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ABSTRACT

The three papers that comprise this dissertation deal with the arbitrage free pricing
of contingent claims and with the modelling of optimal consumption and portfolio choice.
They all exploit the martingale connection of an arbitrage free price system introduced by
Harrison and Kreps in 1979 and the approach developed later by Cox and Huang to solve
a dynamic optimization problem with the tools of the martingale representation,

The paper that comprises chapter one, “Optimal Policies when Markets are Incomplete,”
develops a model of continuous trading where the incompleteness of the markets stems from
an insufficient number of risky securities. The main object is to elicit the structure of the
consumption space according to alternative definitions of the admissible trading strategies.
The model is then specialized to solve the optimal consumption and portfolio choice problem
when there is no stochastic endowment.

Returning to the complete markets setup, chapter two, “Arbitrage and Optimal Policies
with an Infinite Horizon,” solves some of the problems created upon letting the agents
trade over an infinite horizon. Sufficient conditions are given to preclude all arbitrage
opportunities, The optimal consumption portfolio problem is also taken care of by an
appropriate change of time which allows one to fall back on the finite horizon case, It is
shown that a solution exists whenever the subjective rate of time preference is sufficiently
high, Explicit examples are given for utility functions displaying constant risk aversion and
for the family of HARA utility functions.

Chapter three, “Consumption of an Endowment,” reintroduces risks in the form of
a stochastic endowment, while it is assumed that agents cannot carry over negative non
human wealth at any point in time. Sufficient conditions for the existence of a solution
are derived, which leads to a characterization of the optimal consumption path in terms
of an implicit shadow price. The shadow price has two components, one depending only




on the markets model, the other on the investor’s preferences and endowment. This model
may be potentially useful to reconcile the life cycle hypothesis with the issues of lifetime
consumption smoothing.

Thesis Supervisor: Chi-fu Huang
Title: Associate Professor of Economics



ACKNOWLEDGEMENTS

A great deal of thanks is due my thesis committee, Chi-fu Huang (chair) and Daniel
Stroock. Chi-fu Huang gave me the incentive to tackle the theory of optimal consumption,
offering me no less than the subject of the first two chapters of this thesis. He was ex-
traordinary helpful in modifying the substance and the presentation of my papers. Daniel
Stroock was extraordinarily patient. He never resented my frequent incursions into the
Department of Mathematics, offering me some proofs that I would have never beea able to
find myself. My third reader accepted to read the thesis sooner than he had to, making it
possible for me to graduate in February, for which I will be eternally greteful. Naturally,
all of the above individuals are guiltless of any errors that may remain.

Participants at seminars at MIT, at the February 1988 TIMS/ORSA meeting, at the
Séminaire SEER Banque de France, the I. Ekeland Séminaire de Finance de I’Ecole Nor-
male Supérieure, and the Séminaire ADRES of the Laboratoire d’Econométrie de I'Ecole
Polytechnique made many valuable comments and suggestions, many of which will be in-
corporated in future versions of these papers. While I completed this thesis in Paris, I
benefited from pertinent discussions with Marc Yor, and particularly with Ivar Ekeland
and Nicole El Karoui. I am also grateful to the Banque de France which provided full
financial support and extended my stay in the U.S. in order to ease the completion of my
research.

Let my American friends Ed, Ann, Alice, Mike, Cathy and so marv others be thanked
for all the help they gave my family in several difficult occasions. I found that there was no
equivalent to American hospitality, Finally, I thank my enduring wife Véronique and our
children Anais, Margot, Maude and Adéle. The last two were born in the States. While I
am afraid I was not such a good father, they all worked in making these years at MIT very
happy. This thesis is dedicated to them. In no way they should feel any obligation to read
it.




Contents

1 Optimal Policies when Markets are Incomplete

Introduction . . . . . ... e
A modelof trading . . . . . . . . . . .. e
Admissible strategies and non negative wealth . . . . .. ... ... .....
Optimization under incomplete markets . . . . . . ... ... ... .....
Aspecial case . . . . . . . L. e e e e e e e e e
Conclusion . . . . . . .. .

SOV WON

Introduction . . . . . . .. L e e e e e e
Arbitrage and non negative wealth . . . . ... ... .............
Optimal policies: Existence . . . . . . v v v v v v v i ittt e e
Optimal policies: Characterization . . . . . . . . . v v v v v v v v
Aspecial case . . . . .. L. L e e e e e e
Conclusion . . . . . . . . . e e e e e

SO b WN =

Introduction . . . . . . . . ... e e e e e
Themodel . . . . . . . . . e e e e e

Ot W O N =
o]
el
-
17
o
(4]
=
o
o

10
27
29
38
39

42

42
45
53
60
66
70




Chapter 1
Optimal Policies
when Markets are Incomplete

February 1987

Abstract. This chapter develops a model of continuous trading when markets are incomplete.
We first define a set of feasible consumption, the set of “marketed” contingent claims, ob-
tained when trade in the risky assets is quantatively constrained, This set is independent of
the choice of the risk neutral probabilities of Cox and Ross and has a reasonable economic
property: it corresponds to claims whose “state prices” (i.e., prices consistent with the absence
of arbitrage) are uniquely determined. We then consider another consumption space obtained
when strategies are constrained to produce non negative wealth at all times. We show that the
latter have a “fair” price in terms of the initial cost of the strategies which manufacture them.
Finally, we use the model to solve the optimal consumption and portfolio choice problem when
there are no uninsurable risks,

1. INTRODUCTION

In this chapter, we develop a model of incomplete markets, in which the price processes
are continuous and exogenously specified. An important feature of the model is that there
are fewer risky securities than there are Brownian motions required for the description of
uncertainty. We offer two examples of application. First we compare two consumption
sets: one is obtained with an integral restriction on trading and the other when wealth is
constrained to be non negative. The second example deals with a classical issue in financial
economics, the intertemporal consumption portfolio problem. Both applications exploit the
martingale connection of an arbitrage free price system as examplified by Cox and Ross [8]
and Harrison and Kreps [17].

