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ABSTRACT

This thesis is concerned with the development of scheduling algorithms for residential
electricity consumers under spot price based electricity rates. Spot pricing is an optimal
time varying rate reflecting the true cost of electricity supply. It accomplishes various
objectives of load and demand side management through the market signal of electricity
prices. In practice, each customer will be given 24 hour schedules of prices a few hours
prior to the hour of application. Price levels will be constant for each hour.

Electricity usage is classified accordirg to the storage capabilities of end use devices
and processes. For each class, various static control logics are presented. These are
conceptually simple and easy to implement.

For dynamic control, storage type devices and processes are modeled as discrete time
linear dynamic systems. The state and output equations comprise multiple storage ele-
ments, controllable (electricity) and deterministic exogenous (weather) inputs, and prod-
uct outputs (heat or hot water). The control problem, scheduling of electricity usage at
minimum cost subject to input and output constraints, is formulated as a linear program-
ming problem. The need for a fast and near real time control algorithm has motivated
the search for alternative optimization techniques.

It is found that thermal systems are asymptotically stable positive dynamic systems.
Based on this result, an algorithm is introduced for the control of discrete time linear
dynamic thermal systems subject to linear costs and bounds on any variable. This algo-
rithm is to be used in a Feed Forward Control scheme. The algorithm finds a particular
initial feasible solution, and at each iteration moves linearly in the feasible space to a
new solution (constraint) set with a lower total cost. Each movement is based on a lincar
combination of impulse response vectors. The algorithm terminates when no further cost.
Improvements are possible. The algorithm takes simple forms for first-order systems. The
computer codes written for the case study problems result in optimal solutions. Depending
on the size of the problem, they are up to 10 times faster than a commercially available
linear programming code. Further improvements in efficiency are possible.



The first case study focuses on the scheduling of electricity for heating and cooling of
buildings. Using published estimated data for building parameters, a 2 resistance, single
storage (massive internal structure) building is studied in some detail. The output variable
(inside air temperature), is a function of the state variable (storage temperature). Four
different, yet general, price patterns were studied. Impact of different thermal parameters
and problem constraints on the total savings, compared to equivalent flat rates, were
examined. Depending on the price patterns and the price levels, savings associated with
optimal scheduling varies from zero to 30%. Results also demonstrate that associated with
each price pattern, there exists a unique optimal design values for the storage size.

Also considered is the scheduling of electricity use for dual element hot water heaters.
In this case, the output is the storage variable itself, which results in a very simple version
of the algorithm. Depending on the price patterns and price levels, results demonstrate
possibility of up to 50% savings under spot pricing relative to comparable flat rates.

To study the effects of uncertainty, an stochastic dynamic programming algorithm is
developed, which is computationally slow. The most important result for a single storage
system without losses is: for highly uncertain exogenous inputs, the certainty equivalence
assumptions, i.e. using expected values of exogenous inputs, result in suboptimal control.
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Chapter 1

INTRODUCTION

1.1 Thesis Overview

This thesis considers the problem of optimal scheduling of electricity usage under
spot price based rates. The overall results of this study are applicable to resi-
dential, commercial, and industrial customers; however, the case studies consider

residential customers only.

Spot pricing is an optimal time varying rate scheme for pricing of electricity.
Also called flexible, dynamic, real time pricing, or time varying tariffs, it is based
on the concept that prices should change with time to reflect the variable cost of
electricity supply. Spot pricing provides a market based incentive for modification
of supplier and consumer behavior, and as such acts as a unifying tool in the

realization of various demand side management objectives.

This thesis limits itself to a particular scheme of pricing where prices are dif-
ferent for each hour (or any fixed period), and are communicated to the cusfoners
at least 24 hours in advance of the application. A short overview of spot pricing

is presented in the following section of this chapter.

The third section of this chapter considers various types of end uses of electric-

ity consumption, and classifies them according to their possible response behavior.
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The last section of this chapter discusses previous work in this area, and their re-

lations to this thesis.

Residential electricity consumption can be classified as belonging to one of two
broad categories. One type possesses some form of storage capability which en-
ables the postponement of service from the actual timz of electricity consumption.
Electric water heaters, space cooling, and space heating fall into this category.
Price respondi.g algorithms for this category are non-trivial and are the main
concern of this thesis. Appliances such as dish washers, laundry machines, and
dryers comprise the other type in which electricity is consumed at the same time
that the service is provided. The control schemes for this category of end uses are
simple to conceptualize and easy to implement. The simpler group of end uses
are considered first and the classifications and the control schemes are described
in some detail in Chapter 2. Also discussed is the static control of storage type

end uses.

For dynamic control, the storage type electricity usage is modeled as a discrete
time linear dynamic system. Service considerations such as comfortable temper-
ature range in a building and electricity usage capacity impose bounds on the
input and output variables of the system. The only cost considered is the cost of
electricity usage based on spot price rates. Thus, from a theoretical perspective,
this thesis considers a particular class of linear programming problems. However,
the desire for a fast and efficient algorithm for an on- line feed forward control of

electricity usage has motivated the search for an alternative optimization method.

Chapter 3 discusses the properties of thermal systems. It shcws that linear
thermal systems are asymptotically stable positive dynamic systems. Henee, the
impulse response vector for these systems has a particularly simple form. Based on
these results, Chapter 4 introduces a general algorithm for the control of asymp-
totically stable positive dynamic systems. For a finite time horizon, the system
equations, with bounds on inputs, outputs, and storage variables, define a convex

feasible solution space. The algorithm first finds a particular initial feasible solu-
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tion set for the inputs. Then, at each iteration it moves as much as possible in
a feasible linear direction to a new solution point. It is shown that any feasible
direction is a combination of some elementary feasible directions. The algorithm
considers only those movements which reduce the total cost. Tt terminates when
no elementary feasible direction with net reduction of total cost is found. The
general framework of the algorithm is provided for single-input single-output, de-
terministic, discrete-time, linear time variant, thermal systems subject to linear

costs and bounds on any variables.

Chapter 5 is devoted to the study of heating and cooling in buildings under spot
prices. It considers various building types and determines their particular dynamic
models in relation to the framework of the application of the general algorithm. It
then focuses on a particular thermal model applicable to simple buildings, namely
a single thermal storage building. A case study is performed using published
estimated data for the thermal properties of these type of buildings. The general
algorithm is simplified when applied to this model. Of particular interests are the
impact of price patterns and the thermal properties of the building on the total

savings relative to comparable flat rates of electricity.

Chapter 6 considers the case of dual element electric water heaters. It provides
a model for the water heater, and defines the optimal scheduling of hot water
production in terms of the control of the volume of the hot water produced. Again,

the general algorithm is simplified further for this particular class of applications.

Chapter 7 drops the assumption that the exogenous inputs are deterministic.
It presents a preliminary study on the question of stochastic inputs, and it pro-
vides a basis for further work in that area. A stochastic dynamic programming
framework is developed for a simple storage type problem and various assump-
tions are tested. The most interesting result is that, when the exogenous inputs
are highly uncertain, the asswumption of the certainty equivalence results in sub-
optimal solutions. Under the certainty equivalence assumption, the optimization

under stochastic conditions is held to be equivalent to a deterministic optimization
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with the uncertain inputs fixed at their expected values.

Finally, Chapter 8 provides a brief summary of the thesis, lists the main con-

clusions, and makes recommendations for future research.

1.2 Spot Pricing of Electricity
1.2.1 Why spot prices ?

Electricity production and transmission is a regulated economic activity ir the
United States and most other countries. Electricity prices, generally fixed and de-
termined by regulatory commissions, do not reflect the real-time economic costs of
providing electricity service. The result is that many generating and transmitting
facilities are either over-worked or idle. This economic reality has always been
a source of concern and activity by the electric utilities in the U.S. and abroad
[G2]. Presently, it is an important element forcing a reassessment of ways in which

electric utilities operate and do business [N1,N2,N3].

Many electric utilities have been considering various methods of influencing
and changing customer behavior in ways that would result in the utilities’ desired
load shapes [M4]. The resulting activities and programs have evolved into more

sophisticated demand-side management initiatives such as spot pricing [G2].

A utility’s load shaping objective depends on the physical and financial charac-
teristics particular to that utility. Gellings [G1] classifies these objectives as peak
clipping, valley filling, load shifting, strategic conservation, strategic load growth,
and flexible load shaping. It is possible for two different utilities to pursue fwo
differing objectives. However, each of these objectives can, in economic terms, be

viewed as the desire for a reduction in operating and capital costs.

There are a variety of tools and methods at the disposal of utilities to meet these

objectives. Some are individualized alternatives, which, as described by Delgado
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[D4], take into account the specific type of the clectricity customer and particular
end uses of electricity. Demand charges, interruptable rates, and time of use
(TOU) rates are three tariffs which influence customers’ electricity use hehavior.
However, none of the rate systems in use reflect the real-time variable service cost
of electricity. Hence, as incentives they provide only limited information to the

customers, and as a result, produce only limited response.

Spot pricing is a time varying pricing system for electricity which reflects the
actual time and space-dependent costs of electricity generation, transmission, and
distribution [B6,B5,B8,C2]. The notion of spot prices also includes purchase of

power from independent power producers as well as sale of power to customers.

The basic idea of spot pricing is that if at any time, cost of generation in-
creases, either because of increased demand or unscheduled outages, prices should
increase as well. Raising up the prices would not only reflect the higher costs of
additional generating units being brought on line, it would also cause a decrease
in the electricity demand. Some customers would experience a loss of benefits as a
result of increases in the real cost of electricity and would attempt to reduce their
consumption accordingly. In this respect, spot pricing can induce spontaneous
supply and demand equilibrium by acting as a control feedback mechanism within

electric power system.

The concept of spot pricing in its present form was introduced by Schweppe,
et all (S2] under the name of homeostatic utility control. An earlier but less exact
concept of responsive pricing had been proposed for general utility commodities
by Vickrey [V1]. The most up to date and comprehensive reference on spot pricing

of electricity is the recent book be Schweppe, Claramanis, Tabors. and Bohn [S4].

In one possible implementation, a typical customer would see prices changing
every hour. However, spot prices would be communicated 24 hours in advance
through the mass media or private communication channels such as a phone line.

An energy conscious residential or industrial customer may depend on a sophisti-
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cated microprocessor based energy management system to shift most of its load to
the times of lower prices. A less sophisticated residential customer may respond
only when prices become unbearably high by turning off the non-essential appli-
ances. Although the degrees of benefits may vary for different class of customers,
it is expected that in time, experience and economic considerations will extend

the opportunity of more flexible responses to all classes of customers.

The following list includes some of the expected benefits of spot pricing of

electricity:

e Spot prices, reflecting the true cost of electricity, result in a more efficient

allocation of resources in the society.

e Spot pricing directly benefits the electricity suppliers, because utility and
non-utility generating units would operate more efficiently, and additional
units would be introduced into the network as they become economically

profitable.

e Customers benefit directly by knowing the real cost of electricity at different
periods, and by planning their consumption behavior in a manner that takes

advantage of price variations.

o Electricity customers with a consumption pattern that tracked peak produc-
tion costs, would aot be subsidized by other customers with a different load

pattern.

e The inherent control characteristics of spot pricing would achieve more com-
prehensively the objectives of other traditional demand-side management.

tools, central dispatching, and rate structure techniques.

* Rotating blackouts and involuntary rationing (interruptable rates) would
not be necessary because of the self-adjustment of electricity supply and

demand. This would result in an added freedom of choice for customers who
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can voluntarily curtail their consumption if economic rationality does dictate

SO.

e Independent producers of electricity from wind power, solar power, cogener-
ation, and other unconventional sources can be more easily integrated with
the electricity network system. Electricity from an independent source will
be introduced to the network when prices are economical. Their economic
contribution would be subject to market forces rather than regulation and

legislation.

e Spot pricing provides a framework both for the short-term operational de-

cisions and the long-term investment decisions of suppliers and customers

(1],

e Spot pricing provides a vehicle for partial deregulation of the industry if so

desired.

e Spot pricing could reduce the need for new capacity.

In summary, If implemented properly, spot pricing of electricity can accomplish,
single handedly, all the goals of various and disparate demand-side management

programs.

1.2.2 Spot prices in theory

From a mathematical point of view, economic efficiency is equivalent to the max-
imization of some social welfare function. A theoretical derivation of optimal
spot prices is provided by Bohn [B7], and by Caramanis, Bohn, and Schweppe
[C2]; and expanded further by Bohn, Caramanis, and Schweppe B8] to reflect the
location-specific constraints within the network. A complete and detailed theo-
retical treatment is given in Schweppe, Caramanis, Tabors, and Bohn [S4]. The

social welfare function considered is comprised of terms which reflect net economic
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benefits to the suppliers and consumers and is subject to some network-associated

constraints.

Theoretically derived optimal spot prices vary continuously over time and
space; thus reflecting the stochastic nature of supply and demand, electrical en-

ergy balance, and physical network constraints. More specifically, spot prices are

the sum of the following components:

e Variable operating costs component, which includes the marginal fuel, op-
eration, and maintenance cost of electricity generation. This component
is referred to as the “system lambda” in most of the literature on utility

systems.

 Energy balance quality of supply component, or quality of supply for genera-
tion, which reflects the cost of meeting the physical constraint of maintaining
an equality or balance between electricity supply and demand. It is equal to
the prorated cost of additional capacity needed to meet unserved demand:
or equivalently from the customers’ point of view, it is equal to the prorated
value of unserved energy. In case there is any unused generating capacity in
the system, this component is zero. Otherwise, it is added to the price in

order to induce a decrease in demand.

e Transmission loss component, which reflects the cost of dissipated energy,
or resistive loss over the network. This component is location dependent. It
is frequently represented as proportional to the square of the load, and as a

result its value becomes more pronounced as the transmission load increases.

e Transmission quality of supply component, or quality of supply for nefwark.
which reflects the voltage magnitude and power flow constraints. This com-
ponent is also location dependent. It is a function of stability limits and
also the probability of network burn-out due to over-loading of the network.
Since the probability of network outage increases with load, this compo-

nent of spot prices also becomes more significant as the transmission load
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increases.

All of the above components vary with time and location, and as a result so does
their sum. At off-peak hours the first component of the spot price is dominant.

At peak hours other components become significant.

1.2.3 Spot prices in practice

At the present time, spot pricing is in an experimental phase, though some indus-
trial development rates closely approach implemented spot price rates. Compre-
hensive studies of spot pricing from utilities’ perspectives have been performed for
power companies in Wisconsin by Caramanis, Tabors, and Stevenson [C3]; and for

power companies in California by Schweppe, Caramanis, Tabors, and Flory [S1].

Spot pricing does not completely do away with regulation. There would still be
a need for a central authority which would regulate the electrical energy markets,
maintain and develop electrical networks, periodically evaluate the spot price based
rates, and communicate these rates to the suppliers and customers. Bohn, Golub,
Tabors, and Schweppe [B10] have proposed creation of spot markets for bulk power

as a partial substitute for the deregulation of electricity generation.

Theoretical spot prices fluctuate rapidly in time, and instantaneous changes
in its components leave no room for a continuous evaluation and communication
of prices. In addition, on-line adjustments to prices by consumers on a short
notice is rather impractical. Therefore, theoretical prices can only serve as a
framework for a more practical rate structure. For this purpose C'aramanis, Bohn,
and Schweppe [C2] provide a methodology for the evaluation of spot prices which

can be utilized in practical situations.

An important issue is what kind of rate structures should consumers see and
how often should price changes be communicated to the customers. Bohn [B7]

gives a theoretical presentation that demonstrates the tradeoffs between transac-
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tion and communication costs and benefits of more frequent price updates. Given
the rapid pace of technological innovations, these costs are expected to decrease
substantially within the coming years. In this connection, Flory and Parker [F1]
provide an overview of communication and metering technology for electricity spot

pricing.

For the purpose of this work, and as suggested in the literature, it is reasonable
to assume some form of arrangement in which a customer or a homogeneous class
of customers is provided with some form of electricity price forecasts in advance.
A price forecast cycle can be a day, a week, a month, or any agreed-upon time
horizon. Furthermore, each price forecast cycle or time horizon would be divided
into smaller periods such as minutes or hours. Price levels would be constant
within each period, only changing in a step-wise manner between the periods
within a price forecast cycle. Note that in this thesis, these price forecasts are

taken to be deterministic.

1.3 Customer Response to Spot Prices

1.3.1 Customers and spot prices

Spot pricing of electricity provides the opportunity for the electricity customers
to schedule their usage in a manner that results in reduced costs of consumption
relative to a comparable flat rate. The savings are possible because of the price
differentials among different periods. A customer may schedule to use non-essential
appliances when prices are low, and use high priced electricity only if necessary. In
addition, having a storage capability, enables the customers to enjoy the service
even when prices are high by delaying the time of service use from its {ime of

prcduction.

From the utilities’ point of view, scheduling of electricity by a significant por-
p g A g ]

tion of the consumers reduces demand during peak hours and increases consump-
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tion during hours of low demand, and consequently, helps the utilities to rednce

costs and to increase efficiency [S4,B9].

A typical customer would see prices varying every hour which would be com-
municated 24 hours (or a week) in advance through mass media or private com-

munication channels such as a phone line.

The main point is that customers have the flexibility to schedule electricity
usage in order to capture the benefits of price differentials. The feedback aspects
of spot pricing have no effect if customers are not responsive. What is envisioned
is that the residential customer, once in a while, would specify the overall strategic
rules, i.e. criteria and constraints that define the limits of acceptable service; and
then, the local controlling system would automatically operate the various end-use
devices subject to time varying spot prices, ever changing weather conditions, and

service constraints set by the customer.

It is expected that industrial customers will find the benefits of spot pricing
more attractive than smaller residential customers. Bohn'’s initial study [B4] has
indicated the potential for significant savings by industrial customers. References
[D1] and [D2] also provide a theoretical evidence for responsiveness and savings
associated with spot pricing for a real industrial customer. Although the material
of this thesis are applicable to industrial customers, the case studies are developed

for residential or commercial thermal processes.

1.3.2 Price responding algorithms and end-use devices

Various end use devices have different behavior characteristics, and thus. different
implications for response under spot pricing. The following list presents a prelin-
inary classification of end use devices according to the expected response hehavior

under spot pricing. The choices for response are:
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I- To schedule the operation at the minimum cost periods for appliances

which only use electricity and which have no storage capabilities.

II- To switch to a substitute fuel when electricity price become higher than
the price of the substitute fuel. This is an on-off operation, except that

the operation at the off periods is continued using a substitute fuel.

ITI- To schedule electricity consumption load at the lowest price hours sub-
ject to production and storage capacity constraints and the determin-

istic or stochastic schedule of end product demand.

I- End use devices with no storage or fuel substitution:  The first situa-
tion applies to the type of apbh’ances which have no storage capability, and which
can not use other energy substitutes for electricity. In this category we can include
dishwashers, washing machines, dryers, etc. Electricity usage by these appliances
can be controlled by simple decision logics. Absence of storage simplifies the con-
trol action, because the service of the appliance use is obtained at the same time
that electricity is consumed. The decision logic can be as simple as turning the
device on only when the prices are lower than some pre-specified threshold. This

and relatively more sophisticated contro! actions are described in Chapter 2.

II- End use devices with fuel substitution capabilities:  This situation is
the least likely to be encountered in a residential setting. Possible examples are
dual fuel stoves, burners, and water heaters. The decision logic would continuously
compare the electricity spot prices to the cost of the substitute fuel (taking into
account the efficiency), and then switch the device to the electricity or the fuel

depending on their relative costs.

Examples are the dual fuel water heaters used in the residential and the com-
mercial sectors, and the electric/gas ovens used in the glass industry. The same

concept also applies to industries with self generation or cogeneration, where the
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electricity is switched from the grid to in-house supply.

III- End use devices or processes with storage: This category includes
thermal devices such as space heating and cooling, supplementary thermal (hot or
cool) storage, electric water heaters, refrigerator/freezer compressor and defrost

control, swimming pool heaters, and water bed heaters.

What unites these devices or processes is their ability to store the end product
(heat and hot water). The time at which the service is provided and the time
of electricity use do not have to be the same. The required algorithms are more
involved anc'i are based on dynamic logics, because the decision at a certain hour
will be based on the spot prices and the states of the system at previous and future
hours. Dynamic logics may allow an increase in energy usage while reducing costs
and improving benefits. Many industrial processes can also be modeled as storage

processes as described in references [B7], [D1], and [D2].

The essential idea here is to use electricity during times of low price to heat
the house and the water heater and build up stored heat and then to allow them

to float through the high price times.

Chapter 2 describes some simple static logics for storage devices. A more

sophisticated dynamic logic is discussed in Chapter 4.

1.3.3 Other examples of storage-type customers or pro-
ducers

In addition to the type of end-use devices described above, many other industrial
customers or even some small electricity producers have storage capabilities which
can be utilized in order to respond to spot priced based electricity huyer and seller
rates. For producers, the output or the end product of the process is electricity.
and from a mathematical point of view, their problem is one of maximization of

their sales. Some examples as mentioned in previous references are:
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Finished goods storage by an air liquefaction plant: These planis
use electricity intensive processes to liquefy air into its constituent parts.
These plants already have large storage tanks in place in order to smooth
out operations in times of power interruptions and demand fluctuations.
The electricity usage rating and storage size determine the hounds on the

operations.

Municipal water plants: Water is pumped into a water tank from a
reservoir. The timing for replenishing of the tank is flexible. The input is

the electricity usage as determined by water flow.

Low head hydro generation: Independent power generators can also be
subject to spot prices when selling to the maiﬁ power grid. The reservoir
level can be adjusted slightly by the producer to provide additional storage,
and turbines are driven mostly at times of high prices. The size of the

reservoir determines the maximum storage size.

Independent waste burning generators: The input is the waste and

the output is the electricity and waste storage size is limited.

chilled water storage using ice in an office building: The chiller size
determines the maximum production capacity, and the ice tank size limits

the storage.

Many other similar examples should exist in clectricity intensive industrial appli-

cations.

1.4 Previous Work in Response Scheduling Un-

der Variable Prices

This section presents an overview of some related works in customer hehavior

modeling and formalization of response to time varying prices.
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Most of the models considered in literature define storage type processes as
linear dynamic systems. Scheduling of electricity usage under spot pricing is for-
mulated as a minimum cost optimization, or control under linear costs. The ear-
liest work is due to Tsitsiklis [T2] which provides the same general discrete time
dynamic model as the one used in this thesis. Tsitsiklis also introduces an efficient
algorithm for scheduling under spot prices for a scalar (one-storage) system with
losses, where the controlled output is the storage level. The methodology in the
present thesis, when applied to a first order system with losses and the storage
level as the controlled variable (electric water heater), reduces to Tsitsiklis’ algo-
rithm. In fact the code used in the water heater study later in this thesis was
written independently, and without the knowledge of Tsitsiklis’ work. The algo-
rithm is described in Appendix C in the context of the case study of Chapter 6.

The algorithm is faster than the simplex method applied to the same problem.

Previous work by the present author [D1] and [D2] provides an algorithm for
a single storage system without losses, which in fact, is a special case of the single
storage system with losses. Hence it is again a special case of both the general
algorithm presented in Chapter 4 of this thesis, and that of Tsitsiklis [T2]. The
proof of optimality provided in Reference [D1] is different from the one provided
by Tsitsiklis for the storage system with losses. This algorithm is also applicable
to scheduling of electricity usage of water heaters when losses are lumped with the

demand for the hot water as explained in Chapter 6.

Tsitsiklis [T2] also discusses the case of multi-storage (higher-order) systems,
and introduces decomposition techniques which break down the master problem
into linked smaller size storage optimization subproblems. Decomposition is pos-
sible when special requirements for matrix sparseness and invertibility are mef.
Each subproblem can be solved using more efficient techniques, however the mas-
ter problem is solved by the simplex or equivalent methods. In contrast. the
present thesis develops a different methodology for multi-storage systems based

on the block representation and impulse response of the linear systems. All the
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aforementioned problems and also the general problem of this thesis are linear

programming problems.

O’Rourke and Schweppe [01], [O2] consider the modeling of space condition
load under spot pricing. Their thermal model is again a single-storage (first-order)
linear system. However, they consider only periodic weather and price data which
* enables them to expand the variables in a Fourier series for a fixed interval, and
ﬁlgebraicaﬂy solve for the optimal power input. The results give some insights
into the behavior of space conditioning load under spot pricing. However, the
periodicity assumptions are too restrictive to be realistically acceptable. Their

study can be used as a planning tool for the evaluation of inputs of price responding

HVAC control.

A more general analysis of electricity usage by customers is carried out by
Constantopoulos [C6]. He also considers thermal linear dynamic systems. How-
ever, he introduces the customers’ utility functions and their explicit valuation of
service and comfort. Therefore, the cost or the objective function for the optimiza-
tion problem becomes nonlinear, and thus, more complex nonlinear optimization
techniques are employed. Furthermore, only a first order model is studied, and cer-
tainty equivalence for stochastic situations is assumed. Chapter 7 of the present
thesis employs a stochastic dynamic programming method to demonstrate that
the certainty equivalence may not hold for similar systems with highly variable

exogenous inputs.

A different approach by Chang [C4] introduces an algorithm based on the
method of the Lagrange multipliers to solve an optimization problem with quadratic

cost function which combines load shifting and self-generation.

Finally, in his recent work, David [D3] formulates a multi-storage optimization
’ ’ - I

problem very similar to the present work. However, only on-off or integer values
are assumed for the power inputs, and established linear and integer programming

techniques are employed. Also discussed are models of other types of customer
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loads which have not heen explicitly discussed in the present work.
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Chapter 2

CONTROL LOGICS AND END
USE DEVICES

2.1 Introduction

Static control applies both to storage type and non-storage type end use devices.
In this chapter, steady state conditions are assumed for storage type devices, and
the savings inherent to dynamic scheduling of power inputs are ignored. Dynamic
control for storage type devices is discussed in more detail in the following chapters.
Non-storage end use devices require simple static control logics for operation under
spot prices. In contrast with storage-type processes, the service can not be stored
for later use, and a decision is made for either termination of service at a particular
period, or switching to a substitute fuel. Only the former case is considered here.
Examples are limited to those of residential customers. Except for a few minor
exceptions, the materials presented in this chapter are completely based on a
recent paper by Schweppe, Daryanian, and Tabors [S5]. Again, it is assumed that
the forecasts of future hourly prices and weather variables are provided to fhe

customers in advance.

This chapter first describes the main features of a complete energy management

system which provides the actual control of end-use devices. Then, it suggests a
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classification of end use devices according to the service they provide, and then
presents a list of possible static control logics for each category and discusses
the related issues. Dynamic controls for storage type devices are listed, but no
algorithms are provided. The last section of this chapter discusses the utility-

customer interaction.

2.2 Energy Management Systems

The residential price responding algorithms discussed here are to be implemented
in the residential Load Control Emulation System, or LCES, which is a hard-
ware/software system supported by the Electric Power Research Institute (EPRI).
LCES is designed to assist utilities in their experimentation with various demand
side management techniques [E3]. Spot pricing is only one of the many load
management components of the LCES. There exist other similar price responding
energy management systems which have already reached implementation stage
[P2], [T1]. Description of the envisioned energy management system is general

enough to be applicable to the storage-type end use devices.

There are four main functions performed by a complete energy management
system:
e Tactical Control: Provides the real time control of the end use devices.

¢ Behavior Modeling: Supplies the behavior models to the Tactical Control

which uses them to find the best operational modes.

e Usage Diagnostics: Provides the users with the data and statistics of {he

costs and modes of operations for each end use device.

e Strategic Planning: Supplies the Tactical Control with the service crite-

ria and limits which are in turn furnished by the customers.

Tactical Control is divided into two parts. The first part consists of the Clontrol
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Logic. The decisions for the types of actual signals sent to the end use devices
are determined by the Control Logic. In some cases these signals are directly sent
to the customer who turns the devices on or off. The second part consists of the
State Estimator which determines the current on- off status of various devices. The
information is used by the Tactical Control as the initial data or the state values

for the current decision interval. Tactical Control must operate continuously.

Behavior Modeling provides the necessary information to the Tactical Clontrol
concerning the models of the systems to be controlled. These include both engi-
neering parameters such as coefficients for the state equations (heat transfer and
thermal capacity coefficients for heating and cooling), and also the load data such
as hot water usage patterns and weather information. For simple non-storage end
use devices, the relevant data include power rating and kWh/Usage values. Some
of the models require statistical averaging techniques to collapse the observations
made during longer periods. A time interval of one day would be sufficient for the

update of the data by the Behavior Modeling.

Usage Diagnostic provides bookkeeping information by assembling data on
energy usage and behavior patterns. These are furnished to the user to assist
him/her in choosing the criteria and limits, and also to provide evaluations of
customer’s previous strategies. Information from Usage Diagnostic can be invoked

on a monthly basis.

Strategic Planning is where the customer inputs the limits of the service re-
quirements into the energy management system. For example, the customer sets
the acceptable range of the inside temperature, and the price thresholds above
which appliances must be turned off. Information is to be supplied once at the

start up, and then at any time at the demand of the customer.

These functions can be developed into more sophisticated expert type systems
as further experience is gained from the field operations. At earlier stages of im-

plementation some of the functions would be performed manually by the customer
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or the utility personnel. It is expected that at the early stages, only the Tacti-
cal Control is going to be automatically operational. Other functions would be

automated at later stages of implementation.

2.3 Classification of End Use Devices

Statically controlled storage type and non-storage type end use devices can be
classified according to the type of service they provide. A partial listing may

include the following:

¢ Thermal Storage, Temperature Controlled: These include HVAC,
swimming pool heater, hot tub, water bed, etc. Usage can be rescheduled

for these devices, however, the service can be used at a different time.

o Water Heating : This category is similar to the previous one, except that

the controlled variable is the volume of the hot water not its temperature.

* Periodic Use: This group includes defrosting of refrigerators and swim-

ming pool pumps. They are activated only once in a while.

e Reschedulable Appliances: These include dishwashers, washing ma-

chines, dryers, etc. For this class of end-use devices, both service and usage

can be rescheduled.

e Discretionary Activity Devices: These include stoves, vacuum cleaning,
and devices used in hobbies and chores. Here also, both service and usage

can be rescheduled.

e Non-Reschedulable Appliances: These include the lights. T\, and
HiFi. For these devices, service and usage can only be reduced rather than

be rescheduled.

The main difference of the storage-type devices (the first two categories) from

the others is that for the former the service and the usage need not occur si-

33



multaneously. The dynamic models and the associated control algorithms for the

storage-type devices are described in more detail in the following chapters.

2.4 Tactical Control Logics

This section provides a list of possible static control logics for each category of
end use devices. A particular energy management system may use one or more of
these logics in its Tactical Control, or may even add other logics not mentioned

here. The following notations are used in this chapter:

k Time index, one hour step

plk] Price of electricity during hour &, $/kWh

Thermal Storage: Temperature Controlled

Static models of thermal storage ignore the cost savings associated with considera-
tion of price differentials among different periods. The static control logic considers

only the electricity price of the current period. Define:

To[k] : Thermostat Temperature setting at hour &
Tmin : Minimum acceptable temperature

Trnae : Maximum acceptable temperature

T.[k] : External temperature at hour k

Ulk] : Electrical energy used during hour k

The acceptable bounds on the temperature are provided by the customer to the
Strategic Planning, and they can be time varying. The cost per hour. $/TTonr, is
p[k] U[k]. The external temperature refers to the outside temperature for HVA(

and to the room temperature for the water bed. Three possible control logics are:

e TSS51: The device is turned off when $/Hour exceeds some prespecified

threshold. The control is overridden when the temperature falls outside
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the acceptable range.

e TSS52: The customer is warned when $/Hour exceeds the threshold. The

customer can decide whether to turn off the device or not.

e TS553: This logic is similar to TSS2 except that future values of $/Hour are

provided to the customer to help in planning of a decision strategy for the

day.

Thermal storage for the building can be either due to the main structure and the
furniture in the house, or due to the special storage devices such as hot rocks or
ice. Other factors for HVAC, such as inside humidity and the rate of temperature

change are ignored here.

Water Heating

Under normal operations, electric water heaters maintain a constant temperature
volume of hot water in the storage. The heating elements are activated when the
water is cooled either because of heat loss, or because of cold water inflow when hot
water is drawn from the storage. Only dual element water heaters are considered

here. Three possible static control logics are:

e WHI1: The lower element is allowed to operate only within the time intervals
of lowest cost. Thus, if it takes a water heater 2 hours to fill up the storage,
then it does it during the continuous 2 hours of the day when the total cost

is minimum. This will be done only once a day.

e WH2: The customer specifies various usage times, and the lower element is
allowed to operate during the minimum cost intervals between the specified
usage times. If there are NV specified usage times, then the tank is filled witl

hot water N times during the day.

