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Abstract

We focus on several algorithmic problems arising from the study of random com-
binatorial structures and of neural network models, with a particular emphasis on
computational aspects. Our main contributions are summarized as follows.

1. Our first focus is on two algorithmic problems arising from the study of random
combinatorial structures: the random number partitioning problem (NPP) and
the symmetric binary perceptron model (SBP). Both of these models exhibit a
so-called statistical-to-computational gap: a striking gap between the existential
and the best known algorithmic guarantees with bounded computational power
(such as polynomial-time algorithms). We investigate the nature of this gap
for the NPP and SBP by studying their landscape through the lens of statistical
physics and in particular spin glass theory. We establish that both models ex-
hibit the Overlap Gap Property (OGP), an intricate geometrical property that
is known to be a rigorous barrier for large classes of algorithms. We then lever-
age the OGP to rule out certain important classes of algorithms, including the
class of stable algorithms and the Monte Carlo Markov Chain type algorithms.
The former is a rather powerful abstract class that captures the implementation
of several important algorithms including the approximate message passing and
the low-degree polynomial based methods. Our hardness results for the sta-
ble algorithms are based on Ramsey Theory from extremal combinatorics. To
the best of our knowledge, this is the first usage of Ramsey Theory to show
algorithmic hardness for models with random parameters.

2. Our second focus is on the Sherrington-Kirkpatrick (SK) spin glass model, a
mean-field model for disordered random media. We establish that the algorith-
mic problem of exactly computing the partition function of the SK model is
average-case hard under the assumption that 𝑃 ̸= #𝑃 (an assumption that is
milder than 𝑃 ̸= 𝑁𝑃 and is widely believed to be true) both for the finite-
precision arithmetic model and for the real-valued computational model. Our
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result is the first provable hardness result for a statistical physics model with
random parameters that is based on standard complexity-theoretical assump-
tions.

3. Our last focus is on neural network (NN) models arising from modern machine
learning and high-dimensional statistical inference tasks.

• Our first set of results to this direction establishes self-regularity for two-
layer NNs with sigmoid, binary step, rectified linear unit (ReLU) activation
functions and non-negative output weights in an algorithm-independent
manner. That is, we establish that under very mild distributional assump-
tions on the training data, any such network has a bounded output norm
provided that it attains a small training error on polynomially many data.
Our results explain why the overparameterization does not hurt the gener-
alization ability for such architectures. This conundrum has been observed
empirically in NNs and defies the classical statistical wisdom.

• Our final focus is on the problem of learning two-layer NNs with quadratic
activation functions under the assumption that the training data are gen-
erated by a so-called teacher network with planted weights. We first inves-
tigate the training aspect, establishing that there exists an energy barrier
𝐸0 below which any stationary point of the empirical risk is necessarily a
global optimum. That is, there are no spurious stationary points below 𝐸0.
Consequently, we show that the gradient descent algorithm, when initial-
ized below 𝐸0, nearly recovers the planted weights in polynomial-time. We
then investigate the question of proper initialization under the assumption
that the planted weights are generated randomly. By leveraging a certain
semicircle law from random matrix theory, we show that a deterministic
initialization suffices, provided that the network is sufficiently overparam-
eterized. Finally, we identify a simple necessary and sufficient geometric
condition on the training data under which any minimizer of the empiri-
cal risk has good generalization. We lastly show that randomly generated
data satisfy this condition almost surely under very mild distributional
assumptions.

Thesis Supervisor: David Gamarnik
Title: Nanyang Technological University Professor of Operations Research
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Chapter 1

Introduction

A fundamental commonality across many scientific disciplines is the existence of opti-
mization problems involving uncertainty. Such problems are ubiquitous among many
fields ranging from computer science, statistics, machine learning and artificial intel-
ligence to biology and social sciences. Furthermore, the modern era of big data added
yet another aspect to such problems: high-dimensionality. This fueled significant
research activity at the intersection of uncertainty and high-dimensionality, creat-
ing new metafields dubbed as “high-dimensional probability" and “high-dimensional
statistics" [119, 282, 283].

This thesis deals with several algorithmic problems arising from the study of ran-
dom combinatorial structures, from high-dimensional statistical inference tasks and
from the study of neural network models. In our quest, we aim at understanding
the underlying model through a rather geometric viewpoint. Our contributions are
collected under three (nearly) independent parts.

In what follows, we briefly elaborate on the different parts of the thesis. For each
part, we introduce the underlying model/problem that we investigate, fundamental
questions pertaining to them that we address; and a brief summary of our main
contributions.

1.1 Algorithmic Barriers in Random Combinatorial
Structures

Our first focus is on the issues surrounding the algorithmic tractability of optimization
in certain combinatorial structures involving randomness. Many algorithmic problems
arising from the study of these structures (as well as from the high-dimensional infer-
ence tasks and machine learning models) exhibit a rather ubiquitous feature, dubbed
as a statistical-to-computational gap: there often exists a striking gap between the
existential guarantee and the best algorithmic guarantee. The existential guarantees
are often established by the so-called first/second moment method [13] or by means of
information-theoretical arguments [84]. They can, in principle, be attained with un-
bounded computational power (e.g. in exponential time). The algorithmic guarantee,
on the other hand, is for a restricted class of algorithms requiring bounded compu-
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tational power, with the class of polynomial-time algorithms being the benchmark.
Throughout, we use the terms “polynomial-time algorithm" and “efficient algorithm"
interchangeably.

Perhaps the oldest and simplest example of such a problem exhibiting a statistical-
to-computational gap is the problem of finding a large clique in the so-called “dense"
Erdös-Rényi random graph, G(𝑛, 1

2
). (Given a graph G = (𝑉,𝐸), a clique 𝐶 is a

fully-connected subset 𝐶 ⊂ 𝑉 . That is, 𝐶 ⊂ 𝑉 is a clique iff for any distinct 𝑖, 𝑗 ∈ 𝐶,
(𝑖, 𝑗) ∈ 𝐸.) This is a simple random graph model erected on 𝑛 vertices {1, 2, . . . , 𝑛}
where for any pair 1 ≤ 𝑖 < 𝑗 ≤ 𝑛 of vertices, (𝑖, 𝑗) is an edge with probability 1

2

independently from any other pair. It is a textbook exercise in probabilistic method,
see e.g. [13], that the largest clique of this graph is roughly of size 2 log2 𝑛 with high
probability (w.h.p.) as 𝑛→ ∞. On the other hand, the best known polynomial-time
algorithm by Karp [184]—a rather trivial greedy algorithm—returns a clique that
is half-optimal, namely of size roughly log2 𝑛. Noting that such a large clique can
be found via a brute force search over all subsets of vertices of cardinality 2 log2 𝑛
in quasi-polynomial time, 2Θ(log2 𝑛); this highlights a statistical-to-computational gap
between the existential and the best algorithmic guarantee. (It is worth noting that,
here the existential and the algorithmic guarantees are off by a multiplicative factor
of 2. For certain other model, in particular for the models we investigate herein,
this gap is often much more dramatic.) A problem that remains open to this day is
whether one can improve upon the aforementioned greedy algorithm [184].

The list of problems with a statistical-to-computational gap grows very rapidly. A
partial list of such problems includes certain “non-planted models" such as random
constraint satisfaction problems [217, 7, 189, 234, 23], optimization problems over
random graphs [136, 77], spin glass models [221, 73, 120, 124] and the largest subma-
trix problem [134]; as well as certain “planted" models arising in high-dimensional
statistical inference tasks, in particular the principle component analysis (PCA)
[47, 199, 168, 167, 21], and perhaps most notably the infamous planted clique problem
[177, 214, 38].

Unfortunately, there is as yet no analogue of the standard NP-completeness theory
for these average-case problems with random inputs; current techniques generally
fall short of proving the hardness of such problems even under the assumption that
𝑃 ̸= 𝑁𝑃 . However, a notable exception arises when the problem possesses the so-
called random self-reducibility. Later in Chapter 4, we establish the average-case
hardness of the algorithmic problem of exactly computing the partition function of
the Sherrington-Kirkpatrick spin glass model under the assumption 𝑃 ̸= #𝑃 by
leveraging the random self-reducibility of the partition function. The assumption
that 𝑃 ̸= #𝑃 is much weaker than 𝑃 ̸= 𝑁𝑃 and is widely believed to be true, see
e.g. [178].

While there is no solid hardness theory for such average-case problems per se, a
very fruitful and active line of research proposed various approaches that serve as
rigorous evidence of the algorithmic hardness of such problems. These approaches
include (but not limited to):

• failure of the Monte Carlo Markov Chain (MCMC) methods [177, 103];
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• failure of low-degree polynomial based algorithms and low-degree methods [169,
193, 122, 285, 63];

• sum-of-squares (SoS) lower bounds [168, 167, 240, 38];

• statistical query (SQ) lower bounds [186, 94, 111];

• failure of the approximate message passing (AMP) algorithm [293, 31] 1;

• reductions from the planted clique problem (a canonical problem widely believed
to be hard on average) [47, 62, 61].

Our focus in this thesis is on yet another approach called the Overlap Gap Property
(OGP). This approach aims at studying the intricate geometry of the problem by
leveraging insights from statistical physics. We elaborate on it in the following section.

1.1.1 The Overlap Gap Property (OGP)

Discovered implicitly by Mézard, Mora, and Zecchina [217] and Achlioptas and Ricci-
Tersenghi [9] (though coined later by Gamarnik and Li in [134]), the OGP approach
leverages insights from statistical physics to form a rigorous link between the intricate
geometry of the solution space and the formal algorithmic hardness. The OGP is a
topological disconnectivity property. To set the stage, consider a canonical combina-
torial optimization problem with random input 𝜉:

min
𝜎∈Θ

ℒ(𝜎, 𝜉). (1.1)

As an example, consider the random number partitioning problem (NPP), where 𝑛
i.i.d. standard normal numbers stored in vector 𝜉 𝑑

= 𝒩 (0, 𝐼𝑛) are to be partitioned into
two subsets such that the resulting subset-sums are as close as possible. Encoding
any such partition into a binary vector 𝜎 ∈ ℬ𝑛 ≜ {−1, 1}𝑛, the NPP is indeed an
instance of (1.1) with Θ = ℬ𝑛 and

ℒ(𝜎, 𝜉) ≜
⃒⃒
⟨𝜎, 𝜉⟩

⃒⃒
, where ⟨𝜎, 𝜉⟩ =

∑︁
1≤𝑗≤𝑛

𝜎𝑗𝜉𝑗.

We will now briefly describe the OGP. Informally, the OGP holds for the “energy
level" ℰ if there exists 0 < 𝜈1 < 𝜈2 such that w.h.p. over the random instance 𝜉, it is
the case that for any 𝜎1, 𝜎2 ∈ Θ with ℒ(𝜎1, 𝜉) ≤ ℰ and ℒ(𝜎2, 𝜉) ≤ ℰ ,

distance(𝜎1, 𝜎2) ∈ [0, 𝜈1] ∪ [𝜈2,∞),

where the distance function is defined by the ambient space Θ.
Namely, any two near-optimal 𝜎1 and 𝜎2 are either “close" or “far" from each

other; intermediate distances are not allowed. For our purposes, where we optimize
1AMP algorithm achieves the information-theoretically optimal performance for various Bayesian

inference problems, see e.g. [91, 90].

15



over the binary cube ℬ𝑛 = {−1, 1}𝑛, it is more convenient to work with the so-called
normalized overlap which is scale invariant:

𝒪 (𝜎1, 𝜎2) ≜
1

𝑛
⟨𝜎1, 𝜎2⟩ ∈ [−1, 1]. (1.2)

Observe that

𝒪 (𝜎1, 𝜎2) =
𝑛− 2𝑑𝐻

(︀
𝜎1, 𝜎2

)︀
𝑛

where 𝑑𝐻
(︀
𝜎1, 𝜎2

)︀
is the Hamming distance between 𝜎1 and 𝜎2. For this reason, a

large value of overlap between 𝜎1 and 𝜎2 implies they are similar.
We now illustrate OGP in Figure 1-1. The red curve is plot of an objective

function, ℒ(𝜎, 𝜉). (It is worth noting that while the space Θ of solutions appears on
the horizontal axis in Figure 1-1, it need not be (and is not) one-dimensional. This is
merely for display purposes.) The space 𝜎 of solutions with ℒ(𝜎, 𝜉) ≤ ℰ is partitioned
into three disjoint clusters such that the diameter of any cluster is at most 𝜈1, whereas
the distance between any two different clusters is at least 𝜈2, where 𝜈1 < 𝜈2. Consider
now any two near-optimal 𝜎1, 𝜎2 where ℰ quantifies ‘near-optimality": ℒ(𝜎1, 𝜉) ≤ ℰ
and ℒ(𝜎2, 𝜉) ≤ ℰ . If they are contained in the same cluster, they are at most 𝜈1
apart; whereas if they are contained in different clusters, they are at least 𝜈2 apart.
Namely, there exists no near-optimal pair (𝜎1, 𝜎2) with distance(𝜎1, 𝜎2) ∈ [𝜈1, 𝜈2].
This highlights the presence of OGP in the landscape of ℒ.

Here, one should be careful and not confuse the OGP with clustering: OGP
is a stronger property than clustering. That is, while OGP does imply clustering;
the converse is not necessarily true: clustering does not necessarily imply OGP as
illustrated by Figure 1-2. Notice that (a) 𝑐* = min𝜎∈Θ ℒ(𝜎, 𝜉) and (b) the set of all
solutions 𝜎 with ℒ(𝜎, 𝜉) ≤ 𝑐* + 𝜇 are partitioned into two disjoint clusters, where the
maximal diameter 𝜈1 of a cluster is greater than the separation 𝜈2 between clusters.
In this case, the set of all “distance" values achievable by taking pairs of near-optimal
𝜎1, 𝜎2 is the connected interval [0, 𝜈1]: the OGP is absent in this case.

Origins of OGP. The OGP emerged originally in spin glass theory [273]. A pre-
cursory link between the OGP and the formal algorithmic hardness was first made in
the context of random constraint satisfaction problems (𝑘-SAT) in a series of papers
by Achlioptas and Coja-Oghlan [7]; Achlioptas, Coja-Oghlan, and Ricci-Tersenghi [8];
and by Mézard, Mora, and Zecchina [217]. These papers show an intriguing “cluster-
ing" property: they establish that a large portion of the set of satisfying assignments
is essentially partitioned into “clusters" that are disconnected with respect to the
‘natural topology’ of the solution space. As the onset of this clustering property co-
incides roughly with the regime where the known polynomial-time algorithms fail,
this property was conjecturally linked with the formal algorithmic hardness. Strictly
speaking, these papers do not establish the OGP. However, an inspection of their
arguments reveals that they actually do: the normalized overlap between two satis-
fying assignments takes values in a set [0, 𝜈1] ∪ [𝜈2, 1] for some 0 < 𝜈1 < 𝜈2 < 1. The
aforementioned clustering property is then inferred as a consequence of the OGP.
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Figure 1-1: OGP for Energy Level ℰ .
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Figure 1-2: Clustering does not imply OGP.
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Algorithmic Implications of OGP. The first formal algoritmic implication of
the OGP is due to Gamarnik and Sudan [135, 136]. In those papers, theys study
the problem of finding a large independent set in sparse random graphs with average
degree 𝑑. Namely, they study the Erdös-Rényi graph, G(𝑛, 𝑑

𝑛
) (Their argument also

applies to the so-called random 𝑑−regular graph model, G𝑑(𝑛).) It is known, see
in particular [117, 118, 45], that the largest independent set of this model is of size
2 log 𝑑

𝑑
𝑛 w.h.p., in the double limit as 𝑛 → ∞ followed by 𝑑 → ∞. More precisely, let

ℐ𝑑 be the maximal independent set of G(𝑛, 𝑑
𝑛
) or G𝑑(𝑛). Then, w.h.p.

lim
𝑛→∞

1

𝑛
|ℐ𝑑| = 𝛼𝑑,

where the sequence 𝛼𝑑 of numbers satisfy 𝛼𝑑 = 2 log 𝑑
𝑑
(1 + 𝑜𝑑(1)) as 𝑑 → ∞. On the

other hand, the best known polynomial-time algorithm [184] (a very simple greedy
protocol) returns an independent set of cardinality at most log 𝑑

𝑑
𝑛. In order to reconcile

this apparent statistical-to-computational gap, Gamarnik and Sudan study the space
of all large independent sets. They establish, through a simple first moment argument,
that any two independent sets of size greater than

(︀
1 + 1/

√
2
)︀

log 𝑑
𝑑
𝑛 either have a

significant intersection (overlap), or are nearly disjoint. That is, the intermediate
values do not occur. Namely they establish that the OGP holds. By leveraging
this, they show, through a contradiction argument, that a class of graph algorithms
called the local algorithms/factors of i.i.d. fails to find an independent set of size
greater than

(︀
1 + 1/

√
2
)︀

log 𝑑
𝑑
𝑛. This refutes an earlier conjecture by Hatami, Lovász,

and Szegedy [163]. Subsequent research, again through the lens of OGP, extended
this hardness result to the class of low-degree polynomial based algorithms [123].
The extra “oversampling" factor, 1/

√
2, is an artifact of the overlap analysis. Later

research removed this factor by inspecting instead the the overlap pattern of many
large independent sets (rather than the pairs) and yielded tight algorithmic hardness
guarantees: for any 𝜖 > 0, there exists an 𝑚 ∈ N such that the set of 𝑚−tuples
of independent sets of size at least (1 + 𝜖) log 𝑑

𝑑
𝑛 exhibit the multi-OGP; whereas

independent sets of cardinality near log 𝑑
𝑑
𝑛 can be found by means of local algorithms,

see e.g. [194]. This was done by Rahman and Virág [244] for local algorithms, and
by Wein [285] for low-degree polynomials. Similar multi-OGP was used by Gamarnik
and Sudan in the context of a version of a random constraint satisfaction problem
called Not-All-Equal (NAE) random 𝑘-SAT problem [137]; and by Bresler and Huang
in the context of random 𝑘-SAT problem [63]. The approach of looking at the overlap
structure between 𝑚-tuples of configurations is also at the core of this thesis, and is
elaborated further in the next section.

We close this section with a brief list of problems where the OGP is leveraged
to rule out certain classes of algorithms. This list includes optimization problems
over random graphs and spin glass models [120, 122, 124, 172], random constraint
satisfaction problems [137, 63], see also the survey paper by Gamarnik [119] and the
references therein.
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Multi OGP (𝑚−OGP). As we just mentioned, it was previously observed that
by considering more intricate overlap patterns, one can potentially lower the (algo-
rithmic) phase transition points further. This idea was employed for the first time
by Rahman and Virág [244] in the context of the aforementioned independent set
problem. By doing so, they managed to “shave off" the extra 1/

√
2 factor present in

the earlier result by Gamarnik and Sudan [135, 136]; reaching all the way down to the
algorithmic threshold, log 𝑑

𝑑
𝑛. In a similar vein, Gamarnik and Sudan [137] studied the

overlap structure of 𝑚−tuples 𝜎(𝑖) ∈ {0, 1}𝑛, 1 ≤ 𝑖 ≤ 𝑚 of satisfying assignments in
the context of the Not-All-Equal (NAE) 𝑘−SAT problem. By showing the presence
of OGP for 𝑚−tuples of nearly equidistant points (in ℬ𝑛), they established near tight
hardness guarantees for the class of sequential local algorithms : their results match
the best computational threshold up to logarithmic-in-𝑘 factors.

More recently, 𝑚−OGP for even more intricate forbidden patterns were considered
to establish tight formal algorithmic hardness results in other settings. In particular,
by leveraging the 𝑚−OGP, Wein [285] showed that low-degree polynomials fail to
return a large independent set (in sparse random graphs) of size greater than log 𝑑

𝑑
𝑛,

thereby strengthening the earlier result by Gamarnik, Jagannath, and Wein [122].
What is more, Wein’s work establishes the ensemble variant of OGP (an idea emerged
originally in [73]): he considers 𝑚−tuples of independent sets where each set do not
necessarily come from the same random graph, but rather from correlated random
graphs. As we elaborate, respectively, in Chapters 2 and 3, the ensemble variant of
OGP is used for the random number partitioning problem and the symmetric binary
perceptron model considered in this thesis. The ensemble 𝑚−OGP can be leveraged
to rule out stable algorithms (appropriately defined); and will also be our focus here.
Recently, by leveraging the ensemble 𝑚−OGP; Bresler and Huang [63] established
nearly tight low-degree hardness results for the random 𝑘−SAT problem: they show
that low-degree polynomials fail to return a satisfying assignment when the clause
density is only a constant factor off by the computational threshold. In yet another
work [172], Huang and Sellke construct a very intricate forbidden structure consisting
of an ultrametric tree of solutions, which they refer to as the branching OGP. By
leveraging this branching OGP, they rule out overlap concentrated algorithms (a class
that captures 𝑂(1) iteration of gradient descent, approximate message passing; and
Langevin Dynamics run for 𝑂(1) time) at the algorithmic threshold for the problem
of optimizing mixed, even 𝑝−spin model Hamiltonian.

In this thesis, we carry out the OGP program for two models to give formal
evidence of algorithmic hardness and subsequently rule out certain important classes
of algorithms.

1.1.2 OGP in Random Number Partitioning Problem

Our first focus is on the random number partitioning problem (NPP) mentioned earlier:
given 𝑛 numbers 𝑋 = (𝑋𝑖 : 1 ≤ 𝑖 ≤ 𝑛) ∈ R𝑛, find a partition 𝜎 ∈ ℬ𝑛 = {−1, 1}𝑛
such that

⃒⃒
⟨𝜎,𝑋⟩

⃒⃒
is as small as possible. This problem is at the core of a very

important application in statistics known as the design of randomized controlled trials
(which is often considered to be the gold standard for clinical trials [191, 161]) and
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has many more other applications, including multiprocessor scheduling, VLSI design,
cryptography and so on [76].

The NPP possesses a statistical-to-computational gap. When the numbers 𝑋𝑖 are
i.i.d. standard normal, 𝑋𝑖

𝑑
= 𝒩 (0, 1), 1 ≤ 𝑖 ≤ 𝑛;

min
𝜎∈ℬ𝑛

⃒⃒
⟨𝜎,𝑋⟩

⃒⃒
= Θ

(︀√
𝑛2−𝑛

)︀
,

w.h.p. as 𝑛 → ∞. The best known polynomial-time algorithm, on the other hand,
returns a partition 𝜎ALG ∈ ℬ𝑛 having an objective of only⃒⃒

⟨𝜎ALG, 𝑋⟩
⃒⃒
= 𝑛−Θ(log𝑛)

w.h.p. as 𝑛→ ∞. This highlights a rather striking gap: ignoring the
√
𝑛 factor,

2−𝑛 vs 2−Θ(log2 𝑛).

In Chapter 2—which is based on [126]—we initiate the rigorous study of the
nature of this gap for NPP. Guided by statistical physics insights, we first conduct a
“landscape analysis". Our results are summarized as follows:

• We first study pairs of partitions achieving an objective value of 2−𝐸𝑛 , 𝐸𝑛 = 𝜖𝑛,
and establish the presence of the OGP (for pairs) when 𝜖 > 1

2
. We dub this as

2−OGP.

• Motivated by the fact that the 2−OGP falls short of explaining the aforemen-
tioned statistical-to-computational gap all the down to the algorithmic thresh-
old; we next study 𝑚−tuples of partitions achieving an objective value of 2−𝐸𝑛 ,
𝐸𝑛 = 𝜖𝑛s and establish the presence of multi OGP (𝑚−OGP) for any constant
𝜖 > 0. Importantly, the value of 𝑚 investigated here remains constant in the
natural parameter 𝑛 of the problem: 𝑚 = 𝑂(1).

• The 𝑚−OGP approach with 𝑚 = 𝑂(1) falls short of establishing OGP when
𝐸𝑛 = 𝑜(𝑛). In particular; we show, through a novel and delicate application of
the second moment method, that the OGP is actually absent when 𝑚 = 𝑂(1)
and 𝐸𝑛 is any arbitrary function having a sub-linear growth in 𝑛, 𝐸𝑛 = 𝑜(𝑛).

• Motivated by the aforementioned investigations demonstrating that the study
of 𝑚−tuples with growing values of 𝑚 reduces the algorithmic phase transition
points further, we finally study 𝑚−tuples of near-optimal partitions where 𝑚
itself grows in the natural parameter 𝑛 of the problem, 𝑚 = 𝜔𝑛(1). In this set-
ting, we establish the presence of 𝑚−OGP for 𝑚−tuples of partitions achieving
an objective value of 2−𝐸𝑛 for any 𝐸𝑛 = 𝜔

(︀√
𝑛 log 𝑛

)︀
.

The investigation of 𝑚−tuples where 𝑚 itself also grows in 𝑛 is a novel contribution
of our work and allows one to establish algorithmic hardness for a much broader range
of objective values.

We then turn our attention to the algorithmic front. By leveraging the aforemen-
tioned OGP results, we establish following algorithmic hardness results:
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• any sufficiently stable algorithm, appropriately defined, fails to find a partition
with an objective value of 2−𝐸𝑛 , for any 𝐸𝑛 = 𝜔(𝑛 log−1/5 𝑛); and

• a very natural Monte Carlo Markov Chain (MCMC) dynamics fail to return a
near-optimal partition.

Our proof of the of the failure of stable algorithm leverages methods from Ramsey
Theory from the extremal combinatorics in a crucial way. The application of the
Ramsey Theory in this field is very novel.

1.1.3 OGP in Symmetric Binary Perceptron Model

Our second focus is on the symmetric binary perceptron model (SBP). Fix a 𝜅 > 0

and an 𝛼 > 0; set 𝑀 = ⌊𝑛𝛼⌋ ∈ N; and generate i.i.d. random vectors 𝑋𝑖
𝑑
= 𝒩 (0, 𝐼𝑛),

1 ≤ 𝑖 ≤𝑀 . (⌊𝑛𝛼⌋ is the largest integer not exceeding 𝑛𝛼.) Consider the random set

𝑆𝛼(𝜅) ≜
⋂︁

1≤𝑖≤𝑀

{︁
𝜎 ∈ ℬ𝑛 :

⃒⃒
⟨𝜎,𝑋𝑖⟩

⃒⃒
≤ 𝜅

√
𝑛
}︁
=
{︁
𝜎 ∈ ℬ𝑛 : ‖ℳ𝜎‖∞ ≤ 𝜅

√
𝑛
}︁
,

where ℳ ∈ R𝑀×𝑛 with rows 𝑋𝑖 ∈ R𝑛, 1 ≤ 𝑖 ≤ 𝑀 . We refer to the matrix ℳ as
the disorder matrix. This is a toy neural network model storing random patterns 𝑋𝑖,
where the parameter 𝛼 is called the storage capacity [83, 138, 140, 139]. This model
also has deep connections to constraint satisfaction problems, where (a) the parameter
𝛼 is akin to the so-called constraint density ; and (b) each “constraint" 𝑋𝑖 ∈ R𝑛 rules
out certain 𝜎 ∈ ℬ𝑛. For this reason, we often refer to a 𝜎 ∈ 𝑆𝛼(𝜅) as a satisfying
assignment. Our focus is on algorithmic problem of efficiently finding a 𝜎 ∈ 𝑆𝛼(𝜅)
whenever 𝑆𝛼(𝜅) ̸= ∅ (w.h.p.).

This model exhibits two conundrums detailed bellow.

A Statistical-to-Computational Gap. It has been recently established, inde-
pendently by Perkins and Xu [234] and Abbe, Li, and Sly [6], that for every 𝜅 > 0,
there exists a critical value 𝛼𝑐(𝜅) such that for every 𝛼 < 𝛼𝑐(𝜅), 𝑆𝛼(𝜅) is non-empty
w.h.p.; and for every 𝛼 > 𝛼𝑐(𝜅), it is empty also w.h.p. The value 𝛼𝑐(𝜅) matches the
first moment prediction: E

[︀⃒⃒
𝑆𝛼(𝜅)

⃒⃒]︀
= 𝑜(1) if 𝛼 > 𝛼𝑐(𝜅) and E

[︀⃒⃒
𝑆𝛼(𝜅)

⃒⃒]︀
= 𝜔(1) if

𝛼 < 𝛼𝑐(𝜅). The value of 𝛼𝑐(𝜅) is given by an explicit formula:

𝛼𝑐(𝜅) = − 1

log2 P
[︀
|𝑍| ≤ 𝜅

]︀ , where 𝑍
𝑑
= 𝒩 (0, 1).

Note that in the regime 𝜅 → 0, 𝛼𝑐(𝜅) behaves roughly like − 1
log2 𝜅

. Assuming 𝛼 <

𝛼𝑐(𝜅) for which 𝑆𝛼(𝜅) ̸= ∅ w.h.p., a natural follow-up algorithmic question is as
follows:

“For which values of 𝛼 < 𝛼𝑐(𝜅), one can find a 𝜎 ∈ 𝑆𝛼(𝜅) in polynomial-time?"

This problem is also very related to the much studied combinatorial discrepancy
theory ; certain algorithmic guarantees are available. To the best of our knowledge,
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the best polynomial-time algorithmic guarantee is due to Bansal and Spencer [35].
Given any 𝜅 > 0, their algorithm returns, w.h.p., a 𝜎 ∈ 𝑆𝛼(𝜅) as long as 𝛼 ≤ 𝐾𝜅2

for some explicit constant 𝐾 > 0 independent of 𝜅. Ignoring the absolute constant
𝐾 > 0, the SBP also exhibits a statistical-to-computational gap which is much more
profound in the regime 𝜅→ 0:

− 1

log2 𝜅
vs 𝜅2.

Extreme Clustering. When 𝑆𝛼(𝜅) ̸= ∅ (w.h.p.), yet another natural question is
the geometry of the set 𝑆𝛼(𝜅) of satisfying assignments. To that end, the aforemen-
tioned papers by Perkins-Xu [234] and Abbe-Li-Sly [6] establish that the SBP exhibits
a very intriguing extreme clustering property known as the Frozen one-step replica
symmetry breaking (Frozen 1−RSB) in statistical physics literature: for any density
𝛼 > 0 below critical value 𝛼𝑐(𝜅), all but an exponentially small fraction of solutions
are isolated (w.h.p.) singletons; the Hamming distance to any other solution is linear
in the dimension 𝑛. In light of [217, 9] linking clustering to algorithmic hardness;
this suggests algorithmic intractability. At the same time, however, the model does
admit polynomial-time algorithms at sufficiently low densities as was mentioned be-
fore. This conundrum challenges the view that extreme clustering leads to algorithmic
hardness.

In order to reconcile this apparent conundrum and address the aforementioned
statistical-to-computational gap, we first study the landscape of this problem through
the lens of OGP; and establish following results.

• High 𝜅 regime, 𝜅 = 𝑂(1): In this regime, we establish the OGP for the pairs
and triples of satisfying assignments in 𝑆𝛼(𝜅), dubbed respectively as 2−OGP
and 3−OGP. As a running example, let 𝜅 = 1 for which 𝛼𝑐(𝜅) is approximately
1.8159. Our results show that 2−OGP provably takes place when 𝛼 ≥ 1.71,
whereas 3−OGP provably takes place when 𝛼 ≥ 1.667. That is, the OGP
threshold is strictly below the existential threshold; and the 3−OGP threshold is
strictly below the 2−OGP threshold. Our results indicate an intricate geometry
and suggest algorithmic hardness for densities above the OGP threshold.

• Low 𝜅 regime, 𝜅 → 0. In this regime, we establish the OGP for 𝑚−tuples
of satisfying assignments. That is, we study the 𝑚−tuples 𝜎1, . . . , 𝜎𝑚 ∈ 𝑆𝛼(𝜅)
of satisfying assignments; establish the presence of 𝑚−OGP for densities 𝛼 =
Ω(𝜅2 log2

1
𝜅
). Importantly, this guarantee is nearly tight : up to the polyloga-

rithmic factor log2
1
𝜅
, it matches the best algorithmic threshold of 𝜅2.

We then turn our attention to the algorithmic front; and establish the following
results.

• Stable algorithms, appropriately defined, fail to find a 𝜎 ∈ 𝑆𝛼(𝜅) for densities
above the 𝑚−OGP threshold, i.e. when 𝛼 = Ω(𝜅2 log2

1
𝜅
).

• Online algorithms, appropriately defined, fail to find a 𝜎 ∈ 𝑆𝛼(𝜅) for densities
sufficiently close to the satisfiability threshold 𝛼𝑐(𝜅).
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• The algorithm by Kim and Roche [188] devised for the binary perceptron model
is stable in the sense we consider.

The aforementioned results are established in Chapter 3, which is based on [131].
The most technically involved part of this work is establishing the stability of the
known algorithms which, unlike in several prior models, do not appear to fall into the
class of low-degree polynomials.

Perhaps even more importantly, our work proposes an alternative view on the
interplay between the solution space geometry and algorithmic hardness. The ex-
istence of polynomial-time algorithms coincides with clustering, therefore the view
that clustering implies algorithmic hardness breaks down. On the other hand, the
𝑚−OGP takes place slightly above the best known algorithmic threshold and the
threshold of 𝑚−OGP nearly matches the algorithmic threshold: the OGP does imply
algorithmic hardness. We conjecture that the onset of 𝑚−OGP coincides with the
onset of algorithmic hardness.

1.2 Average-Case Hardness of Sherrington-Kirkpatrick
Spin Glass Model

As was mentioned previously, the standard NP-complexity theory tailored for the
worst-case hardness is often inadequate for establishing the hardness of average-
case problems involving random inputs. A notable exception to this though is when
the problem possesses the so-called random self-reducibility. Informally, a function
𝑓 is called randomly self-reducible if for any instance 𝑥, the evaluation of 𝑓 at 𝑥
can be reduced, in polynomial-time, to evaluation of 𝑓 at several random instances
𝑦1, . . . , 𝑦𝑘 [110]. Consequently, if 𝑓 is randomly self-reducible, then the average-case
complexity of 𝑓 is the same, to within polynomial factors, as its (randomized) worst-
case complexity. In this case, one can still leverage the standard NP-complexity
theory to establish average-case complexity of 𝑓 .

Our next focus in this thesis is on the average-case complexity of a certain algo-
rithmic problem surrounding the Sherrington-Kirkpatrick spin glass model, SK model
in short. This model was introduced in [255] to propose a “solvable" model for the
spin glass phase, an unusual magnetic behavior predicted to occur in spatially random
physical systems. We now provide more details on the model; see Chapter 4 for a
much more elaborate treatment.
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Model. Consider 𝑛 ∈ N “sites" 𝑖 ∈ [𝑛] ≜ {1, 2, . . . , 𝑛} in space each of which
is equipped with a spin 𝜎𝑖 ∈ {−1, 1}. Intuitively, each site is occupied by a “tiny
magnet". Next, let 𝐽 =

(︀
𝐽𝑖𝑗 : 1 ≤ 𝑖 < 𝑗 ≤ 𝑛

)︀
∈ R𝑛(𝑛−1)/2 be a set of parameters

called the couplings ; and let 𝐴 =
(︀
𝐴𝑖 : 1 ≤ 𝑖 ≤ 𝑛

)︀
be another set of parameters called

the external field. For any 1 ≤ 𝑖 < 𝑗 ≤ 𝑛, 𝐽𝑖𝑗 quantifies the strength of the interaction
between spins 𝜎𝑖 and 𝜎𝑗. Moreover, for any 1 ≤ 𝑖 ≤ 𝑛, 𝐴𝑖 quantifies the strength of
the external field at site 𝑖. Equipped with these parameters, the “energy" of any spin
configuration 𝜎 =

(︀
𝜎𝑖 : 1 ≤ 𝑖 ≤ 𝑛

)︀
∈ {−1, 1}𝑛 is given by the Hamiltonian

𝐻
(︀
𝜎
)︀
≜

𝛽√
𝑛

∑︁
1≤𝑖<𝑗≤𝑛

𝐽𝑖𝑗𝜎𝑖𝜎𝑗 +
∑︁

1≤𝑖≤𝑛

𝐴𝑖𝜎𝑖, (1.3)

where the parameter 𝛽 is called the inverse temperature. The SK model corresponds
to the case where 𝐽𝑖𝑗, 1 ≤ 𝑖 < 𝑗 ≤ 𝑛 and 𝐴𝑖, 1 ≤ 𝑖 ≤ 𝑛, are i.i.d. standard normal;
and is a mean-field model: the interaction between sites 𝑖, 𝑗 do not depend on their
spatial location.

Having defined the Hamiltonian, one can consider the (random) Gibbs measure
on ℬ𝑛 which assigns, to each 𝜎 ∈ ℬ𝑛, a probability mass of exp

(︀
−𝐻(𝜎)

)︀
/𝑍 where

the parameter 𝑍 is the so-called partition function ensuring proper normalization:

𝑍
(︀
𝐽 ,𝐴, 𝛽

)︀
=
∑︁
𝜎∈ℬ𝑛

exp
(︀
−𝐻(𝜎)

)︀
. (1.4)

The partition function 𝑍
(︀
𝐽 ,𝐴, 𝛽

)︀
carries an enormous amount of information about

the underlying physical system. Moreover, it is also of great relevance in certain
Bayesian inference tasks, see e.g. [31, 132] for a more elaborate discussion. That is,
the problem of computing the partition function is of natural interest.

In Chapter 4—which is based on [132]—we study the algorithmic problem of ex-
actly computing 𝑍

(︀
𝐽 ,𝐴, 𝛽

)︀
. Building upon a novel recursion allowing us to express

the partition function of an 𝑛−spin system as a weighted sum of two (𝑛 − 1)-spin
systems with adjusted parameters and leveraging the random self-reducibility of par-
tition function, we establish the average-case hardness of the aforementioned algo-
rithmic problem under the assumption that 𝑃 ̸= #𝑃 . The assumption 𝑃 ̸= #𝑃 is
milder than 𝑃 ̸= 𝑁𝑃 , and is widely believed to be true. The recursion mentioned
above, in some sense, is analogous to the Laplace expansion for the determinant of a
matrix.

To the best of our knowledge, this is the first statistical physics model with ran-
dom parameters for which such an average-case hardness result is established. In the
context of statistical inference problems, this result has certain implications: exactly
computing the posterior distributions of certain learning models is hard in computa-
tional complexity sense.
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1.3 Issues in Neural Network Models: Self-Regularity,
Benign Landscape, and Provable Learning

Our final focus is on the neural network (NN) models which are at the forefront of
modern machine learning methods. These models mark a new era in modern machine
learning. They have been shown to be extremely powerful in certain tasks that once
appeared impossible: natural language processing [79], image recognition [165], image
classification [192], speech recognition [219], and even playing the game Go [257], just
to name just a few examples. Despite such breakthroughs nearly trespassing the
border between fiction and reality, a mathematical understanding of these models is
still somewhat lacking. This has fueled significant research efforts.

Setup. Our focus is on two-layer NN architectures, also known as shallow neu-
ral networks. A two-layer NN (𝑎,𝑊 ) ∈ R𝑚 × R𝑚×𝑑 with 𝑚 hidden units (neurons)
computes, for each 𝑋 ∈ R𝑑, ∑︁

1≤𝑗≤𝑚

𝑎𝑗𝜎
(︀
𝑤𝑇

𝑗 𝑋
)︀
. (1.5)

Here, 𝑑 is the dimension of data 𝑋 ∈ R𝑑; 𝜎(·) : R → R is the activation function
applied at each neuron; 𝑤𝑗 ∈ R𝑑 is the 𝑗th row of 𝑊 carrying the weights of 𝑗th
neuron; and 𝑎 =

(︀
𝑎𝑗 : 1 ≤ 𝑗 ≤ 𝑚

)︀
∈ R𝑚 is the vector carrying output weights. The

neuron 𝑗 computes a weighted sum of the coordinates of input 𝑋 (where the weights
are dictated by vector 𝑤𝑗) and passes them to non-linearity 𝜎(·). The resulting
numbers are then aggregated over all hidden units, through the weights 𝑎𝑗, to obtain
a single output.

Next, let (𝑋𝑖, 𝑌𝑖) ∈ R𝑑 × R, 1 ≤ 𝑖 ≤ 𝑁 , be an i.i.d. sequence of training data
drawn from a (unknown) distribution 𝒟 on R𝑑 × R. Here, 𝑌𝑖 ∈ R are often referred
to as labels. For any (𝑎,𝑊 ) ∈ R𝑚 × R𝑚×𝑑, let

̂︀ℒ(𝑎,𝑊 ) ≜
1

𝑁

∑︁
1≤𝑖≤𝑁

(︃
𝑌𝑖 −

∑︁
1≤𝑗≤𝑚

𝑎𝑗𝜎
(︀
𝑤𝑇

𝑗 𝑋𝑖

)︀)︃2

(1.6)

be the associated training error, also known as the empirical risk. In what follows,
we use the terms ‘training error’ and ‘empirical risk’ interchangeably.

We next describe the canonical “learning" problem. Given a set (𝑋𝑖, 𝑌𝑖), 1 ≤ 𝑖 ≤
𝑁 , of training data, solve the so-called empirical risk minimization (ERM) problem

min
(𝑎,𝑊 )∈R𝑚×R𝑚×𝑑

̂︀ℒ(𝑎,𝑊 ) (1.7)

to find a two-layer NN (𝑎,𝑊 ) with small training error ̂︀ℒ(𝑎,𝑊 ). That is, this “learned"
network is desired to explain the unknown relationship between input/label pairs
(𝑋𝑖, 𝑌𝑖), 1 ≤ 𝑖 ≤ 𝑁 , as accurately as possible, where the accuracy is quantified
by (1.6). To solve the ERM (1.7) one can run his favourite training algorithm: gradi-
ent descent (GD), stochastic gradient descent (SGD), mirror descent, etc. One then
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uses the learned network, (𝑎,𝑊 ), to predict unseen data. Here, prediction accuracy
is quantified by the so-called generalization error, also known as population risk :

ℒ(𝑎,𝑊 ) ≜ E(𝑋,𝑌 )∼𝒟

⎡⎣(︃𝑌 −
∑︁

1≤𝑗≤𝑚

𝑎𝑗𝜎
(︀
𝑤𝑇

𝑗 𝑋
)︀)︃2

⎤⎦ . (1.8)

Here, the expectation is taken with respect to a fresh sample (𝑋, 𝑌 ) drawn indepen-
dently from the same distribution 𝒟 generating training data (𝑋𝑖, 𝑌𝑖), 1 ≤ 𝑖 ≤ 𝑁 .

Having described the learning setting, we now mention the main issues regarding
neural network models.

The Interplay between Overparameterization and Generalization. The
conventional wisdom in classical statistics dictates that the overparameterized mod-
els, namely the models with more parameters than necessary, tend to overfit to the
training data and thus suffer from a poor generalization performance. Nevertheless,
the empirical work by Zhang et al. [294] demonstrate the exact opposite effect for the
neural networks. They show that neural network models tend to not suffer from this
complication: good generalization is retained despite the presence of overparameteri-
zation. A predominant explanation for this phenomenon is that while there are many
parameter choices near perfectly fitting the training data; the algorithms used in
training (such as the GD and the SGD) prefer “simple" solutions regularized accord-
ing to some additional criteria, such as “small norm". This additional low-complexity
is naturally linked to the observed good generalization ability. A drawback of this line
of research, however, is that it is algorithm-dependent: one analyzes the end results
of the implementation of, say, GD and SGD.

Training and the Optimization Landscape. As we already mentioned, the
problem of “learning" (the weights of) aforementioned NN models entails solving the
ERM (1.7). This is a high-dimensional optimization problem where the underlying
landscape is generally highly non-convex. Hence, the underlying learning problem
is potentially difficult. Defying this intuition, it has been observed empirically and
established rigorously in certain restricted settings (see below) that the GD/SGD,
despite being a simple, local, and first-order procedure, is rather successful in training
such networks. Understanding why and to what extent this is the case is an ongoing
challenge, and another focus of this thesis.

1.3.1 Self-Regularity of Non-Negative Output Weights for Over-
parameterized Two-Layer Neural Networks

Our next focus in Chapter 5 is on the two-layer NN models (1.5) with sigmoid, rectified
linear unit (ReLU) and binary step activation functions under the assumption that the
output weights are non-negative: 𝑎𝑗 ≥ 0, 1 ≤ 𝑗 ≤ 𝑚. This assumption is employed
extensively in the theoretical study of such models [143, 93, 204, 98, 250, 295, 150].
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Furthermore, it is well-motivated from a practical point of view and allows inter-
pretability. For instance, the audio data and muscular activity data are inherently
non-negative, see [1, 259].

Under the aforementioned setting, we consider the problem of finding such a two-
layer NN that “fits" a training data set (𝑋𝑖, 𝑌𝑖) ∈ R𝑑 ×R, 1 ≤ 𝑖 ≤ 𝑁 , as accurately as
possible as quantified by the training error (1.6) and consider the following question:

“To what extent a small training error itself places a restriction on the weights of the
learned network?"

We take an algorithm-independent route and investigate this question under the afore-
mentioned non-negativity assumption. Under very mild assumptions on the data dis-
tribution 𝒟, we establish following results. (All guarantees are w.h.p. with respect to
the training data.)

• Self-Regularity: Let (𝑎,𝑊 ) be any two-layer NN with small training error̂︀ℒ(𝑎,𝑊 ) (1.6). Then, ‖𝑎‖1 is necessarily well-controlled: ‖𝑎‖1 = 𝑂(1).

• Generalization Guarantees: Any such two-layer NN (𝑎,𝑊 ) with small ̂︀ℒ(𝑎,𝑊 )
has small generalization error: ℒ(𝑎,𝑊 ) appearing in (1.8) is small.

The constants hidden under 𝑂(1) depend only on the training error ̂︀ℒ(𝑎,𝑊 ), E[|𝑌 |]
and certain moments of (coordinates of) data 𝑋. Several pertinent remarks are now
in order.

Notably, our results (a) require a polynomial (in dimension 𝑑) sample complexity
and are near linear, Θ(𝑑 log 𝑑), for the important cases of ReLU and step activations;
(b) are independent of the number of hidden units (which can potentially be very
large); (c) are oblivious to the training algorithm; and (d) require very mild assump-
tions on the data. In particular the input vector 𝑋 ∈ R𝑑 need not have independent
coordinates, and the labels 𝑌 are only assumed to have bounded first moment. More-
over, our proofs are rather elementary, and based on a covering number argument.
Our generalization guarantees are established through the so-called fat-shattering
dimension, a scale-sensitive measure of the complexity class that the network archi-
tecture being investigated belongs to. Notably, our generalization bounds also have
good sample complexity (polynomials in 𝑑 with a low degree), and are in fact again
near-linear for some important cases of interest.

Our work establishes low-complexity for the trained network in an algorithm-
independent manner even under the presence of overparameterization; and in partic-
ular resonates with the first research theme mentioned above.

1.3.2 Provably Learning Two-Layer Neural Networks with Quadratic
Activation Function

Our final focus in Chapter 6—which is based on [127]—is on the problem of learning
two-layer NNs with quadratic activation functions 𝜎(𝑥) = 𝑥2 under the assumption
that the labels are generated by a so-called teacher network with planted weights
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𝑊 * ∈ R𝑚×𝑑. More concretely, let 𝑊 * ∈ R𝑚×𝑑 be a matrix with rows 𝑊 *
1 , . . . ,𝑊

*
𝑚 ∈

R𝑑 and 𝑋𝑖 ∈ R𝑑, 1 ≤ 𝑖 ≤ 𝑁 be i.i.d. data. The labels 𝑌𝑖 ∈ R are obtained by
pushing the inputs 𝑋𝑖 ∈ R𝑑 into a teacher NN with planted weights 𝑊 * and quadratic
activation function:

𝑌𝑖 =
∑︁

1≤𝑗≤𝑚

⟨︀
𝑊 *

𝑗 , 𝑋
⟩︀2

= ‖𝑊 *𝑋𝑖‖22, 1 ≤ 𝑖 ≤ 𝑁.

Here, ⟨·, ·⟩ is the usual Euclidean inner product on R𝑑. We refer to such networks as
quadratic networks for convenience.

This model, admittedly, is rather stylized. Nevertheless, such quadratic networks
have been studied extensively in literature [98, 264, 251, 4]. Moreover, blocks of
quadratic networks can be stacked together to approximate more practical deeper
architectures with sigmoid activation [210]. In addition, quadratic activation function
serves as a second order approximation to general non-linearities [279]. Namely, we
study quadratic networks to gain insights on deeper and more practical architectures.

We investigate the aforementioned model under the assumption that rank(𝑊 *) =
𝑑 (hence in particular𝑚 ≥ 𝑑) and that the data𝑋𝑖 ∈ R𝑑 consists of i.i.d. sub-Gaussian
coordinates2: there exists constants 𝑐1, 𝑐2 > 0 such that for every 𝑡 > 0, 1 ≤ 𝑖 ≤ 𝑁
and 1 ≤ 𝑗 ≤ 𝑑, P[|𝑋𝑖(𝑗)| > 𝑡] ≤ 𝑐1 exp

(︀
−𝑐2𝑡2

)︀
.

Our first focus is on the landscape of empirical risk (1.6), where we drop 𝑎 ap-
pearing in (1.6) as 𝑎𝑗 = 1 for 1 ≤ 𝑗 ≤ 𝑚. We establish following results (Once again,
all guarantees are w.h.p. with respect to training data 𝑋𝑖, 1 ≤ 𝑖 ≤ 𝑁 .)

• Benign Landscape: There is an ‘energy barrier’ 𝐸0 > 0 such that if

̂︀ℒ(𝑊 ) < 𝐸0 and ∇𝑊
̂︀ℒ(𝑊 ) = 0

then ̂︀ℒ(𝑊 ) = 0. Namely, below the barrier 𝐸0, the landscape of ̂︀ℒ(·) is benign:
any stationary point of ̂︀ℒ(·) is necessarily a global optimum.

• Convergence of Gradient Descent: Initialize the GD with 𝑊0 ∈ R𝑚×𝑑 such
that ̂︀ℒ(𝑊0) < 𝐸0. Then in time 𝑡 = poly(𝑑, 𝜖−1), it finds a 𝑊𝑡 ∈ R𝑚×𝑑 such
that ⃦⃦

∇𝑊
̂︀ℒ(𝑊𝑡)

⃦⃦
𝐹
≤ 𝜖 and

⃦⃦
𝑊 𝑇

𝑡 𝑊𝑡 − (𝑊 *)𝑇𝑊 *⃦⃦
𝐹
≤ 𝜖.

Namely, the gradient descent finds, in polynomial-time, an approximate sta-
tionary point 𝑊𝑡 ∈ R𝑚×𝑑 and nearly recovers the planted weights 𝑊 *.

The constant 𝐸0 is explicit; and depends only on the smallest singular value 𝜎min(𝑊
*)

of 𝑊 * and the (conditional) moments of the coordinates of data 𝑋𝑖.
Having established the convergence of GD when initialized below the aforemen-

tioned energy barrier 𝐸0; a natural-follow up question is:

“How to initialize properly?"

2It is worth noting that this assumption can sometimes be relaxed, as we elaborate later.
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We tackle this question under the assumption that the matrix 𝑊 * ∈ R𝑚×𝑑 of planted
weights consists of i.i.d. entries with zero mean and finite fourth moment. Such net-
works with random weights have been previously considered in literature in the con-
text of random feature methods, see seminal papers by Rahimi and Recht [241, 242].

To that end, we establish the following result.

• Deterministic Initialization: Let 𝐶 > 0 be a large enough constant. Then
for 𝑊0 ∈ R𝑚×𝑑 with 𝑊 𝑇

0 𝑊0 = 𝑚𝐼𝑑, ̂︀ℒ(𝑊0) < 𝐸0 with high probability, provided
that 𝑚 > 𝐶𝑑2.

Here, 𝐼𝑑 is the 𝑑×𝑑 identity matrix. Namely, provided that the network is sufficiently
overparameterized, a deterministic initialization suffices. This result is based on a
semicircle law by Bai and Yin [25, 24] which is a novel application of the random
matrix theory in the rigorous study of NN models.

Our final focus is on the generalization aspect for such networks. Having found a
𝑊 ∈ R𝑚×𝑑 with small training error ̂︀ℒ(𝑊 ); it is by no means clear whether 𝑊 has a
good generalization error ℒ(𝑊 ). This naturally prompts the following question:

“What is the smallest number of samples required to claim that a small empirical
risk also implies a small generalization error?"

We answer this question by identifying a necessary and sufficient condition on data
under which any minimizer of the empirical risk (which, in the case of planted weights,
necessarily interpolates the data and achieves zero training error) has zero general-
ization error. Let 𝑋𝑖 ∈ R𝑑, 1 ≤ 𝑖 ≤ 𝑁 , be the data which is not necessarily random.
Define

𝒮 ≜
{︀
𝐴 ∈ R𝑑×𝑑 : 𝐴𝑇 = 𝐴

}︀
;

and for 𝑊 ∈ R𝑚×𝑑, let

𝑓(𝑊 ;𝑋) ≜
∑︁

1≤𝑗≤𝑚

⟨𝑊𝑗, 𝑋⟩2 = ‖𝑊𝑋‖22.

We then establish the following results.

• Sufficiency: Suppose that span(𝑋𝑖𝑋
𝑇
𝑖 : 1 ≤ 𝑖 ≤ 𝑁) = 𝒮, and ̂︀𝑚 ∈ N is

arbitrary. Then, for any 𝑊 ∈ R̂︀𝑚×𝑑 with 𝑓(𝑊 ;𝑋𝑖) = 𝑓(𝑊 *;𝑋𝑖), 1 ≤ 𝑖 ≤ 𝑁 ,
𝑊 𝑇𝑊 = (𝑊 *)𝑇𝑊 *. Then, 𝑓(𝑊 ;𝑥) = 𝑓(𝑊 *;𝑥) for any 𝑥 ∈ R. In particular,
𝑊 generalizes well: ℒ(𝑊 ) = 0.

• Necessity: Suppose span(𝑋𝑖𝑋
𝑇
𝑖 : 1 ≤ 𝑖 ≤ 𝑁) ⊊ 𝒮. Then for any ̂︀𝑚 ∈ N,

there exists a 𝑊 ∈ R̂︀𝑚×𝑑 such that while 𝑓(𝑊 ;𝑋𝑖) = 𝑓(𝑊 *;𝑋𝑖) for every 𝑖,
𝑊 𝑇𝑊 ̸= (𝑊 *)𝑇𝑊 *. In particular, ℒ(𝑊 ) > 0, where ℒ is defined with respect
to any jointly continuous distribution on R𝑑.

• Random Data: Let 𝑋𝑖 ∈ R𝑑, 1 ≤ 𝑖 ≤ 𝑁 be i.i.d. random vectors drawn from
any arbitrary jointly continuous distribution on R𝑑. Then,

P
[︀
span

(︀
𝑋𝑖𝑋

𝑇
𝑖 : 1 ≤ 𝑖 ≤ 𝑁

)︀
= 𝒮

]︀
= 1
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as soon as 𝑁 ≥ 𝑑(𝑑+ 1)/2.

Note that the geometric condition, span
(︀
𝑋𝑖𝑋

𝑇
𝑖 : 1 ≤ 𝑖 ≤ 𝑁

)︀
= 𝒮, that we identify is

not retrospective in manner: it can be checked before solving the ERM problem (1.7).
Moreover, the interpolating NN can be potentially overparameterized. Finally, ran-
domly generated data 𝑋𝑖, 1 ≤ 𝑖 ≤ 𝑁 , enjoys this condition almost surely as soon as
𝑁 ≥ 𝑑(𝑑+ 1)/2 under very mild distributional assumptions.

Our work provides a very complete picture (for the optimization landscape, train-
ing, initialization, generalization, as well as the sample complexity) for two-layer NN
models with quadratic activation functions and planted weights.

1.4 Structure of the Thesis and Bibliographical Re-
marks

Each chapter of this thesis is based on a paper by the author and studies one of the
aforementioned problems. We briefly highlight the content of each chapter as follows.

• Chapter 2 establishes the Overlap Gap Property (OGP) in the random number
partitioning problem and leverages the OGP to establish algorithmic hardness
for the class of stable algorithms and Monte Carlo Markov Chain methods. It
is based on preprint [126] which is currently under submission.

• Chapter 3 establishes the OGP in symmetric binary perceptron model and
leverages the OGP to establish algorithmic hardness for the class of stable al-
gorithms. It is based on the preprint [131] which is currently under submission.

• Chapter 4 establishes the average-case hardness of the algorithmic problem of
exactly computing the partition function of the Sherrington-Kirkpatrick spin
glass model. It is based on [132] which appeared in The Annals of Applied
Probability and has also been presented, in part, at the 2020 IEEE International
Symposium on Information Theory (ISIT).

• Chapter 5 establishes self-regularity for two-layer neural networks under non-
negativity assumption on its output weights; and leverages the self-regularity
to yield good generalization guarantees. It is based on [130] which appeared in
IEEE Transactions on Signal Processing and has also been presented, in part, at
the 2021 IEEE International Symposium on Information Theory (ISIT) [129].

• Chapter 6 studies the problem of learning two-layer neural networks with quadratic
activation function and planted weights; and establishes a fairly complete pic-
ture for that problem by addressing many different aspects, including the opti-
mization landscape, convergence of gradient descent, initialization, generaliza-
tion, as well as the sample complexity. It is based on preprint [127] which is
currently under submission.
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We commence each chapter with a rather detailed introduction, describe the cor-
responding model/problem we investigate; and provide a review of prior work and
relevant literature. We then present our main contributions. We conclude each chap-
ter with the complete proofs of all of our results.

During the course of his PhD, the author worked on several other problems re-
sulting in following papers that have not been included in this thesis [125, 128, 107].
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Chapter 2

Algorithmic Obstructions in the
Random Number Partitioning
Problem

2.1 Introduction

In this chapter, we study the number partitioning problem (NPP): given 𝑛 “items"
with associated weights, partition them into two “bins", 𝐴 and 𝐵, such that the
subset sums corresponding to 𝐴 and 𝐵 are as close as possible. More formally, given
𝑛 numbers 𝑋𝑖 ∈ R, 1 ≤ 𝑖 ≤ 𝑛; find a subset 𝐴 ⊂ [𝑛] ≜ {1, 2, . . . , 𝑛} such that the
discrepancy 𝒟(𝐴) ≜

⃒⃒∑︀
𝑖∈𝐴𝑋𝑖 −

∑︀
𝑖∈𝐴𝑐 𝑋𝑖

⃒⃒
is minimized. Encoding the membership

𝑋𝑖 ∈ 𝐴 as a +1 and 𝑋𝑖 ∈ 𝐵 as a −1; NPP can equivalently be posed as a combinatorial
optimization problem over the binary cube ℬ𝑛 ≜ {−1, 1}𝑛:

min
𝜎∈ℬ𝑛

⃒⃒⃒⃒
⃒ ∑︁
1≤𝑖≤𝑛

𝜎𝑖𝑋𝑖

⃒⃒⃒⃒
⃒ . (2.1)

Our focus is on the algorithmic problem of solving the minimization problem (2.1)
“approximately" and “efficiently" (in polynomial time) when the numbers 𝑋𝑖 ∈ R,
1 ≤ 𝑖 ≤ 𝑛, are i.i.d. standard normal. We refer to X = (𝑋𝑖 : 1 ≤ 𝑖 ≤ 𝑛) ∈ R𝑛 as
an instance of the NPP. Motivated by connections with statistical physics, we refer to
𝜎 ∈ ℬ𝑛 as a spin configuration; and to any approximate minimum 𝜎 of the problem
(2.1) as a near ground-state. In the sequel, we slightly abuse the terminology; and use
the word “discrepancy" to refer to the optimal value of the combinatorial optimization
problem NPP (2.1) and its high-dimensional variant (2.2) (see below); as well as to
the value achieved by any partition.

