A Fault-Tolerant Multiprocessor
Architecy .re For Digital Signal Processing
Applications

by
William S. Song

B.S. Massachusetts Institute of Technology {1982)
M.S. Massachusetts Institute of Technology (1984)

Submitted to the
Department of Electrical Engineering and Computer Science

in partial fulfillment of the requirement

for the degree of

Doctor of Philosophy
at the
Massachusetts Institute of Technology
January 1989

©William S. Song 1988

The author hereby grants M.I.T. permission to reproduce and to
distribute copies of this thesis document in whole or in part.

Signature of Author _.. A sgen - — -

re

Department of Electrical Engineering and Co/puter Science
January 26, 1989

Certified by

Bruce R. Musicus
/Thesm Superv1sor

Accepted by _———— e e s i
. Arthur C. Smith
Chairman, Department Committee on Graduate Students

“‘TFO‘H ,..nh..n JE

[MAY 70 1389
LIBRARIE

ARCHIVES

A Fault-Tolerant Multiprocessor
Architecture For Digital Signal Processing
Applications

Abstract

Proposed is a fault-tolerant multiprocessor architecture which needs
much less redundant hardware than Modular Redundancy architec-
tures. The architecture uses weighted checksum techniques and is
suited for linear Digital Signal Processing applications in which mul-
tiple copies of the identical processor are used to meet the through-
put requirement. Single fault detection/correction and multiple de-
tection/correction techniques are discussed. Also proposed are sta-
tistical fault detection/correction algorithms for systems containing
numerical roundoff or truncation noise such as fixed point or floating
point systems. Presented are the simulations of these algorithms as
well as the simulations of numerical noise distributions in real fixed
point system applications. Our choice of weights reduces the dy-
namic range requirement of the checksum processors and minimizes
the masking of small faults by the numerical noise. Efficient fault
detection/correction algorithms for the exact arithmetic systems are
presented, including one for residue arithmetics systems. Practical
architectures for implementing the single fault detection/correction
algorithm are also presented. These architectures are designed to
mask any single component failure in the system. '

Acknowledgements

I would like to express my thanks to:

Prof. Bruce R. Musicus for his excellent advice, creative ideas, and exu-
berant enthusiasm.

Paul R. Blasche for his guidance and his advice on the applications aspects
of this work.

This research has been partly funded by US Air Force Office of Scientific
Research (Contract AFOSR-86-0164) and by Draper Laboratories, Cam-
bridge, Massachusetts.

Contents

1 Introduction 9
2 Fault-tolerant DSP Multiprocessor Systems 13
2.1 The Checksum Architecture 13
2.1.1 Single Fault Detection 13

2.1.2 Single Fault Correction 15

2.2 The Weighted Checksum Architecture 17
2.2.1 The Use of Weighted Checksums 17

2.2.2 Single Fault Correction 22

2.2.3 Block Matrix Notation 23

2.2.4 Multiple Fault Detection/Correction 25

2.2.5 Choice of Weight Vectors for Single Fault Correction 26

2.26 Reliability 29

3 Numerical Noise 31
3.1 The Effects of Numerical Noise 31
3.2 Single Fault Detection 32
3.2.1 The Threshold Method 32

3.2.2 Effects of Incorrect Fault Diagnosis 33

3.2.3 Dynamic Range vs. Numerical Noise 34

3.3 Single Fault Correction. 35
3.3.1 The Projection Method 35

3.3.2 Effects of Incorrect Fault Diagnosis 39

3.3.3 Dynamic Range vs. Numerical Noise 42

34 SimpleCase 43

' 3.4.1 Simple Case of Projection Method 43
3.4.2 Computational Overhead Example 46

3.5 Other Methods Single Fault Correction Methods 48

3.5.1 Using Range Test on The Syndromes 48
3.5.2 Error Coding Method 50
3.5.3 Angular Method 50
Generalized Likelihood Ratio Test 54
4.1 Single Fault Correction. S84
4.2 Reducing The Numerical Noise 57
Fixed Point System Simulations 61
5.1 Numerical Noise 61
5.2 Single Fault Correction System Simulation. 63
5.2.1 Simulated System 64
5.2.2 The False Alarm Rate 66
5.2.3 Dependenceongq 70
5.2.4 Dependence on Changing False Alarm Rate 73
5.3 Probability Distribution of the Numerical Noise 74
5.4 Numerical Noise Histograms of Rea! Applications 78

Multiple Fault Correction Systems with Numerical Noise 83

6.1 Projection Method 83
6.1.1 K, Fault Correction 83
6.1.2 WhiteNoise Case 84
6.1.3 Reliability 86
6.1.4 Weight Vectors 87
6.1.5 Practicality 89

6.2 Generalized Likelihcod Ratio Test 90

The Exact Arithmetic Systems 92

7.1 The Integer Arithmetic Systems. 92
7.1.1 Single Fault Correction e e 92
7.1.2 Multiple Fault Correction 92
7.1.3 Modulo Arithmetic in Checksum Processors 95

7.2 Residue Arithmetic Systems 96
7.2.1 Residue Number System Multiprocessors 96
7.2.2 Modulo Arithmetic Processor Systems 98

0

S - R R o T - B

Practical Architectures

8.1 Single Bus Architecture
8.2 Unidirectional Data Flow Architecture
8.3 Variations

Conclusion

Proof of Section 2.2.4

Derivation of GLRT (Proof of Section 4.1)
Derivation of Alternate GLRT (Proof of Section 4.2)
Mean and Variance of Likelihoods

Mean and Variance of Processor Gutput Estimates

Proof of WWT = | For Complete Sets of Weight Vectors

106
107
111
112

116

120

122

126

132

137

140

List of Figures

1.1
1.2

2.1
2.2
2.3
2.4
2.5

3.1
3.2
3.3
3.4

5.1
5.2
5.3
5.4

5.5

8.1
8.2
8.3
8.4
8.5

Triple Modular Redundancy 10
Double Modular Redundancy 11
Information Spreading for Fault Tolerance 14
Single Fault Detection Checksum Architecture 16
Single Fault Correction Checksum Architecture 18
Weiglited Checksum Architecture 19
Possible Single Fault Syndrome Values 24
Projection Method Decision Regions, N=2,C =2 40
Overhead Ratio for Complex FFT (N=10,C=3) 48
Range Test Method Decision Regions, N =2,C =2 51
Angular Method Decision Regions, N =2, C =2 53
Error Distribution for One Roundoff 74
Noise Distribution of M Roundoff Operations 77
Noise Histogram of FIR Single Fault Detection System . . . 80
Noise Histogram of 64 Point FFT Single Fault Detection

System e e e e e 81
Noise Histogram of 1000 Point FFT Single Fault Detection

System 82
Single Bus Architecture 108
Single Bus Architecture Timing Diagram 109
Bus Guardian Unit 109
Unidirectional Data Flow Architecture 113
Unidirectional Data Flow Architecture Timing Diagram . . 114

7

List of Tables

2.1
3.1

5.1
5.2
5.3
5.4

7.1

1.2
7.3

The Maximum N for the Weights Used 28
Number of Multipliesand Adds 47
Simulation Histogram of Single Fault Correction (N=10, C=3) 68
Angle Between Neighboring Weight Vectors 69
Simulation with Varying¢q 72
Simulation with Varying p(L, >0|H) 73
Weight Vectors and Syndromes for Modulo 5 System (N = 4,

C=2) oo e 101
Weight Vectors for Double Fault Correction (C =4) 104
Weight Vectors for Double Fault Correction (C =5) 105

Chapter 1

Introduction

In conventional fault-tolerant applications, multiple copies of the processor
are used to mask one or more faults. This technique is called the Mod-
ular Redundancy Technique 'Johnson 84, Nelson 82, Losq 76, de Sousa
78, Wensley 78]. One of the most popular is Triple Modular Redundancy
[von Neumann 56, Johnson 84, Siewiorek 82], that von Neumann proposed
during 1950’s in which three identical processors and a majority voter are
used to mask a single fault as shown in figure 1.1. The major advantage of
Triple Modular Redundancy is that it is simple to implement and that it can
be used for arbitrary applications. The major disadvantage of the Triple
Modular Redundancy Technique is that it requires much excess hardware.
Two-thirds of the hardware is being used for fault-tolerance purposes.

Double Modular Redundancy shown in figure 1.2 is another alternative,
in which two copies of the processor are used to detect a single fault. In this
case, only half of the hardware is being used for fault-tolerance purposes.
However, once the fault is detected, the system is left with the non-trivial
time-consuming task of figuring out which processor is at fault. One way
to check which processor is faulty is to interrupt the processors and run
seif-diagnostic programs. Although a “permanent” hardware fault can be
discovered this way, a “transient” fault would not be discovered with this
method. One possible method to discover the transient fault is simply to do
the computation over again. If the fault were transient, the results should
agree a second time. In order to do this, the processors have to keep record
of “check points” where the internal states of the processors are stored away
at regular intervals so that when a fault is discovered, the processor can be

9

Processor

Processor Voter Output

e

Processor

Figure 1.1: Triple Modular Redundancy

restarted from the last check point.

There are a number of other alternatives which attempt to increase the
hardware utilization to above 50 %. One example is the self-testing system
[Johnson 84]. The idea is that the system occasionally suspends the current
Job, stores the internal state, and runs the diagnostic test programs which
check for the hardware faults. Another example is the Roving Emulator
system [Breuer §3]. In this system, only one part of the system is tested
for the fault at one time. The fault checker checks a hardware module
by emulating its function, using the same inputs and internal states, and
comparing the output. If no fault is detected for a while, the fault checker
proceeds to check another hardware module. Although these systems may
utilize greater than 50% of hardware, they do not detect or mask all the
faults, and it may take a while to detect a failure.

The systems that achieve high reliability with little redundant hardware
are data transmission systems using error coding techniques. The idea be-
hind this system is to encode the data with a reliable encoder, transmit the
encoded data using a slightly larger bandwidth than the minimum band-
width required by the non-encoded data, and then decode the data at the
receiving end with a reliable decoder. Even if some data were destroyed

10

Processor

@ Output

Processor

Figure 1.2: Double Modular Redundancy

in the transmission process, the decoder can reconstruct the data as long
as not too much of the data were destroyed. How much extra transmis-
sion bandwidth is required depends on the noise model of the transmission
channel and the reliability requirement of the application. Error coding
techniques have also been used in memory systems. Although the error
coded systems achieve high reliability with low hardware overhead, they
can only be used when the output is identical to the input.

However, if we restrict the class of applications, it is possible to apply
techniques similar to the error coding technique to other systems in order
to achieve high reliability with little hardware overhead. Good examples of
reliable systems with little hardware overhead have been studied by Huang
and Abraham [Huang 82, Huang 84} and Jou [Jou 84, Jou 86]. They have
acuicved single fault correction for matrix operations in linear or mesh-
connected processor arrays using the weighted checksum approach. The
input matrix is encoded using the weighted checksum technique, processed
in a processor array containing slightly more processors than the non-fault-
tolerant case, and the output matrix is decoded also using the weighted
checksum technique. However, their architecture is limited to doing the
matrix operations in array processors, and their fault-tolerance algorithm
only covers the processor calculation error. It is assumed that there is
no fault in the datapath and that the faulty processor is still capable of
passing the incoming data onto the next processor without introducing
an error. Their choice of weight aiso requires the dynamic range of the
“extra” processors to be much greater than the original processors, and the

11

numerical noise from “extra” processors heavily masks the errors from other
processors in non-exact arithmetic systems (fixed or floating point systems).
They also do not have effective fault detection/correction algorithms for the
systems with numerical noise.

Proposed in this thesis is a more general fault-tolerant multiprocessor
architecture with low hardware overhead that can be used for any linear
signal processing purpose. It also uses weighted checksum techniques and
its datapath is designed to tolerate any single point failure. Our choice of
weights reduces the dynamic ranges of the the “extra” checksum proces-
sors, and improves the fault detection/correction capability in the presence
of numerical noise. We also introduce effective fault detection/correction
algorithms for the systems with numerical noise as well as for the exact
arithmetic systems including the residue arithmetic systems.

Our work is presented as follows. In chapter 2, we shall present the basic
idea behind the fault-tolerant multiprocessor architecture for DSP. In chap-
ter 3, the fault detection/correction algorithms are presented for the sys-
tems containing numerical roundoff or truncation ncises. In chapter 4, we
shall present the generalized likelihood ratio test for detection/correction of
the faults. In chapter 5, the simulations of these fault detection/correction
algorithms and the simulation of the numerical noise distribution in vari-
ous systems are presented. In chapter 6, we shall discuss the multiple fault
detection/correction algorithms in the presence of the numerical noise. In
chapter 7, we shall present efficient algorithms of fault detection/correction
for exact arithmetic systems including the residue number arithmetic sys-
tems. In chapter 8, we shall discuss the practical architectures suitable for
impiementing the fault-tolerant architecture. Chapter 9 is the conclusion.

12

Chapter 2

Fault-tolerant DSP
Multiprocessor Systems

2.1 The Checksum Architecture

2.1.1 Single Fault Detection

Digital Signal Processing systems often have to perform linear processing
tasks on massive amounts of incoming data at a very rapid rate, often in real
time. Radar and sonar systems are typical of such applications. Massive
computational requirements often lead to highly parallel multiprocessor
architectures [Faithi 83]. In such multiprocessor environments, it .= not
unusual to have multiple processors doing the identical linear processing
task. Typical of linear processing tasks are filters and transforms.

Here is an example of a simple multiprocessor DSP architecture, which
uses a number of identical linear processors. Suppose the speed of a single
processor is /V times slower than what is required by the application. One
can use N processors in a rotating basis to meet the throughput require-
ment. The first segment of the input data goes to the first processor, the
second segment of the input data goes to the second processor, and so on.
By the time the N** processor has received its input, the first processor has
outputted its results and is ready to receive the first segment of the next
batch of data.

In a multiprocessor architecture with N processors doing identical linear
tasks on different set of input data, it is possible to use a technique simi-

13

/ P
/

Encoder o Decoder

/

Figure 2.1: Information Spreading for ¥ault Tolerance

lar to error coding technique {Kohavi 78, Siewiorek 82} in order to achieve
fault detection/correction. In data transmission systems, the data to be
transmitted is often error coded to spread the information over a wider
bandwidth. It is then sent over the transmission channel which requires
a slightly larger bandwidth than the minimum, and is decoded on the re-
ceiving end. The reliability of the system can be greatly enhanced with
relatively little extra transmission bandwidth, provided that encoders and
decoders are fau]t-free. Similar things can be done in the multiprocessor
environment. We would like to encode the input data and “spread” the
information over a wider database. We would then want to process these
data with slightly more processors than the minimum required, and decode
the outputs as shown in figure 2.1. The encoding and decoding would be
such that the desired number of processor faults can be detected or masked,
provided that the encoder and the decoder are fault free.

The single fault detection version of such a system is shown in figure
2.2. It consists of N linear processors processing different sets of input

14

data. Let z; be the input data segment and y, be the output data segment
of the processor k for the current batch of data. There is an extra (N +
1)** processor in the system which is responsible for fault detection. It
is an identical processor doing the identical linear processing as all other
processors, and its input is the sum of all other inputs.

[by

N
LN+1 = Z L (2.1)
k=1

We shall call the extra (N + 1)** processor the checksum processor and all
other processors the data processors. In absence of a fault, the output of
the checksum processors should be equal to the nutput checksum, which is
the sum of the outputs of the data processor. That means the syndrome
sn4: of the (N + 1) checksum processor defined as

N
SN+ = Yy T Y (2.2)
k=1

should be equal to zero when there is no fault. If there is a fault in the
system, it would not be equal to zero. Therefore, one can achieve single
fault detection with a single checksum processor.

2.1.2 Single Fault Correction

The checksum processor is very much like a “parity” processor. In the error
coding technique with a parity bit, the parity bit is formed by modulo-
2 addition of all the data bits or their complements. In the checksum
processor case, the input to the checksum processor is formed by adding
inputs of the data processors.

Treating the checksum processor like a parity processor, single error
correcting codes such as Hamming Code can be directly applied to the
multiprocessor system. In error correcting codes, there are a number of
parity bits, each the modulo-2 sum of the different set of data bits. If there
is no error, all the parity bits match correctly. If one of the bits is faulty, the
faulty bit can be located by looking at which parity bits mismatch. Figure
2.3 shows how the Hamming Code can be used for single fault correction in
the multiprocessor architecture to protect four data processors using three
checksum processors. The processors 1 through 4 are data processors and

15 .

In

N
Z:k:l &k

Figure 2.2: Single Fault Detection Checksum Architecture

—v[Processor 1 —

—vl Processor 2 W——r

—»[Processor 3 —|——>

——»mocessor N |—

——»[Processor N+1 I_"

Eivzl Y,

the processors 5 through 7 are the checksum processors. On the right of the
processors are their addresses which are used for fault location. Notice that
the processor address is different from the processor number. The lines on
the left of the processors represent which data processor inputs are used to
form the inputs to each checksum processor. That means

and

Let us define the checksum match variable b to be equal to

Iy = I;+ZI;+Z4

Is = I;+ZI3+ I,

Iy = Itz tz,
$s = Y 7Y, Y, 7Y,
6 = Yy~ Y~ ¥ Y,
1 = L7 7YY

16

(2.3)

(2.4)

0 if syy =0
by, = (2.5)
1 if sy #0
The faulty processor location is done tfrom the codeword (b7 b bs). When
all the processors are working correctly, the codeword is (0 0 0). If one of
the processors is faulty, the binary value codeword is equal to the address
of the faulty processor. _

If the faulty processor is a data processor, its correct output can be
calculated using the syndrome of one of the checksum processors that are
doing the checking on the faulty processor. If the k** data processor is
faulty, and if it is being checked by the m'* checksum processor, the correct
output g, is equal to ‘

yk = —y—k + S (2.6)

Note that when a checksum processor is detected as being at fault, it is
usually not necessary to correct it.

Using this scheme, the number of the checksum processors C and the
nuinber of the data processors N required to achieve single fault correction
are related by '

N+C<2°-1 (2.7)

This formula comes from the fact that there are 2€ possible values for the
code word (by+c bn+c-1 -.-bn+1), which has to be able to represent N + C
possible single processor failure modes and one no-fault mode.

Unfortunately, the error coding iechnique cannot be used for the mul-
tiple fault detection/correction cases. This is because the error coding
techniques are based on modulo-2 arithmetic.

2.2 The Weighted Checksum Architecture
2.2.1 The Use of Weighted Checksums

The checksum technique of the previous section is a special case of the
weighted checksum technique. The weighted checksum technique requires

17

Address

(b7 b6 bs)
— — | Processor 1 011)=3
— — | Processor 2 (1o1)=5
E Processor 3 (110)=6
— — — | Processor 4 (111)=7
— | Processor 5 (001) =1
——— | Processor 6 (010) =2
> | Processor 7 (L00) =14

Figure 2.3: Single Fault Correction Checksum Architecture

18

I, ——»ﬁ’rocessor 1 l—» Y,
o

z, —|Processor 2]—r Y,
z3 —|Processor 3 —|—> Y,
N —v[Processor N l——> Yy

N WNi1mEZn —|Processor N+1 |— YN_ wniimy,

SN WN+emInm —|Processor N+Cl— TN_, wnicmy,,

Figure 2.4: Weighted Checksum Architecture

fewer checksum processors than the simple checksum technique and can
handle multiple fault detection/correction cases. In this case, the inputs to
the checksum processors are formed by taking linear combinations of the
data processor inputs. Suppose there are C checksum processors identical
to the data processors as shown in figure 2.4. Then the inputs to those
checksum processors are

N
‘I = Z WgmZ, for k=N+1,.,N+C (2.8)
m=1

where wy , are the scalar weights.
Let F be the linear function that the processors perform.

y,=Fz, for k=1,..,N (2.9)

19

If we assume that input z, has p data points and the output y, has ¢ data
points, then F is a ¢ by p matrix. The output of the checksum processors
can now be written as

N
y,=Fz, = Z wymFz, for k=N+1,.,N+C (2.10)

m=1

The syndrome s, is defined as the difference between the checksum proces-
sor output and the corresponding output checksum.

N
S =Y, — 9 Wemy,_ for k=N+1,.,N+C (2.11)
m=1

If there is no fault in the system, the all s, should be equal to zero. When
there are faults in the system, let us assume that the fault in processor &
introduces error ¢, on to the output Y,

y,=Fzy+e for k=1,.,N+C (2.12)

The syndromes are now equal to

Sk =€ — O Wim€n for k=N+1,..,N+C (2.13)

We can simplify this equation by defining the weights for the checksum
processors to be

-1 for 1=3=1,..,C

WN+iN+j = (2.14)
0 for 1#73

Now, the syndrome can be written as

N+C
Sp = — Z WemEn for k=N+1,.,N+C (2.15)
m=1

20

We can expand our fault detection/correction algorithms to include the
faults in the input checksum calculations and the syndrome calculations,
provided that each checksum processor has a separate hardware module
for computing its input checksum and syndrome. The fault in the input
checksum calculation or the syndrome calculation can be treated as if the
fault were in the corresponding checksum processor. The fault occurring
while calculating the input checksum causes the input checksum to deviate
from the correct value by the error 6.

N
I = Z WimZIm +6; for k=N+1,..,N+C (2.16)
m=1

The fault occurring while calculating the syndrome introduces error A, on
to the syndrome.

N
Sk=Y, ~ Z Wemy + Ay for k=N+1,..,N+C (2.17)
m=1

The effect of all three types of faults on the syndrome is

Sp = € + Fék +_)_\[, — Z Wi m€m for k=N+ 1,...,N +C (218)

m=1

Notice that the results of the input checksum error F§, and the output
checksum error A, are indistinguishable from the checksum processor error
€, as far as their effects on the syndromes are concerned. They only affect
the k** syndrome, while the data processor error affects all the syndromes
with non-zero weights. Therefore, we shall treat the input checksum or the
syndrome calculation error as part of the checksum processor error. From
now on, when we refer to checksum processor error, it shall automatically
include the input checksum and the syndrome calculation error. Let us
define the composite error ¢, as

(€ for k=1,..,N
6, = (2.19)
€& +Fo.+A for k=N+1,..,N+C

21

The syndrome s, and the composite error ¢, are related by

N+C
Sg = — z wx,mém for k=N+1,..,.N+C (2.20)
m=]

2.2.2 Single Fault Correction

Let us examine how a single fault can be detected and corrected using
weighted checksums. When all the processors are working correctly, all the
syndromes should be equal to zero. When only the processor k is faulty
with the error ¢,, the syndromes would be

SN+1 = WNs1k@,
SNy2 = WNi2x9P
* (2.21)
SN+Cc = WN+ckP,
Let us define the weight vector w, te be
T _
Wy = (wN+l.th+2,h--- yWNLC.k) (2.22)

With given s;’s, one can distinguish processor k, failure from processor k,
failure if w, is linearly independent from w,. That means the w,’s have
to be linearly independent from each other in order to have single fault
location. In order for the w,’s to be linecarly independent, one needs at
least two syndromes (i.e. two checksum processors).

