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Economic models are evaluated by testing the correctness of their pre-
dictions. We suggest an additional measure, “completeness”: the frac-
tion of the predictable variation in the data that the model captures.
We calculate the completeness of prominent models in three prob-
lems from experimental economics: assigning certainty equivalents
to lotteries, predicting initial play in games, and predicting human
generation of random sequences. The completeness measure reveals
new insights about these models, including how much room there is
for improving their predictions.
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I. Introduction
There is more reason to look for ways to improve a model that predicts
poorly than one that predicts well. But what constitutes “good” perfor-
mance? Our view is that the answer depends on how well the outcome
could possibly be predicted given the specified “features” (i.e., the explan-
atory variables). To fix ideas, suppose we have data on whether customers
agreed to a particular loan offer. Loan offers differ on characteristics such
as the interest rate or the term of the loan.Onemodel (the “NPVmodel”)
of how these characteristics relate to demand might posit that customers
view loans through the lens of expected cost of capital over theduration of
the loan. The expected cost of capital is a specific function of the available
features. We could test the predictions of this model by evaluating it on
data, for example, by seeing whether demand increases when the effective
interest rate drops. These tests allow us to reject wrong models, but they
do not tell us how much better a different model could do.
To get at this, we propose comparing the model’s accuracy to that of

the best prediction of demand that could be made using the features we
have that describe each loan. Comparing the benchmark’s predictive ac-
curacy to that of the NPV model would tell us how much of the predict-
able signal in the outcome (given the baseline features) is captured by
the NPV model. If the best predictions are much better than those of
the NPV model, there may be another model built on the same features
that substantially improves predictive accuracy. For example, another
model might postulate that customers ignore future interest rates and fo-
cus only on the initial interest rate, or that 2.99% is viewed differently
from 2.95%. On the other hand, if the best predictions are not much bet-
ter than those of the NPV model, then alternative models built on the
same features cannot possibly do much better on this data set. For new
models to help, they must identify new variables that are not currently
measured. For example, models that emphasize framing and persuasion
would point to expanding our data set to include the vocabulary used in
the loan descriptions.
Moving beyond this specific example, anymodel’s prediction error can

generally be decomposed into two sources: (1) intrinsic noise in the out-
come due to limitations of the features we have measured, that is, the ir-
reducible error, and (2) regularities in the data that the model does not
capture. The irreducible error provides an upper bound for how well any
model (based on the measured features) could possibly do.
are also grateful to Adrian Bruhin, Helga Fehr-Duda, Thomas Epper, Kevin Leyton-Brown,
and James Wright for sharing data with us, and we are grateful for financial support from
National Science Foundation grants SES 1643517, 1851629, and 195105. Data are provided
as supplementary material online. This paper was edited by Emir Kamenica.
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A benchmark at the other end is the performance of a baseline model,
such as “guess the outcome at random.”1 We use these extremes to mea-
sure what we call the “completeness” of a model:

Ebase 2 Emodel

Ebase 2 E irreducible

,

where Ebase is the out-of-sample prediction error under the baseline, Emodel

is the out-of-sample error of the model, and Eirreducible is the irreducible er-
ror. That is, completeness is the model’s reduction in prediction error
relative to the baseline, divided by the achievable reduction in prediction
error. A model with a completeness of 0 does not improve upon the base-
line, while a model with a completeness of 1 eliminates all but the irre-
ducible error. Crucially, a model can be complete for the givenmeasured
features even if it predicts poorly and itsR2 is low. The distinction between
a complete model and a perfectly predictive model is especially relevant
for the social sciences, where we expect there to be substantial irreducible
noise in most outcomes of interest given the measurable features. Econ-
omists can rarely hope for our models to be perfectly predictive, but we
can hope for them to be relatively complete.
In addition to proposing the completeness measure, we demonstrate

that completeness can be precisely estimated for a diverse range of ex-
perimental data sets. The challenge is estimating irreducible error. In
general, the performance of black-box machine-learning methods can
be used as a stand-in for irreducible error.When the data consist of a large
number of outcome observations for each vector of features, then it is
possible to obtain a fairly precise estimate of irreducible error using a sim-
ple “lookup table,” which nonparametrically searches the space of possi-
ble models, and finds the model that maximizes out-of-sample predictive
accuracy for the set of available features.Many lab data sets have this prop-
erty; for example, the data sets may contain a large number of observa-
tions of game play for each of a small set of games, or a large number
of observations of certainty equivalents for each of a small set of lotteries.
Our applications use data sets like this to evaluate the completeness of

prominent models from three experimental domains: cumulative pros-
pect theory (Tversky and Kahneman 1992) for prediction of certainty
equivalents, the Poisson cognitive hierarchy model (Camerer, Ho, and
Chong 2004) for prediction of initial play in games, and Rabin and
Vayanos (2010) for prediction of human perception of randomness.
These applications illustrate three general points. First, the absolute er-

ror of a model can be extremely misleading. Cumulative prospect theory
1 Diebold and Kilian (2001) propose benchmarking the accuracy of time series forecasts
relative to that of a bad forecast. This is in the spirit of our comparison against a baseline
model.
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has very poor absolute fit (a mean-squared error of 67.78), but it is 94%
complete: Its high error rate is nearly irreducible given the available fea-
tures. Second, a model’s absolute gain over the baseline can be equally
misleading. For example, the Rabin and Vayanos (2010) model reduces
prediction error relative to the baseline by only 0.0006, but is nevertheless
10% complete. Finally, the completeness measure reveals the relative
complexity of various prediction problems. For example, in our initial
play application we find that the completeness of the Poisson cognitive
hierarchy model differs substantially across classes of 3 � 3 games, vary-
ing from 68% to 97%. This suggests important underlying differences be-
tween games that need to be better understood. These, and the subse-
quent observations we make in sections V.A–V.D, are informative about
the problem domains and how much room there is for improving the
predictions of their leading models without obtaining new sorts of data.
Our completenessmeasure depends on a specified set of features and is

evaluated for a given prediction problem. If we change the feature set or
the data, we would expect the measurement of completeness to change,
as we discuss in section VI.B. Likewise, the completeness of a model de-
pends on the specified prediction problem: With the same features, a
model of the effect of a price cut on sales might be able to predict the ag-
gregate effect (e.g., a 5% increase in sales) very well but be unable to pre-
dict which consumers would increase their purchases.
Related work.—Irreducible error is an old concept in statistics and ma-

chine learning. A large literature has studied the decomposition of this
error into bias (reflecting error due to the specification of the model
class) and variance (reflecting sensitivity of the estimated rule to the ran-
domness in the training data). Depending on the quantity of data avail-
able to the analyst, it may be preferable to trade off bias for variance or
vice versa. This paper abstracts from these concerns, as well as the related
concern of overfitting. We work exclusively with data sets in which there
are enough data that the best feasible out-of-sample prediction accuracy
is well approximated by searching across the unrestricted space of map-
pings from features into outcomes (see app. A).
The only previous measures of predictive success for economicmodels

in experimental work that we know of are Selten’s (1991) measure of the
relative frequency of successful predictions, Erev et al.’s (2007) definition
of the equivalent number of observations, andApesteguia and Ballester’s (2021)
measure of goodness-of-fit for stochastic choice models. Our work differs
in that we focus on understanding the best possible prediction in a given
problem, and evaluate performance relative to that benchmark.
Several recent papers compare a model’s predictive performance to

that of specificmachine-learning algorithms. These algorithms sometimes
approximate the best possible predictions. For example, Peysakhovich
and Naecker (2017) compare the performance of economic models of
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the willingness to pay for three-outcome lotteries to the performance of
regularized regression algorithms, andBodoh-Creed, Boenhke, andHick-
man (2019) compare the performance of simpleOLSmodels using known
regressors against the performance of random forests built on a rich fea-
ture set, for the problem of predicting pricing variation. The algorithms
used in these papers need not achieve the irreducible error, but they do
provide a lower bound for the best achievable accuracy. We show that
in experimental contexts, it can be possible to directly estimate the best
achievable accuracy and use that as a benchmark.
Other papers directly use an algorithmic approach to predict economic

behavior, for example, Noti et al. (2016), Plonsky et al. (2017, 2019), and
Zhao et al. (2020) for prediction of choice, andCamerer, Nave, and Smith
(2019) for prediction of disagreements in bargaining. The improvements
achieved by these more complex algorithms over the existing economic
models are sometimes modest. One reason for this might be intrinsic
noise, as Bourgin et al. (2019) point out. We show how this noise can be
quantified.
Finally, we note that in the special case in which performance is mea-