The upper element is not controlled. This provides a measure of safety and a

limited provision of hot water when the need arises.
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Periodic Use Requirement

This category includes defrosting of refrigerators and swimming pool pumps. They

are activated only once in a while, but the exact time is not important. Two

possible control logics are:

e PURI1: Given the required time interval for the operation, the device is
activated during the hours of minimum cost.
o PUR2: This involves a more sophisticated logic whereby a limit is also put

on the total cost of operation.

The second control logic can be made more sophisticated by considering tradeoffs

between the cost and the run times.

Reschedulable Appliances

This category includes dishwashers, washing machines, and dryers. To minimize

damage to the device and the service, no appliance is cut off during its cycle of
operation. Let’s define the following:

¢ kWh/Usage : Energy used during a single average run cycle

e $§/Usage : Cost of a single average run cycle.

o §/Deferred : Money saved if a single run-cycle is deferred from the present

hour k to some future hour during the next 24 hours when the price is the

minimum.

Values of the thresholds are provided by the customer to the Strategic Planning.

Six possible control logics are provided here:

e RAl: Don’t st ' nperation if $/Usage exceeds the specified threshold.
g

e RA2: The customer is warned that $/Usage exceeds the limit. The customer

then decides whether to turn on the appliance or not.
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e RA3: The customer is provided with the values of $/Usage for the next 24

hours, who then decides for the best time of operation.

e RA4: Similar to RA1 except that the start up is based on $/Deferred instead
of $/Usage.

e RA5: Similar to RA2 except that the customer is warned if $/Deferred

exceeds the limit.

¢ RA6: Similar to RA3 except that the customer is provided with the future
values of $/Deferred.

e RA7: The energy management system automatically reschedules usage to
the minimum price time between the present time k and a prespecified future

time.

For performance studies and possibly for control purposes, it may be necessary to
learn the kWh/Usage of each a.pplianée. This value is not necessarily a constant
and may change in time. Therefore, if direct metering or off-lire calibration is
used, then the values must be averaged. Albeit, the simplest thing to do is to read

the name plate of the appliance, but this may not prove helpful.

Discretionary Activity Devices

This category is rather broad and includes end use devices associated with cooking
and hobbies. Control logics similar to the ones suggested for the category of
reschedulable appliances may be used. However, determination of a single average
run time is difficult due to the variability of usage time. The simplest control

actions are:

e DADI: Don't turn on the device if the price is higher than a threshold.

¢ DAD2: Inform the customer of the schedule of the prices and let him/her to

decide when to cook and do hobbies and chores.
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The customer provides the threshold information to the Strategic Planning.

Non-Reschedulable Appliances

This category includes lights, TV, etc. The only control action is whether to do
without the service if prices are high enough. Again two simple control actions

are possible:

e NRAI: Don’t turn on the device if the price is higher than a limit.

e NRA2: Inform the customer of the schedule to the prices and let him/her

to decide when to use lights and watch TV.

2.5 Dynamic Control Logics for Storage Type
Devices

What unites storage type devices or processes is their capability to store the end
product (heat and hot water) for a later use. The time at which the service is
provided and the time of electricity use do not have to be the came. The required
algorithms will be more involved and will be based on Dynamic Logic, since the
decision at a certain hour will be based on the spot prices and the states of the
system at previous and future hours. The Dynamic Logic may allow an increase

in energy usage while reducing costs and improving benefits.

Dynamic Logic for Space Heating and Cooling

Three possible dynamic control logics are:

¢ Minimize bill over next N hours subject to Constraints on inside temperature

bounds.
e Minimize bill plus cost of deviation over next N hours.

¢ Minimize bill to achieve a specific temperature at a specific future hour.
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Some of the information such as spot prices and weather data required for the
implementation of dynamic logic will come from a central information processing
computer. However, as noted later, the scheduling algorithm is based on the
state equation of the system involved. The system has to be identified and its
parameters have to be estimated using a method such as the ARMX structure,
These parameters will be unique for each particular system, for the simple fact

that each physical system such as a house, has its own particular characteristics.

Dynamic Control Logics for Electric Water Heaters

Again only the dual-element water heaters are considered. A simple static decision
logic is to cut off the electricity when $/Gallon exceeds a certain limit. This limit
must be higher for the upper element or there may even be no limits for the
upper element. The cut-off limit may also be based on $ /Gallon- Deferred. The
information required for static control are spot prices, and possibly, power ratings

of the heating elements.

Dynamic decision logic may have the following objectives :

¢ Minimize bill for lower element subject to meeting the predicted hot water

‘demand.

¢ Minimize bill for lower element subject to having a full tank of hot water by

a specific future hour.

The dynamic decision logic requires the information on spot prices, inside and
outside temperat: i, thermostat settings, heating element ratings, and also the
system parameters for the state equation of the water heater. In addition. future
demand for hot water need to be predicted from time-based thermostat and hen ting

element data.
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2.6 Utility-Customer Interaction

The final service provided by the utility, in order to be comprehensive, will include
different types of control options. Each particular utility will offer one or a subset
of options to customers, and the customers wiil make the final choices. It is
assumed that the end use devices will undergo no major modifications, and no
fancy sensors are contemplated. The overall control actions are to be kept simple

and practical and within the general means of the residential customers.

One decisive factor contributing to the success in modification of customer be-
havior will be the utility-customer interface. Since the various end use devices in a
house do not share common characteristics, such an interface should have the ca-
pability of addressing the needs of each end use requirement without overwhelming

the customer’s patience and without inhibiting his/her interactions.

At initial stages of implementation, all the communication between the utility
and the customer can be done by phone or mail. The utility can call the customer
and ask the limits and criteria selected by the customer, and suggest actions at
the same time. It can also mail, on a monthly basis, the processed information
on customer’s savings and performance. With the advent and penetration of
personal computers and modern communication tools, utility-customer interaction
will evolve into something more sophisticated. Figure 2.1 illustrates the lines of

communication and control in the customer-utility interactions.

It is expected that a future utility-customer interface will have the following
positive characteristics:

e Will require no hardware development.

o Will be easy to install.

e Will allow many levels of sophistication.

e Will lcok like an ordinary personal computer which many people already
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Customer Control Line

/

Figure 2.1: Utility-Customer Interface
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have.
On the negative side, it is expected that:

¢ Cost per point will be unnecessarily high.

¢ Some features will be considered an overkill for many of the applications.

As shown in Figure 2.1, the interface will provide the customer with informa-
tion from two sources. One set of information will come from the utility, which
would include spot prices, weather information, and utility bills. Each utility can
also provide some analysis of customers performance such as a monthly or yearly
diagnosis such as $/End-Use, kWh/End-Use, collars saved, and suggestions for
future action. Another set of information will be provided from the customer’s
own end use devices in terms of amount, duration, and times of electricity usage.
Each customer will also provide inputs to the interface, such as acceptable per-
formance limits and service criteria which are to be utilized by the utility and/or
the local LCES for control and performance computation purposes. An important
feature would be the ability of the central LCES to down-load programs to the
local LCES.

The customer, if he/she so desires, can reserve the right to interfere at any
time and to assume direct control of each end use device. The interface must also
allow for frequent and easy changing of customer’s limits and criteria. An added

feature would be to display various options and strategies for indirect control.

It is expected that a residential customer will apply direct control over the end
use devices of the first and second category which have no storage capabilities.
However, the decision of when to operate will be based on the information put out
by an ezpert system type interface. Such information may include only spot prices,
or the result of some computation suggesting the best times to use the appliances

during each day.
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The indirect control is more logical in case of storage type processes such as
space heating and cooling and electric water heating. For example, the customer
obtains information from the interface on the trade off between service and costs,
1.e. how many more dollars saved for an additional discomfort in having wider
deviation in the house temperature. Then, knowing the expected trade off, the
customer sets the minimum and maximum acceptable temperature and the control
system takes over from there to take advantage of spot price differentials and utilize
the thermal storage in order to minimize total costs without violating the limits
set by the customer. The interface software should include the necessary built-in
programs to explain the purpose of the system, to provide an introduction and
tutorial on the use of the system, and to act as a help facility when the customer

needs it.
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Chapter 3

DYNAMIC THERMAL
SYSTEMS

3.1 Introduction

Space heating and cooling, together with water heating, account for a significant
portion of the residential and commercial electricity loads, and to some extent that
of the industrial loads. They constitute the main components of the demand side
management programs as described in References [E1], and [M4]. Most of the pre-
vious studies .1ave considered consumer response to time of use and interruptable

rates.

Some recent studies consider space conditioning under time of day pricing.
O’Rourke and Schweppe [02] assume a cyclical price and weather patterns which
limits the applicability of their findings. The study by Constantopoulos [C6] uses a
first-order thermal model only, but the savings vs. service trade offs are explicitly

taken into account. The result is a non-linear optimization methodology.

A work related to this thesis is that of Tsitsiklis [T2] which introduces an
algorithms for a minimum cost scheduling of a state-controlled first order system.
His algorithm is a special case of the general algorithm introduced in Chapter 4 of

this thesis. In the case study of Chapter 6, the state-controlled first-order model
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is used to describe the dynamics of a dual element water heater. The results are
based on an algorithm similar to that of Tsitsiklis’ >ut written without the prior
knowledge of its existence. Tsitsiklis also describes an algorithm for higher-order
systems. The optimization methodology involves diagonalizing of matrices and
matrix inversions which are computationally more complicated than the routines
used by the algorithms of this thesis. It is possible that the two methodologies are

some how related.

An important characteristic of space heating and cooling and water heating
is their storage potential, which provides some flexibility in the ways customers
can respond to spot prices. In this study the emphasis will be on the inherent
storage capability of buildings within their internal and external thermal masses.
However, the general framework provided here can be easily extended to cover the

auxiliary and external heat and cool storage facilities.

Control of a thermal system requires a model which describes its dynamic
behavior. It is impossible to simplify behavior of all thermal systems—such as
the dynamics of buildings of many types and characteristics—into a single and
all-encompassing model. However, it is possible to provide general simple math-
ematical models which can be applied to any situation with some elementary

modifications.

A major distinction between space heating/cooling and water heating is that
for the former, the variable to be controlled is the temperature. Space heating and
cooling may also involve a multitude of storage mediums. In contrast, for water
heating, the controlled variable is the volume of the stored hot water. In addition,
water heating uses a single storage only, and therefore, it can be modeled as a first
order dynamic system. Apart from this physical distinction, the dynamic hehavior

of both types of thermal systems can be described by discrete time state space

equations, which is the form utilized by the algorithms introduced in this thesis.

The thermal dynamic model of each building should provide a reasonable match
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for the complexities of its structure. This necessitates utilization of control algo-
rithms which are tailored to the complexity of the model under consideration.
Furthermore, even if two buildings look similar, they may have different thermal

characteristics. Ilence, each building will have its own unique model parameters.

Although linear programming techniques can be applied in the case of linear
models, however, the need for a fast and efficient scheduling algorithm that can
be used both in on-line control and also for large scale simulation, has motivated
the search for an alternative optimization methodology. The result is a general
algorithm presented in Chapter 4 which is applicable to any asymptotically stable

positive dynamic systems. Thermal dynamic systems belong to the same category.

Some thermal systems are simple enough to afford a faster and less complex
derivative versions of the general algorithm. The case studies in Chapters 5 and 6

are based on such models.

This chapter introduces the necessary background needed for the understand-
ing of the algorithm of the next chapter. It starts with a discussion of the models of
thermal systems. An example is provided wherein the appropriate state equations

are derived for a representative building thermal system.

Next, based on the generalization of the example, and the mathematics of the
positive dynamic systems, the special properties of thermal systems are discussed.
These properties, and also the general properties of linear systems are utilized in

the development of the general algorithm.

The chapter ends with a brief discussion of the suggested control scheme un-
der uncertainty and the problem of parameter estimation for the thermal models
involved. The last issue in not a main concern of this thesis, but it is inclided

because it is a very important component of any practical scheduling scheme.

For the simplicity of discussions, most of the developments in this thesis refer

explicitly to space heating. However, all the arguments and results of the thesis
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are also applicable to space cooling.

3.2 Descriptive Overview

3.2.1 Space heating and cooling

An ordinary thermostat-controlled heating system maintains the temperature in-
side a house within a narrow band around a desired temperature which is set by
the residents of the house. The width of this band is determined by the hysteresis
characteristics of the thermostat itself. The times of electricity use are indepen-
dent of prices, which are normally fixed at a constant level anyway; instead, they
depend on the set temperature, external temperature, and the heat transfer and

thermal storage characteristics of the house.

The external and internal structures in any building act as thermal masses
which store thermal energy. The stored thermal energy is returned to the sur-
rounding areas at a rate determined by the internal and external temperatures,
and also by the thermal characteristics of the building. Thus, although the rate
and the timing of heat input into the storage can be completely specified in an
arbitrary manner, the stored heat is transferred back to the air or the outside at a
rate determined by the dynamic equations and the external temperature and the
state of the system. This is another example of a situation where it is easier to

give than to take.

The thermal dynainics of the house indicate that the heat input to the house
is transferred both to the outside and also to the thermal masses in the building.
If at any moment the heat inputvis stopped then the heat stored in the internal

masses is slowly returned back to the air.

Under spot pricing, and if the future prices and the external temperatures are

known and the behavior of the system can be predicted, it is possible in principle



to use more electricity (than required in normal operation) in times of lower prices
in order to substitute for the electricity usage at later times when prices are high.
For instance, when the electricity prices are low, the building can be heated up
to the maximum temperature allowed. This would increase the stored hrat by
heating up the thermal mass in the building. Later on, when prices are high,
the heating system can be turned off to let the temperature to coast down to the
minimum allowable temperature. In this manner, the stored heat replaces the

actual heating at times of high prices.

The thermal masses represents the potential size of the thermal storage ele-
ments available in the house. These storage elements are leaky, and they loose
heat. The severity of the heat loss, or the capability for retention of the thermal
energy, is determined by the heat transfer resistances among the inside air, the

thermal masses, and external ambient temperature.

The problem, from the point of view of economics, is to decide when to turn
on or off the heat in order to minimize total cost of electricity used for heating or
cooling, while maintaining a comfortable range of air temperatures in the house.
For an economical scheduling of electricity under spot prices it is suspected that a
wider comfortable temperature zone is required compared to the narrow hysteresis
range of the thermostat. The bounds of the comfortable range, denoted by T),;,
and T)nq., indirectly limit the amount by which the thermal storage can be charged
up. For instance, if the inside air temperature is required to stay absolutely
constant, then the on-off cycle of the heating system becomes extremely short.
However, if there are no limits on the maximum attainable temperature inside the
house, then the heating system can be turned on at full blast at times of lower
prices to drive the temperature of the internal mass as high as possible in order

to have some reserve of thermal energy in the future when prices become higher.

It should be emphasized that temperature constraints apply only to the air
temperature T, and not the other internal thermal mass temperatures. Therefore,

there are no explicit constraints on the temperatures of the storage elements.
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Another physical constraint is the maximum rate of heating. For example, in a
house with a powerful heating system, it would be possible to heat up the house
to a higher temperature in a shorter period of time compared to a similar house

with a less powerful heating system.

3.2.2 Dual element water heaters

Only the dual element electric water heaters are considered in this study. The
reason is that the two thermostats are used as marks on the extent of storage to
be controlled. As noted before, the volume of the hot water is the variable to be
controlled. Under normal operation, a full tank of hot water at a fixed temperature
is maintained. As hot water is drawn from the top, cold water enters from the

bottom and is heated up to the set temperature.

Under spot prices, and predictable demand, it is possible to control the lower
heating element such that the tank is filled mostly at times of lower prices. Chap-
ter 6 provides a more detailed description of the workings of a dual element water

heater.

3.3 Dynamic Models for Space Heating and Cool-
ing

Thermal model of a building can be described mathematically in terms of a sys-
tem of differential or difference equations. These equations describe the dynamic
system which is to be controlled. The control action is provided by the keat input
into the building. The performance criteria is the total electricity cost which is to
be reduced as much as possible as long as the controlled variables of the system,

inside air temperature in our case, are kept within the given acceptable bounds.

The basic assumption is that the thermal characteristics of any building can

be represented by a few simple lumped system elements, thus requiring only a
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manageable number of simple thermal coefficients. More complex buildings require
more of these simple elements in their models. The dynamics of lumped systems
can be described by simple differential or difference equations. The complexity
of the system is manifested by the order of these equations. For example, a
building with two distinct thermal mass areas can be modeled as a two storage

system, which in turn can be represented by a second order differential or difference

equation.

The modeling process involves the derivation of the state equations for the

lumped thermal system. Possible methodologies include:

Bond Graphs This is a modeling technique based on the energy and information
flow within the physical system. First developed by Professor Henry Payn-
ter of MIT, it is a powerful tool equally applicable to mixed mechanical,
electrical, fluid, and thermal systems of any level of complexity [K1]. The

modeling results in the derivation of equations in state-space form.

Linear Graphs This methodology is based on the similarity and equivalence of
basic elements in various physical systems, and it is also well suited to the

modeling of thermal systems [S6].

Equivalent Circuit Models This technique is based on the representation of
the thermal system in terms of equivalent electrical elements. Circuit theory

is then used to derive the equations [S7].

Energy Balance Methods This method is based on simply writing the heat
transfer equations between various elements, and combining the equations.

This method is suitable for very simple thermal systems.

Each method should result in equivalent state equations for the system. The num-
ber of independent thermal storage elements determine the order of the system.
For our purposes, it is essential that the system be modeled as a discrete time Sys-
tem. This is possible if the dynamics of the system are considered for sufficiently

short time periods, during which, the state of the system is assumed to remain
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constant. Each of the above methods can be used to derive differential equations
representing the dynamics of the system studied. Those equations are then trans-
formed into discrete time equations, by assuming that input level remains constant
for small time steps. Coefficients of the equivalent difference equations will include

matriz exponential terms, as shown below.

However, the last method above can be used to derive the difference equations
directly. In this case, it is assumed that all variables remain constant during the
time step. Thus, the coefficients in the discrete time equations have simple forms.
It is also the easiest to understand in physical terms. Therefore, for simplicity and
clarity of presentation, only the last method is used in this chapter. The difference

in the two representation is described in the following section.

Lumped thermal systems are more restrictive than mechanical, fluid, electrical,

and other dynamic systems. Two general observations worth mentioning are:

e Thermal systems can be completely represented by source, resistive, and
capacitive elements similar to their electrical counterparts. However, no

similar inductor element exists in thermal systems.

e Thermal systems can be classified as special cases of asymptotically stable
positive dynamic systems. Mathematically, this means that the state tran-
sition matrix for the thermal dynamic systems is always positive, and has a

stable equilibrium point [L3].

The significance of these and other properties of thermal systems is described in

the following sections by means of an example.
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3.4 Discrete Time and Continuous Time Equa-
tions

If a time-invariant system is modeled as a discrete time dynamic systemn, the state-
space equations can be written directly in the form of difference equations. The
basic assumption is that all variables remain constant during small time steps.

For a single-input single-output system, the result in state-space form is:

X[k +1] = A X[k] + By u[k] + By, W[k] (3.1)
ylk] = C X[k] + d,, u[k] + Dy WI[k] (3.2)

where, X is the vector of state variables, y is the output, u is the control input,
W is the vector of exogenous variables, and k is the time index. Note that the
inputu[k] is given in units of energy. For time invariant systems, the coefficient

matrices have simple constant forms.

If the system is modeled as a continuous time system, equations for a single-

input single-output system in state-space have the following form:

R0 — AC X(t) + ByC u(t) + Bu© W(2) (3.3)
y(t) = C° X(t) + dS u(t) + Dy W(t) (3.4)

The subscript C indicates that the coefficients are for the continuous time repre-
sentation. Note that the input u(¢) must be in units of power. If it can be assumed
that input level changes only at equally spaced time steps T', then the continuous
time state equations can be discretized. In the following, the notations k7" and
(k +1)T are used instead of £ and k + 1. The discrete time representation takes

the form:

X((k +1)T) = AP(T) X(kT) + Bu®(T) «(kT) + B4 2(T) W(AT) (3.5)
y((k + 1)T) = CP(T) X(kT) + dP(T) w(kT) + D 2(T) W(KT)  (3.6)

The subscript D indicates that the coeflicients are for the discrete time repre-

sentation. Note that the coefficient matrices depend on the time step T'. These
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coefficients can be expressed in terms of the continuous time coefficients. For the
continuous time system, give an initial state X(0) and inputs u(t) and W(t), the

solution for X(t) is:

c c t c c t c
X(t) = At X(0) + At / e A "By u(r) dr + At / e A "By’ W(r) dr
0 0

(3.7)

where the matriz ezponential eAt i equivalent to the state transition matriz and
has the following form:

1

eA —

AR (3.8)

1
‘=I+At+5A2t2+---+
or in compact form:

oo Aktk
At _ :
o K!

Writing the solution expression for periods (k+1)T and kT and then multiplying

(3.9)

c
the second result by eA” and subtracting from the first result, we obtain:

T T
X((k+1)T) = AT X(kT) + / eADNBLC u(kT) dA + / eADBC W(kT) d)
1] 0

(3.10)
where A = T' — t. By comparison, we find:
AD(T) = A°T (3.11)
B,2(T) = (fOT eAc‘dt) B, (3.12)
B, 2(T) = ( T eAc‘dt) B¢ (3.13)

Thus, the discrete time coefficients are given in terms of the time step T and
continuous time coeflicients. For very small time steps, the higher order terms in

matrix exponential can be ignored, resulting in the following:

AP(T)=1+4T A€ (3.14)
B,”(T) =T 1B,“ (3.15)
B.?(T) = T 1B° (3.16)

One problem with this formulation is that the control input in many applications

is either on or off (bang-bang control), and usually has a constant power rating.
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Suppose the power rating of the control input is 1 power units. Then for each
time step, the control input is going to be on for a portion of the time T. Let us
denote the proportionality factor as 7[k| for period k. The discrete time equations

become:

X((k+1)T) = eAcT X(kT) + /‘ﬂ[k]T

0

c T c
eABLC L d) + / A BLC W(KT) d)
0
(3.17)
where A = T —t. Note the change in the expression for the first integral. Again

assuming small time step, and ignoring higher order terms:

AP(T) =1+7T A° (3.18)
Bu”(T) = y[k|T 1B, (3.19)
B.2(T) = T 1B,° (3.20)

In this case, at each time step, the input power level does not change, except
in a step manner. The only variable changing at each period is n[k] which is a
number between 0 and 1. In the optimization problem, 7[k] is the variable to be
determined. The maximum energy input per period is vT. The discretization of
the continuous system results in the same formulation based on the assumption of
all variables being constant for each period, only if the time step T is sufficiently

small.

Another method for discretization is based on transforming the differential
equations directly into difference equations. For sufficiently small At, the contin-

uous time equations become:

&‘.’LfLAt‘LX_U_Q — AC X(f) + B“C ,"({) + BWC W(f) (22])
y(t) = C% X(t) + d$ u(t) + DW< W(1) (3.22)

which can be put in the following form:

X(tesr) = (T+ AtAS) X(1) + A1B, u(f) + AIB, S W(t) (3.23)
y(t) = C° X(t) + dS u(l) + DWE W(1) (3.24)
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Again, it can be seen that for sufficiently small time step, the expressions for
the discrete time coeflicients are similar to the earlier results. For simplicity, the
algorithm of Chapter 4 assumes that at each period the level of energy input can

be changed continuously.

3.5 Example: A 3R2C Building

A general model of a building includes all the distinctive thermal masses as the
storage or the capacitor elements. It also includes all the significant internal heat
transfer interactions among the storage elements, and also between the internal
and external ambience. These are represented as energy transfers through re-
sistive elements. Heat and temperature sources are represented, respectively, by
equivalent current and voltage sources. In short, heat flow acts like current, and

temperature difference acts like a voltage difference.

The variables of interest are the following:

At length of each period (time step)

T.[k] inside air temperature at period & (C°)

T;[k] temperature of storage ¢ at period k

T.[k] external temperature (or weather variable at period k
Trinlk) minimum acceptable inside air temperature at period k
Tnaz[k] maximum acceptable inside air temperature at period k
Ulk] electric heat input at period k (kWh/period)

Umin|k) minimum possible heat input at period k

Uras[k] maximum possible heat input at period &

Qlk] other miscellaneous heat inputs at period &

A building with massive external and internal walls can be modeled as a multi-

storage system. The other assumptions and restrictions considered here are:
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\
During each discrete time period& the state, output, and input variables, and
also the spot prices, all remain constant. Therefore, there are no exponential

terms in the coeflicient matrices.

Although not considered here, for more accuracy, the inside air can also be

modeled as a thermal mass, but it; value would be negligible compared to
\

i

the thermal mass of the walls. \

The deriving force is the ambient temperature or any other weather variable
that can be represented by a temperature equivalent. This exogenous input

is assumed to be predictable and given for the duration of the time horizon.

Certain important quality factors suchv‘as humidity and the rate of tempera-
ture change have been ignored. A more exact representation of the thermal
dynamics in a building may require the explicit consideration of humidity in

the dynamic equations.

The miscellaneous heat sources includes solar heating, non-electrical heating,
heating due to appliances, impact of humidity changes, and the heating due
to the presence of people. If they are not negligible, they are assumed to be

given and predictable.

Electric heat inputs are proportional to the amount of electricity used. Under

this assumption, the cost function is linear.

The heat input is described in terms of the thermal energy output of the
source, not the actual amount of electricity consumed. Therefore, the bounds
on the heat input must also be described in terms of maximum and minimum
amount of thermal energy output of the source. The lower bound is usually
zero, and the upper bound is determined by the maximum power rating of
the heating source, taking into consideration the efficiency of the source and

the duration of the time step.

The lower and upper bounds on the temperature describe the limits of the

comfort range for the residents.
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e Costs and delays associated with start ups and shut downs are considered

to be negligible.

The thermal parameters unique to each building are:

C; thermal capacity of storage i (kWh/C?)

hae coeflicient for heat transfer between inside air and outside (kW/C?)
hei coefficient for heat transfer between outside and storage ¢

hg; coefficient for heat transfer between inside air and storage ¢

h;; coefficient for heat transfer between storage ¢ and storage j

hy coeflicient for heat transfer through air infiltration

R. heat transfer resistance, equivalent to 1/h

If the heat transfer between the inside air and outside occurs only through the
air infiltration, then h; and h,. are the same. All heat transfer coefficients are
described in the same units. In the related literature it is common to use heat
transfer resistance instead of heat transfer coefficient. A heat transfer resistance
is simply the reciprocal of the respective heat transfer coefficient. It is more
convenient when the models are described in equivalent circuit form. Heat transfer
coefficients do not depend on the direction of the heat low. Therefore, h,. is equal

to heq. A typical model of a two storage system is shown in Figure 3.1.

In this model, the two storage units are the internal walls (subscript ¢) and
the external shell (subscript s) of the building. The outside temperature acts as a
voltage source, and the solar heat inputs are parallel with the thermal capacitances.
For internal thermal mass, solar gain is through the windows. In this example,
heat transfer modeling is used to derive the state equations in the stale-space
form, which is the formulation used in the general algorithm of the Chapter 4 for
cost optimization. Another motivation is to clemonstr‘at'e the special positiveness

of thermal dynamic systems.

An issue which will not be discussed here, is the possible dependence of some
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T, h..qe Ras Qi

Figure 3.1: 3R2C Heat Transfer Model of a House
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storage elements. Bond Graph modeling properly eliminates the dependent storage
variables from the system equations, which is sometimes difficult to do by simply

relying on intuition.
The energy balance equations are:
Ulk] = has AH(T.[k] — T,[k]) + hai AU(To[k] — Ti[k]) + hae AU(Ty[k] — T. [k]) (3.25)
Qulk] = CL(T, [k + 1) = Ty [k]) + hes AT, k] T [k]) + hos AT, (k] — T, [K]) (3.26)
Qilk] = C(Ti[k + 1] ~ Tilk]) + hai A T:[k) — T.[k]) (3.27).
The state variables are T, and T:, the controlled or the output variable is T, the
control input is U. All the other variables, i.e. outside temperature (or weather
variables) T, and solar heat gains @, and Qi, are assumed to be deterministic

exogenous variables. In addition, all the thermal parameters are assumed to be

known.

To put these equations in the state-space form, first the output variable T}, is

solved in terms of other variables from the first equation:

haa al QC
T.[k] = T (k] + = T (k] + = T (k] + —U[Ic] (3.28)
where
H = hyy + hgi + hg. (3.29)

As can be seen, the output (inside air temperature) at any period is a weighted
average of the other temperature variables plus a contribution from the electric
heat input. This value of T, is substituted in the next two equations in order to

solve for T, [k + 1] and Ti[k + 1]. The final state-space form is:

Esi N b | Fr R B LR e

w2y w22 w2y (2'[A,I
(3.30)
and the output equation, which we have derived already, is:
T, k] T.[k]
Talk] = [exes] | 72000 | + duli + [duy duyduy] | ©,[k] (3.31)
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These have the format of the equations used in the general algorithm of Chapter 4.

The Coeflicients for the matrix A above are:

Qi = 1~ Bt _ hade g b (3.32)
ayp = MJ(%«}:’{A_‘ (3.33)
Qyy = hnicé_nI}_A_t (3.34)
agy =1 — _né_t + hc fl' (3.35)
The By, vector is: .
B, — [ Geit } (3.36)
CiH

The By matrix is:

h“haeAt 1 0
By = [ h haeAt CO’ 1 } (3.37)
C;
And as shown before, the C vector is:
h‘aa h‘ai
= [F- I (3.38)
The other coeflicients of the output equation are:
dy = —— (3.39)
‘T HAt '
and
D e (3.40)
w H .

The patterns observed in these results can be used as equation charts from
which equations of more complex thermal systems can be constructed without

going through the algebra.

3.6 Size of the Time Step

There are a few observations to be made on the coeflicients of the A matrix.

One is that for the equations to be physically meaningful, the diagonal elements
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must be positive and less than one. This is due to the fact that the temperature
of any thermal storage, starting from a positive value, should decrease to zero
in the absence of any thermal source. In other words, if all sources are zero,
and the temperature of storage ¢ is positive at period k, then at period &k + 1
the temperature should be a positive fraction of the temperature of the previous

period. Of course, with perfect insulation, the temperature should stay constant.

This physical fact can be used to properly select the time step At. To transform
a continuous time dynamic system into a discrete time system, it is clear that the
time step must be at least smaller than the smallest time constant of the system.

To meet these conditions the following equalities are to be satisfied:

0 <1 habt hobt g Mubt (3.41)
0 <1 hult  Jaudt o (3.42)

Recall that H = h,, + hq; + hse. Then, solving for At in both inequalities, the

result is:

0 <At < ot (3.43)
CORCTCR
0 <At < —1 (3.44)
< o

The right hand terms are always positive since H is larger than its constituting
individual heat transfer coeflicient. The above inequalities put an upper bound on
the value of time step or the length of the time period to be selected. Only within
this bound would the discrete equations be a physically meaningful representation

of the thermal system under study.

In addition, the time step must be taken to be smaller than any other sysiem

time constant. The other system time constants are: C;/h,; , C',/h,. ,and (', /h,,.
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3.7 Properties of the A Matrix

In this section, the discrete time 3R2C model is used to demonstrate the special
properties of thermal systems. Results can be generalized to more complex thermal

systems. The coeflicients of the 3R2C state-space equations satisfy the following

relationships:
apn + a2+ by, =1 (3.45)
a2y + @22 + by, =1 (3.46)
ci1+catdy, =1 (3.47)

These results can be checked by explicitly writing out the terms and doing the

summations. From the above, the following generalizations can be made:

e Elements of the A matrix are non-negative.
¢ Diagonal elements of the A matrix are non-zero.

e Sum of eacl row of the A matrix is less than 1.

A similar case can be made for a multi-storage discrete time thermal dynamic
system. Multiplication of state variables by appropriate coefficients would result
in state variables which have units of energy. Then the first argument is based
on the fact that each storage level, starting from a positive value, diminishes to
zero in the absence of any replenishing source. The second argument is that in the
interactions between different storage units, one storage unit may not get more
than what exists in the other storage units. In terms of temperatures, in the
absence of other energy sources, because of thermal interactions, the temperature
of each storage at any period may not be more than the weighted average of the

temperatures of all of the storage units at the preceding period.

