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ABSTRACT

Numerical simulation is used to study the reacting shear layer at high
Reynolds numbers and moderate Damkohler numbers. The numerical schemes
developed for this purpose are of the Lagrangian-kernel type, the vortex
element method for the integration of the vorticity transport equation and the
transport element method for the integration of the scalar transport equation.
The unsteady equations are integrated by transporting the gradients of the gas
dynamic variables along particle paths, while the intensification of the
gradients due to the strain field is incorporated utilizing the relationship
between the scalar field and the distortion of the flow map.

The growth rate of the perturbed temporal shear layer agrees well with
the results of linear stability theory. The roll up of the vorticity extends
the interface across which diffusion occurs and promotes entrainments currents
into the convoluted structures leading tc substantial enhancement of the
mixing between the two streams. The structure of the forced spatial shear
layer shows that, downstream the splitter plate the layer structure follows
the forcing function. The wvelocity and mixing statistics agree well with
experimental measurements obtained before mixing transition. Mixing asymmetry
leads to the formation of a preferred mixture £raction within the eddies and
is related to the dynamics of the vorticity field in the spatial layer.

The reacting shear layer reveals a strong similarity betwsen
instantaneous distributions of product concentration and vorticity
irrespective of the chemical kinetic model or the Damkohler number. This is
explained by the relationship between the product formation mechanism and the
advection field generated by the strain associated with vorticity amalgamation
into large eddies. Outside the eddies, the strain field reduces product
~oncentration by thinning the layer, by reducing the time allowed for mixing,
and by advective cooling. The structure of the reacting shear layer depends
critically on the Damkohler numbers. The effect of the Damkohler number is
strong around Da = 1 where the rate of product formation rises rapidly with
the speed of the chemical reaction reaching an asymptotic value around Da =
20. At high Reynolds number, the rate of product formation is governed by the
entrainment of reactants into the large eddies, which is weakly dependent on
Re. The reactants ratio across the layer, coupled with mixing asymmetry,
governs the chemical potential inside the eddies. Strong temperature-
dependence produces an ignition delay at the early stages and an explosion
within the eddy cores downstream.
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Chapter 1
Introduction

1.1 BACKGROUND.

Non-premixed turbulent reacting flow has been the subject of extensive
experimental, - theoretical and numerical investigations (for review, see Bilger
{1]). In most of the theoretical work, turbulence models are used to close a
system of averaged transport equations that describe the statistical behavior
of the aerothermcdynamics variables. Much effort has gone into constructing
accurate models and obtaining results that are in agreements with experimental
measurements. Moment methods (2], eddy break-up and mixing controlled models
(3], flame-sheet approximations (4], assumed probability-density functions
(PDF) shape methods {5], and solutions based on modelled joint PDF of scalar
(6,71, and based on modelled joint PDF of scalar and velocity (8] are examples
of these models.

Numerous careful experimental investigations were conducted for the
purpose of understanding the effect of turbulence on chemistry (9-12]. These
studies have revealed, using flow visualization and point measurements, that
reacting shear layer are dominated by large-scale structures and that the zone
of product formation is confined to where these structure exist. It was also
shown that the large-scale structures increase the rate of burning by
enhancing the rate of entrainment of reactants into the reacting zone and thus
improving the mixing of reactants. These results were utilized in the
phenomenological models of reaction in shear layers (13,14].

Recent progress in numerical metheds and availability of fast computer
have had a major impact on turbulence research. With more accurate numerics
and increased storage and computational speed, it has been possible to solve
the time—dependent transport equations governing turbulent combustion over
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some limited parameter range without the need for modeling. Such nearly
model-free simulations have the advantage that the physics of the problem is
not modelled a priori but is recovered directly £from the solution. The
results of the numerical simulation can be used to understand important
mechanisms of turbulent transport and its influence on chemical reactions.
Furthermore, since the instantaneous behavior of the variables is known at all
points and at all times, accurate simulations offer a good method of probing
the flow.

Numerical methods have been used in variety of forms for the simulation
of turbulent flows in complex configqurations (see, e.g., Refs. [15,16]).
Finite-difference methods in which flow variables are defined on a grid and
the transport equations are approximated by discretizing the derivatives on
the grid noder, were first to be used. Examples of this approach can be found
in the work of Corcos and Sherman [17), who used a projection method to study
the temporal evolution of a periodic shear layer, and in Grinstein et al.
{18], who used a flux-corrected transport scheme to simulate the development
‘of coherent structures in a two-dimensional, spatially-evolving shear layer
tand examined their effect on mixing.

Spectral methods, in which each variable is expanded in a series of
harmonic functions that satisfy the differential equations on a number of
collocation points, were applied by Riely et al. [19], to study a three-
dimensional temporally-evolving reacting mixing layer assuming a temperature-
independent reaction rate, constant density, and no heat release. McMurtry et
al. [20], used a pseudo-spectral scheme to analyze the effect of chemical heat
release on the dynamics of a two-dimensional mixing layer for a temperature-
independent reaction rate. Givi et al. [21] employed a spectral simulation of

a two-dimensional mixing layer with ar Arrhenius rate expression and constant



9
density to study local flame extinction. Extension to spatially-growing layer
was initiated by Givi and Jou [22]. In al cases, the Reynolds number was
kept at order of (100), 1limited by the grid resolution and the number of
harmonic modes.

Vortex methods, a particular class of Lagrangian particle methods, were
also used to solve the Euler equation for a two-dimensional incompressible
flow (Leonard {23], Beale and Majda ([24), Hald [25], and Ghoniem and Ng [26]).
These methods are based on the discretization of the vorticity into finite
vortex elements which carry radially-symmetric, compact support of vorticity
(Chorin [27]). By choosing the extent of the support, or the core radius of
each element to be larger than the distance of separation between neighboring
elements, the fields of individual elements overlap and high order
discretization of the vorticity field can be achieved. Vortex elements move
with the local flow velocity evaluated at their geometrical centers, which is
computed as the summation over the contributions of all elements that exist in
the field. The motion of a vortex element does not change its circulation
ard, in most applications, vortex elements possess invariable core shape and
size.

The attraction of Lagrangian, grid-free, vortex method is that, by
construction, computational vortex elements are expected to be, at all times,
concentrated around zones of high velocity gradients. when properly
exploited, this property endows the scheme with resolution necessary to study
interesting phenomena that arise when molecular diffusion is small relative to
convective transport. For instance, at high Reynolds numbers, vorticity
exists on small patches of the fluid and its suffices to distribute
computational elements within these patches and hence avoid wasting labor on

zones of very small vorticity. That the elements move to capture large
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velocity gradients is particularly important in unsteady and nonlinearly
unstable flows where the evolution of the instability causes a substantial
distortion of the vorticity distribution. Moreover, using a Lagrangian
formulation of the equations of motion avoids the convective non-linearity and
enables the construction of computational schemes which are explicit in time.
The employment of moving Lagrangian grids (Fitts and Boris [28])), or grid-free
schemes such as contour dynamics (Zabuski et al. [29]), are other successful

ways of accomplishing the same goal.

1.2. BRIEF REVIEW.

The fact that vorticity is conserved along the particle path in a two-
dimensional, uniform-density, inviscid flow make these method particularly
simple for this class of problems. Convergence proofs of the inviscid vortex
method shows that three factors govern their accuracy: (1) the scheme of
discretization of the initial vorticity; (2) the form of the core function;
and (3) the ratio of the core radius to the separation between vortex elements
(Chorin et al. {30], Del-Prete and Hald (31], Hald ([25,32] and Beale and Majda
[24,33])). Results of these analysis have been supported by numerical tests
(Nakamura et al. [34], Roberts (35], and Perlman [36]). In the following, all
three factors are briefly discussed.

To initialize the strength of vortex e.ements, Del-Prete and Hald [31]
and Hald [25] used average vorticity within an area element around the center
of the element, while Beale and Majda [24] suggested using the vorticity at
the center of the element. Nakamura et al. [34] minimized the global error
between the continuous and the discrete vorticity distribution to evaluate the
latter. Anderson and Greengard [37] proposed the use of a nonuniform mesh to

discretize the vorticity field. Using the procedure in [24 or 31], ohe should
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expect almost a second-order accuracy for short time if the core function is
chosen to be a second-order Gaussian. A fourth-order Gaussian was shown to
improve the accuracy. In both cases, a critical parameter is the ratio of the
core radius to the distance of separation between the center of the elements,
which must be chosen larger than unity to preserve the accuracy for long time.

As the elements move, their separation exceeds their initial value if a
strong strain field arises. This, in effect, decreases the critical ratio of
core radius/separation, leading to deterioration of the accuracy. The fact
that large strain cause deterioration in the accuracy of vortex methods has
been observed explicitly in analysis, e.g., Leonard ([23]. Thus, for most
inviscid vortex methods, which are based on using a fixed number of vortex
elements with invariant cores, the evolution of large local strains can lead
to large errors. For example, a circular patch of vorticity may deform into
an elliptical shape with its major axis aligned with the principal direction
of strain. If a small fixed number of computational elements is used, they
may not be able to accommodate these severe changes. Anderson [38] and Krasny
[39], when discretizing non-smooth vorticity, employed a very large cote
radius so that as vortex elements moved away from each other due to stretch,
reasonable overlap could still be maintained to satisfy the requirements for
accuracy. One may also be forced to consider schemes of redistributing the
vorticity among a different set of elements under conditions of large strain.
Similar schemes have been used in methods of contocur dynamics to preserve the
accuracy of the integration around the vorticity contours (Zabuski and Overman
(40]). Krasny [41], in an independent effort, used a similar procedure in
simulating the evolution of a vortex sheet by a desingularized Biot-Savart

integral.
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Vortex methods were extended to numerical simulation of the reacting
flow in which the equations governing conservation of scalars were solved
using other methods. The application of vortex methods in the calculation of
premixed flame has been reported, among others, by Ghoniem et al. [42] and
Sethian [43]. In diffusion flames, Ashurst and Barr [44] used the vortex
method and an Eulerian flux-corrected transport algorithm to compute the
transport of a conserved Shvab-Zeldivich scalar approximating the shape and
convolution of the flame in the 1limit of infinitely fast chemical reactions.
Lin and Pratt ([45) wused the vortex method and a Monte-Carlo method to
calculate the time-dependent PDF of the scalar quantities for both gaseous and
aqueous mixing layers. Ghoniem and Givi [46) used a vortex/transport eiement
method to investigate the evolution of a spatially-growing constant density
mixing layer using a low heat release chemical reaction with an Arrhenius
rate expression.

In all the above approaches a fixed number of vortex elements were used
for the velocity calculations with the same radially symmetric distribution
for all times and the chemistry calculation were done in an Eulerian form. In
order to accommodate the strong strain field developing at later times, we
will show that other accuracy requirement may necessitate the application of
more elaborate vorticity-updating scheme as vortex elements are moved along
particle path. Also the fact that the scalar field should be treated in a
Lagrangian form since the chemical reaction is truly a Lagrangian process,
i.e., it occurs when the particles interact as they flow, motivates the
implementation of a Lagrangian method for the simulation of high Reynolds
number reacting flows.

Extension of Lagrangian elemgnt methods to integrate a scalar

conservation equation has been applied to several prcblem in one dimension.
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(Chorin [47], Ghoniem and Oppenhiem [48,49] and Ghoniem Sherman [50)). These
schemes were based on using the scalar gradient, in analogy to vorticity, in
the transport process. Anderson [38,51] constructed a scheme to solve for a
two-dimensional thermal in the inviscid Boussinesq approximation by
discretizing the density equation in its vortex form. This was done by
casting the equation in gradient form and discretizing the density gradients
among elements that could be transported. This scheme, while preserving the
advantages of the vortex method, suffer from a major problem: A large strain
field, while it may lead to the generation of large gradients, depletes the
area of computational elements which are used to transport these gradients.

‘We have developed the transport element method, a generalized
Lagrangian particle scheme which is constructed to compute solution of a
convective-diffusive-reactive scalar transport equations. Ghoniem et al. [52])
formulated the vortex element method in which the strain field is used to
monitor the redistribution of the vorticity field at each time step to
overcome the loss of resolution associated with the growth of the distance
between neighboring vortex elements. The transport element method was
formulated by Ghoniem et al. [53,54] to obtain solutions of the scalar
conservation equations at high Reynolds number. This Lagrangian grid-free
method is based on generalizing the concepts of the vortex element method to
transport the scalar gradients. A conserved version of the transport element
method was used to study scalar transport in a spatially-growing shear layer
by Ghoniem et al. [53,54] and the results were validated by comparing the
numerical solution with the experimental measurements ([55]}. The method was
also used by Heidarinejad and Ghoniem [56] to study the effect of Reynolds and
Damkohler number on the burning rate in a non-premixed spatially-growing shear

layer, by Choniem and Krishnan ([57] to study turbulence-combustion
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interactions in a temporally-growing premixed shear layer with finite heat
release, and by Krishnan and Ghoniem [58] to study the structure of heated jet
in a cold environment. A three-dimensional version of the transport element
method was developed and applied by Knio and Ghoniem [59] to study the
entrainment augmentation due to the streamwise structure in a non-reacting

shear layer.

1.3. ORGANIZATION.

In this thesis, we develop the vortex element and transport element
methods, and apply them to a temporally-growing and spatially-developing two-
dimensional turbulent shear layer. 1In the temporal shear layer we validate
our numerical scheme and study the effect of turbulence on mixing. In the
non-reacting spatiai shear layer we use the transport of a passive scalar as a
tool to validate our results with experimental measurement before mixing
transition occurs. 1In the reacting shear layer we use a low-heat-release
chemical reaction to investigate the effect of Reynolds and Damkohler numbers
on the mixing rate. We focus our attention on chemical reactions with small
heat release, and thus, the density 1is constant and the reaction rate is an
Arrhenius expression.

This thesis is organized as follows. In Chapter 2, the problem is
formulated and the governing equations are derived. In Chapter 3, the
numerical schemes are derived in detail. In particular, Chapter 3 describes
how the scalar gradients are related to the stretch in the flow map and how
the initial and boundary conditions are implemented. In Chapter 4, the
numerical results of the temporal shear layer are presented. The structure of
the eddy under different forcing function is analyzed, and the rate of growth
of the perturbation is compared with the results of the linear theory. The
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different processes governing mixing, entrainment and diffusion are discussed
for a range of Peclet numbers. In Chapter 5, the numerical results describing
the structure of the non-reacting spatial shear layer at high Reynolds number
are discussed in detail. In Chapter 6, the results describing the structure
of the reacting layer and how it is affected by the Reynolds, Damkohler
numbers, and other chemical parameters are discussed in detail. Finally, in

Chapter 7, presents conclusions and a summary of the results.
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Chapter 2
FORMULATION OF THE GOVERNING EQUATICMS
The conservation equations describing a turbulent reacting shear layer

at low heat release are summarized in Table I (see Fig. 1 which represents
shadowgraphs of a mixing layer selected from the experimental measurements of
Brown and Roshko [60]). The chemistry is governed by a single step, second-
order, irreversible reaction. The following assumptions are implicit in the
model:
(1) The concentrations of the reactants are small;
(2) The heat release is low and does not affect the physical properties or the

flow dynamics, so that one can decouple the momentum and energy equations;
(3) The reactants and products behave as perfect gases with equal molecular

weights and equal densities;
(4) The transport properties are independent of the temperature and the state

of the mixture;
(5) The chemical reaction rate can be expressed in terms of an Arrhenius rate

expression; and,

(6) The Mach number is small.

TABLE I. THE GOVERNING EQUATIONS

Chemical reaction

F+0—>P (1)



17
Continuity equation

u , av
a—x+—a-}-' = 0 (2)
Momentum equation

o B =u Pu-w (3)

Energy equation

DT 2

pcpﬁ-kVT+Qﬁ (4)

Reactants conservation equation

Dc.,
e - W
b 5t pDVZCj W (5

Product conservation equation
Dc
P p D vch+ W (6)

° ot

Arrhenius rate expression

WA o Co Cp €XP(- %. ) (7)
9

The definition of the symbols is as follows: t is time, u=(u,v) is
velocity, x=(x,y) and x and y are the streamwise and the cross-stream
directions, respectively, p is the density, p is pressure, T is temperature,
cj is the reactant concentration per unit mass with j=F for the "fuel", j=0

for the "oxidizer" and Cp is for the products concentraticn, Q is the enthalpy
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of reaction, E is activation energy, Rg is the gas constant, and V and vz are
the gradient and Laplacian operators, respectively. In our analysis the
frequency factor A, which is in general a function of temperature, is assumed
to be a constant.

In Table II, Egs. (2)-(8) are rewritten in terms of non-dimensionalized
variables represented by the symbol "~", All variables are non-
dimensionalized with respect to the following scales or their combinations:
the velocity difference of the free streams, AU-Ul-Uz, the length scale of the
shear layer, L, the free-stream concentration of fuel in the low-speed stream,
Cre' the free-stream temperature of the reactants at x=0, T,. The length
scale of the shear layer, L, is equal to 4/2 in the temporal model, and A in
the spatial model, where 4 is the initial thickness of the layer at time t=0,
A is a typical eddy size. Note that Apzx*, and for an unforced layer x*-s.sa,

where \" is the wavelength of the most unstable perturbation.

TABLE II. THE GOVERNING EQUATIONS
(INTERMEDIATE STEP)

22.+ 3! 0

ax 9y
E“.a-LXUvzu vp
Dt

- ~2 -~ 2 o~
. 2 _ ¢ r+w Q
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D;. ~2 ~ 2
—d =2 VoW
Dt
D; ~d ~ 2

P D
—— = V ¢+ W
Dt L AU
with

<

2 ~ T

C(Tp= Te) = Cpy Q

In what follows we drop the """ and write in Table III the non-
dimensionalized form of the governing equations in terms of the following
dimensionless numbers: Reynolds number Reaau L/v, Peclet number Pe-AU L/«,
Lewis number Le = a/D, and Damkohler qumber Dhntflow/Tbhem with tflow-L/AU and

2 .
TEhem'l/[A P Cpa exp(—Ta/Tf)], where T¢ is an average temperature within the
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reacting zone, the activation energy Ta-E/RgTQ, the frequency factor A, = (A
P Cre L )/0U, and the effective heat release parameter, Q. We note that the
Damkohler number can be changed by varying the free stream concentration of

the reactant c the density p, or the value of the frequency factor A by

Fo'
employing a catalyst.

TABLE III. THE GOVERNING EQUATIONS

(NON-DIMENSIONALIZED)

Ju v

ﬁ*'-a_fr =0 (8)

u 1 .2

3kt Y- Vu = -% + Eev u (9)

oT 1 2 s

s tu. VT Tev'r+ow (10)

[ [o 3

_d - 1 9%, - W

g t U ch 5T, v cj W (11)
e e

ac

P 1 2 )

3E tu- Vep= 7 Ve, + W (12)
e e

. Ta

W= A; ¢y Cp exp(- 5 ) (13)

Note that the enthalpy of reaction, Q, is non-dimensionalized with

respect to ¢ T, / Cp, rather than c_ T_, where the former combination make

P P
the energy and species conservation equations insensitive to the concentration
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of the reactants in a low heat release chemical reaction. In this regard, the
non-dimensionalized value of the enthalpy of reaction, 6, and the predicted
value of the temperature of the product, Tp, are related to the experimental

parameters as follows:

Feo

Q= Q
% Ta
TP =1+Q

Adding more steps to the chemical kinetics scheme will require
integrating more species conservation equations to compute the evolution of
the intermediate species. Using a chemical kinetics model to describe the
reaction may be important in investigating some non-equilibrium phenomena such
as ignition, extinction and the formation of tracer species. However, in this
work for the sake of economy we will use a single step reaction to obtain a
qualitative understanding of the mechanisms governing the intrinsic behavior
of the shear layer, and leave the implementation of detailed chemistry to
future extensions. '

In Fig. 2, in the form of a flow chart, we show how a shear layer can
be modelled. In the context of this work, a turbulent shear layer is an
unstable shear layer in which pseudo-deterministic large-scale vortex
structures, generated as "white" noise amplify within the vorticity layer due
to its intrinsic broad-band instability, dominate the dynamics of the field.
The results are thus limited to the combined effect of two-dimensional
entrainment, molecular diffusion and chemical reaction, and hence the mixing

transition is not allowed to affect the flow dynamics. We focus our attention
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on chemical reactions with small heat release. ‘Thus, the density is spatially
and temporally constant, and the energy and momentum equations are decoupled.
We only consider the effects of turbulence on chemistry.

At high heat release, the turbulence-chemistry interaction is expected
to affect the flow dynamics through the velocity and vorticity fields
generated by the density gradient. This is currently under investigation
using the compressible vortex/transport element method (Ghoniem and Krishnan
[57)). Moreover, the extra mixing, generated by the extra entrainment
attained after transition and the generation of streamwise vorticity
structures, is currently analyzed using the three-dimensional version of the
transport elemeﬁt method (Rnio and Ghoniem [59].

We summarize by noting that the simplest model of a reacting shear
layer is governed by six non-dimensional parameters: the Reynolds number, the
Prandtl number, the Lewis number, the energy release parameter, the frequency
factor and the activation energy. In most cases of gas-phase reactions, one
can take Pr = Le = 1, and reduce the dependence on the transport properties of
the fluid to only the Reynolds number. In this case, the most important
diffusion process is that of heat and/or mass and not that of momentum since
while momentum diffusion plays a secondary role in the dynamics of the shear
layer for values of the Reynolds number exceeding 0(1000), diffusion is
necessary for molecular mixing and can be the limiting mechanism in
determining the mixing rate and thus the burning rate. This issue will be
elaborated further in Chapters 4 and 5.
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(e)

(e)

Fig. 1 Efccts of Reynolds number, Mixing lnyers betwe

ent helivm (upper) and nitrogen
(lower) with pg U2 = p, Ui, (1) Reynolds number is proportional to 8 x 10 (pressure = Ratm,
U, = 10ms"); (b) 8 x 5; (¢) 4 x 15 () 4 % 55 (e) 2 x 10
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SHEAR LAYER

|

! +.

3-D 2-D
]
MOMENTUM EQUATION =
Y
]

"No " or " Low " heat release " Low " or " High " heat release
ENERGY & SPECIES ENERGY & SPECIES
CONSERVATION EQUATIONS CONSERVATION EQUATIONS

* DECOUPLED * * COUPLED *
EFFECT OF TURBULENCE TURBULENCE-CHEMISTRY
ON CHEMISTRY INTERACTIONS

Fig. 2. Different models of a shear layer
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Chapter 3
NUMERICAL SCHEMES
We will not solve the governing equations, Egs. (8)-(12), as expressed
in their Eulerian form in terms of the primary gas dynamic variables, the
velocity, temperature and species concentrations. Instead, we rewrite Egs.
(8)-(12) in a Lagrangian form in terms of the vorticity, , and scalar

gradients, g, as follows:

dw 1
aE-—R;VZw (14)
k+1 .
d 1 v2 aw
=-gWu-gxXw+o— g+ [ g (15)
a? N, j=1 33'5 3
with
u(x) = f K(x-x*) w(x’) dx’ + up(x) (16)
s(x) = [ 9G(x-x’) . g(x’) dx’ + sp(x) (17)

Here, N, = Py if s is temperature and Ne = Py Lg if s is concentration, k is
the number of species, g = Vs, K = ( -3G/3y, 3G/3x ), G(x) = -(1/2n) 1ln r with
r = |x| is the Green function of the Poisson equation in an infinite domain,
r2 = xz + yz, de =dx dy, and @ = w e, where e, is the unit vector normal to
the x-y plan, and up(x) and sp(x) are components of the velocity and the
scalar due to a potential field imposed to satisfy the boundary conditions,
respectiveiy. The generic scalar is s with §=Cqys Cpr p for species equations
and s = T/Q for the energy equation, d/dt is the Lagrangian derivative, and
dW/dsj is obtained from Eq. (13). Equations (14)-(17) are derived in more

detail and are solved numerically using their discrete forms in Sectic..s 3.1
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and 3.2. The initial and boundary conditions relevant to the models of the
shear layer are discussed in Sections 3.3 and 3.4. The effect of the
distortion of the flow map due to the generation of a strong strain field at
high Reynolds number, which may cause a deterioration in accuracy in the
Lagrangian scheme, is discussed in Section 3.5. The solution we implemented

to avoid the deterioration is also presented there.

3.1. THE VORTEX METHOD

Vortex methods are based on the discretization of the vorticity field
by a finite number of computational vorticity elements. These element are
displaced in a Lagrangian reference frame by the local velocity, u, computed
at their centers. The velocity field is decomposed into two components: a
divergence-free component, u. due to the vorticity field, and an irrotational
component, “p' due to the potential field imposed to satisfy the boundary
conditions, u = u  + u.p (in accordance with the Hodge decomposition
principles, see Batchelor [61] or Chorin and Marsden [62].) The velocity

component due to the potential field, u may be incorporated into the

'
calculation by using the image system of pthe vortex elements constructed to
satisfy the no-flow condition due to the solid wall, and flow sources to
satisfy the inlet condition upstream, as shown in Section 3.4. The velocity
component due to the vorticity field, u, is discussed in more detail below.
In a Lagrangian reference frame we will solve Egq. (14) in two
fractional time steps: convection, which is governed by dw/dt = 0, and
diffusion, which is described by 3w/3t = v Vzw. The first step is equivalent
to transporting the vorticity element: along the particle path without

changing their strength, while during the second step the convective effect is

frozen and vorticity is spread due to momentum diffusion.
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We start by approximating the initial vorticity field using a set of

kernel functions of small support as follows:

N
,0)= L T, - X,
w(x, 0) ST fag x - X;)

where T is the strength of a vortex element, or its circulation, f8 is the
core function describing the shape of the vorticity distribution associated
with an element, X is the initial location of the center of the vortex
element, and § is a measure of the spread of the vorticity field around its
center known as the core radius. Details of how to select T, fa, and § are
discussed in Section 3.3. We consider an inviscid flow and solve for the
first fractional step. Considering a vortex element with strength I located
at the origin of the system of coordinates in a domain with no boundary, wz
first show how to compute its induced velocity field. We introduce the stre=m
function, ¥, to relate the velocity in its polar coordinate, uwr(vr,ve), or

Cartesian coordinrate, uwr(u,v), and the vorticity, w, as follows:

) 4 ') 4
u= By and v = - I
or . (18a)
1 3y Y
Ve*t e 4 Vgt~ 3¢
while
av v
v u e 1 r
W= "3y 3% 3@ (18b)

Introdﬁcing Eqs. (18a) into (18b) and writing the results in polar

coordinates, we get:
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2

2 13 R4 1 23%Y
—wV‘Y'EEt(l’ﬁ)‘F?—;;z (19)

For the radially symmetric distribution of vorticity associated with a sirgle

element, 3/36 = 0, and we can integrate Eq. (19) to obtain for Vo'

r
Vg - I o (2nr) dr (20)
2nr O

Substituting for the vorticity field, w, in terms of the strength of each

element, I', and the core function, f&' that is e = T f&’ we get:

"a(" (21)

r
Ka(r) = 2n g | 4 fs(r') dr’

or
u = (u,v) = - II% fzxiil K#(r) (22)
with

2 2 2

“=x“+y
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The negative sign in the front of Eqs. (21) and (22) is due to the conventioca
that counterclockwise circulation is positive. For a point vortex the core
function is a delta function, that is Kg = 1, and the velocity apprnaches
infinity at the center of the vcrtex. This gives rise to numerical
instability as two neighboring elements become very close to each other. To
remove this instability and improve the accuracy of discretization of the
vorticity field into finite elements, we use a second-order Gaussian core

function described by:

£, = ——lz exp(- rz )
§ nd EI
which gives a continucus and swooth distribution for the vorticity and

velocity and their derivatives. Introducing the second-order Gaussian core

into Eq. (22) we get:

u = (u'v)w - -

W

2
' (-y,x) r
77 4 1 - ewi- £ (23)

In the second fractional step we include the momentum diffusion effect
by freezing the motion and solving the equation 3w/t = v vzm for a vorticity
element defined by

r r2
w(r) = ——zz exp(- E} )

n

and § = §(t). The solution of this equation satisfies the equation d(82)/dt =
4v. Integrating and using the initial condition that &§(0) = 80, we get:
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2

= 82 + 4 v t.

8 0

Now we write the discretized form of the equations describing the
vorticity and velocity fields in a two-dimensional incompressible flow as a
summation of the contributions of all computational elements within the

domain, as follows:

N
N
uw(x,t) = 121 I‘1 Ks(x-xi(t)) (25)
with
(y—yi).—(x-xi)
Ka(x)- - p) Ks(ri)

Ly

2
r = (xxy) % (y-y;)?

where f8 and Kg have been defined before and subscript "i" refers to the
center of the ith element located at (xi,yi), (x,y) being an arbitrary point.
The second component of the velocity, up, which is added to sati. - the
boundary conditions, will be discussed in Section 3.4.
Knowing the velocity at the center of the vortex element, “j' we may

update its location, xj' each time step, using dx&/dt = uj(xﬁ,t) as follows:
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xj, t+ot) = xj(x ) + zzuj(sz) at

xj(
where 22 is a second-order time-integration scheme, xj(xj °)°xj' xj being the

location of the element at time t=0.