sured by mean-squared error and the baseline is an unconditional mean,
our completeness measure can be seen as a ratio of the model’s R 2 and
the nonparametric R 2, as we explain in appendix B. Our approach is not
special to this loss function, however, and can be implemented with any
metric of accuracy.
II. Example
We begin with a simple example that illustrates the need for a measure
such as completeness. Let y ∈ f0, 1g be a binary outcome of interest,
which is related to two binary features x1 and x2, each of which has an in-
dependent probability 0.5 of taking the value 1. Specific theories make
predictions about how the given features relate to the outcome. Suppose
that our model posits that the features enter linearly according to
y 5 bðx1 1 x2Þ for some b ∈ R. We can test this model by acquiring obser-
vations of (x1, x2, y) drawn from their true joint distribution, estimating b,
and using the estimatedmodel to predict outcomes in a new data set. The
performance of the model is evaluated according to some loss function,
for example, the (average) squared difference between the prediction ŷ
and the true outcome y, that is, 2ðy 2 ŷÞ2. But it is hard to interpret the
magnitude of this error without additional information. To see the prob-
lem, consider table 1, which describes two data-generating processes for
y given x1 and x2.
For both data-generating processes, the estimated value of the param-

eter b (given sufficient data) is b 5 0:5, so the estimated model is
f ðxÞ 5 0:5ðx1 1 x2Þ. The expected mean-squared error of this model is
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0.125 under both of the data-generating processes in table 1.2 Taking
the magnitude of the prediction error at face value would suggest that the
model is equally predictive for both versions of the ground truth. But the
equality of the prediction errors obscures an important difference, which
is that in the first case there is no alternative model built on x1 and x2 that
can make more accurate predictions, while in the second case the model
y 5 b1x1 1 b2x2 (with b1 estimated to 0.1 and b2 estimated to 0.9) achieves
a prediction error of 0.045. That is, the proposed model is complete given
the first data-generating process but incomplete given the second.Our sub-
sequent approach formalizes this notion of completeness.
III. Completeness
Section III.A introduces the setting of prediction problems and section III.B
defines completeness.
A. Preliminaries
In a prediction problem, there is an outcome Y whose realization is of in-
terest, and featuresX that are statistically related to the outcome. The goal
is to predict the outcome given the observed features. Some examples in-
clude predicting an individual’s future wage based on childhood covari-
ates (city of birth, family income, quality of education, etc.), or predicting
a criminal defendant’s flight risk based on the defendant’s past record
2 For both dat
prediction given
predicts ŷ 5 0:5
1=4 (under both
1=8.
TABLE 1
Two Processes Specifying the Expected Value of y

Given the Values of x1 and x2

x1 x2 P(y 5 1Fx)

Process 1:
0 0 0
0 1 .5
1 0 .5
1 1 1

Process 2:
0 0 0
0 1 .1
1 0 .9
1 1 1
a-generating processes, the
x 5 ð1, 1Þ is ŷ 5 1. Both re
for the vectors x 5 ð0, 1Þ an
data-generating processes).
prediction given
sult in a conditio
d x 5 ð1, 0Þ, wh
Thus the uncon
Note.—In both cases, the distribution over features
is uniform.
x 5 ð0, 0Þ is ŷ 5 0, and the
nal error of zero. The model
ich has a conditional error of
ditional error is ð1=2Þð1=4Þ 5
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andproperties of the crime (Kleinberg et al. 2018).We focus on three pre-
diction problems that emerge from experimental economics:
Example 1 (risk preferences). Can we predict the valuations that

people will assign to various money lotteries?
Example 2 (predicting play in games). Can we predict how people

will play the first time they encounter a new simultaneous-move game?
Example 3 (human generation of random sequences). Given a tar-

get randomprocess—for example, a Bernoulli random sequence—can we
predict the errors that a human will make while mimicking this process?
Formally, suppose that the observable features belong to some space

X and the outcome belongs to Y. There is a true but unknown joint dis-
tribution P over X � Y. A map f :X → Y from features to outcomes is a
prediction rule. Many economic models can be described as a family of
prediction rules or “models” FΘ indexed by an interpretable parameter
set Θ. For example, the model class may impose a linear relationship
f ðxÞ 5 hx, 0i between the outcome and a set of features x, in which case
the parameter v ∈ Θdefines a vector of weights applied to each feature. In
section V.A, one specification of FΘ is the family of certainty equivalents
under utility functions uðzÞ 5 zv over dollar amounts, where the param-
eter v reflects the degree of risk aversion.
B. Definition
We suppose that our prediction problem comes with a loss function,
‘ :Y � Y →R, where ‘(y0, y) is the error assigned to a prediction of y0 when
the realized outcome is y. The commonly used loss functions mean-
squared error and classification error correspond to ‘ðy0, yÞ 5 ðy0 2 yÞ2
and ‘ðy0, yÞ 5 1ðy0 ≠ yÞ, respectively.3
Definition 1. The expected error (or risk) of prediction rule f on a new

observation ðx, yÞ ∼ P is

EP fð Þ 5 EP ‘ f xð Þ, yð Þ½ �: (1)

Let

f *Θ ∈ arg min
f ∈F Θ

EP fð Þ

denote any prediction rule in the parametric class FΘ that minimizes the
expected prediction error. The expected error of any such “best” rule in
FΘ is EPð f *Θ Þ. In section IV, we discuss how to estimate EPð f *Θ Þ on finite data;
here we discuss how to interpret it.
3 Different loss functions are typically used when predicting distributions; see, e.g.,
Gneiting and Raftery (2007).
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To understand a model’s error, it is helpful to distinguish between two
different sources of error. First, if the conditional distribution Y jX is not
degenerate, then even an ideal prediction rule

f * xð Þ ∈ arg min
y0∈Y

EP ‘ y0, yð Þjx½ �

does not predict perfectly.
Definition 2. The irreducible error in the prediction problem is the

expected error

EP f *ð Þ 5 EP ‘ f * xð Þ, yð Þ½ � (2)

of the ideal rule on a new test observation.
The irreducible error is a lower bound on the error when predicting Y

using the features in X .
A second source of prediction error is the specification of the class FΘ.

Typically, the best possible model will not be an element of FΘ, as most
model classes are at least slightly misspecified. If FΘ leaves out an impor-
tant regularity in the data, then there may be models outside of FΘ that
yield much better predictions.4

These two sources of prediction error have very different implications
for how to generate better predictions. If the model’s prediction error is
substantially higher than the irreducible error, it may be possible to iden-
tify new regularities and incorporate them into models that improve pre-
diction given the same feature set. These newmodelsmight be preferable
if they do not involve too great an increase in complexity or in the num-
ber of parameters. Conversely, if the model’s prediction error is close to
the irreducible error for the current feature set, the priority should be to
identify additional features that will allow for better predictions.
We propose the ratio of the reduction in prediction error achieved by

the model, compared to the achievable reduction, as a measure of how
close the model comes to the best achievable performance. We call this
ratio the model’s completeness. To operationalize this measure, we select
a (potentially randomized) baseline fbase ∈ Δ(FΘ) suited to the prediction
problem. For example, in the prediction of certainty equivalents, predic-
tion of the lottery’s expected value is a natural baseline. The performance
of this baseline rule is interpreted as a “worst case” prediction accuracy.
4 On the other hand, expanding the model class risks overfitting, so more parsimonious
model classes can lead tomore accurate predictions whendata are scarce (Hastie, Tibshirani,
and Friedman 2009). As we discuss under “related work” in sec. I and in sec. IV, all of the data
sets that we consider here are large relative to the number of features.
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Definition 3. The completeness of model class FΘ is

EP fbaseð Þ 2 EP f *Θ
� �

EP fbaseð Þ 2 EP f *ð Þ : (3)

Completeness is a normalizedmeasure of the reduction in error. Amodel
with completeness 0 does no better than the baseline, while a “fully com-
plete”model with completeness 1 removes all but the irreducible error.5
C. Discussion

1. Choice of Baseline
The proposed measure uses a baseline fbase to evaluate a givenmodel’s er-
ror.6 For example, in our application to lotteries, the fact that the mean-
squared error of the expected value is approximately 103 provides a use-
ful comparison for the cumulative prospect theory (CPT) error of 68.
Similarly, for predicting play in games, one should not expect any model
to do worse than guessing at random, which leads to a misclassification
rate of 1=3. In many cases, there is a natural choice for the baseline, or
a range of natural choices. In appendix C1, we expand one of our appli-
cations by estimating completeness relative to a set of possible baselines.
We show that completeness is stable across these choices.
An alternative to a user-specified baseline would be to use the best un-

conditional prediction of Y, for example, the average value of Y if the loss
function is mean-squared error. The same rule would then be used across
applications, which has the advantage of eliminating flexibility (and po-
tential arbitrariness) in the choice of baseline. However, this fixed rule
has some disadvantages. First, the unconditional prediction baseline
may not be in the class of models being considered, and as a result, it
can even yield negative completeness.7 Second, the performance of the
unconditional prediction baseline is very sensitive to the variability of
the elements inX and can in principle be very large. As we show in appen-
dixC1, the error of this empirical baseline is an order ofmagnitude larger
than the other errors we report in our first application.
5 This is one of many possible measures with completeness 1 when the model removes
all but irreducible error and 0 when the model coincides with the baseline error. Our def-
inition measures “units” of completeness as percentage improvements in prediction error,
which facilitates comparison across settings with different loss functions.

