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of reported COVID-19 incidence 
during the Omicron Surge in the most populous 
U.S. Counties
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Abstract 

Background: Significant immune escape by the Omicron variant, along with the emergence of widespread worry 
fatigue, have called into question the robustness of the previously observed relation between population mobility 
and COVID-19 incidence.

Methods: We employed principal component analysis to construct a one-dimensional summary indicator of six 
Google mobility categories. We related this mobility indicator to case incidence among 111 of the most populous U.S. 
counties during the Omicron surge from December 2021 through February 2022.

Results: Reported COVID-19 incidence peaked earlier and declined more rapidly among those counties exhibiting 
more extensive decline in mobility between December 20 and January 3. Based upon a fixed-effects, longitudinal 
cohort model, we estimated that every 1% decline in mobility between December 20 and January 3 was associated 
with a 0.63% decline in peak incidence during the week ending January 17 (95% confidence interval, 0.40–0.86%). 
Based upon a cross-sectional analysis including mean household size and vaccination participation as covariates, we 
estimated that the same 1% decline in mobility was associated with a 0.36% decline in cumulative reported COVID-19 
incidence from January 10 through February 28 (95% CI, 0.18–0.54%).

Conclusion: Omicron did not simply sweep through the U.S. population until it ran out of susceptible individuals 
to infect. To the contrary, a significant fraction managed to avoid infection by engaging in risk-mitigating behaviors. 
More broadly, the behavioral response to perceived risk should be viewed as an intrinsic component of the natural 
course of epidemics in humans.

Keywords: COVID-19, SARS-CoV-2, Omicron variant, Google mobility reports, principal components, risk-mitigating 
behavior
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Background
Prior to the emergence of the Omicron variant of SARS-
CoV-2, numerous studies in various countries docu-
mented an association between a decline in population 

mobility and a subsequent reduction in reported case 
incidence [1–7]. The principal objective of the present 
study is to begin to assess whether this mobility-inci-
dence relationship similarly prevailed during the more 
recent Omicron-driven wave.

There are several critical reasons why the mobility-
incidence relationship observed for the ancestral strain 
and prior variants of SARS-CoV-2 may not apply equally 
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to Omicron. More than any other variant, Omicron 
exhibited significant immune escape against vaccina-
tion and prior infection [8], though vaccines continued 
to protect against serious disease [9]. Omicron appears 
to have been about twice as transmissible as the Delta 
variant [10], with the larger proportion of asymptomatic 
Omicron infections likely enhancing the prevalence of 
super spreaders [11]. While home testing rose markedly 
in response to the initial news of the variant [12], later 
reports of Omicron’s tendency to spare the deep tissues 
of the lung [13] may have alleviated fears of serious ill-
ness that drive voluntary risk-mitigation behavior [14]. 
There is the further concern that frequently changing 
news reports and public health guidance induced “worry 
fatigue” [15], especially when perceptions of risk and 
compliance with such guidance are themselves subject to 
herd transmission [16, 17].

Mobility is a multidimensional concept that has been 
variously gauged by such diverse measures as smart-
phone visits to bars and restaurants [18], traffic patterns 
[7], and television watching as a proxy for time spent at 
home [19]. Here, following the lead of two key papers [20, 
21], we employ the statistical technique of principal com-
ponent analysis to collapse the six-dimensional Google 
Mobility Reports [22] into a single mobility indicator. 
Further adhering to a recent study of reported case inci-
dence and hospitalization in relation to vaccination rates 
during the Delta surge [23], we restrict our analysis to the 
most populous counties in the United States, together 
comprising approximately 44% of the total U.S. popula-
tion. Such an approach avoids the potential pitfalls of 
comparing small rural counties with large urban centers. 
We focus on the wave of reported cases from December 
2021 through Feb 2022, during which Omicron was far 
and away the dominant variant.

Methods
Data: most populous Counties
We confined our analysis to the most populous counties 
in the United States. From an initial sample of all 112 
counties with population exceeding 600,000, we excluded 
one county (Johnson County KS, population 602,000) as 
a result of missing data on one of the mobility measures 
to be described below. Our analytic sample thus con-
sisted of 111 counties, together comprising 146.5 million 
persons or about 44% of the entire U.S. population. Addi-
tional file 1: Fig. SA maps the locations of all 112 counties 
in the initial sample, identifying the excluded county as 
well.