Let us consider a very simple example case with two data processors
and two checksum processors (i.e. N=2 and C=2). The weight vectors
used are w] = (1,1), wl = (1,-1). In figure 2.5, all the possible values
for the syndromes are drawn in the syndrome plane. When the processor
k is faulty, the syndrome would fall on the line along the vector w, with its
distance from the origin proportional to ¢,.

Once the faulty processor has been located, its correct output can be
calculated from its faulty output and any one of the syndromes with non-
zero weight. If the k** data processor is faulty, its correct output g, is equal
to

22

o Sm
P =Yt —wm'k (2.23)

i

Note that when a checksum processor is detected as being faulty, it is not
necessary to correct its output.

A special case of the single fault correction is when there is one data
processor and two checksum processors (N = 1, C = 2) with the data
processor weight vector w? = (1,1). This means that all three processors
have the same input which is equivalent to the Triple Medular Redundancy

technique.

2.2.3 Block Matrix Notation

The equations for the syndrome values in presence of a fault can be written
in a convenient block vector ! notation. At this point, we shall define the
syndrome black vector s and the composite error block vector ¢ to be

SN+1 | 21

SN+c] éN+C

Itn
I

We also define the block weighting matrix W,

wNH‘lI wN.,.l.zI wN+l.NI -1 0 0
W = wN+2_1I wN+2_zl ce wN+2.NI 0 -1 ... 0 (2.25)
wnical whic2 ... wnienI 0 ... 0 I

where I is a ¢ by ¢ identity matrix. With this block matrix notation, the
syndromes can simply be written as

s=-W¢ (2.26)

Let us also define W, to be the k** block column of W. Then in case of
the k** processor faillure, the syndrome will be:

!'Block vectors (matrices) are ordinary vectors (matrices) whose elements are themselves
vectors (matrices).

23

SN+2
A

Figure 2.5: Possible Single Fault Syndrome Values

24

s = —W,,q_bk (227)

2.2.4 Muiltiple Fault Detection/Correction

Let us examine what happens when there are two faulty processors in the
single fault correction systemm with two checksum processors. The value of
the syndrome s would be the linear combination of the two weight vectors
corresponding to the faulty processors. Since all the weight vectors are lin-
early independent, the syndrome cannot be at the origin of the syndrome
space. Thus, the presence of up to two faults can be recognized by the
syndrome not being at the origin. However, one cannot distinguish which
processors have failed, since the non-zero syndrome can be explained by the
linear combincztion of any two processor failures. Also, one cannot always
tell whether one processor has failed or two, since the linear combination
of two processor failures can lie on another processor weight vector line.
When there are three faulty processors, it is possible that the three pro-
cessor crrors would be multiplied by weights and added to form all-zero
syndromes. Therefore, one cannot reliably detect three failures with two
checksum processors.

In general, to be able to detect L,, failures, we have to make sure that
every possible set of L,, weight vectors has to be linearly independent from
each other, so that any combination of up to L, failures would produce
the non-zero syndromes. This requires the weight vectors to be at least
L,. dimensional vectors which means that one needs at least L,, checksum
processors. In order to be able to detect and correct up to K,, failures,
every possible set of 2K,, weight vectors has to be linearly independent
from each other. This is because the syndrome hyperplane defined by all
possible linear combinations of one set of K,, weight vectors should not
intersect with another hyperplance defined by all possible combinations
of another set of K,, weight vectors, except at the origin. One needs at
least a 2K,, dimensional syndrome space to be able to achieve this, and it
requires at least 2K, checksum processors. If one is interested in detecting
up to K,, + Ly, failures and correcting failures if K, or fewer failures have
occurred, one needs a minimum of 2K, + L,, checksum processors as proven
in appendix A.

25

C>2Kp+ Lnm (2.28)

2.2.5 Choice of Weight Vectors for Single Fault Cor-
rection

The weight vectors for single fault correction should be chosen such that
they minimize the computational effort involved in calculating the input
checksums and the syndromes, as well as minimizing the number of check-
sum processors needed for protecting the given number of data processors.
Jou and Abraham [Jou 84] used wy, = 2:"N-1(m-1) as weights for the
data processors. These weights have the advantage that the multiply by a
power of 2 can be done in simple bit-shifts. However, the dynamic range
of the checksum processor registers have to be much greater than the data
processors in order to be able to accommodate wyicn = 2(C-1(N-1) There
are also disadvantages in having the weights varying largely in size. For ex-
ample, in the presence of numerical computation noise, the numerical noise
generated from the processors with large weights wouid mask the output
signal of the processor with small weights in the syndrome calculations, as
we shall see in later sections.

One choice of the weights that simplifies the checksum computation
is to use only 0 and 1 as weights. This eliminates the multiplies in the
checksum computations and is equivalent to using simple checksums instead
of weighted checksums. It is also equivalent to using the conventional error
coding techniques. Using these weights, there can be up to N+C = (2 -1)
weight vectors for a given number of checksum processors C. For example,
we can have four data processors with three checksum processors (C = 3,
N = 4). The W matrix in this case with ¢ = 1 (¢ = 1 so that we do not
have to write in the block matrix form with the identity matrix I) would
be

[1101—100
W=Il1011 0 -1 0 (2.29)
lo111 0 o -1

The N + C = 7 weight vectors in this case are seen as the block columns
of the weight matrix W. Recall that the case with one data processor

26

with two checksum processors (N = 1,C = 2) is equivalent to the Triple
Modular Redundancy. The weight matrix in that case is

W = [i "(1) __(1)] (2.30)

If only O, 1, and -1 are allowed to be weights, we still do not need
multiplications in the checksumming process, but there can be more data
processors for a given number of checksum processors than when only 0
and 1 were used as weights. There can be up to N + C = (3¢ - 1)/2
weight vectors for a given C. For example, we can have ten data processors
with three checksum processors to achieve single fault correction (N = 10,
C = 3). The W matrix in such a case with ¢ = 1 would be:

1 1 1 -1 0 O

01 11
W = 10 01 1 -1 -1 0 -1 O (2.31)
11 -11

— O

1
-1
0

O =

- -1 1 -1 0 0 -1

Another choice for weights for single fault correction is to use small
integers. This makes the multiplications in the checksum computations
relatively easy and does not increase the dynamic range of the checksum
processors nearly as much as Huang’s choices for weights. A good way to
get the single fault correction weight vector set is to start with all possible
combinations of C weights each between —M and +L and to eliminate
the zero vector and any vector which is linearly Jependent on another
vector. If weights-between -2 and +2 were used, they would not require
more than a shift operation for weight multiplication, and we can have
N+C = (5°—3€)/2 different weight vectors for given C. For example, with
two checksum processors, we can have up to six data processors (N = 6,
C = 2), with the following weight matrix:

1 11 1 2 2 -1 0
W= 1 -12 -21 -1 0 -1 (2.32)
Table 2.1 shows the relationship between N and C depending on the
range of weights used. Notice that one can protect a large number of data
processors using relatively few checksum processors and using only very

small integers as weights.

27

- Weights Used 0,

1/0,+1]0, £1, +2
Max N for C =2 1 2 6
Max N for C =3 4 10 54
Max N for C =4 11 - 36 268
Max N forC =5 25 116 1436

Table 2.1: The Maximum N for the Weights Used

We define a “complete” set of weight vectors as the one that meets the
following condition: if (ayaz...a¢)T is a weight vector, then every (+a; +
az... = ac)T must also be a weight vector, or else its negative must be
a weight vector. The compiete set of weight vectors is created from the
symmeiric range of integers from — L to + L. The weight matrix W for the
complete sets of weight vectors has the property that WWT7 is a scaled
identity matrix (WWT = 0% 1 where o}, is a scalar) as proven in appendix
F. This property becomes useful in later sections.

If complex arithmetic is used in the processors, we can have the weights
of form n + jm where n and m are small integers. Because the weights
have twice the dimensionality of the non-complex case, we can have more
data processors with the same number of checksum processors than in the
non-complex case. For example, if we use -1, 0, and +1 for n and m,
we can have N + C = (9¢ — 5)/4 weight vectors possible. With twe
checksum processors, we can protect up to twelve data processors (N = 12,
C = 2). This is many more than in the non-complex case with -1, 0, and
+1 as weights, in which only two data processors can be protected with
two checksum processors. The weight matrix in this case is:

111 1 1 1 1 145 1+5 14
11 7 -1 -5 1435 =143 -1—-j5 1-35 1 7 -1

(2.33)
If 3 checksum processors were used, we can protect up to 148 data proces-
sors (N = 148,C .= 3). The “complete” set of complex weight vectors of
this form has the property that WW?# = o% I where o}, is a scalar and
WH is the Hermitians (complex conjugate transpose) of W.

W

28

2.2.8 Reliability

A system failure in the single fault detection or correction system occurs
when there are two or more processor failures at the same time. Let us
assume for convenience that only the processors can fail and that all other
parts of the system are fault-free. Let P; be the single processor failure
rate. If we assume that P; is much less than one (P; << 1) and that the
processor failures occur independently from each other, the system failure
rate would be approximately equal to

(N+C)N+C—1)
2

This is an approximation since the checksum processor failure rate would
be slightly higher than Py, since it includes the failure rate of the input
- checksum and the syndrome calculation. Let us compare this failure rate
to the failure rate of the Triple Modular Redundancy (TMR) system in
which each of the N processors are triplicated for single fault correction.
The system failure in this case occurs when two or more processors fail at
the samne time in one or more of the NV triplicated processor groups.

Prob(> 1 failure) ~ P} (2.34)

- Prob(> 1 failure in any triple) ~ 3N P} (2.35)

The system failure rate in our architecture is approximately (N + 2C)/6
times higher than the TMR system failure rate, but the number of proces-
sors used (N + C) is significantly less than 3N in the TMR system.

The actual system failure rate of our system would be higher, since we
have accounted only for the processor failure rate. We also have to account
for-the failure rate of any other parts of the system, such as the control,
" busses, the decoder which is responsible for locating faulty processor from
the syndrome and correcting. its output, and so forth. The actual system
failure rate P,;, can be written as

(N+C)(N+C -
Psyaz 2

D) P} +3_ Pn (2.36)

where P, is the failure rate of the m** module of the system (not includ-
ing the processors and the input checksum and the syndrome calculators).
Notice the first term in the equation has the form P,’, whereas the rest of

29

the terms have the form P,. The square term is introduced by the sin-
gle fault detection or correction of the processors. If any of the P, were
much greater than P}, then the system failure rate would be dominated by
that term, and much of the effort that went into making the system fault-
tolerant would be wasted. Therefore, any hardware module whose failure
rate is significantly greater than P,? should be protected by Triple Modular
Redundancy or by other methods. If triple modular redundancy were used
in some of the modules, the system failure rate would be equal to

(N+C)N+C-1)
Py, =~ 3

Pi+> Pt Z{j 3P} (2.37)

where Py, is equal to failure rate of the non-triplicated hardware modules,
and P, is equal to the failure rate of the triplicated hardware module.

30

Chapter 3

Numerical Noise

3.1 The Effects of Numerical Noise

If only integer arithmetic were used in the system, all the calculations would
‘be exact including the syndrome calculation. This makes it relatively trivial
to detect and/or correct a single fault from the syndromes. In single fault
detection, the syndrome would be exactly zero when there is no fault in the
system, and non-zero when there is a fault. In locating the faulty processor,
the non-zero syndrome would lie exactly on the corresponding weight vector
line in case of a éingle fault. ,

However, if fixed point or fioating point arithmetic were used, there
would be roundoff or truncation noise included in the processor outputs as
well as in the input checksums and the syndromes. This numerical noise
causes the syndrome to deviate slightly from zero even when there is no
fault in the system. In cases when there is a faulty processor in the system,
the syndrome no longer lies exactly on the corresponding weight vector line,
but may deviate from it slightly. We need to develop reasonable methods
" to sort out the small numerical noise in the syndromes from the effects of
the faulty processor, and be able to make reasonable decisions as to which
processor has failed. . :

A reasonable thing to do is to model the numerical noise as a statistical
process, and attempt to make the system fault diagnosis based on the sta-
tistical noise model. However, if the fault diagnosis is based on a statistical
noise model, any methed that we devise for the fault diagnosis cannot be

31

~
correct all the time. There are many design criterions for the fault diag-
nosis method. Obviously, we would like the diagnosis to be as accurate
as possible, as often as possible. More importantly, we want to design the
system fault diagnosis method so that a false diagnosis would not have any -
dotrimental effects on the system application.

3.2 Single Fault Detection
3.2.1 The Threshold Method

For the single fault detection system with one checksum processor, we have
developed the following threshold method for detecting a fault. The idea
behind this detection method is that the small non-zero syndrome is likely
caused by numerical noise and the large non-zero syndrome is likely caused
by a fault within the system. Let us assume that the expected mean of the
numerical noise in the syndrome is equal to zero. If the numerical noise
has a non-zero expected mean (such as one caused by some truncation
methods), the mean value can be subtracted from the syndrome to yield
the zero mean syndrome.

Let us start by examining the case when the fault detection is carried
cut for each point of the syndrome (i.e. as if ¢ = 1). When the syndrome
magnitude exceeds a certain preset threshold value ~, the system would be
diagnosed as containing a fault.

If |s| >~ Then A FaultDetected (3.1)

The threshold value 4 can be set in number of ways. For example, one
can set it to be the maximum possible noise magnitude. This would pre-
vent mistakenly declaring a failure when the non-zero syndrome is actually
caused by computational noise. However, the systemm would not be able
to detect small processor errors with such a large threshold. Furthermore,
it is highly unlikely that the numerical noise magnitude of the syndrome
magnitude would be even close to the maximum noise magnitude. A more
reasonable threshold can be calculated by examining the probability dis-
tribution of the syndrome when no hardware fault has occurred (this dis-
tribution might be derived by modeling the numerical noise, or by running
experiments). If the probability distribution of the fault is also known, it is

possible to set the threshold so that the threshold test gives the most likely
explanation for the observed syndrome. However, the failure mechanisms
are difficult to model accurately. One reasonable criterion for setting the
threshold is to fix the false alarm rate at a desired value. The false alarm
rate is equal to the probability that the syndrome magnitude exceeds ~
under the no-fault condition, and is thus the integral of the probability
distribution of the noisy syndrome in the range |s| > 7.

For the case when ¢ > 1, the threshoid testing can be done on the energy
in the syndrome, which is equal to the sum of the squares of the syndrome
data points.

If s%,iSnv+1>7 Then A Fault Detected (3.2)

Again, the threshold value needed for the desired false alarm rate can be
calculated from the probability distribution of syndrome energy s%_ sy
under the no-fault condition.

The output batch size ¢ plays an important role ir. determining whether
the system is better at detecting a small transient fault or a small perma-
nent fault. The transient fault usually affects few data points within the
batch and the permanent fauli usually affects many data points within the
batch. The mean of the syndrome energy s%.,sy., under the no-fault
condition grows as O(g), where as the standard devaiion grows as O(,/g).
Therefore, with larger g, the system is more likely to detect a small per-
manent failure affecting many of the output data points. However, it is
less likely to detect a transient failure affecting only few of the output data
points, since even a relatively large transient failure may not increase the
average syndrome energy enough to set off the detection. Of course, one
. has the option of testing the syndrome in both ways, using a large q and a
-small ¢ at the expense of more computation.

3.2.2 Effects of Incorrect Fault Diagnosis

There are two possible false fault diagnoses in the single fault detection
system. One is the false alarm case in which a large numerical noise sets off
the fault detection mechanism, and the other is when a fault is very small
and escapes detection. There is a tradeoff between these two kinds of fault
misdiagnosis. If the threshold value is large, there is a low probability of

33

a false alarm cause by the numerical noise, but there is a high probability
that a small fault may escape detection. If the threshold value is small,
the false alarm probability is high, but there is less chance of a small fault
escaping detection.

How the false alarm affects the system performance depends much on
how the system handles an occurrence of a fault. If it is desirable to avoid
the false alarm, the threshold value should be set sufficiently high.

In the case when a fault is too small to be detected reliably, the net effect
of the fault is the slight increase in the noise level of the faulty processor
output. An example of such a small fault is when the least significant bit of
the processor output is stuck. Such a small fault can easily escape threshold
detection, and would appear to the system as a slight increase in the noise
level of the corresponding processor output. If the small undetected fault
were in the checksum processor, it would not have any effect on the system
application.

3.2.3 Dynamic Range vs. Numerical Noise

The dynamic range of the checksum processor is also an important con-
sideration in designing a single fault detection system in the presence of
numerical noise. One must prevent the overflow in the checksum proces-
sors and in the input checksum and the syndrome calculations. There is
also a tradeoff between the number of bits used in the checksum processor
registers and the fault detection capability. The exact nature of the tradeoff
dcpends heavily on whether the fixed point or floating point algorithm is
used and on the computational algorithms employed.

Since the checksum processor input is the weighted sum of N data
processor inputs, the dynamic range of the k** checksum processor shouid
be w; times larger than the data processors in order to prevent overflow,
where w; is defined as

N
wi= Y |wim| for k=N+1,.,N+C (3.3)

m=1

When floating point arithmetic is used, the dynamic range is not gener-
ally a big problem. However, when fixed point arithmetic is used, the

34

checksum processors should have log, wi more bits in its registers than the
data processors (more bits should also be used in the input checksum and
syndrome calculations). If using more bits in the checksum processor reg-
isters is not desired because of the added complexity, the weights should
be chosen so that w; < 1 in order to prevent the overflow. For example, in
the single fault detection system with one checksum processor, the weights
wn+1k can all be equal to 1/N, except for wyi1 n+1 Which is equal to -1.
However, with these weights, the syndrome sy, = — Zﬁ:} WNs1m@, IS
heavily dominated by the checksum processor error ¢, e The numerical
noise from the checksum processor would be weighted O(N) times higher
than the noises from the data processors in the syndrome. This means that
the noise from the checksum processor will mask the small faults from the
data processors in the threshold test. The data processor fault size has
to be significant before it is detected. One can eliminate this problem by
making all the weights comparable in magnitude (for example, wy 1 =1
for k = 1,...,N and wy41 N+ = —1), but this requires adding O(log N)
bits in the checksum processor registers.

3.3 Single Fault Correction

3.3.1 The Projection Method

In the single fault detection system with one checksum processor, we have
used the threshold method for the fault diagnosis. This methoed assumes
that small syndrome energy is likely caused by the numerical error and large
syndrome energy is likely caused by a hardware fault. For the single fault
correction system, we shall use a similar test for fault detection and location.
An obvious method would be to do the threshold testing on each of the
processors. That means doing the threshold test on the syndrome energy
in each weight vector direction in the syndrome space. Such threshold tests
involve projecting the syndrome s on to each weight vector and doing the
threshold test on the energy of the projection. If the syndrome noises are
white, we can use Euclidian projections, but if the syndrome noises are
correlated, we should compensate for covariance of the syndromes when
finding the “projection” .along the weight vector. '

The numerical noise variance in the syndrome space can be caiculated

35

as follows. We assume that the numerical noises have zero mean and cer-
tain expected variances. When there is no fault in the system, the input
checksum error §,, the processor noise ¢;, and the syndrome computation
noise A, are no longer equal to zero and are modeled as zero-mean random
variables. We shall define Ay, Iy, and A, to be the variances of the §,, ¢,
and);. Let us define ®; as the variance of the composite error Qk.

. | for k=1,..,N
®, = (3.4)
I‘k-i-FAkFT—}-Ak for k=N+1,...,N+C
Let us define ® to be the (N + C)g by (N + C)q block diagonal matrix with
the ¢ by ¢ diagonal biocks ®,.

®é, 0 --. 0
0 &, --- 0
= L . (3.5)
0 0 - @y,
Then the variance V of the syndrome s is equal to
N+C
v=wowl =% w_ o, ,WT (3.€)
m=1

where V is a C¢q by Cq block matrix.
Now, we are ready calculate the projection of the syndrome onto each
weight vector. Let us define a V™! norm as

lliy-r ="V 'y (3.7)

Let us also define Ek as the processor error estimate found by projecting
the syndrome s onto the k** weight vector with respect to the V~! norm

1©-b

: < 2

¢ min lls + Wi, llv-, (3.8)
-k

where'ék is the possible processor error. We use the V~! norm to compen-

sate for any correlations in the syndrome outputs. Solving for the minimum,

we have

36

8, = - [WIV-'Wy| WIV™s for k=1,.,N+C (3.9)

The ék can be thought of as the k** processor error that comes closest, in
a least squares sense, to “explaining” the syndrome s.

Let H, represent the no-fault hypothesis and H; represent the hypoth-
esis that processor k has failed. The most likely failure hypothesis H; can
be determined by computing the following.

Lo llsll¥-s

Ly = minlls+ Wi, ||}~ for F=1,..N+C (3.10)
4

—k

The L; is equal to the best guess of the computation noise under hypothesis
H,. The L,’s are called log likelihoods for reasons that will become clear
when we later discuss the generalized likelihood ratio test which gives an
identical result as the projection method. The most likely failure hypothesis
H; can be computed by

Hy — mkin(Lk +) (3.11)

where ; act as scalar thresholds. These thresholds are used to compen-
sate for the different failure rate of the processors (the checksum processor
failure rate would be higher than the data processor failure rate, since it
includes the failure in input checksum and syndrome calculations). The L,
can be rewritten as

Ly = minlls+ W.g,[y-

LN
_ 2
- !I (1 - W [WIV'W,] lw};v-‘) s, (3.12)
. -1
= |isly-r = Wi, V-1 (3.13)

37

Using this, the equations for the log likelihoods can be simplified by defining
the relative log likelihood L} to be

L, = Lo— Le+, (3.14)

where 4, = 740 — Y. If L} is the largest, then this indicates that failure
hypothesis H; is most likely. The L} can be rewritten as

I =0

L, = [|Wig |-+, for k=1,..N+C (3.15)

Notice that this is equivalent to doing the energy threshold test on W,@k,
the projection of the syndrome onto the weight vector.
Once the fault has been determined to be in the k* data processor, its

correct output ﬁk can be calculated by subtracting the projection ék from
faulty processor’s erroneous output.

. v, =Y, 9, (3.16)
The numerical noise level in the corrected output would be significantly
larger than other processors. This is because § contains not only the fault,
but also the weighted sum of the numerical noise from all other processors.
Therefore, ik is equal to the weighted sum of the numerical noise from all
other processors.