NPP is a special case of the vector balancing problem (VBP), where the goal is to
minimize the discrepancy

𝒟𝑛 ≜ min
𝜎∈ℬ𝑛

⃦⃦⃦⃦
⃦ ∑︁
1≤𝑖≤𝑛

𝜎𝑖𝑋𝑖

⃦⃦⃦⃦
⃦
∞

(2.2)
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of a collection 𝑋𝑖 ∈ R𝑑, 1 ≤ 𝑖 ≤ 𝑛, of vectors. This problem is at the heart of a very
important application in statistics, dubbed as randomized controlled trials, which is
often considered to be the gold standard for clinical trials [191, 161]. Consider 𝑛
individuals participating in a randomized study that seeks inference for an additive
treatment effect. Each individual 𝑖, 1 ≤ 𝑖 ≤ 𝑛, is associated with a set of covariate in-
formation 𝑋𝑖 ∈ R𝑑, a vector carrying the statistics relevant to them such as their age,
weight, height, and so on. The individuals are divided into two groups, the treatment
group (denoted by a +) and the control group (denoted by a −). Each group is then
subject to a different condition; and a response is evaluated. Based on this response,
one seeks to infer the effect of the treatment. To ensure accurate inference based
on the response, it is desirable for the groups to have roughly the same covariates.
See the very recent work on the design of such randomized controlled experiments by
Harshaw, Sävje, Spielman, and Zhang [161] (and the references therein) for a more
elaborate discussion on this front.

Besides its significance in statistics, NPP appears in many other practical appli-
cations.One such application is the multiprocessor scheduling : each item represents
the running time of a certain job and each bin represents a group of items that are
run on the same processor in a multiprocessor environment [277]. Other practical
applications of the NPP include minimizing the size and the delay of VLSI circuits
[76, 277], and the so-called Merkle-Hellman cryptosystem [215], one of the earliest
public key cryptosystem. For more practical applications of NPP, see the book by
Coffman and Lueker [76].

In addition to its important role in statistics and its wide practical applications,
NPP is also of great theoretical importance, especially in theoretical computer sci-
ence, statistical physics, and combinatorial discrepancy theory (see below). NPP is
included in the list of six basic NP-complete problems by Garey and Johnson [141];
and is the only such problem in this list dealing with numbers. For this reason, it is
often used as a basis for establishing the NP-hardness of other problems dealing with
numbers, including bin packing, quadratic programming; and the knapsack problem.
In statistical physics, NPP is the first system for which the local REM conjecture was
established [55, 56]. That is, NPP is the first system which was shown to behave
locally like Derrida’s random energy model [88, 89], a feature that was conjectured
to be universal in random discrete systems [44]. Last but not the least, NPP is one
of the first NP-hard problems for which a certain phase transition is established rig-
orously, which we now discuss. Let 𝑋𝑖, 1 ≤ 𝑖 ≤ 𝑛, be i.i.d. uniform from the set
{1, 2, . . . ,𝑀} where 𝑀 = 2𝑚 (namely 𝑋𝑖 consists of 𝑚-bits). As a function of the
control parameter 𝜅 ≜ 𝑚/𝑛 suggested by Gent and Walsh [147], Mertens [216] gave
a very elegant yet nonrigorous statistical mechanics argument, for the existence of a
phase transition depending on whether 𝜅 < 1 or 𝜅 > 1: the property of finding a
perfect partition (that is, a partition with zero discrepancy if

∑︀
1≤𝑖≤𝑛𝑋𝑖 is even, and

that with a discrepancy of one if
∑︀

1≤𝑖≤𝑛𝑋𝑖 is odd) undergoes as phase transition as
𝜅 crosses the value 1. It has been observed empirically that this phase transition is
linked with the change of character of typical computational hardness of this problem.
Subsequent work by Borgs, Chayes, and Pittel [57] rigorously confirmed the existence
of this phase transition. These results further highlight the significance of NPP at the
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intersection of computer science, statistical mechanics, and statistics.
As already mentioned, much work has been done on the NPP and its multi-

dimensional version, VBP. The prior work visited below can be broadly classified into
two categories, namely uncovering the value of the optimal discrepancy; and finding a
near ground-state 𝜎 ∈ ℬ𝑛 by means of an efficient algorithm. This was done broadly
in for two settings, one where the inputs 𝑋𝑖 ∈ R𝑑, 1 ≤ 𝑖 ≤ 𝑛, are assumed to be
worst-case; and one where they are assumed to be i.i.d. samples of a distribution,
the latter referred to as the average-case setting.

We first recap prior results in the worst-case setting. A landmark result of dis-
crepancy theory in this setting is due to Spencer [268]. He established that the
discrepancy 𝒟𝑛 of VBP per (2.2) is at most 6

√
𝑛 if 𝑑 = 𝑛 and max1≤𝑖≤𝑛 ‖𝑋𝑖‖∞ ≤ 1.

Spencer’s method, however, is non-constructive. Later research on this front focused
on the algorithmic problem of efficiently finding a spin configuration 𝜎 ∈ ℬ𝑛 that ap-
proximately attains a small discrepancy value. These papers are based on techniques
including random walks [32, 211], multiplicative weights [201], random weights [246];
and are tight in the regime 𝑑 ≥ 𝑛: the algorithms return a spin configuration 𝜎
with “objective value" 𝑂(

√︀
𝑛 log(2𝑑/𝑛)); and there exist examples whose discrepancy

matches this value.
We next visit the average-case results. A canonical assumption often considered

is that the inputs are i.i.d. standard normal. The first result to this end is due to
Karmarkar et al. [183]. They established, using the second moment method, that
the objective value of NPP (2.1) is Θ(

√
𝑛2−𝑛) with high probability as 𝑛→ ∞. Their

result remains valid when 𝑋𝑖 ∈ R, 1 ≤ 𝑖 ≤ 𝑛 are i.i.d. samples of a distribution that
is sufficiently regular. Later research extended this result to the multi-dimensional
version, VBP. In particular, in the case where the dimension 𝑑 is constant, 𝑑 = 𝑂(1),
Costello [82] established that the objective value of VBP (2.2) is Θ

(︀√
𝑛2−𝑛/𝑑

)︀
with

high probability. When the dimension 𝑑 is super-linear, in particular 𝑑 ≥ 2𝑛, Chan-
drasekaran and Vempala [71] established that the optimal discrepancy for VBP per
(2.2) is essentially 𝑂(

√︀
𝑛 log(2𝑑/𝑛)), ignoring certain polylogarithmic factors. In the

regime where 𝜔(1) ≤ 𝑑 ≤ 𝑜(𝑛), Turner et al. [278] showed that the optimal discrep-
ancy achieved per (2.2) is Θ

(︀√
𝑛2−𝑛/𝑑

)︀
. Moreover, their result transfer also to the

case when 𝑋𝑖 ∈ R𝑑, 1 ≤ 𝑖 ≤ 𝑛 consists of i.i.d. coordinates drawn from a density 𝑓
that is sufficiently regular (in particular, 𝑓 is square integrable, even; and the coordi-
nates of 𝑋𝑖 have a finite fourth moment) and 𝑑 = 𝑂(𝑛/ log 𝑛). In addition [278] also
studies the regime where 𝑑 ≤ 𝛿𝑛 for a sufficiently small constant 𝛿. For this regime,
they establish that the objective value of (2.2) is 𝑂

(︀√
𝑛2−1/𝛿

)︀
with probability at

least 99%. This, together with the results of [71] implies that there exists an explicit
function 𝑐(𝛿) such that the discrepancy is Θ(𝑐(𝛿)

√
𝑛) with probability at least 99% for

𝑑 = 𝛿𝑛 and all 𝛿 > 0. On the other hand, Aubin, Perkins, and Zdeborová conjectured
in [23] that in fact there exists an explicit function 𝑐(𝛿) such that the discrepancy is
𝑐(𝛿)

√
𝑛 with high probability for the regime 𝑑 = 𝛿𝑛 and any 𝛿 > 0. This conjecture

was confirmed very recently, independently by Perkins and Xu [234] and Abbe, Li,
and Sly [6].

We now focus on the known algorithmic results. The best known (polynomial-
time) algorithm for the NPP is due to Karmarkar and Karp [182] which, for a broad
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class of distributions, produces a discrepancy of 𝑂
(︀
𝑛−𝛼 log𝑛

)︀
with high probability as

𝑛→ ∞. The original algorithm that they analyzed rigorously is a rather complicated
one. Their algorithm, however, is based on a strikingly simple yet a quite elegant, idea;
called the differencing method, which is based on the following observation. Given
a list 𝐿 of items, placing 𝑥, 𝑦 ∈ 𝐿 to the different sides of the partition amounts to
removing 𝑥 and 𝑦 from 𝐿, and adding |𝑥− 𝑦| to 𝐿 instead, an operation that we refer
to as differencing. Namely, the differencing operations applied on 𝑥, 𝑦 ∈ 𝐿 returns a
new list 𝐿∪ {|𝑥− 𝑦|} ∖ {𝑥, 𝑦}. Using the differencing, Karmarkar and Karp proposes
two simple (alternative) ways of creating a partition (though they do not rigorously
analyze them): the paired differencing method (PDM) and the largest differencing
method (LDM). In the former, the items are ordered, and then ⌊𝑛/2⌋ differencing
operations are performed on the largest and second largest items, on the third and
fourth largest items, and so on. The remaining ⌈𝑛/2⌉ numbers are ordered again,
and the aforementioned procedure is repeated until a single item remains, which is
the discrepancy achieved by PDM. In LDM, the numbers are again ordered. The
differencing operation is now applied on the largest and second largest items. The
remaining list (now consisting of 𝑛− 1 items) is ordered again, and the procedure is
repeated until a single number remains. Recalling that 𝑛 items can be sorted in near-
linear time 𝑂(𝑛 log 𝑛), the running times of PDM and LDM are indeed polynomial
(in 𝑛). They conjectured that these two simple natural heuristics also achieve an
objective value of 𝑂

(︀
𝑛−𝛼 log𝑛

)︀
with high probability. For PDM, this conjecture was

disproven by Lueker [212] who showed that when the items 𝑋𝑖, 1 ≤ 𝑖 ≤ 𝑛, are
i.i.d. uniform on [0, 1] then the expected discrepancy achieved by the PDM algorithm
is rather poor, Θ(𝑛−1). For LDM, however, Yakir [292] confirmed this conjecture,
and showed that the expected discrepancy achieved by the LDM is 𝑛−Θ(log𝑛), when
the items 𝑋𝑖 are i.i.d. uniform on [0, 1]. His proof extends to the case when the items
𝑋𝑖 follow the exponential distribution, as well. Later, Boettcher and Mertens [52]
studied the constant in the exponent, and argued, using non-rigorous calculations,
that the expected discrepancy for LDM is 𝑛−𝛼 log𝑛 for 𝛼 = 1

2 ln 2
= 0.721 . . . .

Another algorithm is due to Krieger et al. [191] which achieves an objective
value of 𝑂 (𝑛−2). It is worth noting that albeit having a poor performance, the
algorithm of Krieger et al. finds a balanced partition: a spin configuration 𝜎 ∈ ℬ𝑛

with
∑︀

1≤𝑖≤𝑛 𝜎𝑖 ∈ {0, 1} depending on the parity of 𝑛. This is of practical relevance
in the design of randomized trials where the treatment and control groups are often
desired to have roughly similar size. Moreover, for the multi-dimensional case 𝑑 ≥ 2,
they also argue that their algorithm achieves a performance of 𝑂

(︀
𝑛−2/𝑑

)︀
. Finally,

Turner et al. [278] devised a generalized version of the Karmarkar-Karp algorithm
[182], which returns a partition with discrepancy 2−Θ(log2 𝑛/𝑑) provided the dimension
𝑑 ≥ 2 satisfies 𝑑 = 𝑂

(︀√
log 𝑛

)︀
.

The results summarized above highlight a striking gap between what the existen-
tial methods guarantee and what the polynomial-time algorithms achieve. To recap,
in the case when 𝑋𝑖, 1 ≤ 𝑖 ≤ 𝑛, are i.i.d. standard normal, the optimal discrepancy
of the NPP per (2.1) is Θ(

√
𝑛2−𝑛) with high probability; whereas the-state-of-the-art

algorithm (by Karmarkar and Karp) only achieves a performance of 2−Θ(log2 𝑛), which
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is exponentially worse.

Our Contributions

In this part of the thesis, we the study of the nature of the apparent statistical-
to-computational gap of the NPP and VBP. Our approach is based on establishing
and leveraging the aforementioned Overlap Gap Property (OGP). For the sake of
presentation clarity, it is convenient to interpret the aforementioned gap in terms
of the “exponent" 𝐸𝑛 of the energy level 2−𝐸𝑛 . Thus the statistical guarantee is
𝐸𝑛 = 𝑛; whereas the best (efficient) computational guarantee available is only when
𝐸𝑛 = Θ(log2 𝑛). Our main contributions are now described.

The regime 𝐸𝑛 = Θ(𝑛). In this regime, our first result is as follows. Let 𝑋 ∈ R𝑛

be a random vector with i.i.d. standard normal coordinates. Then for any 𝜖 > 0,
there exist 𝑚 ∈ N and 𝛽 > 𝜂 > 0, such that with high probability as 𝑛 diverges, there
does not exist an 𝑚-tuple

(︀
𝜎(𝑖) : 1 ≤ 𝑖 ≤ 𝑚

)︀
of spin configurations 𝜎(𝑖) ∈ ℬ𝑛 such that

each 𝜎(𝑖) is a near ground-state in the sense
⃒⃒⟨︀
𝜎(𝑖), 𝑋

⟩︀⃒⃒
= 𝑂 (

√
𝑛2−𝑛𝜖), 1 ≤ 𝑖 ≤ 𝑚;

and their pairwise overlaps satisfy 𝒪
(︀
𝜎(𝑖), 𝜎(𝑗)

)︀
∈ [𝛽 − 𝜂, 𝛽], 1 ≤ 𝑖 < 𝑗 ≤ 𝑚, where

the overlap 𝒪(·, ·) is defined as

𝒪 (𝜎1, 𝜎2) ≜ 𝑛−1 |⟨𝜎1, 𝜎2⟩| ∈ [0, 1]. (2.3)

This is the𝑚-OGP and it is the subject of Theorem 2.2.3. We establish Theorem 2.2.3
using the so-called first moment method ; and the smallest𝑚 (for fixed 𝜖 > 0) for which
this result holds true is of order 1/𝜖. While we state and prove this result for the NPP
(2.1) for simplicity, an inspection of our proof reveals that it extends to the VBP (2.2),
when 𝑑 = 𝑜(𝑛).

Note that this geometric result pertains the overlap structure of an𝑚-tuple, rather
than a pair, of configurations. This is necessary to cover all values of 𝜖 ∈ (0, 1], since
as we show in Theorem 2.2.2, the OGP for pairs (that is for 𝑚 = 2) we can only
establish when 𝜖 ∈ (1/2, 1]. Furthermore, we conjecture that that the pairwise OGP
does not hold when 𝜖 < 1/2, but we are not able to prove this yet. The overlap
structure we rule out is essentially the same as the one considered in [137] in the
context of random constraint satisfaction problem. Moreover, as we establish in the
theorem; this result holds also for a family of correlated random vectors 𝑋𝑖 ∈ R𝑛,
1 ≤ 𝑖 ≤ 𝑚 rather than a single instance. This is known as the “ensemble" variant
of the OGP, and it is instrumental in proving the failure of any “sufficiently stable"
algorithm.

The regime 𝐸𝑛 = 𝑜(𝑛). To complement our first result, we investigate the overlap
structure when the exponent 𝐸𝑛 is sublinear, 𝐸𝑛 = 𝑜(𝑛). Perhaps rather surprisingly,
we establish the absence of 𝑚−OGP—for 𝑚 = 𝑂(1)—when 𝐸𝑛 = 𝑜(𝑛). To that end,
let 𝑋 ∈ R𝑛 be a random vector with i.i.d. standard normal coordinates. We establish
that for every 𝐸𝑛 ∈ 𝑜(𝑛), 𝑚 ∈ N, 𝜌 ∈ (0, 1) and 𝜌 ≪ 𝜌, it is the case that with high
probability there exists an 𝑚-tuple

(︀
𝜎(𝑖) : 1 ≤ 𝑖 ≤ 𝑚

)︀
of spin configurations 𝜎(𝑖) ∈ ℬ𝑛
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such that they are near ground-states, namely
⃒⃒⟨︀
𝜎(𝑖), 𝑋

⟩︀⃒⃒
= 𝑂

(︀√
𝑛2−𝐸𝑛

)︀
, 1 ≤ 𝑖 ≤ 𝑚,

and their pairwise overlaps satisfy 𝒪
(︀
𝜎(𝑖), 𝜎(𝑗)

)︀
∈ [𝜌 − 𝜌, 𝜌 + 𝜌], 1 ≤ 𝑖 < 𝑗 ≤ 𝑚.

Namely, the overlaps “span" the interval [0, 1]. This is our next result; and is the
subject of Theorem 2.2.5.

Theorem 2.2.5 is shown by using the so-called second moment method together
with a careful overcounting idea. While we state and prove this result for a single
instance 𝑋 ∈ R𝑛 for simplicity, it is conceivable that our technique extends also
to correlated instances 𝑋𝑖 ∈ R𝑛, 1 ≤ 𝑖 ≤ 𝑚 albeit perhaps at the cost of more
computational details. We stress once again that this result is shown under the
assumption that 𝑚 is a constant 𝑂(1) with respect to 𝑛.

Despite the results of Theorem 2.2.3 and Theorem 2.2.5, the aforementioned
statistical-to-computational gap of NPP still persists. That is, the exponents “ruled
out" in Theorem 2.2.3, 𝐸𝑛 = 𝜖𝑛 for 0 < 𝜖 < 1, are still far greater than the cur-
rent computational limit, Θ

(︀
log2 𝑛

)︀
, and furthermore, in the case 𝐸𝑛 is sub-linear,

𝐸𝑛 = 𝑜(𝑛); the 𝑚−OGP (for 𝑚 = 𝑂(1)) is actually absent as shown in Theorem 2.2.5.
The rationale for studying the multioverlap version of the OGP (𝑚−OGP), noted

first by Rahman and Virág [244], was the observation that studying the overlap struc-
tures of 𝑚−tuples (of spin configurations), as opposed to pairs, lowers the “threshold"
above which the algorithms can be ruled out. The prior work studying 𝑚−OGP pro-
vided such results when 𝑚 remains constant with respect to 𝑛, 𝑚 = 𝑂(1). This was
the case for the NAE-K-SAT problem in [137], and for the maximum independent set
problem as in [244] and [285].

However, in our context the 𝑚−OGP with 𝑚 = 𝑂(1) still falls short of going from
Θ(𝑛) all the way down to current computational threshold, Θ

(︀
log2 𝑛

)︀
. Thus it is

quite natural to ask what happens when 𝑚 is super-constant, 𝑚 = 𝜔𝑛(1). This is
what we do next and to the best of our knowledge this is the first example of a prob-
lem where considering 𝑚-OGP with super-constant 𝑚 appears necessary. Specifically,
when 𝑚 = 𝜔𝑛(1) we establish the presence of the 𝑚−OGP for 𝐸𝑛 = 𝜔

(︀√
𝑛 log 𝑛

)︀
.

This is the subject of Theorem 2.2.6. At the same time, in Section 2.4.1, we give
an informal argument which explains that 𝜔

(︀√
𝑛 log 𝑛

)︀
is the best exponent elim-

inated through this technique that one could hope for. Bridging the gap between
𝐸𝑛 = 𝜔

(︀√
𝑛 log 𝑛

)︀
and 𝐸𝑛 = Θ(log2 𝑛) is another problem we leave open. As for

Theorem 2.2.3, the result of Theorem 2.2.6 also pertains to the the case of the “ensem-
ble" variant of the OGP. It is Theorem 2.2.6 which we use to rule out any “sufficiently
stable" algorithm, appropriately defined.

Failure of “Stable" Algorithms. Next we focus on the algorithmic questions,
where we view an algorithm 𝒜 (potentially randomized) as a mapping 𝒜 : R𝑛 → ℬ𝑛,
which takes an 𝑋 ∈ R𝑛 as its input (numbers/items to be partitioned) and returns
a spin configuration 𝒜(𝑋) ∈ ℬ𝑛 (from which the partition is inferred). Informally,
our main algorithmic result is summarized as follows: the “ensemble" 𝑚−OGP with
𝑚 = 𝜔(1) established in Theorem 2.2.6 is an obstruction to any “sufficiently stable"
algorithm. In particular, we establish the following result. Let 𝜖 ∈

(︀
0, 1

5

)︀
be arbitrary;
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and 𝐸𝑛 be an energy exponent with

𝜔
(︁
𝑛 log−

1
5
+𝜖 𝑛

)︁
≤ 𝐸𝑛 ≤ 𝑜(𝑛).

Then, there exists no “sufficiently stable" (in an appropriate sense), and potentially
randomized, algorithm 𝒜 such that with high probability, 𝑛−1/2

⃒⃒
⟨𝑋,𝒜(𝑋)⟩

⃒⃒
= 2−𝐸𝑛 .

Here, the probability is taken with respect to the randomness in 𝑋
𝑑
= 𝒩 (0, 𝐼𝑛), as

well as the randomization underlying the algorithm itself. This is the subject of
Theorem 2.3.2. It is worth noting that the algorithm 𝒜 need not be a polynomial-
time algorithm: as long as 𝒜 is stable in our sense, there is no restriction on its
runtime. It was shown in [123] that stable algorithms include algorithms based on
low-degree polynomials, which in their own right include the approximate message
passing algorithms. Thus Theorem 2.3.2 applies to these classes of algorithms as well.

It is thus natural to inquire whether the stability property holds for the algorithms
known the be successful for the NPP, in particular the LDM algorithm which achieves
the state of the art 𝑛−Θ(log𝑛). We were not able to establish the stability of this algo-
rithm, and instead resorted to simulation study which is reported in Subsection 2.3.2.
The simulations are conducted by running the LDM on two correlated instances of
the NPP and measuring the overlap of the algorithm results as a function of the corre-
lation. The simulation results suggest that indeed the LDM algorithm is stable in the
sense we define. Curiously, it reveals additionally an interesting property. Recall the
constant 𝛼 = 1

2 ln 2
= 0.721 . . . which is suggested heuristically as the leading constant

in the performance of the algorithm. We discover a phase transition: when the cor-
relation between two instances is of the order at least approximately 1− 𝑛−𝛼 log2 𝑛 (in
other words the level of ”perturbation is order 𝑛−𝛼 log2 𝑛), the two outputs of the algo-
rithm are identical or nearly identical. Whereas, when the correlation is smaller than
this value, there appears to be a linear discrepancy between the two outcomes. The
coincidence of this phase transition with the objective value 𝑛−𝛼 log2 𝑛 is remarkable
and at this stage we do not have an explanation for it.

Failure of an MCMC Family. A consequence of the 2−OGP established in
Theorem 2.2.2 (which holds for energy levels 𝐸𝑛 = 𝜖𝑛, 𝜖 ∈

(︀
1
2
, 1
]︀
) is the presence

of a certain property, called a free energy well (FEW), in the landscape of the NPP.
This property is known to be a rigorous barrier for a family of Markov Chain Monte
Carlo (MCMC) methods [21] and has been previously employed for other average-case
problems (e.g. [121]) to establish slow mixing of the Markov chain associated with
the MCMC method and thus the failure of the method. We establish the presence
of a FEW in the landscape of NPP in Theorem 2.3.3; and leverage this property in
Theorem 2.3.4 to establish the failure of a very natural class of MCMC dynamics
tailored for the NPP. More concretely, Theorem 2.3.3 establishes the presence of the
FEW of exponentially small “Gibbs mass" in the landscape of NPP. Theorem 2.3.4
then leverages this property, and shows that for a very natural MCMC dynamics with
an appropriate initialization, it takes an exponential time for this chain to reach a
region of non-trivial Gibbs mass. See the corresponding section for further details.
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Study of Local Optima. Our final focus is on the local optima of this model.
For any spin configuration 𝜎 ∈ ℬ𝑛, denote by 𝜎(𝑖) ∈ ℬ𝑛, 1 ≤ 𝑖 ≤ 𝑛, the configuration
obtained by flipping the 𝑖−th bit of 𝜎. A spin configuration 𝜎 is called a local optimum
if
⃒⃒⟨︀
𝜎(𝑖), 𝑋

⟩︀⃒⃒
≥ |⟨𝜎,𝑋⟩| for 1 ≤ 𝑖 ≤ 𝑛. Namely, 𝜎 is a local optimum if the “swapping"

the place (with respect to 𝜎) of any “item" returns a worse partition. To further
complement our landscape analysis in the “hard" regime, 𝐸𝑛 = Θ(𝑛), we study the
expectation of number 𝑁𝜖 of local optima with energy value 𝑂 (

√
𝑛2−𝑛𝜖), 0 < 𝜖 < 1.

We show that this expectation is exponential in 𝑛, and we give a precise, linear, trade-
off between the “exponent" of E[𝑁𝜖] and 𝜖. This is the subject of Theorem 2.2.8. This
suggests that a very simple greedy algorithm, starting from an arbitrary 𝜎 ∈ ℬ𝑛 and
proceeding by flipping a single spin so as to “reduce energy" as long as there is such
a spin, will likely fail to find a ground-state solution for the NPP.

This analysis is inspired by the work of Addario-Berry et al. [10] who carried out
an analogous analysis for the local optima of the Hamiltonian of the Sherrington-
Kirkpatrick spin glass model.

Connections With the Perceptron Model and Discussion on
Frozen Variables

Our result for the pair-wise OGP in the regime 𝐸𝑛 ≥ 𝜖𝑛, 𝜖 > 1/2 described in Theo-
rem 2.2.2 will imply in particular that for every two partitions 𝜎, 𝜎′ which achieve this
energy level, it is the case that either 𝜎 and 𝜎′ coincide or 𝜎 and 𝜎′ are at least Θ(𝑛)
apart. That is, partitions achieving value better than 2−

𝑛
2 are essentially isolated

points of ℬ𝑛 separated by linear Hamming distance. This behavior is very related
to the so-called “freezing" phenomenon and the “frozen one step Replica Symmetry
Breaking (1-RSB)" picture emerging from the statistical physics regarding the solu-
tion space geometry of a very much related perceptron model. Given a near-optimal
𝜎 ∈ ℬ𝑛, a coordinate 𝑖 ∈ [𝑛] is called free if 𝜎(𝑖) ∈ ℬ𝑛, the configuration obtained from
𝜎 by flipping its 𝑖th coordinate, is also near-optimal. If a coordinate 𝑖 is not free, it
is called frozen. It was recently established independently by Perkins and Xu [234]
and Abbe, Li, and Sly [6] that the symmetric Ising perceptron model (a model that
is quite similar to the VBP (2.2) with 𝑑 proportional to 𝑛) exhibits an extreme form of
freezing, as conjectured by Huang, Wong, and Kabashima [174]: typical solutions (so-
lutions sampled uniformly at random) are completely frozen. That is, all coordinates
of a typical solution are frozen, and every other solution is far from it. Interestingly,
our Theorem 2.2.2 implies that for the case 𝑑 = 1, in fact even a stronger property
holds: every near-optimal solution is isolated with no exceptions (and in particular,
one does not need to randomly sample a solution).

Overview of Our Techniques

Presence of the OGP. We establish the presence of the overlap gap property
(Theorems 2.2.2, 2.2.3, and 2.2.6) using the so-called first moment method. Specif-
ically, we let a certain random variable count the number of tuples (either pairs, or
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𝑚−tuples) of near ground-state spin configurations with a prescribed overlap pat-
tern. We then show that expectation of these random variables are exponentially
small, establishing the presence of the OGP via Markov inequality. At a technical
level, this requires a delicate analysis of a certain covariance structure governing the
joint probability.

Absence of the OGP. Recall that in the regime 𝐸𝑛 = 𝑜(𝑛) we establish in
Theorem 2.2.5 that the 𝑚−OGP (for 𝑚 = 𝑂(1)) is absent. This is achieved by
letting a certain random variable count the number of configurations of interest, and
by leveraging the second moment method for this counting object. In addition, the
proof requires a novel overcounting idea, in order to “decorrelate" pairs of tuples of
spin configurations encountered during the second moment computation. Again at a
technical level, the proof also requires a delicate analysis of a block covariance matrix;
as well as a probabilistic method argument.

Failure of Stable Algorithms. Our theorem 2.3.2 establishing the failure of
stable algorithms (appropriately defined) is perhaps the most technically involved
proof; and combines many different ideas, including the 𝑚−OGP result shown in
Theorem 2.2.6 and certain concentration inequalities. Furthermore, interestingly,
the proof also uses ideas from the extremal combinatorics and Ramsey Theory, see
Theorems 2.6.7 and 2.6.6; and Propositions 2.6.9 and 2.6.12. These results from the
Ramsey Theory concern the sizes of the largest graph permitting coloring of graphs
without the appearance of monochromatic subgraphs of a given size. We use these
results so as to generate a forbidden configuration which when coupled with the
stability of algorithms contradict the OGP. In order to guide the reader, we provide
in Section 2.6.7 a brief outline of the proof.

Failure of an MCMC Family. The failure of the MCMC algorithm is estab-
lished using the FEW property. The latter is established using our 2−OGP result,
Theorem 2.2.2, and then utilizing a slightly refined property on the energy landscape
of NPP, borrowed from [183]. The failure of the MCMC method then relies on a fairly
routine arguments, but is included nevertheless in full details for completeness.

Chapter Organization. The rest of the chapter is organized as follows. Our main
results regarding the geometry of the energy landscape of NPP are found in Section 2.2.
Specifically, our result establishing the presence of the 𝑚−OGP for 𝑚 = 𝑂(1) for
energy levels 2−Θ(𝑛) is presented in Section 2.2.1; our result showing the absence of
𝑚−OGP for energy levels 2−𝑜(𝑛) is presented in Section 2.2.2; our result showing the
presence of 𝑚−OGP for energy levels 2−𝐸𝑛 with 𝜔

(︀√︀
𝑛 log2 𝑛

)︀
≤ 𝐸𝑛 ≤ 𝑜(𝑛), for

𝑚 = 𝜔𝑛(1) is presented in Section 2.2.3. Our result on the the expected number of
local optima is found in Section 2.2.4. The failure of stable algorithms is discussed
in Section 2.3.1. The same section contains the simulation results. The limitations
of our proofs for establishing the 𝑚−OGP in the case when 𝑚 is super-constant,
𝑚 = 𝜔𝑛(1), are studied in Section 2.4.1. We briefly recapitulate our conclusions and
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outline several interesting open problems and future research directions in Section 2.5.
Finally, the proofs of all of our results are presented in Section 2.6.

Notation. The set of real numbers is denoted by R. The sets N and Z+ denote the
set of positive integers. For any 𝑁 ∈ N, the set {1, 2, . . . , 𝑁} is denoted by [𝑁 ]. For
two sets 𝐴,𝐵; their Cartesian product {(𝑎, 𝑏) : 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵} is denoted by 𝐴 × 𝐵.
For any set 𝐴, |𝐴| denotes its cardinality. For any 𝑟 ∈ R, the largest integer not
exceeding 𝑟 (that is, the floor of 𝑟) is denoted by ⌊𝑟⌋; and the smallest integer not less
than 𝑟 (that is, the ceiling of 𝑟) is denoted by ⌈𝑟⌉. For any 𝑋 = (𝑋𝑖 : 1 ≤ 𝑖 ≤ 𝑛) ∈
R𝑛, its Euclidean ℓ2 norm,

√︁∑︀
1≤𝑖≤𝑛𝑋

2
𝑖 and its Euclidean ℓ∞ norm, max1≤𝑖≤𝑛 |𝑋𝑖|

are denoted respectively by ‖𝑋‖2 and ‖𝑋‖∞. For any 𝑋, 𝑌 ∈ R𝑛, their Euclidean
inner product,

∑︀
1≤𝑖≤𝑛𝑋𝑖𝑌𝑖, is denoted by ⟨𝑋, 𝑌 ⟩. The symbol 1{ℰ} denotes the

indicator of ℰ , which is equal to one if ℰ is true; and equal to zero if ℰ is false.
ℬ𝑛 denotes the discrete cube {−1, 1}𝑛. For any 𝜎, 𝜎′ ∈ ℬ𝑛, their Hamming distance∑︀

1≤𝑖≤𝑛 1{𝜎𝑖 ̸= 𝜎′
𝑖} is denoted by 𝑑𝐻 (𝜎, 𝜎′), their normalized overlap 𝑛−1 |⟨𝜎, 𝜎′⟩| is

denoted by 𝒪 (𝜎, 𝜎′); and their normalized inner product 𝑛−1 ⟨𝜎, 𝜎′⟩ is denoted by
𝒪 (𝜎, 𝜎′). log and log2 denote respectively the logarithms with respect to base 𝑒 and
with respect to base 2. For any 𝑟 ∈ R, 2𝑟 is denoted by exp2(𝛼); and 𝑒𝑟 is denoted by
exp(𝑟). Binary entropy function (that is, the entropy of a Bernoulli random variable
with parameter 𝑝) is denoted by ℎ(𝑝) = −𝑝 log2 𝑝−(1−𝑝) log2(1−𝑝). 𝒩 (0, 1) denotes
the standard normal random variable; and 𝒩 (0, 𝐼𝑛) denotes the distribution of a
random vector 𝑋 = (𝑋𝑖 : 1 ≤ 𝑖 ≤ 𝑛) ∈ R𝑛 where 𝑋𝑖

𝑑
= 𝒩 (0, 1), i.i.d. For any matrix

ℳ, we denote its Frobenius norm, spectral norm, spectrum, smallest singular value,
largest singular value, determinant, and trace by ‖ℳ‖𝐹 , ‖ℳ‖2, 𝜎(ℳ), 𝜎min(ℳ),
𝜎max(ℳ), |ℳ|, and trace(ℳ), respectively. A graph G = (𝑉,𝐸) is a collection of
vertices 𝑉 with some edges (𝑣, 𝑣′) ∈ 𝐸 between 𝑣, 𝑣′ ∈ 𝐸. In the sequel, we consider
only simple graphs, that is, graphs that are undirected with no loops. A clique is
a complete graph, that is a graph G = (𝑉,𝐸) where for every distinct 𝑣, 𝑣′ ∈ 𝑉 ;
(𝑣, 𝑣′) ∈ 𝐸. The clique on 𝑚−vertices is denoted by 𝐾𝑚. A subset 𝑆 ⊂ 𝑉 of vertices
(of G) is called an independent set if for every distinct 𝑣, 𝑣′ ∈ 𝑆; (𝑣, 𝑣′) /∈ 𝐸. The
largest cardinality of such an independent set is called the independence number of
G; and is denoted by 𝛼(G). A 𝑞−coloring of a graph G = (𝑉,𝐸) is a function
𝜙 : 𝑉 → {1, 2, . . . , 𝑞} assigning to each edge of G one of 𝑞 available colors.

We employ the standard Bachmann-Landau asymptotic notation, e.g. Θ(·), 𝑂(·), 𝑜(·),
𝜔(·), and Ω(𝑛) throughout the chapter. Whenever a function 𝑓(𝑛), say, has growth
𝑜(𝑛), we either denote by 𝑓(𝑛) = 𝑜(𝑛) or 𝑓(𝑛) ∈ 𝑜(𝑛). Finally, whenever 𝑓 has a lower
and upper bound on its growth, we abuse the notation slightly and use inequalities.
For instance, when 𝑓(𝑛) ∈ 𝜔𝑛(1) and 𝑓(𝑛) ∈ 𝑜(𝑛) (that is, 𝑓 is super-constant but
sub-linear), we often find it convenient to write 𝜔𝑛(1) ≤ 𝑓(𝑛) ≤ 𝑜(𝑛).

In order to keep our presentation simple, we omit all floor and ceiling operators.
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2.2 Main Results. The Landscape of the NPP

In this section, we present our results regarding the geometry of the energy landscape
of the number partitioning problem (NPP).

Our results concern the overlap structures of the tuples of near ground-state con-
figurations, formalized next. Recall the definition of the overlap 𝒪 from (2.3).

Definition 2.2.1. Fix an 𝑚 ∈ N, and 0 < 𝜂 < 𝛽 < 1. Let 𝑋𝑖
𝑑
= 𝒩 (0, 𝐼𝑛), 0 ≤ 𝑖 ≤ 𝑚,

be i.i.d. random vectors; and let ℐ be any subset of [0, 1]. Denote by 𝒮(𝛽, 𝜂,𝑚,𝐸𝑛, ℐ)
the set of all 𝑚−tuples

(︀
𝜎(𝑖) : 1 ≤ 𝑖 ≤ 𝑚

)︀
of spin configurations 𝜎(𝑖) ∈ ℬ𝑛, such that

the following holds:

(a) (Pairwise Overlap Condition) For any 1 ≤ 𝑖 < 𝑗 ≤ 𝑚,

𝛽 − 𝜂 ≤ 𝒪
(︀
𝜎(𝑖), 𝜎(𝑗)

)︀
≤ 𝛽.

(b) (Near Ground-State Condition) There exists 𝜏𝑖 ∈ ℐ, 1 ≤ 𝑖 ≤ 𝑚, such that

1√
𝑛

⃒⃒⟨︀
𝜎(𝑖), 𝑌𝑖 (𝜏𝑖)

⟩︀⃒⃒
≤ 2−𝐸𝑛 , where 𝑌𝑖(𝜏𝑖) =

√︁
1− 𝜏 2𝑖 𝑋0+𝜏𝑖𝑋𝑖, for 1 ≤ 𝑖 ≤ 𝑚.

Here, 𝑚 refers to size of the tuple we investigate; the quantities 𝛽 and 𝜂 control
the overlap region; 𝐸𝑛 controls the “exponent" of the energy level 2−𝐸𝑛 with respect
to which 𝜎(𝑖) ∈ ℬ𝑛 are near ground-state; and ℐ is a certain index set for describing
the correlated instances (more on this later).

The set 𝒮(𝛽, 𝜂,𝑚,𝐸𝑛, ℐ) is the set of all 𝑚−tuples of spin configurations 𝜎(𝑖) ∈ ℬ𝑛,
1 ≤ 𝑖 ≤ 𝑚; where i) the pairwise overlaps between 𝜎(𝑖) lie in the interval [𝛽 − 𝜂, 𝛽];
and ii) each 𝜎(𝑖), 1 ≤ 𝑖 ≤ 𝑚, is a (near) ground-state with respect to an instance of the
NPP dictated by the entries of the vector 𝑌𝑖(𝜏𝑖) ∈ R𝑛. Note that the instances 𝑌𝑖 (𝜏𝑖)
with respect to which 𝜎(𝑖) are near-optimal need not be the same; each individually
distributed as 𝒩 (0, 𝐼𝑛); and are correlated. This will later turn out to be useful in
ruling out “sufficiently stable" algorithms, appropriately defined.

2.2.1 Overlap Gap Property for the Energy Levels 2−Θ(𝑛)

Our first focus is on the pairs of near ground-state configurations with respect to
energy levels 𝐸𝑛 = 𝜖𝑛, 𝜖 ∈

(︀
1
2
, 1
]︀
.

Theorem 2.2.2. Let 𝑋 𝑑
= 𝒩 (0, 𝐼𝑛); and 𝜖 ∈

(︀
1
2
, 1
]︀

be arbitrary. There exists 𝜌 ≜
𝜌(𝜖) ∈ (0, 1) such that with probability 1 − exp (−Θ(𝑛)), there are no pairs (𝜎, 𝜎′) ∈
ℬ𝑛 × ℬ𝑛 for which 𝒪 (𝜎, 𝜎′) ∈

[︀
𝜌, 𝑛−2

𝑛

]︀
; 1√

𝑛
|⟨𝜎,𝑋⟩| = 𝑂 (2−𝑛𝜖), and 1√

𝑛
|⟨𝜎′, 𝑋⟩| =

𝑂 (2−𝑛𝜖).

The proof of Theorem 2.2.2 is based on a first moment argument, and is provided
in Section 2.6.2. Several remarks are now in order. Theorem 2.2.2 establishes that for
the energy levels 𝐸𝑛 = 𝜖𝑛 with 𝜖 ∈

(︀
1
2
, 1
]︀
, it is the case that with high probability, the
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overlap of any pair of near ground-state spin configurations exhibits a gap. Namely,
in the language of Definition 2.2.1, Theorem 2.2.2 establishes that for any 𝜖 ∈

(︀
1
2
, 1
]︀

there exists a 𝜌 ≜ 𝜌(𝜖) ∈ (0, 1) such that the set 𝒮(𝛽, 𝜂,𝑚,𝐸𝑛, ℐ) with parameters
𝛽 = 1− 2

𝑛
, 𝜂 = 1− 2

𝑛
−𝜌, 𝑚 = 2, 𝐸𝑛 = 2−𝜖𝑛 and ℐ = {0} is empty with probability at

least 1−exp (−Θ(𝑛)). Note that the rightmost end of this gap is independent of 𝜖; and
reaches 𝑛−2

𝑛
: this is the largest overlap that can be attained by two spin configurations

𝜎, 𝜎′ with 𝜎 ̸= ±𝜎′. That is, if 1 ≤ 𝑑𝐻 (𝜎, 𝜎′) ≤ 𝑛 − 1 then 𝒪 (𝜎, 𝜎′) ≤ 𝑛−2
𝑛

with
equality if and only if 𝑑𝐻 (𝜎, 𝜎′) ∈ {1, 𝑛− 1}. In particular, w.h.p. for any 𝜎, 𝜎′ ∈ ℬ𝑛

with 𝑛− 1
2 | ⟨𝜎,𝑋⟩ | = 𝑂(2−𝑛𝜖) and 𝑛− 1

2 | ⟨𝜎′, 𝑋⟩ | = 𝑂(2−𝑛𝜖), it is the case that either
𝜎 and 𝜎′ coincide or are at least Θ(𝑛) apart, 𝑑𝐻(𝜎, 𝜎′) = Θ(𝑛). That is, partitions
achieving value better than 2−

𝑛
2 are essentially isolated points of ℬ𝑛 separated by

linear Hamming distance, as we have discussed in the introduction.
We will use our pairwise OGP result, Theorem 2.2.2, to establish the existence

of the free energy well (FEW), which will be used as a barrier for the Markov chain
type algorithms.

The energy levels 𝐸𝑛 addressed by Theorem 2.2.2 is 𝐸𝑛 ≥ 𝜖𝑛, 𝜖 > 1/2. Our
next result concerns all linear size energy values 𝐸𝑛. It shows that the NPP exhibits
𝑚−Overlap Gap Property (𝑚−OGP)—for constant 𝑚 = 𝑂(1) for such energy levels.

Theorem 2.2.3. Let 𝜖 > 0. There exists an 𝑚 ≜ 𝑚(𝜖) ∈ N; 𝛽, and 𝜂 with 0 < 𝜂 <
𝛽 < 1 such that the following holds. For i.i.d. random vectors 𝑋𝑖 ∈ R𝑛, 0 ≤ 𝑖 ≤ 𝑚
with distribution 𝒩 (0, 𝐼𝑛) and any subset ℐ ⊂ [0, 1] with |ℐ| = 2𝑜(𝑛),

P
(︁
𝒮 (𝛽, 𝜂,𝑚, 𝜖, ℐ) ̸= ∅

)︁
≤ exp2 (−Θ(𝑛)) .

Here 𝒮 (𝛽, 𝜂,𝑚, 𝜖, ℐ) stands for 𝒮 (𝛽, 𝜂,𝑚,𝐸𝑛, ℐ) with 𝐸𝑛 = 𝑛𝜖, which was introduced
in the Definition 2.2.1.

The proof of Theorem 2.2.3 is based on a first moment argument; and is provided
in Section 2.6.3.

Note that Theorem 2.2.3 pertains the “ensemble" variant of the OGP: the spin
configurations 𝜎(𝑖), 1 ≤ 𝑖 ≤ 𝑚, need not be near ground-states for the same instance of
the problem; and are instead near ground-states for potentially correlated instances.

Remark 2.2.4. It is worth noting that while we state and prove Theorem 2.2.3 for
the NPP (2.1) for simplicity; our result still remains valid for the high-dimensional
version, VBP (2.2). More concretely, recalling that the optimal value of (2.2) for
random i.i.d. standard normal inputs 𝑋𝑖

𝑑
= 𝒩 (0, 𝐼𝑑), 1 ≤ 𝑖 ≤ 𝑛 is Θ

(︀√
𝑛2−𝑛/𝑑

)︀
for

𝜔(1) ≤ 𝑑 ≤ 𝑜(𝑛); our approach still remains valid and the 𝑚−OGP still takes place
for energy levels Θ

(︀√
𝑛2−𝜖𝑛/𝑑

)︀
for any 𝜖 ∈ (0, 1].

2.2.2 Absence of 𝑚-Overlap Gap Property for Energy Levels
2−𝑜(𝑛)

We now focus our attention to the sub-linear exponent regime, 𝐸𝑛 = 𝑜(𝑛). We
establish that the 𝑚-OGP is actually absent in this regime, when 𝑚 is constant.
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That is, the overlaps of spin configurations achieving sublinear energy levels “span"
the entire interval, in an certain sense concretized as follows.

Theorem 2.2.5. Let 𝑋 𝑑
= 𝒩 (0, 𝐼𝑛). Fix any 𝜂 > 0 and 𝑚 ∈ N. Suppose that

𝑓(𝑛) : N → R+ is any arbitrary function with 𝑓(𝑛) = 𝜔𝑛(1) and 𝑓(𝑛) = 𝑜(𝑛). Then,

lim
𝑛→∞

P
(︁
∀𝛽 ∈ [0, 1] : 𝒮 (𝑚,𝛽, 𝜂, 𝑓(𝑛), {0}) ̸= ∅

)︁
= 1;

where the set 𝒮 is introduced in Definition 2.2.1 with the following modification on
the pairwise overlap condition: 𝛽 − 𝜂 ≤ 𝒪

(︀
𝜎(𝑖), 𝜎(𝑗)

)︀
≤ 𝛽 + 𝜂 for 1 ≤ 𝑖 < 𝑗 ≤ 𝑚.

In particular, since 𝜂 in the statement of Theorem 2.2.5 is arbitrary, we conclude
that the overlaps indeed “span" the entire interval. The 𝑚−tuples

(︀
𝜎(𝑖) : 1 ≤ 𝑖 ≤ 𝑚

)︀
that we consider in Theorem 2.2.5 consist of spin configurations that are near ground-
state with respect to the same instance of the problem: 𝑛−1/2

⃒⃒⟨︀
𝜎(𝑖), 𝑋

⟩︀⃒⃒
≤ exp2(−𝑓(𝑛))

for 1 ≤ 𝑖 ≤ 𝑚. Moreover, our proof will demonstrate something stronger: one can find
such 𝑚−tuples 𝜎(𝑖) ∈ ℬ𝑛, 1 ≤ 𝑖 ≤ 𝑚 satisfying not only the constraints on absolute
values of inner products but inner products themselves: 𝛽−𝜂 ≤ 1

𝑛

⟨︀
𝜎(𝑖), 𝜎(𝑗)

⟩︀
≤ 𝛽+𝜂.

The slight modification of Definition 2.2.1 (where the interval [𝛽− 𝜂, 𝛽+ 𝜂] is consid-
ered instead of [𝛽 − 𝜂, 𝛽]) is for convenience.

The proof of Theorem 2.2.5 uses the probabilistic method and the second moment
method together with a crucial overcounting idea; and is provided in Section 2.6.4.

2.2.3 𝑚-Overlap Gap Property Above 2−Θ(𝑛): Super-Constant
𝑚

We now establish the existence of 𝑚−OGP, where 𝑚 is super-constant, 𝑚 = 𝜔𝑛(1),
for certain energy levels whose exponents are sub-linear.

Theorem 2.2.6. Let 𝐸𝑛 : N → R+ be any arbitrary “energy exponent" with growth
condition

𝐸𝑛 ∈ 𝜔
(︁√︀

𝑛 log2 𝑛
)︁

and 𝐸𝑛 ∈ 𝑜(𝑛).

Suppose that 𝑋𝑖 ∈ R𝑛, 1 ≤ 𝑖 ≤ 𝑚, are i.i.d. with distribution 𝒩 (0, 𝐼𝑛), and ℐ ⊂ [0, 1]
with |ℐ| = 𝑛𝑂(1). Define the sequences (𝑚𝑛)𝑛≥1, (𝛽𝑛)𝑛≥1 and (𝜂𝑛)𝑛≥1 with 1 > 𝛽𝑛 >
𝜂𝑛 > 0, 𝑛 ≥ 1 by

𝑚𝑛 ≜
2𝑛

𝐸𝑛

, 𝛽𝑛 ≜ 1− 2𝑔(𝑛)

𝐸𝑛

, and 𝜂𝑛 =
𝑔(𝑛)

2𝑛
, (2.4)

where 𝑔(𝑛) is any arbitrary function with growth condition

𝜔(1) ≤ 𝑔(𝑛) ≤ 𝑜

(︂
𝐸2

𝑛

𝑛 log2 𝑛

)︂
. (2.5)

Then,
P
(︁
𝒮
(︁
𝛽𝑛, 𝜂𝑛,𝑚𝑛, 𝐸𝑛, ℐ

)︁
̸= ∅

)︁
≤ exp (−Θ(𝑛)) . (2.6)
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Here, 𝒮 (𝛽𝑛, 𝜂𝑛,𝑚𝑛, 𝐸𝑛, ℐ) is the set introduced in Definition 2.2.1 with the modifi-
cation that the pairwise inner products (as opposed to the overlaps) are constrained,
that is

𝛽 − 𝜂 ≤ 1

𝑛

⟨︀
𝜎(𝑖), 𝜎(𝑗)

⟩︀
≤ 𝛽, for 1 ≤ 𝑖 < 𝑗 ≤ 𝑚.

Moreover, in the special case when

𝜔
(︁
𝑛 · log− 1

5
+𝜖 𝑛

)︁
≤ 𝐸𝑛 ≤ 𝑜(𝑛)

and 𝜖 ∈ (0, 1
5
) is arbitrary, (2.6) still holds with 𝑔(𝑛) satisfying

𝑔(𝑛) = 𝑛 ·
(︂
𝐸𝑛

𝑛

)︂2+ 𝜖
8

. (2.7)

The idea of the proof of Theorem 2.2.6 is quite similar to that of Theorem 2.2.3,
yet it does not follow directly from Theorem 2.2.3. This is due to the fact that
Theorem 2.2.6 uses different asymptotic bounds for certain cardinality terms; and
requires a more careful asymptotic analysis. For this reason, we provide a separate
and complete proof in Section 2.6.5.

Several remarks are in order. In what follows, we suppress the subscript 𝑛 from
𝑚𝑛, 𝛽𝑛, 𝜂𝑛; while the reader should keep in his mind that all these quantities are
functions of 𝑛. We treat the case 𝐸𝑛 = 𝜔(𝑛 · log−1/5+𝜖 𝑛) with a different choice of
𝑔(𝑛) (though keeping 𝑚,𝛽, 𝜂—as functions of 𝑔(𝑛)—the same). In particular, in this
case the 𝑔(𝑛) parameter (hence the 𝜂 parameter) appearing in Theorem 2.2.6 can be
taken to be larger. Note that this yields a stronger conclusion: it implies that the
length 𝜂 of the forbidden region is larger. This will be needed later in Theorem 2.3.2
when we leverage Theorem 2.2.6 for the case 𝐸𝑛 = 𝜔(𝑛 · log−1/5+𝜖 𝑛) with 𝑔(𝑛) chosen
as in (2.7) (and 𝛽, 𝜂,𝑚 prescribed according to (2.4)) to rule out stable algorithms.

Our next remark pertains to the size of the index set, ℐ. While we restricted our
attention to sets with |ℐ| ≜ |ℐ(𝑛)| = 𝑛𝑂(1) = poly(𝑛), it appears that our technique
still remains valid, so long as |ℐ(𝑛)| ≤ 2𝐶𝐸𝑛 , where 𝐶 is a small enough constant.

We now comment on the energy exponent, 𝐸𝑛. For Theorem 2.2.6 to hold true,
𝐸𝑛 should grow faster than 𝜔

(︀√︀
𝑛 log2 𝑛

)︀
. While we do not rule out the OGP for

smaller values of 𝐸𝑛, we will provide an argument which shows that 𝜔
(︀√︀

𝑛 log2 𝑛
)︀

is
tight for the methods employed in this chapter. See Section 2.4.1 for more details.

An Illustration of Theorem 2.2.6 with a Concrete Choice of Parameters.

We now illustrate Theorem 2.2.6 with a concrete choice of the energy exponent 𝐸𝑛

and concrete choices of parameters 𝑚,𝛽, and 𝜂.
Fix 𝛿 ∈ (0, 1

2
) and consider “ruling out" the energy levels 𝐸𝑛 = 𝑛1−𝛿. That is, our

goal is to establish the presence of the 𝑚-OGP for 𝐸𝑛 = 𝑛1−𝛿 for appropriate 𝑚,𝛽,
and 𝜂 parameters. Next, take 𝑚 = 2𝑛/𝐸𝑛 = 2𝑛𝛿, per (2.4). Choose a 𝛿′ > 0 such
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that 𝛿′ + 2𝛿 < 1. Then, set 𝑔(𝑛) = 𝑛𝛿′ . It is easily verified that

𝜔𝑛(1) ≤ 𝑔(𝑛) ≤ 𝑜

(︂
𝐸2

𝑛

𝑛 log2 𝑛

)︂
= 𝑜

(︂
𝑛1−2𝛿

log2 𝑛

)︂
.

We then take, again per (2.4),

𝛽𝑛 = 1− 2𝑔(𝑛)

𝐸𝑛

= 1− 2𝑛𝛿′+𝛿−1 and 𝜂𝑛 =
𝑔(𝑛)

2𝑛
=

1

2
𝑛−1+𝛿′ .

Note that the overlap region, [𝛽 − 𝜂, 𝛽], has a length 𝜂. For the statement of the
theorem to be non-vacuous, 𝑛 times the overlap length must contain some integer
values: |[𝑛𝛽 − 𝑛𝜂, 𝑛𝛽] ∩ Z| = Ω(1) must hold. We verify that indeed 𝑛𝜂 = 1

2
𝑛𝛿′ =

𝜔𝑛(1). Namely, 𝑛 times the length of the overlap interval grows polynomially in 𝑛.

2.2.4 Expected Number of Local Optima

In this section, we complement our earlier analysis in the “hard" regime, 2−Θ(𝑛).
Specifically, we focus on the local optima at these energy levels.

Definition 2.2.7. Let 𝜎 ∈ ℬ𝑛 be a spin configuration. For every 1 ≤ 𝑖 ≤ 𝑛, denote by
𝜎(𝑖) ∈ ℬ𝑛 the spin configuration obtained by flipping 𝑖−th bit of 𝜎. That is, 𝜎(𝑖)(𝑖) =
−𝜎(𝑖) and 𝜎(𝑖)(𝑗) = 𝜎(𝑗) for 𝑗 ̸= 𝑖. Given 𝑋 ∈ R𝑛, a spin configuration 𝜎 ∈ ℬ𝑛 is
called a local optimum if⃒⃒⟨︀

𝜎(𝑖), 𝑋
⟩︀⃒⃒

≥ |⟨𝜎,𝑋⟩| , for 1 ≤ 𝑖 ≤ 𝑛.

For energy exponents 𝐸𝑛 of form 𝜖𝑛, 0 < 𝜖 < 1, we now compute the expected
number of local optima below the energy level 2−𝐸𝑛 .

Theorem 2.2.8. Let 𝑋 𝑑
= 𝒩 (0, 𝐼𝑛). Fix any 𝜖 ∈ (0, 1), and let 𝑁𝜖 be the number of

spin configurations 𝜎 ∈ ℬ𝑛 which satisfies the following:

(a) 𝜎 is a local optimum in the sense of Definition 2.2.7.

(b)
1√
𝑛
| ⟨𝜎,𝑋⟩ | = 𝑂(2−𝑛𝜖).

Then, lim
𝑛→∞

1

𝑛
logE [𝑁𝜖] = 1− 𝜖.

The proof of Theorem 2.2.8 is provided in Section 2.6.6. The notion of local
optimality per Definition 2.2.7 is the same one that Addario-Berry et al. consid-
ered in [10]. In particular, they study the local optima of the Hamiltonian of the
Sherrington-Kirkpatrick spin glass; and carry out a very similar analysis—namely
they show the expected number of local optima is exponentially large, and compute
the exponent (though the proofs corresponding to these models are different).

Theorem 2.2.8 gives a precise trade-off between the exponent of the energy value
and the exponent of the expectation: the exponent of the (expected) number of
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local optima decays linearly in the exponent 𝜖 of the energy level, as 𝜖 varies in
(0, 1). In particular, the expected number of the local optima is exponential with
exponent growing linearly as the energy level moves away from the energy of the
ground state. Theorem 2.2.8 suggests the likely failure of a very simple, yet natural,
greedy algorithm. Consider a greedy algorithm which starts from a spin configuration
𝜎 ∈ ℬ𝑛 and performs a sequence of local, greedy, moves: at each step, flip a spin
configuration that decreases the energy, |⟨𝜎,𝑋⟩|. This greedy algorithm continues
until one cannot move any further, therefore reaching a local optimum, in the sense of
Definition 2.2.7. Theorem 2.2.8 shows that there exists, in expectation, exponentially
many such local optima. This suggests that the greedy algorithm will likely fail to
find a ground-state solution.

It is important to note that Theorem 2.2.8 should be viewed only as an evidence
based on the first moment method. Indeed; while it is true, per Theorem 2.2.8, that
the expected number of local minima is exponential (in 𝑛), it might still be possible
that one in fact has 𝑂(1) (or even one) local minimizer with high probability: this
is the case, e.g., if there exists a rare event on which there are exponentially many
local minimizers (due to the so-called lottery effect). A typical way to overcome this
caveat is to perform a second moment calculation, which unfortunately appears to be
quite involved in our case. We leave this for a future work.

2.3 Main Results. Failure of Algorithms

2.3.1 𝑚−Overlap Gap Property Implies Failure of Stable Al-
gorithms

The focus in this section understanding the power of stable algorithms in solving the
optimization problem (2.1) when the input 𝑋𝑖, 1 ≤ 𝑖 ≤ 𝑛, consists of i.i.d. standard
normal weights.

Algorithmic Setting. We interpret an algorithm 𝒜 as a mapping from the Eu-
clidean space R𝑛 to the binary cube ℬ𝑛 ≜ {−1, 1}𝑛. We also allow 𝒜 to be potentially
randomized. More concretely, we assume that there exists a probability space (Ω,P𝜔),
such that 𝒜 : R𝑛 × Ω → ℬ𝑛 and for every 𝜔 ∈ Ω, 𝒜(·, 𝜔) : R𝑛 → ℬ𝑛. Here, 𝑋 ∈ R𝑛

denotes the “items" to be partitioned; whereas for a fixed 𝜔 ∈ Ω, 𝒜(𝑋,𝜔) ∈ ℬ𝑛 is
the spin configuration returned by this potentially randomized algorithm, 𝒜; which
encodes a partition.

We now formalize the class of “sufficiently stable" algorithms.