Data: Google mobility reports
We relied upon Google Mobility Reports [22] to assess 
changes in mobility in each of the 111 counties in our 

analytic sample. Compiled from data on the movements 
of mobile devices, these reports provided daily measures 
of mobility for six distinct categories of places: retail and 
recreation; grocery and pharmacy; parks; transit stations; 
workplaces; and residential [24]. Based upon the number 
of visits to and length of stay in the places in each cat-
egory, the reports showed activity as a percent of base-
line, where the baseline represented the median value 
for the corresponding day of the week during the 5-week 
period from January 3–February 6, 2020. For each of the 
111 counties in the analytic sample and each of the six 
categories of mobility, we computed weekly mean val-
ues of mobility for the week ending Monday, February 
24, 2020, through the week ending Monday, February 28, 
2022. We chose a weekly ending date of Monday solely to 
be conformal with the available data on COVID-19 case 
reports, to be described below.

Data: community profile reports
We relied upon the COVID-19 Community Profile 
Reports, issued regularly by the White House COVID-19 
Team [25], for data on the reported number of COVID-
19 cases in each county for each week, starting with the 
week ending December 6, 2021, and continuing through 
the week ending February 28, 2022. We also relied upon 
this data source for estimates of each county’s population, 
from which we computed COVID-19 incidence rates, as 
well as two county-specific demographic characteristics: 
the U.S. Center for Disease Control’s social vulnerability 
index [26], and the average household size. We included 
the latter characteristic to capture the important influ-
ence of intra-household transmission on COVID-19 inci-
dence [1].

Data: County‑specific vaccination
In addition to the foregoing county-specific demographic 
variables, we relied upon a database of COVID-19 vac-
cination participation rates, compiled by the U.S. Cent-
ers for Disease Control and Prevention [27]. These data 
showed the percentage of each county’s population who 
completed a one- or two-dose series of vaccinations, as 
well as the cumulative number of booster doses per 100 
population, as of December 15, 2021, the earliest date for 
which both measures were available.

Principal component analysis of Google mobility 
categories
We relied upon the data on the six weekly Google mobil-
ity measures in the 111-county database, covering the 
106-week period from the week ending February 24, 
2020, through the week ending February 28, 2022, to 
compute the first principal component as a summary 
measure of mobility [20, 21]. This summary measure, 
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which we refer to here as our mobility indicator, repre-
sents the linear combination of the six individual mobil-
ity categories that captures the largest fraction of the 
overall variance of the data [28]. Denoting by gkit the 
observed value of Google mobility category k in county 
i during week t , we thus computed the indicators xit = 

6
k=1 ζkgkit , where the estimated coefficients ζk were not 

necessarily positive, but where 
∑6

k=1 ζ
2
k  = 1.

County‑specific changes in mobility
Having relied upon the entire database of multidimen-
sional Google mobility categories from the week ending 
February 24, 2020, onward to compute our unidimen-
sional mobility indicator, we then focused on the nar-
rower 13-week period from the week ending December 
6, 2021, through the week ending February 28, 2022, 
which encompassed the Omicron surge in the United 
States [29].

As described in detail in the Results below, we deter-
mined that our mobility indicator xit (where i = 1, … ,111 
and t = 1, … ,13) declined primarily during the interval 
between the week ending December 20, 2021 (that is, 
t = 3) to the week ending January 3, 2022 (that is, t = 
5). For each county i , we thus computed the change in 
the mobility indicator ∆xi = xi5 − xi3 . Since mobility 
declined overall during the 13-week analysis period, the 
quantities ∆xi were negative. We then divided the sam-
ple of counties into the lower half and upper half of the 
distribution of the absolute values |∆xi| , denoting coun-
ties in the lower half as less extensive mobility decline and 
those in the upper half as more extensive mobility decline. 
We defined the binary variable Xi to equal 0 if county i 
was in the lower half of the distribution (less extensive 
decline) and 1 if county i was in the upper half of the dis-
tribution (more extensive decline). This binary variable 
was utilized in graphical comparisons, while the underly-
ing county-specific quantities ∆xi were incorporated into 
longitudinal and cross-sectional statistical models to be 
described below.

