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Abstract
Decades of advancements in strategies for the calculation of atomic interactions have culminated in a class of methods known as machine-learning 
interatomic potentials (MLIAPs). MLIAPs dramatically widen the spectrum of materials systems that can be simulated with high physical fidelity, 
including their microstructural evolution and kinetics. This framework, in conjunction with cross-scale simulations and in silico microscopy, is poised 
to bring a paradigm shift to the field of atomistic simulations of materials. In this prospective article we summarize recent progress in the application 
of MLIAPs to crystal defects.

Introduction
Numerical modeling of materials is performed at its most 
accurate level when each atom is accounted for individually. 
Such atomistic simulations enable the investigation of defects 
in crystalline solids, some of which are illustrated in Fig. 1. 
The collection of all defects within a material—known as its 
microstructure morphology—controls most of its properties. 
Historically, atomistic simulations of crystal defects have been 
performed under a variety of simplifying assumptions, such 
as limited microstructural complexity and low-fidelity atomic 
interactions. The rationale behind these simplifications often 
revolves around reducing computational costs, streamlining 
post-processing analyses, and facilitating physical-modeling 
efforts. Developments in computational materials science over 
the course of the last decade have alleviated the need for many 
of the traditional simplifying assumptions. Such developments 
are poised to bring nothing short of a paradigm shift to the field 
of atomistic simulations of materials. These changes will be 
supported by the ongoing progress in three distinct directions, 
which are discussed next.

The first direction is—unsurprisingly—the steady improve-
ment of computational hardware, which resulted in widespread 
access to computing capabilities that were not long ago avail-
able only to select research centers. This made possible for 
large-scale atomistic simulations to be performed routinely and 
broadly in our community. When such simulations contain a 
large number of atoms—typically more than 105—they enable 
the investigation of unique materials properties not accessible 
at smaller scales.[2–6] Such simulations are cross-scale, i.e., they 
allow the simultaneous examination of materials properties 
across different length scales. They are not to be mistaken with 
multi-scale simulations, where the atom-by-atom description of 
the material is given up and substituted by a coarser—and con-
sequently, less accurate—representation in order to decrease 
computational costs. Cross-scale atomistic simulations allow 

one to investigate crystal defects with geometrical complexities 
akin to the microstructures observed in laboratory experiments.

The second direction is the development of approaches—
and their accompanying high-performance software 
 implementations[7,8]—that aid and augment human intuition 
in interpreting atomistic simulations and extracting physical 
information from them.[6,9–12] It is difficult to identify and quan-
tity crystal defects in atomistic simulations because of their 
structural complexity. These difficulties are further amplified 
when the microstructural evolution in time (i.e., kinetics) is 
considered. Thus, specialized structure characterization tech-
niques are required, namely in silico microscopy methods. 
While these have historically been challenging to construct, 
requiring significant intuition and effort, recent progress favor-
ing data-centric approaches and the employment of machine 
learning (ML) techniques over heuristic rules of classification 
have shown promise in simplifying the development of novel 
techniques.[13,14]

In silico microscopy is particularly relevant to cross-scale 
atomistic simulations. The complex microstructures considered 
in such simulations render the visualization and physical mod-
eling of the results challenging to perform. Information about 
crystal defects and their evolution is buried within an astronom-
ical amount of data describing the motion and interaction of all 
atoms. The importance of accessing such atomistic information 
is further amplified by the fact that this level of simultane-
ous resolution of defect structure and kinetics—atom-by-atom 
and femtosecond-by-femtosecond—is virtually impossible to 
achieve experimentally.

Finally, the third direction, and focus of this article, is the 
convergence of decades of advancements in strategies for the 
calculation of atomic interactions (i.e., the energy and forces 
between atoms) into a class of methods known as machine-
learning interatomic potentials (MLIAPs). Crystalline defects 
display dramatically different behaviors depending on subtle 
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differences in bonding of the underlying atoms. Capturing 
such features accurately is essential for physically realistic 
descriptions of the microstructure, including their evolution 
and kinetics. In fact, the physical fidelity of atomistic simula-
tions is often considered tantamount to the accuracy with which 
atomic interactions are represented.

Progress along the three directions described above is highly 
synergistic. For example, the prevalence of cross-scale atomis-
tic simulations has heightened the need for in silico microscopy 
algorithms, while access to better computational resources ena-
bled the employment of high-fidelity MLIAPs routinely. Simi-
larly, MLIAPs have widened the spectrum of systems that can 
be realistically simulated in order to investigate their micro-
structural elements, at the same time as in silico microscopy 
algorithms facilitate the quantitative evaluation of MLIAPs 
for crystal defects. Together, these developments enable the 
investigation of the formation and evolution of the material’s 
mesoscale morphology as dictated solely by the fundamental 
quantum and statistical mechanical laws governing atomic 
interactions.