Recent advances in financial theory have shown how arbitrage arguments underlie the
valuation of contingent claims. In the models of Black and Scholes[3] and Merton[27], the
pricing of contingent claims is based on a replication argument. One tries to synthesize the
returns stream of a given contingent claim by a controlled portfolio of the basic securities.
Barring arbitrage (with an integral constraint on trading), one evaluates the claim at the
initial cost of the strategy which replicates it. By this means one can create “synthetic”
contingent claims from the existing traded securities. The claims obtained in this manner
form what we call the marketed space.

As a first application of the model, we compare the “marketed” space with the space

consisting of claims manufactured by trading strategies satisfying only a non negative
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wealth constraint. Related work is that of Dybvig [11] and Dybvig and Huang [12]). The
second application focuses on the optimal consumption and portfolio choice problem. In
our version, investors are not endowed with any uncertain income. Consumption of an
endowment is deferred to chapter 3, within a complete markets framework. Our model
allows us to extend this approach without assuming the effects of complete markets.

The main results of the paper are outlined in more details below. In section 2, we
characterize the trading strategies that are available to agents. We take as primitive a
probability space and an n-dimensional Brownian motion defined on it. There are m risky
securities, where m can be less than n, whose price processes are governed by a system of

stochastic differential equations
dS, = b(t,S8;) dt + a(t,5,)dw(t),

where the m x n matrix ¢ has full rank. (Here we have neglected dividends.) The 0-th
security is a bond, whose instantaneous rate of return is riskless. Since there is a single
physical good allocated to consumption in this economy, all prices are initially expressed in
terms of units of this good. A strategy is a decision regarding the continuous trading of the
existing securities from time 0 to time 1, where 1 stands fcr the finite horizon of the model.
Since there is no endowment, the proceeds are entirely generated by the capital gains and
dividends from the investment in assets and can be either consumed or reinvested. For
expositional reasons we rule out bequests. This implies, in particular, that the value of
strategies at the final date is zero.

We then proceed to define a set of trading strategies which does not allow for arbitrage
opportunities. An example of such arbitrage is given by the doubling strategies of Harrison
and Kreps [17], named after the strategy of doubling one’s bet at roulette until one
eventually wins. To quote Dybvig and Huang [12]:

Presence of the doubling strategies strikes at the core of the continuous time model,

rendering it potentially vacuous. Having arbitrage opportunities precludes having a

solution to the optimal investment problem (for strictly monotone preferences) and,

of course, invalidates option pricing theory based on the assumption that there is no

arbitrage opportunity.



Harrison and Kreps were the first to tackle this problem in a continuous time model.
They remove arbitrage opportunities by restricting trading in the basic securities to occur
at a finite number of prespecified times. They call these strategies simple trading strategies
and show that barring arbitrage, one finds a reassignment of probabilities under which all
assets have the same expected rate of returns. Such a reassignment is referred to as an
equivalent martingale measure. While the example of simple strategies gives the continuous
time analysis a rigorous foundation, it is too restrictive for our purpose, since strategies
arising from either dynamic optimization or option pricing are generally not simple.

Harrison and Pliska 18], Cox and Huang [6] and Duffie and Huang [10] set out to
define a larger class of trading strategies that depends on a fixed martingale measure (the
“reference measure”). When markets are incomplete, this is unsatisfactory. On the one hand
the martingale measure is some kind of mathematical artifact and it is not clear why the
feasible set should be related to it in any specific way. On the other hand, the multiplicity
of the martingale measures makes the dependence on any particular one arbitrary, for the
set of admissible strategies is not invariant to a change in the reference measure.

To avoid these problems, we impose integral restrictions on trading a la Harrison and
Pliska, but directly with respect to the original probability beliefs. This yields a first
definition of the feasible consumption set which is independent of the martingale measures.
In our setup, feasible consumption corresponds, when markets are complete, to the positive
orthant of the whole consumption space and, when markets are incompiete, to the set of non
negative claims whose expected discounted value is invariant to a change in the martingale
measures. This means, roughly, that for each of these claims the price consistent with the
absence of arbitrage is uniquely determined. Of course, marketed claims do not Lave to be
in the filtration generated by the basic securities. This is a reflection of the fact that agents
are able to use the whole information generated by the underlying Brownian motions, rather
than the information conveyed by the stock prices alone.

Recently Dybvig and Huang [12], capitalizing on a conjecture made by Harrison and
Kreps [17], demonstrated that strategies that generate non negative wealth at all points
in time also preclude arbitrage opportunities. Doubling strategies are ruled out, since

they require unbounded negative wealth with positive probability, and so are ali arbitrage

8



opportunities. The question that arises is whether the integral constraint oa trading can
be replaced by the simpler requirement of a non negative wealth. Dybvig and Huang show
that when markets are incomplete the consumption set under non negative wealth is larger
than that with restriction on trading, and that the two sets are the same “up to closure”.

In section 3 we elaborate on these issues by invoking new results by Stricker [30].
When wealth is constrained to be non negative, it is known that the gains process is a
supermartingale (with respect to any martingale measure) and thus can only decrease in
expectations. Hence the initial investment required can be no smaller than the expected
discounted value of the claim, and will generally be higher. It is shown that there is a “best”
strategy in terms of a least initial cost, though this strategy is generally not unique. This
least initial cost defines what we call the “fair price” of the contingent claim.

In section 4 of the paper we take up the issues of existence and characterization in the
problem of optimal consumption and portfolio choice. The traditional approach, as in the
pioneering work of Merton [26], is that of dynamic programming. This approach has some
limitations; cf. Cox and Huang [6], [7]. Recently, an alternative approach has been put
forward in place of the dynamic programming: notably, Cox and Huang [6], [7] and Pliska
(28] in portfolio theory, or Chamberlain [4] and Huang [19] in general equilibrium. Our
solution draws heavily upon the results of Cox and Huang. Their approach is as follows.
First, map the original dynamic optimization problem into a siatic variational problem
that can be solved with the standard tools of Lagrangian theory. Second, implement the
solution of this static proplem via a martingale representation theorem which uncovers the
underlying dynamic strategy.

