms in a Taylor series expansion
for h(v,z,).) The result is the separability condition above.

Next, we shall consider synthesis of averaged circuit realizations for switched
circuits that contain nonlinear resistances with discontinuous current and voltage

waveforms.

Switched Circuits Containing Nonlinear Resistances with Discontin-

uous Waveforms
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Figure 4.8: Partitioned Converter
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Earlier in this subsection, we illustrated the difficulty that arises from nonlinear
resistive branches that have discontinuities in both current and voltage wave-
forms. We noted that these resistive branches could not be simply treated with
the in-place averaging scheme. However, it is possible to extract these resistive
branches, and to lump them into a multiport network with the switch branches.
With this modified partitioning, the result based on the separability condition
carries over, as could be shown with an analogous argument. Rather than re-
peating the details, we study some examples.

Note that in the case where a nonlinear multiport resistor is present in the
switched circuit, and only a subset of its ports have both discontinuous current

and discontinuous voltage waveforms, it may be advantageous to extract the
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entire multiport resistor and to include it with switch network. If this was not
done, it may turn out the separability condition does not hold. Of course, one
could first check to see if the separability did hold when only some of the resistive
branches were extracted. In any case, the presence of a nonlinear multipoft
resistor in a switching converter is not at all common, and we shall not study

any examples of this type.

Examples: Converters with Nonlinear Elements having Discontinu-
ous Waveforms For the example of Figure 4.2 given in the beginning of this
subsection, we would partition the circuit as shown in Figure 4.8. We would
then apply the procedure given above, but with the three-port network playing
the role of the extracted switch network. It turns out that for this example the
necessary computations are extremely difficult, and so we shall treat an easier
one. In some cases, it is possible to lump the nonlinear resistive branches that
have discontinuous waveforms with the switch network, but without increasing
the number of ports of this network. Such an example is the up-down converter

with nonlinear source resistance that is shown in Figure 4.9. For ihe circuit of

' - VSZ +
Y N 0—)0-
+ | N l
s2 +

v, 0} 3 T e 1,

Figure 4.9: Up-Down Converter with Nonlinear Source Resistance

Figure 4.9, we can lump the nonlinear source resistance with its series switch

branch. This is illustrated in the figure. With the modified port variables, we

obtain the following constraint relation imposed by the remainder of the circuit:
_'i(-' = —Il + i.z
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VL = —Uc + vy
0 = ip —iy — i,
0 = -V,+ve+va - v,. (4-53)

The first two lines in (4.53) form the constraint -y = Cy(v,z). The last two

lines of (4.53) form the constraint relation 0 = C(v,z) which can clearly be

expressed in the form C',(z) = —C,,(v) = w, as follows:
latiz = ip=uw
Uy — V2 = V,—vc = w,. (4.54)

To proceed, we form the constraint relations imposed by the modified switch

network:

CSO H i,l =0

v, =0 (4.55)

Csy : vy —r1(in) =0

ie2 = 0. (4.56)

Next, form the two functions D5’ (e) and D;*(e) by combining (4.54) and (4.55)
and by combining (4.54) and (4.56), respectively. We obtain

Dy'(e) : iy =0

V1 = W2
i, = w,
ey = 0 (4.57)

Dl—l(.) H ill =un

v,y = r(wy)
1,2=0
Vo2 = —wy + r(wy). (4.58)
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The function
D;'(wy,w7) = (1 — d)Dy* (wy,w,) + (d)Dy* (104, 105)

gives an explicit parametrization of the desired two dimensional manifold in

terms of the parameters w; and w,. This function takes the form

in = (d)w

vy = (1—d)w, + (d)r(w,)

2 = (1-d)w

v = (d)(—w2+ r(wy)). (4.59)

By combining the lines of (4.59), we can eliminate the parameters w, and w, to

obtain a representation for this manifold with a constraint relation, i.e.

0 = (1 - d)ial - (d)isz
0 = (1—d)o, +(d)vs — (d)r (’7') . (4.60)

We can obtain an equivalent hybrid representation for the resistive network

described by (4.60) as follows:

S 1-d.
2 = d 15
1-d 15
Vg = - v.2+r("7). (4.61)

The hybrid representation suggests a synthesis involving an ideal transformer
and a two terminal nonlinear resistor. This synthesis is shown in Figure 4.10.

o The following example shows
how to apply our method to obtain an averaged circuit model for a converter
operating in the discontinuous conduction mode. This problem was addressed
in the paper of Cuk and Middlebrook [68] using the so-called ‘hybrid modeling’
technique, which apparently proceeds by inspection. QOur approach is somewhat

more systematic.
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Figure 4.10: Average Circuit Realization for Up-Down Converter with Nonlinear
Source Resistance

Example: Converter Operating in the Discontinuous Conduction Mode
Consider the up-down converter and the typical inductor current waveform tor
operatiox} in the discontinuous conduction mode shown in Figure 4.11. The
other state varible waveforms exhibit relatively small ripple, and so are not
shown. The diode in the figure is necessary to capture the circuit behavior in
the discontinuous conduction mode. If the diodé was not present, the L, in-
ductor current could reverse, violating a basic constraint for this circuit (that
this inductor current remains nonnegative at all times). In order to apply any
averaged circuit synthesis technique for such a circuit, we need to recognize that
a switching converter operating in the discontinuous conduction mode is gov-
erned by a reduced order state-space averaged model. This is a consequence
of the fact that the L, inductor current is identically zero during a portion of
each cycle. Therefore, in our scheme, we would treat this inductor as a non-
linear resistive element. We depart slightly from our usual framework because
the waveforms for the L; inductor are so different from those of other resistive
elements that typically appear in a converter. Even though this inductor has a
continuous current waveform, we lump it with switch branches and diode into
a modified two-port switch network as shown in Figure 4.11. (If this was not
done, it would not be possible to obtain an averaged circuit model.) With the

indicated partitioning, it is now straightforward to apply our procedure.
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Figure 4.11: Model and Waveforms for Discontinuous Conduction Mode of
Up-Down Converter

The constraint C,(v,z) = 0 takes the form

Vg1 — Vg = 0

Vo —v, = 0. (4.62)

This constraint clearly satisfies the separability condition, and can easily be

expressed in the form C,.(z) = —C,,(v) = w as follows
Vs = Vo =1
Vg = U = Wsy. (4.63)

The next step is to obtain the constraints imposed by the extracted and modified
switch network for each of the two switch configurations. Since the inductor
current i, varies significantly over each cycle, we shall compute an averaged

constraint for each of the two configurations. When the switch is in the 0

80



position during an interval [t;,; + dT), the current i,, = 0 and the current 01
is equal to the L, inductor current. The average value of the latter current over
this interval can readily be seen to k2 22’%2 from the form of the waveform in

Figure 4.11. Hence, we ob*ain the averaged constraint for this interval as

) v,,dT
Cso : 1, - 21Ll =0
1,0 = 0. (4.64)

With a similar calculation for the interval [t; + dT,t; + T) when the switch is in
the 1 position, we obtain
C.Sl : i.] =0
vhd*T
N 20,L(1-d)
Next, we form the two funtions D;'(e) and D;*(e) by combining (4.63) and
(4.64) and by combining (4.63) and (4.65), respectively.

0. (4.65)

Dyl(e) : v,y =w,

U2 = W2

i = w]dT

51 — 2L1

i2=0 (4.66)
Di'(e) : vy =y

Vy2 = W2

=10

. 2d2
i = wyd T (4.67)

 2w,Ly{1 — d)

We can then form the function D;'(wy,w,) as in the previous example, i.e.

'DJ‘(.,.) DU,y =uy

Vyy = Wy
_ ‘ll']dzT
1 = 2L1
2 12
wid*T
2 = — . 4.68
te2 2w,L, ( )
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The function D;*(w,w;) gives an explicit parametrization of the manifold in
which the modified switch port variables are constrained to lie. It is possible
to obtain a voltage controlled representation for this two-port network by elim-

inating w, and w, in (4.68). This representation takes the form

P v,d?T
YA
2 2
) v d’T
2 = -2 . 4.69
2 2v,,L, ( )

With this type of representation ‘or a resistive two-port network that replaces the
modified switch network in Figure 4.11, we readily obtain the averaged circuit
representation shown in Figure 4.12.

-

i
=
AR

+ . l
: 1 _ +
vs Vo T 2-port ‘I’ v] 1\13

)
—

(]

Figure 4.12: Averaged Circuit Model for Discontinuous Conduction Mode

It is of interest that the resistive two-port model (4.69) is an incrementally
passive model. This can be seen by evaluating the Jacobian matrix for this

model, i.e.

dl dzLT
s 2 1 ~
T ’d’T (4.70)
dv ] [ vl 202 Ll ]

This Jacobian matrix is evidently positive semi-definite (where it is well defined),
leading to the conclusion that the two-port is incrementally passive. This fact
will be of some importance in Chapter 5 (Section 5.6) where we consider control

design for this converter operating in the discontinuous conduction mode.
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4.3 Open-Loop Stability of Switching Convert-
ers

In this section, switching converter systems (understood to include source and
load) that consist of an interconnection of ideal DC sources, ideal switches,
incrementally passive resistors, and linear reactive elements that are strictly rel-
atively passive (see Appendix A) are considered. Multiport circuit elements are
included in the development here. This class of switching converters is shown
to be stable by exhibiting a Lyapunov function that corresponds to the energy
in the increment with respect to an arbitrary, nominal state trajectory. The
argument is extended to include nonlinear reactive elements that are strictly
relatively passive in the case where the switching frequency becomes infinite,
and stability with respect to an equilibrium point is considered. Essential back-
ground on network theoretic issues for the development in this section is given
in Appendix A.

‘To motivate this work, we first present an example of a periodic time-varying
system in which the system switches between two stable linear, time-invariant
models. This example system exhibits unstable behavior. We shall be able to
contrast this example with the result to be obtained for switching converter

circuits.

Example of an Unstable Switched System Consider the periodically
time-varying linear system

' = A(t)z (4.71)

with period T = 0.1, and where for each integer k

A(t) = A, = ‘01 1‘; . KT <t<(k+05)T
e (4.72)
Ay =a=|7 | kr0mT<t< (k)T

The stability of such a system can be assessed by examining the eigenvalues

of the transition matrix for one period of operation, i.e. the eigenvalues of
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®(T,0) = exp(0.5A4, T )exp(0.5A4,T). Here, we have

(4.73)

0.9048 0.4524
*T.0) = [ 0.4524 1.1310 ] '

The eigenvalues of the transition matrix are approximately 1.48 and 0.55; since
one of these is outside the unit circle, the conclusion is that the system is un-
stable. Note that this instability results despite the fact that each of the two
matrices Ap and A, is asymptotically stable.

Another route for this analysis is via the method of state-space averaging
in which we would have assessed the stability properties of the average system
matrix Aquy = {(1/2)A0 + (1/2)A,]. The eigenvalues of the average matrix Agy,
are computed to be 4 and —6, leading to the conclusion that the averaged system
is unstable. In this case, we observe that the average of two asymptotically
stable matrices is an unstable matrix. In the remainder of this section, we
examine the stability properties of periodically switched circuits, and investigate
the spc'ecial features that permit relatively strong conclusions on the stability of

these systems. ' °

4.3.1 Switching Converter Stability Under Finite Switch-
ing Frequency

Let the switching converter be composed of ideal DC sources, ideal switches,
incrementally passive resistors, and linear reactive elements that are strictly
relatively passive. We suppose the switches are operated in accord with a given
arbitrary switching pattern and suppose that we are given a nominal solution
corresponding to the given switching pattern.

For each branch of the network, denote the nominal trajectory by {i(t),i(t)},
and form the (not necessarily small) increments with respect to the nominal

trajectory for each network branch, i.e.
si(t) = i(t) —i(t)
du(t) = v(t)— v(t) (4.74)
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By applying Teliegen’s theorem tc the increments in zll the network branches

when the circuit is in any one of its topologies, we obtain

0= Z bt év + E 6i611+26i60+26i6v+ Zﬁi&r (4.75)

DC:ources Switches Res. Ind. Cap.

The summation involving DC sources is always zero since the increment in either
voltage or current of each term is necessarily zero. The terms involving switches
also add zero contribution to the sum in (4.75) for the same reason. The third
summation on the right-hand side of (4.75) is always nonnegative since each
term is individually positive or zero as a result of the incremental passivity of
the resistors. In fact, this summation can be thought of as the dissipated power
in the increment with respect to the given nominal trajectory. The remaining
two summations represent the time rate of change of the stored energy in the

increment. Combining these facts, we can write:

iV(&c) = Z dtév + Z bidv = - Z éidv, where (4.76)
dt Ind. Cap. Res.

V(sz) = Y(1/2)(6ix) Lubin) + 3 (1/2)(6w ) Culdny).  (4.77)
Ind. Cap.

Because of the assumption on strict relative passivity of the reactive elements,
the quantity V(§z) which we shall from now on refer to by the suggestive name
energy in the increment, is a positive definite quadratic function of the incre-
m -ntal state variables. Since equation (4.75) holds identically for any of the
possible circuit topologies, the energy in the increment is a Lyapunov function
for the dyna-ical system. In particular, we have

—d—V(J:c) ==Y bvéi <. (4.78)
dt Res.

In conclusion, the energy in the increment is a Lyapunov function for the
given nominal trajectory, and we see that the nominal trajectory is stable in
the large. Since the nominal trajectory selected above can be taken as any
solution trajectory, this statement implies that any two solution vrajectories do

not diverge.
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Typically, asymptotic stability in the large can be concluded as well since
at least some parasitic loss is always associated with each energy storage ele-
ment, i.e. series resistance with inductors and parallel leakage resistance with
capacitors. An argument for asymptotic stability appears in [34] for circuits
that have a DC equilibrium point, and consist of only two-terminal elements.
In (34], lossiness is guaranteed to be associated with each state variable by ex-
cluding inductor-capacitor-voltage source loops and inductor-capacitor-current
source cutsets. (In this case, we would require that all resistors be strictly
incrementally passive.)

A special case of the above result is when the switches are operated with
a periodic switching pattern, and there exists a nominal periodic steady state
solution. In this case, the result states that the given periodic steady state
trajectory is stable in the large. This result is of particular interest for the
case of a DC-DC converter operating with constant switching frequency. Note
that this result holds up for DC-DC converters operating in both the continuous
conduction and discontinuous conduction modes. This can be seen by redrawing
tl.e schematic for the DC-DC converter of interest with an ideal SPDT switch
and incrementally passive resistive device (i.e. diode) replacing each transistor-
diode pair. For example, we would redraw the up-down converter of Figure 2.1
as shown in Figure 4.13. The circuit of F igure 4.13 satisfies the conditions for its
nominal periodic trajectory to be stable in the large, and it makes no difference
whether or not the nominal trajectory contains a portion where the inductor

current is identically zero.

4.3.2 Stability under Infinite Switching Frequency and
Constant Duty Ratio

The result to be stated here is based on the fact that a switching converter
operating at infinite switching frequency has dynamics governed by its state-
space averaged model. In such a case, where the duty ratio is constant, the

switching converter is equivalent to a time-invariant circuit hecause of the re-

86




NL resistor

R
V, il ]'Lv %R TIS

Figure 4.13: Up-Down Converter Redrawn to Illustrate Stability in ('ase of
Discontinuous Conducion

sult of Section 4.1. Hence, we can replace the multiport network consisting of
all non-reactive elements with a constant resistive multiport with hybrid rep-
resentation Hy,z(e). Suppose that the switching converter is constructed from
ideal switches, ideal DC sources, incrementally passive resistors, and reactive
elements that are strictly relatively passive. In this case, the resistive multiport
with hybrid representation H,,,(e) is incrementally passive. This is a result of
the following two facts. Firstly, each of the hybrid representations H,(e) that
corresponds {o a particular switch configuration is incrementally passive if each
of the resistive elements in the converter is incrementally passive (see Appendix
A for properties of interconnected networks). Secondly, a convex combination
of a set of incrementally passive hybrid representations is also incrementally
passive.

Under the above mentioned conditions, if the averaged model has an equi-
librium point, then the equilibrium is stable in the large. The argument for
stability is analagous to the one given in the previous subsection. Here, we can
permit nonlinear relatively passive reactive elements since the energy in the
increment is well defined with respect to a given DC operating point. If the re-
active elements of the converter are assumed to have a composite representation

of the form

r = u

y = ylz), (4.79)
the total energy in the increment with respect to the equilibrium point z., takes
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the form

T
Ve®) = 2 [ ulty (uz(t) - ylzw)}dt

Reactive

T
= T[S {ua(t) - g}t

Reactive

=(T)
= ) f,( (dv)*{y(v) — y(zeq)} (4.80)

Reactive
Once again, asymptotic stability in the large can be concluded in many practical
cases because of parasitic losses. Further topological constraints can he imposed
as in [34] to guarantee global asymptotic stability. See the discussion in the

preceding subsection.

4.3.3 Summary: Energy in the Increment

The main point of this section has been that for a given circuit that satisfies
the conditions of Sections 4.3.1 or 4.3.2, there exists a Lyapunov function, the
energy in the increment, that enables one to conclude stability for nominal open-
loop operation. The energy in the increment, although essentially differen. from
physical stored energy, has units of energy and is a property of the reactive
elements in a given circuit. For the case of Section 4.3.1 where all reactive
elements were linear and time-invariant, the energy in the increment takes the
form of a positive definite quadratic form in the incremental state values with the
coefficients determined by the values of the capacitances and inductances. The
incremental staie values are defined with respect to a given time-varying nominal
state trajectory. For the case of Section 4.3.2 where nonlinear reactive elements
and averaged circuit models were considered, the energy in the increment is
again a positive definite function of the incremental state. However, in this
case, this quantity can be defined only with respect to a consiant equilibrium
state, rather than an arbitrary nominal trajectory.

The concept of the energy in the increment will be essential in the following

two chapters of the thesis.
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Chapter 5

Lyapunov-Based Control Design:
Static Compensators

In this chapter, an approach to control of switching power converters hased on
the use of Lyapunov functions will be introduced. The main focus will be on
control design based on the state-space averaged model for a given switching
converter. The converters of interest are those that sztisfy the conditions guar-
anteeing that nominal state trajectories are globally stable under open-loop op-
eration, specifically converters constructed from incrementally passive resistors,
ideal sources, ideal switches, and reactive elements that are strictly relatively
passive (see Chapter 4 and Appendix A). (For the most part, the reader can
keep in mind the case where all resistive and reactive elements are linear and
passive.) One particular choice of Lyapunov function for control design purposes

that will be of interest is the energy in the increment.

We shall begin by illustrating the Lyapunov-based control method with an
application to the up-down converter introduced in Chaptier 2. Then, we shall
demonstrate how such a control design can be obtained in a more general way.
There is typically some freedom in the choice of Lyapunov function for the
control design, but we shall exhibit <ome particular advantages of using the
energy in the increment. Generalizations to converters containing nonlinear
circuit elements, to converters that handle time-varying input-output waveforms,

and to converters operating in the discontinuous conduction mode will be given.

89



A method (dual to the control design approach) for designing state observers

will be considered.

5.1 Example: Up-Down Converter

Consider the up-down converter of Figure 2.1 which has a state-space averaged

model of the form

r' = Ar + (Br + b)d, (5.1)

where the two-component state r consists of the deviation of the inductor current
from its nominal value (r; = ¢ — i,) and the deviation of the capacitor voltage
from its xiominal (z2 = v — v,), and where the input d is the deviation in the
duty ratio from its nominal value (d = d, - d,,). (Note that d, indicates the total
duty ratio here.) The parameter values listed below were selected for operation

at a switching frequency of 50KHz.

¢ = 54uF
L = 0.18mH
R = ~
d, = 3/8
V, = 15volts
I, = 2amps
v, = —9volts

i, = 3.2amps
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For the parameters listed above, the relevant matrices of the system are as

follows:
A = 0 (1-d,)/L| _ 0 3472.2
T | —(1-d,)/C 0 | -115740. 0
B - 0 -1/L _ 0 --5555.6
/¢ 0 = | 185185. 0
b = (V. —v,)/L _ 133.33
B in/C - 592.59
- Lo [ 180. o0 e
Q = [0 C] - [ 0 54]'”

The result on open-loop stability in Chapter 4 guarantees that the energy in the
increment is a Lyapunov function for open-loop operation of this circunit. For

the up-down converter, the energy in the increment takes the form
1 1
= EL(i —in) + é(.'(v - )3, (5.2)

or

V= %z'Qz. (5.3)

Differentiating V along the system trajectories, we obtain
d 1 1
¢TtV(:c) = 51!‘(QA + A'Q)x + di{x'(QB + B*Q)z + 2b'Qxz}. (5.4)

It turns out that QA + A°Q = 0 for this example, which verifies that the energy
in the increment is a Lyapunov function for open-loop operation (d = 0). In this
example, it is also true that QB + B*Q = 0. These relationships hold because
of the lossless nature of the example converter, i.e. the lack of resistive elements
in the converter. Considering these relationships, (5.4) simplifies considerably

to

%V(z) = (b*Qz)d. (5.5)
Many stabilizing control schemes can be obtained by inspection of (5.5). We
shall consider the simple control law d = —ab*Qz with « real and positive,

modified to handle the duty ratio saturation constraint ~d, <d <1 - d,,ie.

—ay, —dnsdsl—dn
d={ —d,, —ay < —d, (5.6)
1-d,, —ay>1-d,
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where y = b*Qx. Here, the variable y takes the form

y = (Vo —va)(i - in) +i0(v - vy)
= (V, —o)i-dn) + i(v - v,). (h.7)

Note that the only dependence on circuit parameters is on the nominal values of
the inductor current, the capacitor voltage, and the source voltage. This pfop-
erty is shared by analagous control schemes hased on the energy in the increment
for many other switching converters, as will be demonstrated in Section 5.3.
To investigate the closed-loop behavior, we examine the derivative of the

Lyapunov function V( ) along the closed-loop system trajectories:

%V(:t) = yd
—ay’,  -d,<d<1-d,
= ~d,y, —ay < —d, (
(1 -dn)y, —ay>1-d,

5.8)

In the saturated regions (the second and third lines of ( 5.8)), the time derivative
of V(a:). is ‘strictly negative since either V! < —ad? or V' < —a(1 - d,)%. Asa
result, state trajectories quickly enter the uneaturated region. In the unsaturated
region (the first line in (5.8)), V(z) is strictly decreasing if y # 0, and asymptotic
stability can be concluded by LaSalle‘s theorem since y = 0 is not a system
trajectory unless £ = 0. To see this, note that y = 0 implies d = 0 and the

following;:

b'Qz = 0
b’'QAz = 0, (5.9)

with the last line in (5.9) obtained by noting that y' = 0. The existence of a
nonzero sotution z to (5.9) is equivalent to the statement that the pair {b*Q. A}
is unobservable. However, this pair is observable in this example, and therefore
there are no system trajectories that do not converge to the origin.

In this example, we have not considered the effect of lossiness due to para-

sitic and/or load resistances. The effect of such passive resistances would only
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enhance our stability result, by causing additional nonpositive terms of the form
—z*Rz (with R positive semi-definite) to be added to the terms on the right-

hand sides of (5.8).
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o
-

-20000
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-M:J...l..;.l..‘.lAA.Al....,...
o= -40000 -30000 - -10000 0 10000
REAL
Figure 5.1: Root-Locus for Linearized Closed-Loop Control System

Asymptotically, the decay of the Lyapunov function V(r) is controlled by
the eigenvalues of the small signal model obtained by linearizing the closed-
loop system about z = 0. In this example, there is some freedom in placing
the eigenvalues of the linearized closed-loop system by choice of the gain a. A
root locus of the closed-loop eigenvalues of the small-signal model is shown in
Figure 5.1. To minimize the maximum of the real parts of the eigenvalues, for
example, the gain should be selected so that the two eigenvalues coincide on the
real axis at —20.05Krad/sec. An easy calculation indicates that the value of the
gain required to obtain this eigenvalue placement is approximately o = .00785.
In the remainder of the discussion of this example, a value of the gain of o = .008
will be used. The resulting closed-loop eigenvalues are at about —16.7Krad/sec
and —24Krad/sec. Note that in this example the dynamical behavior of the small
signal closed-loop dynamics is limited by the natural resonant frequency (1 —

d,)/VLC of the open-loop state-space averaged system. Since the bandwidth
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of the closed-loop dynamics is usually designed to be approximately an order of
magnitude below the switching frequency, and since this is also a typical resonant
frequency of the open-loop dynamics for a reasonably designed converter, the
preceding limit on attainable closed-loop bandwidth is acceptable.

We expect the closed-loop system to be very well behaved, and this is con-
firmed by the digital computer simulation shown in Figure 5.2. In the next
section, we present a derivation of a class of control schemes to which the ahove

example belongs.

5.2 A Basic Approach to Lyapunov-Based Con-
trol Design

In this section, we show how to derive a class of control laws for a switching
converter model of the form (5.1), to which the example (5.6) belongs. Note that
the open-loop stability of the system (5.1) is crucial for this approach, and hence
we sha!l restrict attention to switching converters that satisfy the conditions (see
Chapter 4) guaranteeing stability under nominal duty ratio operation. A basic
first step in this approach, as illustrated above, is the specification of a Lyapunov
function for open-loop operation. The model (5.1) is linear and time-invariant in
the case of open-loop operation under a constant nominal duty ratio, i.e. d = 0.
Since the open-loop model is known a priori to be stable, it is generally possible
to determine a family of suitable quadratic Lyapunov functions. In fact, in the
case where the matrix A is asymptotically stable, it is possible to parametrize

the family of such quadratic functions with the Lyapunov equation
A'Q, + Q1A= -P,P; (5.10)

where {P;', A} is an observable pair. The existence of a positive definite, sym-
metric solution Q, to (5.10) is guaranteed by the stability of the matrix 4 and
the observability of the pair { P!, A}. Later in this section, we shall consider the
selection of a suitable matrix Q, for the case where the matrix A has (simple)

eigenvalues on the jw-axis.
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Figure 5.2: Digital Simulation of Up-Dowr Couverter under Nonlinear Peedback
Control Scheme

95



Having determined the form of a suitable matrix @1, it is straightforward to
specify a globally stabilizing control law for the model (5.1) of the form (5.6),
but based on the Lyapunov function V(z) = %r‘er, as follows:

—ay, -dp<-ay<l1l-d,
d={ —d,, —ay < —d, (5.11)
(1-d, —ay>1-4d,
where y = (Bx +5)*Q,z. One particular choice for Q1 is Q where V(x) = J2*Qur
is the energy in the increment, and it turns out that this choice leads to certain
nice features, which will be elaborated in the next section. First, we consider a

second example that is somewhat more comnplex than the second order up-down

converter.

|

1

<
ot

‘+ o +J- ill 1+ 21{ TI

Figure 5.3: Up-Down Converter with Input Filter

Example 2: Up-Down Converter with Input Filter Section Consider
the up-down converter of Figure 5.3, which includes a section of input filter
to reduce current ripple in the line, generated by the switching action of the
converter. Such a converter would be modeled by a fourth order state-space

averged system of the form (5.1). For the following parameter values:

Co=Cl = 54#F
5Ly =L, = 0.18mH

R = o



d, = 3/8

V, = 15volts

I, = 2amps
ton = 15volts
ton = l.2amps
vy, = —9volts
1, = 3.2amps,

the relevant matrices of the fourth order system corresponding to (5.1) are given
by

T 0 —027718 0 0
_|18s19 o ~0.6944 0 .
4 = 0 0.0208 0 0.0347 | *10
| o 0 ~1.1574 0
0 0 0 0
B |0 0 -1819 o . 10°

0 0.0556 0 0.0556
| 0 0 1.8519 0

0
| 5.9250 .
b = | |3333 |*10

| —5.9259
Q = diag{36 5.4 180 5.4} ¢ 10°°

We shall first consider the control scheme (5.11) where y = (Br + b)*Qr and
%z‘Qz is the energy in the increment. Because of the lack of resistive elements
in the model, it turns out that 4°Q + QA4 = 0 and B*Q + QB = 0. Once again,
the control law (5.11) takes a simple form since the quantity y depends only on

some state values and some nominal state values:
Y = —i1(vo — von) + (V0 — v1)(i1 — i) + is(v1 — vyn). (5.12)

Computation of the derivative of the Lyapunov function V(z) = (1/2)x*Qx

along system trajectories results in the relation (5.8) as computed above.
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Figure 5.4: Root Locus for Fourth Order Converter

The same reasoning as used in the argument above for globally satisfactory
dynamical behavior of the second order example can be applied here. In the un-
saturated region, the rate of decay is governed asymptotically by the greatest of
the real parts of the eigenvalues of the small signal model. The main difference
from the second order czse is that the eigenvalues cannot he placed so well by
varying the gain a. A value of the gain that approximately minimizes the maxi-
mum of the real parts of the small signal eigenvalues is given by a == .0094, which
places the eigenvalues at —5.08 + j68Krad/sec, —9.6Krad/sec, —46Krad/sec. A
root locus for the small signal eigenvalues parametrized by the gain «a is shown
in Figure 5.4. Figure 5.5 shows a digital simulation of a start-up transient in
the fourth order converter under the control law (5.11) with gain a = .0094.