6 This is analogous to the importance of the choice of the null hypothesis in classical
hypothesis testing: different choices of the null can lead to different conclusions from
the same data.

7 Also note that this measure has some unfortunate small-sample properties; e.g., if the
data set consists of a single observation, then mechanically this empirical achieves the best
possible error, so the denominator of eq. (3) is 0 and completeness is either undefined or
equal to 2∞.
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2. Dependence on Domain X

Themeasure also dependson theunderlying feature spaceX, that is, the set
of lotteries or games in the experimental data set.8 We show in section V.C
that the completeness of the Poisson cognitive hierarchy model varies de-
pending on which set of games is in the data set. This reflects the fact that
somemodels perform better for certain kinds of inputs (e.g., certain kinds
of lotteries or certain kinds of games). We view the ability of the complete-
ness measure to capture this variation as a strength of the approach.
3. Expanding X

Completeness is defined for a fixed feature set X , which we generally in-
terpret as the measured features in the data. If we vary X by expanding it
to include new measured features, then the predictive performance of
the original model remains the same, but the predictive optimum weakly
improves. So a model that is complete for one feature set X may not be
complete for another X0 ⊃X . In general, if a model is nearly complete
for the measured features, the only way to improve predictive accuracy
is to measure new features and develop newmodels on the larger feature
set.
D. Evaluating Models
Predictive accuracy is only one of many criteria that matter for selecting
theories. Economists typically also value parsimony, portability, and causal
explanations, and trade them off against accuracy and each other when
selecting models.9 This paper is not designed to be about the tension be-
tween these criteria. Rather, our definition of completeness is meant as a
tool to facilitate making such trade-offs.
A high-level analogy is to the idea of polynomial-time approximation al-

gorithms forNP-hard optimizationproblems. In the theory of approxima-
tion algorithms, there is a tension between efficient algorithms (which
run quickly and produce suboptimal solutions in general) and the opti-
mal solution (which may be hard to find, but whose value cannot be im-
proved). To even state this tension, one needs the notion of “the optimal
solution” in the first place. This is obvious in the context of optimization
problems and efficient algorithms for them, but as far as we know, the
analog of the “optimal solution” is not in common use in experimental
8 For naturally occurring data, the elements of X may be governed by an external pro-
cess. In experimental data, they are generally chosen by the experimentalist.

9 See Gabaix and Laibson (2008) and Hofman et al. (2021) for perspective pieces that
articulate various facets of economic modeling, and Athey (2019) for a survey describing
the opportunities created by machine learning for some of these goals.
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settings. Evaluating the completeness of a model makes it possible to talk
about the tension between simple and complex models, as well as related
trade-offs, with reference to how close these models come to the best achiev-
able performance.
Restrictive versus complete models.—In general, the more flexible a model

is, the higher its completeness. At the extreme, a model class FΘ that in-
cludes all possible mappings fromX to Y achieves full completeness. But
such a model is also vacuous, as it has no falsifiable predictions. For a
fixed level of predictive accuracy, we thus prefer models that are more re-
strictive. Fudenberg, Gao, and Liang (2020) provide an algorithmic mea-
sure of a model’s “restrictiveness” by evaluating the completeness of the
model on a range of synthetic data. Since the best achievable error varies
substantially across data sets, low absolute error on these data sets is not
enough to conclude that a model is unrestrictive; likewise, high absolute
error does not imply that the model imposes substantial restrictions. But
a model that is complete on all data is not restrictive.
Interpretable versus predictive models.—In many applications, researchers

may prefer to sacrifice some predictive power and completeness to use a
model that is easier to interpret, for example, using a model of prefer-
ences to predict choice as opposed to a black box. Having a measure
for completeness tells us how much we sacrifice in terms of predictive
power by requiring the model to be interpretable. In some cases, such
as the CPT model in section V.A, it turns out that simple and interpret-
able models achieve completeness comparable to that of black-box algo-
rithms,meaning this trade-off is not present.10 On the otherhand, the Ra-
bin and Vayanos (2010) model achieves only partial completeness; this
could be because a better, interpretable model exists, or it could be be-
cause human behavior in this domain is fundamentally complex and can-
not be captured by a simple model. Having the measure of completeness
makes it possible to describe this trade-off.
IV. Estimating Completeness from Finite Data
We now discuss how to estimate completeness from finite data. When the
feature spaceX is “small” and there are a large number of observations of
Y for each unique x ∈ X , then a natural estimator for the irreducible er-
ror is the performance of a lookup table, which simply learns the best pre-
diction of Y for each x. While the assumption that there is a large number
of observations per xmay seem demanding, it turns out to be satisfied for
a potentially large number of experimental data sets, including the ones
we subsequently study. We view a substantial part of the contribution of
10 Fudenberg and Liang (2019) demonstrate a similar point for the domain of initial
play in matrix games.
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this paper as demonstrating that irreducible error can be approximated
simply across a diverse range of experimental contexts.
When nonparametric estimation of irreducible error via a lookup table

is not feasible, then econometric methods such as splines, sieves, and
black-box machine-learning algorithms (e.g., lasso regression) can po-
tentially be used as substitutes.11 In those cases, the estimate of the ratio
of themodel’s improvement relative to the improvement achieved by the
black box can be seen as an upper bound on the completeness of the
model, as in Peysakhovich and Naecker (2017).
We subsequently describe in detail the estimators we use in this paper,

with section IV.A describing our estimators for the expected prediction
errors in (3), and section IV.B describing our estimator for completeness.
A. Estimators for Expected Prediction Errors
Our approach applies to an arbitrary setF of maps fromX to Y. The spe-
cial cases F 5 f fbaseg, F 5 F Θ, and F 5 XY (i.e., the unrestricted set of
all possible maps from features in X into outcomes in Y) respectively re-
turn the desired prediction errors EP( fbase), EPð f *Θ Þ, and EP( f *) from (3).
In each case, we select a mapping from F based on a set of training ob-

servations, and evaluate the out-of-sample prediction error of the chosen
mapping. Our estimator for the expected prediction error is the 10-fold
cross-validated out-of-sample error. We describe this procedure in some
detail as it may be new for some readers, but it is standard, and familiar
readers may skip directly to section V.

1. Split data into K 5 10 folds. All of the available data are randomly
split into K equally sized disjoint subsets Z1, ... , ZK. In each iteration
1 ≤ i ≤ K of the procedure, the subset Z i

test ; Zi is identified as the
test data and the remaining subsets Z i

train ; [j≠iZj are used as train-
ing data.

2. Select a mapping from F that best fits the training data. For each
iteration i ∈ f1, ::: , Kg and mapping f, the in-sample performance
of f for predicting the observations in Z i

train is

e f , Z i
trainð Þ 5 1

Z i
trainj j o

x,yð Þ∈Z i
train

‘ f xð Þ, yð ÞÞ:

This is a sample analog of the expected prediction error in (1). Choose
any fi ∈ arg minf ∈F eð f , Z i

trainÞ.12
11 These methods may have better finite-sample performance when suitable regularity
assumptions apply, but those assumptions may not be directly testable.