Their results can in fact be generalized to the incomplete markets setting at quite little
cost. The reason is that the solution to the static problem is measurable with respect to the
securities prices. Under those circumstances, the method of Cox and Huang is conducive to
a martingale representatiou technology which is similar but does not rely on completeness
of the markets. So we can derive existence and characterization of optimal policies in a
situation which is virtually that of complete markets. In a private communication ‘r. Duffie
observed that one could solve for the optimal strategies using the very tools of Cox and

Huang, after an elementary transformation of the data of the problem. This is correct, but

9



the approach we take in this section is, we believe, not more complicated than that of these
authors.

The intuitive (and obvious) result is that even when markets are incomplete, the optimal
consumption plan can be chosen in the space generated by the risky securities. Any other
choice would in fact increase the volatility of consumption, rendering it less desirable. So
when investors determine their optimal policies, they only take into account the information
conveyed by the securities prices.

Section 5 provides a simple example carried out for the class of constant relative risk
aversion utility functions. Section 6 concludes.

2. A MODEL OF TRADING IN INCOMPLETE MARKETS

In this section we develop a dynamic model of securities trading with the important
qualification that markets are incomplete. Intuitively, this means that the information
traders have at any point in time is more than just the past realizations of the securities
price processes. The price system cannot suffice in itself to give a complete description of
the exogenous uncertain environment. As a result, traders will not be able to synthetize
the payoff of every contingent claim by a controlled portfolio of the basic securities.

Certainly, one would like to include among investment possibilities as many types of
trading strategies as we can, for this implies more “synthetic” securities in addition to
the traded securities. Yet, that class of trading strategies should not be so large that it
allows arbitrage opportunities to exist. To get a satisfactory model of dynamic trading, it
seems reasonable to expect that the space of synthetic securities will include the following
contingent claims: when markets are complete, every non negative contingent claim in the
commodity space, and, when markets are incomplete, every non negative contingent claim
whose price is uniquely determined. We now proceed to define a class of trading strategies
which fulfills this hope, when the prices of the underlying securities can be assumed to be

as they are specified in this model.

Our commidity space will be a standard L> space. There would be no difficulty in
extending our results to an arbitrary LP space, provided p > 1. However, this would be at
the cost of expositional ease. The horizon of the model is confined in the time interval [0,1].

An infinite horizon is considered in chapter 2, but within a complete markets framework.
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It is convenient to describe the economy in terms of its information structure, its price
system and its dynamic strategies. Then we provide a mathematical characterization of the
“marketed” space. Finally, we show that a contingent claim is marketed if and only if its

expected discounted value is invariant to a change in the martingale measures.

2.1. The Information Structure.

Taken as a primitive is a probability space (Q,F,P). The set  gives a complete
description of the states of the world. Hence, if one knows w € (2, one knows everything that
happened in this economy up until time 1. The o-field F is a collection of distinguishable
events, i.e., events that anyone can tell whether they did or did not happen. Finally the
probability P stands for the common beliefs of the agents. We may regard P as an objective
probability assessment of events in F. We require for technical reasons that F be augmented

by all subsets of events of zero probability. (The o-field F is said to be complete.)

Next we want to say how the information is revealed over time. Agents know nothing at
time 0, and their uncertainty about the future is gradually resolved over time. At time 1
they learn the true state of nature. This is modeled by means of an increasing family of
sub-o-fields or filtration F = { ;¢ € [0,1]}. The fact that this family is increasing means
that events are never forgotten. We may think of F; as the collection of events that can
occur up until time ¢. Let w be an n-dimensional standard Brownian motion defined on
the probability space, and take F; to be the right continuous completion of the a-algebra
o{w(s): 0 < s < t} generated by the paths of the Brownian motion between 0 and ¢.
In other terms, the distinguishable events of F; consist entirely of sample paths of w in
restriction to the time interval [0,¢]. Since we do not want any residual uncertainty at the
final date, we take F = F,. Symetrically, since w starts from zero with probability 1, the

tribe Fo is generated by Q and the probability zero sets. (It is said to be almost trivial.)

For economic as well as mathematical consistency, all the stochastic processes we shall
consider are measurable and adapted to F; see, e.g., Chung and Williams [5]. In words,
a process is adapted to a filtration if its values at time ¢ are non anticipative, i.e., if they
depend only upon the information at that time and not on the future realizations of w. In

fact we will also need to work with processes that are not only adapted but also measurable
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with respect to some suitable o-field on [0,1] X Q. In the case of a filtration generated by
Brownian motions, it turns out that the natural notion is that of progressively measurable
processes.! We use PM to denote the o-field generated by the progressive sets of [0,1] x Q.2
There is no distinction in our framework between measurahle adapted and progressively
measurable processes. It is clear that if a process is progressively measurable with respect
to Fy, it is also adapted to F;. In a continuous information structure the converse is also

true. The following lemma addresses this rather pedantic measurability question.

LEMMA 2 1. Let X(-,w) be right continuous foreachw € Q andlet F; = 0{ X,: 0 < 8 < t}.

If a process is adapted to Fy, it is also progressively measurable.

PROOF: See Stroock and Varadhan[31, exercise 1.5.6.] =

Since F; is generated by the continuous Brownian motion w;, the lemma applies. Hence,
PM is the natural o-field on [0,1] X © associated with the adapted processes. We now turn

to the study of the price system.