In this fourth order example, it is possible by choice of an alternative matrix
Q1 to obtain a globally stabilizing control law of the form (5.11), but where the
small signal behavior is governed by significantly faster dynamics. This is of
interest for large signal behavior, since the dynamics in the unsaturated region
is controlled asymptotically by the small signal behavior. For this example
the set of positive definite, symmetric matrices @, that satisfy (5.10) can be

parametrized by two real scalars (and an arbitrary scaling factor). Note that
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linear Feedback Control Law

99




e e

. .
E€L000 — :
- inr o ;: ‘\\_b“——-‘ 4:
: AN :. - H
It : :
s 20000 B ; ’
.:, t _F__.H"'—'—— T i
. A F ~ . '
T : i |
1 !
R i | i
Y n F i
-40000 | '
3 : |
-60000 ;
IS
-60000 b — N N N . . . l
-40000 -39000 -20000 -40050 9 10000

REAL

Figure 5.6: Root Locus for Fourth Order Converter Using Alternative Matrix

Q

because of the lossless nature of the circuit model of Figure 5.3, all eigenvalues
of the matrix A are on the jw-axis, and all solutions to (5.10) require P, = 0.
To see that all solutions @, can be parametrized by two scalars, note that the

modal form for A is given by

0 —Wyp 0 0
_ Wo 0 0 0
T=1% 0 0 —w (5.13)
0 0 w 0
Hence all solutions to the transformed Lyapunov equation
QsJ+J'Q;=0 (5.14)

take the form Q; = diag{a, a, a; a;} where a; and a, are real constants. Since all
solutions to the original Lyapunov equation (5.10) can be obtained by transfor-
mation from this diagonal structure, it follows that all solutions are parametrized
by a, and a,. Another way to view the specification of the matrix @, will be
considered in Chapter 6 (Section 6.5). There, we shall relate the selection of Q,

to the specification of the zeros of a certain small signal transfer function.
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As an example of an alternative selection of the matrix Q, for the present
example, consider the matrix
1.0410 0 —0.3589 0
0 0.1602 0 0.0067 '
= 5.15
Q=1 03580 0 09281 0 (5.15)
0 0.0067 0 0.0238
and the associated control law (5.11). The small signal dynamics of this control

scheme is governed by the eigenvalues of the system matrix
A--abb*Q,.

The root locus shown in Figure 5.6 displays the closed loop eigenvalues as a
function of a. The value a = .05 results in eigenvalues located in the positions
shown in Figure 5.6, with the real parts of all eigenvalues less than —22Krad/sec.
°

Anoth'er route for the derivation of the control law (5.11) is through the
formulation of an optimal control problem. In particular, it is possible to obtain

this control scheme by minimizing the cost index

—min [ 2 .
J(z) = 1}}:1)1/0 {q9(x) + rd*} dt (5.16)
where
9(z) =
~2*(4°Q, + QuA)e + r(y/r)?, < —ylr <1 d,
‘"z.(A.Ql + QIA)r - r(l - du)z - 2y(1 - dn)’ "y/r >1 - d,, (5-17)
—17.(A‘Q1 + QIA-)I - rd,z-. - 2ydns _y/r < dna

r >0, @, is a solution of (5.10), and y = (Br + b)*Q,z. We shall not give
any more details on this development, but note that it is a common approach
in the literature on control of bilinear systems of the form (5.1). In particular,
this method was applied in [39], for an application in induction motor control.
Another example is the result of Derese and Noldus [49], where a virtually

identical development is given, except that constrainis on the input variables are
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not considered. As mentioned in Chapter 3, Brockett and Wood [17] suggested
Lyapunov-hased control schemes for switching converter circuits in their early
work on state-space averaging. Many of the Lyapunov-based control strategies

for bilinear systems have been neatly unified in the recent note [50].

5.3 Advantages of the Use of the Energy in the
Increment for Control Purposes

As noted in the previous section, there is typically some freedom in the choice of
the Lyapunov function that can be used in the control designs described there.
In this section, we outline three advantages obtained by using the energy in the
increment as the Lyapunov function in these control schemes.

One advantage of the choice of the energy in the increment as the Lyapunov
function for control design purposes arises in the computation of the variable
y = (Bz + b)‘Q:c which is used in these control schemes. In particular, one
can always (indirectly) measure the vector Q(Bz + b). To see this, consider the
modification of (5.1) where we multiply this equation on the left by the matrix
Q, giving

Q' = QAz + Q(Bxr + b)d. (5.18)
Now the vector on the left-hand side of (5.18) is composed of the time deriva-
tives of the inductor fluxes and the time derivatives of the capacitor charges.
The elements of this vector are necessarily inductor voltages and capacitor cur-
rents. The vector Q(Bz + b) is the amount by which this vector changes when
the duty ratio steps from —d, to 1 — d,,, or equivalently, the amount this vector
changes when the switch configuration is changed. In general, it is possible and
feasible to determine the vector Q(Bz + b) during each cycle. To do this, for
each inductor branch one would measure the voltage across the branch in each of
the two switch configurations, and then form the difference of the two measure-
ments. This difference constitutes the element of Q(Bx + b) corresponding to
the particular inductor port. In the case of a capacitor, one would measure the

current flowing into the capacitor in each of the two switch configurations, and
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form. the difference of the two measured currents. This difference constitutes the
element of Q(Bx 4 b) corresponding to the particular capacitor. By performing
the described measurement process, it is possible to obtain an accurate mea-
surement of the vector Q( Bz + b). Consequently, one can compute the variable
y = z*Q(Bx + b) by forming the inner product of  and Q(Br + b). The only
parametric dependence in y is therefore on the nominal state values required to

determine z, the deviation in the states from their nominal values.

: + Vg -
:’/1. Vs +
o v ]
ST b
15]_ 1

v l > "“’1
R i

Figure 5.7: Switch Structure

In certain cases, it is possible to further simplify the measurement of Q( Bx +
b). For these cases, it is possible to directly measure the vector Q(Bx + b) by
measuring certain branch voltages and branch currents in the circuit (at one
time instant). Consider a switching converter that has a switch structure like
that of the up-down converter, as shown in Figure 5.7. (It is convenient for our
purposes here to represent the switches with individual branches, rather than an
SPDT switch.) A switch structure in some such form, termed a canonical cell in
(48], is common to all (square-wave) switching power converters. Two conditions

that are simultaneously necessary and sufficient for the direct measurement of

Q(Bzx + b) are:

1. The two switch branches participate in a loop containing only capacitors

and voltage sources.

2. The two switch branches participate in a cutset containing only inductor
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branches and current sources.

The first condition guarantees that the change in voltage on the inductor branch
caused by a change of the switch configuration is the sum (modulo sign) of the
voltages of the two switch branches. The second condition concerns the capacitor
node (or cutset) to which each of the switch branches belongs. It guarantees
that the change in current flowing into each capacitor node (or cutset) due
to a change in switch position is the sum (modulo sign) of the switch branch
currents. In the case where the two conditions hold, it is possible to obtain
the nontrivial elements of the vector Q(Bz + b) in a direct manner. (Typically,
many elements of the vector Q(Bx + b) are zero since the switching action
does not directly affect all the states. For instance, the state r; of Example 2
corresponding to the Ly inductor current has a derivative that is instantaneonsly
independent of the switch position.) To obtain the nontrivial elements of this
vector that correspond to inductor voltages, one would simply measure the sum
of the switch branch voltages (modulo sign). Similarly, to obtain the nontrivial
elements t-;hat correspond to capacitor currents, one would measure the sum of
the switch currents (modulo sign). For the example of Figure 5.7, with states
Ty = Vg — Ugn, T3 = 1) — i1, and T3 = v} — v}, the vector Q( Bz + b) takes the

form: ' '

U1 T 12 -4
Q(Br +b) = Va1 = Uy } = [ v~y |- (5.19)

151 + 22 U
Clearly the components of this vector can be directly measured from the circuit.
The above conditions lead to the possibility of obtaining the variable y in a
direct way that involves parametric dependence only on the nominal values of
certain state variables. There is no dependence in y on other circuit parameters

such as values of capacitances, inductances, or resistances.

A second potential advantage of the choice Q, = Q in (5.11) is that it is
possible to use a nearly linear version of this control algorithm by replacing y -
(Bz + b)*Qz in (5.11) with y;;, = b*Qx, and still maintain global stability. (Of

course, the saturation constraints are still in effect.) To see that global stability
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is maintained, consider the following Lyapunov analysis with V(x) - 10 Qur:
d 1 . L] * L3
cTtV(r) = 3% [((A+dB)'Q + Q(A + dB)jx + (b*'Qz)d. (5.20)

Now the first term on the right-hand side of (5.20) is always nonpositive. This
follows from the fact that the energy in the increment takes the form 1T Qx
for any nominal duty ratio, with the fixed matrix Q. The choice of the control
in (5.11) (using y,) forces the second term on the right-hand side of (5.20)
to be nonpositive. Global stability results from the nonpositivity of the right-
hand side of (5.20). Hence, the choice of Q, = Q in (5.11) permits the use of a

feedback control that requires only the computation of the linear variable y;,.

A third advantage of the use of the energy in the increment as a Lyapunov
function for control design is that a control law of the form (5.11) with @, = Q
can result in global stability of a more complex power system in which the origi-
nal converter is embedded. In particular, if the converter is interconnec.ed only
with (relatively) passive circuit elements, the resulting interconnected system is
always guaranteed to be stable. For example, if an additional section of output
filter is added to the up-down converter of Example 2, as shown in Figure 5.8,
the control law designed for the original converter stabilizes the modified circuit.
We shall reserve a more detailed discussion of this feature for Chapter 6, where
ideas concerning interconnected passive networks are applied.

In the following sections, we shall show how to extend the method of Lyapunov-
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based control design to converters containing nonlinear resistive and/or non-
linear reactive elements, to converters that handle time-varying input-output
waveforms, to converters that operate in the discontinuous conduction mode,

and to an approach to observer design (fur converters).

5.4 Switching Converters Containing Nonlin-
ear Circuit Elements

Here, we shall demonstrate how to apply the Lyapunov-hased method of con-
trol design to DC-DC converters constructed from ideal switches, D(' sources,
inczementally passive resistors, and reactive elements that are strictly relatively
passive. As shown in Chapter 4, the energy in the increment is a Lyapunov
function for constant nominal duty ratio operation of such a converter in the
case of infinite switching frequency. As introduced in Chapter 2, the state-space
averaged model for a switching converter containing nonlinear circuit elements

takes the form

' = f(z) + g(z)d. (h.21)

For the purposes here, it will be most convenient to take the state T as the
deviations from nominal in the inductor fluxes and the capacitor charges. (This
is because we have defined the energy in the increment in (4.80) in terms of
fluxes and charges, as a result of assuming flux-controlled inductors and charge-
controlled capacitors.) Differentiating the energy in the increment V() along

the system trajectories, we obtain
d
d—tV(:r.) = VV(x)f(x) + VV(x)g(r)d. (5.22)

The first term on the right-hand side of (5.22) is nonpositive as a result of the
fact that the energy in the increment is a Lyapunov function for constant nom-
inal duty ratio operation of the converter. It is possible to obtain a stabilizing
control of the form (5.11) by taking y = VV(xr)g(x). In general, it is diffi-

cult to obtain alternate Lyapunov functions for the nominal open-loop system
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' = f(r). Hence, for Lyapunov-based control design purposes, one may be
practically limited to the energy in the increment.

Note that the control scheme outlined above shares the three advantages dis-
cussed in the previous section with the analagous control scheme for a converter
constructed from linear reactive and resistive elements. It is easy to see that
the first advantage is shared, by noting that the vector g(z) is analogous to the
vector Q(Bz + b) of the linear elements case. This follows since we are working
with a model in which the states are inductor fluxes and capacitor currents, and
g(z) is precisely the amount by which the time-derivative of the state vector
varies when the switch configuration is changed. Hence, g(z) is composed of
voltages and currents which are either directly or indirectly measurable. The

gradient of the energy in the increment takes the very simple form
VV(z)=[4 ... im v ... 1] (5.23)

where the components of this vector correspond to deviations from nominal in
the. inductor currents and in the capacitor voltages. As in the case where the
resisti\-re and reactive elements are linear, it is possible to determine the variable
y with uncertainty limited by knowledge of nominal operating conditions.

To see that the second advantage of control designs based on the energy in
the increment discussed in the previous section carries over to the case where
nonlinear circuit elements are present, consider the control scheme (5.11} with
y replaced by

Yiin = VV(x)g(0). (5.24)
The function g(e) is evaluated at the steady state value of the state + = 0
(or equivalently in the total variable notation z, = z,). It is clear from (5.23)
that y;;, is linear in the deviations from nominal in the inductor currents and
capacitor voltages. Consider the closed-loop system obtained by applying (5.11)
to (5.21) with y replaced by yii» = VV(z)g(0). Differentiating V' (r) along the

system trajectories yields
d
5V (2) = VV(2)[f(z) + d(z){g(x) — g(0)}] + VV(z)g(0)d(x). (5.25)
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The second term on the right-hand side of (5.25) is nonpositive as a result of
the choice of the control. The first term on the right-hand side is nonpositive
because the system z’ = f(z) + d(¢){g(z) — g(0)} is the state-space model for a
modified circuit consisting of the interconnection of the (nonlinear) reactive ele-
ments of the original circuit with a time-varying, incrementally passive, resistive
multiport. As a consequence, the original form of the energy in the increment
is a Lyapunov function for the modified circuit.

To see this, consider a state-space model that uses mixed variables, namely
derivatives of Auxes and charges on the left-hand side and functions of inductor
currents and capacitor voltages on the right-hand side. A general model of this

type has the form:
‘I: = —Ho(z,) — dr{Hl(T') - Ho(-‘"r)} (5.26)

where the variables with subscript ¢ represent total variables (as opposed to
deviations). Such a model is expressed explicitly in terms of the hybrid resistive
representations for the circuit in each of its switch configurations. Now consider
any nominal operating point {qn,zn,d,} for (5.26), and form an equation for

the increments with respect to this nominal condition (¢ = ¢; — gn, etc.) :

q' = _{[(1 —di)Ho + dtHI](l") [(1 —dy)Ho + lell('Tn)}
{Hl(xn) - Ho(.’l‘-")}d- (527)

The first term on the right-hand side of (5.27) corresponds to the model for a
hybrid representation for a time-varying, incrementally passive, resistive multi-
port. Therefore, the energy in the increment (4.80) carries over as a suitable
Lyapunov function for a circuit consisting of such a time-varying resistive mul-
tiport that is interconnected with the reactive multiport of the original circuit
model. Therefore, the first term on the right-hand side of (5.25) is guaranteed
to be nonpositive. Hence, it is possible to pick d as a linear function of y;, (in
the absence of control saturation), and obtain global stability.

We shall leave for Chapter 6 a discussion of the third advantage, namely

preservation of stability in interconnected systems. Before moving on, we shall
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consider an example where this control method is applied to a circuit containing
nonlinear circuit elements. The example to be considered arises in the applica-

tion of active filtering methods to switching power circuits.
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Figure 5.9: Up-Down Converter with Active Filter Stages

Examplé: Converter with Active Ripple Filters Consider the up-down
converter depicted in Figure 5.9, with controlled sources associated with the
input and output filters. The output filter configuration (dependent voltage
source) corresponds to the so-called voltage drive enhancement method of [40,41]
for enlarging the effective capacitance of (Yy. The dependent current source in
parallel with L, corresponds to the current drive method of [40,41] for enhancing
the current filtering action of L, in the input filter. The state-space averaged

model for the converter of Figure 5.9 is given by
' =[A+ dB)z + Gw, (5.28)

where the components of the state vector = represent variations ahout an equi-
librium corresponding to nominal duty ratio d, and v. = i, = 0. The elements

of x are as follows:

Ty = 1:0 - I,
—dn
Ty = v~ - V,
T2 Vg —d"
1
r3 = i] - l—an‘



= p - v,
Ty Uy l_dn
d
- i n I,,
Ty 19 l—d"
g — 'Uz-‘v;. (5.29)

The components of the control vector w are d (variation in the duty ratio), v,
and i.. A typical constraint on the duty ratio is —d,, < d < 1 - d,,, while
constraints on v, ard i. are implementation dependent. The matrices in the

model (5.28) are given by

[0 - 1/L, 0 ~1/Lg 0 0
-1/Cy 0 0 0 0 0
4 0 0 0 (1-d,)/Ly 0 d,/L,
- /¢, 0 —(1-4d,)/Cy 0 0 0
0 0 0 0 0 -1/L,
|0 0 —d,/Cs 0 /¢, 0
Too0o o 0 0 0
00 o 0 0 0
g - |00 0 -1/L 0 1/L
0 0 1/C, 0 0 o0
00 0 0 0 0
00 -1/C;, 0 0 0
[ 0 1/Ly 0
0 0 0
VY, 0 0
G = (1-dn)L, (5.30)
(l-i.)Cn 0 0
0 0 0
| s 0 1/C

In the spirit of [40,41], the two control inputs corresponding to the controlled
sources can be designed so as to increase the apparent value of the associated

reactive element. For instance, the input v. can be chosen as follows:

—10volts, —yxy < --10volts
v, = ¢ 10volts, ' —yx5 > 10volts (5.31)
—yz5 = —(vg — vie*red)  otherwise

With this choice of control for positive v, the function of the dependent voltage

source in Figure 5.9 is as a negative capacitor for small values of =, (that is for
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small values of the perturbation in v, from the nominal). However, the series
impedance of the dependent voltage source and ('y remains that of a positive

capacitance for values of 4 less than one. This can be seen by writing

Vseries = U+ U
— _7(1'0 _ vodes:red) + o

= udmd L (1 = ). (5.32)

Considering the saturation constraints on v, (see (5.31)), the series combination
of v. and Cy can be given a representation as a nonlinear capacitor whose charge-
voltage relation is shown in Figure 5.10. Note that the characteristic shown is
that of a capacitor that is strictly relatively passive. For values of voltage near
the nominal, the capacitor has an amplified incremental value, while for large
voltage swings (> 10volts) the capacitor has the incremental value of (.

vA

-19 volts

Figure 5.10: Representation of Series Combination of (o and v, as a Nonlinear
Relatively Passive Capacitance

Note that many other choices of the control v, are possible and are worth
investigating. For the purposes here, we shall carry on with the choice (5.31), and
shall pick a similar control strategy for i. to increase the incremental inductance
of L, for small current variations. One possible choice is

—.lamps, —y(iz — i5°™ ) < _ lamps

i. ={ .lamps, —7(i2 = i5°™"el) > lamps (5.33)
~v(iz — 13°mimaly - otherwise
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With this choice of control strategy for the input 7., the parallel combination
of L, and the dependent current source i, takes the form of an inductor that
is strictly relatively passive to infinity. The shape of the flux-current relation
for this inductor is analogous to the charge-voltage relation of Figure 5.10. For
small variations in the current from the nominal, the incremental value of the
inductance is amplified by ﬁ For large deviations in the current from the
nominal (> .lamps), the incremental inductance is L,.

Since we now have an equivalent circuit model that contains DC! sources,
ideal switches, incrementally passive resistors, and (nonlinear) reactive elements
that are strictly‘relzlltively passive to infinity, it is possible to make a control
design based on the energy in the increment. The control law takes the form of

(5.11).

A digital simulation of the converter of Figure 5.9 under the centrol strategies
(5.11, 5.31, 5:33) with v = .9 and & = .003 is shown in Figure 5.11. Figure 5.11a)
shows a start-up transient where all the states are initially at zero. A comparison
of the l:ipple in the external waveforms (V,,; and I,,,,..) with and without the
active ripple filter stages is depicted in Figure 5.11b). In this figure, the steady
state converter operation is simulated for 0.2 msec with the active filter stages

operational, and then for 0.2 msec without the active filter function. .

5.5 Switching Converters that Handle Time-
Varying Source and/or Load Waveforms

Here, we shall consider the control of switching power converters that operate
with time-varying source and/or load waveforms. Typical application areas are
in rectifiers, inverters, and cycloconverters. In order to set a foundation for the
discussion, we shall introduce an example of a converter that operates from a
rectified single phase AC line. The front end of the circuit in Figure 5.12 is
a full-wave bridge rectifier that ideally provides a rectified sinusoidal voltage

waveform to the rest of the circuit. The remainder of the circuit is a boost
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Figure 5.11: Digital Simulation of Converter with Active Filter Stages

113



M 0l
5 & © .
7IY Vagf_ —‘lg
4so0 T m
>t.
d

0.¢ NANNNN

1m0 /\ /u\m IAVAY
/\!\ VY v\/ \/\,‘,
%o.i \\_/\ \/ | "J’ \J' Y, '\’fq\/' £,

Figure 5.12: Converter that Operates Off Rectified Line

converter. A possible design objective for this circuit is to provide a constant

output voltage on the capacitor. Typical steady state (averaged) waveforms for

this application are shown in Figure 5.12.

The state-space averaged model for such a converter takes the general form

' = Az + {Bz + b(t)}d + f(1) (5.34)

in the case where the converter is constructed from linear resistive and linear

reactive elements, ideal switches, and time-varying sources. The theory pre-

sented here is directly applicable to the case where nonlinear resistive elements
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are present, but to simplify notation we shall restrict attention to the case of
linear circuit elements. We shall consider the case where the source waveforms
are periodic with period T, and there exists a nominal periodic state and duty
ratio trajectory that corresponds to a desired behavior. For the example boost
converter designed to operate off the rectified AC line voltage, the nominal tra-
jectory includes a constant capacitor voltage and periodic inductor current and
duty ratio waveforms.

In the case where all resistive elements are incrementally passive and all linear
reactive elements are strictly relatively passive, the energy in the increment is
a Lyapunov funétion for the nominal trajectory. With respect to the nominal

periodic state trajectory z,(t), the energy in the increment takes the form

V(a(t),1) = 3 {a(t) ~ 2n(}QL(t) - zal0)}. (5.35)

where @ is the matrix of inductor and capacitor values. It is possible to design
globally stabilizing control laws based on this time-varying Lyapunov function
with a method analogous to that presented earlier in this chapter. Differentiating

the energy in the increment with respect to time, we obtain

d 1
g7 )t = S(z—2.)[Q(A +duB) + (A + d.B)'Q)(x — 7,) +
(z — zn)'Q{Bz + b(t)}(d — d,,). (5.36)
The first term on the right-hand side of (5.36) is always nonpositive since the
energy in the increment is a Lyapunov function for nominal open-loop operation
(i.e. d = d,). It is possible by choice of d to force the second term on the

right-hand side of (5.36) to also be nonpositive, guaranteeing global stability.

One particular choice satisfying this requirement takes the form
d(t) = d.(t) — afz - z,(f)}*'Q{Bx + b(t)} (5.37)

subject to the saturation constraint 0 < d(f) < 1. Note .nat it is generally
difficult to base a globally stabilizing control scheme on an alternate quadratic

Lyapunov function (z — x, )*@Q;(x — ,,) since the matrix @, is required to satisfy
Q:(A+dB) +(A+dB)Q, <0 (5.38)
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Figure 5.13: Numerical Simulation of Closed-Loop Off-Line Converter

for all values of d € [0,1]. (It is possible to obtain alternate Lyapunov functions
for the periociic system via Floquet theory, but it is difficult to make conclusions
for the behavior on a time scale smaller than one period.)

The control scheme (5.37) shares many of the previously discussed advan-
tages of control laws designed for DC-DC converters based on the energy in the
increment. In particular, it is possible to determine the gain vector Q{Bxr + b(t)}
by measurements performed directly on the circuit. The main difficulty is in ob-
taining the nominal steady state waveforms that correspond to a given operating
condition. The nominal waveforms for a new operating condition are required
in essentially real time in order to implement this (or any other) control algo-
rithm. Note that in the case of a DC-DC converter, the nominal waveforms are

constant, and therefore, considerably less difficult to compute.

For the example of Figure 5.12, the state-space averaged model takes the

form (5.34) with state = [i v|* and the following system matrices:

*= e

/¢ 0
0 1/L
B = [—1/0 0 ]
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o - 1]

f(t) = [ v ] (5.39)
A numerical simulation of a start up transient of this converter under the control
scheme (5.37) is shown in Figure 5.13 where the circuit parameters used were
L = 10mH, C' = 50uF, I, = 10amps, and V,(t) = 200|cos(377t)| volts, and
« = 1.6 ¢107°. The nominal duty ratio and inductor current waveforms were
approximated as sinusoidal waveforms (with DC pedestals). It is evident that a
fast transient response results. There is considerable 120 Hz ripple in the output
waveform, but this is attributed to the errors in the nominal waveforms which
were crudely approximated.

The application here is closely related to the earlier work of Schlecht [51]
on a line interfaced inverter. The approach of [51] was to select time-varying
feedback gains so that the eigenvalues of the quasi-static small signal model were
located in fized locations in the left-half plane. Approximate nominal waveforms
for the inverter were obtained with a heuristic approach. In [51], the sensitivity
of the output waveform to disturbances and/or uncertainties was reduced by the
selection of the feedback gains (in the pole placement scheme). The method of
control design based on the energy in the increment provides a simple feedback
that is inherently stabilizing. However, the reduction of sensitivity to uncertain-
ties and/or disturbances is an area that requires further work. In Chapter 6, we

shall describe some methods for reducing sensitivity in DC-DC converters.

5.6 Control of Converters Operating in Discon-
tinuous Conduction Mode

An application area related to the topic of the previous section is the control
of DC-DC converters operating in the discontinuous conduction mode. Such a
converter can be viewed as a circuit constructed from ideal switches, D(' sources,

linear reactive elements, and nonlinear incrementally passive resistors. In par-
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ticular, for the example up-down converter of Figure 5.14, the diode functions
as a nonlinear incrementally passive resistor. As a consequence, the result on
open-loop stability of nominal trajectories given in Chapter 4 (Section 4.3.1) is
directly applicable. The energy in the increment, which has the form (5.35), is
thus a Lyapunov function for the nominal trajectory z,(¢).

One route for the application of a Lyapunov-based control scheme to the
converter operating in the discontinuous conduction mode, is based on the non-
averaged state-space model. We shall outline this approach, and then describe a
more practical control method that is based on the state-space averaged model
for operation in the discontinuous conduction mode [68,48]. For convenience, we
shall express the non-averaged state-space model in a mixed form with deriva-
tives of flux and charge on the left-hand side, and a function of inductor current

and capacitor voltage on the right-hand side, i.e.
Qz' = —Ho(z) — u(H, — Ho)(z) (5.40)

where Q = diag{Lo Cy L; C;} and where H;(e) is a hybrid representation for
the (nonlinear) resistive portion of the circuit when the switch is in position j.
If a nominal periodic trajectory {z.(t),un()} satisfies (5.40), it is possible to

form a model for the deviation of a given trajectory from this nominal, i.e.
Q(z' — =) = —{{(1 - ua)Ho + uHa](z) — [(1 — un)Ho + uHij(zn)} —
(v — un)[H1 — Hol(z). (5.41)
To form a Lyapunov-based control strategy, we differentiate the energy in

the increment V(z,t) = %(z — z,)'Q(x — z,) along the system trajectories:

LV(at) = (z-2,0QU' - 7))

= —(z —2,)"{[(1 = un)Ho + wHs](7) -
[(1 = un)Ho + unHy)(xn)} -
(“’ - "’n)(m - 'T'n).lul - Ho](w)- (54?)

The first term on the right-hand side of (5.42) (involving the curly bracket) is

nonpositive since the resistive network with hybrid representation [(1 — v, )Ho +
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u,HM,](e) is incrementally passive. In the case where u = u,,, this statement is
equivalent to the statement that any system trajectory does not diverge from
the nominal trajectory z,. The second term on the right-hand side of ( 5.42)
can be made nonpositive by choice of control. Obviously, the choice u = u, is
one that satisfies this requirement. The control design problem is quite complex
since v and u, take only the values 0 and 1, and we would typically like to limit
the number of switch transitions to two per cycle. One practical approach to
the control design is to base the design on the state-space averaged model for
discontinuous operation, as described below.