The projection method for single fault location is equivalent to dividing
the C¢ dimensional syndrome space into (N + C + 1) decision regions. Each
decision region belongs to a failure hypothesis. If we let Hy represent the
no fault hypothesis and H, represent the hypothesis that processor k has
failed, the decision region of hypothesis Hy would be around the origin, and
the decision region of the hypothesis H, would be around the k** weight
vector. For example, when two checksum processors are used to check two
data processor with weight matrix

-1 0

o _1 (3.17)

1 1
L

38

the decision regions belonging to each failure hypothesis when ¢ = 1 are
plotted in the syndrome space in figure 3.1.

Setting the thresholds tor single fault correction is very similar to the
single fault detection case. For example, if we know the probability distri-

bution of the normalized projection energy ||W,,§kl|§,_ , under Hy, then we
can set the probability that L} exceeds zero under H, by adjusting «,. The
actual false alarm rate for the processor k is lower than that, since one has
to account for the cases when the numerical noise causes more than one
L, to be greater than zero. This happens because weight vectors are not
orthogonal to each other.

As was the case in the single fault detection threshold method, the
system’s ability to detect a small transient fault or a small permanent
fault depends very much on the output batch size g. The mean value of

the normalized projection energy I|W,,§k||%,_, grows as O(q) where as its
standard deviation grows as O(,/g). Therefore, with a larger g the system
is more likely to detect a small permanent failure affecting many of the
output data points, but it is less likely to detect a transient failure affecting
few of the output-data points.

3.3.2 Effects of Incorrect Fault Diagnosis

The probability of making the correct fault diagnoses can be calculated by
evaluating the following integral

Prob(Guess H,, | H; is correct) = p(s| H,,d)ds 3.18
. L

—

which evaluates the probability that the syndrome under H, would fall
under the decision region H,,. This is a very difficult integral to evaluate.

In a single fault correction system with numerical noise, there are three
types of incorrect fault diagnosis that can be made. The first is the false
alarm case in which the large numerical noise in the system makes one or
more L} exceed zero. The second type of false diagnosis is a small fault that
is not detected by the system. The third type of false diagnosis happens
when a small fault has occurred in one processor, but the numerical noise
has pushed the syndrome closer to another weight vector, causing that

B processor to be diagnosed as faulty.

39

SN+2

Figure 3.1: Projection Method Decision Regions, N =2,C =2

40

In the case of a false alarm, one of the processors would be incorrectly
diagnosed to be faulty. If it happens to be a data processor, its output is

corrected by subtracting E However, E under H, is equal to the weighted
sum of the numerical noise from all the processors. Therefore, the cor-
rected processor output now has its own numerical noise subtracted out,
but contains the weighted sum of the numerical noise from all other proces-
sors. Furthermore, the numerical noise level in the system is much higher
than the norm, since the false alarm is caused by a large numerical noise.
Therefore, the numerical noise level in the corrected output is much higher
than the noise level in the normal processor output.

In the case when the fault is small and does not get detecied by the
system, the effect on the system is equivalent to a slight increase in the
noise level in the faulty processor. However, if the processor error energy
level is too small to be detected, it should riot affect the system performance
greatly.

In the case when one processor has a small fault, but the numerical
noise pushes the syndrome closer to another weight vector, the effect is
similar to increasing the noise level in both processors. The faulty processor
output would have a higher noise level than normal, since it contains a
fault. The output of the processor that is falsely diagnosed to be faulty
would be needlessly corrected. Therefore, the corrected output of that
processor would have an increased noise level, similar to the false alarm
case. Again, this type of false diagnosis is most likely only when the fault is
small, thus the system performance should not be severely degraded. Notice
this increase in noise level only applies to data processors. If a checksum
processor is falsely diagnosed to be faulty, its output is not corrected. If the
small non-detected fault were in a checksum processor, it does not affect
the data processor outputs.

As one can see, the system is likely to make a false diagnosis only when
the fault is relatively small, and the net effect of the false diagnosis is the
" increased noise level in some of the data processor outputs. One can also re-
duce the chances of misdiagnosis by choosing the weight vectors so that the
angles between the weight vectors are as large as possible (i.e. spread them
as far apart from each other as possible). When the angles between neigh-
boring weight vectors are large, the decision regions associated with the
weight vectors become “fatter,” and there is less chance that the syndrome

41

of a small fault would be pushed closer to another weight vector line by
the numerical noise. The larger angles between neighboring weight vectors
also mean that they are more “orthogonal” tc each other. Therefore, there
is less cross-covariance between the syndromes and less chance of confusing
a failure in one processor with a failure in another processor. The lower
cross-covariance also lowers the false alarm rate since the numerical neise
from other processors would not be weighted as heavily in the threshold
tests. With a lower false alarm rate and a lower misdiagnosis rate, one can
also afford to reduce the thresholds and increase the detection sensitivity
of the small fauits.

It is possible to make some tradeoffs between the chance of the occur-
rence of the different types of misdiagnosis by adjusting the 4}, thereby
adjusting the size of the decision regions. For example, increasing the mag-
nitude of one v, decreases the size of that decision region and increases
the sizes of all the neighboring decision regions. This decreases the prob-
ability of a false alarm in that processor but increases the probability of
a false alarm in the processors of the neighboring decision regions. It also
increases the size of the Hj region, thereby increasing the chance that the
small fault in that processor escapes detection. If we increase the magni-
tudes of all the 4}’s by the same amount, the decision regions would still
have the same shape, but the size of Hy would expand, causing less false
alarms, but increasing the chance that a small fault may escape detection.

In deriving the projection method for the single fault correction system,
we have assumed that there is no numerical noise involved in calculating

+’s. However, in real systems, there will most likely be additional compu-
tation noise in the calculation of the L}’s. This will increase the probability
of fault misdiagnosis by the system, and also increase the numerical noise
in the corrected processor output.

3.3.3 Dynamic Range vs. Numerical Noise

The dynamic range of the checksum processor is an important consideration
in the single fault correction system. The dynamic range of the checksum
processor k should be w; times larger than the data processors, where wy, is
defined in equation 3.3. Again, when floating point arithmetic is used, the
dynamic range is not generally a big problem. However, when fixed point
arithmetic is used, the k** checksum processors should have log, wx more

42

bits than the data processors. Otherwise, the weights should be chosen so
that wy < 1. Following is an example of a single fault correction weight

matrix which meets such.a condition.

1 11 1 1 1 1 1
[1 11 1 o ! 1 1 1 0O O
1 1 1 11 1 i 1 1
w —_— _B - -8 0 0 8— _8 'B' 8 '.— -8 - -8 0 - O (3- 9)
o o ! 1 1 1 1 1 i 1 0O 0 1
L 8 8 8 8 8 8 8 g J

However, using weights on the order of 1/N effectively weighs the numerical
noise from the checksum processor approximately N times higher than the
noise from the data processors. This means that the noise energy from
the checksum processors will heavily mask the noise energy from the data
processors in the threshold test, and thus the system would be less sensitive
in detecting small failures in the data processors.

3.4 Simple Case

3.4.1 Simple Case of Projection Method

The computation of the projection method becomes especially simple when
the variance matrix V is a scaled identity matrix. There are two sets of
assumptions under which V is white. , ‘

The first set of assumptions ic that there is no numerical error in input
checksum calculations or in syndrome calculations, and that the weight
matrix is of a specific form.

| = 0’[2-1 A
Ag = 0
N~ o ' (3.20)
WWT = o3I
In this case, V is equal to '
V =o}y1 where o} = oj,of (3.21)

43

For example, when fixed point arithmetic is used with low integer weights,
the input checksumming noise and the syndrome calculation noise would
be equal to zero and this condition can be satisfied.

The second set of assumptions is that all the computational noises are -
white, F is an orthogonal transform (an example of an orthogonal transform
is a Fourier Transform), and W is of a specific form.

(Fk = 0'[2\1
Ak = OZAI . .
¢ A = ail . _ (3-22)
ww? = o}l .
| FFT = o}l
In this case, V is equal to
V =021 whei'e o} = oot +okod +07 (3.23)

If one of the above twn conditions are sé.tisﬁed, ék_ becomes

- 1 NtC ‘ '
Qk == Z Wi kS * ’ (324)
Tkk m=N+1 .
where 7 is equal to .
: " N+C o '
Tim = Z Wy s Wi m ' (3.25)
I§N+l S

The ri,, can be thought of as the cross-correlation between the k** and m**
weight vectors. When k' = m, iy can be thought of as the weight vector
magnitude squared. The relative likelihood L), can be then written as

1 N+C N+C
L'k =— Z z w,.kwm,kg‘rgm + ’Y; _ : (326)
- TkkOV |=N+1 m=N+1 :
One needs approximately (¥ + C)C(C +1)q/2 multiply /adds if all the
likelihoods are computed straightforwardly with this formula. The number
- of multiply /_édds can be minimized if the L}’s are computed in the following
way. Define pi;m as ’ - ‘

44

/I = N+1,.,.N+C
Plm = S Sm for (3.27)
m = N+1,..N+C

Then L) for k = 1,..., N can be calculated as

PN+1,N+1 °°° PN+1,N+C WN+1,k
' 1 PN+2,N+1 - PN+2,N+C WN+2,k
L, = —— (wNt1k - WN+Ck))) . ‘
TexOy
PN+C,N+1 °°° PN+CN+C WN+C,k
. (3.28)
and L} for k= N +1,..., N + C can be calculated as
[1 [{
Ly=—pre+ (3.29)
Tkk

One needs approximately C(C + 1)¢/2 multiply/adds to compute the p; m,
and about N(C + 1)C/2 multiply/adds to compute L}’s. This is substan-
tially less than the direct calculation method. If one of the data processors
is faulty, the correct value ﬁk is calculated as

R 1 N+C
V=Y +— Y. Wmidm (3.30)
=k =k Tkk m=N=1

One needs approximately Cq multiply /adds to correct the faulty processor
output.

Therefore, in order to detect and correct the fault in the simple white
noise case, it takes approximately (C +1)C(¢+ N)/2+Cq multiply/adds. It
also takes approximately C Np multiply/adds to compute the input check-
sums and C Ng multiply/adds to compute the syndromes. Let us assume
that the hardware module that detects and corrects the fault from the syn-
dromes is triplicated, so that its failure rate does not dominate the system
failure rate. In that case, the total number of multiply/adds needed for the
single fault correction is equal to

CT +CN(p+4q)+3[(C+1)C(g+ N)/2+ Cq] (3.31)

45

Tk

where T is equal to the number of multiply/adds needed to compute F.
The first term is the computation associated with the checksum processor
computation, the second term reflects the input checksum and syndrome
computations, and the third term is the work required by the triplicated
fault detection/correction algorithm. We can define the computation over-
head ratio R. to be the ratio between the computations needed for fault
tolerance overhead and the computations needed for the data processors.
Therefore, we divide the overhead computation by NT to get R..

L Clpta) L ((CH1Cg+N)/2 Cq

c
B.=% T NT NT

(3.32)

In general, R. can be made lower by decreasing the number of checksum
processors C and increasing the number of data processors N. The R, is
also lower when T'/q is higher. When the computational effort involved
in the computation of each of the output data points is high, the fault
detection/correction effort becomes relatively smaller.

3.4.2 Computational Overhead Example

We can further reduce the computation by choosing weights to be small
integers. When the small integers are used as weights, the number of mul-
tiplies needed is drastically reduced in input checksum and the syndrome
computations as well as in the fault detection and correction procedure.
Multiplication by weights 0, -1, +1, -2, +2, -1/2, +1/2, etc. is very simple,
requiring much less computation than a full multiply. Let us consider the
system with weight matrix in equation 2.31 with ten data processors and
three checksum processors (N = 10, C = 3). Since only -1, 0, and +1 were
used as the weights, there would be no multiplication involved with the
input checksum and the syndrome calculations. These weight vectors are
spread relatively far apart from each other minimizing the chances for incor-
rect fault diagnosis. Furthermore, the weight matrix satisfies W7 W = 91,
one of the conditions required to achieve uncorrelated syndromes, and a
simple relative likelihood test. However, this system does use one more
checksum processor than the minimum number of the checksum processors
required for single fault correction.

46

Operation Multiplies Additions

Input Checksums 0 21q
Syndromes 0 24¢q
Syndrome Correlations p;, 6q 6(g - 1)
Relative Likelihoods of L, 4 35
Choose largest likelihood 0 12
Correction of Failed Processor q 3q

Table 3.1: Number of Multiplies and Adds

If we assume that all the numerical noises are white and V = o1, the
number of adds and multiplies needed for input checksum and syndrome
calculation and for the fault detection/correction algorithm are listed in
table 3.1. We have not counted multiplication by 1/2 or -1/2 (there are only
6 such operations). We have also used a recursive summation algorithm to
compute L}, which cuts down on the number of additions. If we assume
that the computation involved in the fault detection/correction algorithm is
triplicated, the computational overhead ratio R. for the multiplies becomes

3(7q + 4)

| R =03+ = (3.33)
and for the additions becomes
459 + 3(9¢ + 41)
R.=0.3 3.34
" + — ToT (3.34)

The factor 3 is there because the fault detection/correction computation
must be triplicated. ‘

Let us pick a complex FFT as the task F. The FFT is a very realistic
example of the task that the high performance DSP systems has to perform
in real time. If we assume that all the numerical noises are white, then V
is diagonal since the FFT is an orthogonal transform (FTF = I), and since
wwT = 0% 1. The complex FFT of length ¢/2 consists of p = ¢ input and
output real data points. Computing F requires 2q log,(g/2) real multiplies
and 3qlog,(q) — g real additions. Therefore, the computational overhead
ratio for the multiplies is equal to

47

3.0

2.7
- 24 <
'-; 2.1 ‘
S 18 \ - Multiplies
g }; T Y -~ Additions
s 0\ & [deal
5 0.9 i

0.6 D

0.3 ——Q—ﬁ'—ﬂ-—.—ﬂ—!

0.0 —/——

Figure 3.2: Overhead Ratio for Complex FFT (N=10, C=3)

21q + 12
R.=03+—0" (3.35)
20g log,(g/2)
and for the additions
’ 72q + 123
R =03+ —1 (3.36)

30q log, ¢ — 10q

These overhead ratio curves are plotted in figure 3.2 with the “Ideal” over-
head ratio accounting only for the checksum processor computations.

3.5 Other Methods Single Fault Correction
Methods

3.5.1 Using Range Tesf on The Syndromes

There is another easy method for single fault correction when only -1,
0, and +1 are used as weights. It involves performing a range test on
the individual syndromes, component by component. Fault diagnosis is

48

carried out component by component as if ¢ = 1. Each component of each
syndrome is classified into one of three ranges of values, and the code digit
bm is assigned to each syndrome depending on its range.

+1 If spm < —7%
by = 0 If —y<s5,<+7 (3.37)
-1 If +y<spm

The « is a scalar threshold. If there is no fault, all the b,, would be zero.
If there is a fault, the faulty processor is the one with the weight vector
+(AN+1,0N+2,-..bN+c). Figure 3.3 shows the decision regions used when
there are two data processors with two checksum processors with the weight
vector matrix

1 1 -1 0
W_[l 1 o _1] (3.38)
This range test method involves 2C¢ comparison tests for each batch of
data processing. The major advantage of this method is that it is very
simple to implement and requires little computation with no multiplies.

The probability that a syndrome magnitude exceeds the threshold « can
be determined by integrating the probability distribution of the syndrome
over the range sy < —v and s; > 4. Therefore, the false alarm rate can be
set by adjusting v as well. Notice that if the + is not set large enough, it is
possible to misdiagnose a checksum processor fault even if the fault is very
large. This is because the checksum processor decision regions width does
not increase with the fault size. In figure 3.3, one can see that the decision
regions for the failure hypothesis Hy,, and Hy 2 have constant widths. On
the other hand, the projection method decision regions are all pie-shaped
(getting wider as the fault size increases) as shown in figure 3.1, so that
the probability of fault misdiagnosis decreases as the fault size increases.
Consider the case when the checksum processor N +1 has a large fault, but
the numerical error pushes the syndrome point from p, to p; as illustrated
in figure 3.3. This causes the system to diagnose the processor 1 as being
faulty. If sy41 were used to correct the fault (§1 = y1 + sn+1/wWNn+11), the
corrected output §; would be very wrong.

One way to get around this problem is to correct the data processor
fault using the smallest syndrome with non-zero weight.

49

for wpx#0 (3.39)
Wm, k

Y=Y+
Another way to get around the problem is to increase the threshold «, and
widen the checksum processor decision regions Hy,1,..., Hyic. Wider de-
cision regions would lower the probability of misdiagnosis for the checksum
processor fault. However, the larger v would make it more difficult to detect
a small processor fault. This could be a problem since detecting a small
fault is difficult in the first place, due to the fact that the fault detection is
done on a point by point basis (as if ¢ = 1).

3.5.2 Error Coding Method

If only the 0 and 1 were used as weights with the range methed discussed
above, the method is equivalent to using error coding technique for single
fault correction. In this case, it is possible to use ¢ > 1. The syndrome
energies are classified into two categories and the code digit b,, is assigned
to each syndrome depending on the range.

1 I sTs,. >~
b = (3.40)
0 If s¥s, <~
If there is no fault, all the b,, would be zero. If there is a fault, the faulty
processor is the one with the weight vector (by41,bn+2,...bN+c). The major
disadvantage of this method is that it requires more checksum processors
than other methods. Another problem is that once again the decision re-
gions for the checksum processors are narrow even when the fault is large.
Therefore, one has to either avoid using the maximum syndrome for fault
correction or increase the threshold 4 and reduce the probability of mis-
diagnosis for the checksum processor fault as was the case in the previous
range test method.

3.5.3 Angular Method

Another simple method for single fault correction is to use the slopes be-
tween the syndromes for the fault location. This method also requires that

50

I
Hpy o
H, H,
/wl P.z
P
Hy iy H, —— Hy 4 - —,
. N+1
Wy
H, H,
Hpy o

Figure 3.3: Range Test Method Decision Regions, N = 2,C = 2

51

the fault diagnosis is done point by point (i.e. as if ¢ = 1). When there are
only two checksum processors, the evenly spaced (N + 2) weight vectors
are chosen as

mm
11 = cos(50)
. mm
WNi2m = SIn(N + 2) (3'41)

where N is an even number. The weight vectors with m = 0 and m =
(N +2)/2 are the checksum processor weight vectors. The fault is detected
if the energy of the syndromes Z:x:?v +1 52, exceeds the threshold. Once a
fault is detected, the faulty processor number m; is equal to

N+2 +
my = int (ki arctan (SN 2)) (3.42)
T SN+1

where the function int() is the roundoff function to the nearest integer. The
decision regions of this method are drawn in figure 3.4. In actual implemen-
tation, one may want to do the range test on the slope sy;2/sn;: instead
of computing explicit arctan. This would require log,(N + C) threshold
tests on the slope. Since computing the slope requires a division which
is computationally costly, the slope threshold test may be carried out by
multiplying sy, by the test slope and comparing with sy,2. In the sys-
tems with more than 2 checksum processors, the angles between (C — 1)

syndrome pairs have to be calculated.

52

SN+2

Hy.,
H, H,
// Ql
Hy H, \ Hyiyy ——
AN
W,y
H1 H2
Hpy o

Figure 3.4: Angular Method Decision Regions, N =2, C = 2

53

Chapter 4

Generalized Likelihood Ratio
Test

4.1 Single Fault Correction

Musicus and Song [Musicus 88, Song 87| have proven that when the nu-
merical noises are of Gaussian type, the projection method we have used
for single fault correction is equivalent to a generalized likelihood ratio test
which gives a “optimum” or “near optimum” performance. The detailed
proof in their paper is given in appendix B, and the following is the sum-
mary of their derivation.

Assuming that processor failures occur independently from each other,
with P, equal to the probability of failure of processor k, then the proba-
bility of failure hypothesis H; is equal to

o) = T[(1-Pn

N+C
p(Helg,) = Pe JI (1-Pn) (4.1)

m=1
m#k

Note that the probabilities of the hypothesis that are considered do not
add exactly to 1 (X *+C < 1). This is because only the no-fault and single

54

fault cases are considered. The assumption here is that P, << 1 and that
the probability of multiple faults occurring is negligible compared to the
probability of a single fault occurring. The P, of the checksum processors
include the probability of failure of the input checksum calculation and the
syndrome calculation.

Under Hy, the syadromes s are modeled as zero-mean Gaussian random
variables with variance V

p(s|Ho)} = N(Q,V) (4.2)
where
N+C
V=Wow'=5 w,o,WT (4.3)
m=1

as defined before.

Under presence of a processor fault, the model is modified as follows.
Under H,, ¢, is modeled as a Gaussian random variable with an unknown
mean @k and known covariance ®;. The ék is to be estimated from the
syndrome. This estimation is necessary because we do not have the proba-
bility distribution of the fault available. With this model for 9, under H,
the probability distribution of the syndrome s under H; is

N+C
p(s|Hg,) = N|-Wig,, 3 W,0.Wl 1 W3IW
mak
= N(-Wig,, V- W,a0,W]) (4.4)

where A®, = &, — &, is the difference between the k** processor’s working
covariance and the failure covariance.

A Generalized Likelihood Ratio Test (GLRT) is then used to find the
most likely failure hypothesis which would explain the values of the syn-
drome s. Let L; be the log likelihood of s and hypothesis H.

Lo = logp(s,Ho)

55

Ly = maxlogp(s, H; IE‘:) for k=1,..,.N+C (4.5)

%

Notig_e that the L, for £k = 1,..., N + C must be maximized over the failure
size ¢,. This is because the actual processor error is not known and must

be estlmate from the syndrome values. Let ¢ be the value that maximizes

the k** llkehhood The ¢ can also be thought of as the most likely value
of the processor error that would have caused the syndrome values to be
as they are, if the processor k were faulty.

The 4> can be found by using Bayes’ Rule, substltutmg Gaussian den-
sities mto the likelihood formulas Aand then solving for the maximum L,
with respect to L The resulting ék is exactly the same as the projection
of the syndrome s onto the k** weight vector direction with respect to the
V! norm as we found in the projection method.

-]

8,113 (4.6)

, < min|ls + W,é [}
¢,

or

1-b
*

= - [WIV'WY| WIV s for k=1, ,N+C (4.7)
Substituting this into L;, A

1
Ly = -§”§"{'—l+‘70

| A
Lo = —5lls+ Wed,[ym 4 for k=1, N+C (48)

where the 4; constants do not depend on s. If we define relatwe likelthood
L}, (relative to Hp) as

L, = 2(Ly — Lo) (4.9)

then we have

56

L, = Wi, |3+, for k=1,.,N+C (4.10)

where

—log |1 - WI'V-'W,A®| + 2log (I—P"—P--) (4.11)
’ — Ik

These formulas are exactly what we derived in the projection method sec-
tion except for the fact that the likeiihood ratio test arrives at certain fixed
constants for the thresholds.