Definition 2.3.1. Let 𝐸 > 0; 𝑓 ∈ N, 𝐿 ∈ R+ and 𝜌′, 𝑝𝑓 , 𝑝st ∈ [0, 1]. A randomized
algorithm 𝒜 : R𝑛 ×Ω → ℬ𝑛 for the NPP (2.1) is called (𝐸, 𝑓, 𝐿, 𝜌′, 𝑝𝑓 , 𝑝st)−optimal if
the following are satisfied.

• (Near-Optimality) For (𝑋,𝜔) ∼ 𝒩 (0, 𝐼𝑛)⊗ P𝜔,

P(𝑋,𝜔)

(︂
1√
𝑛
|⟨𝑋,𝒜 (𝑋,𝜔)⟩| ≤ 𝐸

)︂
≥ 1− 𝑝𝑓 .
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• (Stability) For every 𝜌 ∈ [𝜌′, 1], it holds that

P(𝑋,𝑌,𝜔):𝑋∼𝜌𝑌

(︁
𝑑𝐻 (𝒜(𝑋,𝜔),𝒜(𝑌, 𝜔)) ≤ 𝑓 + 𝐿‖𝑋 − 𝑌 ‖22

)︁
≥ 1− 𝑝st.

Here, the probability is taken with respect to joint randomness P𝑋,𝑌 ⊗ P𝜔 of
(𝑋, 𝑌, 𝜔): 𝑋, 𝑌

𝑑
= 𝒩 (0, 𝐼𝑛) with Cov(𝑋, 𝑌 ) = 𝜌𝐼𝑛 (which together uniquely

specify the joint distribution P𝑋,𝑌 denoted by 𝑋 ∼𝜌 𝑌 ); and 𝜔 ∼ P𝜔, which is
the “coin flips" of the algorithm.

In what follows, we will abuse the notation, and refer to 𝒜 : R𝑛 → ℬ𝑛 (by
suppressing 𝜔) as a randomized algorithm. The parameter, 𝐸, refers to the cost
(i.e., objective value) achieved by the partition returned by 𝒜. The parameter, 𝑝𝑓 ,
controls the “failure" probability—the probability that algorithm fails to return a
partition with cost below 𝐸.

An important feature of Definition 2.3.1 is that the stability guarantee is proba-
bilistic; and the parameters, 𝑓, 𝐿, 𝜌′, 𝑝st, control the stability of the algorithm. Specif-
ically, in order to talk about stability in a probabilistic setting, one has to consider
two random input vector that are potentially correlated. 𝜌′ controls the region of
correlation parameters that the inputs are allowed to take. The parameter, 𝑝st, con-
trols the stability probability. 𝐿 essentially acts like a Lipschitz constant, whereas 𝑓
is introduced so that when 𝑋 and 𝑌 are “too close", the algorithm is still allowed to
make roughly “𝑓 flips". This “extra room" of 𝑓 bits is introduced to allow for greater
flexibility of the algorithm and it only makes our negative result stronger.

We now state our main result regarding the failure of stable algorithms for solving
the NPP.

Theorem 2.3.2. Fix any 𝜖 ∈
(︀
0, 1

5

)︀
and 𝐿 > 0. Let 𝐸𝑛 : N → R+ be an energy

exponent satisfying
𝜔
(︁
𝑛 log−

1
5
+𝜖 𝑛

)︁
≤ 𝐸𝑛 ≤ 𝑜(𝑛).

For any 𝑐 > 0, define

𝑇 (𝑐) ≜ exp2

(︃
2
8𝑐𝐿( 𝑛

𝐸𝑛
)
5+ 𝜖

4 log2

(︂
𝑐𝐿( 𝑛

𝐸𝑛
)
4+ 𝜖

4

)︂)︃
; (2.8)

and set

𝜌′𝑛(𝑐) ≜ 1− 1

𝑐𝐿

(︂
𝐸𝑛

𝑛

)︂4+ 𝜖
4

, 𝑝𝑓,𝑛(𝑐) ≜
1

4𝑇 (𝑐)

(︂
𝑐𝐿
(︁

𝑛
𝐸𝑛

)︁4+ 𝜖
4
+ 1

)︂ , and 𝑝st,𝑛(𝑐) ≜
(𝐸𝑛/𝑛)

8+ 𝜖
2

9𝑐2𝐿2𝑇 (𝑐)
.

(2.9)
Then, there exists constant 𝑐1, 𝑐2 > 0 and an 𝑁* ∈ N such that the following holds.
For every 𝑛 ≥ 𝑁*, there exists no randomized algorithm, 𝒜 : R𝑛 → ℬ𝑛 such that 𝒜 is(︁

2−𝐸𝑛 , 𝑐1𝑛(𝐸𝑛/𝑛)
4+ 𝜖

4 , 𝐿, 𝜌′𝑛(𝑐2), 𝑝𝑓,𝑛(𝑐2), 𝑝st,𝑛(𝑐2)
)︁
− optimal
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(for the NPP) in the sense of Definition 2.3.1.

The proof of Theorem 2.3.2 is provided in Section 2.6.7.
Several remarks are in order. In what follows, one should keep in their mind

that 𝐸𝑛/𝑛 = log−𝑂(1) 𝑛. Note first that there is no restriction on the runtime of 𝒜,
provided that it is stable. It is easy to check that 𝑝st,𝑛 → 1 as 𝑛 → ∞. Thus the
algorithms that are ruled out satisfy with high probability

𝑑𝐻 (𝒜(𝑋),𝒜(𝑌 )) ≤ 𝑐1𝑛 log
−𝑂(1) 𝑛+ 𝐿‖𝑋 − 𝑌 ‖22.

In particular, while 𝒜 is stable, it is still allowed to make Ω
(︁
𝑛 log−𝑂(1) 𝑛

)︁
“flips" even

when 𝑋 and 𝑌 are “too close".
Next, since 𝑐2 and 𝐿 are constant in 𝑛,

𝜌′𝑛(𝑐2) = 1− 1

𝑐2𝐿

(︂
𝐸𝑛

𝑛

)︂4+ 𝜖
4

= 1− log−𝑂(1) 𝑛.

Namely, for our stability assumption, we restrict our attention to 𝜌 ∈ [1−log−𝑂(1) 𝑛, 1].
It is worth noting that in the case when 𝜌 is constant, 𝜌 = 𝑂(1), the stability per Def-
inition 2.3.1 holds (with a sufficiently large constant 𝐿) irrespective of the algorithm:
by the law of large numbers, ‖𝑋−𝑌 ‖22 is Θ(𝑛), whereas 𝑑𝐻(𝒜(𝑋,𝜔),𝒜(𝑌, 𝜔)) ≤ 𝑛 for
any 𝑋, 𝑌 ∈ R𝑛 and 𝜔 ∈ Ω; hence for 𝐿 large enough (though constant), 𝐿‖𝑋−𝑌 ‖22 >
𝑑𝐻(𝒜(𝑋,𝜔),𝒜(𝑌, 𝜔)). In particular, in some sense the interesting regime is indeed
when 𝜌 = 1− 𝑜𝑛(1), as we investigate here.

Our next remark pertains to the term 𝑇 (𝑐) appearing in (2.8). Keeping in mind
that 𝑐 and 𝐿 are constants (in 𝑛); and 𝑛/𝐸𝑛 is 𝜔(1), it follows that

8𝑐𝐿

(︂
𝑛

𝐸𝑛

)︂5+ 𝜖
4

log2

(︃
𝑐𝐿

(︂
𝑛

𝐸𝑛

)︂4+ 𝜖
4

)︃
= Θ

(︃(︂
𝑛

𝐸𝑛

)︂5+ 𝜖
4

log2

(︂
𝑛

𝐸𝑛

)︂)︃
.

By assumption on 𝐸𝑛, 𝐸𝑛/𝑛 = log𝑂(1) 𝑛. This yields the following order of growth
for 𝑇 (𝑐):

𝑇 (𝑐) = exp2

(︁
2
𝑜
(︁
log𝑐

′
𝑛
)︁)︁

for some 𝑐′ ∈ (0, 1).

In fact, any 𝑐′ >
(︀
1
5
− 𝜖
)︀ (︀

5 + 𝜖
2

)︀
works above. Since

(︀
1
5
− 𝜖
)︀ (︀

5 + 𝜖
2

)︀
= 1 − 49𝜖/10 +

Θ(𝜖2), the interval for 𝑐′ is indeed non-vacuous as long as 𝜖 > 0. Moreover, this
interval gets larger as 𝜖→ 1/5 (more on this below).

An inspection of the terms 𝑝𝑓,𝑛(𝑐) and 𝑝st,𝑛(𝑐) appearing in (2.9) reveals that they
have the same order of growth as 𝑇 (𝑐)−1. That is,

𝑝𝑓,𝑛(𝑐), 𝑝st,𝑛(𝑐) = exp2

(︁
−2

𝑜
(︁
log𝑐

′
𝑛
)︁)︁

for any 𝑐′ >

(︂
1

5
− 𝜖

)︂(︁
5 +

𝜖

2

)︁
.

In particular, while Theorem 2.3.2 requires high probability guarantees, these
guarantees need not be exponential: a sub-exponential choice suffices. Moreover, as
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𝜖→ 1
5
, the restrictions become milder. In the limit (which corresponds essentially to

𝐸𝑛 = Θ(𝑛)); it suffices to take a (large) constant probability of success and stability
(as we elaborate below).

While the lower bound on the energy exponent 𝐸𝑛 can potentially be improved
slightly to 𝐸𝑛 = 𝜔

(︁
𝑛 · log−1/5 𝑛 · log log 𝑛

)︁
; it appears that 𝐸𝑛 = Ω

(︁
𝑛 · log−1/5 𝑛

)︁
is,

in fact, necessary; see Section 2.4.2 for an informal argument. For the sake of keeping
our presentation simple, we do not pursue this improvement.

While Theorem 2.3.2 rules out algorithms that are sufficiently stable in the sense
of Definition 2.3.1, we are unable to prove that the LDM algorithm of Karmarkar and
Karp [182] is stable, even though our simulation results, reported in Section 2.3.2,
suggest that it is. We leave this as a very interesting, yet we believe an approachable,
open problem.

On Energy Levels 2−Θ(𝑛).

Theorem 2.3.2 addresses energy levels 2−𝐸𝑛 with 𝐸𝑛 lower bounded by some explicitly
given 𝑜(𝑛) value. This naturally includes the energy levels 2−Θ(𝑛). It appears, however,
that for energy levels 2−𝑛𝜖 with 𝜖 > 0; it is possible to strengthen Theorem 2.3.2 in
various aspects, which we comment now.

It appears that a straightforward modification of Theorem 2.3.2—in particular
invoking the 𝑚−OGP result, Theorem 2.2.3, with 𝑚 = 𝑂(1) as opposed to Theo-
rem 2.2.6—yields that 𝑓/𝑛 can be taken to be constant (in 𝑛): the algorithm is then
allowed to make Θ(𝑛) flips even when 𝑋 and 𝑌 are too close. Perhaps more im-
portantly, the probability of success and the stability guarantee can also be boosted:
this yields the failure of “stable" algorithms even with a constant probability of suc-
cess/stability (where the constant is sufficiently close to one).

2.3.2 Stability of the LDM Algorithm. Simulation Results

In this section we report simulation results on running the LDM on correlated pairs
of 𝑛-dimensional gaussian vectors. Thus let 𝑋,𝑋 ′ 𝑑

= 𝒩 (0, 𝐼𝑛) be independent, and
let 𝑌𝑖 =

√
1− 𝜏 2𝑋𝑖 + 𝜏𝑋 ′

𝑖, 1 ≤ 𝑖 ≤ 𝑛 for a fixed value 𝜏 ∈ [0, 1]. Then 𝑌
𝑑
= 𝒩 (0, 𝐼𝑛)

as well. We run the LDM algorithm on instances 𝑋 and 𝑌 and denote the results
by 𝜎 and 𝜎(𝜏) respectively. We measure the overlap as (1/𝑛)⟨𝜎, 𝜎(𝜏)⟩ and report
the results. The simulations were conducted for 𝑛 = 50, 100 and 500 and reported
on Figures 2-1,2-2 and 2-3 respectively. The horizontal axis corresponds to the value
𝜌 ≜ − log2(𝜏). So as 𝜏 decreases to zero and thus the correlation approaches unity, this
parameter diverges to infinity. The logarithmic scale is motivated by scaling purposes
explained below. As increasing 𝜌 corresponds to higher level of correlation between
𝑋 and 𝑌 , it should reduce the overlap between the corresponding outputs, as indeed
this is seen on the figures. For each fixed value of 𝑛 and 𝜌 we compute the average
overlap of 10 runs of the experiment and this is the value reported on the figure. We
see that increasing the correlation continuously leads to continuous increase of the
average overlap, suggesting that the stability indeed takes place. Curiously though,
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Figure 2-1: Average overlap as a function of correlation parameter 𝜌 for 𝑛 = 50.

Figure 2-2: Average overlap as a function of correlation parameter 𝜌 for 𝑛 = 100.

in addition to the observed stability, the empirical average of the overlaps drops
to a nearly zero level precisely at 𝜏 ≈ 𝑛−𝛼 log𝑛 = exp(−𝛼 log2 𝑛), corresponding to
𝜌 = 𝛼 log2 𝑛/ log 2, at the threshold 𝛼 = 1

2 ln 2
= 0.721 . . . which is the leading constant

conjectured for the performance of the LDM, as discussed in the introduction. To
check this, note that the values of 𝜌 above for 𝑛 = 50, 100 and 500 are 15.91, 22.05
and 40.17 respectively, for this choice of 𝛼, and this is close to the values where the
overlaps touch the zero axis. At this point, we don’t have a theoretical explanation
for this phase transition. It is conceivable that the algorithm produces the smallest
possible discrepancy which is stable under the perturbation above. We leave it as an
interesting challenge for further investigation.
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Figure 2-3: Average overlap as a function of correlation parameter 𝜌 for 𝑛 = 500.

2.3.3 2−Overlap Gap Property Implies Failure of an MCMC
Family

In this section, we show that the overlap gap property for pairs of spin configurations
established in Theorem 2.2.2, is a barrier for a family of Markov Chain Monte Carlo
(MCMC) methods for solving the NPP.

Let as before 𝑋 𝑑
= 𝒩 (0, 𝐼𝑛), denote the items to be partitioned.

The MCMC dynamics. We begin with specifying the relevant dynamics. Let
𝛽𝑛 ≥ 0, 𝑛 ≥ 1 be a sequence of inverse temperatures. For any 𝜎 ∈ ℬ𝑛, define the
Hamiltonian 𝐻(𝜎) by

𝐻 (𝜎) =
1√
𝑛
|⟨𝜎,𝑋⟩| .

The Gibbs measure 𝜋𝛽(·) at temperature 𝛽−1 defined on ℬ𝑛 is specified by the prob-
ability mass function

𝜋𝛽(𝜎) =
1

𝑍𝛽

exp (−𝛽𝐻(𝜎)) where 𝑍𝛽 ≜
∑︁
𝜎∈ℬ𝑛

exp (−𝛽𝐻(𝜎)) . (2.10)

Here, 𝑍𝛽 is the “partition function" which ensures proper normalization for 𝜋𝛽. Note
that a minus sign is added in front of 𝐻(𝜎) in order to ensure that for 𝛽 sufficiently
large, that is for low enough temperatures, the Gibbs measure is concentrated on near
ground-state configurations, i.e., on 𝜎 ∈ ℬ𝑛 with a small Hamiltonian value 𝐻(𝜎)).
Indeed, observe that for

𝜎* ≜ arg min
𝜎∈ℬ𝑛

𝐻(𝜎),
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we have

2 exp (−𝛽𝐻 (𝜎*)) ≤ 𝑍𝛽 =
∑︁
𝜎∈ℬ𝑛

exp (−𝛽𝐻(𝜎)) ≤ 2𝑛 exp (−𝛽𝐻 (𝜎*)) .

Taking logarithms and dividing by 𝛽 > 0, we arrive at

ln 2

𝛽
−𝐻(𝜎*) ≤ ln𝑍𝛽

𝛽
≤ 𝑛

ln 2

𝛽
−𝐻(𝜎*).

For 𝛽 sufficiently large, specifically when 𝛽 = Ω(𝑛2𝑛𝜖) (which will be our eventual
choice) we have

ln𝑍𝛽

𝛽
+𝐻 (𝜎*) ≤ 𝑛

ln 2

𝛽
= 𝑂

(︀
2−𝑛𝜖

)︀
.

Hence, for 𝛽 = Ω(𝑛2𝑛𝜖), it is the case that the Gibbs distribution 𝜋𝛽(·) is essentially
concentrated on those 𝜎 ∈ ℬ𝑛 with 𝐻(𝜎) = 𝑂 (2−𝑛𝜖).

We next construct the undirected graph G on 2𝑛 vertices with edge set 𝐸 on which
the aforementioned MCMC dynamics is run.

• Each vertex corresponds to a spin configuration 𝜎 ∈ ℬ𝑛.

• For 𝜎, 𝜎′ ∈ ℬ𝑛, (𝜎, 𝜎′) ∈ 𝐸 iff 𝑑𝐻 (𝜎, 𝜎′) = 1.

Let 𝑋0 ∈ ℬ𝑛 be a spin configuration at which we initialize the MCMC dynamics.
Let (𝑋𝑡)𝑡≥0 be any nearest neighbor discrete time Markov chain on G initialized
at 𝑋0 and reversible with respect to the stationary distribution 𝜋𝛽. For example,
𝑋𝑡 is discretized version of the Markov process with rates from 𝜎 to 𝜎′ defined by
exp(𝛽(𝐻(𝜎′) − 𝐻(𝜎))) when 𝜎′ is a neighbor of 𝜎 and is zero otherwise. Then the
transition matrix 𝑄(·, ·) for (𝑋𝑡)𝑡≥0 satisfies the detailed balance equations for 𝜋𝛽:
𝜋𝛽(𝜎)𝑄(𝜎, 𝜎

′) = 𝜋𝛽(𝜎
′)𝑄(𝜎′, 𝜎) for every pair 𝜎, 𝜎′ with 𝑑𝐻 (𝜎, 𝜎′) = 1.

Free energy wells. We now establish that the overlap gap property (shown in
Theorem 2.2.2) induces a property called a free energy well (FEW) in the landscape
of the NPP. This is a provable barrier for the MCMC methods [21], and has been
employed to show slow mixing in other settings, see e.g. [21, 121].

Let 𝜖 ∈
(︀
1
2
, 1
)︀

and 𝜌 ∈ (0, 1) be the parameter dictated by Theorem 2.2.2. We
define the following sets.

• 𝐼1 =
{︀
𝜎 ∈ ℬ𝑛 : −𝜌 ≤ 1

𝑛
⟨𝜎, 𝜎*⟩ ≤ 𝜌

}︀
.

• 𝐼2 ≜
{︀
𝜎 ∈ ℬ𝑛 : 𝜌 ≤ 1

𝑛
⟨𝜎, 𝜎*⟩ ≤ 𝑛−2

𝑛

}︀
, and 𝐼2 = {−𝜎 : 𝜎 ∈ 𝐼2}.

• 𝐼3 = {𝜎*} and 𝐼3 = {−𝜎*}.
We now establish the FEW property.

Theorem 2.3.3. Let 𝜖 ∈
(︀
1
2
, 1
)︀

be arbitrary; and 𝛽 = Ω(𝑛2𝑛𝜖). Then

min {𝜋𝛽 (𝐼1) , 𝜋𝛽 (𝐼3)} ≥ exp
(︀
Ω
(︀
𝛽2−𝑛𝜖

)︀)︀
𝜋𝛽 (𝐼2)
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with high probability (with respect to 𝑋), as 𝑛→ ∞.

The proof of Theorem 2.3.3 is provided in Section 2.6.8.
Namely, the FEW property simply states that the set 𝐼2 (of spins 𝜎 ∈ ℬ𝑛 having a

“medium" overlap with 𝜎*) is a “well" of exponentially small (Gibbs) mass separating
𝐼3 and 𝐼1 ∪ 𝐼2 ∪ 𝐼3.

Failure of MCMC. We now establish, as a consequence of the FEW property,
Theorem 2.3.3, that the very natural MCMC dynamics introduced earlier provably
fails for solving the NPP for “low enough temperatures", specifically when the tem-
perature is exponentially small. This is a slow mixing result. More concretely, we
establish that under an appropriate initialization, it requires an exponential amount
of time for the aforementioned MCMC dynamics to “hit" a region of “non-trivial Gibbs
mass".

To set the stage, let

𝜕𝑆 ≜ {𝜎 ∈ ℬ𝑛 : 𝑑𝐻 (𝜎, 𝜎*) = 1} .

Clearly for any 𝜎 ∈ 𝜕𝑆, 𝒪(𝜎, 𝜎*) = 𝑛−2
𝑛

. Thus 𝜕𝑆 ⊂ 𝐼2. Now, let us initialize the
MCMC via 𝑋0

𝑑
= 𝜋𝛽 (·|𝐼3 ∪ 𝜕𝑆). Define also the “escape time"

𝜏𝛽 ≜ inf {𝑡 ∈ N : 𝑋𝑡 /∈ 𝐼3 ∪ 𝜕𝑆 | 𝑋0 ∼ 𝜋𝛽 (· | 𝐼3 ∪ 𝜕𝑆)} . (2.11)

We now establish the following “slow mixing" result.

Theorem 2.3.4. Let 𝜖 ∈
(︀
1
2
, 1
)︀
, and 𝛽 = Ω(𝑛2𝑛𝜖). Then, the following holds.

(a) 𝐼1 and 𝐼3 collectively contain at least a constant proportion of the Gibbs mass:

𝜋𝛽
(︀
𝐼1 ∪ 𝐼3

)︀
≥ 1

2
(1 + 𝑜𝑛(1)) ,

with high probability as 𝑛→ ∞.

(b) With high probability (over 𝑋 𝑑
= 𝒩 (0, 𝐼𝑛)) as 𝑛→ ∞

𝜏𝛽 = exp
(︀
Ω
(︀
𝛽2−𝑛𝜖

)︀)︀
.

In particular, for 𝛽 = 𝜔 (𝑛2𝑛𝜖), we obtain 𝜏𝛽 = exp (Ω(𝑛)) w.h.p. as 𝑛→ ∞.

The proof of Theorem 2.3.4 is provided in Section 2.6.9.
Per Theorem 2.3.4, when the chain starts in the ground state 𝜎* or one of its

neighboring states, it takes an exponential amount of time for the chain to exit this
set of states, and in particular, it takes an exponential amount of time to enter a
region of nearly half of Gibbs mass; implying slow mixing.

It is worth noting that Theorem 2.3.4 is shown when the temperature 𝛽−1 is low
enough, more specifically is exponentially small. This ensures the Gibbs measure is
well-concentrated on ground states. We leave the analysis of the MCMC dynamics in
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the high-temperature regime (i.e., lower values of 𝛽) as an interesting open problem
for future work. We conjecture that any setting of the temperature will either result in
slow mixing or will lead to a Gibbs measure dominated by low values of 𝐸𝑛. We don’t
have a guess for the exact value of such low energy values. We leave this question for
a future exploration.

2.4 Limitations of Our Techniques

Given that our methods fall short of addressing the statistical-to-computational gap
of the NPP all the way down to 2−Θ(log2 𝑛); it is natural to explore the limits of the
techniques exploited in this chapter.

2.4.1 Limitation of the 𝑚−Overlap Gap Property for Growing
𝑚

In this section, we give an informal argument suggesting the absence of the 𝑚−OGP
when the energy level 𝐸𝑛 is 𝑂

(︀√︀
𝑛 log2 𝑛

)︀
. Our informal argument will reveal the

following. It appears not possible to establish 𝑚−OGP (for super-constant 𝑚) as we
do in Theorem 2.2.6, for energy levels above exp2

(︀
−𝜔

(︀√︀
𝑛 log2 𝑛

)︀)︀
. We now detail

this.

Step 1: 𝐸𝑛 = 𝜔(
√
𝑛) is Necessary.

We first note, upon studying the proof of Theorem 2.2.6 more carefully, that for the
first moment argument to work, one should take 𝛽 = 1− 𝑜𝑛(1). For convenience, let
𝛽 = 1− 2𝜈𝑛, where 𝜈𝑛 = 𝑜𝑛(1) is a sequence of positive reals. Furthermore, to ensure
the invertibility of a certain covariance matrix arising in the analysis, one should also
take 𝜂 ≲ 𝜈𝑛/𝑚 (see the proof for further details on this matter).

Now, for the OGP to be meaningful, it should be the case that 𝑛𝜂 = Ω(1), as noted
already previously. Indeed, otherwise the overlap region is void, since no admissible
overlap values 𝜌 can be found within the interval [𝛽 − 𝜂, 𝛽]. Now, since 𝜂 ≲ 𝜈𝑛/𝑚,

𝑛𝜂 = Ω(1) =⇒ 𝑛𝜈𝑛
𝑚

= Ω(1) =⇒ 𝑛𝜈𝑛 = Ω(𝑚).

Next, for an 𝑚−tuple
(︀
𝜎(𝑖) : 1 ≤ 𝑖 ≤ 𝑚

)︀
; the energy value, 2−𝐸𝑛 , contributes to a

−𝑚𝐸𝑛 in the exponent (we again refer the reader to the proof for further details).
Finally, a very crude cardinality bound on the number of 𝑚−tuples

(︀
𝜎(𝑖) : 1 ≤ 𝑖 ≤ 𝑚

)︀
with pairwise inner products 1

𝑛

⟨︀
𝜎(𝑖), 𝜎(𝑗)

⟩︀
∈ [𝛽−𝜂, 𝛽], 1 ≤ 𝑖 < 𝑗 ≤ 𝑚, is the following:

using the naïve approximation log2
(︀
𝑛
𝑘

)︀
= (1 + 𝑜𝑛(1))𝑘 log2

𝑛
𝑘

valid for 𝑘 = 𝑜(𝑛), we
arrive at

2𝑛
(︂

𝑛

𝑛1−𝛽
2

)︂𝑚−1

∼ exp2

(︂
𝑛+𝑚𝑛𝜈𝑛 log

1

𝜈𝑛

)︂
,

where we have used 𝑚 = 𝜔𝑛(1) and 𝛽 = 1−2𝜈𝑛; while ignoring the lower order terms
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for convenience. Blending these observations together, we arrive at the following
formula, for the exponent of the first moment:

𝜉(𝑛) ≜ 𝑛+𝑚𝑛𝜈𝑛 log
1

𝜈𝑛
−𝑚𝐸𝑛.

Now, for the first moment argument to work, it should be the case −𝜉(𝑛) = 𝜔𝑛(1).
Hence, 𝑚𝐸𝑛 = Ω(𝑛) must hold. Since 𝑛𝜈𝑛 = Ω(𝑚) as shown above, this yields

𝑛𝜈𝑛 = Ω(𝑚) = Ω

(︂
𝑛

𝐸𝑛

)︂
.

Now, a final constraint is

𝑚𝐸𝑛 = Ω

(︂
𝑚𝑛𝜈𝑛 log

1

𝜈𝑛

)︂
⇔ 𝐸𝑛 = Ω

(︂
𝑛𝜈𝑛 log

1

𝜈𝑛

)︂
.

But since 𝜈𝑛 = 𝑜𝑛(1), we have log 1
𝜈𝑛

= 𝜔𝑛(1), and consequently, we must have, at the
very least,

𝐸𝑛 = 𝜔

(︂
𝑛

𝐸𝑛

)︂
⇔ 𝐸𝑛 = 𝜔(

√
𝑛).

Step 2: from 𝐸𝑛 = 𝜔 (
√
𝑛) to 𝐸𝑛 = 𝜔

(︁√︀
𝑛 log2 𝑛

)︁
.

We now let 𝐸𝑛 = 𝜑(𝑛)
√
𝑛, where 𝜑(𝑛) = 𝜔𝑛(1), and plug this in above to study

the parameters numerically. Inspecting the lines above, one should take 𝑚 = 𝐶
√
𝑛

𝜑(𝑛)
,

where 𝐶 > 1 is some constant. This, in turn, yields that we require 𝜈𝑛 = 𝑔(𝑛)
𝜑(𝑛)

√
𝑛
,

where 𝑔(𝑛) = Ω(1). In particular, observe that

log
1

𝜈𝑛
=

1

2
log2 𝑛(1 + 𝑜𝑛(1)) = Θ(log2 𝑛).

Now, a final constraint, as one might recall from above, is that the exponent,
−𝜉(𝑛), should be 𝜔𝑛(1) as 𝑛→ ∞. With this, it should hold

𝑛𝜈𝑛 log
1

𝜈𝑛
= 𝑂(𝐸𝑛) = 𝑂(𝜑(𝑛)

√
𝑛).

Since
𝑛𝜈𝑛 log

1

𝜈𝑛
= Θ

(︂
𝑔(𝑛)

√
𝑛 log2 𝑛

𝜑(𝑛)

)︂
,

it should be the case
𝑔(𝑛)

√
𝑛 log2 𝑛

𝜑(𝑛)
≲ 𝜑(𝑛)

√
𝑛,

which implies 𝜑(𝑛) = Ω(
√︀

log2 𝑛).
Namely, this argument demonstrates the following: if one wants to establish the
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overlap gap property for an energy exponent 𝐸𝑛 through a first moment technique,
𝐸𝑛 should have a growth of at least

√︀
𝑛 log2 𝑛; otherwise the moment argument fails.

2.4.2 Limitation of the Ramsey Argument

An important question that remains is whether one can leverage further the 𝑚−OGP
result (Theorem 2.2.6) to establish an analogue of our hardness result (Theorem 2.3.2)
for energy levels with an exponent 𝐸𝑛 that is at least slightly below 𝜔

(︁
𝑛 log−1/5+𝜖 𝑛

)︁
or all the way to 𝜔

(︀√︀
𝑛 log2 𝑛

)︀
. We now argue that using our line of argument

based on the Ramsey Theory, 𝐸𝑛 = Ω
(︁
𝑛 log−

1
5 𝑛
)︁
, no beyond, is essentially the best

exponent one would hope to address.
Let 𝐸𝑛 be a target exponent for which one wants to establish the hardness; and

𝑚 be the OGP parameter required per Theorem 2.2.6. Our proof uses, in a crucial
way, certain properties regarding Ramsey numbers arising in extremal combinatorics.
To that end, let 𝑅𝑄(𝑚) denotes the smallest 𝑛 ∈ N such that any 𝑄 (edge) coloring
of 𝐾𝑛 contains a monochromatic 𝐾𝑚 (see Theorem 2.6.7 for more details). Our
argument then contains the following ingredients. We generate a certain number 𝑇 of
“instances" (of the NPP) such that 𝑇 ≥ 𝑅2(𝑀) for 𝑀 ≥ 𝑅𝑄(𝑚) where 𝑄 corresponds
to a discretization level we need to address 𝐸𝑛. When then essentially (a) construct
a graph G on 𝑇 vertices satisfying certain properties, in particular 𝛼(G) ≤ 𝑀 − 1
(where 𝛼(G) is the cardinality of any largest independent set of G) (b) extract a
clique 𝐾𝑀 of G whose edges are colored with one of 𝑄 available colors; and (c) use
𝑀 ≥ 𝑅𝑄(𝑚) to conclude that the original graph, G, contains a monochromatic 𝐾𝑚.
From here, we then argue that this yields a forbidden configuration, a contradiction
with the 𝑚−OGP.

Using well-known upper and lower bounds on Ramsey numbers (see e.g. [80]) one
should then choose 𝑇 ≥ exp2 (Θ(𝑀)). Moreover, the best lower bound on 𝑅𝑄(𝑚),
due to Lefmann [198], asserts that 𝑅𝑄(𝑚) ≥ exp2 (𝑚𝑄/4). Combining these bounds,
we then conclude that 𝑇 should be of order at least

𝑇 ≥ exp2

(︁
2Θ(𝑚𝑄)

)︁
. (2.12)

Now, an inspection of our proof of Theorem 2.3.2 yields that for certain union bounds,
e.g. (2.157), to work; 𝑇 should be sub-exponential: 𝑇 = 2𝑜(𝑛). Combining this with
(2.12); a necessary condition turns out to be

𝑚𝑄 = 𝑂
(︁
log2 𝑛

)︁
. (2.13)

Now, the discretization 𝑄 should be sufficiently fine to ensure that the overlaps are
eventually “trapped" within the (forbidden) overlap region of length 𝜂 dictated by
Theorem 2.2.6. In particular, tracing our proof, it appears from (2.141) that

𝑄 = Ω

(︂
1

𝜂2

)︂
(2.14)
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should hold. Furthermore, from the discussion on 𝑚−OGP; as well as the proof of
Theorem 2.2.6, it appears also that 𝑚𝐸𝑛 should be Ω(𝑛), that is

𝑚 = Ω

(︂
𝑛

𝐸𝑛

)︂
. (2.15)

Now, we take the overlap value 𝜂 to be 𝑔(𝑛)/𝑛, where 𝑔(𝑛) = 𝜔(1); but it also
satisfies other certain, natural, constraints. In particular, using (2.66) and (2.69); for
the parameters to make sense, 𝑔(𝑛) should be 𝑜(𝐸𝑛). Let

𝐸𝑛 = 𝑛𝑠(𝑛), 𝑔(𝑛) = 𝑛𝑠(𝑛)𝑧(𝑛), and 𝜂 = 𝑠(𝑛)𝑧(𝑛) where 𝑠(𝑛), 𝑧(𝑛) = 𝑜𝑛(1).
(2.16)

Combining (2.14), (2.15) and (2.16); we therefore have

𝑚𝑄 = Ω

(︂
𝑛

𝐸𝑛𝜂2

)︂
= Ω

(︂
1

𝑠(𝑛)3𝑧(𝑛)2

)︂
. (2.17)

Furthermore, to ensure Theorem 2.2.6 applies; the “exponent" of the first moment
should not “blow up". For this reason, using (2.85), (2.86), as well as the counting
term (2.77), it must at least hold that

𝑚𝐸𝑛 = Ω

(︂
𝑚𝑛𝑔(𝑛)

𝐸𝑛

)︂
⇐⇒ 𝐸𝑛

𝑛
= 𝑠(𝑛) = Ω (𝑧(𝑛)) .

This, together with (2.17) as well as the upper bound (2.13), implies that

𝑠(𝑛) = Ω
(︁
log−

1
5 𝑛
)︁
.

Hence,
𝐸𝑛 = 𝑛𝑠(𝑛) = Ω

(︁
𝑛 log−

1
5 𝑛
)︁
,

is essentially indeed the best possible. We gave ourselves an 𝜖 “extra room" in Theo-
rem 2.3.2 so as to avoid complicating relevant quantities any further.

A very interesting question is whether one can by-pass the Ramsey argument
altogether. This would help establishing the failure of (presumably more) stable
algorithms for even higher energy levels, 𝐸𝑛 = 𝜔

(︀√︀
𝑛 log2 𝑛

)︀
, a regime where Theo-

rem 2.2.6 is applicable.

2.5 Open Problems and Future Work
Our work suggests interesting avenues for future research. While we have focused on
the NPP in the present work for simplicity, we believe that many of our results extend
to the multi-dimensional case, VBP (2.2), as well; perhaps at the cost of more detailed
and computation-heavy proofs. This was noted already in Remark 2.2.4.

Yet another very important direction pertains the statistical-to-computational gap
of the NPP. The𝑚−OGP results that we established hold for energy levels 2−Θ(𝑛) when
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𝑚 = 𝑂(1); and for 2−𝐸𝑛 , 𝜔
(︀√︀

𝑛 log2 𝑛
)︀
≤ 𝐸𝑛 ≤ 𝑜(𝑛), when 𝑚 = 𝜔𝑛(1). While we are

able to partially explain the aforementioned statistical-to-computational gap to some
extent, we are unable close it all the way down to the current computational threshold:
the best known polynomial-time algorithm to this date achieves an exponent of only
Θ
(︀
log2 𝑛

)︀
. A very interesting open question is whether this gap can be “closed"

altogether. That is, either devise a better (efficient) algorithm, improving upon the
algorithm by Karmarkar and Karp [182]; or establish the hardness by taking one of the
alternative routes (mentioned in the introduction) tailored for proving average-case
hardness. In light of the fact that not much work has been done in the algorithmic
front since the paper [182], it is plausible to hope that better efficient algorithms can
indeed be found. In particular, a potential direction appears to be setting up an
appropriate Markov Chain dynamics, and establishing rapid mixing. We leave this
as an open problem for future work.

While we are able to rule out stable algorithms in the sense of Definition 2.3.1,
we are unable to prove that the algorithm by Karmarkar and Karp, in particular the
LDM algorithm introduced earlier, is stable with appropriate parameters, although
our simulation results suggest that it is. We leave this as yet another open problem.

Another direction pertains the parameters of algorithms that we consider. In
particular, one potential direction is to establish Theorem 2.3.2 when the algorithm
say has 𝑜𝑛(1) probability of success. That is, 𝑝𝑓 in Definition 2.3.1 is 1 − 𝑜𝑛(1). We
conjecture that the value 𝑝𝑓 = 1− 𝑛−𝑂(1) is within the reach.

2.6 Proofs

2.6.1 Auxiliary Results

Below, we record several auxiliary results that will guide our proofs. The first result
is the standard asymptotic approximation for the factorial.

log2 𝑛! = 𝑛 log2 𝑛− 𝑛 log2 𝑒+𝑂 (log2 𝑛) . (2.18)

The second is a very standard approximation for the binomial coefficients, whose
proof we include herein for completeness.

Lemma 2.6.1. Let 𝑛, 𝑘 ∈ N, where 𝑘 = 𝑜(𝑛). Then,

log2

(︂
𝑛

𝑘

)︂
= (1 + 𝑜𝑛(1))𝑘 log2

𝑛

𝑘
.

Proof. Note that for any 0 ≤ 𝑖 ≤ 𝑘 − 1, 𝑛−𝑖
𝑘−𝑖

≥ 𝑛
𝑘
. Hence,(︁𝑛

𝑘

)︁𝑘
≤

∏︁
0≤𝑖≤𝑘−1

𝑛− 𝑖

𝑘 − 𝑖
=

(︂
𝑛

𝑘

)︂
.
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Next, (︂
𝑛

𝑘

)︂(︂
𝑘

𝑛

)︂𝑘

≤
∑︁

0≤𝑡≤𝑛

(︂
𝑛

𝑡

)︂(︂
𝑘

𝑛

)︂𝑡

=

(︂
1 +

𝑘

𝑛

)︂𝑛

.

Since ln(1 + 𝑥) ≤ 𝑥, setting 𝑥 = 𝑘/𝑛 yields(︂
1 +

𝑘

𝑛

)︂𝑛

≤ 𝑒𝑘.

Combining these, we obtain (︁𝑛
𝑘

)︁𝑘
≤
(︂
𝑛

𝑘

)︂
≤
(︁𝑒𝑛
𝑘

)︁𝑘
.

Taking now the logarithms both sides, and keeping in mind that log2
𝑛
𝑘
= 𝜔𝑛(1); we

arrive at

𝑘 log2
𝑛

𝑘
≤ log2

(︂
𝑛

𝑘

)︂
≤ 𝑘

(︁
log2

𝑛

𝑘
+ log2 𝑒

)︁
= 𝑘 log2

𝑛

𝑘
(1 + 𝑜𝑛(1)).

Hence,

log2

(︂
𝑛

𝑘

)︂
= (1 + 𝑜𝑛(1))𝑘 log2

𝑛

𝑘

as claimed.

The third auxiliary result is a theorem from the matrix theory.

Theorem 2.6.2. (Wielandt-Hoffman)
Let 𝐴,𝐴 + 𝐸 ∈ R𝑛×𝑛 be two symmetric matrices with respective eigenvalues

𝜆1(𝐴) ≥ 𝜆2(𝐴) ≥ · · · ≥ 𝜆𝑛(𝐴) and 𝜆1(𝐴 + 𝐸) ≥ 𝜆2(𝐴 + 𝐸) ≥ · · · ≥ 𝜆𝑛(𝐴 + 𝐸).
Then, ∑︁

1≤𝑖≤𝑛

(𝜆𝑖(𝐴+ 𝐸)− 𝜆𝑖(𝐴))
2 ≤ ‖𝐸‖2𝐹 .

For a reference, see e.g. [170, Corollary 6.3.8]; and see [166] for the original paper
by Wielandt and Hoffman.

2.6.2 Proof of Theorem 2.2.2

Proof. Let 𝜖 ∈
(︀
1
2
, 1
]︀
. Let 𝜌 ∈ (0, 1) to be tuned appropriately, and

𝒵(𝜌) ≜

{︂
(𝜎, 𝜎′) ∈ ℬ𝑛 × ℬ𝑛 : 𝒪 (𝜎, 𝜎′) ∈

[︂
𝜌,
𝑛− 2

𝑛

]︂}︂
.

Set
𝑁 ≜

∑︁
(𝜎,𝜎′)∈𝒵(𝜌)

1

{︂
1√
𝑛
|⟨𝜎,𝑋⟩| , 1√

𝑛
|⟨𝜎′, 𝑋⟩| = 𝑂

(︀
2−𝑛𝜖

)︀}︂
(2.19)
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We will establish that E[𝑁 ] = exp (−Θ(𝑛)). This, together with Markov’s inequality,
will then yield the desired conclusion:

P (𝑁 ≥ 1) ≤ E[𝑁 ] = exp (−Θ(𝑛)) .

Step I. Counting. We first upper bound the cardinality |𝒵 (𝜌)|. Note that there
are 2𝑛 choices for 𝜎 ∈ ℬ𝑛. Having chosen 𝜎; 𝜎′ can now be chosen in∑︁

1≤𝑘≤⌈𝑛 1−𝜌
2

⌉

(︂
𝑛

𝑘

)︂

different ways. This is due to the fact that if 𝑘 = 𝑑𝐻 (𝜎, 𝜎′) then 𝒪 (𝜎, 𝜎′) =⃒⃒
1− 2 𝑘

𝑛

⃒⃒
. Using Stirling’s approximation (2.18), and the fact the sum contains 𝑛𝑂(1) =

exp2 (𝑂 (log2 𝑛)) terms, we arrive at the upper bound

|𝒵 (𝜌)| ≤ exp2

(︂
𝑛+ 𝑛ℎ

(︂
1− 𝜌

2

)︂
+𝑂 (log2 𝑛)

)︂
. (2.20)

Here ℎ(𝑥) = −𝑥 log2 𝑥− (1−𝑥) log2(1−𝑥) is the binomial entropy function logarithm
base two.

Step II. Upper bound on probability. Let (𝜎, 𝜎′) ∈ 𝒵(𝜌) with 𝒪 (𝜎, 𝜎′) = 𝜌.
Set

𝑌𝜎 ≜
1√
𝑛
⟨𝜎,𝑋⟩ and 𝑌𝜎′ ≜

1√
𝑛
⟨𝜎′, 𝑋⟩ .

Note that 𝑌𝜎, 𝑌𝜎′
𝑑
= 𝒩 (0, 1) with correlation 𝜌. Now, let 𝐶 > 0 be a constant; and

denote by ℛ𝐶 the region

ℛ𝐶 ≜
[︀
−𝐶2−𝑛𝜖, 𝐶2−𝑛𝜖

]︀
×
[︀
−𝐶2−𝑛𝜖, 𝐶2−𝑛𝜖

]︀
.

Denote also
𝑓(𝑥, 𝑦) ≜ exp

(︂
− 1

2 (1− 𝜌2)

(︀
𝑥2 − 2𝜌𝑥𝑦 + 𝑦2

)︀)︂
As long as 𝜌 ∈ (0, 1), we have 𝑓(𝑥, 𝑦) ≤ 1 for every 𝑥, 𝑦. Furthermore,√︃

1−
(︂
1− 2

𝑛

)︂2

=

√︂
4

𝑛
− 4

𝑛2
=

2√
𝑛
(1 + 𝑜𝑛(1)) . (2.21)
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We then have,

P ((𝑌𝜎, 𝑌𝜎′) ∈ ℛ𝐶) =
1

2𝜋
√︀

1− 𝜌2

∫︁
(𝑥,𝑦)∈ℛ𝐶

𝑓 (𝑥, 𝑦) 𝑑𝑥 𝑑𝑦 (2.22)

≤ 𝒞 1√︁
1−

(︀
1− 2

𝑛

)︀22−2𝑛𝜖 (2.23)

= 𝒞 ′ (1 + 𝑜𝑛(1)) 2
−2𝑛𝜖

√
𝑛, (2.24)

where 𝒞, 𝒞 ′ > 0 are some absolute constants. Note that (2.24) is uniform in 𝜌: it
holds true for every (𝜎, 𝜎′) ∈ 𝒵 (𝜌).

Step III. Computing the expectation. We now compute E[𝑁 ] of 𝑁 introduced
in (2.19). Using linearity of expectation, (2.20), and (2.24), we arrive at

E[𝑁 ] ≤ exp2

(︂
𝑛+ 𝑛ℎ

(︂
1− 𝜌

2

)︂
− 2𝑛𝜖+𝑂 (log2 𝑛)

)︂
. (2.25)

Since 𝜖 > 1
2
, there exists a 𝜌 > 0 such that

1 + ℎ

(︂
1− 𝜌

2

)︂
− 2𝜖 < 0.

For this choice of 𝜌, we indeed have per (2.25) that

E[𝑁 ] = exp (−Θ(𝑛)) ,

concluding the proof.

2.6.3 Proof of Theorem 2.2.3

Proof. For any 1 ≤ 𝑖 ≤ 𝑚 and 𝜏 ∈ ℐ; recall 𝑌𝑖(𝜏) ≜
√
1− 𝜏 2𝑋0 + 𝜏𝑋𝑖 ∈ R𝑛; and

𝐻(𝜎(𝑖), 𝑌𝑖(𝜏)) ≜
1√
𝑛
|
⟨︀
𝜎(𝑖), 𝑌𝑖(𝜏)

⟩︀
|.

Define,

𝑆(𝛽, 𝜂,𝑚) ≜
{︀
(𝜎(1), . . . , 𝜎(𝑚)) : 𝜎(𝑖) ∈ {−1, 1}𝑛,𝒪(𝜎(𝑖), 𝜎(𝑗)) ∈ [𝛽 − 𝜂, 𝛽], 1 ≤ 𝑖 < 𝑗 ≤ 𝑚

}︀
,

and

𝑁(𝛽, 𝜂,𝑚, 𝜖, ℐ) =
∑︁

(𝜎(1),...,𝜎(𝑚))∈𝑆(𝛽,𝜂,𝑚)

1
{︀
∃𝜏1, . . . , 𝜏𝑚 ∈ ℐ : 𝐻(𝜎(𝑖), 𝑌𝑖(𝜏𝑖)) = 𝑂

(︀
2−𝑛𝜖

)︀
, 1 ≤ 𝑖 ≤ 𝑚

}︀
.

(2.26)
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Observe that 𝑁(𝛽, 𝜂,𝑚, 𝜖, ℐ) = |𝒮(𝛽, 𝜂,𝑚, 𝜖, ℐ)|. In what follows, we will establish
that for an appropriate choice of parameters 𝛽, 𝜂, and 𝑚 ∈ Z+,

E[𝑁(𝛽, 𝜂,𝑚, 𝜖, ℐ)] = exp2(−Θ(𝑛)),

which will then yield,

P(𝒮(𝛽, 𝜂,𝑚, 𝜖, ℐ) ̸= ∅) = P(𝑁(𝛽, 𝜂,𝑚, 𝜖, ℐ) ≥ 1) ≤ exp2(−Θ(𝑛))

through Markov’s inequality, and thus the conclusion.

Step I: Counting. We start by upper bounding |𝑆(𝛽, 𝜂,𝑚)|. There are 2𝑛 choices
for 𝜎(1). Now, for any fixed 𝜎, we claim there exists 2

(︀
𝑛

𝑛 1−𝜌
2

)︀
sign configurations

𝜎′ ∈ {−1, 1}𝑛 for which 𝒪(𝜎, 𝜎′) = 𝜌. Indeed, let 𝑘 ≜
∑︀

1≤𝑖≤𝑛 1{𝜎𝑖 ̸= 𝜎′
𝑖}, the number

of coordinates 𝜎 and 𝜎′ disagree. With this we have 𝒪(𝜎, 𝜎′) =
⃒⃒
𝑛−2𝑘
𝑛

⃒⃒
, from which

we obtain 𝑘 = 𝑛1±𝜌
2

. Equipped with this observation, we now compute the number
of choices for 𝜎(2) as 2

∑︀
𝛽−𝜂≤𝜌≤𝛽:𝜌𝑛∈Z

(︀
𝑛

𝑛 1−𝜌
2

)︀
. We then obtain

|𝑆(𝛽, 𝜂,𝑚)| ≤ 2𝑛

(︃
2

∑︁
𝛽−𝜂≤𝜌≤𝛽:𝜌𝑛∈Z

(︂
𝑛

𝑛1−𝜌
2

)︂)︃𝑚−1

(2.27)

= 2𝑛

(︃
2

∑︁
𝛽−𝜂≤𝜌≤𝛽:𝜌𝑛∈Z

exp2

(︂
𝑛ℎ

(︂
1− 𝜌

2

)︂
+𝑂(log2 𝑛)

)︂)︃𝑚−1

(2.28)

≤ 2𝑛
(︂
exp2

(︂
𝑛ℎ

(︂
1− 𝛽 + 𝜂

2

)︂
+𝑂(log2 𝑛)

)︂)︂𝑚−1

. (2.29)

We now justify these lines. Recall that log2 𝑛! = 𝑛 log2 𝑛−𝑛 log2 𝑒+𝑂(log2 𝑛) by the
Stirling’s approximation, (2.18). Using this, we obtain 𝜌 ∈ (0, 1),

(︀
𝑛
𝜌𝑛

)︀
= exp2(𝑛ℎ(𝜌)+

𝑂(log2 𝑛)) where we recall that ℎ(𝑥) = −𝑥 log2 𝑥 − (1 − 𝑥) log2(1 − 𝑥) is the binary
entropy function logarithm base 2. Thus (2.28) follows. (2.29) is a consequence of
the fact that the sum involves 𝑂(𝑛) terms. We conclude

|𝑆(𝛽, 𝜂,𝑚)| ≤ exp2

(︂
𝑛+ 𝑛(𝑚− 1)ℎ

(︂
1− 𝛽 + 𝜂

2

)︂
+ (𝑚− 1)𝑂(log2 𝑛)

)︂
. (2.30)

Step II: Probability calculation. Fix 𝜏1, . . . , 𝜏𝑚 ∈ ℐ. For any fixed (𝜎(1), . . . , 𝜎(𝑚)) ∈
𝑆(𝛽, 𝜂,𝑚), we now investigate

P
(︀
𝐻(𝜎(𝑖), 𝑌𝑖(𝜏𝑖)) = 𝑂(2−𝑛𝜖), 1 ≤ 𝑖 ≤ 𝑚

)︀
.

To that end, let 𝑍𝑖 = 1√
𝑛

⟨︀
𝜎(𝑖), 𝑌𝑖(𝜏𝑖)

⟩︀
, and let 𝜌𝑖𝑗 = 1

𝑛

⟨︀
𝜎(𝑖), 𝜎(𝑗)

⟩︀
. Note that for

each 1 ≤ 𝑖 ≤ 𝑚, 𝑍𝑖 is standard normal, and moreover, the vector (𝑍1, . . . , 𝑍𝑚) is a
multivariate Gaussian with mean zero and some covariance matrix Σ.
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We now investigate this covariance matrix. To that end, let 𝛾𝑖 ≜
√︀

1− 𝜏 2𝑖 , 1 ≤
𝑖 ≤ 𝑚. We first compute E[𝑌𝑖(𝜏𝑖)𝑌𝑗(𝜏𝑗)𝑇 ] ∈ R𝑛×𝑛. We have

𝑌𝑖(𝜏𝑖)𝑌𝑗(𝜏𝑗)
𝑇 = 𝛾𝑖𝛾𝑗𝑋0𝑋

𝑇
0 + 𝛾𝑖𝜏𝑗𝑋0𝑋

𝑇
𝑗 + 𝛾𝑗𝜏𝑖𝑋𝑖𝑋

𝑇
0 + 𝜏𝑖𝜏𝑗𝑋𝑖𝑋

𝑇
𝑗 .

Since 𝑋0, 𝑋𝑖, 𝑋𝑗 are i.i.d., we thus obtain

E[𝑌𝑖(𝜏𝑖)𝑌𝑗(𝜏𝑗)𝑇 ] = 𝛾𝑖𝛾𝑗𝐼𝑛 ∈ R𝑛×𝑛. (2.31)

Equipped with this, we now have for any 1 ≤ 𝑖 < 𝑗 ≤ 𝑚,

Cov(𝑍𝑖, 𝑍𝑗) = E
[︂

1√
𝑛

⟨︀
𝜎(𝑖), 𝑌𝑖(𝜏𝑖)

⟩︀ 1√
𝑛

⟨︀
𝜎(𝑗), 𝑌𝑗(𝜏𝑗)

⟩︀]︂
=

1

𝑛
(𝜎(𝑖))𝑇E[𝑌𝑖(𝜏𝑖)𝑌𝑗(𝜏𝑗)𝑇 ]𝜎(𝑗)

= 𝜌𝑖𝑗𝛾𝑖𝛾𝑗.

Namely, the covariance matrix Σ ∈ R𝑚×𝑚 of (𝑍1, . . . , 𝑍𝑚) is given by Σ𝑖𝑖 = 1 for
1 ≤ 𝑖 ≤ 𝑚, and Σ𝑖𝑗 = Σ𝑗𝑖 = 𝜌𝑖𝑗𝛾𝑖𝛾𝑗 for 1 ≤ 𝑖 < 𝑗 ≤ 𝑚.

Now, fix arbitrary constants 𝐶1, . . . , 𝐶𝑚 > 0; and let 𝑉 ⊂ R𝑚 be the region defined
by

𝑉 =
(︀
−𝐶12

−𝑛𝜖, 𝐶12
−𝑛𝜖
)︀
×
(︀
−𝐶22

−𝑛𝜖, 𝐶22
−𝑛𝜖
)︀
× · · · ×

(︀
−𝐶𝑚2

−𝑛𝜖, 𝐶𝑚2
−𝑛𝜖
)︀
.

Provided Σ is invertible, which we verify independently, the probability of interest
evaluates to

P((𝑍1, . . . , 𝑍𝑚) ∈ 𝑉 ) =
1

(2𝜋)𝑚/2|Σ|1/2
∫︁
𝑉

exp

(︂
−𝑥

𝑇Σ−1𝑥

2

)︂
𝑑𝑥.

As exp
(︁
−𝑥𝑇Σ−1𝑥

2

)︁
≤ 1, we can crudely upper bound this by

1

(2𝜋)𝑚/2|Σ|1/2Vol(𝑉 ) =
2𝑚/2

∏︀
1≤𝑗≤𝑚𝐶𝑗

𝜋𝑚/2
|Σ|−1/22−𝑛𝜖𝑚.

Observe now that 2𝑚/2, 𝜋𝑚/2, and
∏︀

1≤𝑗≤𝑚𝐶𝑗 are all constant order 𝑂(1) with respect
to 𝑛. Suppose now that Σ is such that the determinant of Σ is bounded away from
zero by an explicit constant controlled solely by 𝑚,𝛽, 𝜂, regardless of ℐ and regardless
of 𝜏1, . . . , 𝜏𝑚 ∈ ℐ. If this is the case, then |Σ|−1 is 𝑂(1) with respect to 𝑛. This yields

P ((𝑍1, . . . , 𝑍𝑚) ∈ 𝑉 ) ≤ exp2 (−𝑛𝜖𝑚+𝑂(1)) . (2.32)

We now take now a union bound over all 𝜏1, . . . , 𝜏𝑚 ∈ ℐ (note that there are at most
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2𝑚𝑜(𝑛) = 2𝑜(𝑛) such terms), and arrive at

P
(︀
∃𝜏1, . . . , 𝜏𝑚 ∈ ℐ : 𝐻(𝜎(𝑖), 𝑌𝑖(𝜏𝑖)) = 𝑂

(︀
2−𝑛𝜖

)︀
, 1 ≤ 𝑖 ≤ 𝑚

)︀
= exp2(−𝑛𝜖𝑚+ 𝑜(𝑛)).

(2.33)

Step III: Calculating the expectation E[𝑁(𝛽, 𝜂,𝑚, 𝜖)]. Provided Σ is invert-
ible, we can compute the expectation (2.26) by using (2.30) and (2.33):

E[𝑁(𝛽, 𝜂,𝑚, 𝜖)] ≤ exp2

(︂
𝑛+ 𝑛(𝑚− 1)ℎ

(︂
1− 𝛽 + 𝜂

2

)︂
+ 𝑜(𝑛)− 𝑛𝜖𝑚

)︂
.

Hence, provided the parameters 𝛽, 𝜂,𝑚 are chosen so that

1 + (𝑚− 1)ℎ

(︂
1− 𝛽 + 𝜂

2

)︂
− 𝜖𝑚 < 0, (2.34)

and |Σ| is bounded away zero by an explicit constant independent of ℐ, and the
choices 𝜏1, . . . , 𝜏𝑚, we indeed obtain E[𝑁(𝛽, 𝜂,𝑚, 𝜖)] = exp2(−Θ(𝑛)), as desired.

We choose 𝑚 > 2
𝜖
. With this, 1− 𝜖𝑚

2
< 0. Observe now that if 0 < 𝜂 < 𝛽 < 1 are

chosen so that ℎ
(︀
1−𝛽+𝜂

2

)︀
< 𝜖

2
, the condition (2.34) is indeed satisfied. With this, it

suffices for 0 < 𝜂 < 𝛽 < 1 to satisfy

𝛽 − 𝜂 > 1− 2ℎ−1(𝜖/2), (2.35)

where ℎ−1 : [0, 1] → [0, 1/2] is the inverse of the binary entropy function.

Step IV: Invertibility of Σ. We next study the invertibility of covariance matrix
Σ, which we recall Σ𝑖𝑖 = 1 for 1 ≤ 𝑖 ≤ 𝑚; and Σ𝑖𝑗 = Σ𝑗𝑖 = 𝛾𝑖𝛾𝑗𝜌𝑖𝑗, 1 ≤ 𝑖 < 𝑗 ≤ 𝑚,
for some 𝜏1, . . . , 𝜏𝑗 ∈ ℐ.

Let us now define an auxiliary matrix Σ̄ ∈ R𝑚×𝑚 by Σ̄𝑖𝑖 = 1 for 1 ≤ 𝑖 ≤ 𝑚 and
Σ̄𝑖𝑗 = Σ̄𝑗𝑖 = 𝜌𝑖𝑗 for any 1 ≤ 𝑖 < 𝑗 ≤ 𝑚. Namely, Σ̄ is the covariance matrix Σ when
𝛾1 = · · · = 𝛾𝑚 = 1, namely when 𝜏1 = · · · = 𝜏𝑚 = 0, and thus 𝜎(1), . . . , 𝜎(𝑚) are
near-ground states with respect to the same instance 𝑋0 ∈ R𝑛 of the problem.

Note that 𝜌𝑖𝑗 = 𝒪(𝜎(𝑖), 𝜎(𝑗)) = |Σ̄𝑖𝑗|. Thus,

Σ𝑖𝑗 ∈ [−𝛽,−𝛽 + 𝜂] ∪ [𝛽 − 𝜂, 𝛽],

for 1 ≤ 𝑖 < 𝑗 ≤ 𝑚. In particular, there exists 2(
𝑚
2 ) possible “signs" for the off-diagonal

entries for the matrix Σ̄. With this observation, we now prove an auxiliary lemma.