2.2. The Securities Price System.

We consider a securities markets model with m + 1 long lived securities traded, indexed
byi=0,1,..., m. Since there is only one good available for consumption in this economy,
all prices can be initially numerated in units of this commodity. Security i = 1,2, ..., m
is risky, pays dividends at rate 6;(¢) and sells at time ¢ for S;(¢) ex-dividends. We assume
that 6;(t) can be written as 6;(t,5;). Security 0—the bond—is locally riskless, pays no

dividend and continually compounds interest at the positive rate 7(t, S;), having price

t
B(t) = exp/o r(s,5,)ds.

Note that B is bounded below by 1, and that for convenience we have taken By = 1. Both
6i(z,t): R™ x [0,1] — R4 and r(z,t) : R™ x [0,1] — Ry are taken to be continuous.
Agents in this economy are assumed to have rational expectations in the sense that they

all agree on the law of the securities price processes. In effect 5: [0,1] x @& — R™ is given

LA process Z: Ry x 2 — RY is said to be Fy-progressively measurable if for each t the restriction of Z to
[0,t] x Q is B¢ x F; measurable, where By i the Borel o-field of [0, ¢].
2A subset of [0,1] x € is progressive if its in1icator function is itself progressively measurable.
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as a progressively measurable, (a.s., P) continuous process satisfying, in vector notation,
t t t
(1) St +/ 6(s,8,)ds = So-i-/ b(s,S,)ds+/ a(s,S,)dw(s)
0 0 0

for all € [0,1], (a.s., P). The vector § is formed by stacking é;, withi = 1,2,...,m, and So,
a vector of constants, gives the prices of the risky securities at time 0. The stochastic integral
on the right hand side is defined in the sense of It6. The functions b(t,z): [0,1] X R™ — R™
and o(t,z): [0,1]) x R™ — R™*™ are continuous and satisfy, along with § and r, a growth
condition and a local Lipschitz condition.® The first condition implies that the diffusion S
will not “explode” until time 1, while the second guarantees pathwise uniqueness of the
solution; cf. Friedman [15, chapter 5]. Finally, the matrix o is assumed to have full rank for
all values of ¢ and z. We repeat that the main feature of our model is that m < n, i.e., that
there are fewer securities than Brownian motions required to generate uncertainty. Hence,
the rank of ¢ is m.

Because B; > 1, one can rewrite (1) in terms of units of the bond. Let §7 = S¢/B:. The

gains process in discounted units associated with the risky securities is defined by
t 6_,
G, = S-+/ — ds.
t o Ba

Since Go = So, the difference G; — S represents the sum of the accumulated capital gains

and accumulated dividends, in units of the bond. Ité’s formula implies that

t _ + t
) G:=5o+/ b(s,Ss) — 1(5,55)S5s ds-i-/ U(S’S")dw,
0 Ba 0 Bs

for all t € [0,1], (e.s., P).
To be a reasonable model of securities markets, the price system should not allow one

to create something out of nothing or to create free lunches. In words, a free lunch is a

3More precisely, the growth condition states that
la(t, 2)| + [b(t, )| + 18(¢, £)] + [r(t, )| < K(1+[2])
and the local Lipschitz condition states that for any n > 0 there is a positive constant K, such that
lo(t, z) —a(t,y)| < Knlz —yl,

and similarly for b, 6 and r, for |z|, |y] < n, and 0 < t < 1. We have used the following notation: if o is a
matrix, then |o| denotes the Hilbert-Schmidt norm (traceaa™)'/2.
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consumption plan wich is non negative, non zero, and is financed by a trading strategy
with zero initial cost. Obviously, one needs to specify which types of trading strategies
can be used by investors. Harrison and Kreps considered a particularly simple markets
model, where trading in the basic securities is only possible at a finite, though arbitrarily
large, number of dates specified in advance. The corresponding trading strategies are said
to be simple.* Since simple strategies can easily be implemented in real life, they certainly
represent a minimal set of investment strategies one would wish to allow. Harrison and
Kreps [17] and Huang [19] demonstrated that to preclude free lunches for that class of simple
strategies or their L? limits, it is necessary and sufficient that there exists a reassignment
of probabilities under which all assets have the same expected rate of return. They refer to
this reassignment as an equivalent martingale measure. Formally, an equivalent martingale
measure @ is a probability measure on (2, F) equivalent® to P so that the density dQ/dP
is square integrable under P and the gains process (G, Fi, Q) is a martingale.® For internal
consistency we thus have to ascertain whether such a probability reassignment exists in
the special case of the price process given by (1). This will be ensured by an additional
regularity condition on the parameters of the price processes. We thus make the following

assumption, which will be maintained throughout.

ASSUMPTION 2.2. Let
K(t,z) = o (t,z)(a(t,z)a " (t,z)) 7" (b(t, 2) - (2, 2)2).

There exists a positive constant I’ < oo such that |x(t,2)| < K for all (t,z) in [0,1] x R™.

We note that this assumption is in particular satisfied in the models originally considered
by Samuelson [29] and Merton [26]. Indeed, in the geometric Brownian motion case with
b(t,z) = bz and o(t,z) = oz, where b and o are respectively a vector and a matrix

of constants, and ris a scalar, one finds x = o' (e07)~!(b — r1), where 1 is a vector of

*For a formal definition of simple strategies, see section 2.3,

8Two probability measures P and Q are said to be equivalent if they have the same sets of probability zero.
For this it is necessary and sufficient that the density dQ/d P be strictly positive. If P and Q are equivalent,
all statements that are true with respect to one probability are also true with respect to the other. This is
in particular the case for the almost sure probability statements.

8Given a function Z on [0,1] x F into R™, one says that (Z, F¢,Q) is a martingale on [0,1] if Z is a
progressively measurable, almost surely right continuous function such that Z; = Z(t,-) is Q integrable for
all t € [0,1] and EQ[Z, | 1] = Z; almost surely, for 0 <t < s< 1.

14



m ones. We will now show that under assumption 2.2, there is an abundance of equivalent
martingale measures. A random function 7: [0,1] x @ — R™ is said to be in the null space

of o if oyn; = 0 for all ¢ in [0,1], (a.s., P).