Although the generalized likelihood ratio test is designed to give the
most likely failure hypothesis for the syndromes with these. constants, it is
not clear that these constants are appropriate. The reason is that the pro-
cessor failure model was not known ir advance and thus the failure size had
to be jointly estimated along with the hypothesis from the syndromes. This
is more of an ad hac likelihood ratio test in which some the probabilities
are known in advance, but the parameters have to be zuessed. . Therefore,
although the form of the likelihood equations is desirable, their constants
may not be the most useful. The fact that the GLRT does not give the
exact constants is not very relevant in application, since we would like to
exploit the selection of constants to achieve the desired tradeoff between
various probabilities of misdiagnosis.

4.2 Reducing The Numerical Noise

So far, we have used syndromes exclusively for fault detectipn/correction
purposes. However, in some cases, it is possible to also use the syndromes
for reducing the numerical noise ir: the outputs of the data precessors. The
derivation of the method involves a modified generalized likelihood ratio
test derived by Musieus and Song [Musicus 88, Song 87|. The detailed proof
in their paper.is given in appendix C, and the following is the summary
- of their derivation. In the modified gencralized likelihood ratio test, the
outputs of the data processors as well as the syndromes are used in order

57

not only to detect and correct the faulty processor, but also to estimate the
correct output of the working data processors and thus possibly reduce the
noise level in the outputs.

Let us define §, as what the k** processor output should be.

¥, =Fz (4.12)

Let us also define y as the block vector of the actual processor outputs
and g as the block vector of what the correct output should be. These Ng
length block vectors are

Y

Z-

I
Il
I
Il

(4.13)
Yn \ Yy '

The log likelihood L; in the modified generahzed llkellhood ratio test are
given as

Ly, = maxlogp(y,s,Ho |) : | (4.14)
! - - .

L, = maxmaxlogp(y,s, Hy | y,&?k) for k=1,..,N+C (4.15)
Y ¢ - - .

= L
The L,’s are maximized over the correct output ¥ and the processor error
¢ Lety y and ¢ be the values of y and ¢ that maximize L,. The y and ¢

can also be thought of as the most llkely values of the correct outputs and
the processor error that would cause the observed syndromes, the processor .

outputs, and the failure H,. The y and ¢ are again calculated by using
Bayes’ rule, substituting Gaussian densmes and solving for the maximum.

The most likely ;jk is given by

1)
o

l%'. n|ls + Wi, [I¥- (4.16)

or

= [WIVIIW,] WIVs for k=1,.,N+C (4.17)

1o-p
-

58

exactly as in the previous likelihood ratio test. Under the hypothesis Hy,
y is equal to

=y +®,WIVls for m=1,.,N (4.18)
and under the hypothesis H for k =1,...,N + C, g is equal to

<=2
3

y +®.WIV-(s+W,é) for m=1,.,N, m#k
(4.19)

<2
3
f

[S-p

Y.~ 9 for m=k, (1 <m< N)

The estimate y of the non-faulty processor is the sum of the processor
output Y, and. the “adjustment term” calculated from the syndromes for
reducing the numerical noise.

~ Substituting these values into L, gives exactly the same result as the
former likelihood calculation but with different constants ~x. Converting
Ly into relative likelihood L}, the constants ~; are now equal to

f kPk) (4.20)

‘Therefore, this modified likelihood ratio test works exactly like the former
likelihood ratio test and projection method but with different threshold
constants. However, it also enables us to estimate the working processors’
correct output values, as well as the failed processor’s correct output values.

Appendix E shows that the numerical noise in @ has zero mean. Intu-
itively, the variance of § y should be reduced by a factor of O(C/N + C),
provided that there is no numerical noise involved in the noise reduction
process. A

Although the fact that the correct processor output can be estimated is
theoretically interesting, it may not be very useful in many practical cases.
‘First, O(C/{N + C)) reduction is not that significant, since we usually
want to keep C' small compared to N. Such small improvement in noise
level may not justify the increase in the computational costs, especially if
the computation has to be done in the Triple Modular Redundancy form.
Moreover, additional numerical error incurred during the noise reduction
computation-may reduce the benefits even further. In cases when the mag-
nitude of some of the weights are significantly larger than some others (as

Y = — log [®:®; | + 2log (1

59

was the case when the checksum processor dynamic range was same as the
data processors), the noise from some processors would te weighted very
heavily, and attempting to reduce the numerical noise using the syndromes
may actually increase the noise level in the outputs of the processors with
the small weights.

60

Chapfer 5

Fixed Point System
Simulations

5.1 Numerical Noise

In deriving the single fault correction methods in the presence of numer-
ical noise, the projection method and the generalized likelihood ratio test
yielded the same result. The k** relative log likelihood in these methods
consists of the normalized energy in the projection of the syndrome s onto
the k'® weight vector with respect to the variance V, plus the threshold
constant ~}. Although the likelihood ratio test theory suggests a specific
threshold ~}, for each relative log likelihood, these suggested values are not
necessarily appropriate for all applications. The major reason is that the
probability distribution of the fault was not known for the likelihood ra-
tio test. We had to rnake an ad hoc modification to the test so that the
fault had a Gaussian distribution with a mean which had to be estimated
from the syndromes. Therefore, although the form of the log likelihoods
ave intuitively reasonable, the specific threshold constants may not be so
accurate. ‘ '

One also wants to be able to change the values of the thresholds to
make tradeoffs between the, probabilities of different fault misdiagnosis.
For example, one would want to make a tradeoff between the probability
of fault detection and the probability of false alarm. This can be achieved
through appropriate changes in 4} ’s.

61

Another reason why the thresholds derived in the generalized likelihood
ratio test may not be appropriate is that the derivation assumes the nu-
merical noise to be Gaussian. Numerical noises are often non-Gaussian,
and the probability distribution of the numerical noises usually depends
on the processing tasks. Although we expect the numerical noise distribu-
tion from the processors to look similar to a Gaussian distribution in most
cases, some processing tasks may generate numerical noise whose probabil-
ity distribution deviates significantly from Gaussian. Even for the cases in
which the noise distribution is close to Gaussian, the probability distribu-
tion often differs substantially from Gaussian in the tails. For example, the
actual noise probability distribution is zero in the range beyond the maxi-
mum possible numerical noise value. These deviations in the tail ends can
affect the probability of fault detection and the probability of false alarm
significantly. Because the thresholds are set to discriminate between high
noise and failure, the shape of the noise distribution in the tails is crucial
to setting an appropriate threshold for balancing the various probabilities
of misdiagnosis. These probability distribution deviations can, however, be
compensated for by appropriate choices of the threshold ~L.

In this section we shall use simulations to study the workings of the pro-
Jection fault detection/correction method and the adjustments one needs
~ to make to the 4L in real fixed point systems. First, we shall simulate the
projection method in an example fixed point single fault correction system
assuming all the numerical noises are Gaussian. The variables that were
difficult to predict accurately, such as the probability of false alarm and
the numerical noise in the corrected processor output were observed. We
also examine how the fault detection/correction algorithm is dependent on
various parameters such as the batch size, the processor reliabilities, and
. the noise level. :

Second, we model fixed point roundoff as a statistical process and sim-
ulate the numerical noise probability distribution in the syndromes. We
shall show how the tail ends of such a probability distribution deviate from
Gaussian and show how v} can be adjusted to compensate for these devia-
tions. : : :

Third, we shall examine the probability distribution of the numerical
noises in the syndromes of real systems by simulating a fixed point single
fault detection system. The purpose of this simulation is to see whether the
roundoff operations are indeed independent statistical processes as was as-

62

sumed in the previous simulation. The fixed point Finite Impulse Response
Filter and Fast Fourier Transform were the computational tasks simulated.
We shall examine how the numerical noise probability distribution deviates
from theory in real systems, and how one can compensate by adjusting ~j}.
Even though our study is limited to fixed point systems, similar studies can
be done on floating point systems as well.

5.2 Single Fault Correction System Simula-
tion

In this section, we have simulated a fixed point single fault correction sys-
tem using the projection method in order to observe the variables that are
difficult to predict analytically such as the false alarm rate. In the first sim-
ulation, we simulate a fixed point single fault correction system for a large
number of batches in order to collect an accurate histogram. As predicted,
the actual false alarm rate is less than p(L} > 0| Hy), the probability that

i exceeds zero, and the processor false alacm rate depends on the size and
the shape of the decision region. The numerical noise filtering algorithm
in section 2.2 was also applied in this simulation and found that the noise
reduction rate is very close to the predicted value.

In the second simulation, we simulated the same system using differ-
ent batch sizes g. We found a slight increase in the false alarm rate with
increasing ¢, which was not predicted analytically. However, this depen-
dence on ¢ was found to be weak. The numerical noise in the corrected
output in the case of a false alarm decreases with increasing ¢, as predicted
analytically.

" In the third simulation, we simulated the same system using different
p(L) > 0] Hy) (i.e. different ;). We found that the processor false alarm
rate is closer to p(L} > 0| Hp) for smaller values of p(L}, > 0| Hp). However,
again this dependence was weak. The numerical noise in the corrected
output in the case of a false alarm increases with decreasing p(L} > 0| Hp),
as predicted analytically.

Therefore, we conclude that the false alarm rate p(Choose Hy | Hy) is less
than p{(L} > 0| Hp) and the difference is dependent on ¢ and the value of
p(Li > 0| Hy). However, these dependencies are weak and the false alarm

63

rate p(Choose H, | Hy) and p(L}, > 0| Hy) are within an order of magnitude.
Therefore, it is good practice to use p(L} > 0| Hp) as the desired false alarm
rate in designing systems.

5.2.1 Simulated System

The system simulated is a fixed point single fault correction system, based
on a weighted checksum and the projection method. It consists of 10 data
processors and 3 checksum processors (N = 10, C = 3) with the weight-
ing matrix given in equation 2.31. All the numerical noises are assumed
to be white Gaussian random variables. We shall first derive the appropri-
ate values for +; and then simulate the projection fault detection /correction
method to observe the variables that are difficult to predict accurately, such
as the probability of false alarm and the numerical noise in the corrected
processor output. We also examine how the fault detection/correction al-
gorithm is dependent on various parameters such as the batch size, the
processor reliabilities, and the noise level.

Since all the weights are -1, 0, and +1, there is no numerical noise
involved in the input checksum calculation or in the syndrome calculation.
This means that

I‘,, = Ol?-l
Ar = 0 (5.1)
Ay = 0

Since WWT = ¢, according to section 3.4.1, the variance of the syndrome
is equal to

V =021 where ol = oi 0k (5.2)
Now the relative log likelihood can be rewritten as
1 N+C N+C

Li=—s 3). wiWmisisn+7% (5.3)
kkCV I=N+1m=N+1

This equation can also be written as

64

L, = 2 2 Z' Z wm.ksmu'|2 + M (5.4)

The expected value of the relative log likelihood under hypothesis Hy is
equal to

B(LY) = gizaohob +
(5.5)
= ¢+ 4
which is consistent with the result in appendix D. The variance under H,
can be calculated as

Var(Li) = E(LY) - (E(L}))®

= (;a,la‘z,)*2q(E(Eﬁ:g+l W kSm,j|%))? (5.6)

=2q

‘The first term of equation 5.4 (all except the term ~}) is equivalent to the
sum of the squares of the Gaussian variables Y¥*% . wy, xsm; normalized
by its variance. It is thus equivalent to the sum of the squares of ¢ unit
variance Gaussian variables. The probability distribution function for the
sum of the squares of ¢ unit variance Gaussian variables is the chi-square
probability function with ¢ degrees of freedom.

The chi-square probability function is defined as follows. Suppose Xj,
X3,...,X are independent Gaussian random variables with zero mean and
unit variance. Then X2 = ¥!_, X? is said to follow.the chi-square distri-

bution and the probability that X? exceeds x? is given by
p(X7 > x* |q) = (PTG [e e (5)
X

The expected value of X? is equal to g. With large ¢, chi-square distribution
can be approximated by Gaussian distribution of mean ¢ and variance 2q.

Since the probability distribution of L}, is equal to a chi-square distri-
bution, we can choose v}, in order to set p(L} > 0| Hp), the probability that
L), exceeds zero. The ~ in this case is equal to the negative of the value
x? needed to achieve the probability p(X? > x? | q) = p(L} > 0| Ho).

65

Y =—-x* for p(X*> x*|q)=p(L}, > 0| Hp) (5.8)

Values for v} can be calculated from chi-square distribution function tables.

5.2.2 The False Alarm Rate

Although we can calculate «; and set p(L} > 0| Hp), the probability that
the log likelihood exceeds zern under the no-fault condition, we cannot
easily calculate p(Choose H; | Hp), the actual probability that a false alarm
will occur in that processor. This is because the weight vectors ‘are not
orthogonnal, the likelihoods are correlated with each other, and the large
numerical noise can cause more than one relative log likelihood to exceed
zero. The probability of false alarm can be calculated by evaluating

N4iC

2} fﬂm p(s | Ho)ds (5.9)

which expresses the probability that the syndrome under Hp will fall in
other decision regions. However, calculating this integral is non-trivial, and
we have instead determined the probability of false alarm by simulation.

The false alarm rate is an important design parameter, since a false
alarm can cause a data processor output to he needlessly corrected, and
the numerical noise in the corrected output is most likely much larger than
the processor numerical noise. There is also a tradeoff between the false
alarm rate and the size of the fault that can escape detection.

In these simulations, only the no-fav't cases (H, cases) are simulated
because we do not have a reliable model for processor failures. If a fault
model were available, we could have simulated the probability of fault mis-
diagnosis. However, the probability of fault misdiagnosis is most likely
much lower than the false alarm rate for the following reason. Only a small
fault is likely to escape detection or to be misdiagnosed as some other pro-
cessor’s fault, Since the probability of a fault occurring is very low and the
probability of a fault being small is most likely very low, the probability
of a small fault occurring is very low indeed. Therefore, the probability of
fault misdiagnosis is most likely much lower than the false alarm rate, and
thus is not a very meaningful design parameter. Besides, the effect of the

p(false alarm) =

66

small fault in either misdiagnosis case is equivalent to an increase in the
noise level in some of the processors, and is usually not fatal to the system
application.

- Instead of simulating a particular processing task, we assumed that all
inputs are equal to zero (z, = 0). Thus, all the processors generate signals
y, = 0 with added white Gaussian noise with variance o} as outputs.
Each syndrome is equal to a weighted sum of the processor noises and is
zero mean because of the no-fault condition. The white Gaussian noise
was generated using pseudo random numbers. From the syndromes, the
relative log likelihoods L) ’s were calculated. The largest relative likelihood
was then found in order to classify the fault. If all were negative, then we
concladed that there is no fault.

In these experiments, the thresholds «; are set such that the probabil-
ities p(L}, > O Hp) are fairly high (around the 0.01 to 0.1 range rather
than the more realistic 1073 to 10~%° range) so that we can get meaningful
histograms without doing the simulation for an enormous number of repe-
titions. All p(L' > 0| Hy) were set to an identical value in all processors.
Therefore, all 4, were set to an identical value as well.

Table 5.1 shows the simulation result histogram for 500,000 trials with
or = 10 Ilsb., ¢ = 10 and the p(L, > 0| Hy) = 0.1. As one can see,
#(L}, > 0| Hp), the number of times that each relative likelihood exceeds
zero, is very close to the predicted value 50,000. This also corresponds to
the fact that (L}), the average value of relative likelihood, is very close
- to -5.987, as predicted by equation 5.5. However, #(Choose H; | Hp), the
number of false alarms on processor k, is around 17,305 for £ = 1,...,6,
around 16,334 for £k = 6,..., N, and around 20,339 for k = N+1,..., N +C.

The reason is that the weight vectors have different sets of neighboring
weight vectors and differently shaped decision regions. By neighbors we
mean abutting decision regions. (The fault location algorithm is most likely
to confuse between the faults in neighboring decision regions.) When the
angles between neighboring weight vectors are small, the decision region is
“skinny”, and has a smaller probability of correctly diagnosing the failure
and ‘a smaller likelihood of picking this vector when Hj is true. Therefore,
one would expect that the closer the neighboring weight vectors are, the
- greater the difference between the actual false alarm rate p(Choose Hy | Ho)
and the probability p(L}, > 0| Ho). Table 5.2 has the angles between the
neighboring weight vectors. The §i ., the angle between weight vectors &

67

k | #(Choose Hy | Hy) #(L}, > 0] Hp) (L})

0 269,820 0 0.000000e+-00
1 17,049 49,933 -5.974040e+00
2 17,379 50,172 -5.982454e+00
3 17,467 50,513 -5.976576e+00
4 17,444 50,595 -5.566286e+00
5 17,202 50,158 -5.984101e+-00
6 17,286 50,366 -5.977914e+00
7 16,383 50,002 -5.979583¢+-00
8 16,327 50,438 -5.968598e+00
9 16,267 50,218 -5.978332e+00
10 16,360 50,345 -5.981068e+00
11 20,163 50,181 -5.987824e+00
12 20,348 50,285 -5.968671e+00
13 20,505 50,426 -5.974191e+00

Table 5.1: Simulation Histogram of Single Fault Correction (N=10, C=3)

and m, is defined as

af wiw,

Ohm = cos (Mn uw_mn) (5.10)
Weight vectors k = 1,...,6 each have two weights of +1 and one zero and
have two neighboring vectors of 35.3 degrees and two neighboring vectors
at 45 degrees. The weight vectors for £k = 6,..., N each have three *+1
coefficients with three neighboring vectors of 35.3 degrees. The weight
vectors of k = N + 1,..., N + C (the checksum processors) each have only
one -1 coefficient and two zero coefficients and have four nearest neighbors
at 45 degrees. Thus if all threshold constants v, are equal, then decision
regions Hy1,..., Hvc are the “fattest” and the most likely to be confused
with Hy; regions H,, ..., Hg are next in size and have medium false alarm
rates, while regions H7,...Hy are the skinniest and have the least false
alarm rate. This is despite the fact that #(L} > 0| Hp) is the same for all
Processors.

68

[J1 J2 [3 [4 s Je |7 8 J9o [10 Jiu1]12]13]

1 35.3 | 35.3 45 | 45

2 35.3(35.3 45| 45

3 35.3 35.3 45 | 45
4 35.3 | 35.3 45 | 45
5 35.3 35.3 45 45
6 35.3 35.3 | 45 45
7| 35.3 35.3 35.3

8| 35.3 35.3 35.3

9 35.3 35.3 | 35.3

10 35.3 | 35.3 35.3

11 || 45 45 45 45

12 | 45 45 45 45

13 45 45 45 45

Table 5.2: Angle Between Neighboring Weight Vectors

While we were doing the simulation for the false alarm iate, we also
attempted to use the syndromes to filter some of the data processors’ nu-
merical noises. We have assumed the no-fault condition Hj for all cases,
and calculated the data processor’s correct output ﬁ as

~ o
U,=¥,+ % Y. Wmks, for k=1,..,N (5.11)
w7 OV m=N+1

The observed ratio between the corrected output noise variance Var(ﬁk —
g,), where y, = 0, and the original noise variance Var(y,) is equal to

Var@k - gk)
Var(y,)

This is very close to the predicted value N/(N + C) =~ 10/13 = 0.76923.
The noise reduction rate with this method is marginal and may not justify
the extra computation (adding just one bit to processor registers would
reduce the noise variance by a factor of 0.25).

= 0.73416 (5.12)

69

5.2.3 Dependence on ¢

This simulation examines the dependency of the projection method on the
outfput batch size g. Table 5.3 shows a set of simulations with five different
values of q. For each ¢ the histogram was compiled with 10,000 simula-
tions. The thresholds 4, were set so that the probability that each relative
likelihood exceeds zero were all set to p(L} > 0| Hg) = 0.1. The processor
noise standard deviation was set to or = 10 lsb. Note that ~} does not
scale linearly with q. The Gaussian approximation of chi-square distribu-
tion indicates that for large ¢, the mean of L} approaches g + 7} and the
standard deviation approaches /2g. Therefore, the -y} scales approximately
as —q — 7,/q, where 7 is fixed by the desired p(L} > 0| Ho).

One can see that (#(L} > 0| Hy)), the average number of times that
each relative likelihood is greater than zero, is again close to the predicted
value 1,000 for all k. However, (#(Choose H; | Hy)), the average number of
false alarms on processor k, increases slightly as ¢ increases for all k. This
dependency on ¢ was not predicted by our likelihood ratic test. Although
we do not have an exact explanation as to why this happens, it is most likely
because the shape of the probability distribution of the relative likelihcods
changes with increasing g, dropping the tail of the distribution curve until
it looks Gaussian. The false alarm is caused by events in the tail of the
likelihood distribution curve. However, using different threshold values for
different g results in a chi-square distribution whose tail shape changes with
g. The integral of p(s|Ho) over decision regions H; will be a complicated
function of g. The increasing false alarm rate with increasing ¢ also suggests
that the likelihoods get more uncorrelated with increasing q.

However, this dependency on ¢ is weak in nature. Since the probability
of processor failure is estimated at best in orders of magnitude, this weak
- dependency on ¢ does not greatly affect the application of our projection
method.. ' _

Another variable dependent on ¢ is 02, the noise variance of the cor-
rected output of the processor which has been misdiagnosed to be faulty. In
case there is a false alarm due to the excessive numerical noise, the output
of the processor which has been diagnosed to be faulty is corrected. The
o2 is defined as

crr

» 03" = var(ik - Q,‘) (5.13)

70

where

A

ik =¥, }Ek (5'14)
and g, is the correct value of Y, without any numerical noise. In our
mmulatlon since the correct value of all the processors is set to zero, the
variance of the corrected output which has been misdiagnosed to be faulty
is equal to Var(y,).

When there is a false alarm, ¢ is equal to the numerical noises from all
the processors prOJected onto the welght vector k.

N+C T

=Y e (5.15)

22 Tl a5

The output of the proressor with the false alarm is corrected by subtract-

1o-b

ing ¢ Therefore, the corrected output y has its own processor noise

- subtracted out, but now contains the pro;ectlon of the numerical noises

from all other processors with non-orthogonal weight vectors.

—* = el ||||wm||_’"
m#k

- Therefore, if we assume that Qm is the white noise with variance of, the
o2 /ot in this case is equal to

Zerr S| _EkUm =3.33 for k=1,2,....N (5.17)
ot T, llw Il llwmll Y
m#k

However, in case of a false alarm, the processor noise variance would most
likely be higher than 0. This is because a higher than normal noise level
is needed 10 cause a false alarm. Therefore, the numerical noise level in the
corrected output would also be higher than the the value computed above.