3.2. THE TRANSPORT ELEMENT METHCC

In most shear flows, scalar gradients occupy a much smaller portion of
the flow field that occupied by the scalar itself. Therefore, it ought to be
more efficient to use the gradient of the scalar as the main variable in the
computational scheme. Moreover, to avoid the non-linearity of the convective
terms as in the vortex method, and to be compatible with the Lagrangian nature
of a chemical reaction in flowing system, the basic concepts of the vortex
element method are expected to obtain solutions for the energy and species
conservation equations. For a given scalar distribution, s(x,t), at time t=0
there is a corresponding scalar gradient distribution g(x,0) = Vs. In the
initialization procedure which is discussed in the next section, the initial
scalar gradient distribution is used to calculate the initial strength of the
transport element, 4g; = g(x,,0) 8&1 where 8Ai is the area of the material
element associated with this element (Ag in scalar transport is equivalent to
I in vorticity transport). The strength of each transport element, Aag,
together with its core function, f&' and the core radius, §, describe the

scalar gradient field as follows:

N
g(x,0) = 9s(x,0) = I 4g.(0) fs(x - X.) (26)
juml ] ]
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where £y and 8 are defined previously and are in general different than those
used for the vortex elements. In what follows, we drive the equations
governing conservation of scalar, s, in terms of its gradient, g = Vs, and
solve the scalar transport equation, EG. (15), numerically in three fracticnal
steps, namely convection, diffusion, and reaction. We start with a non-
diffusive, non-reactive flow in which the governing equation for the scalar,

s, is as follows:

g%--g—g-bu.VB-O (27)

We take the gradient of Eq. (27), and drive the equations relating the
scalar, s, to its gradient, g = Vs, at later time. This is done by taking the
gradient of Eq. (27),

g-z--gx\?u-gxu (28)

using the identity V x g = 0. In the early stages of this research we wrote
Eq. (28) in terms of its components:

d du v

HE -3 P-4 (29a)
d 3u v

a%ﬂ—a—-yp—a—yq (29b)

where g=(p,q) and p and ¢ are the x and y components of the gradients, and
integrated these equations along particle paths to find the evolution of the
gradients at later time. For this purpose, we used the following initial

conditions: p(x,0) = ds(x,0)/dx and q(x,0) = ds(x,0)/dy, which were known from
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Eq. (26), and the derivatives of the velocity field, which were obtained by
analytically differentiating the velocity field (these expressions are
presented in Table IV in Section 3.4.1).
The scalar concentration can be recovered from the scalar gradients as

follows. Since g = Vs, by taking the divergence we get:

vzs =9v.gqg

The solution of this equation in an infinite domain can be written as:
S(x) =~ [ 9.9 G(x - x’) dx’

Integrating by parts, we get:

s(x) = [ g(x) . VG(x - x’') dx’ (30a)

Extending the concept of the Hodge decomposition of a velocity fieid to the

scalar computation, an extra component, s can be imposed to satisfy the

pl
boundary condition as follows:

s(x) = [ g(x) . VG(x - x*) dx’ + sp(x) (30b)

The evaluation of sp for a confined flow is presented in Section 3.4.
Introducing the scalar gradient distribution, g(x), from Eq. (26) into the Eq.
(30), and using a second order Gaussian core to smooth the distribution of 9
around the center of the element, we calculate the value of the scalar as

follows:
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2
N aG G r
s(x,t) = jfl ( py -5‘1 *qy }_yj ) (1-exp(- B )] + 8,(x) (31)
where
d ax 3G dy
1 1
EEJ “In :21 ' Y Zn ;21
3 3
2 2 2
rj = (ij) + (AYj)

However the numerical results showed that this initial version of the
transport element method suffers from the following problems:

(1) 1t is computationally expensive since the gradients of the velocity vector
must be computed at each time step;

(2) The strohg strain field which develops at later times negatively affects
the estimation of the velocity gradient wu. As we will show in Section
3.5, a vortex method which uses a fixed number of vortex elements loses
resolution at the later stages of the flow;

(3) Eqs. (29) or (28) are stiff and there is an error associated with the
integration method.

The above sources of error lead to a slight deviation of the calculated
scalars from their free stream values the later times, and, to a lesser
extent, within the convoluted eddy. Hence it was concluded that the method
did not conserve the thermal energy within the domain and could not be used to

compute the evolution of a conserved scalar accurately.
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Later we developed and applied a conservative version of the transport

element method by relating the scalar gradients to the flow map.

version, the material line that lies on the surface of constant s at time t =

0, 81, is related to the gradient of scalar at the same point, g, as follows.

Let g= |g| nwhere n = g / |g| is the wunit vector in the direction of

gradient. We have:

2
Sligl) o g digh 2 (g.g)u2q. %

which implies that

M-&gl—’-n.gg (32)

Expanding dg/dt, we get:

- & lgl n) =gl §F+ndlal) (33)

Now, combining Eqs. (28), (32) and (33), we obtain:

gl §2+ (n.( -g. T - gx w)n=-gMu-gxae (34)

and by dividing by [g| and noting that n.(g x w) = 0 we get:

g% =-nW-nxw+(n.(n%))n (35)

substituting the expression for dn/dt from (35) into (33) we get:
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Qégl = -(n.(-n%)) |g| (36)

Equation (36) states that although the value of the scalar itself is invariant
along the material path, the magnitude of its gradient changes according to
the change of its direction and the stretch of the flow map. In what follows
we relate d|g|/dt to the stretching of a material element, 81, initially lying
in the direction normal to the scalar gradient, g. The variation of 81 is

governed by the equation:

A w51 . v (37)

If 81 is chosen to lie on a surface of constant s at time t=0, then the
equation ds/dt = 0 implies that it will always remain on this surface. If mn’
denotes the unit vector in the direction of §1, then n.n’ = 0 at any time. We
may write 81 = |81| n’, and follow a similar procedure to derive a
differential equation for the change of &§1 with time. After some algebra we

get:
A8 la(n (0w |8 (38)

Comparing Eqs. (36) and (38) and noting that n.(n.%u) = - n’.(n’.%a), we
arrive at the following important conclusion which relates the stretch of the

iso-scalar lines to the scalar gradient:

3§— = constant (39)

See Fig. 3 for a physical interpretation of this expression.
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If the initial jump of the scalar value across an element is 651-32—51,

we may calculate the strength of each transport elements as follows:

8g,(t) = [ 32 81 sn(t) 1= 85, 81, my(t) (40)

where 811-|811|, (as/an):l "(831/6“1)' and 81i and ni(t) are measured along the
mesh sides. See Fig. 4 for a physical interpretation of the expression.
Combining Eqs. (26), (40) and (30), we can calculate the scalar field in a
two-dimensional incompressible flow as a summation of the contributions of all
the computational elements in a domain without boundaries as

N (x‘xi)r(Y"Yi)
s(x,t) = L Agi(t) . ) KS(ri) (41)
i=l ry

vhere L and k., are defined as before.

s

To obtain a solution for the convective-diffusive-reactive equation,
Eq. (15), we follow the same procedure used for vorticity, w. Equation (15)
is solved in three fractional steps: convection by transporting the elements
along particle path and changing their strength according to Eq. (40),
diffusion, and reaction. The effect of séalar diffusion is implemented by

expanding the core radius according to:

§2 = 53 + dot (42)

The third fractional step in solving Egq. (15) involves the chemical

source terms. We start by considering the effect of the source term in the
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scalar conservation equation, ds/dt = W, while the convection and diffusion

effects are frozen, and take the variation of both sides:

ds
8 H'Fi =W(s;) } J=1,kel forie1,N

which yields

d(&si) k+1 W
| jfl ﬁ; (Ssj)i (43)

where k is the number of reactants.
The application of the transport element method to the low heat release

reacting shear layer proceeds according to the following steps:

(1) Calculate the velocity at the center of each transport element and move
the elements to new locations using the equations presented in Section 2-
4;

(2) Calculate the new strength of the element using Eq. (40);

(3) Include the effect of diffusion by expanding the core radius of each
element using Eq. (42);

(4) Calculate the scalar value at the center of each transport element using
Eq. (41); |

(5) Update the scalar variation, §s, aséociated with each transport element

using Eq. (43).

3.3. INITIAL CONDITIONS
The free shear layer is shown in Fig. 5. The initial vorticity
distribution across a free shear layer with free stream velocities y and U,

can be represented by a second-order Gaussian:
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2
) exp(- L) (44)
n 20

R(y)=(

where ¢ is the standard deviation of the Gaussian distribution and 4U=U, -U, .
Note that the initial shear layer vorticity thickness is 8=2/20. The
corresponding velecity distribution is:

uly) = Ut (5) ere(¥) (45)

where U(y) is the streamwise velocity, UM-0.5(01+UZ), and

erf(x) = 2 Ix exp(-tz)dt
/n 0
is the error function.

To start the computation, the initial vorticity is discretized among
computational elements located on NY layers stacked in the y-direction within
the zone where |2|>0, and separated by a distance h in the x-direction (see
Fig. 6). These elements are used in the transport process as described in
Sections 3.1 and 3.2. Each element is characterized by a core radius, §, a
core function, f&' and its strength, I'. The strength rj, for each element can

be defined by either of the following two expressions:

I, = w(xj) 8Aj
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where xj is the center of the original mesh, and 8Aj is the material area
surrounding it. 1In order to determine the initial locations of the centers of
the elements, Y- and their strengths, ri, 1-1,NY, we define an error index,

EQ, as follows:

+>

Eq = I |ey)-w(y)|dy for any x
-
where Q(y) and w(y) are the exact and discretized vorticity distributions.
The following initialization procedures were tried:
(1) Fix the locations of the center of elements, Yy and use a least-squares

method to minimize the quantity H, defined as:

+o N 5 N +o
Ha [ [ 9y) - ;:Yr:l £, dy +al erj- [ o(y) dy )
- j-l j-l -

where a is a Lagrange multiplier and NY

Minimizing H with respect to rj and a ylelds simultaneous equations for rj

is the number of layers.

and a. After solving the equations for rj, we calculate the error index
E, to check the accuracy of the results;
(2) Fix the strength of the elements, ri, and minimize the quantity H with

respect to Yj and a, and after solving the resulting equations for yj,

check the error index E.; and

Qf
(3) Fix the location of the centers, Y- and calculate the strengths of

elements, Fi, by solving the following system of equations;
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N
Q(Yj) = iflri fa(yi-yj) where jil,N (46)

The values of Y; should be chosen to minimize Eg-

The first and second approaches are consistent with the definitions of
T used by Del-Prete and Hald [31). The third approach is consistent with the
definition of T used by Beale and Majda ({24]. The numerical experiments by
Perlman {[36) show that the initialization based on the second definition of T
can provide higher order accuracy. Amoiiy the approaches just mentioned, we
have found that the third one, which amounts to a collocation technique, to be
the most accurate.

For an accurate initialization, strong overlap between the neighboring
vortex elements must be allowed, i.e., § must be larger than h. Moreover, h
must be varied until the error index, EQ,
machine, say 10_6, which is the maximum permissible error in our

falls below the accuracy of the

initialization procedure. Numerical experiments show that if strong overlap
is not imposed the error index increases rapidly as §/h decreases below 1.
Thus, the overlap between neighboring elements is necessary for accurate
discretization of the initial vorticity field. This is consistent with the
convergence theory of vortex methods [24-25,30-33] It also rules out point
vortices as an accurate means of representing a vorticity field.

To measure the effect of the accuracy of the initial discretization of
vorticity among vortex elements on the flow field for short time, we used the
numerical simulation to calculate the rate of growth of a perturbation in a
temporal shear layer. This values was then compared with the growth rate
based on the eigensolution of the linearized form of the governing equation

within the initial stages, the Rayleigh equation. Details of the linear
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theory, calculations of the growth rate and comparisons are presented in
Chapter 3.

In the calculation of a spatial shear layer, we use the same vorticity
distribution as that of an unperturbed shear layer for the newly introduced
elements at the tip of the splitter plate. We then apply Eq. (46) to
discretize the incoming vorticity among new vortex elements. First, we fix
the minimum number of layers to meet our initialization accuracy requirement.
Then, by discretizing the incoming verticity field on the square mesh we
calculate the side of mesh in the streamwise direction. During a time step,
4t, each layer has moved away from the inlet section, and a gap is created
between the end of the layer and inlet section which should be filled with the
new elements. Based on this gap and the side of each element, we introduce
the necessary number of elements to satisfy the conservation of vorticity.

For calculation of the scalar, U(y) and Q(y) are replaced with the
scalar, s, and its gradient, g=VUs, respectively. 1In the temporal model, we
compute the evolution of a thermally stratified shear layer in which
temperature is passively transported. In the non-reacting spatial shear
layer, the scalar is the concentration of a species diluted in an inert base
flow and introduced in the slow stream. In the reacting shear layer we
introduce the reactants on the opposite sides of the splitter plate in the
high-speed and low-speed streams, as shown in Fig. 7, with a normalized error

function distribution:

c c
£ _ o5 [1+erf(!:9;§) , O vy
Cre a Che

Ol 0
b |

Fo
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where tho“/cfﬁ,is the reactants ratio and Con and Cpe are the free stream
values of the reactants. The same elements, or particles, are used to
transport the vorticity and scalar gradients.

In the simulations, the shear layer is discretized among eleven or
thirteen layers of computational elements in the temperal model, and five or
seven layers for the non-reacting and reacting spatial models respectively.
The top and bottom layers are added to capture the extra gradients which
develop downstream as the shear layer grows in the cross stream direction.

The total number of elements is kept at an affordable level, usually below
5000.

3.4. BOUNDARY CONDITIONS

A turbulent shear layer represents a smoothing of a discontinuity
formed between two parallel, semi-infinite streams having different properties
when brought together. The two streams are initially separated by a splitter
plate, which generates two boundary layers as a result of no-slip condition on
both side of the plate. By the "mixing layer" we refer to the region after
which the wake resulting from the merging of the two boundary layers has
developed a monotonic velocity distribution. The highly unstable nature of
the shear layer (due to the Kelvin-Helmholtz instability mechanism) provides a
mechanism for the growth of small perturbations and formation of large scale
structures. These structures, in general, move downstream with the mean
velocity of the flow, Uy By the mechanism of the subharmonic instability,
each two, or occasionally three, neighboring structures wundergo pairing,
forming larger structures and maintaining the periodicity of the flow.

In the spatial shear layer, the computational domain is attached to the
laboratory reference frame and is confined by the solid walls on the top arnd
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bottom. The inlet conditions on the left-hand side are well-defined. The
exit conditions on the right-hand side are, however, not so well defined. 1In
most cases, they are time—dependent since the flow requires a long distance
downstream to reach a fully developed state where a well defined, steady
boundary condition can be imposed. Practically, in order to limit the
computational effort, one is forced to delete the computational elements at a

specified section, , without including the effect of the deleted field

¥ max
explicitly in the form of a boundary condition [15]. As we shall see later,
we employ a conformal transformation and egolve for the potential component in
a free space without requiring an explicit boundary condition at the exit
section.

In our temporal shear layer model, the length of the computational
domain is limited to the size of one or few large scale structures. In this
case, we deal with a moving computational domain related to the stationary
reference frame via a Galilean transformation involving the mean velocity U,
and the boundary conditions are periodic on both sides of the domain.

The two solutions based on the temporal and spatial shear layer are
equivalent if the following conditions are met:

(1) The mean velocity, UM = (Ul-l-Uz), is constant; and
(2) The velocities of the two streams are close to each other, that is (ul—
UZ)/(U1+Uz)<<1. The latter restriction, known as the Taylor hypothesis,

states that there is an auto-correlation between the two solutions if:

3 3
" " U &

Otherwise, there are some qualitative differences between the two solutions

since the governing equations are parabolic in time and elliptic in space. In
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a spatial shear layer, an event which occurs downstream of the splitter plate
induces a change in velocity everywhere in the flow, including upstreanm,
whereas for the temporal shear layer an event is clearly unable to affect the
previous development of the flow. In addition, unlike the terporal shear
layer, in the spatial shear layer the amounts of fluid entrained from each
stream are different because of the asymmetry of the inlet boundary condition.
More on this issue, the asymmetric entrainment, will be presented in Chapters
5 and 6. '

The temporal shear layer is mathematically well defined when periodic
boundary conditions are used. However, due to the limitation of the Taylor
hypothesis, which is another manifestation of the periodic boundary condition,
the velocity difference does not play any role in the dynamics. In principle,
this model should only give qualitative insight into the physics of the
governing processes rather than quantitative information which can be compared
with experimental measurements. We found that the temporal shear layer is
more accurate than expected, and as we will show later, its results strongly

resemble the experiment measurements.

3.4.1. THE TEMPORAL SHEAR LAYER

The temporal shear layer is shown in Fig. 5. 1In this work, this model
is used as a test problem to validate the numerical scheme in the early stages
of development and to study the dynamics in the non-linear range. To derive
an expression for up in this case, we start with a single vortex element
located at (xk,yk) within the computational domain and apply Eg. (23) to
calculate the total velocity, (u,v), induced by the element and its infinite

number of periodic images (not a mirror image) in both sides of the domain, at

an arbitrary point, x(x,y), as follows:
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2
+o (y-v, ), =[x=(x +kX)} r
wry) =~ 5 E (- ep(- 3 ) )
-0 rk 5k
where
rﬁ w (y- yk)2 + [ x-( X+ ki ) ]2

The expression for velocity can be decomposed into two parts:

+@ (yhyk). -[x—(xk+kX)l

u(x,y) = _gi { -L ) +
- rk
+o (Y-Yk). -IX-(xk+kX)l ri
T ) exp(- — ) )
- Ty 8y

There is a closed form for the first summation, and because we deal with a
fast decaying function in the second case, and since 8§<<\, the effect of the

cores is included only for the nearest sister vortices (k=-1,0,1). Thevefore:

2n A ., 2% OX 2
alx,y)= ;_ [ ; sinh; X ).s1n;——;§—) . ﬁlexp(- fg .
n cosh( L )-cos(-!-xf) k=0 sk
sl (yy,) s ~[X-(x-(x,+kN) ] r
L 3 exp(--—i ) } (47)
k=0 Iy sk
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Now we consider N elements within the computational domain, and apply
Eq. (47) to calculate the total velocity induced at an arbitrary point (x,y).

Thus, we obtain:

2n Ay 2r Ox
N T n  -sinh( _X_j)’ sin( —X—J )
uoey) = Eo— U x T By o bx,
] cosh( '__X_j ) - cos( _—77"1 )
+1 2
- by., -(&x;) (rcy)
p L a1k - LX)y (48
k=0 (rj)k (Sj)
with
ij - X - xj
AYj =y - Yj

(ij)k = X - (xj+kk)

2 2 2
(rj)k- (ij)k+ ij

In what follows we use Eq. (48) to drive the derivatives of the
velocity expression for a temporal model. These derivatives, which are needed

in calculation of the scalar value using Eq. (29), are presented in Table IV.

Table IV.
Derivatives of the velocity expressions

for a temporal shear layer
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2n Ax.
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2n Qy
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( - ) 1 exp(- —1% ) 1 )
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2n A
) cosh( ——xj )

2r
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an Ax +
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av(x,y) p {- T sin( “"X‘j ) sinh( "‘X‘j )
Ay : 2 Zn oy In &x *
j=1 X [ cosh(-——x——j ) ~ cos { ——77—1 ) 12
r +1 2
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The same procedure used for the velocity calculation can be employed to

drive the corresponding expression for the scalar s:

. 2
N n ;2 sin( 32—;:1 ) + ;% sinh( it )
X

s(x,y) = L {

- In by In ox *

) cosh( ) - cos( )

+1 2

= pslox.),, g8y (r3)
T 513 exp(- —1%) 1 ) (49)

where p = ds/dx and q = ds/dy are the scalar gradients in x and y direction,
and ij, ij, (ij)k' and (r%)k are defined as before. The strengths of the
transport elements (p,q) can be updated using either Eq. (29) or Eg. (40).

3.4.2. THE SPATIAL SHEAR LAYER
A spatial, confined shear layer is shown in Fig. 7. Since in our

calculations the vorticity layer initially coincides with the layer of finite
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scalar gradients, the same set of elements is used to transport the vorticity
and the scalar gradients. Since the Reynolds number is high, the growth of
the boundary layers on the confining walls is neglected. The computational
elements are deleted at the exit plane. This introduces a perturbation
upstream and ensures that the roll up and at least the first pairing will take
place within the domain. Since this perturbation is not applied in an
organized manner, the resulting shear layer will be considered as an unforced
layerz.

As already mentioned, in order to avoid addressing the issue of the
exit boundary condition explicitly, and to obtain the potential components up
and sp in closed form, we invoke a Schwarz-Christoffel transform [63] to map
the two—dimensional physical plane z = x + i y, onto the upper half of the

computational plane, { = § + i n, using:

F(Z) = m(& 7 ) (50)

{ =+ exp(2nz)+1 (51)

where z is normalized with respect to the length scale A; "+" is used for

y<0.5 and "-" is used for y>0.5 and F(Z)=d{/dz (see Figs. 7). Implementation

of the other boundary conditions is facilitated by the following facts:

(1) The two incoming streams are represented by two line sources with the
strength of 5 = O.SUi/h and Sy = 0.5U2/n located at Cslu(-l,O) and
C52=(+1,0), respectively. Note that 0.5 in the expression of the strength
comes from the fact that these sources cover only the upper half of the
computational plane;

(2) The no-flow boundary condition across the solid walls is satisfied by
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using the mirror images of the computational elements with respect to the
real axis, C=E+i0. These images have the same strength as the original
elements but with a negative sign. The total complex velocity, w=u-iv, at

the center of jth element, z(Z,), is given by:
3

N i T 5
S s ; | og| tag|
wizy)= | L 2 4 Lo, 1y ey
ir,
aF
- (@) (52)

where the last term is the self-induced velocity which arises due the

transformation between the physical and computational domains, and

~

where 2 is the complex conjugate. The scaling factor used to transform the
length from the z-plane to the {-plane at point z(Z) is F(L) and vice versa;
i.e., 5':?8|2F(C)' It is important to remember that we made no approximation
in driving Eq. (52), and that the resolution of the numerical scheme is not
restricted by a mesh size.

In what follows, we employ the same procedure used to evaluate the
velocity field to derive the corresponding expression required to calculate
the value of the scalar at an arbitrary point {=E+in. The total contribution
to the scalar concentration at a point (&,n) is due to the following:

(1) Two line sources with logarithmic distributions located at Csl=(—1,0), and
Csz-(l,O), serving the upper half the computational plane, and

representing the effect of the incoming streams. For a source located at
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£, we derive the expression representing the scalar distribution at an
arbitrary point,‘i, as follows. We write the scalar flux through a semi-
circle with center located at the source, and passing through the desired

point,

Flux = 1 (& = &) %SE = Constant

and integrate to find the variation of s with § as

s(E) = C Log(&-&;) + T

Because there are two sources, the contribution of the incoming flow to

the scalar concentration is
s(E) = Co * Cy LOg(ErEsl) +Cy Log(&—Esz).

(2) The transport elements in the upper half of the I-plane representing the
distribution of the scalar gradients inside the computational domain;

(3) The mirror images of the transport element in the lower half of the {
plane which are used to satisfy the no-flux wall condition. These images
have the same strength as the original elements but with negative signs to

cancel the flux induced at the poundary. The total scalar distribution is

given by:

s(z) = s(z) =

Co + Cl 109(C—Csl) + Cz 109(C‘zvsz) +
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Note that the walls are assumed to be adiabatic and impermeable. We may
implement other boundary conditions by defining the appropriate image system
for the gradient elements in the domain.

In order to find the values of the constants Cor Cy» and C,, it is
important to use a combination of the boundary points at the inlet and exit
planes of the domain and ensure that the effect of the sources decays with the
distance downstream. We use Eq. (53) twice for the following sets of the
boundary conditions:

(1) 5(0.0,0.0,t)=s_,, 5(0.0,1.0,t)=s_, and s(X,,0.0,t)=s_, at x. , =4.0;
(2) s(0.0,0.0,t)=5.,, s(0.0,1.0,t)=s5.,, and s(X,,1.0,t)=5, at x. ., =4.0.
Each time step, two sets of Cor Cq» and C,, are calculated by applying the
above two conditions. The average of the two sets of constants is used for

the rest of the calculations.
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We remark that this method of implementing the effects of the boundary
condition in the solution of the scalar transport equation is similar to the
method of sources and sinks in classical heat conduction analysis (Carslon and

Jaeger).

3.5. EFFECT OF STRETCH

At time t=0, the initial vorticity distribution is represented by a
finite number of vortex elements. These elements are located at equal
distances from each other, and carry radially symmetric vorticity
distributions. The shape of the distribution is defined by the core function
and its spread, known as the core radius. At later times, since different
elements move at different velocities depending on théir location, the
distances between the neighboring elements may increase much beyond their
initial values. If this distance exceeds the core radius, the accuracy of the
discretization of the vorticity field deteriorates and the computation cf the
velocity field becomes inaccurate.

This loss of accuracy, associated with the development of strong
stretch, illustrates one of the fundamental problems of Lagrangian methods.
Vortex elements, which start as cores with radial symmetry, may not properly

represent the vorticity field after it has developed strong lecal strains. As

8/0X (equivalent to §&/h) reaches levels where the vorticity discretization
becomes inaccurate. Several remedies may be suggested:

(1) Utilizing deformable cores;

(2) Employing large cores; or

(3) Using more elements as the distance_petween the original elements

increases.
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The first scheme, utilizing deformable cores, is based on the
observation that an initial core with the radial field will beccme elliptical
as stretch develops, with its major axis aligned with the local principal
direction of strain. However, there is an obvious limitation on maintaining
one ellipse as a single element as the ratio between the axis exceeds a
reasonable value. The scheme can also be tedious computationally since the
formulas describing the velocity field of an elliptical vorticity structure
are complicated (64].

The second scheme, in which one uses a large core radius, does not
yield accurate predictions for the growth rate within the linear range since
it does not allow for accurate discretization of the initial vorticity field.
Moreover, it will fail at the point where §/Ax<<1 due to stretch. It does,
however, delay the loss of accuracy since it maintains a reasonable overlap
between the neighboring elements for longer times [38].

The third option, redistributing the vorticity and the scalar gradients
fields among an increasing number of elements arranged along the direction of
the principal direction of strain, is employed here. We monitor the distance
between neighboring elements in the direction of maximum positive stretch Ax.
If Ax)Axmax, an extra element is placed halfway between the original elements
and the vorticity and the scalar gradients are redistributed to compute the
share of the new element.

A more economical scheme is based on interpolating the strength of the
two original elements equally among the three elements, i.e., assuming uniform
stretch between the two original elements. This amounts to splitting the
original vortex pair formed of two neighboring vortex discs into three discs
when the distance between the centers of the two discs exceeds a threshold, as

shown in Fig. 8. We also monitor the minimum distance between the two
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neighboring elements, and if OX<BXp;,r e replace them with a new element
conserving the related properties such as the total strengths. In the spatial
model, in order to keep the number of the computational elements at an
affordable level, we use a variable &)X .. and  OXg ;. that is &X . =a+ b x
and Axmin = c +d x, where a, b, c¢ and d are positive constants and x is the
streamwise coordinate. Choosing a proper set of a, b, ¢ andd in fact
involves a trade-off between the computational effort and the accuracy of the
scalar calculation. In our computations we use a=1,5, b=cudw0, for the

temporal model, and a=l.5, b=2.5, c=0.5, d=1.5, for the spatial model.

3.6. CONCLUSIONS

We have developed the vortex element method by accurately discretizing
the vorticity field among finite vortex elements with strongly overlapping
cores and by using the strain which develops at later times to redistribute
the vorticity among more elements arranged in the prin~‘pal direction of
strain between the original elements. This enables the method to remain
robust for long time calculations and after severe distortions of the flow map
have been encountered. High-order spatial discretization can be achieved by
using more elaborate core functions, such as fourth-order Gaussian cores (24].
However, we did not find that to be necessary in actual applications.
Temporal accuracy is governed by ﬁhe order of the scheme used in the
integration of the particle transport equation. In most applications here, we
found the second-order Runge-Kutta method to be sufficient.

The vortex method, being Lagrangian, naturally avoids the non-linearity
of the convective terms in the original equations. Moreuver, since the
velocity calculations are elliptic, there is no ipherent stability limit on

the time step, it is controlled only by accuracy. Without discretizing the
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convective derivatives, the method minimizes the numerical diffusion in the
solution and thus it is most suitable for simulating flows at high Reynolds
nunber, 0(1000-100000). This is important in turbulent flow applications
since, as will be shown in Chapters 4 and 5, the rates of mixing and burning
can change substantially if the Reynolds number drops below 0(1000}, and the
level of turbulent scalar fluctuations can depend critically on the Reynolds
number for values ©(1000-10000).