PROPOSITION 2.3. A probability Q on (Q,F ) is an equivalent martingale measure if and
only if its density dQ /dP is strictly positive, P square integrable and factors through Q as
dQ/dP = (dQ/dQ)(dQ/dP) where

dQ v I L
E—ﬁ_eXP{—/oM'dwt—Q/Ol [re|” dt

dQ {/l 1/‘ 2 }
— =ex -dwy — = dty,
a0 p A e - awy 2 Jo |7l

for some 0 in the null space of o. In particular, Q is itself an equivalent martingale measure.

and

We first fix some notation. We denote by v the product measure generated by the
Lebesgue measure and P, and by L?(v) the space L3([u,1] x Q, PM,v); cf. section 2.1.
PROOF OF THE PROPOSITION: Let R = dQ/dP be the Radon-Nikodym derivative of @
with respect to P. Then R, = E(R|F,;) is a martingale under P which can be taken to be
continuous, (a.s.,P). By Ité’s martingale representation theorem, there exists o € LQ(V)

such that

t
(3) R = 1+/ a, - dw,.
(1]

Now (G4, F1,Q) is a martingale if and only if (R,G,, F;, P) is a martingale (cf. Dellacherie
and Meyer [9, lemma VII.48]). By Itd’s fcrmula, we have from (2) and (3)

bt - 7‘151 Rtat Ty
] 'y = oy —dt.
thcg Rg B¢ dt + B¢ dw, + G¢().'¢ d’lD¢ + B¢

But an Ité integral is a martingale only if it has zero drift; cf. Liptser and Shiryayev [25).
Therefore Ry(b; — r;15y) + 0104 = 0, or by the definition of &, o¢(a; + Rk¢) = 0. Solving for
a yields oy = —Ryx¢ + 1} for some 7' in the null space of o. Substituting the above relation

for a in equation (3), one finds

dR¢ =Q;- dw‘ = (—Rgh't + 17;) . dw,
= Ry(—Ke + ne) - dwy, n=n'/R.
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Hence

t t
1 9
Rt=ﬁp{L (“‘Ra'f")a)'dws’"lz/ I""‘-a+77-9|-ds}
0

t 1 t " t 1 t "
= exp {—/ Ks - dwg — E/ |&sl ds} exp {/ Ny - dwy ~ -2-/ (7] d.s} ,
0 0 0 0

where we have used the fact that x and 75 lie in orthogonal subspaces of R™ tfor all ¢. This
proves the first part of the proposition. To prove the second part, we have to verify that
€ = dQ/dP is square integrable and strictly positive almost surely. Square integrability

follows from lemma 2.4 below. So it remains to demonstrate that
1 1 M
—/ Kt - dwy — —/ |ke)? dt > —o0, (a.s.,P).
o 2 Jo

Since & is bounded, one has fol |ke|*> dt < oo, and this implies | fol Ki* dw¢| < oo; cf. Liptser
and Shiryayev (25, theorem 7.1]. Hence £ = dQ/dP > 0, (a.s., P), as desired. =

We have asserted in the proof of the proposition that £ = dQ/dP is square integrable. In
fact, a stronger result holds under the boundedness assumption of x. Since this property is

used repeatedly in the sequel, we state it in a separate lemma.

LEMMA 2.4. Let £ = dQ/dP be as in proposition 2.3. Then £ and £~! are in LY(P) for all

finite ¢ > 1.

PRrooOF: Let ¢ > 1. Then

1 1
£ =exp{—-/ gry - dw, — l/ qlre)? dt}
0 2 Jo
1 2 1 __1 1
=exp{—-/ thv(l‘Wt—’q:‘/ Int|2dt}exp{q(q——l/ |K¢|2di}.
. 0 2 Jo 2 Jo

—

-

a martingale under P
Since |#¢] < A" by assumption 2.2, we get E[¢7] < exp(g(q — 1)?/2). and so £ € LI(P). A
similar argument works for €71, =
The existence of an equivalent martingale measure ensures that there are no free lunches
for simple strategies. In this case, the density of the martingale measure can be interpreted
as the shadow price of consumption in units of the bond per unit of probability P. We

will rely heavily on the probability @ evinced in proposition 2.3. This probability has some
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interesting properties of its own. For example, one can prove that among all martingale
measures, it is the one with the smallest entropy with respect to P. In this respect, it is the
least “different” from the original probability beliefs. One can also show that its density is
measurable with respect to the filtration generated by prices. (In fact, it is the only one

with that property, but we will not use this fact later.)

LEMMA 2.5. Let £ = dQ/dP be as in proposition 2.3, and £; be an almost surely continuous
version of the martingale E[£|F,]. Then & is measurable with respect to the filtration

generated by prices.

Proor: By proposition 2.3,

t t
logé = = [ x(s,S,)-dw = (1/2) [ Ints,Su) .
0 0

The second integral of the right hand side is price measurable. (It can be approximated as

the sum of price measurable functions.) For the stochastic integral, observe that

K(t,5¢) - dw(t) = (o(t, Si)o ' (1, S,))_l- o dw,

= (a(t,50)a7 (t,51)) " (dS¢ — b(t, S¢)dt — §(t, S¢) dt).

This shows that £ is price measurable. =

Henceforth, we fix £ = dQ/dP as in proposition 2.3. We already know that (G, F;,Q) is
a martingale. It is interesting to note that if we substitute for P the martingale measure Q,
we change the drift term of the gains process but the instantaneous standard deviation

remains unaffected. This is the subject to which we now turn.