12 When there are multiple minimizers, choose between them randomly.
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3. Evaluate how well the chosen mapping performs out of sample.
The selected model fi is subsequently evaluated on the set of test
observations in Z test, where this model’s out-of-sample performance
on the ith test set is

CVi 5 e fi , Z
i
testð Þ: (4)

4. Average over out-of-sample errors. The average out-of-sample er-
ror across the K test sets is

CV F , Zif gK
i51

� �
5

1

K o
K

i51

CVi: (5)
B. Estimator for Completeness
Define

Êbase ; CV fbasef g, Zif gK
i51

� �
,

ÊΘ ; CV FΘ, Zif gK
i51

� �
,

Êbest ; CV X Y , Zif gK
i51

� �
:

Subsequently, we refer to these estimates simply as prediction errors, un-
derstanding that they are finite-data estimates. In place of the theoretical
completeness measure described in (3), we compute the empirical ratio

Êbase 2 ÊΘ

Êbase 2 Êbest

(6)

fromour data. The tables that we report in the subsequent applications in
sections V.A–V.D are structured as in table 2.
Theoretical guarantees.—The empirical quantities Êbase, ÊΘ, and Êbest are

consistent estimators for EP( fbase), EPð f *Θ Þ, and EP( f *), respectively (Hastie,
Tibshirani, and Friedman 2009), and the empirical estimate of complete-
ness in (6) is a consistent estimator for (3).
These estimates are good approximations for the theoretical quantities

when the number of observations is sufficiently large. In particular, for
TABLE 2
Our Results in the Subsequent Applications

Error Completeness (%)

Baseline Êbase 0
Economic model ÊΘ 100 � ðÊbase 2 ÊΘÞ=ðÊbase 2 ÊbestÞ
Irreducible error Êbest 100
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Êbest to be a good approximation of the irreducible noise EP( f *), the analyst
must have access to a sufficiently large number of observations for eachdis-
tinct x ∈ X . This can be a demanding criterion. To evaluate whether we
have “enough” data in our applications, we report bootstrapped standard
errors (with 1,000 draws) for our estimates.13

We additionally consider two tests in appendixes A1 and A2. First, we
compare the performance of the lookup table with a machine-learning
algorithm that is better suited to smaller data sets (bagged decision
trees). The out-of-sample performances are comparable, but the lookup
table has a lower error for all of our applications (see app. A1). Second,
we investigate whether the out-of-sample performance of the lookup ta-
ble has converged by evaluating its performance on subsamples of our data.
The prediction errors using just 70% of the data are very close to those
using all of our data. These analyses suggest that our estimate for irreduc-
ible error is a reasonable approximation in each of our applications.
In general, the condition that the data include many observations per

feature is easier to satisfy in experimental settings, where the experimen-
talist has control over the structure of the data and can choose to acquire
a large number of observations for each of a fixed set of feature values.14
V. Three Applications

A. Application 1: Assigning Certain Equivalents
to Lotteries

1. Background and Data
An important question in economics is how individuals evaluate risk. In
addition to expected-utilitymodels (vonNeumann andMorgenstern 1944;
Samuelson 1952; Savage 1954), one of the most influential models of de-
cisionmaking under risk is cumulative prospect theory (Tversky and Kah-
neman 1992). This model provides a flexible family of risk preferences
13 For applications 1 and 3, we report standard errors using a block bootstrapping pro-
cedure that clusters together all observations from the same subjects. Specifically, when
generating a bootstrap sample, we randomly sample from the set of unique subjects with
replacement, and include all observations associated with these subjects. We then carry out
our (cross-validated) estimation of completeness on each bootstrap sample. Since we do
not have complete subject ID data for application 2, we instead generate bootstrap samples
by sampling from the set of all observations with replacement. Also, we also report standard
errors for completeness using the analytic standard errors reported in Fudenberg, Gao,
and Liang (2020); see app. A3. These standard errors are quite comparable to the boot-
strapped standard errors that we report in the main text.

14 In the data sets that we consider, there is an average of 179 observations per unique x
for estimation of a mean (sec. V.A), 50 observations per unique x for estimation of a mode
(most likely) outcome (sec. V.C), and 164 observations per unique x for estimation of a
mean (sec. V.D).
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that accommodates various behavioral anomalies, including reference-
dependent preferences and nonlinear probability weighting.
A standard experimental paradigm for eliciting risk preferences, and

thus for evaluating thesemodels, is to ask subjects to report certainty equiv-
alents for lotteries—that is, the lowest certain payment that the individual
would prefer over the lottery. We consider a data set from Bruhin, Fehr-
Duda, and Epper (2010), which includes 8,906 certainty equivalents elic-
ited from 179 subjects, all of whom were students at the University of Zu-
rich or the Swiss Federal Institute of Technology Zurich. Subjects reported
certainty equivalents for the same 50 two-outcome lotteries, half over pos-
itive outcomes (e.g., gains) and half over negative outcomes (e.g., losses).
2. Prediction Task and Models
In this data set, the outcomes are the reported certainty equivalents for
a given lottery, and the features are the lottery’s two possible monetary
prizes �z > z

¯

and the probability p of the first prize. A prediction rule is
any function thatmaps the tuple (�z, z

¯

, p) into a prediction for the certainty
equivalent. We use mean-squared error as the loss function: In a test set
of n observations fð�zi , z ¯ i , pi ; yiÞgn

i51—where (�zi , z ¯ i , pi) is the lottery shown
in observation i and yi is the reported certainty equivalent—the mean-
squared error of f is

1

no
n

i51

f �zi, zi , pið Þ 2 yi½ �2:

We evaluate a prediction rule based on cumulative prospect theory
(CPT),15 which predicts

u21 w pð Þu �zð Þ 1 1 2 w pð Þ½ �u z
¯

� �� �
for each lottery, where w is a probability weighting function, u is a value
function, and by convention j�zj > ½z

¯

�. We follow Bruhin, Fehr-Duda, and
Epper (2010) in our choice of functional forms:

u zð Þ 5
za if  z > 0,

2 2zb
� �

if  z ≤ 0,
  w pð Þ 5 dpg

dpg 1 1 2 pð Þg :

(
(7)

This model has four free parameters: a, b, d, g ∈ R1.
Finally, as a baseline, we predict the expected value of the lottery,

which is p�z 1 ð1 2 pÞz. As we report in appendix C1, completeness of
CPT is very similar to other benchmarks such as risk-averse variants of ex-
pected utility.
15 CPTand the original prospect theory are equivalent on the two-outcome lotteries that
we consider.
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3. Results
Table 3 reveals that CPT’s out-of-sample predictions improve upon the
expected-value benchmark.16 CPT does much better than the expected-
value benchmark, but falls far short of perfect prediction. It is difficult
to interpret the size of CPT’s error based on table 3 alone. It is not surpris-
ing that these models do not achieve perfect prediction, as we expect dif-
ferent subjects to report different certainty equivalents for the same lot-
tery, and thus a model that provides the same prediction for each (�z, z

¯

, p)
input cannot possibly predict every reported certainty equivalent. But be-
sides the intrinsic variation in certainty equivalents for any fixed lottery,
another potential source of error is the functional form imposed in (7).
Could a different (potentially more complex) specification for the value
function or probability weighting function lead to large gains in predic-
tion? Relatedly, might there be other features of risk evaluation, yet un-
modeled, which lead to even larger improvements in prediction?
To separate these sources of error, we need to understand how CPT’s

error compares to the irreducible error for these data. We estimate the
irreducible error in this problem using a lookup table, where each of
the 50 unique lotteries is mapped to the average certainty equivalent
for that lottery in the training data. With 179 observations for each of
the lotteries, we are able to approximate the mean certainty equivalent
for each lottery using the training data, thus (approximately)minimizing
the out-of-sample prediction error. We report the estimated irreducible
error and its standard error in table 4.
Table 4 shows that the CPT prediction error is almost as low as the irre-

ducible error; CPT achieves 94% of the feasible reduction in prediction
error over the baseline.17 Thus these data suggest that no theory that uses
only the features (�z, z

¯

, p) can predict much better than CPT.18 To further
reduce error, we would need to expand the set of variables on which the
16 The parameter estima
17 In app. C2, we show th

form specifications of CPT
18 It is hard to know whe

form) comes from its goodm
most functions in XY . This
TABLE 3
CPT Predicts Better

than Expected Value

Error

Baseline 104.63
(10.14)