Longitudinal cohort of counties
The available data, described above, thus allowed us to 
construct a longitudinal cohort of 111 counties, indexed 
i = 1, …, 111, covering the 13-week period running from 
the week ending December 6, 2021 ( t = 1) through the 
week ending February 28, 2022 ( t = 13). For each county 
i and week t , we had data not only on our constructed 
mobility indicator xit , but also on yit , the incidence of 
reported cases of COVID-19 per 100,000 population.

To examine the qualitative relationships between 
changes in mobility and changes in COVID-19 incidence, 
we first plotted the population-weighted mean values of 
xit and yit over time for the two groups of counties with 

less extensive and more extensive declines in mobility. 
For example, the population-weighted mean mobility 
indicator among less-extensive-decline counties at week t 
would equal 

∑
Xi=0 rixit/

∑
Xi=0 ri , where ri is the popula-

tion of county i and where the summations are only over 
those counties i for which Xi = 0. The other conditional 
means were computed analogously.

To examine the quantitative relationships between 
changes in mobility and changes in COVID-19 incidence, 
we estimated a fixed-effects longitudinal cohort model 
with the following specification:

In Eq. (1), the parameter µ was an overall mean, while 
αi and γt were county-specific and time-specific fixed 
effects, respectively. This longitudinal model permit-
ted us to focus on the parameters βt , which gauged the 
impact of county-specific changes in mobility on a week-
by-week basis. Finally, ǫit were assumed to be spherical 
error terms. This fixed-effects model was estimated by 
ordinary least squares.

Cross‑sectional analyses
To further study the quantitative relationships between 
changes in mobility and changes in COVID-19 incidence, 
we defined the cumulative incidence for each county i 
during the period from week ending January 10, 2022 ( t 
= 6) through the week ending February 28, 2022 ( t = 13) 
as Yi = 

∑13
t=6 yit . We then ran the cross-sectional model:

 
In Eq. (2), the parameter η was an overall mean, while 

the parameters �j captured the effects of county-specific 
covariates Zij . The parameter of interest θ gauged the 
proportional impact the change in mobility ∆xi during 
the period between December 20, 2021, and January 3, 
2022, on the subsequent cumulative reported incidence 
Yi of COVID-19 from the week ending January 10, 2022, 
onward. Finally, νi were assumed to be uncorrelated error 
terms. The model was estimated by population-weighted 
least squares.

This cross-sectional model was repeatedly run under 
varying specifications of subsets of covariates Zij . Speci-
fication A employed no covariates at all. Specification B 
included the county’s average household size, while spec-
ification C also included the social vulnerability index 
(SVI), percent vaccine series completed, and booster 
doses per 100 population. Thus, in contrast to the 

(1)yit = µ+ αi + γt + βt∆xi + ǫit

(2)logYi = η + θ∆xi +
∑

j

�jZij + νi.
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longitudinal model, which assessed the impact of changes 
in mobility on week-by-week COVID-19 incidence, the 
cross-sectional model permitted us to gauge the overall 
impact of changes in mobility on cumulative incidence, 
controlling for a variety of county-specific covariates.

Test for joint causation
An alternative interpretation of the findings of mod-
els (1) and (2) was that both the change in mobility ∆xi 
between December 20 and January 3 and the subsequent 
path of reported incidence yit during January were jointly 
determined by the initial rate of acceleration of cases. If 
so, then inclusion of the initial acceleration rate in the 
model would attenuate any observed correlation between 
changes in mobility and subsequent changes in incidence. 
To address this possibility, we tested the following cross-
sectional model:

 
In Eq.  (3), ∆yi = yi7 − yi6 denotes the change in inci-

dence between January 10 and 17, when cases were peak-
ing, while ∆yAi  = yi5 − yi4 denotes the initial acceleration 
of incidence between December 27 and January 3. As in 
the previous models, κ , � , and ξ were unknown param-
eters, while the υi were assumed to be uncorrelated error 
terms. As in model (2), Eq. (3) was estimated by popula-
tion-weighted least squares. If the initial acceleration of 
COVID-19 cases in each county ∆yAi  jointly determined 
both the mobility response ∆xi and the subsequent path 
of reported incidence ∆yi , then inclusion of the term ∆yAi  
as an explanatory variable in Eq.  (3) would result in an 
estimate of � = 0.