LEMMA 2.6. The gains process is a driftless Ito integral under Q. In fact, there exists an

n-dimensional standard Brownian motion w under Q such that
t
1 5s) o
(4) Gy = S0 + / a(3,3,) dw,.
o B,

ProoFr: Let w; = w, + f(; ksds. The conclusion follows directly from (2), Girsanov's
theorem and the definition of k; cf. Liptser and Shiryayev [25, chapter 6]. =
We conclude this section with a technical result concerning the filtrations generated by w

and @ which is needed in the sequel. Incidentally, the proof shows that under the martingale
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measure (), the undiscounted gains process S; + f(; 6, ds has an instantaneous expected rate
of return equal to the riskless rate. We thus find that Q also corresponds to the risk neutral

probability of Cox and Ross [8].

LEMMA 2.7. Let @ be as in proposition 2.6. Up to completion, the filtrations generated by

w and ® are the same.

ProOF: Let F? be the completion of o{ @, : s < t}. Since W, is F; measurable and F; is
already complete, the inclusion F;* C F; is obvious. On the other hand consider the vector

diffusion S which is governed by the stochastic differential equation
dS; = (r(t, 5,)S¢ — 6(1,S:)) dt + o(t, Sy) dib,.

Since P and @ are equivalent, this relation holds also under Q. Under our assumptions,
one can show that the processes r, § and o satisfy the usual growth and local Lipschitz
conditions. So S is a strong solution and is adapted to F;%, and so is wy = @;— fot K(s,8,)ds.
This proves 7 C F*. =

After these preliminaries, we turn to the task of defining the set of admissible trading

strategies.

2.3. The Trading Strategies.

In our economy, an individual’s object of choice is a consumption rate process generi-
cally denoted by ¢, where ¢; is the random flow of consumption at time t. We take the
consumption space to be the positive orthant of L?(v) which, we repeat, is the space
L*([0,1] x Q, PM,v); cf. remark following proposition 2.3. Hence a consumption plan
is simply a progressively measurable function which specifies the distribution of the single
commodity across all states of nature and at all times. It would be possible to include final
wealth in the consumption set of agents. Here we are content to assume that agents leave
no bequests.

In this model, trading is frictionless. There are no such things as constraints on short
selling or transaction costs like brokerage fees for example. A strategy is a decision regarding
the trading of the existing securities from time 0 to time 1. More precisely, a trading strategy

is completely specified by an m + 1-vector process (a,8) = { (as,6):i=1,...,m}, where
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a; and 6 are the number of shares of the 0-th and the i-th security, respectively, held at
time ¢. Thus, the value of the strategy (a,#) at time ¢ in units of the riskless bond is

"Vt d=efat + 0¢ . S‘(t)

A strategy is said to finance the consumption rate process ¢ € L} (v) if, with this definition

of W,
t . t
(5) W, +/ B—’ ds = Wy + / 8, -dG,
0 8 0
and
(6) Wi =0,

and if the stochastic integral on the right hand side of (5) is well defined. We will specify
the set of admissible strategies more fully later on. For now, we interpret conditions (5)
and (6). Condition (5) is just the natural budget constraint expressed in units of the bond.
The left hand side represents the market value of the portfolio held at time ¢ plus the
accumulated flow of consumption from time 0 to time ¢. The right hand side consists of the
initial value of the portfolio plus the accumulated capital gains or capital losses plus the
dividends received from securities holding up until time ¢. (Recall that the gains process
is defined by G, = 57 + fot(é,/B,)ds.) So consumption plans are financed by continuous
withdrawals from the portfolio during the interval [0,1]. Note that condition (5) in fact
defines implicitly a for any choice of the “controls” (c,#). Hence one may view the investor
as choosing first his most preferred consumption plan and holdings in the risky securities,
in which case the number of shares held in the bond is determined through the budget
constraint. Condition (6) says that final wealth must be equal to zero. It is not possible to
borrow to finance consumption without paying back at the final date.

A well known example of strategy satisfying, alluded to in section 2.2, is given by the
simple trading strategies. A trading strategy («,#) is simple if there exist a finite sequence
of dates 0 = tg < t; < -+- < t, = I, along with bounded F;;-measurable functions 0{ and

constants 67 € R such that

n-1

0: = 0?1{0}(” + Z 0{1“}.!1-“](”!

i=0
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with ¢ = 1, 2, ..., m. An investor employing a simple trading strategy can change his
portfolio immediately after observing prices at ¢;. Such portfolio policies are close to being
observed in the real world. Any reasonable model of securities markets should include them
among the set of admissible trading strategies.

If all strategies were simple, the existence of an equivalent martingale measure as defined
in proposition 2.3 would suffice to rule out all arbitrage opportunities. When more complex
strategies are involved, additional constraints must be imposed. A simple example of
arbitrage opportunity is provided by the doubling trading strategies. They involve shorting
more and more the riskless bond and buying arbitrarily large amounts of the risky securities,
until one eventually wins. Such strategies can be implemented in a model with continuous
trading, because agents are allowed to do in any finite time interval what would otherwise
require an infinite sequ..ce of trades. We first introduce ar integral constraint, as in
Harrison and Pliska[18].

In the proofs to follow we will use many different norms. It will be convenient to adopt

uniformly the following notation. For a progressively measurable process p: [0,1]xQ — R",

we note

o= (o[([4)"]
Accordingly let
(7) LX(G) = {o, adapted: JloT8/Bl, p < o0 } .

Note that £2(G) is defined entirely in terms of the probability P. The notation £*(G) is
used because, as we now show, the stochastic integral fol 0, - dG, is well defined and square

integrable under P.

LEMMA 2.8. Suppose that § € £*(G). Then the integral f, 8, -dG\ is an L%(Q) martingale

on [0,1] for all ¢ € [1,2), and is square integrable under P.

PRooOF: From (2) one has

! LBt 5) - ' L oT(t,5.)0
/ 0t‘th =/ 0" b(t,.S() Br(t’St)St dt"l"/ o (B t) t 'dw‘.
0 0 t 0 t
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Note that jo"8/B}, » < o by assumption, and so

/l UT(tv St)ot °d‘wt
0

B =f§o70/Bll; p < 0.