Lemma 2.6.3. Let 𝑚 ∈ Z+, 𝐾 ≜ 2(
𝑚
2 ). Construct a family 𝑀𝑘(𝑥), 1 ≤ 𝑘 ≤ 𝐾, of

𝑚×𝑚 matrices with unit diagonal entries, where each off-diagonal entry is defined in
terms of 𝑥, as follows. Fix any “sign-configuration" 𝛾(𝑘) = (𝛾

(𝑘)
𝑖𝑗 : 1 ≤ 𝑖 < 𝑗 ≤ 𝑚) ∈

{−1, 1}𝐾, 1 ≤ 𝑘 ≤ 𝐾. let 𝑀𝑘(𝑥) ∈ R𝑚×𝑚 be the matrix defined by (𝑀𝑘(𝑥))𝑖𝑖 = 1 for
1 ≤ 𝑖 ≤ 𝑚, and (𝑀𝑘(𝑥))𝑖𝑗 = (𝑀𝑘(𝑥))𝑗𝑖 = 𝛾

(𝑘)
𝑖𝑗 𝑥. Then the following holds:
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(a) Define 𝜙𝑘(𝑥) ≜ 𝜎min(𝑀𝑘(𝑥)), 1 ≤ 𝑘 ≤ 𝐾. Then, for any 𝑘, there exists an
𝜖𝑘 > 0 such that 𝜙𝑘(𝑥) > 0 for all 𝑥 ∈ (1− 𝜖𝑘, 1).

(b) Fix any 𝑥 ∈ (1 − min𝑘∈[𝐾] 𝜖𝑘, 1). Then (𝑀𝑘(𝑥) + 𝐸) is invertible for every
1 ≤ 𝑘 ≤ 𝐾, provided

‖𝐸‖2 < min
1≤𝑘≤𝐾

𝜙𝑘(𝑥).

Proof. (of Lemma 2.6.3)

(a) Let 𝐷𝑘(𝑥) = det(𝑀𝑘(𝑥)). Note that 𝐷𝑘(0) = 1, thus 𝐷𝑘 ̸= 0 identically. Now
observe that 𝐷𝑘 is a polynomial in 𝑥, of degree 𝑚. Thus there indeed exists an
𝜖𝑘 > 0 such that 𝐷𝑘(𝑥) ̸= 0 for 𝑥 ∈ (1− 𝜖𝑘, 1). This yields 𝜙𝑘(𝑥) > 0 whenever
𝑥 ∈ (1− 𝜖𝑘, 1) as well.

(b) Fix any 𝑀 ∈ R𝑚×𝑚 with rank(𝑀) = 𝑚. Let 𝐸 ∈ R𝑚×𝑚 satisfy rank(𝑀 +𝐸) <
𝑚. We claim ‖𝐸‖2 ≥ 𝜎min(𝑀). To see this, note that if 𝑀 + 𝐸 is rank-
deficient, then there exists a 𝑣 with ‖𝑣‖2 = 1 such that (𝑀 + 𝐸)𝑣 = 0. This
yields 𝐸𝑣 = −𝑀𝑣, thus

‖𝐸‖2 ≥ ‖𝐸𝑣‖2 = ‖𝑀𝑣‖2 ≥ 𝜎min(𝑀).

We now return to the proof, where in the remainder we will make use of the
quantities defined in Lemma 2.6.3. We express Σ̄ = ̂︀Σ + 𝐸. Here, ̂︀Σ ∈ R𝑚×𝑚 with
unit diagonal entries, and ̂︀Σ𝑖𝑗 = 𝛽 if

⟨︀
𝜎(𝑖), 𝜎(𝑗)

⟩︀
> 0, and ̂︀Σ𝑖𝑗 = −𝛽 otherwise. The

matrix 𝐸 ∈ R𝑚×𝑚 is such that 𝐸𝑖𝑖 = 0 for 1 ≤ 𝑖 ≤ 𝑚; and |𝐸𝑖𝑗| ≤ 𝜂 for 1 ≤ 𝑖 < 𝑗 ≤ 𝑚.
Note that,

‖𝐸‖2𝐹 =
∑︁

1≤𝑖≤𝑚

∑︁
1≤𝑗≤𝑚

𝐸2
𝑖𝑗 ≤ 𝑚2𝜂2.

Since ‖𝐸‖2 ≤ ‖𝐸‖𝐹 , we then conclude ‖𝐸‖2 ≤ 𝑚𝜂. We now choose 𝛽 ∈ (1 −
min1≤𝑘≤𝐾 𝜖𝑘, 1) where the constants 𝜖𝑘 are defined in Lemma 2.6.3, and set

𝜂(𝛽) =
min1≤𝑘≤𝐾 𝜙𝑘(𝛽)

𝑁𝑚
,

where 𝑁 is a (large) positive integer, to be tuned. Using Lemma 2.6.3, we have
𝜂(𝛽) > 0 for every 𝛽 ∈ (1 − min𝑘 𝜖𝑘, 1), and any 𝑁 ∈ Z+. Furthermore, Lemma
2.6.3(b) also yields that under this choice of parameters, Σ̄ is always invertible. Σ̄
is, by construction, a covariance matrix thus has non-negative eigenvalues 𝜆1(Σ̄) ≥
· · · ≥ 𝜆𝑚(Σ̄) > 0 with

𝑚 = trace(Σ̄) ≥ 𝑚𝜆𝑚(Σ̄).

Thus we have
𝜆𝑚(Σ̄) ≤ 1. (2.36)

Fix now 𝜏1, . . . , 𝜏𝑚 ∈ ℐ ⊂ [0, 1], and recall that 𝛾𝑖 =
√︀

1− 𝜏 2𝑖 , 1 ≤ 𝑖 ≤ 𝑚. We now
express the covariance matrix Σ in terms of Σ̄, which depends only on 𝑚,𝛽, and 𝜂.
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To that end, let 𝐴 = diag(𝛾1, . . . , 𝛾𝑚) ∈ R𝑚×𝑚 be a diagonal matrix. Observe that,

Σ = 𝐴Σ̄𝐴+ (𝐼 − 𝐴2). (2.37)

Observe that as Σ̄ is positive semidefinite, so do 𝐴Σ̄𝐴. Furthermore, as 1 − 𝛾2𝑖 ≥ 0
for 1 ≤ 𝑖 ≤ 𝑚, the matrix 𝐼 − 𝐴2 is positive semidefinite as well. We now study the
smallest eigenvalue 𝜆𝑚(Σ).

Lemma 2.6.4. For any choices of 𝜏1, . . . , 𝜏𝑚 ∈ ℐ, it is the case that 𝜆𝑚(Σ) ≥ 𝜆𝑚(Σ̄).
Hence,

|Σ| ≥ (𝜆𝑚(Σ̄))
𝑚 > 0,

which is independent of the indices 𝜏1, . . . , 𝜏𝑚.

Proof. Recall the Courant-Fischer-Weyl variational characterization of the smallest
singular value 𝜆𝑚(Σ) of a Hermitian matrix Σ ∈ R𝑚×𝑚 [170]:

𝜆𝑚(Σ) = inf
𝑣:‖𝑣‖2=1

𝑣𝑇Σ𝑣. (2.38)

Then for any 𝑣 with ‖𝑣‖2 = 1,

𝑣𝑇Σ𝑣 = 𝑣𝑇 (𝐼 − 𝐴2)𝑣 + 𝑣𝑇𝐴Σ̄𝐴𝑣

≥
∑︁

1≤𝑖≤𝑚

(1− 𝛾2𝑖 )𝑣
2
𝑖 + 𝜆𝑚(Σ̄)‖𝐴𝑣‖22

=
∑︁

1≤𝑖≤𝑚

(1− 𝛾2𝑖 + 𝜆𝑚(Σ̄)𝛾
2
𝑖 )𝑣

2
𝑖

≥ 𝜆𝑚(Σ̄)‖𝑣‖22
= 𝜆𝑚(Σ̄),

where the first equality uses (2.37), the first inequality uses (2.38), and the last
inequality uses 𝜆𝑚(Σ̄) ≤ 1 as established in (2.36). Taking the infimum over all unit
norm 𝑣, we conclude

𝜆𝑚(Σ) ≥ 𝜆𝑚(Σ̄).

Finally
|Σ| =

∏︁
1≤𝑗≤𝑚

𝜆𝑗(Σ) ≥ 𝜆𝑚(Σ)
𝑚 ≥ 𝜆𝑚(Σ̄)

𝑚,

as desired.

By the Lemma 2.6.4, we have that |Σ| is bounded away from zero by an explicit
constant controlled solely by 𝑚,𝛽, 𝜂, which in particular is independent of ℐ. Thus
the union bound leading to (2.33) is indeed valid.

We finally show how (2.35) is fulfilled, which is to ensure

𝜓𝑁(𝛽) ≜ 𝛽 − 𝜂(𝛽) = 𝛽 − min1≤𝑘≤𝐾 𝜙𝑘(𝛽)

𝑁𝑚
> 1− ℎ−1

(︁ 𝜖
2

)︁
.
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Notice 1 − ℎ−1(𝜖/2) is strictly smaller than 1. Observing now that 𝜓𝑁(𝛽) → 1 as
𝑁 → +∞, and 𝛽 → 1, one can indeed find such 𝛽 and 𝜂. It suffices that 𝛽 satisfies

1 > 𝛽 > max

{︂
1− min

1≤𝑘≤𝐾
𝜖𝑘, 1−

1

2
ℎ−1

(︁ 𝜖
2

)︁}︂
.

Having selected this value of 𝛽 > 0, prescribe now 𝜂 ≜ 𝜂(𝛽), by choosing 𝑁 ∈ Z+

sufficiently large so that

𝜂 =
min1≤𝑘≤𝐾 𝜙𝑘(𝛽)

𝑁𝑚
<

1

2
ℎ−1

(︁ 𝜖
2

)︁
.

This concludes the proof of Theorem 2.2.3.

2.6.4 Proof of Theorem 2.2.5

The proof of Theorem 2.2.5 is based on the so-called second moment method, but in
addition uses several other ideas. We provide a short outline below for convenience.

Outline of the Proof of Theorem 2.2.5

• Fix an 𝑚 ∈ N, 𝜌 ∈ (0, 1), and a function 𝑓 : N → R+ with 𝑓(𝑛) ∈ 𝑜(𝑛). We first
show that with high probability over 𝑋 𝑑

= 𝒩 (0, 𝐼𝑛), there exists an 𝑚−tuple(︀
𝜎(𝑖) : 1 ≤ 𝑖 ≤ 𝑚

)︀
of spin configurations 𝜎(𝑖) ∈ ℬ𝑛 such that i) for 1 ≤ 𝑖 ≤ 𝑚,

𝑛−1/2|
⟨︀
𝜎(𝑖), 𝑋

⟩︀
| ≤ 2−𝑓(𝑛); and ii) for 1 ≤ 𝑖 < 𝑗 ≤ 𝑚, 𝜌 − 𝜌 ≤ 𝑛−1

⟨︀
𝜎(𝑖), 𝜎(𝑗)

⟩︀
≤

𝜌+ 𝜌, provided 𝜌 is sufficiently small.

• To start with, it is not even clear if for every 𝜌 sufficiently small; there exists—
deterministically—𝜎(𝑖) ∈ ℬ𝑛, 1 ≤ 𝑖 ≤ 𝑚, such that 𝜌 − 𝜌 ≤ 𝑛−1

⟨︀
𝜎(𝑖), 𝜎(𝑗)

⟩︀
≤

𝜌 + 𝜌 for 1 ≤ 𝑖 < 𝑗 ≤ 𝑚. We establish this using the so-called probabilistic
method [13]: we assign the coordinates 𝜎(𝑖)(𝑗) ∈ {−1, 1}, 1 ≤ 𝑖 ≤ 𝑚 and 1 ≤
𝑗 ≤ 𝑛 randomly according to the Rademacher distribution with an appropriate
parameter1; and show that with positive probability, such a configuration exists.

• We then let the random variable𝑀 to count the number of𝑚−tuples
(︀
𝜎(𝑖) : 1 ≤ 𝑖 ≤ 𝑚

)︀
of spin configurations which satisfy the desired properties. Our goal is to estab-
lish P(𝑀 ≥ 1) = 1 − 𝑜𝑛(1). For this goal, we use the so-called second moment
method which uses the Paley-Zygmund inequality : for a non-negative random
variable 𝑀 taking integer values,

P(𝑀 ≥ 1) ≥ (E [𝑀 ]2)

E [𝑀2]
.

Namely, if the second moment E [𝑀2] is asymptotically E [𝑀 ]2 (1 + 𝑜𝑛(1)), in

1Here, we interpret the Rademacher distribution with parameter 𝑝 as the distribution supported
on {−1, 1}, which takes the value +1 with probability 𝑝.
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other words when Var(𝑀) = 𝑜
(︀
E [𝑀 ]2

)︀
, we have that P(𝑀 ≥ 1) = 1 − 𝑜𝑛(1),

as desired.

• As is rather common with the applications of the second moment method, the
computation of the second moment is challenging: it involves an expectation of
a sum running over pairs of 𝑚−tuples of spin configurations. To compute this
sum, we employ an overcounting idea.

• To that end, fix an 𝜖 > 0 small; and let 𝐼𝜖 be the set of all integers in the set
[0, 𝑛(1 − 𝜖)/2] ∪ [𝑛(1 + 𝜖)/2, 1]. We now overestimate E [𝑀2] by dividing the
sum into two components. Specifically, for two 𝑚−tuples of spin configurations
𝒯 =

(︀
𝜎(𝑖) : 1 ≤ 𝑖 ≤ 𝑚

)︀
and 𝒯 =

(︀
𝜎(𝑖) : 1 ≤ 𝑖 ≤ 𝑚

)︀
, we distinguish two cases.

The first case pertains the pairs
(︀
𝒯 , 𝒯

)︀
for which there exists an 𝑖, 𝑗 such that

𝑑𝐻
(︀
𝜎(𝑖), 𝜎(𝑗)

)︀
∈ 𝐼𝜖. The second case pertains the pairs

(︀
𝒯 , 𝒯

)︀
for which it is

the case that for every 𝑖, 𝑗; 𝑛(1 − 𝜖)/2 < 𝑑𝐻
(︀
𝜎(𝑖), 𝜎(𝑗)

)︀
< 𝑛(1 + 𝜖)/2. Namely,

the second case essentially corresponds to the pairs of 𝑚−tuples that are nearly
“uncorrelated". The term 𝜖 introduced above essentially controls the “residual
correlation".

• We then find that due to cardinality constraints (via a certain asymptotics
pertaining the binomial coefficients), the number of pairs of first kind is small,
and the probability term can be neglected. See the proof for details.

• We then observe that the number of pairs of 𝑚−tuples of second kind dominates
the second moment term. For those pairs, however, the computation of their
joint probability is tractable due to the fact that they are nearly uncorrelated.

• We then take a union bound over a certain choice of grid, for the goal of ob-
taining the event which involves a condition over all 𝛽 ∈ [0, 1].

• Finally, sending 𝑛→ ∞ and 𝜖→ 0 carefully; we obtain our desired conclusion.

We now provide the complete proof.

Proof of Theorem 2.2.5

Proof. In what follows, denote by 𝑆(𝑚, 𝜌, 𝜌, 𝐸) to be the set of all𝑚−tuples
(︀
𝜎(𝑖) : 1 ≤ 𝑖 ≤ 𝑚

)︀
of spin configurations 𝜎(𝑖) ∈ ℬ𝑛 such that

• For every 1 ≤ 𝑖 < 𝑗 ≤ 𝑚, 𝜌− 𝜌 ≤ 𝒪
(︀
𝜎(𝑖), 𝜎(𝑗)

)︀
≤ 𝜌+ 𝜌.

• For every 1 ≤ 𝑖 ≤ 𝑚, 𝑛−1/2
⃒⃒⟨︀
𝜎(𝑖), 𝑋

⟩︀⃒⃒
≤ 𝐸.

Namely, 𝑆(𝑚, 𝜌, 𝜌, 𝐸) is a shorthand for the set 𝒮(𝑚, 𝜌, 𝜌, log2𝐸, {0}) introduced in
Definition 2.2.1 with the modification as in Theorem 2.2.5.
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Let 𝑚 ∈ N, 𝛾 ∈ (0, 1
2
), and 𝛿 ∈ (0, 𝛾). Define the set

𝑆(𝑚, 𝛾, 𝛿) ≜

{︂(︀
𝜎(𝑖) : 1 ≤ 𝑖 ≤ 𝑚

)︀
: 𝜎(𝑖) ∈ ℬ𝑛,

1

𝑛
𝑑𝐻

(︁
𝜎(𝑖), 𝜎(𝑖′)

)︁
∈ [𝛾 − 𝛿, 𝛾 + 𝛿], 1 ≤ 𝑖 < 𝑖′ ≤ 𝑚

}︂
.

(2.39)
Call the triple (𝑚, 𝛾, 𝛿) admisible if there exists an 𝑁 ≜ 𝑁(𝑚, 𝛾, 𝛿) ∈ N such that
for every 𝑛 ≥ 𝑁 , 𝑆(𝑚, 𝛾, 𝛿) ̸= ∅. We first prove that for any fixed 𝑚 ∈ N, 𝛾, and 𝛿
sufficiently small; 𝑆(𝑚, 𝛾, 𝛿) ̸= ∅ for all sufficiently large 𝑛.

Note that this step is necessary: in order to ensure the the existence of 𝑚−tuples
with desired “energy levels" as required by the Theorem, one needs to ensure first that
such 𝑚−tuples of spin configurations with pairwise constrained overlaps do exist; and
this is quite non-trivial for 𝑚 > 2. We will later translate the condition on Hamming
distances into a condition on their pairwise (normalized) overlaps.

𝑆(𝑚, 𝛾, 𝛿) ̸= ∅ for 𝑛 sufficiently large. We choose the spin configurations 𝜎(𝑖) ∈
ℬ𝑛 randomly. Specifically, let 𝜎(𝑖) =

(︀
𝜎(𝑖)(𝑗) : 1 ≤ 𝑗 ≤ 𝑛

)︀
∈ ℬ𝑛 be i.i.d. across 1 ≤

𝑖 ≤ 𝑚 and 1 ≤ 𝑗 ≤ 𝑛 with
P
(︀
𝜎(𝑖)(𝑗) = 1

)︀
= 𝜂*,

where 𝜂* ∈ (0, 1) is chosen so that

𝜂* (1− 𝜂*) =
1

2
𝛾.

Define now a sequence ℰ𝑖,𝑖′ of events 1 ≤ 𝑖 < 𝑖′ ≤ 𝑚,

ℰ𝑖,𝑖′ ≜
{︂
𝛾 − 𝛿 ≤ 1

𝑛
𝑑𝐻

(︁
𝜎(𝑖), 𝜎(𝑖′)

)︁
≤ 𝛾 + 𝛿

}︂
.

It suffices to establish

P

(︃ ⋂︁
1≤𝑖<𝑖′≤𝑚

ℰ𝑖,𝑖′
)︃
> 0 ⇔ P

(︃ ⋃︁
1≤𝑖<𝑖′≤𝑚

ℰ𝑐
𝑖,𝑖′

)︃
< 1.

We next study P
(︀
ℰ𝑐
1,2

)︀
. Define 𝑍𝑗 ≜ 1

{︀
𝜎(1)(𝑗) ̸= 𝜎(2)(𝑗)

}︀
, 1 ≤ 𝑗 ≤ 𝑛. Note that

𝑍𝑗 are i.i.d. Bernoulli variables with mean E[𝑍𝑗] = 2𝜂* (1− 𝜂*) = 𝛾. Using now
standard concentration results for the sum of i.i.d. Bernoulli variables [281], we have
that for any 𝛿 > 0

P
(︀
ℰ𝑐
1,2

)︀
= P

(︃⃒⃒⃒⃒
⃒ 1𝑛 ∑︁

1≤𝑗≤𝑛

𝑍𝑗 − 𝛾

⃒⃒⃒⃒
⃒ > 𝛿

)︃
≤ exp

(︀
−𝐶𝑛𝛿2

)︀
,

for an absolute constant 𝐶 > 0. Now, the events ℰ𝑖,𝑖′ are clearly equiprobable across
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1 ≤ 𝑖 < 𝑖′ ≤ 𝑚. Applying a union bound,

P

(︃ ⋃︁
1≤𝑖<𝑖′≤𝑚

ℰ𝑐
𝑖,𝑖′

)︃
≤
(︂
𝑚

2

)︂
exp

(︀
−𝐶𝑛𝛿2

)︀
.

Since 𝑚 is constant, the claim follows.

Fix an arbitrary 𝜌 ∈ (0, 1); a “proxy" for 𝛽 appearing in the statement of Theo-
rem 2.2.5. Suppose 𝜌 is a sufficiently small parameter; a “proxy" for 𝜂. Set

𝛾 ≜
1− 𝜌

2
∈ (0,

1

2
) and 𝛿 ≜

𝜌

2
. (2.40)

Observe that

𝜌− 𝜌 ≤ 1

𝑛
⟨𝜎, 𝜎′⟩ ≤ 𝜌+ 𝜌 ⇐⇒ 𝛾 − 𝛿 ≤ 1

𝑛
𝑑𝐻 (𝜎, 𝜎′) ≤ 𝛾 + 𝛿.

In what follows, we define certain sets and random variables; which depend on
𝑛 but is dropped in the notation. Recall the set 𝑆(𝑚, 𝛾, 𝛿) from (2.39). As we
established, for every 𝑚 ∈ N, and 𝛾, 𝑆(𝑚, 𝛾, 𝛿) ̸= ∅ for all 𝛿 sufficiently small and all
𝑛 large. Define 𝐿𝜎 to be the cardinality of set

𝑆𝜎 =
{︀(︀
𝜎(𝑖) : 1 ≤ 𝑖 ≤ 𝑚

)︀
∈ 𝑆(𝑚, 𝛾, 𝛿) : 𝜎(1) = 𝜎

}︀
⊂ 𝑆(𝑚, 𝛾, 𝛿).

Note that 𝐿𝜎 is independent of 𝜎. So we instead use the notation 𝐿 for

𝐿 ≜
⃒⃒{︀(︀

𝜎(𝑖) : 1 ≤ 𝑖 ≤ 𝑚
)︀
∈ 𝑆(𝑚, 𝛾, 𝛿) : 𝜎(1) = 𝜎

}︀⃒⃒
. (2.41)

We then have
|𝑆(𝑚, 𝛾, 𝛿)| = 2𝑛𝐿. (2.42)

Fix 𝑓 : N → R+, the “energy exponent" with sub-linear growth, 𝑓(𝑛) ∈ 𝑜(𝑛); and let
𝐸 = 2−𝑓(𝑛). Consider

𝑀 ≜𝑀(𝑚, 𝛾, 𝛿, 𝐸) =
∑︁

(𝜎(𝑖):1≤𝑖≤𝑚)∈ 𝑆 (𝑚, 𝛾, 𝛿)

1
{︀
|𝑌𝑖| < 2−𝑓(𝑛), 1 ≤ 𝑖 ≤ 𝑚

}︀
, (2.43)

where
𝑌𝑖 ≜

1√
𝑛

⟨︀
𝜎(𝑖), 𝑋

⟩︀
, 1 ≤ 𝑖 ≤ 𝑚, (2.44)

and, 𝑋 𝑑
= 𝒩 (0, 𝐼𝑛). Then 𝑌𝑖

𝑑
= 𝒩 (0, 1), 1 ≤ 𝑖 ≤ 𝑚, though not independent.

Namely, for 𝛾 = 1−𝜌
2

, 𝛿 = 𝜌
2
, and 𝐸 = 2−𝑓(𝑛), 𝑀(𝑚, 𝛾, 𝛿, 𝐸) is a lower bound

on the cardinality of the set 𝑆(𝑚, 𝜌, 𝜌, 𝐸) that we study in Theorem 2.2.5. In what
follows, we study P(𝑀 ≥ 1) and give a lower bound on it for an appropriate choice
of parameters.
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Second moment method. We recall the Paley-Zygmund inequality: if 𝑀 ≥ 0 is
a non-negative integer valued random variable, then

P(𝑀 ≥ 1) = P(𝑀 > 0) ≥ (E [𝑀 ])2

E [𝑀2]
. (2.45)

For a short proof, see [58, Exercise 2.4]. In particular, to show P(𝑀 ≥ 1) = 1−𝑜𝑛(1),
it suffices to establish

E
[︀
𝑀2
]︀
= E [𝑀 ]2 (1 + 𝑜𝑛(1)).

First moment computation. Fix any
(︀
𝜎(𝑖) : 1 ≤ 𝑖 ≤ 𝑚

)︀
∈ 𝑆(𝑚, 𝛾, 𝛿) (2.39); and

recall 𝑌𝑖, 1 ≤ 𝑖 ≤ 𝑚, from (2.44). To compute the joint probability, we first recover
the structure of the covariance matrix Σ ∈ R𝑚×𝑚. Σ𝑖𝑖 = 1 for 1 ≤ 𝑖 ≤ 𝑚; and

E[𝑌𝑖𝑌𝑗] =
1

𝑛

⟨︀
𝜎(𝑖), 𝜎(𝑗)

⟩︀
.

Since
(︀
𝜎(𝑖) : 1 ≤ 𝑖 ≤ 𝑚

)︀
∈ 𝑆(𝑚, 𝛾, 𝛿), it follows that for any 1 ≤ 𝑖 < 𝑗 ≤ 𝑚, Σ𝑖𝑗 =

Σ𝑗𝑖 ∈ [𝜌− 𝜌, 𝜌+ 𝜌]. In particular,

Σ = (1− 𝜌)𝐼𝑚 + 𝜌11𝑇 + 𝐸,

where 𝐸 ∈ R𝑚×𝑚 is a perturbation matrix with 𝐸𝑖𝑖 = 0 and |𝐸𝑖𝑗| = |𝐸𝑗𝑖| ≤ 𝜌 for
1 ≤ 𝑖 < 𝑗 ≤ 𝑚. The spectrum of (1−𝜌)𝐼𝑚+𝜌11𝑇 consists of the eigenvalue 1+𝜌(𝑚−1)
with multiplicity one; and the eigenvalue 1 − 𝜌 with multiplicity 𝑚 − 1. Clearly
‖𝐸‖2 ≤ ‖𝐸‖𝐹 ≤ 𝑚𝜌. Using now Wielandt-Hoffman Theorem (Theorem 2.6.2), we
have that for 𝜌≪ 1−𝜌

𝑚
, the matrix Σ is invertible. In what follows, assume 𝜌 is in this

regime.
With this, we compute that for energy level 𝐸 = 2−𝑓(𝑛) (with exponent 𝑓(𝑛) ∈

𝜔𝑛(1) ∩ 𝑜(𝑛)),

P
(︀
|𝑌𝑖| < 2−𝑓(𝑛), 1 ≤ 𝑖 ≤ 𝑚

)︀
=

1

(2𝜋)
𝑚
2 |Σ| 12

∫︁
y≜(𝑦1,...,𝑦𝑚)∈[−𝐸,𝐸]𝑚

exp

(︂
−1

2
y𝑇Σ−1y

)︂
𝑑y.

Now, observe that for y ∈ [−𝐸,𝐸]𝑚, exp
(︀
−1

2
y𝑇Σ−1y

)︀
= 1 + 𝑜𝑛(1), provided Σ−1 is

invertible (which we ensured). Under this condition,

P
(︀
|𝑌𝑖| < 2−𝑓(𝑛), 1 ≤ 𝑖 ≤ 𝑚

)︀
=

2𝑚

(2𝜋)
𝑚
2 |Σ| 12

𝐸𝑚 (1 + 𝑜𝑛(1)) .

Equipped with this, we now give two expressions for the first moment. First, using
(2.43) and the linearity of expectations, we obtain

E[𝑀 ] =
∑︁

(𝜎(𝑖):1≤𝑖≤𝑚)∈ 𝑆 (𝑚, 𝛾, 𝛿)

2𝑚

(2𝜋)
𝑚
2 |Σ| 12

𝐸𝑚 (1 + 𝑜𝑛(1)) . (2.46)
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Here, the tuple
(︀
𝜎(𝑖) : 1 ≤ 𝑖 ≤ 𝑚

)︀
induces an “overlap pattern", which, in turn, in-

duces the covariance matrix Σ.

For the second, note that using Wieland-Hoffman inequality, it is the case that
for 𝜌 ≪ 1−𝜌

𝑚
, there exists constants 𝐶1 < 𝐶2—depending only on 𝑚, 𝜌, 𝜌 and are

independent of 𝑛—such that
𝐶1 < |Σ| < 𝐶2.

Namely, |Σ| = 𝑂𝑛(1) across all 𝑚−tuples
(︀
𝜎(𝑖) : 1 ≤ 𝑖 ≤ 𝑚

)︀
∈ 𝑆(𝑚, 𝛾, 𝛿). With this,

we have
E[𝑀 ] ≥ 2𝑛𝐿

2𝑚

(2𝜋)
𝑚
2 𝐶2

𝐸𝑚 (1 + 𝑜𝑛(1)) . (2.47)

Above, we utilized the cardinality bound (2.42).

Second moment computation. The computation for the second moment is more
delicate, and involves a sum over pairs of 𝑚−tuples of spin configurations. For nota-
tional purposes, let 𝒯 ≜

(︀
𝜎(𝑖) : 1 ≤ 𝑖 ≤ 𝑚

)︀
and 𝒯 ≜

(︀
𝜎(𝑖) : 1 ≤ 𝑖 ≤ 𝑚

)︀
. We have

E
[︀
𝑀2
]︀
=

∑︁
𝒯 ,𝒯 ∈𝑆(𝑚,𝛾,𝛿)

P
(︀
|𝑌𝑖| ≤ 𝐸,

⃒⃒
𝑌𝑖
⃒⃒
≤ 𝐸, 1 ≤ 𝑖 ≤ 𝑚

)︀
. (2.48)

Here the following variables are standard normal

𝑌𝑖 ≜
1√
𝑛

⟨︀
𝜎(𝑖), 𝑋

⟩︀
and 𝑌𝑖 ≜

1√
𝑛

⟨︀
𝜎(𝑖), 𝑋

⟩︀
, 1 ≤ 𝑖 ≤ 𝑚. (2.49)

Now, fix an arbitrary 𝜖 > 0, and define the set

𝐼𝜖 = Z ∩
(︁[︁

0,
𝑛

2
(1− 𝜖)

]︁
∪
[︁𝑛
2
(1 + 𝜖), 𝑛

]︁)︁
. (2.50)

For the pairs (𝒯 , 𝒯 ) ∈ 𝑆(𝑚, 𝛾, 𝛿)×𝑆(𝑚, 𝛾, 𝛿) of spin configurations define the follow-
ing family of 𝑚2 sets

𝑆(𝑖𝑗)(𝜖) ≜
{︀(︀

𝒯 , 𝒯
)︀
∈ 𝑆(𝑚, 𝛾, 𝛿)× 𝑆(𝑚, 𝛾, 𝛿) : 𝑑𝐻

(︀
𝜎(𝑖), 𝜎(𝑗)

)︀
∈ 𝐼𝜖

}︀
(2.51)

for 1 ≤ 𝑖, 𝑗 ≤ 𝑚. Let

𝑆 ≜ (𝑆(𝑚, 𝛾, 𝛿)× 𝑆(𝑚, 𝛾, 𝛿)) ∖
(︃ ⋃︁

1≤𝑖,𝑗≤𝑚

𝑆(𝑖𝑗)(𝜖)

)︃
. (2.52)

Note that the sets 𝑆(𝑖𝑗)(𝜖) potentially intersect for different pairs (𝑖, 𝑗). This is the
essence of the overcounting we utilize in the remainder, with the key idea being that
the overcounting can only increase the second moment.

We next establish an upper bound on the cardinality of 𝑆(𝑖𝑗)(𝜖). Recalling the
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quantity 𝐿 from (2.41), we have

⃒⃒
𝑆(𝑖𝑗)(𝜖)

⃒⃒
= 2𝑛𝐿2

(︃∑︁
𝑘∈𝐼𝜖

(︂
𝑛

𝑘

)︂)︃
.

The rationale for this is as follows. The first coordinate of 𝒯 is chosen in 2𝑛 different
ways; and the remainder are filled in 𝐿 different ways. Having fixed this 𝑚−tuple;
now using the constraint 𝑑𝐻

(︀
𝜎(𝑖), �̄�(𝑗)

)︀
∈ 𝐼𝜖, the object �̄�(𝑗) can be chosen in

∑︀
𝑘∈𝐼𝜖

(︀
𝑛
𝑘

)︀
different ways; and finally having fixed 𝜎(𝑗), the rest of the coordinates of the 𝑚−tuple
𝒯 can now be filled in 𝐿 different ways.

Applying the Stirling’s formula (2.18) and using |𝐼𝜖| = 𝑛𝑂(1)

∑︁
𝑘∈𝐼𝜖

(︂
𝑛

𝑘

)︂
≤ 𝑛𝑂(1)

(︂
𝑛

𝑛1−𝜖
2

)︂
= exp2

(︂
𝑛ℎ𝑏

(︂
1− 𝜖

2

)︂
+𝑂(log2 𝑛)

)︂
.

Thus,

⃒⃒
𝑆(𝑖𝑗)(𝜖)

⃒⃒
≤ 2𝑛𝐿2 exp2

(︂
𝑛ℎ𝑏

(︂
1− 𝜖

2

)︂
+𝑂 (log2 𝑛)

)︂
, for 1 ≤ 𝑖 ̸= 𝑗 ≤ 𝑚. (2.53)

Overcounting argument. Now, for any pair (𝒯 , 𝒯 ) ∈ 𝑆(𝑚, 𝛾, 𝛿)×𝑆(𝑚, 𝛾, 𝛿), let

𝑝
(︀
𝒯 , 𝒯

)︀
≜ P

(︀
|𝑌𝑖| ≤ 𝐸,

⃒⃒
𝑌𝑖
⃒⃒
≤ 𝐸, 1 ≤ 𝑖 ≤ 𝑚

)︀
.

We now compute the second moment. In terms of the sets introduced in (2.51) (2.52),
we have

E
[︀
𝑀2
]︀
=

∑︁
(𝒯 ,𝒯 )∈𝑆(𝑚,𝛾,𝛿)×𝑆(𝑚,𝛾,𝛿)

𝑝
(︀
𝒯 , 𝒯

)︀
≤

∑︁
1≤𝑖,𝑗≤𝑚

∑︁
(𝒯 ,𝒯 )∈𝑆(𝑖𝑗)(𝜖)

𝑝
(︀
𝒯 , 𝒯

)︀
+

∑︁
(𝒯 ,𝒯 )∈𝑆

𝑝
(︀
𝒯 , 𝒯

)︀
.

Consequently,

E
[︀
𝑀2
]︀
≤ 𝑚22𝑛𝐿2 exp2

(︂
𝑛ℎ𝑏

(︂
1− 𝜖

2

)︂
+𝑂 (log2 𝑛)

)︂
⏟  ⏞  

≜𝐴𝜖

+
∑︁

(𝒯 ,𝒯 )∈𝑆

𝑝
(︀
𝒯 , 𝒯

)︀
⏟  ⏞  

≜𝐵𝜖

. (2.54)
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Study of the 𝐴𝜖 term. Using the crude lower bound (2.47) on the first moment,
we arrive at

𝐴𝜖

E [𝑀 ]2
≤ 𝑚22𝑛𝐿2 exp2

(︀
𝑛ℎ𝑏

(︀
1−𝜖
2

)︀
+𝑂 (log2 𝑛)

)︀
22𝑛𝐿222𝑚 (2𝜋)−𝑚𝐶−2

2 𝐸2𝑚 (1 + 𝑜𝑛(1))

= exp2

(︂
−𝑛+ 𝑛ℎ𝑏

(︂
1− 𝜖

2

)︂
− 2𝑚 log2𝐸 +𝑂 (log2 𝑛) +𝑂(1)

)︂
= exp2

(︂
−𝑛
(︂
1− ℎ𝑏

(︂
1− 𝜖

2

)︂)︂
− 2𝑚𝑓(𝑛) +𝑂(log2 𝑛)

)︂
= exp2

(︂
−𝑛
(︂
1− ℎ𝑏

(︂
1− 𝜖

2

)︂)︂
+ 𝑜(𝑛)

)︂
.

Above, we used the fact that 𝐸 = 2−𝑓(𝑛) for some exponent 𝑓(𝑛) ∈ 𝑜(𝑛); and the fact
𝜖 > 0 hence ℎ𝑏

(︀
1−𝜖
2

)︀
< 1. Consequently,

𝐴𝜖

E [𝑀 ]2
≤ exp2 (−Θ(𝑛)) . (2.55)

Study of the 𝐵𝜖 term. This term is more involved, and it is the one that leads
to the dominant contribution to the second moment of 𝑀 .

Fix a pair (𝒯 , 𝒯 ) ∈ 𝑆(𝑚, 𝛾, 𝛿) × 𝑆(𝑚, 𝛾, 𝛿), and recall the associated standard
normal variables 𝑌𝑖, 𝑌𝑖, 1 ≤ 𝑖 ≤ 𝑛 per (2.49). Our goal is to study the probability

𝑝
(︀
𝒯 , 𝒯

)︀
= P

(︀
|𝑌𝑖| ,

⃒⃒
𝑌𝑖
⃒⃒
≤ 𝜖, 1 ≤ 𝑖 ≤ 𝑚

)︀
.

To that end, fix 1 ≤ 𝑖, 𝑗 ≤ 𝑚. We study the covariance between 𝑌𝑖 and 𝑌𝑗. Fixing a
pair (𝒯 , 𝒯 ) ∈ 𝑆, we have

𝑑𝐻
(︀
𝜎(𝑖), 𝜎(𝑗)

)︀
∈
[︁𝑛
2
(1− 𝜖),

𝑛

2
(1 + 𝜖)

]︁
, for all 𝑖, 𝑗.

Then,
1

𝑛

⟨︀
𝜎(𝑖), 𝜎(𝑗)

⟩︀
∈ [−𝜖, 𝜖].

Let Σ𝜖 ∈ R2𝑚×2𝑚 be the covariance matrix for the random vector (𝑌1, . . . , 𝑌𝑚, 𝑌1, . . . , 𝑌𝑚).
Observe that it has the following “block" structure:

Σ𝜖 =

(︂
Σ𝒯 𝐸
𝐸 Σ𝒯

)︂
∈ R2𝑚×2𝑚.

Here, Σ𝒯 ∈ R𝑚×𝑚 is the covariance matrix corresponding to the random vector
(𝑌1, . . . , 𝑌𝑚); Σ𝒯 ∈ R𝑚×𝑚 is the covariance matrix corresponding to the random
vector (𝑌1, . . . , 𝑌𝑚); and 𝐸 ∈ R𝑚×𝑚 is given by 𝐸𝑖𝑗 = E

[︀
𝑌𝑖𝑌𝑗

]︀
. We have that for

1 ≤ 𝑖 ≤ 𝑚,
(Σ𝒯 )𝑖𝑖 = 1 = (Σ𝒯 )𝑖𝑖 ,
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and for 1 ≤ 𝑖 < 𝑗 ≤ 𝑚,

(Σ𝒯 )𝑖𝑗 , (Σ𝒯 )𝑖𝑗 ∈ [𝜌− 𝜌, 𝜌+ 𝜌].

Moreover, for 1 ≤ 𝑖 < 𝑗 ≤ 𝑚,
|𝐸𝑖𝑗| = |𝐸𝑗𝑖| ≤ 𝜖.

We now invert the 2× 2 block matrix Σ𝜖, while keeping in mind that the block, Σ𝒯 ,
is invertible. Observe that(︂

Σ𝒯 𝐸
𝐸 Σ𝒯

)︂(︂
𝐼 −Σ−1

𝒯 𝐸
𝑂 𝐼

)︂
=

(︂
Σ𝒯 𝑂
𝐸 Σ𝒯 − 𝐸Σ−1

𝒯 𝐸

)︂
.

With this decomposition and the fact that the determinant of a “block triangular"
matrix is the product of the determinants of blocks constituting the diagonal, we
arrive at

|Σ𝜖| = |Σ𝒯 | ·
⃒⃒
Σ𝒯 − 𝐸Σ−1

𝒯 𝐸
⃒⃒

= |Σ𝒯 | · |Σ𝒯 | ·
⃒⃒⃒
𝐼 − Σ−1

𝒯 𝐸Σ−1
𝒯 𝐸

⃒⃒⃒
,

where we have used the fact that Σ̂︀𝒯 is invertible as well, to pull the term outside.

Note that for 𝜖 sufficiently small; the determinant
⃒⃒⃒
𝐼 − Σ−1

𝒯 𝐸Σ−1
𝒯 𝐸

⃒⃒⃒
is non-zero

over all choices of Σ𝒯 and Σ𝒯 . Namely, provided 𝜖 is small; Σ𝜖 is invertible uniformly
across all Σ𝒯 and Σ𝒯 . In the remainder, assume 𝜖 > 0 though sufficiently small. We
now define the object

𝜙(𝜖) ≜ 𝜙 (Σ𝒯 ,Σ𝒯 , 𝐸) =
⃒⃒⃒
𝐼 − Σ−1

𝒯 𝐸Σ−1
𝒯 𝐸

⃒⃒⃒
.

Note that 𝜙(·) is a polynomial in the entries 𝐸𝑖𝑗, 1 ≤ 𝑖, 𝑗 ≤ 𝑚; as well as in the entries
of matrices Σ𝒯 and Σ𝒯 . Furthermore, 𝜙→ 1 as 𝜖→ 0. With this we write

|Σ𝜖| = |Σ𝒯 | |Σ𝒯 |𝜙(𝜖). (2.56)

We now compute

𝑝
(︀
𝒯 , 𝒯

)︀
= (2𝜋)−𝑚 |Σ𝜖|−

1
2

∫︁
y=(𝑦1,...,𝑦𝑚,𝑦1,...,𝑦𝑚)∈[−𝐸,𝐸]2𝑚

exp

(︂
−1

2
y𝑇Σ−1

𝜖 y

)︂
𝑑y

= (2𝜋)−𝑚 |Σ𝜖|−
1
2 22𝑚𝐸2𝑚 (1 + 𝑜𝑛(1))

= (𝜙(𝜖))−
1
2 (1 + 𝑜𝑛(1))

(︁
(2𝜋)−

𝑚
2 |Σ𝒯 |−

1
2 (2𝐸)𝑚

)︁(︁
(2𝜋)−

𝑚
2 |Σ𝒯 |−

1
2 (2𝐸)𝑚

)︁
.

Here, the first line uses the definition of 𝑝
(︀
𝒯 , 𝒯

)︀
together with the formulae for the

multivariate normal density; the second line uses the fact when y ∈ [−𝐸,𝐸]2𝑚 then
exp

(︀
−1

2
y𝑇Σ−1

𝜖 y
)︀
= 1 + 𝑜𝑛(1) provided Σ𝜖 is invertible (which we ensured); and the
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third line uses (2.56). Thus,

𝐵𝜖 =
∑︁

(𝒯 ,𝒯 )∈𝑆

𝑝
(︀
𝒯 , 𝒯

)︀
= 𝜙(𝜖) (1 + 𝑜𝑛(1))

∑︁
(𝒯 ,𝒯 )∈𝑆

(︁
(2𝜋)−

𝑚
2 |Σ𝒯 |−

1
2 (2𝐸)𝑚

)︁(︁
(2𝜋)−

𝑚
2 |Σ𝒯 |−

1
2 (2𝐸)𝑚

)︁
.

(2.57)
We now square the expression (2.46), keep only the terms corresponding to 𝑆; and
lower bound the square of the first moment

E [𝑀 ]2 ≥ (1 + 𝑜𝑛(1))
∑︁

(𝒯 ,𝒯 )∈𝑆

(︁
(2𝜋)−

𝑚
2 |Σ𝒯 |−

1
2 (2𝐸)𝑚

)︁(︁
(2𝜋)−

𝑚
2 |Σ𝒯 |−

1
2 (2𝐸)𝑚

)︁
.

(2.58)
Combining (2.57) and (2.58), we arrive at

𝐵𝜖

E [𝑀 ]2
≤ (1 + 𝑜𝑛(1)) (𝜙(𝜖))

− 1
2 . (2.59)

Applying Paley-Zygmund Inequality. Applying the Paley-Zygmund inequality
(2.45),

P (𝑀 ≥ 1) ≥ E [𝑀 ]2

E [𝑀2]
≥ E [𝑀 ]2

𝐴𝜖 +𝐵𝜖

=
1

𝐴𝜖

E[𝑀 ]2
+ 𝐵𝜖

E[𝑀 ]2

≥ 1

exp (−Θ(𝑛)) + (1 + 𝑜𝑛(1))𝜙(𝜖)−1/2
.

(2.60)
Here, the second inequality uses the overcounting upper bound (2.54); and the third
inequality uses the upper bounds (2.55) and (2.59).

Combining everything. The reasoning above remains valid if (a) 𝜌 > 𝜌 and (b)
𝜌≪ 1−𝜌

𝑚
. Now, choose

𝜌 =
𝜂

1000𝑚
.

Here, the choice of the constant 1000 is arbitrary. Next, let ℓ be the largest positive
integer such that 2ℓ𝜂 < 1− 𝜂. Consider the “grid" 𝜌𝑘 = 2𝑘𝜂, 1 ≤ 𝑘 ≤ ℓ, and intervals
𝐼𝑘 = [(2𝑘 − 1)𝜂, (2𝑘 + 1)𝜂] = [𝜌𝑘 − 𝜂, 𝜌𝑘 + 𝜂] centered at 𝜌𝑘. Since

[𝜌𝑘 − 𝜌, 𝜌𝑘 + 𝜌] ⊂ [𝜌𝑘 − 𝜂, 𝜌𝑘 + 𝜂]

it follows by using (2.60) that

P (𝑆 (𝑚, 𝜌𝑘, 𝜂, 𝐸) ̸= ∅) ≥ P (𝑆 (𝑚, 𝜌𝑘, 𝜌, 𝐸) ̸= ∅) ≥ 1

exp (−Θ(𝑛)) + (1 + 𝑜𝑛(1))𝜙𝑘(𝜖)
−1/2

,

(2.61)
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where 𝜙𝑘 (·) is a continuous function with the property that 𝜙𝑘(𝜖) → 1 as 𝜖 → 0.
Taking a union bound over 1 ≤ 𝑘 ≤ ℓ, we arrive at

P

⎛⎜⎜⎜⎜⎜⎝
⋂︁

1≤𝑘≤ℓ

{𝑆 (𝑚, 𝜌𝑘, 𝜂, 𝐸) ̸= ∅}⏟  ⏞  
≜ℰaux

⎞⎟⎟⎟⎟⎟⎠ ≥ 1− ℓ
exp (−Θ(𝑛)) + (1 + 𝑜𝑛(1))𝜙(𝜖)

−1/2 − 1

exp (−Θ(𝑛)) + (1 + 𝑜𝑛(1))𝜙(𝜖)−1/2
,

(2.62)
where 𝜙(·) = min1≤𝑘≤ℓ 𝜙𝑘(·). In particular, since ℓ is finite, it follows 𝜙(𝜖) → 1 as
𝜖→ 0.

We now carefully send 𝑛 and 𝜖 to their corresponding limits. Note that the
asymptotic expressions (in 𝑛) given above are valid so long as 𝜖 > 0—see, e.g. (2.55).
Thus, we must send 𝑛→ ∞ first, while keeping 𝜖 > 0 fixed. We clearly have

1 ≥ lim sup
𝑛→∞

P(ℰaux).

Furthermore, while keeping 𝜖 > 0 and sending 𝑛→ ∞ in (2.62), we obtain

lim inf
𝑛→∞

P(ℰaux) ≥ 1− ℓ · 𝜙(𝜖)
−1/2 − 1

𝜙(𝜖)−1/2
.

Note that the sequence {P(ℰaux)}𝑛≥1 (note that ℰaux implicitly depends on 𝑛) is not
a function of 𝜖—and the lower bound holds true for every 𝜖 sufficiently close to zero.
Moreover, ℓ is a constant. For this reason, we can now safely send 𝜖→ 0 to obtain

lim inf
𝑛→∞

P(ℰaux) ≥ 1.

Hence
1 ≥ lim sup

𝑛→∞
P (ℰaux) ≥ lim inf

𝑛→∞
P (ℰaux) ≥ 1

implying
lim
𝑛→∞

P (ℰaux) = 1.

Finally, observe that on high probability event ℰaux, it is the case that for each of
[𝜂, 3𝜂], [3𝜂, 5𝜂], . . . , there exists an 𝑚−tuple of spin configurations (with appropriate
energy) whose pairwise overlaps are contained in the chosen interval. Since for each
𝛽 ∈ [0, 1]; [𝛽 − 3𝜂, 𝛽 + 3𝜂] contains a full interval [(2𝑘 − 1)𝜂, (2𝑘 + 1)𝜂]; we conclude
that

P
(︀
∀𝛽 ∈ [0, 1] : 𝒮

(︀
𝑚,𝛽, 3𝜂, 2−𝑓(𝑛)

)︀
̸= ∅

)︀
≥ P (ℰaux) = 1− 𝑜𝑛(1).

The above reasoning remains true for every 𝜂 > 0. Taking 𝜂
3

in place of 𝜂 yields the
desired conclusion.
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2.6.5 Proof of Theorem 2.2.6

Case 1: 𝜔
(︀√︀

𝑛 log2 𝑛
)︀
≤ 𝐸𝑛 ≤ 𝑜(𝑛).

Proof. Let 𝑔(𝑛) be an arbitrary function with growth

𝜔(1) ≤ 𝑔(𝑛) ≤ 𝑜

(︂
𝐸2

𝑛

𝑛 log2 𝑛

)︂
.

We take 𝑚,𝛽, and 𝜂 per (2.4), that is

𝑚 =
2𝑛

𝐸𝑛

, 𝛽 = 1− 2𝑔(𝑛)

𝐸𝑛

, and 𝜂 =
𝑔(𝑛)

2𝑛
.

Define next several auxiliary parameters. First, set 𝜑(𝑛) by the expression

𝐸𝑛 = 𝜑(𝑛)
√︀
𝑛 log 𝑛. (2.63)

Since 𝜔
(︀√︀

𝑛 log2 𝑛
)︀
≤ 𝐸𝑛 ≤ 𝑜(𝑛), it holds that

𝜔𝑛(1) ≤ 𝜑(𝑛) ≤ 𝑜

(︂√︂
𝑛

log 𝑛

)︂
. (2.64)

Moreover, in terms of 𝜑(·), the growth condition on 𝑔 translates as

𝜔𝑛(1) ≤ 𝑔(𝑛) ≤ 𝑜
(︀
𝜑(𝑛)2

)︀
. (2.65)

Introduce another parameter 𝜈𝑛 via

𝜈𝑛 =
𝑔(𝑛)

𝐸𝑛

=
𝑔(𝑛)

𝜑(𝑛)
√
𝑛 log 𝑛

. (2.66)

Thus, in terms of 𝑔(𝑛), 𝜑(𝑛), and 𝜈𝑛; the parameters 𝑚,𝛽, 𝜂 chosen as above satisfy
the following relations:

𝑚 = 2
𝑛

𝐸𝑛

=
2
√
𝑛

𝜑(𝑛)
√
log 𝑛

, (2.67)

𝜂 =
𝑔(𝑛)

2𝑛
=

𝑔(𝑛)

𝜑(𝑛)
√
𝑛 log 𝑛

· 𝜑(𝑛)
√
log 𝑛

2
√
𝑛

=
𝜈𝑛
𝑚

; (2.68)

and
𝛽 = 1− 2𝑔(𝑛)

𝐸𝑛

= 1− 2𝜈𝑛 = 1− 2
𝑔(𝑛)

𝜑(𝑛)
√
𝑛 log 𝑛

. (2.69)

In particular, it holds that

𝜂 =
1− 𝛽

2𝑚
. (2.70)

The expressions (2.67)-(2.70) will be convenient for handling certain expressions ap-
pearing below.

We will establish 𝑚−OGP for the interval [𝛽 − 𝜂, 𝛽], where 𝑚,𝛽, 𝜂 are chosen as
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above. As a sanity check, note that the interval [𝛽 − 𝜂, 𝛽] has length 𝜂, and for our
result to be non-vacuous, it should be the case that the overlap region is not void,
that is

|(𝑛𝛽 − 𝑛𝜂, 𝑛𝛽) ∩ Z| ≥ 1.

Indeed
𝑛𝜂 =

𝑛𝜈𝑛
𝑚

=
1

2
𝑔(𝑛) = 𝜔𝑛(1),

thus the region is not void.
Recall now

𝑌𝑖(𝜏) =
√
1− 𝜏 2𝑋0 + 𝜏𝑋𝑖 ∈ R𝑛, for 1 ≤ 𝑖 ≤ 𝑚 and 𝜏 ∈ ℐ.

In order to apply first moment method and Markov’s inequality, we essentially need
two bounds: 1) a bound on the cardinality of the 𝑚−tuples (𝜎(𝑖) : 1 ≤ 𝑖 ≤ 𝑚) of spin
configurations whose pairwise overlaps are constrained to [𝛽 − 𝜂, 𝛽], and 2) a bound
on a certain (joint) probability.

To that end, define

𝑆(𝛽, 𝜂,𝑚) ≜

{︂
(𝜎(1), . . . , 𝜎(𝑚)) : 𝜎(𝑖) ∈ {−1, 1}𝑛, 1

𝑛

⟨︀
𝜎(𝑖), 𝜎(𝑗)

⟩︀
∈ [𝛽 − 𝜂, 𝛽], 1 ≤ 𝑖 < 𝑗 ≤ 𝑚

}︂
and

𝑁(𝛽, 𝜂,𝑚,𝐸𝑛, ℐ) =
∑︁

(𝜎(𝑖):1≤𝑖≤𝑚)∈𝑆(𝛽,𝜂,𝑚)

1

{︂
∃𝜏1, . . . , 𝜏𝑚 ∈ ℐ :

1√
𝑛
|
⟨︀
𝜎(𝑖), 𝑌𝑖(𝜏𝑖)

⟩︀
| ≤ 2−𝐸𝑛 , 1 ≤ 𝑖 ≤ 𝑚

}︂
.

Observe that, with these notation, we have

𝑁(𝛽, 𝜂,𝑚,𝐸𝑛, ℐ) = |𝒮(𝛽, 𝜂,𝑚,𝐸𝑛, ℐ)|.

Thus, by Markov’s inequality

P (𝒮(𝛽, 𝜂,𝑚,𝐸𝑛, ℐ) ̸= ∅) = P (𝑁(𝛽, 𝜂,𝑚,𝐸𝑛, ℐ) ≥ 1) ≤ E[𝑁(𝛽, 𝜂,𝑚,𝐸𝑛, ℐ)].

We will establish that with the parameters chosen as above, E[𝑁(𝛽, 𝜂,𝑚,𝐸𝑛, ℐ)] =
exp(−Θ(𝑛)), which will conclude the proof.

Step 1. Cardinality upper bound. We now upper bound the number of
𝑚−tuples (𝜎(𝑖) : 1 ≤ 𝑖 ≤ 𝑚) of spin configurations with (pairwise) overlaps con-
strained to [𝛽 − 𝜂, 𝛽], that is, we upper bound the cardinality |𝑆(𝛽, 𝜂,𝑚)|. For this
we rely on Lemma 2.6.1.

Now, for 𝜎(1), there are 2𝑛 choices. Furthermore, for any fixed 𝜌 ∈ [𝛽−𝜂, 𝛽], there
exists (︂

𝑛

𝑛1−𝜌
2

)︂
spin configurations 𝜎′ for which 1

𝑛
⟨𝜎, 𝜎′⟩ = 𝜌. With this, the number of choices for
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𝜎(2) evaluates ∑︁
𝜌:𝛽−𝜂≤𝜌≤𝛽,𝑛𝜌∈Z

(︂
𝑛

𝑛1−𝜌
2

)︂
.

With this, the number of all such 𝑚−tuples (𝜎(𝑖) : 1 ≤ 𝑖 ≤ 𝑚) with 𝑛−1
⟨︀
𝜎(𝑖), 𝜎(𝑗)

⟩︀
∈

[𝛽 − 𝜂, 𝛽], 1 ≤ 𝑖 < 𝑗 ≤ 𝑚, is at most

2𝑛

(︃ ∑︁
𝜌:𝛽−𝜂≤𝜌≤𝛽,𝑛𝜌∈Z

(︂
𝑛

𝑛1−𝜌
2

)︂)︃𝑚−1

. (2.71)

Observe that with our choice of parameters where 1− 𝛽 = 𝑜𝑛(1) and 𝜂 = 𝑜𝑛(1),

max
𝜌:𝜌∈[𝛽−𝜂,𝛽]

𝜌𝑛∈Z

(︂
𝑛

𝑛1−𝜌
2

)︂
=

(︂
𝑛

𝑛1−𝛽+𝜂
2

)︂
. (2.72)

Recalling (2.70) and the fact 𝑚 = 𝜔𝑛(1), and therefore 𝑚−1 = 𝑜𝑛(1), we have

1− 𝛽 + 𝜂 = (1− 𝛽)

(︂
1 +

1

2𝑚

)︂
= (1− 𝛽)(1 + 𝑜𝑛(1)).

Consequently, using (2.69), we conclude

𝑛
1− 𝛽 + 𝜂

2
=
𝑛

2
(1− 𝛽)(1 + 𝑜𝑛(1)) (2.73)

=
𝑛

2

2𝑔(𝑛)

𝜑(𝑛)
√︀
𝑛 log2 𝑛

(1 + 𝑜𝑛(1)) (2.74)

=
𝑔(𝑛)

√
𝑛

𝜑(𝑛)
√︀
log2 𝑛

(1 + 𝑜𝑛(1)) (2.75)

=
𝑛𝑔(𝑛)

𝐸𝑛

(1 + 𝑜𝑛(1)). (2.76)

Next, observe that

𝑔(𝑛) = 𝑜
(︀
𝜑(𝑛)2

)︀
= 𝑜

(︂
𝐸2

𝑛

𝑛 log2 𝑛

)︂
= 𝑜 (𝐸𝑛) ,

as 𝐸𝑛 = 𝑜 (𝑛) which is trivially 𝑜 (𝑛 log2 𝑛). Thus, it follows from (2.76) that 𝑛1−𝛽+𝜂
2

=

𝑜(𝑛). Thus, Lemma 2.6.1 applies. As a sanity check, we also verify 𝑛1−𝛽+𝜂
2

= 𝜔(1), so
that the counting bound is not vacuous: using (2.64) and (2.75), we have 𝜑(𝑛)−1 =

𝜔

(︂√︁
log2 𝑛

𝑛

)︂
. Thus

𝑛
1− 𝛽 + 𝜂

2
= 𝜔(𝑔(𝑛)) = 𝜔(1).
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We now proceed to control the term(︂
𝑛

𝑛1−𝛽+𝜂
2

)︂
.

As we have verified, 𝑛1−𝛽+𝜂
2

= 𝑜(𝑛). Thus we are indeed in the setting of Lemma 2.6.1.

Observe that using (2.76),

log2
𝑛

𝑛1−𝛽+𝜂
2

= log2
𝐸𝑛

𝑔(𝑛)
= 𝑂 (log2 𝑛) ,

since 𝐸𝑛 = 𝑜(𝑛). We now apply Lemma 2.6.1 to conclude that(︂
𝑛

𝑛1−𝛽+𝜂
2

)︂
= exp2

(︂
(1 + 𝑜𝑛(1))

𝑛𝑔(𝑛)

𝐸𝑛

𝑂 (log2 𝑛)

)︂
= exp2

(︂
𝑂

(︂
𝑛𝑔(𝑛)

𝐸𝑛

log2 𝑛

)︂)︂
.