Let us examine what happens to the noise level in the corrected output
‘as ¢ increases. Using the Gaussian approximatior, as ¢ increases, the mean
value of relative lcg likelihood increases as g, and the standard deviation

71

q 1 3 10 30 100
(#(L, > 0| Ho, k < 6)) 1,029 1,010 997 1,005 1,007
(#(L}, >0| Hp,6 < k < N)) 989 1,020 1007 996 1,025
(#(L, > 0| Ho,k > N)) 999 996 1,003 1,018 999
(#(Choose Hy | Ho, k < 6)) 312 334 337 363 372
(#(Choose Hy | Hy,6 <k < N)) | 268 300 327 324 357
(#(Choose H, | Hp,k > N)) 365 385 403 420 419
#(Choose H, | Hy) 5,960 5,641 5465 5,264 5,088
ol /ot 11.5 7.53 &£.22 4.21 3.57 |

Table 5.3: Simulation with Varying ¢

increases as 1/2q. Therefore, the normalized threshold |v}|/g decreases ap-
proximately as O(1 + /27/ v/@)- Such a decrease in normalized threshold
increases the detection sensitivity to smaller permanent faults. This also
causes the average system noise level needed to set off a false alarm to
decrease with increasing g. The decreasing syndrome noise level with in-
creasing ¢ in the false alarm case is reflected on o?,, as shown in table 5.3.
Note that this oZ,._ is for false alarm cases only. In the event of a real fault,
the noise level in the system will most likely be at an average level. There-
fore, the numerical noise in the corrected output would be significantly less,
around o2 /0% ~ 3.33. | |

Also note that the probability of a fault occurring increases approxi-
mately linearly with the processing time spent on the batch. Therefore, for
any given calculation, p(L, > 0| Hp) should be increased approximately
linearly with g for doing the same task (see equation 4.11). This results in
a more rapidly decreasing 62, with increasing g until 02, /o ~ 3.33. The
batch size g used in the fault detection/correction does not necessarily have
to be equal to the computation batch size. The fault detection /correction
batch size ¢ would most likely be determined by the tradeoff between the
fault detection sensitivity of a small transient fault and the fault detection

sensitivity of a small permanent fault.

72

p(L, > 0] Ho) 025 0.1 005 0025 001
#(L, > 0] Ho, theory) 2,500 1,000 500 250 100
(#(L\, > 0| Ho, k < 6)) 2,478 997 492 249 101
(#(L, > 0| Hy,6 < k < N)) 2,480 1,007 512 249 102
(#(L, > 6| Ho, k > N)) 2,484 1,003 500 248 99
(#(Choose Hy, | Ho, k < 6)) 564 337 212 128 59
(#(Choose Hy | Hy,6 < k< N)) | 540 327 202 115 55
(#(Choose H: | Ho,k > N)) 680 403 250 142 65
#(Choose Hy | Ho) 2,420 5465 7,170 8,350 9,231
ol |ok 470 5.22 561 6.06 6.61

Table 5.4: Simulatior with Varying p(L} > 0| Ho)

5.2.4 Dependence on Changing False Alarm Rate

This simulation examines the system behavior with changing processor re-
liability. Table 5.4 shows the set of simulations with five different values
of p(L} > 0| Hp). For each value, the simulation histogram was collected
from 10,000 simulation trials. The processor noise standard deviation was
again set to or = 10 Isb. The (#(L}, > 0| Hp)), the average number of
times that each relative likelihood exceeds zero, is again close to the the-
oretically predicted value 1000 for all k. However, (#(Choose H; | Hp)),
the average number of false alarms in processor k, is much less for all k,
especially for high values of p(L}, > 0| Hy). This is because the high values
of p(L} > 0| Hy) are unrealistically high, with Y2 4¢ p(L} > 0| Hp) exceed-
ing 1. For more realistic values of p(L} > 0| Hy), the (#(Choose H; | Hy))
would still be less than (# (L} > 0| Hp)), but closer to it. However, it is dif-
ficult to simulate with realistic failure rates and thresholds since it requires
too many trials. (The simulator itself will probably develop a fault before
the result is complete.) This simulation shows that for realistic values of
p(Li > 0| Hy), (#(Choose H | Hy)) would be within the order of magnituce
of (#(L} > 0| Hp)), which is all we need to know, since the processor failure
rate itself can best be predicted only within an order of magnitude.

Notice that o, the noise variance of the corrected output of the pro-
cessor in false alarm cases, increases with decreasing p(L}, > 0| Hy). This

73

A = lsb.
1/A

> C

~A/2 A2

Figure 5.1: Error Distribution for One Roundoff

is because the magnitude of ~} increases, and the system noise level needed
to set off a false alarm also increases.

5.3 Probability Distribution of the Numeri-
cal Noise

When the numerical noises are white Gaussian random variables, we can
easily set the thresholds using a chi-square function. However, the numer-
ical noise in real systems is not exactly white Gaussian. The object of this
section is to model the fixed point roundoff operations as independent sta-
tistical processes and to find out how closely the probability distribution
of the fixed point roundoff noise based on this model matches a Gaussian
distribution. We also examine how one can compensate for the difference
by adjusting ~}. Let us assume that each roundoff operation generates an
independent roundoff error which has a uniform probabilistic distribution
between -1/2 Isb. and +1/2 lsb., where lsb. stands for the least significant
bit. This distribution is shown in figure 5.1. In fixed point arithmetic, addi-
tion and subtraction are exact and only multiplication introduces roundoft
noise.

74

The simple example chosen in this section deals with the probabilistic
distribution of the numerical noise in the syndrome. Suppose that each
processor uses m successive roundings. Suppose further that we use a
single fault detection system with one checksum processor whose weights
are all equal to 1. Then the total number of roundings, M, contributing
quantization noise to the syndrome is equal to

M=(N+1)m (5.18)

Such a situation can be imagined when a fixed point FIR filter of length
m is implemented in such a way that m input points are first multiplied
with m coefficients, rounded, and then summed to produce the output. In
real systems, this may not be a desirable way to perform FIR filtering. The
preferred method would be not to perform rounding operation after each
multiplication, but to sum the non-rounded products and to perform one
rounding operation at the end. One would need an accumulator with twice
the number of bits to implement the FIR filter this way, which may not
always be possible. In this case m would be equal to 1.

Assuming that ali rounding steps are independent, the probability dis-
tribution of the syndrome numerical noise is equal to the uniform proba-
bility distribution of a single rounding step convolved with itself M times.
As M approaches infinity, the probability distribution of the numerical
noise approaches a Gaussian distribution. However, when M is finite, the
probability distribution of the numerical noise deviates from a Gaussian
distribution especially at the tail ends of the distribution. For example,
when M = 2, the noise distribution is triangular, peaking at the origin
and becoming zero at +1 lsb. and at -1 Isb. The variance of the distri-
bution is equal to 1/ V6 lsb. Therefore, the tail ends of the distribution
are equal to zero beyond about 2.5 times the standard deviation from the
origin. This changes our fault detection strategy greatly. Since false alarm
is caused by events in the tail, such a drastic change in the shape of the tail
. causes the threshold to be modified greatly. For example, any syndrome be-
yond the maximum noise range should be now considered a fault detection
(74 = —1 lsb.). As M gets larger, the maximum noise range increases and
the distribution curve looks more like Gaussian. However, the tails of the
curve are still significantly below Gaussian and one must make adjustments
in the ~;.

75

Since it is difficult to calculate the distribution curve for M larger than
2 in a closed form, we have used a numerical simulation in order to find out
how closely the distribution curve matches the Gaussian curve for different
values of M. The simulation of the convolution is carried out for values of
M that are powers of 2. The initial uniform distribution (M = 1) between
-1/2 lsb. and +1/2 lsb. is represented by 2048 data points. The simulation
is carried out by first convolving the uniform distribution curve with itself.
This gives the numerical noise probability distribution for M = 2. The
result is then decimated by a factor of 2 in order to keep the number of
data points from growing exponentially, and the result is convolved with
itself again to produce the noise probability distribution for M = 4. This
decimation and convolution process is repeated for the desired number of
repetitions. '
The results of this simulation are shown in figure 5.2 and are plotted
against a Gaussian distribution curve. The abscissa of the curve is normal-
ized by the standard deviation o where the variance o? is equal to

o® = M/12 (Isb”.) >(5.19)

When M is low, the tail er.ds of the noise distribution are much less
than Gaussian. As M increases, the noise distribution gets closer to the
Gaussian distribution over wider and wider intervals around the origin.
Normally, we set <) so that p(L} > 0 | Hp) has a fixed value. If the tails
of the syndrome noise probability distribution are not Gaussian and fall off
more rapidly, then we need to use smaller <} than in the Gaussian case.
Since the tails of the noise distribution are closer to Gaussian for larger M,
the adjustment one has to make on 4 also decreases with M.

The exact value of v} depends on the exact shape of the tail. For exam-
ple, when g = 1, the probability that L} exceeds zero is equal to the integral

of the syndrome noise distribution curve beyond . +,/—-~};. When ¢ > 1, the

exact value of 4} can be calculated from the probability distributien of the
relative likelihoods.

76

0
V4
/t N
Y/ / 10~5 \
10——10
M=4
107"
M=28
Gaussian
107%°
M =16
107%
M =32

Pk

0 50

—50

Figure 5.2: Noise Distribution of M Roundoff Operations

717

5.4 Numerical Noise Histograms of Real Ap-
plications

The previous section assumed that the fixed point multiprocessor sys-
temn’s syndrome noise is the result of independent rounding noises that
are summed together. The purpose of this simulation is to see whether
the fixed point roundoff operations are indeed independent statistical pro-
cesses. We are interested in seeing whether the syndrome noise probability
distributions of real systems match the distribution curve of the previous
simulation. Specifically, we simulated a single fault detection system with
ten data processors and one checksum processor (N = 10 and C = 1). All
the data processor weights are equal to one (wy+1,& = 1) and the checksum
processer weight is equal to minus one (wy4+1 ~+1 = —1). The simulated
tasks are a Finite Impulse Response Filter and a Fast Fourier Transform
with random inputs as well as with sinusoidal inputs. If all the roundoff
operations were random and non-correlated in nature, the numerical noise
in the syndrome should have the probability distribution discussed in the
previous section. It should be very close to Gaussian around the origin,
and drop below Gaussian in the tail ends.

Figure 5.3 shows the syndrome histogram when all the processors are
working correctly and when the processing task is a 10 point FIR filter. In
each processor, the input is first multiplied by the coefficients, the results
are rounded, and then summed to produce the output. There is one round-
off operation associated with each multiplication. That means the syn-
drome contains the numerical noise which is the sumof M = (N +1) x ¢ =
110 roundoff operations. Filter coefficients are chosen randomly, and the
results are calculated for both random input and sinusoidal input. The
results match the Gaussian curve very closely. Although the previous sim-
ulation indicates that the histogram should be much less than Gaussian
near the tail, it would take an impractically large number of repetitions of
the simulation in order to be able to see the tapering off the tail ends from
Gaussian distribution.

Figure 5.4 and figure 5.5 show the syndrome histograms for fixed point
FFT operations in a single fault detection system with all processors work-
ing correctly. The algorithm chosen for the FFT is the straightforward
radix two butterfly algorithm [Oppenheim 75]. There is no scaling by a

78

factor of two between thr: stages of the butterfly. (If there were scaling by
two in each stage, the theoretical signal to noise ratio based on indepen-
dent roundoff assumption would have been approximately ¢/4 times higher
[Oppenheim 75].) There is a roundoff operation associated with each multi-
plication. Therefore, each complex multiplication introduces two roundoff
operations into each of the real and the imaginary parts of the output. The
real and imaginary parts of the syndrome noise are treated as separate nu-
merical noises in the histogram. Both 64 point and 1024 point FFT’s are
simulated for random input and sinusoidal input.

These histograms differ from Gaussian distribution significantly, peak-
ing around the origin and much below Gaussian near the tails. This result
is consistent with Welch’s work [Welch 69|, which found that the numerical
noise variance is much less than predicted by theory based on randomness
of the roundoff operations. Therefore, the likelihood ratic constant «} as-
sociated with the FFT processing systems would be significantly less than
the ~} associated with the Gaussian noise case.

These simulations indicate that the numerical noise distribution pro-
file depends heavily on the application and is not necessarily close to the
Gaussian profile. Ther. _.e, the ~; in the likelihood ratio test have to be
adjusted for each application appropriately. The exact value of the v} can
be determined from the relative log likelihood probability distribution un-
der the nc-fault condition Hy. The integral of the probability distribution
over the range L} > 0 should be set to the desired false alarm rate. 'In
a case such as the FFT case, the v, would be significantly less than the
Gaussian case, due to the much faster falling tails.

79

t Occurrence
¢ Gaussian
x -Random Input
¥ x R .
o0 o Sinusoid Input
x 4 ||
x 10 R
2 2
b 3 b d
9 10% | 8
(o]
$ 2
(o] (o]
x h{
102 -
(o]
§ 2
(o]
) >'Y
o X
10 o
. b4
X
(o]
[] []
o X X 1 B
® []
01
. . .
b L. | | 1 L, Noise(lsb.)

-15 .10 5 0 5 10 15

F" -ure 5.3: Noise Histogram of FIR Single Fault Detection System

80

' Occurrence
e (Gaussian
. al = x Random Input
10 B o Sinusoid Input
..aw..."...n ..
o® x b *.
.o' .1 - S
. B 8 ®e
° x -1 b
° b ® 103 B 6 b °
[X %)([]
o 5 % %
* P b °
[] X X e
[] o 2 | o [
e y 10 Q .
[] L)
° XH Qx °
(o] (o]
(]
Xo
X 10
B (@]
=
ox X
X 1 -
0.1
1 | | | L 1 | | . Noise(/sb.)
-20 -15 -10 -5 0 5 10 15 20

Figure 5.4: Noise Histogram of 64 Point FFT Single Fault Detection System

81

t Occurrence
* Gaussian
x Random Input
104 |- o Sinusoid Input
1}
RIR
= =
s-“""fx
[) []
°°.>:>°(10% 8 %,
oy 5
b
.. X x ®
° ° o °
° o] X °
[} (-]
Q b
° 2 |- °
° R 10 g ®
[] o L
00X
X o]
o O
o
X 10 r— X
X
o O
(o] (o]
X0
O O
XXX 1 X X
0.1 —
| | 1 | | | I | . Noise(lsb.)
=20 -15 -10 -5 0 5 10 15 20

Figure 5.5: Noise Histogram of 1000 Point FFT Single Fault Detection

System

82

Chapter 6

Multiple Fault Correction
Systems with Numerical Nojse

6.1 Projection Method

6.1.1 K, Fault Correction

The projection method for K, fault correction involves the Projection of the
syndrome s on to hyverplanes belonging to the different failure hypotheses.
Let Hk,.__kk Tépresent the hypothesis that the processors ki,...,kx have
failed, where 0 < K < Km. There are 3Kn (N 4 CY /(N + C - k)tky)
different failure hypothefes. ,

We define Zﬁ, Wk,.g__ﬂk. as the projection of the syndrome s onto the
hyperplane of the failure h'ypothesis Hy, 4, with respect to the V-! norm.

The estimate of the processor errors ?-Zk. yeoey glm are found by

- < . K _ < 2

Bipreer by — Eﬂ’ffik fls + § W""ék-‘ V- (6.1)
where Z’h N §kx are possible processor error values. Solving for the minj- .
mum,

83

8, wl T wr
= VW, W] P (Vs (62)
ékx W{K . wz‘x

We can carry out the threshoid test for the normalized projection energy
in each failure hypothesis ky, ..., kx'with 0 < K < K, by calculating L},
for each projection.

ke

K -
;c....k,(= ||Zwk.ékl.||%r-l + Thy. ki
1=1
3.1
= —s'VIWe - We 1|+, (63)
by,
where v}, is a constant. If one of the L}, .k, €xceeds zero, then the

precessors ki, ..., kx are chosen to be faulty. If more than one L}, , exceed
zero, then the largest L} , is chosen to be the failure hypothesis.

Once the processors k;, ..., kg are estimated as being faulty, the correct
values of the processor outputs are calculated by

ik'. =y, - §I¢; for 1=1,...,.K (6.4)

for the data processors.

6.1.2 White Noise Case

When the numerical noises are white (V = o%I), the computational effort
can be reduced by using the following calculation method.

Ts, fo {k'=N+1,...,N+C (6.5)

l=N+1,..,N+C

84

[PN+, N+1 " PN+1,N+C
S + Veyoke (66)
PN+C,N+1 °** PN+CN+C

where Gy, k, is a precomputed C x C matrix of constants defined as

-1

WN+tky, ' WN1ky Thiky, 77 Thkikg W1,k WN4C .k,
G, ky = : : :
WN+Ck, - WN +C ke Thicki =7 Tkxky WN+1,kk WN +C kg
(6.7)
where ry is the cross-correlation between the k'* and [** weight vectors.
The estimation of the faulty processors’ correct output also becomes
simpler.
Yp, =Yy, — vy, for i=1,.,K (6.8)
where ¢, can be efficiently computed as
. N+C
Qk,- == Z W,k Sm (6-9)
m=N+1
where the normalized weights w,, x, can be precomputed as
. . -1
WN+1,k, " WN4Ck Thkiky *°° Thkikg] WN+1k, " WN4Ck,
WN+Lkx *°° WN+Cki Thiky, " Thpkg J WNt1 ke 7 WN+C kg

(6.10)

' If we assume that the 2K, + 1 modular redundancy technique is used

for doing the fault detection/correction from the syndromes, then the com-
putational overhead ratio R, for the K,, correction is equal to

85

_ C C(p+g)
R = ©+ =+
C(C+1)q QLCTtQ EK_,,. (N+C)! K.C
(2K +1) | —2— ===t Wrckm | Ko 1(6.11)

NT NT NT

The first term represents the computation in the C' checksum processors.
The second term represents the input checksum and syndrome calculations.
The third term is computation involved in the fault detection/correction
algorithmn replicated 2K, + 1 times. The first term inside the big bracket
in the third term represents the computation of py;. The second term in
the bracket represents the computation of the relative log likelihoods, and
the third term represents the fault correction. As K,, increases, the num-
ber of log likelihoods increases as YK~ (N + C)!/((N + C — k)!k!) and
the term associated with the computation of the log likelihoods grows as
O((2Kn + 1)(N + C)%=~1). Therefore, this system may require more over-
head computation than a 2K,, + 1 modular redundancy system, even for a
moderate K,,.

'6.1.3 Reliability

For the system that can detect or correct up to K,, faulis, a system failure
occurs if more than K,, processors fail. If we assume that all the processors

* have the sams failure rate Py and the processor failures are independent of
each other, then the system failure rate is equal to

(N +C)! Pl
(N+C—Kp—-1)(Kn+1)! 7/

Prob(> K, failures) ~ (6.12)

In comparison, the System failu: rate of a system in which there are 2K,,+1
copies of each data processor used in modular redundancy form is equal to

(2Kﬂl + 1)' PKm+l

?rob(>’ K, failures in any redundant group) ~ NKm!(Km eI

(6.13)

86

The failure rate of our system is approximately N(Mmfl")','((ﬁig)_!,\,)

times higher than the 2K, + 1 modular redundancy system, but uses N +C
processors rather than N(2K,, + 1) processors, where the minimum C is
equal to 2K,,.

The major difficulty in implementing a K,, fault detection or correction
system is that other parts of the system, such as the data distribution
network, fault detection/correction hardware, clocks, controls, and power
sources, have to be as reliable as the protected processor group. If the
failure rates of other parts are comparable to the single processor failure
rate, they will have to be protected by a 2K,, + 1 modular redundancy
technique. Therefore, even though the number of the processors does not
increase dramatically with K,,, the size of other hardware parts grow as
O(2K,, + 1). :

The misdiagnosis probability in multiple fault correction is also much
higher than in single fault correction because there are many more hy-
potheses compared to the number of the checksum processors. Therefore,
the angles between the projections would be smaller than in the single fault
correction case, and it is more likely that the numerical noise may push the
syndrome closer to a neighboring hyperplane of another failure hypothesis.

6.1.4 Weight Vectors

It is difficult to find suitable weights for the multiple fault detection /correction
systems. Jou and Abraham [Jou 86| used wy , = 2(*~¥-1(m-1) a5 weights
for the data processors. They have also proven that with these weights, any
combination of C weight vectors are linearly independent from each other.
These weights also have the advantage that multiplication by a power of 2
can be done in simple bit-shifts.. However, the dynamic ranges of the check-
sum processor registers have to be much greater than those of the the data
processors in order o be able to accommodate for WN+C N = 2(C-1)(N-1)
The weights vary greatly in magnitude and the numerical noises from the
processors with large weights will heavily mask the numerical noises from
the pfocessor_s with small weights in the syndromes. Therefore, the sy..em
would be less sensitive to detecting failures in the processors with smali
sweights. ' - o

Using low integers as weights is one pessible way to get around the dy-
namic range and the noise masking problems. We have found the following

87

example set of weight vectors for double fault correction with C = 4. These
vectors are found by searching through all possible weight vectors with a
given range of weights and picking the weight vectors in such a way that
any set of 2K,, vectors are linearly independent. Using only 0 and *1 as
weights, there can be only one data processor (N = 1) with the weight
matrix

1 -1 0 0 0O
1 0 -1 0 0

W=11 0 0 -1 o (6.14)
1 0 0 0 -1

This is equivalent to the 5-way modular redundancy technique. Using O,
+1, and +2 as weights, we found four data processor weight vectors (N = 4)
with the weight matrix

-1 2 -2 0 -1

W =

1 1 1 -1 0 0
X (6.15)

0
2 -2 -1 0 0 -
-2 -1 2 0 0 o0 -

— e e
- 0O O

Using 0, £1, £2, and +3 as weights, we found six data processor weight
vectors (N = 6) with the weight matrix

1 1 1 1 2 -1 ©
-1 2 -2 -3 3 0 -1

2 -1 -3 -2 -3 0 0 -
-2 -3 -1 3 i1 0 O

(6.16)

e

0O o0
0 O
1 0
0 -1

Using 0, £1, £2, +3 and +4 as weights, we found six data processor weight
vectors (N = 9) with the weight matrix

1 1 1 1 1 3 4 4 -1 0 0 O
-1 2 -2 3 -3 -2 3 -3 O -1 0 O
2 -1 -3 -4 -2 -4 -3 1 0 O -1 O
-2 -3 -1 2 3 1 1 2 0 0 0 -1

[V

88

The number of data processor weight vectors N was found to be de-
pendent on the order the vectors were picked. This indicates the existence
of many different sets of weight vectors with weights 0, +1, ..., +L, with
different numbers of weight vectors in different sets. Although using low
integers as weights spreads the weight vectors relatively far apart from each
other, the angles between the hyperplanes of different failure hypothesis H)
are not necessarily large. If the angles between the hyperplanes are small,
the probability of misdiagnosis increases because the decision regions are
narrow'. o '

Another possible set of weights for K,, fault correction is to use the
- weights in the following form.

wem = ARV DM where 4 #1 (6.18)

Jou and Abraham have proven that any set of C weight vectors are linearly
independent when A = 2. However, their proof is valid for some other -
values of A as well. When the computation is real, any value other than 1
can be used for A. When the computation is complex, A can be of form

A =¢evT (6.19)

For eﬁample, using A = ¢/*/((C-1)(N-1)) j5 3 possibility.