In this prospective article we review the application of 
MLIAPs to crystal defects. Our focus is on aspects of the 
development of MLIAPs that are particularly relevant for sys-
tems containing extended crystal defects, especially when they 
differ from conventional approaches employed for molecules 
and liquids. We start with a brief introduction to MLIAPs 
in the “Machine-learning interatomic potentials” section with 
the intention of highlighting how MLIAPs are fundamentally 
changing how investigations of microstructural evolution with 

atomistic simulations are carried out. The “Dislocations” and 
“Grain boundaries” sections cover in depth the development 
of MLIAPs for these two classes of extended defects. Finally, 
the “Improving MLIAPs accuracy for crystal defects” section 
offers a forward-looking view of promising methods and strate-
gies, including notable applications of MLIAP to other defects 
and complex systems.

Machine‑learning interatomic 
potentials

High-fidelity atomic interactions can be obtained directly from 
ab initio techniques, but those are computationally costly and 
scale poorly with system size. For example, density-functional 
theory (DFT) scaling is typically O(N 3

e
) , where Ne is the num-

ber of electrons. This has limited the application of ab initio 
atomistic simulations to systems with only a few hundred 
atoms. Investigation of extended crystal defects with such 
methods is notoriously challenging and—when possible at 
all—is often limited to static simulations. The development 
of linear-scaling DFT methods,[41–43] i.e., O(Ne) , has been an 
active area of research that often extends DFT calculations to 
N
a
≈ 1000 atoms. While linear-scaling DFT has enabled the 

investigation of electronic properties of larger system, this 
approach has not reduced the computational cost enough to 
account for extended crystal defects.

Interatomic potentials (IAPs) are functional representations 
of atomic interactions that are considerably cheaper to evaluate 

dislocations

grain boundary

surface step, vacancies, 
and adatoms

macroscopic crystal

stacking faultssurface orientation

point defects

Figure 1.  The microstructure of a crystal consists of all of its defects, some of which are illustrated here. Traditionally,[1] crystal defects are 
classified according to their dimensionality. Point defects (also known as native defects) are zero-dimensional defects, such as intersti-
tials, vacancies, substitutional defects, surface adatoms, and F-centers. Higher-dimensional defects (also known as extended defects) are 
linear (dislocations, surface steps, and disconnections), planar (grain boundaries, stacking faults, and surfaces), and volumetric (voids and 
cracks). The collection of all defects within a material—known as its microstructure morphology—controls most of its properties.
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and scale linearly with the number of atoms O(Na) . For this 
reason they are often employed to circumvent the size and time 
limitations of ab initio methods. The functional form of tradi-
tional IAPs is often rooted, or at least motivated, by the under-
lying quantum nature of chemical bonds. But, ultimately, such 
functional forms are simplifications of the quantum mechan-
ics of electrons; invariably leading to lower physical fidelity 
than ab initio methods. The degree of physical fidelity of an 
IAP depends not only on its functional form, but also on the 
choice of parameters defining the IAP. Parameters are chosen 
with the goal for calculations with the IAP to reproduce certain 
target material properties such as elastic constants for exam-
ple, which can be obtained experimentally or through ab initio 
calculations.

The introduction of the force-matching technique in Ref. 44 
represented an important development that paved the way to 
the advent of MLIAPs. With this approach the parameters of 
an IAP are fitted to reproduce the forces obtained from ab ini-
tio calculations as closely as possible. Atomic configurations 
employed during the optimization process define—albeit indi-
rectly—which materials properties one can expect the potential 
to reproduce accurately. The force-matching method was suc-
cessful in deriving IAPs with improved physical-fidelity with 
respect to ab initio calculations. Careful design of the data set 
of atomic configurations led to smaller errors. Yet, the ultimate 
accuracy was still limited by the IAP functional form.

Several attempts were made to develop more flexible IAPs 
while still adhering to some underlying physical motivation 
for the functional form. For example, the embedded-atom 
 method[45] (EAM) IAP for metals was derived through rigor-
ous approximations based on DFT. Its successor, the modified 
embedded-atom  method[46] (MEAM), was obtained through a 
much less rigorous approach where angular forces were added 
to EAM in order to account for the covalent character of bonds 
in certain materials, such as in partially filled d-band transition 
metals. In Ref. 47 physical motivations for the functional form 
of certain components of the MEAM potentials were aban-
doned altogether in favor of cubic splines, each with differ-
ent parameters that were fitted by the force-matching method. 
However, the numerical problem being solved was still an opti-
mization problem. Consequently, the bias-variance tradeoff was 
not being considered and the concept of generalization error 
was ill-defined given the lack of separation between test and 
training data sets.