The transport element method, which wae formulated to obtain solutions
for the scalar transport equation, retains all the properties of the vortex
method by extending its essential concepts to the transport of scalar
gradients in a Lagrangian foim. The method is made conservative by utilizing
the relationship between the distortion of the flow linas gnd the evolution of
the scalar gradients. In a reacting flow, the method provides a natural way
of tracking the development of the chemical reaction between neighboring fluid
elements as they flow. We remark that the overhead involved in comupting the
transport of a passive scalar is minimized by the fact that all the functions
required to compute the local values of scalar concentration are also used in
the computations of the vortex method. In the reacting flow case, however, an
extra restriction is imposed on the time step when the chemical time scales
are small compared with the flow time scales and when the chemical reaction is
stiff.
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Fig. 3. Schematic sketch showing the evolution of a
material layer separating two values of the conserved
scalar, s, and the associated scalar gradient, g, under
the effect of stretch.
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Fig. 4. Schematic sketch showing one transport
element and the associated scalar gradient.
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Chapter 4
THE TEMPORAL SHEAR LAYER

The temporal shear layer model describes the evolution of a single eddy
or a small number of eddies in a frame of reference that moves with the mean
velocity of the flow. Mathematically, it is a well-defined problem in which
periodic boundary conditions are imposed on the sides of domain. In the
temporal shear layer, the length of the computational domain is limited to the
perturbation wavelength in a forced layer, A, and one can afford to use more
elements within the domain to improve the resolution. The highly unstable
nature of a free shear layer, via Kelvin-Helmholtz instability, provides a
mechanism for the growth of small perturbations and formation of large scale
structures.

The velocities of the streams must, however, be close to each other,
and the velocity difference does not play a role in determining the layer’s
response to perturbations. This restricts the application of the results of
the temporal model and in theory the temporal model should only give
qualitative insight into the physics of the governing processes rather than a
quantitative measure for the shear layer behavior. In practice, we found that
the temporal shear layer is more powerful than expected, and as we will see
later the numerical results agree well with the experiment under the
conditions listed in Chapter 3.

We use the temporal model of the shear layer to validate our numerical
scheme and learn more about the physics and behavior of one or two eddies.
Later in Chapters 5 and 6 we will consider a spatial model which is closer to
the physical reality. The 1length and velocity scales here are half the
vorticity thickness of the shear layer 4/2 = o /2 where ¢ is the standard
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deviation of the Gaussian distributing the vorticity distribution, and the

velocity difference between the two streams is 4U = U; - U,.

4.1. GROWTH RATE AND THE LINEAR THEORY

To measure the effect of the accuracy of the initial discretization of
vorticity among vortex elements on the flow field for short time, we used our
numerical results to calculate the rate of growth of the perturbation, G.R.,
and compared it with the growth rate based on the eigensolution of the
linearized form of the governing equation, known as the Rayleigh equation.
Based on the linear theory analysis, if a shear layer which is defined by its
thickness, 8, and the shape of the laminar base flow, Uly), is perturbed by
small disturbances, the total streamwise and cross-stream velocities, u and v,

are given by:

u(x,y,t) = Uly) + u(x,y,t)

vix,y,t) = v(x,y,t)

where ; and ; are the velocity fluctuations computed from
a(x,y,t) = Real { uly) expl ia ( x - ct )] )

;(x,y,t) = Real { ;(y) expl ia (x-ct )]}

;(y) = Gr(y) + i Gi(y)

Wy) = v ) + i vy)

+ i c.
c=c. +1 c;
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a = 2n/\
the subscripts "r" and "i" refer to the real and imaginary parts of the
corresponding variables, c is the wave speed, and « is the wave number based
on the wavelength, A. In a uniform—density, temporally-growing shear layer,
cr-O and the growth rate, is defined as G.R. = « ¢, where c is the eigenvalue

of the Rayleigh equation:

v(y) = m%')'.ﬂ_!la + o) vy (54)

and " is the second derivative with respect to y. The bcundary conditions of
Eq. (54) in an unbounded domain are:

;(i-“’)-o and -g;—,'(:")-o

Equation (54), the Rayleigh equation, is obtained by linearizing the
original inviscid flow equations around the base flow and expressing the
solution in terms of temporally growing waves [65]). We have numerically
solved the Rayleigh equation using a Runge-Kutta shooting method to satisfy
the boundary conditions, and plotted the growth rate, oc, versus the
perturbing wave number, «, for three base flow velocity profiles, nameliy,
linear, tanh, and error function shown in Fig. 9.

Analysis of Fig. 9 reveals that for a shear layer with a fixed base
flow, there is a most unstable wavelength, \*, which gives the highest growth
of small disturbances with a very small amplitude e. For the other
wavelengths, the growth rate is less [34,66]. Moreover, results show that the

instability of a finite thickness shear layer is a broad-band instability,
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i.e., the shear layer will respond to a perturbation with any wavenumber
between 0 and Doax’ corresponding to wavelength A\ = el»-Zn/'nmax. As the layer
becomes thinner, it responds to shorter and shorts: perturbation wavelengths.
An infinitely thin shear layer, a vortex sheet, is absolutely unstable, while
a finite thickness shear layer is capable of suppressing the growth of short-
wavelength perturbations. These results can also be used to conclude that if
the layer is disturbed with white noise,' most of the eddy that forms due to
the growth of some selected perturbations will have wavelength \". However
eddies with size different than A" may also form but with lower probability.

In order to calculate the growth rate based on the numerical results,

we defined the index I as follows:

A 4@
§ | ulx,y,t) | dx dy (55)

I(t) = Log { [
0
and calculated the growth rate as

)
&

G.R. (56)

which is compatible with the definition of the growth rate in the linear
theory. 1In section 4.2 we will check the accuracy of the numerical results
for the growth of the layer in its linear range by comparing the growth rate
based on our numerical simulation and the growth rate based on the results of

the linear theory.

4.2. DYNAMICS
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First, we study the evolution of a shear layer perturbed by the most
unstable wavelength, A*, with different amplitudes. In Fig. 10, we plot the
growth of the perturbation defined by Eq. (55) for e=0.001X", e=0.01\" and
e-O.lA*. The growth can be divided into two ranges: (1) linear, (2)
nonlinear. In the linear range, the slope of the curve is constant and is
equal to the growth rate of the shear layer defined by Eq. (55). From Fig. 10
and for e=0.001\" and €=0.01\", the growth rate is G.R.=0.215, which agrees
well with the result of the linear theory. For e-o.le, the perturbation
leads directly to the nonlinear range.

The development of the eddy structures is depicted in Figs. 11, 12, and
13 in terms of the vortex elements and their velocity vectors at different
time steps. In Figs. 14 and 15 we have plotted the kinetic energy based on
the velocity fluctuation, u’.u’/2, where u’=u(x,t)-u(x,0); and the amount of
stretch experienced by the flaow, L/Lo.

The evolution of the shear layer depicted in Figs. 11-13 can be divided
into four stages: (1) linear growth; (2) rise to a maximum amplitude; (3)
decay to a constant amplitude; and, (4) very slow decrease of amplitude. The
flow of kinetic energy from the main stream into the eddy during the first two
stages, and the reversal of that process during the last two stages, shown in
Fig. 14, is the main reason for formation and decay of these structures.

The extent of the first stage, where the perturbation amplitude is
small, is easily identified from the plots of the shear layer structure, Fig.
11, which remains flat and experiences almost no stretch as seen in Fig. 15.
It can also be seen from the plot of the growth rates, Fig. 10, which remains
constant, or in the kinetic energy based on the velocity fluctuation, Fig. 14,
which remains almost zero. It is interesting to note that during the "linear"

range, the perturbation is very small, grows exponentially!
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The most important feature of the second stage is formation of a core
at the center of the eddy with braids extending between the two neighboring
eddies. This is accompanied by a sharp rise in the kinetic energy based on
the velocity fluctuation, reaching its maximum value at the end of this stage.
During this stage, the layer experiences the highest rate of stretch and the
core maintains almost a circular configuration. The stretch is concentrated
..within the braids.

During the third stage, the eddy deforms into an elliptical structure,
and the cross-stream axis of the ellipse decreases from its maximm value.
This is accompanied by reversal of flow of the kinetic energy, based on the
velocity fluctuation, from the eddy into the main flow. More stretch along
the braids and within the core is observed. A slowdown of the eddy rotation
is also seen during this stage. By the end of the third stage, the thickness
of the braids at the saddle points has become extremely small.

At the final stage, the envelope of the core reaches a dynamic
equilibrium, i.e., it does not rotate any more, while its boundaries keep
stretching as the fluid within the eddy starts to move in the main direction
of the stream. In reality, a single eddy cannot exist forever. As soon as
the forcing effect of the fundamental frequency, ceases, other disturbances
can energize different mechanisms like the pairing mechanism, and two
neighboring eddies merge to form a larger structure.

The final structure of the most unstable shear layer is almost
independent of the amplitude of perturbation. This conclusion agrees with the
plot of the kinetic energy based on the velocity fluctuation, Fig. 14, which
suggests that the eddy can absorb the same amount of kinetic energy
independent of the initial perturbation amplitude. Thus, we expect to get
almost the same peak value for the growth of perturbation in Fig. 10. It
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should be noted that in Fig. 10, we plot the logarithm of the amplitude of the
perturbations, which means that we are dealing with even smaller values as the
amplitude of the initial perturbation decreases. For the sake of a better
representation, we normalize the values in such a way that all curves pass
through the origin, and hence the curves are shifted up in the favor of the
smaller amplitudes.

The total kinetic energy in the flow within the computational domain,
u.w/2, is plotted in Fig. 16, and as we expect it is conserved since the flow
is inviscid. Note that the numerical diffusion, which could have dissipated
some of this energy, is small.

Figure 17 shows a qualitative comparison between the experimental
results of Roberts et al. (67] and our computational results. Here we use an
inverse Galilean transformation to compare the experimental results of
spatially-developing layer at equal space intervals with the computational
results of the temporal model at equal time intervals.

Next, we perturb the shear layer by the fundamental wavelength, A*, and
the subharmonic wavelength, ZA*, simultaneously with e-O.lA* for both waves.
The pairing process, which results from the growth of the subharmonic
instability, is depicted in Fig. 18. The results show that when the
amplitudes of the two perturbations are equal, pairing starts at the end of
the second stage of the fundamental mode and before any further substantial
elongation of the eddies. The growth of the subharmonic perturbation closely
resembles that of the fundamental, as shown in the latest stage. The eddies
continue to deform while they pair wuntil the "vortex fluid" contained within
each structure starts to rotate around a conmon center and their original

boundaries become indistinguishable. It 1is interesting to see the
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filamentation of the newly formed structure and the formation of a new
generation of braids.

Finally we perturbed the shear layer by a single wavelength, different
from the most unstable one, with various amplitudes. Figure 19 shows the
vorticity field for »=10.5 and ¢€/X=0.01. The computed growth rate is 0.214
while the analytical wvalue is 0.208. Because the wavelength of the
perturbation is different than that of the most unstable mode, the growth rate
is smaller. More vorticity remains in the braids since the eddy is not strong
enough to accomplish the same stretch as in the case of x*. The braids are
thicker and the outer edge of the eddy is less organized.

Figures 20 and 21 show results for x=2\" with €=0.01) and 0.1x,
respectively. The computed growth rate for the first case is 0.18 while the
analytical value is 0.173. The core is smaller and weaker than for the case
of \" and hence the braids are thicker and maintain more of the original
vorticity. Comparing Figs. 20 and 21, we see that contrary to the most
unstable case, the effect of the initial perturbation is more pronounced here
in terms of the size and shape of the eddy and the braids. The higher
amplitude of the initial perturbation is equivalent to a larger physical
perturbation which leads to a stronger instability and tends to form a larger
core with thinner braids. The ratio between the major and minor axes of the
elliptical core increases with € and secondary waves start to grow along the
braids.

Figures 22 and 23 show results for xasx* with e=0.01X and e=0.1),
respectively. The effect of the amplitude is emphasized further since at
large ¢, the core splits into two eddies. This bifurcation phenomenon was

observed before by Pozrikidis and Higdon [68]. The braid instability is
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manifested here by the long waves that grow between the cores at the later

stages of development of the layer.

4.3. TRANSPORT OF PASSIVE SCALAR

in order to study the mixing process which results from the combined
effects of convection and diffusion, we simulate the evolution of a thermally
stratified shear layer in which the top stream has a higher temperature than
the bottom stream,

> {(T,) The dynamic effects of temperature

(Ta) pop” (T Bot tom*
stratification are neglected in this model and hence the structure of the
thermally stratified layer is the same as that of the cold layer. In the
temporal model of the shear layer, we normalize the temperature distribution

as follows:

oyt - r’mp T ’Bottom

In what follows we drop the " " and refer to the normalized temperature as
T(x,y.t).

We choose first to address the transport of a passive scalar into the
layer, or the entrainment of the free-stream fluid into the structure that
forms due to the roll up of the vorticity layer. As mentioned earlier, the
numerical scheme enables us to isolate the effects of individual processes.
That is, we ignore the diffusion and let convection bring material particles
of different temperature close to each other. At time t=0, the temperature
distribution of an unperturbed layer is described by an error function, with
T(x,y,0)=0.5[1+erf(y)). This choice is motivated by the fact that this is the

fundamental solution of the diffusion equation. Therefore, an initial
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discontinuity in temperature would develop into an error function before the
perturbation grows to the point whence convection effects become important.
In the computations, we used the same particles to transport the vorticity
elements and elements of the temperature gradient. This' represents a
substantial saving in the computation since the kernel functions appearing in
the expressions of the velocity and the temperature can be computed only once.
All the computations in this chapter were performed using the original
fornmlaticn of the transport element method, i.e., Egs. (29), (31) and Table
Iv.

Results obtained for the temperature distribution in the totally
inviscid shear layer of Figs. 11, 12, and 13 are shown in Figs. 24, 25 and 26,
respectively. To quantify the overall entrainment, we define a quantity v,
similar to the growth rate (see Eg. (55)), as:

A +®
v(t)= g i | T(x,t) - T(x,0) | dx (57)

where T(x,t) and T(x,0) are the instantaneous and initial temperature
distributions respectively. In Fig. 27, the natural logarithm of y(t) is
plotted for three cases shown in Figs. 24-26.

Within the linear range, the temperature distribution remains almost
the same, except for getting shifted up or down depending on the local sign of
the perturbation. Thus, the distribution of the scalar inside the layer has
not changed due to the linear growth of the perturbation. During the second
stage, and with roll up of the interface and the establishment of a spiral

center at the midpoint of the wavelength, a complex temperature gradient
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develops as a result of the motion of the cold fluid upward and the hot fluid
downward around the spiral center.

In the second stage, if the nuwmber of transport elements remained the
same, i.e., stretch were not accommodated by intreducing elements where the
local strain is large, the temperature distribution would collapse very
quickly. In the problem of a periodic shear layer, this collapse leads Lo
values of T(x,+=,t)<l and T(x,-»,t)>0. The reason of the loss of accuracy is
clear from Eq. (15). When the elements move apart, the accuracy of computing
the velocity gradient Wu deteriorates, and hence the new value of gj
accumulates large errors. Thus, while the calculation of the velocity field
at the early stages of strong stretch using a fixed number of vortex elements
may be acceptable for a short period of time, the calculation of the velocity
gradient and evolution of a passive scalar will show unacceptable errorz. To
continue beyond the linear stage, the distance between the neighboring
elements in the principal direction of strain, 04X, must be monitored. If
Ax)Axmax’ one extra element is added between the two original elements and the
total value of gj is redistributed.equally between the three elements. 1In the
temporal calculation, we used Axmax-l.Sh.

The effect of the shear layer roll up on the temperature distribution
is seen in Figs. 24-26. Immediately after the interface reaches a vertical
position, an S-shaped temperature profile starts to form, indicating that cold
fluid has been transported from the lower stream into the upper stream and
vice versa. This phenomenon, known as engulfment or entrainment, relies
solely on convective transport &nd is observed most clearly when molecular
diffusion, which acts to dissipate the sharp gradients, is small. Fast
entrainment, with small diffusion, leads to "unmixedness" of hot and cold

fluid within the eddy core. With more fluid being transported to the opposite
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stream, the S-shape grows, reaching a maximum amplitude when the interface
becomes horizontal at the spiral center. At this moment, fluid with the
maximum and the minimum temperatures has been entrained into the core, i.e.,
entrainment has reached all the way to the free stream to bring fluid into the
core of the eddy. This is the stage of maximum entrainment when the core size
reaches its largest size and can not accommodate any more fluid. In the case
of e=0.1)\, it corresponds to t=9.0, which is the end of the second stage of
development. To make the correspondence bstween the temperature profiles and
the evolution of the interface with T = 0.5 clear, we plot the latter in Figq.
28 which shows the actual elements that were used in the computation of this
interface. At t ~ 8, the interface has rotated 180 around the spiral center.
This is the first step in the process of homogenization of the core.

As the core rotates further into the third stage, the inner part of the
interface develops a secondary instability that rolls up in a very simila:
manner to the primary instability. This secondary instability is in phase
with the primary instability and can be envisioned by zooming in on the
intersection between the interface and the horizontal centerline of the layer.
Due to the elongation of the outside envelope of the core, the wavelength of
the secondary instability grows with time, as seen from Fig. 28. However, the
amount of fluid within the elliptical envelope remains constant, or decreases
slowly as seen from Fig. 27. The growth of the secondary instability provides
a mechanism of internal stirring within the core. During the growth of the
secondary instability, an inverted S-shape, or a Z-shape, forms in the middle
of the temperature profile, Figs. 24-26. The convection field associated with
this instability turns the fluid in a clockwise fashion making the inside of
the core more uniform. This is seen from the decay of the peaks in the

temperature profile as this Z-shape grows.
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The onset and subsequent growth of successively shorter wavelength
instabilities continues, leading to more changes in temperature distribution
within the eddy core. An asymptotic limit of this process can be foreseen: it
is the formation of a temperature profile with the following shape: T-T__, at
y>8'/2; T=T_, at y<-4'/2, and T=(T +T_)/2 in between, where 4’ is the minor
axis of the elliptical envelope at x=)\2. This shape has been measured
experimentally by Konrad {69], for mixing layer flow at high Reynolds numbers
(see also Broadwell and Breidenthal [13]).

By the end of the third stage, the layer cannot absorb any more energy
and a relaxation process occurs during which some of the kinetic and thermal
- energy are fed back into the main flow streams. This reverse action is
accompanied by the fluid leaving the core and moving back into the main

streams at a very slow rate.

4.4. DIFFUSION AND MIXING

The generation of large temperature gradients within the core as
successive instabilities evolve gives rise to large molecular diffusion fluxes
which act to smooth cut some of these gradients. While for most cases of
interest the diffusion transport is very small relative to the convective
transport, i.e., the Reynolds number is high, diffusion plays an important
role since mixing at molecular scales can only be accomplished via molecular
diffusion. Thus, the combined action of convective entrainment and molecular
diffusion leads to the homogenization of the temperature within the eddy core.
As mentioned earlier, to simlate the effect of diffusion for small
diffusivities in our current shear layer model, we expand the core radius of
transport elements using Eq. (42), with the following modification: the number

of transport elements which discretize the gradient field increases with time
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to accommodate for the distortion of the flow map. Utilizing an increasing
number of elements to perform the convective transport is essential since it
is important to determine the gradient field in terms of location and strength
of the elements accurately before the diffusion effects can be added. In
essence, adding transport elements at area of high strain allows the
computational elements to capture all the vorticity and temperature gradient
at all times, even after the vorticity has been fragmented by the action of
the strain field. Without this step, strain will create areas which are void
of elements, and thus, diffusion can not be represented.

The results in Fig. 29 show the temperature profile at time t=20 for
the case of A" and e=0.1\", evaluated for « =0.0, 0.00001, 0.0001, 0.001, 0.01
and 0.1. Note that the temperature profiles of the first two cases are almost
identical, indicating that the effective diffusivity of the inviscid
calculation is on the order of 107°. In the last case, the temperature
profile is similar to the case of pure diffusion, indicating that diffusion
proceeds at a rate faster than the instability. It is also noticeable that
for moderate values of «, 0.0001<a<0.01, diffusion only affects the core of
the eddies, making them achieve a homogeneous state faster.

To define a quantitative measure of mixing in a single phase fluid with
thermal stratification, we observe first that mixing is only achieved by
molecular diffusion. Large entrainment fluxes bring the unmixed fluid layers
in contact along a larger interface; however, molecular diffusion across this

interface is what accomplishes the actual mixing. A measure of mixing can be

defined as:

A 4
M(tlale) = I .[ l T(x,t,a,e) - T(x'tlole) | dx (58)
) ~=
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Note that M(t,0,¢) = 0, while M(t,«,0) is due to diffusion only. In Fig. 30
M(t,e,0.1) is plotted for A" and various values of «. It represents mixing
due to the combined action of entrainment and diffusion. At very small values
of o, mixing is limited by the amount of diffusion acrose the fluid layer
which has been entrained into the eddy core. Since for these values of o the
convective transport is faster than the diffusive transport, mixing increases
approximately as va. However, as « increases, and at later times, mixing
proceeds at slower rate since it becomes bounded by entrainment of unmixed
fluid into the eddy core, which almost ceases by the end of the second stage

of roll up.

4.5. CONCLUSION

In this part of the work, the vortex element method has been used to
compute both the early and late stages of development of an inviscid temporal
mixing layer.

1. We find that using a scheme which depends on equating the vorticity
at the centers of the elements with the accumlated value induced by all
elements is necessary to obtain accurate results for the initial vorticity
discretization. We also find that to ensure the accuracy of the solution for
short times, the ratio of the core radius/to separation should be larger than
one. Very large cores induce a strong perturbation in the vorticity field,
while smaller core cause a fast deterioration of accuracy. Using fourth-order
Gaussian cores results in better accuracy than using second-order Gaussian
cores. However, we feel that the improvement in accuracy does not warrant the

added cost.
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2. As time proceeds, the distance between neighboring elements exceeds
its initial value due to the generation of strong strain. This leads to the
computation of inaccurate velocities, which is manifested by irreqular motion
of the vortex elements. To overcome this problem, the vorticity is constantly
redistributed among elements inserted along the principal direction of strain
to capture the local deformation of the vorticity field and to improve the
resolution of the calculations. This is achieved by an insertion-and-
interpolation process which is applied where the distance between the
neighboring centers along the principal direction of strain exceeds a
threshold value. We have shown, using the solution for a shear layer
perturbed at different wavelengths and amplitudes, that this process yields
accurate solutions for the vorticity distribution at long times and after a
strong strain field has caused a severe distortion of the streamlines. This
scheme enables one to accurately compute the local velocity gradient which,
while not required in connection with vorticity convection, is necessary for
the accurate evolution of the convection of a passive scalar.

3. The temperature gradients, distributed over transport elements which
resemble vortex elements in their structures, are used to compute the
temperature distribution as the roll up evolves. Contrary to vorticity,
scalar gradients are not conserved along particle paths, and thus, the
strength of these transport elements is changed according to the straining and
rotation of the material elements.

4. The scheme is capable of capturing very sharp gradients that develop
within the core since the elements migrate toward these zone by convection.
The multiplication of these elements via stretch, which inadvertently mimics
the physical process by which large scalar gradients are generated, provides a

naturally adaptive grid to compute these gradients. By expanding the cores of
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the transport elements, the effect of small diffusivities can be simulated as
a small perturbation to the convection field. Diffusion, even at high Peclet
number, is responsible for generating areas of uniform temperature inside the

eddy since it acts to smooth out the sharp gradients created by convection.
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Fig. 11. The location and velocity of the vortex
elements during the roll-up of a temporal shear layer.

A=)\", with £/\=0.001.
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perturbation of a shear layer.
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87

TIME = 0.00 | ELEMENTS = 540 TIME = 24,00 | ELEMENTS = 1172

TIME = 8.00{ ELEMENTS = 540 TIME = 32.00° ELEMENTS = 2352

TIME = 16.00 | ELEMENTS = 682 TIME = 34.C0{ ELEMENTS = 2718
|

Fig. 20. The location and the velocity of the vortex
elements for A-ZX*, e/ =0.01.
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Fig. 22. The location and the velocity of the vortex
elements for A=3)\", €/\=0.01.
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Fig. 23. The location and the velocity of the vortex
elements for A-3A*, e/ =0.1.
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Chapter 5
NON-REACTING SPATIAL SHEAR LAYER

In the spatial model of the shear layer, two streams having the same
density but different velocities are brought together downstream of a splitter
plate. In this case, the velocity difference, 0&U, which was absent in the
temporal model is an important parameter. Larger AU means larger shear
between the two stream, and hence stronger strain field, stronger entrainment
and probably higher rates of mixing.

In the computations, the vorticity is generated at an average rate of
dr/dt = AU Uy at the tip of the splitter plate, where Uy is the mean velocity
of the two streams. The vorticity generated during each time step, At, is
discretized among a finite number of overlapping elements of radially
symmetric cores which are positioned in the form of columns and layers
downstream from the tip. As time elapses and the newly introduced elements
move downstream, the distance between the neighboring elements exceeds its
initial values due to development of a strong stretch. Large scalar gradients
are generated and the flow map is strongly distorted, and therefore the
initially overlapping elements can not be maintained. The maximum distance
between the neighboring elements which is defined as a multiple of the
original spacing, is used as a measure of strecch, and the vorticity and
scalar fields are continuously redistributed. We found that at least 5 layers

in the cross stream direction are necessary to recover the velocity and scalar

values with reasonable accuracy.

5.1. RESULTS OF THE LINEAR THEORY
The development of mixing layers downstream of a sp’ “ter plate is

initially dominated by a linear instability mechanism. The initial vortilcity
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distribution is inviscidly unstable to small perturbations via the Kelvin-
Helmholtz instability mechanism. Thus, two-dimensional waves grow with
downstream distance and are observed to roll up into vortices. The spatial
growth rate, -ay, is the eigensolution of Rayleigh equation, Eq. (54), in
terms of spatially growing waves with ci-O and °r>0'

The nondimensional spatial growth rate, - iG,/R, vary with Strouhal
number, St-fQ/UM, in the fashion displayed in Fig. 31. These data are
collected by Ho and Huerre [70), and R-AU/2UM is known as the velocity ratio
and © is the momentum thickness of the shear layer. The Strouhal number
(st)n=0.032 for the most unstable wave corresponds to the natural frequency fn
of the shear layer: it changes by only 5% for O<R<l. In the limit of small

shear, R<<1, the nondimensional spatial and temporal growth rates are almost

equal.

5.2. DYNAMICS
In Fig. 32(a), we plot the instantaneous location and velocity vectors
of all vortex elements for the unperturbed shear layer with 01-1, Ul/U2-2 and

length of the computational domain X

exit's' The velocity vectors are plotted

relative to the mean velocity of the two streams. In Fig. 32(b), the same is
plotted for an unperturbed layer with Ul-l, Ul/U2-3 and Xogit™
exhibit a very clear and accurate portrait of the roll up and pairing

5. The plots

processes of the vorticity layer. Evidently the growth of the layer can be
divided into two ranges: a linear range in which the random perturbations grow
selectively and lead to the organization of the vorticity into semi-round
structures, and a non-linear range in which the vorticity field is formed of
large eddies that move downstream and interact by pairing. During the roll

up, the vorticity within the shear layer is attracted toward the center of a
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large eddy, entraining fluid from both sides and forming what appears, in a
reference frame moving with the large eddy, to be a moving focal point of a
spiral. Between neighboring large eddies, a zone of strong strain is
developing where the vorticity is depleted and scalar gradients are growing.

This "braids" zone can be described as a moving saddle point where
locally, and in a frame of reference which moves with the large eddy, the
fluid flow experiences a separation into two stream; one moving to the left
and the other moving to the right with respect to the saddle point (the saddle
point is a stagnation point in a frame of reference moving with the large
eddy). Downstream, the process of roll up continues until a stronger
perturbation forces two neighboring eddies to interact in a pairing process.
Since the layer is perturbed by the elliptic effect which rosults from
deleting the vortex elements at the exit plane, and because this perturbation
is not applied in a reqular manner, the structure of the layer is less
organized.

In both cases, three generations of eddies are seen within the
computational window: eddies which form due to the roll up of the vorticity
layer, eddies which form due to the pairing of two of these eddies, and eddies
which form due to the pairing of two of the paired eddies. We call these
three types of eddies by the type of instability that promotes their
formation: "fundamental" eddies, "first subharmonic" eddies, and "second
subharmoinc" eddies. We note that as the velocity ratio across the layer is
increas=sd, the number of computational elements used to discretize the
vorticity and the scalar gradient fields increases substantially. This is due
to the stronger shear, vorticity and strain fields that develop at higher
velocity ratios. The computations automatically capture these changes without

degrading the resolution, but at the expense of increasing the time.
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The frequency of shedding the fundamental eddies in both cases can be
computed as follows. The wavelength of the large eddies is A ~ 0.5 in both
cases. The corresponding Strouhal number based on the momentum thickness, 6,
is St = f GVUM = @/A = 0,033, where f is the shedding frequency. The
computation of the momentum thickness will be shown in the next section. This
Strouhal number is very close to the Strouhal number for the most unstable
mode of a spatially growing shear layer calculated from the linear stability
theory. It is important to note that not all eddies are shed at this
frequency. As shown in in Section 5.1, this is a broad band instability which
can support a wide range of frequencies. However, we found that most of the
eddies are shed at, or very close to this most unstable frequency. This can
be explained by the fact that the gain curve, shown in Fig. 31, is flat around
its maximum.