6.1.5 Practicality

The multiple fault correction system may be impractical to implement be-
~cause of the reasons we have discussed so far, and may not have much
advantage over the 2K,, + 1 modular redundancy system. It is difficult
to find suitable weight vectors. The amount of computation needed grows
as O((2Kn + 1)(N + C)¥=-1), and the overhead computation can easily
become more than in the 2K,, + 1 modular redundancy method. Further-
more, it is difficult to make rest of the system hardware as reliable without
using the 2K, + 1 modular redundancy method.

It is also difficult to develop good ad hoc methods to reduce the fault

- detection computation as we did in the single fault correction case. How-

ever, when the computation is exact, there are some good ad hoc methods,
- as we shall discuss later.

89

6.2 Generalized Likelihood Ratio Test

If we assume that the numerical noise is Gaussian, we can used the gener-
alized likelihood ratio test that we have used for the single fault correction
case for multiple fault correction [Musicus 88|. For the K,, fauit correction
case, the processor faults le , ""ékx are again modeled as non-zero mean

Gaussian random variables with unknown means ék;""’élm and known
covariances ®y,,...,®i,. The ¢, numerical noise from the fault-free pro-
cessors are modeled as zero mean Gaussian random variables with known
variance ®;. The log likelihood for the failure hypothesis Hy, . x, is defined
as

Li, ke = ; max log p(s, Hh---kh’@k,v"-’é) (6.20).

ki

Let Ek. yees Ek,{ be the values of ék. - ékx that maximize the log likelihood.

The éh , ...,Ek’(can be thought of as the most likely failure sizes that would
have caused the syndrome s. Using Bayes’s Rule and substituting Gaussian
densities into the lgg likelihoods, and then solving for the maximum Ly, g,

respect to ¢, ,...,9, , we can show that

- = K —
le 9 ey Qkx - _ mll'_l ”§ + Z W"-‘é[;‘“%’;‘ (621)
Liy 8y =1
or
S -1)
le Wl‘] [WZ‘I
sl = P VT W, Wy l | VTls (8.22)
2 T T
Qk}r ka ka

which is the same as the projection case. Substituting this into L, .,

1
Lo = =3l +

1 K- ' ‘
Lipa = —5lls+ 2 W, -1 + Mo (6-23)

i=1

90

If we define the relative log likelihood L}, , as

| then

by ke = 2L,k — Lo) (6.24)
. K N \
f
ky..kg = ” Z Wkiékl.”v_' + ’Y'kl...k;\'
i=1
s,
= =S VI (W Wy | ¢ | +7%.4, (625)
P

where 4}, is a constant. This is exactly the same result as the projection

method.
If the syndromes are also used for reducing the numerical noise as well

as for fault detection/correction, then it can be shown that the estimates
- of the correct processor outputs are

IS

- 2 - A
Ut T (S iy + Syt 8,) for m# ks b
gm—gm' for m= kl,...,kK
(6.26)

91

Chapter 7

The Exact Arithmetic Systems

7.1 The Integer Arithmetic Systems

7.1.1 Single Fault Correction

When integer arithmetic with no rounding is used in fault tolerant multi-
processor architecture, no numerical noise is introduced and all the com-
putations are exact. This makes single fault detection/correction proce-
dure simple. If there is no fault, all the syndromes will be equal to zero
(s = 0). If there is a fault in processor K, the syndromes will be equal to
Sm = —Wm®,. A good fault detection/correction method is to do the fault
location on a point by point basis as if ¢ = 1 using the slope s;/s,, between
the syndromes. For example, in a single fault correction system with two
checksum processors (C = 2), the syndrome slope sy.2/sn 41 is equal to

SN+2 WNi2k (7 1)

SN+1 WN+1,k

If there are more than two syndromes, one has to compute the slopes be-
tween C — 1 pairs of the syndromes.

7.1.2 Multipie Fault Correction

Previously in section 2.1.2, we mentioned that a single fault detection/cosrection
system using only 0 and 1 as weights is equivalent to using error coding
techniques in the multiprocessor environment. The checksum processors in

92

this case look very much like “parity” processors. Using this parity proces-
sor technique, many existing single error correcting code techniques based
on parity checks, such as Hamming Code, can be directly applied to the
multiprocessor systems. |

Multiple error correction codes, however, cannot be as readily applied
to the multiprocessor system as can the single error correction codes. The
reason is that the parity bit techniques rely on the fact that the parity
bit is formed by the modulo 2 addition of the protected bits. That means
that an odd number of faulty bits produces a parity mismatch and an even
number of faulty bits produces a the pariiy match, which is not applicable
if the addition is not of modulo 2.

The reason why it would be desirable to be able to apply the mul-
tiple error correcting code to the multiprocessor system is that in or-
der to figure out which processors are faulty, the system has to figure
out which multidimensional hyperplane of the different failure hypothe-
sis the syndrome belongs. For the K, fault correction system, there are
Tim (N + C)!/((N + C - k)'k!) hyperplanes, each corresponding to one
possible failure hypothesis. Therefore, figuring out which hyperplane the
syndrome belongs to can take a lot of computation even for a moderate
K,..

One possible way to apply a multiple error correction code to multipro-
cessor architecture is to apply it at the bit levels. Consider the following
multiple error correction code used by a data transmission system in which
the bits b, b.,...,by are protected by the “parity” bits byy1, bni2,..,ON1C-
The parity bits by+y, bny2,...,bn+c are calculated at the transmission end -
to be

N
by = (Z w,,_mbm) mod2 for k=N+1,..,.N+C (7.2)
m=1

where the weights wy,, are 1’s and 0’s. At the receiving end, the fault
location is done with the parity chec.. syndrome s;. ‘

N
Sk = (bk - w,,.mbm) mod2 for k=N+1,..,.N+C (71.3)

m=1

93

The faulty bit location can be done using the code word (sws1, SN+2y-,8N4C)
with a lookup table. -

We can apply this multiple error correcting code to the multiprocessor
system at the bit levels. The input checksums in this case are formed using
the same set of weights Wi om-

N
=) WekmZy, for k=N+1,. . N+C (7.4)
m=1

At the output, the decoding is done on a point by point basis (as if ¢ = 1)
at the bit levels. First, the least significant bits of the data processors are
corrected. Let b;, represent the nth least significant bit in the processor
output ;. The least significant bits bnv, bn-yy, ..., by) are corrected using
the bits bnic, bnic-11, ..., bn+11, just like in the error correcting code
case. In order to do this correction, C least significant bit syndromes are
formed.

. N
Sk = b}:'] - E wk,mbm'] for k-==N + 1,...,N +C (75)

m=]

Let si, represent the n'* least significant bit of S¢. The faulty bits are
located by using the code word (snica, SN+C-1,15-+y SN+1,1), just as in the
€rror correcting code case. The correct least significant bit values 5;;,1 are
‘then calculated. '
 After the least significant bits are cotrected, the second least significant
bits can be corrected. This time the syndromes are calculated from the
.second least significant bits be,> and the correct least significant bits l;,,.l.

N
Sk =bka = D Wem(2bmz + bpy) for k= N+ L.,N+C (7.6)
. . m=]

Then the fault corrections for yi, are done with the code word (sw+c.2,
SN+C-1,25---,8N+1,2). Since the least significant bits l;m,l are correct, the odd
number of faulty second least significant bits produces the parity mismatch
(m.2 = 1), and the even number of faulty least significant bits produces
the parity match (8m,2 = 0), just like the error correcting code case.

94

Then the third least significant bits are corrected and so on. For n't

least significant bit correction s, is equal to

N n
Sk =brn — E (wk,mEZ"i)m_l) for k=N+1,.,N+C (7.7)

m=1 =1

and the fault correction is done with the code word {sni+cny SN+C=1,ny+0s
sN+i,n)-

Although using only 1’s and 0’s as weights requires more than the min-
imum number of checksum processors, using the multiple error correcting
codes in bit by bit fashion for integer processors may be much simpler
than using weighted checksum, since figuring out which decision region the
syndrome belongs to is most likely a computationally intensive task. This
technique may be especially useful for bit-serial type machines.

7.1.3 Modulo Arithmetic in Checksum Processors

In integer arithmetic systems, the weights are integers as well. Assuming
that there is no overflow or rounding in the processors, we have to use more
bits in the checksum processors than in the data processors to prevent the
overflow in the checksum processors. In a single fault detection/correction
system, the checksum processor k£ should have log, w, more bits than the
data processors in order to prevent the overflow, where the wy is defined as

"N
W = 9 |Wni| for m=N+1,.,N+C (7.8)
’ m=1
 We can reduce the number of extra bits needed in the checksum processors
by using modulo M arithmetic in the checksum processors. The modulo
M should be carefully chosen so that using the modulo arithmetic in place
- of the integer arithmetic does not change the value of the syndrome s,,.
Suppose that the data processor outputs y,’s are always in the range |y, | <
R. Then the m*'* syndrome of the single fault detection/correction system
would always be

|sm| < max(|wm|)R (7.9)

95

Therefore, if the modulo M arithmetic is used in the checksum processor
m where

M > mfx(!wm,kl)R (7.10)

then the syndrome s,, would be identical to the syndrome of an ordinary
integer arithmetic system. Note that modulo M arithmetic can be used in
the m*® input checksum calculation and the m'* syndrome calculation as
well without changing the value of the syndrome s,,.

An easy form of modulo M arithmetic to implement in hardware is when
M is a power of 2. Therefore, a good choice of M would be a power of two
that satisfies M > max(|wm«|)R. This modulo arithmetic is especially easy
to implement if only the weights -1, 0, and +1 are used in a single fault
detection/correction system. Suppose that R = 28 where B is the number
of bits used in the data processor registers. In this case, one can use modulo
28 arithmetic in the checksum processors, and all the processors would have
the same number of bits in their registers, simplifying the hardware design.

For the K,, fault detection or correction systems, one has to use modulo
M arithmetic in the m‘" checksum processor and the corresponding input
checksum and syndrome calculations, where M/R is equal to or greater
than the sum of the K,, largest |wp k|’s. This choice of M again insures
that the syndrome value is not changed. Using a power of 2 for M is
convenient to implement in hardware.

7.2 Residue Arithmetic Systems

7.2.1 Residue Number System Multiprocessors

Our fault tolerance technique using weighted checksums can also be applied
to multiprocessor systems using residue number system (RNS) processors.
A RNS processor converts the input to L residues of different modulos
M, M,, ..., My and processes each residue independent of each other. All
the residues are combined and converted back to integers at the output. The
modulos M;, M, ..., My have to be mutually prime. The RNS processor
potentially can run much faster than the conventional integer processors
because there is no carry chain delay involved between residues |Taylor 84].

96

A RNS processor can be viewed as an integer processor which performs
modulo M arithmetic, where M = [, M;.

In a conventional RNS processor, fault tolerance is achieved by using
extra residues |Etzel 80|. For example, single error detection is achieved
by using one extra residue, which is of a modulo that is greater than the
other modulos and is mutually prime. The fault detection is done by range
detection. If there is a fault in one of the residues, the output y, which is
converted from the L + 1 residues, is not within the acceptable range of
0<y< M, where M = ﬂf;lM,.

Single fault correction in a conventional RNS processor is done with two
extra residues, which are of modulos that are greater than the original L
modulos. All (L + 2) modulos have to be mutually prime. At the output,
L+2 outputs are formed, each from a different set of (L+1) modulos. When
there is no fault, all these outputs are identical. When there is a fault, only
one output would be within the acceptable range 0 < y < M, and that
is the correct output. It takes L,, extra residues for L,, fault detection,
and 2K,, extra residues for K,, fault correction. Converting L + 2 sets of
L + 1 modulos to integers and doing the range test is a computationally
intensive task. Also, the (L + 1)** and (L -- 2)** modulos that are used for
fault tolerance have to be bigger than the original L modulos, increasing
the size of the hardware involved with those modulos.

For a high throughput system which uses multiple RNS processors par-
allel, the weighted checksum architecture can be used for fault tolerance
instead of using extra residues in each processor. Assuming that there is
no overflow (overflow over M where M = []~, M)) in the data proces-
sors, the weighted checksum technique can be used in the same way as in
the ordinary integer processor systems. The only difference is that if the
checksum. processor dynamic range needs to be larger than the data pro-
cessor dynamic range, then one has to use extra modulos in the checksum
processor in order to increase its dynamic range. If only -1, 0, and +1
are used for single fault detection/correction, the checksum processors can
be modulo M arithmetic processors (i.e. checksum processors are identi-
cal to the data processors) as discussed previously in the integer processor
systems. If weights other than -1, 0, and +1 are used for single fault detec-
tion/correction, the checksum processor m should use extra residues (use L'
residues where L' > L) so that M' > max(|wp|)M where M' = [[}2, M.
If K., fault detection/correction is desired, the M'/M should be equal to

97

or greater than the sum of the K, largest |w, i |’s.

The major advantage of our fault tolerant architecture is thai the fault
location can be done with simple slope tests whereas the conventional fault
tolerance method with extra residues requires I, + 2 residue-to-integer con-
versions which are computationally costly.

7.2.2 Modulo Arithmetic Processor Systems

In the previous section, we have used N RNS processors in paralle| to
increase the throughput rate. However, there is another way i~ increase
the throughput rate of the RNS Processor. A RNS processor has 7, .»sidue
subprocessors, each processing the residues of different modulos /i 7, Tt
is possible to increase the throughput of each modulo M, subprocessor
by using N modulo M, residue subprocessors in parallel in place of one
modulo M, residue subprocessor. In total, there would be 1, subprocessor
groups, each group consisting of N subprocessors and each group based on
a different modulo.

discuss weighted checksum architectures in which the data processors are
modulo M, arithmetic processors. The major difference from the previous
section is that we allow overflows (overflow over M,) in the data processors,
This requires checksum processors to be modulc M; arithmetic Frocessors.
Modulg M, arithmetic should also be used in input checksum calculations
and syndrome calculations.

The weight vectors for a modulo M, single fault correction system should
be chosen so that different processor fajlures do not generate identical syn-
dromes. That means

¢i = 1121“-1M — 1
(diw; + ¢;w,) mod My £0 for ¢ =1,2,.,M -1 (7.11)
1#g
In order to satisfy this condition, all the weight vectors have to be prairwise
linearly independent modulo M;. Notice *hat this condition for the single

fault correction weight vectors is the same condition as for the double fault
detection weight vectors.

98

A

Since M; is usually fairly small in RNS systems in order to speed up the
computations, there is a limited number of points in the syndrome space
(SN+15 SN+2y-+y SN+c). The limited syndrome space limits the number of
data processors that can be protected using C checksum processors. Since
each syndrome s; can assume M, different values (0, 1, ... , M;—1), there are
only MF points in the syndrome space. Out of M points in the syndrome
space, the no-fault Hy hypothesis takes up one point (s = 0). Each failure
hypothesis Hy takes up M; — 1 points.

s=wny e for ¢ =1,2,...,M -1 (7.12)
Therefore, the maximum number of processors is equal to

ME -1
M -1
However, this is achievable only if M; is prime. If M, is not prime but is
equal to

max(N + C) = (7.13)

NP
n=1

where P,’s are primes, the weight vectors have to be linearly independent in
all the modulo P,’s in order to satisfy the unique decision region condition
in equation 7.11. Suppose that two weight vectors w,; and w; are linearly
dependent in modulo P,.

(w; + cw;) mod P, =0 for i#j (7.15)

Then for the processor error values of ¢; = [0 P 2and ¢; = o [1nyn P,
we have

(¢iw; + ¢jw;) mod M; = 0 (7.16)

Therefore, processor error of size ¢; on processor 1 yields exactly the same
syndromes as a failure of size a¢, on processor ;. One cannot distinguish
between these failures and cannot reliably correct the fault. Therefore, in
order to satisfy the unique decision region condition in equation 7.11, the

99

weight vectors must be linearly independent in all the modulo P,’s. This
means that the maximum number of weight vectors is determined by the
smallest P,.

min(P,)¢ — 1
min(P,) — 1

A simple way to construct a set of single fault correction weight vectors
is to use a search method. Suppose M, is prime. Start with a search space of
all possible weight vectors (wn 41, Wn+2,..., Wnsc) Where wn, = 0,1, ..., M —
1. First, eliminate the all-zero vector O from the search space since it is not a
useful weight vector. Then eliminate the checksum processor weight vectors
wh., = (-1,0,...,0), wk., = (0,-1,...,0),..., w5 - = (0,..,0,—1) and the
vectors that are linearly dependent to them (w, ¢, where ¢, = 0,1,..., M;—1
and k = N +1,..., N+ C) from the search space. Note that “-1” is equal to
“M;-1” in modulo M, arithmetic. Then pick one of the remaining vectors
as a weight vector w, and delete it and all the linearly dependent vectors
(w,¢1 where ¢; = 0,1,...,M; — 1) from the search space. Then pick one
of the remaining vectors as another weight vector w, and delete it and all
the linearly dependent vectors from the search space. Then another weight
vector is picked from the remaining vectors and so on. This process is
repeated until the search space is empty.

The chosen data processor weight vectors can be put into a more conve-
nient form by normalizing them so that the leading non-zero coefficient is
equal to 1. Suppose a chosen weight vector w,, , has the leading non-zero
coefficient a.

max(N + C) = (7.17)

wl = (0,0,...,0,0a,...) (7.18)

If M, is prime, then a~! exists. Therefore, the normalized weight vector

w; = (e 'w,) mod M, is equal to

o = (0,0,...,0,1,...) (7.19)

The normalized weights not only reduce the number of multiplies in the
input checksum and syndrome calculations, but also provide a convenient
method of detection/correction of a fault if the weight vectors w, are in
the normalized form. Suppose the syndromes sT = (sn11, S+2,--s SN+C)

100

He |wp [s;-) Sg=p Sy-3 Sp-4
Hy (0, 0)

Hy.i | (0,1) | (0,1) (0,2) (0,3) (0,4)
Hyio | (1,0)](1,0) (2,0) (3,0) (4,0)
H, (1,1) | (1,1) (2,2) (3,3) (4,4)
H [(1,2)]1,2) (2,4 (63,1) (43)
He |(1,3)](1,3) (1) (3,4 (4,2)
He |(L4)] (L4 (23 (3.2 (41

Table 7.1: Weight Vectors and Syndromes for Modulo 5 System (N = 4,
C =2)

have the leading non-zero coefficient 8. Let 3 = #~'smod M,. Then if the
failure hypothesis H; is true, we have w, = § with ¢3k = f.

Table 7.1 lists the normalized weight vectors and the possible syndrome
values for each decision region for a single fault correction system with two
checksum processors using modulo 5 arithmetic. The maximum number of
processors is N + C = 6. Notice that the data processor weight vectors are
in a convenient form of w] = (1,k) and the leading non-zero coefficient of
the syndrome is equal to the processor error.

Another simple method of locating the faulty processor is to use a lookup
table which has a failure hypothesis H, assigned to all the possible syn-
dromes. In conventional integer arithmetic, the syndrome space would be
too large to use such a method. However, in modulo arithmetic, especially
when M; and C are relatively small, the syndrome space becomes a man-
ageable size for such a lookup table method. The M, is usually small in
residue arithmetic in order to speed up the computation, and C does not
need to be larger than two or three in a single fault correction scheme,
tnless N needs to be very large. If normalized weights are used, fault cor-
rection is very simple, since the leading non-zero syndrome is equal to the
fault size.

The computational overhead associated with our fault detection and
correction methods can be significantly lower than in the computational
overhead associated with the conventional fault tolerance methods of us-

101

ing extra residues. Our system also uses identical copies of the residue
subprocessors as checksum processors. There is no need to design the sub-
processors using different and larger residues.

For the K,, fault correction system, we also have to choose the weight
vectors so that different sets of up to K,, processor failures de not generate
the same syndromes.

1<, <N+C

J -z

(Z bi w;, kY. t,bj,:yjk) mod M; #0 for LS s N+C (7.20)
k=1 k=1 I'< Kn
J< Kn

where (21,12, ...,17) is not the same set of integers as (5, J2,..-,Js), and ¢;,
and ¢;, are non-zero. This is achievable if any set of 2K, weight vectors is
linearly independent modulo M;.

2K :
< 1<, <N+C
(g ¢ul£ik) mod M; #0 for { bi = 1,2, M — 1 (7.21)

Notice that the above condition for the K, fault correction weight vectors
is the same as the condition for the 2K,, fault detection weight vectors.

Since each failure decision region takes up (M; — 1)™ points in the syn-
dromes space where m is the number of failed processors, the maximum
number of the processors in K,, fault correction when M, is prime is deter-
mined by the following equation.

c = (N +C)! m
M -1> mz=:1 (V10 m)'m!(M‘ -1) (7.22)

When M, is not prime, but is equal to M; = P, P;...Py,, then any set of
2K, weight vectors has to be linearly independent in all the modulo P,’s
in order to satisfy the unique decision region condition in equation 7.20.
Suppose that two sets of K,, weight vectors are linearly dependent.

Km Km
(Z orw;, + 3 ﬂk_u_),-k) mod P, =0 (7.23)
k=1 k=1

102

Then for the processor error values of ¢;, = &k [Tpnsn P and ¢;, = By [mzn Pm,
we have

Km K
(Z Gir Wi, + Z QSJ'ka}) mod M; =0 (7'24)
k=1 k=1
Therefore, processor errors of sizes ¢;, on processors (t1, t2,.... tk,,) yield
exactly the same syndromes as failures of sizes —¢;, on processors (I J2y ey JK,)-

One cannot distinguish between these failure modes and cannot reliably
correct the faults. Therefore, in order to satisfy the unique decision re-
gion condition in equation 7.20, any set of 2K,, weight vectors must be
linearly independent in the modulo P, for n = 1, ...y Np. This means that
the maximum number of weight vectors are determined by the smallest P,.