MLIAPs made their first appearance in Ref. 24, when Behler 
and Parrinello trained a neural network potential (NNP) on 
DFT results to predict energies and forces for silicon. With 
MLIAPs one abandons any physical motivation for the func-
tional form of the atomic interactions in favor of the unmatched 
functional flexibility provided by ML models—also referred to 
as the model capacity. A generalized form of the force-match-
ing method is then employed to train the ML model parameters 
to reproduce interatomic forces and energies. Standard tech-
niques from the field of ML are also employed to control the 
bias-variance tradeoff and estimate the generalization error of 

the model. For a review on technical progress in MLIAPs we 
refer the reader to Refs. 48–51.

MLIAPs reproduce atomic interactions from ab initio cal-
culations with high physical fidelity while maintaining the 
same linear scaling with number of atoms as IAPs, which is an 
important property for its employment in cross-scale atomistic 
simulations. Moreover, the accuracy of an MLIAP is system-
atically improvable to a large extent. However, some of the 
most important contributions of MLIAPs to the field of com-
putational materials science are not related to their quantitative 
improvement over IAPs. MLIAPs have made the process of 
creating IAPs more transparent,[15] standardized, and there-
fore more reproducible. The systematization of the process of 
developing MLIAPs also made this approach more accessible 
to the community. Datasets for MLIAPs are easy to construct 
because they employ, in most part, simple DFT calculations. 
Meanwhile, most classes of MLIAPs have their own software 
implementation available to train and test models given a data 
set. Many of these practices and techniques were borrowed 
directly from the field of ML and data science, such as empha-
sis on open-source distribution of software and data sets, repro-
ducibility, and standard statistical metrics to compare compet-
ing models. Together, they facilitate the training of MLIAPs 
tailored for specific applications.

Because of the lack of physical motivation for MLIAPs 
functional forms, the set of atomic configurations employed 
when training the MLIAPs is critically important. The train-
ing data determines not only which materials properties will 
be reproduced accurately, but also the underlying physics of 
the MLIAP. In the following two sections, “Dislocations” and 
“Grain boundaries”, we explore how the judicious choice of 
training configurations and MLIAP models affect the accuracy 
of MLIAPs in describing these two classes of crystal defects. 
Table I lists all the MLIAPs discussed here.

Dislocations
Dislocations[53,54] are linear defects that define the ability of 
certain crystalline materials to deform plastically. Naturally, 
many mechanical properties are controlled by dislocations, 
such as strength and fracture resistance (i.e., toughness). Dis-
locations also play a role in a surprising variety of other situa-
tions, such as ionic transport in ceramics,[55,56] strain relaxation 
between misfit layers of epitaxial thin films,[57] kinetics of crys-
tal growth,[58] and quantum efficiency loss in semiconductor 
devices such as light-emitting diodes and solar cells.[58]

Dislocation-mediated plastic deformation is controlled 
by dislocation interactions through their long-range elastic 
fields.[54] Because of this, any MLIAP aiming at properly 
describing plastic yielding must accurately reproduce the 
elastic constants of the material. Luckily, elastic constants are 
not only easily calculated through DFT simulations, but also 
seem to be routinely reproduced with outstanding accuracy by 
MLIAPs for various materials. For example, in Ref. 15 the 
three independent elastic constants of cubic materials computed 
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by five different MLIAPs for six materials (Ni, Cu, Li, Mo, Si, 
and Ge) are typically within 10% of their DFT values.

While elastic constants depend only on the details of the 
atomic interactions occurring in the perfect crystal structure, 
most other factors governing dislocation-mediated plasticity 
involve atomic environments that are profoundly different from 
the structure of the underlying host lattice. Such environments 
occur in a region within a few lattices spacings of the disloca-
tion line known as the dislocation core. The atomic structure 
and interactions at the dislocation core define a variety of prop-
erties, such as the dislocation mobility, preferred glide planes, 
propensity to move out of glide planes (i.e., cross-slip), and the 
short-ranged part of the elastic interaction with other defects.

Screw dislocations have notoriously low mobilities in 
body-centered cubic (BCC) metals, which makes them the 
most relevant type of dislocations for plasticity in these mate-
rials. This large resistance to glide has its origins precisely 
at the atomic structure of the screw dislocation core region, 
which is non-degenerate (i.e., it does not dissociate into par-
tial dislocations). Many IAPs incorrectly predict a degenerate 
core structure for screw dislocations in BCC metals, with a 

metastable configuration that the dislocation must go through 
while gliding [shown in green in Fig. 2(a)]. The reason IAPs 
for metals have a difficult time capturing the correct structure is 
because BCC transition metals, in which this is observed, have 
atomic interactions dominated by d-band electrons with sig-
nificant directionality (i.e., covalent character), which strongly 
favors contributions from first neighbors.[59] Hence, dislocation 
motion in BCC metals depends strongly on the details of the 
interatomic bonding at the core, making this a good case-study 
for the effectiveness of MLIAPs.