In the terminology of dynamic systems, the matrix A is called a positive matrix,

in the sense that all of its elements are non-negative, with at least one element
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being strictly positive. Following the exposition of Luenberger [L3], let us define

the set of real numbers ) such that
AX > )X (3.48)

for some X > 0 where X is some strictly nonnegative vector. It can be seen that
A = 0 satisfies the inequality. Also, A\ may not be arbitrarily large. This can be
seen from the fact that the size of the elements of A put a limit on how large the

elements of the resulting vector at the left-hand side can be. Define ), as
do=max{A: AX > )X, some X >0}

The following theorem shows that in the case where A is a nonnegative matrix,

Ao defined above is the dominant eigenvalue for A.

Extension of the Frobenius-Perron Theorem [L3]. If A > 0, then there

exists a positive eigenvalue )¢ > 0 and a positive eigenvector X, > 0 such that:

a ) A.Xo = AoXo;

b ) If A # Xo is any other eigenvalue of A then |A] < \o.

The basic result of the Ferobenius-Perron theorem is that the matrix A has
a dominant positive eigenvalue ), referred to as the Frobenius-Perron eigenvalue
of A. Hence, the behavior of the system is dominated by this eigenvalue, and its

associated eigenvector.

Furthermore, a set of bounds can be derived for the value of ). Let X, be
the corresponding normalized positive eigenvector with components ,, s, -, ,.
We have:

A.Xo - /\0X0 (3"9)

Writing this matrix equation in detail as n equations, and summing them results
in:

AO = Alml + Az:l:g + et Anwn (3-50)
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where A; is the sum of the elements in the ith column of A. Since vecfor X, is
normalized, then )q is a weighted average of the column sums of A and therefére,
it must lie between the two extreme values of the column sums. Since the transpose
of A has the same dominant eigenvalue, it can be shown that ) is also a weighted

average of the row sums of matrix A. The results can be summarized as:

® ) is bounded by the minimum and the maximum column sums of the matrix

A.

® )¢ is bounded by the minimum and the maximum row sums of the matrix

A.

We have already shown that the row sums of the matrix A are more than zero

and less than one. This yields the following bounds:

0<X<1 ' (3.51)

From the above results we can make the following related statements:

o Thermal systems are asymptotically stable, since the matrix A has all of its

eigenvalues strictly within the unit circle of the complex plane.

¢ The homogeneous thermal systems have their equilibrium point at zero.

The second result is based on the fact that the dominant eigenvalue is less than
one. To show this, suppose X is the equilibrium point of the homogeneous system
satisfying

X=AX (3.52)

Since all eigenvalues are less than one, then the matrix I — A is nonsingular, and

the equilibrium point X is a zero vector.

The above results indicate that a higher-order (multi-storage) thermal system

will have a dynamic behavior very similar to a simple first order system. Simplicity
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of the system response can best be explained in the form of its associated impulse
response vector. The simplicity of the scheduling algorithm of Chapter 4 is direct
result of the simple form of the impulse response vector. Indeed, the algorithm
itself is mostly based on the utilization of linearity of the systems and the their

associated impulse response vectors.

3.8 Properties of the Impulse Response Vector

This section discusses the special properties of the impulse response vectors for
thermal systems, which are based on the results of the preceding section. As
discussed more fully in the next chapter, the general single-input single-output

time invariant discrete time linear system has the following form:

X[k +1] = A X[k] + By u[k] + By W(k| (3.53)
ylk] = C X[k] + d,, u[k] + D,, WI[k| (3.54)

where u is the controllable input, and W is the vector of exogenous inputs. The
impulse response vector is:

d,
CB,
I= CAB, (3.55)

| CA..-AB, |
Subsequent elements of the impulse response vector for k > 3 are of the form
ir = CA*?2B,. Results of the previous section ensure that for £ > 2:

® As k increases, i decreases in a monotone manner.

¢ Ratio of it;; to ¢ increases in a monotone manner to the value of the dom-

inant eigenvalue.

To understand these results, recall that the sum of the elements of C is less than

one. Thus CB,, is less than the sum of the elements By. Inclusion of the matrix
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A in subsequent elements of the impulse vector results in a smaller number, since

the sums of each rows of A are also less than one.

In addition, the ratio of ¢, to 7; is always less than 1. This can be ohserved by

explicitly writing out the ratio for the 3R2C model:

is  CBy hZ, hZ,
i At (C,H + C.H (3.56)
and also recalling that the following relations always hold:
At < &= (3.57)
At < 2 (3.58)
H =hgy+ hgi + hge (3.59)

Now, let’s take the largest of the time constant terms, say hq,/Cj, then

2.2 h’aa h’aa + h'ai h'aa
— < At — At .
=< (c', = ) <Az <1 (3.60)

Furthermore, by taking Af small enough, it can be ensured that:
1 1 ik
222

11 12 (32

(3.61)

In fact, if At is decreased, the diagonal elements move closer to unity, and
simuitaneously, the off-diagonal elements move closer to zero. Beyond a certain
value At, all the submatrices of A will have a determinant greater than zero,
which ensures that the A matrix is a positive definite matrix, and as a result all
its eigenvalues become positive. In fact as At is made nearly equal to zero, the A
matrix becomes nearly diagonal with elements approaching one, and the diagonal

elements correspond to the eigenvalues of the matrix.

Thus, for a homogeneous system, the result of a impulse input is a sudden
jump in the output of the first period, and asymptotical decay afterwards to an

equilibrium value of zero.

To most important result, the one which is going to be the basis of the algorithm

introduced in Chapter 4, is:
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o If starting from a given schedule of inputs (initial solution), the input u/[i]
at some period i is increased, then the output of all the future periods will

increase.

o Then, the input at some later period j, where j > i, can be decreased so
that the output at period j is returned to its initial level without having any

of outputs at later periods becoming less than their initial values.

The above statements do not hold for systems with impulse response vectors which
exhibit increasing or oscillatory behavior. They are, also, not true if the ratios
of the subsequent elements of the impulse response vector do not monotonically
and asymptotically increase to a number less than one. For the systems satisfying
the conditions under which the algorithm of Chapter 4 is applicable, this limiting
number is the Ferobenius-Perron eigenvalue, which it is less than 1 for the thermal

systems.

The following chapter uses the above result and introduces a general algo-
rithm for the minimum cost scheduling inputs for deterministic discrete-time time-
invariant linear dynamic thermal systems. The following section of this chapter

describes the control scheme under which the algorithm will be applied.

3.9 How to Handle Uncertainty

In practice, the scheduling will be implemented under uncertainties which exist
in the behavior models and the forecasts of the exogenous inputs. Four of the

possible methods are listed below:

CERTAINTY EQUIVALENT CONTROL: Use the expected values of the
uncertain exogenous variables (weather, hot water demand, etc.), and solve
the deterministic optimization problem for the next N periods, and apply

the resulting control inputs accordingly for the whole time horizon.
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FEED FORWARD CONTROL: Use the best possible prediction of exoge-
nous variables, and then solve a deterministic optimization Problem for the
next N time periods. But in contrast with the Certainty Equivalent Control,
‘implement the resulting control only for the very next time period. At the
next period, go back to the first step again. A major advantage of the first
two methods is that it is not necessary to model the uncertainties explicitly.
However, the Feed Forward Control takes into account the new information

about future values of the exogenous variables as they become available.

STOCHASTIC CONTROL: Model uncertainties explicitly and apply stochas-
tic dynamic programing. Depending on the probabilistic nature of the ex-
ogenous inputs and the structure of the controlled system, this method may

be computationally very time consuming.

MIN-MAX CONTROL: Use of unknown but bounded models for the uncer-
tainty wherein only upper and lower limits, i.e bounds, on the uncertainty
are assumed [G3]. An explicit probabilistic/stochastic structure is not re-
quired. One possible “min-max” criteria is to find the control that minimizes
the maximum cost subject to meeting the various constraints. Take the ex-
treme values of uncertain variables and solve the deterministic optimization

problem.

Based on the preceding discussions, this thesis recommends the implementation
of the Feed Forward Control. The deterministic optimization problem is to be

solved by the algorithm introduced in Chapter 4.

In Chapter 7, stochastic control is applied to a simple first order system in

order to evaluate its practicality, and lay the foundation for future work.

68



3.10 Parameter Estimation

As discussed in Chapter 2, an important function of a complete energy manage-
ment system is to provide the Tactical Control with the behavior models of the
system to be controlled. For space heating and cooling, the requirements are

twofold:

e To provide a representative model of the topology of the system configuration

in terms of its constitutive elements.

e To provide the values of the parameters of the system

The first requirement falls under the subject of system modeling and system iden-
tification [L2]. It must be actually carried out by a person familiar with dynamic
system modeling. The task is to figure out the shape of the equivalent circuit
diagram for the system. This is equivalent to determining the order of the system,
or the number of significant storage elements, and their location in the thermal

network. The final product is similar to the network shown in Figure 3.1.

The second requirement is to provide the values of the thermal properties
for the elements which constitute the network. There are two very different ap-

proaches:

1. Calculations from Heat Transfer Models: This method is based on
calculating the values of thermal mass and heat transfer coeflicients from
the physical properties of the materials used in the construction and the

geometric configuration of the building.

2. Parameter Estimation: This method assumes a relatively simple lumped
parameter thermal dynamic structure for the building, and includes only
the most basic heat storage components. The thermal coefficients are then
estimated using statistical and regression techniques by fitting the observed

performance data on temperatures and heat inputs to the equations.
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The first method requires many man hours of work by a person with a professional
engineering background. This is a rather involved procedure, and requires a knowl-
edge of the layout of the building, and the materials used in its construction, and
information on thermal properties of individual walls, windows, insulation, etc.
Usually, the result is a model of a very high order. Heat transfer parameters for
different materials can be found from ASHRAE (American Society of Heating,
Refrigeration, and Air Conditioning Engineers) handbooks. There are also soft-
ware packages available that can be used in evaluation of heat transfer properties

of buildings of different shapes and materials.

The second methodology is a more recent development. System identification
and parameter estimation techniques have been applied to the determination of
equivalent thermal parameters of buildings in References [S8], [W3], and [R1].
The case study of this chapter relies on published data from these sources. This

method is well suited for implementation on energy management systems.
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Chapter 4

OPTIMAL SCHEDULING
ALGORITHM FOR THERMAL
SYSTEMS

4.1 Introduction

This chapter introduces an algorithm which finds the optimal scheduling of elec-
tricity usage for thermal systems. The controlled system is a single-input single-
output multi-storage deterministic discrete-time linear time-invariant thermal sys-
tem subject to linear costs and bounds on variables. The linear cost function is the
total cost for the time horizon, which is the sum of the cost of the electricity usage
at each period for all the periods in the time horizon. Recall that the products
of the electricity usage (heat or hot water) are assumed to be proportional to the
electricity used. The bounds on the input are the physical limits on the size of
electricity usage at each period. The bounds on the output are either due to the
physical constraints (water heater tank size) or due to the comfort limits (inside

air temperature) set by the electricity consumers.

This chapter begins with a mathematical statement of the optimization prob-
lem. Next, a descriptive presentation of how the algorithm works is provided,

followed by a surumarized list of the steps of the algorithm. The main section of

71



this chapter presents the mathematical exposition of the steps of the algorithm us-
ing the block representation of the discrete time linear systems. The final sections
address the issues of convergence, optimality, and the relation of the algorithm to
the simplex method. A more formal and step by step description of the algorithm,

and its programming code is presented in the Appendix A.

The simple structure of the problems considered in the Chapters 5 and 6 result
in special and simpler cases of the algorithm. The simplifications and actual codes

for the case studies are presented in the Appendices B and C.

4.2 Statement of the Optimization Problem

This section presents a mathematical statement of the optimal scheduling problem.

The variables of interest are defined as:

N total number of periods in the time horizon

;[ k] ith state variable at period k, element of column vector X|[k]
y[k] output variable at period k

ulk] control input at period k

w; k] ith exogenous input at period k, element of column vector W k]
p(k] unit cost of input at period &

Y[k)min minimum acceptable value of y[k|

Y[kl maz maximum acceptable value of y[k]

u[k]min minimum allowable value of u[k]

U[k]maz maximum allowable value of u[k]

In this chapter,

o Bracket notation [k] is reserved to denote time.
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e Upper case letters denote vectors and matrices, whose elements are repre-

sented by lower case letters.
e Subscripts indicate the position within the vector or a matrix.

The general single-input single-output time invariant discrete- time linear system

has the following form:

X[k + 1) = A X[k] + By u[k] + Bw W[k] (4.1)
y[k] = C X[k] + d, ulk] + Dw W(k] (4.2)

where, following the notations given above, the state vector is:

[z, (k] ]

X[k] =

L :r,,.[k] J

Similarly, W is a ¢ X 1 column vector. The time invariant matrix A is:

ayy aQyp o Qyy
Qa2

L Qn1 Qp2 ' Qpp |
Byw has a similar form with dimensions n x gq.

Other vector coeflicients are :

by,

uy

Bll o=

n
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and

C=lcrcz - ¢

Fo~ multi-input multi-output systems, C and By are matrices instead of vec-
tors. As can be seen, input has been parted into two groups. The control inputs
u[k] are specified by the controller. The exogenous inputs W[k|, on the other
hand, are specified by the environment. In most cases the state variables are the
storage terms, the exogenous variables are the demand terms, and the control
variables are the input terms. For heating, the demand terms are negative, where
they act to deplete the storage, and the input variables are specified so that the

depletion of the storage is avoided. The reverse is true for space cooling.

The output variable y can be one of the state variables. This becomes possible

when a state variable is also one of the measurable variables to be controlled.

Let Z denote the objective function. The mathematical problem considered
here can be stated as finding solutions u*[k] for each k& which minimize the following

objective function for a given time horizon of N periods:

N
T[}:]]Z = 13‘1[;‘? kz:_‘; p(k] - ulk] (4.3)

subject to the following constraints for k =1 to N :

X[k + 1] = A X[k] + By u[k] + By W[k (4.4)
y[k] = C X[k] + dy, u[k] + Dy W][k] (4.5)
Y[klmin < ylk] < ylk]maz (4.6)

ulk]min < ulk] < ulk]inas (1.7)

Values of all the coefficients, and also all the initial values X[1]. and all the
elements of W(k] and p[k] are assumed given for all k. As the notation implies.
the bounds on the inputs and the outputs may also vary with time, which will be

discussed later.
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The above formulation is indeed in the form of a linear programming problem,
and therefore, any of existing methodologies, such as simplex, can be utilized to
find the optimal solutions. However, the intention here is to take advantage of the
special properties of the asymptotically stable positive systems in order to develop

a more efficient algorithm.

Proper usage of variables and units can result in the state equations repre-
senting changes in the storage of energy terms in time. However other convenient
physical entities can be used as the state and control variables, where the resulting

coeflicients in the state equations would reflect physically meaningful properties.

4.3 Descriptive Presentation

The basic feature of the problem considered here is that input at some initial time
can be stored for use at later times subject to some storage losses and interactions
with other storage units. In mathematical terms, this means that an increase in
the input at any period will increase the state and the output variables of future
periods. The magnitude of the increases depend on the impulse response of the

system for time-invariant systems.

In the specific setting of electricity spot pricing, the control variable u(k], i.e.
consumption of electricity, has a different unit cost p[k] for each period of usage
k. Given an initial feasible pattern of electricity usage, it is possible to re-arrange
electricity consumption in a manner which lowers the total cost for the time horizon
without violating any of the output (service) and the input (control) constraints.
One way of doing this is first to find some appropriate initial feasible solution. and
then to search for a period with a low electricity price and to increase usape af
that period. Doing so results in a net increase in the storage, some of which is lost
with the passing of time. Whatever remains can be used later, particularly when
the price is higher, to decrease the electricity usage of that period from its initial

level.

=1
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One particular initial feasible solution, which can be easily found without con-
sideration of the given price pattern, is the one based on the least amount of the
total electricity consumed during the time horizon. In fact, the control inputs
specified by a flat-price operation are the initial feasible solutions, provided that

the controlled variables are kept at their lowest permissible level.

After finding the initial feasible solution, the algorithm checks to see if there
are any possible savings achieved by increasing the input at any of the periods and
substituting for some of the future inputs. The period with the highest potential
savings is designated as the charge period, i.e. the period at which the input will

be increased in order to decrease some future inputs.

The algorithm considers every period as a potential charge period, and it com-
putes the maximum amount by which every one of future control inputs can be
reduced in chronological order if the control input of the charge period is increased

by one unit.

The effect of an increase in the input of any period is a subsequent increase in
the level of future state and output variables. Therefore, although control inputs
at future periods will be at their initial values, future state and output variables
of each period are going to be above their initial values. The term in:tial refers to
the values of the previous solutions for the same periods. In this thesis, the term

reference is used interchangeably with initial.

As shown in Chapter 3, the relative increase in the output of each period will
decay to zero as time goes by, i.e. as k increases. Therefore, if the input of any
selected period, i.e the charge period, is increased, then all the future outputs ylk]
will be raised above their initial level, and it becomes possible to reduce the contraol
input of future periods from their initial level as long as the output and the input
variable constraints are not violated. Calculation of these reductions and also of
the resulting changes in the state and output variables are made easier hy the

linearity of the system.



These reductions are accomplished by moving in time from the charge period,
to the last period, and one be one reducing the inputs to their lowest possible
values. Once a feasible direction vector is found for a charge period, the procedure
of moving to a new solution point require simple scaler-vector multiplication or

vector additions.

The elements of a feasible direction vector associated with a charge period are
the amount of the decrease in the input of every future period when the input of
the charge period is increased by unity. This vector can be thought of as a feasible
direction vector in the space defined by the decision variable u[k], along which the

block vector of inputs can be changed at each iteration.

Once at a solution point, the algorithm does not consider all possible direc-
tions. It restricts itself to the consideration of the particular class of directions
computed by the above procedure. In fact, there are other feasible directions
along which inputs can be changed simultaneously. However, orderly movement
in the directions determined by the algorithm ensures convergence to the optimal

solution.

Using ihese possible feasible directions, the algorithm checks to see how eco-
nomical is the consideration of each period as a potential charge period. In a
sense, the algorithm computes the marginal savings associated with each period
as if it were a charge candidate. At each iteration it searches for the period with
the highest marginal saving, and then, it increases the input of that period and
simultaneously reduces the control input of the future periods ( moving along the

feasible direction) as long as it is economically and physically feasible.

Economic feasibility means that the cost of the input increase af the charge
period must be less than the savings accrued from the reduction of future mputs.
The physical feasibility requires that inputs and outputs he kept. within acceptable

levels for all periods.

After carrying out the rescheduling and finding the new solution,the algorithm
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searches for the next set of possihle feasible direction vectors. The new sct is
different from the previous one, because each iteration is completed when a new

constraint becomes active. As a result, the algorithm must also determine the new

set of marginal savings.

After updating the set of feasible direction vectors and the marginal savings
vector, the iteration loop is started again by selecting a new period with the
highest new marginal saving as the new charge period, and the process is repeated

as before.

Iterations are continued until no positive marginal savings can be found. At
each iteration, the algorithm preserves feasibility, and proceeds with rescheduling
of control inputs as long as it is economically viable. With each intermediate

solution, the total cost of inputs within the time horizon is decreased.

Most of the calculations involve vectors because the linearity of the system
enables us to take advantage of the impulse response representation of the system
output. For discrete time systems these can be defined as the elements of row
or column vectors whose rank would not exceed the length of the time horizon.
Impulse response representation, which is one manifestation of the superposition
property of the linear systems, results in simple vectorized computational routines

for most of the algorithm.

4.4 Summary of the Algorithm

What follows is a descriptive summary of the steps of the algorithm:

o Find the reference (initial) feasible solution : Assume a flat price schedule
and find initial control inputs «™"*[k] for all & which result in the minimum
total control inputs. This can be done by solving the state equations one
period at a time starting at period k = 1 while keeping all output variables

are kept at their minimum.
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¢ [ind the feasible direction vector and marginal savings s, associated with a
unit increase in the input at period k in the following way: For each period
increase the input by one unit and reduce all the future inputs one be one
by as much as possible without violating the constraints, and compute the
resulting savings and costs. A feasible direction vector for each period is a
vector whose elements are the amount of the feasible reductions in the inputs

of the following periods for a unit increase in the input of the current period.
e Order the periods by their marginal savings.

o Select the period with the highest marginal saving as the charge candidate.
If no period with positive marginal savings can be found, terminate the

process.

o Otherwise, increase the input at the charge candidate. This will increase
the state and output variables of the future periods above their previous
levels. Then start with the first period after the charge period, and one by
one reduce inputs at future periods until all the output variables are back
to their lower bounds. The combined movement in the feasible space is
represented by the feasible direction vector. Do this for every period except
for those which have been selected before as charge candidates unless the
output variable at that period is at its maximum possible value. Continue
increasing the control input at the charge candidate and reducing future

inputs in the above manner until one of the following happens:
— The control input at the charge period reaches the maximum level.
— The output variable at the charge period reaches the maximum level.
— A control input at any future period reaches the minimum level,
— An output variable at some of the future periods reaches the maximum

level.

The last case may happen for those future periods at which the control input

is already zero and no further reduction in the control input is possible.
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e Find the new szt of solutions.

e Recalculate marginal savings for all the periods. Note that the control in-
puts of previous charging periods should not be reduced unless the ontput
variables at those periods reach the maximum level possible. This results in
a new set of marginal savings values. At each iteration, values of the total

cost and the maximum marginal savings are reduced.

e Select a new charging period based on the highest new marginal saving

among all of the periods. A previous charge period can be selected again.

e Continue with the iterative scheduling until no period with positive marginal

saving can be found. At this point, the optimal schedule of the control input

is found.

The number of steps, calculations, procedures, and iterations would be much
larger if instead of using impulse response vectors, all the computations were based

on solving the state equations recursively.

4.5 Mathematical Presentation

4.5.1 Introduction

The heuristic algorithm presented here is simply a formalization of the preceding
summary. Rescheduling of inputs, from a mathematical point of view, is equivalent
to moving in an N dimensional space from an initial solution point to a new
solution point in the direction of a feasible direction vector. We can think of two
distinct multi-dimensional space. One belonging to the input variables and the

other to the output variables.

The algorithm starts by generating a particular feasible initial solution, and
then by using an efficient methodology, it iteratively reschedules electricity usage

so as to reduce total cost at each iteration.
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The algorithm moves towards the optimal solution hy a series of moves in the
feasible space. Let U be a vector whose elements are u[1], u[2],---,u[N]. In its

most general form our constrained optimization problem is of the form

minimize f(l)

subject to i €

The set of constraints together describe the feasible set  which is a subset of EV.
Starting from a set of initial feasible solutions U™* on a constraint surface, the
algorithm moves in the feasible space to a new solution set in a feasible direction
until it hits a new constraint surface. In general, there is an infinite number of
feasible direction vectors at each point in the feasible set. The algorithm finds a
suitable feasible direction vector Fy for each solution point. Therefore, given a
solution point #°? and a feasible direction vector Fy the new solution point is
~ found by

U =Y + aF, (4.8)

where « is the proportion of the length of the direction vector F; which must be

travelled before a new constraint surface is met.

At each iteration, a new feasible direction is chosen and the solution is moved
closer to the optimal. During each iteration, feasibility is maintained. In addition,

the total cost is monotonically decreased at each iteration, i.e.
FU™™ ) < f(U) (4.9)

Reduction of the total cost at each iteration ensures convergence to the optimal

solution.

4.5.2 Effect of input increase on the output: state transi-
tion matrix

One way of studying the effects of an input increase on the future outputs is to

look at the transitions of the states. it is of interest to know if an input can be
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increased at some period, in order to replace the input of rome future period, while
the output levels are within the accepted bounds. The expressions for the state
and the output transition depict the effect of an input increase at some period on
the states and the outputs of the future periods. By recursively substituting for
the state variables, states and outputs of all periods can be expressed in terms of
the initial states and the streams of all the past inputs. The result is the expression

for the state transition, where the time index starts from 1:

X[k+1) =&k +1,1X[1] + zkj B[k + 1,0+ 1Byull] (4.10)

1
k

+ Y ®k+1,1+ 1B, W[
=1

and the output transition:

k-1
yk] = C2[k + 1,1]X[1] + Y C®[k,!+ 1|Byu[l] + dyu[k] (4.11)
=1
k-1
+ D C®[k,l +1|BwW[l] + Dy, W[k

=1

where the state transition matriz is defined as:
Pk, = Ak —1)Alk -2]---A[l], k > I (4.12)
(Ll =1 (4.13)
For a time-invariant system, the state transition matrix is:
Bk, 1) = A* (4.14)
Therefore, if u[i] is increased by §u;, output at i is increased by:
Y [i] - v [i] = d.bu; (4.15)
and the output of the period immediately after is increased hy:
Y+ 1] — g0 4 1] = CIByéu; (-1.16)

where T is the identity matrix. Similarly, the output at period j where EERRE
increased by:

v li] ~ y*[j] = CAT""'Bydu, (4.17)

82



Based on the results of Chapter 3 on the properties of the coefficient matrices, the
right-hand side of the above equation is positive. Also, as the distance of j — i is
increased in time, the value of the output change is decreased asymptotically to
zero. Because the output change is positive, we can decrease the input at time j
by:

new([ ) . old|:
bu; = ¥ [Jld y* 7] (4.18)

which forces the output to return to its original value y°"“[5]. Block representation,

presented next, makes these arguments easier to understand.

4.5.3 Reformulation using block representation

A better understanding of these concepts can be gained by studying the block
representation of the sjstem. It is also the formulation on which the algorithm is
based. Block representation is obtained by recursively substituting for the state
variables in the state-space equations. As a result, state and output variables at
any period are described in terms of the initial state variables and the stream of
all the previous input variables starting with the initial period. Block description

of the system is:

X[k + 1] = AkX[I] + B, U + By, Wi (4.19)
Ve = CeX[1] 4+ D, Uy + D, Wi (4.20)
where
A = Alk]Alk —1]--- A[1] = A* (4.21)
B, = (A*'B, |A*"B, | --- | B,)
B., = (A*'Byw | A*By | --- | By)
(4.22)
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and the input blocks are represented as:

u[1]

- 'u.[:Z] (4.23)
ulk]
and
W(1]
W2
e = : (4.24)
Wk]

where elements of Uy, represented by lower case terms, indicate the fact that this
is a single-input system. Similarly, the output vector is:
y(1]

y[2]

W = (4.25)

y[.k]

Other coefficient matrices are:

Cp = (4.26)

and
dy, 0 0o ...
CB, d, 0o --- 0
Du — CABu CBu du - 0 (4.27)

(==

CAk—zBu CAk—sBu cer cee du

where D, is similarly defined.

In this manner, the effect of one unit increase of the input on the outputs of
the future periods can be easily computed. For example the first column of D, is
the response of all the future outputs to a unit increase in the input of the first

period.
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In the problem considered here, the total number of time steps is N, and the
subscripts in the block vectors and matrices indicating the size, can be dropped
without further loss of generality. Thus, for example, the vector U is a N x 1

column vector.

4.5.4 Mathematical description of the algorithm

Problem statement in block representation:  The optimization problem

can be restated using the block notation:

N
111‘1[;51 Z = 1‘1‘1[}51 kz::l plk] - u[k] (4.28)

subject to the following constraints for k =1to N :

Dy U < Ve — C X[1] = Dy W (4.29)
Duu Z ymin -C X[]'] - Dw w (430)
uml'n S 124 S. uma:r (431)

The constraints are written in the form of vector inequalities, and they consist of
4N scaler inequalities. Care must be taken to avoid confusing a block vector such

as W with its associated variable vector W{k].

In the latest formulation, the only variables to be determined are the N ele-
ments of the vector . All the other variables and coefficients are given. Again,

the optimization problem is set up in the familiar linear programming format.

A particular feasible initial solution: A feasible initial solution is fonnd hy
ignoring the changes in prices, i.e. assuming a flat price pattern, and finding the
set of control inputs which minimize the total sum of control inputs for the time
horizon. This is done be keeping the output variable at the lowest level possible,

i.e. at y[k]nin, for each period k, as long as the control inputs are not forced to
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violate their bounds . Solutions found this way are actually the minimum value

of the sum of the inputs u[k] necessary to keep the output in the feasible region.

The initial feasible solution set is found by solving for & which forces the
output to Ynin. This is done by solving the difference equations recursively for wuy
for k = 1,2,...N, given the initial values and all the exogenous inputs W k], and by
setting all y[k] equal to y,n;, for all k. This may be impossible for certain systems.
Finding such a feasible solution depends on the reachability of the system. If the
system is reachahle, U™ is found by solving the state equations recursively for

each u[k] given that each y[k] is substituted by ymin.

Given this initial solution set, no input can be decreased unilaterally without
violating at least one of the output conscraints. The only way to decrease an input
at any period is to simultaneously increase the input of a previous period. Thus,
the feasible movements from the initial solution points are restricted to changes
in inputs where the first input in time subject to change must be increased in
magnitude, i.e. increase must occur prior to the decrease. This means that any
change from the initial solution is only possible if the input is increased at a period

with subsequent decreases of inputs at later periods, rather than the reverse.

Impulse response vectors: To find a suitable feasible direction vector, let’s
look at the effect of a change in the input of a period on the outputs of all of the

periods. Block representation is in fact equivalent to the state transition method.

Denoting the ith column of D, by I', for the first column we have:
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and similarly, for the ith column is :

0
d,
CB,
CAB,

(4.33)

| CAN-i-'B, ]

This last vector is the change in the output response of the system for all

periods to a unit increase in the input at the ith period.

Taking the previous set of N outputs to be Yo then if at period i the input

ul[t] is increased by 6u;, the new output block becomes:
yrew = yold 4 T, (4.34)
Or alternatively, for each period we can write:
| VUl - v = d, Su
y i+ 1) — y"ld[i +1] = CByubu;
YU+ 2] - i+ 2] = CAB,éu

yncw[i + k] — y(ﬂd[i + k] = CAk_lBuéu.,'

and for j < 1:
ynew[j] _ yold[j] =0 (435)

Results of Chapter 3 show that all the coefficient matrices are nonnegative.
Therefore, increasing the input at period i increases most of the fufipe onfpnts
above their previous level. Then at any future period, say period j. the input
u[j] can be decreased until the output level at j is back to its previous level. The

amount of decrease in the input is:

N ncur N l ncu . ol ’
duj = u™j] - u bl = (" Ul = vl (4.36)
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It was also shown in Chapter 3 that if at some period 7 the input u[i] is
increased, the input of some future period j can be decreased until the output of
that period y[j] is brought down to its initial level, and still have some residual
outputs remaining in the periods after j. In other words, when the output of some
period is brought down to a level by a decrease in the input of the same period,
the outputs of future periods are also brought down but not necessarily to their

previous level.

Suppose the input at period ¢ is increased by éu, and the question is by how
much can the input at period i + 1 be decreased without violating any of the

constraints?

To answer this question lets look at the changes in the output block:
ym'uu _ yold — Ii(S‘lL,' (437)

If the input at period ¢ 4+ 1 is now decreased by éu;y, then the total changes in

the output block become:

yrewr — yold = Tigu; — I Suiy (4.38)

Given the value of §u; we can solve for the value of §u;y, which brings back at
least one of the outputs back to its old value. If we denote the jth element of I*

by ‘ig?, then éu;y, is found from:

IS i — N

0. — . 141 142 e

iy = mm{ D T T (4.39)
it Lo N

Results of Chapter 3 ensure that in the above equation, the minimum is attamed
by the first term inside the braces. Hence, after decreasing the input at ; + | hy
0141 the outputs at periods & > 7 + | would still be above their initial levels,
Consequently, the inputs at the following periods can he decreased in the ahove
manner until all the future outputs are back at their initial level. Thus, il is
possible to reschedule inputs of more than one period with the increase in the

input of a single period.
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Elemental direction vectors: The preceding development suggests one pos-
sible way to determine a feasible direction vector. An clemental direction vector
is determined first, and then it is used to determine feasible direction methods
at any solution point. The elemental direction vector associated with period i is
denoted by J,'. The kth element of this vector is denoted by ji. The following

steps determine the elemental direction vector associated with period i:

e Set all the elements of j; to zero for k < i.

e Set j! equal to one. This is equivalent to increasing the input at period & by

one. As a result the output block will be increased by I'.

e Determine the amount by which the input of period i + 1 can be decreased
without taking any of the future outputs below their old values. With the

increase of the input at period ¢ by one unit we get:
);new — yald + Ii (440)

Now if the input of the second period is to be decreased by jfﬂ, the new

output block becomes:
ynew — yold + Ii _ Ii+1j'i+1 (441)

Therefore, the maximum value of the input decrease at i + 1 without taking

any future output below its old value is:

. i i

-1 _ . 141 i+2 N

Jig1 = min { A T T (4.42)
i+1 tige IN

where it . is the (i +m)th element of I' ;the impulse response vector associ-
ated with period i. For the thermal systems the minimum is attained by the

first term in the braces, and there is no need to consider the other terms.

o Next find the amount by which the input of the period { 4 2 can he de-
creased without taking any future outputs below their values. For the case

of computation, define a new vector L as:

L=I-I"ji, (4.43)
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Then, if the input at period i + 2 is decreased by jf+2, the new output blcck

becomes:
ynrm — yold + L - Ii+2j{_'42 (4.44)
Therefore, the value of the maximum value of the input decrease at i + 2 is

determined from:

liy2 liys Iy } (4.45)

S
Jiy2 = mun { GF2Y 20T Tixe
Lit2 liga Y
Again, for the thermal systems, the minimum is attained by the first term

in the braces, and there is no need to consider the other terms.