K !
min(P,)¢ - 1> Z W +NC+ C))

!(min(P,,) -1)™ (7.25)

A simple way to construct a set of weight vectors is to use a simi-
lar weight vector search method as the one used in the single fault cor-
rection case. Suppose we need weight vectors for K,, fault correction
when M, is prime. Start with a search space of all possible weight vec-
tors (Wn¢1, WN42,..., WN+1) Where w,, = 0,1,...,M; — 1. First, eliminate
the all-zero vector O from the search space. Then eliminate the checksum
processor weight vectors wy,, Wy, 9,..., Wy, and eliminate all the lin-
ear combinations of up to 2K,, — 1 checksum processor vectors from the
search space (i.e. eliminate E”‘"‘ Wy, Sk, where N+1 <k < N+ C, and
¢r, = 0,1,.... M, — 1). This guarantees that the linear combination of any
2Km — 1 checksum processor weight vectors will be linearly independent
from the vectors remaining in the search space. Therefore, the next weight
vector chosen will not violate the condition that any 2K, weight vectors
have to be linearly independent.

Then pick one remaining vector in the space as a weight vector w,; and
delete it and all the linear combinations of up to 2K,, — 1 already chosen
weight vectors from the search space (i.e. delete Z"{'““ w,, @k, from the
remaining set where ¢, = 0,1,...,M; — 1). Then another weight vector is
chosen. This process of choosing weight vectors is repeated until the search

103

Ml=3 M[-_—S Ml:7]\4{211 M[:13 M1:17
N+C=53 N+C=6 | N+C=8| N+C=8 | N+C=9 | N+C=9
(0,0,0,-1) | (0,0,0,-1) [(0,0,0,-1) | (¢. ¢, 0,-1) | (0,0,0,-1) | (0,0, 0, -1)
(0,0,-1,0) | (0,0,-1,0) | (0,0,-1,0) | (0,0,-1,0) | (0,9,-1,0) | (0,0, -1, 0)
(0,-1,0,0) | (6,-1,0,0) | (0,-1,0,0) | (0,-1,0,0) | (0,-1,0,0) | (0, -1, 0, 0)
(-1,0,0,0) | (-1,0,0,0) | (-1,0,0,0) | (-1,0,0,0) | (-1,0,0,0) | (-1, 0, 0, 0)
(1,1,1,1) | (1,1,1,1) | (1,1,1,1) | (1,1,1,1) | (1,1,1,1) | (L,1,1,1)

(1,2,3,4) | (1,2,3,4) | (1,2,3,4) | (1,2,3,4) | (1,2,3,4)
(1,5,6,2) | (1,3,2,5) | (1,3,2,5) | (1,3, 2, 5)

(1,6,5,3) | (1,4,5,9) | (1,4,5,3) | (1,4,5,9)

(1,7,6,2) | (1,5, 4, 8)

Table 7.2: Weight Vectors for Double Fault Correction (C = 4)

space is empty. One can end up with normalized weight vectors by picking
w, to be in a normalized form with the leading non-zero coefficient equal
to one.

Note also that for single fault correction, the bonnd on N + C is tight
and can be achieved. For K,, > 1, however, the b .nd is not tight and
may not find an appropriate set of vectors spanning the whole space.

Table 7.2 and Table 7.3 show the double fault correction weight vectors
for C = 4 and C = 5 found by the above search method. The number of
data processors is much greater for C = 5 than for C = 4. It is clear from
these examples that it is likely that more than the minimum number of
checksum processors may be required in order to implement double fault
correction.

104

M =1
N+C=16

PN S SN AN N
— oo o o T mAaTaT e e

e e T I SR
O...J.O..O’Oi
O..OsJOaOalanA.poaﬁaLZaﬁsO..LO..&.
ST P T A MmN 000 -~

~

R R - R - -

~) - ~ ~ - ~ ~ ~ - - - -

DO 0O T OO O S — rrrdrd o

Nt N N N S e Nt N Nt Nt e Nt et s’ e e

M =5
N+C=11

)))))))))))
T TN WO

-

- -~ -~ gy - - -~ - - -

O OO0 + OO ™ m™ r

e N N S Nt N vt et e et et

N+C=11

M =3

)))))))))))
_..... oo oo NN =

- - ~ oy -~ -~ - -~ - -~

OO OO + ©O — ™ rmi r v

Nt N N Nt N N it Nl el e st

105

Table 7.3: Weight Vectors for Double Fault Correction (C = 5)

Chapter 8

Practical Architectures

In this chapter, we shall discuss possible architectures for implementing our
single fault correction multiprocessor system. We limit our discussion to the
datapath of the system. Of course the clocks, controls, power sources, and
other parts of the system have to be designed reliably (by triple modular
redundancy or by other methods) so that their failure rates do not dominate
the system failure rate.

In our proposed architectures, all the data paths, except the ones that
are protected by our fault tolerant algorithm, are triplicated for reliability.
If they are not triplicated, it is likely that their failure rate would dominate
the system failure rate. Although it is possible to design a reliable data
path without triplicating through error coding techniques, it is not clear
that one can make such data paths as reliable as the triplicated ones. For
example, if the error coded bus system experiences a failure in one of its
bus driver chips, the entire bus system may be stuck due to a single fail-
ure. In our architectures we have also assumed that the decoder, which is
the hardware module that is responsible for fault detection and the faulty
output correction from the syndromes, is triplicated for reliability as well.
The entire datapath is designed so that any single compenent failure would
not cause the failure of the entire datapath.

106

8.1 Single Bus Architecture

The single bus architecture is a simple and yet very efficient datapath ar-
chitecture for implementing our fault tolerant multiprocessor. Figure 8.1
shows the single bus datapath architecture for the single fault correction
system. There are N data processors and C checksum processors in the
system. It is designed so that any single component failure would not cause
a system failure. The main bus is triplicated for reliability. There is also
a bus guardian (BG) unit attached to each processor. The bus guardian
unit is responsible for driving the bus during the output phase and isolat-
ing the bus from the bus driving circuit during the non-output phase. The
bus guardian unit is designed so that a single component failure would not
disable more than one of three main busses. A local bus connects the bus
guardian unit to the data processor. This local bus does not need to be trip-
licated since it is protected by our fault tolerance algorithm. To the system,
a failure in a local bus would be equivalent to and indistinguishable from a
failure in the corresponding processor. For a local bus that is connected to
the checksum processor, there is also a checksum calculator attached to it.
The checksum calculator is responsible for calculating the input checksum
and the syndrome, and has two sets of internal accurnulators: one for the
input checksum and one for the syndrome. These checksum calculators are
not triplicated since they are also protected by our fault tolerance alge-
rithm. A failure in a checksum calculator would appear to the system no
differently from a failure in the corresponding checksum processor.

Figure 8.3 shows an example design for the bus guardian unit operated
by triplicated control signals. During the input phase, the information from
the triplicated main bus is voted on before being passed on to the local bus.
During the output phase, the signals on the local bus drive all three main
busses. The bus guardian unit is designed so that a failure in one of its
components would not disable more than one of the three main busses.

Figure 8.2 shows the timing diagram for the architecture. The system
processes a batch of N input data segments at a time. Each segment
consists of p input data points and ¢ output data points. As the input data
comes in through the main bus, it gets loaded onto the data processors
through the bus guardian unit and the local bus. The first input data
segment z, is sent to the first data processor, the second data segment

i07

1
[
BG
] T
. lJ
BG BG 86 |0 0 0BG B6| 000 |BG BG
i}
1 N
1
P1 P2 P3 OO O py —APN+1| O O O HpN+C
Decoder
—{> |ooo4 >
Output

Figure 8.1: Single Bus Architecture

108

BG

Processor Ill !2,ooolNl

Input

Processor [] [2]+ e[N] [

Checksum Processor

Input]
Checksum Processor l
Output {

Syndrome
O’L’;pﬁ’t‘“e [IN+i[N+2] o o o [N+C]

Figure 8.2: Single Bus Architecture Timing Diagram

3 Voter \ q i\ M) \ Voter HH

Voter

out_enable

.-~
I—
AAA

Voter

Voter | in_enable

/

Figure 8.3: Bus Guardian Unit

109

z, is sent to the second data processor, and so on. Each data processor
starts processing the input segment as soon as it is received. Therefore,
the data processors’ computations will start in a staggered order. The
checksum calculators, in the meantime, are in the process of calculating
the input checksums. They take the input data z,’s off the main bus,
multiply it by the appropriate weight w,, +’s, and sum the results into the
input checksum accumulators. When N*'* input has been received and the
checksum calculators have finished calculating the input checksums, the
input checksums are then sent to the corresponding checksum processors
through the local bus.

As the data processors finish processing the data, they send the output
y,’s through the main bus to the decoder. While the outputs are being sent
to the decoder, the checksum calculators compute the output checksums the
same way they compute the input checksums. They take the output data
y,’s off the main bus, multiply them by appropriate weight wm i’s, and sum
the results in ihe syndrome accumuiators. In a checksum calculator, there
are two separate accumulators for the input checksum and the syndrome.
When the checksum processors are finished processing the input checksums,
they send the resuit to the checksum calculator through the local bus.
The checksum calculators then compute the syrndromes s,,’s by subtracting
the output checksums from their accumulators from the outputs of the
checksum processors. The resulting syndrome is then sent to the triplicated
decoder through the main bus. It takes C data transfer cycles to finish
this syndrome transfer process. From the data processor outputs and the
syndromes, the decoder detects and corrects the faulty processor output
and then outputs the result.

This is a very heavily pipelined architecture. While a batch of input
data is going into the data processors, the processed output of the previous
batch is being sent to the decoder, and the fault detected/corrected results
of the batch before that are being outputted trom the decoder. Notice
that the timing has been carefully pipelined so that the idle times of the
processors are minimized. For example, the input and output phases of
the data processor are interleaved so that as soon as a data processor has
finished outputting the result through the main bus, it receives the next
batch of input data, also through the main bus. The same goes for the
checksum processors. All the checksum processors simultaneously output
their result to the corresponding checksum calculators through the local

bus. As soon as the outputting is completed, the new set of input checksums
are immediately sent from the checksum calculators to the corresponding
checksum processors through the local bus.

The major bottlencck of this system is the bandwidth of ihe main bus.
The main bus should have enough bandwidth to take care of all the data
processor inputs and outputs as well as the syndrome transfers. If the
processor computation time per batch is shorter than the time needed for
data transfers, then the processors would sit idle for at least part of the
time.

8.2 Unidirectional Data Flow Architecture

There are some situaticns when it is advantageous to make the system data
flow unidirectional. For example, if the data flow is unidirectional, we can
use multiplexers instead of busses with bus guardian units in some places.
In multiplexers, it is easier to prevent a faulty component from jamming
the entire datapath. Figure 8.4 shows an example of unidirectional data
flow architecture. In the input stage, a triplicated input bus is used. Notice
that simple voters (shown as “V”) can be used on the receiving end instead
of the complex bus guardian unit, assuming that the voter is designed such
that a faulty voter does not load down more than one input bus at a time.
The outputs of the processors are sent to the triplicated decoder through
a triplicated multiplexer rather than through a bus structure. There are
also separate hardware modules for input checksum calculation and the
syndrome calculation.

The timing diagram for the unidirectional data flow architecture is in
figure 8.5. The input data is loaded onto the data processors the same
as in the single bus architecture. The first batch of the data z, goes to
the first processor, the second batch z, to the second processor, and so
on. The data processors start processing input data as soon as they receive
them. As the input data is being loaded onto the data processors, the input
checksum calculators are in the process of calculating the input checksums.
They take the input data of the bus, multiply by appropriate weights, and
sum the result into their accumulators. As soon as the input checksums are
calculated, they are sent to the corresponding checksum processor, which
starts processing them imamediately. When the data processors are finished

111

with processing the data, they send the results to the decoder one after
another through the multiplexer. While the data processors are outputting
their results, the syndrome calculators are computing output checksums.
After all the data processors have finished outputting the results, all the
checksum processors send their results to the syndrome calculators. The
syndrome calculators subtract the output checksums from the checksum
processor outputs to compute the syndromes. The resulting syndromes are
then sent to the decoder through the triplicated multiplexer. The decoder
then locates and corrects the faulty output and outputs the resuit.

8.3 Variations

In this architecture, it is also possible to vary the number of checksunt
processors used depending on the requirements of the application. For ex-
ample, if the application does not require immediate correction of the faulty
processor output, one can use the system in a single fault detection configu-
ration instead of the single fault correction configuration. In that case, one
can use all the processors except for one of the checksum processors as the
data processors. The resulting single fault detection system has (N +C —1)
data processors and one checksum processor, and thus has more processing
power.

It is also possible to give a checksum/syndrome calculator to every pro-
cessor. This way, any processor can be a checksum processor which im-
proves the reconfigurability. As we discussed in section 3.2.3 and 3.3.3,
if the checksum processor has the same dynamic range as the data pro-
cessors in the non-exact arithmetic systems, a small fault in a checksum
processor is more easily detected than in the data processors. With a
checksum/syndrome calculator built into every processor, one can improve
the detectability of the small faults in all the processors by periodically
rotating different processors to be the checksum processors.

Having to design the checksum/syndrome calculators and the decoders
as different hardware modules may make the system hardware design more
complex than desired. It may be possible in some cases to use processors
as the checksum/syndrome calculators and the decoders. This may be
especially useful if the processors used are single chip processors.

The input bus associated with the architecture in the previous section

112

P1

P2

P3

o)

PN

OOOM

™M

1

N

Figure 8.4: Unidirectional Data Flow Architecture

M
U
P X
=
P P
‘:V -
PN+1 S LXJ_Z
o) o) 0 o
o o 0 o
o) | 0 o)
— v
PN+C 0|
v 2

113

LT

i

DMOoO OO MO

Processor
Input |1|2|°°°|N-1]N

ll
processr [13 5 |+ o «[N] EREN

Checksum Processor r— 3
Input ‘
Checksum Processor -

Output l— _\

Synd ~
i e - e o G

Figure 8.5: Unidirectional Data Flow Architecture Timing Diagram

can be used for a variety of purposes other than just inputting the data.
One can use them to load programs, do control, etc. In order to use the
input bus for these multiple tasks, one may want to build additional control
structures into the system such as interrupts, flags, etc. The input bus is
also one of the major bottlenecks associated with the architectures in the
previous sections. This bottleneck may be relieved by using multiple input
busses. However, the design of such a scheme is complicated by the fact
that the input data has to be sent to all the checksum processors as well as
the corresponding data processor.

It is also possible to have sparc processors that would replace the faulty
processors. This would be appropriate if, for example, the mean times
till failure of the processors are much shorter than the rest of the cystem
hardware. In this case, the system keeps track of the failure history of the
processors, and if any processor is repeatedly diagnosed as being faulty,
the system replaces it with a spare processor. In case there are no spare
processors left, the system can reconfigure itself from the single fault correc-
tion configuration to the single fault detection configuration. However, the

114

complexity associated with such a reconfigurable system may not justify
the increase in performance.

115

Chapter 9

Conclusion

In this thesis, we have proposed a fauit-tolerant multiprocessor architecture
which has much less redundant hardware associated with the fault tolerance
than the Modular Redundancy techniques. The architecture uses weighted
checksum techniques and is suited for linear digital signal processing appli-
cations that need to use multiple copies of identical processors in order to
meet the throughput requirement.

The system consists of N identical linear data processors and C check-
sum processors. The input to the checksum processors are weighted sums
of the data processor inputs. The fault detection/correction is done using
the syndromes which are the differences between the checksum processor
output and the appropriately weighted sums of the data processor outputs.
When there is no fault, all the syndromes are equal to zero. When there
are faults, the syndromes are linear combinations of the weight vectors of
the faulty processors. One needs a minimum L,, checksum processors for
L,, fault detection, and a minimum of 2K,, checksum processors for K,
fault correction. For L,, fault detection the linear combinations of any L,,
weight vectors should be linearly independent from each other. For K,
fault correction the linear combinations of any 2K,, weight vectors should
be linearly independent from each other. The low integer weights are good
weights for single fault correction because multiplication by small integers
requires less computational effort than a full multiply and also because they
spread the weight vectors efficiently in the syndrome space. Good weights
for the multiple fault correction are difficult to find.

When fixed point or floating point arithmetic is used, the computation

116

is no longer exact and the processor outputs and the syndromes contain
numerical roundoff or truncation noise. In this case, the numerical noise
is modeled as random variables and statistical fault detection/correction
methods have been developed. For the single fault detection case, the fault
is detected if the syndrome energy level exceeds the preset threshold. For
the single fault correction case, the projection energy threshold method
is derived for the fault diagnosis. This method projects the syndromes
onto the weight vectors and performs a threshold test on the normalized
projection energy. If the energy of only one projection exceeds the preset
threshold, the corresponding processor is declared faulty. If more than one
projection energy exceeds the threshold, the one that exceeds the threshold
by the most amount is declared faulty. The projection of the syndrome onto
the faulty processor weight vector is used for the fault correction, since it
represents the weighted value of the most likely processor error. When
the numerical noise is white, the projection method can be simplified. An
efficient algorithm for the fault detection/correction computation in this
case was also derived.

Since the numerical noise is modeled as a statistical process, the fault
detection/correction is no ionger exact. These fault diagnosis methods
have certain probabilities of misdiagnosis. However, in properly designed
systems, such misdiagnosis does not have fatal consequences to the system
application. The net effect of the misdiagnosis in such systems is nothing
more than the slight increase in the numerical noise level of some of the
processor outputs. The probability of misdiagnosis decreases when the
weight vectors are spread far apart in the syndrome space.

The projection fault detection/correction method *< also equivalent to
the result of the generalized likelihood ratio test in which the numerical
noises are assumed to be Gaussian random variables. Using the generalized
likelihood ratio test, one can also derive a method for using the syndromes
not only to detect and correct the faults, but also to filter out some of the
numerical noises of the working processors. However, the potential payoff
and the practicality of sach noise filtering are questionable.

A few other simple ad hoc methods for single fault correction in the
presence of the numerical noise have also been derived. Some of them
are quite simple and computationally more efficient than the projection
threshold method, although the probability of misdiagnosis is higher.

The projection method and the generalized likelihood ravie test have

117

also been derived for the multiple fault correction in the presence of nu-
merical noise. However, such a multiple fault correction system may not be
very practical for the following reasons. First, it is hard to find good weight
vectors for multiple fault correction. Second, it is hard to design the rest
of the system hardware to be as reliable as ihe protected processor group
without using a modular redundancy technique. Third, the computational
effort required for detection/correction of the faults increases dramatically
as the number of faults that must be tolerated increases, and the system
can become computationally less efficient than the modular redundancy
systems of comparable reliabilities.

The simulations of the single fault correction projection method have
been carried out using an example fixed point system. Properties that are
difficult to compute analytically, such as false alarm rate and the numerical
noise in the corrected processor output, are simulated. In addition, the
dependence of the fault diagnosis method on variables such as the batch
size, the processor reliabilities, and the numerical noise levels were sim-
ulated. We also did a simulation to find the probability distribution of
the syndrome numerical noise under the assumption that all the roundoff
operations are non-correlated. In order to find out whether the roundoff op-
erations in real systems are indeed non-correlated, a fixed point single fault
detection system was simulated with the processing task of FIR filter and
FFT. The roundoff operations in the FIR filtering were found tc have little
correlation, but the roundoff operations in FFT were heavily correlated,
with the resulting noise level much lower than if they were non-correlated.

When exact integer arithmetic is used, one can achieve reduction in
hardware by using modulo arithmetic in the checksum processors and in the
calculations of the input checksums and the syndromes. The modulos in the
form of 2° are easy to implement. We have also developed a method of ap-
plying the error coding technique to the multiple fault detection/correction
systems using integer arithmetic. This eliminates the difficulty of finding
good weight vectors for the multiple fault detection/correction systems,
and can also reduce the computational effort involved with multiple fault
detection/correction. Our fault tolerance method can also be used in the
residue number system processors very efficiently.

Practical architectures for the single fault detection/correction system
are presented. Single bus architecture and unidirectional data flow archi-
tectures are discussed, along with the flexible ways they can be used to

118

meet the various needs of the application.

The following are suggestions for further research in this topic. The
floating point numerical noise probability distribution and the effects of
the floating point numerical noise in fault detection/correction algorithms
need to be studied in more detail. It is also possible to extend the fault tol-
erant multiprocessor architecture to non-linear applications. The key idea
behind the weighted checksum architecture is that the weighted checksum-
ming process and the linear operation process F commute. It is likely that
there are non-linear processing applications in which the desired proces-
sor operation and another operation commute in a similar way to achieve
fault tolerance. The search for such operation pairs and the development
of appropriate fault detection/correction algorithms are desired.

Our fault-tolerant weighted checksum multiprocessor architecture not
only achieves high reliability with low hardware overhead, but is also ap-
plicable to any linear digital signal processing applications. We have de-
veloped very efficient fault detection/correction algorithms for both exact
arithmetic systems and non-exact arithmetic floating point or fixed point
systems. Our architectures can mask any single point failure and are flexible
to meet the varying degree of fault tolerance required by the application.

119

Appendix A

Proof of Section 2.2.4

These appendix are taken from Musicus and Song’s paper [Musicus 88|. Let
@ be the (N + C)q length vector of the N + C processor errors ¢ ,..., @, . .
If K processors fail, k;,..., kk, then the corresponding error vector ¢ has K
non-zero block elements le , '"’Qkx' Let Qg be the set of all such possible
error vectors corresponding to up to K processor failures. Let s = —-W¢
be the syndromes corresponding to the errors ¢. Then we require:

a) To reliably detect up to K,, + L, failures, the syndromes
must always be non-zero for any non-zero error vector in

QK+l

~W¢ #£0 forall ¢€ 0k, 10, ,$#0 (A1)

b) To reliably correct up to K, failures, the syndromes corre-
sponding to any two different such failures must be different:

~Wo# -W¢ forall ¢, 6€ 0k, , ¢+ (A.2)

c)To reliably distinguish a situation involving only K, or fewer
errors from one involving between K,, and K, + L,, errors, so
that we can try to correci the former, we must be able to
distinguish the syndromes:

~W¢ #-W¢ forall €0k, , b€ 0kps1, 076 (A3)

120

Note that ¢ — g} € Nasp if p € N, and ¢~_> € 1g. Combining A.1, A.2, and
A.3, we will therefore need:

~-W¢ #0 forall p€ Nog,+1,.,97#0 (A.4)

This in turn implies that every set of 2K,, + L,, block columns of W must
be linearly independent. But this implies that every set of 2K,, + L,,, weight
vectors (Wy4+1k---WN+ck)? selected from k = 1,..., N + C must be linearly
independent. But this can only be possible if C > 2K,, + L.