Similar remarks could be made about the pairing process. Most of the
time, as soon as two eddies are shed they pair into one larger structure.
However, once every few cycles, an eddy escapes pairing and flows as a single
eddy to the exit of the domain. We also found that three eddies can "pair"
simultaneously, forming a structure with a wavelength equal to 3.

In order to examine the effect of forcing on the structure of the shear
layer, we perturb the layer at frequencies close to the most unstable mode and
its first subharmonic by oscillating the incoming vorticity layer according to
Ayserin(ZnUMt/x*)wS sin(dnUMt/A*). Here Ay is displacement of the center of
the vortex element due to the forcing, t is time, and €p and €g are the
amplitudes of the fundamental and subharmonic respectively. This is similar
to the forcing produced by mounting a loadspeaker on the top wall directly
above the tip of the splitter plate and using this speaker to send acoustic

waves at the amplitude and frequency defined by this relation. Under the
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forcing condition, the evolution of the layer is expected to be more
organized.

In Fig. 33, we plot the structure of the layer for eF-O.OIA*, eSnO with
\'=0.5. The amplitude of the perturbation is kept small to distinguish
between the linear range and the non-linear range of growth. It is clear that
after the linear range of growth of the perturbations, large eddies are shed
at the forcing frequency. Contrary to the unforced case, pairing is delayed
further downstream. Thus, while this small amplitude forcing is incapable of
increasing the rate of amplitude of the perturbation, it organizes the
shedding process and delays the growth of the subharmonic perturbations.
Pairing is resumed after the effact of forcing decays.

In order to study the structure of the layer under higher amplitude
perturbations, we plot the structure of the layer for € = O.OSX*,eS-O, X*-O.S
along with Ul/U2=3 in Fig. 34. The structure of the layer is different than
that in the previous cases in the following ways: (1) there is no linear range
since the higher physical perturbation suppresses any other randomly generated
perturbations, and the layer responds immediately by closely following the
forcing frequency; (2) the larger the amplitude, the more pairing is delayed
and the layer is organized.

In Fig. 35 we plot the structure of the layer perturbed by the
fundamental and subharmonic frequencies, eF=eS=0.01X*. The plot shows that
there is a linear range of the growth of the fundamental perturbation but it
is shorter than that of the unforced layer. The presence of the subharmonic
perturbation simulates and speeds up the pairing interaction in an organized

manner. For more on the forced layer, see Ghoniem and Ng [26].

5.3. TRANSPORT OF PASSIVE SCALAR
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We have used the transport element method to investigate the mixing
process by passively transporting a scalar throughout the domain under the
combined effect of entrainment and diffusion. The distribution of the
concentration of a scalar diluted in an inert base flow immediately downstream
of the splitter plate is described by an error function, c(0,y-0.5)=0.5{1~
erf[(y-0.5)/0.54]}, where 4 is the thickness of the layer at time t=0. The
corresponding scalar gradient is a Gaussian, similar to the vorticity
distribution. Computations were performed for different values of the Peclet
number to show the effect of molecular diffusion on the mixing dynamics at
high Reynolds numbers.

Figure 36 shows the instantaneous profiles of the scalar, c, at
different sections downstream the channel superimposed on the instantaneous
distribution of the vortex, or transport elements for purely inviscid
calculation, Po== (see Fig. 32(a) at time=51). The sections are chosen at the
centers of the vortex eddies in Fig. 36(a), and across the braids in Fig.
36(b). The distributions show that even at sections far downstream of the
splitter plate, zones of completely unmixed fluid still exists within the
layer (unmixedness). These zones correspond to the gulfs, or "tongues", of
pure fluid brought into the layer from either side by the inviscid mechanism
of entrainment, i.e., the convective transport of fluid across the centerline
of the layer by the roll up of the vorticity field.

Instantaneous concentration profiles show clear signs of asymmetric
entrainment within the large structures. Mixing asymmetry, which arises due
to the asymmetric growth of the eddies during the initial stages of roll up,
is indicated by the fact that the profiles are not symmetric around the line
c=0.5. Comparing Fig. 36(a) with the results of the temporal model in which

the boundary conditions are periodic, one sees that the concentration profiles
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in Figs. 24-26 are perfectly symmetric around the 1line c=0.5 at all times.
Thus, asymmetric entrainment is due to the asymmetric flow field generated by
unequal free stream velocities on the two sides of the layer and by the
downstream growth of the vorticity concentration in the cross-stream direction
in the spatially-growing layer.

We also learn from Fig. 36(a) that the average concentration of the
scalar in the fluid within the eddy is 1less than the mean average of the
concentration on the two streams. The fluid trapped within the eddy is
defined by concentration 0 < ¢ < 1, but not equal to either 0 or 1. The
average value of the concentration within the eddy is known as the preferred
mixture fraction, cp. Since cp < 0.5, as indicated by Fig. 36(a), the eddy
entrains more fluid from the high-speed stream where 0 < ¢ < 0.5 than from the
low-speed stream where 0.5 < ¢ < 1.0. The value of cp depends weakly on the
x-location but strongly on the velocity ratio.

Asymmetric entrainment indicates that the structure may not have
started to move at exactly the mean velocity of the two stream since it first
appeared within the layer. This is evident from the history of the velocity
component imposed by the incoming streams on the flow downstream of the
splitter plate. This component decays from values close to that of the
velocity of the high-speed stream near the tip of the plate to values equal to
average of the two streams some distance downstream.

To show the asymmetry of entrainment associated with the formation of
the large scale structures, we plot the scalar contours for a single eddy
located at x ~ 4.0 at time t = 40.65 in Fig. 37. 1In Fig 37(a), the flow is
totally inviscid, Py == and the entrainment from both streams into the large
structure is shown in the form of extended "tongues" that reach into the core

of the eddy. Clearly, the tongue of the high-speed stream is larger and
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reaches deeper into the eddy than that of the low-speed stream. In order to
show the asymmetric mixing associated with the asymmetric entrainment, the
same eddy is represented in Fig. 37(b) for the flow when there is a finite
diffusion effect, Py = 2500. The figure shows that the scalar gradients are
smoother and that the island of the fluid with c¢ < 0.5 is larger than that

with ¢ > 0.

5.4. STATISTICS OF THE NUMERICAL RESULTS

In order to validate our scheme, we compare the numerical results with
the experimental measurements of Masutani and Bowman [55). This experiment
was selected for comparison because the two-dimensionality of the flow was
carefully maintained and verified, and hence it provides experimental
measurements of mixing statistics before mixing transition occurs. Mixing
transition occurs further downstream due to the growth of three dimensional
structures around the two-dimensional structures.

Figure 38 shows the mean momentum thickness of the layer, 8. The
growth of the layer can be divided into the "linear" and "non-linear" ranges.
What we called the linear range (following the definitions of the linear
theory of stability) exhibits a plateau, followed by a small but exponential
rise in 6. In the nonlinear range, the value of 6 increases linearly with
de/dx=0.0165. The computed value of d6/dx, while smaller than the value
measured by Masutani and Bowman [55], falls in the middle of the scatter of
the experimental data documented by Ho and Huerre ([70]). It should be noted
that Masutani and Bowman [55] remarked that the growth rate of their layer is
about 15-20% larger than the value measured by the majority of other
experiments. The effect of difference in the growth rate will appear in all



106
the comparisons: the experimental profiles spread out into the free streams
faster than the predicted profiles.

The average streamwise velocity and root-mean-square of its
fluctuations are shown in Figs. 39 and 40(a). The plots show that the
averaged streamwise velocity reaches a self-similar distribution early
downstream, which also resembles the initial error function velocity
distribution of the vorticity layer. On the other hand, velocity fluctuation
statistics reach a self-similar state some distance further downstream. The
transition region for the development of the velocity fluctuation is most
likely within the region of growth of the initial perturbation and before a
"mature" eddy has formed. As shown in Figs 39 and 40(a), the numerical
results agree well with the measurement of Masutani and Bowman [55] in a two-
dimensional shear layer. The agreement will improve substantially if (y-y,)
is normalized with respect to the local momentum thickness 8(x) instead (x-xo)
since this will absorb the difference between the spread rates of the two
layers. The average cross-stream velocity fluctuation is shown in Fig. 40(b),
while the Reynolds shear stress is shown in Fig. 40(c). While Masutani and
Bowman [55]) did not report experimental data on either quantity, both curves
strongly resemble measurements reported by other investigators.

It is important to emphasize that the velocity fluctuations are due to
flow unsteadiness imposed by the formation and interactions of the large
eddies. The unsteadiness arises due to flow instability, regardless of the
boundary conditions, which are steady, and leads to the augmentation of
interaction between the two streams via the fluctuation fluxes. The order of
magnitude of these fluctuations, in each direction, is about 20% of the

velocity jump across the layer.
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In Fig. 41 we plot the variation of scalar concentration with time.
The peak low values of the scalar concentration corresponds to the time when
the cores of the large structures pass over the point. In Figs. 41(a) and
41(c), since the flow is completely inviscid, the fluctuations are higher, the
gradients are sharper, and the state of the scalar is almost unmixed, i.e.,
there is a strong drop between 0 and 1. In Figs. 41(b) and 41(d), the
distribution of the scalar is more homogenized and the mean value can be
better gquessed. However, in both figures, and at the extension of the
splitter plate, y=0.5, the average value of the scalar is not the same as the
average of the scalar concentration in the two streams, 0.5. This is because
of the asymmetry of the entrainment in the favor of the high speed stream, and
the shift of the center of the eddies toward the low speed side. 1In fact the
average scalar concentration, ¢ = 0.5, is achieved at y ~ 0.42 rather than y =
0.5.

In Fig. 42 we plot the the averaged concentration profiles (a) for
different values of the Peclet number at the same streamwise locations, x=5,
and (b) at different streamwise 1location for the same Peclet number, both
compared with the data of Masutani and Bowman [55). The mean concentration
profiles differ substantially from the initial error function profile, and
develop downstream to form a zone of almost constant value, between two
inflection points, around the midsection of the shear layer and toward the
high-speed side. This constant value is close to the preferred-mean
concentration within the cores. Diffusion, which generates strong fluxes
around areas of sharp gradients, tends to make the profiles smoother.
However, as shown by Fig. 42, the effect of diffusion on the mean

concentration is minor.
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A comparison between the mean concentration profiles and the mean
velocity profile indicates that the former penetrates further into the free
stream than the latter. This supports the hypothesis that, in these shear
flows, mixing is entrainment-dominated and the entrainment, while it is a
consequence of the vorticity-induced field, acts on the vorticity-free part of
the flow by the Biot-Savart effect. Mixing enhancement by the roll up of the
shear layer, due to its intrinsic instability, is thus not limited to the
neighborhood of the area where |w|wO0. Instead, the mixing zone extends
further into the free streams as we move downstream.

The root-mean-squared concentration fluctuations are shown in Fig. 43
for: (a) different values of the Peclet number at the same streamwise
location; and, (b) at different streamwise locations for the same Peclet
number, both with the experimental measurements of Masutani and Bowman {55].
As expected, at zero molecular diffusion the maximum value of c’ approaches
0.5, the unmixed state, indicating that the concentration in the fluid passing
by the measurement point is alternating between the two extreme states. With
increasing levels of molecular diffusion, the maximum value of c’ decreases,
and the whole profile attains smaller values showing that the limits between
which the values of c is oscillating decrease. The peak and the wide plateau
which are observed in this distribution correspond roughly to the transition
between the slow stream in which c=1 and the mixing core of the eddy.

Figure 43(a) shows that molecular diffusion has a pronounced effect on
the concentration fluctuations, emphasizing the influence of diffusion on the
instantaneous profiles and on the outcome of time-dependent processes which
may take place within the shear layer, such as chemical reactions. Figure
43(b) shows that the concentration fluctuations reach self-similarity

downstream of the station at which the mean profiles reach self-similarity,
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similar to the velocity profiles. This is not surprising since the
controlling transport mechanism here is convection. The figure also shows
that the penetration of the transported spices cannot be measured by its mean
values only.

Some deviations between the numerical results and the experimental
'measurements, which may have resulted in different growth rates, may be
attributed to the relative amplitude of noise in the numerical and
experimental studies, and the expected scatter in experimental ressults.

The probability-density function of the concentration across the cross
section x=5 is shown in Fig. 44 for two values of Peclet number: P == and
Pe-2500. The bimodal shape, characteristic of non-diffusive entrainment, is
clearly exhibited by the plot, and is indicative of the absence of numerical
diffusion even at such distance downstream. At Pe-2500, concentrations at
intermediate values of c appear, with higher probability, close to the high-
speed side where c~0. Evidence for the existence of a preferred concentration
within the core is given in Fig. 44(b). Intermediate values of c appear
between the two peaks at c=0 and c=1, with higher probability for 0<c<0.5 than
for 0.5<c<1.

5.5. CONCLUSIONS

Numerical simulation of a non-reacting, uniform density, spatially-
growing, confined two-dimensional shear layer has been performed using a
transport element method.

1. The results show that che basic dynamical processes that govern the
development of a shear layer are the roll up of the initial vorticity layer
into large scale eddies after an initial delay during which perturbations are

selectively amplified, and the pairing of these eddies downstream. The most
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probable shedding frequency is close to the frequency of the most unstable
mode as predicted by the linear stability theory, with small variation around
this frequency. Pairing can be described as the roll up of two neighboring
eddies, a subharmonic instability. In most cases, pairing occurs between two
eddies, but less frequently it occurs among three eddies and at times it does
not occur. Pairing is repeated downstream.

2. Forcing the layer by cross-stream oscillations at relatively small
amplitudes enables the layer to skip the initial linear growth phase and shed
eddies at the forcing frequency immediately downstream of the splitter plate.
This is in agreement with the fact that the layer is a linearly unstable flow
that responds to very small perturbations within a frequency range. However,
if the forcing function is monochromatic and close to the most unstable
frequency, forcing delays pairing, i.e., it hampers the growth of the layer
downstream. For better organization and continued faster growth, the layer
should be forced by a combination of the fundamental and the subharmcnic
frequencies simultaneously. Thus, growth of mixing layers can be actively
controlled in the direction of enhancing or suppressing their growth.

3. The most important difference between the temporal and the spatial
models of the shear layer is the explicit dependence of the latter on the
velocity difference across the layer. We found that this parameter, for
values not equal to unity, leads to mixing asymmetry within the large
structure since the layer is forced to entrain more high-speed fluid than low-
speed fluid. These unequal entrainment fluxes are induced by an unsymmetric
large vortex eddy which forms under the influence of conditions imposed by a
non-uniform field governed by the boundary conditions. This asymmetry offers
a passive means of controlling the mixing within the layer by exchanging the

scalars between the two streams.
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4. The statistics of the numerical results show good agreement with the
experimental measurements within the non-linear range. These statistics are
generated solely by intrinsic instability of the shear layer, which leads to
the generation of flow unsteadiness downstream of steady boundary conditions.
The statistics of the passive scalar emphasize the important role of molecular
diffusion in the mixing process and indicate that a mean preferred mixture
fraction, which is different from the average mean of the two streams, exits

within the eddies.
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Fig 31. Variations of (a) normalized amplification rate

with Strouhal number f0/0. Linear stability theory (from Monkewitz & Huerre
1982): — R =1; —— R =0.5; ——— R« | Experiments: (J R = 1(Sato 1960); OR =1
(Freymuth 1966); x R =0.72 (Miksad 1972); ‘\\' R = | (Fiedler et al. 1981); A R =0.31

(Ho & Huang 1982); B R == | (Drubka 1981).
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Fig. 32(a). The location and velocity of the vortex
elements during the roll-up of a spatial shear layer
for Ul/Uz-Z, e=0, and xexit'6 at different time.
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Fig. 32(b). The location and velocity of the vortex
elements during the roll-up of a spatial shear layer
for Ul/Uz=-3, e=0, and xexit-s at different time.
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Fig. 33. The location and velocity of the vortex
elements during the roll-up of a spatial shear layer

* 3
for Ul/U2=2, A=\, ¢/Xx =0.01, and xexit=6 at different
time.
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Fig. 34. The location and velocity of the vortex
elements during the roll-up of a spatial shear layer
for U1/02=3, A=\, eF=0.05x ’ es=0 and xexit=5 at

different time.
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Fig. 35. The location and velocity of the vortex

elements during the roll-up of a spatial shear layer

* *
for Ul/U2=2, XF=X ’ XS=ZX , eF=eS=O.OlA, and xexit=6

at different time.
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(b)

Instantaneous scalar contours for a single

eddy within the spatial shear layer at time t=40.65,

(a) Po==; (b) Pe-2500.

Fig. 37.
x=4 for:
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STREAM-UISE COORDINATE

Fig. 38. Average momentum thickness for the spatial
shear layer.
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Fig. 39. The time-average streamwise velocit rofiles
at x=3.0, 3.5, 4.0, 4.5, and 5. The experimegtapl
results of Masutani and Bowman [55] are shown by
symbols.
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Fig. 40(a) The time-average streamwise velocity
fluctuations at x=3.0, 3.5, 4.0, 4.5, and 5. The
experimental results of Masutani and Bowman (55]) are
shown by symbols.
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Fig.. 40(b) The time-average crossmw-stream velocity
fluctuations at x=3.5. The experimental results of
Masutani and Bowman [55) are shown by symbols.
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x=3.5. The experimental results of Masutani ai.l Bowman
(55) are shown by symbols.
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Fig. 41(b) Instantaneous values of concentration with
time at x=5.0 for y=0.3, 0.5, and 0.7 with Pe-2500.
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129

T2 —— >

—

d--~

(a)

(b)

R ey

[N

!

LR S o T e
-y, —= A amy, 6 .,
AT T T T FAFRT

e Z Ty

Fig. 44. Probability-density function of scalar

concentration at x=5.0 for: (a) Pe="

n= (y—yo)/(x—xo).

and (b) Pe-ZSOO.



130
Chapter 6
THE REACTING SHEAR LAYER

In this chapter Wwe apply the transport element method to a non-
premixed, spatially—developing reacting shear layer. fuel and oxidizer, both
diluted in an inert gas, are introduced on oppoelte gide of the splitter
plate. The chemistry is governed by a single-step, second-order reaction and
the amount of heat release 1is low. in a low heat release reaction, the
thermodynamics and transport properties of the layer are not significantly
different from the non-reacting case. The effect of heat release on the flow
dynamics is removed by ignoring the spatial and temporal variations of
density. This way, one can decouple the momentum and energy equations. The
same result can be obtained if the mixture is highly diluted with an inert
gas. In the experimental measurements of a ghear layer using a low heat
release reaction, Masutani and Bowman [{55], Wallace (11] and Mungal and
pDimotakis [12] used a dilute concentration of reactants with a maximum mean-
temperature rise of less than 6 K, 100 K and 97 K above ambient, respectively,
to achieve the same conditions.

The small temperature rise of the products suggest that: (i) the
dynamics of the layer is not affected by any significant density variation;
and, (ii) a temperature—independent reaction rate may be a natural
approximation for the source term of the chemical reaction, since temperature
variation is small. In this case, the exponential term in the Arrhenius
expression of the reaction rate can be written as ﬁ-Dacho with D = Ag exp(-
Ta/Tf) where T¢ is an average temperature in the reacting zone. In this case,
the non-dimensional parameters of the problem are limited to Re' Da' and Y.
1t should be noted that this condition gs satisfied if (Ta/TP)(AT/TP)<<, where

AT is the temperature rise and T, is the non-dimensionalized activation
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energy. On the other hand, the constant-density flow assumption depends on
8p/p<<l, where Ap is the difference between the reactants and products density
and p is the reactants density. Assuming that both reactants and products are
perfect gases with the same molecular weight and that the pressure is
constant, Ap/p = At/TP. In this work, we assume that the density is constant
and that the dynamics are independeut of the chemical enerqgy release. Thus,
an isothermal reaction model is used only in the first part of this chapter.
In the second part, we consider the effect of the temperature on the reaction
rate. In the following analysis, we assume that both the Prandtl number and
the Lewis number are equal to 1.

To investigate the effects of turbulence on chemistry, we ure the
turbulent reacting shear layer code to obtain solutions for a laminar reacting
shear layer, i.e., when roll up is not allowed, and use these results as a
base for comparison. Under the low heat release assumption, there is a semi-
analytical expression for the velocity field of the laminar reacting shear
layer. 1In our solution for the laminar layer, this expression is used to
obtain the position of the elements at each time step. Once the locations of
the vortex and transport elements are known from this semi-analytical
solution, the chemical source term is integrated in a similar way as in the
turbulent case. The distribution of both reactants within the layer at t=0,

and at x=0 for any value of t, is shown in Fig. 45.

6.1. THE TURBULENT SHEAR LAYER
The total amount of burning within the shear layer is measured by the

time-averaged integral product thickness, SP(x), defined as:
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+1

where Eb(x,y) is the time-averaged value of cP(x,y,t). To obtain the
following results, we ran the calculations until a stationary state was
reached. We then collected a sample of 200 time steps for averaging. During
the sampling time, we estimate that 30 large eddies had passed through the
computational domain (see Fig. 49). The dynamics of the layer, including the
frequency of shedding, the growth rate and the velocity statistics, have been
analyzed befors in the previous chapters. Thus, we will proceed directly to
the analysis of the burning process.

In Fig. 46, we plot sp versus the streamwise coordinate at Re-SOOO,
Da-10.0 and Y=1.0 for the laminar and turbulent layers. The figure shows that
product formation starts immediately downstream of the splitter plate and
grows rapidly. This is expected since the chemical reaction is temperature-
independent, i.e., there is no ignition delay, and the two reactants are
assumed to be partially diffused into each other. 1In the case of the laminar
layer, sp reaches an asymptotic value around x~1.0. In the case of the
turbulent layer, the value of SP is almost the same as that of the laminar
layer up to the point where the latter reaches a constant value.

Existence of a constant value for the product thickness in the laminar
shear layer can be predicted from the analogy between this problem and the
Emmons problem in which there is a reaction zone between a flat plate of fuel
and a parallel gaseous oxidizing stream. The main conclusion of the analysis
of the Emmons problem [71], which can approximately be extended to the present
case, is that there is an asymptotic value for the integral product thickness.

This agrees with our results of the numerical simulation. The slight decrease
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in GP of the turbulent layer with respect to the laminar layer is due to the
strain produced by the growth of the perturbation and the formation of the
first large eddy at x~1.5. This effect will be discussed in more detail
later.

Downstream, the product thickness of the turbulent layer continues to
rise beyond its asymptotic value of the laminar layer. To rationalize this
behavior, we plot, in Fig. 47, the shape of the interface as it deforms due to
the instability of the vorticity layer in terms of: (a) the location and
velocity of the vortex elements initially located along the midsection of the
vorticity layer, y=0.5, where initially cF-co-l/Z: (b) the continuous line
interface which coincides initially with anconl/Z; and, (c) the total length
of the same line interface in the turbulent case divided by the total length
of the interface in the laminar case, L/x. These plots shéw that the increase
in the total product thickness in the turbulent case is due to the enlargement
of the interface between the reacting streams within the large vortex eddies
which form due to the roll up of the vorticity layer. Across this enlarged
interface, molecular diffusion, thus mixing, leads to the enhancement of the
rate of burning. The same effect can be expressed in terms of the entrainment
of reactants into the structures that evolve due to the roll up of the
vorticity layer. This entrainment, which results from the engulfment of fluid
from both sides of the interface as it stretches, provides the first step of
mixing within the large structures. The second step is the diffurion across
the interface between the fuel and air streams.

It is noted that while the 1length of the interface, L, increases many
fold as the vorticity rolls up, the increase in the product thickness is
approximately limited by L/x (see Figs. 46 and 47(b)). This can be explained
by the fact that a large part of tﬁe interface disappears within the burnt
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core. In other words, a large portion of this interface becomes inactive, or

non-reacting, as soon as the reactants are depleted within the core, i.e., the

core becomes practically homogeneous. To clarify this issue, we focus our
attention on analszing the dynamics and the chemical reaction within a single
eddy downstream of the shear layer.

Figure 48 depicts the following instantanecus information for one
single eddy: (a) the vorticity contours, (b) the product concentration
contours, (c) the high-speed stream reactant contours, and (d) the line which
corresponds initially to y~0.5. These plots show that:

(1) There is a strong similarity between the vorticity contours and the
product concentration contours, indicating the dominant role which the
convective field, or the entrainment, plays in the burning process;

(2) While some traces of vorticity remain in the braids between neighboring
eddies, most of the vorticity is entrained and concentrated within the
eddy cores;

(3) The product concentration, on the other hand, is highly concentrated
within the cores, with almost no product appearing within the braids;

(4) The reactants concentration is distributed almost evenly around the outer
edge of the eddy, i.e., the reactant from the high speed side has
penetrated the low speed stream, reaching the eddy core and vice versa;

(5) The original interface between the air and fuel streams is strongly
convoluted within the eddy core which consists mostly of products;

(6) The center of the eddy, measured by the highest vorticity or product
concentiation, is in the low velocity stream indicating a definite
asymmetry in the structure; and

(7) This asymmetry is emphasized by the presence of more high velocity fluid
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than low velocity fluid within the eddy and the unequal convolution of the
different branches of the core.

These observations show that, at this value of-the Damkohler number,
the reacting eddy can be best described as a core of products surrounded by a
convoluted interface between the fuel and air streams. This interface, which
remains on the outer edges of the vorticity core, is about three times the
length of the original unconvoluted interface since it forms a Z-shape whers
an eddy exists. Most of the product formation takes place across this
interface, as will be shown in detail in the next section. However, due to
the convective field that exists within the eddy, these products are entrained
into the core. Product concentration within the braids is very small due to
two reasons: _

(1) The relative velocity between the two streams is high within the braids,
hence, very little mixing occurs there; and,

(2) whatever products are formed are immediately entrained towards the eddy
center. Thus, the stretch within the braids affectg the product
concentration by lowering the time available for mixing of reactants
before the chemical reaction.

The temporal behavior of the layer is depicted in Fig. 49 where the
variation of the product concentration with time within the mixing zone is
shown at: (a) y = 0.5 and x = 2.0, 3.0 and 4.0; and (b) x = 4.0 and y = 0.3,
0.4, 0.6 and 0.7. The figure shows that the frequency of fluctuation of the
local value of the product concentration decreases while its amplitude
increases as we move downstream. The drop in the frequency is due to the
pairing of the first generation of eddies, the fundamental eddies, which form
as a result of the roll up of the vorticity layer, as well as that of the

second generation of eddies, the subharmonic eddies, which form due to the
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pairing of the first generation. There is approximately 43, 30 and 17 waves
at x = 2.0, 3.0 and 4.0, respectively, within the time window shown in the
figure. These correspond to the number of eddies passed through these
sections within the same time window (the eddies were seen in plots of the
vorticity field similar to those Shown in Fig. 32. Since the flow was not
forced in any organized way, pairing was found to occur among two, and at
times three eddies at once. Moreover, eddies escaped pairing every few
cycles. Similar observations could be made for the pairing among the second
generation eddies.

The increase in the fluctuation amplitude of product concentration is
due to mixing enhancement by the strong entrainment currents into the large
vortex eddies. It is important to point out that strong entrainment currents
are generated during pairing as well as during roll up, as was shown in
Chapter 4. These results emphasize the role which the subharmonic
instabilities play in the evolution of the mixing layer. Pairing, as
mentioned before, involves the roll up of the neighboring eddies around a
common center. Thus, a similar stretch of the common interface, accompanied
by strong entrainment currents of both reactants into the new layer structure,
is generated. These results indicate that an active way of promoting mixing
and faster burning is to force the layer at its natural subharmonic frequency.

Figure 49(b) shows that the product concentration is not symmetric
around y = 0.5. This is due to the asymmetric entrainment of reactants into
the large eddies. As we showed in Chapter 5, the fluid from the top stream
penetrates further into the eddy than that from the bottom stream, leading to
the generation of higher product concentration in the lower half of the eddy
than in the upper half. We also note that while the mean value increases as

we move downstream and, at any particular section, close to y = 0.5, the value
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of Cp fluctuates between the two extremes, even at the center of the eddy.
This is because of the depletion of products within the braids between the
eddies, as shown in the contour plots.
The effect of various physical parameters on the rate of product
formation in the turbulent shear layer is now analyzed and related to the
dynamics which has just been elaborated.

6.2. EFFECT OF DAMKOHLER NUMBER

As mentioned in Chapter 2, the Damkohler number is defined as the ratio
between the convective time scale and the chemical reaction time scale. It is
expected that as D, increases, the total product formation should increase.
The time-average product distribution across the section x=4.0 is shown in
Fig. 50 for different values of the Damkohler number. The curves indicate
that the cross-stream extent of the reacting layer is independent of the
Damkohler number. The maxima of all these curves 1lie at the same point y <
0.5, and the product distributions are asymmetric around their maximum values.
This is a result of the asymmetric entrainment which has been observed before
in non-reacting layers. The curves also indicate that at low Da' the eddy is
formed of almost a uniform core of products at low concentration, i.e.,
products are uniformly generated inside the large eddy. at high Da,_there are
sharp gradients of products between the eddy core and the free streams
indicating that products are generated primarily on the outer edges of the
eddies.