The rationale for the use of a state-space averaged model for a converter
operating in the discontinuous conduction mode is that the state variables of
interest usually exhibit small ripple. The state-space averaged 1nodel for a con-
verter operating in the discontinuous conduction mode, such as that of Figure
5.14, has a lower order than that of the exact state-space model. This is a result
of the fact that there is no dynamical behavior associated with the L, inductor
current. This current is constrained to be zero during a portion of each cycle
because of the operating mode of the circuit. The averaged value for this cur-
rent can be computed in terms of the duty ratio, certain circuit parameters, and
the averaged values for the other state variables, see [68]. For the converter of

Figure 5.14, the state-space averaged model has the form

o = (Vo= wo)/Lo

" . v 'l’oT 2
2
o vOT 2
vl = I,/C, + so b0 (5.43)

where T is the period of one cycle.

It turns out that the energy in the increment (appropriately modified for
the reduced order model) is still a Lyapunov function for the averaged model
(i.e. (5.43)). This can be seen from the averaged circuit model obtained for
this example in Chapter 4 (see Figure 4.12)). Note that in Section 4.2.2, it was

demonstrated that the two-port network used to replace the combined switch-
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inductor-diode network is incrementally passive. Hence, the modified Lyapunov
function takes the form

1

. . . 1 1
V(z) = §Lo(1o —ion)? + -2-(70( vo — von)® + 5("1('01 — 1) . (5.44)

It is straightforward to base a control scheme on the Lyapunov function (5.44)
for the model (5.43), as was done in Sections 5.1 and 5.2. We illustrate this
below.

For the purposes of a control design to regulate the converter at a specified
steady state operating point, it is convenient to express the model (5.43) in
coordinates that represent deviations about a nominal operating point, i.e. in
the form

z' = f(z) + glz)(d? - d2.) (5.45)

Note that we regard the deviation away from nominal in the square of the duty
ratio as the input in this model, because of the way the duty ratio enters the
model (5.43). The function g(z) in (5.45) takes the form
0o 1
oT
9(z)=| ~ic |- (5.46)
3T
2|J| L,C,

Since the function (5.44) is a Lyapunov function for open-loop operation of
(5.45), we have that
[VV(z)]* f(x) < 0. (5.47)

A natural implementation of the Lyapunov-based control would specify the duty

ratio in terms of its square as follows

& = & - alVV(2)|"g(x)

voT
= dvzt - a{(vo - vOn)'onl + (1-‘1 — 1'1")

—02T
2‘!71 L|

1, (5.48)

subject to the saturation constraint 0 < d < 1. A numerical simulation of a
transition from steady state operation in the continuous conduction mode (with

load current of 1amp) to the discontinuous conduction mode (with load current
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of 0.05amps) using this control scheme is shown in Figure 5.15). The circuit
parameters (aside from the load current) were taken to be identical to those of

Example 2 in Section 5.2, and the gain a = 0.15 was selected. Note that this

simulation exhibits a graceful recovery for this transient. ¢
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Figure 5.15:" Transition from Continuous Conduction Mode to Discontinuous
Conduction Mode

5.7 Design of State Observers for Switching
Power Circuits

In some applications it necessary to obtain an accurate estimate of the state of
a switching converter without directly measuring each state variable. In other
situations, the available measurements may be so noisy that some filtering is
required in order for the data to be of any use. The use of a state observer is
a natural approach to filtering and/or reconstructing the state of a dynamical
system. Here, we shall illustrate an approach to designing state observers for
switching power circuits. Consider for now a switching converter constructed
from ideal sources, ideal switches, linear passive resistors, and linear reactive
elements that are strictly relatively passive. The (non-averaged) state-space

model for such a converter takes the form

' = Az + (Bz + b)u + f. (5.49)
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Suppose the available measurements contained in the vector y are linear in the

state, i.e.

y = C(u)r (5.50)

where we have allowed dependence on the switch configuration in the measure-
ment equation. A state observer for the system described by (5.49) and (5.50)

can take the form
2= Az + (Bz + bju+ f + H(u)[C(u)z — C(u)x] (5.51)

where H (u) is t!le observer gain, and the measurement y is incorporated in a
linear fashion. The error system associated with this observer structure is given
by

e =(A+uB)e + H(u)C(u)e (5.52)

where e = z — z. The free design parameters are contained in the observer gain
matrix H(u).

Note that for a general time-varying linear system, it is generally not possible
to obtain a stable observer with a constant gain matrix. (A method for obtaining
stable observer designs with time-dependent gains is via the Kalman-Bucy filter.)
We shall illustrate how to obtain stable observer behavior with a simple gain
H(u) for the special case where the system (5.49) models a switching converter
(as described above). The method to be used is dual to the approach for feedback
design based on the energy in the increment. Here, we shall consider as a
Lyapunov function V(e) = }e*Qe for the error system (5.52), where @Q is the
matrix used in the definition of the energy in the increment. This Lyapunov
function takes the form of the energy in the increment between the observer
state z and the underlying system state z.

To proceed, we examine the time-derivative of V (e):
%V(e) = %e‘[Q(A +uB)+ (A + uB)'Qle + e QH(u)C(u)e. (5.53)

The first term on the right-hand side is nonpositive (as in previous results)

and the second term can be made nonpositive through the choice of H(u). A
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potential choice that results in stable observer dynamics is given by
H(u) = -Q7'C*(n)R (5.54)

where R is a nonnegative definite matrix. (R need not he symmetric.) Note
that in the case where the measurement vector does not depend on the switch
configuration, i.e. C(u) = C, the gain H is also independent of u. Some of
the considerations in the selection of the gain H(u) are the steady state filter
performance in eliminating (wideband) noise, the steady state sensitivity to

measurement biases and model uncertainties, and the small signal dynamical

behavior.
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Figure 5.16: Observer Realization for Example Converter

Example: Observer Design for Converter of Example 2 Suppose we
would like to construct a state observer for the circuit of Example 2 (Figure 5.3)
that uses measurements of only the input voltage V,, the capacitor voltages vy
and vy, and the load current I,. A first step in realizing the observer is through
a circuit that is identical to the underlying converter circuit. It is possible to
scale the parameters so that the observer circuit handles only a fraction of the
power handled by the power circuit (as in the MIT Parity Simulator [24]). For

simplicity of presentation, suppose the observer circuit is identical to the power
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circuit with state-space model
2= Az + (B= + b)u + f. (5.55)

The output measurement y is a two component vector of the two capacitor
voltages (independent of the switch position), of the form (5.50) with ' constant.
One possible choice for the observer gain takes the form (5.54) with the matrix R
diagonal and positive definite. With this form of the gain, the circuit realization
for the observer can be completed by the simple addition of two resistors as
shown in Figure 5.16. The measured capacitor voltages v and v, are introduced
to the observer circuit through low impedance buffers. Note that the switch is
operated synchrdnously with the switch of the underlying power circuit. With
the resistive elements ro and r., chosen to have the values in the figure, and
circuit parameter values taken as those in Section 5.2, the eigenvalues of the
small signal, state-space averaged model for the observer error are approximately
—19.7 + 52.03 Krad/sec and —59.8 + j41.1 Krad/sec. Note that the global
stability of this scheme is evident from the passive circuit structure.

It t-urns out that this observer scheme can be applied to switched circuits
that contain nonlincar resistive elements. This is a consequence of the result of
Chapter 4 which states that any two solution trajectories of a given circuit do
not diverge, provided the circuit is constructed from incrementally passive resis-
tive and reactive elements. (The circuit is not permitted, in general, to contain
nonlinear reactive elements since these are never incrementally passive, see Ap-
pendix A.) Since we have constructed the initial observer circuit model (without
any observer update gain) to be identical to the underlying switched circuit, the
solution trajectories of this circuit obey the same dynamical equations as those
of the underlying circuit. It follows that the trajectories of the initial ohserver
circuit do not diverge from those of the underlying circuit. The observer update
gain H(u), which can be implemented with some resistive elements, can still be
selected to enhance the observer stability, as done above.

A nontrivial example of a converter circuit that contains a nonlinear resis-

tive element is the up-down converter, operated in the discontinuous conduction
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mode, as depicted in Figure 5.14. As discussed in Section 5.5, it is possible to
view a converter operating in the discontinuous conduction mode as a switched
circuit that has a diode (nonlinear resistive device) in series with one of its switch
branches. Consequently, it is possible to use the observer structure shown in
Figure 5.16 to handle operation in both the continuous and the discontinuous
conduction modes. This is illustrated in Figure 5.17 with a numerical simula-
tion of a transient where the observer states are initially zero, but the initial
converter states are close to their steady state values for operation in the dis-
continuous con(iuctiqn mode. Figure 5.17a) shows the transient in the observer
error e = z — z, while Figure 5.17b) displays waveforms for the actual switch-
ing converter. To illustrate some detail in the observer behavior, Figure 5.17¢)
shows an expanded segment of the first 100usec of the converter current wave-
form, the observer estimate of the current waveform, and the observer error in

the current waveform. °
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Chapter 6

Lyapunov-Based Control Design:
Dynamical Compensators

In this chapter, we shall build upon the results of Chapter 5 by viewing the
Lyapunov-based feedback control schemes considered there as network inter-
connecticus of (incrementally/relatively) passive circuit elements. In particular,
this point of view suggests the replacement of the static feedback schemes intro-
duced in Chapter 5 with dynamical compensators that offer more flexibility in
the resulting closed-loop systems. The approach is easily extended to convert-
ers admitting more than two switch configurations (with associated multi-input
state-space averaged models). To gain some insight into this method, we shall
first give an interpretation of the Lyapunov-based control strategy of Sections
5.1 and 5.2 as an interconnection of (incrementally/relatively) passive circuit
elements. Then, in the subsequent sections, we study the performance (sensitiv-

ity, robustness, transient response) that can be obtained using passive dynamic

compensation.

6.1 Introduction: Feedback Systems as Inter-
connected Networks

Consider the closed-loop system obtained by interconnecting the system

g’ = Az +(Bx+b)d
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Figure 6.1: Network Representation of Feedback Control Scheme
y = (Bx +b)'Qx (6.1)

where Q; is positive definite, symmetric, and satisfies Q14 + A*Q, < 0 with the
saturating control law d = —a(y) defined by

—ay, -dy<-ay<l1l-d,

d={ —d,, —ay < —d, (6.2)

1-d,, —ay>1-d,
This closed-loop system is identical to the one considered in Sections 5.1 and 5.2,
and can be given a network interpretation as shown in Figure 6.1. The network
N, which corresponds to the system (6.1), represents a nonlinear one-port that
operates on a “voltage” waveform d(t) to produce a “current” waveform y(¢).
The linear “resistor” of value o corresponds to the unsaturated feedback control
law applied to (6.1), while the saturation constraints are imposed by the “Zener
diodes.”

The stability of the closed-loop system can be concluded from the passivity
properties of this network interconnection. There is a well developed theory
of input-output stability for interconnected passive systems [37]. However, the
Lyapunov function approach to stability remains the most useful tool for our
purposes here, since we are interested in the internal stability of the closed-
loop converter system. The passivity of the “circuit” elements in Figure 6.1
immediately suggests as a Lyapunov function the sum of the internal energy

functions (e.g. available energy) of the circuit elements participating in the
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interconnection. This approach to stability of dissipative dynamical systems was
taken by Willems (28], and by Wood [1] for switching converters, as discussed
in Chapter 3. Wood noted {hat the input-output stability theory for dissipative
(passive) systems was considerably more difficult to apply than the internal
(Lyapunov) stability method; however, Wood did indicate the utility of the
approach via passivity for generating Lyapunov functions.

Returning to our example, the resistor of value « is strictly incrementally
passive for finite positive values of , and the pair of Zener diodes constitutes an
incrementally passive resistive element. We shall demonstrate that N (modeled
by (6.1)) is strictly relatively passive at the origin to infinity. Here, we evalnate a
lower bound on Wo(z), the energy in the increment with respect to the nominal

trajectory {d = 0,z = 0,y = 0} for a trajectory beginning at z(0) = 0.
T
Wolz(T) = [ y(t)dt)dt

- /OT(Bz +b)*Qzd() dt

T1fd

= /0 E{I(x.Qlw)_T.(QIA“’A‘QI)T} dt

A8 e

= %z(T)‘le(T) (6.3)

"'Since @1 is a positive definite matrix, the network N is strictly relatively passive
at the origin to infinity. The stability of the interconnection is most easily seen
by taking as a Lyapunov function the sum of the internal energy functions, which
in this example takes the form V(z) = 12*Q,z. We have already performed the
stability analysis with this Lyapunov function in Chapter 5.

The main purpose of introducing the concept of interconnected passive sys-
tems is the simplicity with which a large class of globally stabilizing control
schemes can be obtained. In particular, replacing the static compensator (6.2)
with any element C that is strictly relatively passive and that satisfies C(0) = 0
preserves the global stability properties of the interconnection. A compensator

having this property can be selected to yield some desirable performance fea-
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tures, as will be demonstrated in Sections 6.4, 6.5, and 6.6. In the following
section, we extend the approach to switching converters that have multiple in-
puts (more than one controllable switch) and nonlinear circuit elements. Using
the formulation given here, Section 6.3 applies some general stability robustness
results for interconnected passive networks. Before moving on, we shall contrast

this approach with that taken by Wood in [1].

3 ¢ k—

Figure 6.2: Block Diagram with Series Saturation Element

There is a difference between the scheme of Figure 6.1 and the method used
by Wood in [1]. The control schemes considered in [1] can be represented by the
block diagram of Figure 6.2. In the case where the operator N in the forward
path is passive, a sufficient condition for finite gain stability (used in [1j) is that
the operator in the feedback path is strictly passive, and has finite gain. In the
scheme of Figure 6.2, this requires that the cascade of the compensator C with
the saturation operator is strictly passive. The class of linear compensators
satisfying this constraint is specified in the paper of O’Shea [52], and termed
O’Shea functions in [1]. This class of functions is a subclass of the strictly
positive real functions, and hence, the method of [1] is more restrictive than the
approach considered here.

For purposes of comparison, a block diagramn equivalent to the network in-
terconnection of Figure 6.1 is shown in Figure 6.3. The static nonlinear element
connected in parallel with N realizes the limiting function of the Zener diodes by

injecting enough “current” into the compensator C to clamp the compensator
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Figure 6.3: Block Diagram Equivalent to Network Interconnection

output. The distinct advantage of our scheme (Figure 6.3) over that of Figure
6.2 is that any compensator that is strictly relatively passive may be used.
The approach outlined here is related to that of Kapasouris et al. [53] for
multivariable linear systems containing saturating nonlinearities at the inputs.
The more sophisticated method of [53] would insert a gain A(?) € [0,1] in front
of the compensator C that would guarantee that the control output never sat-
urated. However, it is not evident that a positive real compensator modified
by the scheme of [53] to prevent saturation remains a positive (incrementally

passive) operator.

6.2 Switching Converters Containing Nonlin-
ear Elements and Admitting
Multiple Switch Configurations

Here we shall consider the development of control strategies for converters con-
taining nonlinear circuit elements and admitting multiple switch configurations.
The method to be used is a generalization of that of the previous section. The

open-loop stability result of Section 4.3.2 is applicable only to the state-space
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averaged models for DC-DC converters constructed from ideal switches, DC
sources, incrementally passive resistors, and nonlinear reactive elements that are
strictly relatively passive. We shall therefore restrict attention to these models.
The general form of the state-space averaged model for such a converter: with

multiple controlled switches is as follows:
' = f(z) + G(z)D. (6.4)

The variable x represents the deviation in the state from a nominal equilibrium
point. The control input D is a vector of duty ratios satisfying constraints such
as —d;, < d; < 1—dj,, and G(z) is a matrix whose elements may depend upon
the state z. For such a system, there exists a positive definite function V(r)
corresponding to the energy in the incremental state z. Further, because of
the result on open-loop stability in Chapter 4, the function V(z) has a unique

minimum at £ = 0 (say V(0) = 0) and satisfies
VV(z)f(z) <O0. (6.5)

In order to apply the method of the previous section, we require an appro-

priate input-output model. To this end, we append the output equation
Y = G(z)*[VV(z)]* (6.6)

to (6.4). The resulting input-output model is strictly relatively passive at the
origin to infinity. To see this, consider the following calculation of a lower bound
on Wy(z), the energy in the increment with respect to the nominal constant

trajectory (D = 0,z = 0,Y = 0) for a trajectory beginning at = = 0.
T
Wol(2(T)) = [ Y(¢)* D(t) dt
0

- /o YV (2)|G(z) D dt

T(d
/o {d—th)-vvmm)} dt

) dV d
> — [t
o dt () dt

= V(z(T)) (6.7)
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Figure 6.4: Network Representation of Multi-Input Multi-Output Incrementally
Passive Feedback

It is straightforward to extend the approach to control described in the pre-
vious section to the system model of (6.4) and (6.6). Consider the network
representation of a multi-input, multi-output compensator that is strictly rela-
tively passive and that takes saturation into account as shown in Figure 6.4. It is
easy to conclﬁde global stability of the system shown in Figure 6.4 because of the
(relative/incremental) passivity of each of the elements participating in the net-
work interconnection. A Lyapunov function for the system can be obtained by
summing the internal energy functions for each of the multiports participating
in the interconnection.

In the next section, we shall study the third advantageous feature of Section
5.3 for control designs based specifically on the energy in the increment. This
choice leads to a robustness property in the case of an arbitrary interconnection

of a given switching converter with incrementally passive circuit elements.

6.3 Interconnected Networks

In this section, we shall apply some results on interconnected passive networks
to switching converter systems. In particular, we shall elaborate on the third
advantageous feature (of Section 5.3) of the use of the energy in the increment
as a Lyapunov function for control design. To begin, we paraphrase a theorem

from the recent thesis of Colgate [54]:
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A necessary and sufficient condition to ensure the stability of the
interconnection of a given LTI n-port network N with an arbitrary

passive LTI n-port P is that the n-port N be passive.

It is evident from the discussions in the preceding sections and Appendix A that
the passivity of N is sufficient for the stability of the network interconnection.
However, the theorem indicates that it is always possible to specify some passive
network P that destabilizes an interconnection of P with N if N is not passive.
The proof in the 1-port case is easy to make via Nyquist diagram arguments.
However, tiig proof of necessity for the n-port case in [54] is unsatisfactory, but
an alternative pr;)of proceeds by reducing the problem to the 1-port case (using
the method in [75]).

. «—1
o2 0—30— a7o— —o “*
+ l1_r PR +
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Figure 6.5: Nonlinear Canonical Cell

This theorem has some implications for large interconnected systems of
switching power converters. In particular, if one compensates each switching
converter subsystem so that at its electrical terminals, it is a relatively pas-
sive network, then an arbitrary interconnection of such subsystems with other
relatively passive networks is always guaranteed to be stable. (Gf course, in-
terconnections are typically not made arbitrarily, but accidents do occur and ill
conceived system configurations can arise.) The control schemes based on the
energy in the increment (introduced in Sections 5.1 and 5.2) achieve this feature,
as discussed below. Note that with other control strategies, there are generally

no such guarantees. In particular, consider a control law for the canonical cell
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of Figure 6.5, under which the resulting small signal impedance matrix of the
closed-loop two-port is not positive real. Then, the theorem of Colgate [54] as-
sures that there is some passive LTI two-port that can be connected with the
closed-loop canonical cell, and cause the resulting interconnection to he unstable.

To see that the canonical cell of Figure 6.5 remains strictly relatively passive
to infinity under a control law based on the energy in the increment (such as
(6.2) with @, = @Q), first consider the following state-space averaged model for
the network of Figure 6.5:

2 = f(z)+g(z)d+ Fi
y = g(=)'[VV(2)’
v = F'VV(z)] (6.8)

where
1 0

F=|0 0],
0 1

z = [q1 A g;]* is the vector of the deviations from nominal in the capacitor
charges and inductor flux, V(z) is the energy in the increment, i = [i, i,]* is
the vector of the deviations from nominal in the port currents, and v = [v; v,]*
is the vector of the deviations from nominal in the port voltages. (Note that
VV(z) = [v; 7 v5].) The model (6.8) is strictly relatively passive at the origin to
infinity. This can be verified by a straightfecrward calculation for a lower hound
on Wy(z), the energy in the increment with respect to the nominal constant
trajectory {i = 0,d = 0,z = 0,v = 0,y = 0} for a trajectory with initial state
z = 0. The calculation is nearly identical to (6.7) of the previous section, and
so will not be given here.

The point is that the model (6.8) represents a three-port network that is
strictly relatively passive to infinity, and hence, if we terminate one of its ports in
a strictly incrementally passive one-port, the resulting two-port network remains
strictly relatively passive to infinity (see Appendix A). A control law based on

the energy in the increment, such as (6.2), is a strictly incrementally passive
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termination for the (non-electrical) port whose variables are d and y. Hence,
under a control law of this form, the two-port shown in Figure 6.5 is strictly
relatively passive to infinity.

The result given above is a type of robustness result. Other issues concern-
ing performance under the closed-loop control with the passivity-based com-
pensation scheme outlined in Section 6.1 are investigated in the following three

sections.

6.4 Performance: Sensitivity Reduction

In this section, we study the effects of perturbations and uncertainties on closed-
loop switching converter systems that have control schemes based on the inter-
connection of (relatively) passive elements, as introduced in Section 6.1. The
disturbances that affect a switching converter system are generally highly struc-
tured, usually entering in the form of uncertain parameter information, which in
turn leads to imprecisely known nominal state values. Note that time-dependent
variations in the source and /or load waveforms can be viewed as parametric dis-
turbances. Here, we shall investigate the design of positive real compensators
to be used in the scheme outlined in Sections 6.1 and 6.2, chosen to produce
closed-loop systems that have reduced sensitivity to parametric disturbances
and uncertainties. In these control designs, the speed of the transient behav-
ior is considered as well. This is crucial for rejecting time-varying disturbances
arising in the source and load. A related issue is the stability robustness of the
closed-loop system; this will be addressed in the next section.

To begin, we examine how parametric disturbances affect the switching con-
verter control systems. The state-space averaged model for a switching converter
built from LTI circuit elements, an ideal switch pair, and DC sources takes the
form '

ry = Ay + (Bezy + by)d, + f, (6.9)

where the subscript ¢ indicates that the associated variables and parameters

belong to a model in which the variables are total variables as opposed to devi-
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ations with respect to nominal variables. In a typical application, the nominal
value for one given output is defined a priori. For instance, the desired output
voltage of the converter may be specified. This typically translates to having
one component of the nominal state r, known exactly. The other components
of the nominal state along with the nominal duty ratio may be unknown. With

this type of uncertainty, we are led to consider a perturbed version of the model

(6.1):

' = Az +(Bz +b)(d + 8d,)
y = (Bz +b)'Q)(x — éz,) (6.10)

where uncertainty in the nominal duty ratio enters in the term &d, and uncer-
tainty in the nominal state enters in the term éz,,. The resulting error in the

output map can be summarized by the term
by = (Bz + b)'Q(—éz,). (6.11)

We omit consideration of uncertainties arising in the circuit parameters. These
model uncertainties would affect the specification of Q,, which would be reflected
in the output map of (6.10). The justification for this omission is that the
resulting error could have been included as an additional term in éy in (6.11).
Therefore, we have effectively summarized the total error due to parametric
uncertainties. In Section 6.6, we shall address the stability robustness issue that

arises due to uncertainty in determining Q,! Bz + b).

A block diagram for a closed-loop control system with the model (6.10) as the
plant P is shown in Figure 6.6. The saturation constraint is represented with a
static, passive nonlinearity associated with the plant. There is a well developed
theory of sensitivity minimization for linear control systems of the form shown in
Figure 6.6 (e.g. [63]), based on an explicit parametrization of all the controllers
C that stabilize P. Although the theory for sensitivity minimization is not
applicable to the nonlinear case, some parallels exist. A parametrization of all
stabilizing compensators for a given stable nonlinear plant is given in the paper

of Desoer and Liu [62].
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Figure 6.6: General Feedback Connection

The parametrization of [62] has some potential in applications to our problem
since the 'switching converter models of interest are open-loop stable. Actually,
the theory in [62] requires that the plant P be finite gain stable and incrementally
stable. We shall not go into details on this theory, but note that for such a plant
P, the set of all stabilizing compensators is given by C = Q(I — PQ) ' where
Q is any finit. gain stable operator.

This parameterization and its associated input-output maps afford some in-
sight into the sensitivity reduction problem. In particular, if we consider the
respective small signal models p(s), g(s), and ¢(s) for the operators P, Q, and
C, the small signal input-output maps for the signals in Figure 6.6 take the

form:

d = qby—pgéd,

¥y = pgéy+(p— pgp)dd.. (6.12)
As an example, for the case where the nominal duty ratio is known (éd, = 0),
we can impose zero sensitivity to the disturbance 6y at a given frequency s, by

requiring that ¢(s) satisfy g(so) = 0. (In the case where p(s) has no pole at s,

the small signal linearizatior. of the corresponding compensator would have a
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zero at sq.) This situation will be considered in Subsection 6.5.1.

14
t4—
I

Figure 6.7: Transformed Diagram to Illustrate Clonstraint on Q

Another result of the parametrization described above is that it is possible
to relax the copstraint that the compensator be positive real. One reason for
imposing this constraint was so that stability would be preserved in the presence
of the saturating nonlinearity. It is possitle to transform the diagram of Figure
6.5 to that of Figure 6.7 in the case where éd, = 8y = 0. From the transformed
diagram of Figure 6.7, it is evident that the only requirement on the controller

C to obtain stability can be stated in terms of the input-output map
Q=c(+Po).

In particular, Q must be stable assuring that C stabilizes P, and the intercon-
nection of the map Q with the static saturating nonlinearity must be stable.
One sufficient condition for this is that the operator Q be strictly relatively pas-
sive at the origin to infinity; there are undoubtedly still more relaxed conditions
analogous to the Popov and Circle Criteria [37] that apply in the case where Q
is LT1. However, we shall consider only the situation where C is designed to be

incrementally passive (or positive real), and consequently so is Q
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The remainder of this section is divided into two subsections. The first deals
with the case in which the nominal duty ratio is known, and the second addresses

the situation where the nominal duty ratio is unknown.

6.4.1 Sensitivity Reduction for Case of Unknown Nomi-
nal State Values

Here we consider the case where the nominal duty ratio is assumed to be known
exactly. This assumption is relavent to the case where the output voltage of a
DC-DC converter is specified and the input voltage is measured. In this case, the
required nonilina.l duty ratio can be accurately computed. For instance, for the
up-down converter introduced ia Chapter 2, we have d,, = v,/(v, — V,). (Note
that this formula is valid only in the absence of parasitic resistances, but will
usually result iz a good approximation.) It is generally difficult to accurately
determire the nominal state vector, particularly the components corresponding
o inductor currents, since these scale with the load current. Even in the case
where the load current is accurately measured, there may be unmodeled dynam-
ics associated with the load that prohibit inference of its constant nominal value.
(Identification schemes may be applicable, but will not be considered here.)
With the parametric uncertainty arising only in the nominal state value, the

input-output model (6.10) for the converter can be modified as:

' = Az + (Bzx+b)d
y = (Bz+b)"Qy(z — éz,). (6.13)

The net effect of the uncertainty in the nominal state value is reflected in the
output map in (6.13). We shall take a rather simple approach, noting that it is
mainly low frequency (e.g. unknown constant nominal state value) disturbances
that drive the control system. It is possible to decouple the closed-loop system
from constant disturbances of the form indicated in (6.13) by requiring that
the controller C block DC signals. (See the discussion following Figure 6.6.)

In the framework introduced in Section 6.1, the design can be accomplished by
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specifying a LTI controller ('(s) that is positive real and satisfies ("(s)|,—o = 0. In
making such a control design, it is desirable to also obtain fast transient behavior.
This will permit the closed-loop system to (approximately) reject time-varying
disturbances arising from load and source variations. This problem is addressed

below.

¢
|

Z(s) Z;(s)

?

Figure 6.8: Network Interpretation of Control Design

We attack the design problem with a two-step procedure. First, we demon-
strate how to obtain a family of positive real compensators C(s) satisfying
C(8)|s=0 = 0. Then, we select from this family one compensator that yields
fast small signal transient behavior. One way to view the procedure is by the
analogy with interconnected circuit elements given in Section 6.1. Consider an
impedance representation Z(s) for the small signal input-output behavior of the
plant P. The control design problem can be interpreted as that of specifying
a terminating impedance Z,(s) that has a pole at the origin and that results
in “fast” closed-loop behavior. Note that Z;(s) corresponds to the reciprocal
of C(s) and hernce the requirement that C'(s)|,—o = 0 is equivalent to requiring
that Z;(s) have a pole at the origin. To introduce a family of such terminating
impedances, consider

1
Zi(s) = ¢ + Zi(s). (6.14)

Note that Z;(s) is guaranteed to be positive real if k > 0 and Z(s) is positive
real. The constant k is a free design parameter. The design can be completed by

specifying k and the impedance Z}(s) to terminate the impedance Z(s)+ L with
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satisfactorily fast dynamical behavior. In Section 6.6, we shali demonstrate an
ad hoc, but practically effective method for obtaining a terminating impedance
that results in reasonably fast closed-loop behavior. A network representation
of the control scheme using this design method is illustrated in Figure 6.8. We
apply this design procedure to the fourth order up-down converter (Example 2)
of Chapter 5. The details on obtaining the particular compensator will be saved

for Section 6.6 (Example 3).

