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Abstract 
Background: Operative courses of laparoscopic cholecystectomies vary widely due to differing 

pathologies. Efforts to assess intra-operative difficulty include the Parkland Grading Scale 

(PGS), which scores inflammation from the initial view of the gallbladder on a 1-5 scale. We 

investigated the impact of PGS on intra-operative outcomes, including laparoscopic duration, 

attainment of the Critical View of Safety (CVS), and gallbladder injury. We additionally trained 

an artificial intelligence (AI) model to identify PGS.  

Methods: One surgeon labeled surgical phases, PGS, CVS attainment, and gallbladder injury 

in 200 cholecystectomy videos. We used multilevel Bayesian regression models to analyze the 

PGS’s effect on intra-operative outcomes. We trained AI models to identify PGS from an initial 

view of the gallbladder and compared model performance to annotations by a second surgeon. 

Results: Slightly inflamed gallbladders (PGS-2) minimally increased duration, adding 2.7 (95% 

Compatibility Interval (CI) 0.3-7.0) minutes to an operation. This contrasted with maximally 

inflamed gallbladders (PGS-5), where on average 16.9 (95% CI 4.4-33.9) minutes were added, 

with 31.3 (95% CI 8.0-67.5) minutes added for the most affected surgeon. Inadvertent 

gallbladder injury occurred in 25% of cases, with a minimal increase in gallbladder injury 

observed with added inflammation. However, up to a 28% (95% CI -2, 63) increase in 

probability of a gallbladder hole during PGS-5 cases was observed for some surgeons. 

Inflammation had no substantial effect on whether or not a surgeon attained the CVS. An AI 

model could reliably (Krippendorff’s α=0.71, 95% CI 0.65-0.77) quantify inflammation when 

compared to a second surgeon (α=0.82, 95% CI 0.75 - 0.87). 

Conclusions: An AI model can identify the degree of gallbladder inflammation, which is 

predictive of cholecystectomy intra-operative course. This automated assessment could be 

useful for operating room workflow optimization and for targeted per-surgeon and per-resident 

feedback to accelerate acquisition of operative skills. 

Keywords: Computer Vision. Deep learning. Artificial Intelligence. Cholecystectomy. 
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Introduction 
Operative courses of laparoscopic cholecystectomies vary widely due to differing pathologies. 

These pathologies, which can range from symptomatic biliary colic to gangrenous cholecystitis, 

create unique intra-operative challenges through their differing degrees of inflammation. Many 

intra-operative grading scales exist to assess gallbladder inflammation, such as the G10 

gallbladder scoring system, Nassar operative difficulty scale, and the Parkland Grading Scale 

(PGS) [1–3]. For example, the PGS ranks gallbladder inflammation from 1 to 5, with 5 being the 

worst, based on the initial intra-operative view of the gallbladder. Previous studies have 

investigated these scales’ associations with post-operative outcomes, such as bile leak and 

readmission, and intra-operative outcomes, such as conversion to open surgery, operative 

duration, bile spillage, and bleeding [4–6]. However, these previous studies did not account for 

the most important driver of differences in these outcomes: the surgeon [7]. They also did not 

investigate if inflammation had an effect on whether or not the surgeon attained the Critical View 

of Safety (CVS). 

We hypothesized that gallbladder inflammation affects the operative course. In particular, we 

investigated the effect of gallbladder inflammation, as quantified by the PGS, on operative 

duration, creation of inadvertent holes in the gallbladder, and attainment of the CVS. PGS was 

used, rather than the Nassar and G10 grading scales, due to its objective subcomponents and 

proven inter-rater reliability [6]. We used multilevel Bayesian models to allow for differing effects 

by surgeon and to precisely quantify the change in outcome between levels of gallbladder 

inflammation, as scored with the PGS. We additionally trained an Artificial Intelligence (AI) 

model to identify PGS to allow for real-time prediction of operative events. This AI model used 

computer vision, a subfield of AI that teaches machines visual comprehension. 

Materials and Methods 

Institutional Approval 
This study’s protocol was reviewed and approved by the Mass General Brigham Institutional 

Review Board (Protocol No: 2018P001641). Written patient consent for use of the videos for 

research purposes was obtained prior to any procedures being performed. 

Dataset 
We collected 200 laparoscopic cholecystectomy videos from the Massachusetts General 

Hospital (Boston, MA). Videos were processed and de-identified with the FFmpeg software [8]. 