(2.77)
Note also that by (2.68)

|[𝑛𝛽 − 𝑛𝜂, 𝑛𝛽] ∩ Z| = 𝑂(𝑛𝜂)

= 𝑂(𝑔(𝑛)).

Consequently, using (2.72), (2.77), the fact 𝐸𝑛 = 𝜑(𝑛)
√︀
𝑛 log2 𝑛 and the cardinality

bound above in this order

∑︁
𝜌:𝛽−𝜂≤𝜌≤𝛽,𝜌𝑛∈Z

(︂
𝑛

𝑛1−𝜌
2

)︂
≤ exp2

(︃
𝑂

(︃
𝑔(𝑛)

√︀
𝑛 log2 𝑛

𝜑(𝑛)

)︃
+𝑂(log2 𝑔(𝑛))

)︃
.

Now, since 1
𝜑
= 𝜔

(︂√︁
log2 𝑛

𝑛

)︂
, we have

𝑔(𝑛)
√︀
𝑛 log2 𝑛

𝜑(𝑛)
= 𝜔(𝑔(𝑛) log2 𝑛);

and therefore the term, 𝑂(log2 𝑔(𝑛)) appearing in the bound above, is lower order.
Thus we conclude

∑︁
𝜌:𝛽−𝜂≤𝜌≤𝛽:𝜌𝑛∈Z

(︂
𝑛

𝑛1−𝜌
2

)︂
≤ exp2

(︃
𝑂

(︃
𝑔(𝑛)

√︀
𝑛 log2 𝑛

𝜑(𝑛)

)︃)︃
. (2.78)

We now return back to the earlier bound on the cardinality of the 𝑚−tuples with
overlaps in [𝛽 − 𝜂, 𝛽] as per (2.71). Since 𝑚 = 𝜔𝑛(1), it holds 𝑚− 1 = 𝑚(1 + 𝑜𝑛(1)).
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With this, we obtain

2𝑛

(︃ ∑︁
𝜌:𝛽−𝜂≤𝜌≤𝛽:𝜌𝑛∈Z

(︂
𝑛

𝑛1−𝜌
2

)︂)︃𝑚−1

≤ exp2

(︃
𝑛+ (𝑚− 1)𝑂

(︃
𝑔(𝑛)

√︀
𝑛 log2 𝑛

𝜑(𝑛)

)︃)︃

≤ exp2

(︃
𝑛+𝑂

(︃
𝑚𝑔(𝑛)

√︀
𝑛 log2 𝑛

𝜑(𝑛)

)︃)︃

= exp2

(︂
𝑛+𝑂

(︂
𝑛𝑔(𝑛)

𝜑(𝑛)2

)︂)︂
.

Consequently,

|𝑆(𝛽, 𝜂,𝑚)| ≤ exp2

(︂
𝑛+𝑂

(︂
𝑛𝑔(𝑛)

𝜑(𝑛)2

)︂)︂
≤ exp2(𝑛+ 𝑜(𝑛)), (2.79)

since 𝑔(𝑛) = 𝑜 (𝜑(𝑛)2).
Step 2. Upper bounding the probability. For the energy exponent 𝐸𝑛

defined earlier, suppose that ℛ is the region

ℛ =
[︀
−2−𝐸𝑛 , 2−𝐸𝑛

]︀
×
[︀
−2−𝐸𝑛 , 2−𝐸𝑛

]︀
× · · · ×

[︀
−2−𝐸𝑛 , 2−𝐸𝑛

]︀
⊂ R𝑚.

Fix 𝜏1, . . . , 𝜏𝑚 ∈ ℐ, and fix any 𝑚−tuple, (𝜎(𝑖) : 1 ≤ 𝑖 ≤ 𝑚) ∈ 𝑆(𝛽, 𝜂,𝑚).
Recall 𝑌𝑖(𝜏𝑖), 1 ≤ 𝑖 ≤ 𝑚 from Definition 2.2.1 and 𝑍𝑖 =

1√
𝑛

⟨︀
𝜎(𝑖), 𝑌𝑖(𝜏𝑖)

⟩︀ 𝑑
= 𝒩 (0, 1),

1 ≤ 𝑖 ≤ 𝑚.
Let Σ denotes the covariance matrix of the (centered) vector (𝑍𝑖 : 1 ≤ 𝑖 ≤ 𝑚) ∈

R𝑚.
The probability we want to upper bound is the following:

P ((𝑍𝑖 : 1 ≤ 𝑖 ≤ 𝑚) ∈ ℛ) = (2𝜋)−
𝑚
2 |Σ|− 1

2

∫︁
ℛ⊂R𝑚

exp

(︂
−1

2
𝑥𝑇Σ−1𝑥

)︂
𝑑𝑥.

Since provided |Σ| ≠ 0, exp
(︀
−1

2
𝑥𝑇Σ−1𝑥

)︀
≤ 1 for any 𝑥 ∈ R𝑚; we upper bound the

probability with

P ((𝑍𝑖 : 1 ≤ 𝑖 ≤ 𝑚) ∈ ℛ) ≤ (2𝜋)−
𝑚
2 |Σ|− 1

2Vol(ℛ) = 2
𝑚
2 𝜋−𝑚

2 |Σ|− 1
22−𝑚𝐸𝑛 . (2.80)

Studying the covariance matrix, Σ. The lines below are almost identical to
Step II in the proof of Theorem 2.2.3; and kept for convenience.

To control the probability in (2.80), we study the covariance matrix Σ. In par-
ticular, our goal is to lower bound |Σ| away from zero, uniformly for all choices of
(𝜎(𝑖) : 1 ≤ 𝑖 ≤ 𝑚) ∈ 𝑆(𝛽, 𝜂,𝑚), and for every 𝜏1, . . . , 𝜏𝑚 ∈ ℐ.

Using the exact same route as in Step II of the proof of Theorem 2.2.3, we arrive
at the conclusion that Σ ∈ R𝑚×𝑚 has the following structure:

Σ𝑖𝑖 = 1, for 1 ≤ 𝑖 ≤ 𝑚; and Σ𝑖𝑗 = Σ𝑗𝑖 = 𝛾𝑖𝛾𝑗Σ̄𝑖𝑗, for 1 ≤ 𝑖 < 𝑗 ≤ 𝑚,
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where Σ̄𝑖𝑗 = Σ̄𝑗𝑖 = 𝜌𝑖𝑗 = 1
𝑛

⟨︀
𝜎(𝑖), 𝜎(𝑗)

⟩︀
, 1 ≤ 𝑖 < 𝑗 ≤ 𝑚. Here, 𝛾𝑖 =

√︀
1− 𝜏 2𝑖 ,

1 ≤ 𝑖 ≤ 𝑚.

Namely, Σ̄ ∈ R𝑚×𝑚 is an auxiliary matrix introduced for studying Σ ∈ R𝑚×𝑚,
and has the structure:

Σ̄𝑖𝑖 = 1, for 1 ≤ 𝑖 ≤ 𝑚; and Σ̄𝑖𝑗 = Σ̄𝑗𝑖 = 𝜌𝑖𝑗, for 1 ≤ 𝑖 < 𝑗 ≤ 𝑚.

Now, let 𝐴 = diag(𝛾1, . . . , 𝛾𝑚) ∈ R𝑚×𝑚 be a diagonal matrix. It follows that

Σ = 𝐴Σ̄𝐴+ (𝐼 − 𝐴2). (2.81)

We next study Σ̄. To that end, define the matrix ̂︀Σ ∈ R𝑚×𝑚, where ̂︀Σ𝑖𝑖 = 1 for
1 ≤ 𝑖 < 𝑗 ≤ 𝑚; and ̂︀Σ𝑖𝑗 = ̂︀Σ𝑗𝑖 = 𝛽 for 1 ≤ 𝑖 < 𝑗 ≤ 𝑚. Observe that

̂︀Σ = (1− 𝛽)𝐼𝑚 + 𝛽11𝑇 .

Now, the spectrum of the matrix 11𝑇 ∈ R𝑚×𝑚 consists of the eigenvalue 𝑚 with
multiplicity one; and eigenvalue 0 with multiplicity 𝑚 − 1. Furthermore, since ̂︀Σ
is obtained by applying a rank-1 perturbation to a multiple of identity matrix, its
spectrum consists of the eigenvalue 1−𝛽+𝛽𝑚, that is, 1+𝛽(𝑚−1) with multiplicity
one; and 1−𝛽 with multiplicity 𝑚−1. Since 1+𝛽(𝑚−1) and 1−𝛽 are both positive,
this (symmetric) matrix is also positive definite.

With this notation, we now express Σ̄ of interest as

Σ̄ = ̂︀Σ + 𝐸,

where the (symmetric) perturbation matrix 𝐸 ∈ R𝑚×𝑚 satisfies 𝐸𝑖𝑖 = 0 for 1 ≤ 𝑖 ≤ 𝑚,
and |𝐸𝑖𝑗| = |𝐸𝑗𝑖| ≤ 𝜂 for 1 ≤ 𝑖 < 𝑗 ≤ 𝑚. We will bound the spectrum of Σ̄
away from zero, using Wielandt-Hoffman inequality, Theorem 2.6.2. To that end, let
𝜆1 = 1 + (𝑚 − 1)𝛽 ≥ 𝜆2 = · · · = 𝜆𝑚 = 1 − 𝛽 > 0 denotes the eigenvalues of ̂︀Σ; and
let 𝜇1 ≥ 𝜇2 ≥ · · · ≥ 𝜇𝑚 denotes the eigenvalues of Σ̄ = ̂︀Σ + 𝐸. Then, Theorem 2.6.2
yields ∑︁

1≤𝑗≤𝑚

(𝜇𝑗 − 𝜆𝑗)
2 ≤ ‖𝐸‖2𝐹 ≤ 𝑚(𝑚− 1)𝜂2 < (𝑚𝜂)2 =

(︂
1− 𝛽

2

)︂2

,

where we use the facts 𝐸𝑖𝑖 = 0, |𝐸𝑖𝑗| ≤ 𝜂 for the second inequality; and (2.70) for the
last equality. With this,

1− 𝛽

2
> |𝜇𝑚 − 𝜆𝑚| ⇒ 𝜇𝑚 >

1− 𝛽

2
= 𝜈𝑛,

using (2.69). Note that, this bound is uniform across all (𝜎(𝑖) : 1 ≤ 𝑖 ≤ 𝑚) ∈
𝑆(𝛽, 𝜂,𝑚): no matter which 𝑚−tuple (𝜎(𝑖) : 1 ≤ 𝑖 ≤ 𝑚) ∈ 𝑆(𝛽, 𝜂,𝑚) is chosen, the
determinant of the (induced) covariance matrix Σ satisfies |Σ̄| > 𝜈𝑚𝑛 . Consequently,
|Σ̄|− 1

2 < 𝜈
−𝑚

2
𝑛 . Having controlled the determinant of Σ̄, we now return back to the

original covariance matrix Σ as per (2.81). Note that, under the aforementioned choice
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of parameters, Σ̄ is invertible. Furthermore, Σ̄ is, by construction, a covariance matrix
thus has non-negative eigenvalues 𝜆1(Σ̄) ≥ · · · ≥ 𝜆𝑚(Σ̄) > 0 with

𝑚 = trace(Σ̄) ≥ 𝑚𝜆𝑚(Σ̄).

Thus we have
𝜆𝑚(Σ̄) ≤ 1. (2.82)

Now, observe that as Σ̄ is positive semidefinite, so is 𝐴Σ̄𝐴, appearing in the equation
(2.81). Furthermore, as 1 − 𝛾2𝑖 ≥ 0 for 1 ≤ 𝑖 ≤ 𝑚, the matrix 𝐼 − 𝐴2 is positive
semidefinite as well. We now study the smallest eigenvalue 𝜆𝑚(Σ).

Lemma 2.6.5. For any choices of 𝜏1, . . . , 𝜏𝑚 ∈ ℐ, it is the case that 𝜆𝑚(Σ) ≥ 𝜆𝑚(Σ̄).
Hence,

|Σ| ≥ (𝜆𝑚(Σ̄))
𝑚 > 𝜈𝑚𝑛 > 0,

which is independent of the indices 𝜏1, . . . , 𝜏𝑚.

Proof. Recall the Courant-Fischer-Weyl variational characterization of the smallest
singular value 𝜆𝑚(Σ) of a Hermitian matrix Σ ∈ R𝑚×𝑚 [170]:

𝜆𝑚(Σ) = inf
𝑣:‖𝑣‖2=1

𝑣𝑇Σ𝑣.

Notice furthermore that for the matrix Σ̄ ∈ R𝑚×𝑚, and any 𝑣′ ∈ R𝑚, we also have

(𝑣′)𝑇 Σ̄𝑣′ ≥ 𝜆𝑚(Σ̄)‖𝑣′‖22. (2.83)

Now let 𝑣 ∈ R𝑚 have unit ℓ2 norm (‖𝑣‖2 = 1). We have,

𝑣𝑇Σ𝑣 = 𝑣𝑇 (𝐼 − 𝐴2)𝑣 + 𝑣𝑇𝐴Σ̄𝐴𝑣

≥
∑︁

1≤𝑖≤𝑚

(1− 𝛾2𝑖 )𝑣
2
𝑖 + 𝜆𝑚(Σ̄)‖𝐴𝑣‖22

=
∑︁

1≤𝑖≤𝑚

(1− 𝛾2𝑖 + 𝜆𝑚(Σ̄)𝛾
2
𝑖 )𝑣

2
𝑖

≥ 𝜆𝑚(Σ̄)‖𝑣‖22
= 𝜆𝑚(Σ̄),

where the first equality uses (2.81), the first inequality uses (2.83), and the last
inequality uses 𝜆𝑚(Σ̄) ≤ 1 as established in (2.82). Since for any 𝑣 ∈ R𝑚 with unit
norm we have 𝑣𝑇Σ𝑣 ≥ 𝜆𝑚(Σ̄), we thus take the infimum over all unit norm 𝑣 and
conclude

𝜆𝑚(Σ) ≥ 𝜆𝑚(Σ̄).

Finally
|Σ| =

∏︁
1≤𝑗≤𝑚

𝜆𝑗(Σ) ≥ 𝜆𝑚(Σ)
𝑚 ≥ 𝜆𝑚(Σ̄)

𝑚 > 𝜈𝑚𝑛 ,

as desired.
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As a consequence of this lemma, we obtain that

|Σ|− 1
2 < 𝜈

−𝑚
2

𝑛

uniformly for all (𝜎(𝑖) : 1 ≤ 𝑖 ≤ 𝑚) ∈ 𝑆(𝛽, 𝜂,𝑚), and every 𝜏1, . . . , 𝜏𝑚 ∈ ℐ; meaning
that the upper bound depends only on the choice of 𝑚, and 𝜈𝑛 induced by the overlap
value 𝛽 (= 1− 2𝜈𝑛).

Equipped with this, we now return to the probability upper bound (2.80):

P ((𝑍𝑖 : 1 ≤ 𝑖 ≤ 𝑚) ∈ ℛ) ≤ 2
𝑚
2 𝜋−𝑚

2 |Σ|− 1
22−𝑚𝐸𝑛

≤ exp2

(︂
𝑚

2
− 𝑚

2
log2 𝜋 +

𝑚

2
log2

1

𝜈𝑛
−𝑚𝐸𝑛

)︂
.

In particular, taking union bound over all choices of 𝜏1, . . . , 𝜏𝑚 ∈ ℐ, and recalling
there are 𝑛𝑂(𝑚) = exp2(𝑂(𝑚 log2 𝑛)) such choices, we have

E
[︂
1

{︂
∃𝜏1, . . . , 𝜏𝑚 ∈ ℐ :

1√
𝑛
|
⟨︀
𝜎(𝑖), 𝑌𝑖(𝜏𝑖)

⟩︀
| ≤ 2−𝐸𝑛 , 1 ≤ 𝑖 ≤ 𝑚

}︂]︂
(2.84)

= exp2

(︂
𝑂(𝑚 log2 𝑛) +

𝑚

2
− 𝑚

2
log2 𝜋 +

𝑚

2
log2

1

𝜈𝑛
−𝑚𝐸𝑛

)︂
. (2.85)

We are now ready to upper bound the expectation.

Step 3. Upper bounding the expectation. Using the linearity of expectation,
and the fact 𝑂 (𝑛𝑔(𝑛)/𝜑(𝑛)2) = 𝑜(𝑛) following from (2.65) we have

E[𝑁(𝛽, 𝜂,𝑚,𝐸𝑛, ℐ)] ≤ exp2

(︂
𝑛+ 𝑜(𝑛) +𝑂(𝑚 log2 𝑛) +

𝑚

2
− 𝑚

2
log2 𝜋 +

𝑚

2
log2

1

𝜈𝑛
−𝑚𝐸𝑛

)︂
.

(2.86)
where we used the probability/expectation bound above, and the cardinality bound
per (2.79). Keep in mind that 𝑚𝐸𝑛 = 2𝑛 per (2.67). Thus 𝑛 − 𝑚𝐸𝑛 = −𝑛. Now,
since 𝐸𝑛 = 𝜔𝑛(1), we simultaneously have

𝑚

2
,
𝑚

2
log2 𝜋 = 𝑜(𝑚𝐸𝑛) = 𝑜(𝑛).

Since 𝐸𝑛 = 𝜔(
√︀
𝑛 log2 𝑛), we also have

𝑂(𝑚 log2 𝑛) = 𝑜(𝑚𝐸𝑛) = 𝑜(𝑛).

Finally, we study the
𝑚

2
log2

1

𝜈𝑛
term. Recalling 𝜈𝑛 from (2.66), we obtain

log2
1

𝜈𝑛
=

(︂
1

2
log2 𝑛+

1

2
log2 log2 𝑛+ log2 𝜑(𝑛)− log2 𝑔(𝑛)

)︂
= 𝑂(log2 𝑛),
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using (2.64) and (2.65). Applying now (2.67) and the fact 𝜑(𝑛) = 𝜔𝑛(1), we obtain

𝑚 log2
1

𝜈𝑛
= 𝑂

(︃√︀
𝑛 log2 𝑛

𝜑(𝑛)

)︃
= 𝑜

(︁√︀
𝑛 log2 𝑛

)︁
= 𝑜(𝑛).

Consequently,

E[𝑁(𝛽, 𝜂,𝑚,𝐸𝑛, ℐ)] ≤ exp2 (−𝑛+ 𝑜(𝑛)) = exp2(−Θ(𝑛)).

Finally, applying Markov’s inequality, we conclude

P (𝒮(𝛽, 𝜂,𝑚,𝐸𝑛) ̸= ∅) ≤ exp (−Θ(𝑛)) ,

as claimed. This concludes the proof when

𝜔
(︁√︀

𝑛 log2 𝑛
)︁
≤ 𝐸𝑛 ≤ 𝑜(𝑛).

Case 2: The Special Case, 𝐸𝑛 = 𝜔
(︁
𝑛 · log−1/5+𝜖 𝑛

)︁
.

Proof. Let 𝐸𝑛 = 𝜔
(︁
𝑛 · log−1/5+𝜖 𝑛

)︁
for an 𝜖 ∈ (0, 1

5
). We set

𝑔(𝑛) ≜ 𝑛 ·
(︂
𝐸𝑛

𝑛

)︂2+ 𝜖
8

.

Take 𝑚,𝛽, and 𝜂 per (2.4), that is

𝑚 =
2𝑛

𝐸𝑛

, 𝛽 = 1− 2𝑔(𝑛)

𝐸𝑛

, and 𝜂 =
𝑔(𝑛)

2𝑛
.

We next introduce several auxiliary quantities. Set 𝑠(𝑛) ≜ 𝐸𝑛/𝑛, and 𝑧(𝑛) = 𝑠(𝑛)1+
𝜖
8 .

In terms of 𝑠(𝑛) and 𝑧(𝑛); the parameters 𝑔(𝑛),𝑚, 𝛽, 𝜂 chosen as above satisfy now
the relations:

𝑔(𝑛) = 𝑛 · 𝑠(𝑛) · 𝑧(𝑛) where 𝑧(𝑛) = 𝑠(𝑛)1+
𝜖
8 , (2.87)

𝑚 =
2𝑛

𝐸𝑛

=
2

𝑠(𝑛)
, (2.88)

and
𝛽 = 1− 2

𝑔(𝑛)

𝐸𝑛

= 1− 2𝑧(𝑛) and 𝜂 =
𝑔(𝑛)

2𝑛
=
𝑠(𝑛)𝑧(𝑛)

2
. (2.89)

We also have
𝜔
(︁
log−1/5+𝜖 𝑛

)︁
≤ 𝑠(𝑛) ≤ 𝑜(1). (2.90)
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Moreover, analogous to previous case, define 𝜈𝑛 = 𝑔(𝑛)/𝐸𝑛, which now becomes

𝜈𝑛 =
𝑔(𝑛)

𝐸𝑛

= 𝑧(𝑛) = 𝑠(𝑛)1+
𝜖
8 . (2.91)

This is clearly 𝑜𝑛(1) due to (2.90). Furthermore, the length of the interval [𝑛𝛽−𝑛𝜂, 𝑛𝛽]
is Θ(𝑛𝜂) which is Θ(𝑔(𝑛)) = 𝜔𝑛(1). Hence, the interval is not vacuous. Moreover, in
terms of this parameter, the expressions 𝛽 = 1− 2𝜈𝑛, 𝜂 = 𝜈𝑛/𝑚 and 𝜂 = 1−𝛽

2𝑚
are still

valid.

Most of the steps of the proof remains the same as the previous case. Below, we
only point out the necessary changes.

Step 1. Cardinality upper Bound. The expressions (2.71) and (2.72) for the
counting term remain the same. We now analyze the 𝑛1−𝛽+𝜂

2
term. Using (2.89), we

have

𝑛
1− 𝛽 + 𝜂

2
=
𝑛

2

(︂
1− (1− 2𝑧(𝑛)) +

𝑠(𝑛)𝑧(𝑛)

2

)︂
(2.92)

=
𝑛

2

(︂
2𝑧(𝑛) +

𝑠(𝑛)𝑧(𝑛)

2

)︂
(2.93)

= 𝑛𝑧(𝑛)

(︂
1 +

𝑠(𝑛)

4

)︂
(2.94)

= 𝑛𝑧(𝑛) (1 + 𝑜𝑛(1)) , (2.95)

where the last step uses (2.90). Since 𝑧(𝑛) = 𝑠(𝑛)1+
𝜖
8 = 𝑜(1) as well, we obtain

𝑛1−𝛽+𝜂
2

to be 𝑜(𝑛). Hence, Lemma 2.6.1 applies. Applying it with,

𝑘 = 𝑛
1− 𝛽 + 𝜂

2
= 𝑛𝑧(𝑛)(1 + 𝑜𝑛(1)) = 𝑛𝑠(𝑛)1+

𝜖
8 (1 + 𝑜𝑛(1)),

the expression (2.77) modifies to(︂
𝑛

𝑛1−𝛽+𝜂
2

)︂
= exp2

(︂
(1 + 𝑜𝑛(1))𝑛𝑠(𝑛)

1+ 𝜖
8 log

1

𝑠(𝑛)1+
𝜖
8

)︂
(2.96)

= exp2

(︂
𝑂

(︂
𝑛𝑠(𝑛)1+

𝜖
8 log

1

𝑠(𝑛)

)︂)︂
. (2.97)

Next,
⃒⃒⃒
[𝑛𝛽 − 𝑛𝜂, 𝑛𝛽] ∩ Z

⃒⃒⃒
= 𝑂(𝑛𝜂) = 𝑂(𝑔(𝑛)), and thus this term contributes to

𝑂 (log2 𝑔(𝑛)) in the exponent. Using 𝑔(𝑛) = 𝑛𝑠(𝑛)2+
𝜖
8 per (2.87) as well as 𝑠(𝑛) ≥

𝜔
(︁
log−

1
5
+𝜖 𝑛

)︁
per (2.90), we find

𝑛 log−𝑂(1) 𝑛 ≤ 𝑔(𝑛) ≤ 𝑛 =⇒ log2 𝑔(𝑛) = Θ (log2 𝑛) .
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Using 1/𝑠(𝑛) = 𝜔𝑛(1), we have

𝑛𝑠(𝑛)1+
𝜖
8 log

1

𝑠(𝑛)
= 𝜔

(︀
𝑛𝑠(𝑛)1+

𝜖
8

)︀
= 𝜔

(︁
log2 𝑛

)︁
= 𝜔

(︁
log2 𝑔(𝑛)

)︁
. (2.98)

Consequently, ∑︁
𝜌:𝛽−𝜂≤𝜌≤𝛽,𝜌𝑛∈Z

(︂
𝑛

𝑛1−𝜌
2

)︂
≤ 𝑂(𝑔(𝑛)) ·

(︂
𝑛

𝑛1−𝛽+𝜂
2

)︂
(2.99)

≤ exp2

(︂
𝑂

(︂
𝑛𝑠(𝑛)1+

𝜖
8 log

1

𝑠(𝑛)

)︂)︂
, (2.100)

where the second step uses (2.97) and (2.98). Next,

2𝑛

(︃ ∑︁
𝜌:𝛽−𝜂≤𝜌≤𝛽:𝜌𝑛∈Z

(︂
𝑛

𝑛1−𝜌
2

)︂)︃𝑚−1

= exp2

(︃
𝑛+ (𝑚− 1) log2

(︃ ∑︁
𝜌:𝛽−𝜂≤𝜌≤𝛽,𝜌𝑛∈Z

(︂
𝑛

𝑛1−𝜌
2

)︂)︃)︃
.

(2.101)
Applying (2.100) in (2.101), we obtain the following modification for the cardinality
bound appearing in (2.79) :

|𝑆(𝛽, 𝜂,𝑚)| ≤ exp2

(︂
𝑛+𝑂

(︂
𝑚𝑛𝑠(𝑛)1+

𝜖
8 log

1

𝑠(𝑛)

)︂)︂
. (2.102)

Step 2. Upper bounding the probability. The entire analysis of the probabilis-
tic term remains intact. In particular, (2.85) remains valid. (The 𝜈𝑛 term appearing
in (2.85) is now given by (2.91).)

We are now ready to upper bound the first moment.

Step 3. Upper bounding the expectation. Recalling (2.90) and (2.91), we
obtain

log
1

𝜈𝑛
= Θ

(︂
log

1

𝑠(𝑛)

)︂
= 𝑂 (log log 𝑛) = 𝑜 (𝐸𝑛) .

Consequently, the term 𝑚
2
log2

1
𝜈𝑛

appearing in (2.85) is 𝑜(𝑚𝐸𝑛). The remaining terms,
𝑂(𝑚 log2 𝑛), 𝑚

2
, and 𝑚

2
log2 𝜋, are still 𝑜(𝑚𝐸𝑛) as in the first case, since 𝐸𝑛 = 𝜔(1).

Hence, (2.85) becomes

exp2

(︂
𝑂(𝑚 log2 𝑛) +

𝑚

2
− 𝑚

2
log2 𝜋 +

𝑚

2
log2

1

𝜈𝑛
−𝑚𝐸𝑛

)︂
= exp2 (−𝑚𝐸𝑛 + 𝑜 (𝑚𝐸𝑛)) .

(2.103)
After incorporating the modified cardinality bound (2.102) into the probability bound (2.103),
the expression (2.86) for the first moment now becomes

E[𝑁(𝛽, 𝜂,𝑚,𝐸𝑛, ℐ)] ≤ exp2

(︂
𝑛+𝑂

(︂
𝑚𝑛𝑠(𝑛)1+

𝜖
8 log

1

𝑠(𝑛)

)︂
−𝑚𝐸𝑛 + 𝑜(𝑚𝐸𝑛)

)︂
.

(2.104)
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Recalling 𝑚 = 2𝑛/𝐸𝑛, this bound is

exp2

(︂
−𝑛+𝑂

(︂
𝑚𝑛𝑠(𝑛)1+

𝜖
8 log

1

𝑠(𝑛)

)︂
+ 𝑜(𝑛)

)︂
. (2.105)

To finish the proof, that is to establish E[𝑁(𝛽, 𝜂,𝑚,𝐸𝑛, ℐ)] ≤ exp(−Θ(𝑛)), it suffices
to verify

𝑂

(︂
𝑚𝑛𝑠(𝑛)1+

𝜖
8 log

1

𝑠(𝑛)

)︂
= 𝑜(𝑛).

Recall by (2.88) that 𝑚 = 2𝑠(𝑛)−1. Hence

𝑚𝑛𝑠(𝑛)1+
𝜖
8 log

1

𝑠(𝑛)
= 𝑛

(︂
2𝑠(𝑛)

𝜖
8 log

1

𝑠(𝑛)

)︂
= 𝑜(𝑛),

where we used the fact that 𝑠(𝑛) = 𝑜𝑛(1) per (2.89) and thus

2𝑠(𝑛)
𝜖
8 log

1

𝑠(𝑛)
= 𝑜𝑛(1), ∀𝜖 > 0.

Hence, the expression in (2.105) is indeed exp2 (−Θ(𝑛)). This concludes the proof
when

𝜔
(︁
𝑛 · log− 1

5
+𝜖 𝑛

)︁
≤ 𝐸𝑛 ≤ 𝑜(𝑛).

2.6.6 Proof of Theorem 2.2.8

We first have

𝑁𝜖 =
∑︁

𝜎∈{±1}𝑛
1

{︁
𝑛− 1

2 | ⟨𝜎,𝑋⟩ | = 𝑂(2−𝑛𝜖), 𝜎 is locally optimal
}︁
.

Hence,
E [𝑁𝜖] = 2𝑛P

(︁
𝑛− 1

2 | ⟨𝜎,𝑋⟩ | = 𝑂(2−𝑛𝜖), 𝜎 is locally optimal
)︁
.

To start with, notice 𝑛− 1
2 ⟨𝜎,𝑋⟩ 𝑑

= 𝒩 (0, 1), thus

P
(︁
𝑛− 1

2 | ⟨𝜎,𝑋⟩ | = 𝑂(2−𝑛𝜖), 𝜎 is locally optimal
)︁
≤ P

(︁
𝑛− 1

2 | ⟨𝜎,𝑋⟩ | = 𝑂(2−𝑛𝜖)
)︁

≤ 𝐶2−𝑛𝜖,

where 𝐶 > 0 is some absolute constant. Hence,

E [𝑁𝜖] ≤ 𝐶2𝑛(1−𝜖) ⇒ lim sup
𝑛→∞

1

𝑛
log2 E [𝑁𝜖] ≤ 1− 𝜖. (2.106)
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We now investigate the lower bound. To that end, let 𝑌𝑖 ≜ 𝜎𝑖𝑋𝑖. Note that 𝑌𝑖,
1 ≤ 𝑖 ≤ 𝑛, is a collection of i.i.d. standard normal random variables. Now, local
optimality of 𝜎 per Definition 2.2.7, namely,

⟨︀
𝜎(𝑖), 𝑋

⟩︀2 ≥ ⟨𝜎,𝑋⟩2 for 1 ≤ 𝑖 ≤ 𝑛 is
equivalent to ∑︁

𝑗:1≤𝑗≤𝑛,𝑗 ̸=𝑖

𝑌𝑖𝑌𝑗 ≤ 0

for 1 ≤ 𝑖 ≤ 𝑛. With this, we arrive at

{︁
𝑛− 1

2 | ⟨𝜎,𝑋⟩ | = 𝑂(2−𝑛𝜖), 𝜎 is locally optimal
}︁
=
⋂︁

1≤𝑖≤𝑛

{︃ ∑︁
1≤𝑗≤𝑛:𝑗 ̸=𝑖

𝑌𝑖𝑌𝑗 ≤ 0

}︃
∩
{︃⃒⃒⃒⃒
⃒ 1√
𝑛

∑︁
1≤𝑗≤𝑛

𝑌𝑗

⃒⃒⃒⃒
⃒ ≤ 2−𝑛𝜖

}︃
,

where we ignored the constant hidden under 𝑂(2−𝑛𝜖) for convenience.
Observe now the following union of events, that are disjoint up to a measure zero

set:{︃⃒⃒⃒⃒
⃒ 1√
𝑛

∑︁
1≤𝑗≤𝑛

𝑌𝑗

⃒⃒⃒⃒
⃒ ≤ 2−𝑛𝜖

}︃
=

{︃
−2−𝑛𝜖 ≤ 1√

𝑛

∑︁
1≤𝑗≤𝑛

𝑌𝑗 ≤ 0

}︃
∪
{︃
0 ≤ 1√

𝑛

∑︁
1≤𝑗≤𝑛

𝑌𝑗 ≤ 2−𝑛𝜖

}︃
.

This brings us{︁
𝑛− 1

2 | ⟨𝜎,𝑋⟩ | = 𝑂(2−𝑛𝜖), 𝜎 is locally optimal
}︁

=

(︃ ⋂︁
1≤𝑖≤𝑛

{︃ ∑︁
1≤𝑗≤𝑛:𝑗 ̸=𝑖

𝑌𝑖𝑌𝑗 ≤ 0

}︃
∩
{︃

1√
𝑛

∑︁
1≤𝑗≤𝑛

𝑌𝑗 ∈ [−2−𝑛𝜖, 0]

}︃)︃
⏟  ⏞  

≜ℰ1⋃︁(︃ ⋂︁
1≤𝑖≤𝑛

{︃ ∑︁
1≤𝑗≤𝑛:𝑗 ̸=𝑖

𝑌𝑖𝑌𝑗 ≤ 0

}︃
∩
{︃

1√
𝑛

∑︁
1≤𝑗≤𝑛

𝑌𝑗 ∈ [0, 2−𝑛𝜖]

}︃)︃
⏟  ⏞  

≜ℰ2

.

Note that (𝑌1, . . . , 𝑌𝑛)
𝑑
= (−𝑌1, . . . ,−𝑌𝑛). From here P(ℰ1) = P(ℰ2). Furthermore,

the events ℰ1 and ℰ2 are disjoint, up to a set of measure zero; thus P(ℰ1∪ℰ2) = 2P(ℰ2).
We now compute P(ℰ2). For convenience set 𝑆 ≜

∑︀
1≤𝑗≤𝑛 𝑌𝑗. Then the condition∑︀

1≤𝑗≤𝑛,𝑗 ̸=𝑖 𝑌𝑖𝑌𝑗 ≤ 0 is equivalent to 𝑌𝑖(𝑌𝑖 − 𝑆) ≥ 0. Namely,

⋂︁
1≤𝑖≤𝑛

{︃ ∑︁
1≤𝑗≤𝑛:𝑗 ̸=𝑖

𝑌𝑖𝑌𝑗 ≤ 0

}︃
∩
{︁
𝑛− 1

2𝑆 ∈ [0, 2−𝑛𝜖]
}︁
=
⋂︁

1≤𝑖≤𝑛

{𝑌𝑖 /∈ [0, 𝑆]}∩
{︁
𝑛− 1

2𝑆 ∈ [0, 2−𝑛𝜖]
}︁
.

Define now the auxiliary variables

𝑌𝑖 ≜ 𝑌𝑖 −
1

𝑛
𝑆, 1 ≤ 𝑖 ≤ 𝑛.

Clearly, (𝑌1, . . . , 𝑌𝑛) and 𝑆 are jointly normal. Notice, furthermore, that for any
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fixed 1 ≤ 𝑖 ≤ 𝑛, E
[︀
𝑌𝑖𝑆
]︀
= 0 = E

[︀
𝑌𝑖
]︀
= E [𝑆]. This yields (𝑌1, . . . , 𝑌𝑛) and 𝑆 are

independent. Furthermore, 𝑛− 1
2𝑆

𝑑
= 𝒩 (0, 1).

With these, we obtain

P(ℰ2) = P

(︃ ⋂︁
1≤𝑖≤𝑛

{︂
𝑌𝑖 /∈

[︂
− 1

𝑛
𝑆,
𝑛− 1

𝑛
𝑆

]︂}︂
∩
{︁
𝑛− 1

2𝑆 ∈ [0, 2−𝑛𝜖]
}︁)︃

(2.107)

=

∫︁
𝑧∈[0,2−𝑛𝜖]

P

(︃ ⋂︁
1≤𝑖≤𝑛

{︂
𝑌𝑖 /∈

[︂
− 1

𝑛
𝑆,
𝑛− 1

𝑛
𝑆

]︂}︂ ⃒⃒⃒
𝑛− 1

2𝑆 = 𝑧

)︃
𝜙(𝑧) 𝑑𝑧 (2.108)

=

∫︁
𝑧∈[0,2−𝑛𝜖]

P

(︃ ⋂︁
1≤𝑖≤𝑛

{︂
𝑌𝑖 /∈

[︂
− 1√

𝑛
𝑧,
𝑛− 1√

𝑛
𝑧

]︂}︂)︃
𝜙(𝑧) 𝑑𝑧 (2.109)

=

∫︁
𝑧∈[0,2−𝑛𝜖]

(︃
1− P

(︃ ⋃︁
1≤𝑖≤𝑛

{︂
𝑌𝑖 ∈

[︂
− 1√

𝑛
𝑧,
𝑛− 1√

𝑛
𝑧

]︂}︂)︃)︃
𝜙(𝑧) 𝑑𝑧 (2.110)

≥
∫︁
𝑧∈[0,2−𝑛𝜖]

(︂
1− 𝑛P

(︂
𝑌1 ∈

[︂
− 1√

𝑛
𝑧,
𝑛− 1√

𝑛
𝑧

]︂)︂)︂
𝜙(𝑧) 𝑑𝑧 (2.111)

≥
∫︁
𝑧∈[0,2−𝑛𝜖]

(︂
1− 𝑛P

(︂
𝒩 (0, 1) ∈

[︂
− 1√

𝑛− 1
2−𝑛𝜖,

√
𝑛− 1 · 2−𝑛𝜖

]︂)︂)︂
𝜙(𝑧) 𝑑𝑧

(2.112)

≥
∫︁
𝑧∈[0,2−𝑛𝜖]

(︂
1− 𝑛2

√
𝑛− 1

2−𝑛𝜖

)︂
𝜙(𝑧) 𝑑𝑧 (2.113)

=

(︂
1− 𝑛2

√
𝑛− 1

2−𝑛𝜖

)︂
(2𝜋)−

1
22−𝑛𝜖(1 + 𝑜𝑛(1)) (2.114)

= (2𝜋)−
1
2 (1 + 𝑜𝑛(1))2

−𝑛𝜖. (2.115)

We now justify each of these lines, where 𝜙(𝑧) ≜ (2𝜋)−
1
2 exp(−𝑧2/2) being the stan-

dard normal density. (2.107) is the definition of ℰ2; (2.108) follows from the law of
total probability; (2.109) uses the fact that the random vector (𝑌𝑖 : 1 ≤ 𝑖 ≤ 𝑛) and
𝑆 are independent; (2.110) uses De Morgan’s law; (2.111) uses union bound; (2.112)
uses the fact that 𝑌1

𝑑
= 𝒩 (0, 𝑛−1

𝑛
) where 𝒩 (0, 1) is standard normal; (2.113) uses the

trivial upper bound P(𝒩 (0, 1) ∈ 𝐼) ≤ |𝐼| for any interval 𝐼; (2.114) uses the fact that
in the interval [0, 2−𝑛𝜖], 𝜙(𝑧) = (2𝜋)−

1
2 (1 + 𝑜𝑛(1)); and finally (2.115) uses the fact

1− 𝑛2(𝑛− 1)−
1
22−𝑛𝜖 = 1 + 𝑜𝑛(1).

Therefore, using (2.115) we arrive at

P
(︁
𝑛− 1

2 | ⟨𝜎,𝑋⟩ | = 𝑂(2−𝑛𝜖), 𝜎 is locally optimal
)︁
= P(ℰ1∪ℰ2) = 2P(ℰ2) ≥ 2(2𝜋)−

1
2 (1+𝑜𝑛(1))2

−𝑛𝜖.

With this, we conclude,

E[𝑁𝜖] = 2𝑛P
(︁
𝑛− 1

2 | ⟨𝜎,𝑋⟩ | = 𝑂(2−𝑛𝜖), 𝜎 is locally optimal
)︁
≥ 2(2𝜋)−

1
2 (1+𝑜𝑛(1))2

𝑛(1−𝜖).
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Thus,

lim inf
𝑛→∞

1

𝑛
log2 E [𝑁𝜖] ≥ 1− 𝜖. (2.116)

Finally, we arrive at the desired conclusion by combining (2.106) and (2.116):

lim
𝑛→∞

1

𝑛
log2 E [𝑁𝜖] = 1− 𝜖.

2.6.7 Proof of Theorem 2.3.2

The proof of Theorem 2.6.7 uses several interesting ideas. In order to present them
in a coherent way, we first provide an informal outline sketching the proof.

Outline of the Proof of Theorem 2.3.2

Fix 𝐸𝑛 (with prescribed growth condition) corresponding to the exponent of energy
level 2−𝐸𝑛 we want to rule out. We use the 𝑚−OGP property established in Theo-
rem 2.2.6. Specifically, let 𝑚 ∈ N and 1 > 𝛽 > 𝜂 > 0 be the parameters prescribed
by Theorem 2.2.6 for this choice of 𝐸𝑛.

• We first reduce the proof to the case of deterministic algorithms. That is,
instead of considering 𝒜 : R𝑛 × Ω → ℬ𝑛, we find a 𝜔* ∈ Ω, set 𝒜(·) ≜ 𝒜(·, 𝜔*);
and consider instead this deterministic choice 𝒜 : R𝑛 → ℬ𝑛 in the remainder.

• We then study a certain high-probability event. This event will establish that
for any 𝑚−tuple

(︀
𝜎(𝑖) : 1 ≤ 𝑖 ≤ 𝑚

)︀
of spin configurations that are near-optimal

with respect to independent instances 𝑋𝑖
𝑑
= 𝒩 (0, 𝐼𝑛), 1 ≤ 𝑖 ≤ 𝑚, there is

a pair 1 ≤ 𝑖 < 𝑗 ≤ 𝑚 such that 𝒪
(︀
𝜎(𝑖), 𝜎(𝑗)

)︀
is contained in an interval of

form [0, 1− 𝜂′], which is below [𝛽− 𝜂, 𝛽] interval prescribed by the OGP result,
Theorem 2.2.6.

• We then set 𝑋0
𝑑
= 𝒩 (0, 𝐼𝑛) and generate 𝑇 “replicas" 𝑋𝑖 ∈ R𝑛, i.i.d. random

vectors each with distribution 𝒩 (0, 𝐼𝑛). We then divide [0, 1] into 𝑄 equal pieces
via 0 = 𝜏0 < 𝜏1 < · · · < 𝜏𝑄 = 1; and interpolate, for each 1 ≤ 𝑖 ≤ 𝑇 , between
𝑋0 and 𝑋𝑖 in the following way:

𝑌𝑖(𝜏𝑘) =
√︁

1− 𝜏 2𝑘𝑋0 + 𝜏𝑘𝑋𝑖, 1 ≤ 𝑖 ≤ 𝑇, 0 ≤ 𝑘 ≤ 𝑄.

The numbers 𝑇 and 𝑄 will be tuned appropriately.

• We next establish that the pairwise “overlaps" are “stable" along each interpo-
lation trajectory: for 1 ≤ 𝑖 < 𝑗 ≤ 𝑇 and 0 ≤ 𝑘 ≤ 𝑄− 1, we show⃒⃒⃒

𝒪(𝑖𝑗)
(𝜏𝑘)−𝒪(𝑖𝑗)

(𝜏𝑘+1)
⃒⃒⃒

is small.

• We then use the guarantee on the probability of the success of the algorithm
to arrive at a guarantee that the algorithm will produce, for each interpolation
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trajectory 1 ≤ 𝑖 ≤ 𝑇 and time instance 0 ≤ 𝑘 ≤ 𝑄 (that is for 𝑌𝑖(𝜏𝑘) ∈ R𝑛),
a solution that is near ground-state: the solution 𝒜 (𝑌𝑖(𝜏𝑘)) ∈ ℬ𝑛 generated
achieves an objective value 2−𝐸𝑛 for (2.1). That is,

1√
𝑛
|⟨𝑌𝑖(𝜏𝑘),𝒜 (𝑌𝑖(𝜏𝑘))⟩| = 2−𝐸𝑛 .

• We then take a union bound over all subsets 𝑆 = {𝑖1, . . . , 𝑖𝑚} of [𝑇 ] of cardinality
|𝑆| = 𝑚 to extend the previous high-probability event (the event pertaining the
spin configurations that are near ground with respect to independent instances)
when the indices come from the set 𝑆. Now, 𝜏 = 0 in the beginning of the
interpolation. Thus, it is the case that for every 1 ≤ 𝑖 < 𝑗 ≤ 𝑇 ,

𝑌𝑖(𝜏) = 𝑌𝑗(𝜏) =⇒ 𝒜(𝑌𝑖(𝜏)) = 𝒜(𝑌𝑖(𝜏)),

when 𝜏 = 0. On the other hand, due to the previous property applied to this
subset 𝒮, there exists indices 1 ≤ 𝑘 < ℓ ≤ 𝑚 such that the overlap between 𝑖𝑘
and 𝑖ℓ is eventually below 𝛽 − 𝜂. Since the overlaps are stable, that is, they do
not change abruptly, this implies that there is a time 𝜏 such that the overlap
between 𝒜(𝑌𝑖𝑘(𝜏)) and 𝒜(𝑌𝑖ℓ(𝜏)) is contained in (𝛽 − 𝜂, 𝛽).

• Equipped with this, we then construct a certain graph G = (𝑉,𝐸). Specifically,
we let |𝑉 | = 𝑇 where each vertex corresponds to a replica (i.e., an interpolation
trajectory); and for 1 ≤ 𝑖 < 𝑗 ≤ 𝑚, we let (𝑖, 𝑗) ∈ 𝐸 if there is a time
𝜏 such that the overlap between 𝑌𝑖(𝜏) and 𝑌𝑗(𝜏) is contained in (𝛽 − 𝜂, 𝛽).
Moreover, each edge (𝑖, 𝑗) is colored with one of 𝑄 different colors: color the
edge (𝑖, 𝑗) ∈ 𝐸 with color 1 ≤ 𝑡 ≤ 𝑄 if 𝜏𝑡 is the first time such that the overlap
between 𝒜 (𝑌𝑖(𝜏𝑡)) and 𝒜 (𝑌𝑗(𝜏𝑡)) is contained in (𝛽 − 𝜂, 𝛽). With this, the
graph has following properties. For every subset 𝑆 ⊂ 𝑉 of |𝑆| = 𝑚 vertices,
there exists 1 ≤ 𝑖𝑆 < 𝑗𝑆 ≤ 𝑇 such that (𝑖𝑆, 𝑗𝑆) ∈ 𝐸. Moreover, each edge
of this graph is colored with one of 𝑄 colors. We then establish, using tools
from the extremal graph theory and the Ramsey theory, that G contains a
monochromatic 𝑚−clique provided that 𝑇 is sufficiently large.

• Finally, if G contains a monochromatic𝑚−clique, this means there exists indices
1 ≤ 𝑖1 < 𝑖2 < · · · < 𝑖𝑚 ≤ 𝑇 and a time 𝜏 ′ ∈ {𝜏1, . . . , 𝜏𝑄} such that the
overlap between 𝒜 (𝑌𝑖𝑘 (𝜏

′)) and 𝒜 (𝑌𝑖ℓ (𝜏
′)) is contained in (𝛽 − 𝜂, 𝛽) for any

1 ≤ 𝑘 < ℓ ≤ 𝑚. Setting

𝜎(𝑘) ≜ 𝒜 (𝑌𝑖𝑘 (𝜏
′)) , 1 ≤ 𝑘 ≤ 𝑚,

we then deduce the 𝑚−tuple
(︀
𝜎(𝑘) : 1 ≤ 𝑘 ≤ 𝑚

)︀
of near ground-state spin con-

figurations 𝜎(𝑘) ∈ ℬ𝑛 violates the 𝑚−OGP established in Theorem 2.2.6. This
will conclude the proof.

Before we formally start proving Theorem 2.3.2, we state several auxiliary results.
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Auxiliary Results from Ramsey Theory and Extremal Graph Theory

Our first auxiliary result pertains the so-called two-color Ramsey numbers.

Theorem 2.6.6. Let 𝑘, ℓ ≥ 2 be integers; and 𝑅(𝑘, ℓ) denotes the smallest 𝑛 ∈ N
such that any red/blue (edge) coloring of 𝐾𝑛 contains either a red 𝐾𝑘 or a blue 𝐾ℓ.
Then

𝑅(𝑘, ℓ) ≤
(︂
𝑘 + ℓ− 2

𝑘 − 1

)︂
=

(︂
𝑘 + ℓ− 2

ℓ− 1

)︂
. (2.117)

Proof. To that end, we show 𝑅(𝑘, ℓ) exists for any 𝑘, ℓ ∈ N; and moreover for 𝑘, ℓ ≥ 2,
it holds that

𝑅(𝑘, ℓ) ≤ 𝑅(𝑘, ℓ− 1) +𝑅(𝑘 − 1, ℓ). (2.118)

The elegant argument below is due to Erdös and Szekeres [108] and is reproduced
herein for completeness. The argument is via induction on 𝑘 + ℓ. The base case is
clear. Suppose for every 𝑖, 𝑗 with 𝑖 + 𝑗 ≤ 𝑛 − 1 the numbers 𝑅(𝑖, 𝑗) exist. Now, we
consider 𝑅(𝑘, ℓ) for 𝑘 + ℓ = 𝑛, 𝑘, ℓ ≥ 2. By inductive hypothesis, both 𝑅(𝑘 − 1, ℓ)
and 𝑅(𝑘, ℓ − 1) exists. Now, let 𝑚 ≜ 𝑅(𝑘 − 1, ℓ) + 𝑅(𝑘, ℓ − 1), and consider any
red/blue (edge) coloring of 𝐾𝑚. For any vertex 𝑣 ∈ 𝐾𝑚, either (a) 𝑣 is adjacent
to at least 𝑅(𝑘 − 1, ℓ) vertices through a red edge; or (b) 𝑣 is adjacent to at least
𝑅(𝑘, ℓ− 1) vertices through a blue edge. Assume case (a). By inductive hypothesis,
any 𝑅(𝑘−1, ℓ) such neighbors of 𝑣 contains either a red 𝐾𝑘−1 or a blue 𝐾ℓ. Adding 𝑣,
the resulting graph indeed has either a red 𝐾ℓ or a blue 𝐾ℓ. The case (b) is handled
similarly. This establishes (2.118).

(2.117) now follows from (2.118) again by induction on 𝑘 + ℓ. The base cases are
verified easily. Assume 𝑘, ℓ ≥ 3. Then by inductive hypothesis

𝑅(𝑘 − 1, ℓ) ≤
(︂
𝑘 + ℓ− 3

𝑘 − 2

)︂
and 𝑅(𝑘, ℓ− 1) ≤

(︂
𝑘 + ℓ− 3

𝑘 − 1

)︂
.

Thus,

𝑅(𝑘, ℓ) ≤ 𝑅(𝑘 − 1, ℓ) +𝑅(𝑘, ℓ− 1) ≤
(︂
𝑘 + ℓ− 3

𝑘 − 2

)︂
+

(︂
𝑘 + ℓ− 3

𝑘 − 1

)︂
=

(︂
𝑘 + ℓ− 2

𝑘 − 1

)︂
.

The second result pertains the so-called multicolor Ramsey numbers.

Theorem 2.6.7. Let 𝑞,𝑚 ∈ N. Denote by 𝑅𝑞(𝑚) the smallest 𝑛 ∈ N for which any
𝑞−coloring of the edges of 𝐾𝑛 necessarily contains a monochromatic 𝐾𝑚. Then

𝑅𝑞(𝑚) ≤ 𝑞𝑞𝑚. (2.119)

Theorem 2.6.7 can be shown using a minor modification of the neighborhood-
chasing argument given by Erdös and Szekeres [108]. See [81, Page 6] for more
information.

We next define a certain graph property.
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Definition 2.6.8. Fix a positive integer 𝑀 ∈ N. A graph G = (𝑉,𝐸) is called
𝑀−admissible if for any 𝑆 ⊂ 𝑉 , |𝑆| = 𝑀 ; there exists distinct 𝑖, 𝑗 ∈ 𝑆 such that
(𝑖, 𝑗) ∈ 𝐸.

Namely, G is 𝑀−admissible if 𝛼(G) ≤ 𝑀 − 1, where 𝛼(G) is the independence
number of G.

We now state and prove our second auxiliary result, an extremal graph theory
result.

Proposition 2.6.9. Let 𝑀 ∈ N. Any 𝑀−admissible graph G = (𝑉,𝐸) with

|𝑉 | ≥
(︂
2𝑀 − 2

𝑀 − 1

)︂
contains an 𝑀−clique.

Proof of Proposition 2.6.9

Proof. Let G be an 𝑀−admissible graph on |𝑉 | ≥
(︀
2𝑀−2
𝑀−1

)︀
vertices. Theorem 2.6.6

then yields that |𝑉 | ≥ 𝑅(𝑀,𝑀). Now, for any 𝑖, 𝑗 ∈ 𝑉 ; we say (𝑖, 𝑗) is colored “red"
if (𝑖, 𝑗) ∈ 𝐸; and (𝑖, 𝑗) is colored “blue" otherwise. Due to the Ramsey property, G
contains either a red 𝐾𝑀 or a blue 𝐾𝑀 ; that is, G contains either a clique of size 𝑀
or an independent set of size 𝑀 . But since G is 𝑀−admissible, 𝛼(G) ≤𝑀 −1. Thus
the latter is not the case. Hence G contains a 𝐾𝑀 .

We are now ready to start formally proving Theorem 2.3.2.

Proof of Theorem 2.3.2

Proof. In what follows, recall the notation that for 𝜎, 𝜎′ ∈ ℬ𝑛;

𝒪 (𝜎, 𝜎′) =
1

𝑛
⟨𝜎, 𝜎′⟩ = 1

𝑛

∑︁
1≤𝑖≤𝑛

𝜎𝑖𝜎
′
𝑖.

Recall also that all floor/ceiling signs are omitted for the sake of a clear presentation.
Let 𝐿 > 0 be fixed (which is constant in 𝑛); and exp2 (−𝐸𝑛) be the target energy

level whose “exponent" 𝐸𝑛 satisfies, for some 𝜖 ∈ (0, 1
5
),

𝜔
(︁
𝑛 · log− 1

5
+𝜖 𝑛

)︁
≤ 𝐸𝑛 ≤ 𝑜(𝑛). (2.120)

In what follows, we choose

𝑐1 =
1

6400
and 𝑐2 = 8 · 4802, (2.121)

and establish that there exists no randomized algorithm 𝒜 : R𝑛 × Ω → ℬ𝑛 that is(︀
2−𝐸𝑛 , 𝑓, 𝐿, 𝜌′, 𝑝𝑓 , 𝑝st

)︀
-optimal for every sufficiently large 𝑛, where the parameter 𝑓 is
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specified in Theorem 2.3.2, as

𝑓 =
1

6400
· 𝑛 ·

(︂
𝐸𝑛

𝑛

)︂4+ 𝜖
4

; (2.122)

and the parameters 𝜌′, 𝑝𝑓 , 𝑝st are given by (2.9) with 𝑐2 chosen as in (2.121) (we
supress the dependence of 𝜌′, 𝑝𝑓 and 𝑝st on 𝑛 and 𝑐2 for convenience). The proof is
by a contradiction argument.

Choice of Auxiliary Parameters. We choose parameters 𝑚,𝛽, 𝜂 (all functions
of 𝑛) as in the second part of Theorem 2.2.6, which we recall for convenience:

𝑚 ≜ 𝑚(𝑛) =
2𝑛

𝐸𝑛

, (2.123)

𝑔(𝑛) = 𝑛 ·
(︂
𝐸𝑛

𝑛

)︂2+ 𝜖
8

; (2.124)

and
𝛽 ≜ 𝛽(𝑛) = 1− 2

𝑔(𝑛)

𝐸𝑛

and 𝜂 ≜ 𝜂(𝑛) =
𝑔(𝑛)

2𝑛
. (2.125)

We now establish certain convenient expression for the parameters 𝑓, 𝜌′, 𝑝𝑓 , 𝑝st in
terms of the quantities 𝑚,𝛽, 𝜂 above. For 𝑓 chosen per (2.122), define

𝐶1 ≜
𝑓

𝑛
=

1

6400

(︂
𝐸𝑛

𝑛

)︂4+ 𝜖
4

.

Using (2.124) and (2.125), it follows that

𝐶1 =
𝑔(𝑛)2

6400 · 𝑛2
=

𝜂2

1600
. (2.126)

Define next
𝑄 =

4802 · 2𝐿
𝜂2

. (2.127)

Using (2.124), (2.125), and (2.127), it follows that

𝑄 =
2 · 4802 · 𝐿

𝜂2
=

2 · 4802 · 𝐿
(𝑔(𝑛)/2𝑛)2

=
(︀
8 · 4802 · 𝐿

)︀
·
(︂
𝑛

𝐸𝑛

)︂4+ 𝜖
4

. (2.128)

In particular, with 𝑐2 = 8 · 4802 as above, the parameter 𝑇 (𝑐2) defined per (2.8)
becomes

𝑇 (𝑐2) ≜ 𝑇 = exp2

(︁
24𝑚𝑄 log2 𝑄

)︁
(2.129)

for 𝑚 chosen in (2.123) and 𝑄 chosen in (2.127).
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Moreover, for 𝑝𝑓 and 𝑝st chosen per (2.9), it holds that

𝑝𝑓 =
1

4𝑇 (𝑄+ 1)
(2.130)

and
𝑝st =

1

9𝑇𝑄2
. (2.131)

Define next the function

Ψ(𝑥) ≜

√︃(︂
1− 𝑥2

𝑄2

)︂(︂
1− (𝑥+ 1)2

𝑄2

)︂
+
𝑥(𝑥+ 1)

𝑄2
, 0 ≤ 𝑥 ≤ 𝑄− 1.

We show Ψ(·) is decreasing on [0, 𝑄 − 1]. For this, it suffices to verify Ψ′(𝑥) ≤ 0 for
0 ≤ 𝑥 ≤ 𝑄− 1. We have

Ψ′(𝑥) =
1

𝑄2

(︃
2𝑥+ 1− 𝑥 (𝑄2 − (𝑥+ 1)2) + (𝑥+ 1) (𝑄2 − 𝑥2)√︀

(𝑄2 − 𝑥2) (𝑄2 − (𝑥+ 1)2)

)︃

Now set 𝑢 ≜ 𝑄2 − (𝑥 + 1)2, 𝜆 ≜ 𝑥
2𝑥+1

; and �̄� = 1 − 𝜆 = 𝑥+1
2𝑥+1

(while suppressing 𝑥
dependence). Clearly 𝑢 ≥ 0 as 0 ≤ 𝑥 ≤ 𝑄 − 1 and �̄� > 1/2. It then boils down
verifying

Ψ′(𝑥) ≤ 0 ⇔
√︀
𝑢(𝑢+ 2𝑥+ 1) ≤ 𝜆𝑢+ �̄�(𝑢+ 2𝑥+ 1).

Applying the weighted AM-GM inequality, we find

𝜆𝑢+ �̄�(𝑢+ 2𝑥+ 1) ≥ 𝑢𝜆 · (𝑢+ 2𝑥+ 1)�̄�.