CPT 67.78
(8.37)
tes for CPT are a 5 0:8, b 5
at completeness is nearly id
.
ther the high completeness
atch to actual behavior or is b

question is explored in Fude
1:2, d 5 0:9, and g 5 0:5.
entical for other popular functional

of CPT (in the specified functional
ecause it is flexible enough tomimic
nberg, Gao, and Liang (2020).
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model depends. For example, as we discuss in table A2, we could group
subjects using auxiliary data such as their evaluations of other lotteries
or response times, or use nonchoice data, such as the hypothetical choices
in Bernheim et al. (2020).
We note that our completeness measure does not imply that in general

CPT is a nearly completemodel for predicting certainty equivalents, since
the completenessmeasure we obtain is determined from a specific data set,
so its generalizability depends on the extent towhich that data are represen-
tative. However, Peysakhovich and Naecker (2017) find that CPT approxi-
mates the performance of regularized regression models for a data set of
three-outcome lotteries, which suggests that our finding is robust to certain
three-outcome lotteries, although the results of Bernheim and Sprenger
(2020) show this will not be true for all of them.19
B. Across Domains
Finally, we repeat our analysis for the completeness of CPT on two addi-
tional data sets from Bruhin, Fehr-Duda, and Epper (2010). Besides the
original data set, labeled “Zurich 2003” in table 5, the data sets labeled
“Beijing 2005” and “Zurich 2006” respectively include 4,225 reported cer-
tainty equivalents elicited in anexperiment inBeijing in 2005 (with151 sub-
jects) and 4,669 observations elicited in an experiment in Zurich in 2006
(with 118 subjects). The three experiments all used the same experimental
design, although there was some variation in the set of lotteries.
Table 5 shows that the raw mean-squared error of CPT varies substan-

tially across the three data sets (from 4.94 to 67.78). This contrast may
suggest at face value that CPT is a more effective model of certain subject
populations or lotteries than others, but the completeness of CPT turns
out to be very stable across all three data sets, and is lower bounded by
92%. This comparison thus again highlights the need for appropriate
benchmarks for interpreting raw prediction errors.
19 The
one few
TABLE 4
CPT Is Nearly Complete for Prediction of Our Data

Error Completeness (%)

Baseline 104.63 0
(10.14)

CPT 67.78 94
(8.37) (2.0)

Irreducible error 65.58 100
(8.11)
specification of CPT in Peysakh
er free parameter, so its model
ovich and Naecker (2
error may be higher.
017) sets d 5 1 and thus has
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C. Application 2: Initial Play in Games

1. Background and Data
In many game theory experiments, equilibrium analysis is a poor predic-
tor of the choices that people make when they encounter a new game.
This has led tomodels of initial play that depart from equilibrium theory,
for example, the level-k models of Stahl and Wilson (1994) and Nagel
(1995), the Poisson cognitive hierarchymodel (Camerer, Ho, andChong
2004), and the related models surveyed in Crawford, Costa-Gomes, and
Iriberri (2013). These models represent improvements over the equilib-
rium predictions, but we do not know whether these models exhaust the
regularities in initial play.
2. Prediction Task and Models
We consider prediction of the action chosen by the row player in a given
instance of play of a 3 � 3 normal-form game. The available features are
the 18 entries of the payoff matrix, and a prediction rule is any map
f :R18 →fa1, a2, a3g from 3 � 3 payoff matrices to row player actions.
For each prediction rule f and test set of observations fðgi, aign

i51—

where gi is the payoff matrix in observation i, and ai is the observed
row player action—we evaluate error using the misclassification rate,

1

no
n

i51

1 f gið Þ ≠ ai½ �:

This is the fraction of observations where the predicted action was not
the observed action.
As a baseline, we consider guessing uniformly at random for all games,

which yields an expected misclassification rate of 2=3. We use this bench-
mark to evaluate a prediction rule based on the Poisson cognitive hierar-
chy model (PCHM), which supposes that there is a distribution over
players of differing levels of sophistication: The level-0 player randomizes
TABLE 5
CPT’s Error Varies Substantially across Domains, but Its Completeness Does Not

Zurich 2003 Beijing 2005 Zurich 2006

Baseline 104.63 13.23 61.43
(10.14) (1.41) (6.58)

CPT 67.78 4.94 40.33
(8.37) (.83) (5.86)

Irreducible error 65.58 4.89 38.36
(7.11) (.82) (5.21)

Completeness (%) 94 99 92
(2.0) (.8) (4.8)
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uniformly over his available actions, while the level-1 player best responds
to level-0 play (Stahl and Wilson 1994, 1995; Nagel 1995). Camerer, Ho,
and Chong (2004) define the play of level-k players, k ≥ 2, to be the best
response to a perceived distribution

pk hð Þ 5 pt hð Þ
ok21

l50pt lð Þ  8 h ∈ N<k , (8)

over (lower) opponent levels, where pt is the Poisson distribution with
rate parameter t.20 We can derive a predicted distribution over actions
by supposing that the proportion of level-k players in the population is
proportional to pt(k). Assuming that this is the true distribution of play,
the misclassification rate is minimized by predicting a mode of this distri-
bution; we call this the PCHM prediction.
3. Comparison across Games
We compare the performance of the PCHM relative to the best achiev-
able performance on three subsamples of a data set from Fudenberg and
Liang (2019).21 Our full data set consists of 23,137 total observations of
initial play from 486 3 � 3 matrix games, where observations are pooled
across all of the subjects and games.22

The first subsample, game set A, consists of the 16,660 observations of
play from the 359 games with no strictly dominated actions.23 Game set B
consists of the 7,860 observations of play from the 161 games in which the
profile that maximizes the sum of the players’ payoffs is much larger (at
least 20% of the largest row player payoff in the game) than the highest
sum of payoffs that can be achieved when the row player chooses a level-k
action (for any k).24 For example, in the game below (which is included in
game set B), the action profile (a1, a2) leads to a payoff sumof 160, but the
20 Throughout, we take t to be a free parameter and estimate it from the training data.
21 Fudenberg and Liang (2019) studied a related prediction task, namely, predicting the

modal row player action in a given game. For that prediction task, the best achievable error
is always zero. Here we consider prediction of the action played, where the best achievable
error depends on the true distribution of play.

22 These data are an aggregate of three data sets: the first is a meta–data set of play in
86 games, collected from six experimental game theory papers by Kevin Leyton-Brown
and James Wright (see Wright and Leyton-Brown 2014); the second is a data set of play
in 200 games with randomly generated payoffs, which were gathered on Mechanical Turk
for Fudenberg and Liang (2019); the third is a data set of play in 200 games that were “algo-
rithmically designed” for a certain model (level 1) to perform poorly, again from Fudenberg
and Liang (2019). There was no learning in these experiments: subjects were randomly
matched to opponents, were not informed of their partners’ play, and did not learn their
own payoffs until the end of the session.

23 Specifically, we consider games where no pure action is strictly dominated by another
pure action.

24 Following Stahl and Wilson (1995) and Nagel (1995), level 0 corresponds to uniform
play, and each level-k action is the best response to level-(k 2 1) play.
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largest payoff sum using level-k actions is 120. The difference, 40, is more
than 20% of the maximum row player payoff in this game, 100.25

a1 a2 a3

a1 40, 40 10, 20 70, 30

a2 20, 10 80, 80 0, 100

a3 30, 70 100, 0 60, 60

Finally, game set C consists of the 9,243 observations of play from the 175
games where the level-1 action’s expected payoff against uniform play is
much higher than the expected payoff of the next best action (specifically,
it is larger by at least 1=4 of the maximum row player payoff in the game).
The analysis we perform for these three subsamples can be conducted

for arbitrary sets of games.
4. Results
In table 6, we report the estimated irreducible error and associated com-
pleteness measures for each of the three sets of games. Our estimate for
the irreducible error is derived using a lookup table, where each game is
mapped to the action most commonly chosen in that game in the train-
ing data. Since we have on average 50 observations per game, the modal
action in the training data is a good approximation for the modal action
in the test data. High irreducible errormeans that there is substantial het-
erogeneity in play, so predicting the mode still leads to a high rate of in-
correct classification. Low irreducible error means that play across sub-
jects is more coordinated on a single action. We find that the estimated
irreducible error is largest—and hence, there is the most heterogeneity
in play—in data set A, which includes only games where there are no
strictly dominated actions, and smallest in data set C, which includes only
games where the level-1 action has by far the highest expected payoff
against uniform play.
Next we use the estimated irreducible errors as a benchmark to evalu-

ate the completeness of the PCHM on the three data sets. Although the
PCHM achieves a better absolute prediction error in game set A than in
game set B, its completeness is approximately 68% on both data sets. In
contrast, the PCHM achieves 97% of the feasible reduction in prediction
error in game set C. This means that the PCHM captures essentially all of
the predictable variation in games where the level 1 action clearly has the
25 In this game, action a3 is level 1, since it yields the highest expected payoff against uni-
form play, and action a1 is level 2, since it is the best response against play of a3. Because (a1,
a1) is a pure-strategy Nash equilibrium, action a1 is level k for all k ≥ 2. The largest payoff
sum using level-k actions is achieved by the profile (a3, a3).
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largest expected value against uniform play, while there is additional
structure beyond the PCHM in game sets A andB.We leave to future work
the question of what additional properties of the game are important de-
terminants of the completeness of the PCHM.
D. Application 3: Human Generation
of Random Sequences