Redefine L as:
L =L - I*%i, (4.46)

and find j}, 5 is the same manner as above.

Continue, until all the elements of J,,' are found. The input at i +m can be

decreased by:

) l: l: l
.i _ . i+m  Yitm+41 N -~
Jigm = min {——_i+m Y T (4.47)
Litm Yitm4l 3%

where the minimum is achieved by the first term in the brackets.

Now, the elemental vector J,' represents a unity increase in the input of the

period ¢, and the maximum sequential decreases in the inputs of future periods

without pushing any of the outputs below their old values.

In most situations, direct substitution of the elements of the impulse response

vector (in terms of the system coefficient matrices) may result in a simple expres-

sion for the elemental direction vector. Indeed, in the case study of the heating

of a 2R1C building, the elemental direction vector as expressed in terms of the

system coefficients, has a very simple form.

It is important to note that the fact that some future input may he at its min-

imum value to begin with, was not considered here. Thus although the elemental

vector Jy' may be considered a direction vector along which the input block &/

may be moved, however, such movement may not be feasible.
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Properties of the elemental direction vector: The special usefulness of
the Jy vector is that if the input of some period is increased by some value, the
decreases in subsequent periods can be found by multiplying the Jy vector by the
scaler value of the increase in the input of the first period. However, there are a few
things which must be considered before proceeding as above. The corresponding
Ju' vector for a period ¢ other than the first can be found from the original vector
by shifting the elements of the original vector in time, and substituting zeroes for

periods before i. The elemental vector for period 1 is:

[0

0
Ju' = .,.1 (4.48)
Ji+1
J.’+2

| N

where the elements are found using the methods of the previous section.

Another property is that any feasible movement can be described as a combi-
nation of movements along the elemental directions. For example, if the input of
the first period is to be increased, but the rescheduling is to be started with the

third period, then the resulting direction vector is:
F=J,'-;13,2 (4.49)

where j,, the second element of J,," is negative, and in some cases, zero. Extension

to more complex directions follows directly.

In most general problems, once the feasible direction vectors are fonne. there
would be no need to retain the elementary direction vectors, since all fufure npdat.
ing of movement direction are based on the feasible direction vectors. However, in
simple first order problems, all future feasible direction vectors can be constructed
from the elementary direction vectors. These special cases will be described when

we discuss applications to space heating/ cooling and water heating. Thus, for the
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sake of generality, the distinction bhetween the elementary and feasible direction
vectors is maintained here, even if we do not mention the elementary direction

vectors in this chapter again.

Feasible direction vectors: Movement along an elementary direction vec-
tor is not necessarily feasible. At some periods, the input may be already at a
minimum. Therefore, care must be taken so that the input of that period is not
decreased further. This requires modification of the J,, vectors. Suppose we want
to construct the elementary direction vector for period i. However, at period j
where j > ¢ the input is already at w[5]min. Therefore, the jth element of vector

Ju' must be kept at zero. The modified vector is:

F=J, -jiJ,’ (4.50)

If the elemental vector for period i is completely modified by considering all
the future periods at which inputs are at their minimums, then the final modified
elemental direction vector also becomes a feasible direction vector, denoted by
F.', and corresponding to the period i:. To emphasize that this vector represents

a feasible change in the values of the inputs, its elements are represented as:

- -

0

0
i 1
F,' = i, (4.51)

1
5ui+2

.

| 6llN i
Thus, given an old solution Y, the algorithm selects a charge period k.. hy

a rule described next, and then finds the corresponding feasible direction vector
Fy*. Then it finds how much it can move in the direction of the F,* before it

meets a new constraint. In other words, it finds the value of «, the proportion of

92



the length of the feasible direction vector, which lies hetween the old and the new

feasible solution. The new solution set is found by:
UMY = UM | oF - (4.52)
and the new set of outputs is:

ynew — yold + rDuaFukg (453)

A feasible direction vector for the output block can be defined based on the

last equation:

Fy* = D,F,* (4.54)

Therefore, the new output block is determined from:

yncw — yold +- aFykc (4

[ ]
[y}
~—

Again, for emphasis, the elements are denoted as shown below:

0

0
F,i=| ! (4.56)
v ‘53/:':+1 .
6y:!+2

K
Thus if the input block is changed by Fy the output block will change by Fy .

Marginal savings:  After finding a new solution point, the algorithm has to
decide the new feasible direction for its next move. It has N choices of periods fo
select as the charge period k.. This is the period at which the input is going to he
increased for subsequent rescheduling inputs at later periods. For each period. the
algorithm can construct a feasible direction vector. To chose a particular period

as the charge period, the algorithm has to evaluate the marginal savings s; for
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each period. It is equal to the net savings due to the increase of the input at each
possible charge period by one unit. Marginal savings of all periods are represented

by the savings column vector S whose kth clements is Sk

Any movement from any charge period will be proportional to the correspond-
ing feasible direction vector, and the total savings along that direction will remain
proportional to the marginal savings of the charge period. Therefore, to deter-
mine the marginal savings of each period it suffices to compute the savings and
costs associated with the feasible direction vector. Suppose we want to find the

marginal savings for period ;. Then we have:

costs = §uipli] = pli] (4.57)
savings = — Y0l Suip[k] (4.58)
8; = savings — costs (4.59)

where &u} is the kth element of the feasible direction vector Fy'.

At each new solution point the feasible direction vectors are going to change,
since new constraints are encountered. As a result, at cach new solution point,
the algorithm has to find the new value of s, for each period k, and to construct

a new S vector.

The marginal savings defined above is a measure of net savings per unit of
increase in the input of the charge candidate. It is possible to define other measures
of cost reduction associated with linear movements in the feasible space. One is
based on the ratio of savings to costs. This is equivalent to net savings per unit
cost of the increase in the heat input of the charge candidate. Another measure is
based on the net savings per unit linear movement in the direction of the foasilile
direction vector. All these measures play the same role in the algorithm and the
overall result should be independént of the measure chosen. However, the choice

may affect the efficiency of the algorithm.
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Charge period at each iteration: To find the charge period at the start of
each iteration, the savings vector S is searched and the period with the highest
marginal savings s; is designated as the charge period k.. If no element in the
savings vector is greater than one, then there are no further movements that can

decrease the total cost. If that is the case, the algorithm terminates.

The periods at which the input or the output is at the maximum, should not be
considered. At these periods, inputs can not be increased further without violating

the input or the output constraint of that period.

In addition, if at some periods the input is at its minimum and at the same time,
the output is at its maximum, then some previous periods have to be excluded
from being candidates for the charge period. Suppose at period j the input is at
its minimum and the output is at its maximum. Now take period ¢ where ¢ < j.
If i is taken as the charge period, the input at i is going to be increased, and at
the same time the inputs of some future periods are going to be decreased in the
direction of Fy'. However, the input at j can not be decreased further, and the
algorithm has already excluded that period from further input reduction. This
may result in an increase in the output level at J since the output increase at
that period, is no longer going to be brought back to zero. The variable that
determines whether the output at j is going to be increased, is the jth element
of the feasible direction vector for the output block Fy', namely Jy;:. If the value
of this variable is greater than zero, then the period i should not be considered
as a possible charge candidate. For certain dynamic systems, the result is that all

periods before j are excluded from consideration.

How far to move: After finding the charge period k. and the associnfed
feasible direction vector Fy** the algorithm must decide the length of the feasible
movement. A new solution point is reached when the movement in {he feasihle
direction reaches a new constraint. Since movement is proportional to the length

of the feasible direction vector, all needed is to find the proportionality factor o
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which takes the movement out of the feasible region.

To find the first constraint that is encountered, an actual movement is made
from the old solution point in the feasible direction vector, and the minimum
change in each input and output that reaches a lower or an upper limit is taken

as desired length of movement. 'The four possibilities are:

e Control input at the charge period reaches the maximum level.

e Output variable at the charge period reaches the maximum level.

A control input at some future period reaches the minimum level.

An output variable at some of the future periods reaches the maximum level.

The last case may happen for those future periods at which the control input is
already zero and no further reduction in the control input possible. This causes

an increase in the output of that period.

The new solution set: When the proportionality factor « is found, the new
inputs and outpuis are:

U™ = UM 4 oF (4.60)

and the new set of outputs is:

ynew — yold + DuaFuk, (4.61)

The new solution set sits on a new constraint point in the multi-dimensional
space. Additional feasible movement in the direction of the last feasible direction
vector is no longer possible. Therefore, it is necessary to determine new feasible

direction vectors and new savings to costs ratios associated with each period.

New set of feasible direction vectors: New constraints are met at the

new solution point. Therefore, the feasible direction vectors associated with each
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period in the time horizon must be modified. However, such modification is only
necessary if the new constraint is the result of an input reaching its minimum

value. This is described in the following section.

Other new constraints, such as an output or an input reaching their maximum
level, do not necessitate a modification in the feasible direction vectors. Their
effect is exclusion of some periods from consideration as charge periods in the

next round of iterations.

Excluding a period from input reduction: If at a new solution point the
input at some period reaches its minimum value, then at the next iterations, that
period must be excluded from input reduction. Also, when a period is selected as
charge period, meaning that it has the highest marginal savings, then it must be
excluded from input reduction, since it has already been deemed economical to
have its input increased. This necessitates modification of all the feasible direction

vectors.

Suppose all the previous sets of feasible direction vectors are given. Also sup-
pose that at period j the new input is at its minimum, or that it was the charge
period at the last iteration. The new feasible direction vectors can be considered
to be a combination of movements utilizing the old direction vectors. For example,
if 2 movement in the F' direction is made, where i < 7, then the input at j will
be decreased by 6uj-. To adjust, a compensating movement in the Fy’ must be

made. Thus, the new feasible direction vector associated with period 1 is:
Fu' = Fy' + 6uiF,’ (4.62)
This adjustment must be done for all the feasible direction vectors associaled

with periods before j. For periods after j the feasible direction vectors will not

change, since 5u_‘;. =0if:> ;.

If at the new solution point more than one period reaches its minimum levels,



then the exclusions must be carried for all such periods.

Including a period for input reduction:  Suppose the output at period
J, which has already been excluded from input reduction, reaches its maximum
level. In that case, many periods before period j can not be considered as a
possible charge period, since without input reduction the output at j may increase,
However, il period j was one of the periods which was excluded because it was a
charge period, then some savings may be possible if the input at that period can be

decreased in order to let the prior periods to be considered as charge candidates.

Thus, when the output at a previous charge period reaches the maximum, it is
included in the input reduction schemes. To find the new set of feasible direction
vectors, the reverse of the exclusion methodology is employed. For example the

new feasible direction for period i becomes:
Fu' = Fy' — §ulFy’ (4.63)
Note that 611._‘;. is either zero or negative for j > i.

Again, this adjustment must be done for all the feasible direction vectors asso-
ciated with periods before j. For periods after j the feasible direction vectors will

not change, since 6uj. =0ifi>j.

New marginal savings:  If the set of feasible direction vectors were modified
after the finding of the new solution set, then the associated marginal savings have

to be modified as well.

Suppose at the last iteration the inpul at period j is brought to its minimmn
level. This would necessitate a modification of the feasible direction vectors, as
described in the last section. Then, all that is necessary is to evaluate the savings
and costs of the modification for each feasible direction vector. This can be done af

the same time that each feasible direction vector is being modified. For example,
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given the old version of the feasible direction vector F,' associated with period
1 where i < j, the new version is found by moving in the old direction and then
compensating for violation at period j as shown previously. The compensation is
equivalent to moving in the direction of F’ by the amount of 6uj-. Thus, the old

savings to costs ratio for period i is modified according to:

N ;
spew = g2l _ dui(=plil+ D plk]ouy) (4.64)
k=j+1

The modifying term is subtracted if period j is being excluded. The operation
must be changed to addition if period j is being included back. The expression in
the parenthesis is equivalent to the change in the savings associated with a unit
movement in the Fy’ direction and does not depend on the period i. Therefore,
in modifying the marginal savings for all i, where 7 < 7, the only expression which
requires reevaluation is the fractional expression. Also, for i > j marginal savings
do not change, since the feasible direction vectors do not change for i equal or

greater than j.

4.6 Properties ot the Algorithm and Its Relation
to the Simplex Method

The following list summarizes the basic properties of the algorithm and how it

differs from the simplex method:

o The new algorithm is applicable to only a subclass of linear programming
problems, namely, those with structures similar to asymptotically stable POS-
itive dynamic systems. No attempt has been made to extend the algorithm

to include a more general class of problems.

e The new algorithm utilizes the superposition property and the simplicity of

impulse response vector.
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At each iteration, a movement in the feasible space is made only if (he total

cost can be reduced.

The linear movements are made within the feasible space, and thus, the

feasibility is always maintained.

The algorithm terminates when no further cost saving scheduling is possible.

Due to the convexity of the feasible space, the local optimum is global.

For first-order systems, optimality of the algorithm can be proven theoreti-
cally by the analysis of the equivalent network problem. The final solution

results in a spanning tree which can not be improved further by any method.

~All the coded algorithms used in the case studies give results which are
identical or equivalent (in case of multiple optimal solutions) to the final

results of the simplex method.

Based on the selection criteria for each iteration, the new algorithm chooses

the movement with the highest cost reduction.

For all the classes of problems used in the case studies, both the new algo-
rithm and the simplex algorithm were written in the same language (APL)
and run on the same environment and computer. Comparisons indicate that
the simplex method requires a higher number of iterations for the optimal
solution. The difference becomes more significant as the size of the problem

is increased.

For a time horizon of N period%, the simplex method, using the block for-
mulation, consists of a tableau of size 4N x 5N. This is because of the 4N
inequality constraints, and the inclusion of the associated slack and surplns
variables. The original state-space formulation will result in an even larger
tableau. In comparison, the new algorithm works with vectors of size N. If
no simple formulation exist for feasible direction vectors, then at most, the

algorithm works with N vectors of size V.
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The simplex method requires many scalar computations in each iteration. In
contrast, the new algorithm uses vector operations. For time-invariant sys-
tems, all of the feasible direction vectors are based on the original elemental

direction vector, and at each iteration, they are easily updated.

For all the models tested, the algorithm performs faster than the equivalent
simplex algorithm written by the author, and also faster than a commercially

available (LP83) linear programming package.

The simplex algorithm approaches the efficiency of the new algorithm for

shorter time horizons.

For a time horizon of 168 periods and under various parameter values, the
time used by the OR1C algorithm (water heater case study) varied between
4 to 6 minutes. In comparison, the simplex algorithm took between 70 to

125 minutes.

4.7 Convergence and Optimality

This section provides an itemized list of arguments which show the feasibility and

convergence of solution points at each iteration, together with the optimality of

the final solution. All the arguments are based on the results of the preceding

mathematical presentation.

o All the intermediate solutions are feasible. The algorithm moves in the

feasible space only.

o At each iteration total costs are reduced. No movement with increasing costs

are allowed.

¢ Each iteration is based on a linear movement in the feasible space. There

are a finite number of pre-defined clemental movements.

101



Any other linear movement in the feasible space is a linear combination of

the elemental movements.

Each new iteration is based on a linear movement with the highest possible

reduction in the total costs.
Each new solution point is found when a new constraint becomes active.
There is a finite number of combinations for intermediate solution points.

If no further cost reducing movement is possible, then the last solution is

optimal.

102



Chapter 5

SPACE HEATING AND
COOLING UNDER SPOT
PRICES

5.1 Case Study: A 2R1C House
5.1.1 The model

The 2R1C (two resistances and one capacitance) model of a house assumes that
the thermal masses of the air inside the house and the external shell are negligible
compared to the internal walls and the furniture. The last two are represented
by a single lump of thermal mass. The heating system heats the inside air, and
the resulting heat is transferred to the internal mass of the house, and alsc to the
outside through the external shell and filtration. Figure .1 shows an equivalent

2R1C circuit model of the house discussed here.
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Figure 5.1: 2R1C Heat Transfer Model of a House
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In addition to its simplicity, .this special model was chosen for the case study
because of the availability of data for its parameters. Sondregger [S8] used pa-
rameter estimation techniques to determine the parameters for a 2R1C model
of a townhouse in Twin Rivers, New Jersey. Wilson, et all [W3] used a similar
technique in estimating the parameters for a 2R1C model of a gas-heated house
in Windsor, Ontario. In the case study here, the values of the parameters were
chosen to be of the same order of the magnitude as the values reported in the
studies. The single storage model can be easily extended to include solar heating
and direct interaction between the storage and the ambience, without any major
modifications in the arguments of this chapter. However, lack of reliable data on
the additional parameters, makes it wise to make the model less complicated than

the model of the studies mentioned above.
For the 2R1C model, the energy balance equations in discrete time are:

Uk] = haiAt(To(k] = THk]) + hoe AUT, (K] - T2 [K]) (5.1)
0= C(Ti[k + 1] — Ti(k]) + hui AT (k] — Ta[k]) (5.2)

Rearranging the first equation and substituting in the second equation results in

the following set of equations:

Ti[k + 1] = aTi[k] + buU[k] + b, T.[k] (5.3)
T, [k} = CTt[k] + duU[k] + dwTe[k] (5.4)

where the coeflicients are:

a=1- Rt c‘-(:iéiiﬁa,) (5.5)
bu = Fesi (.6

bu = c_"od‘“iTA"“) (h.7)

R e (5.8)

d = 3 (5.9)

dy = s (5.10)
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This formulation conforms to the set up that was used in algorithm of Chap-
ter 4. This model ignores all the other heat inputs such as solar and non-electrical
outlays. Alsoignored are the inside humidity and outside non-temperature weather
variables such as wind. It is possible to include other heat sources if they are de-
terministic. Also, it is possible to represent the outside non-temperature weather

variables with equivalent temperature potentials.

The above model also assumes time-invariant coefficients. This, and the low
order of the dynamic system, can be used in simplifying the cost optimization
algorithm. It is important to note that the controlled output (inside air temper-
ature) is not a state variable itself. If it were otherwise, the algorithm would be
simplified even further, and made more efficient as it is the case in the electric
water heater study of the next chapter. The algorithm used in the case study here

is presented and explained in Appendix B.

5.2 Statement of the Optimization Problem

A formal statement of the optimization problem results in a linear programming
formulation. Suppose the time horizon of interest consists of N periods of equal
times. The period length must be taken to be smaller than the thermal time
constant of the house; and the time horizon must be long enough so that most
of the savings potential due to the on-off scheduling can be realized. If the time
horizon is not long enough then&he storage will not have sufficient time to return
most of the stored heat. Using the terminology developed so far the problem can

" be stated as follows:

N
in v [Tk !
1{1{1[1:]1’%;l pr > U[k] (5.11)
subject to the following for all k:
Tk + 1] = aT3[k] + b, U[k] + b, T k] (5.12)
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T.[k] = Tik] + dUIK] + d,T. (4 (513)
Trninlk] < Tulk] < Thnaa[#] (5.14)
Unninlk] < U[k] < Upnaa[k] (5.15)

?
In the Appendix B, the optimization problem is reformulated using block vari-
ables which gives insights into ways of simplifying the general algorithm. Before
we describe the case study and the algorithm, let us address the issue of parameter

estimation for the 2R1C model.

5.3 Parameter Estimation foir the 2R1C Model

For practical purposes, the storage temperature must be eliminated from the equa-

tions.
From the ouﬁput equation we have:
1 d, d,
T:[’"] = "Ta[k] - —U[l"] - _—Te[k] (5.16)
c c c
Then by substituting for Ti[k + 1] and T;[k] in the state equations we get:

Tolk + 1] = aTu(k] + duUk + 1] + (cb, — ady)U[k] + dy Tl + 1] + (cby — ady) T [k]
(5.17)

or, using a simpler notation:
Talk + 1) = 6, Tu[k] + 0,Ulk + 1] + 65U [k] + 0,T.[k + 1] + 05T, [k] (5.18)
where, these coefficients in terms of the original heat transfer parameters are:
6, = a =1 lailtacAt (5.10)

('i(hni"’hne)

— 1 .
0, =d, = B Fhed) (H.20)

= J— o ——MRI:_CL )
5 = cby — ad, = gtha=Ci_ (5.21)

Oy = d, = 25— (5.22)

hae(At hgi ~C;
05 = cb,, — ad, = —C((T+—th (5.23)
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By making numerous observations an Ta[k], U[k],'am"l-’i’ [k] for many consecutive
periods, an over- constramed system of linear equai ons is formed. A simple least
square method can fhen be applied to find the optimal estimate of the #s. Tt is
then necessary to use }these estimates in turn, to estimate the values of original
coeflicients from the relationships given above. As can be seen, these relationships
are not linear, and some type of iterative method is required. Also, for Tactical
Control it is not necessary to have values for the original heat transfer parameters.
What is essential, is t.g[) have values for the coefficients of the state and output
equations. In other wc;vrds, the algorithm requires values for a, b,, by, c, d,, and
d,. However, to undexj‘stand the results of the case study in physical terms, and
to relate them to the thermal properties of the building, it is necessary to know

the values of Cj, h,;, and h,, as well.

5.4 The Case Study

This section presents the results of various numerical simulations and the optimal

response of a 2R1C building.

Base Case Parameters

The coefficients chosen for the 2R1C building are the intermediate values be-
tween those reported by Sondregger [S8] and those reported by Wilson, et all [W3].
These values are shown in Table 5.1. The values reported for the control heat in-
put in the two papers are 6 and 30 kW respectively. Thus, our choice of 6 kW
for control heat input is merely representational. The objective is to study the
optimal behavior under spot prices. In addition to ignoring humidity. solar heat
input, and stochasticity, there are other short-comings in the study, which have (o
be taken into account for an actual economic assessment of scheduling under spot
prices. The most important is the simplicity of the model, and also, the choice of
the time step (1 hour), which may be too long for the discrete time representation

of the building’s thermal dynamics. See Chapter 3 for a discussion of the chojice
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thermal capacity C; 2.00 kWh/C
heat transfer coef. h,; | 0.5 kW/C
heat transfer coef. h, | 0.3 kW/C

Table 5.1: Values of Coefficients for the 2R1C model

of time step for the discretization of continuous time systems. The choice of a
physically meaningful time step for a 2R1C building is discussed in the following

section.

The coefficients h,; and h,. are the heat transfer rates between the inside air
and the internal storage, and the inside air and the ambience, respectively. Other
factors such as internal hefa.t sources due to people and appliances, and also the
heating due to solar incidence are ignored here. All the weather variables are rep-
resented by the deterministic exogenous variable T,. Other base case parameters

are shown in Table 5.2.

In actual control, the initial storage temperature must be evaluated from pre-
vious observed data. This is only possible if the system is observable in the math-
ematical sense. The maximum heat input per period depends on the power rating
and the efliciency of the heating system. The bounds on the inside air tempera-
ture should be supplied by the residents. The choice of time step depends on the
frequency of price and exogenous variable changes. It must also be short enough
for the model to be physically meaningful. The choice of time horizon depends on

the frequency of the price schedule update, which is assumed to be every 24 hours.

Choice of Time Step

For the discrete time 2R1C model to be physically meaningful, the coeflicient

a must satisfy the following inequality:

AT h2.A
_ haidt AV | (5.24)

O = el T ) ©

109



period length, time step At 1 hour

number of periods, time horizon N 24 hours
constant external temperature 7, 12 C
maximum heat input U,,4¢ 6.0 kWh/period

maximum inside air temperature Ty, | 22 C
minimum inside air temperature T,,;, | 18 C
initial storage temperature 18 C

Table 5.2: Values of Base Clase Parameters Used in the Study

Then, solving for At results in:

Ci(hai + hee)

[=¢ =4
0< At < hoho (5.25)
or
c; G
0<At<}1~.+r (5.26)

This result can be interpreted as requiring the time step to be less than the sum
of system time constants. Also, the time step must be smaller than the individual
system time constants. For our choice of coefficients, the time step of 1 hour seems

to be well within the accepted limits.

System Parameters vs Thermal Coefficients

In the case studies based on various price patterns, the values of thermal coef-
ficients C;, h,i, and h,. are varied around their base values in order to investigate
their impact on savings. However, from a systems dynamics point of view, the
system behavior is best described in terms of system coefficients and parameters
which are algebraic functions of these thermal coefficients. Therefore, for future
reference, the ;ariat'i011 of system parameters with the thermal coeflicients is re

ported here. The system parameters are divided into three groups as shown in

Table 5.3.

The state and output coefficients have heen defined before, and are the coefli-

cients of the state and output equations.
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state coeflicients a, b,, and b,
output coefficients | ¢, d,, and d,,
time constants | Ty 1

Table 5.3: Grouping of System Coeflicients and Parameters
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Figure 5.2: State Coefficients vs Thermal Capacity

Figures 5.2, 5.3, and 5.4 depict the variations in system coeflicients and pa-

rameters in terms of the variations in the thermal capacity C;.

There are three time constants reported. These are:

T=f4+ & (5.27)
hzu I'ae
C rooaQ
- =L H ~
T2 hm ( | - ’
'y .
T:'; = Trae (52())

Figures 5.5, 5.6, and 5.7 depict the variations in system coeficients and pa-

rameters in terms of the variations in the heat transfer coefficient hai.
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Figure 5.3: Output Coefficients vs Thermal Capacity
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Figure 5.4: Time Constants vs Thermal Clapacity

112



STATE EQUATION COEFFICIENTS

OUTPUT EQUATION COEFFICENTS
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Figure 5.5: State Coefficients vs Heat Trans. Coefficient Bai
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TIME PARAMETERS VS HAI
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Figure 5.7: Time Constants vs Heat Trans. Coefficient Rai

Figures 5.8, 5.9, and 5.10 depict the variations in system coefficients and pa-

rameters in terms of the variations in the heat transfer coefficient hae.

Definition of Savings

To evaluate the benefits of optimal scheduling, the resulting total costs are
compared to the case where no scheduling occurs. The optimal costs are based on

the total cost of optimally scheduled electricity usage.

If the prices are assumed constant, then the optimal schedule of electricity
usage is the result of an optimization problem where the total electricity usage
is minimized. This solution corresponds to a situation where at each period elec-
tricity is used only to the extend where the minimum service requirements are
met. This is equivalent to solving the output equation at each period A for the
heat input u[k], by setting the air temperature of period k at T,;,. This result
corresponds to the initial solution of the algorithm used here. It is, as mentioned

before, the optimal solution if prices are taken to be flat. Thus, this reference
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TIME PARAMETERS VS HAE
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Figure 5.10: Time Constants vs Heat Trans. Coefficient h,,

solution and the corresponding cost provide a basis for the comparison of the op-
timal performance. Both the reference solution and the final optimal solution can
be determined by the application of any linear programming algorithm, and as
such are independent of the algorithm being used. Furthermore, for different price
patterns, the base solutions of the electricity usage will be identical, because for
each case the prices are ignored and are assumed to be flat. However, the base
cost are evaluated from the price pattern used in determination of the optimal

schedule.

Then, according to the above description, the savings rate is defined as the
difference between the cost of the optimal solution and the reference solution over
the cost of the reference solution. The procedure is as follows:

1. For a given price pattern, ignore the prices and asswme any flat price pattern,

2. Determine the reference solufion which corresponds to the total minimnm

(or the non-scheduled) electricity usage during the time horizon. Clall these
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Useslk).
3. Evaluate the reference cost using the price pattern being studied. Thus:
reference cost = YN, p[k]Uses[k]

4. Determine the optimal solution given the price pattern. Call these U, [k].

5. Evaluate the optimal cost using the price pattern:
optimal cost = 3N plk|Uopt(k]
6. Net savings is evaluated from:
net savings = reference cost - optimal cost
7. Savings rate is evaluated from:

savings rate = net savings / reference cost

For a given thermal system, the reference solution will be the same no matter what

the price pattern is, but the refrrence cost will depend on the given price pattern.

Since the reference solution found by the algorithm ignores the prices and is
based on the minimum of total heat input during the time horizon, it is indepen-
dent of the given price pattern. Figure 5.11 shows the initial reference solution
for the heat input. Figure 5.12 shows the resulting inside air temperature. All

the optimal solutions for the price patterns studied are compared to this reference

solution.

As can be seen, the initial heat input and inside air temperature solutions are
constant. This is partially due to the fact that only a constant outside temperature
is considered. Another reason is that the reference solution tries to keep the inside
air temperature at the lowest level allowable, and the initial storage temperature
was also set at the T),;,. If the initial storage temperature is set at a different
value, then the reference heat inputl will approach a constant level in the steady

state.
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CASE A, PRICE PATTERN
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Figure 5.13: Case A, Impulse Price Pattern

5.4.1 Case study A: impulse price pattern

The first study is concerned with the optimal response to an impulse type price
pattern, where prices are constant at every hour except one during the time hori-

zon. An example of an impulse price pattern in shown in Figure 5.13.

Figures 5.14 and 5.15 show the results for the optimal solution. The price
impulse happens at the hour 12. Thus, the heat input is scheduled to be higher
than its initial values at earlier hours in order to produce sufficient stored heat to

substitute for the heat input at hour 12.

Heat input levels at hours after 12 are also decreased helow their refoerenee
levels. This is due to the slow dissipation of the stored heat that is earried a way
beyond the hour 12. Thus, it is possible to decrease heat input of some future
hours in order to push the inside air femperature down to its minimum level.

Another interesting behavior is the hehavior of heat inputs at hours hefore 12.
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CASE A, OPTIMAL HEAT INFUT U
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CASE A, SAVINGS VS PRICE RANGE
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Figure 5.16: Case A, Savings vs Size of the Price Range

The algorithm, at its first iteration increases the heat input at hour 11 as much
as possible, which is more than the final level shown in Figure 5.14. In this case,
the air temperature at hour 11 reaches the maximum before the heat input has
had the chance to reach U,,,,. However, the stored heat, at the first solution is
not enough to completely reduce the heat input at hour 12. Thus, at the next
solution, the heat input at hour 10 is also increased. However, to do so, the heat
input at hour 11 must be lowered just a little bit so that the inside air temperature
at hour 11 does not go beyond T},,.. This process is continued until no additional
heat input increases become economical. As can be seen, the heat input at hour

12 is no eliminated completely.

Savings vs Size of the Price Impulse

Savings increase with the size of the price impulse. Figure 5.16 demonstrates
this fact. The location of price impulse was kept at hour 12, but the range of the

price jump was varied. At price ratios below 3 no savings were observed.
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CASE A, SAVINGS VS HOUR OF PRICE JUMP
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Figure 5.17: Case A, Savings vs Hour of Price Impulse

Savings vs the Hour of Price Impulse

The period within the time horizon ai which the price impulse occurs affects
the rate of savings. This is due to the cutoff conditions imposed by the length of

the time horizon. Figure 5.17 illustrates the results.

As expected there is no savings if the price jump occurs at the first period.
There is no chance to heat up the storage. The maximum savings results if the
priée jump occurs at hour 6. By this hour there have been enough time to econom-
ically heat up the storage and reduce the heat input at the hour of price impulse.
However, there are also some savings associated with the input reductions of the
future hours made possible by the residual heat remaining in the storage, s the
location of the price impulse is moved closer 1o the end of the time horizon. then
the size of these residual savings are decreased. It must be noted that the sav-
ings beyond the time horizon are ignored. This is a major characteristic of finite

time horizon problems. Figure 5.16 also indicates that the size of residual savings
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CASE A, SAVINGS VS THERMAL CARACITY Cl
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Figure 5.18: Case A, Savings vs Thermal Capacity

can be significant, and in this case they may account for almost half of the total

savings.

In practice, the problem of finite time horizon is dealt with by applying the
algorithm at every hour as new price information becomes available. However, it is

preferable to extend the range of the time horizon if additional price and weather

information are made available.