Q.E.D.

121

Appendix B

Derivation of GLRT (Proof of
Section 4.1)

To derive the formula for Ly, we apply Bayes Rule and then substitute the
Gaussian formula:

Ly = logp(s,Ho)
log P(s|Ho) + log P(Ho)

I

1 r 1 N+C
= —58 Vils— §1og|27rV|+ > log(1l — Pn) (B.1)
m=1

To derive the formula for Ly for k = 1,..., N + C, we start by applying
Bayes Rule to L, then substitute the Gaussian formula:

Ly = maxlogp(s, Held,)
—k
= maxlogp(s|H,¢,) + log p(Hy)

—k

_ m_ax—%(g W)V - WeASWT) (s + Wid,) (B.2)

¢,

122

1 N+C
-5 log 27(V - W, A0, WT)| +log P+ 5. log(1— Pa)
m=1

m# k

where A®, = ®,--&,. To maximize over ék, we apply the following lemma:
Lemma A

n:_bax ~(s+ Wi,)T(V - W ABWE) (s + W,9,) (B.3)
= r%ax —(s+ Wid,) V(s + Wip,) (B.4)

k

and the maximum for both expressions is achieved at the same value of @k:

6 = —(WIVTIW,)'WIV' s (B.5)

Proof: Maximize the expressions above by diﬂ'efentiating with respect to
¢, then setting the derivatives to zero. We find that (B.4) is maximized

by (B.5), while (B.3) is maximized by:

3, = — (WI(V - W,a8,W])'W,) " WI(V - W,A8,W])'s (B.)
To simplify this, we use a modified form of the Woodbury ABCD lemma:
(V-W,AQ,WT) ' = VI VIIW,AQ(I- WiV IW,AS) 'WIV!

(B.7)

This is most easily proved by multiplying both sides by the inverse of the

left side and simplifying. (Note that it is true even if A®, is not invertible.)
Multiplying by WF:

WV - WA, W) = (1- WIV!W,A8,)'WITV™! (BS)

Substituting into (B.6) shows that (B.6) and (B.5) are identical. Now note
that: '

123

WIV I (s+Wig) = WIVTHI- W (WIVTIW,) 'WIvl)s
=0 (B.9)

Substituting Ek into expression (B.3) and applying the Woodbury formula
again shows that:

(s + W) (V - WA, W) (s + W,3,)

—(§+W§) (s+wk$)
= TV I s+ sSTVIW (WIVTIW,) 'WIVTls (B.10)

Applying this lemma to L, gives the formula in section 7.
To compute the relative likelihood. L} = 2(Li— Lo), we exploit equation
(B.10). Performing the subtraction gives:

L=s"VIW (WIVIW,) 'WIV-1s 1 4 (B.11)

where:

P
= ~log [2n(V — W, A8, W])| + log |27V + 2 log(; “t_) (B.12)

Py

To simplify this formula, note that the following matrix can be factored in
two different ways:

I wil [1 olf1 0 1 wT
I WkAQk Vv] - i Wkd‘bk I] 0 V - WkAQkW
I wil [F WIV?)[I-WIV WA,
i W, A, V] B i 0 I 11l 0 Vv V—lkaQk

Taking the determinants of the matrices in (B.13) and equating them gives:
1|V - W,A8,W]| = [I- W]V IW, A8, V] (B.14)

124

Taking the log of both sides gives:

) P
'7;‘ - — lOg!I - WZV“W,,A@ki + 210g(1——kﬁ) (B.'15)
- Ik

125

Appendix C

Derivation of Alternate GLRT
(Proof of Section 4.2)

Under hypothesis Hy, the processor outputs y and syndromes s can be
expressed in terms of ¢ as follows:

()-(3)+[5% e

where W is a Cq x Ng block matrix with block columns W1, ..., Wx. The
Jjoint distribution of y and s is thus:

(w30 e

V = W(DYWT + &g ' (C.4)

and where ®y is a Ng x Nq block diagonal matrix with diagonal blocks
®,,...,8n, and where & is a Cq x Cq block diagonal matrix with diagonal

126

blocks ®n41,-.., PN+c. Using Bayes Rule and substituting this Gaussian
density into Lo:

Ly = max log p(y, s, Ho|7)

= max log p(y, s|Ho,) + log p(Ho) (C.5)
1 _ = 1 N+C

= rnyax—é(gT -7 sNH)Q! (Y] ¥) — 5 log [27Q| + > log(l — Pn)
J = m=1

To maximize this over 7, we will use the following lemma:
Lemma B '

Let:
V.. Vog 1 ' [a—a
E(a) = (o —&"p7 aa “af = C.6
(@) = (a —g)[Vﬁa Vag B (C.6)
Then:
min E(a) = 7V,;'8 (C.7)
& g P
and the minimum is achieved at:
a=a-VaVy 8 (C.8)
Also:
_1 -~
Vaa Vag a—0o 0
= = 1= _ C.9
[Vﬂa Vﬂﬁ] (B) (Vnﬁ‘.@.) (C9)

Proof: We can factor the matrix as follows:

[Vaa Vag] B [I VagVgs] [Vaa = VagVss Vea O] [I 0]
Vﬁa Vﬂﬂ - 0 1 0 Vﬁﬁ Vv ﬂ_ﬁl Vﬁa 0

, (C.10)
Thus its inverse has the form:

127

[VM Vaﬁ]"‘_[I o][(Vc,c,—v,,,ﬂvﬁ-ﬁ,‘v,sa,)—1 0 HI VsV
Vsa Vag Vs Vaa 1 0 Vs

Substituting into (C.6) gives:

(@~ VasV35 B) Vaa—VasV5 Vaal " (a=B-VasV35) +87V53 B (C12)

Minimizing over & and plugging back into (C.12) completes the proof.
Q.E.D.
Applying this lemma to (C.5), the maximum over ¥ is achieved at:

y=y+ oy WVis (C.13)
and the likelihood equals:
1
Lo = —EQTV'IQ + Yo (C.14)
where:
1 N+C
T = 3 log |27Q| + D _ log(1 — Pn)
m=1
_ 1 ¢Y 0 N+C
= —élog 27r[0 o, + m,Z::] log(1 — Pn)
1 N+C N+C
= 3 El log |27®| + 3 log(1 — Pm) (C.15)
m= m=1

For k =1,...,N + C, hypothesis H, models the processor noise ék as a
non-zero mean Gaussian random variable with density:

P(¢,|H) = N(3,,) (C.16)

where Ek is unknown. The other processor errors are the same as under
Hp. The joint distribution of y and s given H; and Ek is then:

128

d

where:

lon

R

]| 3 e I

For k = 1,...,N,I, is a Nq x ¢ matrix which is the k** block column of
an Ng x Ngq identity matrix, ®y is just &y with the k'* diagonal block
replaced by &, and ®5 equals ®s. For k = N +1,..,.N + C,I, = 0,®y
equals &y, and ®s is just ®; with the k** diagonal block replaced by ®,.
Thus applying Bayes’ Rule and substituting the formula for a Gaussian:

1o I
——
+
A/

|
2 el
-
b
N
11
s
L
x
SN——
—
Q
o
-3
N

L, = maxmaxlogp(y,s, QE)
i g,
= max maxlog p(y, s|Hx, 78,)
Yy 9,
— y-7- Lo,
= maxmax—-(y -7 -8, Iis" + ¢, W) QW)
¥ Qt s+ wk_‘ék
—5 log |27Q™| + log p(H}) (C.19
Applying lemma B to maximize over ¥ gives:
g=y- Lo, + By WT(V - WA W) ' (s + W,0,) (C.20)

Substituting back into (C.19) gives:

1 - _
Ly = max —-2-(§ + Wi)T (V- W ASW]) (s + Wi,

2,
1 N+C
—5log 127QW| +log P, — > log(1 — Pyn) (C.21)
m=1
m#k

129

But applying lemma A, the maximum occurs at exactly the same value of
¢ as for our previous algorithm, (B.5). The likelihood at the maximum

equals
1 & e - i N+C 1 _
L = —5(s+Wid) V(s + Wigy) =5 > log2m®, — - log2m®;
m =
m#k
N+C
+logPe+ . log(l— Pn) (C.22)
m=1
m#k

Substituting (B.5) into the formula for § and simplifying using lemma A

again:

§ =y~ LG, + W Vis+ W.0,) (C.23)
or:
x wlv-! w k
5 = y + @ (s + "¢k) N form # (C.24)
- Y, "45 + &, WTV- l(-S-i-W'qu) form =k

Using (B.9), the case m = k simplifies:

Tyv-1(g 4 5 :
_ .t fpmwmv (s+ Wio,) form#k (C.25)
" form =k

<2

Y~ &
Now we compute the relative likelihoods as before. The quadratic terms
in s are exactly the same as in the previous method, but the constants are

different:

L, = 2(Lx - Lo)
STV IWL(WIVIW,) WiV ls + 4 (C.26)

where:

130

— log [27®| + 2log Pi + log |2m¢,| — 2log(1 — Py)

_ P,
—log |®:®; '] + 2log (1 — Pk)

131

(C.27)

Appendix D

Mean and Variance of

Likelihoods

To compute the mean and variance of the relative likelihoods L}, we need
the following lemma:

Lemma C: Suppose a, § are Gaussian random variables with means a, E
and cross-covariance V,g5. Then for any matrix A:

E{a"AB] = tr { AE|Ba]} = tr {A[BE" + Vpal) (D.1)
Proof:

Ela"Af) = E[Z ; Ai; 5]

= Z ,'4,-_,-E[a.-ﬁ,-]

= iA.-,—(E.-ﬁ,- + [Vaslii)

- trJ{ ABa" + v}

= tr{A[Ba" + Vjl] (D-2)
Q.E.D.

With this lemma, we can compute the expected value of L), under each
hypothesis H,. Start with the following formula for L!,:

132

L =sTVIW, (WIVIW)TTWTv-1s 4 4 (D.3)

Let }ik be the mean of the failure of the k' processor or syndrome. Using
lemma C, plus the fact that tr{AB} = tr{BA}:

E[LL|H)| = tr{VI'Wo(WLVI'W,)'WLV-(V)} +,
= {(WLVIW)(WIVIwW,)t 44,
tr{I} + Vrn
= g+, (D.4)

For k = 1,..., N we use the fact that:

Els|H, = -W.3,
Va.l'[QlHk] = V- ka@kWZ (D5)
Then using lemma C again:
E|(L,.|H:|

=t (VW (WIVI W) " WI V- (W5, 8, W] +V - W A8 W] +),
tr { WV W (WLVIIW,L) TWIV WL (B, 8, — A®] +1} +),
tr {RemBoL Rk [6,8, — A®i]} + g+, (D.6)

where:

Rim = WIVIW,, (D.7)

To compute the variance, we need the following lemmas:

Lemma D: Suppose a, 3,7, A are zero-mean, jointly Gaussian random vari-
ables. Then:

133

ElapfyA]

ElaB|E(NA] + E|ay]E[8)A] + E|a)|E[37]

Elafy] = 0 (D.8)
Proof: A standard result (see [Helstrom 84| pp. 210)

Lemma E: Suppose a_,B,'y, A are jointly Gaussian random variables with
respective means a, 3, A%. Then:

E|af~)] = E|eB)E[v)] + E|av|E(BA] + E[a)E|B~] — 2aB3) (D.9)

Proof: Let & = a — @; define ﬁ,%,:\ similarly. Then a,[m,i are zero
mean Gaussian random variables:

Elafy)\ = E|(@a+@) (B +B8)(7 +7) (A + V)] (D.10)

Multiplying this out gives 2* = 16 terms. The expectation of the product of
an odd number of zerc-mean random variables is zero. Therefore, retaining
only the terms with an even number of random variables gives:

ElaByA| = E!aBiA) + @BE[3A] + ayE(BA] + GAE(B4)
+BYE|&3] + BYE|4) + TNE(af] + TN
= E|aB)E|7)) + E[GFE(BA] + E[&)E[6)
+aBE(yA] + TYE[B)] + aAE(67]
+B5E|a)| + BAE[&d) + YAE[&f) + @fyr (D.11)
Factoring, and using the fact that:

E|ef) = E|&B) + af (D.12)

134

proves the lemma.

Q.E.D.
Lemma F: Suppose a,f,7, and A are jointly Gaussian random variables
with respective means @, 3,7, and A. Let A, G be arbitrary matrices. Then:

E[a"ABY"G)| = Ela” ABIE'GA| + Tr {AE|B+"|GElya"|}

+tr { AT E[ay"|GE[48"]} - 28" ABT"GX (D.13)

Proof:
E{@" AB7" G}]

= E| Z a; Ai; Bi kG i

N7kl

— Z A; ;G E| i)
ikl

> Ai;Ge{ElaiB;|E|veMi] + E[cive) E[BeAi] + Eou M E|[Bive]}
ikl

-2 Z Ai; Gk.lai_ﬂ—ﬁkxt (D.14)
ik

The lemma follows directly.
Q.E.D.

Now to derive the covariances of the relative likelihoods L], under each
hypothesis. Using lemma F:

Cov[L),L\|Hy| = E|L.L,|Hi|— E[L,|Hi|E(L,|Hy)

Il

—2(ajRi,R,, Ry g,)(¢ RyR “unﬁ)

135

2tr{v-1wpn;;w;‘v 1E(ssT|H)V IWRIWIV- lE[ﬁTlﬂk]}

(D.15)

But under hypothesis Hy,

EIQT|H0] =V and ék =0 (D.16)
Substituting into (D.15):

Cov(L;, Ly|Ho) = 2tr {R,,R 'R, R (D.17)

q

Under hypothesis Hy for k = 1,..., N, equation (D.5) implies that:

Elss"iHy) = Wig,8, W + V — W, A9, WT (D.18)

Therefore:

Cov(L!, L. |Hy)

P’ a

- - =T _ - =T
= 2tr {Rppl [RPk(éka - AQ&)qu + RPQ]qul [qu@kék - A‘I,")Rkp + qu]}

—T - — _T _ J—
~2(3, R, R Rpid,) (0, R R Rk d,) (D.19)
The formulas for the white noise case are found by substituting:

Tkm

V =aol1 and @, = all and Ry = ;EI (D.20)

136

Appendix E

Mean and Variance of
Processor Quiput Estimates

First we compute the expected value of the estimates of the processor out-
puts under each hypothesis. Under Hy:

E[§|Ho) = Ely|Ho]+ & WTV-'E|s|H,|

(E.1)

|

Under H, for k = 1,..., N, taking the expectation of (C.25):

Ely|Hy,¢,] = ElylHk@,J—IkE@kIHk@,,]+av‘i’TV"E[§~+Wk§lek,§k]
= (G+Lo,) - Ld, + By WIVIH(-W, 4, + W)

<2
—_
=
(3
N

Under hYpothésis H,, vie calculate the variance of y as follows: Rewriting
(C.13):

137

§= (16, WTV1) (

& It

) (E.3)

From the Gaussian formula in (C.2):

- . o —0,WT] (1
= By - By WIVIWo, (E.4)

Under hypothesis H; for k = 1,..., N + C, each component of ﬁ has value:

ot ¢, WITV-1(s+ W;@k) form # k

K
3
Il
e e
Q|

m— 2 form==k
_ y, + q>mw3,1Pk§ form # k (E.5
T |y, H(WIVIIW) TWIVls form =k -5)
where:
Pe=1- W, (W{VIW,)'W]V-! (E.6)

is a projection operator which is orthogonal to W,; thus P, W, = 0. The
following subcomputations are useful in evaluating the covariance:

Cov(y,.y,|He,8,) = Cov($, .4 |Hi,8,)

= ®,0n, for m#Fk,p#£k (E.7)

N
Cov(ﬁa!_/mlHka §k) = Cov ((— Z Wlﬂ),QmIHk,ék)
. i=1

N
= - Cov(Wi$,8_|Hd,)

=1

138

_ -W,®, form#k
- { ~Wd, form=k (E-8)
Cov(s,s|Hr,8,) = V- W, A8, W] (E.9)

Using these results, we can derive the covariances of Qk. Form # k,p # k:

Cov(y,.U,|Hk,8,) = PmOmp— 20, WIV-'P, W, o,
+0,WIV-IP,(V - W,A$,WI)PV W, &,
= ®n0mp — O WIV-IP, W, 0,
®Omp — Pm|Romp — R Rif Ry D, (E.10)

For m # k:

Cov(y_,4,|He,8,) = ®momp— @ W VP, W,
-0, WIV-IW, (WIVIW,)!
48, WIV-IP,(V - W, AQ W)V IW, (WIV IW,)!
= -6, WIVvIiw, (Wlv-iw,)!
= —-&,.R.,R;} (E.11)

Finally:

Cov(d,, i, [Hr, @,) = Be— (WiVIW,) WV W,
—SWIVIW, (WIVIW,)!
FWIVIIW)IWIV- YV - W AW)VTIW (WIVTIW,
= -8, 4+ (WIVIW,) ! - Ad,;
Ry — @ (B

139

Appendix F

Proof of WWT = I For Complete
Sets of Weight Vectors

Let us construct the weight vectors in the following manner. Let each
weight w,, » be a small integer in the symmetrical range —L to +L. Form
all possible (2L + 1)€ vectors of this type. Now eliminate from this set the
zero vector, and any vector which is an integral multiple of another vector.
Now note that: ‘

wwT = w,wi : (F.1)
k ‘ .

where the W, are the individual weight vectors. Examine the (1, 7) block
component of this matrix for any ¢ # j. Suppose there is some weight
vector W, which has weight values ;I and ;1 in the ¢** and j** positions.
By symmetry, there must be another weight vector W,, which either has
weight values ;I and —f;1, or else —;I and $,1 in these positions. (This
is just the definition of a complete set of weight vectors.) Then the (1, 7)
+ element of W, W71+ W, WT is (a;0; — a;;)1 = 0. Since the weight vectors
can all be grouped into pairs in this manner, the (z,;) element of WWT
must be zero for ¢ # ;.

The same proof also holds if the weights are chosen to be complex
integers chosen from a symmetrical range.

140

Bibliography

[Breuer 83] |
[de Sousa 78]

[Etzel 80|

- [Faithi 83
[Hamming 50} |

[Heistrom 84)

) [Huang 82]

M. A. Breuer, A. A. Ismaeel, “Roving Emulation as a
Fault Detection Mechanism,” Proc. 13th Fault-Tolerani

- Computing Symp., June 1983, pp. 206-215.

P. T. de Sousa, F. P. Mathur, “Sift-Out Modular Redun-
dancy,” IEEE Trans. Computer, Vol. C-27, No. 7, July
1978, pp. 624-627.

M. H. Etzel, W. K. Jenkins, “Redundant Residue Number
Sysiemns for Error Detection and Correction in Digital Fil-
ters,” IEEE. Trans. on ASSP, Vol. ASSP-28, No. 5, Oct.
1980, pp. 538-544.

E. T. Faithi, M. Krieger, “Multiple Microprocessor Sys-

‘tems: What, Why, and When,” Computer, Vol. 18, No. 3,

March 1983, pp. 23-32.

R. W. Hamming, “Error Detecting and Error Correcting
Codes,” Bell System Technical J., Vol. 26, No. 2, Apr.
1950, pp. 147-160.

C. W. Helstrom, “Probability and Stochastic Processes for
Engineers,” Macmillan Publishing 1984.

K. H. Huang, and J. A. Abraham, “Low Cost Schemes
for Fault Tolerance in Matrix Operations with Processor
Arrays,” Proc. 1982 Int’] Conf. Fault-Tolerant Computing,

Rp-. 330-338

141

[Huang 84]

[Johnson 84

[Jou 84]

[Jou 86]

[Kohavi 78]

[Losq 76]

[Musicus 88]

[Nelson 82]

[Oppenheim 75|

[Siewiorek 82|

K. H. Huang, and J. A. Abraham, “Algorithm-Based Fault
Tolerance for Matrix Operations,” IEEE Trans. on Com-
puters, Vol. ¢-33, No. 6, Jun. 1984.

B. W. Johason, “Fault-tolerant Microprocessor-based Sys-
tems,” IEEE Micro Vol. 4, No. 6, Dec. 1984, pp. 44-53.

J.Y.Jou,and J. A. Abraham, “Fault-Tolerant Matrix Op-
erations on Multiple Processor Systems Using Weighted
Checksums,” SPIE Vol. 495 Real Time Signal Processing,
1984, pp. 94-101.

J. Y. Jou, and J. A. Abraham, “Fault-Tolerant Matrix
Arithmetic and Signal Processing on Highly Concurrent
Computer Structure,” Proc. IEEE, Vol. 74, No. 5, May
1986, pp. 732-741.

Z. Kohavi, “Switching and Finite Automata Theory,”
McGraw-Hill, New York, 1978.

J. Losq, “A Highly Efficient Redundancy Scheme: Self-
Purging Redundancy,” IEEE Trans. Computers, Vol C-25,
No. 6, June 1976, pp. 569-578.

Bruce R. Musicus, William S. Song, “Fault-Tolerant Ar-
chitecture for A Parallel Digital Signal Processing Ma-
chine,” Unpublished.

V. P. Nelson, B. D. Carroll, “Fault-Tolerant Computing
(A Tutorial),” AIAA Fault Tolerant Computing Work-
shop, Nov. 1982.

A. V. Oppenheim, R. W. Schafer, “Digital Signal Process-
ing,” Prentice-Hall, Englewood Cliffs, New Jersey, 1975.

D. P. Siewiorek, R. S. Swarz, “The Theory and Practice
of Reliable System Design,” Digital Press, Bedford, Mass.,
1982

142

[Song 87|

[Taylor 84|

William S. Song, Bruce R. Musicus, “A Fault-Tolerant
Architecture for A Parallel Digital Signal Processing Ma-
chine,” Proc. IEEE International Conference on Computer
Design, 1987, pp. 385-390.

F. J. Taylor, “Residue Arithmetic: A Tutorial with Ex-
amples,” Computer, May 1984, pp. 50-62.

[von Neumann 56] J. von Neumann, “Probabilistic Logics and The Syn-

[Wensley 78]

[Welch 69

thesis of Reliable Organisms from Unreliable Compo-
nents,” Automata Studies, Prinston University Press,
1956, pp.43-98.

J. H. Wensley, “SIFT: Design and Analysis of a Fault Tol-
erant Computer for Aircraft Control,” Proc. IEEE, Vol.
66, No. 10, Oct. 1978, pp. 1240-1255.

P. D. Welch, “A Fixed-Point Fast Fourier Transform Error
Analysis,” IEEE Trans. on Audio and Elec., Vol. Au-17,
No.2, Jun. 1969.

143