Replication of results on an enlarged database
To assess whether our results were dependent upon the 
specific 600,000-population cutoff used to delimit our 
analytic sample of 111 counties, we repeated the forego-
ing analyses on an enlarged sample of 136 counties with 
population exceeding 500,000 persons. Results for this 
enlarged database are shown in the Supplement.

Results
Mobility indicator
Additional file  1: Table A displays the estimated coeffi-
cients of the first principal component of the six Google 
mobility categories. The Google Retail and Recreation 
category of mobility had the largest contribution to 
the overall variance of our computed mobility indica-
tor, while the Parks category had the smallest contribu-
tion. The Residential category had a negative estimated 

(3)∆yi = κ + �∆xi + ξ∆yAi + υi

coefficient, inasmuch as increases in visits to and dura-
tion of stay in residences reflected a decrease in overall 
mobility.

Figure  1 illustratively graphs the six Google mobility 
categories specifically for Philadelphia County, Penn-
sylvania (population 1,584,000), during the period from 
the week ending December 6, 2021 ( t = 1), through the 
week ending January 31, 2022 ( t = 9). Each of the colored 
piecewise linear plots shows the evolution of one of the 
original Google mobility categories gkit . The thicker 
black plot shows the corresponding evolution of our 
unidimensional mobility indicator xit , calculated from 
the coefficients in Additional file 1: Table A. The path of 
this overall mobility indicator shows a significant decline 
during the two-week interval between the week ending 
December 20, 2021 ( t = 3) and the week ending January 
3, 2022 ( t = 5).

Among the 111 counties under study, we observed a 
median absolute decline of 31.85 units in our unidimen-
sional mobility indicator during the two-week interval 
between the week ending December 20, 2021 ( t = 3) 
and the week ending January 3, 2022 ( t = 5). Thus, we 
classified counties into the less-extensive-decline group 
( Xi = 0) if their observed absolute mobility decline was 
less than this median value and into the more-extensive-
decline group ( Xi = 1) if their absolute mobility decline 
was greater than this median value.

Figure 2 displays illustrative paths of our unidimen-
sional mobility indicator for 14 randomly selected 
counties in less-extensive-decline group ( Xi = 0, left 
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panel) and another 14 randomly selected counties in 
the more-extensive-decline group ( Xi = 1, right panel). 
In both panels, we have highlighted the portions of 
each path covering the 2-week interval from Decem-
ber 10, 2021–January 3, 2022. For the less-extensive-
decline ( Xi = 0) counties on the left, nearly all the 
calculated decline in overall mobility occurred during 
the first week. For the more-extensive-decline ( Xi = 1) 
counties on the right, the calculated mobility indica-
tors continued to decline during the second week

Mobility and case incidence
Figure  3 illustratively displays the combined paths of 
the mobility indicator xit and the case incidence yit 
specifically for Philadelphia County, Pennsylvania. 
The black-colored plot with square datapoints shows 
the path of the mobility indicator, replotted from the 
first principal component shown in Fig.  1, with the 
measurement scale along the left axis. The red-colored 
plot with circular datapoints, with measurement scale 
along the right axis, shows the path of COVID-19 
case incidence in weekly reported cases per 100,000 
population.

For Philadelphia County PA, our computed mobil-
ity indicator xit declined from − 42.15 during the week 
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ending December 20, 2021, to − 75.33 during the week 
ending January 3, 2022. The observed absolute change 
of |∆xi| = 33.18 thus placed Philadelphia County in 
the more-extensive-decline ( Xi = 1) group. One week 
later, by the week ending January 10, 2022, reported 
COVID-19 incidence reached a peak of 1,666 cases per 
100,000 population and declined thereafter.

Longitudinal cohort analysis
For the less extensive and more extensive decline groups 
separately, Fig. 4 graphs the temporal paths of the popu-
lation-weighted mean mobility indicator and population-
weighted mean COVID-19 incidence during the 13-week 
study period. Both mobility and incidence have been 
computed as the change from the week ending Decem-
ber 6, 2021. Changes in mobility (square datapoints, 
measured on the left axis) are identified by the labels “ ∆ 
Mobility,” while changes in incidence (circular datapoints, 
right axis) are identified by the labels “ ∆ Incidence.”