1. Background and Data
Extensive experimental and empirical evidence suggests that humansmis-
perceive randomness, for example, expecting that sequences of coin flips
“self-correct” (toomany heads in a rowmust be followed by a tails) and are
balanced (the numbers of heads and tails are approximately the same)
(Tversky and Kahneman 1971; Bar-Hillel and Wagenaar 1991). These
misperceptions are significant not only for their basic psychological inter-
est, but also for the ways in whichmisperception of randomness manifests
itself in a variety of contexts: for example, investors’ judgment of sequences
of (random) stock returns (Barberis, Shleifer, and Vishny 1998), profes-
sional decision makers’ reluctance to choose the same (correct) option
multiple times in succession (Chen, Shue, and Moskowitz 2016), and peo-
ple’s execution of a mixed strategy in a game (Batzilis et al. 2016).
A common experimental framework in this area is to ask human partic-

ipants to generate fixed-length strings of k (pseudo)random coin flips, for
some small value of k (e.g., k 5 8), and then to compare the produced dis-
tribution over length-k strings to the output of a Bernoulli process that
generates realizations from {H, T } independently and uniformly at ran-
dom(Rapaport andBudescu 1997;Nickerson andButler 2009). Following
in this tradition, we use the platformMechanical Turk to collect a largedata
set of human-generated strings designed to simulate the output of a Ber-
noulli(0.5) process, in which each symbol in the string is generated from
{H, T } independently and uniformly at random. To incentivize effort, we
told subjects that payment would be approved only if their (set of) strings
TABLE 6
Comparison of the Completeness of the PCHM across the Three Sets of Games

Game Set A Game Set B Game Set C

Error
Completeness

(%) Error
Completeness

(%) Error
Completeness

(%)

Baseline .66 0 .66 0 .66 0
PCHM .49 68 .44 68 .28 97

(.006) (.009) (.005)
Irreducible error .41 100 .34 100 .27 100

(.005) (.006) (.005)
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could not be identified as human-generated with high confidence.26 After
removing subjects who were clearly not attempting to mimic a random pro-
cess, our final data set consisted of 21,975 strings generatedby 167 subjects.27
2. Prediction Task, Performance Metric, and Models
We consider the problem of predicting the probability that the eighth en-
try in a string is H given its first seven entries. To do this, we extend our
framework from section III.A as follows.While the observed outcomes be-
long toX � Y, whereX 5 fH , Tg7 andY 5 fH , Tg, we consider predic-
tion rules f :X → ½0, 1� that map the observed features into a probability
that the final flip is H.28

Given a test data set fðs1i , ::: , s8i Þgn
i51 of n binary strings of length 8, we

evaluate the error of the prediction rule f using the following criterion:

1

n o
n

i51

s8i 2 f s1i , ::: , s
7
i

� �� �2
,

where f ðs1i , ::: , s7i Þ is the predicted probability that the eighth flip is H
given the observed initial seven flips s1i , :::s

7
i , and s8i is the actual eighth

flip. Note that the baseline of unconditionally guessing 0.5 guarantees
amean-squared prediction error of 0.25.Moreover, if the strings in the test
set were truly generated via a Bernoulli(0.5) process, then no prediction
rule could improve in expectation upon the baseline error.29 We expect
that behavioral errors in the generation process will make it possible to
improve upon the baseline, but do not know how much it is possible to
improve upon 0.25.
26 In one experiment, 537 subjects each produced 50 binary strings of length eight. In a
second experiment, an additional 101 subjects were asked to each generate 25 binary
strings of length eight. Subjects were informed as follows: “To encourage effort in this task,
we have developed an algorithm (based on previous Mechanical Turkers) that detects human-
generated coin flips from computer-generated coin flips. You are approved for payment only
if our computer is not able to identify your flips as human-generated with high confidence.”

27 Our initial data set consists of 29,375 binary strings. We chose to remove all subjects
who repeated any string in more than five rounds. This cutoff was selected by looking at
how often each subject generated any given string and finding the average “highest fre-
quency” across subjects. This turned out to be 10% of the strings, or five strings. Thus,
our selection criterion removes all subjects whose highest frequency was above average.
This selection eliminated 167 subjects and 7,400 strings, yielding a final data set with
471 subjects and 21,975 strings. We check that our main results are not too sensitive to this
selection criterion by considering two alternative choices in app. D1—first, keeping only
the initial 25 strings generated by all subjects; second, removing the subjects whose strings
are “most different” from a Bernoulli process under a x2-test. We find very similar results
under these alternative criteria.

28 As in the previous examples, we fit a representative-agent model and do not treat the
identity of the subject as a feature.

29 Due to the convexity of the loss function, it is possible to do worse than the baseline,
e.g., by predicting 1 unconditionally.
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In this task, the natural baseline is the rule that unconditionally guesses
that the probability the final flip is H is 0.5. We compare this baseline to
prediction rules based on Rabin (2002) and Rabin and Vayanos (2010),
both of which predict negatively autocorrelated sequences.30 Our predic-
tion rule based onRabin (2002) supposes that subjects generate sequences
by drawing sequentially without replacement from an urn containing
0.5N “1” balls and 0.5N “0” balls. The urn is “refreshed” (meaning the com-
position is returned to its original) every period with independent prob-
ability p. This model has two free parameters: N ∈ Z1 and p ∈ ½0, 1�.
Our prediction rule based on Rabin and Vayanos (2010) assumes that

the first flip s1 ∼ Bernoullið0:5Þ while each subsequent flip sk is distributed

sk ∼ Ber 0:5 2 ao
k22

t50

dt 2sk2t21 2 1ð Þ
� �

,

where the parameter d ∈ R1 reflects the (decaying) influence of past
flips, and the parameter a ∈ R1 measures the strength of negative
autocorrelation.
3. Results
Table 7 shows that both prediction rules improve upon the baseline. The
need for a benchmark for achievable prediction is starkest in this appli-
cation, as the best improvement is only 0.0006, while the gap between
the achieved prediction errors and a perfect zero is large. This is not sur-
prising; since the data are generated by subjects attempting to mimic a
fair coin, we naturally expect substantial variation in the eighth flip after
conditioning on the initial seven flips.
For this problem, we can approximate the irreducible error by learn-

ing the empirical frequency with which each length-7 string is followed
byH in the training data. Although there are 27 unique initial sequences,
with approximately 21,000 strings in our data set we have (on average)
164 observations per initial sequence.
We find that irreducible error in this problem is 0.2441 (table 8), so

that naively comparing achieved prediction error against perfect predic-
tion (which would suggest a completeness measure for the existing mod-
els of at most 0.2%) grossly misrepresents the performance of the mod-
els. The existing models produce up to 10% of the achievable reduction
in prediction error. This suggests that although negative autocorrelation
is indeed present in the human-generated strings and explains a sizable
30 Although both of these frameworks are models of mistaken inference from data, as
opposed to human attempts to generate random sequences, they are easily adapted to
our setting, as the papers explain.
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part of the deviation from a Bernoulli(0.5) process, there is additional
structure that could yet be exploited for prediction.
VI. Extensions