From the discussion above it is clear that any MLIAP aim-
ing to properly describe plastic yielding in BCC metals must 
account for the dislocation core properties accurately. Direct 
DFT calculations of dislocation cores are possible, yet they are 
not as simple to perform as those for the elastic constants and 
require specialized methodologies (see Ref. 60 for a review). 
A promising approach to circumvent the use of dislocations 
cores in training MLIAPs has its origins in the physics of dis-
locations itself. It has long been known that many properties 
of the core are partially defined by the concept of a generalized 
stacking fault,[54,61] i.e., stacking faults in which the atomic slip 

Table I.  List of all machine-learning interatomic potentials (MLIAPs) discussed in this article.

The “Defects considered” columns indicate whether the crystal defect is considered during the development of the MLIAP, which includes 
the incorporation of the defect in the training set or test set. The classes of MLIAPs reviewed include the Gaussian approximation potential 
 (GAP[34,35]), neural network potential  (NNP[24,36]), spectral neighbor analysis potential  (SNAP[30]), quadratic SNAP  (qSNAP[37]), moment tensor 
potential  (MTP[38,39]), quadratic noise machine learning  (QNML[28]) potential, and the physically informed neural networks  (PINN[40]) potential.

Material Defects considered Potential

Grain boundary Dislocations Point defects Stacking faults Surfaces Solid–liquid 
interfaces

Li No No Yes Yes Yes No GAP, MTP, NNP,  qSNAP[15]

Mg No Yes Yes Yes Yes Yes NNP[16]

Yes Yes Yes Yes Yes Yes PINN[17]

Al Yes No No No No No NNP[18,19]

Yes No No No No No GAP[20]

Yes No No No No No NNP[19,21]

Yes Yes Yes Yes Yes No GAP[22]

Si Yes No Yes No Yes No NNP[23]

No No No No No No NNP[24]

No No Yes Yes Yes No GAP, MTP, NNP,  qSNAP[15]

Yes Yes Yes No Yes No NNP[25,26]

Fe No No Yes Yes Yes No GAP[27]

No Yes Yes No Yes No QNML[28]

Ni No No Yes Yes Yes No GAP, MTP, NNP,  qSNAP[15]

Cu No No Yes Yes Yes No GAP, MTP, NNP,  qSNAP[15]

Ge No No Yes Yes Yes No GAP, MTP, NNP,  qSNAP[15]

Zr No Yes Yes Yes Yes No NNP[29]

Mo No No Yes Yes Yes No GAP, MTP, NNP,  qSNAP[15]

No No Yes Yes Yes No SNAP[30]

Ta Yes Yes Yes Yes Yes Yes PINN[31]

Yes No No No No No GTTP[32]

W No Yes Yes Yes Yes No GAP[33]

No Yes Yes Yes Yes No QNML[28]
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between two adjacent atomic planes can assume values that 
vary continuously from zero (no stacking fault) to one Burgers 
vector. Given an atomic plane the generalized stacking fault 
energy for that plane along all possible slip directions is known 
as the γ-surface. The γ-surface fully characterizes the resist-
ance of a perfect crystal to shear along that crystallographic 
plane. This approach was employed in Ref. 27, where the {110} 
and {112} γ-surfaces [shown in Fig. 2(b)] were included in the 
training set for a gaussian approximation  potential[34,35] (GAP) 
for iron, while no dislocation core structures were employed 
for training. The resulting core structure for the 1

2

〈111〉 screw 
dislocation was shown to be compact and nondegenerate, in 
agreement with DFT calculations. The corresponding Peierls 
barrier, obtained through nudged-elastic band calculations, 
was also in good agreement with DFT results and presented a 
single-hump, as shown in Fig. 2(a).

Despite the promising results described above, evidence 
suggests that the direct inclusion of dislocation core structure 
might be indeed necessary. In Ref. 33 a GAP is developed for 
tungsten that reproduces the core structure of screw disloca-
tions. It is shown there that the error in the final dislocation 
core structure (RMS error of Nye tensor for the atoms nearest 
to the dislocation core) is decreased by half by the inclusion 
of the {110} and {112} γ-surfaces in the training set, and by 
one quarter when in addition to the γ-surfaces the disloca-
tion core structure itself is included in the training. Notably, 

the inclusion of the dislocation core did not affect the Peierls 
barrier, indicating that the γ-surfaces are sufficient to capture 
important dislocation core properties that dictate dislocation 
mobility. Yet, the direct inclusion of dislocation cores in the 
training set led to accuracy improvements in the descrip-
tion of the core structure that cannot be obtained otherwise, 
indicating that certain subtleties of the atomic structure of 
dislocation cores cannot be obtained from γ-surface struc-
tures alone.