Figure 50 shows that the time-average value of Cp at the center of the
eddy, defined by the maximum of the curve, is 0.25. On the other hand, Fig.
49(b) indicates that at the same period, the instantaneous value of product

concentration fluctuate between 0.0 and 0.8. These fluctuations are
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associated with the passage of the large scale eddies over the measuring
point, which raises the value of the concentration to its maximum value and
then causes it to drop to its minimum value as the braids pass over the same
point.

In Fig. 51, the integral product thickness, SP' is plotted against the
streamwise coordinate, x, for Re-SOOO, Da-0.2—15 and Y=1.0. At low Da' 5P
increases slowly with x. Under these conditions, the effect of mixing
enhancement due to roll up on the rate of product formation is weak since
chemistry is slow, i.e., the chemical rates do not match the mixing rates. As
D, increases, the distinction between the two stages cf the reacting shear
layer, before and after roll up, becomes more pronounced. In particular,
after roll up the rate of increase of sp, i.e., dsp/dx, increases with D, .
Thus, while before roll up the strain field negatively affects the rate of
burning by thinning the layer, after roll up the strain field enhances the
rate of reaction within the large eddies by promoting entrainment into the
large structures.

The plot also shows that for a fixed x, the change in ép with D, is not
linear. To illustrate this non-linearity, we select the section at x=4.0 and
plot the local value of SP versus Da for two values of the Reynolds number,
Re=5000 and 10000, in Fig. 52 (¥=1.0). At low Damkohler number, the rate of
product formation and 8P are strongly affected by D, since they are limited by
the speed of the chemical reaction. The product integral thickness reaches an
asymptotic value as D, is increased since now it is limited by mixing. The
figqure also shows that at high Reynolds numbers BP is weakly dependent on the
Reynolds number since by doubling the diffusivity the product integral
thickness hardly changes (here, the Reynolds number was changed without
changing the Damkohler number). This can be explained by the fact that at
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high Damkohler number the rate of mixing is limited by entrainment of
reactants into the eddy core and not by diffusion. This issue will be
addressed in more detail in the next section.

The effect of the Damkohler number on the structure of the shear layer
is investigated further by comparing the instantaneous values of the product
concentration, Cpy the oxidizer concentration, Cor and the potential for the
chemical reaction, ﬁVDa = CpCos for D, = 0.2 and 10 in Fig. 53. 1In the fast
chemistry case, the potential of the chemical reaction, ﬁVDa, is highest on
the outer edges of the large eddy and reaches very small values at the center
where the product concentration is highest. Thus, at high Damkohler numbers,
the reaction takes place at the interface between the fuel and the oxidizer.
It is also noticed that under these conditions, the penetration of either
reactants streams into the eddy is limited due to the fast consumption of
reactants by the chemical reaction. On the other hand, in the slow chemistry
case, the speed of the chemical reaction is highest at the center of the eddy
where the product concentration is highest. Thus, at low Damkohler numbers,
the reaction takes place at the center of the eddy where the fuel and oxidizer
have been mixed. Under these conditions, the penetration of the reactants
streams into the large eddy is deep.

In Fig. 54, the numerical results are compared with the experimental
measurements of Mungal and Frieler [72]. In order to do a one-to-one
comparison: (1) the product integral thickness, SP' is normalized with respect
to the 1% thickness of the layer at the same location, 61 (the distance
between points at which the mean product concentration is 1% of its maximum
value); and (2) the Damkohler number is recomputed according to the
definitions used by these authors, D

ax
UM' and the value of x at which SP and 81 are measured. As expected, the

, which is based on the mean velocity,
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numerical results are below the experimental measurements since the numerical
solution is limited to two-dimensional physics and thus mixing trausition is
not allowed to affect the flow dynamics. The extra mixing, generated by the
extra entrainment attained after transition and the generation of streamwise
structure, should account for the difference between the numerical and the
experimental results (see Knio and Ghoniem (59]).

in order to illustrate, by parametric modeling, the effect of the
mixing transition on product formation and to show how the enhancement of
diffusion by the streamwise vortex structures can affect the burning process,
we increase the molecular diffusion by decreasing the Reynolds numbsr to 2500
and 500. The results, depicted in Fig. 5¢ atD, = 27, show that the value
obtained at R, = 500 falls within the scatter of the experimental
measurements. This agreement is not based on a fundamental gimulation cf the
three-dimensional flow but on the choice of the Reynolds number to compensate
for the extra mixing due to three-dimensional effects. Thus, we will not
pursue the matter any further.

The fast chemistry, mixing-limited regime is reached when Da>1' Based
on the length scale of the large eddies, the chemical reaction can be
considered fast for D, > 20 as indicated by Fig. 51. Beyond this value of D,,
the rate of burning will not benefit from increasing the speed of the chemical
reaction and only mixing enhancement can promote the formation of more
producte within the layer. This is an important conclusion since this limit
has been considered as D, -~ <. our computations indicate, however, that
mixing-controlled combustion occurs as soon as the chemical time scale becomes
an order of magnitude larger than the convective time scales. Using Damkohler
number based on the x-location, Dax' the fast-chemistry limit is reached at

Doy~ 50.
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6.3. EFFECT OF REYNOLDS NUMBER

Figqure 55 shows the time-averaged product cencentration profiles at x =
4.0 for b, = 10 and R, = 500, 5000 and 50000. In this case, we fix both the
convective and chemical time scales and change the diffusion time scale. The
plots show that the shear layer thickness depends on the Reynolds number
through molecular diffusion, however it is a weak dependence at high Reynolds
numbers. This is consistent with the results presented in Figs. 49 and 51,
which indicated that at high Reynolds number the rate of product formation
measured by the integral product thickness is a weak function of the Reynolds
number (since all the computations were performed at Schmidt number, S.=1, the
Peclet number of mass diffusion is the same as the Reynqlds number). Both
figures show that doubling the Reynolds number, i.e., reducing the molecular
diffusion by a factor of two, has a negligible effect on the product formation
rate.

Figure 55 confirms mixing asymmetry at all values of Reynolds numbers.
As previously seen in Fig. 50, the distribution of the product is asymmstric
around its maximum value, reaching deeper into the low-velocity stream than
the high-speed stream. This is due to the fact that entrainment into the
large eddies favors the high-speed stream. This asymmetry is emphasized by
the fact that as the effect of molecular diffusion increases, the product
thickness grows more into the low-velocity stream than into the high-velocity
stream. The asymmetric entrainment has been observed in non-reacting flow
simulations and in experimental studies of shear layers. It is due to the
asymmetric vorticity distribution inside the eddies that form between two

streams of unequal velocities.
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The normalized product thickness, sP/sl, is depicted in Fig. 56 as a
function of the Reynolds number. The plot shows that increasing R, by one
order of magnitude 1lowers the normalized product thickness by 10%. As
indicated by the contour plots in Figs. 48 and 53, at high Reynolds number
diffusion occurs across a thin layer between the fuel and the air on the outer
edges of the large eddies. Since the layer is thin, the rate of diffusion
across the interface is faster than the convection of the reactants towards
the eddy. Therefore, the burning process is governed by the slower mechanism,
convection or entrainment, and the effect of the Reynolds number is not
strongly felt.

The importance of these results lies in the fact that one can not
enhance the rate of burning by promoting molecular diffusion, or very small
scale mixing, beyond a certain level. The fact that mixing at high Reynolds
numbers is governed by the entrainment into the large structure and not by
diffusion either within these structures or outside their cross-stream extent

is strongly emphasized.

6.4. EFFECT OF THE STRAIN FIELD

In Fig. 57, we plot the instantaneous product distribution and the
corresponding vorticity field for different parts of the computational dcmain
for Re-SOOO and Da-10. Clearly, the product concentration can be linked to
the dynamics of the layer or the vorticity field. Both fields show one moving
saddle point within the braids which connect each two neighboring eddies, and
one moving center point at the middle of each eddy. Due to the strong
rotational field within the core of each eddy, the braids in both sides of the
saddle points are stretched and the products generated within the braids are
drawn into and inhaled by the eddy. The concentration of the products is thus
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lower around the braids with a minimum at the saddle point, while it is much
higher inside the core of the eddies with a maximum at the center point. The
critical point which appears at the center of the eddy acts as focus point
for the product concentration.

Invoking the above reasoning, we may answer the question of why, in the
initial stages of the turbulent reacting layer, is there a slight drop in the
product thickness compared with the corresponding laminar reacting layer?
This was first pointed out in Fig. 46. In Fig. 58 we plot the ratio of the
averaged product thickness of the turbulent to the laminar shear layer. Note
that 8o is the integral product thickness, | cp dy, while §, is the
"displacement" product thickness and is the distance between cP-o.Ol and
cP-0.99. Thus, SP indicates the total amount of produc;s within the shear
layer while 61 marks the physical extent of the products within the layer in
the cross-stream direction. Initially, this ratio is close to unity because
the layer behaves as a laminar layer. Moving downstream both ratios drcp
below 1. This is the region close to the formation of the first mature eddy
(see Fig. 57(a)). The formation of an eddy exerts a finite strain on the
initial part of the shear layer, causing it to become thinner than the laminar
layer. Since the vorticity layer and the reaction zone overlap, the reacting
zone also becomes thinner and the product thickness decreases. The effect of
the large eddy is aot strong enough to deplete all the products; only part of
the product is inhaled into the right side of the zone.

6.5. EFFECT QF REACTANTS RATIO Y
For the chemical reaction described by Eq. (1), the reactants ratio ¥
is defined as the ratio of the £free-stream concentrations of the high-speed

stream, o’ to the low-speed stream, Crot
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For the reaction symbolized by Eg. (1), a unit volume of one species is
required to completely "oxidize" a unit volume of the other species, i.e., Y=l
corresponds to complete combustion. In the context of the shear layer there
is no need to distinguish which species acting as the fuel or oxidizer. The
impertant concern is the ratio of the high-speed to low-speed reactant
concentrations since the mixing layer entrains fluid from both sides at
different rates.

In Fig. 59 we plot the total amount of products in the layer for 0<x<4,
that is:

4 1
Total amount of products = [ | EP(x,y) dx dy
00

against the reactants ratio when the low-speed free-stream concentration is
fixed, Cra™ 1.0, and the high-speed free-stream concentration is changed, Coe™
0.0 - 8.0. For small values of ¥, the amount of products increases as the
high-speed reactant is burned out by an excess of low-speed reactant. With
further increase in Y, an asymptotic 1limit is reached, corresponding to Y=5,
whare the low-speed reactant within the large eddies is now burned out by an
excess of high-speed reactant.

Although for the chemical reaction with ¥>1 there is a higher
concentration of the reactants and hence a higher diffusion flux within the

eddies, the product formation, as mentioned before, is a weak function of the
Reynolds number and thus of diffusion. The increase in the product thickness
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is due to the presence of higher species concentration and thus larger
potential for the chemical reaction. In other words, the chemical reaction
with ¥>1 is equivalent to a faster reaction with lower reactants concentration
but with a higher Damkohler number. Based on the above argument, we can
explain the strong similarity between Figs. 52 and 59.

Mixing asymmetry can affect the rate of burning and the total amount of
product formed within the domain when ¥ = 1. To show this, we computed the
total amount of product with ¥ = Co/Cp = 2/1 and Y= Sy =1/2 without
interchanging the two reactants between the two streams. Without mixing
asymmetry, the ratio between the total products in both cases should have been
one. However, we found that the ratio of the total product in the two cases
was 1.08. The increase in the total product formation is due to the previously
observed fact that the large eddies entrain more from the high-velocity stream
than from the low-velocity stream (for experimental verification, see
Koochesfahani and Dimotakis (73).) Thus, with higher concentration in the low
velocity stream, there is a stronger chemical potential and more products form

within the large eddies.

6.6. EFFECT OF CHEMICAL PARAMETERS

Now we investigate the effect of the temperature-dependent exponential
term in the reaction rate expression, Eq. (13). In this case, and according
to the global energy equation, complete combustion of reactants at temperature
T, will raise the temperature by AT=Q and the product temperature will be Tp =
1 +Q. Thus, between the reactant’s state and the product’s state, the
Arrhenius term in the rate of reaction expression will increase by a factor of
approximately 150 for a typical value of T, = 10. It should ke mentioned that

between the two states, the factor CxCo is greatly reduced and the increase in
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the total rate of reaction is not as high as shown by the temperature-
dependent terms alone. 'However, it is expected that temperature dependence
will have a strong effect on the burning process in the shear layer.

Contrary to the case of temperature-independent kinetics, here we have
two independent parameters that govern the rate of reaction: the pre-
exponential factor, Ag, and the activation energy, Ta' These can be changed
independently by varying the flow conditions, p, 8U OT Cp, to affect the pre-
exponential factor, or by using a catalyst to affect the effective activation
energy. In the following, we will analyze results obtained for Af = 8000, Ta
= 10 and Q = 1. The average Damkohler number in this case is about 10, based
on average temperature and concentration. We note that the dynamic field
remains the same since the density changes are ignored.

The plot in Fig 60 shows a comparison between the product thickness for
the laminar and turbulent shear layer in this case. The slow rise in SP in
the initial stages is due to the low temperature of the reactants which
reduces the rate of product formation until the slow heat release increases
the temperature of the fluid element to values close to the "ignition
temperature"”. Thus, the layer experiences an ignition delay in the streamwise
direction equivalent to that observed in time in a homogeneous combustion bomb
(this delay can be substantially reduced by preheating the reactants). The
temperature increase along the streamwise direction is shown in Fig 61 in the
form of instantaneous and time-average values along the line y=0.5, i.e.,
along the extension of the splitter plate. After roll up, the average
temperature is smaller than the instantaneous temperature due to the local
cyclical changes associated with passage of large hot eddies, as will be shown
in Fig. 62(c). We also note that where the instantanecus temperature

decreases below the average value there is a braid between two eddies.
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The rate of product formation increases after roll up at a much higher
rate for the turbulent layer than for the laminar layer, similar to what was
observed in the temperature-independent kinetics. In both cases, however, the
rise in 8P is more than that recorded in the temperature-independent kinetics
case and is associated with the effect of the Arrhenius term, as mentioned
before. Thus, the layer experiences an explosion within the eddies. This
explosion, which occurs in the downstream direction analogous to what is known
to occur in time in a homogeneocus combustion bomb. The burning process in the
early stages of the shear layer is therefore controlled by the kinetic rate
and not by the mixing. This lasts until the local temperature reaches values
close to the ignition temperature. We remark that within the initial stages,
the product thickness of the turbulent layer is smaller than that of the
lamipnar layer. This, as mentioned before, is due to the stretch associated
with the formation of the large eddies on the right-hand side of the initial
stages, which leads to a slight thinning of the reacting zone thickness.

The structure of the scalar field within the shear layer is shown in
Fig. 62 in terms of the instantaneous concentration of the oxidizer and the
product and temperature contours. The reactants contours exhibit the result
of the roll up of the vorticity layer and the entrainment of both streams into
the large structures in the vform of extended "tongues" that reach into the
core of the eddy. When compared with the temperature-independent kinetics,
high Damkohler number case, shown in Fig. 53(b), the penetration of the
reactants into the eddy is more pronounced here. This is due to the fact that
cool reactants can coexist in this case, contrary to the T-independent
kinetics case, and that fast burning can only occur after enough temperature
rise. The contours show another manifestation of asymmetric entrainment

within both of the structures that appear within the plotting window. Note
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the presence of two small eddies in the beginning of a pairing process on the
left side of the window.

The product and temperature contours exhibit strong similarity,
indicating that it is the temperature that controls the kinetic rate in this
case. There is a high concentration of products and high temperature within
the eddy cores, while in the braids zones the product concentraticn is zero
and the temperature is that of the reactants. We also observe that the
concentration gradients of products within the eddies are higher in this case
than in the temperature-independent kinetic case. Concomitantly, there is
stronger depletion of products within the braids due to the cooling associated
with the entrainment of hot products into the eddy cores. The center of the
eddy, as defined by the point of maximum concentration, is in the bottom, low
velocity stream and the edges of the eddy, as defined by the contour cp =
0.02, penetrate further into the bottom stream than the top stream. Both are
further proofs of the mixing asymmetry in these flows.

To analyze the chemical potential in the field and to show how it is
related to the flow dynamics, we plot the contours of CpSo and W, and the
vorticity contours in Fig. 63. These plots were constructed at the same time
step and for the same window as in Fig. 62. The strong similarity between the
product concentration distribution and the vorticity distribution persists in
this case and emphasizes the dominant role of the convection field in these
flows. More revealing are the contours of CpCor which exhibit some similarity
to those in Fig 53 for temperature-independent kinetics. The zone of finite
CeCo in the current case exits on the outer edges of the large eddies and
within the braids, and is thicker than that of the temperature-independent
kinetic case. However, cpC, does not constitute the chemical potential in the

current case. The latter, as indicated by W, show that finite chemical
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potential exist only within smaller zones around the outer edges of the
eddies. The low temperature in the braids zone, brought about by the fast
entrainment of products into the eddy cores, extinguishes the chemical
reaction there. It is in this sense, the heating and cooling of mixed
reactants, that mixing by strong entraiment currents is still the dominant
mechanism in reacting shear layers when the kinetics are strong functions of
the temperature.

The instantaneous temperature contours in Fig. 62 explain the variation
of the temperature as one moves downstream from the shear layer shown in Fig.
61. It is also clear why the average local temperature is lower than the
instantaneous values attained within the eddies. The relationship between the
two values is governed by the eddy passage frequencies and the rate of burning
within each eddy.

6.7. CONCLUSION

Numerical simulations of a two-dimensional, two-stream, non-premixed,
spatially-growing reacting shear layer have been carried out using the vortex
method and the transport element method. Fuel and oxidizer, both diluted in
an inert gas, react downstream of a splitter plate, forming products according
to a low heat release, single step chemical reaction. Results were analyzed
to study the effect of turbulence on the rate of burning at high Reynolds
number and within a range of the Damkohler numbers.

1. Instantaneous distributions of the product concentration and
vorticity exhibit a strong similarity, indicating the dominant role of
convection in determining the local concentrations and the rate of mixing.

2. At low Damkohler numbers, products form at the center of the large

eddies after reactants have been drawn in and well mixed. At high Damkohler
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nurbers, products form both at the center or on the outer edges of the eddies
and are then drawn towards their centers. In both cases, products are not
found within the braids since the large relative velocity between the streams
does not allow enough time for mixing and since large eddies are continuously
inhaling products that form on their boundaries.

3. In the temperature-dependent kinetics, the temperature and the
concentration fields are strengly similar, indicating that temperature
controls the kinetic rate in this case. The gradients of the product
concentration are higher inside the core of the eddy, and the products
concentration in the braids is lower than in temperature-independent case.
The reactants can penetrate more into the eddy because they are not burnt
until their temperature reaches the ignition point, beyond which they react.

4. At high Reynolds number, product formation is a weak function of the
Reynolds number, indicating that while mixing is enhanced by entrainment, it
is also limited by it. Diffusior occurs within the thin convoluted layers too
fast to affect the mixing process. While strong diffusion, corresponding to
very low Reynolds numbers O(100), was shown to compensate for the lack of
mixing transition in the two-dimensional simulations, three dimensional
simulations are necessary to properly account for this mechanism, which is
essentially convective (Knic and Ghoniem [59]).

5. The results confirm the phenomenon of mixing asymmetry due to the
finite velocity difference between the two streams by showing that the average
product concentration on the lower side of the layer is higher than on the
upper side.

6. Another manifestation of this phenomenon is the dependence of the
product thickness on the value of Y when Y » 1. 1In this later case, we found

that for the same arrangement of the reactants in the two streamé, more
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products form for ¥ < 1 than for Y > 1 due the higher entrainment from the
high-speed stream than from the low-speed stream.
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166
Chapter 7
Conclusions

The vortex/transport element method has been developed to study two-
dimensional, two-stream, constant-density, non-premixed, reacting shear layer
in which heat, mass and momentum are transported at large Reynolds numbers.
The numerical scheme is Lagrangian, naturally compatible with the Lagrangian
nature of the chemistry, and the computational elements are placed where there
exist the gradient of the primitive variables and/or there is strong stretch.
The numerical scheme is applied to the reacting as well as non-reacting
turbulent mixing layers. Particular attention is given to understanding the
effect of turbulence on chemistry, flame stability under condition of strong
stretch, and different flow parameters. The conclusions are as follows:

1. The vortex/scalar transport element method is developed in which the
vorticity and scalar gradients are accurately discretized among strongly
overlapping computational elements. The method is Lagrangian and avoid the
non-linearity of the convective terms in the original equations. The method
is rendered conservative by utilizing the relationship between the distortion
of the flow lines and the evolution of the scalar gradients.

2. It is found that a second order Gaussian core function is sufficient
to give a continuous and smooth distribution for the vorticity, velocity, and
their derivatives. A second order time-integration scheme is also found
adequate to integrate the time-dependent equations along the particle path.
In the reacting flow case, however, an extra restriction is imposed on the
time step when the chemical time scales are small compared with the flow time
- scales and when the chemical reaction is stiff.

3. Results of the numerical simulation of the non-reacting shear layer

show that the basic dynamical processes that governs the development of the
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layer are the roll up of the initial vorticity layer into large scale eddies
and the pairing of these eddies downstream.

4. Due to the different velocity distribution at the inlet and exit of
the computational domain there exists a small but nonzero streamwise velocity
gradient which in turn leads to its corresponding cross stream velocity. The
highest value of the cross stream velocity occurs around the tip of the
splitter plate where the asymmetry of the inlet velocity distribution is the
highest, and diminishes downstream where the flow approaches a more uniform
distribution. This phenomena leads to the asymmetry of the entrainment of
fluids from both stream into the layer and shift of the center of the eddies
toward the low-speed side. This is in fact the most important difference
between the temporal and the spatial models of the shear layer, and it depends
explicitly on the velocity difference across the layer.

5. Another ﬁanifestation of the mixing asymmetry is the dependence of
the product formation on the value of Y when Y= 1l. In this later case, we
found that for the same arrangement of the reactants in the two streams, more
products form for ¥ < 1 than for Y > 1 due the higher entrainment from the
high-speed stream than from the low-speed stream.

6. In the reacting shear layer the instantaneous distributions of the
product concentration and vorticity exhibit a strong similarity, indicating
the dominant role of convection in determining the local concentrations and
the rate of mixing. This similarity can be expressed mathematically in the
form of cP(x,y,t) = f(Re'Da) w(x,y,t) where f is a weak function of Ry and a
strong function of Da'

7. At low Camkohler rumbers, products form at the center of the large
eddies which are the reacting eddies while at high Damkohler numbers, the

chemical reaction is strong around the outer edges of the eddies, however, the
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formed products are then drawn towards the centers of the eddies. 1In both
cases, products are not found within the braids since the large relative
velocity between the streams does not allow enough time for mixing and since
large eddies are continuously inhaling products that form on their boundaries.

8. In order to compensate for the lack of mixing transition in the two-
dimensional simulations, three dimensional simulations are necessary to
properly account for this mechanism which is essentially a convective

mechanism.
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Appendix
Computer program for reacting spatial shear layer

using vortex and transport element methods.
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PROGRAM S2VAX

NUMERICAL SIMULATION OF A TWO-STREAM, SPATIALLY-GROWING,
CONSTANT DENSITY, NON-PREMIXED REACTING SHEAR LAYER USING
TRANSPORT ELEMENT METHOD WITH:

1. LOW HEAT RELEASE CHEMICAL REACTION
2. ARRHENIUS RATE EXPRESSION FOR THE SOURCE TERM
3. REDISTRIBUTING THE VORTICITY AND THE SCALAR GRADIENT
FIELDS WITH:
3.1) INJECTION OF THE NEW ELEMENTS IF THE MAXIMUM
DISTANCE BETWEEN THE NEIGHBORING ELEMENTS
EXCEEDS A PREDETERMINED VALUE "Rmax";
3.2) COMBINATION OF THE OLD ELEMENTS ELEMNTS IF
THE MINIMUM DISTANCE BETWEEN THE TWO NEIGHBORING
ELEMENTS FALLS BELOW A PREDETERMINED VALUE "Rmin";
3.3) SMOOTH CHANGE OF "Rmax" AND "Rmin", WITHIN THE DOMAIN.
ADJUSTABLE EXIT PLANE.
FOR TURBULENT AND LAMINAR FLAME.
MOMENTUM DIFFUSION INCLUDED
(SORRY NO BOUNDARY LAYER ON THE TOP AND BOTTOM WALLS!!).
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DIMENSION F2TS1(101,51),2Uss1(101,51),F2TS2(101,51),2Uss2(101,51),
1 Zs11(101,51), 2s12(101,51), 2s(101,51),R11(101,51),
2 R21(101,51),R12(101,51),R22(101,51)

COMMON /NRNVR/ NR,NVR(9)

COMMON /RCTN/ ARE,RR,QE,TAE,FRAC

COMMON /NVN/ NV

COMMON /NXNY/ NX,NY

COMMON ,/ZBZB/ 2ZB(1200,9)

COMMON /ZUBZ/ ZUB(1200,9)

COMMON /2G2G/ 2G(1200,9)

COMMON /TIMT/ TIM(1200,9)

COMMON /CAFB/ TPE 200,9),CAB(1200,9),CFB(1200,9)
COMMON /DCAFB/ DTB(1200,9),DCA(1200,9),DCF(1200,9)
COMMON /ZSZUl/ 2zS1(101,51),2US(101,51)

COMMON /CAFPS/ TPS(101,51),CAS(101,51),CFS(101,51)
COMMON /PIH2/ PI,PIH,PI2

COMMON /SOURCE/ S1ST,S2ST,S1ZT,S22T

COMMON /DELDT/ DEL,DT,UAVG,WL,ALPH

COMMON /DATAl/ HCOL

COMMON /GAGAl/ GAMA(9),DELT(9),YVOR(9),ERF(9)
COMMON /LAMSH/ ETA(9),XT0(9)

COMMON /DATA2/ ALDX,BETDX,X0,ALPHA,BETA, FACT
COMMON /DATA3/ YMIN,YMAX, YMAX2,XMAX

COMMON /DATA4,/ IDUM(5)

COMMON /DATAS/ NQTL,NQKA,NQMD

COMMON /DATA6/ DUM(10,5)

COMMON /DATA7/ NRCFT

COMMON /XBDBD/ XBD
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COMMON /R1R2R/ R1(101,51),R2(101,51) 176

COMPLEX F2TS1,F2TS2,S12T,S22T,2B,2UB,%S,2S1,2S11,2512,
1 ZUs,2US1,2uUs2,2USS1,2US8S2,22,221,272

NR | NUMBER OF LAYERS.
NVR(J) | NUMBER OF ELEMENTS ON "Jth" LAYER.

ELEMENT LOCATED ON "Jth" LAYER IN THE "Z" PLANE.

ZB(I,J) COMPLEX COORDINATE OF THE CENTER

ZG(I,J) CIRCULATION

ZUB(I,J3) | COMPLEX VELOCITY OF THE CENTER

TIM(I,J3) | RESIDENT TIME ASSOCIATED WITH

TPB(I,J) TEMPERATURE OF THE CENTER

CAB(I,J) AIR CONCENTRATION OF THE CENTER

CFB(I,J) | FUEL CONCENTRATION OF THE CENTER

DTB(I,J) TEMPERATURE VARIATION ASSOCIATED WITH
DCA(I,J) AIR CONCENTRATION VARIATION ASSOCIATED WITH
DCF(I,Jd) | FUEL CONCENTRATION VARIATION ASSOCIATED WITH

NX * NY GRID POINTS FOR THE FUTURE USE WITH:
NX=NX1, NY=NYl, THE COARSE MESH FOR STATISTICAL PURPOSE;
NX=NX2, NY=NY2, THE FINE MESH FOR CONTOUR PLOTTING PURPOSE;

"Ith" COLUMN

ZS(1,J)

2Us(1,J)
TPS(I,J)
CAS(I,J)
CFS(I1,J)
FZT(I,J)

"Jth" ROW.

COMPLEX COORDINATE
COMPLEX VELOCITY
TEMPERATURE

AIR CONCENTRATION
FUEL CONCENTRATION
TRANFORM FUNCTION

l
CONSTANTS NEEDED DURING THE CALCULATION

HCOL
XMAX
DEL
DT
WL
ALPH
ARE

QE
TAE
NRCFT
XBD

ALPHA
BETA

SOME CONSTANTS.