Hence, it suffices to verify

𝑢𝜆 · (𝑢+ 2𝑥+ 1)�̄� ≥
√︀
𝑢(𝑢+ 2𝑥+ 1) ⇔ (𝑢+ 2𝑥+ 1)

1
4𝑥+2 > 𝑢

1
4𝑥+2 ,

which is immediate as 𝑢+ 2𝑥+ 1 > 𝑢. Having established that Ψ(·) is decreasing on
[0, 𝑄− 1], thus min0≤𝑘≤𝑄−1Ψ(𝑘) = Ψ(𝑄− 1); it holds that

min
0≤𝑘≤𝑄−1

Ψ(𝑘) = min
0≤𝑘≤𝑄−1

√︃(︂
1− 𝑘2

𝑄2

)︂(︂
1− (𝑘 + 1)2

𝑄2

)︂
+
𝑘(𝑘 + 1)

𝑄2
= 1− 1

𝑄
.

In particular, 𝜌′ chosen as in (2.9) admits

𝜌′ = 1− 1

8 · 4802 · 𝐿

(︂
𝐸𝑛

𝑛

)︂4+ 𝜖
4

= 1− 1

𝑄
= min

0≤𝑘≤𝑄−1
Ψ(𝑘), (2.132)

where 𝑄 is the parameter studied in (2.127), (2.128).

To prove. In what follows, our goal is to establish that there exists no randomized
algorithm 𝒜 : R𝑛 × Ω → ℬ𝑛 that is

(︀
2−𝐸𝑛 , 𝐶1𝑛, 𝐿, 𝜌

′, 𝑝𝑓 , 𝑝st
)︀
-optimal for every suffi-
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ciently large 𝑛, where 𝐶1, 𝜌
′, 𝑝𝑓 , 𝑝st admit the convenient expressions (2.126), (2.132), (2.130),

and (2.131); respectively.

Reduction to deterministic algorithms. We first reduce the proof to the case
𝒜 is deterministic. Let P𝑋 ⊗ P𝜔 denotes the joint law of (𝑋,𝜔). Here, 𝜔 is the
randomness of 𝒜. Define now the event

ℰ𝑠(𝜔) ≜
{︂

1√
𝑛

⃒⃒⃒
⟨𝑋,𝒜(𝑋;𝜔)⟩

⃒⃒⃒
≤ 2−𝐸𝑛

}︂
.

Observe that

P𝑋,𝜔

(︂
1√
𝑛

⃒⃒⃒
⟨𝑋,𝒜(𝑋,𝜔)⟩

⃒⃒⃒
> 2−𝐸𝑛

)︂
= E𝜔

[︁
P𝑋

(︁
ℰ𝑠 (𝜔)𝑐

)︁]︁
.

We now perceive P𝑋 (ℰ𝑠 (𝜔)𝑐) as a random variable whose source of randomness is 𝜔
(as the randomness over 𝑋 is “integrated" over P𝑋). Using Markov’s inequality

P𝜔

(︁
P𝑋

(︁
ℰ𝑠 (𝜔)𝑐

)︁
≥ 2𝑝𝑓

)︁
≤ E𝜔 [P𝑋 (ℰ𝑠 (𝜔)𝑐)]

2𝑝𝑓
≤ 1

2
.

Set
Ω1 ≜

{︁
𝜔 ∈ Ω : P𝑋 (ℰ𝑠 (𝜔)𝑐) < 2𝑝𝑓

}︁
=⇒ P𝜔 (Ω1) ≥

1

2
.

Now, divide the interval [0, 1] into 𝑄 subintervals 0 = 𝜏0 < 𝜏1 < · · · < 𝜏𝑄 = 1, each of
size 𝑄−1 for 𝑄 introduced in (2.127). Next, set

𝜌𝑘 ≜
√︁
(1− 𝜏 2𝑘 )

(︀
1− 𝜏 2𝑘+1

)︀
+ 𝜏𝑘𝜏𝑘+1, 0 ≤ 𝑘 ≤ 𝑄− 1. (2.133)

For 𝜌′ introduced in (2.132), we have that 𝜌𝑘 ∈ [𝜌′, 1], 0 ≤ 𝑘 ≤ 𝑄− 1. Define next

ℰ2 (𝜔) ≜
{︁
𝑑𝐻

(︁
𝒜(𝑋,𝜔),𝒜(𝑌, 𝜔)

)︁
≤ 𝐶1𝑛+ 𝐿‖𝑋 − 𝑌 ‖22

}︁
.

Define also the sequence 𝐴𝑘,𝜔 of random variables

𝐴𝑘,𝜔 ≜ P(𝑋,𝑌 ):𝑋∼𝜌𝑘
𝑌

(︁
ℰ2(𝜔)𝑐

)︁
, 0 ≤ 𝑘 ≤ 𝑄− 1, and 𝜔 ∈ Ω.

The source of randomness in each 𝐴𝑘,𝜔 is due to P𝜔. Observe now that for any fixed
0 ≤ 𝑘 ≤ 𝑄− 1, using Markov’s inequality similar to above,

P𝜔 (𝐴𝑘,𝜔 ≥ 3𝑄𝑝st) ≤
1

3𝑄𝑝st
E𝜔

[︁
𝐴𝑘,𝜔

]︁
=

1

3𝑄𝑝st
P(𝑋,𝑌,𝜔):𝑋∼𝜌𝑘

𝑌

(︁
𝑑𝐻

(︁
𝒜(𝑋,𝜔),𝒜(𝑌, 𝜔)

)︁
> 𝐶1𝑛+ 𝐿‖𝑋 − 𝑌 ‖22

)︁
≤ 1

3𝑄
.

100



Taking now a union bound over 0 ≤ 𝑘 ≤ 𝑄− 1,

P𝜔

(︃ ⋃︁
0≤𝑘≤𝑄−1

{︁
𝐴𝑘,𝜔 ≥ 3𝑄𝑝st

}︁)︃
≤ 1

3
.

Hence,

Ω2 ≜
{︁
𝜔 ∈ Ω : 𝐴𝑘,𝜔 < 3𝑄𝑝st, 0 ≤ 𝑘 ≤ 𝑄− 1

}︁
=⇒ P𝜔(Ω2) ≥

2

3
.

Since P𝜔(Ω1)+P𝜔(Ω2) ≥ 1
2
+ 2

3
> 1, it follows that Ω1 ∩Ω2 ̸= ∅. Consequently, there

exists an 𝜔* ∈ Ω, such that

P𝑋

(︂
1√
𝑛

⃒⃒⃒
⟨𝑋,𝒜(𝑋,𝜔*)⟩

⃒⃒⃒
≤ 2−𝐸𝑛

)︂
≥ 1− 2𝑝𝑓 . (2.134)

and

P(𝑋,𝑌 ):𝑋∼𝜌𝑘
𝑌

(︁
𝑑𝐻

(︁
𝒜(𝑋,𝜔*),𝒜(𝑌, 𝜔*)

)︁
≤ 𝐶1𝑛+𝐿‖𝑋−𝑌 ‖22

)︁
≥ 1−3𝑄𝑝st, for 0 ≤ 𝑘 ≤ 𝑄−1.

(2.135)
In the remainder, we fix this choice of 𝜔* ∈ Ω, and interpret 𝒜(·) ≜ 𝒜(·, 𝜔*) as a
deterministic (that is, no “coin flip" 𝜔) map acting between R𝑛 and ℬ𝑛.

An auxiliary high-probability event. We now study a certain auxiliary high-
probability event. This event pertains to the spin configurations that are near-optimal
with respect to independent instances.

Let ℳ be an index set with cardinality 𝑚, 𝑋𝑖
𝑑
= 𝒩 (0, 𝐼𝑛), 𝑖 ∈ ℳ, be i.i.d. Let

𝑆ℳ be a shorthand for the set

𝒮ℳ ≜ 𝒮
(︂
1,

3𝑔(𝑛)

𝐸𝑛

,𝑚,𝐸𝑛, {1}
)︂

(in the sense of Definition 2.2.1) of 𝑚−tuples
(︀
𝜎(𝑖) : 𝑖 ∈ ℳ

)︀
of spin configurations

𝜎(𝑖) ∈ ℬ𝑛 with a modification that the 𝒪 (·, ·) in Definition 2.2.1 is replaced with
𝒪 (·, ·), the normalized inner product, as studied in Theorem 2.2.6. Here, we keep
the 𝑚 parameter as in (2.88); but modify the 𝜂 parameter into 3𝑔(𝑛)/𝐸𝑛. Note that
with these choices, 𝜂 = 1−𝛽

2𝑚
no longer holds, but as we expand below this does not

cause any problems.
Namely, 𝑆ℳ is the set of spin configurations that i) have a large inner product

and ii) are near ground-state with respect to independent instances 𝑋𝑖 ∈ R𝑛. We
claim

Lemma 2.6.10.
P(ℰℳ) ≤ exp(−Θ(𝑛)), (2.136)

where
ℰℳ ≜ {𝑆ℳ ̸= ∅} = {|𝑆ℳ| ≥ 1} . (2.137)
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Namely on ℰℳ, it is the case that for any
(︀
𝜎(𝑖) : 𝑖 ∈ ℳ

)︀
that are near-optimal,

there exists 𝑖 < 𝑗, 𝑖, 𝑗 ∈ ℳ, such that

𝒪
(︀
𝜎(𝑖), 𝜎(𝑗)

)︀
∈
[︂
0, 1− 3𝑔(𝑛)

𝐸𝑛

]︂
. (2.138)

Proof of Lemma 2.6.10. The proof of this claim is nearly identical to (and in fact
easier than) that of Theorem 2.2.6, Case 2. Thus we only point out the necessary
modifications.

The term 𝑔(𝑛) and 𝐸𝑛, as functions of 𝑠(𝑛) and 𝑧(𝑛), remain the same as (2.87).
That is,

𝑔(𝑛) = 𝑛 · 𝑠(𝑛) · 𝑧(𝑛), 𝐸𝑛 = 𝑛 · 𝑠(𝑛), where 𝑧(𝑛) = 𝑠(𝑛)1+
𝜖
8 .

The expression (2.89) regarding parameters 𝛽, 𝜂 now modifies to

𝛽 = 1 and 𝜂 =
3𝑔(𝑛)

𝐸𝑛

.

Note that, in this case the covariance matrix Σ is always identity due to the
independence of 𝑋𝑖, 1 ≤ 𝑖 ≤ 𝑚. Moreover, with 𝛽 = 1; the counting term 𝑛1−𝛽+𝜂

2

studied in (2.95) is now

𝑛
1− 𝛽 + 𝜂

2
=

3𝑛𝑔(𝑛)

2𝐸𝑛

=
3

2
𝑛𝑧(𝑛).

This is clearly 𝑜(𝑛) since 𝑧(𝑛) = 𝑜(1). Thus, Lemma 2.6.1 is applicable, and the
counting bound, (2.97), now becomes(︂

𝑛

𝑛1−𝛽+𝜂
2

)︂
= exp2

(︂
(1 + 𝑜𝑛(1))

3𝑛𝑧(𝑛)

2
log2

2𝑛

3𝑛𝑧(𝑛)

)︂
= exp2

(︂
𝑂

(︂
𝑛𝑠(𝑛)1+

𝜖
8 log2

1

𝑠(𝑛)

)︂)︂
,

where we used the fact 𝑧(𝑛) = 𝑠(𝑛)1+
𝜖
8 . Note now that⃒⃒⃒

[𝑛𝛽 − 𝑛𝜂, 𝑛𝛽] ∩ Z
⃒⃒⃒
= 𝑂 (𝑛𝜂) = 𝑂

(︂
𝑛𝑔(𝑛)

𝐸𝑛

)︂
= 𝑂(𝑛𝑧(𝑛)) = 𝑜(𝑛),

using 𝑧(𝑛) = 𝑜(1). Hence,

log
⃒⃒⃒
[𝑛𝛽 − 𝑛𝜂, 𝑛𝛽] ∩ Z

⃒⃒⃒
= 𝑂(log 𝑛) = 𝑜

(︂
𝑛𝑠(𝑛)1+

𝜖
8 log2

1

𝑠(𝑛)

)︂
Thus, (2.100) remains the same. Hence, the cardinality upper bound (2.102) is still
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of form
exp2

(︂
𝑛+𝑂

(︂
𝑚𝑛𝑠(𝑛)1+

𝜖
8 log2

1

𝑠(𝑛)

)︂)︂
.

Now, since the covariance matrix Σ is identity, there is no contribution of a term of
form 𝑚

2
log2

1
𝜈𝑛

(the determinant contribution) to (2.103); and the “dominant" contri-
bution of the probability term (2.103) to the exponent of the first moment is −𝑚𝐸𝑛.

Hence, (2.103), (2.104); and (2.105) all remain the same. Thus, Theorem 2.2.6
indeed still remains valid.

Construction of interpolation paths. Our proof will use the so-called “inter-
polation method". To that end, let 𝑋𝑖 ∈ R𝑛, 0 ≤ 𝑖 ≤ 𝑇 , be i.i.d. random vectors
(dubbed as replicas), each having distribution 𝒩 (0, 𝐼𝑛), where 𝑇 is specified in (2.129).

Recall now 𝑌𝑖(𝜏), 𝜏 ∈ [0, 1] and 1 ≤ 𝑖 ≤ 𝑇 , from Definition 2.2.1. Notice that for
any 𝜏 ∈ [0, 1] and any 1 ≤ 𝑖 ≤ 𝑇 , 𝑌𝑖(𝜏)

𝑑
= 𝒩 (0, 𝐼𝑛). At 𝜏 = 0, it is the case that

𝑌𝑖(𝜏) = 𝑌𝑗(𝜏) = 𝑋0 for 1 ≤ 𝑖 < 𝑗 ≤ 𝑇 . Thus, for 𝜏 = 0,

𝒜 (𝑌𝑖(𝜏)) = 𝒜 (𝑌𝑗(𝜏)) , 1 ≤ 𝑖 < 𝑗 ≤ 𝑇.

At 𝜏 = 1, on the other hand, 𝑌𝑖(𝜏), 1 ≤ 𝑖 ≤ 𝑇 , is a collection of 𝑇 i.i.d. random
vectors, each with distribution 𝒩 (0, 𝐼𝑛).

Divide the interval [0, 1] into 𝑄 subintervals 0 = 𝜏0 < 𝜏1 < · · · < 𝜏𝑄 = 1, each of
size 1/𝑄, where 𝑄 is specified in (2.127). Define next the pairwise overlaps

𝒪(𝑖𝑗)
(𝜏𝑘) ≜

1

𝑛
⟨𝒜 (𝑌𝑖 (𝜏𝑘)) ,𝒜 (𝑌𝑗 (𝜏𝑘))⟩ (2.139)

for 1 ≤ 𝑖 < 𝑗 ≤ 𝑇 and 0 ≤ 𝑘 ≤ 𝑄.

Stability of successive steps. We now establish, using the stability of 𝒜, that
for 1 ≤ 𝑖 < 𝑗 ≤ 𝑇 and 0 ≤ 𝑘 ≤ 𝑄− 1,⃒⃒⃒

𝒪(𝑖𝑗)
(𝜏𝑘)−𝒪(𝑖𝑗)

(𝜏𝑘+1)
⃒⃒⃒

is small. More concretely we establish

Lemma 2.6.11.

P(ℰ3) ≥ 1− (𝑇 + 1) exp
(︁
−Θ(𝑛)

)︁
− 3𝑇𝑄2𝑝st (2.140)

where

ℰ3 ≜
⋂︁

1≤𝑖<𝑗≤𝑇

⋂︁
0≤𝑘≤𝑄

{︃⃒⃒⃒
𝒪(𝑖𝑗)

(𝜏𝑘)−𝒪(𝑖𝑗)
(𝜏𝑘+1)

⃒⃒⃒
≤ 4
√︀
𝐶1 +

48
√
2𝐿√
𝑄

}︃
. (2.141)
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Later, we study the asymptotics of 𝑇 and show that the bound in (2.140) is not
vacuous.

Proof. We first establish that for every 1 ≤ 𝑖 ≤ 𝑇 , ‖𝑋𝑖‖2 ≤ 6
√
𝑛 w.h.p. Let 𝑋𝑖 =

(𝑋𝑖(𝑗) : 1 ≤ 𝑗 ≤ 𝑛), where 𝑋𝑖(𝑗), 1 ≤ 𝑗 ≤ 𝑛 are i.i.d. standard normal. Appealing to
Bernstein’s inequality as in the proof of [282, Theorem 3.1.1], we have that for every
𝑡 ≥ 0,

P

(︃⃒⃒⃒⃒
⃒ 1𝑛 ∑︁

1≤𝑗≤𝑛

𝑋𝑖(𝑗)
2 − 1

⃒⃒⃒⃒
⃒ ≥ 𝑡

)︃
≤ exp(−𝑐𝑛min{𝑡2, 𝑡}).

Using now a union bound over 1 ≤ 𝑖 ≤ 𝑇 , we conclude

P
(︀
‖𝑋𝑖‖ ≤ 6

√
𝑛, 0 ≤ 𝑖 ≤ 𝑇

)︀
≥ 1− (𝑇 + 1) exp(−Θ(𝑛)).

Here the choice of 6 is arbitrary, any constant larger than 1 works.

Fix any 1 ≤ 𝑖 ≤ 𝑇 . We now upper bound ‖𝑌𝑖 (𝜏𝑘) − 𝑌𝑖 (𝜏𝑘+1) ‖, where 𝑌𝑖(·) is
defined in Definition 2.2.1. Note that

‖𝑌𝑖 (𝜏𝑘)− 𝑌𝑖 (𝜏𝑘+1)‖ ≤
⃒⃒⃒⃒√︁

1− 𝜏 2𝑘 −
√︁

1− 𝜏 2𝑘+1

⃒⃒⃒⃒
‖𝑋0‖+ |𝜏𝑘 − 𝜏𝑘+1|‖𝑋𝑖‖

≤
⃒⃒⃒⃒√︁

1− 𝜏 2𝑘 −
√︁

1− 𝜏 2𝑘+1

⃒⃒⃒⃒
‖𝑋0‖+𝑄−1‖𝑋𝑖‖

using triangle inequality, and the fact |𝜏𝑘 − 𝜏𝑘+1| ≤ 𝑄−1. Next, observe that using
𝜏𝑘, 𝜏𝑘+1 ∈ [0, 1],√︁⃒⃒

𝜏 2𝑘 − 𝜏 2𝑘+1

⃒⃒
=
√︀

|𝜏𝑘 − 𝜏𝑘+1|
√
𝜏𝑘 + 𝜏𝑘+1 ≤

√︀
2 |𝜏𝑘 − 𝜏𝑘+1|.

We now show √︁⃒⃒
𝜏 2𝑘 − 𝜏 2𝑘+1

⃒⃒
√︀

1− 𝜏 2𝑘 +
√︁
1− 𝜏 2𝑘+1

≤ 1.

Squaring, and using 𝜏𝑘+1 > 𝜏𝑘, this is equivalent to having

𝜏 2𝑘+1 − 𝜏 2𝑘 ≤ 1− 𝜏 2𝑘 + 1− 𝜏 2𝑘+1 + 2
√︁

(1− 𝜏 2𝑘 )
(︀
1− 𝜏 2𝑘+1

)︀
⇐⇒ 𝜏 2𝑘+1 ≤ 1 +

√︁
(1− 𝜏 2𝑘 )

(︀
1− 𝜏 2𝑘+1

)︀
,
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which holds as 0 ≤ 𝜏𝑖 ≤ 1 for all 𝑖. Equipped with the previous bounds, we thus have⃒⃒⃒⃒√︁
1− 𝜏 2𝑘 −

√︁
1− 𝜏 2𝑘+1

⃒⃒⃒⃒
=

|𝜏 2𝑘 − 𝜏 2𝑘+1|√︀
1− 𝜏 2𝑘 +

√︁
1− 𝜏 2𝑘+1

≤
√︀
2|𝜏𝑘 − 𝜏𝑘+1|

√︁⃒⃒
𝜏 2𝑘 − 𝜏 2𝑘+1

⃒⃒
√︀

1− 𝜏 2𝑘 +
√︁
1− 𝜏 2𝑘+1⏟  ⏞  

≤1

≤
√
2|𝜏𝑘 − 𝜏𝑘+1|

1
2

≤
√
2𝑄− 1

2 ,

where the last line uses |𝜏𝑘 − 𝜏𝑘+1| ≤ 𝑄−1. In particular, on the high probability
event2

ℰnorm ≜
{︀
‖𝑋𝑖‖2 ≤ 6

√
𝑛, 0 ≤ 𝑖 ≤ 𝑇

}︀
it holds that⃦⃦⃦

𝑌𝑖(𝜏𝑘)− 𝑌𝑖(𝜏𝑘+1)
⃦⃦⃦
≤ 6

√
2𝑛

1
2𝑄− 1

2 + 6𝑄−1𝑛
1
2 ≤ 12

√
2𝑛

1
2𝑄− 1

2 . (2.142)

Next, we observe that 𝑌𝑖 (𝜏𝑘) , 𝑌𝑖 (𝜏𝑘+1) are both distributed 𝒩 (0, 𝐼𝑛) with correlation

E
[︁
𝑌𝑖 (𝜏𝑘)𝑌𝑖 (𝜏𝑘+1)

𝑇
]︁
= 𝜌𝑘𝐼

where 𝜌𝑘, 0 ≤ 𝑘 ≤ 𝑄− 1, is per (2.133). Define now the event

ℰstability =
⋂︁

0≤𝑖≤𝑇

⋂︁
0≤𝑘≤𝑄−1

{︁
𝑑𝐻

(︁
𝒜 (𝑌𝑖 (𝜏𝑘)) ,𝒜 (𝑌𝑖 (𝜏𝑘+1))

)︁
≤ 𝐶1𝑛+𝐿 ‖𝑌𝑖 (𝜏𝑘)− 𝑌𝑖 (𝜏𝑘+1)‖22

}︁
which is the event that the algorithm is stable for each interpolation trajectory 1 ≤
𝑖 ≤ 𝑇 along time indices 0 ≤ 𝑘 ≤ 𝑄− 1. Using (2.135) together with a union bound
over 1 ≤ 𝑖 ≤ 𝑇 and 0 ≤ 𝑘 ≤ 𝑄−1, it holds that with probability at least 1−3𝑇𝑄2𝑝st,

P (ℰstability) ≥ 1− 3𝑇𝑄2𝑝st.

Consequently, taking a union bound, this time for ℰnorm ∩ ℰstability, we arrive at

P (ℰnorm ∩ ℰstability) = 1− (𝑇 + 1) exp (−Θ(𝑛))− 3𝑇𝑄2𝑝st.

We now compute
⃒⃒⃒
𝒪(𝑖𝑗)

(𝜏𝑘)−𝒪(𝑖𝑗)
(𝜏𝑘+1)

⃒⃒⃒
on the event ℰnorm∩ℰstability, while treating

the stability condition deterministic due to the conditioning.

For notational convenience, let 𝒜𝑖(𝑘) ≜ 𝒜 (𝑌𝑖(𝜏𝑘)), 1 ≤ 𝑖 ≤ 𝑇 and 0 ≤ 𝑘 ≤ 𝑄.

2As we verify soon, 𝑇 = 2𝑜(𝑛), hence this is indeed a high probability event.
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We first observe that

‖𝒜𝑖(𝑘)−𝒜𝑗(𝑘)‖ = 2
√︁
𝑑𝐻 (𝒜𝑖(𝑘),𝒜𝑗(𝑘)).

Using the stability condition,

𝑑𝐻 (𝒜𝑖(𝑘),𝒜𝑖(𝑘 + 1)) ≤ 𝐶1𝑛+ 𝐿‖𝑌𝑖(𝑘)− 𝑌𝑖(𝑘 + 1)‖22, 1 ≤ 𝑖 ≤ 𝑇, 0 ≤ 𝑘 ≤ 𝑄− 1

together with the trivial inequality
√
𝑢+ 𝑣 ≤ √

𝑢+
√
𝑣, valid for all 𝑢, 𝑣 ≥ 0, we have

‖𝒜𝑖(𝑘)−𝒜𝑖(𝑘 + 1)‖2 ≤ 2
√︀
𝐶1

√
𝑛+ 2

√
𝐿 ‖𝑌𝑖(𝑘)− 𝑌𝑖(𝑘 + 1)‖2 . (2.143)

Next,⃒⃒⃒
𝒪(𝑖𝑗)

(𝜏𝑘)−𝒪(𝑖𝑗)
(𝜏𝑘+1)

⃒⃒⃒
=

1

𝑛

⃒⃒⃒
⟨𝒜𝑖(𝑘),𝒜𝑗(𝑘)⟩ − ⟨𝒜𝑖(𝑘 + 1),𝒜𝑗(𝑘 + 1)⟩

⃒⃒⃒
(2.144)

≤ 1

𝑛

⃒⃒⃒
⟨𝒜𝑖(𝑘)−𝒜𝑖(𝑘 + 1),𝒜𝑗(𝑘)⟩

⃒⃒⃒
+

1

𝑛

⃒⃒⃒
⟨𝒜𝑖(𝑘 + 1),𝒜𝑗(𝑘)−𝒜𝑗(𝑘 + 1)⟩

⃒⃒⃒
(2.145)

≤ 1√
𝑛

(︁
‖𝒜𝑖(𝑘)−𝒜𝑖(𝑘 + 1)‖2 + ‖𝒜𝑗(𝑘)−𝒜𝑗(𝑘 + 1)‖2

)︁
(2.146)

≤ 1√
𝑛

(︁
4
√︀
𝐶1

√
𝑛+ 2

√
𝐿‖𝑌𝑖(𝜏𝑘)− 𝑌𝑖(𝜏𝑘+1)‖+ 2

√
𝐿‖𝑌𝑗(𝜏𝑘)− 𝑌𝑗(𝜏𝑘+1)‖

)︁
(2.147)

≤ 4
√︀
𝐶1 +

4
√
𝐿 · 12

√
2𝑛

1
2𝑄− 1

2√
𝑛

(2.148)

= 4
√︀
𝐶1 +

48
√
2𝐿√
𝑄

. (2.149)

Above, (2.144) uses the definition; (2.145) uses the triangle inequality; (2.146) uses
the Cauchy-Schwarz inequality, and the fact ‖𝒜𝑖(𝑘 + 1)‖2 = ‖𝒜𝑗(𝑘)‖ =

√
𝑛; (2.147)

uses (2.143); and finally (2.148) uses (2.142).

Success along the trajectory. We now study the event that the algorithm 𝒜 is
“successful" along each interpolation trajectory. We claim that we have

P (ℰ4) ≥ 1− 2𝑇 (𝑄+ 1)𝑝𝑓 (2.150)

where the event ℰ4 is defined as

ℰ4 ≜
⋂︁

1≤𝑖≤𝑇

⋂︁
0≤𝑘≤𝑄

{︂
1√
𝑛

⃒⃒⃒
⟨𝒜𝑖(𝑘), 𝑌𝑖(𝜏𝑘)⟩

⃒⃒⃒
≤ 2−𝐸𝑛

}︂
. (2.151)
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Namely, the event ℰ4 says that the algorithm 𝒜 creates a near ground-state at each
“discrete time instance" 0 ≤ 𝑘 ≤ 𝑄 along each interpolation trajectory 1 ≤ 𝑖 ≤ 𝑇 .

We now prove this claim. Note that as 𝑋𝑖 ∈ R𝑛, 1 ≤ 𝑖 ≤ 𝑇 are i.i.d. 𝒩 (0, 𝐼𝑛), it
follows that for each 1 ≤ 𝑖 ≤ 𝑇 and 0 ≤ 𝑘 ≤ 𝑄, 𝑌𝑖(𝜏𝑘)

𝑑
= 𝒩 (0, 𝐼𝑛). Using now (2.134)

together with a union bound over 1 ≤ 𝑖 ≤ 𝑇 and 0 ≤ 𝑘 ≤ 𝑄 settles the result.

The order of growth of parameters. Before we put everything together, we
now study the order of growth of relevant parameters. This is necessary for applying
union bound arguments that will follow.

First, combining (2.120) and (2.123), we obtain

𝜔(1) ≤ 𝑚 ≤ 𝑜
(︁
log

1
5
−𝜖 𝑛

)︁
. (2.152)

This is not vacuous since 𝜖 < 1
5
.

Next, since 𝐿 is constant in 𝑛, the asymptotics of 𝑄 given in (2.128) becomes

𝑄 =
(︀
8 · 4802 · 𝐿

)︀
·
(︂
𝑛

𝐸𝑛

)︂4+ 𝜖
4

= Θ

(︃(︂
𝑛

𝐸𝑛

)︂4+ 𝜖
4

)︃
.

Recalling now the condition (2.120) on 𝐸𝑛, we obtain

𝑄 = 𝑜
(︁
log(

1
5
−𝜖)(4+ 𝜖

4) 𝑛
)︁
. (2.153)

Moreover, (2.153) yields also that

log𝑄 = log
(︁
𝑜
(︁
log(

1
5
−𝜖)(4+ 𝜖

4) 𝑛
)︁)︁

= 𝑂 (log log 𝑛) . (2.154)

Combining bounds (2.152), (2.153), and (2.154), we arrive at

𝑚𝑄 log𝑄 = 𝑜
(︁
log(

1
5
−𝜖)(5+ 𝜖

4) 𝑛
)︁
𝑂 (log log 𝑛) = 𝑜

(︁
log(

1
5
−𝜖)(5+ 𝜖

2) 𝑛
)︁
, (2.155)

where we used
𝑂 (log log 𝑛) = 𝑜 (log𝑤 𝑛)

valid for any constant 𝑤 > 0. Next, observe that for 𝜖 > 0,(︂
1

5
− 𝜖

)︂(︁
5 +

𝜖

2

)︁
= 1−

(︂
49

10
𝜖+

𝜖2

2

)︂
< 1.

Thus, by combining (2.129), (2.155), and the fact 𝑚𝑄 log𝑄+ log𝑚 = Θ(𝑚𝑄 log𝑄),
we arrive at (︂

𝑇

𝑚

)︂
≤ 𝑇𝑚 = exp2

(︀
𝑚24𝑚𝑄 log2 𝑄

)︀
= 2𝑜(𝑛). (2.156)
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Putting everything together. We now put everything together. For any ℳ ⊂
[𝑇 ] with |ℳ| = 𝑚, recall the event ℰℳ as in (2.137), and define the event

ℰ1 ≜
⋂︁

ℳ⊂[𝑇 ]:|ℳ|=𝑚

ℰℳ. (2.157)

Using (2.136), together with a union bound, we obtain

P (ℰ𝑐
1) = P

⎛⎝ ⋃︁
ℳ⊂[𝑇 ]:|ℳ|=𝑚

ℰ𝑐
ℳ

⎞⎠ ≤
(︂
𝑇

𝑚

)︂
exp (−Θ(𝑛)) .

Since
(︀
𝑇
𝑚

)︀
= 2𝑜(𝑛) per (2.156), we deduce

P (ℰ1) ≥ 1− exp (−Θ(𝑛)) . (2.158)

For the events ℰ1 defined in (2.157) (refer to (2.158) for its probability), ℰ3 defined in
(2.141) (refer to (2.140) for its probability), and ℰ4 defined in (2.151) (refer to (2.150)
for its probability), define their intersection by

ℱ = ℰ1 ∩ ℰ3 ∩ ℰ4.

Check that using (2.140), the fact 𝑇 = 2𝑜(𝑛) per (2.156) as well as the choice of 𝑝st
per (2.131), we have

P (ℰ𝑐
3) ≤ (𝑇 + 1) exp (−Θ(𝑛)) + 3𝑇𝑄2𝑝st

≤ exp (−Θ(𝑛)) +
1

3
.

Moreover, using (2.150) as well as the choice of 𝑝𝑓 per (2.130), we arrive at

P(ℰ𝑐
4) ≤

1

2
.

A union bound over ℰ𝑐
1 , ℰ𝑐

2 and ℰ𝑐
4 then yields

P (ℱ) = P (ℰ1 ∩ ℰ3 ∩ ℰ4) = 1− P (ℰ𝑐
1 ∪ ℰ𝑐

3 ∪ ℰ𝑐
4) ≥

1

6
− exp (−Θ(𝑛)) . (2.159)

In the remainder, assume that we are on the event ℱ .

Note that, from the choice of 𝐶1 per (2.126) and 𝑄 per (2.127), we obtain that on
the event ℱ , it holds that ⃒⃒⃒

𝒪(𝑖𝑗)
(𝜏𝑘)−𝒪(𝑖𝑗)

(𝜏𝑘+1)
⃒⃒⃒
≤ 𝜂

5
, (2.160)

for 1 ≤ 𝑖 < 𝑗 ≤ 𝑇 and 0 ≤ 𝑘 ≤ 𝑄.

Now, fix any subset 𝑆 ⊂ [𝑇 ] with |𝑆| = 𝑚. A consequence of the event ℰ1,
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through (2.138), is that there exists distinct 𝑖𝑆, 𝑗𝑆 ∈ 𝑆 such that

𝒪(𝑖𝑆 ,𝑗𝑆)
(𝜏𝑄) ∈

[︂
0, 1− 3𝑔(𝑛)

𝐸𝑛

]︂
.

We verify that this interval is “below" the forbidden region, (𝛽 − 𝜂, 𝛽): per (2.125) it
suffices to ensure

𝛽 − 𝜂 = 1− 2𝑔(𝑛)

𝐸𝑛⏟  ⏞  
=𝛽

− 𝑔(𝑛)

2𝑛⏟ ⏞ 
=𝜂

> 1− 3𝑔(𝑛)

𝐸𝑛

⇔ 𝑔(𝑛)

𝐸𝑛

>
𝑔(𝑛)

2𝑛
⇔ 2𝑛 > 𝐸𝑛.

Since 𝐸𝑛 = 𝑜(𝑛), this indeed holds for all sufficiently large 𝑛.
Take now 𝛿 = 𝜂

100
. We next show there exists a 𝑘′ ∈ [1, 𝑄] ∩ Z such that

𝒪(𝑖𝑆 ,𝑗𝑆)
(𝜏𝑘′) ∈ (𝛽 − 𝜂 + 3𝛿, 𝛽 − 3𝛿),

where (𝛽 − 𝜂, 𝛽) is the forbidden overlap region as per Theorem 2.2.6. Take indeed
𝐾0 to be the last index (in [1, 𝑄]∩Z) where 𝒪(𝑖𝑆𝑗𝑆)

(𝜏𝐾0) ≥ 𝛽 − 3𝛿. Note that such a
𝐾0 must exist since 𝒪(𝑖𝑗)

(0) = 1 for every 1 ≤ 𝑖 < 𝑗 ≤ 𝑇 . Then if 𝒪(𝑖𝑆𝑗𝑆)
(𝜏𝐾0+1) ≤

𝛽 − 𝜂 + 3𝛿, we obtain⃒⃒⃒
𝒪(𝑖𝑆 ,𝑗𝑆)

(𝜏𝐾0)−𝒪(𝑖𝑆𝑗𝑆)
(𝜏𝐾0+1)

⃒⃒⃒
≥ 𝜂 − 6𝛿 > 0,

which contradicts with the event ℰ3 and in particular with (2.160) for sufficiently
large 𝑛. Namely,

𝒪(𝑖𝑆 ,𝑗𝑆)
(𝜏𝐾0+1) ∈ (𝛽 − 𝜂 + 3𝛿, 𝛽 − 3𝛿).

In particular, keeping in mind that 𝑆 was arbitrary, we conclude that for every subset
𝑆 ⊂ [𝑇 ] of cardinality |𝑆| = 𝑚, there exists 1 ≤ 𝑖𝑆 < 𝑗𝑆 ≤ 𝑚 such that for some
𝜏𝑆 ∈ {𝜏1, . . . , 𝜏𝑄} it is the case that

𝒪(𝑖𝑆 ,𝑗𝑆)
(𝜏𝑆) ∈ (𝛽 − 𝜂 + 3𝛿, 𝛽 − 3𝛿) ⊊ (𝛽 − 𝜂, 𝛽).

Equipped with this, we now construct a certain graph G = (𝑉,𝐸) such that the
following holds.

• Its vertex set 𝑉 coincides with [𝑇 ]. That is, 𝑉 = {1, 2, . . . , 𝑇}, where each
vertex corresponds to an interpolation trajectory 1 ≤ 𝑖 ≤ 𝑇 .

• For any 1 ≤ 𝑖 < 𝑗 ≤ 𝑇 , (𝑖, 𝑗) ∈ 𝐸 if and only if there exists a time 𝜏 ∈ [0, 1]
such that

𝒪(𝑖𝑗)
(𝜏) ∈ (𝛽 − 𝜂, 𝛽).

Next, we “color" each edge of G with one of 𝑄 colors. Specifically, for any 1 ≤ 𝑖 <
𝑗 ≤ 𝑇 with (𝑖, 𝑗) ∈ 𝐸, this edge is colored with color 𝑡, 1 ≤ 𝑘 ≤ 𝑄 where 𝑡 is the first
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time instance {𝜏1, 𝜏2, . . . , 𝜏𝑄} such that

𝒪(𝑖𝑗)
(𝜏𝑡) ∈ (𝛽 − 𝜂, 𝛽).

In particular, G enjoys the following properties.

• G = (𝑉,𝐸) has |𝑉 | = 𝑇 vertices; with the property that for any subset 𝑆 ⊂ 𝑉
of cardinality |𝑆| = 𝑚, there exists a distinct pair 𝑖, 𝑗 ∈ 𝑆 of vertices such that
(𝑖, 𝑗) ∈ 𝐸.

• Any edge (𝑖, 𝑗) ∈ 𝐸 of G is colored with one of 𝑄 colors.

Proposition 2.6.12. The graph G contains a monochromatic 𝑚−clique 𝐾𝑚.

Proof of Proposition 2.6.12. Recall from (2.129) that G has

𝑇 = exp2

(︀
24𝑚𝑄 log2 𝑄

)︀
vertices. Define now

𝑀 ≜ 𝑄𝑚𝑄 = 2𝑚𝑄 log2 𝑄 (2.161)

Note that G is 𝑚−admissible, in the sense of Definition 2.6.8. Since 𝑀 > 𝑚 for
𝑄 > 1, it is also 𝑀−admissible. Observe that

𝑇 = exp2

(︀
24𝑚𝑄 log2 𝑄

)︀
≥ exp2

(︃
2 · 2𝑚𝑄 log2 𝑄⏟  ⏞  

=𝑀

)︃
= 4𝑀 ≥

(︂
2𝑀 − 2

𝑀 − 1

)︂
.

Applying Proposition 2.6.9, we find that G contains an 𝑀 , that is a 𝑄𝑄𝑚, clique, 𝐾𝑀 .
Finally, since each edge of 𝐾𝑀 is colored with one of 𝑄 colors and 𝑅𝑄(𝑚) ≤ 𝑄𝑄𝑚 per
Theorem 2.6.7, we obtain that 𝐾𝑀 contains a monochromatic 𝑚−clique. Namely, G
contains a monochromatic 𝑚-clique 𝐾𝑚 since all graphs above we worked with are
subgraphs of G. This concludes the proof of Proposition 2.6.12.

We now complete the proof of Theorem 2.3.2. Observe what it means for G to contain
a monochromatic 𝑚−clique: there exists an 𝑚−tuple 1 ≤ 𝑖1 < 𝑖2 < · · · < 𝑖𝑚 ≤ 𝑇 of
vertices (i.e. replicas) and a color (i.e. a time 𝜏 ′ ∈ {𝜏1, . . . , 𝜏𝑄}) such that

𝒪(𝑖𝑘,𝑖ℓ)
(𝜏 ′) ∈ (𝛽 − 𝜂, 𝛽), 1 ≤ 𝑘 < ℓ ≤ 𝑚.

Now, define
𝜎(𝑘) ≜ 𝒜 (𝑌𝑖𝑘 (𝜏

′)) , 1 ≤ 𝑘 ≤ 𝑚.

It follows that
(︀
𝜎(𝑘) : 1 ≤ 𝑘 ≤ 𝑚

)︀
enjoys the following conditions:

• Since we are on the event ℱ which is a subset of the success event ℰ4 (2.151),
it holds that

1√
𝑛

⃒⃒⟨︀
𝜎(𝑘), 𝑌𝑖𝑘 (𝜏

′)
⟩︀⃒⃒

≤ 2−𝐸𝑛
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• For 1 ≤ 𝑘 < ℓ ≤ 𝑚,
𝒪
(︀
𝜎(𝑘), 𝜎(ℓ)

)︀
∈ (𝛽 − 𝜂, 𝛽).

Namely, for the choice 𝜁 ≜ {𝑖1, 𝑖2, . . . , 𝑖𝑚} of the 𝑚−tuple of distinct indices, the
set 𝒮𝜁 ≜ 𝒮 (𝛽, 𝜂,𝑚,𝐸𝑛, ℐ) introduced in Definition 2.2.1—with modification that
inner products are considered—(where the indices 1, 2, . . . ,𝑚 there is replaced with
𝑖1, . . . , 𝑖𝑚) with ℐ = {𝜏0, 𝜏1, . . . , 𝜏𝑄} is non-empty. Namely,

P
(︁
∃𝜁 ⊂ [𝑇 ], |𝜁| = 𝑚 : 𝑆𝜁 ̸= ∅

)︁
≥ P (ℱ) ≥ 1

2
− exp (−Θ(𝑛)) .

We now use the 𝑚−OGP result, Theorem 2.2.6. Taking a union bound over 𝜁 ⊂ [𝑇 ]
with |𝜁| = 𝑚 in Theorem 2.2.6, we obtain

P
(︁
∃𝜁 ⊂ [𝑇 ], |𝜁| = 𝑚 : 𝑆𝜁 ̸= ∅

)︁
≤
(︂
𝑇

𝑚

)︂
exp (−Θ(𝑛)) = exp (−Θ(𝑛)) ,

since
(︀
𝑇
𝑚

)︀
= 2𝑜(𝑛). But this yields

exp (−Θ(𝑛)) ≥ P
(︁
∃𝜁 ⊂ [𝑇 ], |𝜁| = 𝑚 : 𝑆𝜁 ̸= ∅

)︁
≥ 1

2
− exp (−Θ(𝑛)) ,

that is
exp (−Θ(𝑛)) ≥ 1

6
− exp (−Θ(𝑛)) .

This is a contradiction for sufficiently large 𝑛. Therefore, the proof is complete.

2.6.8 Proof of Theorem 2.3.3

Proof. We start by recalling that

𝐻 (𝜎*) = 𝐻 (−𝜎*) = Θ
(︀
2−𝑛
)︀
,

with high probability, as noted in the introduction. Now, using Theorem 2.2.2, it
follows that

min
𝜎∈𝐼2

𝐻(𝜎) = Ω
(︀
2−𝑛𝜖

)︀
with high probability. Indeed, for 𝜌 chosen as above, with high probability no two spin
configurations with overlap

[︀
𝜌, 𝑛−2

𝑛

]︀
can achieve simultaneously an energy of 𝑂 (2−𝑛𝜖).

In what follows next, the constants hidden under Θ(·) and Ω (·) are absorbed into
the inverse temperature 𝛽 > 0.

We have the following trivial lower bound:

𝜋𝛽(𝐼3) = 𝜋𝛽
(︀
𝐼3
)︀
= 𝜋𝛽 (𝜎

*) =
1

𝑍𝛽

exp (−𝛽𝐻(𝜎*)) =
1

𝑍𝛽

exp
(︀
−𝛽2−𝑛

)︀
.
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Notice, on the other hand, that for any 𝜎 ∈ 𝐼2,

𝜋𝛽(𝜎) ≤
1

𝑍𝛽

exp
(︀
−𝛽2−𝑛𝜖

)︀
.

Next, we upper bound

|𝐼2| ≤
∑︁

1≤𝑘≤⌈𝑛(1−𝜌)
2 ⌉

(︂
𝑛

𝑘

)︂
= exp2

(︂
𝑛ℎ

(︂
1− 𝜌

2

)︂
+𝑂 (log2 𝑛)

)︂
,

where ℎ(·) is the binary entropy function. Consequently

𝜋𝛽(𝐼2) =
∑︁
𝜎∈𝐼2

𝜋𝛽(𝜎) ≤
|𝐼2|
𝑍𝛽

(︀
−𝛽2−𝑛𝜖

)︀
≤ 1

𝑍𝛽

exp

(︂
𝑛ℎ

(︂
1− 𝜌

2

)︂
+𝑂 (log2 𝑛)− 𝛽2−𝑛𝜖

)︂
.

Hence

𝜋𝛽 (𝐼3) ≥ exp

(︂
−𝛽2−𝑛 + 𝛽2−𝑛𝜖 − 𝑛ℎ

(︂
1− 𝜌

2

)︂
+𝑂 (log2 𝑛)

)︂
𝜋𝛽(𝐼2).

Finally, in the regime 𝛽 = Ω(𝑛2𝑛𝜖), it is the case that

−𝛽2−𝑛 + 𝛽2−𝑛𝜖 − 𝑛ℎ

(︂
1− 𝜌

2

)︂
+𝑂 (log2 𝑛) = Ω

(︀
𝛽2−𝑛𝜖

)︀
= Ω(𝑛).

Hence,
𝜋𝛽 (𝐼3) ≥ 𝑒Ω(𝑛)𝜋𝛽(𝐼2).

We next apply this reasoning for the set 𝐼1, which is slightly more delicate.

To that end, fix an 𝜖′ ∈ (𝜖, 1) (recall that 𝜖 < 1). We will show that with probability
1 − 𝑂(1/𝑛), there exists a 𝜎′ ∈ ℬ𝑛 such that 𝐻(𝜎′) = Θ

(︀
2−𝑛𝜖′

)︀
. For this, it suffices

to use [183, Theorem 3.1] (with parameters 𝛽 =
√
𝑛2−𝑛𝜖′ and 𝜖 = 𝛽

2
, in terms of their

notation).

It is evident, due to the OGP as well as the fact 𝐼3 and 𝐼3 contains only ground
states ±𝜎*, that 𝜎′ /∈

(︀
𝐼2 ∪ 𝐼2

)︀
∪
(︀
𝐼3 ∪ 𝐼3

)︀
. Consequently, 𝜎′ ∈ 𝐼1. With this, we have

the trivial lower bound

𝜋𝛽 (𝐼1) ≥ 𝜋𝛽 (𝜎
′) =

1

𝑍𝛽

exp
(︁
−𝛽2−𝑛𝜖′

)︁
.

Repeating the exact same reasoning while keeping in mind 𝜖′ > 𝜖, we conclude

𝜋𝛽 (𝐼1) ≥ exp
(︀
Ω
(︀
𝛽2−𝑛𝜖

)︀)︀
𝜋𝛽(𝐼2).

This concludes the proof.
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2.6.9 Proof of Theorem 2.3.4

Proof. In what follows, we have 𝛽 = Ω(𝑛2𝑛𝜖).

Part (a)

Using the FEW property established in Theorem 2.3.3, we have that

min {𝜋𝛽(𝐼1), 𝜋𝛽(𝐼3)} ≥ exp (Ω(𝑛))𝜋𝛽(𝐼2).

We now use the facts 𝜋𝛽(𝐼2) = 𝜋𝛽
(︀
𝐼2
)︀
, 𝜋𝛽(𝐼3) = 𝜋𝛽

(︀
𝐼3
)︀
; and 𝜋𝛽(𝐼1) + 𝜋𝛽(𝐼2) +

𝜋𝛽
(︀
𝐼2
)︀
+ 𝜋𝛽(𝐼3) + 𝜋𝛽

(︀
𝐼3
)︀
≥ 1 to arrive at (𝜋𝛽(𝐼1) + 2𝜋𝛽 (𝐼3)) (1 + exp (−Ω(𝑛))) ≥ 1.

Consequently, we have 𝜋𝛽(𝐼1) + 2𝜋𝛽 (𝐼3) ≥ 1 + 𝑜𝑛(1). With this we conclude that

𝜋𝛽(𝐼1) + 𝜋𝛽 (𝐼3) ≥
1

2
(1 + 𝑜𝑛(1)),

as claimed.

Part (b)

Theorem 2.3.4(b) is a consequence of following proposition.

Proposition 2.6.13. Let 𝛽 = Ω(𝑛2𝑛𝜖). Then, for any 𝑇 > 0, the “escape time" 𝜏𝛽
introduced in (2.11) satisfies

P (𝜏𝛽 ≤ 𝑇 ) ≤ 𝑇 exp
(︀
−Ω

(︀
𝛽2−𝑛𝜖

)︀)︀
,

with high probability (over the randomness of 𝑋 𝑑
= 𝒩 (0, 𝐼𝑛)) as 𝑛→ ∞.

Proof of Proposition 2.6.13. The proof uses standard arguments and in particular
is a straightforward adaptation of [21, Theorem 7.4] and [121, Theorem 3.2]. We
reproduce it herein for completeness.

Let 𝑋 𝑡 be the Markov chain defined on 𝐼3 ∪ 𝜕𝑆 which is 𝑋𝑡 reflected at the
boundary A ≜ 𝜕 (𝐼3 ∪ 𝜕𝑆) of 𝐼3 ∪ 𝜕𝑆. Observe that

𝜎 ∈ A ⇐⇒ 𝑑𝐻(𝜎, 𝜎
*) = 1 ⇐⇒ 1

𝑛
⟨𝜎, 𝜎*⟩ = 𝑛− 2

𝑛
.

We now specify the transition kernel 𝑄(𝑥, 𝑦) of 𝑋 𝑡. If 𝑥 ∈ (𝐼3 ∪ 𝜕𝑆) ∖ A , then
𝑄(𝑥, 𝑦) = 𝑄(𝑥, 𝑦) for any 𝑦 ∈ 𝐼3 ∪ 𝜕𝑆. If 𝑥 ∈ A , then 𝑄(𝑥, 𝑦) = 𝑄(𝑥, 𝑦) for
𝑦 ∈ 𝐼3∪𝜕𝑆; and 𝑄(𝑥, 𝑦) = 0 otherwise. Note that by detailed balance, 𝑋 𝑡 is reversible
with respect to 𝜋𝛽 (· | 𝐼3 ∪ 𝜕𝑆), namely the invariant measure of 𝑋𝑡 conditioned on
𝐼3 ∪ 𝜕𝑆.

We now couple the initialization of the chains; 𝑋0 = 𝑋0 ∼ 𝜋𝛽 (· | 𝐼3 ∪ 𝜕𝑆), to
arrive at the conclusion that so long as 𝑡 ≤ 𝜏𝛽, almost surely 𝑋𝑡 and 𝑋 𝑡 follow the
same trajectory: 𝑋 𝑡 = 𝑋𝑡 and 𝑋 𝑡 ∼ 𝜋𝛽 (· | 𝐼3 ∪ 𝜕𝑆).
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We next proceed in the exact same manner as in [121, Theorem 3.2]. Note that

P(𝜏𝛽 ≤ 𝑇 ) ≤ P
(︀
∃𝑖 ≤ 𝑇 : 𝜏𝛽 = 𝑖,𝑋𝑖−1 ∈ A

)︀
= P

(︀
∃𝑖 ≤ 𝑇 : 𝜏𝛽 = 𝑖,𝑋 𝑖−1 ∈ A

)︀
from the definition of 𝜏𝛽 and the fact that the Markov Chains 𝑋 𝑡 and 𝑋𝑡, started
from a common state in 𝐼3 ∪ 𝜕𝑆, follow the same trajectory for 𝑡 ≤ 𝜏𝛽. Using the
stationarity, namely the fact that 𝑋 𝑡 ∼ 𝜋𝛽(· | 𝐼3∪𝜕𝑆), via a union bound; we further
conclude

P
(︀
∃𝑖 ≤ 𝑇 : 𝜏𝛽 = 𝑖,𝑋 𝑖−1 ∈ A

)︀
≤ P

(︀
∃𝑖 ≤ 𝑇 : 𝑋 𝑖−1 ∈ A

)︀
≤ 𝑇𝜋𝛽

(︀
A | 𝐼3 ∪ 𝜕𝑆

)︀
.

Thus
P(𝜏𝛽 ≤ 𝑇 ) ≤ 𝑇𝜋𝛽

(︀
A | 𝐼3 ∪ 𝜕𝑆

)︀
. (2.162)

We now employ the FEW property to conclude the proof. Observe that A =
𝜕 (𝐼3 ∪ 𝜕𝑆) ⊂ 𝐼3 ∪ 𝜕𝑆. Moreover, observe that A = 𝜕𝑆 ⊂ 𝐼2, hence 𝜋𝛽(A ) ≤ 𝜋𝛽(𝐼2);
and 𝜋𝛽(𝐼3 ∪ 𝜕𝑆) ≥ 𝜋𝛽(𝐼3). Combining these, we obtain

𝜋𝛽 (A | 𝐼3 ∪ 𝜕𝑆) =
𝜋𝛽 (A )

𝜋𝛽 (𝐼3 ∪ 𝜕𝑆)
≤ 𝜋𝛽 (𝐼2)

𝜋𝛽 (𝐼3)
≤ exp

(︀
−Ω

(︀
𝛽2−𝑛𝜖

)︀)︀
. (2.163)

The last inequality uses the FEW property established in Theorem 2.3.3. Combining
(2.162) and (2.163) we conclude the proof:

P (𝜏𝛽 ≤ 𝑇 ) ≤ 𝑇 exp
(︀
−Ω

(︀
𝛽2−𝑛𝜖

)︀)︀
.

With this, the proof of Theorem 2.3.4 is complete.
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Chapter 3

Algorithms and Barriers in the
Symmetric Binary Perceptron Model

3.1 Introduction

In this chapter, we study the perceptron model. Proposed initially in the 1960’s [180,
289, 287, 83], this is a toy model of one-layer neural network storing random patterns
as well as a very natural model in high-dimensional probability. Let 𝑋𝑖 ∈ R𝑛, 1 ≤ 𝑖 ≤
𝑀 , be i.i.d. random patterns to be stored. Storage of these patterns is achieved if one
finds a vector of synaptic weights 𝜎 ∈ R𝑛 consistent with all𝑋𝑖: that is, ⟨𝑋𝑖, 𝜎⟩ ≥ 0 for
1 ≤ 𝑖 ≤𝑀 . There are two main variants of the perceptron: when the vector 𝜎 lies on
on sphere in R𝑛 (the spherical perceptron) and when 𝜎 ∈ ℬ𝑛 ≜ {−1, 1}𝑛 (the binary
or Ising perceptron). For more on the spherical perceptron see [139, 254, 269, 274, 11];
in this chapter we will focus only on the binary perceptron.

A key quantity associated to the perceptron is the storage capacity : the maximum
number 𝑀* of such patterns for which there exists a vector of weights 𝜎 ∈ ℬ𝑛 that is
consistent with all 𝑋𝑖, 1 ≤ 𝑖 ≤𝑀*. Investigations beginning with Gardner [138, 139]
and Gardner-Derrida [140] in the statistical physics literature provided a detailed, yet
non-rigorous, picture for the storage capacity in the case of patterns distributed as
𝑛-dimensional Gaussian vectors.

More general perceptron models are defined by an activation function 𝑈 : R →
{0, 1}1. We say a pattern 𝑋𝑖 is stored by 𝜎 with respect to 𝑈 if 𝑈(⟨𝑋𝑖, 𝜎⟩) = 1. Much
recent work on these models have focused on two classes of activity functions: 𝑈(𝑥) =
1𝑥≥𝜅

√
𝑛 and 𝑈(𝑥) = 1|𝑥|≤𝜅

√
𝑛. The first defines the asymmetric binary perceptron, the

second the symmetric binary perceptron. We now detail some of the previous work
on these models.

1For an even more general setting see [54].
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3.1.1 Perceptron models

Asymmetric Binary Perceptron

We now define the classic binary perceptron, which we call the asymmetric binary
perceptron (ABP) throughout. Fix 𝜅 ∈ R, 𝛼 > 0; and set 𝑀 = ⌊𝑛𝛼⌋ ∈ N. Let
𝑋𝑖

𝑑
= 𝒩 (0, 𝐼𝑛), 1 ≤ 𝑖 ≤ 𝑀 , be i.i.d. random vectors, where 𝒩 (0, 𝐼𝑛) denotes the

𝑛−dimensional multivariate normal distribution with zero mean and identity covari-
ance. Consider the (random) set

𝑆A
𝛼 (𝜅) ≜

⋂︁
1≤𝑖≤𝑀

{︁
𝜎 ∈ ℬ𝑛 : ⟨𝜎,𝑋𝑖⟩ ≥ 𝜅

√
𝑛
}︁
. (3.1)

The vectors 𝑋𝑖 ∈ R𝑛, 1 ≤ 𝑖 ≤ 𝑀 , are collectively referred to as the disorder. In
what follows, we slightly abuse the terminology and use “disorder" to refer to both
the vectors 𝑋𝑖, 1 ≤ 𝑖 ≤𝑀 ; as well as the matrix ℳ ∈ R𝑀×𝑛 whose rows are 𝑋𝑖. The
set 𝑆A

𝛼 (𝜅) is the solution space, a random subset of ℬ𝑛.
The computer science take on the perceptron model is to view it as an instance of a

random constraint satisfaction problem. Indeed, observe that 𝑆A
𝛼 (𝜅) is an intersection

of 𝑀 random halfspaces, each defined by the constraint vector 𝑋𝑖 (and threshold 𝜅).
Each constraint rules out certain solutions in the space ℬ𝑛 of all possible solutions;
and the parameter 𝛼 plays a role akin to the constraint density in the literature on
random 𝑘−SAT, see e.g. [23, 234, 6] for more discussion. For these reasons, we refer
to 𝛼 as the constraint density in the sequel.

Perhaps the most important structural question is whether 𝑆A
𝛼 (𝜅) is empty/non-

empty (w.h.p., as 𝑛 → ∞). Krauth and Mézard conjectured in [190] that the event,{︀
𝑆A
𝛼 (𝜅) ̸= ∅

}︀
, exhibits what is known as a sharp threshold : there is an explicit

threshold 𝛼KM(𝜅) such that

lim
𝑛→∞

P
[︀
𝑆A
𝛼 (𝜅) ̸= ∅

]︀
=

{︃
0, if 𝛼 > 𝛼KM(𝜅)

1, if 𝛼 < 𝛼KM(𝜅)
. (3.2)

Using non-rigorous calculations based on the so-called replica method, Krauth and
Mézard [190] conjecture a precise value of 𝛼KM(0) around 0.833. It is worth noting
that this value deviates significantly from the first moment threshold : note that for
𝜅 = 0, E

[︀⃒⃒
𝑆𝛼(𝜅)

⃒⃒]︀
= exp2

(︀
𝑛−𝑛𝛼

)︀
, which is exponentially small (in 𝑛) only for 𝛼 > 1.

The structure of 𝑆A
𝛼 (𝜅) and the aforementioned phase transition still (largely)

remain as open problems. Even the very existence of such a sharp phase transition
point remains open, though Xu2 [291] has shown sharpness of the threshold around a
possibly 𝑛-dependent value 𝛼(𝑛)

𝑐 (𝜅), as in [116] in the setting of random CSP’s. With
that in mind, we can define

𝛼*
𝑐(𝜅) = inf

{︁
𝛼 : lim

𝑛→∞
P
[︁
𝑆A
𝛼 (0) = ∅

]︁
= 1
}︁
.

2Xu establishes this in a slightly different setting, where the disorder 𝑋𝑖 consists of
i.i.d. Rademacher entries.
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The work by Ding and Sun [95] establishes, using an elegant second-moment argu-
ment, that for every 𝛼 ≤ 𝛼KM(0),

lim inf
𝑛→∞

P
[︁
𝑆A
𝛼 (0) ̸= ∅

]︁
> 0.