The direct inclusion of dislocation cores in the training 
set has some important limitations due to the size limitation 
of DFT. Dislocation core structures in DFT are restricted to 
straight dislocations with well-defined line directions, while 
dislocations generally carry a degree of curvature that affects 
their properties. Additionally, the inclusion of a single disloca-
tion line direction in the training set does not guarantee that 
the resulting MLIAP will generalize well to other directions 
because the dislocation core atomic structure—and conse-
quently, the dislocation properties—is strongly dependent on 
the dislocation direction.[62,63] For example, Fig. 2(e) shows the 
variation of the dislocation core energy as a function of its char-
acter angle (i.e., the angle between the line tangent vector and 
the Burgers vector). Another consideration that must be taken 
into account is the fact that dislocation cores present polymor-
phism,[64] with different structures being thermally accessible, 
potentially leading to DFT zero-temperature dislocation core 

Figure 2.  (a) Peierls barrier for 1
2
〈111〉 screw dislocations gliding in the 〈112〉 direction. Many IAPs, such as the EAM potential Mendelev07 

shown here, incorrectly predict a degenerate core structure with a metastable configuration, while all MLIAPs examined here correctly 
predict a non-degenerate core in agreement with DFT calculations. Adapted from Ref. 27. (b) Generalized stacking fault energy (or γ
-surface) for the {112} planes. Including γ-surfaces in the training data sets of MLIAPs have shown to lead to improved accuracy in the 
description of dislocation core features. Reproduced from Ref. 27. (c) Dependence of the enthalpy barrier for kink-pair nucleation as 
function of applied stress as computed with GAP. Inset shows atoms near a dislocation core during glide. The atomic structure around the 
kinks is markedly different from the structure along a straight dislocation. Adapted from Ref. 52. (d) Energy profile along the migration path 
for a straight 1

2
〈111〉 screw dislocation in iron as computed with a NNP. Reproduced from Ref. 26. (e) Dislocation core energy variation 

with the angle between the dislocation line and its Burgers vector (i.e., the character angle) as computed with IAPs. MLIAPs must account 
for the variation in dislocation properties with line direction. We are currently not aware of any investigation on the capacity of MLIAPs to 
extrapolate dislocation properties from the data of a single line direction in the training set.
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structure not being the structures governing dislocation mobil-
ity at finite temperatures.[65]

In order for dislocation motion to occur, the dislocation must 
overcome the lattice resistance to its motion (i.e., the Peierls 
barrier), which has its origins in the structural transformations 
that the core must undergo while moving. Accurate reproduc-
tion of dislocation mobility with MLIAPs requires accounting 
for the dislocation structure along the entire Peierls barrier—as 
opposed to only the Peierls valleys. For example, screw dislo-
cations in BCC metals move by thermally activated kink-pair 
formation due to the large Peierls barrier in these materials, 
resulting in strong temperature and strain-rate dependencies 
of the yield stress.[66]

The atomic structure near a kink [Fig. 2(c)] is markedly 
different from the structure along the straight dislocation line 
and might not be adequately extrapolated by MLIAP from the 
straight dislocation core structure. Yet, simulation cells con-
taining kinks pairs are too large to be employed in DFT simu-
lations. Nevertheless, promising results were obtained from 
kink-pair simulations with MLIAPs. For example, in Ref. 26 
a NNP was employed to compute the formation energy of a 
double-kink pair in iron for a 1

2

〈111〉 screw dislocation gliding 
on the {110} plane. The result, 0.94 eV , is reasonably close to 
an estimation employing a line-tension model and DFT cal-
culations: 0.73 to 0.86 eV . While a direct comparison is not 
possible, the good agreement of the energy profile along the 
migration path for a straight dislocation [Fig. 2(d)] is consist-
ent with this result since this profile controls the energetics 
of double-kink formation. It is interesting to notice that this 
NNP shows a substantial improvement in the description of 
this energy profile over a similar GAP for the same system.[27] 
Because there are no substantial differences in the training sets, 
one is led to assume that the methodology of the MLIAP itself 
is responsible for the observed improvements.

The role of thermal effects on the dislocation slip behavior 
in iron was thoroughly investigated in Ref. 52 employing the 
same GAP from Fig. 2(a) and (b). First, the nucleation and 
migration of kink pairs was observed directly from molecular 
dynamics simulations at finite temperatures, in which the glide 
plane was also observed to be consistent with DFT analyses. 
Nudged-elastic band calculations were then performed to com-
pute the stress-dependent enthalpy barrier for kink-pair nuclea-
tion. The results, shown in Fig. 2(c), are consistent with DFT 
calculations and line-tension theoretical models.