Savings vs Thermal Capacity C;

Figure 5.18 depicts the variations in the savings rate with the variation in the
thermal capacity. For an impulse price pattern, a small thermal capacity provides
the better savings rate. This is due to the fact that the thermal storage must he
charged with as little hgat input as possible, since it is going to be used mainly to

displace the heat input of only one period.

It is interesting to note that for the other price patterns, the reverse is true,
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CASE A, SAVINGS VS HEAT TRAN. COEF. HAI
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Figure 5.19: Case A, Savings vs Heat Transfer Coefficient h,;

and a larger thermal capacity provides a higher savings rate. As can be seen there
is an optimal value for the thermal capacity corresponding to each particular price
pattern. As such, the algoriﬂnn can be used as a design tool in the evaluation of

the optimal thermal storage size for a given price pattern.

Savings vs Heat Transfer Coefficient h,;

Figure 5.19 shows the variation of the savings rate with the variation of the

inside air-storage heat transfer coeflicient h,;.

As expected, savings improve as the heat transfer rate between the inside air

and the storage medium is increased.

Savings vs Heat Transfer Coefficient h,,

Figure 5.20 shows the variation in the savings rate with respect to the variation

in the heat transfer rate between the inside air and the ambience.
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CASE A, SAVINGS VS HEAT TRAN. COEF. HAE
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Figure 5.20: Case A, Savings vs Heat Transfer Coefficient he.

As the heat transfer rate between the outside and the inside increases the
savings rate decreases. This result illustrates the impact of insulation on the
savings. Figure 5.20 also indicates that even with near perfect insulation, savings
account for only 25% of the reference total cost. However, it must be noted that

the reference total cost is also reduced with better insulation.

Savings vs Constant Outside Temperature

If all the other parameters are kept at their base values, the rate of savings is -
increased if the outside temperature is closer to the minimum acceptable inside

temperature. This fact is shown in Figure 5.21.

However, it must be noted that the total initial and final cost is lower when {he
outside temperature is closer to T},;,. Also, the result only concerns the optimal
behavior under the base values of parameters. Clare must be taken in generalizing

the results for other system coefficient or parameter values.
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Figure 5.21: Case A, Savings vs Outside Temperature 7.

Savings vs the Maximum Heat Input U,.,,

As the bound on the maximum heat input is increased, it is expected that the

rate of savings will also increase. Figure 5.22 verifies that exp=ctation.

One interesting result is that the rate of savings levels off as U,,,, is increased
beyond a certain point. The explanation is that at those higher values, the heat
input is not a constraining factor. In other words, the heating system never gets to

be utilized at its full capacity. Doing so, would result in violation of the maximum

temperature constraint.

Savings vs the Lower Temperature Bound

As the minimum temperature bound T),,;,, is lowered, the savings rate increases.

Figure 5.23 also shows that there is some leveling off as this bound is lowered closer

to the outside temperature.
At the other end, as expected, the savings rate decreases to zero when the
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Figure 5.22: Case A, Savings vs Maximum Heat Input U,,
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Figure 5.23: Case A, Savings vs the Lower Temperature Bound
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Figure 5.24: Case A, Savings vs the Upper Temperature Bound

comfortable temperature range is decreased to zero.

Savings vs the Upper Temperature Bound

Figure 5.24 shows the effect of increasing Tqz on the savings rate. As expected,
the saving rate increases as the upper temperature bound is increased. However,
beyond a certain level, the savings rate stays constant. Again, the reason is that
at those levels, the upper temperature bound is not a constraining factor, and
in fact, in optimal operation, the inside air temperature will not reach the upper
bound. This is true for the given level of the maximum heat input. Higher rates

of savings will be possible if the constraint on the maximum heat input, is relaxed.

5.4.2 Case study B: Step price pattern

This study is concerned with the optimal response to step type price pattern. This

is a simplified version of the time of use rates. Here, only a single step of price
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Figure 5.25: Case B, Step Price Pattern

changes is considered. An example of step price pattern in shown in Figure 5.25.

Figures 5.26 and 5.27 show the results for the optimal solution. The step
change happens at the hour 13. Thus, the heat input is scheduled to be higher
than its reference values at earlier hours in order to produce sufficient stored heat

to substitute for the heat inputs of the later half of the time horizon.

Again, as in case study A, the heat input levels at hours after 13 are also
decreased below their reference levels. This is due to the slow dissipation of the
stored heat that is carried away beyond the hour 13. Thus, it is possible to decrease
heat input of some future hours and allow the inside air temperature down to its

minimum level. In the case step price pattern, this results in substantial savings.

Savings vs Size of the Price Range

Savings increase with the size of the price change. Figure 5.28 demonstrates

this fact. The distance between the high and low prices was varied between -100%

129



CASE B, OPTIMAL HEAT INPUT U

E

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

@

o

AN
\

L T T T

BAMNNNNANNNY
OONONNNNNNNNN
NAAARNRRRRNY
ASSSSSSSSSN
DO NNNNNNNN
ANNANNNNNNNNNNNN
INANANANNNRRNNNY

T 7T 7T T T T 77
1 2 3 4 5 6 7 B 9

N 1NdNI LvH vHlLdo

HOURS
Figure 5.26: Case B, Optimal Heat Input U

CASE B, OPTIMAL INSIDE AIR TEMP. Ta

BNV ANNNNNNANNNANNNN
BNV MNNNANNANNANANNANNN
AOVNANANNANNANNNRNNNANN
AAONNNNNNNNNNNNANNNN
BNNNONNNNNNNANANNANN
SOMNNNNANANNANNNNNNNN
AANOMNNMNANNNNANNNNNNNN
BN NANNNNNNANNNNNNANN
BNV NMNNANANANANNNANNNNN
ANV NNNANANNNNNN
AN NN AN NANNNANNNANN
BNNNANNANNNNNNNNNNNN
AN NONNN NN N NNANANNNNINNNN
AOONVNNNNANNNNNNANANNNNANNNN
BOVONNANNNNANNANANRNANNNNNNRN
BN NNNANNANNANNNNNNNNAN- @
AOOVNANANNANANNNANNMVINNNNNN- @
AN N NANANANNANNNANNNNNNNN- ~
AONANANANANRNANNRANNRNTNN- »
AONN N NANN AN ANNANANNANNNNNNN- @
AV NANNAN NN NANNNANNNNNNNN- +
BNNMNANANNNNNNNNNNNNN- »
BOONOMVANANNANNANNNNNNNNN-
7//////4(/&////// - -

1 i 1 1 T

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

24

!
0 B 1] 4 N O 8 '] 4 N ©

- e e e e

22

ol FuruvaadiEl iy JAISNI TvKLLdo

HOURS
Figure 5.27: Case B, Optimal Inside Air Temperature T,

130



CASE B, SAVINGS VS PRICE RANGE

PERCENT SAVINSS
s
1

! T 1 1 1 L T L) 1
-100 —80 -60 —40 -20 o 20 40 60 80 100
PERCENT CHANGE (N PRICE RANGE

Figure 5.28: Case B, Savings vs Size of the Price Range

and +100%. In contrast to the case study A, savings are possible even when the

ratio of the price jump is as low as 2.

Savings vs Thermal Capacity C;

Figure 5.29 depicts the variations in the savings rate with the variation in the
thermal capacity. In contrast to the case of impulse price pattern, savings rate
increases with the increase in the size of the thermal capacity from its base value.
This is due to the fact that the thermal storage must carry enough energy in order
to substitute the heat inputs of many hours. Again, a maximum is achieved, but

at a higher value of the thermal capacity compared to that of case study A.

Savings vs Heat Transfer Coeflicient h,;

Figure 5.30 shows the variation of the savings rate with the variation of the

inside air-storage heat transfer coefficient h,;.

As expected, savings improve as the heat transfer rate between the inside air
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Figure 5.29: Case B, Savings vs Thermal Capacity C;
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Figure 5.30: Case B, Savings vs Heat Transfer Coeflicient hy,
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Figure 5.31: Case B, Savings vs Heat Transfer Coefficient h,,

and the storage medium is increased.

Savings vs Heat Transfer Coeflicient h,.

Figure 5.31 shows the variation in the savings rate with respect to the variation

in the heat transfer rate between the inside air and the ambience.

As the heat transfer rate between the outside and the inside increases the
savings rate decreases. As before, this result illustrates the impact of insulation
on the savings. Figure 5.31 also indicates that savings rate are substantially higher

for this case compared to case A for near perfect insulation. It goes as high as
70%.

Savings vs Constant Outside Temperature

If all the other parameters are kept at their base values, the rate of savings is

increased if the outsi' temperature is closer to the minimum acceptable inside

temperature. This is shown in Figure 5.32.
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Figure 5.32: Case B, Savings vs Outside Temperature T,

However, it must be noted that the total initial and final cost is lower when the

outside temperature is closer to Tini,. Also, the result only concerns the optimal

behavior under the base values of parameters.

Savings vs the Maximum Heat Input U,,,.

As the bound on the maximum heat input is increased, it is expected that the

rate of savings will also increase. Figure 5.22 verifies that expectation.

Again, the rate of savings levels off as U,,,, is increased beyond a certain
point. The explanation is that at those higher values, the heat input is not a
constraining factor. In other words, the heating system never gets to he utilized at

its full capacity. Doing so, would result in violation of the maximum temperature

constraint.

Savings vs the Lower Temperature Bound

As the minimum temperature bound T},;, is lowered, the savings rate increases.
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Figure 5.33: Case B, Savings vs Maximum Heat Input U,,,,

Figure 5.34 also shows that when there is some leveling off as this bound is lowered

closer to the outside temperature.

At the other end, as expected, the savings rate decreases to zero when the

comfortable temperature range is decreased to zero.

Savings vs the Upper Temperature Bound

Figure 5.35 shows the effect of increasing T,,. on the savings rate.

As expected, the saving rate increases as the upper temperature bound is in-
creased. However, beyond a certain level, the savings rate stays constant. Again,
the reason is that at those levels, the upper temperature bound is not a constrain-
ing factor, and in fact, in optimal operation, the inside air temperature will not
reach the upper bound. In such a case, higher rates of savings will be possible if

the maximum heat input is increased.
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Figure 5.35: Case B, Savings vs the Upper Temperature Bound
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Figure 5.36: Case C, Single Peak Price Pattern

5.4.3 Case study C: single peak price pattern

The study is concerned with the optimal response to a single peak type price

Pattern. An example is shown in Figure 5.36.
Figures 5.37 and 5.38 show the results for the optimal solution.

Savings vs Size of the Price Range

Savings increase with the size of the price changes. Figure 5.39 demonstrates

this fact.

Savings vs Thermal Capacity C;

Figure 5.40 depicts the variations in the savings rate with the variation in the
thermal capacity. Again, it is shown that there is a unique optimal design value

for the size of the thermal mass.
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Figure 5.37: Case C, Optimal Heat Input U
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Figure 5.38: Case C, Optimal Inside Air Temperature T,
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Figure 5.39: Case C, Savings vs Size of the Price Range
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Figure 5.41: Case C, Savings vs Heat Transfer Coefficient h,;

Savings vs Heat Transfer Coefficient h;

Figure 5.41 shows the variation of the savings rate with the variation of the

inside air-storage heat transfer coefficient h,;.

As expected, savings improve as the heat transfer rate between the inside air

and the storage medium is increased.

Savings vs Heat Transfer Coefficient h,,

Figure 5.42 shows the variation in the savings rate with respect to the variation

in the heat transfer rate bet veen the inside air and the ambience.

As the heat transfer rate between the outside and the inside increases. {he

savings rate decreases.

Savings vs Constant Outside Temperature

If all the other parameters are kept at their base values, the rate of savings is
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Figure 5.42: Case C, Savings vs Heat Transfer Coefficient h,,

increased if the outside temperature is closer to the minimum acceptable inside

‘temperature. This is shown in Figure 5.43.

Savings vs the Maximum Heat Input U,,,.

As the bound on the maximum heat input is increased, it is expected that the

rate of savings will also increase. This is shown in Figure 5.44.

Again, the rate of savings levels off as U, is increased beyond a certain

point. The heating system never gets to be utilized at its full capacity because of

maximum temperature constraint.

Savings vs the Lower Temperature Bound

As the minimum temperature bound T, is lowered, the savings rate increases.
Figure 5.45 also shows that when there is some leveling off as this bound is lowered

closer to the outside temperature.

141



PERCENT SAVINGS

PERCENT SAVINGS

CASE C, SAVINGS VS OUTSIDE TEMP. Te

50

30

20 -

10

0 T T T T T T Y T T T T
6 7 a8 9 10 11 12 13 14 t5 16 17 18

CONSTANT OUTSIDE TEMPERATURE

Figure 5.43: Case C, Savings vs Outside Temperature 7,

CASE C, SAVINGS VS MAX. HEAT INPUT Umax

o
i

24 -
22 -
20 -
1B
16 -
14 -

12

10

o] 1.2 2.4 3.6 4.8 6 7.2 B.4 9.6 10.8 12
MAXIMUM HEAT INPUT Umax

Figure 5.44: Case C, Savings vs Maximum Heat Input U

maxr

142



CASE C, SAVINGS VS MIN. TEMP. Tmin

50
43 -
40 1
35

n

2 30

&

E 25 —

% 20 -
15 -
10
5 —
3]

12 13 14 15 16 17 18 19 20 21 22

MINIMUM INDOOR TEMPERATURE Tmin

Figure 5.45: Case C, Savings vs the Lower Temperature Bound

At the other end, as expected, the savings rate decreases to zero when the

comfortable temperature range is decreased to zero.

Savings vs the Upper Temperature Bound

Figure 5.46 shows the effect of ‘ncreasing T),q on the savings rate.

As expected, the saving rate increases as the upper temperature bound is

increased.

5.4.4 Case study D: double peak price pattern

The study is concerned with the optimal response to double peak type price pal.

tern. An example is shown in Figure 5.47.

Figures 5.48 and 5.49 show the results for the optimal solution.

Savings vs Size of the Price Range
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Figure 5.47: Case D, Double Peak Price Pattern
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Figure 5.49: Case D, Optimal Inside Air Temperature T,
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Figure 5.50: Case D, Savings vs Size of Price Range

Savings increase with the size of the price levels. This is shown in Figure 5.50.

Savings vs Thermal Capacity C;

Figure 5.51 depicts the variations in the savings rate with the variation in the

thermal capacity.

Savings vs Heat Transfer Coeflicient h,;

Figure 5.52 shows the variation of the savings rate with the variation of the

inside air-storage heat transfer coefficient h,;.

As expected, savings improve as the heat transfer rate between the insicde air

and the storage medium is increased.

Savings vs Heat Transfer Coefficient A,

Figure 5.53 shows the variation in the savings rate with respect to the variation

in the heat transfer rate between the inside air and the ambience.
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Figure 5.51: Case D, Savings vs Thermal Capacity C;
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Figure 5.52: Case D, Savings vs Heal Transfer Coefficient h,;
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Figure 5.53: Case D, Savings vs Heat Transfer Coefficient h,,

As the heat transfer rate between the outside and the inside increases the

savings rate decreases.

Savings vs Constant Outside Temperature

If all the other parameters are kept at their base values, the rate of savings is
increased if the outside temperature is closer to the minimum acceptable inside

temperature. This fact is shown in Figure 5.54.

Savings vs the Maximum Heat Input U,,,,

As the bound on the maximum heat input is increased, it is expected that the

rate of savings will also increase. This is shown in Figure 5.55.

Again, the behavior is similar to the previous cases.

Savings vs the Lower Temperature Bound

As before, as the minimum temperature bound T, is lowered, the savings
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Figure 5.56: Case D, Savings vs the Lower Temperature Bound

rate increases. Figure 5.56 also shows that when there is some leveling off as this

bound is lowered closer to the outside temperature.

At the other end, as expected, the savings rate decreases to zero when the

comfortable temperature range is decreased to zero.

Savings vs the Upper Temperature Bound

Figure 5.57 shows the effect of increasing T}, on the savings rate. The result

is similar to the previous cases studied.

5.5 Observations

Results clearly indicate that the savings depend on:

e price patterns and price variations
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Figure 5.57: Case D, Savings vs the Upper Temperature Bound

¢ building thermal characteristics
e outside temperature
e heat input capacity

¢ temperature comfort range

However, the behavior observed under the various price patterns depend on the
particular values of the parameters used. For instance, in our study, the heating
~ input is never utilized at its maximum capacity. Hence, the results of the study
should be interpreted as the behavior of the particular building under consider-
ation. In addition to the choice of the parameters, another influencing factor is

the type of the building being studied. A 3R2C building may behave differently
compared to a 2R1C building.

The numerical results on savings must be interpreted in the light of a number

of limiting factors such as the choice of a relatively long time step, assumption of
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the predictability of weather data, and ommission of other heat sources in the case
stiudies. However, a few general observations can be made, the most important of

which are:

e The algorithm can be used as a control tool for planning of optimal response

to spot prices.

L4

e There is a unique optimal thermal capacity size associated with each price
pattern. This result has important implications for the use of the algorithm

in the design of optimal auxiliary storage under various price patterns. °

e The algorithm can also be used to assess the value of savings due to invest-
ments in heating capacity, insulation, storage, etc. In addition, It can be
used to evaluate the trade-off between comfort and savings for individual

households.

o The algorithm can be used by the utilities in the evaluation of the load shifts

caused by customer response to spot prices.
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Chapter 6

ELECTRIC WATER HEATING
UNDER SPOT PRICES

6.1 Introduction

This chapter introduces a practical methodology for the optimal operation of dual
element electric water heaters under spot pricing. Control of the home appliance
electricity consumption, specially electric water heaters, constitute an important
aspect of demand-side management [E2]. The most studied f rm of electric water
heater control has been the indirect and remote control of the electricity use by
the utilities [B3,H1,L1]. The principal drawback of these methods has been the
lack of control by the actual users and owners of the controlled water heaters. A
similar study on water heater control was done by Wilber [W2], but the presented

algorithm was not structurally defined.

Ordinary storage type residential electric water heaters are designed to main-
tain an adequate storage of hot water throughout the day. Heating elements are
- turned on as soon as the thermostats sense a decrease in the temperature of the
water, which is caused by the cold water from below replacing the hot water drawn
at the top. Water heating may occur at any time throughout the day as determined

by the hot water demand pattern for the day and the heat loss to the environment.
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The electricity consumption pattern follows the demand and loss pattern except

for some sluggishness due to the hysteresis properties of the thermostats.

Spot pricing of electricity provides the motivation for a more economical oper-
ation of electric water heaters. The storage capability of residential water heaters
suggests the possibility of hot water production at the times of low electricity

prices and its storage for use at the times of high electricity prices.

In the context of residential electric water heaters, the two most important
physical characteristics which determine the scheduling potential are storage ca-
pacity and water-heating (or production) capacity of the water heaters. If the
demand pattern for the hot water for the next 24 hours in question is samehow
known, then it is possible to optimize electricity usage (minimize the cost) by
choosing appropriate low cost times for heating of water and taking advantage
of storage capability in order to have enough hot water to meet the demand at
high cost times. Implicit in the concept of scheduling is the notion of not keeping
a full storage of hot water all the time, which is in contrast to the full storage

maintenance of the normal water heater operation.

The scheduling methodology consists of two parts. One is to predict hot water
demand, and the other is to find the optimal schedule of electricity use subject to

the given schedule of spot prices and the predicted schedule of hot water demand.

An important constraining factor in this study is the assumption that there
would be no alteration to the basic design of ordinary dual element residential
electric water heaters other than electrical connections to the heating elements

and thermostats for the data acquisition and control purposes.

6.2 Dual Element Electric Water Heaters

The basic physical system of dual element electric water heaters, as shown in Figure

6.1, consists of a storage tank with a free cold water inlet near the bottom and a hot
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water outlet at the top. The two heating elements and the associated thermostats
are located at the bottom and at more than two third of the way up near the top of
the storage tank. Commercially available residential water heaters usually include
additional features such as foam-insulated casing for energy conservation, and-an

anode rod for protection from chemical actions in the water due to electrolysis.

A typical water heater comes in standard tank sizes which may vary from 30 to
80 gallons, the most common being 52 gallons. The heating elements are resistor
type metallic tubing with protective coating, and are usually bent in the shape
of U or J. A typical power rating for each element may vary from 4.5 to 6 kWh.
Ordinarily, the upper and lower elements both have the same rating. The upper
and the lower thermostats are usually set at the same setting for the desired hot
water temperature, which is usually around 150 degrees fahrenheit. Due to the
hysteresis nature of the thermostats, water temperature drops a few degrees below
150 before the thermostats start activating the heating elements. An important
feature of dual element electric water heaters is the interlock between the two
heating elements which curbs the operation of the lower element unless the upper

element is off.

During the normal operation, a full storage of hot water is maintained. When-
ever there is a hot water draw, the cold water enters at the bottom, and being
heavier than hot water, it remains at the bottom. Usually, there is little mixing,
and the water in the storage tank remains stratified by temperature. As more hot
water is drawn, the cold water moves upward; and as soon as the lower thermo-
stat senses the colder temperature (which as mentioned must be more than a few
degrees below 150) the lower element is turned on and water is heated until the
temperature réaches 150 degrees. If the rate of hot water draw is greater than
the production rate of the lower element for a sufficiently long period of time, the
hot water depletes beyond the level of the upper heating element and upper ther-
mostat, and consequently, the upper element. is also turned on. However, due to

the interlock between the two elements, the lower element turns off until after the
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Figure 6.1: Dual Element Electric Water Heater
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water temperature around the upper element increases beyond the 150 degrees.

In a typical household the upper element does not come on line very often.

6.3 Demand Data

'As mentioned before, it is assumed that no basic physical changes other than
electrical connections to the heating elements and thermostats are allowed. One
exception can be the installation of a flow meter, which would provide data on the
time and the volume of water drawn from the water heater. In the absence of a
flow meter, the only types of information that can be gathered are the intervals
at which the two thermostats and the two elements are on and off. Note that due
to the interlock, the lower thermostat and the lower heating element would not

necessarily be on at the same time.

The information provided by the heating elements are simply the electricity
consumption for the periods during which they are on. Since the elements use
electricity at a constant rate, it is possible to calculate the average or total elec-
tricity use for the periods at which the upper or lower elements are on. However
the electricity usage values do not directly relate to hot water demand values since
some of the energy increases the hot water stored, and some is lost through heat

transfer to the environment.

The information provided by the upper and lower thermostats relate to the
amount of hot water in the storage. In computing the hot water level in the storage
tank, the effect of hysteresis of the thermostats should be taken into consideration.
In other words, a thermostat turns on its corresponding heating element at a
certain water temperature (or hot water level) and it turns it off at a cifferent

temperature.

However, during the interval when a thermostat turns off its corresponding

heating element and the next time that it does it again, none of the energy would
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go into the net storage of the hot water since the level of the hot water, i.e. storage,
would be back at where it started. Therefore, any amount of electricity used
during such an interval goes either into producing hot water which is subsequently

withdrawn, or it is lost to the environment through heat transfer.

Therefore, the combination of the streams of information from the thermostats
together with those from the heating elements provide data that can be used as
the basis of calculations for the prediction of demand and optimal scheduling of

electricity usage.

A computer program would identify the time when the upper and lower ther-
mostats go off, and it would evaluate the total electricity consumption for all the
intervals between such periods separately, since the two thermostats do not turn
on or off at the same time. The interim results are two different sets of time inter-
vals during which the total electricity use is known, corresponding to the intervals
of consecutive series of on-off information provided by the two thermostats. Due
to the stochastic nature of demand, not only the two time series differ, but also
the time intervals within each set are unequal in length; and furthermore, they

change from day to day.

The next step is to translate these values into demand plus loss (or demand
for short) patterns. As a start, we can assume uniform demand during each in-
terval, and therefore, demand at each unit of time (period) is simply the ratio of
the electricity consumption during each interval to the length of that interval. A
different approach is to assume independence of demand at each period during
each interval. This assumption results in a binomial probability distribution for
the probability of discrete demand levels at each period within an interval. In-
terestingly enough, the expected value of demand at each period is equal to the
average uniform demand for the same interval. In this way, the expected value of

demand for all the periods of the day can be evaluated.

It must be kept in mind that a different calculation would be carried out
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for each of the two sets of data. These two sets of data can be considered as
representing the same random variable and can be combined in some appropriate
manner in order to determine the expected value of hot water use at each time

unit (period) of the day.

The next step is to predict future demand from the evaluated demand patterns
of the previous days. A sensible way of doing this would be to separate the results
by the day of the week. In other words, to predict demand for a monday, only
the data from previous mondays would be used. Then, the changing pattern
of demand must be taken into account. One way of incorporating the notion of
demand pattern evolution is to assign a higher weight to the more recent data. For
example, if W; denotes the vector of demand for the :’th monday to be predicted,

then

"V; = 0.4Wi_1 + 0.3W,‘_2 + 0-2VV,'_3 + O.IWi_q (6.1)

An interesting feature of the above formulation is the effective cut-off of the
data of the previous month, which is appropriate in the sense that it takes into

account the seasonal (or monthly) variation in the demand pattern.

6.4 Mathematical Model of the Operation

The problem can be modeled in discrete time as a general form of an inventory
problem where the storage 2t any period is equal to the production minus demand

and minus loss at that period plus the storage from the previous period.

X[k +1) = a X[k] + U[k] - W[k] (6.2)

where

k time period
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X [&] storage at the start of period k

Uk electricity consumption during period k
W (k] demand during period k
a storage loss coefficient

The values of W are stochastic and can not be determined before hand in a
deterministic fashion unless some simplifying assumptions are made. Thé values of
a depend on the physical characteristics (heat transfer) of the water heater and the
environment. Values of U are variables that must be determined such that the total
cost of electricity consumption is minimized subject to the capacity constraints and

non-negativity constraints for both storage and production capacities.

Values of W can be predicted only through the monitoring of information ob-
tained from the thermostats and the heating elements. An underlying assumption
is that hot water usage pattern is not totally chaotic, and it is presumed possi-
ble to establish some sort of approximate pattern for daily use of hot water in a
particular household by continues analysis of information obtained from the ther-
mostats and the heating elements. Of course, special care must be taken to take
into account the evolution of the hot water usage patterns, and the influence of

factors such as the time of the year and the day of the week.

6.5 Optimization Methodology

Assuming that on each day the previous electricity usage data is processed and
some form of demand pattern for the next day is established, then it is possible to
treat the demand pattern as deterministic and solve the deterministic optimization
problem for minimizing electricity consumption costs given the forecasted demand
and spot prices, and subject to the capacity and non- negativity constraints for

the storage and production capacities of the water heater.

The optimization algorithms to be used here, are based on the simplification of
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the general algorithm described in Chapter 4. If losses are significant (the 1R1C

model), then the algorithm becomes similar to the one given by Tsitsiklis [T2].

However, the information acquisition methodology lumps the storage losses as
a part of the demand, and therefore, there is no need to worry about the storage
losses at this point. Algorithm for single storage without losses (the 0R1C model)
takes a specially simple form. It is a special case of the Tsitsiklis algorithm,
however, it was developed independently by this author [D1] for an earlier project
that led to the present work. All these algorithms are special cases of the general

algorithm of Chapter 4. These algorithms are described in the Appendix C.

The basic technique of the algorithm is first to establish an initial solution
or electricity usage pattern based on uniform prices. This is the simple pattern
of electbrici-ty'use in the absence of spot prices which corresponds to the demand
pattern. The next step is to reschedule the electricity use of the most expensive
period with the least expensive period subject to storage and production capacity
constraints. The algorithm reiterates this operation for the next pair of the most
and the least expensive periods until all the periods have been considered. It has
been proved [D1] that each period needs to be considered only once, and that the
final solution is optimal and corresponds to the exact result of a linear program,

“and yet it does it faster.

6.6 Optimization and Demand Prediction

Before applying the algorithm to find the optimal electricity consumption schedul-
ing for the water heater, two distinct problems must be considered first. One is
the question of ensuring that the water heater would still generate hot water even
if the actual hot water demand does not correspond to the predicted hot water

demand. The other is the question of information generation.

Fortundtely, the basic design of the dual element water heater lends itself to
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the solution of these problems. The approach chosen here is to treat the volume
of hot water above the upner heating element as a safety feature and to disconnect
the upper element from the control signal. Consequently, the optimal algorithm
would consider only the volume between the lower and upper elements to be the
depletable storage, and the decision variable whether to turn on or turn off the
electricity would only apply to the lower element. Therefore, the upper element
would behave in a manner similar to the normal situations, and would turn on
whenever it is signaled by the upper thermostat to do so. If the actual demand
is exactly equal to the predicted demand, then the upper element would never
turn on since the reserve storage would never be used. Only when the actual
demand deviates from the predicted demand and the reserve storage above the
upper element gets used, would the upper element start generating hot water.
The lower heating element, however, would not act as it would under normal
operating procedures. The purpose of optimal scheduling is to do away with the
maintenance of a permanently full storage, and that implies that the main storage
would usually be less than maximum. Output of the optimal algorithm, which
is the optimal production schedule, can be interpreted as schedule for the times
when the lower heating element would be allowed to be on. In this manner, the
control methodology is combined with the normal functions of the thermostats
and the heating elements of the dual element water heater in order to optimize
the use of the storage between the two elements, and at the same time to let the
upper heating element to behave normally and keep a reserve storage for the times
when the main storage is depleted beyond what the optimal algorithm considers’
to be the minimum level. )
An interesting feature of this methodology is that if the actual demand is'
exactly equal to the predicted demand, then the upper thermostat or the upper |
element would never come on and no information would be produced that could
relate electricity consumption to hot water demand for intervals shorter than 24
hours. Only if the actual demand deviates from the predicted values, would the

upper thermostat generate the signals that can be used in the computation and
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Heating elemenis ratings 4.5 kWh

Storage tank capacity 52 gallons

Upper element placement 13 gallons

Hysteresis effect equivalence 15% of storage above the thermostat
Hot water temperature 150 degrees F

Cold water temperature 60 degrees F

Initial storage (for simulation) | 25 gallons

Table 6.1: Information for Water Heater Case Study

estimation of hot water demand. There are various options available which need
further study. Under any circumstances the information obtained as outlined
above would indicate over supply or under supply of electricity; and thus, the
major goal of additional work would be to determine those control strategies which
result in more information at the cost of less savings, i. e. control sirategies which
involve occasional and intentional distortion or alteration of the predicted demand

in determining the optimal electricity use scheduling.

6.7 Simulation

A simulation of a simple model of a dual electric water heater has been imple-
mented on a personal computer, using periods of 6 minutes as the unit of the

discrete time. The simulation runs can be based on either the normal operatio:

or the optimal operation based on a decision variable which is determined by the
optimal algorithm. The water heater model characteristics are based on the most

widely used residential water heaters. The most important features are given in

Table 6.1.

Based on these results the optimal algorithm takes the working storage capacity
to be 52 -13 = 39 gallons. The data used are based on the data of a typical

household in New Mexico (taken from reference [E2]). Figure 6.2 presents the
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Figure 6.2: Spot Prices Used in Water Hcater Study

spot price values used in the optimization.

Figure 6.3 is the demand for hot water in gal/period. Under normal (non-
scheduled) operation, electricity is used when hot water is drawn from the water
heater. Therefore, the reference electricity usage is same as the hot water demand
profile. In addition, normal operation maintains a full storage, unless rate of hot
water usage is too high to enable adequate hot water production. However, the
heating elements are on as long as the storage level is below maximum. Therefore,

the reference storage level is constant at 52 gallons.

Figures 6.4 and 6.5 provide the optimization results for the optimal hot water
production (or usage of electricity) and the resulting storage variations. resper
tively. The optimal production schedule is quite different from the reference or
normal production schedule, although for the time horizon, total hot water pro-
duction equals the total demand at 79.5 gallons. However, the ratio of the optimal

total cost to the reference total cost is 5.5 to 3.3.
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Figure 6.3: Hot Water Demand Profile

It is interesting to note that the optimal production schedule represents a load
shift away from the periods of high prices. The reason for iﬁcreased production at
the end of the day is the requirement that the storage level at the end of the time

‘horizon should be equal to initial storage level. This constraint can be relaxed,
resulting in a minimum storage level at the end of the time horizon. Another
interesting observation is that a full storage is maintained for only a third of the

time during the day.
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Figure 6.4: Optimal Hot Water Production Profile
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Figure 6.5: Optimal Storage Profile
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Chapter 7

SINGLE STORAGE SYSTEM
SUBJECT TO STOCHASTIC
DEMAND

7.1 I_ntroduction

This chapter presénts the results of a dynamic programming approach to the
‘_ optimal scheduling of electricity consumption under spot pricing and stochastic
demand. This study is ;)nly a preliminary effort in the formulation of a simple
~ problem, and should be considered more as an appendix to the main body of the
~ thesis. However, it is possible to extend the formulation to more complex systems

at the expense of more computation time.