Videos were linked to the surgeon who performed the case with an anonymized identifier. One 

surgeon annotated each video for operative phases, level of inflammation (PGS), attainment of 

the CVS, and gallbladder injury during removal from the liver bed. A second surgeon also 

reviewed and annotated every representative frame with a PGS rating to be used for evaluation 

of the computer vision models’ performance. The surgical phases annotated included Port 

Placement, Fundus Retraction, Release of Gallbladder Peritoneum, Dissection of Calot’s 

Triangle, Intra-operative Cholangiogram, Cystic Artery Clipping, Cystic Artery Division, Cystic 

Duct Clipping, Cystic Duct Division, Removal of Gallbladder from Liver Bed, and Bagging, 

following guidelines defined in our prior work [9]. From the timestamps and duration of each 

surgical phase, additional metrics for each video were calculated, including time until first clip 

application, dissection duration, and laparoscopic duration (total video duration with any intra-

operative cholangiogram time subtracted). The timestamp when the CVS was first completely 

achieved, as defined by Strasberg et al., was recorded for each video [10]. A frame from each 
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video was extracted that best showed the initial gallbladder view. This frame was then given a 

PGS rating on the five-point, 1 (least inflamed) through 5 (most inflamed), scale, following the 

definitions outlined in Madni et al. [6].  Each subcomponent (adhesions, gallbladder 

appearance, distention, perforation, necrosis) of the PGS rating was also recorded. Timestamps 

for dissection tool created full-thickness gallbladder injuries during removal from the liver bed 

were also recorded.  

Computer Vision Models 
We trained two different computer vision models to classify the PGS of the representative image 

from each operative video. The first model, PGS-only, trained one neural network to classify 

PGS using the PGS labels alone. The second model, PGS-combo, trained two neural networks: 

one to classify level of adhesions and the other to classify gallbladder appearance. The PGS 

was then calculated from these subcomponents. Resnet50, a Convolutional Neural Network 

(CNN), was the visual network trained in all models, using the fastai deep learning library [11, 

12]. Model training and performance was done with a 10-fold cross-validation strategy. Stratified 

random sampling by PGS was performed to create the 10 folds. Each of the 10 folds was a 

90:10 split of training to test images. Every network was then trained on each fold of the data. 

No data from the training sets was used in the test sets. For each training regimen, the network 

was trained for 35 epochs on training images that had undergone standard augmentation 

transforms with an initial learning rate of 2 * 10-3 followed by a discriminative learning rate. The 

initial learning rate was chosen with a learning rate finder [13]. 

Statistical Analysis 
We analyzed the effect of gallbladder inflammation, as represented by PGS, on three different 

outcomes using multilevel (mixed effects) regression models. We first looked at its effect on the 

magnitude (logarithm) of operative duration because factors that increase duration tend to do so 

exponentially. For example, a hole in the gallbladder leads to stone spillage, which then requires 

stone retrieval and irrigation. Likewise, an inflamed gallbladder is more difficult to grasp, which 

may make an already more difficult dissection harder to complete. This decision is further 

supported by literature that shows that surgical procedure times, across all varieties of 

procedures, follow a logarithmic distribution [7, 14]. We additionally looked at the effect of PGS 

on two other binary events: the likelihood that a surgeon would attain the CVS and the likelihood 

that a full-thickness injury (hole) would be created in the gallbladder during its removal. 

Each model was similarly structured, with a varying (random) intercept for each surgeon, 

representing the outcome’s value for that surgeon with a gallbladder PGS-1. Each surgeon was 

also assigned a varying (random) slope that represented the effect on the outcome for 

increases in PGS beyond 1. We used a multilevel varying intercepts and slopes approach 

grouped on surgeon to account for the effect of different surgeons’ technique preferences on the 

outcomes, leveraging partial pooling to improve estimates for each surgeon, particularly those 

with few cases in the dataset. It also allowed us to model the correlation between a surgeon’s 

outcome for a PGS-1 and the effect increases of PGS had on them. For example, if these were 

closely correlated, a surgeon that was fast at operating would be minimally affected by 

increases in PGS, while a slower surgeon would be more affected. We modeled PGS as an 

ordered categorical predictor, which allowed each incremental increase in PGS to have a 

different effect. As an example, going from a 1 to a 2 may have a smaller effect on the outcome 

than going from a 2 to a 3. Only cases from surgeons who contributed five or more cases was 

included. The full mathematical definition for each model is available in the Supplement. 
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All regression models were made and analyzed in R version 4.0.5 using the rethinking package 

version 2.13 [15, 16]. The rethinking package is an interface to Stan, a probabilistic 

programming language for specifying statistical models that uses Hamiltonian Monte Carlo 

sampling to provide Bayesian inference [17]. Every model used weakly regularizing priors. All 

Markov chains sampled well, with R̂ values less than 1.01, and trace plots and rank histograms 

showed no evidence of biased posterior exploration nor divergent transitions [18]. Means and 

compatibility intervals (CI) were reported for regression coefficients. Compatibility intervals show 

the range for a parameter’s value as seen across all values sampled in the model’s Markov 

chains. 