Example: - Reduced Sensitivity Control Design for Example 2 Con-
sider the interconnection of the model (6.13) with the compensator (*(s) that

has a zero at the origin given by

s(s +30.2 — j15.2)(s + 30.2 + j15.2)
(s + 38.01 — j43.96)(s + 38.01 + j43.96)(s + 31.06)(s + 4.488)

with all poles and zeros reported in Krad/sec. The model (6.13) here corresponds

2382

(6.15)

to the fourth order up-down converter (Example 2) of Chapter 5 with @, = Q
corresponding to the matrix that defines the energy in the increment. The
eigenvalues of the small signal linearization of this interconnected system are

given by (approximately)

—9.09 + 575.42  Krad/sec,

-11.66 £ 53.98  Krad/sec,

-13.60 + 7.73  Krad/sec, and
—-21.77+ j63.78  Krad/sec.

Note that slowest mode of this small signal model is almost twice as fast as the
slowest mode that was obtained in Chapter 5 using only static compensation.
Details on obtaining the compensator will be given in Section 6.6 (Example 3).

The results of a numerical simulation of a start-up transient using the con-
troller C'(s) are shown in Figure 6.9a). Note that the trace corresponding to the
energy in the increment is not monotonically decreasing; this follows because
the energy in the increment is not a Lyapuonov function for closed-loop opera-

tion. Some additional “energy” is associated with the controller ('(s). To study
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Figure 6.9: Numerical Simulation of Control System with Reduced Sensitivity
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the effects of unknown nominal parameters, a second run was made with the
load current increased by 50%. Traces for this run are shown in Figure 6.9b).
Waveforms for a third run with the load current reduced by 50% are shown in
Figure 6.9c). Note that the system is quite well behaved in the presence of these
significant disturbances. ®

In the next subsection, we study the case where the nominal duty ratio is also
considered an unknown parameter. In the context of Figure 6.6, this corresponds

to the case where éd, # 0.

6.4.2 Unknown Nominal Duty Ratio

Now we shall examine the case where the nominal duty ratio of a DC-DC con-
verter is not precisely known, and the only known nominal value corresponds to
a specified output variable. A natural way to handle this case is with integral
control. This problem can be cast in the framework of the Q-parametrization
described earlier in this section, but we shall not pursue that here. To implement
the .int'egral control scheme, we append an integrator to the plant to integrate
the error in the specified output variable, i.e. we construct the auxiliary state z

such that

' =czx

where cz is the error in the output variable. We then proceed to design a
stabilizing controller for the modified plant using the technique developed earlier
in this chapter and in Chapter 5. For this purpose, consider the augmented

system

&' = Az + (Bz + b)d (6.16)

- T
where:cz[z ],

= A0
A—[c 0J,and

b i )]
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The first step is the specification of a symmetric, positive definite matrix Q
satisfying QA + A*Q < 0. Such a matrix can be determined in the case where A
is stable. Two conditions that are sufficient for this are that (i) the converter he
constructed from DC sources, passive LTI circuit elements, and one ideal switch
pair and (ii) any mode of A at the origin (with eigenvector 7) is unobservable
through ¢, i.e. e¢n = 0. (In the case where the second condition does not hold,
there is no reason for augmenting the system model, since the system already
contains an ‘internal model’ of the constant disturbance.) The first condition
is our generic open-loop stability condition. In the case where 4 is stable, we

determine an appropriate matrix Q and associate the output equation
y = (Bz + b)"Q# (6.17)

with the system model (6.16) to obtain an augmented input-output model that
is strictly relatively passive at the origin to infinity. A control design for the

model (6.16) and (6.17) can now be made as done earlier in this chapter.

Example: Second Order Up-Down Converter of Example 1 Consider
the problem of output voltage regulation of the second order up-down converter
whose model parameters are given in Section 5.1. The parameters for the aug-

mented model with 2z’ = v — v, are given by

- 0 (l_dn)/L 0
A= |-a-dy/cC 0 0

i 0 1 0
) 0 -1/L 0
B =11/ 0o o

0o 0 o
. [ (Vs —va)/L
b = in/C

0

The set of positive definite, symmetric matrices Q that satisfy

QA+ A*Q <0 (6.18)
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can be parametrized with two scalars in this example. Note that, because of the
lossless nature of our model (i.e. all modes of A are on the imaginary axis), the
only solutions to (6.18) satisfy (6.18) with equality. To see that all solutions Q

can be parametrized with two scalars, note that the modal form for A has the

form
0 —Wy 0
J=|w, 0 0]}. (6.19)
0 0 0

Hence all the solutions to the Lyapunov equation

QI +J°Qs=0 (6.20)
take the form Q; = diag{a, a, a;}. Since all the solutions Q to the original
Lyapunov equation can be obtained by transformation from this diagonal struc-
ture, it follows that all solutions are determined by a, and a,. (This approach
to characterizing all solutions to the Lyapunov equation (6.18) was discussed in
Chapter 5 (Section 5.2).)

Another way to think about the design procedure of selecting Q is to realize
that we are specifying the zeros of the transfer function corresponding to the
small signal model for (6.16) and (6.17). Of course, the poles of this transfer
function are determined by A. The problem is to specify zeros that result in a
positive real small signal transfer function. For the case of purely imaginary poles
and a strictly proper transfer function, the zeros must also be purely imaginary,
and alternate with the poles [75]. For this third order example, we see that
the choice of Q amounts to specifying the location of a pair of imaginary zeros.
The two parameters a, and a, then determine this zero location along with a
simple scaling factor. This is a general way of characterizing all solutions of the
Lyapunov equation in the case where the eigenvalues of the (stable) A-matrix
are purely imaginary.

For the particular example with numerical parameters given in Section 5.1,

we have determined a suitable solution

) 0.6872 0 ~576.4
Q= 0 001563 0
5764 0  2.0e10°
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Figure 6.10: Root Locus for Small Signal Behavior of Closed-Loop System that
Includes Integral Control Action

A root locus for the eigenvalues of the small signal model of the control system
where a simple feedback gain is applied to the model (6.16) and (6.17) is shown
in Figure 6.10. Note that with a simple gain of 1.7  10~%, the resulting small
signal eigenvalues are given by —10.0 £ j9.98 Krad/sec and -10.1 Krad/sec. We
shall reserve a numerical simulation for the fourth order example below. We have
limited consideration here to the use of nondynamic feedback in conjunction with
the constructed input-output model (6.16) and (6.17), but dynamical passive
compensation techniques can be applied. See Section 6.6 for this. The reason
for not considering dynamical feedback in this example is that we have obtained
reasonably tast small signal behavior with the nondynamic approach. This holds

true for the fourth order example discussed below, as well. )

Example: Fourth Order Converter of Example 2 Here we consider the
problem of regulating the output voltage of the fourth order up-down converter
in Example 2 of Section 5.2. To implement the integral control action, we
augment the system model with the variable : satisfying 2/ = v, — v,,, just

as in the previous example. To design a globally stabilizing control for the
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augmented system, we first specify the matrix Q. In this example, the five poles
of the small signal model are purely imaginary, and hence, the selection of Q
reduces to specifying two pairs of purely imaginary zeros and a scaling factor.
We have obtained one choice of Q that can result in satisfactory small signal
dynamics with a nondynamic compensator. The root locus for the small signal
eigenvalues of the closed-loop system using a simple gain is shown in Figure
6.11. With this scheme, the small signal eigenvalues can be placed at -11.86 +
71.66Krad/sec,—14.98 + j61.75 Krad/sec, and —14.87Krad/sec by a constant
scalar gain. This is the gain that will be used in the numerical simulations

discussed below.
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Figure 6.11: Root Locus for Fourth Order Converter Control System that Uses
Integral Control

Waveforms for numerical simulations of some start-up transients are dis-
played in Figure 6.12. Figure 6.12a) shows waveforms for a start-up transient
in the case where all circuit parameters are considered known. A simulation for
the case where the load current is reduced by 50% is shown in Figure 6.12b).
Note that in this case, some of the nominal state values differ from those pro-
grammed into the controller, but satisfactory behavior prevails. Figure 6.12c)

exhibits waveforms for the case where the input voltage V, is 33% less than its
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nominal value. In this situation, the nominal duty ratio as well as some nominal
state values are different from those used by the controller. The closed-loop
system remains stable, but there appears to be a dominant slow mode. °

To summarize this section, we have demonstrated two approaches for the
reduction of sensitivity to disturbances arising from uncertain parameter infor-
mation. In so doing, we have also shown how to maintain reasonably fast dy-
namics. The methods fit the framework of the Lyapunov-based control schemes
outlined earlier in the thesis, and hence result in globally stable dynamical be-
havior for the nominal models. However, in the presence of perturbations due
to parametric uhceri;a.inty, the input-output models (6.10) and ( 6.16,6.17) can
lose their property of being strictly relatively passive to infinity. In this case,
although we have not observed instability in the examples, there is not an a
priori guarantee for global (or even small signal) stability. This is the subject of

the next section where stability robustness is examined.

6.5 ' Performance: Stability Robustness

In this section, we investigate the large signal stability robustness of the control
strategies introduced earlier in this and the preceding chapter. This topic is
closely related to the issue of system sensitivity discussed in the previous sec-
tion, but differs in that here we study conditions under which global stability is
maintained in the presence of uncertainties and disturbances. We shall develop
schemes similar to those of the previous section for sensitivity reduction, but
that also have excellent robustness properties. The presentation here is divided
into three main subsections, and a summarizing subsection.

The first subsection investigates the effects of uncertain or unknown cireuit
parameters such as inductor, capacitor, and resistor values. The focus is on
how to select an appropriate quadratic Lyapunov function ;x*Q;x that results
in large signal stability robustness of the Lyapunov-based control scheme. We
emphasize the fact that the choice Q, = Q, where Q defines the form of the

energy in the increment, results in excellent robustness properties. The second
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and third subsections deal with uncertainties in the nominal state values and
the nominal duty ratio. These are often the dominant uncertainties that need
to be considered in robust control design since these are generally due to fac-
tors external to the converter (such as the load). To handle these uncertainties,
we develop a self-tuning adaptive control algorithm that stably estimates un-
known nominal state values required in the Lyapunov-based centrol schemes.
The resulting behavior can be guaranteed to be globally asymptotically stable,
and the small signal dynamics can be made adequately fast as demonstrated in
examples.

A general frainevirork for studying the stability robustness of control systems
of the type considered here was suggested in [62], using the parametrization of
all stabilizing controllers for a given stable plant. The robustness result of [62] is
based on the small gain theorem (see [37]), and requires that the perturbations
in the plant input-output map satisfy a certain bound. Such a bound is difficult
to obtain for the plant models that we consider for two reasons. Firstly, it is
generally difficult to compute the gain (or incremental gain) for any nonlinear
operator. Secondly, the perturbations that need to be considered are generally
large, as can be seen by considering a small signal linearization for the plant. For
instance, uncertainty in the position of a pole near the Jw-axis leads to a large
perturbation in the linearized plant model for frequencies near the perturbed
pole. Because of the structured nature of the uncertainties affecting the nominal
plant models of interest here, and the difficulty in applying the framework of
[62], we study the effects of these uncertainties as outlined in the preceding

paragraph.

6.5.1 Uncertainties Arising in Circuit Parameters

In this subsection, we deal with uncertainties that prohibit accurate knowledge
of the matrices A, B, and b in the model (6.1) introduced in Section 6.1. For
the Lyapunov-based control schemes of this chapter and the previous one, the

ramification of this type of uncertainty emerges in the specification of the matrix
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Q, that appears in (6.1). Tn particular, we shall investigate conditions under
which the model (6.1) remains strictly relatively passive to infinity when the
available data for control design consists of imperfect model data, i.e. 4, B, and
b. Since we are not concerned with uncertainties in the nominal state valueés, we
assume that z is precisely known. Hence, uncertainty in determining y arises
only in determining the vector @,(Bz +b). In evaluating the vector Q,(Bx +b),
we would normally first determine Q(Bz + b) and then multiply on the left by
Qlof’ where Q is the model value of Q. It was demonstrated in Section 5.3
that it is generally possible to determine the vector Q(Bz + b) quite accurately.
We shall give some attention to the situation where parasitic resistances affect
the measurement of Q(Bz + b), below.

With the assumption that Q(Bz + b) is known, the underlying input-output

model takes the form

' = Az + (Bz +b)d
y = (Bz+b5)'QQ'Q,x. (6.21)

The simplest and strongest condition for the model (6.21) to be strictly rela-
tively passive to infinity is that the control design is based on the energy in the
increment. In this case we would take Q, = Q (since the best we can do is
to use the model data). Then, 1z*Qxz is a storage function for (6.21), leading
to the conclusion that the model is strictly relatively passive to infinity. Note
that such a storage function gives an explicit lower bound on the energy in the
increment between a given trajectory with initial condition z(0) = 0 and the

nominal constant trajectory with = = 0. To see this, consider the calculation:

T
W, = J{’ yd di

[ (ire)a

%m(T)‘Qz(T). (6.22)

See Appendix A and preceding sections for more details on this type of calcu-

lation. We shall discuss more general conditions for the perturbed model to
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remain strictly relatively passive to Luinity in the case where an alternative
storage function is selected. (Recall that one of the main reasons for selecting
an alternative storage function was to obtain faster transient behavior.) First,
we study the effects of parasitic resistances on the measurement of the vecto.r

Q(Bz +b), and the resulting implications for the model (6.21) in the case where

-~

Q=Q.

[
©

Figure 6.13: Effect of Parasitics on Measurement of Q(Bzx + b)

In order to study errors in the measurement of the vector Q(Bzx + b), we
need to recognize how this vector is measured. In Section 5.3 we discussed two
methods for this. The second and supposedly preferred method involved a sim-
ple measurement of circuit state variables associated with the switch branches.
This scheme was based on two topological conditions requiring the absence of
resistances participating in a certain loop and in a certain cutset involving the
switch branches. In a typical (idealized) switching converter model, there are no
resistances aside from those associated with the load. Hence, we would usually
like to apply this second method for measuring Q(Bz + b). However, para-
sitic resistances (e.g. switch resistance and capacitor equivalent series resistance
(ESR)) will often lead to the violation of the necessary topological conditions.
It will be argued that these parasitics typically do not destroy the passivity
property of the model (6.21) in the case where Q=0Q. F irst, we illustrate
with an example the type of measurement errors that arise because of parasitic

resistances.
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Example: Effect of Parasitic Resistance on Measurement of Q(Bxr + b)
Consider the canonical cell shown in Figure 6.13. Recall that Q(Bx + b) is
the amount (modulo sign) that the vector of the derivatives of the inductor
fluxes and capacitor currents changes at the instant of a switch transition. In
the absence of the switch resistance R,, the vector Q(Bx + b) takes the form
[—t1 (vy — o) 4y]* as previously calculated in Section 5.3. However, in the pres-

ence of the parasitic switch resistance, Q(Bx + b) becomes
[~ (v - R,iy — vo) il]‘-

If we attempted to measure the elements of this vector directly on the canonical
cell as shown in Figure 6.13, ignoring the presence of the parasitic resistance, our
measurement would result in the original unperturbed value of Q(B« +b). The
point illustrated by this example is that the error incurred can he summarized

with the error term
Q(8B)z = Q(Bz + b) — Q(Bx + b). (6.23)

Note that the term 8B in (6.23) need not necessarily be the perturbation in the
B matrix in the model (6.21). In fact, the obtained measurement can depend
upon the instantaneous switch position. To overcome this difficulty, we shall
assume a form for a bound on §B in terms of the perturbation in the B matrix,
as discussed below. °

Recall from Chapter 4 where the structure of the state-space averaged model

was studied that the matrices 4 and B in (6.21) are given by

A = -Q7'[(1-du)Ho + d.H| (6.24)

B = -Q7'[H, - H, (6.25)
where Hy and H, are hybrid representations for the resistive multiport in the
partitioned circuit corresponding to the two switch configurations. Suppose that
our design (and measurement scheme) is hased on the model values

A = -Q7Y(1 - dy)Hy + do 1) (6.26)
= —Q”‘[fll — Hy (6.27)

oo
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which neglect all parasitic resistances. We shall make two assumptions on the
hybrid matrices Hy, flo, H,, and H,, and on the measurement that is obtained.
Firstly, we assume that the effect of the parasitic resistances is only to increase

(in the positive definite sense) the value of the hybrid matrices, i.e.

Hy, < H,
H, < H,. (6.28)

This holds in the case where the nominal converter model is lossless, i.e. where
Hy and ffl are skew-symmetric. The second assumption is that the effect of par-
asitic resistance is to force the actual measurement to be somewhere in between
the true value —[H; — Holz + Qb and the model value for this measurement

—[I?l - I?o]:c + @Qb. That is, measurement error can be summarized in the form
Q(éB)r = [6H, — §H,|x ' (6.29)

where § H, and § H, are bounded in the positive definite sense as follows

0 < 6H, < H,- I,
= _t 6.3

0 < 6Hy < Ho—-Hy (8.30)

(The right-hand sides of (6.30) are positive semi-definite as a result of the first

assumption.) One case for which the second assumption holds is where the

actual measurement obtained is given by
— [Hy — Holz + Qb. | (6.31)

This was the case in the example of Figure 6.13. Note that although we have
not given general conditions for these two assumptions to hold, we have not
discovered a reasonable example where parasitic resistances cause the assump-
tions to be violated. Furthermore, in the process of making a control design,
it is possible to check that these conditions are not violated for a certain set of
parasitics.

With the groundwork in place, we examine the model given by

' = Az + (Bz +b)d
y = (Br+b)'Qz - [Q(éB)z]'=. (6.32)
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It turns out that the model (6.32) is strictly relatively passive to infinity, if the
two conditions above ar satisfied. This can be verified by considering 1z°*Q=
as a storage function. In particular, by differentiating this function along the

system trajectories, we find

d 1 * 1 * * ]
= (51' Q=) - 52" 1Q4 + 4°Qle + [QUEB)e]*xd + yd
= —z'((1 —d,)Hy + d.Hy|r — v*[§H, — 8Holrd + yd
= —z°((1 —d,)Ho — (6§Ho)d + d. Hy + (6H,)d)z + yd
(6.33)

Because of the bounds (6.30) and the duty ratio constraint —d, < d < 1 — d,,
the first term on the right-hand side of the last line of (6.33) is nonpositive,
and hence we have demonstrated that the model (6.32) is strictly relatively
passive to infinity. The conclusion is that parasitic resistances cannot. destroy
the passivity property of the model (6.1) in the case where we take the energy
in the increment as a storage function, and we use the simplest measurement
scheme to determine Q(Bz + b). Now we return to the general case ), # Q,
and ignore the uncertainty in determining Q(Bz + b).

A sufficient condition for the model (6.21) to be strictly relatively passive to
infinity is that there exist a positive definite quadratic storage function %r‘él:c
(with Q, symmetric) for the system (6.21). The notation here (tilde) is meant to
suggest that Q, approximates Q, since ;z*Q,z would have been a valid storage
function in the case of perfect parameter information. Such a quadratic form

would necessarily satisfy

% %-"3'@12) = %z'[QIA + A*Qilz + 2*[Q1 — Q:Q7'Q|(Bx + b)d + yd. (6.34)

In order for %w‘le to be a storage function for (6.21), it must be true that Q,
is positive definite and that the sum of the first two terms on the right-hand
side of (6.34) is nonpositive for all admissible values of d and r. Note that z is
permitted to take on any value in R", but d is confined to a closed interval of

the real line. Two constraints on the matrix Q, emerge from this requirement,
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namely

[Ql —QIQ_]Q]b — 0, and (6.35)
%(Q1A+A‘Q:)+(Ql—Qné“Q)Bd <0 (6.36)

where (6.36) holds for all admissible values of d. In general, there is an open set
of positive definite, symmetric matrices that satisfy the first constraint (6.35).
With some linear algebraic manipulation, it can be shown that the symmetric
matrix Q; that most closely approximates M = Q,Q~'Q in the Frobenius norm

and satisfies (6.35) is given by
= - Mbb*M bb*| (M + M* bb*
w3

_ _ _ 6.37
@ =350 b*b 2 b*b (6.37)

Note that Q-l = M if M is symmetric. Furthermore, it is clear from this formula
that Q, is positive definite if M is positive definite. In general, we expect this to
be the case since it is typically possible to have accurate parameter information
on the elements of @, which correspond to the values of the inductors and the
capacii;ors in the switching converter. In the case where Q is krown, we would
have M = Q, which is positive definite by design. We shall focus on the second
constraint (6.36) with the idea that the matrix Q, closely approximates Q;.

In the case where there is no uncertainty arising from the reactive portion
of the converter circuit, i.e. Q, = @Q,, the satisfaction of the second constraint
(6.36) depends solely on the uncertainty in the resistive portion of the circuit.

The second constraint reduces essentially to the Lyapunov equation
Q,A+ A*Q, <. (6.38)

In the remainder of the discussion, we shall consider issues in the selection of
the matrix @, which lead to robust satisfaction of the constraint (6.36). Note
that the selection of Q, is necessarily based on the model parameters 4, B, and
b. It is well known [13] that, in the case where A i~ asymptotically stable, there

exists a symmetric, positive definite solution @, to the Lyapunov equation

QA+ A'Q,=-P (6.39)
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where P is positive definite and symmetric. In the case where A4 differs from the
underlying matrix A by an additive term,i.e. A = A + §4, the Lyapunov equa-

tion (6.39) readily leads to the following bound on the permissible uncertainty

6A:

O’m,',,{P}
Omaz{6A} < m

where o{e} refers to the indicated singular value. The relation (6.40) gives an

(6.40)

explicit bound on the size of perturbations (due to resistive uncertainty) in A
that do not destroy the passivity property of (6.21).

One of the main reasons for selecting a matrix @, # Q would be to shape the
small signal tranjsient behavior. The above result indicates that in so doing, it is
generally possible to pick @, to permit some margin of uncertainty in A. Note
that this result does not apply to control designs that use integral control since
the augmented A-matrices that arise in those designs are never asymptotically
stable. In many cases the most significant perturbations in the A-matrix are
highly structiied. We discuss a robustness result for these perturbations, below.

The perturbations due to resistive uncertainty in the converter circuit are
generally (i) minor perturbations due to parasitics and (ii) large perturbations
associated with load uncertainty. Here we focus on the large perturbations. In
particular, there may be a single diagonal entry in A that corresponds to a load
resistance. This element may take on a range of values depending on how heavy
the load is and to what extent the load is resistive. In any case for a particular
uncertainty that manifests itself as a rank one perturbation in 4, we can write

the perturbed A-matrix in the form
A, = A + €A, (6.41)

where € € [0,1]. Now the problem is to solve a family of simultaneous Lyapunov

equations given by
Ql(A+EA1) +(A+6A1).Q1 = —Ps (642)

where @, is symmetric and positive definite, and P, is symmetric and nonnega-

tive definite for each e.
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A sufficient condition for the existence of a solution to (6.12) can be stated in
terms of a factorization for A4,, i.e. A; = bc where b is a column vector and c is a
row vector. It turns out that if the transfer function —¢(sI - A,) 'b is positive
real, then (6.42) has a solution. This follows from the fact that if -c(sI - 4) 'b

is positive real, there exists a positive definite matrix @, such that

A+ AQ, < 0
c = -b'Q,. (6.43)

It then follows that Q,(A +€A,)+(A+€A;)*'Q; < 0 for all nonnegative e. (Note
that, because of the tesult of Chapter 4 on open-loop stability, the matrix Q that
defines the form of the energy in the increment is always a solution to (6.43).)
The equations (6.43) give a straightforward method to check if a given matrix
Q; generates a control scheme that is robust to a large structured perturhation

of A. We illustrate this with one of our earlier examples.

Example: Integral Control of Up-Down Converter with Uncertain
Load Consider the integral control scheme applied to the second order up-
down converter as done in Section 6.4. In the case where the load consists of a

current source and a linear resistor of value R, the augmented A-matrix takes

the form
0 (1-d,)/L 0
A=|-(1-d,)/C -1/RC 0
0 1 0

Suppose the value of R is not known because it is uncertain what fraction of the
load current is due to the current source. This leads to structured uncertainty

in A of the form

0 0 O 0
A]_: 0 -1 0 = -1 [0 1 0]=b101.
0 0 0 0

When we first studied this example, we selected a matrix @, that was given by

06872 0  -576.4
Q.=| o 001563 0
—5764 0  2.0e10°
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For this selection it is already known that @, A+ A*Q, < 0 where A corresponds
to the case R = oo, and hence the first condition of (6.43) is satisfied. It
turns that the second condition of (6.43) is also satisfied (to within a scaling
factor). We conclude that this choice of @, leads to robustness with respect to
uncertainties in the load character. In particular, the control scheme of Section
6.4 (reconsidered here) will result in globally stable behavior, regardless of the
composition of the load. The load current may be due to any combination of
resistive and current source components; all that is required is that the nominal
value of the load is known. (The case where the nominal value of the load
current is unknown is considered below.) °

To summarize this subsection, we have investigated the effects of uncertain
circuit parameters on the passivity property of the model (6.1). The strongest
result available is that designs that are based on the energy in the increment are
inherently robust to these uncertainties. Some care is needed in choosing alter-
native Lyapunov functions. However, the preservation of the passivity property
of (6.1) is undoubtedly a stronger condition than is necessary for the preserva-
tion of iarge signal stability. In the next subsection, we investigate the effects
of unknown nominal state values, and methods for dealing with these. Most of
the following discussion will assume the use of control based on the energy in

the increment.

6.5.2 Adaptive Control Method to Handle Uncertain
Nominal State Values

Here we consider control design for the model (6.13) introduced in the previous
section for the case where the nominal state vector is unknown, but constant.
It is assumed that the nominal duty ratio is exactly known. The ‘self-tuning’
method to be used is very similar to that of Section 6.4 where a blocking zero at.
DC was introduced into the controller, but will permit the conclusion of global
asymptotic stability in the presence of uncertain nominal state values. The

presentation to be given selects a form for the adaptation mechanism at the
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outset, and subsequently justifies it. It is possible to motivate the use of this
adaptation mechanism by a Lyapunov argument, but this will be omitted.

To implement the self-tuning scheme, we shall include as part of an aug-
mented state vector, an estimate Zn(t) of the constant nominal value of th'e
state vector for the original plant. We can equivalently represent this estimate

by its error, i.e. 6z,(t) = Zn(t) — 2. The update law for éz,(1) is selected to be
%(6:0,,) = -K~'Q,(Bz +b) (6.44)

where K is a symmetric positive definite matrix and Q, is as previously spec-
ified. The rationale for this adaptation mechanism arises from the augmented
state-space model for the perturbed model (6.13) that includes the error in the

estimate of the nominal converter state vector as a part of its state, i.e.

' = Az 4 (Bz +b)d
(6z,) = —K'Q,(Bz + b)d
y = (Bzx4+b)'Qy(z — éx,) (6.45)

Note that y can now be determined without any uncertainty arising from the

unknown nominal state values since
T~ bz, = (24 — 7,) — (£n -z,) ==z, - %,,

and z; can be measured while T, is stored in the controller. Recall that it is
generally possible to obtain an accurate measure of Q(Bz + b) (see Section 5.3),
which in turn can be used in the computation of Q,(Bz +b), as discussed earlier
in this section. It turns out that the model (6.45) is strictly relatively passive

at the origin to infinity, as can be seen by taking as storage function
1 1 .
V = Qz‘Ql:c + 5(61!,.)’1\(61'.,,). (6.46)

Therefore, it is possible to embed the augmented plant model (6.45) in a con-
trol loop with an incrementally passive compensator that takes saturation into .
account, as done elsewhere in this chapter. Before studying some examples, we

comment on certain features of this augmented model.

162



As previously noted, this scheme is very similar to the method introduced
in Section 6.4 for reducing DC sensitivity by introducing a blocking zero at DC
into the compensator. The method of Section 6.4 for introducing a DC zero into
the compensator was actually to place a simple integrator in parallel with the
input-output model for the plant. Recall that in the analogy with circuit models,
we placed an impedance 1/ks in series with th= impedance model Z (s) for the
plart. Since the “current” is the input for this model, the additional term 1/ks
amounts to a parallel element if one considers a block diagram representation.
Here, we use a slightly more sophisticated version of this idea by replacing the
simple integrator with a vector of integrators whose rates are controlled by the
state = through the vector Br + b.