 The physical process of‘interest is the scheduling of input U (electricity usage
or hot water) for a single storage unit with no losses (water heater). The storage
level may vary between two bounds X,;, and X,..., and the exogenous demand
D (for hot wlater) is stochastic. The input costs for the next 24 hours are availahle
and they are different for each hour. The assumption of no losses is very restrictive,

and the results should not be generaﬂized to more complex situations.

Dynamic programming formulation incorporates the physically derived discrete
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model (state equation) of the heat stcrage, production, and demand for a single
storage unit. The general notations follow those of Bertsekas [B2|. A series of test
cases were examined and the preliminary results for an stochastic demand with
uniform, but not identical, probability indicate that for a storage unit with no

losses:

e The principle of certainty equivalence does not apply to this system.

e Stochasticity of demand does not limit the length of the effective time hori-

zZon.

o Compared to ordinary thermostat operation, it is possible to decrease the
electricity costs by rescheduling electricity consumption between two periods

even if they are separated by a large (infinite) number of periods.

o If there are no storage or production limits, the optimai electricity use level
in the first period will not generally remain constant if the length of the time

horizon is kept increasing.

The following sections describe the physical model, the dynamic programming

formulation, computational implementation, and the results of the case studies.

7.2 The Physical Model

In its simplest form the physical model consists of a storage unit with no losses
other than the decrease due to demand. Although demand is stochastic for future
periods, it is known for the curreni period. If at each period demand is high
enough to force the storage below its minimum level, the input is automatically

increased to meet the demand. Thus storage constraints are never violated,

Starting storage level at any period Xy, as shown in the following relation-
ship, depends on the scheduled electricity usage (heat production) l/; and demand

(for heat) Wi, and the starting storage level X of the previous period:
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X1 = min [(X,,0,, max (0, Xy + Uy — W) (7.1)

0 S. ‘Xk S Xmaa:

0 S Uk S Umaa:

where,
X storage at period A
U scheduled electricity use at period k
W, stochastic demand at period k
Xmaz maximum acceptable storage between each period
Unnas maximum allowable electricity use at each period

Demand W, is stochastic with a uniform probability distribution, and it is
bounded by W,,,;,, and W,,.,.,, where the bounds may be different for each period.
This particular form of demand is chosen to minimize the effort in interpretation
of the result. Other probability distributions can be implemented easily. Note

that in this section, instead of brackets, subscript k is used to denote time.

The system automatically shuts off operation if storage reaches X ., and as a
result, the actual electricity use, X 0. — Xt + W,., would be less that the scheduled
electricity use, Uj in this instance. The system also automatically starts on if the
scheduled electricity use is insufficient to keep the storage level above its minimnum
value (zero level of storage set at X,,;,. In this case the actual electricity nse,

0 — Xy 4+ Wy, is more than the scheduled electricity use (7.

No additional restrictions were imposed in order to facilitate the dynamic pro-

gramming formulation and also to gain an insight on the effects of the stochasticity
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of demand on the optimal scheduling of electricity use without the added com-
plication of more specific assumptions particular to various physical situations.
No attempt was made to consider all the particular features of a space heat-
ing/cooling unit with storage losses. Although incorporation of storage losses into
the dynamic programming formulation is easily possible with no added difficulty,
it was not done in order to interpret the results for the simplest case and make

the broadest conclusions with regard to the effects of stochasticity.

7.3 Dynamic Programming Formulation

The present problem can be classified as a special case of inventory problems which
have been extensively studied by various researchers in mathematical programming
and management science. However, there are important differences. The special
restrictions imposed on the storage limits and the variability of the price make the
analytical approach quite cumbersome for time horizons longer than two periods.
The numerical method is based on the discretization of the storage, electricity
consumption (hot water production), and demand (for hot water or electricity)
levels; and on computation of expected cost associated with each level of electricity
utilization for each possible level of storage for each period. The electricity usage
levels which result in minimum value of expected cost over the time horizon provide

the optimum policy decisions.

In summary, beginning with the last period, dynamic programming formulation
finds the optimum level of electricity use for each starting level of storage, together
with the associated optimum cost (or cost to go). Then it considers the period
before the last one, and finds the level of electricity use at thut period which
results in total minimum cost to go from that period on for each starting level of
the storage. This iterative process is continued backwards in time until all periods

within the time horizon are considered.

In this particular problem, future costs after the very last period of the time
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horizon (period N +1) are of no consequence; and thus, the cost to go Jy41(Xny1)
(cost to go at period N + 1 as a function of the level of storage at period N + 1)
is zero. At a period k the electricity cost is P, and for an arbitrarily scheduled

electricity usage level U, and starting storage X, the immediate expected cost is:

‘é}{Pk minf(Xmaz — Xy + Wi), max(Uy, (0 — X, + Wy)) |} (7.2)
k

The expression multiplying the price is the actual electricity consumption (heat
production). This formulation implies that if the scheduled U, is large enough (or
Wi small enough) to cause the storage at k+1 to go beyond X4z, then the system
shuts off and the actual electricity usage is limited to X, — X k + Wp. Similarly,
if the scheduled Uy is small enough (or W, is large enough) to cause the storage to
drop below zero, then the electricity use is continued beyond Uj with the actual

electricity usage being 0 — X, + W,.

The optimal cost to go of the period k, i.e. Ji(X k), denotes the optimal
electricity cost for the periods remaining from period k to the last period, provided
that at each period optimal decisions are made. Note that there is ore value of Jie

associated with each starting level of storage X at period k.

Then the optimal value of Uy at period k is the one which minimized the sum
of the expected values of the immediate cost at k and the optimal cost to go at

k +1, or in dynamic programming formulation:

Je(Xi) = n(lrin "E,{Pk min{(X,ee — Xy + W7}),
k k
max(U;,0 — Xy -+ ) ] -+ JA.+1(.YL.+| )} (7.7)

where at the next period k+1 the storage level, as given by the system equation

is:
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Xit1 = min[X,40, max(0, Xy + Uy, — Wy) | (7.4)

Dynamic programming starts with the one to the last period in the time horizon
and finds the optimal Uy_;, and optimal cost to go Jy_1(Xn-1). Note that in the

above formulation the next cost to go, Jy(Xy), is zero for all possible values of S[N]

since the costs incurred after the end of the time horizon are immaterial. Therefore,
by finding Ji(X}) for each period and going back, the dynamic programming finds

the optimal electricity production and cost to go function for each period.

Actual implementation of dynamic programming algorithm requires some re-

working of the main formulation as shown below:

The expression for production at period k,

min [(Xmaz ~ Xi + Wi), max (Uy, (0 — X + W) )] (7.5)

can be re-written as:

min{(Xmae — Xp + Wi), Ui] + max(Uk, (0 — Xy — Up + W,)] — Uy (7.6)

which by subtracting and adding 2U; becomes:

min((Xmae ~ Xi — U + Wi),0] + max(0,(0 — Xp — Uy + W) + U (7.7)

If we define a new variable Y, as the sum of storage and scheduled production

at period k, then we have:

o= Xy + U, (7.8)
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Note that at each period the value of Y} can never be less than the storage at

that period. Re-writing in Y, then the actual production at period k is:

min((Xmee — Y + W), 0] + max|[0,(0 — Y, + W)] = +Y, — X, (7.9)

Now, the total cost to go at period k which is the expected value of the sum

of immediate cost at k and the cost to go at period k + 1 becomes:

Ju(Xe) = Irtlé‘npg}{P,,(min[(X,m,_T — Y, + W4), 0] + max[0,(0 — Yi + D;))
+Ye — Xi) + Jeq1(Xes1)} (7.10)

Now regrouping some of the inner expressions as:

L()’k) = Pk ‘-g/;{min[(xmuz - Y;c + Wk)’o]} +
P, ‘%{max[(),(o — Y + Wi)]} (7.11)

we have the following:

Optimal cost to go function for period k:

JUX,) = minlPe Ye+ L) + (B {ea(Xu)] = P X (T.12)

for k starting with N and going back to 1, and

INt1(Xnp) =0 (7.13)

for all possible values of Xy 41, and, with the equation of state being:

173



Xe1 = min[ X, .., max(0,Y;, — Wp)] (7.14)

In the program Ji1(Xg41) is referred to as JKPLUS, and in the optimal cost
to go function the terms in the bracket are referred to as GY, which is the total

cost given any Y, and assuming that X, is zero. Therefore,

GY = P, Y+ L(V3) + E{Jep1(Xi1)} (7.15)

~ Note that for a giver value of storage at period k, Xi, the optimal cost, or the
cost or go function Ji(Xy), is attained by the minimization with respect to Y, of
the expressions in the large bracket. We alsb know that Y, = X, + Uy, and thus,
if the minimization is achieved for some value of ¥, such as Y,,, then the optimal

decision depends on whether X} is greater or less that Y;,,b In other words:

o If X; <Y,,, then optimal production Ugpt is Yop — X

o If X > Y,,, then optimal production U, is 0.

This is simply due to the fact that Y, can not be set to less than X.

7.4 Computational Implementation

t

The algorithm was written in APL*PLUS and implemented on an IBM/P(' com-
patible computer. The progfam has a modular structure, and therefore, it is quite
simple to implement other stochastic forms for demand (driven by the outside
temperature) such as a normal distribution. This, however, was not done so as to

keep the task of interpretation of results to a minimum.

The program starts by partitioning the range of %.cceptable storage (0 to X,,40)

and production (0 to Up,.) and demand (W4, and W,,;,, for demand at period
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k) into discrete units. It then starts with the one hefore last period in the time
horizon using the our general cost to go equation Ji(X;) where k is N — 1. It
finds the Y., by examining all the acceptable values of Y, and searching for the
minimum. For example, it starts with Y, at zero, and then finds the expectation
by examining all the possible discrete values of Wy, which can be between Woning
and Wp.,z,, and multiplying the cost by the probability of demand being at that
value (uniform probability in our problem). It then increases Y} to the next value
and finds the expected cost as before, until all the possible values of ¥; have been

examined. Finally, it searches for the value of Y,pt, which is the value of Y, which

gives the minimum expected cost.

Note that according to our general equation there is one value of cost to go
(optimal expected cost) associated which each level of storage at k. Also note that
each overall iteration requires the value of cost to go of the next period which, as

mentioned before, starts at zero for the period after the end of the time horizon.

In the first iteration the cost to go of the next period, Jis1(Xit1), is zero for
each level of Xy ;. For the first iteration & + 1 is equal to N. In the intermediate
periods at each level of Y; and W, the value of X}, is evaluated from the equation
of state, and using this value, the corresponding value of cost to go for period & +1,

i.e. Jr41(Xg), from the previous iteration is used in the current iteration.

7.5 Results and Conclusions

7.5.1 A hypothetical case

This subsection is not based on our dynamic programming study, but it comple-
ments our other results. Compared to ordinary thermostat operation of heating, it
is possible to decrease the electricity costs by rescheduling electricity consumption
between two periods even if they are separated by a large (infinite) number of

periods.
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To understand it, imagine a hypothetically infinite number of periods at which
storage is allowed to be anywhere between X; and X,. If the system is set at
automatic operation with a thermostat setting of X;, then at each period hot
water is produced to compensate for the stochastic demand (for hot water) at
that period and keep the storage at X;. Now suppose that the very last period
has a higher electricity cost compared to the first period. Then it is possible t.'0 set
the thermqstats at X, for all the periods except the very last and in this way, if
there are no storage losses, the additional hot water produced in the first period is
carried to the last period in which the storage is allowed to drop to X;. Since this
heat was produced in the first period and not the last, overall cost is lower than
the first case. Therefore, when there are no storage losses it is possible, under
stochastic demand, to reschedule electricity usage between two infinitely apart

periods and still improve the cost.

7.5.2 Selected graphical results

The figures included in this section are meant to provide a graphical presentation
of the cost behavior under stochastic demand for the simplest case of the 2 pe-
riod time horizon. The information shown in Table 7.1 describe the case study

considered here. The computation time was 94 seconds.

The total cost to go at the second period, GY;, is a function of the sum of
storage and production at that period. The optimal cost to go value is determined
by minimizing this function with respect to the production value U,. Figure 7.1
shows that this function is a monotonically increasing function of the sum of
storage and production, but only up to a point. It remains constant after that
point. This is a sensible result, since given a starting storage at the heginning
of this period, the total cost will increase with a higher usage rate of electricity,
until the storage is saturated. Since the maximum expected demand is 9, then
this saturation point occurs when the sum of storage and production is 29 which

is the maximum possible.
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TOTAL COST TO GO

N=2 | number or periods in the time horizon
P, =4 price during the first period

P, =10 price during the second period

Wi,... =3 | minimum demand during first period
Wiee = maximum demand during first period
Ws,... =3 | minimum demand during second period
Wipmee =9 | maximum demand during second period
Xomae = 20 | maximum possible storage

Umaz = 20 | maximum possible electricity consumption
Xinitiat = 0 | initial storage

Ngetta = 20 | discretization number

Table 7.1: The Two-Period Case Study for the Graphical Results

TOTAL COST TO GO AT LAST PERIOD

GY[1;] FOR TEST P = 4, 10 e a
260 = ol

250 -
240
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220 -
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200 -
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180 —
170
160
150 -
140 -
130 -
120 -
110
100 ~
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70 - .-
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Figure 7.1: Total Cost to Go at the Second Period
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OPTIMAL COST TO GO AT LAST PERIOD

JKPLUS[1;] FOR TESET P = 4, 10

60 -§

50

30

OPTIMAL COST TO GO

20 -

10 -

o 2 4 6 8 10 12 14 16 18 20
ETARTING STORAGE AT LAST PERKOD

Figure 7.2: Optimal Cost to Go at the Second Period

As seen in figure 7.2 the optimal cost to go at the second period, J,, is highest
when the starting storage in that period is zero. For higher levels of storage at the
beginning of the seccnd period, the optimal cost to go decreases monotonically,
until it beconies zero when the storage at the start of the second period is 9; which
is exactly equal to the value of the maximum expected demand during the second
period. Since the total cost to go function of Figure 7.1 is always increasing or

constant, its minimum value is obtained when production or U, is set to zero.

Figure 7.3 shows the values of the total cost to go at the first period, GY;, which
is at its minimum value when the sum of storage and production is somewhere
close to 13. Therefore, if the storage at the start of this period is less than 13.
then the production must be set at a value that brings up the sum value to 3. If
the storage at the start of the period is more than 13, then production must he

set to zero. Note that production can not be negative.

Figure 7.4 depicts the values of the optimal cost to go for the first period, J;
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TOTAL COST TO GO AT FIRST PERIOD

GY{2;] FOR TEST P = 4, 10
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[0

B0

73

TOTAL COST TO GO
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Figure 7.3: Total Cost to Go at the First Period

as a function of the storage at the start of that period. Note that the optimal

cost to go is zero if the starting storage is 18, which is the maximum possible total

demand.

7.5.3 Numerical results of the two-period case

The optimal value of production at the first period is the value at which the
marginal cost of production at the first period (which is an increasing function of
production) is equal to the expected marginal savings at the second period (which
is a decreasing function of the production at the first period due to the possibility

of additional stochastic storage remaining from the previous period).

Note that at Table 7.2 demand at each period is between a minimum of 3 and
a maximum of 9 and an expected value of 6. For the two periods combined, the
minimum demand is 6, maximum demand is 18, and the expected demand is 12.

Since storage level can change only in units of one, then demand at each period
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DEMAND=3 3 initial = 0, and Xma,, = 20, and Umac =20
9 9 NDELTA = 20, number of discrete storage levels

IF

PRICES = 0.1 and 10.0
PRICES = 0.5 and 10.0
PRICES = 1.0 and 10.0
PRICES = 4.0 and 10.0
PRICES = 5.0 and 10.0
PRICES = 7.0 and 10.0
PRICES = 8.0 and 10.0
PRICES = 9.0 and 10.0

PRICES = 9.5 and 10.0

PRICES = 9.8 and 10.0
PRICES = 9.9 and 10,0

PRICES = 20.0 and 10.0

THEN

Uppt = 18

Uopg =17

Uopg =16

Uopt == 13

Uppe = 12

Uppe = 10
Ugpt =9
l[opt = 8

Uopg = 7

Uopt = 6

Uppt = 6

Uppt = 1,2,3

Table 7.2: Numerical Results for The Two-Period Case Study

180



OPTIMAL COST TC GO AT FIRST PERIOD

J¥PLUS[2;] FOR TESET P = 4, 10

OPTIMAL COST TO GO

STARTING STORAGE AT FIRST PERKOD

Figure 7.4: Optimal Cost to Go at the First Period

can be either 3 or 4 or 5 or 6 or 7 or 8 or 9, with a probability of 1/7.

Comparing the optimal values of U, for each period the following observation

is made:

e The principle of certainty equivalence does not apply to this system.

7.5.4 Increasing time horizon with limited storage

In this study the time horizon N (number of periods considered) is increased from

the earlier period on.

As seen in Table 7.3, if storage and production are unlimited the Y, would
keep increasing with N. For example if X,,,. and U,,,. are each 150 (more than
enough) then for N = 8, Y, = 39, where total expected demand is 48.

The main result of this case study is that:
° Stocha;sticity of demand does not limit the length of the effective time hori-
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DEMAND = 3333333333 Xomae = 20
99999999909 Upaz = 20
NDELTA = 20
PRICES = 910101010 10 10 10 10 10

N Yope = X, + Uy(first period) Total Expected Demand

1 lor2or3d 6

2 8 12
3 13 18
4 19 24
5 27 30
6 29 or more up to 40 36
7 29 or more up to 40 ) 42

Table 7.3: Results for Increasing Time Horizon with Limited Storage
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TIME HORIZON= 8

and

DEMAND = 3333333333 Xmazr = 150

9999999999 Upnaz = 150

NDELTA =50
PRICES = 91010101010 101010 1¢C
PRICES Yopt
0.0001 10 1010 10 10 10 10 72
0.001 10 10 10 10 10 10 10 72
0.1 10 10 10 10 10 10 10 63
9 10 10 16 10 10 10 10 39
9.9 10 10 10 10 10 10 10 33
9.999 10 10 10 10 10 i0 10 24
Table 7.4: Effect of Price on Optimal Scheduling
zon.

7.5.5 Effect of prices on optimal consumption

The main results of this study, as shown in Table 7.4, is that everything clse
remaining the same, not only the relative magnitude order of the prices but also
their nominal ratio affects the optimum value of consumption for different periods.

Note that the total expected demand is 48, overall minimum demand is 24,
and overall maximum is 72.
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Chapter 8

CONCLUSIONS

8.1 Summary and Conclusions

The objective of this thesis was to develop scheduling algorithms for electricity
usage under spot prices. The analysis and case studies were restricted to residential
electricity consumption, although the results can also be applied to the commercial

and industrial sectors.

The first chapter provided the background information on spot pricing and
customer types. Chapter 2 presented simple static control schemes for storage

and non-storage type customers.

Modeling of thermal systems and their special properties were discussed in
Chapter 3. It was shown that thermal systems are asymptotically stable positive
dynamic systems, and as a result, behavior of higher order thermal systems has

some similarity to simple first-order systems.

Chapter 4 presented an algorithm for the scheduling ol electricity usage under
spot prices for single-input single-output higher order thermal systems subject to
input and output bounds. The algorithin takes advantage of the superposition
property of the linear systems, and the monotonically decreasing behavior of the

impulse response vector associated with the asymptotically stable positive linear
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systems. It optimally schedules electricity usage at lower priced periods to com-
pensate for decreased usage at higher priced periods without violating the input

and output bounds.

The optimality and efficiency of the algorithms written for the case studies
were demonstrated in tests against the simplex method. The relative efficiency of

the algorithm increased with the size (time horizon) of the problem.

In Chapter 5 the algorithm was applied to a case study of space heating in a,
2R1C (two resistance, one capacitance) building. Savings associated with schedul-
ing under spot prices were defined in terms of electricity usage under equivalent
flat rates. In the heating case study, four different price patterns, i.e. impulse,
step, single peak, and double peak, were considered. Results reflect the following

general conclusions:

e Savings associated with scheduling under spot prices depend on the output
bounds, input bounds, amplitude of price variations, and thermal properties

of the building.

e The output bounds are defined by the comfort band which specifies the
acceptable range of inside air temperature. An increase in the comfort band
provides more flexibility in scheduling of the heat input, and therefore, results
in higher savings. This temperature band also defines the maximum storage

capacity available.

e The input bounds are defined by the power rating of the heating system. A
more powerful heating system results in faster heating of the thermal mass
of the building. The returned heat from the thermal mass is used later to

substitute for the heat input at higher priced hours.

e Usuaslly, depending on the values of the building parameters, only one of the
maximum bounds on the input or the output are active. For instance, if at
each period, the inside air temperature would reach its maximum level with

less heat input than the possible maximum, then a more powerful heating
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system will not add to the savings. Thus the algorithm can be used in
economic assessment of the value of additional heating capacity or increase

in the range of the comfort band.

o Higher savings are associated with more pronounced price variations. For
the price patterns studied, and the particular building being considered, a
ratio of 10 to 1 between the highest price to lowest price results in a savings
rate of about 12% for the impulse response, and 15% or higher for other

price patterns. The savings rate increases as the price range is increased.

e Savings depend on the thermal properties of the building. The most interest-
ing behavior is associated with the size of the thermal mass in the building.
There appears to exist a unique optimal design value for the thermal mass
for each price pattern considered. If the thermal mass of the building is
decreased below, or increased above this value, the savings rate is decreased
in both cases. The optimal design value of the thermal mass is lowest for the
impulse price pattern. This means that under an impulse price pattern, a

less massive building results in higher savings than a more massive building.

e Savings depend on the rate of heat transfer between the inside air-and the
thermal mass of the building. Generally, a higher heat transfer rate results
in higher savings. Therefore, increasing this heat transfer rate by various

means such as installation of internal fans can increase the savings.

e As common sense dictates, results confirm that savings increase as the rate
of heat transfer to the outside is decreased. Therefore, better insulation

results in higher savings.

e The last three items indicate that the algorithm, in addition to being a
control methodology, can be used as a design tool in determining the opfi-
mal values of the thermal properties for buildings under various spot price

patterns.

In Chapter 6 A simplified version of the algorithm was applied to the control

of a dual element electric water heater. For the hot water demand profile and
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the price pattern used, a savings of about 40% was observed. The resalts are
based on the unrealistic assumption of perfect predictability for hot water demand.
However, hot water demand is confined to certain hours of the day, and a demand

profile can be assembled from the observation of data from previous days.

Chapter 7 provides a preliminary application of stochastic dynamic program-
ming methodology to a simple system consisting of a single storage with no losses.
Although the results should not be generalized beyond the specificity of the prob-
lem addressed, the formulation presented can be used as a starting point for con-

sideration of more complex systems and situations.

8.2 Areas for Further Research

The following list includes possible research studies that either complement or
extend the present work. Most are based on issues not explicitly or thoroughly

addressed by this thesis. Suggested are:

Studies in optimization:

e Detailed theoretical and computational comparison of the algorithm to alter-
native techniques such as the simplex method, Lagrange multiplier method,

networks with gain, projected gradient method, etc.

e Extension of the algorithm to include more general multi-input multi-output

dynamic systems with nonlinear inputs and storage costs.

o Extension of the algorithm to include integer constraints associated with

start-up and shut-down operations.

o Extension of the impulse response method to the linear control of more

complex dynamic systems

Studies in energy management:
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Application of the algorithm as a control methodology to more complex
models of space heating and cooling, specifically, to buildings with greater
numbers of lumped thermal masses and more complex heat transfer config-

urations.

Application of the algorithm as a design tool for the economic evaluation
of the auxiliary storage and insulation in buildings under various spot price

patterns.

A more unified approach to system identification, parameter estimation, and

system control for space heating and cooling in buildings.

Further studies on the demand prediction for dual element electric water
heaters based on the observation of the on-off signals from the thermostats

and heating elements.
Design of a complete energy management system under spot prices.

Actual field experimentation to evaluate the economics and practical imple-

mentation of the feed forward and other control schemes.

Studies in related areas:

Application of the algorithm to other electricity consumer and supplier stor-

age processes.

Application of the algorithm to other engineering and economic problems
with similar structures. Examples are ol sizing and inventory control in

management science, and hedging problems in field irrigations.
Study of the serial storage processes encountered in industrial applications.

Study of the impact of the customer response on the utility operations and

economics.

Stochastic problems:
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¢ A more detailed study of the dynamic response under spot prices for complex

systems under stochastic inputs and stochastic prices.

In summary, this thesis has shown the applicability of special purpose optimal
control logics for scheduling of residential response to spot prices. The algorithms
developed for HVAC, for hot water heaters, and for other more simple electric
consuming appliances were shown to be computationally efficient, and to be of
practical application in utility load control devices. As with any study of this
nature, for every question answered at least as many new avenues for theoretical

development and application have been opened.
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Appendix A

DETAILS OF THE
ALGORITHM FOR A
MULTI-STORAGE
SINGLE-INPUT
SINGLE-OUTPUT THERMAL
SYSTEM

A.1 Introduction

In this appendix, the complete algorithm introduced in Chapter 4 is presented in
the informal notation of pidgin pascal. Following sections are directly based on
the various procedures of the algorithm. A description of the pidgin pascal is
also provided. A cursory look at the procedures prior to the reading of this section

will prove helpful in understanding the materials being presented.

Feasibility is always maintained because no constraining limit is violated. How-
~ ever, the intermediate solutions may not necessarily form a basis, however, the final
solution results in a spanning trec configuration which can not be improved fur-

ther. The program has a inodular structure consisting of separate procedures or
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subroutines. Some procedures are called in within the other procedures. In or-
der to distinguish procedures from vatiables, the procedure names start with the

prescript P- before their names.

A.2 Pidgin Pascal

The pidgin pascal notation used in this appendix is similar to the pidgin algol
notation used by Papadimitriou and Steiglitz [P1]. The motivation for using pidgin
pascal is the desire to present a general and informal algorithmic code without
any strict adherence to specific higher level languages. In addition, the exact
forms of the statements and expressions need not be specified. The ob jective is
to simply present the general ideas without being specific. The notations defined
in this appendix are very similar to those of PASCAL programming language.
For clarity, program-specific statements are depicted by bold face letters in the

algorithm. A short description of the pidgin pascal notation follows:

e program name: Refers to the main program or routine in the algorithm.

Other subprograms or subroutines are called in this program.

¢ procedure name: Refers to the subroutines in the algorithm. Each separate

procedure is identified by its unique name.

¢ call name: This statement calls procedure name within the main program

or the other procedures.
e Assignment: has the following form:
variable := expression;

where the ezpression involves any algebraic or logical operation depending
on the type of the variable. The expression is evaluated and the result is
assigned to the variable. The semi-colon marks the end of the expression or

statements.
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if condition then statement: If the condition is true then the statement is

evaluated.

else statement: This is an optional addition to the Conditional Statement.

If the condition is not true then the statement is evaluated.

elseif stalement: This is similar to else , except that more than one condition

can be tested by having many elseif statements.

for list do statement: The statement is repeated for the parameters identified

by the list. This is identical to the do loop statements.

while condition do statement: The condition is checked, and as long as it

is true, the statement is repeatedly evaluated.

Compound Statement: If there are more than one statement as a part of a
conditional or do loop arguments to be evaluated, then these statements are

enclosed between a begin , and end pair.

and , or : These are used to construct compound conditions in the if and

while statements.

continue : Is a dummy statement which is ignored in the execution of the

program.

comment : Is a statement used for inserting comments anywhere in the

program. This statement is also ignored in the execution of the program.

input and output : These are the input and output statements in the

program.
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A.3 Description of the Program and the Proce-
dures

The Master Program

The master program P-Run lays out the main routines of the algorithm. Each
particular routine is assigned to a separate procedure. After setting up the inputs
and parameters, it calls the P-InitialSolution procedure which finds an initial fea-
sible solution. It then calls the P-FindIVector procedure which finds the impulse
response vectors I* for unit input increase at each period k. Next, it calls the
P-FindJVector procedure, which constructs the elementary direction vectors J,*
for each period k from which all subsequent feasible direction vectors Fu* and also
all the output change vectors Fy'c are constructed. Elements of vector J,* are the
amount of decreases in inputs of all and every future period if the input of the
first period is increased by one unit, provided that each future input is decreased

as much as possible in a chronological order.

Next, the program checks to see if inputs of some periods are already at their
minimum level, which, as a result, can not be decreased further. This is carried
out in the P-FindFVectors procedure which modifies all the J vectors into the F

vectors.

~ Procedure P-MarginalSavings is called to find the savings associated with unit
increases and subsequent scheduling in the inputs of each period. The ith element
of the S vector is the marginal saving associated with unit increase in the input of
the ith period and the rescheduling of subsequent inputs in the calculated feasible

direction.

If some of the marginal savings are positive, then rescheduling of inputs among
some periods is economically feasible. At this point the program calls the proce-

dure P-SelectChargePeriod which finds the period with the highest marginal sav-
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ings. This period is named the Charge Period or k., and the associated value of

its marginal saving is si,_.

A period at which either the input u or the output y is at the maximum is
excluded from this search since any increase in the input of that period will violate
one or both of the constraints at that period. Other periods are excluded if they
result in an output increase above the maximum in some future periods where no

input reductions are possible.
The program terminates if no period has positive marginal savings.

The feasible direction vector Fy* is the change in the vector of inputs Uy if
the rescheduling is performed for one unit increase in the input of the k.. The
output change vector Fyk‘ determines how much vector of outputs Yy will change

by the same unit increase in the input of k. and the subsequent rescheduling,.

The next task is to determine how much one must go in the feasible direction.
In other words how much should the input at k. be increased until a 'gonstraint
is met. This value of increase is determined by the procedure P-Ulncrease which
finds the maximum amount by which the input at k, can be increased. This factor

is named «.

Depending on which constraint is met by moving in the current feasible direc-
tion Fy* when ufk,] is increased by a, the procedure P-AdjustJ Vector is called to
find the new input and/or output constraints which have just become active. If
at a certain period the input has just becomes zero, then the input of that period
can not be decreased any more. In this case the procedure P-AdjutJVector calls
the procedure P-Exclude to modify the F,, and Fy vectors. Also, if the output of
a certain period reaches the maximum, and, if previously the input of that period
had not been decreased because that period had been chosen earlier as a charge
candidate, then the P-AdjustJVector calls the P-Include procedure to include that
period again in the list of periods at which input an be decreased, and to modify

the Fy and F'y vectors accordingly.
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In addition, the marginal savings vector S also changes simply because the
Fy vectors are changed. Updating of the S vector is done by the P-Exclude and

P-Include procedures.

If the value of « is non-zero, the procedure P-NewSolution is called to find the

new block vector of inputs and outputs.

The loop is started again be selecting the next charge candidate. It is quite

possible that the previous charge candidate is chosen again.

Each procedure (or subroutine) called in P-Run performs a special task or
module. The algorithm is organized in modular form in order to make its structure
as clear as possible. The P-Run program controls the main flow the routines and

checks for the end of the iterations and the end of the search.

(a) P-InputData and P-Coeflicients : Procedure P-InputData inputs

the systein parameters and other data such as the stream of prices
P[k| and the stream of exogenous variables W[k]. In addition, this
procedure inputs the initial conditions X[1], and defines other variables
that will be used in the program, and initializes values of some of these
vari »bles.

Procedure P-Coefficients uses the parameter data to calculate the sys-

tem coeflicients.

(b) P-InitialSolution : Procedure P-InitialSolution uses the state equa-

tions to find an initial feasible solution for the inputs u[k] for all k,
given the initial conditions X[1], and the values of the exogenous in-
puts w[k] for all N periods. This procedure starts with the first period
and forces the output to y[k] i, at subsequent periods, and finds the N
values of uy for k = 1,2,...N without violating the maximum (u[k]mar)
and the minimum (u[k];n) input constraints for each period.

At some periods, the input may become maximum before the output

reaches the minimum value. This is because at some periods the ex-
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ogenous input (which is negative in most cases) can be quite large in
magnitude. Then, even the maximum input of that period may not be
enough to satisfy the demand of the exogenous input. In such a case,
one should go back in time and increase the input of the previous peri-
ods to satisfy the extra demand of the present period, and if necessary

use as many periods as possible.