For each computer vision model, we calculated cross-validation performance, using 

Krippendorff’s alpha for ordinal data as our agreement statistic. We chose Krippendorff’s alpha 

since it assigns an increasing penalty to incorrect classifications as their distance from the truth 

increases. For example, mis-classifying a PGS-5 as a PGS-1 leads to a higher penalty than 

misclassifying it as a PGS-4. In general, an alpha of 0.8 or greater is considered highly reliable, 

and an alpha between 0.667 and 0.800 is tentatively reliable [19]. The model’s cross-validated 

performance was then compared to a second surgeon’s PGS annotations. A confidence interval 

for the second surgeon’s Krippendorff’s alpha was using 10,000 bootstrap estimates. 

Calculation of Krippendorff’s alpha was performed with the irr software package [20]. Graphics 

were generated with ggplot2 and ggdist [21, 22]. All code for analyses is available online [23]. 

Results 

Video Information 
200 laparoscopic cholecystectomy videos were collected. In 196 videos, the entire case was 

recorded. 153 videos were performed by ten surgeons who had contributed five or more cases. 

The surgeons had a median (inter-quartile range (IQR)) of 10.6 (5.4-21.6) years of experience. 

Of the ten surgeons, four had minimally invasive fellowship training, four had trauma fellowship 

training, one was a hepatopancreaticobiliary surgeon, and one was a general surgeon. The 

dataset contained 42, 39, 42, 24, and 6 videos with a PGS of 1, 2, 3, 4, and 5 respectively. The 

median (IQR) laparoscopic duration was 38 (22-61) minutes. Surgeons obtained the CVS in 

34% of cases and created inadvertent holes in the gallbladder during dissection from the liver 

bed 25% of the time. 

Performance of Computer Vision Models 
We trained two computer vision models, PGS-only and PGS-combo, to classify PGS in a 

representative image from each case showing the initial gallbladder view. Using 10-fold cross 

validation, the two models agreed with the first surgeon’s annotations, having a Krippendorff’s 

alpha coefficient of 0.64 (95% CI 0.55-0.72) and 0.71 (95% CI 0.65-0.77), respectively. The 

PGS-combo model outperformed the PGS-only model due to improved classification of the 

underrepresented PGS-4 and PGS-5 gallbladders (Fig. 1). The PGS-combo model had 

comparable performance to that of the second surgeon annotator, whose Krippendorff’s alpha 

coefficient was 0.82 (95% CI 0.75, 0.87) when compared to the first surgeon annotator. 

Effect of Gallbladder Inflammation on Operative Outcomes 
We analyzed the effect of gallbladder inflammation, as represented by PGS, on three different 

outcomes. We first analyzed its effect on laparoscopic case duration. On average across all 

surgeons and cases in our dataset, a PGS-2 resulted in minimal increases in operative duration, 
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adding 2.7 (95% CI 0.3-7.0) minutes to an operation. Higher levels of inflammation caused large 

increases in operative duration, with a PGS-5 adding 16.9 (95% CI 4.4-33.9) minutes to the 

operation (Fig. 2). The PGS effect varied across surgeons, with the most affected surgeon 

experiencing an increase of 31.3 (95% CI 8.0-67.5) minutes when that surgeon operated on a 

maximally inflamed (PGS-5) gallbladder. There was minimal correlation (ρ = 0.06) between 

surgeons’ cholecystectomy times for a minimally inflamed (PGS-1) gallbladder and the increase 

in operative duration they required with increasing gallbladder inflammation. 

We next analyzed the effect of inflammation on the probability that a hole would be created in 

the gallbladder during its removal. Increases in inflammation resulted in minimal to weakly 

positive increase in the probability of a gallbladder hole from the baseline rate of 25% seen 

across all surgeons. PGS of 2, 3, 4, and 5 resulted in a percent increase in cases with an 

inadvertent hole (95% CI) of 2% (-2, 7), 5% (-4, 17), 8% (-6, 24) and 11% (-9, 34), respectively. 

As with the effect of inflammation on case duration, some surgeons were more affected by 

inflammation, with the most affected surgeon having a 28% (-2, 63) increase in the probability of 

a gallbladder hole for a PGS-5 (Fig. 3). There was minimal correlation (ρ = -0.03) between a 

surgeon’s baseline probability of a gallbladder hole for a minimally inflamed gallbladder and the 

incremental effect of increasing inflammation. 