Both the less extensive and more extensive decline 
counties followed essentially the same mobility path 
through the week ending December 27, 2021. During the 
subsequent week ending January 3, 2022, however, the 
two groups diverged, with the more-extensive-decline 
( X = 1) group exhibiting a larger continuing drop in 
mobility. These differences in mobility are reflected in 
the divergent paths of incremental COVID-19 inci-
dence. Among less-extensive-decline ( X = 0) counties, 

incidence peaked during the week ending January 17, 
while among more-extensive-decline ( X = 1) counties, 
incidence reached a lower peak one week earlier.

Additional file  1: Table B shows our estimates of the 
parameters of the fixed-effects model of Eq.  (1). Fig-
ure  5 below graphs the estimates of the key parameters 
of interest βt for each week from t = 2, …, 13, as derived 
from that model. Since t = 1 (ending December 6, 2021) 
was the reference category, the parameter β1 was neces-
sarily constrained to equal 1. The estimates of βt from the 
week ending January 17 ( t = 7) through the week end-
ing February 14 ( t = 11) are all positive and significant 
at the 5-percent level. For the peak week ending January 
17, 2022, the estimated parameter was β7 = 37.7 with 
95% confidence interval 23.9–51.4 (p < 0.001). That is, an 
additional one-point drop in our mobility indicator was 
associated with an incremental decline of 37.7 weekly 
reported cases of COVID-19 per 100,000 population.

Based upon the observed sample means, we can rein-
terpret this estimated peak marginal effect β7 as an 
elasticity, that is, as the estimated percentage drop in 
incidence corresponding to a one-percentage decrease 
in mobility. With a population-weighted mean reported 
incidence of 1,729 cases per 100,000 during the week 
ending January 17, each one-point drop in mobility is 
thus associated with a 37.7/1729 = 2.18% drop in inci-
dence (95% CI, 1.38–2.97%). At the population-weighted 
mean value of ∆x equal to − 29.04, each one-point 
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decrease represents a 1/29.04 = 3.44% decline in mobil-
ity. Thus, we obtain an estimated elasticity of 2.18/3.44 = 
0.63 with a 95% confidence interval of 0.40–0.86.

Cross‑sectional results
Additional file  1: Table C displays our estimates of the 
parameters of the cross-sectional model of Eq.  (2). The 
estimated parameter θ was significantly different from 
zero in a bivariate specification on the change in mobility 
(specification A) as well as in multivariate specifications 
(B and C) that included demographic covariates and 
vaccination participation rates. Apart from the change 
in mobility, average household size was the only other 
explanatory variable exhibiting a statistically signifi-
cant association with cumulative reported COVID-19 
incidence.

Figure  6 plots the cumulative cases per 100 popula-
tion between the week ending January 10, 2022, and the 
week ending February 28, 2022 (that is, the variable Yi 
in Eq.  (2)) against the change in our calculated mobility 
indicator ( ∆xi ) between December 20, 2021, and Janu-
ary 3, 2022 (that is, the variable ∆xi ). In accordance with 
the log-linear specification of Eq.  (2), the vertical axis is 

measured on a logarithmic scale. The size of each data-
point reflects the county population.

The superimposed line represents the population-
weighted least squares fit to the data. This corresponds 
to the bivariate regression of logYi versus ∆xi with-
out additional covariates Zi , shown as specification A 
in Additional file  1: Table C. The estimate of the slope 
parameter θ was 0.0124, with 95% confidence interval 
0.0060–0.0.187. We can similarly reinterpret this cumula-
tive marginal effect as an elasticity. Thus, every additional 
one-point decrease in our calculated mobility indicator 
was associated with a 1.24% decline in cumulative case 
incidence. At the population-weighted mean value of ∆x 
equal to − 29.04, each one-point decrease represents a 
1/29.04 = 3.44% decline in mobility. Thus, we obtain an 
estimated elasticity of 1.24/3.44 = 0.36 with a 95% confi-
dence interval of 0.18–0.54.