A. Subject Heterogeneity
So far, we have evaluated the completeness of “representative agent”mod-
els that implement a single prediction across all subjects. When we evalu-
atemodels that allow for subject heterogeneity, the question of what is the
largest achievable reduction in prediction error is still relevant, and the
irreducible error for the new expanded feature set can again help us de-
termine the size of potential error reductions. As a simple illustration, we
return to our evaluation of risk preferences and demonstrate how to con-
struct a predictive bound for certain models with subject heterogeneity.
To do this, we calculate the completeness of the CPT specification of

section V.A using the three groups of subjects identified by Bruhin, Fehr-
Duda, and Epper (2010). Our approach for estimating the irreducible er-
ror is to learn the mean response for each lottery within each group, and
predict those means. With sufficiently large groups, this method approx-
imates the best possible accuracy given the identified groups.
Allowing for the parameters of CPT to vary across different subject

groups weakly reduces both its completeness and the irreducible error.
A priori we do not know how the sizes of these reductions compare, so
the impact on completeness is ambiguous; we find that the completeness
TABLE 8
The Feasible Reduction in Prediction Error over the Baseline

Is Small in This Problem

Error Completeness (%)

Baseline .25 0
Rabin 2002 .2496 7

(.0003) (3.3)
Rabin and Vayanos 2010 .2494 10

(.0003) (5.2)
Irreducible error .2441 100

(.0020)
TABLE 7
Both Models Improve upon Naive Guessing,

but the Absolute Improvement Is Small

Error

Baseline .25
Rabin 2002 .2496

(.0003)
Rabin and Vayanos 2010 .2494

(.0003)
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of this three-group specification of CPT is comparable to the complete-
ness of the original specification of CPT (see table 9). We note that be-
cause the same grouping assignment algorithm is used across approaches,
the gapbetween irreducible error and the prediction errors does not shed
light onhowmuchpredictions could be improvedby better ways of group-
ing the subjects. The development of better grouping techniques is an in-
teresting avenue for future work.31
B. Comparing Feature Sets
Above, we considered a fixed feature set X , and evaluated the complete-
ness of different models for prediction given this feature set. We can al-
ternatively compare irreducible error across different feature sets as a
way of contrasting the predictive limits of those features. We illustrate this
comparison by revisiting our problem from section V.D—predicting hu-
man generation of randomness—and considering three feature sets.
The first feature set, X 1 : 7, is our main feature set, which consists of the

initial seven flips. Define X 4 : 7 5 fH , Tg � fH , Tg � fH , Tg to be the
feature set corresponding to flips 4–7, and XH 5 f0, 1, 2 , ::: , 7g to be
the number of H realizations in the first seven flips. Interpreted as lookup
tables, these new feature sets correspond to “compressed” lookup tables
built on different properties of the initial seven flips, where strings are
partitioned based on certain properties. We can estimate irreducible error
(table 10) by predicting the average continuation probability ofH among
all strings in the same partition element.
We find that the feature sets X 4 : 7 and XH achieve large fractions of the

achievable improvement using the first seven flips. For example, using
only the number of heads as a feature, it is possible to achieve 65% of
the achievable reduction of the full structure of the initial flips. Using
only the most recent three flips achieves 40% of the reduction from us-
ing all seven initial flips. On the other hand, the gap between irreducible
31 A com
ror from se
Fehr-Duda,
TABLE 9
CPT Estimated for the Three Groups of Subjects Identified

in Bruhin, Fehr-Duda, and Epper (2010) Is 89% Complete

Prediction Error Completeness (%)

Baseline 104.63 0
(6.5)
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error for X 4 : 7 and for X 1 : 7 demonstrates that there is predictive content
in flips 1–3 beyond what is captured in flips 4–7.
The feature setX 1 : 7 could be expanded to create richer feature sets, and

it would be interesting to consider what additional features might signifi-
cantly improve predictive accuracy, for example, “neuroeconomic” data
such as the speedwithwhich the stringswere entered, or demographicdata
such as age or education.32 The exercise in section VI.A, in which we used
subject types (determined based on choices in auxiliary problems), illus-
trates yet another way to expand the feature set. As we have shown above,
comparing irreducible error across different feature sets is one potentially
useful approach for measuring the predictive value of those features.33
VII. Conclusion
When evaluating the predictive performance of an economic model, it is
important to know not just whether the model is predictive, but also how
complete its predictive performance is. Thus we should compare the pre-
diction errors achieved by our models against the best achievable error
for that problem, namely, the irreducible error. Irreducible error can
be precisely estimated in certain prediction problems of interest in exper-
imental economics. We demonstrate three settings in which complete-
ness can help us evaluate the performance of existing models. Occasion-
ally, as we found in section V.A, a model that has large prediction errors
may nevertheless be nearly complete given its feature set.
We conclude with a brief discussion of our completeness measure, its

limitations, and possibilities for extension.
Counterfactuals.—Economic models are often used to provide counter-

factual predictions about the impact of new policies. Of course, if there
32 A
cumu
equiv
can b

33 N
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TABLE 10
Comparison of the Value of Various Feature Sets

Error Completeness (%)

Baseline .25 0
Irreducible error for X 4 : 7 .2478 40

(.0004) (4.8)
Irreducible error for XH .2464 65

(.0005) (5.5)
Irreducible error for X 1 : 7 .2441 100

(.0020)
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are no data about such policies, these counterfactual predictions rely on
untested intuitions about the robustness of various forces that drive be-
havior. Suppose for example that the price variation in our data only
comes from price changes by firms, and we want to predict the effect of
a sales tax. We might conjecture that the price effects are the same as be-
fore, but in some cases consumers might be either more or less willing to
accept a price increase imposed by the government. With or without an
economic theory, any attempt to extrapolate from data in settings without
sales taxes to the effects of sales taxes requires an untested hypothesis.
And if we do have representative data on the past effect of sales taxes,
the prediction problem does not involve a substantive counterfactual.34

Experimental data.—Experimental economists have a degree of control
over the scopeof their data that is not available infield studies. In particular,
the experimentalist can choose to acquire a large number of observations
for a fixed input space, so that nonparametric estimation of irreducible er-
ror for those inputs is feasible. Thus estimating completeness for laboratory
data is feasible in many instances, as illustrated in the three applications in
this paper. The main trade-off is between gathering more instances of ob-
servations for a given set of feature values, versus ranging over a larger set
of feature values. With a sufficiently large budget, both may be possible.
Alternative measures of completeness.—In some cases, it may be possible to

indirectly evaluate irreducible noise. For example, an interesting analogy
to our approach to completeness is found in the literature on inheritabil-
ity. Biologists have discovered a gap between two differentmethodologies
for discovering how much of a particular outcome (say, propensity to
have a disease) is heritable, dubbed the “missing heritability problem”

(Manolio et al. 2009). Traditional methods of measuring heritability, such
as through carefully controlled twin studies, do not attempt to isolate in-
dividual genes. Newer measurement techniques instead allow us to postu-
late individual genes as the carrier of heritability. Yet formany outcomes, the
explanatory power of individual genes has proven far smaller (sometimes
by an order of magnitude) than overall measures of heritability suggest.
This gap has motivated further theorizing and measurement to isolate
where the “missing heritability”may lie. Roughly speaking, the aggregate
measures of heritability are in effect being used as an analog of our com-
pleteness metric for the specific gene-based theories.
Measuring portability.—One important question is how to compare the

transferability ofmodels across domains. Indeed, wemay expect that eco-
nomic models that are outperformed by machine-learning models in a
given domain have higher transfer performance outside of the domain.
In this sense, within-domain completeness may provide an insufficient
34 Except in the trivial sense that any extrapolation from past data to future outcomes
requires some form of inductive hypothesis.
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measure of the “overall completeness” of the model, and we leave devel-
opment of such notions to future work.
Appendix A

How Good Is Our Estimate of Irreducible Error?

In the main text, we use a lookup table to estimate irreducible error, and quantify
the quality of the approximation by reporting bootstrapped standard errors. Be-
low we supplement this with additional tests for whether the data sets we study are
large enough for the out-of-sample error of the lookup table to be a good approx-
imation for irreducible error.

In section A1, we compare the out-of-sample performance of the lookup table
with that of bagged decision trees, an algorithm that works better on smaller quan-
tities of data. We find that in each of our applications, the two prediction errors are
similar, and the lookup table weakly outperforms bagged decision trees. In sec-
tion A2, we study the sensitivity of the lookup table’s performance to the quantity
of data. The predictive accuracies achieved using our full data sets are very close
to those achieved using, for example, just 70% of the data. This again suggests that
onlyminimal improvements in predictive accuracy are feasible from further increases
in data size. Finally, in section A3, we report standard errors for our completeness
estimates using an approach outlined in Fudenberg, Gao, and Liang (2020).