LENGTH OF THE SIDE OF THE INITIAL SQUARE ELEMENT

LENGTH OF THE COMPUTATIONAL DOMAIN
CORE RADIUS

TIME STEP

WAVELENGTH OF PERTURBATION
MOMMENTUM, TEMPERATURE AND SPECIES DIFFUSIVITY
DAMKOHLER NUMBER FOR TEMP-INDEP REACTION
OR FREQUENCY FACTOR, Af, FOR TEMP-DEP REACTION
ENTHALPY OF REACTION

ACTIVATION ENERGY

$# OF THE RATIO OF THE FLOW TO CHEM. TIME STEP
X COCRDINATE OF THE THIRD POINT IN FIXING
CONSTANTS OF THE SCALAR SOURCES

INITIAL Rmax

INITIAL Rmin
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PIwd.*ATAN(1.) 177
PIH=PI/2.0
PI2=2,.0*PI
FACT=1.0/3.0
Ul=1.0
YMIN=0.0
YMAX=1.0
YMAX2=2.0*YMAX
XMIN=0.0
H=YMAX-YMIN
HH=(0.5*H

WAVE LENGTH OF THE MOST UNSTABLE WAVELENGTH BASED ON THE
HALF OF THE THICKNESS OF THE SHEAR LAYER AS THE LENGTH SCALE
OF PROBLEM.

WL=13.2

ASK FOR LAMINAR OR TURBULENT SHEAR LAYER.

TYPE *,’ ENTER: TURBULENT/LAMINAR T/L’
READ 1005,QTL
IF( (QTL.EQ.'L’). OR . (QTL.EQ.’1’) )THEN
TYPE *,’ P.S. NO COMBIONATION AND INJECTION IS RECOMMENDED !’
NQTL=0
NQMD=1
GO TO 4
ELSEIF( (QTL.EQ.’'T’) .OR. (QTL.EQ.’t’) )THEN
NQTL=1
ELSE
TYPE *,’ ENTER ONLY T/L’
GO TO 2
ENDIF

ASK FOR MOMENTUM DIFFUSION INCLUDED OR NOT.

TYFE *,’ MOMENTUM DIFFUSION IN THE TURBULENT CASE ONLY !°’
TYPE *,’ !
TYPE *,’ ENTER: MOMENTUM DIFFUSICN Y/N’
READ 1005,QMD
IF( (QMD.EQ.’Y’) .OR. (QMD.EQ.’y') )THEN
NQMD=1
TYPE *,’ MOM. DIFFUSION IN FORM OF VORTEX CORE EXPANSION’
ELSEIF( (QMD.EQ.’'N'’) .OR. (QMD.EQ.’n’) )THEN
NQMD=0
ELSE
TYPE *,’ ENTER ONLY Y/N'
GO TO 3
ENDIF

ASK FOR CONSTANT/ARRHENIUS RATE EXPRESSION.
( TEMHPERATURE-INDEPENDENT/TEMPERATURE-DEPENDENT)

TYPE *,’ ENTER: CONS. RATE/ARRHENIUS K/A'

READ 1005,QKA

IF( (QKA.EQ.’K’) .OR. (QKA.EQ.'k’) )THEN
TYPE *,’ NO TEMPRATURE DEPENDENCE ON THE REACTION RATE’
TYPE *,’ ENTER CHEMICAL REACTION PARAMETERS'
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TYPE *,’ 1)ALPHA, 2)ARE, 3)RR, 4)FRAC’ i78
READ *,ALPH,ARE,RR,FRAC
NQKA=0
ELSEIF( (QKA.EQ.’A'’) .OR. (QKA.EQ.'A’) )THEN
TYPE *,’ ENTER CHEMICAL REACTION PARAMETERS’
TYPE *,’ 1)ALPHA, 2)ARE, 3)RR, 4)QE, 5)TAE, 6)FRAC’
READ *,ALPH,ARE,RR,QE,TAE,FRAC
NQKA=1
ELSE
TYPE *,’ ENTER ONLY K/A'
GO TO 4
ENDIF

READING SOME NECESSARY PARAMETERS

TYPE *,’' WHAT ARE THE:'

TYPE *,’ 1) MAXIMUM STEP ...cveeevecsnnsconannss
TYPE *,’ 2) MULTIPLE OF "h" for Rmax ..........'
TYPE *,’ 3) MULTIPLE OF "h" for Rmin ..........'
TYPE *,’ 4) TIME AFTER WHICH RESULTS ARE KEPT .'
TYPE *,’ 5) "X" OF EXIT PLANE ....cccc0veeacaas’
TYPE *,’ 6) U2 OF THE LOW SPEED STREAM ........'
TYPE *,’ 7) FILE#9 "YES/NO" "1,/0" ............'
TYPE *,’ 8) FLOW / CHEMISTRY TIME STEP(MAX 10).’

~ READ *,ITMAX,ALPHA,BETA,TIMEO,XMAX,U2,NOUT,NRCFT

ENTER THE NUMERICAL VALUES FOR REFINED
INJECTION AND COMBINATION PROCESS.

TYPE *,' ENTER: DXMAX,DALPHA,DBETA’

READ *,DXMAX,DALPHA,DBETA

X0=XMAX-DXMAX

ALDX=DALPHA/DXMAX

BETDX=DBETA/DXMAX

XBD=XMAX-2.0 !TO BE USED TO FIX B.C IN SCALAR SOURCE.
UAVG = 0.5*(Ul+U2)

DU = Ul-U2

TYPE *,’ ENTER:AMPLITUDES OF FUNDAMENTAL AND SUBHARMONIC'
READ *,AMPF,AMPS

CONVERSION OF THE CONSTANTS IF USING THE CHANNEL HEIGHT "H"
AS THE LENGTH SCALE OF THE PROBLEM INSTEAD THE HALF OF
THE SHEAR LAYER THICKNESS "O0.5*XLT1".

CONV = 1.0/(2.0*WL) ! CONV OF TEMPORAL/SPATIAL SHEAR LAYER
SIGMA=1.0*CONV ! STANDARD DEV OF THE ERF BASE FLOW
WL=WL*CONV ! WAVE LENGTH OF PERTURBATION

AMPF=AMPF *WL ! AMPLITUDE OF FUNDAMENTAL

AMPS=AMPS*WL ! AMPLITUDE OF FIRST SUB-HARMONICS

READ THE INITIAL GAUSSIAN DISTRIBUTION FOR VORTICITY
WITHIN THE SHEAR LAYER AT TIME T=0.

READ(3)NR, ICORE,DEL1, XLT1
TYPE 1001,NR,DEL1,XLT1
DEL = DEL1*CONV

XLT = XLT1*CONV
HCOL=XLT/FLOAT(NR-1)
GAMTOT=-DU*HCOL.

CORE RADIUS IN "Z" PLANE
THICKNESS OF SPATIAL SHEAR LAYER
ELEMENT'S SIDE "H" IN "Z" PLANE
CIRCULATION/COLUMN

s pem oum gum
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179
NORMALIZED HEIGHTS AND STRENGTH OF THRE
COMPUTATIONAL ELEMENTS USING THE CHANNEL HEIGHT
AS THE LENGTH SCALE.

DO I - 1,NR
READ(3)YVOR(I),GAMAl,ERF1
ERF(I)=UAVG+0.5*DU*ERF1
YVOR(I)=HH+YVOR(I)*CONV
GAMA(I)=0.5*GAMAl*GAMTOT PI2
DELT(1)=0.5*GAMALl/PI2
TYPE *,I,YVOR(I),GAMA(I),DELT(I),ERF(I)
ENDDO

IN THE CASE OF LAMINAR REACTING SHEAR LAYER,
ARRANGE FOR VISCOUS EFFECTS IN THE VELOCITY
CALCULATIONS.

IF( NQTL.EQ.0 )THEN
CALL LAM
ENDIF

CHECK IF TO START THE REACTION OR IT HAS ALREADY STARTED.

TYPE

* START WITH 0/1/2'
TYPE *

*

*

L
* 0. THE FROM THE ZERO STEP'

* 1, CONTINUE FROM THE OTHER STEP BUT WITHOUT COMBUSTION’
° 2. CONTINUE FROM THE OTHER STEP BUT WITH COMBUSTION'

TYPE
TYPE

START WITH A FLAT AND UNPERTURBED SHEAR LAYER TO SAVE
COMPUTATIONAL EFFORT DURING THE TRANSIENT PERIOD(BEFORE THE
FIRST GENERATION OF ELEMENTS LEAVE THE DOUMAIN).

IF( IZO0S.EQ.0 )THEN
INI=1
TIME=0.0
NC=XMAX/HCOL
CALL UNLAER(NC)

ONLY INJECTION & COMBINATION (GO TO MAINS).

ELSEIF( IZOS.EQ.l )TEEN
READ(7)ITIME,TIME,NR, (NVR(J),J=1,NR),
((zB(1,J),2UB(1,J),2G(1,J),TIM(I,Jd),
I=1,NVR(J)}),J=1,NR)

NV=0
DO J=1,NR
DO I=1,NVR(J)
DCA(I,J)=+RR*DELT(J)
DCF(I,J)=-DELT(J)
DTB(I,J)=0.0
ENDDO
NV=NV+NVR(J)
ENDDO
INI=ITIME+1 ! STARTING STEP
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INJECTION & COMBINATION AND UPDATING
(GO TO MAIN4 AND DO A REGULAR CONTINUATION) .

ELSEIF( IZ0S.EQ.2 )THEN
READ(7)ITIME, TIME,NR, (NVR(J),J=1,NR),
((zB(I,J),2UB(1,J),2G(I,J),TIM(I,J),
TPB(I,J),CAB(I,J),CFB(I,J),DTB(I,J),DCA(I,J),DCF(I,J),
I=1,NVR(J)),J=1,NR)

INI=ITIME+1 { STARTING STEP

NV=0
DC J=1,NR
NV=NV+NVR(J)
ENDDO
ELSE
TYPE *,'’ TRY ONLY o/1/2'
GO TO 26
ENDIF

STRENGTH OF FLOW SOURCES AND THEIR LOCATION
IN COMPUTATIONAL "ZETA" PLANE.

S1ZT = CMPLX(-1l.,0.)
§2ZT = CMPLX(+1l.,0.)
S1ST = Ul/PI2

S2ST = U2/PI2

TYPE *,’ ENTER: DT’
READ *,DT

DEFINE TWO SET OF FIXED MESH FOR STATISTICAL AND

COLOR PLOTTING PURPOSE IN THE FUTURE.

FIRTS THE COARSE MESH (USUALLY 11+%51) EACH ONE(1) STEP
FOR STATISTICAL PURPOSE

TYPE *,’ ENTER: COARSE MESH (USUALLY 11+#51 AND EACH STEP)
READ 1005,QN1
IF( (QN1.EQ.’Y’) .OR. (QN1.EQ.’y’) )THEN
NQN1=1
TYPE *,’ ENTER: NX1,NYl’
READ *,NX1,NY1
DX1=(XMAX-XMIN)/FLOAT(NX1-1)
DY1l=( YMAX-YMIN)/FLOAT(NY1l-1)
DO J=l1l,NY1
YY=DY1*FLOAT(J-1)
DO I=1,NX1
IF(I.EQ.1)THEN
XX=0.025
ELSE
XX=DX1*FLOAT(I-1)
ENDIF
%ZS(I,J)=CMPLX(XX, YY)
22Z=CSQRT(CEXP(PI2*ZS(I,J))+1.0)
IF(YY.GE.0.5) 22=-22
2811(1,J)=22
Z21=22-S12T
222=22-S2ZT
2USS1(1I,J)=S1ST/221+S2S8T/222
F2TS1(I,J)=PI%(22-1.0/22)
R11(I,J)=LOG(CABS(221))
R21(1,J)=LOG(CABS(222))
ENDDO

180

Y/N’
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1

ENDDO 181
WRITE(8)NQTL,NQKA .ALPH,ARE,RR,QE, TAE, FRAC,NX1,NY1,
((2s8(1,J),I=1,NX1),J=1,NY1l)

ENDIF

SECOND THE FINER MESH (USUALLY 101*51) EACH TEN(10) STEP
FOR COLOR (AND CONTOURS) PLOTTING PURPOSE.

TYPE *,' ENTER: FINE MESH (USUALLY 101*51 AND TEN STEP) Y/N'
READ 1005,QN2
IF( (QN2.EQ.’Y’') .OR. (QN2.EQ.’'y’) )THEN
NQN2=1
TYPE *,’ ENTER: NX2,NY2’
READ * ,NX2,NY2
DX2=( XMAX~-XMIN)/FLOAT (NX2-1)
DY2=( YMAX-YMIN)/FLOAT(NY2-1)
DO J=1,NY2
YY=DY2*FLOAT(J-1)
DO I=1,NX2
IF(I.EQ.1)THEN
XX=0.025
ELSE
XX=DX2*FLOAT(I-1)
ENDIF
2S(I,J)=CMPLX(XX, YY)
22=CSQRT(CEXP(PI2*ZS(I,J))+1.0)
IF(YY.GE.0.5) Z2%Z=-2%Z
ZS12(1,J)=22
221=2Z-S12T
2Z22=2Z2-S22T
2USS2(1,J)=S1ST/221+S2ST/2%22
FZTS2(I,J)=PI*(22-1.0/22)
R12(I,J)=LOG(CABS(Z21))
R22(1,J)=LOG(CABS(Z22))
ENDDO
ENDDO
WRITE(81)NQTL,NQKA,ALPH,ARE,RR,QE, TAE, FRAC,NX2,NY2,
((zs8(1,J),I=1,NX2),J=1,NY2)
ENDIF

IWRIT=0
I17=0

—————————— THE MAIN DO LOOP OVER THE TIME STEPS —~———————————v

53

DO 300 ITIMME=INI, ITMAX+1
ITIME=ITIMME-1

CHECK AT WHAT TIME SHOULD CONTINUE THE CALCULATIONS.

IF(IZOS.EQ.0)GO TO 53
IF(IZ0S.EQ.1)GO TO 59
IF(IZ0S.EQ.2)GO TO 58

CALL MAIN1(TIME,AMPF,AMPS)
CONTINUE
TYPE 1002,ITIME,TIME,NV, (NVR(J),J=1,NR)



ananon

55

s EeXeKe)

(@]

naoann

56

CALCULATE THE VELOCITIES AT THE CENTER OI' THE
COMPUTATIONAL ELEMENTS IN ORDER TO MOVE THEM TO THE
NEW LOCATION.

CALL MAIN2

IF( TIME.LT.TIMEO )GO TO 55

IF( NOUT.EQ.0 )GO TO 55
WRITE(S)ITIME,TIME,NR, (NVR(J),J=l,NR),
((zB(I1,J),2UB(I,J),2G(I,J),TIM(I.J),
pca(1,J),bCr(1,J),CAB(I,J),CFB(I1,J),
I=1,NVR(J)),J=1,NR)

TYPE 1003,ITIME

CONTINUE

CALL FOR THE COARSE MESH CALCULATIONS

IF( NQN1.EQ.l1 )THEN
NX=NX1
NY=NY1
DO I=]1,NX
DO J=1,NY
R1(I,J)=R11(I,J)
R2(I,J)=R21(I,J)
Z51(1,J)=2511(1,J)
ENDDO
ENDDO
CALL MAIN3

DO J=1,NY
DO I=1,NX
2US(1,J)=ZUS(I,J)+2USS1(I,J)
2USs(I,J)=F2TS1(I,J)*2US(I,J)
2USs(I,J)=CONJG(2US(I,J))
TPS(I,J)=TPS(I1,J)+1.0
CAS(I,J)=CAS(I,J)+0.5*RR
CFS(I,J)=CFS(I,J)+0.5
ENDDO
ENDDO
IF( TIME.LT.TIMEO )GO TO 56
WRITE(8)ITIME,TIME,NR, (NVR(J),J=1,NR),
((zus(1,J),TPS(1,J),CAS(I1,J),CFS(1,J),I=1,NX),J=1,NY)
TYPE 1007,ITIME

PRINT THE RESULTS ON SELECTED POINT OF THE MESH TO MAKE SURE
THAT CALCULATIONS ARE CORRECTLY PROCEEDING.

COMNTINUE
Il=1
I2=5
I13=9
IF( NQKA.EQ.Q0 )THEN
TYPE 1008
ELSE
TYPE 1009
ENDIF
DO J=1,NY,25
IF( NQKA.EQ.0 )THEN
TP1=REAL(Z2US(I1,J))
TP2=REAL(2US(I2,J))
TP3=REAL(2US(13,J;,
ELSE

2
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TP2=TPS(I2,J)

TP3=TPS(I3,J)
ENDIF
CAl=CAS(I1,J)
CA2=CAS(I2,J)
CA3=CAS(I3,J)
CFl=CFS(I1,J)
CF2=CFS(I2,J)
CF3=CFS(13,J)
TYPE 1010,J,TP1,CA1,CFl,sz,CAz,sz,TP3,CA3,CF3

ENDDO
ENDIF

CALL FOR THE FINE MSEH CALCULATIONS

IF( NQN2.EQ.1 )THEN
IF( ITIME/10*10.EQ.ITIME )THEN
IF( TIME.LT.TIMEO )GO TO 57
NX=NX2
NY=NY2
DO I=l, NX
DO J=1,NY
R1(I,J)=R12(I,J)
R2(I,J)=R22(1,J)
Z81(1,J)=2812(1,J)
ENDDO
ENDDO
CALL MAIN3

DO J=1,NY
DO I=1,NX
2US(I,J)=2US(I,J)+2USS2(1,J)
2US(I,J)=F2TS2(I,J)*2US(I,J)
2US(I,J)=CONJG(2US(I,J))
TPS(I,J)=TPS(I,J)+1.0
CAS(I,J)=CAS(I,J)+0.5*RR
CFS(I,J)=CFS(I,J)+0.5
ENDDO
ENDDO
WRITE(BI)ITIME,TIMB,NR,(NVR(J),Jﬂl,NR),
((ZUS(I,J),TPS(I,J),CAS(I,J),CFS(I,J),I-l,NX),J-l,NY)
TYPE *,' RESULTS FOR THE FINE MSEH WRITTEN ON FILE £81°
ELSE
GO TO 57
ENDIF
ENDIF

CONTINUE

WRITE THE LAST STEP EACH FIVE STEP ON FILE 417
FOR THE FUTURE USE.

IF( IWRIT/S5*5.EQ.IWRIT )THEN
IF( I17.EQ.0 )GO TO 61
READ(17)1ID
REWIND(17)
WRITE(17)ITIME, TIME,NR, (NVR(J),J=1,NR),
((z8B(1,J),2UB(I,J),2G(1,J),TIM(I,T),
TeB(I,J),CAB(I,J),CFB(I,J),DTB(I,J),DCA(I,J),DCF(I,J),



3 I=1,NVR(J)),J=1l,NR)
CLOSE(17) 184
I117=1
TYPE 1013,ITIME
ENDIF

WRITE THE LAST STEP ON FILE #7 FOR THE FUTURE USE.

e XeNeKe!

IWRIT=IWRIT+1

REWIND(7)

WRITE(?)ITIHE,TIME,NR,(NVR(J),J-l,NR),
((ZB(I,J)QZUB(I,J),ZG(I,J),TIM(I,J),
TPB(I,J),CAB(I,J),CFB(I,J),DTB(I,J),DCA(I,J),DCF(I,J),
I=1,NVR(J))},J=1,NR)

TYPE 1004

WA =

CHECK FOR THE FINAL STEP, OTHERWISE?
IF(ITIME.GE.ITMAX)GO TO 999
UPDATE THE VALUES OF SCALAR VARIATICNS IN ORDER

TO INCLUDE THE EFFECTS OF THE SOURCE TERMS IN THE
REACTION PART.
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CALL MAIN¢4

ERTMX=0.0

ERCANX=0.0

ERCFMX=0.0

DO II=1,NRCFT
IF(DUM(II,1).GT. ERTMX) ERTMX=DUM(II,1l)
IF(DUM(II,2).GT.ERCAMX)ERCAMX=DUM(II,2)
IF{DUM(II,3).GT.ERCFMX)ERCFMX=DUM(II,3)

ENDDO

TYPE 1011, ERTMX,ERCAMX, ERCFMX

MOVE THE COMPUTATIONAL ELEMENTS TO THE NEW LOCATION,
THEN DO THE NECESSARY INJECTION OR COMBINATION.
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59 I1205=3
CALL MAINS

a0

IF( IDUM(1).EQ.1 )THEN
TYPE *,’ NUMBER OF ELEMENTS EXCEEDED 1200, LET'S STOP 2!!’
GO TO 979
ELSE
IDIF=IDUM(2)-IDUM(3)
TYPE 1012,IDUM(2),IDUM(3),IDIF
ENDIF
C
o
63 CONTINUE
TIME = TIME + DT
C
300 CONTINUE
C
C
1001 FORMAT(/,’ NR=’,I2,5X,'SIGMA=',F4.2,5X, ' THICKNESS=',F4.2)
1002 FORMAT(//,' STEP=’,13,2X,'TIME=',6F5.2,2X, ELEMENTS=',1I5,



1 3X,9(1Xx,14)) 185
1003 FORMAT(’ WRITING RESULTS OF STEP=',I3,
1 * ON FILE #9 FINISHED')
1004 FORMAT(' WRITING RESULTS OF THE LAST STEP ON FILE #7 FINISHED')
1005 FORMAT (A1)
1007 FORMAT(’ WRITING RESULTS OF STEP=',I3,
' ON FILE #8 FINISHED'’)
1008 FORMAT(18X,'X=0.1’,20X,'X=2.0’,20X,'X=4.0',/,
2X,'NODE’,6X,'VEL',4X,'C-A’,4X,'C-F',
6X,'VEL’,4X,'C-A’ ,4X,'C-F’,
6X,'VEL',4X,*'C-A’,4X,'C-F')
FORMAT(18X,'X=0.1"’,20X,'X=2.0',20X,'X=4.0",/,
2X,'NODE’,S5X, 'TEMP’ ,4X,'C-A’,4X,'C-F’,
5X,’'TEMP’,4X,'C-A' ,4X,'C-F',
SX, 'TEMP’ ,4X,’'C~-A’ ,4X,'C-F')
1010 FORMAT(3X,12,3(4X,3F7.3))
1011 FORMAT(' MAX. ERROR IN FRACTIONAL S3TEP’,3X,3E13.4)
1012 FORMAT(' No.OF INJECTION='’,I3, 3X,

1009

w N = w N = [

1 ' No.OF COMBINATION='’,I3, 3X,
2 ' NET No.OF INJECTION=’,I4)
1013 FORMAT(' WRITING RESULTS OF STEP’,I3,’ ON FILE #17°')
C
C
999 STOP
END
C

(ol RASAR LRSS ERRERS SRR R R R B RS

SUBROUTINE UNLAER(NC)

C

C

C FILL IN THE COMPUTATIONAL DOMAIN WITH INITIALLY

C UNPERTURBED LAYERS, EACH LAYER CONTAIN "NC" ELEMENTS.
C

SUBROUTINE UNLAER(NC)

COMMON /NRNVR/ NR,NVR(9)

COMMON /RCTN/ ARE,RR,QE,TAE,FRAC

COMMON /NVN/ NV

COMMON /ZBZB/ ZB(1200,9)

COMMON /2G2G/ 2G(1200,9)

COMMON /TIMT/ TIM(1200,9)

COMMON /DCAFB/ DTB(1200,9),DCA(1200,9),DCF(1200,9)
COMMON /PIH2/ PI,PIH,PI2

COMMON /DELDT/ DEL,DT,UAVG,WL,ALPH

COMMON /DATAl/ HCOL

COMMON /GAGAl/ GAMA(9),DELT(9),YVOR(9),ERF(9)
COMPLEX ZB

NV=0
XMIN=HCOL*(0.5+FLOAT(NC-1))
DO J=1,NR
NVR(J)=0
DC ICOL=1,NC
NVR(J)=NVR(J)+1
XX=XMIN-FLOAT(ICOL-1)*HCOL
YY=YVOR(J)
ZB(NVR(J),J)=CMPLX(XX, YY)
ZG(NVR(J),J)=GAMA(J)
TIM(NVR(J),J)=0.0



DTB(NVR(J),J)=0.0 186
DCA{NVR(J) ,J)=+RR*DELT(J)
DCF(NVR(J),J)=~DELT(J)
ENDDO
NVeNV+NVR(J)
ENDDO

RETURN
END
c
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SUBROQUTINE LAM

PREPARE THE DATA FOR THE VELOCITY DISTRIBUTION IN TERMS OF
THE DIMENSIONLESS PARAMETER AT THE LAYER’S LOCATION
USING FIGURE 9.14 FROM BOUNDARY LAYER BY " SCHLICHTING ".

OO0 000n0n

SUBROUTINE LAM

DIMENSION U(100),ET(100)

COMMON /NRNVR/ NR,NVR(9)

COMMON /GAGAl/ GAMA(9),DELT(9),YVOR(9),ERF(9)
COMMON /DELDT/ DEL,DT,UAVG,WL,ALPH

COMMON /LAMSH/ ETA(9),XT0(9)

READ(2)N,(U(I),ET(I),I=1,N)
DO J=1,NR
DO I=]1,N
IF( ERF(J).GT.U(I) ) THEN
IF(I .EQ. (N-1))THEN
ETA(J)=0.5*(ET(I)+ET(I+1))
ELSEIF(I .EQ. N)THEN
ETA(J)=ET(N)
ELSE
FIRST FIT A QUARATURE(2ND ORDER POLYNOMIAL)
TO (u/Ul)-(Eta), TO HAVE A MORE ACCURATE READING
FOR ETA IF KNOWING u OF LAYER.

naQaon

Ul= U(I)

ET1=ET(1I)

U2= U(I+1)

ET2=ET(I+1)

U3= U(I+2)

ET3=ET(I+2)
All=(ET1-ET2)*(Ul1-U3)-{ET1-ET3)*(U1-U2)
Al2=(Ul-U2)*(Ul-U3)*(U3-U2)
A=All/A12
B=(ET1-ET3-A*(Ul*Ul-U3*U3))/(U1-U3)
C=ET1-A*Ul*Ul-B*Ul
ETA(J)=A*ERF(J)*ERF(.J)+B*ERF(J)+C

CALCULATE THE ORIGIN OF SHEAR LAYER UPSTREAM
OF THE SPLITTER PLATE

s Ne N KD

IF(ETA(J).EQ.0.0)THEN
XT0(J)=0.0
ELSE
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XTO(J)=(2.0/(ALPH) ) #({ (YVOR(J)~0.5)/ETA(T) ) #%2)
ENDIF
ENDIF

GO TO 18
ENDIF
CONTINUE
ENDDO
ENDDO

TYPE 1001
XTOM=0.0
TYPE *,’ LAYER'S# ETA X0’
DO J=1,NR
TYPE *,J,ETA(J),XT0(J)
XTOM=XTOM+XTO(J)
ENDDO
XTOM=XTOM/FLOAT(NR-1)
TYPE *,’ (X0)av’,XTOM
DO J=1,NR
XTO0(J)=XTOM
ENDDO

FORMAT( 2X, 'VISCOUS EFFECTS ARE AUTOMATICALLY INCLUD:D’,/,
2X,'IN LAMINAR DIFFUSION REACTING LAYER 111?27272')

RETURN
END

(o R AR LR RS R 2R 2 RS2 d X2 R0 R 2 ¥ XY

s X2 XekeKe e KeKe o Ko Xe X Ko KaXe)
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SUBROUTINE BOUND(P,Q,2TS,T)

CALCULATE THE SCALAR VALUES ON THE THREE POINT

ON THE BOUNDARY. THESE VALUES ARE USED TO FIX

THE CONSTATNS OF THE SCALAR SOURCES (TO0, Cl AND C2)
UPSTREAM OF THE COMPUTATIONAL DOMAIN.

"P" AND "Q" ARE STRENGTH OF TRANSPORT ELEMENTS BASED
ON SCALAR GRADIENTS.