It is also quite conceivable that no combination of inputs may result in
outputs which are within satisfactory bounds. In a sense the bounded
output system may not be reachable. Thus, at each period of the
recursive calculations, the values of resulting inputs must be checked,
and if they fall outside the allowable bounds, they must be adjusted.
As a result the output may not be strictly at its lower bound, and

possibly, the output may not even be within its permissible bounds.

The state equations are solved in a recursive manner for k = 1,2,...N,
i.e. the initial solution is found by recursively finding the values of
inputs which result in the minimum values of outputs. Given the initial
values X[1], or alternatively, Y [0] and U[0], one solves for the following

equations in a loop starting with k& = 0:

W] = - (3{E]min ~ CX[k] ~ Dy WIk)) (A1)

I—t~is—possirble—t~h&t~t<he~solut-ions**for*th‘e‘inpirt‘fmmd froniabove niay
not be feasible. In this case values rf the inputs must be adjusted as
follows
if umit[k] < w[k}min
then (k] = w[k]min

and

if ll.i"“[k] > U-[k]mcm'
then uinif[/\.l = "ll"]mum
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(d)

The value of the output must also be re-evaluated :
y[k] = CX[k] + dyu™"[k] + Dy W|[k] (A.2)

Then the values of the state variables for the next period are evaluated

and the loop is started again :
X[k + 1] = AX[k] + Buu™[k] + Bww|[k] (A.3)

Thus the procedure P-InitialSolution generates an initial feasible solu-
tion, i.e. feasible inputs providing feasible outputs, for all the periods
in the time horizon without regard to cost. In fact the initial solution
is the feasible solution with the minimum total input usage, but not

necessarily the minimum cost.

P-FindIVectors : This procedure finds the impulse response vectors

I. The impulse response is the change in the stream of the outputs as

the input of any period is increased by one unit.

The impulse response vector for the input increase at period k is simply

the kth column of matrix D.

P-FindJVectors : This procedure finds the elementary direction vec-
tors Ju. The elementary direction vector for period k is Ju* whose
elements are the amount of possible chronological reductions in future

inputs if the input of the period k is increased by unity. These vec-

tors are constructed using the information contained in the impulse

response vectors.

Also found are the corresponding elementary output change vectors J,,
which represent the movement of the output block due to a change of

inputs in the direction of J,.

This procedure ignores the possibility that a future input may already
be at its minimum value. Thus, movements represented by Jy are not

necessarily feasible. This possibility is taken up in the next procedure.
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(8)

P-FindFVectors : This procedure adjusts the elementary direction

and output change vectors by considering the future inputs which are

already at their minimum. The same routines can also be accomplished

by the P-Exclude procedure.

The resulting vectors are the feasible direction vectors Fy and the

. feasible output change vectors Fy.

P-MarginalSavings : Marginal savings s, is the net savings due to

increase in inpui at k and the decreases in the inputs of the subsequent
periods. In other words it is the savings due to the movement in the

feasible direction per unit increase in the value of the input at k.

To find the values, this procedure simply multiplies the prices by the

‘elements of the Fy vectors and sums up the savings and subtracts the

cost of the increasing the input of the associated period.

SelectChargePeriod : A charge candidate is selected according to

the highest current marginal savillgs value. One category of excep-
tions are that periods where either the output or the input are at the
maximum. At these periods, the input can not be increased further
without violating the constraints, and therefore, can not be considered

as charge candidates.

The other group are those which can cause a future output to go above
its maximum limit. This may happen if a future input is already at its

minimum value.

This task is performed by a simple search for the minimum marginal
savings among the permissible set of periods, and the first chronological
period among the periods with minimum marginal savings is taken as

the charge candidate k..

If all the marginal savings are zero or negative, then the program is ter-
minated and the last set of solutions are the final solutions. Otherwise,

the program proceeds.
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(h) P-Uincrease : The procedure P-UINCREASE determines the size of

increase in the input at k.. Let’s call the amount to be increased «.

To fined «, increase input at k. until;

¢ Input at the charging period reaches the maximum level. Then

the amount of increase is:
1 = ulke)maz — u[ke] (A4)

e Output at the charging period reaches the maximum level, Then

the amount of increase is:

pir = - (ke — 3lkc]) (A.5)

e Input at some future period reaches the minimum level. Then the
amount of the increase is the minimum of the values of

— y[l]max - y[l]

A6
byl (A.6)

H3

for all [ > k. excluding those periods whose inputs are not going
to be decreased, i.e. when §y* = 0. The first period which
results in the minimum is called mj. This period is used later on
to adjust the Fy and Fy vectors, as well as the marginal savings

S if necessary.

e Output at some future period reaches the maximum level. Then

the amount of the increase is the minimum of the values

wll
U] (A7)
6u,°

for all [ > k. excluding those periods whose inputs are not going
to be decreased, i.e. when &u; = 0. The first period which results
in the minimum is called m,. Again, this period is used later on

to adjust the F\, , Fy and S vectors.

The minimum of all these values is the amount by which the inpul al

ke can be increased without violating any constraint. this is called a.
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(i) P-NewSolution : Now the new solution is :

U=U+ o Pk (A.8)
V=Y+a Ff (A.9)

() P-AdjustFVectors : After finding the new solution set the algorithm

must search to see which constraint was encountered first and adjust
the values of feasible direction and output change vectors accordingly.
This is carried out by the procedure P-AdjustJVector . It first ex-
cludes the input of the charge period from future reductions by calling
P-Exclude procedure. Then it looks for the period at which a new

constraint was encountered. There are four possibilities:

o The new constrained variable is the input at k,: take no action. In
the next round the present charge period will not be a candidate

again, since its input is already at the maximum.

® The new constrained variable is the output-at k.: call procedure
P-INCLUDE (k.). This is done to reverse the earlier exclusion of

k. which was done by immediately calling procedure P-Exclude

earlier.

o The new constrained variable is an output at some future period

ma:_call_procedure P-Include—(mg)-if-this—period—was—already

excluded, and if the input at this period is still above its minimum.

e The new constraint variable is an input at some futuse period m,:
call procedure P-Exclude (m4). Since input at my is zero, then
no further decrease in input of this period is possible, therefore it

must be excluded.

The vector Ex keeps a record of the periods which are excluded at any
time. For example, if period k is excluded at the moment. {he Ea. is

one, otherwise it is zero.
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P-Exclude (j) : This procedure excludes period j from future input

reductions. It updates the F,, , Fy , and S vectors by taking a com-
pensatory step in the Fy’ direction. The length of this compensatory
movement depends on the feasible direction vector which is being up-
dated. for example, if period j is to be excluded, and F,' is to he

updated, then the new vector is:
Fuo':=Fy' - §u'Fy’ (A.10)

Note that the size of the movement depends both on 7 and j. Similarly,

the update of the output change vector is:
Fy' :=Fy' - 6yiF,’ (A.11)

This procedure keeps a record of the excluded periods in the vector

FEzx.

P-Include (j) : This procedure does the operations of P-Exclude in

reverse. In short, the direction of compensatory movement is the re-
~verse of the one in the P-Exclude procedure. The resulting equations

are similar except for a change of sign.

P-MSUpdate : This procedure updates the marginal savings. The

change is the savings is:

N .
si = s; — Sui(—p[j]+ 3 plk|6uy) (A.12)
k=j+1

The updates have to be performed for all i.
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A.4  The General Algorithm in Pidgin Pascal

program P-Run

program P-Run;
begin
call P-Parameters;
call P-InputData;
call P-InitialSolution;
call P-FindIVectors;
call P-FindJVectors;
call P-FindFVectors;
call P-MarginalSaving;
call P-SelectChargePeriod;
if Sk, > 0 do
begin
call P-Ulncrease;
if « > 0 then
call P-NewSolution;
call P-AdjustFVectors;
( comment P-AdjustFVectors calls procedures
P-Exclude and P-Include );
end ;
else
output results ;
end ;
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procedure P-Parameters

procedure P-Parameters;

begin
input N
( comment number of periods in time horizon );
input A B, By C D, Dy, ;

end ;
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procedure P-InputData

procedure P-InputData;
begin
for k =1to N do
begin
input P[k], W[k];
( comment price and exogenous variables all periods )i
end ;
input X[1];
( comment initial conditions );
fork =1%o N do
begin
EX, :=0;
( comment to keep track of excluded periods );
end ;
end ;
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procedure ?-InitialSoli%iioh

procedure P-InitialSolution;

begin
for k:=1to N do
begin
umu[k] = 7 (Ymin — CX[/&:]) WW[k]:

( comment for SI-SO matrix opera.txons result in scalars );
if w™t[k] < w[k]min
then v™*[k] := ulk]min;
if u™[k] > u[k]mas
then u™ (k] := u[k]maz;
Y™ k] := CX[k] 4 dyu™"[k] + D w W[k];
( comment y[k] has to be re-evaluated for readjusted inputs );
X[k +1] := AX[k] + Byu™[k] + B wW/k];

end ;

uN utmt

yN ylﬂlt,

( comment init : initial );
end ;
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procedure P-FindIVectors

procedure P-FindIVectors;

begin
fork:=1to N do
begin
[ Oy
d,
IF .= CB, ;
CAB,
| CAV=HIB, |
end ;
end ;
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procedure P-FindJVectors

procedure P-FindJVectors;

begin
fork:=1to N —1do
begin
fori:=1to k do
Suk :=0;
buk = 41;
L:=T
fori:=k+1to N do
begin
Suk = l:;*,
L:=L+ éuk.T;
end ;
suk
Juk = 6u§ )
Suky
( comment subscript u indicates change in inputs )
Sy}
k
Jyk =L := 6?2 ;
Sy
( comment subscript y indicates change in outputs )i
end ;
end ;
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procedure P-FindFVectors

procedure P-FindFVectors;
begin
fc-%; :=1to N do

for k:=2to N do
begin:
if u[k] := u[k]min then
begin
Ez, :=1;
fori:=1tok—1do
begin
Fuo' :=Fy' — 6uiF,5;
Fyi = Fyi - 6u;;Fy";
end ;
end ;
end ;
end ;
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procedure P-MarginalSaving

procedure P-MarginalSaving;

begin
for k:=1to N do
begin
sk 1= —plk] + Z:{Y—:k+l pli]6uf;
end ;
end ;
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procedure P-Exclude (j)

procedure P-Exclude (5);
begin
E{l!j = 1;
for k:=1toj—1do
begin .
8k 1= 8 — 6u§(—p[j] + Zﬁju pli]éui);
Fuk = Fuk - 5u_,,?Fuj;
Fy* := By* — sutF 7,
end ;
end ;
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procedure P-Include (j)

procedure P-Include (j);
begin
fork:=1toj—1do
begin .
Sk = 8k + 6u§(—p[j] + Z?L.H-l pli)éul);
Fof:=F. + 6'¢L§Fuj;
Fy* i= Fy* 4 SubFy 7,
end ;
end ;
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procedure P-SelectChargePeriod

procedure P-SelectChargePeriod;
begin
L == {l| u[l] = u[k]min and y[l] = y[k]maz};
M :={m | éu® > 0,Vl € L};
K :={k | ulk] < u[k]maz and y[k] < y[k]ma: and k & M};
ke := mingeg (S);
if there are more than one such k
then take the first one as k, ;
end ;
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procedure P-Ulncrease

procedure P-Ulncrease;
begin
B = Umae — u[ke];

H2 = d-ull—kj (Ymaz — y[kc]);
Ly:={l]|k. <1< N and by # 0};

I3 :=min(”"‘#;—yﬂl le L))
ma = {1 | ps = mk—_z['_l

if there are more than one such
then take the first [ as m;, ;

={!l| k. <1< N and §uf # 0};
Mg 1= min( 5,1 e Ly);
my = { ! l P‘l —L—}a

if if there are more than one such !/
then take the first [ as my, ;

« = min (g, 2, K3, a);
end ;
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procedure P-NewSolution

procedure P-NewSolution;
begin

Uy =Uy + a - Fyk;

In =In + o Bk
end ;
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procedure P-AdjustFVectors

procedure P-AdjustFVectors;
begin

call P-Exclude (k.);
( comment k; is the last period where a constraint is met );
if @« = p; then
begin
kl = kc;
continue ;
end ;
if @ = yuy then
begin
kl = kc;
if u[k;] > 0 and EX;, =1 then
[begin
Ez;, :=0;
call P-Include (k;);
end ;
end ;
if @« = pu3 then
begin
ki := mas;
if u[k;] > 0 and Ez;, =1 then
begin
EXy, :=0;
call P-Include (k;);
end ;
end ;
if « = 4 then
begin
k= My,
call P-Exclude (&;);
end ;

end ;
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procedure P-MSUpdate

procedure P-MSUpdate;
begin
fori:=1to N do
begin .
8i i= 8i — bui(—plj] + 4L, 41 plk]6ul);
end ;
end ;
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Appendix B

ALGORITHM FOR THE 2R1C
MODEL

B.1 Introduction

The 2R1C (two resistances and one capacitance) model applies to the heating
and cooling‘ of simple buildings. The algorithm presented in this appendix is
written in APL, and uses a slightly different notation, but it is based on the
general algorithm of the previous appendix. The version included here has been

extensively debugged.

For this model, many of the calculations become very simple. The state equa-

tions are:

X[k + 1] = aX[k] + b U[k] + b, W [k] (B.1)
Y(k] = cX[k] + dU[k] + du W[k]| (B.2)

The impulse response vector for the first period is:

d,
chy,

I! cab, (B.3)

.N"zb

u
o4



and the elemental direction vector has a very simple form. If 8 is defined as:
f=— (B.4)

Then, the clemental direction vector becomes:

1

B

J! —B(a—B) (B.5)

| Ba—pyV-? |

In fact, feasible direction vector of any period can be constructed from the feasible

direction vector of the first period using a proportionality factor. Thus, both the

calculations and the storage requirements for the algorithm reduce considerably.

The names of the main procedures start with H-.
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B.2

(ol
[11]
[2l
[3]
[4]
£35]
L61
£7]
[8l
[9]
[101
[411
[12]
[131]
[14]
[13]
[16]
171
£181
[19]
£201
[211
£22]
(23]
[241
[231
[26]
(271
[28]
[293

APL Code for the 2R1C Model

VHaRUNa2R1CIO]
HaRUNa2R1C
Reviaas
A.....BAHMAN DARYANIAN 12/16/87, LAST 2/1/89
A.....MASTER FUNCTION (2RL{C MODEL)
L2 PR

ZATIMESTART
Aveaai

HAaINPUTA2RLC ¢ HACOEFa2RiC ¢ HaSETVARSAZRIC
HaPRICES

HAINITSOLNa2RiC

HAIVECTORSa2R1C ¢ HAJUECTORSa2R1C ¢ HAFVECTORSA2RIC
HaAMARGSAVE
NEXT: A.....CONTINUE

UHISTORY a.....TYPE OUT HISTORY

HaSELECT

#FINISHXv( CHECKVALUE=0)
2JUMP2X1L(HISTORYCCPERIODI#1)

KKeCPERIOD ¢ HAEXCLUDE KK

HaVT3 ¢ HaMSUPDATE KK

JUMP2: n.....CONTINUE

HAUINCREASE

INEXTX (NEXTC=1)

HANEWSOLN ¢ HAADJUSTF ¢ HaVUT3 ¢ HaMSUPDATE KK
INEXT

FINISH: A.....CONTINUE
HaCOMPUTE ¢ HaRESULTS
'...HoRUNV2R1C FINISHED...'

L JUPI
ZATIMEDONE

v
OTCFF
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APL Code for the 2ZR1C Model

YHAINPUTa2R1CLO]
[0]1 HaINPUTA2RiC
[11 A.....
{21 ~A.....BAHMAN DARYANIAN, 12/46/87, LAST 2/1/89
(3] A...ss SETS OR ASKS FOR THE 2R1C MODEL PARAMETERS
[4] oA..ues
{51 OTCFF
(6] 'HOW MANY HOURS IN THE TIME HORIZON (24.0 HRS) ?' ¢ HOURSeD
[71 'HOW MANY MINUTES PER PERIOD (60.0 MINS) 7' ¢ MPPeld
[8]1  NeL(HOURSX(60=MPP)) ¢ DELTe¢MPP:60 m.....ARSSUMES N INTEGER.....
[9] *WHAT IS HAE (0.300 KW/C) ?' ¢ HEA€HAE€D
[10] 'WHAT IS HAI (0.500 KW/C) ?' & HIA€HAI«D
[14] 'WHAT IS CI (2.00 KWH/C) 7' ¢ Cle
[12] A.uns
[4131 ‘'WHAT IS UKW (MAXIMUM POWER RATING, EX. 6.0 KW ) ?' ¢ UKWeD
[14] UMAX€UKWxDELT A....UMAX IN UNITS OF KUWH
[45]1 ‘'WHAT IS MIN. ACCEPTABLE TEMP. YMIN (18.0 C) ?' ¢ YMINeD
[16]1 'WHAT IS MAX. ACCEPTABLE TEMP. YMAX (22.0 C) 7' ¢ YMAXeD
[17] A ...
[4181 'WHAT 1S INITIAL WALL TEMP. X0 (18.0 €) ?' ¢ X0¢O
[19] ORDERed
[20]1 ‘IF W VARIABLE, YOU MUST INPUT IT DIFFERENTLY...'
(211 'WHAT IS CONSTANT EXTERNAL TEMP. WO (12.0 C) ? ' ¢ WOeD
(221 Aeeues
[23]1 ‘'WHAT IS NUMERICAL TOLERANCE EPSILON (1E715) 7' ¢ EPSILONeO
[24]1 ¢

OTCFF
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APL Code for the 2R1C Model

YHACOEFa2RiCIO]
[01 HACOEFa2RiC
[11 Auesen
(2] ~n.....BAHMAN DARYANIAN 12/16/87, LAST 2/4/89
{31 A.....CALCULATES THE COEFFICIENTS
[4] Rueens
[51 DELTeMPP=60 ¢ NéL(HOURS+DELT)
[6] RAE€REA€1:HAE ¢ RAI€RIA€L=HAI
£71 A11€1-((DELTXHAIXHAE)+(CIX(HAI+HAE)))
[8] BUiie€HAI=(CIX(HAI+HAE))
[91 BWii1€(DELTXHAIXHAE)=(CIx(HAI+HAE))
[101 Cii1€HAI=(HAI+HAE)
[111 DUii€1:(DELTXx(HAI+HAE))
[12]1 DUii1€HAE=(HAI+HAE)
[13]1 Acevns
[44] MUL€(CI=HAE)=DELT A.....ALSO MUi€DUL11=BU11=DWii+BUlL
[15]1 T2¢CI=HAI ¢ T3€¢CI=HAE
[16] Ti€T2+¢T3 A.....ALSOD TAU€(1=BWi1)=DELT
(171 TTEST&¢(DELTS(T2)A(DELT{T3) ¢ INEXTXx1(TTEST=1)
[4181 ‘...DELT > TIME CONSTANTS...TERMINATED...' ¢ 3
[19] Aveu.e
[201 NEXT:UMAXe¢UKWxDELT
[211 Gie¢A11,BU14,BULY,C14,DU44,DL14,TL, T2, T3
[22] Gie¢ 1 9 pGl
[23]1 A¢ 4 1 pA11 ¢ BUe 1 1 pBUii ¢ Bue 1 1 pBUWIL
[24] C& 1 1 oCi1 O DUe 1 1 oDULL ¢ DWe 1 1 pDUMR
[251 ¢

OTCFF
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[0l
(11
[21
£31
[4]
[3]
[6]
£7]
£8l
[91
£101
[11]
[121
[13]
[14]
[15]
[16]
(171
[181
[191

APL Code for the 2R1C Model

YHASETVARSAZRICLO]
HaSETVARS42RIC
Aesues
A.....BY BAHMAN DARYANIAN, 12/16/87, LAST 2/1/89
A.....SETS AND INITIALIZES THE PRIMARY VARIABLES
Auvees
PERIODSEUN
XeX0, NeO
UeNeO
YéNeO
WeNe WO
Avosns
HISTORY€UHISTORY€YHISTORY€¢NeO
MS€MSOLDEMSNEWeNeO
ﬂ---.-
DELUO€DELYO€DELU&DELY#NeO
Aeconse
‘... THIS FUNCTION GOOD ONLY FOR CONSTANT W...'
‘esoAND IF INITIAL STATE VARIABLE IS GIVEN...'
OTCLF
v
OTCFF
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[01
[11
[2]
£3]
[4]
{51
[6]1
(71
(81
[91]
[10]
[111
[121
(131
[14]
[15]
[16]
(171
[i8l
[19]
[201
(211
[221
[231
(241
(231
[26]
[271
[28]
[29]
£301

APL Code for the 2R1C Model

VHaPRICESLO]
HAPRICES
TN
A.....BAHMAN DARYANIAN 12/16/87, LAST 2/1/89
A..o. . PRICES FOR HEATING/COOLING CASE STUDIES
Aevens
A.....CASE A: IMPULSE PRICE PATTERN
PAt24p01 ¢ PAL121€10
Becors
A.....CASE B: STEP PRICE PATTERN
PBe(1201),(12010)
Aesors
A.....CASE C: SINGLE PEAK PRICE PATTERN
PC£1111433557799109977553321
Aceoes
A.....CASE D: DOUBLE PEAK PRICE PATTERN
PD¢ 111113579109 75335710975331
LR )
"«..FOR N#24, PRICES AND PERIODS MUST BE ADJUSTED...'
"«+.SELECT PRICES: A, B, C, OR D ? ' ¢ PSELECTe
FJUMPLx (PSELECT#'A')
PePA ¢ 20UT
JUMPL:9JUMP2X ( PSELECT#'B")
P¢PB ¢ 20UT
JUMP2:3JUMP3xv( PSELECT#'C*)
P&PC ¢ 20UT
JUMP3:2JUMP4x\ (PSELECT#'D")
P&¢PD & 20UT
JUMP4:'..NO CORRECT PRICES.., PROGRAM TERMINDATED..'
Pe24p01 ¢ 2
OUT:'...PRICES SELECTED...' ¢ PSELECT
v
OTCFF

223



[0l
(11
[2l
€3l
[4]
(3]
[6l
€71
[8l
(91
(101
[111
[12l
£131
[141
[15]
[16]
[171
[181
[191
£201
[21]
[221

[0l
(11
£21
[31
{41
[5]
(el
(7]
[8]
£9l
[101]
[111
[121
£131
£14]
[(131
[16]

APL Code for the 2R1C Model

PHAINITSOLNa2R1CLO]
HAINITSOLNa2RiC; K
Aesons
A.....BAHMAN DARYANIAN 12/16/87, LAST 2/1/89
Aveoo. INITIAL SOLUTION (2R1C MODEL)
Aecenn
Aueoo s ZATIMESTART
X[11€X0
Ked
BEGIN: m.....CONTINUE
ULKI€C1=DULL) XCYMIN-C(CLAXXIKT) +( DULLXWIK])))
UCKI€UCKIX(ULK]20)
UCKI€ULKI-CCUCKI-UMAX) X (UCKI2UMRX))
XCK+1J€CAL4XXOKI) +(BUL4XULKD) +( BWL1xXWLKI)
YLK1€(C14xX[KI)+(DUL4XUCK]) +(DULLXWLKI)
INEXTx (YL KI2YMIN)
‘... TERMINATED, UMAX BELOW REQUIREMENTS...' ¢ 2
NEXT: A.....CONTINUE
KeK+l
FBEGINXV(KN)
UINITIALeU ¢ YINITIAL€Y
‘... END HaINITSOLNa2RIC ...'
Aeo.s o Z&TIMEDONE
v

YHAEQUATIONa2R1CLO]
HAaEQUATIDONa2R1C KK;K
Aeveas
A.....BAHMAN DARYANIAN 12/16/87, LAST 2/1/89
A.....FINDS ALL X GIVEN U AND W (2R1C MODEL)
[ T
Aeeosd ZOTIMESTART

X[11€X0

KeXKK
BEGIN: A.....CONTINUE
X[K+11€(AL4xX[KY)+(BULLxULKI) +( BUWL1XWLKI)
YOKI€(C14xXCK1)+(DULLxUCKD ) +( DWL4XWEKT)
Aevees YEXT€XOKI+MULX(X[K+41-X[K])

Keh+4

IBEGINXL(KLN)

'... END HAEQUATIONa2RiC ...'
fessee ZATIMEDONE
v

OTCFF
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[ol
[11]
[al
£31
(41
[5]
(6]
71
(81l
[9]

[0l
(11
[21
[3]
(4]
[5]
[6]
[7]
(8]
(91l

[10]

APL Code for the 2R1C Model

PHaIVECTORSa2R1CLO]

HaIVECTORSa2R1C

ﬂl.'.l
A.....BAHMAN DARYANIAN 12/16/87, LAST 2/1/89
A..... IMPULSE FUNCTION VECTOR (COEFF. METHOD FOR 2R1C MODEL)
n.ll.l

YIMP€(C11xBU11), (N-2) oAll

YIMP&X\YIMP

YIMPeDULL, YIMP

A.....ALSO CAN FIND IMPFUNC RECURSIVELY FROM EQUATIONS
v

YHaJVECTORSa2R1CLAO]

HaJVECTORSA2RAC; SKIP;NN; LL; K

[ TR

A..... BAHMAN DARYANIAN 12/16/87, LAST 2/1/89
Asese. FINDS JUECTORS

Aeee . COEFFICIENT METHOD (FOR 2R1C MODEL ONLY)
Aessss

BETA&«( C11xBU11)+DU14
DELUO&(-BETA), (N-2)o( A-BETA)

DELUO&X\DELUO ¢ DELUO€1i,DELUO

DELYO&DU114, (N-1)00

DELU€DELUO ¢ DELY&DELYO

(111 ¢

OTCFF
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[0l
(11
[21
[3]
[4]
(5]
[6]
[73
[8]
(91
[10]
£11]
[121
[131
[14]
[15]
[16]
[17]
[18]

APL Code for the 2R1C Model

YHaFVECTORSa2R1CLO)
HaFVECTORSA2R1C; SKIP; NN LL; K

ﬂllll.

A.....BAHMAN DARYANIAN 12/16/87, LAST 2/1/89
A.... . FINDS F VECTORS (2R1C MODEL)

Aseven

DELU€DELUO ¢ DELY€DELYO

YHISTORY€4x( Y2YMAX)

HISTORY€( YHISTORY=0)A( UHISTORY=1)
SKIP¢((USEPSILON)V(HISTORY=1))/PERIODS
NNeeSKIP

H0UTXv(NN=0)

Ked
AGAIN:LLeSKIPLK]

DELU€DELU+((LL@O), (~DELULLLI)X( (N-LL)#¢14DELU0)))
DELYCLLI€DELYCLLY+(-DELUCLLIXDELUOC1]) ¢ DELUCLL1«0
KeK+4

PAGAINXL(KENN)
OUT: A.....CONTINUE
v

OTCFF
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APL Code for the 2R1C Model

PHaMARGSAVELO]
(0] HAMARGSAVE; UT1;UT2; UT3; K; UREMAIN; PREMAIN
[1] ﬂll.ll
{21 ~A.....BHAMAN DARYNIAN 12/16/87, LAST 2/1/89
(31 a.....FINDS MARGINAL SAVINGS FOR EACH PERIOD

[4] ﬂ..l.l
[31 MSe€NeO
L61  Ked

(7] AGAIN: a.....CONTINUE

[8]  UREMAIN€K$DELU

(91 UTL€DELY[K+11+DU11x(-DELULK+11)
(10] UT2¢(-DELUOL2]1)xDUi4

(111 UT3€UT2:UTL

[12] PREMAIN€K$P

£13]1 MSCKI€(UT3x(+/(-UREMAIN)XPREMAIN))-PLK]
(141 KeK+t

[151 AGAINXL(K(N)

(161 MSINle€-(PLN1)

[17) MSNEUWeMS

(18] ¢

YHASELECTLD]
[0] HaSELECT
[1]1 A.....
2] n.....BAHMAN DARYANIAN 12/16/87, LAST 2/1/89
£3] A.....PICKS THE PERIOD WITH THE HIGHEST MS
[4] A..ees
[31  TAKE&€( YCYMAX)ACUCUMAX)
[6] MSFEILD&TAKE/MSNEUW
[71  PERIODFEILD¢TAKE/PERIODS
[8] PICKe(T/MSFEILD)=MSFEILD
[9] CPERIDDS¢PICK/PERIODFEILD
[101 NEXTxv((eCPERIODS) )0)
{111 '...TERMINATED, CPERIODS EMPTY...' ¢ =
[121 NEXT:CPERIOD¢14CPERIODS
[13]1 CVALUE€MSNEWL CPERIOD]
[14]1 CHECKVALUE€#CVALUE>O
[151 UHISTORYLCPERIOD]I¢1
[161 YHISTORYLCPERIODI€1x(YLCPERIODI2YMAX)
[471 HISTORYCCPERIODI«(YHISTORYCLCPERIODI=0)A(UHISTORYLCPERIODI=1)
[181 ¢

OTCFF
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APL Code for the 2R1C Model

9HAEXCLUDECO]
[0] HAEXCLUDE KX;UT4;UT2;UT3;0LDDELU; OLDDELY; NEWDELU; NEWDELY
[1) A
£21 A.....BAHMAN DARYANIAN 12/16/87, LAST 2/1/89
(3] A.....EXCLUDES A PERIOD FROM FVECOTRS
£4] Ao
[51 A0UTxv(KK=1)
[61 OLDDELU€DELU ¢ OLDDELY€DELY
[71  AJUMPXv(KK=N)
[8] UTL€DELYLKK+11+(DUiix(-DELULKK+11))
[9] UT2¢(-DELUCLKX1)x(-DELUOL21)xDUiL
[10]1 UT3€UT2:UTL
[14]1 DELU€DELU+((KKe0), (UT3x((KK)¢DELU)))
[121 DELY€DELY+((XKe0),(UT3x((KK)¢DELY)))
[131 JUMP:DELYCLXK1¢DELYLKK1+(-DELULKKIXDELYOL[11)
[14) DELULKKI¢O
[15]1 NEWDELU€DELU ¢ NEWDELY€DELY
{161 DELCHANGE€NEWDELU-OLDDELU
[47) OUT: A.....CONTINUE
[181 ¢

YHAaINCLUDELO]
[01 HAINCLUDE XK;UT4;UT2;UT3;OLDDELU; OLDDELY; NEWDELU; NEWDELY
(1] Aveees
[21 A.....BHAMAN DARYANIAN 12/16/87, LAST 2/1/89
(3] A.....INCLUDES A PERIOD FOR FVECTORS
[4] Acsees
[51 #0UTXv(KK=1)
6] OLDDELU¢DELU ¢ OLDDELYe€DELY
{71 UTL€DELYCLKK+11+(DUL11x(-DELULKK+#11))
[81 UT2¢(-DELY[LKK1=DU41)x(-DELUOL2]1)xDUi1
[9]1 UT3¢UT2:UTL
[101 DELU€DELU-((XKe0), (UT3X((KK)#(-DELU))))
[11]1 DELY&DELY-((KKe0),(UT3x((KK)$DELY)))
[412] DELULKKI&(-DELYLKK]1)=DUi1
[£131 DELYLKK1€0
[14) NEUDELU€DELU ¢ NEWDELY&DELY
[45) DELCHANGE¢NEWDELU-OLDDELU
[16]1 OUT: A.....CONTINUE
[(171 v

OTCEF
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(01
(11
ral
[3]
[4]
£3]
[6l
[7]
[8]
(9]
(101
(111
(121
(131
[14]
[15]
£16]
0171
£181
[19]
£201]
[211
[aal
[231
[24]
[231
[26]
£271
[281
[29]1
£301
[31]

APL Code for the 2R1C Model

YHaUINCREASELQO]

HAUINCREASE

ﬂ.lll.