A1. Comparison with Scalable Machine-Learning Algorithms

One way to evaluate whether the out-of-sample performance of the lookup table
approximates the best possible prediction accuracy is to compare it with the per-
formance of other machine-learning algorithms. Below we compare the lookup
table with a bagged decision tree algorithm (also known as bootstrap-aggregated
decision trees). This algorithm creates several bootstrapped data sets from the
training data by sampling with replacement, and then trains a decision tree on
each bootstrapped training set. Decision trees are nonlinear prediction models
that recursively partition the feature space and learn a (best) constant prediction
for each partition element. The prediction of the bagged decision tree algorithm
is an aggregation of the predictions of individual decision trees. When the loss
function is mean-squared error, the decision tree ensemble predicts the average
of the predictions of the individual trees. When the loss function is misclassifica-
tion rate, the decision tree ensemble predicts based on a majority vote across the
ensemble of trees. Table A1 shows that for each prediction problem, the error of
the bagged decision tree algorithm is comparable to and slightly worse than that
of the lookup table.

TABLE A1
The Lookup Table Outperforms Bagged Decision Trees in Each

of Our Prediction Problems

Risk Games A Games B Games C Sequences

Bagged decision trees 65.65 .45 .36 .29 .2442
Lookup table 65.58 .41 .34 .27 .2441



984 journal of political economy
A2. Performance of the Lookup Table on Smaller Samples

We report here the lookup table’s cross-validated performance on random sam-
ples of x% of our data, where x ∈ f10, 20, ::: , 100g. For each x, we repeat the pro-
cedure 1,000 times, and report the average performance across iterations. We
find that performance error flattens out for larger values of x, suggesting that
the quantity of data we have is indeed large enough that further increases in
the data size will not substantially improve predictive performance.

TABLE A2
Performance of Lookup Table f̂

LT
Using x% of the Data, Averaged

over 100 Iterations for Each x

x (%) Risk Games A Games B Games C Sequences

10 69.47 .4191 .3473 .2729 .2592
20 67.13 .4183 .3476 .2718 .2504
30 66.28 .4178 .3472 .2714 .2479
40 66.25 .4169 .3470 .2708 .2464
50 65.68 .4157 .3459 .2703 .2458
60 65.68 .4141 .3449 .2691 .2452
70 65.68 .4131 .3435 .2682 .2448
80 65.68 .4119 .3427 .2677 .2445
90 65.66 .4109 .3416 .2672 .2443
100 65.58 .4100 .3404 .2668 .2441
A3. Analytic Standard Errors

We report in table A3 the standard errors for our estimates of completeness, us-
ing the approach outlined in Fudenberg, Gao, and Liang (2020) (see proposi-
tion 3). These standard error estimates are slightly larger than the bootstrapped
standard errors that we report in the main text.

TABLE A3

Analytical Standard Errors for Completeness Estimates
Completeness (%)
Application 1: Certainty equivalents:

CPT evaluated on Zurich 2003 data
 94
(7.1)

CPT evaluated on Beijing 2005 data
 99
(7.5)

CPT evaluated on Zurich 2006 data
 92
(9.5)

Application 2: Initial play:

PCHM evaluated on game set A
 68
(1.7)

PCHM evaluated on game set B
 68
(1.3)

PCHM evaluated on game set C
 97
(1.1)

Application 3: Random sequences:

Rabin and Vayanos 2010
 10
(11)

Rabin 2002
 7
(13.5)
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Appendix B

Relationship between Completeness and Nonparametric R 2

Suppose the loss function is mean-squared error, ‘ðy0, yÞ 5 ðy 2 y0Þ2, and the
baseline is the unconditional mean of the outcome variable, fbaseðyÞ 5 EP ðyÞ. Be-
cause EP ð fbaseÞ 5 varðyÞ, the R 2 for the model class is

R 2
Θ 5

Ep fbaseð Þ 2 Ep f *Θ
� �

Ep fbaseð Þ :

The nonparametric R 2 is

R 2
nonpar 5

Ep fbaseð Þ 2 Ep f *ð Þ
Ep fbaseð Þ ,

where f *ðxÞ 5 EP ðy ∣ xÞ is the conditional mean function. So our completeness
measure coincides in this special case with the ratio R 2

Θ=R
2
nonpar.35
Appendix C

Supplementary Material to Section V.A

C1. Alternative Baselines

We use the expected value of the lottery as a baseline in the main text. Below, we
explore how completeness varies across alternative choices for the baseline.

First, we consider baselines based on three families of expected-utility models.
Each of these families specifies a value function u over money, and the predicted
certainty equivalent is u21ðp uð�zÞ 1 ð1 2 pÞ uðz

¯

ÞÞ.
Power function.—The utility function over money is uðzÞ 5 za for z ≥ 0 and

uðzÞ 5 2ð2zÞa for z < 0.
Constant absolute risk aversion.—The utility function over money is uðzÞ 5 2e2rz

for all z.
Constant relative risk aversion.—The utility function over money is

u zð Þ 5
z12g

1 2 g
if  g ≠ 1,

ln zð Þ if  g 5 1,

8><
>:

for z ≥ 0, and 2u(2z) for z < 0.
For each baseline model, we sample 1,000 values of a, r, and g from [0, 1] uni-

formly at random, and evaluate the completeness of CPTwith respect to each of
these baselines. Across all of these baselines, the completeness of CPT does not
fall below 0.94.

Another possibility is to allow the free parameter in the baseline models to be
estimated on the training data. We report the completeness of CPT with respect
to each of these baselines; again, there is very little variation.
35 We thank an anonymous referee for making this observation.
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TABLE C1
Different Choices for the Baseline Lead to Comparable Levels

of Completeness

Completeness of CPT (%)

Original baseline 94
Power function 94.6
Constant absolute risk aversion 93.9
Constant relative risk aversion 94.6
Finally, as discussed in section III.C, an alternative to a user-specified baseline is
the best unconditional prediction of Y, as estimated from the training data. The
error of this unconditional prediction baseline (1,228) turns out to be substan-
tially worse than the baseline that we used in the main text (103), and so CPT’s
completeness rises to 99.8%.

C2. Alternative Specifications of CPT

Besides the specification of CPT that we use in the main text, some other com-
mon alternatives include the original Tversky and Kahneman (1992) specifica-
tion, which posits that the weighting function is

w pð Þ 5 p

pg 1 1 2 pð Þg½ �1=g ,

and the Karmarker (1978) specification, which is equivalent to the one we use in
the main text with d set to 1. We report below the completeness of these alterna-
tive specifications of CPT.

TABLE C2

Different Specifications of CPT All Yield High Levels

of Completeness
Completeness (%)
CPT (original)
 94

(2.0)
CPT (Karmarkar)
 92

(3.2)
CPT (Kahneman-Tversky)
 71

(2.8)
Appendix D

Supplementary Material to Section V.D

D1. Different Cuts of the Data

Initial strings only.—We repeat the analysis in section V.D using data from all sub-
jects, but only their first 25 strings. This selection accounts for potential fatigue in
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generation of the final strings, and leaves a total of 638 subjects and 15,950 strings.
Prediction results for our main exercise are shown below using this alternative
selection.
TABLE D1
Completeness of the Rabin and Vayanos (2010) Model

on the Subjects’ First 25 Generated Strings

Error Completeness (%)

Baseline .25 0
Rabin and Vayanos 2010 .2491 5

(.0005) (6.8)
Irreducible error .2326 100

(.013)
Removing the least random subjects.—For each subject, we conduct a x2-test for
the null hypothesis that their strings were generated under a Bernoulli process.
We order subjects by p-values and remove the 100 subjects with the lowest p-values
(subjects whose generated strings were most different from what we would expect
under a Bernoulli process). This leaves a total of 538 subjects and 24,550 strings.
Prediction results for our main exercise are shown below using this alternative
selection.
TABLE D2
Completeness of the Rabin and Vayanos (2010) Model

on the Data Set without the Strings Produced

by the 100 “Least Random” Subjects

Error Completeness (%)

Baseline .25 0
Rabin and Vayanos 2010 .2492 12

(.0003) (4.0)
Irreducible error .2431 100

(.0019)
D2. Experimental Instructions

Subjects on Mechanical Turk were presented with the following introduction
screen:
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FIG. D1.—Instructions provided to subjects on Mechanical Turk.
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