Test of joint causation
Additional file 1: Table SD displays the estimates of our 
joint causation model (3). We found that the estimated 
coefficient ξ of the initial acceleration of reported inci-
dence ∆yAi  was negative. That is, early acceleration of 
COVID-19 incidence during the week after December 
27 was associated with a decline from peak incidence 
during the week after January 10. However, inclusion 
of the covariate ∆yAi   in the cross-sectional model did 
not materially affect the significant positive coefficient � 
of the change in mobility ∆xi. Additional file  1: Fig. SB 
further shows graphically how the inclusion of the addi-
tional covariate ∆yAi resulted in no material change in 
the fitted linear model relating the change in incidence 
∆yi between January 10 and January 17 to the change in 
mobility ∆xi between December 20 and January 3.

Results for an extended database of 136 Counties
Our analyses of an extended sample of 136 counties with 
population exceeding 500,000 yielded results consistent 
with those reported for the primary analytic sample of 
111 counties. Additional file  1: Figs. SC and D, respec-
tively, show the results corresponding to Figs.  4 and 5 
above.

Discussion
Interpreting elasticities
For each one-percent decline in our unidimensional 
measure of mobility, we have estimated a 0.63% decline 
in peak reported case incidence (95% confidence inter-
val, 0.40 to 0.86%) and a 0.36% decline in cumulative 
reported case incidence (95% confidence interval, 0.18 to 
0.54%). That the short-term elasticity of peak incidence 
turns out to be greater than the longer-term elasticity 
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Fig. 6 Cumulative Reported COVID-19 Cases per 100 Population 
During January 10 Through February 28, 2022 ( ∆ Incidence) Versus 
the Change in the Mobility Indicator During December 20, 2021, 
Through January 3, 2022 ( ∆ Mobility), Plotted for 111 Counties. The 
size of each datapoint reflects the county population. Cumulative 
reported COVID-19 cases are plotted on a logarithmic scale. The 
weighted least squares fitted line is shown in red. The estimated 
slope, corresponding to the parameter θ in Eq. (2) was 0.0124 with 
95% CI (0.0060, 0.0187). That is, every additional 1-point reduction 
in the mobility indicator was associated with a 1.24% decline in 
cumulative reported cases per 100 persons. The outlier in the 
plot is identified as Cuyahoga County, Ohio. The vertical axis plots 
cumulative case incidence from the week ending January 10 onward. 
Cumulative incidence for the entire Omicron wave, from the week 
ending December 6, 2021, averaged 9 per 100 population
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of cumulative incidence is hardly unexpected. As the 
prevalence of infection falls beyond the peak of epidemic 
wave, the effectiveness of risk-avoidance measures would 
be expected to decline. The declining marginal effects 
derived from the longitudinal cohort model, as seen in 
Fig. 5, are consistent with this interpretation.

Nor is it unexpected that the estimated mobility-inci-
dence elasticity should be less than 1 even at the peak of 
the Omicron wave. For it implies that there were some 
sources of infection whose risks could not be mitigated 
through the available mobility-reduction strategies. Con-
sider, for example, an individual whose only source of 
infection was taking public transport to work. If she cut 
back her exposure through this modality by x percent, 
her risk of infection would likewise decline by x percent, 
and the mobility-incidence elasticity would be 1. If, on 
the other hand, intrahousehold transmission from family 
members was a second, independent source of infection, 
then her cutting back on public transport by x percent 
would lower her infection risk by less than x percent, 
and the corresponding elasticity would be less than unity. 
Our finding that average household size was a significant 
determinant of county-specific Omicron case incidence 
(Additional file 1: Table C) suggests that this example is 
more than hypothetical.

Change in Behavior as an intrinsic feature of course 
of epidemics in humans
Our results belie the hypothesis that Omicron simply 
swept through the population until the variant ran out of 
susceptible individuals to infect. For the entire Omicron 
surge, cumulative reported incidence averaged approxi-
mately 9 cases per 100 population (Fig.  6). If only one-
fourth of all Omicron infections were reported by public 
authorities [30], then approximately 36% of the popula-
tion became infected during the Omicron surge. In view 
of Omicron’s documented capacity for immune escape 
from vaccination and prior infection [8], there had to 
be no small fraction of susceptible individuals who, by 
engaging in risk-mitigating behaviors, managed to avoid 
infection.