"ZTS" ARE COORDINATE IN "ZETA" PLANE

"T" IS SCALAR VALUE IN GENERAL

SUBROUTINE BOUND(P,Q,2TS,T)

DIMENSION P(9500),Q(9500),T(3)
COMMON /NVN/ NV

COMMON /PIH2/ PI,PIH,PI2
COMMON /ZBZB1/ ZB(9500)

COMMON /BLX24/ DEL2S(9500)
COMPLEX 2TS(3)

COMPLEX 2ZB

BIOT-SAVART LAW FOR THE THREE POINTS.
DO 40 I=1,3

187



T(I)=0.0
DO 20 J=1,NV 188

DX=REAL(ZTS(I))-REAL(ZB(J))
DX2=DX*DX
DY=AIMAG(2TS(I))-AIMAG(ZB(J))
DY2=DY*DY
R2=DX2+DY2
IF(R2.LT.1.0E-10)THEN

R21I=0.0
ELSE

R2I=1.0/R2
ENDIF
COEFJ=1.0-EXP(-R2*DEL2S(J))
DYM=AIMAG(ZTS(I))+AIMAG(ZB(J))
DYM2=DYM*DYM
R2M=DX2+DYM2
R2MI=1.0/R2M
COEFJI=1,0-EXP(~-R2M*DEL25(J))
DXR=DX*R21I
DYR=DY*R21?
DXRM=DX*R2MI
DYRM~DYM*R2MI
T1=P(J)*(DXR*COEFJ+DXRM*COEFJI)
T2=Q(J)*(DYR*COEFJ-DYRM*COEFJI)

T(I)=T(I)+T1+T2
20 CONTINUE
40 CONTINUE

C
C

RETURN

END
c*****tititi**t****************iﬁi****w**************w******
o
Cc SUBROUTINE DSVARA(DTBO,DCAO0,DCFO0,DDTB,DDCA,DDCF)
o
Cc CALCULATE THE RIGHT HAND SIDE OF THE SCALAR VARIATION
Cc EQUATIONS USING ARRHENIUS RATE EXPRESSION.
c d( Cp )/dt = Da Ca*Cf*Exp(-Ta/T)
C
c "DTBO", "DCAQ" AND "DCFO0" ARE THE VARIATIONS OF TEMPERATURE,
C AIR AND FUEL CONCENTRATION.
Cc "DDTBO", "DDCAQ" AND "DDCFO0" ARE THE RIGHT HAND SIDE OF THE
(o UPDATING EQUATIONS
C
Cmmmmm e e e e e e e e e e e e e e e e
C

SUBROUTINE DSVARA(DTBO,DCAQ,DCF0,DDTB,DDCA,DDCF)
c

DIMENSION DTB0(1200,9),DCA0(1200,9),DCF0(1200,9),

+ DDTB(1200,9),DDCA(1200,9),DDCF(1200,9)

COMMON /NRNVR/ NR,NVR(9)

COMMON /RCTN/ DA,RR,QE,TAE,FRAC

COMMON /CAFB/ TPB0(1200,9),CAB0{(1200,9),CFB0(1200,9)
o
Commm e e e e e m =
(o

DO 40 J=1,NR
DO 20 I=1,NVR(J)
DUM1=EXP(-TAE/TPBO(I,J))
TP2=TPBO(I,J)*TPBO(I,J)
TERM1=TAE*DTBO(I,J)/TP2
TERM2=DCFO0(I,J)/CFBO(I,J)



TERM3=DCA0(1,J)/CABO(I,J)
DUM2=TERM1+TERM2+TERM3
DUM3=DA*CABO(I,J)*CFBO(I,J)*DUM1*DUM2
DDTB(I,J)=FRAC*QE*DUM3
DDCA(I,J)=-RR*DUM3

DDCF(I,J)=-DUM3

20 CONTINUE
40 CONTINUE
C
o
RETURN
END
Chru kA kA AR R R AR AR AN AR AN A R AR A NI LR AR AR AN N AR IR AR T AR DAty
C
o SUBROUTINE DSVARK(DTBO,DCAO0,DCF0,DDTB,DDCA,DDCF)
C
Cc CALCULATE THE RIGHT HAND SIDE OF THE SCALAR VARIATION
o EQUATIONS USING ARRHENIUS RATE EXPRESSION.
c d( Cp )/dt = Da*Ca*Cf
o
o "DCAO" AND "DCFO" ARE THE VARIATIONS OF AIR AND FUEL
C CONCENTRATION.
c "DDCAO" AND "DDCFQ0" ARE THE RIGHT HAND SIDE OF THE
Cc UPDATING EQUATIONS
C
Cc - e e e e e s 2 € e e o S 2 D S S o e e e e o
C
SUBROUTINE DSVARK(DTBO,DCA0,DC¥#0,DDTB,DDCA,DDCF)
C
DIMENSION DTB0(1200,9),DCA0(1200,9),DCF0(1200,9),
+ DDTB(1200,9),DDCA(1200,9),DDCF(1200,9)
COMMON /NRNVR/ NR,NVR(9)
COMMON /RCTN/ ARE,RR,QE,TAE, FRAC
COMMON /CAFB/ TPB0(1200,9),CAB0(1200,9),CFB0(1200,9)
(o
Crmmrm e e e et —_ ———
C
DO 40 J=1,NR
DO 20 I=1,NVR(J)
TERM=ARE*(DCAO(I,J)*CFBO(I,J)+DCFO(I,J)*CABO(I,J))
DDCA(I,J)=-RR*TERM
DDCF(I,J)=-TERM
20 CONTINUE
40 CONTINUE
(o
C
RETURN
END
C
(ot LA AR REEEERRRERS SRR RS SRREEERE
C
(o SUBROUTINE MAIN1(TIME,AMPF,AMPS)
C
Cc INTRODUCE THE NEW ELEMENTS AT THE TIP OF THE
Cc SPLITTER PLATE, TO SATISFY THE KUTTA CONDITION.
C (TO FILL THE GAP GENERATED DURING TIME STEP DT BETWEEN
(o THE INLET SECTION AND THE LEFT END OF EACH LAYER)
C
C ________________________________________________________________
C

SUBROUTINE MAIN1 (SIS AMPF,AMPS)

(9]



COMMON /NRNVR/ NR,NVR(9) 190

COMMON /NVN/ NV

COMMON /RCTN/ ARE,RR,QE,TAE, FRAC

COMMON /2BZB/ ZB(1200,9)

COMMON /2G2G/ 2G(1200,9)

COMMON /TIMT/ TIM(1200,9)

COMMON /DCAFB/ DTB(1200,9),DCA(1200,9),DCF(1200,9)
COMMON /PIH2/ PI,PIH,PI2

COMMON /GAGAl/ GAMA(9),DELT(9),YVOR(9),ERF(9)
COMMON /DELDT/ DEL,DT,UAVG,WL,ALPH

COMMON /DATAl/ HCOL

COMPLEX ZB

WL2=2,0*WL IWAVELENGTH OF SUB-HARMONIC
TT=TIME*UAVG
NCO=TT/WL
TTF=TT-FLOAT(NCO) *WL
NCO=TT/WL2
TTS=TT-FLOAT(NCO) *WL2
NV=0
DO 40 J=1,NR
XMAX=REAL(ZB(NVR(J),J)) { X OF THE LAST ELEMENT ON LAYER
NCOL=( XMAX-0.5*HCOL)/HCOL | NUMBER OF NEEDED ELEMENT ON LAYER
DO 20 ICOL=1l,NCOL
NVR(J)=NVR(J)+1
I=NVR(J)
XX=XMAX-HCOL*FLOAT(ICOL)
XXF=XX-TTF
XXS=oXX~-TTS
IF(XXF.LT.0.0)XXF=WL-XXF
IF(XXS.LT.0.0)XXS=WL2-XXS

PURTURB THE ELEMNTS BASED ON FUNDAMENTAL AND
SUB-HARMONIC WAVES

anaaon

YY=YVOR(J)+AMPF*SIN(PI2*XXF/WL)+AMPS*SIN(PI2*XXS/WL2)
ZB(I,J)=CMPLX(XX,YY)
2G(I,J)=+GAMA(J)

ASSIGN TIME AND SCALAR VARIATION TO THE NEWLY GENERATED ELEMENTS

a0

TIM(I,J)=0.0
DTB(I,J)=0.0
DCA(I,J)=+RR*DELT(J)
DCF(I,J)=-DELT(J)
20 CONTINUE
NV=NV+NVR(J)
40 CONTINUE

RETURN
END

LA xR RS2 R RS RS STRRE RSN R

SUBROUTINE MAINZ2

PREPROCESSING AND PREPARING THE NECESSARY INFORMATION
TO BE USED IN THE VORTEX AND THE SCALAR INTERACRTION
CALCULATION ON THE COMPUTATIONAL ELEMENTS NAMELY
SUBROUTINES --- "VBSL" AND "VSBSL".

a0
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SUBROUTINE MAIN2

DIMENSION Z(9500),2U1(9500),F2T(9500)

COMMON /NRNVR/ NR,NVR(9)

COMMON /NVN/ NV

COMMON /RCTN/ ARE,RR,QE,TAE, FRAC

COMMON /ZBZB/ 2B(1200,9)

COMMON /ZBZBl/ 2ZB1(9500)

COMMON /ZUBZ%Z/ 2UB(1200,9)

COMMON /2G2G/ 2G(1200,9)

COMMON /ZGZGl/ 2G1(9500)

COMMON /TIMT/ TIM(1200,9)

COMMON /TIMT1l/ TIM1(9500)

COMMON /DCAFB/ DTB(1200,9),DCA(1200,9),DCF(1200,9)

COMMON /CAFB/ TPB(1200,9),CAB(1200,9),CFB(1200,9)

COMMON /CAFBl/ TPB1(9500),CAB1(9500),CFB1(9500)

COMMON /PQAF/ PT(1200,9),QT(1200,9),PA(1200,9),QA(1200,9),
PF(1200,9),QF(1200,9)

COMMON /PQAFl/ PT1(9500),QT1(9500),FAL1(9500),QA1(9500),
PF1(9500),QF1(9500)

COMMON /PIH2/ PI,PIH,PI2

COMMON /DELDT/ DEL,DT,UAVG,WL,ALPH

COMMON /GAGAl/ GAMA(9),DELT(9),YVOR(9),ERF(9)

COMMON /DATAS/ NQTL, NQKA NQMD

COMMON /TClC2/ TOT,Cl1lT,C2T,TOA,C1lA,C2A,TOF,C1F, CZF

COMMON /BLK20/ DBL2(9500)

COMMON /BLK21/ ZT(9500)

COMMON /BLK2./ 2U(9500)

COMMON /BLK24/ DEL2S(9500)

COMMON /BLK25/ DEL2B(9500)

COMPLEX CIRC,F2T,Z2,2B,ZBl,2U,2U1,2UB,27,22,221

FIRST LET'’S FIX THE CONSTANTS OF THE SOURCE TERMS
IN THE SCALAR CALCULATIONS.

--- INITIALLY LET’S CALCULATE :

a) THE STRENGTH IN "Z" PLANE OF AIR CONCENRATION.

CALL PQ(DCA,PA,QA)

b) THE STRENGTH IN "Z" PLANE GF FUEL CONCENTRATION.

CALL PQ(DCF,PF,QF)

c) THE STRENGTH IN "Z" PLANE OF PRODUCT TEMPERATURE.

IF(NQKA.EQ.0)GO TO 15
CALL PQ(DTB,PT,QT)
CONTINUE

d) TRANSFORM THE COCRDINATES AND THE
TEMPRATURE GRADIENTS OF THE COMPUTATIONAL
ELEMENTS FROM "2" TO "ZETA" PLANE.



ALSO LET’S PUT THE TWO-DIMENSIONAL ARRAIES 192
INTO THE A ONE DIMENSIONAL FORM
(MOSTLY BECAUSE OF THE INTERACTION IN BIOT-SAVART LAW).

(o N Ko Xg]

I1J=0
DO 40 J=1,NR
DO 20 I=1,NVR(J)

IJ=IJ+1
ZZ=CSQRT(CEXP(PI2*Z2B(I,J))+1.0)
Y=AIMAG(ZB(X,J))
IF(Y.GE.0.5) 2Z=-2%
ZBl(IJ)=22
ZZ=PI*(22-1.0/22)
AD=CABS(22Z)

d.l) CORE RADIUS OF VORTEX ELEMENTS IN "ZETA" PLANE
(TO BE USED IN MAIN3 IN VELOCITY CALCULATIONS)
CHECK FOR MOMENTUM DIFFUSION

anonnan

IF(NQMD.EQ.1)THEN
DELO=ABS(SQRT(DEL*DEL+4.0*ALPH*TIM(I,J)))
ELSE
DELO=DEL
ENDIF
DELl=1.0/(DELO*AA)
DEL2B(IJ)=DEL1*DEL1l

d.2) SCALAR GRADIENT CORE RADIUS EXPANDING WITH TIME.

aonNno

DELO=ABS (SQRT(DEL*DEL+4.0*ALPH*TIM(I,J)))
DEL1=1.0/(DELO*AA)
DEL25(IJ)=DEL1*DEL1

d.3) STRENGTH OF SCALAR GRADIENT IN "ZETA" PLANE.

o0

AR2=AA*AA
221=CMPLX(PA(I,J),-QA(I,J))
Z21=AA2*221/22
PAl(IJ)=REAL(221)
QAl(IJ)=-AIMAG(2ZZ1)
ZZ1=CMPLX(PF(I,J),-QF(I,3))
ZZ1=AR2*221/22
PF1(IJ)=REAL(2Z1)
QFl(IJ)=-AIMAG(Z2Z1)
ZZ1=CMPLX(PT(I,J),-QT(I,J))
ZZ1=AA2*Z22%1/22
PT1(IJ)=REAL(Z221)
QT1(IJ)=-AIMAG(2Z1)
Z2(IJ)=2B(I,J)
2G1(1J)=2G(I,J)
TIM1(IJ)=TIM(I,J)

20 CONTINUE

40 CONTINUE

e) USING THE ABOVE STRENGTH LET’S CALCULATE THE CONSTANTS
OF THE TWO SOURCES LOCATED AT THE UPPER-STREAM AND THE
LOWER STREAM OF THE IN-COMMING FLOW (i.e. TO, Cl, C2 ) IN
T = TO + Cl*LOG |ZETA-ZETAsourcel| + C2*LOG |ZETA-ZETAsourcel].

a0 na



e.l) PRODUCT AS THE FIRST SCALAR. 193

na

IF(NQKA.EQ.0)GO TO 25

RRT=0.0

CALL SRCS(RRT,PT1,QTi,TOT,ClT,C2T)
25 CONTINUE

e.2) AIR AS THE FIRST REACTANT.

s Xo e Ke!

RRA=0.5*RR
CALL SRCS(RRA,PAl,QAl,TOA,ClA,C2A)

e.3) FUEL AS THE SECOND REACTANT.

anacao

RRF=-0.5
CALL SRCS(RRF,PF1,QF1,TOF,ClF,C2F)

NOW LET’S DO A SECOND ORDER TIME INTEGRATION.

nann

IORDER=0
47 IORDER=IORDER+1

DO 60 IJ=1,NV
Z2Z=CSQRT(CEXP(PI2*Z(IJ))+1.0)
Y=AIMAG(Z(IJ))
IF(Y.GE.0.5) ZZ=-22
ZT(IJ)=22Z
FZT(IJ)=PI*(22-1.0/22)

CHECK FOR MOMENTU¥ DIFFUSION.

naooan

IF(NQMD.EQ.1)THEN
DELO=ABS(SQRT(DEL*DEL+4.0*ALPH*TIM(I,J)))
ELSE
DELO=DEL
ENDIF
DEL1=1.0/(DELO*CABS(FZT(1J)))
DEL2(IJ)=DEL1*DEL1
60 CONTINUE

FOR THE FIRST ITERATION USE THE ADVANTAGES OF
THE SAME GEOMETRY TO CALCULATE THE SCALARS VALUES
AT THE CENTER OF ELEMENTS IN THE BIOT-SAVART LAW.

oNeNeNoReKe!

IF( IORDER.EQ.1 )THEN

CALL VSBSL

IF(NQTL.EQ.0)THEN
DO 65 J=1,NR
DO 65 I=1,NVR(J)

ZUB(I,J)=CMPLX(ERF(J),0.0)
65 CONTINUE

GO TO 175

ENDIF

IN THE SECOND ITERATION JUET CALCULATE THE VELOCITIES.

naan

ELSE
CALL VBSL



ENDIF

c 194
c
C TRANSFORMING THE VELOCITIES FROM ZETA TO Z PLANE
C
DO 80 IJ=1,NV
CIRC=CMPLX(0.0,1.0)*2G1(1J)
ZU(IJ)=ZU(IJ)*FZT(IJ)~-CIRC*PIH*(1,.0+
+ 1.0/(27(13)*2T(1J3)))
ZU(IJ)=CONJG(ZU(IJ))
80 CONTINUE
C
(o4
o FOR THE SECOND STEP OF THE TIME INTEGRATION CALCULATE
C THE VELOCITIES ONLY AND CALL VBSL.FTN .
(o
IF( IORDER.EQ.1 )THEN
DO 100 IJ=1,NV
2(IJ)=Z(1J3)+DT*2U(IJ)
2U1(IJ)=2U(1IJ)
100 CONTINUE
GO TO 47
ENDIF
C
C CALCULATE THE AVERAGE VELOCITY
C
IJ=0
DO 140 J=1,NR
DO 120 I=1,NVR(J)
IJ=eIJd+1
ZUB(I,J)=0.5*(2U1{(IJ)+2U(1J))
120 CONTINUE
140 CONTINUE
C
C
175 CONTINUE
C
C
RETURN
END
Cc
C*********************************************************ff
C
C SUBROUTINE MAIN3
C
C CALCULATE THE VELOCITY AND ALL SCALAR VALUES ON A
C MESH, WITHIN THE COMPUTATIONAL DOMAIN, FOR THE
C FUTURE USE.
C (IT CAN BE CALLED FOR THE FINE AND/OR COARSE MESH)
C
C __________________________________________________________
C

SUBROUTINE MAIN3

(@]

COMMON /NVN/ NV

COMMON /NXNY/ NX,NY

COMMON /ZBZBl/ 2ZB1(2,9500)

COMMON /ZG2Gl/ zG(9500)

COMMON /PQAFl/ PT1(9500),QT1(9500),PA1(9500),QA1(9500),
+ PF1(9500),QF1(9500)

COMMON /ZSzUl/ 2S(2,101,51),2us(2,101,51)

COMMON /CAFPS/ TPS(101,51),CASs(101,51),CFsS(101,51)

COMMON /PIH2/ PI,PIH,PI2
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COMMON /SOURCE/ S1ST,S2ST,S1ZT(2),S22T(2)

COMMON /DELDT/ DEL,DT,UAVG,WL,ALPH

coMMON /TClC2/ TOT,ClT,C2T,TOA,ClA,C2A,TOF,ClF,C2F
COMMON /BLK24,/ DEL2S(9500)

COMMON /BLK25/ DEL2(9500)

COMMON /R1R2R/ RR1(101,51),RR2(101,51)

FIRST LET’'S CALCULATE THE VELOCITY AND SCALAR VALUES

DUE TO THE SOURCES IN "ZETA" PLANE.

DO 60 Jl=1,NY

DO 40 I1=1,NX

TPS(I11,J1)=TOT+C1T*RR1(I1,J1)+C2T*RR2(I1l,J1)
CAS(I1,J1)=TOA+ClA*RR1(I1,J1)+C2A*RR2(I1,J1)
CFS(11,J1)=TOF+C1F*RR1(I1,J1)+C2F*RR2(I1,J1)
2Us(1,11,31)=0.0
2Us(2,11,J1)=0.0
DO 20 J=1,NV

GEOMETRICAL CONSTANTS IN THE BTOT-SAVART LAW.

DX=2S(1,11,J1)-2B1(1,J)
DX2=DX*DX
DY=2S(2,I1,Ji)-2B1(2,J)
DY2=DY*DY

R2=DX2+DY2

CHECK THE GRID POINT NOT TO BE ON THE
CENTER OF THE COMPUTATIONAL ELEMENT.

IF( R2.LT.1.0E-10 )THEN
R2I=0.0
ELSE
R2I=1.0/R2
ENDIF
COEFJ=1.0-EXP(-R2*DEL2(J))
COEFJS=1.0-EXP(-R2*DEL2S(J))
DYM=2S(2,I1,J1)+2B1(2,J)
DYM2=DYM*DYM
R2M=DX2+DYM2
R2MI=1.0/R2M
COFJI=1.0-EXP(-R2M*DEL2(J))
COFJIS=1.0-EXP(~R2M*DEL2S(J))
DXR=DX*R21
DYR=DY*R21I
DXRM=DX*R2MI
DYRM=DYM*R2MT
CP=DXR*COEFJS+DXRM*COFJIS
CQ=DYR*COEFJS-DYRM*COFJIS

VELOCITY ON THE MESH.
2Uus(1,11,J1)=2Us(1,11,J1)+2G(J)*(-DYR*COEFJ+DYRM*COFJI)
ZUS(2,11,J1)=2US(2,11,J1)+2G(J)*(~-DXR*COEFJ+DXRM*COFJI)
TEMPERATURE OF THE PRODUCT ON THE MESH.
TPS(I1,J1)=TPS(I1,J1)+PT1(J)*CP+QT1(J)*CQ

195



CONCENTRATION OF THE AIR ON THE MESH. 196

CAS(I1,J1)=CAS(I1,J1)+PAl(J)*CP+QAl(J)*CQ

CONCENTRATION OF THE FUEL ON THE MESH.

CFS(I1,J1)=CFS(I1,J1)+PF1(J)*CP+QF1(J)*CQ

0 D000 o0

20 CONTINUE
40 CONTINUE
60 CONTINUE
C
C
RETURN
END
C
CAA R RN IR R AR AN R R R R A AR AR AR KA AR AN RRAR A AN AN AR R A A AN ARAAR
C
C SUBROUTINE MAIN{4
C
c UPDATE THE VALUES OF THE SCALAR VARIATION.
C
C "NRCFT" IS THE RATIO OF THE CHEMISTRY TO THE FLWO
C TIME STEPS } EPECTIVELY.
C
Cmm e e e e e
C
SUBROUTINE MAIN4
C
DIMENSION DTBO0(1200,9), DCA0(1200,9), DCF0(1200,9),
1 pDTB(1200,9), DCA(1200,9), DCF(1200,9),
2 pDTB1(1200,9),DDCAL1(1200,9),DDCF1(1200,9),
3 DDTB2(1200,9),DDCA2(1200,9),DDCF2(1200,9),
4 DDTB3(1200,9),DDCA3(1200,9),DDCF3(1200,9),
5 DpDDTB4(1200,9),DDCA4(1200,9),DDCF4(1200,9),
6 DDTB5(12090,9),DDCAS5(1200,9),DDCF5(1200,9),
7 DDTB6(1200,9),DDCA6(1200,9) ,DDCF6(1200,9)
COMMON /NRNVR/ NR,NVR(9)
COMMON /DCAFB/ DTB00(1200,9),DCA00(1200,9),DCF00(1200,9)
COMMON /DELDT/ DEL,DT1,UAVG,WL,ALPH
COMMON /DATAS/ NQTL,NQKA,NQMD
COMMON /DATA6/ DUM(10,5)
COMMON /DATA7/ NRCFT
C
o e e e e e et e e e e e
C
ICF=0
c
c
C FIRST CHECK IF FRACTIONAL STEFS IN CHEMISTRY CALCULATION
c IS REALLY NEEDED OR NOT ?
C
8 IF( ICF.EQ.0 )THEN
DT=DT1
ELSE
DT=DT1/FLOAT(NRCFT)
ENDIF
C

DO 14 J=1,NR
DO 12 I=1,NVR(J)
DTBO(I,J)=DTB0O0(I,J)
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DCAO(I,J)=DCAQ00(I,J) 197
DCF0(X,J)=DCF00(I,J)
CONTINUE
CONTINUE

IIC=0
IIC=IIC+1

FIRST STEP IN THE FIFTH ORDER RANG-KUTTA TIME INTECRATION

IF(NQKA.EQ.0)THEN
CALL DSVARK{DTB0,DCAC,DCFO0,DDTB},DDCAl,DDCF1)
ELSE
CALL DSVARA(DTBO,DCAG,DCFO0,LDTB1,DDCAl,DPDCF1)
ENDIF
DO 40 J=1,NR
DO 20 I=1,NVR(J)
DTB(I,J)=DTBO(I,J)+0.25*DT*DDTB1(I1,J)
DCA(I,J)=DCAO(I,J)+0.25*DT*DDCAL1(I,J)
DCF(I,J)=DCFO0(I,J)+0.25*DT*DDCF1(I,J)
CONTINUE
CONTINUE

SECOND STEP IN THE FIFTH ORDER RANG-KUTTA TIME INTEGRATIONM

IF( NQKA.EQ.O0 )THEN

CALL DSVARK(DTB,DCA,DCF,DDTB2,DDCA2,DDCF2)
ELSE

CALL DSVARA(DTB,DCA,DCF,DDTB2,DDCA2,DDCF2)
ENDIF
DO 80 J=1,NR

DO 60 I=1,NVR(J)

annaan
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DTB(I,J)=DTBO(I,J)+DT*(3.0*DDTB1(I,J)+9.0*DDTB2(I,J))/32.0
DCA(I,J)=DCAO(I,J)+DT*(3.0*DDCA1(I,J)+9.0*DDCA2(1,J))/32.0
DCF(I,J)=DCF0(I,J)+DT*(3.0*DDCF1(I,J)+9.0*DDCF2(I,J))/32.0
60 CONTINUE
80 CONTINUE

THIRD STEP IN THE FIFTH ORDER RANG-KUTTA TIME INTEGRATION

IF( NQKA.EQ.O0 )THEN
CALL DSVARK(DTB,DCA,DCF,DDTB3,DDCA3,DDCF3)
ELSE
CALL DSVARA(DTB,DCA,DCF,DDTB3,DDCA3,DDCF3)
ENDIF
DO 120 J=1,NR
DO 100 I=1,NVR(J)
DTB(I,J)=DTBO(I,J)+DT*(1932.0*DDTB1(I,J)-7200.0+*

+ DDTB2(I,J)+7296.0*DDTB3(I,J))/2197.0
DCA(I,J)=DCAO(I,J)+DT*(1932.0*DDCAL(I,J)~-7200.0*
+ DDCA2(I,J)+7296.0*DDCA3(I,J))/2197.0
DCF(I,J)=DCFO(I,J)+DT*(1932.0*DDCF1(I,J)-7200.0*
+ DDCF2(I,J)+7296.0*%DDCF3(I,J))/2197.0
100 CONTINUE

120 CONTINUE

FOURTH STEP IN THE FIFTH ORDER RANG-KUTTA TIME INTEGRATION
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IF( NQKA.EQ.0 )THEN
CALL DSVARK(DTB,DCA,DCF,DDTB4,DDCA4,DDCF4)
ELSE
CALL DSVARA(DTB,DCA,DCF,DDTB4,DDCA4,DDCF4)
ENDIF
DO 160 J=1,NR
DO 140 1I=1,NVR(J)
DTB(I,J)=DTBO{I,J)+DT*(439.0*DDTB1(I,J)/216.0~-8.0*
DDTB2(I,J)+3680.0*DDTB3(I,J)/513.0-845.0*
DDTB4(1,J)/4104.0)
DCA(I,J)=DCAO(I,J)+DT*(439.0*DDCAL(I,J)/216.0-8.0*
DDCA2(I,J)+3680.0*DDCA3(I,J)/513.0-845.0%
DDCA4(1,J)/4104.0)
DCF(I,J)=DCFO(I,J)+DT*(439.0*DDCF1(1,J)/216.0-8.0*
DDCF2(I,J)+3680.0*DDCF3(1,J)/513.0-845.0*
DDCF4(1,J3)/4104.0)
CONTINUE
CONTINUE

FIFTH STEP IN THE FIFTH ORDER RANG-KUTTA TIME INTEGRATION

IF( NQKA.EQ.O )THEN
CALL DSVARK(DTB,DCA,DCF,DDTB5,DDCAS,DDCFS)
ELSE
CALL DSVARA(DTB,DCA,DCF,DDTBS,DDCAS,DDCFS)
ENDIF
DO 200 J=1,NR
DO 180 I=1,NVR(J)
DTB(I,J)=DTBO(I,J)+DT*(~-8.0*DDTB1(I,J)/27.0+2.0%
DDTB2(I,J)-3544.0*DDTB3(I1,J)/2565.0+1859.0*
DDTB4(1,J)/4104.0-11.0*DDTBS5(1,J),/40.0)
DCA(I,J)=DCAQ0(I,J)+DT*(-8.0*DDCA1(I,J)/27.0+2.0*
DDCA2(I,J)-3544.0*DDCA3(I,J)/2565.0+1855.0*
DDCA4(1,J)/4104.0-11.0*DDCAS5(1,J)/40.0)
DCF(I,J)=DCFO(I,J)+DT*(-8.0*DDCF1(I,J)/27.0+2.0%
DDCF2(I,J)-3544.0*DDCF3(I,J)/2565.0+1859.0%*
DDCF4(I,J)/4104.0-11.0*DDCF5(1,J)/40.0)
CONTINUE
CONTINUE

UPDATING THE VARIATION OF SCALAR.