One possible choice for the matrices @, and K in (6.45)is Q, = Q and K =
kI where Q is the matrix composed of inductance and capacitance parameters
that defines the energy in the increment. In this case, we would require a
measurement of the vector Q(Bz + b), and as noted in Section 5.3, it is usually
possible to accurately measure the vector Q(Bx + b). Errors due to parasitic
resistances, as discussed in Subsection 6.5.1, do not destroy the relative passivity
property of (6.45). To see this, consider the perturbed version of (6.45) that takes

into account this type of parasitic:

' = Az +(Br +b)d
(6z,) = —k'Q(Bzx +b)d
y = (Bz+b)Q(x ~ éx,). (6.47)

Differentiating the storage function (6.46) along the trajectories of (6.47), we

obtain

%V - %m‘[QA + A*Qlx - %r‘[Q(cSB) +(6B)*Qzd + yd. (6.48)

The first two terms on the right-hand side of (6.48) are nonpositive when the
parasitic resistances satisfy the conditions outlined in Subsection 6.5.1. The
result of this choice for Q; and K will be excellent stability robustness. In the

examples to be studied, we shall make these particular selections for Q, and K.
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Example: Estimation of Nominal Inductor Current in Simple Up-
Down Converter In this example, we apply the adaptive control scheme to
the second order up-down converter whose parameters are given in Section 5.1.
We now assume, however, that the load is unknown but constant in the steady
state. As a consequence, the nominal inductor current is also unknown. This
is the parameter that our self-tuning mechanism will estimate. In this example,
it is assumed that the input voltage V, is known (i.e. measured), the nominal
output voltage v, is defined by the regulation problem, and the nominal duty
ratio d, is known. (The nominal duty ratio can usually be determined from V,

and v,.) For the choices Q: = Q and K = kI, we work with the augmented

model
g 0  (1-d)/L 0 i
v’ = | -(1-d,)/C 0 0 v +
(82,) 0 0 0 (61,)
(Ve —v)/L
i/C d
"k-l(Vo - )
y = (Vi— v — (6in)} +ir(v — va). (6.49)

Note that in this model, the quantities without subscripts are deviations from
nominal, the quantities with subscript t are total variables that can be measured,
and the quantities with subscript n are ncminal variables. We only attempt to
estimate the nominal inductor current since the other nominal state variable
(the capacitor voltage) is known. The output y of this model can be determined
exactly since ¢ — (61,) is precisely i, — 1,,, i.e. the difference between the actual
inductor current and the present estimate of the nominal value of this current.
The control design can be completed by specifying &k > 0 and a positive real
compensator for the system (6.49). The issues concerning small signal transient
behavior are analogous to those dealt with in Section 6.4.

For this example, we can obtain reasonably fast behavior with a simple static
feedback that incorporates the saturation constraint. For example, with a nomi-
nal load current of 2amps, the eigenvalues of the small signal linearized model can

be placed at —7.713 + 712.9Krad/sec and —11.36Krad/sec by selecting k = 2778
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and the unsaturated gain a = .004. Other parameter choices can result in still
faster small signal behavior. A numerical simulation of a start-up transient us-
ing these parameters is shown in Figure 6.14. Note that the initial condition for

the estimate of the nominal inductor was taken as zero. e
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Figure-6.14: Start-Up Transient in Second Order Converter Using Adaptive
Control Scheme

A potential problem of the adaptation scheme (6.44) for the case where
more than one parameter is to be esiimated is that there may be redundant
parametrization. A consequence of this is that the smajl signal model of (6.45)
becomes unobservable. This can result in nondecaying (unobservable) modes
associated with the adaptation mechanism. Of course, since the nondecaying
modes are unobservable, these will have no effect on the internal behavior of the
converter circuit. We would like to be assured, however, that we do not have a
problem with divergence in the adaptation mechanism.

A first step toward this end is to recognize redundant parametersin the adap-
tation scheme, and to eliminate them. This was done in the previous example
by not attempting to estimate v,,. However, there are cases where the model in-
cluding the adaptation mechanism does not have parameter redundancy, but the

small signal linearization is nevertheless non-minimal. It is possible in this case
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for the stable closed-loop system to come to rest with éz,, # 0. We shall need to
assure that, in the presence of wideband disturbances that drive the closed-loop
system, the estimates of the nominal state parameters do not diverge.

Oue route for proving that parameter estimates do not diverge is to demoii-
strate that the governing dynamics for the estimates is exponentially stable
when (persistently exciting) external driving terms are present {64]. This is in-
deed the case for our adaptation mechanism, as can be seen by considering the

error dynamics that govern the behavior of éz, (with unsaturated duty ratio):

%(63:,,) -= —Q(Bzr +b)d
= —Q(Bz + b)C(s){(Bz + b)*'Q(éz,)} +
Q(Bz + b)C(s){(Bz + b)*'Qx}. (6.50)

The mixed notation involving both time domain and frequency domain vari-
ables is becc;ming standard in the literature on adaptive control, see [64]. What
is meant by this notation is that C(s) is a LTI (convolution) operator. The
model (6.50) is obviously not a complete state-space model, but only a model
for the dynamics that govern the behavior of the estimation error with the other
states viewed as time-varying parameters. The compensator (!(s) in our design
methodology is LTI and positive real. Consider a homogeneous system govern-
ing the behavior of 6z, composed of only the first term on the right-hand side
of (6.50). It is well known [64] that two conditions that are simultaneously suf-
ficient for the boundedness of §z, in (6.50) is that the homogeneous system is
exponentially stable, and that the second (driving) term on the right-hand side
of (6.50) is bounded. Note that the driving term is bounded since the converter
states converge to their steady state values (r = 0). This was argued at the
outset.

Sufficient conditions [64] for the exponentially stability of the homogeneous
system are that C(s) be strictly positive real and that the vector Q(Bx 4 b),
viewed as a function of time, be persistently exciting. The compensator will he

strictly positive real in all practical designs with our framework. We expect that
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the elements of the vector Q(Bz + b) will contain a broad spectrum of frequen-
cies because of the switching action of the converter and because of external
disturbances (e.g. time-dependent load disturbances) that drive the converter
system. The conclusion is that the parameter estimates will not diverge.

Despite this argument for parameter non-divergence, we explore below an
alternative method for guaranteeing parameter convergence. The alternative
method will become essential in the next subsection, where we consider adaptive
schemes to handle an unknown nominal duty ratio. With these schemes, there
will be no a priori global stability results available, and so local exponential
stability will be required.

There is a way to guarantee parameter convergence in our self-tuning scheme
in the absence of persistently exciting signals. In particular, we can modify the

adaptation mechanism (6.44) as follows:
d 1 -
E(éz") = ~K7Q(Bzx +b) — y(z, — ;) (6.51)

with 'y.> 0. (Recall that &, —z, = (6z,) — z.) The effect of the additional term
is to impose exponentially stable behavior on those modes of the parameter
estimator that are unobservable in the small signal model. For the remainder
of the discussion, we shall take Q, = Q and K = kI , as done in the example
above. With this update law the associated augmented state-space model takes

the form

' = Az + (Bz +b)d
(§2a) = ~7QBz +b)d - 1{(62,) - }
y = (Bz+b)'Q(z - bz,) (6.52)

In the case where there is some loss associated with each state in the converter
circuit, i.e. QA + A*Q < 0, the associated augmented state-space model can
be guaranteed to be strictly relatively passive to infinity by picking 4 small

enough. To see this, consider the derivative of the storage function V = 12°Qx+
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1k(8z,)*(éz,) along the system trajectories:

d 1
d_tV = 5:::‘(QA + A'Q)z + ky(8z,) T — ky(bz,)"(62,) + yd. (6.53)

Now the input-output model (6.52) is strictly relatively passive if the sum of
the first three terms in (6.53) is nonpositive. This can be assured by making 4
small enough if Q4 + 4°Q < 0.

Note that the small signal linearization of (6.52) will generally be unobserv-
able, but the unobservable modes will be exponentially stable in the absence of
any excitation.. The issues concerning small signal transient behavior are essen-
tially the same as those for the model (6.45). In particular, we can generally
place the s*gniﬁcant. (i.e. observable) modes reasonably well with a positive real
compensator C(s), while the unobservable modes do not affect the behavior of
the internal converter states. We illustrate the use of this modified adaptive

scheme below.

1t

Figure 6.15: Up-Down Converter with Parasitic Resistance

Example: Adaptation Scheme for Two Unknown Nominal States in
the Up-Down Converter Here we consider the application of the adaptive
control scheme outlined above to the up-down converter of Figure 6.15. It will
be assumed that the input voltage V, is known, and that the nominal duty ratio
is calculated using an idealized model that omits parasitics, i.e.

Up

d,,:vn_va.
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However, because of the parasitic series resistance r, associated with the induc-
tor, the steady state capacitor voltage becomes

dn
1-d,

r:Iload
V’ * (1 - dn)2

where I;,,q4 is the total steady state load current.” Because of the dependence

Vy =

(6.54)

on the load current and the value of the parasitic resistance, it is not generally
possible to know the value v,,. We are then led to consider an adaptive scheme
that estimates values for both i,, and v,. Since the converter is assumed to
have some resistive component in its load, we can be sure that Q4 + 4*Q < 0.
Therefore, we can apply the modified adaptive scheme (6.52). We shall use the
same gain pa.raﬁleters as in the previous example. The resulting smal! signal
eigenvalues are nearly identical, except for an additional mode controlled by the
constant 7.

We first study the large signal behavior of the converter under this adaptive
control a.igorithm. Figure 6.16a) shows a start-up transient of the converter with
this control scheme for the case where all initial states in the controller are set at
zero. Note that the converter states i and v rapidly approach their steady state
values, while the states corresponding to the adaptation mechanism i, and @,
exhibit a slow mode. This siow mode does not affect the converter states. Note
that the steady state value for v (and for #,) is approximately -8.95 volts, which
is slightly off from the design value of -9 volts. A longer simulation is required
to show that 9, and 7, actually approach their steady state values. To see that
these parameter estimates do indeed converge, Figure 6.16b) shows a trace of
the sum of the squared error in these two quantities, obtained in a longer term
(one second) simulation. o

The adaptive control scheme presented here combines nearly all the best fea-
tures of the Lyapunov-based control design methodology studied in this and the
previous chapter. In particular, by choosing to hase the control design on the
energy in the increment, the closed-loop control systems that result are inher-
ently robust to circuit parameter uncertainty. This follows because the model

(6.45) is guaranteed to be strictly relatively passive to infinity for any set of
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Figure 6.16: Start-Up Transients Under Adaptive Control Scheme that Esti-
mates Two Unknown Parameters

(passive) circuit parameter values. (The model (6.52) can also be guaranteed
to be strictly relatively to infinity for any set of passive circuit parameters, pro-
vided QA + A*Q < 0. That is, there is some dissipation associated with each
state in the open-loop converter.) Further, with this choice for the Lyapunov
function, the closed-loop converter system is robust to arbitrary interconnec-
tion with other incrementally passive circuit elements. The additional elements
would simply be integrated into a modified and/or augmented system model,
but the form of the variable y would remain unchanged. (Recall that the variable
y depends only upon the states that form the canonical cell of the converter.)
Sensitivity to unknown nominal state values is not an issue since these are explic-
itly estimated, and incorporated into the control scheme. Finally, it is possible
to obtain adequately fast sinall signal transient behavior by applying a positive

real, dynamical compensator with the model (6.45) or (6.52). See tke following
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subsection for an approach to designing such a positive real compensator.

The method mentioned above is based on a particular small signal lineariza-
tion for the model (6.45). Since this small signal linearization is dependent upon
a nominal circuit model including the load, it is possible that the small signal
dynamical behavior will vary widely with the steady state operating condition.
To compensate for this, it is possible to design a family of parametrized compen-
sators that is applied to the model (6.45) or (6.52). The appropriate member of
the family can be selected via a gain scheduling technique, possibly implemented
with a look-up table. To assure that the resulting time-varying compensator is
incrementally passive, we can require that it has a circuit synthesis with a fixed
set of reactive elements, but programmable resistors. This topic remains as a
subject for future work.

The main shortcoming of the method described above is the requirement. that
the nominal duty ratio be known. How restrictive this requirement is depends
on the application. In the following subsection, we consider adaptive methods
for handling an unknown nominal duty ratio. First, we examine some of the

issues involved in determining the nominal duty ratio for a specific example.

r, a
+ D_Q l
: . Ti’

Figure 6.17: Up-Down Converter with Parasitic Elements

I,

Example: Effects of Parasitics on Determining Nominal Duty Ratio
The up-down converter shown in Figure 6.17 includes a linear resistance r, to

modei the on-resistance of the actively controlled switch (e.g. MOSFET), and a
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voltage source to model the drop across the passive switch (e.g. rectifier). These
models for the parasitic elements are only selected for the purpose of illustration.
With the modeled parasitic elements, the nominal capacitor voltage v, takes the

form

dn . Ia
O (s . 58
=T, (v, g d,,) +td (6.55)

It is possible to solve (6.55) for d, to obtain a functional relationship for d, in
terms of the parameters V,, r,, I,, and vy and the desired capacitor voltage r,,.
Naturally, this relationship will be sensitive to errors in the parameters and to
erroneous modéling_ in Figure 6.17. The algorithms outiined in this subsection
will result in regulation at the operating point determined by the commanded
nominal duty ratio, and hence static errors can result from imperfect modeling.
For those applications that cannot tolerate such errors, we consider in the fol-
lowing subsection an adaptive control scheme that can handle uncertainties in

the nominal duty ratio, as well as in the nominal state values. .

6.5.3 -Adaptive Control Methods for Uncertain Nominal
Duty Ratio and Uncertain Nominal State Values

In the light of the preceding subsection and Section 6.4, two approaches for the
robust regulation problem involving uncertainties in the nominal duty ratio and
in the nominal states are evident. Firstly, it is possible to append the adaptive
mechanism (6.44) or (6.51) to the state-space model that is already augmented
to realize integral control action. The purpose of the additional augmentation is
to robustly stabilize the system at a set of feasible operating points. Secondly,
it is possible to implement a self-tuning adaptive control scheme that estimates
the nominal duty ratio along with the nominal state values. It turns out that
we cannot conclude global stability (in general) for either of these schemes.
However, the first approach, using integral control, can be shown to lead to
robust stability for small signal operation, while no conclusions are available
for the second approach. This will be elaborated in the comparison of the two

approaches below.
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Integral Control with Adaptation for Unknown Nominal States

One possibility for obtaining robustly stable behavior in the presence of un-
certainties in the nominal duty ratio and in the nominal states of a switching
DC-DC converter is by appending the adaptive mechanism (6.51) to the inte-
gral control algorithm introduced in Section 6.4.2. The appropriate input-output

model that needs to be considered for this approach is given by

' = Az + (Bz +b)(d + éd,)

/

Z = cz
(6z,) = ——lI;Ql(Bz + b)d — y(éz, — 7)
y = (Bzx +b)°Qi(zx — bz,) + (Bx +b)°qz (6.56)

where we have selected the estimator update gain as K = kI. In the model
(6.56), the variable z is the integral of the error in the variable cr, and the

matrix @ of Section 6.5.2 is split into its various components, i.e.
A_ |G og
Q= [ ¢ 8l (6.57)

0 is a scalar entry in the matrix Q, which previously had not been partitioned

as required here. (Recall that Q is selected to satisfy QA+ A*Q < 0 where

40
=17

is the A-matrix augmented to account for the integral control action.) Natu-
rally, we would only attempt/to estimate nominal values for the converter states
contained in z, and in many cases only a small subset of these nominal values.
Note that the purpose of the integral control action is to make the system in-
sensitive to static (and low frequency) disturbances that arise from uncertainty
in the nominal duty ratio.

It turns out that a control system that interconnects an incrementally pas-
sive feedback with the model (6.56) will lead to globally stable behavior in the
presence of uncertainties in the nominal operating condition provided the nom-

inal duty ratio is known, i.e. 8d, = 0. No general conclusions can be made for

173




globally stable operation in the case where the nominal duty ratio is unknown.
However, local stability is preserved for small enough perturbations éd,,. These
comments are elaborated helow.

Firstly, it is easy to see that a control scheme that applies incrementally
passive feedback around the model (6.56) (realizing the saturation constraint as
in Section 6.1) results in globally stable behavior for the case where 8d, = 0.
This follows from the fact that in this case this model is strictly relatively passive

to infinity, which is verified by taking as a storage function
1_,~ 1 1 1
5:7:'Q5: + Ek(ézn)‘(csa',,) = é(z'le +2z%qz + 62%) + Ek(ﬁ:c,, )'(ér,). (6.58)

Note that in implethenting such a control scheme, it is important to supply
the best possible a priori estimate of the nominal duty ratio since this has
implications on the stability properties. This is an essential difference from the
case of linear feedback control where the addtional state = would be scaled and
combined linéa.rly with any arbitrary a priori estimate of the nominal duty ratio.

Secondly, in the case where the nominal duty ratio is imprecisely known,
the model (6.56) generally loses its (relative) passivity property. However, it
is possible to design the control system assuming the nominal duty ratio is
known, and to make the resulting system with known duty ratio exponentially
stable. Note that in making the small signal model asymptotically stable in
the preceding subsection, we actuall; made the system exponentially stable.
For this reason, the modified adaptation mechanism (6.51) (rather than (6.44))
is required to assure exponential stability for the case where the duty ratio is
known. In this case, the local stability of the system is robust to small structured
perturbations, namely those perturbations that do not change the order of the
system. (This is a general property of dynamical systems [76].) Note that it is
generally not possible to guarantee global asymptotic stability.

A theory for determining the regicn of attraction in the state-space for a
locally stable equilibrium point (or other limit set) has emerged recently in the
literature [77,78,79]. A consequence of this theory for a system that has a unique

stable equilibrium point is that the equilibrium is stable in the large if there
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are no other limit sets, and no trajectories diverge (asymptotically approach
infinity). It is often possible to conclude that a system that incorporates integral
control has a unique equilibrium, but it is generally difficult to rule out the
existence of nonstationary limit sets such as limit cycles and strange attractors.
We shall discuss this further in Chapter 8 where directions for future research

are considered. Next, we study an example that applies a control based on the

model (6.56).

Example: Combined Integral and Adaptive Control for Second Order
Up-Down Converter Here we consider the application of the control method
outlined above to the second order up-down converter of Example 1 in Section
5.1. The route to be followed will append the adaptation mechanism (6.51) to the
state-space model that is already augmented to realize integral control action.
Th- integfal control design of Section 6.4.2 for this example will be used as the
base model to which the adaptive mechanism will be added. In this example,
the adaptive mechanism will be used only to estimate the nominal value for
the inductor current, with the goal of making the closed-loop system robust
to uncertain nominal load conditions. The other nominal parameter values are
typically known fairly accurately, and therefore can only cause relatively small
perturbations in the closed-loop system. With the integral control, the system
will be insensitive to static uncertainty in the nominal duty ratio (although not
necessarily globally stable in the presence of such uncertainty).

In our design, we take k = 50 and 4 = 10 in the adaptation mechanism (6.51).
These gain parameters are selected with regard to the small signal dynamics
obtained for a nominal load current of 2 amps. With the above paraneters,
with the matrix Q of Subsection 6.4.2, and with a constant feedback gain o =
1.70107° applied to the model ( 6.56), the eigenvalues of the corresponding small
signal model are —9.4 + j9.8Krad /sec, —11.6Krad/sec, and —10rad/sec. Note
that  controls the slowest mode, which does not affect the small signal transient

behavior of the converter states. This results from the non-minimality of the
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small signal model. The selection of Y > 0 assures that the system will remain
stable in the presence of small parametric perturbations that are not accounted
for in the adaptation scheme. We verify this control design with numerical
simulations.

Figure 6.18a) shows a start-up transient in the up-down converter for a load
current of 2 amps with the closed-loop control described above. Since this is the
nominal load current that was used in the design, we obtain a stable transient
with decay asymptotically governed by the eigenvalues computed above. In
particular, the converter states i and v exhibit a fast transient since the slow
mode at —10rad/sec does not affect these states. However, there is a slow
transient (due to the slow mode) in the variables = and 7, that is not evident in
the figure. This slow behavior has no consequence for the converter performance.
To study the behavior in the case where the load current varies from the nominal,
we simulated a transient that occurs when the converter is approximately in
steady state, and the load current steps from 2 amps to 5 amps. This is shown
in Figure 6.18b). Note that the converter remains stable, and comments similar
to those above are applicable to this case. To study the sensitivity properties of
this control design, the simulations in Figures 6.18c) and d) show the behavior
when a 100Hz sinusoidal component is added to tk - load and to the source,
respectively. In these simulations, after an initial start-up transient, the inductor
current ¢ begins to exhibit a sinusoidal component in its waveform, while the
capacitor voltage remains nearly constant at —9 volts. Once again, the variables
z and i, have a slow stable behavior that is not clear from the figure because of

the relatively short simulation run. .

Adaptive Control Scheme for Uncertain Nominal Duty Ratio and Un-

certain Nominal State Values

Here we illustrate a fundamental problem that arises in an adaptive control
scheme that attempts to estimate the nominal duty ratio and some nominal state

values. The basic model for a DC-DC converter that accounts for uncertainties
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Figure 6.18: Simulation Waveforms for Combined Integral and Adaptive Control
of Up-Down Converter
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in the nominal duty ratio and in the nominal state values is (6.10) of Section
6.4. To realize the adaptive control, we would append to the model (6.10) the
nominal state estimator (6.44) and an update mechanism for the estimate of the
nominal duty ratio. The update meckanism for the nominal duty ratio might

take the form
(8d,) = —-%(Ba! +5)°Q(z - bz.) (6.59)

where r is a free gain parameter. Note that the quantity z-- 8z, is the controller’s
estimate of the deviation from nominal in the state. This update mechanism is

motivated by the choice of
SR TN T 1,
=3 Qz + ék(ézn) (6z,) + ir(&i,,) (6.60)

as a storage function. With the above adaptation mechanisms, the resulting

input-output model is given by

¥ = Az + (Bz +b)(d + éd,)

(b2a)' = —1Q(Bz +b)d — {6z, —7)
(8d,) = —%(Bz+b)‘Q(z—6:c,,)
y = (Bz+b)'Qy(x — éx,)+ (Bx + b)*q-. (6.61)

Differentiating the candidate storage function (6.60) along the trajectories of
(6.61), we obtain

%V - %z‘[QA + A°Qlr + yd + (62.)°Q(Bx +b)(6d,).  (6.62)

The final term on the right-hand side of (6.62) prevents V in (6.60) from being
a valid storage function for the system (6.61). There is apparently no clearcut
method for specifying an update mechanism for an estimate of the nominal duty
ratio that can result in a dissipative input-output model of the form (6.61). One
might decide to implement a control scheme based on the model (6.61), despite
the difficulty that will be encountered in concluding global stability. However,

such a control svstem will have a small signal model that has at least one mode at
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the origin. (This results from the non-minimality of the small signal linearization
of (6.61), and the fact that there seems to be no simple way to modify the update
mechanism (6.59) to make the overall system asymptotically stable.) Because
of the inhereut nondecaying mode of the small signal model, and the lack of a
Lyapunov function, there is no a priori guarantee of local (or global) stability.

Hence, this approach is not recommended.

6.5.4 Summarizing Remarks

This subsecﬁon presented an approach to handling uncertainties arising in the
parameters required to implement the Lyapunov-based control schemes. The
main trade-off that emerges is between the adaptive scheme of Subsection 6.5.2
that can be based on the energy in the increment, and the integral control
scheme of Subsection 6.5.3 that also adapts for uncertain nominal state values.
The first 'would always be preferred in the case where the nominal duty ratio
is known to within sufficient accuracy, since this scheme combines all the best
robustness features, as discussed in that section. The only disadvantage of this
scheme is sensitivity to errors in the nominal duty ratio. In the case where
the nominal duty ratio cannot be obtained with sufficient accuracy, the integral
control method of Subsection 6.5.3 can yield satisfactory performance.

In the following section, we explore methods for obtaining fast transient be-
havior using control schemes based on the concept of interconnected (relatively)

passive networks.

6.6 Performance: Transient Behavior

In this section, we examine methods for obtaining fast transient hehavior using
control schemes based on the concept of interconnected passive networks. The
objective here will be to explore limits on the small signal transient behavior
(since this problem is somewhat tractable), keeping in mind that the small signal
behavior asymptotically governs all stable behavior. Recall that in Chapter 5,

for the second order up-down converter (Example 1), it was possible with a static
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control law based on the energy in the increment to place the eigenvalues of the
small signal model at about —20Krad/sec. This was quite satisfactory in view
of the 50KHz (or 314Krad/sec) switching frequency and the open-loop resonant
frequency of approximately 20Krad/sec. However, in the case of the fourth order
up-down converter (Example 2) with the same approach, it was only possible
to place the closed-loop eigenvalues of the small signal model at approximately
—95.1 & 68Krad/sec, —9.6Krad/sec, —46Krad/sec. The asymptotic behavior is
then governed by the complex pair with real part at —5.1Krad/sec which is con-
siderably slower than that of the second order case. (Note that the fourth order
converter was also intended to operate with a switching frequency of 50KHz.)
It was also demonstrated that with an alternative quadratic Lyapunov function
for the fourth order example, one could obtain considerably faster behavior in
the small signal model, with eigenvalues having real part less than — 22Krad /sec.
However, because of the numerous advantageous features of control design based
on the energy in the increment (outlined in Section 5.3), we might like to obtain
faster behavior with such a control scheme. In other applications, it may not
be possible to obtain adequately fast behavior with any static, Lyapunov-based

feedback law. We are then led again to consider alternative design methods.

The basic limitation of the static feedback schemes based on a fixed Lyapunov
function (e.g. the energy in the increment) introduced in Sections 5.1 and 5.2 is
that these schemes afford only one degree of freedom, namely the choice of the
gain a. There are various ways to introduce additional degrees of freedom in
the control design including time-varying (possibly periodic or state-dependent)
positive feedback gains and dynamic positive real compensation schemes. In the
sequel, we shall investigate the use of dynamic LTI positive real compensators in
conjunction with the system modeled by (6.1) with an appropriate fixed matrix
@1, such as that determined by the form of the energy in the increment. Since
we are interested in small signal behavior, it suffices to consider the (strictly

proper) positive real system that models the small signal behavior of (6.1).

For our purposes here, a basic question concerning the small signal behavior
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can be posed as follows:

Given an arbitrary passive LTI network with impedance Z(s), is there
a limit on the speed of the dynamical behavior that can be obtained
with a termination in a positive real impedance Z,(s)? If so. how
does one determine a passive LTI termination Z1(8) that results in

fastest behavior?

The speed of the dynamical behavior can be defined in terms of the asymptoti-
cally dominant mode(s) determined by the closed-loop eigenvalue(s) with least
negative real part. It appears that the answer to this question depends upon the
complexity of thé network Z(s). In the case where Z(s) models a single capaci-
tor, it is possible to resistively terminate the capacitor and obtain an arbitrarily
small time constant. However, in the case where Z (s) represents a higher order
network, it is considerably more difficult to terminate the network for optimal
speed. Tilere is some literature on closely related problems, which will be dis-
cussed shortly. First, we shall present an ad hoc, but practically effective scheme
based on the optimal matching problem [60].

Consider the situation where the network represented by Z(s) is nearly loss-
less. (This is typical of the impedance functions arising in switching converter
applications because of the inherent lack of resistive elements in these circuits.)
An optimal control problem related to that of obtaining fast transients is that of
minimizing the internal energy of the network Z (s) at the end of a time interval
[0, T') with an arbitrary initial condition, i.e.

inf {%z(T)‘Q:c(T)} (6.63)
where z(t) is the state vector of a realization for Z (8), ©(0) is the specified initial
condition, and the input and output wavforms (¢(t) and v(t)) are consistent
with the network. The relationship to fast transient behavior, although not
precisely given here, could be seen by evaluating any quadratic form (such as
that in (6.63)) along the system trajectories of a LTI system. Such a quadratic

form exhibits behavior governed by the pair-wise sums of the eigenvalues of
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the corresponding system. Hence, “fast” eigenvalues result in fast decay of
the quadratic form. Since the quadratic form in (6.63) is positive definite, the
optimal control solution that minimizes %z(T)‘Qm(T) also results in certain
bounded decay of each system mode. In the case where Z(s) is lossless. the
optimal control problem above is equivalent to maximizing the energy extracted
over the interval [0, T]. Although this problem can be solved quite easily [74], it

does not have a time-invariant solution.

v(t) +

()
-/

Q

Z(s) Z,(s)

e O—

Figure 6.19: General Matching Problem

We shall consider the optimal control problem on an infinite interval for two
reasons. Firstly, it is a well known result from optimal control theory [74] that
the infimal value (6.63) of the problem described above with T} > T is less than
or equal to that obtained by solving two consecutive optimal control problems
on th~ mtervals [0, T] and [T, T}]. (It is understood that the boundary conditions
for the consecutive problems must be consistent.) We would therefore expect
superior perforriance by making the interval arbitrarily large. Secondly (and
more sigrificantly), in the case wherz the interval becomes infinite, the optimal
control problem p: +vides a relatively simple result. In particular, the optimal
solution can be generated by a LTI system (i.e. terminating network). The
paper [60] solves the problem of determining the LTI terminating network that
absorbs the maximum average power over the doubly infinite interval (- nc0, o),
from an arbitrary voltage source excitation with series Thevenin imperance Z(s)

(see Figure 6.19). The classical resuli of [60] (also evident in [59]) is that the
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optimal terminating network has impedance Z( s).