A.....BAHMAN DARYANIAN 12/16/87, LAST 2/1/89
A.....CHECKS TO SEE HOW MUCH U CAN BE INCREASED
L P

NEXTC&0

J0UTXv(CPERIOD=N)

FEILD¢CPERIOD¢PERIODS

UPLUS€(ULFEILDI )EPSILON)ACHISTORYLFEILDI=0)
UZERO&(UCFEILDICEPSILON)V(HISTORY[FEILDI=1)
F0UTXL((+/UPLUS)=0)

DELTAU¢CPERIOD$DELU ¢ DELTAY€CPERIOD$DELY
HaFCPERIOD

DEL1€¢DEL2¢DEL3¢DEL4€UMAX a... INITIALIZES ALL THE DELS...
DELi€UMAX-ULCPERIOD]

20UTxv(DEL1<EPSILON)

DEL2€¢(1:DU11)x( YMAX-YLCPERIOD])
20UTxv(DEL2SEPSILON)

FJUMPXv((+/UZERD) =0)

DEL3S€(( YMAX-YCUZERO/FEILD]1) <DELTAYLUZERO/v(N~-CPERIOD)1)
DEL3¢L/DEL3S

20UTxv(DEL3LEPSILON)
JUMP:DEL4S€ULUPLUS/FEILDI=( -DELTAULUPLUS/v(N~-CPERIOD) 1)
DEL4¢L/DEL4S

20UTxv(DEL4SEPSILON)
UINCeL/(DEL1,DEL2, DEL3, DEL4)

HAECONTEST

F0UTx (ETEST=0)

INEXT
OUT:NEXTC¢4 ¢ ETEST

NEXT: A.....CONTINUE
\4

OTCFF
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APL Code for the 2R1C Model

vHaFCPERIODLO]
[0] HAFCPERIOD;UTL;UT2;UT3
[1) A.ccvas
[2] ~A.....BAHMAN DARYANIAN 12/16/87, LAST 2/1/89
£33 A.....UPDATES FVECTOR FOR CPERIOD
(4] aA..een
[51 UTL¢DELTAY[11+(DUL4ix(-DELTAUL1]))
[6] UT2¢(-DELUOL2])xDU11
£7)]  UT3€¢UT2:UT1
(8] DELTAU€UT3XDELTAU
£9] DELTAY¢UT3xDELTAY
[101 A.....
(111 ¢

YHAECONTESTLO]
[01 HaECONTEST
[1] A.....
(21 A.....BAHMAN DARYANIAN 12/16/87, LAST 2/1/89
[31 A.....TEST OF ECONOMIC FEASIBILITY
[4] ﬂl.lll
[3] ETEST¢( PLCPERIODI<(+/PLUPLUS/FEILDIXx(-DELTAULUPLUS/v(N~-CPERIOD)>1)))
c6] ﬂll.ll
[71 9

OTCFF

230



APL Code for the 2R1C Model

YHaNEWSOLNLO]
£01] HaNEWSOLN
[11 a.....
21 A.....BAHMAN DARYANIAN 12/16/87, LAST 2/1/89
£31 A.....FINDS NEW U AND X GIVEN UINC
[4] A.eens
[S] A..... UBEFORE€U
(6] UeU+(((CPERIOD-1)e0),(UINCX((1),DELTAU)))
[71  UL(UCO)/PERIODSI¢0
(8]  YeY+(((CPERIOD-1)e0),(UINCx(DU11, DELTRY)))
[91  YHISTORY&1x({ Y2YMAX) _
[401 HISTORY&( YHISTORY=0)A(UHISTORY=1) m..FOR ALL PERIODS
141 '... END : HANEWSLOW ...'
f121 ¢

vHAVT3L[01
£01 HaVT3;VTi; VT2
[11 nA.....
(21 A.....BAHMAN DARYANIAN 12/16/87, LAST 2/1/89
£3] A.....FINDS ARRAY OF VT3, PROPORTINALITY OF F VECTORS
[4] nA.....
[5] VTL¢DELY+DUi1x(-DELU) ¢ VTi[411€DELYOC1]
[61 VT2¢(-DELUOL21)xDUid .
[71 VT3:VUT2:VUT4 X
[8]1 A.....
[91 ¢

OTCFF
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APL Code for the 2R1C Model

vHaARDJUSTFCO]
0] HeADJUSTF
(11 a.....
£2) n.....BAHMAN DARYANIAN 12/16/87, LAST 2/1/89
(3] a.....ADJUSTS DELU AND DELY DEPENDING ON THE CONSTRAINTS MET
[4] nA...s.
(3]  KKet
[6]  INEXTixXiv(UINC#DEL2)
{71  KKeCPERIOD
[8]1 HaINCLUDE KK
[9] NEXTi: A.....CONTINUE
[101 NEXT2Xxv(UINC#DEL3)
[11] KKe¢i4((DEL3=DEL3S)/(UZERO/FEILD))
[12) NEXT2xv(ULKKIC<EPSILON)
[131 HaINCLUDE XK
[141 NEXT2: A.....CONTINUE
[151 NEXT3x1(UINC#DEL4)
[16]1 XKei¢((DEL4=DEL4S)/(UPLUS/FEILD))
[17]1 HaEXCLUDE KK
[18] NEXT3: a.....CONTINUE
(191 ¢

YHaMSUPDATELD]
{01 HaMSUPDATE KK;MSOLD;DELS1;DELS2; MSCHANGE
[11 A.....
[2]1 ~A.....BAHMAN DARYANIAN 12/16/87, LAST 2/1/89
[31 m.....UPDATES MARGINAL SAVINGS AS DELU CHANGES
[4] A.cvee
[S5)  0UTXv(KK=1)
£6]1  MSOLDeMSNEW
[71 DELS1¢PXDELCHANGE ¢ DELSi¢(-DELS1)
[81 DELS2¢0(+\¢DELS1)
[91 MSCHANGE€(14VUT3)X( "1¢DELS2)
£101] MSCHANGE€MSCHANGE, O
[11]1 MSCHANGE€(KK-1)4MSCHANGE
£121 MSCHANGE€MSCHANGE, (N-(KK-1))e0
[13] MSNEWeMSOLD+MSCHANGE
[14] OUT: A.....,CONTINUE
[151 ¢
OTCFF
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APL Code for the 2R1C Model

YHaCOMPUTELD]
(0] HaCOMPUTE
{11 a.....
(2] a.....BRHMAN DARYANIAN, 12/16/87, LAST 2/1/89
f31 A.....COMPUTES SAVINGS AND LOAD SHIFT
{4] n.....
[5] UTOTALOLDe¢+/UINITIAL
[6] UTOTALNEWe+/U
[71 USHIFTe€U-UINITIAL
[8]  USHIFTNETe+/USHIFT
[91]  USHIFTRATIO«USHIFTNET=UTOTALOLD
[10] COSTOLD&+/PxUINITIAL
(111 COSTNEUWe+/PxU
[121 SAVENET¢COSTOLD-COSTNEW
[131 SAVERATIO&SAVENET=COSTOLD
[14] @
YHARESULTSLO]
£0] HaRESULTS
[1] A.....
£2] n.....BAHMAN DARYANIAN, 12/16/87, LAST 2/1/89
€3] A.....SHOWS RESULTS: SAVINGS AND LOAD SHIFT
[4) A...eo
[5] ' UTOTALOLD: ', SUTOTALOLD
[6] ' UTOTALNEW: *, SUTOTALNEL
£71 ' USHIFTNET: ', BUSHIFTNRT
£81] ' USHIFTRATIO : ',SUSHIFTRATIO
[9] ' COSTOLD : ',&COSTOLD
£101 ' COSTNEW : *,3COSTNEW
£14]1 ' SAVENET : ', SSAVENET
[12]1 ' SAVERATIO ¢ ',3SAVERATIO
(131 ¢

OTCFF

233



APL Code for the 2R1C Model

9ZATIMESTARTLO]
[0] ZATIMESTART
(1] Acee..
(2] A.....WRITTEN BY ROGER E. BOHN 10/2/85
£3] A.....REVISED BY BAHMAN DARYANIAN 10/26/87
[4] nA.....
[5) a.....SEE FUNCTION ZATIMEDONE.....
[6] A.....
£71 TSTARTENAIL 2]
[8 ¢

vZaTIMEDONELO]
[0 ZATIMEDONE
(11 nA.....
[21 a.....WRITTEN BY ROGER E. BOHN 10/2/85
[31 a.....REVISED BY BAHMAN DARYANIAN 10/26/87
[4] A.eues
[51 TDONEeDAIL2]
.[6]  TRUN¢TDONE-TSTART
[71 ¢

vZaIF(0]
[0] ReA ZaIF B
(11 a.....
[2]1 a.....FROM WEPLAMDA.AWS BY ROGER E. BOHN 7/10/84
£31 a.....THIS PROGRAM PERFORMS AN IF ROUTINE
[4) a.....B IS A ZERO-ONE ARRAY, AND A IS A BRANCH NAME ARRAY
(51 A.eens
[6]1 ReB/A
{7l ¢
OTCFF
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Appendix C

ALGORITHM FOR THE 1R1C
AND 0R1C MODEL

C.1 Introduction

The 1R1C (storage with losses) and 0R1C (storage without losses) models apply
to the water heater. The algorithm presented in this appendix is also written in
APL, and again it uses d different notation than the ones used already. Although It
is based on the general algorithm presented in this thesis, it has been structurally
simplified to bypass many of the steps which are no longer necessary. Again,
the reason for the inclusion of this version of the algorithm is that it has been

extensively debugged.

The important feature of the 1IR1C and OR1C models is that the output vari-
able and the state variable are identical. If the input at some period is increased,
the storage level is increased also. For the 1R1C model, the storage level decays
back to its previous value as time goes by. However, it remains constant for the
OR1C model. In both cases, when the input at some future period is decrease,
the storage level, is brought back to its previous level. This can be seen from the

form of the elemental direction vectors. The state equation is:
X[k +1] = aX[k] + b U[k] + by W[k] (C.1)
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Y[k] = X[k] (C.2)

If the input at period 1 is increased by §;, then the output at period j is increased

by a’='b,6;. The impulse response vector for the first period takes the following

form:
by
po| (C.3)
aV “.lbu
The input at period j can be decreased by:
6; = ai—;bu&' = ai™is, | (C.4)

However, the storage levels for periods greater than j return to their previous
values. Therefore, the elemental direction vector takes the following simple form

for the first period: )
[ 1
a

0 (C.5)

Jl

0
As a result, all feasible direction vectors are similarly sparse, and the overall
program code becomes very simple. However, the number of iterations can be
reduced by combining a number of adjacent schedulings together. In other words,
instead of scheduling of inputs for adjacent periods, as dictated by the form of the
elemental direction vector, we can do the scheduling for any pair of periods within

the time horizon.

For a OR1C model, the algorithm takes the following simple form:

* Find a feasible initial solution at each & for U/[k] given X[0] and T [k] hy
assuming that prices remain constant, and by keeping storage levels as low
as possible. Initial U[k] can be found by recursive application of the state

equation.
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¢ Find the period with the highest electricity price. If there are more than

one, take any one and call it the discharge period kp.

¢ Find the period with the lowest electricity price. If there are more than one,

take the one nearest to kp and call it the charge period k.

® Decrease the electricity usage at kp and at the same time increase it at kc.

Continue until one of the following happens:

— Ulkp]| reaches the U,,;,.
— Ulkc] reaches the U,,,..
— Storage of a period in between reaches one of the bounds Y, or ¥,,...

o If Ulkp] is still not equal to Umin, then search for another period with the

next lowest price among the remaining periods, i.e. search for another k.

¢ If no more periods can be found to substitute for the electricity usage at kp,
or if U[kp] reaches U,,;,, then search for the period with the next highest

price, and go through the same steps.

e Algorithm ends after a finite number of steps when all the periods have been

considered as a possible kp period.

For the 1R1C model, the algorithm is similar to the one given above, except
that the storage loss discounts the value of charging for the long intervals between
kc and kp. For example, if the input at period i is increased by one unit, it can be
used to decrease the input at period 7 by @7, Thus in evaluating the economics
of scheduling for the two periods, instead of comparing the prices P[i] and P([j],

we must compare P[i] and a?~ P[5].

The OR1C algorithm was developed by the author and the proof of the optimal-
ity is given in the Reference [D1]. For an industrial application of the algorithm see
References [D1] and [D2]. The 1R1C algorithn, as mentioned before, is identical
to that of Tsitsiklis [T2].



The APL code presented here is for the 1R1C model. For the 0R1C algoritlum
the coefficient « is simply unity, and the methodology does not require some of
the additional calculations and procedures used in the 1R1C algorithm. However,

since it is only a special case of the 1R1C algorithm, it is not included here.

In the following program, the names of procedures start with W-.
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C.2 APL Code for the 1R1C Model

QWARUNLO]
[0] UWaRUN
[11 Aveves
[2) ~A.....BAHMAN DARYANIAN 7/4/85, 5/10/86, LAST 2/1/89
(31 A.....MASTER FUNCTION FOR 1R1C MODEL
[4] A.vee.
[5] WaPRICES
[6] UWaWHDATA
[7] WaSETVARS
[8]1 UWAINITSOLN ¢ WAIVECTOR
9]  NNNei ¢ NEWCHARGE€O
401 TEST:HISTORYTEST&¢(O=HISTORY) m...TEST OF THE END OF RUN
C11] FINISHED&(O=(+/HISTORYTEST))
C£4121 TERMINATE IF FINISHED
[13] DPOINT:WADISCHARGE a...CALLS FUNCTION DISCHARGE
[14] LPOINT:WALEFTFIELD A...CALLS FUNCTION LEFTFIELD
[15] RPOINT:WoRIGHTFIELD A...CALLS FUNCTION RIGHTFIELD
[161 DECISIONi€WaCOMBINEFIELDS a...DECISIONS BY COMBINEFIELDS
[17] »(TEST,LPOINT,CPOINT)IF DECISION1
[181 CPOINT:WAPADJUST -
[19] DECISION2¢WACHARGE A...RESULTS FROM SETVALUES, SUBFUNC. OF CHARGE
[201 +(TEST,LPOINT,CPOINT)IF DECISION2
{211 TERMINATE:'...END OF THE RUN...'
[221 v

| eIFL0]
01 ReA IF B
[1]1 a THIS PROGRAM PERFORMS AN IF ROUTINE......FROM WEPLAMDA.AWS BY REB 7/84
[21 A B IS A ZERD-ONE ARRAY, AND A IS A BRANCH NAME ARRAY
[31 ReB/A
(41 ©
OTCFF
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APL Code for the 1IR1C Model

vWaPRICESLO]
(01 UWaPRICES
[1] n.llll
[2] aA.....BAHMAN DARYANIAN 1/1/87, LAST 2/1/89
£3] nA.....BASE CASE SPOTPRICES
[4] A.....
[5] Ne24
(6] Pie 69 66 83 33 53 46 29 13 92 49 23 96
[71 P2¢ 47 22 90 19 25 17 43 33 23 81 51 42
[8] Pe&Pi,P2
[9] ¢
QWAWHDATALD]
[0] UWaWHDATA
(1] »A.....
£2] A.....BAHMAN DARYANIAN 1/1/87, LAST 2/1/89
£3] a.....DATA FOR WATER HEATER
[4]1 A.....
[51 UMAXeLS
[6]1  YMAXeS52
[7)  YINITIAL€YMIN€43
[8] WeNei2
[91] UWiely
[10] A11¢0,98
[111 BUiled
[12] BUiie"1
[413]1 EPSILON€{E™15
[141 ¢
WaSETVARSLAO]
0] WASETVARS
[1] A.....
[2] a.....BAHMAN DARYANIAN 1/1/87, LAST 2/1/89
[3] A.....INITIALIZES THE VARIABLES
[4) A.....
{51  PERIODS&uN
[6] UeNeO
[71  YeYINITIAL, NeO
[8)  HISTORYeNeO
[91 ¢
OTCFF
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APL Code for the 1IR1C Model

QWaINI TSOLNLO]
{01 UWAINITSOLN
[11 a.....
[21 aA.....BAHMAN DARYANIAN 1/4/87, LAST 2/1/89
[31 aA.....INITIAL U GIVEN Y[11, YMIN, AND U
[4] aA.....
[5]1 Keq
[6] BEGIN:ULKI&(1=BUL4)x(YMIN-CCAL1LxYLKI)+(BUWLixWLK1)))
[71] UCK1€ULKIx(ULK120)
£8]1 ULKI€UCKI-(CULKI-UMAX)X(ULKI2ZUMAX))
[91 YCK+41e€(A14xYLKI)+(BUL4XULK]I)+(BUWL1xWLK1)
[10] KeK+i
[111 BEGINXu(K4N)
[12]1 Ked
[431 [INITIALU€U ¢ INITIALYeY
[14] ©

CWAEQUATIONLD]
[0] UWAaEQUATION KK
ti] ﬂ----n
[21 a.....BAHMAN DARYANIAN 1/1/87, LAST 2/1/89
[3] a.....
[4] Ke&KK
[S)] BEGIN! A.....CONTINUE
(6] YCK+11€(A14xYLK1)+(BUL1xULKY)+(BUL1XWLK])
[7]  XeK#d
[81  BEGINXv(KLN)
[9] Ke4
[10] Aa.....'END WAEQUATION'
[11] ¢

YWaIVECTORLDO]
[0] UWaIVECTOR
{11 nA.....
£21 a.....BAHMAN DARYANIAN  LAST 2/1/89
{31 A.....IMPULSE RESPONSE VECTOR : ALPHA METHOD (1R1C MODEL)
[4] Avcess
[S1  YIMPeBU1i1,(N-1)eAil
[6]1  YIMPex\YIMP
€71  YIMPeO, YIMP
[81 ¢
OTCFF
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APL Code for the 1R1C Model

YWADISCHARGELD]

[01 WaDISCHARGE; DHISTORY; DATA; DATAHOURS; DBOOLEAN
[11 Aa.....
£21 a.....BAHMAN DARYANIAN 7/4/85, S5/10/86, LAST 2/1/89
£31 A..... SELECTS DISCHARGE CANDIDATES STARTING WITH REMAINING
[4] A.....HIGHEST PRICES. MAY HAVE MULTIPLE CANDIDATES.
[S] A.....ZERO-ONE VARIABLE HISTORY KEEPS TRACK OF PREVIOUS DISCHARGE AND
{61 A.....CHARGE. DHISTORY SELLECTS THE REMAINING HOURS. DBOLEAN IS A
7] A.....ZERDO-ONE ARRAY. ONES STAND FOR NEW DISCHARGE CANDIDATES.
£81 a.....DVALUES AND DHOURS:PRICES AND HOURS OF SELECTED CANDIDATES.
(9] Aa.....
[101 J¢i A...KEEPS TRACK OF DVALUES AND DHOURS.
[11] DHISTORY&(0O=HISTORY) A...ZERO-ONE ARRAY TO PICK WHAT'S LEFT
[12] DATA&(DHISTORY/P) a...REMARINING PRICES
[4131 DATAPERIODS¢(DHISTORY/PERIODS) n...REMAINING PERIODS
[141 DBOOLEAN€(T/DATA)=DATA A...SEE ABOVE
{451 DVALUES¢DBOOLEAN/DATA n...PICKS THE HIGHEST PRICES
{i61 DPERIODS¢DBOOLEAN/DATAPERIODS a...AND THEIR HOURS
[47]1 DNUMBER¢eDVALUES a...HOW MANY PICKED AT SAME PRICE
(181 ¢

OTCFF
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APIL Code for the 1R1C Model

VWALEFTFIELDIO]
[0 WALEFTFIELD; LSTORAGE; LHISTORY; LVALUES; LPERIODS; LEFTLIMIT
[11 a.....
[21 na.....BAHMAN DARYANIAN 7/4/85, 5/10/86, LAST 2/1/89
£31 A.....FINDS THE FIELD TO THE LEFT (PAST HOURS) OF CURRENT
[4] n.....DISCHARGE FOR SELECTION OF CHARGEING CANDIDATES.
[S1] a.....LEFT FIELD EXTENDS TO THE HOUR OF FULL STORAGE.
[61 a.....
[7]  LHISTORY&(DPERIODSLJ1-1)4HISTORY a...HISTORY TO THE LEFT
[81 LSTORAGE«(DPERIODSLJ1-1)4(4¢Y) A...STORAGE TO THE LEFT
[91 LVALUES&(DPERIODSLJ1-1)4P A...VALUES TO THE LEFT
[10]1 LCHARGE«(DPERIODSLJI-1)¢U
{11) LPERIODS€(DPERIODSLJ1I-1)4PERIODS A...PERIODS TO THE LEFT
[121 MAXTEST&( YMAX=LSTORAGE) A...TEST TO SEE IF STORAGE FULL
[131 MAXPERIODS¢MAXTEST/LPERIODS A...HOURS WHEN STORAGE IS FULL
£14] LEFTLIMITe "14MAXPERIODS n...NO CHARGE BEFORE LEFTLIMIT
[15] LVALUES€LEFTLIMIT¢LVALUES m...NEW LIMITED LEFTFIELD
[16]1 LCHARGE¢LEFTLIMIT¢LCHARGE
[17]1 LPERIODS¢LEFTLIMIT¢LPERIODS A...AND ITS HOURS
[4181 LHISTORY€¢LEFTLIMIT¢LHISTORY m...RELEVANT HISTORY ARRAY
[19] LHISTORY&((O=LHISTORY)A(LCHARGE(UMAX)) A...WHAT 1S REMAINING

201 LEFTVALUES€LHISTORY/LVALUES ", PICKS AVATLABLE "CHARGING
(241 LEFTPERIODS¢LHISTORY/LPERiODS n,,,FIELD TO THE LEFT

[221 ¢
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(0l
(11l
L2l
[31
(4]
(5]
[6l
[71
[8]
€91
[101
(111
[121
[13]
[14]
£15]
[i6l
[17]
£18]
[19]
[20]
£241
[221
[231
[24]
£25]
[26]
[27]

APL Code for the 1R1C Model

YWARIGHTFIELDLO]
WARIGHTFIELD
Accres
A.....BAHMAN DARYANIAN ?7/4/85, 5/10/86, LAST 2/1/89
Ao FINDS THE FIELD TO THE RIGHT (FUTURE HOURS) OF
A.+. .o CURRENT DISCHARGE FOR SELECTION OF CHARGING
A.....CANDIDATES. RIGHT FIELD EXTENDS TO THE LEFT OF THE
A.....HOUR AT WHICH STORAGE IS ZERD.
Aeanee
RIGHTVALUES€RIGHTPERI 0DS¢0p0
F0MITxv( YMIN=YCDPERIODSL J1+11)
RHISTORY&(DPERIODSCJ1)¢HISTORY ¢ RSTORAGE€(DPERIODSLJ1) ¢Y
RVALUES¢(DPERIODSLJ1) 4P ¢ RPERIQDS€((DPERIODSLJI)$PERIODS),(N+1)
RCHARGE&( DPERIODSLJ1) 4U
MINTESTe( YMIN=RSTORAGE) m...TEST TO FIND WHEN STOR IS MIN
MINPERIODS¢MINTEST/RPERIODS A...HOURS AT WHICH STOR 1S EMPTY
RIGHTLIMITe(14¢MINPERIODS) A...CHARGE ONLY BEFORE RIGHTLIMIT
NOADJUSTXv( RIGHTLIMIT#0) m...ADJUST RIGHTLIMIT IF ZERO
RIGHTLIMITe(N+1) n...MAKES RIGTHFIELD GO ALL WAY
NOADJUST: TAKE€(RIGHTLIMIT-1)-DPERIODSLJ1 a...LENGTH OF THE FIELD
RVALUES€( TAKE) $RVALUES A...NEW LIMITED RIGTHFIELD
RCHARGE®( TAKE) ¢ RCHARGE
RPERIODS¢( TAKE) #RPERIODS a...AND ITS HOURS
RHISTORY€( TAKE) +RHISTORY A...RELEVANT HISTORY ARRAY
RHISTORY&( (O=RHISTORY)A( RCHARGE(UMAX)) a...WHAT REMARINS TO CHARGE
RIGHTVALUES€RHISTORY/RVALUES m...PICKS AVAILABLE CHARGING,,,
RIGHTPERIODS€RHISTORY/RPERIODS a,,,FIELD TO THE RIGHT
OMIT:20
v
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APL Code for the 1R1C Model

YWACOMBINEFIELDSLO] b
[01 ReWACOMBINEFIELDS; SF; DECISION11; DECISION]2 .
[11 A
[2] A.....BAHMAN DARYANIAN 7/4/85, 5/10/86, LAST 2/1/89
31 A.....COMBINES LEFT AND RIGHT FIELDS FOR THE CURRENT DISCHARGE.
[4] A.....CHECKS TO SEE IF ANY CHARGING IN THE COMBINED FIELD IS
[S1 A.....PHYSICALLY POSSIBLE. THEN GOES TO THE CHARGE FUNCTION TO PICK
[61 A.....CHARGES. CURRENT DISCHARGE CANDIDATE IS IGNORED IF BOTH
[71 A.....RIGHT FIELD AND LEFT FIELD ARE NULL, OR IF RIGHT FIELD IS
[8] A.....NULL AND STORAGE BEFORE THE DISCHARGE CANDIDATE IS ZERO.
(91 a.....
[101 Re€3p0 m...NOTE: J (BELOW) 1S A GLOBAL VARIABLE, SET EARLIER
[111 SFeY[DPERIODSCJ1] A...STORAGE PRIOR TO DISCHARGE
121 DECISION11€(0=pLEFTPERIODS)A(O=pRIGHTPERIODS)
[13]1 DECISION126(0=pLEFTPERIODS)AC YMIN=SF) A...THE TWO DECISION VARIABLES
(141 9NODISCHARGEXv(DECISIONL1vDECISIONL2) A...IGNORE DISCHARGE DECISION
[151 FVALUES€LEFTVALUES, RIGHTUALUES A...COMBINE VALUES OF FIELDS
4161 FPERIODS¢LEFTPERIODS, RIGHTPERIODS A...COMBINE HOURS OF FIELDS
[171 RC31€i ¢ IEXIT A...GO TO FUNCTION CHARGE
[481 NODISCHARGE:HISTORYCDPERIODSLJ11¢1 n...KEEP TRACK OF NODISCHARGE
[191 JeJ+1 m...NEXT DISCHARGE (SAME LEVEL)
[201 NEWDISCHARGELEVELXv(J)DNUMBER) A...NEXT DISCHARGE (NEW LEVEL)
(211 RC21¢4 ¢ JEXIT A...GO TO FUNCTION LEFTFIELD
[22] NEWDISCHARGELEVEL:Jet 0 R[11€1 A...GO TO FUNCTION DISCHARGE
[231 EXIT:30
[241 @
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[0l
[1]
[2]
€3]
[4]
(51
£6]
[71
(8]
[9]
[101
(11
[121
[13]
[14]
£151
(16l
(171

APL Code for the 1R1C Model

vWAPADJUSTIO]
WAaPADJUST; TESTL; TEST2; FIELD1; FIELD2
Aevene :
A..... BAHMAN DARYANIAN 1/1/87, LAST 2/1/89
f.....ADJUSTS PRICES BECAUSE OF LOSSES
Revnss
XFVALUES¢PCLFPERIODSIxYIMPL 2+ FPERIODS-(14FPERIODS) ]
XDVALUES¢PLDPERIODSIXxYIMPL 2+ DPERIODS-(1¢DPERIODS) ]
Risasa
ALPHA¢A11:BULL
TEST1¢DPERIGDSL J1)>FPERIODS
TEST2¢DPERIODSL J1(FPERIODS
FIELDi¢TESTL/FPERIODS
FIELD2¢TEST2/FPERI ODS
FUALUES1€¢PLFIELD11=CALPHAXYIMPL1+DPERIODSL JI-FIELD1])
FUALUES2¢PLFIELD2]1x( ALPHAXYIMPL 4+FIELD2-DPERIODSLJ11)
FUALUES¢FVALUESY, FVALUES2
DVALUE€PLDPERIODSL J11
v
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APL Code for the 1R1C Model

9WaCHARGELD] )
[0] ReWACHARGE
[41 a ;CCHOICE; DROPPERIOD; HIS
[2]  Auuess
[3] A.....BAHMAN DARYANIAN 7/4/85, 5/10/86, LAST 2/1/89
[4] A.....PICKS CHARGE PERIODS ONE BY ONE FROM COMBINEFIELDS
[51 Aueuuee
[6]1 Re3e0 | |
[71 PICK:CCHOICE€FVALUESY(L/FVALUES) A...PICK LOUEST VALUED PERIOD
[81  CVALUE¢FVALUESLCCHOICE] ¢ CPERIOD¢FPERIODSLCCHOICE]
'[91  +CONTINUEXv( DVALUE)CVALUE) a...TEST ECONOMIC FEASIBILITY
- [401 HISTORYCDPERIODS[J11¢4 & aNEZXTDISCHARGE a...NOT TO BE SELECTED AGAIN
4141 CONTINUE: m...60 TO SETVALUE FUNCTIONS
421 +COND2x( DPERIODSL JI< CPERIOD)
[13] CONDA:WASETVALUESL
[141 SJUMP
[415] COND2:WASETVALUES2
[161 JUMP: A.....CONTINUEY
471 A...PICK AGAIN..BUT FIRST CHECK TO SEE IF ANY MORE CHARGE CANDIDATE
[481 A...I1S LEFT ,DROP THE PICKED CHARGE HOUR FROM THE FIELD. ANY MORE LEFT ?
491 DROPPERIODEFPERIODSLCPERIOD ¢ HISe(e( FPERIODS))ed ¢ HISLDROPPERIODI€O
[20]1 FVALUESE¢H1S/FVALUES ¢ FPERIODSe¢HIS/FPEXIODS
£211 PICKXv(( eFPERIODS) Y0)ACHISTORYLDPERIOISL J11#1) m...ANY DISCHARGE LEFT?
[221 NEXTDISCHARGE:JeJ+1 m...NEXT DISCHARGE,SAME PRICE
[23]1 SNEWDISCHARGELEVELXv(J)DNUMBER) ¢ R[21€1 ¢ 3EXIT A...GO TO LEFTFIELD
[24] NEWDISCHARGELEVEL:Jeéi ¢ RC11€é1 A...OR TO NEW DISCHARGE LEVEL
[251 EXIT:40
[26] ¢
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VWASETVALUESALO]
[0] WASETVALUESL
[11 A..ene
[2) ~A.....BAHMAN DARYANIAN 1/1/87, LAST 2/1/89
[3] Aueuen
[4] ALPHA¢A11:BUi1
[51 CDPERIODS¢DPERIODSLJI-CPERIOD
£61  CHECKPERIODS¢CPERIOD+.CDPERIODS ¢ CHECKSTORe¢YL[ CHECKPERIODS]
[71 DELi€UMAX-ULCPERIODI
[8]1 DEL2¢ULDPERIODSLJII=(ALPHAXYIMPLCDPERIODS+1])
[9] DEL3€L/((YMAX-CHECKSTOR)=YIMP[1+.CDPERIODS]) A...Y MAX ?
[101 NEWCHARGEe¢L/(DEL{,DEL2,DEL3) a...MINIMUM OF DEL1i,DEL2,DEL3
[141 ULCPERIODI€ULCPERIODI+NEWCHARGE
[121 UCDPERIODSLJII€ULDPERIODSL J11-NEWCHARGEX( ALPHAXYIMPLCDPERIODS+11)
[13]1 SNEXTx+(ULDPERIODSLJ11)>EPSILON)
[141 HISTORYCDPERIODSLJ1]ed
[151 NEXT:CHANGE€NEWCHARGEXYIMPL1+.CDPERIODS] n...CHANGE IN STORAGE
[161 YCCHECKPERIODS]€Y[CHECKPERIODSI+CHANGE a...UPDATE STORAGE
[171 ¢
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[03
[13
21
[3]
[4]
5
3
(7]
[8]
[9]
[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]

APL Code for the 1R1C Model

TWASETYALUES2LO]
WaSETVALUES2
| PP N
A.....BAHMAN DARYANIAN 1/1/87, LAST 2/1/89
LR
ALPHA€A11:BULL
CDPERIODS¢CPERIOD-DPERIODSLJ]
CHECKPERIODS¢DPERIODSL J1+.CDPERIODS ¢ CHECKSTOReY[ CHECKPERIODS]
DEL1€UMAX-UL CPERIOD]
DEL2¢UL DPERIODSL J11XALPHAXYIMPL CDPERIODS+11
DEL3€(L/( CHECKSTOR-YMIN) =YIMPL 1+.CDPERIODS] ) XxALPHAXYIMPL CDPER]I 0DS+11]
NEWCHARGE¢L/(DEL1, DEL2,DEL3) A...MINIMUM OF DEL1,DELZ2,DEL3
UCCPERIODI€UL CPERIODI+NEWCHARGE
ULDPERIODSL J11€UL DPERIODSL J11-( NEWCHARGE+( ALPHAXYIMPL CDPERIODS+11))
3NEXTxv( ULDPERIODSL J11 YEPSILON)
HISTORYCDPERIODSL J11¢d
NEXT: CHANGE&( NEWCHARGE=( ALPHAXYIMPL CDPERIODS+11) )X YIMPL 1+, CDPERI0ODS]
YL CHECKPERIODS1¢Y[ CHECKPERIODS1-CHANGE A...UPDATE STORAGE
9
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