Other notable MLIAPs for BCC metals have also reproduced 
various properties of 1

2

〈111〉 screw dislocations, including the 
magnitude and single saddle-point shape of the migration of the 
Peierls barrier, γ-surfaces, and the kink-pair formation energies 
(always in comparison with line tension models parametrized 
by DFT calculations). The metals considered include iron,[28] 
tungsten,[28] tantalum,[30,66] molybdenum,[30] and niobium.[30]

Investigations of dislocation properties with MLIAPs for 
face-centered cubic (FCC) and hexagonal close packed (HCP) 
materials seem to be less common. Dislocation cores in FCC 

metals are planar and dissociate from 1
2

�110� {111} disloca-
tions into a pair of Shockley partial dislocations 1

6

�112� {111} 
separated by a stacking fault. The separation between partials is 
often too large to be investigated with direct DFT calculations, 
making it challenging to include the dislocation cores directly 
in the MLIAPs training sets. Yet, the separation distance is 
decided by an energy balance between the stacking fault energy 
and the energy associated with the elastic repulsion between 
partials. This makes the inclusion of γ-surfaces in the training 
data set even more important than in the case of BCC metals. 
Dislocations in HCP materials pose an excellent challenge to 
MLIAPs due to the several potential dislocation slip systems 
available, with the choice of which one will be active being 
material-dependent. Similarly to FCC, the inclusion of γ-sur-
faces in the training set of MLIAPs is critical because the pre-
dominant dislocations, 〈a〉 (i.e., 1

3

〈

12̄10

〉

 ), can dissociate into 
partials on the prismatic {1010} or basal {0001} planes depend-
ing on the ratio of the stacking fault energy of these planes. 
�c+ a� (i.e., 1

3

〈

21̄1̄3

〉

 ) dislocations are also observed in HCP 
materials to accommodate deformation along the 〈0001〉 direc-
tion. Examples of investigation of dislocation properties with 
MLIAPs for HCP materials can be found in Refs. 16 and 29.

Grain boundaries
Grain boundaries (GBs) are interfaces between differently ori-
ented crystals of the same phase. The atomic structure near 
GBs is complex and diverse,[67,68] which makes these defects 
as challenging for MLIAPs as dislocations. GB properties are 
often rationalized in terms of the extent of misfit between the 
lattice of the two grains in contact, with the key quantity being 
the reciprocal density of coincident lattice sites between the 
two grains, denoted by � . For example, for a �3 GB one third 
of atom sites are shared between two lattices. GBs with low � 
values (such as �3 ) are expected to exhibit simpler structures 
than high-� GBs. Naturally, low-� GBs are more amenable 
to DFT calculations since their simpler structures often result 
in smaller simulation cells. Consideration of complex GBs 
such as high-misfit and asymmetric GBs is more limited in 
the literature.

Nishiyama et al.[18] constructed MLIAPs for a set of FCC 
elemental metals (Ag, Al, Au, Cu, Pd, and Pt) using gaussian-
type pairwise features and polynomial invariant features. The 
MLIAPs were employed to systematically compute the struc-
ture and excess energy of a family of GBs spanning symmet-
ric-tilt GBs ( �5 〈100〉 , �3 〈110〉 , and �9 〈110〉 ) and pure-twist 
GBs ( �9 〈100〉 ). The MLIAP showed great predictive power 
[Fig. 3(a)], despite the surprising fact that the training dataset 
did not contain any GB structure. Following this approach, one 
could employ the repository of MLIAPs created by  Seko[19] 
(that contains no defect structures in the training data) to 
evaluate the GB structure excess energies for various material 
systems.
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In Ref. 21 Fujii and Seko investigated low and high-� 
GBs in silicon using MLIAPs that were trained using datasets 
with and without GB structures. MLIAPs trained without GB 
structures typically overestimate the GB energies, similarly to 
the behavior observed in IAPs. Meanwhile, appending only 
four GB structure to the 10, 000-structure dataset markedly 
enhanced the potential performance and the prediction accu-
racy of GB energies [Figs. 3(c) and (d)]. The dependence of 
GB properties such as lattice thermal conductivity, phonon 
frequency, and GB energy with respect to the model complex-
ity (or computational cost) of the MLIAPs was also computed 
[Fig. 3(b)].