2,P

This proves that the second integral on the right hand side is well defined and square
integrable under P. On the other hand by assumption 2.2, there exists a constant K < oo

such that || < K. By the definition of k, we have

by — 15, _ TRt | _ U:Tat .
'0t Bt - Iot Bg - Bt Kl
and so
b¢ - TtSt . 0';0:
¢ —— | < K |—|.
0¢ Bt I S K Bt

Hence, by Cauchy Schwarz inequality, the L?>( P) norm of the first integral on the right hand
side is majorized by Kflo76/ Bll, p < co. This proves that j;)l 6, - dG, is square integrable
under P. Hence it is also ¢ integrable under Q whenever ¢ < 2. (Use Hélder’s inequality
and the fact that £ = dQ/dP raised to any power is integrable; cf. lemma 2.4.) So the

martingale (jg 0, -dG,, F;,Q) is in fact an L9(@Q)-martingale, when 1 < ¢< 2. =

We can then define the admissible trading strategies as follows.

DEFINITION 2.9. A pair (e,8) is an admissible trading strategy if there exist ¢ € L3 (v)
and Wy € R such that, putting W, d-_gfa, +6,-5;,
(i) 8 € £*(G);
(i) Wt+Lt§fds=Wo+/ot0,-dG,, for all t € [0,1);
(iii) W = 0.

In words, a strategy is admissible if it finances some ¢ € Lﬁ_(u) and if it satisfies the
integrability condition (7). The set of all contingent claims in L'i(u) which can be attained
by admissible trading strategies is called the marketed space and is denoted by C. A

contingent claim which is marketed represents a feasible consumption plan.
Let us use the notation E for expectation under the probability Q. It develops from the

definition and lemma 2.8 that, if c € Lﬁ_(u) is financed by an admissible trading strategy,

1 1
E[/ fids]=ﬁ[wo+/ e,.dG,]=W0.
0 Ba 0
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Since W is the initial endowment that finances the consumption plan, we see that E serves
us a present value operator. In particular if ¢ is different from 0, we have Wy > 0. One
cannot find a positive consumption plan financed by Wy < 0 at time 0: there is no free

lunch.

We try now to identify C in L3 (v). To this aim, we introduce
1
M= {M € L}(P): M =W, +/ 8(t) - dG(t), for some Wp € R and 8 € L*(G) }
0

The following lemma gives the relation between M and C.
LEMMA 2.10. Let ¢ € L*(v). Then ¢ € C if and only if ¢ is positive and fol(ct/Bt)dt is
in M.

PRrRoOOF: We prove necessity first. By definition 2.9, (2) and (3),
1

1
(8) St gt = Wo + / 8, - G,
o B: 0

where 8 € L2(G). So [, (c;/By)dt € M.
Sufficiency. Suppose ¢ > 0 satisfies fol(c, /B:)dt € M. Thereexist Wy € Rand § € L3(G)
such that (8) holds. By lemma 2.8, the gains process fot 0, - dG, is a martingale under Q.

Define the residual value of ¢ at time ¢t as

- 1
W,:E[/ ——-dsl]-’t]
t
1
W,+/—ds— [/ -—ds,f,] Wo+/0 .dG,.

So in definition 2.9, (ii) and (iii) are satisfied. The strategy (a,8), where a is implicitly

We have

defined by W, = a; + 6, - S}, is admissible and finances c, as desired. =

Proposition 2.13 below gives a characterization of M based on the null space of 0. I am
thankful to Pr. Stroock for the proofs of lemma 2.11 to proposition 2.13. Below the space
L?(v; R™) is the space of progressively measurable, R"-valued processes whose components

belong to L%(v).
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LEMMA 2.11. For each X € L*(P), there is a unique Xy € R and a unique py € L*(v; R™)

such that
1
X = Xo+ / px(t)-die, (a.s.,P).
0

In fact Xy = E[X] and there is a B < oo such that

mpxllz,P < B||X]l2,p-

PROOF: Suppose that Xy € R and p € L?(v; R™) are such that Xo—{-fol pt-diw; = 0. Since by
the Cauchy Schwarz inequality ﬂPll;,Q < ||€]l2.p Iﬂpll.z'P, the process (Xo+foml pt-dibg, F;, Q)
is a continuous martingale and so Xy = 0 = 0:/\1 p(t) - di(t). Hence flpll, o = 0 and so
p =0, (a.s.,v). This proves the uniqueness.

To prove existence, note that by Hélder’s inequality and lemma 2.8, X € L9(Q) for every
g € [1,2). Choose g € (1,2). By the martingale representation theorem for @, which is

legitimate since w; generates F, (cf. lemma 2.7),
l ~
X=Xo+ / px(t)-dw(t), Xo= E[X],
0

where px € L9(v; R"). Now define X, = E[X | F,] and choose K with || < K as in

assumption 2.2. We have

t+6 t+6 t+6
.XH.&—Xg:/ px-dﬁ)=/ px-dw+/ Px +Kds
t t t

t+5
/ px +dw
2P t

< || Xets — -X’t"_’ p + K

and therefore

t+6 1/2
([0
t

2,P

t+6
/ lpx|ds
t 2,P

t+6 1/2
(/ lox|? ds)
t

by Jensen’s inequality. Choose > 0 such that A'6'/? < 1/2. Then

t+6 . 1/2
]( [ et as)
t 2,P

by lemma 2.12 below. Finally, choose n > 1 so that 1/n < 6. Then

n-1 (k+1)/n /22
(/ P rls)
k/n

Ilpxmg,p = Z
23

k)

2,P

<[ Xeps — X K&\
S Xe4s X¢“2'P+ \

<2 ||Xt+6 - Xt"g p < 4k X |l2,p,

< 16ne?* | X[ p.
2,P

0
This completes the proof. a



LemMA 2.12. Let X, = E[X | %] and K majorize x, as before. Then ||X2,p <
X ||X||2,p.