Last, we analyzed the effect of inflammation on the probability that a surgeon would attain the 

CVS. Across all surgeons in the dataset, inflammation had no substantial effect on whether or 

not a surgeon attained the CVS, with a case where the PGS was 5 having an odds ratio (OR) of 

attaining the CVS, compared to a case with a PGS-1, of 0.57 (95% CI 0.09, 1.98). Unlike with 

operative duration and probability of a gallbladder hole, even on the most affected surgeon, 

inflammation had no substantial effect, with an OR for a PGS-5 compared to a PGS-1 of 

attaining the CVS of 0.58 (95% CI 0.05, 2.3) (Fig. 4). There was no correlation (ρ = 0.00) 

between surgeons’ baseline probabilities of attaining the CVS for a minimally inflamed 

gallbladder versus those that were more inflamed. 

Discussion 
This study demonstrated the effect of varying levels of gallbladder inflammation on laparoscopic 

cholecystectomy operative duration and intra-operative events, including creation of inadvertent 

holes in the gallbladder and attainment of the CVS. Our statistical models built upon prior efforts 

and incorporated predictions personalized to each surgeon [4–6]. They additionally allowed for 

each increment in inflammation to have a different effect on the outcome. This flexible modeling 

demonstrated that going from a PGS-1 to PGS-2 gallbladder had little effect, in contrast to 

further increases in inflammation (Fig. 2, 3). Lastly, we demonstrated that gallbladder 

inflammation can reliably be identified by an AI computer vision model.  

Operating room (OR) time is expensive and a limited resource. Large amounts of the literature 

have worked to optimize operative workflow to maximize OR utilization and minimize costs [24]. 

Orchestrating operative scheduling and workflow requires accurate predictions of case length. 

Traditionally, case duration has been predicted either from historical surgeon averages or 

statistical models that take into account the surgeon and procedure [7]. A more recent paper for 

laparoscopic cholecystectomy used pre-operative patient factors to improve prediction, 

however, predictive accuracy remained low [25]. Another paper used AI and computer vision to 

predict the next fifteen seconds of a case but did not try to predict overall case duration or the 

occurrence of any adverse intra-operative events [26]. Particularly for cases that vary 
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substantially in length, such as cholecystectomy, these models fail to account for the intra-

operative conditions that drive the variability in surgeons’ times. We believe that every operation 

has a few “cornerstone” limiting factors upon which the majority of intra-operative variability 

rests. These cornerstones may range from the presence of intra-abdominal adhesions for 

gastrointestinal surgery or, in the case of cholecystectomy, the degree of gallbladder 

inflammation. Accurate operative time and event predictive models must account for these key 

factors. While a more recent operative time computer vision model, RSDNet, predicted 

remaining surgical duration at any point in the surgery, this model did not incorporate 

procedure-specific information, such as a cornerstone factor, and required the costly continuous 

running of an AI model during the case [27]. This contrasts with our model that takes a hybrid 

approach, where after processing a single image to determine the cornerstone limiting factor of 

cholecystectomy, it uses a more traditional multilevel regression model to rapidly output a 

predicted time. 

Surgeons’ attainment of the CVS was not changed by inflammation, which aligns with recent 

consensus recommendations that suggest the use of CVS for all laparoscopic 

cholecystectomies given no clear evidence to support adverse intra-operative events from 

attempts at attaining the CVS [28]. Severe inflammation of the hepatocystic triangle may 

preclude safe CVS attainment and therefore cause the surgeon to pursue alternative operative 

options (e.g., subtotal cholecystectomy, conversion to open).  Since our study only included 

complete laparoscopic cholecystectomy videos, we were unable to investigate the effect of 

inflammation on creating hostile anatomy that forces a surgeon to pursue alternative operative 

options. Other studies though, have investigated this phenomenon and found a higher rate of 

conversion to open and partial cholecystectomy with more severe inflammation [6]. 

Beyond event prediction, the multilevel nature of the model also afforded a wealth of insight in 

per-surgeon metrics.  For each event, it allowed for comparison of the surgeon to the average 

across all surgeons, both in how they perform when the gallbladder is minimally inflamed, but 

also in how they are affected by increments in inflammation. Surgeon performance on a 

gallbladder with minimal inflammation never correlated with the effect of increasing inflammation 

on any outcome. Therefore, surgeons’ performances on a minimally inflamed gallbladders were 

not predictive of how they performed on maximally inflamed ones. For example, even though 

one surgeon had a similar rate of creating a gallbladder hole during a fifth of cases on a 

minimally inflamed gallbladder, for a maximally inflamed one, they, unlike the dataset average 

where inflammation minimally impacted the rate, created holes over half the time (Fig. 3). These 

personalized metrics would allow for focused feedback on particular aspects of the operation. 