Hence, 𝛼*
𝑐(0) ≥ 𝛼KM(0). However, a matching upper bound is still missing: the best

known bound is due to Kim and Roche [188, Theorem 1.2], which show 𝛼*
𝑐(0) ≤

0.9963. More precisely, they show for any 𝜖 < 0.0037, P
[︁
𝑆𝐴
1−𝜖(0) ̸= ∅

]︁
= 𝑜(1). For a

similar negative result with a stronger convergence guarantee; that is a guarantee of
form

P
[︁
𝑆𝐴
1−𝛿(0) ̸= ∅

]︁
≤ exp

(︀
−𝛿𝑛

)︀
for some small 𝛿 > 0 (though potentially worse than 0.0037), see Talagrand [271].

When 𝑆A
𝛼 (𝜅) ̸= ∅ (w.h.p.), a follow-up algorithmic question is whether such a

satisfying 𝜎 ∈ ℬ𝑛 can be found algorithmically (in polynomial time). Regarding such
positive results, the best known guarantee is again due to Kim and Roche. They
devise in [188] an (multi-stage majority) algorithm that w.h.p. returns a solution
𝜎 ∈ 𝑆A

𝛼 (0) as long as 𝛼 < 0.005. (In particular, their algorithm is a constructive
proof that 𝑆A

𝛼 (0) ̸= ∅ w.h.p. for 𝛼 < 0.005.) Later in Section 3.3.4, we informally
describe the implementation of their algorithm and establish that it is stable in an
appropriate sense.

Symmetric Binary Perceptron

Proposed initially by Aubin, Perkins, and Zdeborová in [23]; the symmetric binary
perceptron (SBP) model is our main focus in the present chapter. Similar to the
asymmetric case, fix a 𝜅 > 0, 𝛼 > 0; and set 𝑀 = ⌊𝑛𝛼⌋. Let 𝑋𝑖

𝑑
= 𝒩 (0, 𝐼𝑛),

1 ≤ 𝑖 ≤𝑀 , be i.i.d. random vectors, and consider

𝑆𝛼(𝜅) ≜
⋂︁

1≤𝑖≤𝑀

{︁
𝜎 ∈ ℬ𝑛 :

⃒⃒
⟨𝜎,𝑋𝑖⟩

⃒⃒
≤ 𝜅

√
𝑛
}︁
=
{︁
𝜎 ∈ ℬ𝑛 :

⃦⃦
ℳ𝜎

⃦⃦
∞ ≤ 𝜅

√
𝑛
}︁
, (3.3)

where ℳ ∈ R𝑀×𝑛 with rows 𝑋1, . . . , 𝑋𝑀 . This model is called symmetric since
𝜎 ∈ 𝑆𝛼(𝜅) iff −𝜎 ∈ 𝑆𝛼(𝜅). It turns out that the symmetry makes the SBP more
amenable to analysis compared to its asymmetric counterpart, while retaining the
relevant conjectural structural properties nearly intact, see [29]. Though not our focus
here, it is worth mentioning that this is analogous to the random 𝑘−SAT model. Its
symmetric variant, NAE 𝑘−SAT, is mathematically more tractable, yet at the same
time exhibits similar structural properties.

As its asymmetric counterpart, it was conjectured that the SBP also undergoes a
sharp phase transition. More concretely, it was conjectured that there exists a 𝛼𝑐(𝜅)
such that the event, {𝑆𝛼(𝜅) ̸= ∅}, undergoes a sharp phase transition as 𝛼 crosses
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𝛼𝑐(𝜅). Notably, 𝛼𝑐(𝜅) matches with the first moment prediction:

𝛼𝑐(𝜅) ≜ − 1

log2 P
[︀
|𝑍| ≤ 𝜅

]︀ , where 𝑍 ∼ 𝒩 (0, 1). (3.4)

It was established in [23] that (a) lim𝑛→∞ P
[︀
𝑆𝛼(𝜅) ̸= ∅

]︀
= 0 for 𝛼 > 𝛼𝑐(𝜅); and

(b) lim inf𝑛→∞ P
[︀
𝑆𝛼(𝜅) ̸= ∅

]︀
> 0 for 𝛼 < 𝛼𝑐(𝜅). The latter guarantee uses the so-

called second moment method, though falling short of establishing the high probability
guarantee. Subsequent works by Perkins and Xu [234]; and Abbe, Li, and Sly [6]
establish that P

[︀
𝑆𝛼(𝜅) ̸= ∅

]︀
= 1− 𝑜(1) for all 𝛼 < 𝛼𝑐(𝜅). Namely, 𝛼𝑐(𝜅) is indeed a

sharp threshold for the SBP. Having established the existence and the location of such
a sharp phase transition; the next question, once again, is whether such a 𝜎 ∈ 𝑆𝛼(𝜅)
can be found efficiently ; that is, by means of polynomial-time algorithms. This is our
main focus in the present chapter.

The SBP is closely related to combinatorial discrepancy theory [268, 213]. Given a
matrix ℳ ∈ R𝑀×𝑛, a central problem in discrepancy theory is to compute, approxi-
mate, or bound its discrepancy 𝒟(ℳ):

𝒟(ℳ) ≜ min
𝜎∈ℬ𝑛

⃦⃦
ℳ𝜎

⃦⃦
∞.

Several different settings are considered in the discrepancy literature: worst-case ℳ
and average-case ℳ (where the entries of ℳ either i.i.d. Rademacher or i.i.d.Gaussian);
and both existential and algorithmic results are sought. In the proportional regime,
the discrepancy perspective is to fix the aspect ratio 𝛼 = 𝑀/𝑛 and find a solu-
tion 𝜎 with small ‖ℳ𝜎‖∞. This is the inverse of the perceptron perspective: fixing
𝜅 > 0 and finding the largest 𝛼 for which a solution 𝜎 exists. In particular, the
sharp threshold result for the SBP described above settles the question of discrep-
ancy in the random proportional regime: for ℳ ∈ R𝑀×𝑛 with i.i.d. 𝒩 (0, 1) entries,
𝒟(ℳ) = (1 + 𝑜(1))𝑓(𝛼)

√
𝑛 w.h.p. where 𝑓(·) is the inverse function of 𝛼𝑐. The first

and second moment methods can also be employed to establish the value of discrep-
ancy in the random setting in other regimes, e.g. [238, 278, 14]. Moreover, as we
describe below, discrepancy algorithms (e.g. [32, 211, 71, 36, 239]) can be employed
for the SBP.

3.1.2 Main Results

From an algorithmic point of view, the most striking fact about the SBP is the existence
of a large statistical-to-computational gap. Explanations for both the algorithmic
hardness of the model and for the success of efficient algorithms at low densities have
been put forth recently.

A Statistical-to-Computational Gap. A random constraint satisfaction prob-
lem like the SBP is said to exhibit a statistical-to-computational gap if the density
below which solutions are known to exist w.h.p. is higher than the densities at which
known efficient algorithms can find a solution. As we now demonstrate, the SBP ex-
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hibits a statistical-to-computational gap for all 𝜅 > 0, but this gap is most pronounced
in the regime of small 𝜅. In this regime, the best known algorithmic guarantee for
finding a solution in the SBP is due to Bansal and Spencer [36] from the literature on
combinatorial discrepancy. As we detail in Section 3.3.3 and show in Corollary 3.3.6,
their algorithm works for 𝛼 = 𝑂(𝜅2) as 𝜅 → 0. This stands in stark contrast to the
threshold for the existence of solutions. From (3.4), 𝛼𝑐(𝜅) behaves like 1

log2(1/𝜅)
:

𝛼𝑐(𝜅) = − 1

log2 P
[︀
|𝑍| ≤ 𝜅

]︀ = − 1
1
2
log2

2
𝜋
+ log2

(︀
1 + 𝑜𝜅(1)

)︀
+ log2 𝜅

=
1

log2(1/𝜅)

(︀
1+𝑜𝜅(1)

)︀
.

Namely, 𝛼𝑐(𝜅) is asymptotically much larger than the algorithmic 𝜅2 threshold. The
main motivation of the present chapter is to inquire into the origins of this gap in the
SBP by leveraging insights from statistical physics. In particular, we will establish the
presence of a geometric property known as the Overlap Gap Property (OGP), and
use it to rule out classes of stable algorithms, appropriately defined.

Freezing, rare clusters, and algorithms. The SBP exhibits striking structural
properties which are thought to contribute to both the success of polynomial-time
algorithms at low densities and the failure of efficient algorithms at higher densities.

On one hand, the model exhibits the “frozen one-step Replica Symmetry Breaking
(1-RSB)" scenario at all positive densities 𝛼 < 𝛼𝑐. This states that whp over the
instance, almost every solution 𝜎 is totally frozen and isolated: the nearest other
solution is at linear Hamming distance to 𝜎. This extreme form of clustering was
conjectured to hold for the ABP and SBP in [190, 174, 23, 29], and subsequently es-
tablished for the SBP in [234, 6]. In light of the earlier works by Mézard, Mora, and
Zecchina [217] and Achlioptas and Ricci-Tersenghi [9] positing a link between clus-
tering, freezing, and algorithmic hardness, it is tempting to postulate that finding a
solution 𝜎 for the SBP is hard for every 𝛼 ∈ (0, 𝛼𝑐(𝜅)), but this is contradicted by the
existence of efficient algorithms at low densities such as that of [36, 60, 28, 26, 27] in-
cluding the algorithm by Bansal and Spencer discussed above. Combining these facts,
we arrive at the conclusion that the SBP exhibits an intriguing phenomenon: the exis-
tence of polynomial-time algorithms can coexist with the frozen 1-RSB phenomenon.
This conundrum challenges the view that clustering and freezing necessarily lead to
algorithmic hardness.

In an attempt to explain this apparent conundrum, it was conjectured in [30] that
while a 1 − 𝑜(1) fraction of all solutions are totally frozen, an exponentially small
fraction of solutions appear in clusters of exponential (in 𝑛) size; and the efficient
learning algorithms that manage to find solutions find solutions belonging to such
rare clusters, see [234] for further discussion. In this direction, Abbe, Li, and Sly [5]
established very recently that whp a connected cluster of solutions of linear diameter
does indeed exist at all densities 𝛼 < 𝛼𝑐. Furthermore, they show that an efficient
multi-stage majority algorithm (based on that of [188]) can find such a large cluster
at densities 𝛼 = 𝑂(𝜅10) in the 𝜅→ 0 regime3.

3See in particular 𝛼0 appearing in [5, Page 6].
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These results and conjectures prompt several questions regarding the statistical-
to-computational gap exhibited by the SBP. If large connected clusters exist at all
subcritical densities, what is the reason for the apparent algorithmic hardness? Do
the efficient algorithms for densities 𝛼 = 𝑂(𝜅2) also find solutions lying in one of these
large connected clusters? At what densities are these large clusters algorithmically
accessible? In particular, while we now know detailed structural information about
the SBP, its statistical-to-computational gap remains a mystery.

Our results on the Overlap Gap Property and failure of stable algorithms.
We investigate the statistical-to-computational gap in the SBP via the Overlap Gap
Property (OGP), an intricate geometrical property of the solution space that has
been used to rigorously rule out large classes of search algorithms for many impor-
tant random computational problems including random 𝑘−SAT [137, 78, 63] and
independent sets in sparse random graphs [135, 245, 285], see also the survey paper
by Gamarnik [119]. We will describe the OGP in more detail below. At a high level, it
asserts the non-existence of tuples of solutions at prescribed distances in the solution
space.

Our first main result establishes the OGP for 𝑚−tuples of solutions (dubbed as
𝑚−OGP) at densities Ω(𝜅2 log2

1
𝜅
):

Theorem 3.1.1 (Informal, see Theorem 3.2.4). For densities 𝛼 = Ω(𝜅2 log2
1
𝜅
), the

SBP exhibits the 𝑚−OGP for appropriately chosen parameters.

We also establish the presence of 2−OGP and the 3−OGP for the SBP in the high 𝜅
regime, i.e. when 𝜅 = 1, respectively in Theorem 3.2.2 and Theorem 3.2.3. As we show
in Theorem 3.5.2 through the multi-dimensional version of Berry-Esseen Theorem,
our OGP results enjoy universality : they remain valid under milder distributional
assumptions on the entries of ℳ.

Our next main result shows that the 𝑚−OGP rules out the class of stable algo-
rithms formalized in Definition 3.3.1. At a high level, an algorithm is stable if a small
perturbation of its input results in a small perturbation of the solution 𝜎 it outputs.
In the literature on other random computational problems, it has been shown that
the class of stable algorithms captures powerful classes of algorithms including Ap-
proximate Message Passing algorithms [120], low-degree polynomials [122, 63], and
low-depth circuits [124].

Theorem 3.1.2 (Informal, see Theorem 3.3.2). The 𝑚−OGP implies the failure of
stable algorithms for the SBP.

Thus, we obtain the following corollary:

Corollary 3.1.3 (Informal, see Theorem 3.3.2). Stable algorithms (with appropriate
parameters) fail to find a solution for the SBP for densities 𝛼 = Ω(𝜅2 log2

1
𝜅
).

In particular, this hardness result matches the algorithmic 𝜅2 threshold up to a
logarithmic factor. Hence, while the view that freezing implies algorithmic hardness
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for the SBP breaks down, the rigorous link between the OGP and algorithmic hardness
remains intact.

In addition to stable algorithms; we also consider the class of online algorithms
which includes the Bansal-Spencer algorithm [36]. Informally, an algorithm 𝒜 is
online if the 𝑡th coordinate of the solution it outputs depends only on the first 𝑡
columns of ℳ.

Theorem 3.1.4 (Informal, see Theorem 3.3.4). Online algorithms fail to find a so-
lution for the SBP for sufficiently high densities.

Having established the hardness of stable algorithms for the SBP at the 𝑚−OGP
threshold; a natural follow-up question is whether the known efficient algorithms for
perceptron models are stable and whether the ABP also exhibits the 𝑚−OGP. To that
end, we investigate the stability property of the Kim-Roche algorithm [188] for the
ABP.

Theorem 3.1.5 (Informal, see Theorem 3.3.8). The Kim-Roche algorithm [188] for
the ABP is stable in the sense of Definition 3.3.1.

Investigating the stability of the Bansal-Spencer algorithm [36] and whether the
ABP also exhibits the OGP are among several open questions we discuss in Sec-
tion 3.1.4.

3.1.3 Background and Related Work

Statistical-to-Computational Gaps. As we noted, the SBP model exhibits a
statistical-to-computational gap (SCG): a gap between what the existential results
guarantee (and thus what can be found with unbounded computational power), and
what algorithms with bounded computational power (such as polynomial-time al-
gorithms) can promise. Such SCGs are a ubiquitous feature in many algorithmic
problems (with random inputs) appearing in high-dimensional statistical inference
tasks and in the study of random combinatorial structures. A partial (and cer-
tainly incomplete) list of problems with an SCG includes constraint satisfaction prob-
lems [217, 9, 7], optimization problems over random graphs [135, 77, 136] and spin
glass models [73, 122, 120, 124], number partitioning problem [126], principal compo-
nent analysis [47, 199, 200], and the “infamous" planted clique problem [177, 92, 38];
see also the introduction of [126], the recent survey [119]; and the references therein.

Unfortunately, due to the so-called average-case nature of these problems, the
standard NP-completeness theory often fails to establish hardness for those problems
even under the assumption 𝑃 ̸= 𝑁𝑃 . (It is worth noting though that a notable
exception to this is when the problem exhibits random self-reducibility, see e.g. [133]
for such a hardness result regarding a spin glass model, conditional on a weaker
assumption 𝑃 ̸= #𝑃 .) Nevertheless, a very fruitful (and still active) line of research
proposed certain forms of rigorous evidences of algorithmic hardness for such average-
case problems. These approaches include the failure of Monte Carlo Markov Chain
methods [177, 103], low-degree methods and failure of low-degree polynomials [169,

121



193, 122, 285, 63], Sum-of-Squares [168, 167, 240, 38] and Statistical Query [186, 94,
111, 112] lower bounds, failure of the approximate message passing algorithm (an
algorithm that is information-theoretically optimal for certain important problems,
see e.g. [91, 90]) [293, 31]; and the reductions from the planted clique problem [47,
62, 61], just to name a few. Yet another very promising such approach is through the
intricate geometry of the problem, via the so-called Overlap Gap Property (OGP).

Overlap Gap Property (OGP). Implicitly discovered by Mézard, Mora, and
Zecchina [217] and Achlioptas and Ricci-Tersenghi [9] (though coined later in [134]),
the OGP approach leverages insights from the statistical physics to form a rigorous
link between the intricate geometry of the solution space and formal algorithmic
hardness. Informally, the OGP is a topological disconnectivity property, and states
(in the context of a random combinatorial optimization problem, say over ℬ𝑛) that
(w.h.p. over the randomness) any two near-optimal 𝜎1, 𝜎2 ∈ ℬ𝑛 are either “close"
or “far" from each other: there exists 0 < 𝜈1 < 𝜈2 < 1 such that 𝑛−1 ⟨𝜎1, 𝜎2⟩ ∈
[0, 𝜈1]∪ [𝜈2, 1]. That is, their (normalized) overlaps do not admit intermediate values ;
and no two near-optimal solutions of intermediate distance can be found. It has been
shown (see below) that the OGP is a rigorous barrier for large classes of algorithms.
See [119] for a survey on OGP.

Algorithmic Implications of OGP. The line of research relating the OGP to
algorithmic hardness was initiated by Gamarnik and Sudan [135, 136]. They consider
the problem of finding a large independent set in the sparse random graphs with
average degree 𝑑. It is known, see e.g. [117, 118, 45], that in the double limit (first
sending 𝑛→ ∞, then letting 𝑑→ ∞), the largest independent set of this graph is of
size 2 log 𝑑

𝑑
𝑛. On the other hand, the best known polynomial-time algorithm [184] (a

very simple greedy protocol) returns an independent set that is half optimal, namely
of size log 𝑑

𝑑
𝑛. In order to reconcile this apparent SCG, Gamarnik and Sudan study the

space of all large independent sets. They establish that any two independent sets of
size greater than (1+1/

√
2) log 𝑑

𝑑
𝑛 exhibit OGP. By leveraging this, they show, through

a contradiction argument, that local algorithms (known as the factors of i.i.d.) fail
to find an independent set of size greater than (1+ 1/

√
2) log 𝑑

𝑑
𝑛. Subsequent research

(again via the lens of OGP) extended this hardness result to the class of low-degree
polynomials [122]. The extra “oversampling" factor, 1/

√
2, was removed by inspecting

instead the the overlap pattern of many large independent sets (rather than the pairs),
therefore establishing hardness all the way down to the algorithmic threshold. This
was done by Rahman and Virág [245] for local algorithms, and by Wein [285] for low-
degree polynomials ; and is also our focus here (see below). A list of problems where
the OGP is leveraged to rule out certain classes of algorithms includes optimization
over random graphs and spin glass models [120, 122, 124, 172], number partitioning
problem [126], random constraint satisfaction problems [137, 63].

Multi OGP (𝑚−OGP). As we just mentioned, it was previously observed that
by considering more intricate overlap patterns, one can potentially lower the (algo-
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rithmic) phase transition points further. This idea was employed for the first time by
Rahman and Virág [245] in the context of the aforementioned independent set prob-
lem. They managed to “shave off" the extra 1/

√
2 factor present in the earlier result

by Gamarnik and Sudan [135, 136], and reached all the way down to the algorithmic
threshold, log 𝑑

𝑑
𝑛. In a similar vein, Gamarnik and Sudan [137] studied the overlap

structure of 𝑚−tuples 𝜎(𝑖) ∈ ℬ𝑛, 1 ≤ 𝑖 ≤ 𝑚 of satisfying assignments in the context
of the Not-All-Equal (NAE) 𝑘−SAT problem. By showing the presence of OGP for
𝑚−tuples of nearly equidistant points (in ℬ𝑛), they established nearly tight hardness
for sequential local algorithms : their results match the computational threshold mod-
ulo factors that are polylogarithmic (in 𝑘). A similar overlap pattern (for 𝑚−tuples
consisting of nearly equidistant points) was also considered by Gamarnik and Kızıl-
dağ [126] in the context of random number partitioning problem (NPP), where they
established hardness well below the existential threshold. (It is worth noting that [126]
considers 𝑚−tuples where 𝑚 itself also grows in 𝑛, 𝑚 = 𝜔𝑛(1).)

More recently, 𝑚−OGP for more intricate forbidden patterns were considered to
establish formal hardness in other settings. In particular, by leveraging 𝑚−OGP,
Wein [285] showed that low-degree polynomials fail to return a large independent
set (in sparse random graphs) of size greater than log 𝑑

𝑑
𝑛, thereby strengthening the

earlier result by Gamarnik, Jagannath, and Wein [122]. Wein’s work establishes the
ensemble variant of OGP (an idea emerged originally in [73]): he considers 𝑚−tuples
of independent sets where each set do not necessarily come from the same random
graph, but rather from correlated random graphs. The ensemble variant of OGP was
also considered in [126] for the NPP. While technically more involved to establish, it
appears that the ensemble 𝑚−OGP can be leveraged to rule out virtually any stable
algorithm (appropriately defined); and will also be our focus here. More recently,
by leveraging the ensemble 𝑚−OGP; Bresler and Huang [63] established nearly tight
low-degree hardness results for the random 𝑘−SAT problem: they show that low-
degree polynomials fail to return a satisfying assignment when the clause density
is only a constant factor off by the computational threshold. In yet another work,
Huang and Sellke [172] construct a very intricate forbidden structure consisting of an
ultrametric tree of solutions, which they refer to as the branching OGP. By leveraging
this branching OGP, they rule out overlap concentrated algorithms4 at the algorithmic
threshold for the problem of optimizing mixed, even 𝑝−spin model Hamiltonian.

3.1.4 Open Problems

Location of the Algorithmic Threshold. We establish in Theorem 3.2.4 that
the SBP exhibits 𝑚−OGP if 𝛼 = Ω

(︀
𝜅2 log2

1
𝜅

)︀
. On the other hand, we have per

Corollary 3.3.6 that the Bansal-Spencer algorithm [36] works when 𝛼 = 𝑂(𝜅2). In
light of these, we make the following conjecture:

Conjecture 3.1.6. As 𝜅→ 0, the algorithmic threshold for the SBP is at ̃︀Θ(𝜅2).

4A class that captures 𝑂(1) iterations of gradient descent, approximate message passing; and
Langevin Dynamics run for 𝑂(1) time.
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In particular, we conjecture that up to factors that are polylogarithmic in 1
𝜅
, the

Bansal-Spencer algorithm is the best possible within the class of efficient algorithms.
That is, up to polylogarithmic factors no polynomial-time algorithm succeeds above
the 𝑚−OGP threshold. An interesting question is whether the log2

1
𝜅

factor is nec-
essary or it can be ‘shaved off’. We believe it might be possible to remove this
factor by considering a more intricate overlap pattern, e.g. similar to those considered
in [285, 63, 172].

We now make Conjecture 3.1.6 more precise. Given an 𝑚 ∈ N and 𝜅 > 0, let
𝛼*
𝑚(𝜅) be the smallest subcritical density such that the SBP exhibits 𝑚−OGP with

appropriate parameters when 𝛼 ≥ 𝛼*
𝑚. We conjecture that the 𝑚 → ∞ limit of

the 𝑚−OGP threshold marks the true algorithmic threshold: for every 𝜖 > 0 and
𝜅 small enough, there do not exist polynomial-time algorithms for the SBP when
𝛼 ≥ (1 + 𝜖) lim𝑚→∞ 𝛼*

𝑚(𝜅). See Conjecture 3.3.7 for details. This conjecture is
backed up by the evidence that for many random computational problems including
random 𝑘−SAT [63], independent sets in sparse random graphs [245, 285], and mixed
even 𝑝−spin model [172], the 𝑚−OGP matches or nearly matches the best known
algorithmic threshold.

Abbe, Li and Sly ask in [5, Question 1] whether the algorithmic threshold for the
SBP coincides with the threshold for the existence of a ‘wide web’: a cluster of solutions
with maximum possible diameter 𝑛. One one hand, the existence of a wide web rules
out the 2-OGP: pairs of solutions of every possible overlap exist. It would be very
interesting to determine whether the threshold for existence of the wide web coincides
with the conjectured algorithmic threshold of Θ̃(𝜅2) above, or even more precisely the
limiting 𝑚-OGP threshold lim𝑚→∞ 𝛼*

𝑚 (at least asymptotically as 𝜅→ 0).

The Asymmetric Model. As we noted earlier, the ABP is more challenging from a
mathematical perspective, and some of its basic properties are still far from being rig-
orously understood. In particular, even the very existence of a sharp phase transition
and the frozen 1-RSB picture—both rigorously known to hold for the SBP—remain
open.

The ABP also exhibits a statistical-to-computational gap. On one hand, Kim-Roche
algorithm [188] finds solutions at low enough densities, specifically when 𝛼 < 0.005.
On the other hand, the result of Ding and Sun [95] shows that solutions do exist (with
probability bounded away from 0) when 𝛼 < 𝛼KM(0) ≈ 0.83. It would be interesting
to show that the ABP exhibits 𝑚−OGP for some densities 𝛼 < 𝛼KM(0). To understand
the statistical-to-computational gap of ABP further, it would be interesting to explore
the model in the regime 𝜅→ ∞ and investigate the 𝑚−OGP threshold and threshold
for the existence of efficient algorithms. Further, there are other perceptron models
one could explore in this regard, e.g. the 𝑈−function binary perceptron introduced
in [23].

Stability of Other Algorithms. We established in Theorem 3.3.8 that the Kim-
Roche algorithm for ABP is stable. In light of this, we make the following conjecture
regarding the SBP:
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Conjecture 3.1.7. There exists a stable algorithm that finds a solution for the SBP
w.h.p. when 𝛼 = 𝑂(𝜅2).

In particular, proving stability of the Bansal-Spencer algorithm would resolve
Conjecture 3.1.7, but this seems challenging: the presence of a certain non-linear
potential function (see [36, Equation 2.5]) renders the stability analysis difficult.

The algorithm of [5] is a variant of the Kim-Roche algorithm that works for the
SBP for 𝛼 = 𝑂

(︀
𝜅10
)︀
. Proving the stability of this algorithm would be an interesting

first step towards resolving Conjecture 3.1.7.

Broader Research Agendas on the OGP. As mentioned above, the OGP is a
provable barrier for a broad class of algorithms for many random computational prob-
lems. A list of such algorithms includes local/sequential local algorithms, Monte Carlo
Markov Chain (MCMC) methods, low-degree polynomials, Langevin dynamics, ap-
proximate message passing type algorithms, low-depth circuits, and stable algorithms
in general. In many random computational problems (like 𝑘-SAT and independent
sets) the OGP coincides with the threshold for the existence of known efficient search
algorithms. One might then conjecture (as we do here) that the OGP marks the true
algorithmic threshold. It would thus be very surprising and very interesting to find a
case where efficient algorithms succeed in the face of the OGP5. While random 𝑘-SAT,
independent sets in random graphs, and other random CSP’s have been studied for
decades without finding such algorithms, algorithms for perceptron models have not
been studied as extensively, especially not in the limiting regime 𝜅 → 0 we focus on
here, and thus this might be fruitful direction to pursue.

3.1.5 Organization and Notation

Chapter Organization. The rest of the chapter is organized as follows. Our OGP
results are stated in Section 3.2. In particular, we establish 2−OGP and 3−OGP for
the high 𝜅 case (𝜅 = 1) in Section 3.2.2; and the 𝑚−OGP for the regime 𝜅 → 0 in
Section 3.2.3. We then take an algorithmic route, and establish our main hardness
result in Section 3.3.1; and formulate a conjecture pertaining the true algorithmic
threshold in Section 3.3.3. In Section 3.3.4 we describe the Kim-Roche algorithm and
show that it is stable. We record certain limitations of our approach in Section 3.4.
We show in Section 3.5 that our OGP results enjoy universality and extend beyond the
Gaussian disorder. We provide complete proofs in Section 3.6. Finally in Appendix A,
we provide a MATLAB code for verifying Lemma 3.6.1 using which we establish
2−OGP and 3−OGP for 𝜅 = 1.

Notation. For any 𝑛 ∈ N, [𝑛] ≜ {1, 2, . . . , 𝑛}. The binary cube {−1, 1}𝑛 is denoted
by ℬ𝑛. For any set 𝐴, |𝐴| denotes its cardinality. For any 𝑟 > 0 and 𝑥 ∈ R; exp𝑟(𝑥)
and log𝑟(𝑥) denote respectively the exponential and logarithm functions base 𝑟. For

5Beyond those cases where algebraic techniques like Gaussian elimination can find solutions to
‘noiseless’ problems like solving random linear equations.
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any 𝑣 = (𝑣𝑖 : 1 ≤ 𝑖 ≤ 𝑛) ∈ R𝑛 and 𝑝 > 0, ‖𝑣‖𝑝 ≜
(︀∑︀

1≤𝑖≤𝑛 |𝑣𝑖|𝑝
)︀1/𝑝, and ‖𝑣‖∞ =

max1≤𝑖≤𝑛 |𝑣𝑖|. For any 𝑣, 𝑣′ ∈ R𝑛, ⟨𝑣, 𝑣′⟩ ≜ ∑︀
1≤𝑖≤𝑛 𝑣𝑖𝑣

′
𝑖 and 𝒪𝑣𝑣′ ≜ 𝑛−1 ⟨𝑣, 𝑣′⟩. For

any 𝜎, 𝜎′ ∈ ℬ𝑛, 𝑑𝐻(𝜎, 𝜎′) denotes their Hamming distance. For 𝑘 ∈ N, e ∈ R𝑘

denotes the vector of all ones (where the dimension will be clear from the context);
and 𝐼𝑘 denotes the 𝑘 × 𝑘 identity matrix. For any 𝑥 ∈ R, ⌊𝑥⌋ and ⌈𝑥⌉ respectively
denote its floor and ceil. For 𝑝 ∈ [0, 1], ℎ(𝑝) ≜ −𝑝 log2 𝑝 − (1 − 𝑝) log2(1 − 𝑝) is
the binary entropy function (logarithm base two). For any 𝑛 ∈ N, 𝜇 ∈ R𝑛 and
Σ ∈ R𝑛×𝑛; 𝒩 (𝜇,Σ) denotes the 𝑛−dimensional random vector having multivariate
normal distribution with mean 𝜇 and covariance Σ. For any event ℰ , 1{ℰ} denotes its
indicator. Given a matrix ℳ; ‖ℳ‖𝐹 , ‖ℳ‖2, 𝜎(ℳ), 𝜎min(ℳ), 𝜎max(ℳ), |ℳ| and
trace(ℳ) denote, respectively, its Frobenius norm, spectral norm, spectrum (that
is, the set of its eigenvalues), smallest and largest singular values, determinant, and
trace. A graph G = (𝑉,𝐸) is a collection of vertices 𝑉 together with some edges
(𝑣, 𝑣′) ∈ 𝐸 between 𝑣, 𝑣′ ∈ 𝑉 . We consider herein only the simple graphs, namely
those that are undirected with no loops. A graph G = (𝑉,𝐸) is called a clique if for
every distinct 𝑣, 𝑣′ ∈ 𝑉 , (𝑣, 𝑣′) ∈ 𝐸. We denote the clique on 𝑚−vertices (𝑚 ∈ N) by
𝐾𝑚. A subset 𝑆 ⊂ 𝑉 of vertices (of a G = (𝑉,𝐸)) is called an independent set if for
every distinct 𝑣, 𝑣′ ∈ 𝑉 , (𝑣, 𝑣′) /∈ 𝐸. The largest cardinality of such an independent
set is called the independence number of G, denoted 𝛼(G). A 𝑞−coloring of a graph
G = (𝑉,𝐸) is a function 𝜙 : 𝐸 → {1, 2, . . . , 𝑞} assigning to each 𝑒 ∈ 𝐸 one of 𝑞
available colors.

Throughout the chapter, we employ the standard Bachmann-Landau asymptotic
notation, e.g. Θ(·), 𝑂(·), 𝑜(·), and Ω(·). If there is no subscript, the asymptotic is with
respect to 𝑛 → ∞. In the case where we consider asymptotics other than 𝑛 → ∞,
we reflect this by a subscript: for instance, if 𝑓 is a function such that 𝑓(𝜅) → ∞
as 𝜅 → 0, we denote this by 𝑓 = 𝜔𝜅(1). To keep our exposition clean, we omit
floor/ceiling signs whenever appropriate.

3.2 OGP in the Symmetric Binary Perceptron
In this section, we establish landscape results, dubbed as ensemble 𝑚−OGP, concern-
ing the overlap structures of 𝑚−tuples

(︀
𝜎(𝑖) : 1 ≤ 𝑖 ≤ 𝑚

)︀
, 𝜎(𝑖) ∈ ℬ𝑛, that satisfy “box

constraints" with respect to potentially correlated instances of Gaussian disorder.

3.2.1 Technical Preliminaries

We next formalize the notion of correlated instances through an appropriate interpo-
lation scheme.

Definition 3.2.1. Fix a 𝜅 > 0, and recall

𝛼𝑐(𝜅) = − 1

log2 P(|𝒩 (0, 1)| ≤ 𝜅)
.

Let 0 < 𝛼 < 𝛼𝑐(𝜅), 𝑚 ∈ N, 0 < 𝜂 < 𝛽 < 1, and ℐ ⊂ [0, 𝜋/2]. Set 𝑀 = ⌊𝑛𝛼⌋ and
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suppose that ℳ𝑖 ∈ R𝑀×𝑛, 0 ≤ 𝑖 ≤ 𝑚, is a sequence of i.i.d. random matrices, each
having i.i.d.𝒩 (0, 1) coordinates. Denote by 𝒮𝜅(𝛽, 𝜂,𝑚, 𝛼, ℐ) the set of all 𝑚−tuples(︀
𝜎(𝑖) : 1 ≤ 𝑖 ≤ 𝑚

)︀
, 𝜎(𝑖) ∈ ℬ𝑛, satisfying the following conditions.

(a) (Pairwise Overlap Condition) For any 1 ≤ 𝑖 < 𝑗 ≤ 𝑚,

𝛽 − 𝜂 ≤ 𝒪𝜎(𝑖)𝜎(𝑗) ≤ 𝛽,

where 𝒪𝜎(𝑖)𝜎(𝑗) ≜ 𝑛−1
⟨︀
𝜎(𝑖), 𝜎(𝑗)

⟩︀
.

(b) (Rectangular Constraints) There exists 𝜏𝑖 ∈ ℐ, 1 ≤ 𝑖 ≤ 𝑚, such that⃦⃦
ℳ𝑖(𝜏𝑖)𝜎

(𝑖)
⃦⃦
∞ ≤ 𝜅

√
𝑛, 1 ≤ 𝑖 ≤ 𝑚

where
ℳ𝑖(𝜏𝑖) = cos(𝜏𝑖)ℳ0 + sin(𝜏𝑖)ℳ𝑖 ∈ R𝑀×𝑛, 1 ≤ 𝑖 ≤ 𝑚. (3.5)

The interpretations of the parameters appearing in Definition 3.2.1 are as follows.
The parameter 𝑚 is the size of the tuples we inspect; 𝜅 is the constraint threshold;
and 𝛼 is the constraint density. That is, we consider 𝑀 = ⌊𝑛𝛼⌋ random constraints.
Parameters 𝛽 and 𝜂 control the (forbidden) region of pairwise overlaps. Finally, the
index set, ℐ, is used for generating correlated instances of random constraints via
interpolation ℳ𝑖(𝜏𝑖) in (3.5), 𝜏𝑖 ∈ ℐ. This is necessary to study the ensemble OGP,
see below.

As a concrete example to Definition 3.2.1, consider the toy setting 𝑚 = 2 and
ℐ = {0}. In this case, 𝑆𝜅

(︀
𝛽, 𝜂, 2, 𝛼, {0}

)︀
is simply the set of all pairs (𝜎1, 𝜎2) ∈ ℬ𝑛×ℬ𝑛

such that (a) 𝛽 − 𝜂 ≤ 𝑛−1 ⟨𝜎1, 𝜎2⟩ ≤ 𝛽 and (b)
⃦⃦
ℳ𝜎𝑖

⃦⃦
∞ ≤ 𝜅

√
𝑛 for 𝑖 = 1, 2; where

ℳ ∈ R⌊𝛼𝑛⌋×𝑛 is a random matrix with i.i.d. standard normal entries.

3.2.2 Landscape Results: High 𝜅 Regime

Our first focus is on the regime where 𝜅 is large. While we set 𝜅 = 1 (thus 𝛼𝑐(𝜅) is
approximately 1.8159) for simplicity; our results extend easily to any fixed 𝜅 > 0. In
this case, we also drop the subscript 𝜅 appearing in Definition 3.2.1, and simply use
the notation 𝒮(𝛽, 𝜂,𝑚, 𝛼, ℐ) to denote 𝒮1(𝛽, 𝜂,𝑚, 𝛼, ℐ).

Our first result establishes 2−OGP above 𝛼 ≥ 1.71.

Theorem 3.2.2. Let 1.71 ≤ 𝛼 ≤ 𝛼𝑐(1) ≈ 1.8159. Then, there exists 0 < 𝜂*2 < 𝛽*
2 < 1

and a constant 𝑐* > 0 such that the following holds. Fix any ℐ ⊂ [0, 𝜋/2] with
|ℐ| ≤ exp2

(︀
𝑐*𝑛
)︀
. Then,

P
[︁
𝒮
(︀
𝛽*
2 , 𝜂

*
2, 2, 𝛼, ℐ

)︀
̸= ∅

]︁
≤ exp2

(︀
−Θ(𝑛)

)︀
.

By considering the overlap structure of triples, one can further reduce the thresh-
old (on 𝛼) to approximately 1.667 above which the overlap gap property takes place.

127



Theorem 3.2.3. Let 1.667 ≤ 𝛼 ≤ 𝛼𝑐(1) ≈ 1.8159. Then, there exists 0 < 𝜂*3 < 𝛽*
3 <

1 and a constant 𝑐* > 0 such that the following holds. Fix any ℐ ⊂ [0, 𝜋/2] with
|ℐ| ≤ exp2

(︀
𝑐*𝑛
)︀
. Then,

P
[︁
𝒮
(︀
𝛽*
3 , 𝜂

*
3, 3, 𝛼, ℐ

)︀
̸= ∅

]︁
≤ exp2

(︀
−Θ(𝑛)

)︀
.

The proof of Theorem 3.2.3 is provided in Section 3.6.2. The proof of Theo-
rem 3.2.2 is quite similar to that of Theorem 3.2.3 (and in fact much simpler in terms
of technical details); and is omitted.

Theorem 3.2.3 implies that 3−OGP (with appropriate parameters) takes place
for 𝛼 ≥ 1.667, which is indeed strictly smaller than the corresponding threshold of
𝛼 ≥ 1.71 for 2−OGP established in Theorem 3.2.2. An inspection of the proof reveals
that our choice of 𝜂* satisfies 𝜂* ≪ 𝛽*. That is, the structure that Theorem 3.2.3
rules out corresponds essentially to (nearly) equilateral triangles in Hamming space.

Theorem 3.2.3 is established using the first-moment method. More specifically, we
let a certain random variable count the number of such triples. We then leverage
Lemma 3.6.1 to ensure that the exponent of the first moment of that random variable
is negative under appropriate choices of parameters. That is, the expectation is
exponentially small (in 𝑛). Markov’s inequality then yields Theorem 3.2.3. At a
technical level, this amounts, in particular, to (a) counting the number of nearly
equilateral triangles in the Hamming space; and (b) applying a Gaussian comparison
inequality by Sidák [256] (reproduced herein as Theorem 3.6.5 for completeness). It
is worth noting though that unlike [126], our counting bound is exact (up to lower-
order terms). This appears necessary. Indeed, it appears not possible to improve upon
Theorem 3.2.2 if one considers instead the relaxation to the “star-shaped" forbidden
structures (where the overlap constraint is relaxed to 𝒪𝜎(1)𝜎(𝑗) ∈ [𝛽 − 𝜂, 𝛽], 𝑗 ≥ 2)
as in the counting step of [126, Theorems 2.3 and 2.6]. The aforementioned counting
term appears more involved for 𝑚 ≥ 4.

As we noted earlier in the introduction, we do not pursue the 𝑚−OGP improve-
ment for 𝑚 ≥ 4 in the high 𝜅 regime. This is due to the following reason: the
first moment method employed for establishing 𝑚−OGP actually fails as 𝑚 gets
larger. That is, one can in fact (a) lower bound the first moment of the number 𝑁
of 𝑚−tuples corresponding to the forbidden structure that 𝑚−OGP deals with, and
(b) show that for 𝑚 large, the value of 𝛼 above which E[𝑁 ] is 𝑜(1) is actually strictly
larger than 1.71. This, of course, is only a failure of the first moment method, and
does not necessarily imply that the 𝑚−OGP itself yields a worse threshold. In fact,
given the previously mentioned prior work employing 𝑚−OGP as well as the fact that
𝑚−OGP deals with a more nested structure, it indeed makes sense that 𝑚−OGP (for
𝑚 ≥ 4) should hold for a much broader range of 𝛼.6 For this reason, it is plausible to
conjecture that considering 𝑚−OGP beyond 𝑚 ∈ {2, 3} lowers the threshold on 𝛼.
We leave the formal verification of this for future investigation.

Before we close this section, we remark that Baldassi, Della Vecchia, Lucibello,

6Here, it is worth noting that such a strict monotonicity in 𝑚 has also been conjectured by Ben
Arous and Jagannath in the context of spherical spin glass models [22].
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and Zecchina established in [29] similar OGP results for the high 𝜅 case. To that
end, fix any 𝑥 ∈ [0, 1] and 𝐾 > 0. Using a first moment argument, they show
the existence of a critical threshold 𝛼

(𝑚)
UB (𝑥,𝐾) such that the following holds: fix

any 𝛼 > 𝛼
(𝑚)
UB (𝑥,𝐾); then w.h.p. there exists no 𝑚−tuple 𝜎𝑖 ∈ 𝑆𝛼(𝐾) with fixed

pairwise Hamming distances of ⌊𝑛𝑥⌋. Namely, their results correspond to the case
𝜂*2 = 𝜂*3 = 0. Furthermore, their results are rigorous for 𝑚 ∈ {2, 3, 4}. However, they
also suffer from technical difficulties similar to ours arising from the combinatorial
terms for 𝑚 > 4. For this reason, they resort to non-rigorous calculations and a
replica symmetric ansatz to study 𝑚−tuples beyond 𝑚 = 4.

3.2.3 Landscape Results: The Regime 𝜅→ 0.

We now turn to our results in the regime 𝜅→ 0. Observe that for any fixed 𝜅 > 0, the
volume of the “rectangular box" [−𝜅, 𝜅]𝑚 (which eventually controls the probabilistic
term) appearing in Definition 3.2.1 is (2𝜅)𝑚. When 𝜅→ 0, this term actually shrinks
further by increasing 𝑚. Thus, one can hope to pursue the 𝑚−OGP improvement.
This is the subject of the present subsection. Our main result to that end is as follows.

Theorem 3.2.4. Let
𝛼OGP(𝜅) ≜ 10𝜅2 log

1

𝜅
. (3.6)

Then, for every sufficiently small 𝜅 > 0 and 𝛼 ≥ 𝛼OGP(𝜅), there exist 0 < 𝜂 < 𝛽 < 1,
𝑐 > 0, and an 𝑚 ∈ N such that the following holds. Fix any ℐ ⊂ [0, 𝜋/2] with
|ℐ| ≤ exp2

(︀
𝑐𝑛
)︀
. Then,

P
[︁
𝒮𝜅

(︀
𝛽, 𝜂,𝑚, 𝛼, ℐ

)︀
̸= ∅

]︁
≤ exp2

(︀
−Θ(𝑛)

)︀
.

The proof of Theorem 3.2.4 is in Section 3.6.3.
Recall from our earlier discussion (also see Section 3.3.3 and Corollary 3.3.6

therein) that the algorithm by Bansal and Spencer [36] works for 𝛼 = 𝑂(𝜅2). On
the other hand, no (efficient) algorithm is known for 𝛼 ≥ 𝐶𝜅2, where 𝐶 > 0 is a
large absolute constant. Namely, the current known algorithmic threshold for the
symmetric binary perceptron model is Θ(𝜅2). In light of these facts, Theorem 3.2.4
shows that the OGP threshold 𝛼OGP(𝜅) is nearly matching : the onset of OGP co-
incides up to polylogarithmic (in 𝜅) factors with the threshold (on 𝛼) above which
no polynomial-time algorithms are known to work. The choice of the constant 10
appearing in (3.6) is for convenience and can potentially be improved.

We now comment on the extra log2
1
𝜅

factor appearing in (3.6). As we detail in Sec-
tion 3.4, the exponent of the first moment of the cardinality term,

⃒⃒
𝑆𝜅

(︀
𝛽, 𝜂,𝑚, 𝛼, ℐ

)︀⃒⃒
,

appears to be strictly positive (for every 𝛽, 𝜂,𝑚) if 𝛼 = 𝑂
(︀
𝜅2 log2(1/𝜅)

)︀
. That is,

Theorem 3.2.4 is in a sense the best possible using our techniques. However, it is
plausible that by considering a more delicate forbidden structure (akin to the ones
studied in [285, 63, 172]), one may in fact be able to remove this logarithmic factor.
This suggests two conjectures: (a) in the regime 𝜅→ 0, the algorithm by Bansal and
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Spencer [36] is best possible (up to constant factors); and that (b) the OGP marks
the onset of algorithmic hardness.

3.3 Algorithmic Barriers for the Perceptron Model

3.3.1 𝑚−Overlap Gap Property Implies Failure of Stable Al-
gorithms

We commence this section by recalling our setup. We fix a 𝜅 > 0, and an 𝛼 < 𝛼𝑐(𝜅)
so that w.h.p. as 𝑛 → ∞, there exists a 𝜎 ∈ 𝑆𝛼(𝜅), where 𝑆𝛼(𝜅) is the (random) set
introduced in (3.3). Having ensured that 𝑆𝛼(𝜅) is (w.h.p.) non-empty; our focus in
this section is the problem of finding such a 𝜎 by using stable algorithms, formalized
below.

Algorithmic Setting. We interpret an algorithm 𝒜 as a mapping from R𝑀×𝑛 to
ℬ𝑛. We allow 𝒜 to be potentially randomized: we assume there exists an underlying
probability space (Ω,P𝜔) such that 𝒜 : R𝑀×𝑛 ×Ω → ℬ𝑛. That is, for any 𝜔 ∈ Ω and
disorder matrix ℳ ∈ R𝑀×𝑛; 𝒜(·, 𝜔) returns a 𝜎ALG ≜ 𝒜(ℳ, 𝜔) ∈ ℬ𝑛; and we want
𝜎ALG to satisfy ‖ℳ𝜎ALG‖∞ ≤ 𝜅

√
𝑛.

We now formalize the class of stable algorithms that we investigate in the present
chapter.

Definition 3.3.1. Fix a 𝜅 > 0, an 𝛼 < 𝛼𝑐(𝜅); and set 𝑀 = ⌊𝑛𝛼⌋. An algorithm
𝒜 : R𝑀×𝑛 × Ω → ℬ𝑛 is called (𝜌, 𝑝𝑓 , 𝑝st, 𝑓, 𝐿)−stable for the SBP model, if it satisfies
the following for all sufficiently large 𝑛.

• (Success) Let ℳ ∈ R𝑀×𝑛 be a random matrix with i.i.d 𝒩 (0, 1) coordinates.
Then,

P(ℳ,𝜔)

[︁⃦⃦
ℳ𝒜(ℳ, 𝜔)

⃦⃦
∞ ≤ 𝜅

√
𝑛
]︁
≥ 1− 𝑝𝑓 .

• (Stability) Let ℳ,ℳ ∈ R𝑀×𝑛 be random matrices, each with i.i.d. 𝒩 (0, 1)
coordinates such that E

[︀
ℳ𝑖𝑗ℳ𝑖𝑗

]︀
= 𝜌 for 1 ≤ 𝑖 ≤𝑀 and 1 ≤ 𝑗 ≤ 𝑛. Then,

P(ℳ,ℳ,𝜔)

[︁
𝑑𝐻
(︀
𝒜(ℳ, 𝜔),𝒜(ℳ, 𝜔)

)︀
≤ 𝑓 + 𝐿‖ℳ−ℳ‖𝐹

]︁
≥ 1− 𝑝st.

Definition 3.3.1 is similar to the notion of stability considered in [126, Defini-
tion 3.1]. It is also worth noting that Definition 3.3.1 applies also to deterministic
algorithms 𝒜. In this case, we simply modify the probability statements to reflect the
fact that the only source of randomness is the input ℳ (and ℳ) to the algorithm. In
the remainder of the chapter, we often abuse the notation by dropping 𝜔 and simply
referring to 𝒜 : R𝑀×𝑛 → ℬ𝑛 as a randomized algorithm.

We next highlight the operational parameters appearing in Definition 3.3.1. 𝜅 is
the “width" of the “rectangles" defined by the constraints. 𝛼 is the constraint density
(also known as the aspect ratio). That is, 𝑀 = ⌊𝑛𝛼⌋ is the number of constraints.
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The parameter 𝑝𝑓 controls the success guarantee. The parameters 𝜌, 𝑝st, 𝑓 and 𝐿
collectively control the stability guarantee. The parameter 𝜌 essentially controls the
amount of correlation. Stability parameters 𝑝st, 𝑓 and 𝐿 describe the amount of
sensitivity of the algorithm’s output to the correlation values. Our stability guarantee
is probabilistic, where the probability is taken with respect to the joint randomness
in ℳ,ℳ as well as to the coin flips 𝜔 of 𝒜. The “extra room" of 𝑓 bits makes our
negative result only stronger: even when ℳ and ℳ are very close, the algorithm is
still allowed to make roughly 𝑓 flips.

We now state our next main result.

Theorem 3.3.2. Fix any sufficiently small 𝜅 > 0, 𝛼 ≥ 𝛼OGP(𝜅) = 10𝜅2 log2
1
𝜅
, and

𝐿 > 0. Let 𝑚 ∈ N and 0 < 𝜂 < 𝛽 < 1 be the 𝑚−OGP parameters prescribed by
Theorem 3.2.4. Set

𝐶 =
𝜂2

1600
, 𝑄 ≜

4800𝐿𝜋

𝜂2
√
𝛼, and 𝑇 = exp2

(︁
24𝑚𝑄 log2 𝑄

)︁
. (3.7)

Then, there exists an 𝑛0 ∈ N such that the following holds. For every 𝑛 ≥ 𝑛0, there
exists no randomized algorithm 𝒜 : R𝑀×𝑛 → ℬ𝑛 that is(︂

cos

(︂
𝜋

2𝑄

)︂
,

1

9(𝑄+ 1)𝑇
,

1

9𝑄(𝑇 + 1)
, 𝐶𝑛, 𝐿

)︂
− stable

for the SBP, in the sense of Definition 3.3.1.

The proof of Theorem 3.3.2 is provided in Section 3.6.4. Several remarks are
now in order. First, observe that there is no restriction on the running time of 𝒜:
as long as it is stable in the sense of Definition 3.3.1 with appropriate parameters,
Theorem 3.3.2 applies.

Our second remark pertains to the scaling of parameters in the regime 𝑛 → ∞.
Observe that the parameters 𝛼, 𝐿, 𝑚 and 𝜂 are all 𝑂(1) (in 𝑛) as 𝑛→ ∞; hence the
parameters 𝐶,𝑄, and 𝑇 appearing in (3.7) are all constants. In particular, 𝑝𝑓 and 𝑝st
are of constant order. This is an important feature of our result: the algorithms that
we rule out have a constant probability of success/stability. Namely, 𝒜 need not have
a high-probability guarantee. This is a notable departure from the main hardness
result in [126, Theorem 3.2], as well as from those appeared in prior works: unlike
our case, the algorithms ruled out via OGP in those papers are required to succeed
with high probability.

Our next remark pertains to the stability guarantee. Note that the algorithms
that we rule out satisfy

𝑑𝐻

(︁
𝒜
(︀
ℳ
)︀
,𝒜
(︀
ℳ
)︀)︁

≤ 𝐶𝑛+ 𝐿
⃦⃦
ℳ−ℳ

⃦⃦
𝐹
.

Namely, under our notation of stability the algorithm is still allowed to make Θ(𝑛)
flips when ℳ and ℳ are “nearly identical".

Our final remark pertains to the parameter 𝐿. We establish Theorem 3.3.2 for the
case when 𝐿 is constant in order to keep our exposition clean. However, an inspection
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of our argument reveals 𝐿 can be pushed to 𝑂
(︁

log𝑛
log log𝑛

)︁
.

3.3.2 Failure of Online Algorithms for SBP

Our next focus is on the class of online algorithms, formalized below.

Definition 3.3.3. Fix a 𝜅 > 0, an 𝛼 < 𝛼𝑐(𝜅); and set 𝑀 = ⌊𝑛𝛼⌋ ∈ N. Let ℳ ∈
R𝑀×𝑛 be a disorder matrix with columns 𝒞1, 𝒞2, . . . , 𝒞𝑛 ∈ R𝑀 , and 𝒜 : R𝑀×𝑛 → ℬ𝑛

be an algorithm where

𝒜
(︀
ℳ
)︀
= 𝜎 = (𝜎1, 𝜎2, . . . , 𝜎𝑛) ∈ ℬ𝑛.

We call 𝒜 𝑝𝑓−online if the following hold.

• (Success) For ℳ consisting of i.i.d. 𝒩 (0, 1) entries,

P
[︁⃦⃦

ℳ𝒜(ℳ)
⃦⃦
∞ ≤ 𝜅

√
𝑛
]︁
≥ 1− 𝑝𝑓 .

• (Online) There exists deterministic functions 𝑓𝑡, 1 ≤ 𝑡 ≤ 𝑛 such that

𝜎𝑡 = 𝑓𝑡
(︀
𝒞𝑖 : 1 ≤ 𝑖 ≤ 𝑡

)︀
∈ {−1, 1} for 1 ≤ 𝑡 ≤ 𝑛.

Several remarks are now in order. The parameter 𝑝𝑓 is the failure probability
of 𝒜: 𝒜(ℳ) ∈ 𝑆𝛼(𝜅) w.p. at least 1 − 𝑝𝑓 . The second condition states that for all
1 ≤ 𝑡 ≤ 𝑛, 𝜎𝑡 is a function of 𝒞1, . . . , 𝒞𝑡 only. More precisely, the signs 𝜎𝑖 ∈ {−1, 1},
1 ≤ 𝑖 ≤ 𝑡− 1, have been assigned at the end of round 𝑡− 1. A new column 𝒞𝑡 ∈ R𝑀

arrives in the beginning of round 𝑡, and 𝒜 assigns a 𝜎𝑡 ∈ {−1, 1} depending only on
the previous decisions. This highlights the online nature of 𝒜.

Definition 3.3.3 is an abstraction that captures, in particular, the algorithm by
Bansal and Spencer [36]. Our next result establishes that online algorithms fail to
return a 𝜎 ∈ 𝑆𝛼(𝜅) for densities 𝛼 close to the critical threshold 𝛼𝑐(𝜅). Similar to our
treatment in Section 3.2.2, we stick to the case 𝜅 = 1 for simplicity, even though our
argument easily extends to arbitrary 𝜅 > 0.

Theorem 3.3.4. Let 1.77 ≤ 𝛼 ≤ 𝛼𝑐(1) ≈ 1.8159. Then, there exists a constant
𝑐𝑓 > 0 such that the following holds. For any 𝑝𝑓 < 1

2
− exp

(︀
−𝑐𝑓𝑛

)︀
, there exists no 𝒜

for SBP which is 𝑝𝑓−online in the sense of Definition 3.3.3.

The proof of Theorem 3.3.4 is provided in Section 3.6.5. The proof is based on a
contradiction argument, which we informally describe. Given Δ ∈ (0, 1), ℳ ∈ R𝑀×𝑛,
let ℳΔ ∈ R𝑀×𝑛 be obtained from ℳ by independently resampling the last Δ · 𝑛
columns on ℳ. Fix an online algorithm 𝒜, and let 𝜎 ≜ 𝒜

(︀
ℳ
)︀
, 𝜎Δ ≜

(︀
ℳΔ

)︀
.

Then w.p. at least 1 − 2𝑝𝑓 , ‖ℳ𝜎‖∞ ≤ √
𝑛 and ‖ℳΔ𝜎Δ‖∞ ≤ √

𝑛. Furthermore, 𝜎
and 𝜎Δ agree on first 𝑛 − Δ𝑛 coordinates due to the online nature of 𝒜. Namely,
assuming such an 𝒜 exists, we have P

[︀
Ξ(Δ) ̸= ∅

]︀
≥ 1 − 2𝑝𝑓 , where Ξ(Δ) is the

set of all pairs (𝜎, 𝜎Δ) ∈ ℬ𝑛 × ℬ𝑛 such that ‖ℳ𝜎‖∞ ≤ √
𝑛, ‖ℳΔ𝜎Δ‖∞ ≤ √

𝑛
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and 𝑛−1 ⟨𝜎, 𝜎Δ⟩ ≥ 1 − 2Δ. On the other hand, a first moment argument (see in
particular Proposition 3.6.17) reveals that for the same choice of Δ, we actually have
P
[︀
Ξ(Δ) ̸= ∅

]︀
≤ exp(−Θ(𝑛)). This yields a contradiction and proves Theorem 3.3.4.

The contradiction argument described above is slightly different than 2−OGP,
yielding a lower bound 𝛼 ≥ 1.77. Notice that this is strictly larger than the cor-
responding 2−OGP threshold, i.e. 𝛼 ≥ 1.71, for the same setting (𝜅 = 1) per
Theorem 3.2.2. Lastly, the online algorithms that we rule out need not have a high
probability guarantee: a success probability slightly above 1

2
suffices.

3.3.3 Algorithmic Threshold in SBP: A Lower Bound and a
Conjecture

Algorithmic Lower Bound in SBP. Heretofore, we used Θ
(︀
𝜅2
)︀

as our baseline for
the current computational threshold for the SBP. Namely, against this threshold; we
(a) formulated the aforementioned statistical-to-computational gap and (b) compared
our hardness result, Theorem 3.3.2, for the stable algorithms established via the
𝑚−OGP approach. In this section, we justify this choice for the algorithmic threshold,
from the lower bound perspective.

As we mentioned in the introduction, the SBP is closely related to the well-known
problem of minimizing the discrepancy of a matrix (or set system). The discrep-
ancy minimization problem received much attention in the field of combinatorics and
theoretical computer science; several efficient algorithms have been devised for it,
see e.g. [246, 201, 106, 36]. In what follows, we use the recent work by Bansal and
Spencer [36] as our baseline for postulating a computational threshold on 𝛼 as one
varies 𝜅; though several of the algorithms cited above essentially yield the same Θ

(︀
𝜅2
)︀

guarantee modulo different absolute constants. Before we proceed with the result of
Bansal and Spencer [36]; it is worth noting that there is yet another complementary
line of research focusing on the so-called online guarantees, see e.g. [34, 33, 15, 209].
However, all of these algorithms suffer from extra polylogarithmic factors; and there-
fore their implied guarantees on 𝛼 are poorer. That is they provably work only for 𝛼
asymptotically much smaller than 𝜅2.

The work by Bansal and Spencer (see in particular [36, Section 3.3]) establishes
the following.