Alternative approaches to the inclusion of GB struc-
tures in the training dataset have been shown to improve 
the accuracy of GB predictions by MLIAPs, such as opti-
mized structural  features[20,69,70] and physically informed 
training processes.[40,71] For example, Rosenbrock et al.[69] 
introduced two revised versions of SOAP descriptors spe-
cialized in predicting GB energies and structures. Pun 
et al.[40] developed a physically-informed neural networks 
(PINN) potential that combines physics-based models with 

neural-network regression that has good transferability to 
complicated structures such as GBs, stacking faults, and 
solid–liquid interfaces.[17]

Besides the technical developments in improving MLIAP 
accuracy in the description of GBs, MLIAPs have also been 
employed directly in the analyses of GB behaviors and relevant 
features in perovskites,[72] 2D materials,[73] GB complexion 
systems,[74] refractory high-entropy alloys,[75,76] Si,[21–23] Fe,[25] 
CdTe,[77] W,[32] Li

3
N,[78] Ta,[31] and Al.[17,18,20]

Improving MLIAPs accuracy 
for crystal defects
The physical fidelity of atomistic simulations is often consid-
ered tantamount to the accuracy with which atomic interac-
tions are represented. But evaluating the accuracy of a MLIAP 
for the simulation of crystal defects is not trivial. In this sec-
tion we briefly review promising new approaches to evalu-
ate and improve the accuracy of MLIAPs. Focus is given to 

Figure 3.  (a) Grain boundary energy dependence on the rotation angle for symmetric tilt 〈110〉 GB in Al as computed by MLIAPs (purple cir-
cles). Open symbols show the grain boundary energies predicted using an IAP, while DFT values are shown by crosses. Reproduced from 
Ref. 18. (b) Convergence of GBs properties for silicon with the model capacity (or computational cost) of the MLIAPs. The lattice thermal 
conductivities were computed at 700 K. Reproduced from Ref. 21. (c) Grain boundary excess energy convergence with model capacity 
(or computational cost) of the MLIAPs. The MLIAP was trained on a dataset that did not include any GB structure. Reproduced from Ref. 
21. (d) Same as figure (c), but now the 10,000-structure dataset was increased with four GB structures, leading to a markedly enhanced 
performance. Reproduced from Ref. 21.
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approaches that are agnostic to the specific class of MLIAPs 
being employed.

During the development of a MLIAP one includes in the 
training data set a variety of atomic configurations with the goal 
of sampling local atomic environments (LAEs) of relevance for 
defects. But, if the crystal defect of interest requires simulation 
cells too large to be solved by DFT, such as in the case of dislo-
cations with kink-pairs, the configurations including the defect 
cannot be directly included in the training set. One approach 
to circumvent this problem is to use knowledge of the crystal 
defect physics in order to include surrogate configurations that 
approximate the LAEs of interest while being amenable to DFT 
calculations. For example, in the “Dislocations” section it was 
shown that the inclusion of γ-surface configurations leads to 
large improvements in the description of dislocation cores by 
MLIAPs.

Finding physically motivated surrogate configurations 
requires significant intuition (i.e., expert knowledge) and effort. 
An automated version of the approach described above has been 
proposed in Ref. 79 by Goryaeva et al. Given the atomic con-
figuration of a crystal defect the authors in Ref. 79 employ ML 
outlier detection algorithms to generate a metric for the deviation 
of defect LAEs from the LAEs included in the training data set. 
Thus, given a MLIAP and its corresponding training data set 
one can evaluate its reliability when modeling a given defect 
structure. For example, in Fig. 4(a) this metric is evaluated for 
four different types of defects for a GAP potential, indicating 
that two of the defects are not well-described by the MLIAP. A 
similar approach has also been suggested in Ref. 22, where an 
error for the prediction of GAPs can be obtained along with the 
prediction itself [Fig. 4(b)].

Figure 4.  (a) Estimation of the reliability of a MLIAP for four different defects not included in the training data set. Positive values indicate 
local atomic environments (LAEs) that are similar to LAEs in the training set, while negative values indicate outliers. Reproduced from Ref. 
79. (b) Per atom error prediction of GAP for atoms near four different types of defects. Reproduced from Ref. 22. (c) On-the-fly learning 
of a MLIAP for vacancy migration. DFT calls are shown as black dots (left figure) and occur mostly in the beginning of the simulation. The 
accuracy of the resulting MLIAP is compared to DFT by measuring the activation barrier for vacancy migration (right figure). This approach 
enables local atomic environments not included in the training set to be automatically identified and added to the MLIAP. Adapted from 
Ref. 80. (d) Tradeoff between computational cost and accuracy of different MLIAPs trained on the same data set. Points represent MLIAPs 
with different parameters and model capacities. A grid search is performed and the MLIAPs with best tradeoff between computational 
cost and accuracy are shown in red (i.e., the Pareto front). Reproduced from Ref. 19.
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If the crystal defect of interest can be processed by DFT 
calculations, one is able to directly evaluate the MLIAP error 
by calculating the difference in the energy and force computed 
by the MLIAP when compared to DFT results. While mini-
mizing this error—and concurrently avoiding overfitting—is 
important, it does not guarantee that the MLIAP will perform 
well in practice because simulations employing MLIAP might 
explore LAEs outside of the domain of LAEs covered by the 
training set, i.e., the MLIAP would be performing an extrapo-
lation for unknown LAEs instead of an interpolation between 
known LAEs. For example, one might include a certain dis-
location core structure in the training set, but during simula-
tions at finite temperatures the core might undergo a structural 
transformation to a different structure unseen during training.