To relate this to our problem, consider the case where the voltage source is
identically zero except for some impulsive behavior at ¢ = 0. Given a controllable
realization for Z(s), any initial state 7(0*) can be obtained through appropriate
impulsive action of the voltage source. Hence, the result of [60] is applicable
to this case. Unfortunately, in the case where Z(s) is positive real, a causal
realization of Z(—s) is anti-stable, and of no use here. However, many meth-
ods for approximating the optimal termination with positive real impedances
are available, e.g. the broadband matching problem |56,57,58,59,61]. The ap-
proximation schemes used for the broadband matching problem are based on
frequency domain methods that seek to maximize the average power transfer

over an interval of the jw-axis.

We would like to obtain a positive real terminating impedance Z,(s) that
results in a network interconnection that approximates the stable time domain
behavior of the interconnection of Z{s) with Z(—s). Note that the natural
frequencies of the network interconnection of Z(s) and Z,(s) are determined by
the zeros of Z(s) + Z,(s) and by the common poles of Z(s) and Z,(s). The
situation where the two networks have a common pole is analogous to that
where a pole-zero cancellation occurs in a single-input, single-output feedback
control system. For the cases of interest Lere, the two networks Z(s) and Z,(s)
will generally not have any common poles, and hence we can usually obtain the
natural frequencies by examining the zeros of Z(s) + Z,(s). As a result of the
symmetry of the expression, the negative of a zero of Z(s)+ Z(-s) is also a zero
of this quantity. (Z(s) and Z(-s) will not have any common pole if all poles
of Z(s) are in the open left-half planc.) A possible goal is then to determine
a positive real impedance function Z;(s) that when interconnected with Z(s)
results in natural freqencies at the left-half plane zeros of Z(s) + Z(--s). (We
would first examine these left-half plane zeros to see if they are sufficiently “fast”.

This is the case in the examples to be studied.) Our approximation scheme uses
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the scattering parameter

1 —Zy(s)
1+ Zy(s)
for the network with impedance Zy(s). Note that p,(s) is hounded real if and

Pi(s) = (6.64)
only if Z,(s) is positive real [36]. The following procedure will be used to deter-

mine an approximating network.

1. Determine the left-half plane zeros {st} of Z(s)+ Z(-s).

2. Determine the constraints on Z,(s) to place eigenvalues at the {s;}, i.e.

Z\(31) = Z(—s;), and the corresponding constraints on p,(s).

3. Define a region of the complex plane Re{s} > —a (a real and positive)
over which the impedance function Z1(s) is to be positive real. (The
corresponding scattering parameter is bounded real in the same region

where Z,(s) is positive real.)
4. Solve the H* optimization problem [63]:
inf{sup|p1(—a + jw)|} (6.65)

subject to the constraints on p1(s) determined in step 2. If the resulting
optimal solution has value less than one, the obtained scattering param-
eter is bounded real in the defined region of the comglex plane, and the
corresponding in.pedance function has all singularities to the left of the
line s = —a. If the resu. ng optimal -olution has value greater than one,

pick a smaller value of a and return to step 3.

Upon determining the impedance Z,(s) with the above procedure (if it can
be done), the network interconnection of Z (s) with Z,(s) is guaranteed to have
natural frequencies at the {s;}. However, there are additional natural frequencies
introduced. By picking the value of a in step 3 to be sufficiently large, we might
expect the additional natural frequencies to be relatively fast (by a time scale
separation argument). To illustrate the procedurs, we shall apply it to Examples
1 and 2 of Chapter 5, and to an example that arose in designing a control for

reduced sensitivity in Section 6.4.
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Example 1: Second Order Up-Down Converter The impedance function
Z(s) arises from the linearization of the state-space averaged model (6.1) for the
second order up-down converter of Section 5.1 with d taken as the “current” and

y as the “voltage.” The resulting impedance function has the form

8
8% + W

Z(s) - (6.66)

with wp =~ 20Krad/sec. Since Z(s} + Z(~s) = 0, we are led to consider a
perturbed version of the impedance in which all singularities are perturhed to
the left by the small parameter ¢. Consider

S+ ¢

. 6.67
82+ 2es + €2 + W2 (6.67)

Z(s+¢€)=

It turns out that in the limit as e — 0, the zeros of Z(s + ¢) + Z(-s + €)
are given by s, = fwy. The procedure outlined above leads us to determine a
terminating impedance that results in an interconnected network with one of its
natural frequencies at —w,. The resulting terminating impedance is a constant
resistor of value t which results in two closed-loop eigenvalues at —wg. This is
the solution that was used in Section 5.1 where the example was first studied. o

Although this example did not provide an interesting result, the following
example based on the fourth order up-dow,n converter does lead to a nontrivial

result.

Example 2: Fourth Order Up-Dewn Converter The impedance func-
tion arising from the linearized state-space averaged model (6.1) (with Q=Q
corresponding to the form of the energy in the increment) for the fourth order

up-down converter introduced in Section 5.2 takes the form

_ 3(s? + w?)
W e

where w; = 19.75Krad/sec, w, = 72.81Krad/sec, and w, = 63.47Krad/sec. Since

this is the impedance function of a lossless network, we have Z(s) + Z(-s) =

(6.68)

0. We are again led to consider the perturbed impedance Z(s + ¢). For an

infinitesimally small value of the parameter ¢, the six finite zeros of Z(s + ¢) +
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Z(—s + €) occur at +20.6Krad/sec and at +22.6 + J62.6Krad/sec. Applying
the procedure outlined above with a value of a — 50Krad/sec, we obtain the

terminating impedance
+50.0 + ;40.0)(s + 50.0 - ;40.0)
Zy(s) = 2.83 0 10°° )
1) * (s +822)(s + 52.1)

where all poles and zeros are reported in Krad/sec. The resulting natural

(6.69)

frequencies of the network interconnection of Z(s) with Z,(s) are -22.5 +
J62.7Krad/sec, —20.8Krad/sec, —11.7 + J75.4Krad/sec, and -15.8Krad/sec.
Note that the additional modes (the last three listed) are somewhat slower than
the target modes, namely the left-half plane zeros of Z(s + €) + Z( s + ¢).
However, the slowest mode is still more than twice as fast as the slowest mode
that was obtained with the static compensation in Section 5.2. Further, if we
scale the impedance Z(s) by a factor of 0.96, we can obtain ciosed-loop natural
frequencies at —20.7 + 764.0Krad/sec, --23.9Krad/sec, - 13.3 + J75.5Krad/sec,
and —13.4Krad/sec which are still a little faster. o
In the following, we continue the example of Section 6.4.1 that attempted
to mak‘e a control design for the converter of Example 2 (Section 5.2) that
resulted in reduced low frequency sensitivity to certain disturbances, ~nd in
adequately fast dynamical behavior. Recall that in this example we required
that the controller C'(s) have a zero at the origin. (This is the only difference
from the preceding example.) As discussed in Section 6.4.1, the requirement that
C(3) have a zero at the origin is equivalent to requiring that the terminating
impedance Z,(s) have a pole at the origin. A family of such impedances was
introduced:
Z\(s) = k—ls- + Z1(s). (6.7C)
Note that Z,(s) is guaranteed to be positive real if k > 0 and Z!(s) is positive
real. The constant k is a free design parameter. The design can be completed
by specifying & and the impedance Zj(s) to tcuminate the impedance Z(s) + ,:—,
with satisfactorily fast dynamical behavior. A network representation of the
control scheme using this design method is illustrated in Figure 6.8 of Section

6.4.1.
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Example 3: Reduced-Sensitivity Control Design for Example 2 of
Section 5.2 The first step in the design is the selection of the parameter k.
It may appear that one achieves the most freedom in the second stage of the
design by selecting k very large, since the positive real term Z{(3) is to be added
to 1/ks. However, the second stage will restrict Z{(s) to have all singularities in
some region Re{s} < —a with a positive and real. One way to gauge a choice

of k is by evaluating the zeros of
Z(s) + 1 +2Z(—s)+ L
(‘,) k& ( 3) —‘ks ]

since the stable roots will define the target closed-loop modes. In our example,
this quantity is zéro. so we consider the zeros for a perturbed impedance function
(as done before). The choice k = 8 results in stable roots of the perturbed
version of Z(s) + L + Z(-s) + =, at approximately —21.77 + 763.8 Krad/sec
and —11.66+;3.98 Krad/sec. The procedure described in this section can now be
applied tc.> determine a positive real terminating impedance Z;(s) for Z( s) + ,;1;
that yields four closed-loop poles at the locations specifed above. With the
choice a = 50 Krad/sec which forces all singularities of Z{(s) to lie in the closed
region to the left of the line s = —50Krad /sec, the procedure breaks down: there
is no such Z](s). However, the choice a = 30 Krad/sec yields a successful result.

The resulting closed-loop poles are located at

—9.09+ ;7542  Krad/sec,

—11.66 £ 33.98  Krad/sec,

—13.60% ;7.73  Krad/sec, and
—21.77 £ j63.78  Krad/sec.

The compensator C'(s) = (Zi(s) + %)"’ takes the form

s(s +30.2 — j15.2)(s + 30.2 + j15.2)(s + 5043)

(s +38.01 — j43.96)(s + 38.01 + j43.96)(s + 31.06)(s + 4.488) |
(6.71

with all poles and zeros specified in Krad/sec. The high frequency zero in

4.723 01074

C(s) has a negligible effect on the closed-loop performance, and will complicate
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any implementation or simulation. For these reasons, we are led to consider a
reduced model that omits this zero, and replaces it with the constant gain 5,043
Krad/sec. It turns out that the modified compensator is also positive real, and
the closed-loop poles that result are nearly identical. This reduced model for

the compensator was used in the example of Section 6.4.1. o

Returning to our original question, an answer to a closely related prohiem
is available in the paper of Chan and Kuh [55]. In [55], conditions are given
for an arbitrary active (possibly unstable) LTI one-port Z(s) to be stably ter-
minated in a passive LTI one-port Z;(s). Suppose it is desired to determine
vhether the passive. one-port Z(s) can be passively terminated so that all the
resulting eigenvalues A; satisfy Re{);} < —a for some positive real number a.
We could attempt to stabilize the (active) network with impedance Z(s - a) by
termination in a passive network Z](s) using the approach of [55]. If this can be
done, the interconnection of Z(s) with Z,(s) = Zi(s + a) results in a network
with all its eigenvalues {);} satisfying Re{)\;} < —a. Note that the resulting
Z,(s) is analytic and positive real in the region of the complex plane defined by
Re{s} > —a which is more restrictive than the requirement that Z,(s) be posi-
tive real. Although this approach offers a solution to a closely related problent,

the computation involved even in simple examples is usualiy intractible.

Another closely related problem is the classical broadband maching problem
studied by Bode (56], Fano [57,58], Youla [59], Carlin [61] and numerous others.
In the broadband matching problem, the goal is to design a lossless, passive,
LTI two-port equalizer that couples a resistive generator (time-varying voltage
source with Thevenin resistance r) to a specified LTI passive load Z(s) so that
the average power transfer from the source to the load is maximized. In the
paper of Youla [59], the problem is reduced to specifying Z,(s), the impedance
seen by the load locking into the two-port equalizer terminated in the resistance
r. (It is asserted in [59] that one can always synthesize the desired Z,(s) with
a lossless two-port terminated in a resistor.) The broadband matching problem

is then equivalent to the optimal matching problem of Rohrer [60] in the case
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where the terminating network impedance Z,(s) is restricted to being positive
real.

There are numerous interesting and unanswered questions pertaining to the
problem discussed above. We have demonstrated one approach to the problem
that appears to be promising. In the next chapter, we consider an entirely

different approach to control design for switching converters.
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Chapter 7

Control Design Based on
Coordinate Transformations

In this chapter, we take an entirely different tack for the development of con-
trol designs for switching converters. The focus here is on control designs based
implicitly or explicitly on coordinate transformations. The main approach pro-
ceeds along the lines of the so-called feedback linearization; however, the method
to be illustrated does not require explicit computation of a linearizing fer Aback.
Rather, the state-space transformation required in a feedback linearization is
used to directly realize a sliding mode control algorithm. The second order up-
down converter introduced in Chapter 2 is used as a vehicle to illustrate the

technique.

As discussed in the litcrature review of Chapter 3, there has been much work
on the problem of determining when a given nonlinear system is equivalent to
a linear system in some sense, and how to find a transformation that makes
the equivalence explicit. The book of Isidori [30] discusses various types of
exact linear equivalence including input/output linearization and state-space
linearization. The method has been applied to switching converters in the recent
work of the author [43], and in a recent paper by Sira-Ramirez and Ilic [65]. The

basic idea of the method is presented in the following section.
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7.1 Feedback Linearization Problem

In order to introduce the method of feedback linearization, we shall consider a
nonlinear state-space model that is linear in the control {as in [30] and other
related literature), i.e.

' = f(x) + G(z)u (7.1)

where f(0) = 0 and G(z) denotes an n x m matrix whose elements may depend
on the state z. Consider an open neighborhood U of the origin in R". The
system ( 7.1) is feedback equivalent on I’ to a linear system if there exists a
nonlinear state feedback

u = a(zr) + g(x)e, (7.2)

defined on U, with a(e) and j(e) sufficiently smooth and /3(e) nonsingular on

U, such that the resulting system

' = (f+Goa)zx)+ Gop(x) (7.3)
= f(z) + G(z)v (7.4)

is diffeomorphic to a controllable, linear, time-invariant system. That is, there

exists a sufficiently smooth, locally invertible nonlinear transformation
T:U-VCR" (7.5)
mapping ¢ € U to z € V, such that
dr - -
—fr7l(2) = 4, (7.6)
dz
Z—: G(r'(z)) = B, (7.7)
and in V, the transformed system takes the form

' = Az + Bv. (7.8)

Before stating conditions for a nonlinear system to be feedback equivalent to

a linear system, we shall give some background and standard notation. A vector
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field is a map from a manifold to its tangent space, and on R” is a map from
R" to R". The Lie derivative of a scalar function ¢(e) with respect to a vector

field f(e) is the directional derivative of the function along the vector field. i.e.

Ly(): = [:—g] flz). (7.9)

Note that the Lie derivative of a function is also a function. The Lie bracket of

two vector fields is another vector field, represented in coordinates on R" by

(£, 9] = —g - —@f (7.10)

The Lie bracket can also be written using the ad notation as

ady(g) = [f,gl, (7.11)

and by induction we define

adj(g) = [f,ad; ' (g)]. (7.12)

A set of vector fields {f},..., f.} is involutive if for any two elements of the se?,

the Lie bracket is contained in the span of the set. That is, we have
[fir fil =Y &l fu. (7.13)
k=1

For more backgrovnd on manifolds and related ideas, we refer the reader to
(42,30].

Necessary and sufficient conditior 5 for the sysiem (7.1) to be feedback equiv-
alent to a linear system were given in [19,20] for the single input case (m = 1).
(This case and the multi-input case are treated in [30].) For simplicity, we shall
shall state nccessary and sufficient conditions f~> the single input case. Tic
single input version of system (7.1) with G(z) = g(r), and with equilibriun: at
the origin, is locally feedback equivalent to a linear system if and only if the set
of vector fields {g,ad}(g),ad%(g),.. ,ad'}‘l(g)} spans R" abcut the origin and
the set {g,ad}(g),...,ad} ?(g)} is involutive. The open neighborhood U/ of the
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origin in which the system is a linear equivalent is determined by the region over
which the above conditions hold.
An equivalent necessary and sufficient condition that is given in [19.20,30] is

that there exist a scalar function T)(x) such that

Ly(Th)
Cad}(a)(T‘ ) = 0

il
=]

Lo-r(T) = O (7.14)
Losrp(T)) # 0 (7.15)

This set of conditions will facilitate our computation of a transformation which
makes explicit the feedback equivalence of an example up-down converter to
a controllable iinear, time-invariant system. In particular, after determining a
suitable solution T to (7.14,7.15) (if it can be done), we would chtain n — 1

additional transformed state variables by computing

T, = L:f(Tn)

Tn [’f(Tn—l)' (716)

It is also possible to compute a transformed input variable, i.e. T, ., = L(T,),
which makes explicit the equivalence to a linear system. The conditions (7.14,7.15)
guarantee that T; = T}y, for j = 1,...,n, and further that 'Ea""ﬂ # 0. The vari-

ables Ty,...,T,;, therefore belong to the conirollable LTI system

T{:Tg

T:‘ = Tn+1. (717)

In the following subsection, we consider the application of feedback linearization

to the up-down converter.
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7.1.1 Example: Up-Down Cor.verter

Here, we consider the feedback linearization of the second order up-down con-
verter modeled by (2.6), but iu state variables that represent perturbations from
an equilibrium corresponding to a constant value of the duty ratio d,. This type
of description is useful for analyzing the behavior with respect to a desired
steady state operating point, but with the input still constrained to take on one
of two discrete values. In the following, the variables with subscript ! represent
total variables while an unsubscripted variable represents the perturbation in a
quantity with respect to its nominal value. With this notation, the model for

the up-down converter takes the forn.
' = Ax + (Bzr + b)u (7.18)

where the states are z; = ¢ =4, — 7, and ; = v = v, -- v,, the control input u

can take on the discrete values —d, and 1 — d,,, and the relevant matrices are

givenby.
A = [ 0 (l_dn)/L
- | —(1-d,)/C  -1/RC |’
0 -1/L
B = | 1/¢ 0 ]
_ [ Va—va)/L
KO ]

In this case the vector field f(z) = Az is linear and the vector field g(z) = Bz +b
is affine in the state. To determine if this second order example is a feedback

linear equivalent, we need to check

1. if the vector fields g(z) and adj(z) are linearly independent about the

origin, and
2. if the vector field g(z) is involutive.

It is a trivial fact that a set consisting of a single vector field is always involutive.

It turns out that the first condition is also satisfied. Note that the first condition
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is guaranteed to hold in a neighborhood of the origin since the small signal
linearization of the large signal state-space averaged model is controllable. This
follows since the set of vector fields {g, ad}(g)} is given by {Bx | b, [AB -
BAJz + Ab} which reduces to the controllability matrix [b Ab] for = = 0. We
shall address the issue of the region of existence of a linearizing transformation
after determining the form of such a transformation.

To find a transformation which makes explicit the feedback equivalence, con-

sider the conditions (7.14) which for this system reduce to

d
T gt ) =0, (7.19)
dr
or equivalently
T;
9 l(—v—v,,+V,)+6—T-l(i +1,)=0. (7.20)

ra v
A solution of the partial differential equation (7.20) can be obtained by separa-

tion of variables and is given by

\

T]‘Q‘) = %(”(‘" +uv, =V, )2 + %L(l + 1, )23 (7.21)

or
' 1 1
ﬂ=gﬂw—ﬁf+iui (7.22)

Note that the variable T; has the form of the energy in the increment with
respect to the point (vny1,) = (V,,0), but there is no evident connection with
otér earlier results in Chapter 4 concerning the energy in the increment. (It also
turns out that if the procedure here is applied to a model for a boost converter,
the corresponding variable T} can take the form of the total stored energ:y.)
Hﬁving obtained the scalar function Tj, it is straightforward to determine a
linearizing transformation. We can readily compute a second state variable in
thc;transformed system by differentiating T; along the vector field f(z) = Ar,
as noted after (7.14,7.15). We obtain

Tz = Lo(Th) = iV, + (v/R = L)(V, — vy). (7.23)
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A third variable corresponding to the transformed input variable can be com-

puted by differentiating T, along the vector field f(z), giving

Ta(z,u) = Lg(T2)
= [( v, - 'l‘f)/R + (1, — l’r/R)][“o - 1’:/3 - if)/("’] + 1‘t"';/L +
we{[(Vy = ve)/R + (I, — v/ R))it/C + (V, — v)V,/L}.  (7.24)

At this point, some comments on the region of existence of the linearizing
transformation are in order. Note that the transformed system (in coordinates
T, T>, and Ts)‘loses. controllabiuty at the set of points where the quantity multi-
plying », in (7.24) is zero. This is the set where the system is not equivalent to a
controllable linear system. (See [65] for more on this.) However, the state-space
transformation 7 : U — V which maps i and v to T} and T, is a diffeomaerphism
in the neighborhood of the origin, where the Jacobian matrix

(7.25)

de | Vi L+ %

dr [ Li, C(v, - V)
is nonsinéular. This neighborhood contains the region where i, > 0 and 1/, -
vy > 0 which corresponds to usual operation of the up-down converter. Our
development of a control design will be based on this state-space transformation,
ratker than a linearizing feedback, so that we only need to be concerned with
the invertibility of this transformation.

Another issue concerning explicit feedback linearization is that the input
variable in our model u, can take on only two discrete values. In a true feedback
linearization where the input could take on a continuum of values, we would
obtain the linearizing feedback (i.e. a(z) and 3(x)) by solving (7.24) explicitly
for u,. (This could be done if we were considering the state-space averaged model
for the converter, but our development wiil not require an explicit feedback
linearization.) With the transformed system, there are many control possibilities
including linear state feedback (for the averaged model) and sliding mode control
algorithms. We have investigated the sliding mode approach, as discussed in the

following section.
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7.2 Sliding Mode Control Design with Trans-
formed State Variables

One particular class of switching control laws for the stabilization of certain
nonlinear (and linear) systems invokes the theory of sliding mode control, see
[4,5,6,7,66]. This method of control can be most readily applied to systems in

the canonical form

Ty = T
z, = 3
r:’! = f(ml"'-yrnyu)- (7.26)

A sliding mode control forces the state to move to, and subsequently lie on a
certain (specified by design) sliding surface in the state-space (R"). The surface
is chosen to divide the state-space into two regions, with a separate control law
used in each of the two regions. The control laws are picked to drive the state
toward the sliding surface. In the case of infinitely fast switching between the
two control laws, the state is constrained to lie on the sliding surface (once it
reaches the surface), and the system is governed by an averaged control law.
The sliding surface is always designed so that a prescribed dynamical hehavior
results when the state lies on the surface. For instance, for the system (7.26),

one might use the function
$=cCp¥pn + ...+ 17y (7.27)

to define the sliding surface via
s =0 (7.28)
or

™ e =0, (7.29)

where z) denotes the j-th derivative of r with respect to time, and the c; satisfy

Hurwitz conditions that guarantee that the linear differential equation (7.29) is
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asymptotically stable. Another route to analyzing the dynamics in the sliding
mode is ‘o solve for the equivalent (or averaged) feedback control u. (xy,...,x,)
as in [4,8,9], by (in effect) differentiating (7.29) and solving for u. This equivalent
control, when employed in (7.26), produces dynamical behavior identical to that
which occurs in the sliding mode, provided the initial condition is on the sliding
surface.

The main advantage of a sliding mode control scheme over a linear feedback
scheme that would provide the same equivalent control on the sliding surface
is the invariance of the sliding motion to certain disturbances and uncertainties
(4,5,6,7.66,80]. In the case of an additive disturbance on the right-hand side
of (7.26), the closed-loop system would be entirely insensitive to sufficiently

bounded (but possibly state and time dependent) disturbances of the form

0
[ 0 l w(x,t).
1

Furtherm.ore, in the case of arbitrary impulsive disturbances, the state of the
closed-loop system would first jump from the surface, and then return to the
sliding surface where the dynamics are constrained. This feature is particularly
useful in second order systems since the sliding surface is a curve in the plane
that exactly determines the closed-loop trajectories. The result is excellent
robustness. The invariance properties outlined here are not features of standard
linear feedback control system.

One of the noted disadvantages of sliding mode control is the inherent chat-
tering or switching action. In a mechanical system, the chattering can excite
unmodeled dynamics, leading to degraded or unsatisfactory behavior. In [6],
Slotine and Sastry studied methods for reducing the effects of chattering in a
sliding mode control system. However, in the case of a switching converter, the
switching action is an intrinsic property of the operation of the circuit. In fact, it
is possible to implement a sliding mode control for a switching converter where

the function of the control algorithm is simply to dictate each switch transition.
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This is the approach that we take here (and the reason why we have not con-
sidered explicit feedback linearization for the averaged model of the up-down

converter).

Example: Sliding Mode Control of Up-Down Converter Using Trans-
formed Coordinates In the previous section, we determined a coordinate
transformation for the up-down converter model (2.6) that results in a state-

space model with the form (7.26), i.e.

Tl' =T
T, = T3= f(T\,Tyu). (7.30)

With the model (7.30), a sliding mode control law can be designed by specifying

a sliding criterion of the form
s=a(Ty - T{)+ T, (7.31)

with ¢; > 0. The control law

1-d,, s<0 -
u={ D (7.32)

will then result in sliding behavior on a portion of the curve defined by (7.31).
To investigate the extent of sliding behavior, the criterion s is differentiated

along the system trajectories. We find
s = CITI’ + T2' = C|T2 + f(Tl,Tz, ll). (733)

For the region of the state-space where ¢, > (I, — v,/ R) (the region where the
inductor current exceeds the total load current), the expression f(T),T5,u) is
negative for u = —d,, and is positive for v = 1 — d,,. It then follows that for
sufficiently small values of the parameter c;, the control law (7.32) will result in
sliding behavior on the portion of the curve (7.31) that lies in the region i, >
(I, — v,/ R). This region corresponds to normal operation of the converter. We
study the resulting performance with numerical simulations and an experiment,

as discussed below.
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Figure 7.1 shows a simulation of a discrete-time version of this control law
for ¢; = 100Krad/sec with initial conditions v = —7volts and i — 10amps. The
converter parameters used were selected for a nominal switching frequency of
approximately 50KHz. The simulated controller made a decision every (.1 /lse(,
and held the control constant in between decision times. {This permitted the
possibility of extremely fast switching operation (relative to the design param-
etets), but the objective here was only to study the idealized behavior.) Note
that the trajectory shown in Figure 7.1 exhibits two phases. First, in the reach-
ing phase, the trajectory approaches and actually crosses the sliding curve (see
Figure 7.1(f)). The trajectory crosses the sliding curve because there is a finite
time delay until the required switch transition is executed. In the second phase,
the sliding phase, the trajectory is constrained to approximately follow the slid-
ing curve toward the desired operating condition. During the sliding phase, the

sliding criterjon s stays at approximately zero, so that T; and T, must obey
0~ c(Ty —T'*) + Ty (7.34)

Since T} - T,, we expect from (7.34) that T, will exhibit an exponential decay
with exponent —c, during the sliding phase. This is confirmed in Figure 7.1(d),
where the temporal evolution of the variable T, is displayed. Note that the tra-
jectory apparently does not reach a final limit cycle, which may be undesirable.
The absence of limit cycle behavior is a result of the discrete-time nature of the
control law. It is possible to use a constant frequency version of this control law
that results in a stable limit cycle, as will be discussed below. First, we study
the sensitivity and stability robustness with regard to parameter uncertainty.
The closed-loop converter system that uses the sliding mode control algo-
rithm introduced above is relatively immune to parameter uncertainties. The
only effect of unknown circuit parameters on the closed-loop system is to per-
turb the shape of the sliding curve in the i — v plane. Note that the computation
of s is based on the variakles T, and T}, and the parameter T,"f . The nominal
inductor current i, required in the computation of T7*! might be obtained by

supposing that the instantaneous value of the load current is its steady state
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Figure 7.1: Digital Simulation of Sliding Mode Control Scheme Using Trans-
formed Coordinates
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Figure 7.2: Digital Simulations of Sliding Mode Control Scheme with Actual
Value of Capacitor a) Reduced by 30% and b) Increased by 30%
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value. (Although this assumption does not hold in general, it is valid in the
steady state.) In the case where the total load current Ij,0g = I, — v,/ R and the
source voltage V, are measured and used in the computation of T} and T3, and
T, *f is obtained using a value for i,, based on the instantaneous load current,
the sliding curve will intersect the desired steady state operating point even in
the presence of parametric uncertainty. A consequence of this is a lack of steady
state error. To see this, consider the computation of s with imprecisely known

model parameters €' and L, i.e.