IF( NQKA.EQ.0 )THEN

CALL DSVARK(DTB,DCA,DCF,DDTB6,DDCA6,DDCF6)
ELSE

CALL DSVARA(DTB,DCA,DCF,DDTB6,D0CA6,DDCF6)
ENDIF

ET=-100.0
EA=-100.0
EF=-100.0

DO 240 J=1,NR
DO 220 I=1,NVR(J)

DTBO(I,J)=DTBO(I,J)+DT*(25.0*DDTB1(1,J)/216.0+1408.0+*
DDTB3(I,J)/2565.0+2197.0*DDTR4(1,J)/4104.0-
DDTBS5(I,J)/5.0)

DCAO(1,J)=DCAO(I,J)+DT*(25.0*DDCAL1(I,J)/216.0+1408.0*
DDCA3(I,J)/2565.0+2197.0*DDCA4(I,J),/4104.0-
DDCA5(1,J)/5.0)

DCFO(I,J})=DCFO(I,J)+DT*(25.0*DDCF1(I1,J)/216.0+1408.0*
DDCF3(I,J)/2565.0+2197.0*DDCF4(I,J)/4104.0-
DDCF5(I1,J)/5.0)
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ERROR ESTIMATE
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ERDTB=DT*(DDTB1(I,J)/360.0-128.0*DDTB3(I,J)/4275.0-
1 2197.0*DDTB4(I,J)/75240.0+DDTB5(1,J)/50.0+
2 2.0*DDTB6(I,J)/55.0)
IF(ERDTB.GT.ET)ET=ERDTB
ERDCA=DT*(DDCA1(I,J)/360.0-128.0*DDCA3(I,J)/4275.0-
1 2197.0*DDCA4(I,J)/75240.0+DDCAS(I,J)/50.0+
2 2.0*DDCA6(I,J)/55.0)
IF(ERDCA.GT.EA)EA=ERDCA
ERDCF=DT*(DDCF1(1,J)/360.0-128.0*DDCF3(1,J)/4275.0-

1 2197.0*DDCF4(I,J),/75240.0+DDCF5(I,J)/50.0+
2 2.0*DDCF6(I,J)/55.0)
IF(ERDCF.GT.EF)EF=ERDCF
220 CONTINUE

240 CONTINUE
DUM(IIC,1)=ET
DUM(IIC,2)=EA
DUM(IIC,3)=EF

C
c
C CHECK FOR THE HIGHEST ERROR
Cc
ERMAX=0.0
IF( ET.GT.ERMAX )ERMAX=ET
IF( EA.GT.ERMAX )ERMAX=EA
IF( EF.GT.ERMAX )ERMAX=EF
IF( ERMAX.GT.1.0E-5 )THEN
ICF=ICF+1
GO TO 8
ELSE
GO TO 255
ENDIF
C
C
C CHECK FOR ADvITIONAL TIME STEP IN CHEMISTRY CALCULATIONS.
C
255 IF( ICF.EQ.0 )THEN
GO TO 256
ELSE
IF( IIC.LT.NRCFT )GO TO 16
ENDIF

256 DO 280 J=1,NR
DO 260 I=1,NVR(J)
DTBOO(I,J)=DTBO(I,J)
DCA0O(I,J)=DCAO(I,J)
DCFO00(I,J)=DCFO0(I,J)

260 CONTINUE
280 CONTINUE
C
C
RETURN
END
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SUBROUTINE MAINS

TO INJECT OR COMBINE THE COMPUTATIONAL ELEMENTS
IF THE DISTANCE BETWEEN THE TWO NEIGHBORING ELEMENT
FALLS OUT OF THE RANGE OF TWO PREDTERMINED VALUE

a0 n
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(NAMELY Rmax AND Rmin). 200

SUBROUTINE MAINS

DIMENSION ZBDUM(1200,9), ZGDUM(1200,9),TIMDUM{(1200,9),
+ DTBDUM(1200,9),DCADUM(1200,9},DCFDUM(1200,9)

COMMON /NRNVR/ NR,NVR{9)

COMMON /NVN/ NV

COMMON /ZBZB/ 2ZB(1200,9)

COMMON /ZUBZ/ 2UB(1200,9)

COMMON /2G2G/ ZG(1200,9)

COMMON /TIMT/ TIM(1200,9)

COMMON /DCAFB/ DTB(1200,9),DCA{1200,9),DCF(1200,9)

COMMON /DELDT/ DEL,DT,UAVG,WL,ALPH

COMMON /DATA2/ ALDX,BETDX,X0,ALPHA,BETA,FACT

COMMON /DATA3/ YMIN, YMAX, YMAX2,XMAX

COMMON /DATAl/ HCOL

COMMON /DATA4/ IDUM(5)

COMMON /GAGAl/ GAMA(9),DELT(9),YVOR(S),ERF(9)

COMMON /LAMSH/ ETA(9),XT0(9)

COMMON /DATAS/ NQTL,NQKA,NQMD

COMPLEX 2B, ZBDUM,ZUB,VEL

MOVE ALL ELEMENTS TO A NEW POSITION.

DO 49 J=1,NR
DO 49 I=1,NVR(J)

IF( NQTL.EQ.O )THEN
XT=REAL(ZB(I,J))+ERF(J)*DT
YT=0.5+(YVOR(J)-0.5)*SQRT(1.0+XT/XT0(J))
ZB(I,J)=CMPLX(XT,YT)

ELSE
ZB(I1,J)=2B(I,J)+2UB(I,J)*DT

ENDIF

TIM(I,J)=TIM(I,J)+DT

49 CONTINUE

REARRANGE THE BLOBS.
1. THOSE LEAVING THE COMPUTATIONAL DOMAIN TO BE DELETED.
2. THE REST TO BE REFLECTED.

DO 75 J=1,NR
I=0
51 I=I+1
52 XX=REAL(ZB(I,J))
YY=AIMAG(ZB(I,J))

DELETE ELEMENTS LEAVING THE DOMAIN AND SHIFT ALL VALUES
ON EACH LAYER TO MAKE THEM IN ORDER.

IF( XX.GT.XMAX )THEN

DO 56 II=I+1,NVR(J)
Z2B(II-1,J)= ZB(II,J)
2G(1I-1,J)= 2G(II,J)
TIM(II-1,J)=TIM(II,J)
DTB(II-1,J)=DTB(II,J)
PCA(II-1,J)=DCA(II,J)
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56

75

563

569

574

DCF(II-1,J)=DCF(I1I,J) 201
CONTINUE
NVR(J)=NVR(J)-1
GO TO 52
ENDIF

REFELECT THOSE CROSSING THE SOLID WALL.

IF( YY.GT.YMAX ) YY=YMAX2-YY
IF( YY.LT.YMIN ) YY=-YY
ZB(I,J)=CMPLX(XX,YY)
IF( I.LT.NVR(J) )GO TO 51
CONTINUE
IDUM(2)=0
IDUM(3)=0

CHECK FOR INJECTION OF THE NEW ELEMENTS WITHIN THE
DIFFERENT ZONE OF THE COMPUTATIONAL DOMAIN

DO 650 J=1,NR
I=1
RZB=REAL(2B(I,J))
DX=RZB-X0
IF( DX.LT.0.0 )THEN
AL=ALPHA
ELSE
AL=ALPHA+DX*ALDX
ENDIF
RMAX=AL*HCOL
R=CABS(ZB(I,J)-2ZB(I+1,J))
IF( R.GT.RMAX )THEN IINSERT A NEW ELEMENT IN BETWEEN

ZB(NVR(J)+1,J)= 0.5*( 2ZB(I,J)+ ZB(I+1,J)) !AVERAGE
TIM{NVR(J)+1,J)= 0.5*%(TIM(I,J)+TIM(I+1,J)) 1" "
DTB(NVR(J)+1,J)= 0.5*(DTB(I,J)+DTB(I+1,J)) ! "
DCA(NVR(J)+1,J)= 0.5*(DCA(I,J)+DCA(I+1,J)) " "
DCF(NVR(J)+1,J)= 0.5*(DCF(I,J)+DCF(I+1,J)) " "

ZG(NVR(J)+1,J)=FACT*( 2G(I,J)+ 2ZG(I+1,J)) I|SAME GAMA
2G(I,J)=2G(NVR(J)+1,J)

ZG(I+1,J)=2G(I1,J)
DO 569 K=I+1,NVR(J) !SHIFT ALL VALUES

ZBDUM(K,J)= ZB(K,J)

ZGDUM(K,J)= 2G(K,J)
TIMDUM(K,J)=TIM(K,J)
DTBDUM(K,J)=DTB(K,J)
DCADUM(K,J)=DCA(K,J)
DCFDUM(K,J)=DCF(K,J)

CONTINUE

ZB(I+1,J)= ZB(NVR(J)+1,J)

ZG(I+1,J)= Z2G(NVR(J)+1,J)
TIM(I+1,J)=TIM(NVR(J)+1,J)
DTB(I+1,J)=DTB(NVR(J)+1,J)
DCA(I+1,J)=DCA(NVR(J)+1,J)
DCF(I+1,J)=DCF(NVR(J)+1,J)

DO 574 K=I+1,NVR(J)

ZB(K+1,J)= ZBDUM(K,J)

2G(K+1,J)= ZGDUM(K,J)
TIM(K+1,J)=TIMDUM(K,J) //
DTB(K+1,J)=DTBDUM(K,J)
DCA(K+1,J)=DCADUM(K,J)
DCF(K+1,J)~=DCFDUM(K,J)

CONTINUE



NVR(J)=NVR(J)+1 202
IDUM(2)=IDUM(2)+1
IF( NVR(J).GT.1200 )THEN
IDUM(1)=1
RETURN
ENDIF
GO TO 563
ENDIF
I=I+1
IF( I.LT.NVR(J) )GO TO 563
650 CONTINUE

CHECR FOR COMBINATION OF TWO NEIGHBORING ELEMENT
WITHIN THE DIFFERENT ZONES OF THE COMPUTATIONAL DOMAIN,

annan

DO 750 J=1,NR
I=3
663 RZB=REAL{(ZB(I,J))
DX=RZB-X0
IF( DX.LT.0.0 )THEN
BET=BETA
ELSE
BET=BETA+DX*BETDX
ENDIF
RMIN=BET*HCOL
R=CABS(2B(I-1,J)-2B(I1-2,J))
IF( R.LT.RMIN )THEN {COMBINE THE TWO NEIGHBORING ELEMENTS
2B(I-1,J)=0.5*( ZB(I,J)+ 2B{I-1,J))
TIM(I—1,J)=0.5*(TIM(I,J)+TIM(I-1,J))
DTB(I-1,J)=0.5*(DTB(I,J)+DTB(I-1,J))
DCA(I—1,J)=0.5*(DCA(I,J)+DCA(I—l,J))
DCF(I-1,J)=0.5*(DCF(I,J)+DCF(I-1,J))
Z2G(I-1,J)= ZG(I,J)+ 2G(I-1,J)
DO 671 K=I+1,NVR(J) ISHIFT ALL VALUES

ZB(K-1,J)= ZB(K,J)

ZG(K-1,J)= 2G(K,J)
TIM(K-1,J)=TIM(K,J)
DTB(K-1,J)=DTB(K, J)
DCA(K-1,J)=DCA(K,J)
DCF(X-1,J)=DCF(K,J)

671 CONTINUE
NVR(J)=NVR(J)-1
IDUM(3)=IDUM(3)+1
IF( I.LE.NVR(J) )GO TO 663
ENDIF
I=I+1
IF( I.LT.NVR(J) )GO TO 663
750 CONTINUGE

IDUM(1)=0
C
Cc
999 RETURN
END
C
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SUBROUTINE PQ(DELS,P,Q)

CALCULATE THE GRADIENTS OF SCALAR

IN THE PHYSICAL PLANE.

"P" AND "Q" ARE SCALAR GRADIENTS IN GENERAL, AND

"DELS" IS SCALAR VARIATION ASSOCIATED WITH EACH ELEMENT.

anaaonnan
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SUBROUTINE PQ(DELS,P,Q)

DIMENSION XL{(1200,9),YL(1200,9),DELX(1200,9}),
+ DELY(1200,9),RL(1200,9),P(1200,9),Q(1200,9),
+ DELS(1200,9)

COMMON /NRNVR/ NR,NVR(9)

COMMON /2BZB/ ZB(2,1200,9)

DO 60 J=1,NR

XL(1,J)=2B{(1,1,J)

YL(1,J)=2B(2,1,J)

XL(NVR(J)+1,J)=2ZB(1,NVR(J),J)

YL(NVR(J)+1,J3)=2ZB(2,NVR(J),J)

DO 60 I=1,NVR(J)-1
XL(I+1,J)=0.5*(2B(1,I+1,J)+2B(1,I,J))
YL(I+1,J)=0.5*%(2B(2,I+1,J)+2ZB(2,1,J))

60 CONTINUE
poO 65 J=1,NR
DO 65 I=1,NVR(J)

DELX{(I,J)=XL(I+1,J)-XL(I,J)

DELY(I,J)=YL(I+1,J)-YL(I,J)

RL(I,J)aSQRT(DELX(I,J)*DELX(I,J)+DELY(I,J)*DELY(I,J))

65 CONTINUE
DO 70 J=1,NR
DO 70 I=1,NVR(J)
IF(ABS(DELX(I,J)).LT.1.E-07)THEN

IF(DELY(I,J).GT.0.0)THEN
P(1,J)=DELS(I,J)*RL(I,J)

ELSE
P(I,J)=-DELS(I,J)*RL(I,J)

ENDIF

Q(I'J)=0-0

GO TO 70

ENDIF
IF(ABRS(DELY(I,J)).LT.1.E-07)THEN

IF(DELX(I,J).GT.0.0)THEN
Q(I,J)=-DELS(I,J)*RL{(I,J)

ELSE
Q(1I,J)=DELS(I,J)*RL(I,J)

ENDIF

P(1,J)=0.0

GO TO 70

ENDIF
BM=DELY(I,J)/DELX(I,J)
AM=-1.0/BM
IF(AM.GT.0.0)THEN

IF(DELX(I,J).LT.0.0)THEN
P(I,J)=DELS(I,J)*COS(ATAN(AM))*RL(I,J)
Q(I1,J)=DELS(I,J)*SIN(ATAN(AM))*RL(I,J)

ELSE
P(I,J)=-DELS(I,J)*COS(ATAN(AM))*RL(I,J)
Q(I,J)=-DELS(I,J)*SIN(ATAN(AM))*RL(I,J)

ENDIF

ELSE

IF(DELX(I,J).GT.0.0)THEN
P(I,J)=DELS(I,J)*COS(ATAN(~AM))*RL(I,J)
Q(I,J)=-DELS(I,J)*SIN(ATAN(-AM))*RL(I,J)

ELSE v



P(I,J)=-DELS(I,J)*COS(ATAN(-AM))*RL(I,J) 204
Q(I,J)=DELS(I,J)*SIN(ATAN(-AM))*RL(I,J)

ENDIF
ENDIF
70 CONTINUE
C
C
RETURN
END
C

Chhh Rl A AR AR AR AR A AR AR R AR AR TN R AR AR R AR AR ARRARA AT AR A A RN AN

SUBROUTINE SRCS(RRS,PA,QA,T0,C1,C2)

CALCULATE THE AVERAGED VALUE OF CONSTANTS OF
TWO SOURCES REPRESENTING DENSITY DPISTRIBUTION
(T0, Cl1 AND C2).
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SUBROUTINE SRCS(RRS,PA,QA,TO0,Cl,C2)

o
o
o ~-RRS
C nn--a----------aa---n---u--n-----ann------------nn---u-nunw
g I #1 | #3(FIX TOP)
C SOURCE #1--> \ . I\
C HIGH-SPEED Ul \ . \
C REACTANT #1 \ . \ .
C \ . \ .
c \. N\
C DEDXIODOOIOO50> s ————m e e e em—————————
C \ -\
C -\ <\
C SOURCE #2--> .\ .\
C LOW-SPEED U2 . \ . \
C REACTANT #2 . \ . \
c . | .
o #2 | (FIX BOTTOM) #3 :
C S T R I N I I I Y. I N TN S S I AN IR N N A S S N SN T IS S S R S m
o +RRS
c
Cmm e e e e e e e e e e e e e e e e e
C
DIMENSION PA(9500),QA(9500),ZPS(3),2TS(3),T(3)
COMMON /PIH2/ PI,PIH,PI2
COMMON /SOURCE/ S1ST,S2ST,S1ZT,S2ZT
COMMON /XBDBD/ XBD
COMPLEX 2PS,2TS,2Z,S12T,S22T
C
C _______________________________________________________________
C
NY=3
ZPS(1)=CMPLX(0.0,0.999)
ZPS(2)=CMPLX(0.0,0.001)
o
C
o a) FIX THE THIRD POINT ON THE HIGH-VELOCITY SIDE.
o

ZPS(3)=CMPLX(XBD,0.999)
DO 20 J=1,NY



ZZ=CSQRT(CEXP(PI2*ZPS(J))+1.0) 205

IF(AIMAG(ZPS(J)).GE.0.5)22=-22

ZTS(J)=22

20 CONTINUE
CALL BOUND(PA,QA,ZTS,T)
All=LOG(CABS(ZTS(1)~-S12T))
A21=LOG(CABS(ZTS(2)-S12T))
A31=LOG(CABS(2TS(3)-S12T))
Al12=LOG(CABS(ZTS{1)-S22T))
A22=LOG(CABS(ZTS(2)-S22T))
A32=LOG(CABS(ZTS(3)-S2ZT))
AA=2,.0*RRS*(A11-A31)-(T(1)-T(2))*(A11-A31)+
+ (T(1)-T(3))*(Al1-A21)

BB=(Al11-A31)*(A12-A22)-(Al11-A21)*(A12-A32)
C2T=AA/BB"
ClT=(2.0*RRS-(T(1)-T{2))~-C2T*(A12-A22))/(Al1-A21)
TOT=RRS-T(1)-C1T*A11-C2T*Al12

b) FIX THE THIRD POINT ON THE LOW-VELOCITY SIDE.

2XeNeNe!

ZPS(3)=CMPLX(XBD,0.001)
DO 40 J=1,NY
ZZ=CSQRT(CEXP(PIZ*ZPS(J))+1.0)
IF(AIMAG(2ZPS(J)).GE.0.5) 2Z2=-22
ZTS(J)=22
40 CONTINUE
CALL BOUND(PA,QA,ZTS,T)
All1=LOG(CABS(2TS(1)-S12T))
A21=LOG(CABS(ZTS(2)-S12T))
A31=LOG(CABS(ZTS(3)--S12T))
Al2=LOG{CABS(ZTS(1)-S22ZT))
A22=LOG(CABS(2T5(2)~S22T))
A32=LOG(CAB5(ZTS(3)-S22T))
AA=2 0*RRS*(A21-A31)-(T(1)-T(2))*(Al1--A31)+
+ (T(1)-T(3))*(A11-A21)
BB=(A11-A31)*(Al2-A22)-(A11-A21)*(Al12-A32)
C2B=AA/BB
C1B=(2.0*RRS—(T(1)-T(2))-C2B*(A12-A22))/(Al11-A21)
TOB=RRS-T(1)-C1lB*Al11-C2B*Al2

C)AVERAGE THE CONSTANTS OF THE TWO SET OF SOURCES.

anann

T0=0.5*(TOT+TOB)
Cl=0.5%(C1T+C1B)
C2=0.5*(C2T+C2B)

aaQ

RETURN
END

Kkhkkhdek ke hhhhhhhhhhhhhhhhhhhhhdhrhrhhhhk ko hhkhhhhhhhkh®kk
SUBROUTINE VBSL
VORTEX INTERACTION USING THE DIRECT BIOT-SAVART LAW

IN CALCULATING THE VELOCITY AT THE CENTER OF THE
COMPUTATIONAL ELEMENTS.

s XeNeNeNeKe Ko Ko Ko X Ke)

SUBROUTINE VBSL
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COMMON /NVN/ NV
COMMON /SOURCE/ S1ST,S2ST,S12T(2),S2ZT(2)
COMMON /BLK20/ DEL2(9500)
COMMON /BLK21,/ 2T(2,9500)
COMMON /BLK22/ 2U(2.,9500)
COMMON /ZG2ZGl/ 2G(9500)

a) VELOCITY DUE TO THE MASS SORCES.

DO 20 I=1,NV
AR=ZT(1,I)-S12T(1)
AI=S12T(2)-2T(2,1)
BR=ZT(1,I)-S22T(1)
BI=S22T(2)-2T(2,1)
AN=S1ST/( (AR*AR)+(AI*AI))
BN=S2ST/( (BR*BR)+(BI*BI))
ZU(1,I)=(AR*AN)+(BR*BN)
ZU(2,I)=(AI*AN)+(BI*BN)

20 CONTINUE

VELOCITY DUE TO THE VORTEX INTERACTION AND IMAGES.
b) CONTRIBUTION OF IMAGE OF ELEMENT "I" ON ITSELF.

DY=2T(2,I)+2T(2,I)

R2=DY*DY
COEF=1.0-EXP(-R2*DEL2(I))
ZU(1,I)=2U(1,I)+COEF*2G(1)/DY

DO 50 J=I+1,NV
c) CONTRIBUTION OF ELEMENT "J" ON ELEMENT "I".

DX=2T(1,I)-2T(1,J)
DX2=DX*DX
DY=2T(2,I)-2T(2,J)
DY2=DY*DY

R2=DX2+DY2

R21=1.0/R2
COEFJ=1.0-EXP(-R2*DEL2{(J))
COEFI=1.0-EXP(-R2*DEL2(I))

d) CONTRIBUTION OF IMAGE OF ELEMENT "J" ON ELEMENT "I"
AND IMAGE OF ELEMENT "I" ON ELEMENT "J".

DYM=ZT(2,1)+2T(2,J)
DYM2=DYM*DYM

R2M=DX2+DYM2

R2MI=1.0/R2M
COEFJI=1.0-EXP(-R2M*DEL2(J))
COEFIJ=1.0-EXP(-R2M*DEL2(I))
DXR=DX*R21I

DYR=DY*R21

DXRM=DX*R2MI

DYRM=DYM#*R2MI



ZU(1,I)=2U(1,I)+2G(J)*(-DYR*COEFJ+DYRM*COEFJI)
ZU(2,I)=2U(2,I)+2G(J)*(-DXR*COEFJ+DXRM*COEFJI) 207
ZU(1,3)=2U(1,J)+ZG(I)*( DYR*COEFI+DYRM*COEFIJ)
ZU(2,J)=2U(2,J)+2G(I)*( DXR*COEFI-DXRM*COEFIJ)

50 CONTINUE

e) CONTRIBUTION OF THE LAST ELEMENT ON ITSELF.

a0

DY=2T(2,NV)+ZT(2,NV)

R2=DY*DY
COEF=1.0-EXP(-R2*DEL2(NV))
ZU(1,NV)=2U(1,NV)+COEF*ZG(NV) /DY

RETURN
END
Cc

C***********ﬁ************************************‘k******k****

SUBROUTINE VSRSL
VORTEX INTERACTION USING THE DIRECT BIOT-SAVART LAW

IN CALCULATING THE VELOCITY AND THE SCALAR VALUES AT
THE CENTER OF THE COMPUTATIONAL ELEMENTS.

oXekeXeKe e Ko NeKe!

SUBROUTINE VSBSL

(@]

COMMON /NRNVR/ NR,NVR(9)

COMMON /NVN/ NV

COMMON /RCTN/ ARE,RR,QE,TAE,FRAC

COMMON /CAFB/ TPB(1200,9),CABR(1200,9),CFB(1200,9)

COMMON /CAFBl/ TPB1(9500),CAB1(9500),CFB1(9500)

COMMON /PQAFl/ PT1(9500),QT1(9500),PA1(9500),QA1(9500),
+ PF1(9500),QF1(9500)

COMMON /TC1C2/ TOT,ClT,C2T,TOA,ClA,C2A,TOF,ClF,C2F

COMMON /SOURCE/ S1ST,S2ST,S$12T(2),S2ZT(2)

COMMON /BLK20/ DEL2(9500)

COMMON /BLK21/ ZT(2,9500)

COMMON /BLK22/ ZU(2,9500)

COMMON /ZGZGl/ ZG(9570)

COMMON ,BLK24/ DEL2S(¢500)

a) CONTRIBUTION OF THE MASS AND SCALAR SOURCES.

e XeXe X Ke!

DO 20 I=1,NV
AR=2T(1,1)-S1Z2T(1)
AI=S12T(2)-2T(2,I)
BR=ZT(1,I)-522ZT(1)
BI=S2ZT(2)-2T(2,I)
R1=AR*AR{AT*AI
R2=BR*BR+31*BI

a.l) SOURCE TERMS FOR VELOCITY.

nnoaaon

AN=S1ST/Rl
BN=S2ST/R2
ZU(1,I)=(AR*AN)+(BR*BN)
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a.2) SOURCE TERMS FOR SCALARS.

(eNoNeNe]

R1=SQRT(R1)

R2=SQRT(R2)

TPBl(I)=TOT+C1T*LOG(R1)+C2T*LOG(R2)

CABl(I)=TOA+C1A*LOG(R1)+C2A*LOG(R2)

CFBl(I)=TOF+C1F*LOG(R1)+C2F*LOG(R2)
20 CONTINUE

INTERACTION BETWEEN ELEMENTS AND THEIR IMAGES.
(REDUCING "N**2" CALCULATION TO "(N¥**2)/2")
—==- FIRST DO LOOP OVER ELEMNTS IN THE BIOT-SAVART LAW.

DO 50 I=1,NV-1

b) CONTRIBUTION OF IMAGE OF ELEMENT "i" ON ITSELF.

oo oaconnnn

DY=ZT(2,I)+2T(2,1I)

R2=DY*DY

COEF=1.0-EXP(~-R2*DEL2(I))

COEFS=1.0—EXP(—R2*DELZS(I))
b.1) ... VELOCITY

ZU(l,I)=ZU(1,I)+COEF*ZG(I)/DY

b.2) ... SCALAR

a0 naonan

TPBl(I)=TPBl(I)+QT1(I)*(-COEFS/DY)
CABl(I)-CABl(I)+QA1(I)*(—COEFS/DY)
CFBl(I)=CFBl(I)+QFl(I)*(-COEFS/DY)

—-—— SECOND DO LOOP OVER NUMBER OF ELEMENTS IN BIOT-SAVART LAW.

anann

DO 50 J=1+1i,NV
DX=2T(1,1)-2T(1,J)
DX2=DX*DX
DY=2T(2,1)-2T(2,J)
DY2=DY*DY

CALCULATION OF SOME NECESSARY GEOMETRICAL PARAMETERS.

anaoan

R2=DX2+DY2
R2I=1.0/R2
COEFJ=1.0-EXP(-R2*DEL2(J))
COEFI=1.0-EXP(-R2*DEL2(I))
COEFJS=1.0-EXP(-R2*DEL2S(J)
COEFIS=1.0-EXP(-R2*DEL2S(1I)
DYM=ZT(2,1)+2T(2,J)
DYM2=DYM*DYM

R2M=DX2+DYM2

R2MI=1.0/R2M
COFJI=1.0-EXP(-R2M*DEL2(J))

)
)



COFIJ=1.0-EXP(- - R2ZM*DEL2(I))
COFJIS=1.0-EXP(-R2M*DEL2S(J))
COFI3S=1.0-EXP(-R2M*DEL2S/T1))
DXR=DX*R2I

DYR=DY*R2I

DXRM=DX*R2MI

DYRM=DYHM*R2MI
CPJI=+DXR*COEFJS+DXRM*COFJIS
CQJI=+DYR*COEFJS-DYRM*COFJIS
CPIJ=-DXR*COEFIS-DXRM*COFIJS
CQIJ=-DYR*COEFIS-DYRM*COFIJS
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C
C
c c) CONTRIBUTION OF ELEMENT "j" AND ITS IMAGE ON ELEMENT "i"
C c.l) VELOCITY
C
ZU(1,I)=2U(1,I)+2G(J)*(-DYR*COEFJ+DYRM*COFJI)
ZU(2,1)=2U(2,1)+ZG(J)*(-DXR*COEFJ+DXRM*COFJI)
C
C
C c.2) SCALAR
C
TPB1(I)=TPB1(I)+PT1(J)*CPJI+QT1(J)*CQJI
CARL(I)=CABl(I)+PAl(J)*CPJI+QAl(J)*CQJI
CFB1(I)=CFBl1(I)+PF1(J)*CPJI+QF1(J)*CQJI
C
C
C d) CONTRIBUTION OF ELEMENT "i" AND ITS IMAGE ON ELEMENT "j".
C
C
C d.1l) VELOCITY
C
2U(1,J)=2U(1,J)+2G(I)*( DYR*COEFI+DYRM*COFIJ)
2U(2,J)=2U(2,J)+2G(I)*( DXR*COEFI-DXRM*COFIJ)
C
C
C d.2) SCALAR
C
TPB1(J)=TPB1(J)+PT1(I)*CPIJ+QT1(I)*CQIJ
CAB1(J)=CABl(J)+PAl(I)*CPIJ+QA1(I)*CQIJ
CFB1(J)=CFB1(J)+PF1(I)*CPIJ+QF1(I)*CQIJ
50 CONTINUE
C
C
(o e) CONTRIBUTION OF THE IMAGE OF THE LAST ELEMENT ON ITSELF.
C
DY=ZT(2,NV)+ZT(2,NV)
R2=DY*DY
COEF=1.0-EXP(-R2*DEL2(NV})
COEFS=1.0-EXP(-R2*DEL2S(NV))
c
C
C e.l) VELOCITY.
C
ZU(1,NV)=ZU(1,NV)+COEF*ZG(NV) /DY
C
C
C e.2) SCALAR.
C

TPB1(NV)=TPB1(NV)~COEFS*QT1(NV) /DY
CAB1(NV)=CABl1(NV)-COEFS*QAl(NV) /DY
CFB1(NV)=CFB1(NV)-COEFS*QF1(NV) /DY



o

SHIFT THE SCALAR VALUES AND PUT THEM IN A 2-D ARRAY.

1J=0
DO 80 J=1,NR
DO 60 I=1,NVR(J)
I1J=IJ+1
TPB(I,J)=1.0+TPB1l(1J)
CAB(I,J)=0.5*RR+CAB1(1J)
CFB(I,J)=0.5+CFB1(1J)
CONTINUE
CONTINUE

RETURN
END
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