Our findings reinforce the broader conclusion that 
the behavioral response to perceived risk needs to be 
regarded as an intrinsic component of the course of epi-
demics in humans. Quite apart from the evidence now 
accumulated in the ongoing COVID-19 pandemic, such 
behavioral responses have been documented for HIV in 
developing countries [31], the SARS outbreak in Hong 
Kong [32], the swine flu outbreak [33], the H1N1 influ-
enza outbreak [34], and sexually transmitted diseases 
generally [35].

The decline in mobility began before the peak in disease 
incidence
Theoretical treatments of the human behavioral response 
during an epidemic have generally adopted the ad hoc 
strategy of making the contact frequency between sus-
ceptible and infected persons an inverse function of the 
contemporary prevalence of infection [36–39]. The dif-
ficulty with this approach is that, as shown in Figs. 2, 3 
and 4, the decline in mobility occurred 2–3 weeks before 
the peak in reported incidence. One possible explanation 
is that changes in behavior were a response to extensive 
news about the upcoming surge in infections, rather than 
the surge itself.

Omicron emerged on the world scene in late Novem-
ber 2021 essentially as an unanticipated shock. The ini-
tial reaction to this shock was a wave of news reports 
through the first three weeks of December, bracing the 
country for the coming surge of cases and hospitaliza-
tions [40–45]. According to Google Trends data for the 
U.S. [46, 47], searches for “omicron” initially rose at the 
end of November and then surged during the third week 
of December, reaching a peak on December 21, while 
searches for “covid omicron symptoms” subsequently 
peaked on December 27, 2021. Robust models of changes 
in behavior during an epidemic need to account for the 
critical intervening role of the media [48–51].

The dynamics of a natural experiment
Our findings can be thus interpreted as the result of a 
natural experiment precipitated by the unanticipated 
shock of Omicron’s emergence. The widespread decline 
in mobility across multiple counties, observed in Fig.  2, 
was a reaction to the rapid, nationwide diffusion of the 
news about the new variant. While these mobility reac-
tions were closely aligned temporally, their magnitudes 
varied nontrivially. As a result of these geographic vari-
ations in the extent of mobility decline, we observed 
subsequent variations in the depth of the variant’s pene-
tration across communities. Thus, an initial shock across 
an entire country produced responses of variable magni-
tude intended to modulate the shock, which in turn led to 
dynamic variations in the ultimate impact of the shock.

The marked declines in mobility observed in Figs. 2, 3 
and 4 took place during the weeks immediately before 
and after the Christmas holidays. The Google Retail & 
Recreation category, we found, was the largest source 
of variation in our overall mobility indicator. Retail con-
sumer prices rose markedly in the U.S. during the month 
of December. These observations raise the possibil-
ity that inflation was yet another exogenous shock that 
drove down mobility, However, they do not refute the 
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hypothesis that the principal shock was the unexpected 
news about an upcoming wave of coronavirus infections. 
Nor do they cast doubt on the conclusion that declines 
in mobility—whatever their cause—resulted in a subse-
quent reduction in COVID-19 incidence.

The argument for reverse causation
The principal objection to this natural-experiment inter-
pretation is that the near-coincident declines in mobil-
ity were not random and, accordingly, our study design 
cannot demonstrate a purely causal relation between 
mobility and the incidence of infection. To the contrary, 
the argument goes, the observed declines in our unidi-
mensional mobility indicator between the week ending 
December 10, 2021, and the week ending January 3, 2022, 
could also have been an early response to the emerging 
Omicron wave. One might conjecture, in fact, that the 
somewhat greater COVID-19 incidence in high-mobility-
decline counties seen in Fig. 4, especially during the week 
ending January 3, was in fact the stimulus for the inhabit-
ants of those counties to continue to engage in mobility-
reducing behaviors. Such an interpretation would seem 
to square with the significant negative estimate of the 
parameter β5 in Fig. 5.