@
Il

cl(Tl - T{'!) + T
- ° <{lé("t SV 4 S LiR) - {5 C (0 - VI li,iz}) '
2 : 27t 2 n s o in
1Vy — Ligad(V, — v1). (7.35)

Consider ideal stable sliding behavior, i.e. 3 = 0. In the steady state T, = T| =
0, and so 5 = 0 implies T} = T/*/. Because the same incorrect model parameters
are used to compute both T; and T/, it follows that an equilibrium is defined
by i, = ¢, and v, = v,. Therefore, in the presence of parametric uncertainty,
the system may come to rest at the desired equilibrium if stable sliding behavior
occurs. The stability robustness is addressed helow.

A closely related issue concerns the stability of the sliding motion in the

presence of parametric uncertainty. It turns out that any smooth sliding curve

defined by
(T, T;) =0 (7.36)

will result in stable sliding motion if sliding behavior is obtained, and if

Os Os — o
(57 (57:) >0 (3

for points on the curve (7.36). Since the product (7.37) for the unperturbed
sliding curve is ¢; > 0, this product will generally remain positive in the pres-
ence of small perturbations. This topic is perhaps best studied with simulations.
Numerical simulation using the same control algorithm as that used for the sim-

ulatior of Figure 7.1, but with the actual circuit value of the capacitor reduced

202



by 30% and increased by 30%, are shown in Figure 7.2. Behavior similar to that
with the nominal parameters is exhibited, with the main difference appearing in
the rate of the asymptotic decay. We shall give more attention to the sensitivity

and robustness issues in the experimental segment of this work.

The preceding numerical simulations incorporated a discrete time controller
that used the state information to make a control decision every 0.1usec. The
control input was held constant in between sampling/decision times. As previ-
ously mentioned, this control method typically does not result in a stable limit
cycle behavior. The absence of periodic behavior results from the fact that an
integral muliiple- of the 0.1usec control cycle typically does not equal the period
of a feasible limit cycle. However, this discrete-time control proved relatively
economical in digital simulation time, and hence was preferred for most simu-
lations. The resulting (and apparently chaotic) behavior may be undesirable in
practice because of the broadband frequency spectrum generated by the circuit
waveforms. The audible noise generated by a circuit operating in this mode has

been described as that of frying bacon [22]!

It is possible to implement another variation of the desired control law that
uses a constant frequency switching. At the beginning of each control period,
the control can be set “on” if s < 0. Then the control is set “off” when and if
the criterion s crosses zero during the control period. If the criterion s remains
negative for the entire period, the control remains “on”. At the other extreme,
if the criterion is positive at the beginning of the period, the control is set “oft”
for the entire period. In this way, the control is limited to at most two switch
transitions per control period. The simulation in Figure 7.3 and experimental

results discussed below suggest that a stable limit cycle may indeed be reached.

Although this control based on transformed variables is in principle an effec-
tive approach to the control problem, the control law requires some nontrivial
computation. Simplified control laws can be obtained by examining the state

plane trajectories and the switching curves derived above. We have constructed
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Figure 7.4: Simulation of Sliding Mode Control Using Sliding Curve Constructed
from Straight Line Segments in the i — v Plane
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a switching curve composed of straight line segments in the inductor current-
capacitor voltage (i — v) plane that results in stable behavior as demonstrated
by digital simulation. The curve constructed from line segments loosely approxi-
mates the switching line based on the Ty — T} coordinates, and the local behavior
in a neighborhood of the desired operating condition is similar to that ohtained
with the previously specified control law. Figure 7.4 shows state-plane and time
domain waveforms for this control law. Note that the linear switching curves
and surfaces proposed in [8] and [9] would a!so result in simple implementation
schemes. Of course, a crucial step in implementing a sliding mode control with
a linear sliding surface is in determining the nominal state values, that permit
operation at the desired steady state operating point. (This is one issue that is
conveniently handled using the transformation based implementation.)

In the following subsection, we present the results of an experimental imple-
mentation of the sliding mode control scheme that is based on the coordinate

transformation into the variables T, and T5.

7.2.1 Experimental Results

tinductor [ ] . - 1
cuucn(E tu
capacitor l
voltage 3 '
loed :
curren
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command | A[o wicroprocessor
volu.c;l '—*‘

snalog look-up
suleiplexor tables

Figure 7.5: Block Diagram of Prototype Clontroller

A prototype digital controller for an up-down converter was built, using PROM
look-up tables and an 8031 microprocessor to perform housekeeping and timing
functions. The implemented control algorithm consisted of the sliding mode

control scheme using the transformed state variables T, and T>. A block diagram
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of the hardware realization is exhibited in Figure 7.5. The up-down converter
circuit was realized on the MIT Parity Simulator [24]. The Parity Simulator was
used to implement a low-power, time-scaled version of the circuit in F igure 2.1
as well as modifications of it (see below). The circuit parameters of Example 2 of
Chapter 5 were scaled for operation at a switching frequency of 50Hz (as opposed
to 50KHz). Note that our objective here was to test the proposed control laws
under ideal conditions or under prescribed deviations from the ideal; the issue
of real-time implementation is of great importance ultimately, but is hbeyond the

scope of what is attempted here.

The behavior under the sliding mode controller with sliding time constant
of %sec is displayed in Figure 7.6a). Figure 7.6a) shows a transient in the state
variables due to a step change in the command voltage from approximately
—6volts to approximately —9volts, and back to —6volts. Note that after a short
reaching phase, a well behaved first order type transient with time constant of
approximately 0.3sec is exhibited in the sliding phase. The switching operation
of the circuit was run at a constant frequency of 50Hz, with the transistor on
for the start of each cycle and the turn-off determined by the sliding criterion.

(See the discussion on switching operation above.)

To investigate the effects of model uncertainties on the circuit behavior. we
considered certain perturbations in circuit parameters. Figures 7.6b) and c)
show the responses to the same step change in command voltage as in Fig-
ure 7.6a), but with the circuit value of the capacitor 20 percent larger and 20
percent smaller, respectively. Note that the transients are qualitatively iden-
tical, with apparently equal time constants governing the decay in the sliding
mode. The most crominent difference among the traces in Figure 7.6 is the am-
plitude of the voltage ripple. Figure 7.6b), which corresponds to a greater value
of capacitance than nominal, displays a slightly smaller amplitude of voltage
ripple, while Figure 7.6c), which corresponds to a »maller value of capacitance

than nominal, displays a slightly greater voltage ripple; this is to he expected.

One interesting feature of the switching scheme manifested itself in the ex-
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.7: Two-Cycle Oscillation

Figure

periments. The constant frequency switching scheme did not result in stable
limit cycle behavior for nominal duty ratios greater than 50 percent. This result
may have been predicted from previous work on current mode control [10,11]
where similar switching schemes have been utilized, and the same phenomenon
observed.. The loss of stable limit cycle behavior in current mode programming
applications has been remedied with the use of a so-called compensation ramp.
We have yet to attempt such a solution. The most interesting behavior occurred
for a nominal duty ratio of approximately 50% (command voltage of - 15volts).
At this operating condition, a stable two-cycle oscillation was observed, as de-
picted in Figure 7.7. Note that each apparent period exhibited in the waveforms
is composed of two cycles, one where the transistor is on for most of the cycle
followed by one where the transistor is off for most of the cycle; the two-cycle

average corresponded to a 50% duty ratio.

7.3 Summarizing Remarks

The method of exact state-space linearization is evidently an effective approach
for the design of nonlinear control schemes for our example up-down converter.
It is apparent that all locally controllable second-order systems are exact linear

equivalents - at least locally); the procedure used for the up-down converter in
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Section 7.1 is applicable for these systems. A second-order boost converter is
one power electronic circuit for which we have been able to determine a lin-
earizing transformation. For this converter, the variable T} in the linearizing
transformation can be taken as the total stored energy in the reactive elements
of the converter. Related results have been developed in Sira-Ramirez and Ilic
(65].

The case of higher order (> 2) converters that have essential nonlinearities
may not be easily treated with this approach. One possibility is the method of
multi}.)le time-scales, where certain states are viewed as “slowly varying” (i.e.
quasi-static) and the model consisting of the “fast states” is an exact linear
equivalent. Other potential approaches for these converters along the lines of
exact lincarization are the so-called pseudolinearization {21,32] and exact input-

output linearization (model matching) via dynamic feedback [30].
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Chapter 8

Contributions of Thesis and
Suggestions for Future Research

In this final chapter, the main results and contributions of this thesis will be

summarized. Directions for future research will also he outlined.

8.1 Contributions of Thesis

Average(i Circuit Models An important contribution of this thesis has been
to extend earlier results on averaged circuit models for switching power convert-
ers. In particular, in Chapter 4, we applied the intuitive in-place averaging
method of Wester and Middlebrook [46] to devise a methodical procedure for
synthesizing averaged models. Earlier results on averaged circuit synthesis were
either not entirely correct or based on examples. For a converter constructed
from LTI circuit elements, sources, and one controlled switch pair, we showed
in Section 4.2.1 that one could obtain the averaged circuit model essentially by
finding the hybrid immittance function seen by the two switch branches. Section
4.2.2 applied the averaged circuit synthesis technique to converters containing
nonlinear circuit elements. This gave an entirely new result which may prove
very useful in the analysis of switched converter circuits as nonlinear circuit
elements are incorporated into future converter designs.

One consequence of the result on averaged circuit models for DC-DC' con-

verters containing nonlinear circuit elements is the open-loop stability result of
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Section 4.3.2. For such a circuit containing nonlinear reactive elements, it is typ-
ically not possible to obtain a stability result for a nominal periodic trajectory.
However, it was possible to demonstrate that an equilibrium for the averaged
circuit model was stable in the large. This stability result was then applied in
Section 5.4 to aid in the design of controllers for DC-DC converters containing

nonlinear circuit elements.

Unification of Network Theoretic Principles with Control Design Per-
haps the most important contribution of this thesis has been the unification of
certain network theoretic principles with a framework for control design for
switched converters. This theme has been developed in a number of different
ways. The form of a natural internal energy function, the energy in the in-
crement, was first determined in Chapter 4 for a converter constructed from
incrementally passive circuit elements and switches. It was then demonstrated
in Qhapter 5 how one can base a globally stabilizing control design on this energy
function. Chapter 5 laid the foundation for this approach, and showed how it
can be applied to various classes of switching power circuits, including convert-
ers containing nonlinear circuit elements, converters that handle time-varying
source and/or load waveforms, and converters that operate in the discontinu-
ous conduction mode. The approach was also applied to the design of state
observers that estimate the state of a given converter from incomplete or noisy

measurement data.

Chapter 6 built upon the approach of Chapter 5 by recognizing that the
behavior of the converter from its control input % or d to a properly defined
synthetic output y was that of a passive circuit. This allowed us to view a
closed-loop control system (for a switching converter) as an interconnection of
circuit elements. The result of this is a generic global stability result based on
the passivity properties of the “circuit elements” that could be applied in ali the
schemes considered in that chapter. This approach has been taken by numerous

other authors in the context of general feedback control systems (e.g.[28,29,37])
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and for switching power converters by Wood [1]. Most of the earlier results in
the literature are concerned with demonstrating stability. However, the results
in this thesis are distinguished from the earlier works by the control perforiance
that has been demonstrated here. In particular, the self-tuning adaptive con-
trol scheme developed in Section 6.5 permits robustly stable operation for any
feasible operating point. The analogy between closed-loop control systems and
network interconnections also proved useful in designing controllers that permit
adequately fast transient behavior. In particular, Section 6.6 borrowed certain
ideas from the optimal matching problem to aid in the design of closed-loop

systems that exhibit fast transient behavior.

It is appropriate to note a potential limitation of the Lyapunov-based control
designs that are obtained using averaged models. The stability argument used
in Chapters 5 and 6 applies directly for the averaged model, but in practice, the
control schemes would be implemented with finite switching frequency. Although
results that relate the stability of an underlying time-varying model to that of
an averaged model are available (e.g. [84}), it still remains to determiue an
explicit lower bound on the switching frequency for which such a conclusion can

be made. This remains as a subject for future study.

The Lyapunov-based approach to control is evidently applicable to other
types of control systems. The main requirement is that the underlying system
(or possibly the closed-loop system) can be modeled with incrementally passive
circuit elements. An example of the application of this approach to control
for a robotic manipulator is in the recent work of Slotine [85]. Although the
form of the control input for the robotic manipulator is quite different from that
in a switching power converter, reference [85] developed a self-tuning adaptive
control scheme much like that of Section 6.5 that was also based on an internal
energy function. It was also suggested in [85] that this approach would have

applications in many other types of control systems.
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Control Design Using Coordinate Transformations Another approach
to control design investigated in this thesis was based on the use of coordi-
nate transformations. In particular. in Chapter 7, we determined the form of
a state-space transformation that could be used in a feedback linearization for
an example up-down converter. It was noted that such a transformation can
facilitate various types of control designe, and this transformation was used in
Chapter 7 to design a sliding mode controller for the up-down converter. It was
noted that the sliding mode control could be made to command each switch
transition in the converter circuit, whereas schemes based on the state-space av-
eraged model dq‘ not share this feature. The sliding mode controller was shown
to yield satisfactory closed-loop behavior with numerical simulations and ex-
perimental results. In particular, using this scheme, relatively fast transient
behavior and robustness to uncertain circuit parameters were obtained. This
approach to control is apparently applicable to other second order converters,

but may not be easily applied to higher order converters.

8.2 Suggestions for Future Research

There are many questions that are addressed, but not entirely answered in this
thesis. Further, many new questions arise in the light of the results that are

obtained. Here, we shall outline some of these as possibilities for future research.

8.2.1 Averaged Circuit Models

The results on averaged circuit models in this thesis and in the literature are
applicable only to the class of switching converters that have well defined state-
space averaged models. These converters have switching frequencies that are
significantly higher than the bandwidth of the averaged circuit dynamics. The
class of resonant converters [2,48] can be modeled with neither the usual state-
space averaging techniques nor the available averaged circuit representations.
It is of interest to develop an averaged circuit modeling technique for resonant

converter circuits. This development might possibly follow along the lines of the
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in-place averaging scheme used in this thesis and in [46]. In this case, it would
be necessary to replace not only the switch network, but also the L - (' resonant
tank elements. Because the resonant tank exhibits nontrivial low frequency
dynamical behavior [2], it would be necessary to replace the tank and switch
elements with a dynamical network, rather than a resistive network. This topic

remains as a subject for future research.

8.2.2 Limit Cycle Existence in Switched Circuits

The result of Section 4.3.1 on open-loop stability applied for aay given nominal
trajectory that corrésponded to a given switching pattern. It is of interest to de-
termine when it can be concluded that there ezists a nominal periodic trajectory
for the case where all switches are operated periodically with period T. Work
that is presently being carried out indicates a route for proving the existence and
uniqueness of a nominal periodic trajectory, for a switched circuit of the form
considered in Section 4.3.1 where all switches are operated periodically with pe-
riod T. These results rely on the incremental passivity of the circuit elements,
and will appear in future publications. Some previous researchers [89,90] who

studied this question have restricted attention to second order systems.

8.2.3 Lyapuncv-Based Control

Experimental Verification of Control Designs An important topic that
was not treated in this thesis is the experimental verification of the Lyapunov-
based control schemes. It will be of great interest to implement. in hardware
some of the control schemes introduced in Chapters 5 and 6. These control
designs, based on averaged models, can probably be best implemented with
standard integrated circuit (IC) chips used to implement pulse-width modulation
scnemes in existing controllers. Some additional signal processing functions will
be needed to compute the nonlinear feedback control laws. Experimental work

will undoubtedly generate new research directions, and expose limitations.
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Time-Varying Source and/or Load Waveforms We demonstrated in Sec-
tion 5.5 how the method of control that was based on the energy in the incre-
ment could be applied to a converter that operated with nominally periodic
input and/or output waveforms. Typical applications are in rectifiers, inverters,
and cyclo-converters. The greatest difficulty encountered in this application is
in obtaining the nominal periodic state trajectories for use in the feedback con-
trol. (This problem was significantly easier to handle in the case of a DC-DC
converter, as demonstrated in Sections 6.4 and 6.5.) There is a theory cur-
rently being developed in the literature on so-called repetitive control systems
(see [86] and‘reférences contained therein) where the control system is designed
to have an internal model of the periodic disturbance or reference trajectory.
This approach is a natural generalization of the use of integral control to handle
unknown constant nominal operating points. It would be extremely useful to
incorporate the methods of repetitive control systems with our Lyapunov-based
control approach to obtain control schemes for rectifiers, inverters, and cyclo-
converters that permit globally stable operation and robustness to unknown

nominal source and/or load waveforms. This remains as a topic for future work.

Converters that Operate in Both Continuous and Discontinuous Con-
duction Modes In Section 5.6, we showed how the Lyapunov-based control
approach could be applied to a converter operating in the discontinuous conduc-
tion mode. However, the particular control law required for nominal operation
in the discontinuous conduction mode differed from that required for nominal
operation in the continuous conduction mode. Therefore, in order to implement
the control, it is required to first determine the mode of nominal operation.
Then, one of two separate control laws (that correspond to the two modes of
operation) would be selected. Note that the detection problem involved in deter-
mining the nominal operating mode can be rather difficult. A natural question
that arises is how a control scheme can be designed to easily accommodate hoth

modes of operation. The best solution to this problem is possibly a unified con-
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trol scheme that changes continuously as the nominal operation of the converter
moves from one mode to the other. It is of interest to explore control methods
(perhaps including the Lyapunov-based schemes of this thesis) that achieve this
goal. Analysis methods from the theory of singular systems [87] may be required
for this application since the state-space averaged model for a given converter
changes order when the converter undergoes a transient from the continuous

conduction mode to the discontinuous conduction mode, or vice-versa.

Design of Positive Real Compensators for Optimal Speed In Section
6.6, we demonstrated an ad hoc method for designing a positive real compen-
sator for a given poAsitive real plant that resulted in relatively fast closed-loop
transient behavior. (The speed was measured in terms of the eigenvalue(s) of
the closed-loop system that had least negative real part.) The problem of de-
termining copditions under which there exists a positive real compensator for a
given positive real plant that results in optimal speed still remains open. Fur-
ther, the interesting problem of determining a compensator (if one exists) for
optimal cl-osed-ldop speed also remains open. The procedure of Section 6.6 hor-
rowed ideas from broadband matching theory to aid in the compensator design.
It will be of interest to explore the relationship between the broadband match-
ing problem (which attempts to maximize average “power” transfer from plant
to compensator) and the problem of obtaining optimally fast transient behav-
ior. Further questions arise in the context of nonlinear plants and nonlinear
compensators. In particular, how would one design an incrementally passive
compensator for an incrementally passive plant to obtain optimally fast tran-

sient behavior?

Large Signal Stability in Absence of Knewn Lyapunov Function In
Section 6.5, it was shown that the global stability of a converter control system
could be maintained in the presence of structured uncertainties in the case where
the nominal duty ratio was known. However, this Lyapunov stability result did

not carry over to the case where the nominal duty ratio was unknown, although
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it was argued that small signal stability could be maintained for a wide range
of operating conditions. It would be extremely useful to determine the region
of attraction in the state-space for the given stable equilibriuin point. Such a
characterization (for a set of feasible parameter values) would permit conclusions
on the large signal stability robustness of the control system. Fortunately, a
theory for determining the region of attraction of a stable equilibrium is currently
being developed in the literature [77,78,79]. Some of the results in [77,78] concern
the case where every system trajectory approaches an equilibrium point as t —
o0, and certain other generic conditions are in force. In this case, the stability
boundary for a ‘given stable equilibrium is composed of the stable manifolds
of the equilibrium points on the stability boundary for the equilibrium point.
Results in [77,78] also give a method to test if a certain equilibrium point is on

the stability boundary for a given stable equilibrium point.

_This type of result may prove particularly useful for systems that incorporate
integral control, since for these systems, it is often possible to limit the number of
possible equilibrium points to a small number (possibly one). The difficulty with
this approach arises in ruling out the possible presence of lim’t cycles and non-
periodic limit sets. Although there are many results available in the literature
to characterize the possible presence or absence of limit cycles in second order
systems, and to rule out other non-stationary limit sets in these systems, these
results do not generally hold for higher order systems. An important and rather
challenging topic for future research is to determine criteria for ruling out the
possible presence of nonstationary limit sets in systems with order higher than
two. The existence of an energy type function that decreases monotonically
along system trajectories is one criterion for this, as discussed in [78]. For
the Lyapunov-based control schemes considered in Chapter 6, which are used
in the presence of structured uncertainty, it may be possible to demonstrate
the existence of such a function by perturbing the original Lyapunov function.

Undoubtedly, many other possibilities exist and remain to be investigated.
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8.2.4 Control Design Based on Coordinate Transforma-
tions

The most severe limitation of the control scheme considered in Chapter 7 is that
such a scheme can only be readily applied to a converter with a second order
model. It is typically difficult or impossible to obtain a suitable transforma-
tion for a converter with a higher order model. (As noted in Chapter 3, down
converters without input filters have essentially linear state-space models, and
so are readily transformed to the desired form.) Other possibilities exist. In
particular, it may be possible to take a time-scale separation approach where
the system is paﬂitfoned into slow and fast subsystems. Then, for each of these
lower order subsystems, it may be possible to apply the method using coordinate
transformations.

Another possibility is to apply the so-called pseudolinearization technique
[31]. This approach has been taken in [32] in the context of switching con-
verters. The method of this approach is to determine a nonlinear state-space
transformation so that for each feasible nominal operating condition, the small
signal linearization has a standard invariant form. This permits the design of a
coordinated feedback control that is applicable to all feasible operating points.

However, this type of scheme will not necessarily result in large signal stability.
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Appendix A

Network Theoretic
COnsiderations

In this appendix, fundamental concepts from network theory, in particular pas-
sivity, reciprocity and Tellegen’s theorem, are presented. These network the-
oretic principles were used extensively in the early work of Wolaver [26] and
Duffin [25] on fundamental limitations of power conversion circuits. Passivity
(and the closely related idea of dissipativeness) was used in the work of Wood
[1] to obtain stability results for closed-loop switching converter systems. We
apply these concepts in Chapter 4 to obtain a basic and important result on
open-loop stability of switching converters, and in Chapters 5 and 6 to aid in

the design of feedback control schemes.

A.1 Passivity, Incremental Passivity, Relative
Passivity, and Reciprocity

Here we present essential ideas concerning passivity and reciprocity of nonlinear
multiport networks, keeping in mind the important examples of purely resistive
and purely reactive elements. For the purpose of developing stability results for
switching converters, the concepts of incremental and relative passivity will be
essential.

In order to state the following definitions in a relatively general way, we

assume the input-output vector pair of an n-port to be a hybrid pair. That is, the
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input u(t) and output y(#) of an n-port are n-component vectors whose elements
represcut port voltages or currents. The components of y(t) are complementary
to those of u(t), and oriented such that u()*y(t) is the instantaneous power
entering the network at its ports. In the following, the networks of interest are

assumed to time-invariant unless otherwise noted.

Passivity The definition of passivity presented in Wyatt et. al. [35], Wyatt
[88], and in Hasler and Neirynck [34] will be adopted here.

Definition A.1.1 (Available Energy) Given an n-port N, let the available
energy E,. in state x be the mazimum energy that can be ertracted from N
when its initial state is x, with the convention that E,. = +o0o if the available

energy is unbounded. That is,
T
Es. = sup/ —u(t)'y(t)dt (A.1)
T Jo

Definition A.1,2 (Passivity) N is passive if Eq. is finite for each initial

state x.

Note that this definition of passivity is directly tied to a state-space realization
for the n-port in question. This will not prove objectionable for the purposes of
this study since we aim to draw conclusions for switching converters for which
state models are readily obtained. In the context of a switching converter,
the concept of passivity will be of use in viewing a controlled converter as an
interconnection of various n-ports.

With the given definition of passivity, one must search over all initial states to
verify that a particular n-port is passive. However, in the case where a completely
controllable state-space realization for the n-port is given, [35] shows that the n-
port is passive if the available energy E4(z) is finite for some initial state ». We
adopt the definition of complete controllability from [35], which states roughly
that a state-space realization is completely controllable if any state * can be

reached in finite time from any initial state =, via a trajectory along which only
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finite energy is consumed or extracted. The claim of [35] follows essentially from
the definition of complete controllability. It is rather easy to demonstrate that
the network elements to be considered in this thesis have completely controllable
state-space realizations. See the examples below, in particular the generalized
capacitive/inductive network which has a controllable LTI input-state model.
The definition above is consistent with, but more general than some earlier

definitions of passivity conceived for linear (and possibly time-varying) circuits,

e.g. [36].

Alternate Definition A.1.2 (Passivity: Linear Networks) Ann-port net-
work, assumed to be storing no energy at time to, is said to be passive if

E(T) = /T w()*i(t)dt > 0 (A.2)

to

for all ty, T, and all port voltage vectors v(1) and current vectors i(t) satisfying

constraints imposed by the network.

Note that this definition of passivity is less general than the first one given, since
it is based on a zero energy state. However, it is not inconsistent with the first

definition in the case where a well defined zero energy state exists.

Incremental Passivity For the development of stability results for switching
converters in Chapters 4, 5, and 6, the notion of ircremental passivity and
related concepts will be essential. The definition given here follows the system

theoretic framework of Desoer and Vidyasagar [37].

Definition A.1.3 (Energy in the Increment) Given an n-port N with ini-
tial state x, let (uq(t),y1(t)) and (ua(t),y2(t)) be any two admissible input-output
trajectories on [0,T] with T finite. The energy in the increment between the

two trajectories is defined by
T
WelT) = [ (w1 - wa)'(31 — gn) dt. (A3)
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Definition A.1.4 (Incremental Passivity) An n-port N with initial state z
is incrementally passive at state z if W.(T), the energy in the increment
defined in (A.3), is nonnegative for every pair of admissible trajectories on [0, T]
with T finite. If the network is incrementally passive at all states z in the
state space, it is said to be incrementally passive. The n-port is strictly
incrementally passive at state = if W.(T) > 0 whenever the two trajectories
are distinct. The network is strictly incrementally passive if it is strictly

incrementally passive at every state in the state-space.

Note that this definition is closely tied to the definition of passivity. A passive
network can supply only finite energy while an incrementally passive network

can absorb only nonnegative energy in the increment between two trajectories

(W, in (A.3)).

Relative Passivity Incremental passivity will prove to be too strong a con-
dition in the case of certain nonlinear n-ports. In fact, many nonlinear networks
that are not incrementally passive exhibit a closely related property that we
shall term relative passivity. Another closely related notion, local passivity for a
capacitor (or inductor) has been introduced in [34,81|. However, our definition
of relative passivity is potentially apphcable to any type of network (as demon-
strated in this thesis). To define a relalively passive network, we examine the

energy in the increment with respect tc a constant nominal operating point.

Definition A.1.5 (Relative Passivity) Given an n-port N with equilibrium
state z,, and nominal output y,, corresponding to the constant input u,,, consider
the admissible trajectory (u(t),y(t)) on [0,T) that is obtained with initial state

z(0) = z,. The n-port is relatively passive at =, if
T
WeulT) = [ [u(t) = wa [y(t) - yal dt > 0 (A4)

for any finite T. The n-port is relatively passive if (A.4) holds for any nominal
operating point. N 1is strictly relatively passive at =z, if the inequality in

(A.4) is strict whenever z(T) # z,. N is strictly relatively passive if it
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ts strictly rclatively passive for .y constant nominal state. Thc network is
strictly relatively passive at z, to infinity if it is strictly relatively passive
at z, and W, (T) grows unboundedly as ||v(T) — =,|| tends to infinity. The n-
port is strictly relatively passive to infinity if it is strictly relatively passive
and W, (T') grows unboundedly as ||z(T) —z,|| tends to infinity for any nominal
operating point.

Strict relative passivity to infinity will play a role in concluding global stability
for 'oben—loop operation of switching converters in Chapter 4, and for certain
control schemes for these converters in Chapter 6. In particular, for a constant
nominal trajectdry, this definition guarantees that W, (T') in (A.4) is bounded
below by [|z(T) — z,||. Hence, in the case of lossless elements (defined below)
for which W (T') is a function of only z, and #(T'), W, (T) can be useful as a
Lyapunov function.

See tile discussion below for examples of resistive and reactive elements that
are. relatively passive, and for a result cor.cerning preservation of relative pas-
sivity in an interconnection of such elements.