Proor: We have
x| 7 = 2P pegeox )

and so
|Xdl < E[(£/€)7 | FJPE[X? | )
< eK E[X2 lft ]l/2

by lemma 2.4 with ¢ = 2. Therefore || X¢||2,p < eK 1X]l2,p. =

Here is the main result of this section.

PROPOSITION 2.13. M is a closed linear subspace in L*(P) and X € M if and only if px is
orthogonal to the null space of o. Finally, if X € M, then

8: = By(0:0] ) aupx(t)

is the unique 0 € £2(G’) such that X = Xq + j;; 8, - dG,.

PRroOF: Say X € M. Then by definition and from proposition 2.6,

1 1 0T0¢
(9) X=Xo+/ at'th=Xo+/ 20 y4p,
0 o Bt

with Xo = E X and so py(t) = o7 6,/ B; L Null(a) for all t € [0,1).
Conversely, suppose px(t) L Null(oy), (a.s.,P), for all ¢t € [0,1]. Define 8; as in the
proposition. Then o,"8;/B; = py(t) and so (9) holds. The unicity of 8 follows from the fact

that for all ¢, o, is onto, and thus o is one-to-one. Finally,

loT6/Blp = loxly,p < BllX[l2.p

by lemma 2.11, and so 8 € L*(G), as desired. It remains to show that M is closed. But

this is immediate for if X" is a sequence in M which converges to X in L*(P), then
lpx - P.’\l'lﬂz,p < B||X = X"|2,p — 0,

and so px(t) L Null(oy). =
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CoROLLARY 2.14. C is a closed subspace of L*(v). If, in addition, markets are complete
(m = n), then C = L% (v).
ProoF: The proof of the first assertion is obvious from lemma 2.10 and proposition 2.13.
Moreover if m = n, then Null(o;) = {0} for all ¢ in [0,1], and so M = L*(P). =

We have seen above that E can serve us a present value operator. 'fo conclude this section,
we will show that if a claim is marketed, the expectation under any equivalent martingale

measure (cf. proposition 2.3) can serve the same purpose.

PRroPosITION 2.15. A contingent claim ¢ belongs to C if and only if its expected discounted

value does not depend on tke choice of the equivalent martingale measure.

ProoFr: We will prove first that if p is orthogonal to the null space of o, with |pf, p < oo,
then
.ol
EQ/ Pt '([lZ’t =0
0
for any equivalent martingale measure Q. By proposition 2.3, the density of Q with respect

to ( in restriction to F; can be taken to be the continuous Q- martingale

t t t
1 a
Zy = exp {/ ns - dibg — 7/ |ns|” (ls} = / Zsns - diby,
0 2 Jo ()

where 7 is in the null space of . An application of Girsanov’s theorem shows then that

_ t . . . 2 o
w; = Wy — fo s ds is a Brownian motion under @. Since

1Q

a
dP

el o < PIIlPIIe,p <o

2,
by the Cauchy Schwarz inequality, the stochastic integral fot ps-dw? is a uniformly integrable

martingale under Q. Hence

- rt .l .orl
EQ/ pt - dwy = EQ/ Pt -(lw,‘-i-EQ/ pt-medt =0
0 0 0
since p and 7 lie in orthogonal subspaces. This prcves the claim.
Now consider necessity. Let ¢ € C and let Q be some equivalent martingale measure.

Then X = fol(c,/Bt)(It € M and so

1 -~
X=Xo+ / pelt)-din, EX = Xo,
0
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where py is orthogonal to the null space of o; cf. lemma 2.11. Applying the claim, we see
that E© X = X,.

To prove sufficiency suppose that ¢ € L% (v) and define as above X = fol (¢¢/B;) dt. Note

1 2 1
EX25E</ c,dz) SE(/ cfdt)<oo,
0 0

that

and so we can write

1 1
(#) X=Xo+/0 Px(t)'du"t+/0 px(t) - diy,

where for all ¢, py is in the range of 07 and p+ is orthogonal to it; cf. lemma 2.11. In view
of proposition 2.13, we want to prove that px(t) = 0, (a.s., P). We will use a stopping time

argument. Define the stopping time

¢
Tp = inf {t : / lpx(s))* ds > n} ,
0

and 7, = 1 if the above set is empty. Since [px + pxll, p < Bl|X|l2,p, the integral
fol lp%(2)|? dt is finite, (a.s., P), and so 7, — 1, (a.s., P). Let Q, be the probability with

A 1 1
‘il%" =7" =exp{/o ORI %/o lox™ () dt},

where p,J;'“(t) = p}l('(t)].[o,rn]. Since by construction

density

1
Beo {(1/2) [ Ipkmof ar} < o,
0

@, is a well defined probability measure equivalent to @. Note that by proposition 2.3,
Qn is an equivalent martingale measure. Now we take the expectation of (#) under Q. and

apply again our claim to see that if X has constant expectation then it must be that

E%- [/01p¢(t)-dw,] = 0.

But 9" = fol n{‘pi'"(t) -dw, and we can rewrite this equation as

B[([ atotnw-aa) ([ ot -ao)] B[ [ miotnora] = o
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and so px(t) = 0 on [0,7,]. Since 7, — 1 as n — oo, we get pL(t) = 0, (a.s., P), as desired.
a
To summarize, one has constructed a space of feasible consumption which satisfies the
following properties:
(i) It depends only on the original probability beliefs P, not on the equivalent martingale
measures, which are not unique when markets are incomplete;
(ii) It is a closed subspace of the consumption space, and the two sets are identical when
markets are complete;
(iii) A claim is marketed if and only if its present value as given by any equivalent
martingale measure is uniquely determined.
We now turn to some applications of the preceding model.

3. ADMISSIBLE STRATEGIES AND NON NEGATIVE WEALTH.

We consider in this section another class of strategies. We replace the condition 8 € L*(Q)

by th