In view of such reverse causation, our estimates of the 
parameters β7 through β13 in Fig. 5, covering the period 
from the week ending January 13 onward, may indeed be 
biased upward, as is our cross-sectional slope parameter 
θ in Fig.  6. However, the results of our joint causation 
model (Additional file  1: Table SD, Fig. B) suggest that 
the magnitude of this bias is likely to be small. In short, 
the striking temporal relation between the extent of the 
mobility reductions observed through the week ending 
January 3 and the subsequent divergence in COVID-19 
incidence, as seen in Fig. 4, cannot readily be explained 
by reverse causation.

Policy endogeneity
It would have been preferable, some might contend, to 
instead construct predictor variables based upon the 
extent of policy restrictions on mobility imposed in each 
county, such as renewed requirements on indoor mask 
use. In principle, such restrictions would be regarded as 
exogenous instruments to identify the unbiased effect of 
the endogenous mobility indicator that we have relied 
upon here [52]. The problem with this approach is that 
policies intended to restrict mobility are likewise endog-
enous, that is, they are also subject to reverse causation. 
Thus, a public authority’s decision to impose a mask 
mandate may just as well be a response to news of rising 
COVID-19 cases as an individual’s uncoerced decision 
not to take the subway.

There is little basis to suppose, in any event, that 
declines in mobility such as those consistently observed 
in Figs. 1, 2, 3 and 4 are necessarily responses to coercive 
measures by public authorities. The near collapse of sub-
way ridership in New York City during the second week 
of March 2020 was followed within 1–2 weeks by the flat-
tening of the COVID-19 incidence curve. Yet no govern-
ment authority ordered New Yorkers to stop taking the 
subway en masse [2].

Appropriateness of a unidimensional mobility indicator
The data in Figs. 1, 2, 3 and 4 make a strong case in favor 
of the suitability of our unidimensional summary indi-
cator of the six Google mobility categories. In the illus-
trative plot in Fig.  1, we saw how five of the individual 
categories tended to move together, while the residential 
category tended to move in the opposite direction. Our 
principal component analysis (Additional file 1: Table A) 
confirmed these observations and further demonstrated 
that visits to retail establishments captured a larger frac-
tion of the overall variance of the six categories. In the 
illustrative plot of Fig. 2, we saw how the resulting uni-
dimensional indicator consistently captured changes in 
mobility during the two-week interval from the week 
ending December 20 to the week ending January 3. In 
Figs. 3 and 4, we saw how the temporal path of our unidi-
mensional mobility indicator during that interval was fol-
lowed by a peaking in reported Omicron cases 2–3 weeks 
later.

Cross‑sectional analysis with covariates
In our longitudinal cohort analysis of Eq. (1), we relied on 
the statistical technique of fixed effects to capture other, 
persistent unobserved characteristics of individual coun-
ties. In the cross-sectional analysis of Eq. (2), by contrast, 
we relied upon county-specific demographic variables 
and indicators of vaccination participation. Unfortu-
nately, we did not have county-specific data on booster 
vaccinations before December 15, 2021. Consequently, 
our data may include a nontrivial number of recent vac-
cinations in response to emerging news about the coming 
Omicron wave.

In contrast to our longitudinal study of a cohort of 111 
counties over 13 successive weeks, our cross-sectional 
analysis encompassed only 111 county-specific observa-
tions on cumulative reported COVID-19 incidence. As 
already noted, reported cases of Omicron may have con-
stituted no more than one-quarter of all incident cases 
[30]. This observation raises the possibility that the degree 
of underreporting in a particular county was related to 
the magnitude of the observed decline in mobility. To 
the extent that counties with a higher perceived risk and 
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greater self-imposed declines in mobility also reported 
more cases, our cross-sectional estimates would under-
state the strength of the mobility-incidence relationship.

Conclusion
This study documented a striking dynamic relationship 
between declines in mobility and subsequently reported 
reductions in case incidence during the Omicron surge 
in the most populous counties in the United States. The 
mobility-incidence relation prevailed despite the high 
degree of immune escape by the Omicron variant, as 
well as the potentially dissuasive effects of so-called 
worry fatigue on risk-mitigating behavior. Our findings 
imply that a significant fraction of the population man-
aged to avoid infection by engaging in risk-mitigating 
behaviors. More broadly, the behavioral response to 
perceived risk should be viewed as an intrinsic compo-
nent of the natural course of epidemics in humans.
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