Similar applications to resident assessment would be possible, which would allow for the 

transition from volume-based competency assessments to focused feedback that could better 

accelerate resident skill acquisition [29]. Recent advances in automated operative phase 

recognition and CVS assessment would allow for large-scale deployment of these metrics, 

using automated generation of data, which removes the substantial manual labor needed for 

video annotation [9, 30, 31]. 

This study is not without limitations. Inference on the effects of gallbladder inflammation 

represents the effects compatible with the videos and surgeons contained within the dataset 

and the statistical model’s structure. Additionally, the inherent class imbalance noted with fewer 

examples of the most inflamed gallbladders, limits the precision of estimates for these cases. 

Despite all dataset cases being performed with a resident, no resident-specific data were 
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included in the models. This decision was two-fold. First, attendings “select” the year of 

residents they work with through the inherent resident rotation schedules. They also exert 

control over the resident effect. For example, some attendings may allow for more resident 

independence in the case, and their times will reflect this. Second, the exact variable to include 

for a resident was unclear. Classifying residents by post-graduate year does not capture the 

inherent variation, both for a particular resident as the year progresses and inter-training year 

class variation. Our data collection also spanned multiple years, so a unique per-resident 

identifier would not help model precision as it would not account for a single resident’s growth 

through residency. Additional considerations will be made in the future to determine how best to 

account for the impact of resident assistance on case metrics for attending surgeons. 

In conclusion, an artificial intelligence computer vision model can reliably identify the degree of 

gallbladder inflammation. Using this information, we can predict cholecystectomy intra-operative 

course, including the laparoscopic duration, attainment of the CVS, and creation of inadvertent 

gallbladder holes. This automated assessment could immediately be useful for operating room 

workflow optimization and, in the near future, for targeted per-surgeon and per-resident 

feedback to accelerate acquisition of operative skills. 
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Legends 

Figure Legends 

Figure 1 
Confusion matrix of the computer vision (CV) models, PGS-only and PGS-combo, classifying 

Parkland Grading Scale (PGS). PGS-combo was trained to classify PGS by recognizing its 

subcomponents (level of adhesions and gallbladder appearance), while PGS-only learned on 

the PGS alone. For each PGS, the proportion of images correctly classified is represented by 

the color in the heat map (white for low proportion; dark blue for high proportion). The PGS-

combo model’s improved classification of PGS-4 and PGS-5 led to performance gains over the 

PGS-only model. 

Figure 2 
Added inflammation increases the operative duration of laparoscopic cholecystectomy. Added 

time is compared to cases with minimal inflammation (Parkland Grading Scale (PGS) of 1). The 

black dot and black bars represent the mean and compatibility interval for each value. Bar 

thickness, from most to least thick, and color, from dark purple to light purple, correspond to 

50%, 80%, and 95% compatibility intervals. Compatibility intervals show the range for a 

parameter’s value as seen across all values sampled in the model’s Markov chains. 

Figure 3 
For particular surgeons, added inflammation increases the probability of an inadvertent 

gallbladder hole. The black line and shade, from most to least dark, represent the mean and 

compatibility intervals (50%, 80%, and 95%) for each value. Compatibility intervals show the 

range for a parameter’s value as seen across all values sampled in the model’s Markov chains. 

Added inflammation, as measured by the Parkland Grading Scale (PGS), had little effect, on 

average across the dataset, towards increasing the probability of creating an inadvertent hole in 

the gallbladder during its removal from the liver bed. This effect, though, varied widely across 

surgeons, with some surgeons being particularly affected by increases in inflammation as seen 

in the right panel. 

Figure 4 
Added inflammation had little effect on the odds that a surgeon attained the Critical View of 

Safety (CVS). Inflammation was measured using the Parkland Grading Scale (PGS) and 

compared to a PGS-1. The black dot and black bars represent the mean and compatibility 

interval for each value. Bar thickness, from most to least thick, and color, from dark purple to 

light purple, correspond to 50%, 80%, and 95% compatibility intervals. Compatibility intervals 

show the range for a parameter’s value as seen across all values sampled in the model’s 

Markov chains. Unlike the variation seen in the effect of PGS on case duration and gallbladder 

holes, even the most affected surgeon’s likelihood of attaining the CVS was minimally impacted 

by increases in PGS. 
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