The general solution to this problem is to identify such LAEs 
and include similar configurations in the training set. In Ref. 80 
this process is automated and performed over the course of a 
molecular dynamics simulation involving the defect (i.e., active 
learning). Figure 4c demonstrates this for the case of vacancy 
migration in aluminum, where after an initial period where many 
calls for DFT calculations are performed to improve the MLIAP, 
the simulation proceeds without any additional DFT calculations. 
The accuracy of the resulting MLIAP is compared to DFT by 
measuring the activation barrier for vacancy migration. In Ref. 
81 an interesting approach to active learning is introduced where 
small subregions of large-scale simulations are identified and 
periodic configurations small enough for DFT calculations are 
constructed out of these subregions.

The balance between computational cost and accuracy of a 
MLIAP is critical for their employment in cross-scale simula-
tions of crystal defects. Given a fixed training set, the accuracy 
of a MLIAP can be systematically improvable to a large extent 
by increasing the underlying ML model complexity. When ade-
quately controlling for the bias-variance tradeoff, increasing the 
model complexity leads to an overall better performance of the 
MLIAP, but it also increases its computational cost. For exam-
ple, with MTPs the degree of the polynomial employed can be 
varied systematically in order to increase the model complex-
ity. Yet, improving the MLIAP accuracy beyond a certain point 
might have no physically distinguishable effect, while making 
the simulations more costly, consequently limiting the applica-
bility of the MLIAP in cross-scale atomistic simulations. For 
example, in Fig. 3(c) it is clear that increasing the model capac-
ity beyond the point highlighted in the figure leads to negligible 
changes in the lattice thermal conductivity, phonon frequen-
cies, and GB energetics. Notice, however, that one could still 
increase the capacity of the MLIAP to the point where calcula-
tions would be one order of magnitude more expensive. In Ref. 
19 Seko constructed a repository of MLIAPs in which each 
MLIAP is trained with three different model capacities, where 
Pareto optimality is estimated through a grid search based on 
the energy prediction error. This allows for users to select the 
accuracy tradeoff with computational costs that best fit their 

goals. One could envision the same approach being applied to 
crystal defects, where the convergence of relevant defect proper-
ties would be evaluated.

Conclusions
The introduction of MLIAPs have dramatically widened the 
spectrum of materials systems that can be simulated with 
high physical fidelity. In this prospective article we have 
highlighted recent successes in training MLIAPs that accu-
rately capture a variety of crystal defect properties, including 
their kinetics. Focus was given to examples including dislo-
cations and grain boundaries. The summary in Table I makes 
it clear that similar work has been performed for a variety 
of other extended and native defects. Yet, the frontier of 
MLIAPs for crystal defects includes a large variety of mate-
rials systems and defects that have not yet been investigated 
in depth. This includes MLIAPs for solid-liquid interfaces 
and strategies for tackling defects in chemically complex 
systems.[83–84] Recent progress in accounting for degrees of 
freedom other than coordinates will soon enable the simula-
tion of defects in systems with magnetic  transitions[85] and 
space charge effects.[86]

Different state-of-the-art MLIAP classes present similar lev-
els of performance and accuracy for crystal defects. Specific 
classes of MLIAPs (e.g., physically informed  MLIAPs[40] or 
MLIAPs employing different atomic  representations[87]) do not 
seem able to learn the physics of crystal defects better than 
others, with the few exceptions identified [Fig. 2(d)] not being 
comprehensive enough to warrant definitive conclusions. This 
suggests that, if the goal is to create more accurate MLIAPs 
for crystal defects, one should focus on the development of 
better training strategies—including training sets—instead of 
pushing for incremental improvements in accuracy through the 
development of a new class of MLIAPs altogether.

The lack of physical motivation for MLIAPs functional 
forms makes the training data set critically important for 
determining which materials properties will be reproduced 
accurately. Recent developments reviewed in the “Improving 
MLIAPs accuracy for crystal defects” section show promising 
methods for improving MLIAPs accuracy for crystal defects by 
automating the analysis of training data sets. Yet, no approach 
has leaped ahead and provided a “MLIAP panacea” for crystal 
defects (i.e., an unbiased and automated approach for creating 
optimal training sets for multiple defect types). For now one 
still needs to rely on expert knowledge regarding the underly-
ing defect physics in order to develop good quality MLIAPs.
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