Note that it is possible to make an alternate definition of relative passivity,
based on a time-varying nominal trajectory. This is not needed in our devel-
opment, and so will not be formally included; however, for purposes of com-
pleteness, an alternate definition is given here. For this purpose, consider the
nominal input, state, and output trajectory {u,(t),z.(t),yn(f)} on the interval

[0,T] that is consistent with the network.

Alternate Definition A.1.5 (Rel. Passivity: Time-Varying Trajectories)
Given an n-port N and an admissible nominal trajectory {u,(t),z,(t),yn(t)} on
[0,T), consider the admissible trajectory {u(t),x(t),y(t)} on [0,T) that is ob-

tained with initial state £(0) = x,(0). The n-port is relatively passive at

{un(t)1 zn(1), yn(t)} if
Wea(T) = [ 01) = O - wu(t) > 0 (A5)
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for any finite T. The n-port N is relatively passive if (A.5) holds for any
nominal trajectory. N is strictly relatively passive at {u,(t),z,(t),y.(1)}
if the inequality in (A.5) is strict whenever z(T) # x,(1'). N is strictly rel-
atively passive if it is strictly relatively passive for any admissible nominal

trajectory.

The distinction between relative passivity with respect to a time-varying nominal
trajectory and incremental passivity can be subtle; see the example below that

illustrates this distinction.

Losslessness A network property exhibited by reactive networks that is of
some interest in this work is losslessness. We shall use the definition given
in (38], and refer the reader to (38] and [28,29] for additional discussion and

clarification.

Definition A.1.6 (Losslessness) A state-space representation S for an n-port
network is lossless if for every pair of states z, and z,, the total energy con-
sumed at t)te poris along a trajectory transferring the state from z, to Ty 18 path
independent. An n-port network N is lossless if it has a completely observable

lossless state-space representation.

space representations that may or may not be completely observable. As an
example, for a simple two-terminal resistor with resistance R, it is possible to

assign a state-space representation of the form

= i’R

v = Ri. (A.6)

This state-space model is lossless in accord with the definition above, but is
evidently not observable. The definition of observability from [38] requires that
for a given state-space realization, any two initial states z,(0) and x,(0) that

generate identical input-output behavior must be equal, i.e. z;(0) = x,(0).
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A passive network that is also lossless possesses an internal energy function
that is unique to within an additive constant. This function coincides (up to an
additive constant) with the available energy. This fact is of use in the compu-
tation of storage functions for circuits that are constructed from purely reactive
elements (which are lossless) and purely resistive elements. In particular, we
may simply add up the storage functions for the reactive elements to obtain a

storage function for the circuit.

Reci[;rocity Another network property that will be of use in this thesis is
reciprocity. Reciprocity can be both a local and a global property for a nonlinear
network, as will be reflected in the following definitions and in the examples

below. The definitions here are taken from Chua [81]. (Also see Wyatt [88].)

Definition A.1.7 (Reciprocity: LTI Network) An LTI network N is re-

ci[;rocal' if for any two Laplace transformable ‘nput-output signal pairs, i.c.

{ua(8),32(8)} and {u,(t),va(t)},
- Uy(3)*Ya(s) = Un(s)'Yi(s) (A7)

where the capitalized variables are the Laplace transforms of the respective lower

case variables.

The following definition for nonlinear networks is based on the existence of a
small signal linearization for any given operating point, and so we assume that

such a linearization is well defined.

Definition A.1.8 (Reciprocity: Nonlinear Network) A nonlinear network
N is reciprocal at the constant nominal operating point (u,,y,) if the
small signal linearization of N is rectprocal at (u,,y,). N is reciprocal if it is

reciprocal at all of its nominal operating points.

In the case of nonlinear resistive and nonlinear reactjve multiports, reciprocity
results in some interesting global properties of the respective representations fcr

these elements. See the discussion below, where examples are considered.

225



A.2 Examples

Resistive n-Ports Since the adopted definition of passivity from [35] is based
on a state-space realization, we shall assign to a purely resistive element the
trivial realization where the state has zero dimension. The class of resistive n-
ports of interest here can be modeled by y = g(u) where (u,y) is a hybrid pair.

Then, a resistive n-port is passive if and only if
u'g(u) >0 (A.8)

for any admissible u. If the inequality in (A.8) is strict for nonzero u, then the
resistive n-port is strictly passive.

The notion of an incrementally passive resistive network is crucial for the
results in Chapters 4, 5, and 6. The resisiive n-port characterized by y = g(u)

is incrementally passive if and only if
(w1 — u2)*(g(u1) — g(u2)) 20 (A.9)

for any two admissible vectors u;, and u;. The n-port is strictly incrementally
passive if the inequality in (A.9) is strict when u; and u, are distinct. In the
case where g(u) is differentiable, incremental passivity and strict incremental
passivity are equivalent to the Jacobian matrix [dg/du] being globally positive
semi-definite and globally positive definite (except possibly at isolated points),
respectively. This is easily seen by considering a line integral that is equivalent

to the left-hand side of (A.9).

(u1 — u2)*(g(w1) — g(u2))
1 d
= /o d’t{("l — u3)’[g(w1) — g(uy + t(uz — vy))]} dt

= /ol(ul —u,)* [j_;‘i]'(“l — uz)dt (A.10)

The last integral in (A.10) is nonnegative if [dg/du] is positive semi-definite,
and is always positive if [dg/du| is positive definite (except possibly at isolated
points) and u; and u, are distinct. In the case of resistive networks there is no

distinction between incremental passivity and relative passivity.
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Note that an ideal DC source can be classified as a nonlinear n-port resistive
network. An ideal DC source is incrementally passive, although not passive.
A nonlinear resistive element with differentiable hybrid representation y =

g(u) is reciprocal at the point (u,,y,) if the Jacobian matrix |dg/du|,, satisfies
[dg/du], T = E|dg/du], (A.11)

where ¥ is a signature matrix, i.e. a diagonal matrix with all diagonal elements
+1 or. —1. The elements that are +1 correspond to the current-controlled ports
of the resistive element, while those that are —1 correspond to the voltage-
controlled pc"rts..(or vice-versa). In the case where the hybrid representation
is an impedance or admittance representation, (A.11) reduces to the familiar
symmetry constraint for reciprocal networks. The formula (A.11) will be of
some importance in Chapter 4, where synthesis of nonlinear averaged networks
is considered.

An intrinsic property of a resistive network that is globally reciprocal is
the existence of a scalar ‘potential’ function, termed the content, co-content, or
hybrid-content in [81], depending upon the particular representation used. For
purposes of illustration, assume that the nonlinear, reciprocal, resistive network
of interest has a current-controlled representation, i.e. v = R(i). Then two
consequences of the reciprocity of the network are: (i) the Jacobian matrix
[dR/di] is symmetric everywhere, and (ii) the line integral

G(i,io) = f (o) do (A.12)

io
is well defined. (The latter is a result of Stoke’s theorem in vector calculus.) The
quantity G(i) defined in (A.12) is termed the content, and can serve as a global
representation for this resistive network. In particular, it is possible to recover
the impedance representation v = R(i) from the content function by taking the
gradient of this function, i.e.

v = VG(i). (A.13)

In [81}], the co-content and hybrid-content functions are similarly defined.
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Generalized Capacitive/Inductive n-Ports We shall deal with the class
of generalized capacitive/inductive n-ports whose elements can be characterized

by a state model of the form

= u

y = g(z) (A.14)

where u and y are respectively the vectors of port currents and port voltages, or
vice-versa. (That is, the element is either a multiport capacitor or a multiport
inductor.) Such a reactive n-port is passive if and only if there exists a scalar
potential function f(z), bounded below, such that g(z) = Vf(z). See [35]
and references contained therein for a proof of this fact. Figure A.la) shows
an examplé of a voltagécllarge characteristic for a passive nonlinear capacitor.
The state-space model (A.14) is lossless in the case where g(x) = V f(z) since

the integral

T
/(;Vf(a:)z'dt
T d
= [ SH@)d
= f(=(T)) — f(=(0)) (A.15)

/oTyudt

is path independent.

It is also true that a generalized capacitive/inductive element of the form
(A.14) (with g(e) differentiable) is reciprocal if and only if g(z) = Vf(x) for
some scalar function f(z). This is a result of the fact that g(z) = V f(z) for
some f(z) if and only if the Jacobian matrix [dg/dz| is everywhere symmetric.
The impedance or admittance matrix representation for the small signal lin-
earization of (A.14) is symmetric if and only if [dg/dz] is symmetric, and hence
the generalized reactive element (A.14) is reciprocal if and only if g(z) = V f(z).
Note that any non-reciprocal reactive element (satisfying the above smoothness
condition) cannot be passive as a result of the argument here. (This is also

demonstrated in [81].)
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It is shown in [34] that the only element of the class of incrementally passive

capacitive/inductive n-ports is the linear n-port characterized by

1"=!t

y = Gz (A.16)

where the matrix G is symmetric, positive semi-definite. In computing W.(T),

the energy in the increment between two trajectories beginning at state r, we

find

T
W,(T) = /o (uy — 1) (Gzy — Gzy) dt

Td (1
= /o di {5(1'1 —22)°G(zy — 32)} di
= S(@(T) — #T)) Gl (T) - 2a(T)) (A17)

Note that in obtaining the final equality, we used the fact that z,(0) = =,(0) = =.
It follows that W, is nonnegative for any two admissible trajectories beginning
at z, provided G is positive semi-definite. Since the state z is arbitrary in this
calculation, it follows that W, is nonnegative for any x, and hence the n-port is
incrementally passive.

Because the class of incrementally passive reactive elements is so limited, and
because we would like to include nonlinear reactive elements (e.g. saturating
inductors) in our discussion of switching converter stability in Chapter 4, it is
essential to consider the class of relatively passive reaciive elements. For these
elements, we consider the energy in the increment with respect to the nominal
trajectory where the input in (A.14) is zero and the state is constant. Given
a capacitive/inductive n-port N with initial state z,, consider the admissible

trajectory (u(t),y(?)) on [0,T]. N is relatively passive at =, if
| T
WelD) = [ w®’{ult) - v, } de
T
= [ 2O {ua(t) -~ ye} et
z(T T
= §7 o) se) -~ [ 0 e
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z(T')
= {7 oriye) - g} 20 (A.18)

for any finite T. Note that the third line in (A.18) follows from the fact that
reactive networks are lossless, and hence the consumed (or extracted) energy in
a transient depends only on the endpoints of the state trajectory. Observing the
fourth line in (A.18), we see that the energy in the increment with respect to

a constant nominal trajectory also depends only on the endpoints of the state

trajectory z(t).

Figure A.1: (a) Relatively Passive Nonlinear Capacitor Characteristic and (b)
Input/State Trajectories that Violate Incremental Passivity

To see where consideration of relatively passive reactive networks can be im-
portant, consider the one-port capacitor described by z' = v and y = g(x) as
illustrated in Figure A.1a). In computing the energy in the increment between
the two trajectories depicted in Figure A.1b), we find W = (Gy — G) X, X,.
This is clearly not always nonnegative, although this capacitor is strictly rela-

tively passive. Charge-voltage characteristics for one-port capacitors that are
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respectively (i) strictly relatively passive at a given =, and (ii) strictly relatively
passive at a given z, to infinity are shown in Figures A.2a) and b). Note that
any reactive element that is strictly relatively passive at all of its equilibrium

states is inherently strictly relatively passive to infinity.

VA VA

A

a) b)

Figure A.2: Charge-Voltage Characteristics: a) Strictly Relatively Passive at
., and b) Strictly Relatively Passive at z,, to infinity.

More generally, a reactive n-port is relatively passive if and only if

(21 — 22)"(g(z1) — g(x2)) > 0 (A.19)

for any states z; and ;. In the case where g(z) is differentiable, this is equivalent
to the Jacobian of g(z) being symmetric, positive semi-definite for all states =.
Note that the case where this Jacobian is not positive definite in & neighborhood
of some z, is degenerate, in the sense that the state realization of the n-port is
locally unobservable in the neighborhood of z,. We shall be mainly interested

in the case where the Jacobian of g(z) is symmetric, positive definite.

Distinction between Incremental Passivity and Relative Passivity with
Respect to a Time-Varying Trajectory As noted after the alternate defi-
nition of relative passivity that encompassed time-varying nominal trajectories,

the distinction between relative passivity with respect to a given time-varying
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nominal trajectory and incremental passivity can be rather subtle. We illustrate

this difference with an example here. Consider the system modeled by

' = Az 4+ (Bz +b)u .
y = (Bzx +b)°Qx. (A.20)

Assume that in this model Q = Q* > 0, QA + 4°Q = 0, and QB + B*Q = 0.
The latter two assumptions are not necessary, but are made for convenience.
This type of model is introduced in Chapter 6 to model certain input-output
behavior of a switching converter. It turns out that the model (A.20) is not
incrementally pt;,ssi\f'e, as can be seen by considering the energy in the increment

betwecn two general time-varying trajectories, i.e.

' T
Wo(T) = /o (u1 — u2)(31 — y2) dt
T
= /o (uy — uz){(Bzs + 0)°Q(z1 — x2) + (1 — 72)"B*Qx1 } df

= [13 50— 2@ — 22) + (21— 22)" B Qi)
= Jo ‘a2 1 2 1 2 I, — T2 T)at

= %lzl(T) - zo(T)]*Qz+(T) — zo(T)) + /o T(zl — z,)' B*Qz{4.21)

The last term in the last line of (A.21) can be positive, negative, or zero depend-
ing on the particular trajectories z, and z,, precluding the incremental passivity
of the model (A.20). (This model is relatively passive at the nominal operating
point z = 0, as is demonstrated in Chapter 6.) What is interesting is that the

closely related model

' = Az + (Bz +b)u
Yy = (Brn(t)+b).QT, (A.22)

where z,(¢) denotes a nominal state trajectory of (A.22) (or of (A.20)) corre-
sponding to the nominal input trajectory u,(t), is relatively passive with respect
to the nominal trajectory {u,(t),z.(t),yn(#)}. (This model could have been used
in Chapter 5 (Section 5.5) to facilitate the presentation on handling time-varying

source and/or load waveforms.) The nominal trajectory {un(t),z.(t),yn(t)} is
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a nominal trajectory for the model (A.20), as well. Ilowever, (A.20) is neither
relatively passive with respect to this trajectory nor incrementally passive as
previously shown.

To see that the model (A.22) is strictly relatively passive with respect to the
nominal trajectory {u,(t),zn(t),yn()}, consider the computation of W, (T),

the energy in the increment for a general trajectory satisfying x(0) = z,(0):
T
WerlT) = [ (u =)y — yn)dt
0

= ‘/‘;T(u. — un)|(Bz, 4 b)°'Q(x — z,)]dt

= %lz(r) — 2a(T))*QI(T) ~ zn(T)] (A.23)

It is therefore clear that the model (A.22) is strictly relatively passive with
respect to the given nominal trajectory. However, this model is not incrementally
passive, as can be seen by examining the energy in the increment hetween two
trajectories, one of which is the zero trajectory (which is an admissible trajectory

for this system). We obtain
T
W.(T) = /o uy dt

= fo T[u(b‘Qa:) + u(z;, B*Qz)| dt

= /T[i-l-z'Qz + u(z, B°Qz)| dt

~ Jo ‘dt2 " o

T
= AT’ Qa(T) + [ ulziB'Qa)dr (424)

which evidently can be positive, negative, or zero depending upon the particular
trajectory (and the nominal trajectory z,). The conclusion is that (A.22) is not

incrementally passive.

A.3 Tellegen’s Theorem

Tellegen’s theorem is a consequence solely of Kirchhoff’s laws for the currents and

voltages in a given network, and is independent of the component characteristics.
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To state this theorem, we consider a network with b branches, any set of branch
voltages {v;;j = 1,2,...,b} satisfying KVL, and any set of branch currents
{ijii=1,2,...,b} satisfying KCL. The overbar is used with the branch currents
to emphasize that the set of branch voltages and currents {vj,i;57 - 1,2,...,b}
need not necessarily constitute a solution to the network. Tellegen’s theorem,
in its weakest form, states that the vector of branch voltages v is orthogonal to

the vector of branch currents i, i.e.
- b -
vii= Z"jij =0 (A25)
i=t

See [27] for an exposition on this remarkably general theorem and various ap-
plications.

One immediate result of Tellegen’s theorem that is of use in this work is that
the increments in the vectors of network voltages and currents are orthogonal.

That fs, given two distinct solutions (vy,i1) and (v3,i2) of a network, we have
(vi—v2)*(ih —i2) =0 | (A.26)

This follows by expanding the expression in (A.26) into four terms, and noting

that each is individually zero as a result of Tellegen’s theorem.

A.4 Interconnected Networks

In this subsection, we aim to investigate the properties of interconnnected net-
works. In particular, we shall show that if all members of a set of n-ports
possess one of the properties of passivity, incremental passivity, relative pas-
sivity, losslessness, or reciprocity, then under appropriate conditions, a network
interconnection of the members of the set also possesses the property of interest.
A network interconnection will be termed admissible if all televant variables (i.e.

port variables) are well defined for all time.

Interconnections of Passive n-Ports The argument to be presented here

follows the one given in [35,38], and will serve as the prototype for similar
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arguments involving certain other network properties of interest. Let N be an
admissible interconnection of the set of passive networks {N;,N32,...,Nx}, and
let E;"",,. be the available energy for Nj. Then, if the state for the interconnected
network is given by z = (z,..., ), the available energy for the interconnection
satisfies

E,.<E}, +---+E% (A.27)

Azy°

The statement follows from the fact that E’

Az, is an upper bound on the energy

that can be extracted from N j» and that by Tellegen’s theorem the instantaneous
power leaving the ports of N is the sum of the instantaneous powers leaving the

ports of the Nj. _.Hence, the network interconnection N is passive.

Interconnections of Incrementally Passive, Relatively Passive, and
Lossless n-Ports The fact that admissible interconnections of incrementally
or relatively passive n-ports are also, respectively, incrementally or relatively
passive can easily be demonstrated via the prototype argument given in the pre-
vious paragraph. In these cases, we would apply Tellegén’s theorem to conclude
that the sun; of the instantaneous incremental powers leaving the ports of the
interconnected n-ports Nj is equal to the incremental power leaving the ports of
the interconnected network N. Some care is required in defining an admissible
interconnection of relatively passive n-ports, since an arbitrary interconnection
may not possess an equilibrium state.

The case of an interconnection of lossless n-ports has even more subtle com-
plications since the definition of losslessness was based on a completely observ-
able state-space realization. It is possible that an interconnection of observable
lossless state-space models is not observable. However, in the case where an in-
terconnection of lossless n-ports possesses an observable state-space realization,

the interconnection is lossless. See [38] for more on this topic.

Interconnections of Reciprocal n-ports It is straightforward to demon-
strate that an admissible interconnection of reciproca! networks is also recipro-

cal. Suppose that the interconnection of interest has a set of accessible ports

235



whose variables are contained in the port vectors iy and vp. Denote the vectors
of the (possibly inaccessible) port variables of the networks participating in the
interconnection by iy and v4. Application of Tellegen's theorem to the Laplace
transformed port variables of a small signal linearization of this interconnected

network yields
Loi(8)'Vpa(s) = —Iai(s)*Vaa(s) (A.28)
La(8)* Voa(s) = —laa(s)*Var(s) (A.29)

where the subscripts 1 and 2 indicate distinct network solutions. A consequence

of the reciprocity of each of the networks participating in the interconnection is
that the right-hand sides of (A.28) and (A.29) are equal. Therefore, so are the

left-hand sides, and hence the interconnected network is reciprocal.

Feedback Connections Viewed as Network Interconnections

] S Y1 — —
- 1 51 + 52

(imped.) y1=v2 (admit.)

| uz -
-S . ©

Y2

2
a) b)

Figure A.3: a} Feedback Connection of Two Dynamical Systems and b) Equiv-
alent Network Interconnection

Consider the feedback connection of the two multi-input, multi-output dynam-
ical systems S; and S, via the constraints u, = y; and u, = —y, as shown in
Figure A.3a). In the case where these two dynamical models realize, respectively,
the input/output relations for two n-port networks, this feedback connection is
equivalent to the network interconnection shown in Figure A.3b). Such a point
of view can be of use in obtaining stability results for feedback system connec-

tions when it is known that each of the systems participating in the feedback
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connection possesses a property such as passivity, incremental passivity, or rel-
ative passivity. See [28,29] and [37] for more on this subject. This point of view
will be of use in Chapter 6 when we consider stabilizing feedback schemes for
switching converters. Relative passivity is the property that will be most useful
for our purposes in that chapter. The definition and use of this property is in

itself a contribution of this thesis.
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Appendix B

Averaged Circuit Synthesis for
Multiply Switched Converters
using Constraint Relations

o>~

—>
©
o

Figure B.1: Partitioned, Multiply Switched Converter

Here, we shall take a reiatively formal approach to the synthesis problem that

requires only the following two assumptions:

1. The state-space model for the switching converter is well defined in each

switch configuration.

2. For each switch configuration and for any admissible state and source
values, each branch voltage and current in the converter circuit has a

unique solution.
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In this development, we permit switched circuits with any finite number of
switch configurations. In addition to the switches, the circuits considered here
are assumed to contain sources, linear resistive elements, and nonlinear reactive
elements. For each of the multiports in Figure B.1, we shall assign a constraint
relation (see [47]). This is a very general way to characterize both linear and
nonlinear multiports, as discussed in Chapter 4. For the constant linear resistive

multiport, the constraint relation takes the form
Coy+Ciz+C,o=0 (B.1)

where the p—éom.ponent vector v contains the controlling state and source vari-
ablgs, that is the inductor currents, capacitor voltages, current source currents,
and voltage source voltages. The vector y contains the complementary state
and source variables, and the 2r-component vector z consists of the switch port
variables.. In the case where all resistive multiports are regular [81] (also see
Chapter 4), the constraint relation for an n-port contains n independent con-
straints for the 2n port variables. Such a constraint relation can be represented

by an n X 2n matrix, e.g.

[c, ¢. ¢ ] (B.2)

for the present case. Note that it is possible to perform elementary row opera-
tions on constraint matrices without altering the imposed const-aint relations.
We may therefore freely reduce the constraint matrix (B.2) to upper triangu-
lar form with elementary row operations. Henceforth, we shall assume that this
procedure was performed at the outset, and not change notation. The constraint

relation for the switch multiport similarly has the form
Cuz =0 (B.3)

where the dependence upon the switch configuration is indicated with the sub-
script u.
As discussed in Chapter 4 (Subsection 4.2.1), for the purpose of averaged cir-

cuit synthesis, we need to focus only on the switch subnetwork of the converter
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circuit (see Figure B.1). We take the approach of Subsection 4.2.1 to charac-
terize an averaged resistive network that replaces the switch network. Such a
characterization can be obtained by averaging the values of the switch port vec-
tor that occur in each switch configuration. The weights used in the averaging
are determined by the respective duty ratios. To proceed, we require an explicit
solution for z|,, the switch port vector in configuration u, as obtained below.

Combining the two sets of constraints (B.1) and (B.3), we can write

C, C:l|ly|_ |C,
FEls e

Note that because of the row-reduced form of the constraint matrix for the

resistive multiport, the (p + r) x p submatrix C, has at least r zero rows at the

bottom. Keeping this in mind, we can further partition our constraint relation

Cyl C,1 C'vl
0 C., [y] =—| Cunlv (B.5)
0 C. 0

where -Cy} isp X p,Csyis p x 2r, and C3 is r x 2r. Note that C oz = 0
represents the sc.zt of constraints imposed by the resistive multiport on the switch
port variables z when all controlling source and state variables are set to zero,
i.e. v = 0. Because of our assumption that the circuit has a unique solution
for each admissible state and source value (i.e. each value of v), the system of
linear equations (B.5) has a unique solution for each v. Hence, we can recover

z|,. For notational purposes, define the 2r x 2r matrix

- '22
n=[%].

Using this notation, we can solve (B.5) to obtain

(/'vl
-1 1=l -1 S
[ y ] = - [ (';;‘ C”‘D(_‘,‘D" ] L (B.6)
and hence z|, takes the form
zl, = -D;! [ c(;,, ] v. (B.7)



We are now in a position to solve the problem since we have obtained the
- form of the switch port vector z|, in terms of the constraint matrices for the
resistive and switch multiports. As computed in Subsection 4.2.1 for the two
configuration case, the one-cycle averaged switch port vector 7 is a convex com-

bination of the z|,, i.e.
T = (1 - dl i dm)“-’,u:ﬂ + d1£|u=1 +.. odmz|u=m- (B.S)

(See Chapter 2 (Section 2.1) for the particular correspondence between the
switch configurations and the values of the input u.) The relation (B.8) leads to
an explicit characterization of the subspace of R?™ that contains the averaged

switch port vect(;r:
Z=[1-dy—...~d,)Dy' +d,D;{* +... + d,,D_}] [ é]w (B.9)

where w = —C,yv is a vector in R™. Although w may not actually assume
any arbitfgry value in R™, the subspace defined by (B.9) where w is arbitrary
must contain the vector of averaged switch port variables. As demonstrated in
Subsection 4.2.1, such a characterization is adequate for the averaged resistive
network required to replace the switch network iri the averaged circuit. (Here,
‘adequate’ means that the reshlting averaged circuit is a realization of the state-
space averaged model, and that the circuit branch variables are equal to the
one-cycle averaged waveforms of the underlying switched circuit.)

It is possible to obtain an implicit characterization (i.e. contraint relation
of the form C,;z = 0) for a non-switched resistive network that is equivalent to
the characterization (B.9). For such a characterization, it is sufficient that the

associated matrix

_ (":-2 ’
=[] e
satisfies the relation
Di'=(1-d;—... —dm)Dg' + dy\ D + ... +d.D;!. (B.11)

If (B.11) can be solved for D,, then C,; can be obtained from the last  rows of

Dg,. Note that it is possible to recover the explicit characterization (B.9) from
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the implicit one involving D;! as follows:
z = Dj! [ é ] w. (B.12)

By hypothesis, each of the inverses D! is well defined since we have assumed
that the switching converter circuit has a unique solution for any admissible
state and source values in each switch configuration. Over the set of admissible
duty ratios, it is true that D, is well defined on an open and dense subset
since the points at which D, is not well defined correspond to points at which
the determinant of the matrix on the right-hand side of (B.11) is zero. This
determinant is a polynomial of finite order in the duty ratios, and is nonzero at
each of the extreme values of the set of admissible duty ratios. It follows that
D, (and C,) is well defined for almost every admissible duty ratio vector.

Upon determining the constraint matrix for the resistive network that re-
places the switch multiport, one can synthesize a resistive network realizing this
constraint matrix. One approach for this is to deduce a hybrid representation
from the constraint matrix, and then apply the synthesis methods of [36] to ob-
tain a network realization. The following example demonstrates how to recover
the result of Section 4.2.1 where a particular hybrid representation is assumed

to be well defined.

Figure B.2: Port Variable Definitions

Example: Hybrid Formulation Result Consider the interconnection of

- - the switch two-port and the resistive two-port obtained by setting to zero all
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voltage source voltages, all current source currents, all capacitor voltages, and
all inductor currents as shown in Figure B.2. This circuit contains all the in-
formation necessary to determine an averaged circuit synthesis. Suppose the
resistive network in Figure B.2 has a well defined hybrid representation H ‘with
the controlling port variables taken as v, and i,. The constraint matrix (', for

this network can be expressed as
Cea=[1 -H|] (B.13)

where the vector of port variables is taken as z = [i; v v, 15]*. The constraint

matrices for the switch network take the form

Co = [I 0], (B.14)
¢ = [0 1) (B.15)
Using the notation defined above, the associated matrices D, are given by
I -H
Dy = [ I 0 ] s (B.16)
I -H
D, = [ 0 I ] . (B.17)

The matrix D which contains the constraint matrix Cy; must satisfy the relation

D;' = (1-d)D;! +dD;? (B.18)
_[r o 0 I I (H-1I)
= [o H“]{[—I 1]*"[1 (H - I) } (B.19)

Note that H! exists since we have implicitly assumed that Dy and D, have full

rank. Computing the inverse, we find

I 0 I  -H
D“=[o [ +d(H - )| ‘ [(l—d)I dH ] (B.20)

By examining the last row of the matrix on the far right in (B.20), the constraint
matrix Cy = [ (1 — d)I dH ] can be extracted. By noting that the polarities of
the non-controlling switch port variables are o} posite from those of the resistive

port variables, we obtzin the hybrid representation

H,(d) = i—f—dﬂ (B.21)
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for d # 1. This is the same result as that obtained with the hybrid matrix

formulation. L
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