Theorem 3.3.5. [36, Theorem 3.4] Let 𝑇 ∈ N be an arbitrary time horizon, and
𝑣𝑖 ∼ Unif(ℬ𝑀), 1 ≤ 𝑖 ≤ 𝑇 , be i.i.d. random vectors. Then there exists a value 𝐾 > 0
and an algorithm that returns signs 𝑠1, . . . , 𝑠𝑇 ∈ {−1, 1} in Poly(𝑀,𝑇 ) time such that

P

⎡⎣⃦⃦⃦⃦⃦∑︁
𝑖≤𝑇

𝑠𝑖𝑣𝑖

⃦⃦⃦⃦
⃦
∞

≤ 𝐾
√
𝑀

⎤⎦ ≥ 1− exp
(︀
−𝑐𝑀

)︀
.

Here, 𝑐,𝐾 > 0 are absolute constants independent of 𝑀 and 𝑇 .

Corollary 3.3.6. There exists an absolute constant 𝐾 > 0 such that the following
holds. Fix any 𝜅 > 0, 𝛼 < (𝜅/𝐾)2; and consider the matrix ℳ ∈ R𝛼𝑛×𝑛 with
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i.i.d. entries subject to the condition

P
[︀
ℳ𝑖𝑗 = +1

]︀
=

1

2
= P

[︀
ℳ𝑖𝑗 = −1

]︀
, for all 1 ≤ 𝑖 ≤ 𝛼𝑛, 1 ≤ 𝑗 ≤ 𝑛.

Then, there exists an algorithm 𝒜, running in poly(𝑛) time, such that w.h.p.⃦⃦⃦
ℳ ·𝒜

(︀
ℳ
)︀⃦⃦⃦

∞
≤ 𝜅

√
𝑛.

Corollary 3.3.6 is a direct consequence of Theorem 3.3.5. Indeed, consider ℳ ∈
{±1}𝛼𝑇×𝑇 with 𝛼 = 𝑛/𝑇 , whose columns are 𝑣𝑖, 1 ≤ 𝑖 ≤ 𝑇 . Then one can find, in
polynomial (in 𝑛, 𝑇 ) time, a 𝜎 ∈ ℬ𝑇 such that⃦⃦

ℳ𝜎
⃦⃦
∞ ≤ 𝐾

√
𝑛 = 𝐾

√
𝛼𝑇 .

Since 𝛼 < (𝜅/𝐾)2, the claim follows.
Admittedly, their result is established for the case of i.i.d. Rademacher disor-

der. Nevertheless, due to the aforementioned universality guarantees encountered
in perceptron-like models, it is expected that the exact same guarantee (perhaps with
a modified constant 𝐾) remains true for the case of i.i.d. standard normal disorder.

A Conjecture on the Algorithmic Threshold. Recall from our prior discussion
that for many random computational problems, the 𝑚−OGP threshold coincides
(or nearly coincides) with conjectured algorithmic threshold. Examples include the
problem of finding the largest independent set in random sparse graphs [245, 285],
NAE-𝑘-SAT [137], random 𝑘−SAT [63], mixed even 𝑝−spin model [172], and so on.
In light of the preceding discussion, this is also the case for the SBP model: the limit
of known algorithms is at Θ(𝜅2), whereas, as we establish in Theorem 3.2.4, the
ensemble 𝑚−OGP holds for densities Ω

(︀
𝜅2 log2

1
𝜅

)︀
in the regime 𝜅→ 0.

On the other hand, unlike models such as the independent set problem, 𝑘−SAT,
or the planted clique; prior to this work no conjectures were proposed regarding the
threshold for algorithmic hardness in SBP model in the 𝜅 → 0 regime. Here, we do
put forward such a conjecture. To that end, let

𝛼*
𝑚(𝜅) ≜ inf

{︁
𝛼 ∈

[︀
0, 𝛼𝑐(𝜅)

]︀
: ∃1 > 𝛽 > 𝜂 > 0, lim inf

𝑛→∞
P
[︁
𝒮𝜅

(︀
𝛽, 𝜂,𝑚, 𝛼, {0}

)︀
= ∅

]︁
= 1
}︁
.

(3.8)
That is, 𝛼*

𝑚(𝜅) is the threshold for the 𝑚−OGP (with appropriate 𝛽, 𝜂). Let

𝛼*
∞(𝜅) ≜ lim

𝑚→∞
𝛼*
𝑚(𝜅), (3.9)

where the limit is well-defined since
(︀
𝛼*
𝑚

)︀
𝑚≥1

is a non-increasing sequence of non-
negative real numbers. Then we conjecture 𝛼*

∞(𝜅) marks the true algorithmic thresh-
old for this problem.

Conjecture 3.3.7. For any 𝜖 > 0, there exists a 𝜅*(𝜖) > 0 such that the following
hold for every 𝜅 ≤ 𝜅*(𝜖):
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• There exists no polynomial-time search algorithms for the SBP if 𝛼 > (1 +
𝜖)𝛼*

∞(𝜅).

• There exists a polynomial-time search algorithm for the SBP if 𝛼 < (1−𝜖)𝛼*
∞(𝜅).

Recall that per Theorem 3.2.4, 𝛼*
∞(𝜅) = 𝑂

(︀
𝜅2 log2

1
𝜅

)︀
. Notice that the 𝛼*

𝑚(𝜅)
(hence the 𝛼*

∞(𝜅)) are defined for the non-ensemble variant of 𝑚−OGP, ℐ = {0}.
That is, 𝜎(𝑖), 1 ≤ 𝑖 ≤ 𝑚, satisfy constraints dictated by the rows of the same disorder
matrix ℳ ∈ R𝑀×𝑛 with i.i.d. 𝒩 (0, 1) (or Rademacher) entries, where 𝑀 = ⌊𝛼𝑛⌋.
This is merely for simplicity: the ensemble 𝑚−OGP and the non-ensemble 𝑚−OGP
often take place at the exact same threshold. The former, on the other hand, is just
technically more involved; and is necessary to rule out certain classes of algorithms
via an interpolation/contradiction argument as we do in this work. The structural
property implied by the non-ensemble OGP already suffices to predict the desired
algorithmic threshold.

3.3.4 Stability of the Kim-Roche Algorithm

Having established that the 𝑚−OGP is a provable barrier for the class of stable
algorithms, it is then natural to inquire whether the class of stable algorithms captures
the implementations of known algorithms for perceptron models. In this section, we
investigate this question for a certain algorithm devised for the asymmetric model,
which we recall from (3.1).

Kim and Roche devised in [188] an algorithm which admits, as its input, a disorder
matrix ℳ ∈ R𝑘×𝑛 with i.i.d. entries; and returns a 𝜎 ∈ ℬ𝑛 such that ℳ𝜎 ∈ R𝑘 is
entry-wise non-negative as long as 𝑘 < 0.005𝑛. That is, their algorithm provably
returns a 𝜎 ∈ 𝑆𝐴

𝛼 (0) as long as 𝛼 < 0.005. (We use 𝑘 in place of 𝑀 for the number of
constraints so as to be consistent with their notation.) We denote their algorithm by
𝒜KR : R𝑘×𝑛 → ℬ𝑛 as a shorthand notation. It is worth noting that while their results
are established for the case where ℳ consists of i.i.d. Rademacher entries, they easily
extend to the case of Gaussian 𝒩 (0, 1) entries, which will be our focus here. 𝒜KR

takes 𝑂
(︀
log10 log 𝑛10

)︀
steps, each requiring poly(𝑛) time.7 Namely, 𝒜KR is an efficient

algorithm that provably works in the so-called linear regime, 𝑘 = Θ(𝑛). Admittedly,
𝒜KR is tailored for the asymmetric model. Nevertheless, there are only a few known
algorithms with rigorous guarantees for perceptron models; thus it is indeed natural
to explore the stability of 𝒜KR.

Operational Parameters. We next provide details of the Kim-Roche algorithm
from [188]. Let

𝑓0 = 1, 𝑓1 =
1

200
, and 𝑓𝑗 = 10−2𝑗 , for 2 ≤ 𝑗 ≤ 𝑁, (3.10)

7Throughout this section, we consider all logarithms in base 10 in order to be consistent with the
notation of [188].
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as in [188, Equation 5.42], where 𝑁 = ⌈𝐶 log10 log10 𝑛⌉ is the total number of rounds.
Next, let

𝑘0 = 𝑘, 𝑘1 = 2⌊(1/2)(𝑛/108)⌋+1, and 𝑘𝑠 = 2⌊(1/2)(𝑛·𝑓 3
𝑠 )⌋+1 for 2 ≤ 𝑠 ≤ 𝑁

(3.11)
as in [188, Equation 5.46]. Set

𝐴 ≜
∑︁

0≤𝑗≤𝑁

𝑓𝑗; (3.12)

and let 𝑛𝑗 be defined by

𝑛0 = ⌊𝑛/𝐴⌋, and 𝑛𝑗 =

⌊︃
𝑛

𝐴

∑︁
0≤𝑖≤𝑗

𝑓𝑖

⌋︃
−
⌊︃
𝑛

𝐴

∑︁
0≤𝑖≤𝑗−1

𝑓𝑖

⌋︃
, 1 ≤ 𝑗 ≤ 𝑁 (3.13)

per [188, Equation 5.44].

Informal Description of the Algorithm. We now describe the 𝒜KR algorithm.
To that end, denote by 𝑅1, . . . , 𝑅𝑘 ∈ R𝑛 the rows of ℳ. Given a set 𝑃 of rows and
a set 𝑄 of columns, let ℳ(𝑃,𝑄) denote the |𝑃 | × |𝑄| submatrix 𝑀𝑖𝑗 obtained by
retaining rows 𝑖 ∈ 𝑃 and columns 𝑗 ∈ 𝑄.

• In the first round, 𝒜KR assigns 𝑛0 coordinates of 𝜎 by taking the majority vote
in submatrix ℳ([1, 𝑘] : [1, 𝑛0]). That is,

𝜎𝑗 = sgn

(︃∑︁
1≤𝑖≤𝑘

ℳ𝑖𝑗

)︃
for 1 ≤ 𝑗 ≤ 𝑛0.

• For each row 𝑅𝑖 of ℳ, it then computes the partial inner products ⟨𝑅𝑖, 𝜎⟩
(restricted to R𝑛0), finds an index set ℐ1 corresponding to 𝑘1 smallest indices;
and takes a majority vote in the submatrix ℳ(ℐ1 : [𝑛0+1, 𝑛0+𝑛1]) and repeats
this procedure.

• In particular, at the beginning of round 𝑗 ≥ 1, one has a vector 𝜎 ∈ {±1}
∑︀

0≤𝑠≤𝑗−1 𝑛𝑠 .
One then computes the partial inner products ⟨𝑅𝑖, 𝜎⟩, 1 ≤ 𝑖 ≤ 𝑘, and computes
an index set ℐ𝑗 with |ℐ𝑗| = 𝑘𝑗 such that 𝑖 ∈ ℐ𝑗 iff ⟨𝑅𝑖, 𝜎⟩ is among the 𝑘𝑗 smallest
(partial) inner products. Taking then the majority vote in the submatrix

ℳ
(︃
ℐ𝑗 :

[︃
1 +

∑︁
0≤𝑠≤𝑗−1

𝑛𝑠,
∑︁
0≤𝑠≤𝑗

𝑛𝑠

]︃)︃

settles next 𝑛𝑗 entries of 𝜎, that is the entries 𝜎𝑗, 1 +
∑︀

0≤𝑠≤𝑗−1 𝑛𝑠 ≤ 𝑗 ≤∑︀
0≤𝑠≤𝑗 𝑛𝑠. Namely, a 𝑘𝑗 × 𝑛𝑗 submatrix is used for determining next 𝑛𝑗 com-

ponents of 𝜎 and 𝜎.

Numerically, 𝑛0 ≈ 0.995𝑛. Thus even at the beginning, 𝒜KR already settles most of
the entries of 𝜎 ∈ ℬ𝑛.
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Having described the 𝒜KR informally, we are now in a position to state our main
result. We show that 𝒜KR is stable in the sense of Definition 3.3.1.

Theorem 3.3.8. Let ℳ ∈ R𝑘×𝑛 and ℳ′ ∈ R𝑘×𝑛 be two i.i.d. random matrices each
with i.i.d.𝒩 (0, 1) entries; and let

ℳ(𝜏) ≜ cos(𝜏)ℳ+ sin(𝜏)ℳ′ ∈ R𝑘×𝑛, 𝜏 ∈
[︁
0,
𝜋

2

]︁
. (3.14)

Set 𝜏 = 𝑛−0.02. Then,

P
[︁
𝑑𝐻

(︁
𝒜KR(ℳ),𝒜KR

(︀
ℳ(𝜏)

)︀)︁
= 𝑜(𝑛)

]︁
≥ 1−𝑂

(︁
𝑛− 1

41

)︁
.

As a result, the Kim-Roche algorithm is(︁
cos
(︀
𝑛−0.02

)︀
, 𝑜
(︀
1/𝑛
)︀
, 𝑂
(︀
𝑛−1/41

)︀
, 𝐶𝑛, 𝐿

)︁
− stable

in the sense of Definition 3.3.1 for any 𝐶 > 0 and 𝐿 > 0 (see below for further details).
In order to establish Theorem 3.3.8, we first establish in Section 3.6.6 an auxiliary

result, Proposition 3.6.18, which pertains to the partial implementation of 𝒜KR. That
is, we analyze 𝒜KR run for 𝑐 log10 log10 𝑛 rounds (where 𝑐 > 0 is a small enough
constant) as opposed to its full 𝑁 = ⌈𝐶 log10 log10 𝑛⌉ round implementation; and
show that it is stable. We then show in Section 3.6.6 that the number of unassigned
coordinates,

∑︀
𝑐 log10 log10 𝑛+1≤𝑗≤𝑁 𝑛𝑗, is 𝑜(𝑛). This, together with Proposition 3.6.18,

establishes Theorem 3.3.8.
Several pertinent remarks are now in order. We first highlight that 𝒜KR is indeed

stable in the sense of Definition 3.3.1 with the parameters noted above. (Here, we
suppress the randomness, and the success guarantee is now for the event

{︀
ℳ𝒜(ℳ) ≥

0
}︀

entry-wise.) To that end, an inspection of [188, Theorem 1.4] reveals that for
ℳ ∈ R𝑘×𝑛 with 𝑘 = 𝛼𝑛 having i.i.d.𝒩 (0, 1) entries,

Pℳ
[︁
ℳ𝒜(ℳ) ≥ 0

]︁
≥ 1− 𝑜

(︀
𝑛−1
)︀
,

as long as 𝛼 < 0.005. With this, we obtain that 𝒜KR is(︁
cos
(︀
𝑛−0.02

)︀
, 𝑜
(︀
1/𝑛
)︀
, 𝑂
(︀
𝑛−1/41

)︀
, 𝐶𝑛, 𝐿

)︁
− stable

for any 𝛼 < 0.005, 𝐶 > 0 and 𝐿 > 0 for the asymmetric binary perceptron in the
sense of Definition 3.3.1. (In fact, one can take 𝐿 = 0 as 𝐶 > 0.) Note though that
this parameter scaling is not comparable with Theorem 3.2.4 since Theorem 3.2.4
pertains to the symmetric model, see below for more details.

Recalling
𝒪
(︀
𝜎, 𝜎
)︀
= 𝑛−1 ⟨𝜎, 𝜎⟩ = 1− 2𝑑𝐻

(︀
𝜎, 𝜎
)︀
/𝑛,

it follows that in the setting of Theorem 3.3.8, 𝒪
(︀
𝜎, 𝜎
)︀
= 1− 𝑜(1). That is, 𝜎 and 𝜎

agree on all but a vanishing fraction of coordinates. Informally, this suggests that 𝒜KR
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cannot overcome the overlap barrier of 𝜂 appearing in Theorems 3.2.2, 3.2.3, and 3.2.4
as 𝜂 = 𝑂(1). However, we established the OGP results for the symmetric case as
opposed to the asymmetric model for which 𝒜KR is devised. Thus Theorem 3.3.8 is
not exactly compatible with the hardness result, Theorem 3.3.2. A more compelling
picture would be to show that the OGP takes place also for the asymmetric model,
with an 𝜂 that is of order 𝑂(1); and then couple such result with Theorem 3.3.8. We
leave this as a very interesting direction for future work.

Lastly, it would also be very interesting to prove that the algorithm by Abbe, Li
and Sly [5] devised for the SBP is also stable in the relevant sense. An inspection
of [5] reveals that several of the key steps are similar to [188], but there are a few
differences which prevent immediate verification of stability. We now elaborate on
this by highlighting fundamental differences between their algorithm and 𝒜KR. In-
specting [5, Page 7], it appears that a major change is the incorporation of extra sign
parameters inside the summation: using the exact same notation as in [5], this is

sgn

(︃∑︁
𝑟∈ℛ𝑖

−sgn
(︀
𝑆(𝑟)(0 : 𝑖− 1)

)︀
𝐺𝑟,𝑗

)︃
.

This extra term is independent of the summands, and therefore, is benign. As a
result, it appears that our Lemmas 3.6.22 and 3.6.23 apply almost verbatimly. Their
algorithm has two additional steps, one in the beginning and one at the end; these
steps appear to be stable, as well. A main technical challenge, however, is that their
algorithm requires 𝑂(

√
log 𝑛) rounds, as opposed to the Kim-Roche algorithm that re-

quires only 𝑂(log log 𝑛) rounds. The choice of log log 𝑛 is crucial for our argument, see
in particular Proposition 3.6.18 below. It is not clear though if they need 𝑂(

√
log 𝑛)

steps to find a large cluster and whether one can achieve the much more modest goal
of finding a solution 𝜎 in 𝑂(log log 𝑛) rounds. We leave the formal investigation of
this as a very interesting direction for future research.

3.4 Natural Limitations of Our Techniques

Recall from our earlier discussion that the algorithmic threshold for the SBP model
appears to be Θ(𝜅2), whereas we established𝑚−OGP for densities above Ω

(︀
𝜅2 log2

1
𝜅
).

That is, the OGP threshold is off by a polylogaritmic (in 1/𝜅) factor.
In this section, we investigate whether one can shave off this extra log2

1
𝜅

factor.
In a nutshell, we provide an informal argument suggesting that to establish 𝑚−OGP
for the structure that we consider, 𝛼 = Ω

(︀
𝜅2 log2

1
𝜅

)︀
appears necessary.

To that end, fix first a 𝜅 > 0, where one should think of 𝜅 to be sufficiently small.
An inspection of the proof of Theorem 3.2.4 reveals that the first moment is controlled
by a certain ϒ(𝛽, 𝛼) appearing in (3.55), which we repeat below for convenience:

ϒ(𝛽, 𝛼) = ℎ

(︂
1− 𝛽

2

)︂
− 𝛼

2
log2(2𝜋) + 𝛼 log2(2𝜅)−

𝛼

2
log2(1− 𝛽). (3.15)
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In particular, for the first moment argument to work, it should be the case that
ϒ(𝛽, 𝛼) is negative for an appropriate choice of parameters 𝛽, 𝛼.

Now set 𝛿 ≜ 1−𝛽
2

. Yet another inspection of the proof of Theorem 3.2.4 shows
that for the first moment method to be applicable, 𝛽 should be close to one. For this
reason, the regime of interest below is therefore 𝛿 → 0 and 𝜅→ 0.

Step 1: 𝛿 > 𝜅2 is necessary.

Note that as 𝛿 → 0,

ℎ(𝛿) = −𝛿 log2 𝛿 − (1− 𝛿) log2(1− 𝛿) = −𝛿 log2 𝛿 +Θ𝛿

(︀
𝛿
)︀
,

using the Taylor expansion,

log2(1− 𝛿) = − 1

ln 2
𝛿 + 𝑜(𝛿).

With this, we manipulate (3.15) to arrive at

ϒ(𝛽, 𝛼) = 𝛿 log2
1

𝛿
+
𝛼

2
log2

1

𝛿
− 𝛼 log2

1

𝜅
+Θ𝛿

(︀
𝛿) + 𝑜𝛿,𝜅

(︀
𝛼 log2 𝜅

)︀
.

Now, for ϒ(𝛽, 𝛼) to be negative, we must have 𝛼 log2
1
𝜅
> 𝛼

2
log2

1
𝛿
. This immediately

yields 𝛿 > 𝜅2 to be a necessary condition.

Step 2: 𝛼 = Ω
(︀
𝜅2 log2

1
𝜅

)︀
is necessary.

Set 𝛿 = 𝐶𝜅2 for 𝐶 ≜ 𝐶(𝜅) > 1. The expression for ϒ(𝛽, 𝛼) then becomes

ϒ(𝛽, 𝛼) = ℎ

(︂
1− 𝛽

2

)︂
⏟  ⏞  
−𝛿 log2 𝛿+Θ𝛿(𝛿)

−𝛼
2
log2(2𝜋) + 𝛼 log2(2𝜅)−

𝛼

2
log2(1− 𝛽)

= −𝛿 log2 𝛿 +Θ𝛿(𝛿) + 𝛼 log2 𝜅− 𝛼

2
log2 𝛿 −

𝛼

2
log2 𝜋

= 2𝐶𝜅2 log2
1

𝜅
+ 𝐶𝜅2 log2

1

𝐶
− 𝛼

2
log2𝐶 − 𝛼

2
log2 𝜋. (3.16)

Note that 𝛿 < 1, and thus 𝐶 < 1
𝜅2 . Thus log2𝐶 < 2 log2

1
𝜅
. Equipped with this

observation, we investigate two separate cases for the growth of 𝐶.

Case 1: log2𝐶 = 𝑜𝜅(log2
1
𝜅
). Then 𝐶𝜅2 log2

1
𝜅

dominates the term, 𝐶𝜅2 log2 1
𝐶

apearing in (3.16). In this case for ϒ(𝛽, 𝛼) to be negative, one must indeed ensure

𝛼

2
log2𝐶 > 2𝐶𝜅2 log2

1

𝜅
.
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Rearranging this, we find

𝛼 >
4𝐶

log2𝐶
𝜅2 log2

1

𝜅
=⇒ 𝛼 = Ω

(︂
𝜅2 log2

1

𝜅

)︂
,

which is precisely our claim. In fact, the parameter 𝛽 for which Theorem 3.2.4 is
established is of form 𝛽 = 1 − Θ(𝜅2), see (3.56). Hence, one has 𝛿 = Θ(𝜅2) and
𝐶 = Θ𝜅(1), thus log2𝐶 is indeed 𝑜𝜅

(︀
log2

1
𝜅

)︀
.

Case 2: log2𝐶 = Θ𝜅

(︀
log2

1
𝜅

)︀
. In this case, we now show that the threshold on 𝛼 is

worse than the one appearing in the previous case.
To that end, set 𝐶 ∼ 𝜅−𝛾, 𝛾 < 2: that is, we assume

lim
𝜅→0

log2𝐶

log2
1
𝜅

= 𝛾.

We focus on certain terms appearing in (3.16). Note that,

𝐶𝜅2 log2
1

𝜅
∼ 2𝜅2−𝛾 log2

1

𝜅
, 𝐶𝜅2 log2

1

𝐶
= −𝛾𝜅2−𝛾 log2

1

𝜅
, and

𝛼

2
log2𝐶 ∼ 𝛼

2
𝛾 log2

1

𝜅
.

Combining these findings, we immediately observe that for ϒ(𝛽, 𝛼) to be negative,
one must have 𝛼 ∼ 𝜅2−𝛾, where any 𝛾 < 2 works. Notice that this threshold is strictly
worse than 𝜅2 log2 1

𝜅
.

Hence, 𝛼 = Ω
(︀
𝜅2 log2

1
𝜅

)︀
is indeed necessary for 𝑚−OGP (for the configuration

we consider with a sufficiently large 𝑚 ∈ N and 0 < 𝜂 < 𝛽 < 1) to take place. It
is though conceivable that by establishing the OGP for a potentially more intricate
structure, like the ones considered in [285, 63, 172], one may in fact reach all the way
down to Θ(𝜅2). We leave this extension as an interesting future research direction.

3.5 Universality in OGP: Beyond Gaussian Disorder

Our OGP results, Theorems 3.2.2, 3.2.3 and 3.2.4, are established for the case where
the disorder matrix ℳ ∈ R𝑀×𝑛 consists of i.i.d. 𝒩 (0, 1) entries. However, much
like many other properties regarding the perceptron model, the OGP also enjoys the
universality. In other words, the exact details of the distribution (of disorder) are
immaterial; and provided that certain (rather mild) conditions on the distribution
are satisfied, the OGP results still remain valid.

We now (somewhat informally) elaborate on the mechanics of this extension. The
main technical tool that we employ is the multi-dimensional version of the Berry-
Esseen Theorem, which is reproduced herein for convenience.

Theorem 3.5.1. Let 𝑌1, 𝑌2, . . . , 𝑌𝑛 ∈ R𝑚 be independent centered random vectors.
Suppose 𝑆 =

∑︀
1≤𝑖≤𝑛 𝑌𝑖 and Σ = Cov(𝑆) ∈ R𝑚×𝑚 is invertible. Let 𝑍 ∼ 𝒩 (0,Σ) be

an 𝑚−dimensional multivariate normal random vector, whose covariance is Σ. Then,
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there exists a universal constant 𝐶 such that for all convex 𝑈 ⊆ R𝑑,⃒⃒⃒
P[𝑆 ∈ 𝑈 ]− P[𝑍 ∈ 𝑈 ]

⃒⃒⃒
≤ 𝐶𝑚

1
4

∑︁
1≤𝑗≤𝑛

E
[︁⃦⃦

Σ− 1
2𝑌𝑗
⃦⃦3
2

]︁
.

We will apply Theorem 3.5.1 for 𝑈 = [−𝜅, 𝜅]𝑚. While our results still transfer to
the ensemble OGP, we restrict our attention to the non-ensemble variant for simplicity.
That is, we focus on the case where the set ℐ appearing in Definition 3.2.1 is {0}.

Theorem 3.5.2. Let 𝒟 be a distribution on R with the property that for 𝑇 ∼ 𝒟,

E
[︀
𝑇
]︀
= 0, E

[︀
𝑇 2
]︀
= 1; and E

[︀
𝑇 3
]︀
<∞.

Fix 𝜅 > 0, 𝛼 < 𝛼𝑐(𝜅), 𝑚 ∈ N, 0 < 𝜂 < 𝛽 < 1. Then,

Eℳ∈R𝑀×𝑛:ℳ𝑖𝑗∼𝒟,i.i.d.

[︁
𝒮𝜅

(︀
𝛽, 𝜂,𝑚, 𝛼, {0}

)︀]︁
≤ Eℳ∈R𝑀×𝑛:ℳ𝑖𝑗∼𝒩 (0,1),i.i.d.

[︁
𝒮𝜅

(︀
𝛽, 𝜂,𝑚, 𝛼, {0}

)︀]︁
𝑒𝑂(

√
𝑛).

The proof of Theorem 3.5.2 is provided in Section 3.6.7. Hence, if 0 < 𝜂 < 𝛽 < 1
and 𝑚 ∈ N are such that

Eℳ∈R𝑀×𝑛:ℳ𝑖𝑗∼𝒩 (0,1),i.i.d.

[︁
𝒮𝜅

(︀
𝛽, 𝜂,𝑚, 𝛼, {0}

)︀]︁
= exp

(︀
−Θ(𝑛)

)︀
,

then
Eℳ∈R𝑀×𝑛:ℳ𝑖𝑗∼𝒟,i.i.d.

[︁
𝒮𝜅

(︀
𝛽, 𝜂,𝑚, 𝛼, {0}

)︀]︁
= exp

(︀
−Θ(𝑛)

)︀
.

A particular case of interest is when the (i.i.d.) entries of the disorder matrix is
Rademacher. That is, P[ℳ𝑖𝑗 = 1] = 1/2 = P[ℳ𝑖𝑗 = −1], i.i.d. across 1 ≤ 𝑖 ≤ 𝑀
and 1 ≤ 𝑗 ≤ 𝑛. In this case, Theorem 3.5.2 asserts that the 𝑚−OGP holds with the
exact same parameters appearing in Theorem 3.2.4.

3.6 Proofs

3.6.1 Some Auxiliary Results

Our 2−OGP and 3−OGP results for the high 𝜅 case (namely Theorem 3.2.2 and
Theorem 3.2.3) require the following auxiliary result. We remind the reader that ℎ(·)
is the binary entropy function logarithm base two.

Lemma 3.6.1. Let

𝑓1(Δ, 𝛼) = 1 + ℎ(Δ) + 𝛼 log2 P
[︀
|𝑍1| ≤ 1, |𝑍2| ≤ 1

]︀
, (3.17)

where (𝑍1, 𝑍2) ∼ 𝒩
(︀
0,Δ𝐼 + (1−Δ)ee𝑇

)︀
. Let

𝑓2(𝛽, 𝛼) ≜ 1 + ℎ

(︂
1− 𝛽

2

)︂
+ 𝛼 log2 P

[︀
|𝑍1| ≤ 1, |𝑍2| ≤ 1

]︀
, (3.18)
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where (𝑍1, 𝑍2) ∼ 𝒩
(︀
0, (1− 𝛽)𝐼2 + 𝛽ee𝑇

)︀
; and let

𝑓3(𝛽, 𝛼) ≜ 1+
1− 𝛽

2
+ℎ

(︂
1− 𝛽

2

)︂
+
1 + 𝛽

2
ℎ

(︂
1− 𝛽

2(1 + 𝛽)

)︂
+𝛼 log2 P

[︀
|𝑍𝑖| ≤ 1, 1 ≤ 𝑖 ≤ 3

]︀
,

(3.19)
where (𝑍1, 𝑍2, 𝑍3) ∼ 𝒩

(︀
0, (1− 𝛽)𝐼3 + 𝛽ee𝑇

)︀
. Then, the following holds.

(a) Let 𝑆1(𝛼) =
{︀
Δ ∈ [0.00001, 0.1] : 𝑓1(Δ, 𝛼) < 0

}︀
. Then, 𝑆1(1.77) ̸= ∅. Hence,

𝑆1(𝛼) ̸= ∅, ∀𝛼 ≥ 1.77.

(b) Let 𝑆2(𝛼) =
{︀
𝛽 ∈ (0, 1) : 𝑓2(𝛽, 𝛼) < 0

}︀
. Then, 𝑆2(1.71) ̸= ∅. Hence, 𝑆2(𝛼) ̸=

∅, ∀𝛼 ≥ 1.710.

(c) Let 𝑆3(𝛼) =
{︀
𝛽 ∈ (0, 1) : 𝑓3(𝛽, 𝛼) < 0

}︀
. Then, 𝑆3(1.667) ̸= ∅. Hence,

𝑆3(𝛼) ̸= ∅, ∀𝛼 ≥ 1.667.

Lemma 3.6.1 is established numerically using MATLAB’s mvncdf function to eval-
uate the probability term. The accompanying code is provided in Appendix A.

We next record two useful auxiliary results regarding bivariate Gaussian random
variables. These will later be useful in Section 3.6.6 to prove the stability of Kim-
Roche algorithm. Our first lemma to that end pertains to the quadrant probabilities
for the bivariate normal distribution.

Lemma 3.6.2. Let (𝑋, 𝑌 ) be a bivariate normal random variable with

(𝑋, 𝑌 )
𝑑
= 𝒩

(︂[︂
0
0

]︂
,

[︂
1 𝜌
𝜌 1

]︂)︂
.

Then,

P
(︀
𝑋 ≥ 0, 𝑌 ≥ 0

)︀
=

1

4
+

1

2𝜋
sin−1(𝜌).

Lemma 3.6.2 is quite well-known; a proof is provided below for completeness.

Proof of Lemma 3.6.2. Note that the pair (𝑋, 𝑌 ) has bivariate normal distribution
with parameter 𝜌. Next, define

𝑍 ≜
𝑌 − 𝜌𝑋√︀
1− 𝜌2

.
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Clearly 𝑋 and 𝑍 are i.i.d. standard normals. Let 𝜁 ≜ − 𝜌√
1−𝜌2

. Observe that

P
(︀
𝑋 ≥ 0, 𝑌 ≥ 0

)︀
= P

(︃
𝑋 ≥ 0, 𝑍 ≥ − 𝜌√︀

1− 𝜌2
𝑋

)︃

=

∫︁ ∞

𝑥=0

∫︁ ∞

𝑧=𝜁𝑥

1

2𝜋
exp

(︂
−𝑥

2 + 𝑧2

2

)︂
𝑑𝑥 𝑑𝑧

=

∫︁ 𝜋
2

𝜃=tan−1(𝜁)

∫︁ ∞

𝑟=0

1

2𝜋
exp

(︂
−𝑟

2

2

)︂
𝑟 𝑑𝑟 𝑑𝜃

=
1

2𝜋

∫︁ 𝜋
2

𝜃=tan−1(𝜁)

𝑑𝜃

=
1

4
− 1

2𝜋
tan−1(𝜁)

=
1

4
+

1

2𝜋
sin−1 𝜌.

Here, the second line uses the independence of 𝑋 and 𝑍; the third line is obtained
upon passing to polar coordinates; and the last line follows from the fact tan−1 is an
odd function, and that if tan 𝜃 = 𝜌√

1−𝜌2
then sin 𝜃 = 𝜌.

Our next lemma is as follows.

Lemma 3.6.3. Let 𝑍1, 𝑍2
𝑑
= 𝒩 (0, 1) where (𝑍1, 𝑍2) is a bivariate normal with pa-

rameter 𝜌: E[𝑍1𝑍2] = 𝜌. Then

E
[︀
𝑍1|𝑍2 ≥ 0

]︀
= 𝜌

√︂
2

𝜋
.

Proof of Lemma 3.6.3. Note that 𝑍3 :=
𝑍1−𝜌𝑍2√

1−𝜌2
is a standard normal, independent of

𝑍2 (as E[𝑍2𝑍3] = 0 and (𝑍2, 𝑍3) is also bivariate normal). Hence

E
[︀
𝑍1|𝑍2 ≥ 0

]︀
= E

[︀
𝜌𝑍2 +

√︀
1− 𝜌2𝑍3|𝑍2 ≥ 0

]︀
= 𝜌E

[︀
𝑍2|𝑍2 ≥ 0

]︀
= 𝜌

E
[︀
𝑍21{𝑍2 ≥ 0}

]︀
P(𝑍2 ≥ 0)

= 2𝜌

∫︁ ∞

0

1√
2𝜋
𝑥 exp

(︂
−𝑥

2

2

)︂
𝑑𝑥

= 𝜌

√︂
2

𝜋
,

yielding Lemma 3.6.3.
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3.6.2 Proof of Theorem 3.2.3

Our proof is based on the first moment method. We begin by observing the following
monotonicity: if

𝛼 ≤ 𝛼′ ≤ 𝛼𝑐(1) = − 1

log2 P
(︀
|𝒩 (0, 1)| ≤ 1

)︀ ≈ 1.8159,

then
P
[︁
𝒮(𝛽, 𝜂, 3, 𝛼′, ℐ) ̸= ∅

]︁
≤ P

[︁
𝒮(𝛽, 𝜂, 3, 𝛼, ℐ) ̸= ∅

]︁
.

For this reason, it suffices to consider 𝛼 = 1.667.

Counting term. Let 0 < 𝜂 < 𝛽 < 1. We first count the number of triples (𝜎(𝑖) : 1 ≤
𝑖 ≤ 3) in ℬ𝑛 subject to the overlap condition. (In what follows, we omit floor/ceiling
operations to keep our exposition clean.)

Lemma 3.6.4. Let 0 < 𝜂 < 𝛽 < 1 be fixed. Denote by 𝑀(𝛽, 𝜂) the number of triples
(𝜎(𝑖) : 1 ≤ 𝑖 ≤ 3) with 𝜎(𝑖) ∈ ℬ𝑛 subject to the condition

𝛽 − 𝜂 ≤ 𝒪𝜎(𝑖)𝜎(𝑗) =
1

𝑛

⟨︀
𝜎(𝑖), 𝜎(𝑗)

⟩︀
≤ 𝛽, 1 ≤ 𝑖 < 𝑗 ≤ 3.

Then,
𝑀(𝛽, 𝜂) ≤ exp2

(︁
𝑛𝜙Count(𝛽, 𝜂) +𝑂(log2 𝑛)

)︁
, (3.20)

where

𝜙Count(𝛽, 𝜂) = 1 + ℎ

(︂
1− 𝛽 + 𝜂

2

)︂
+

1− 𝛽 + 𝜂

2
+

1 + 𝛽

2
ℎ

(︂
1− 𝛽 + 2𝜂

2(1 + 𝛽)

)︂
. (3.21)

In particular, for any fixed 𝛽, the map 𝜂 ↦→ 𝜙Count(𝛽, 𝜂) is continuous at 𝜂 = 0.

Proof of Lemma 3.6.4. For 𝜎(𝑘) ∈ ℬ𝑛, denote its 𝑖th coordinate (1 ≤ 𝑖 ≤ 𝑛) by 𝜎(𝑘)
𝑖 .

Clearly, there are 2𝑛 ways of choosing 𝜎(1). Having fixed 𝜎(1), there are
(︀

𝑛
𝑛 1−𝜌

2

)︀
ways of choosing 𝜎(2) with 𝒪𝜎(1)𝜎(2) = 𝜌 ∈ [𝛽−𝜂, 𝛽]. Assume now that both 𝜎(1) and
𝜎(2) are fixed, and define 𝐼 ⊂ [𝑛] with |𝐼| = 𝑛1−𝜌

2
as

𝐼 ≜
{︁
1 ≤ 𝑖 ≤ 𝑛 : 𝜎

(1)
𝑖 ̸= 𝜎

(2)
𝑖

}︁
,

and let 𝐼𝑐 ≜ [𝑛] ∖ 𝐼 with |𝐼𝑐| = 𝑛1+𝜌
2

. In particular, 𝜎(1) and 𝜎(2) agree on coordinates
in 𝐼𝑐 and disagree on coordinates in 𝐼. Having fixed 𝜎(1) and 𝜎(2), now let 𝑁3(𝜌)
denote the number of all admissible 𝜎(3) satisfying the inner product condition (with
𝜎(1) and 𝜎(2)). Then, it is evident that

𝑀(𝛽, 𝜂) = 2𝑛
∑︁

𝜌:𝛽−𝜂≤𝜌≤𝛽,𝜌𝑛∈N

(︂
𝑛

𝑛1−𝜌
2

)︂
𝑁3(𝜌). (3.22)
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Now, suppose that

𝑡1 ≜
⃒⃒⃒{︁
𝑖 ∈ 𝐼 : 𝜎

(2)
𝑖 = 𝜎

(3)
𝑖

}︁⃒⃒⃒
and 𝑡2 ≜

⃒⃒⃒{︁
𝑖 ∈ 𝐼𝑐 : 𝜎

(2)
𝑖 ̸= 𝜎

(3)
𝑖

}︁⃒⃒⃒
.

Then
𝑑𝐻
(︀
𝜎(1), 𝜎(3)

)︀
= 𝑡1 + 𝑡2 and 𝑑𝐻

(︀
𝜎(2), 𝜎(3)

)︀
= 𝑛

1− 𝜌

2
− 𝑡1 + 𝑡2.

Next, observe that using the condition on 𝒪𝜎(1)𝜎(3) and 𝒪𝜎(2)𝜎(3), we arrive at

𝑛
1− 𝛽

2
≤ 𝑑𝐻

(︀
𝜎(1), 𝜎(3)

)︀
= 𝑡1 + 𝑡2 ≤ 𝑛

1− 𝛽 + 𝜂

2
,

and
𝑛
1− 𝛽

2
≤ 𝑑𝐻

(︀
𝜎(2), 𝜎(3)

)︀
= 𝑡2 − 𝑡1 + 𝑛

1− 𝜌

2
≤ 𝑛

1− 𝛽 + 𝜂

2
.

We thus arrive at

𝑛
1− 𝛽

2
≤ 𝑡1 + 𝑡2 ≤ 𝑛

1− 𝛽 + 𝜂

2
and 𝑛

𝜌− 𝛽

2
≤ 𝑡2 − 𝑡1 ≤ 𝑛

𝜌− 𝛽 + 𝜂

2
.

This yields the following lower and upper bounds on 𝑡1, 𝑡2:

𝑛
1− 𝜌− 𝜂

4
≤ 𝑡1 ≤ 𝑛

1− 𝜌+ 𝜂

4
(3.23)

𝑛
1 + 𝜌− 2𝛽

4
≤ 𝑡2 ≤ 𝑛

1 + 𝜌− 2𝛽 + 2𝜂

4
. (3.24)

Define now the rectangle

𝒯 ≜

[︂
1− 𝜌− 𝜂

4
,
1− 𝜌+ 𝜂

4

]︂
×
[︂
1 + 𝜌− 2𝛽

4
,
1 + 𝜌− 2𝛽 + 2𝜂

4

]︂
.

Note that (a) for 𝜂 small enough, 𝒯 ⊂ (0,∞)2; and (b) the set of all admissible
(𝑡1, 𝑡2) ∈ N2 pairs are precisely the set of all lattice points in the box 𝑛𝒯 . Having
fixed 𝜎(1) and 𝜎(2), the number 𝑁3(𝜌) of admissible 𝜎(3) then computes as

𝑁3(𝜌) =
∑︁

(𝑡1,𝑡2)∈N2∩𝑛𝒯

(︂
𝑛1−𝜌

2

𝑡1

)︂(︂
𝑛1+𝜌

2

𝑡2

)︂
. (3.25)

Note that using the fact
(︀
𝑛
𝛼

)︀
is maximized for 𝛼 = ⌊𝑛/2⌋, we obtain(︂

𝑛1−𝜌
2

𝑡1

)︂(︂
𝑛1+𝜌

2

𝑡2

)︂
≤
(︂
𝑛1−𝜌

2

𝑛1−𝜌
4

)︂(︂
𝑛1+𝜌

2

𝑛1+𝜌−2𝛽+2𝜂
4

)︂
, ∀(𝑡1, 𝑡2) ∈ N2 ∩ 𝑛𝒯 . (3.26)

Now, we use the well-known asymptotic on binomial coefficients: for any 𝑟 ∈ (0, 1),(︀
𝑛
𝑛𝑟

)︀
= exp2(𝑛ℎ(𝑟) +𝑂(log2 𝑛)). Combining this fact together with (3.25) and (3.26),
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we obtain the following upper bound on number of such 𝜎(3):

𝑁3(𝜌) ≤ exp2

(︂
𝑛
1− 𝜌

2
+ 𝑛

1 + 𝜌

2
ℎ

(︂
1 + 𝜌− 2𝛽 + 2𝜂

2(1 + 𝜌)

)︂
+𝑂(log2 𝑛)

)︂
. (3.27)

We next study the argument (1+𝜌−2𝛽+2𝜂)/2(1+𝜌) of the entropy term appearing
in (3.27). Clearly, as 𝜂 < 𝛽, the argument is less than 1/2. Now, observe that

1 + 𝜌1 − 2𝛽 + 2𝜂

2(1 + 𝜌1)
<

1 + 𝜌2 − 2𝛽 + 2𝜂

2(1 + 𝜌2)

⇔ 1

2
− 𝛽 − 𝜂

1 + 𝜌1
<

1

2
− 𝛽 − 𝜂

1 + 𝜌2

⇔ 1

1 + 𝜌2
<

1

1 + 𝜌1
⇔ 𝜌1 < 𝜌2.

Consequently, using the monotonicity of ℎ in [0, 1
2
],

ℎ

(︂
1 + 𝜌− 2𝛽 + 2𝜂

2(1 + 𝜌)

)︂
< ℎ

(︂
1− 𝛽 + 2𝜂

2(1 + 𝛽)

)︂
.

Using this and (3.27), 𝑁3(𝜌) is further upper bounded by

𝑁3(𝜌) ≤ exp2

(︂
𝑛
1− 𝛽 + 𝜂

2
+ 𝑛

1 + 𝛽

2
ℎ

(︂
1− 𝛽 + 2𝜂

2(1 + 𝛽)

)︂
+𝑂(log2 𝑛)

)︂
. (3.28)

Finally, we have(︂
𝑛

𝑛1−𝜌
2

)︂
≤
(︂

𝑛

𝑛1−𝛽+𝜂
2

)︂
= exp2

(︂
𝑛ℎ

(︂
1− 𝛽 + 𝜂

2

)︂
+𝑂(log2 𝑛)

)︂
. (3.29)

Combining (3.22), (3.28) and (3.29), we obtain

𝑀(𝛽, 𝜂) ≤ exp2

(︂
𝑛+ 𝑛ℎ

(︂
1− 𝛽 + 𝜂

2

)︂
+ 𝑛

1− 𝛽 + 𝜂

2
+ 𝑛

1 + 𝛽

2
ℎ

(︂
1− 𝛽 + 2𝜂

2(1 + 𝛽)

)︂
+𝑂(log2 𝑛)

)︂
= exp2

(︁
𝑛𝜙count(𝛽, 𝜂) +𝑂(log2 𝑛)

)︁
,

yielding (3.20). Since the continuity follows immediately from the continuity of the
entropy, the proof of Lemma 3.6.4 is complete.

Probability term. Now, fix any
(︀
𝜎(𝑖) : 1 ≤ 𝑖 ≤ 3

)︀
with 𝛽 − 𝜂 ≤ 𝒪𝜎(𝑖)𝜎(𝑗) ≤ 𝛽.

More concretely, let

𝒪𝜎(𝑖)𝜎(𝑗) ≜ 𝛽 − 𝜂𝑖𝑗, where 0 ≤ 𝜂𝑖𝑗 ≤ 𝜂, 1 ≤ 𝑖 < 𝑗 ≤ 3. (3.30)
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We control the probability term

P
[︁
∃𝜏1, 𝜏2, 𝜏3 ∈ ℐ : 𝑛− 1

2

⃒⃒
ℳ𝑖(𝜏𝑖)𝜎

(𝑖)
⃒⃒
≤ e, 1 ≤ 𝑖 ≤ 3

]︁
, (3.31)

where e ∈ R𝑀×1 is the vector of all ones, and the inequality is coordinate-wise. As a
first step, we take a union bound over ℐ to obtain

P
[︁
∃𝜏1, 𝜏2, 𝜏3 ∈ ℐ : 𝑛− 1

2

⃒⃒
ℳ𝑖(𝜏𝑖)𝜎

(𝑖)
⃒⃒
≤ e, 1 ≤ 𝑖 ≤ 3

]︁
≤ |ℐ|3 max

𝜏𝑖∈ℐ,1≤𝑖≤3
P
[︁
𝑛− 1

2

⃒⃒
ℳ𝑖(𝜏𝑖)𝜎

(𝑖)
⃒⃒
≤ e, 1 ≤ 𝑖 ≤ 3

]︁
. (3.32)

Next, let the first row of ℳ𝑖(𝜏𝑖) be R𝑖
𝑑
= 𝒩 (0, 𝐼𝑛) ∈ R𝑛, 1 ≤ 𝑖 ≤ 3. Using the

independence across rows, we have

P
[︁
𝑛− 1

2

⃒⃒
ℳ𝑖(𝜏𝑖)𝜎

(𝑖)
⃒⃒
≤ e, 1 ≤ 𝑖 ≤ 3

]︁
= P

[︁
𝑛− 1

2

⃒⃒⟨︀
R𝑖, 𝜎(𝑖)

⟩︀⃒⃒
≤ 1, 1 ≤ 𝑖 ≤ 3

]︁𝛼𝑛
. (3.33)

To upper bound the probability appearing in (3.33), observe that
(︀
𝑛−1/2

⟨︀
R𝑖, 𝜎(𝑖)

⟩︀
: 1 ≤ 𝑖 ≤ 3

)︀
is a multivariate normal with each component having zero mean and unit variance.
We now compute its covariance matrix Σ ∈ R3×3. Observe that for 𝑖 ̸= 𝑗,

Σ𝑖𝑗 = E
[︁
𝑛− 1

2

⟨︀
R𝑖, 𝜎(𝑖)

⟩︀
· 𝑛− 1

2

⟨︀
R𝑗, 𝜎(𝑗)

⟩︀]︁
=

1

𝑛

(︀
𝜎(𝑖)
)︀𝑇 E

[︀
R𝑖R𝑇𝑗

]︀
𝜎(𝑗)

= cos(𝜏𝑖) cos(𝜏𝑗)𝒪𝜎(𝑖)𝜎(𝑗)

= cos(𝜏𝑖) cos(𝜏𝑗) (𝛽 − 𝜂𝑖𝑗) ,

where the last line uses (3.30). In order to remove the dependence of Σ on 𝜏𝑖, we
now employ the following Gaussian comparison inequality established by Sidák [256,
Corollary 1].

Theorem 3.6.5. Let (𝑋1, . . . , 𝑋𝑘) ∈ R𝑘 be a multivariate normal random vector each
of whose coordinates have zero mean and unit variance. Suppose that its covariance
matrix Σ ∈ R𝑘×𝑘 has the following form: there exists 𝜆1, . . . , 𝜆𝑘 (0 ≤ 𝜆𝑖 ≤ 1, 1 ≤ 𝑖 ≤
𝑘) such that for every 1 ≤ 𝑖 ̸= 𝑗 ≤ 𝑘, Σ𝑖𝑗 = 𝜆𝑖𝜆𝑗𝜌𝑖𝑗 where (𝜌𝑖𝑗 : 1 ≤ 𝑖 ̸= 𝑗 ≤ 𝑘) is
some fixed covariance matrix. Fix any 𝑐1, . . . , 𝑐𝑘 > 0, and denote

𝑃 (𝜆1, . . . , 𝜆𝑘) = P
[︀
|𝑋1| < 𝑐1, |𝑋2| < 𝑐2, . . . , |𝑋𝑘| < 𝑐𝑘

]︀
.

Then, 𝑃 (𝜆1, . . . , 𝜆𝑘) is a non-decreasing function of each 𝜆𝑖, 𝑖 = 1, 2, . . . , 𝑘, 0 ≤ 𝜆𝑖 ≤
1. That is,

𝑃 (𝜆1, 𝜆2, . . . , 𝜆𝑘) ≤ 𝑃 (1, 1, . . . , 1).

Applying Theorem 3.6.5, we find that

max
𝜏𝑖∈ℐ,1≤𝑖≤3

P
[︁
𝑛− 1

2

⃒⃒⟨︀
R𝑖, 𝜎(𝑖)

⟩︀⃒⃒
≤ 1, 1 ≤ 𝑖 ≤ 3

]︁
≤ P

[︀
|𝑍1| ≤ 1, |𝑍2| ≤ 1, |𝑍3| ≤ 1

]︀
(3.34)
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where

(𝑍1, 𝑍2, 𝑍3)
𝑑
= 𝒩

⎛⎝⎡⎣00
0

⎤⎦ ,
⎡⎣ 1 𝛽 − 𝜂12 𝛽 − 𝜂13
𝛽 − 𝜂12 1 𝛽 − 𝜂23
𝛽 − 𝜂13 𝛽 − 𝜂23 1

⎤⎦⎞⎠ . (3.35)

Now, note that

Σ ≜

⎡⎣ 1 𝛽 − 𝜂12 𝛽 − 𝜂13
𝛽 − 𝜂12 1 𝛽 − 𝜂23
𝛽 − 𝜂13 𝛽 − 𝜂23 1

⎤⎦ = (1− 𝛽)𝐼3 + 𝛽ee𝑇 + 𝐸, (3.36)

where 𝐸 ∈ R3×3 has zero diagonal entries, and 𝐸𝑖𝑗 = −𝜂𝑖𝑗 for 1 ≤ 𝑖 ̸= 𝑗 ≤ 3.
In particular, ‖𝐸‖𝐹 ≤ 𝜂

√
6. Since the eigenvalues of (1 − 𝛽)𝐼3 + 𝛽ee𝑇 are 1 + 2𝛽

(with multiplicity one) and 1 − 𝛽 (with multiplicity two), it follows that provided
𝜂 < (1−𝛽)/

√
6, the covariance matrix Σ appearing in (3.36) is invertible. We assume

that this is indeed the case from this point on.
Define

𝜙Prob

(︀
𝛽, 𝜂12, 𝜂13, 𝜂23

)︀
≜ P

(︀
|𝑍1| ≤ 1, |𝑍2| ≤ 1, |𝑍3| ≤ 1

)︀
(3.37)

where (𝑍1, 𝑍2, 𝑍3) has distribution in (3.35). We now combine (3.31), (3.32), (3.33), (3.34),
and (3.37) to arrive at

P
[︁
∃𝜏1, 𝜏2, 𝜏3 ∈ ℐ : 𝑛− 1

2

⃒⃒
ℳ𝑖(𝜏𝑖)𝜎

(𝑖)
⃒⃒
≤ e, 1 ≤ 𝑖 ≤ 3

]︁
≤ |ℐ|3𝜙Prob

(︀
𝛽, 𝜂12, 𝜂13, 𝜂23

)︀𝛼𝑛
.

(3.38)
Our next technical result pertains to 𝜙Prob.

Lemma 3.6.6. Fix any 𝛽 ∈ (0, 1). Then the map(︀
𝜂12, 𝜂13, 𝜂23

)︀
↦→ log2 𝜙Prob

(︀
𝛽, 𝜂12, 𝜂13, 𝜂23

)︀
(from R3 to R) is continuous at (0, 0, 0).

Proof of Lemma 3.6.6. Define a sequence (𝜁𝑘)𝑘≥1 such that

𝜁𝑘 =
(︀
𝜂12(𝑘), 𝜂13(𝑘), 𝜂23(𝑘)

)︀
∈ R3 and lim

𝑘→∞
𝜁𝑘 = (0, 0, 0).

Let Σ𝑘 ∈ R3×3 be the matrix Σ appearing in (3.36) with parameters 𝜁𝑘. Let v =
(𝑥, 𝑦, 𝑧), and define functions

𝑓𝑘(v) ≜ exp

(︂
−1

2
v𝑇Σ−1

𝑘 v

)︂
.

Moreover, let

Σ∞ ≜ (1− 𝛽)𝐼 + 𝛽ee𝑇 and 𝑓∞(v) ≜ exp

(︂
−1

2
v𝑇Σ−1

∞ v

)︂
.

Note that, |𝑓𝑘(v)| ≤ 1 for every v ∈ R3 (as long as Σ𝑘 is positive definite). Moreover,
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we have the pointwise convergence:

lim
𝑘→∞

𝑓𝑘(v) = 𝑓∞(v) for all v ∈ R3.

Therefore, by the dominated convergence theorem

lim
𝑘→∞

∫︁
[−1,1]3

𝑓𝑘(v) 𝑑v =

∫︁
[−1,1]3

𝑓∞(v) 𝑑v. (3.39)

Moreover,
lim
𝑘→∞

⃒⃒
Σ𝑘

⃒⃒
=
⃒⃒
Σ∞
⃒⃒
. (3.40)

Finally,

log2 𝜙Prob

(︀
𝛽, 𝜁𝑘

)︀
= −3

2
log2(2𝜋)−

1

2
log2

⃒⃒
Σ𝑘

⃒⃒
+ log2

(︂∫︁
[−1,1]3

𝑓𝑘(v) 𝑑v

)︂
.

Since 𝑥 ↦→ log2 𝑥 is continuous, we obtain by combining (3.39) and (3.40) that

lim
𝑘→∞

log2 𝜙Prob

(︀
𝛽, 𝜁𝑘

)︀
= log2 𝜙Prob(𝛽, 0, 0, 0).

Since the sequence (𝜁𝑘)𝑘≥1 is arbitrary, the proof of Lemma 3.6.6 is complete.

Choice of 𝛽, 𝜂. In the remainder, let 𝛼* = 1.667. Notice next that

𝑓3(𝛽, 𝛼) = 𝜙Count

(︀
𝛽, 0
)︀
+ 𝛼 · log2 𝜙Prob

(︀
𝛽, 0, 0, 0

)︀
,

where 𝑓3 is defined in (3.19), 𝜙Count is defined in (3.21); and 𝜙Prob is defined in (3.37).
Let 𝛽* be such that

𝑓 * ≜ 𝑓3
(︀
𝛽*, 𝛼*)︀ = inf

𝛽∈[0,1]
𝑓3(𝛽, 𝛼

*). (3.41)

Since 𝑆3(𝛼
*) ̸= ∅ by Lemma 3.6.1, it follows 𝑓 * < 0. Having fixed 𝛽*, let

𝜖* ≜ −𝑓 */8𝛼* > 0 and 𝑐* ≜ −𝑓 */24. (3.42)

Using Lemma 3.6.6, it follows that there exists a 𝛿*1 ≜ 𝛿*1
(︀
𝛽*, 𝜖*

)︀
> 0, such that

sup
(𝜂12,𝜂13,𝜂23)

|𝜂𝑖𝑗 |<𝛿*1 ,1≤𝑖<𝑗≤3

⃒⃒⃒
log2 𝜙Prob(𝛽

*, 𝜂12, 𝜂13, 𝜂23)− log2 𝜙Prob(𝛽
*, 0, 0, 0)

⃒⃒⃒
< 𝜖*. (3.43)

Take 𝜂 < 𝛿*1, ensuring 0 ≤ 𝜂𝑖𝑗 ≤ 𝜂 < 𝛿*1, 1 ≤ 𝑖 < 𝑗 ≤ 3. Using Markov’s inequality,
we have

P
(︀
𝒮(𝛽*, 𝜂, 3, 𝛼*, ℐ) ̸= ∅

)︀
= P

(︀⃒⃒
𝒮(𝛽*, 𝜂, 3, 𝛼*, ℐ)

⃒⃒
≥ 1
)︀
≤ E

[︀⃒⃒
𝒮(𝛽*, 𝜂, 3, 𝛼*, ℐ)

⃒⃒]︀
.
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We now combine the counting bound (3.20), the probability bound (3.38) and the
bound (3.43) to upper bound E

[︀⃒⃒
𝒮(𝛽*, 𝜂, 3, 𝛼*, ℐ)

⃒⃒]︀
:

E
[︀⃒⃒
𝒮(𝛽*, 𝜂, 3, 𝛼*, ℐ)

⃒⃒]︀
≤ exp2

(︁
𝑛𝜙Count(𝛽

*, 𝜂) + 𝑛𝛼* log2 𝜙Prob(𝛽
*, 0, 0, 0) + 𝑛𝛼*𝜖* + 3 log2 |ℐ|+𝑂(log2 𝑛)

)︁
≤ exp2

(︂
𝑛

(︂
𝜙Count(𝛽

*, 𝜂) + 𝛼* log2 𝜙Prob(𝛽
*, 0, 0, 0)− 𝑓 *

4
+𝑂

(︂
log2 𝑛

𝑛

)︂)︂)︂
,

(3.44)

where (3.44) uses max{𝛼*𝜖*, 3 log2 |ℐ|} ≤ −𝑓 */8 which follows from (3.42). Now,
using the continuity of 𝜂 ↦→ 𝜙Count(𝛽

*, 𝜂) at 𝜂 = 0, it follows that there is a 𝛿*2 ≜
𝛿*2(𝛽

*) > 0 such that

|𝜂| < 𝛿*2 =⇒ 𝜙Count(𝛽
*, 𝜂) < 𝜙Count(𝛽

*, 0)− 𝑓 *

4
. (3.45)

Finally, we let

𝜂* =
1

2
min

{︀
𝛿*1, 𝛿

*
2

}︀
. (3.46)

With this choice of 𝜂*, we have by using (3.44) and (3.45) that

E
[︀⃒⃒
𝒮(𝛽*, 𝜂*, 3, 𝛼*, ℐ)

⃒⃒]︀
≤ exp2

(︂
𝑛

(︂
𝜙Count(𝛽

*, 𝜂*) + 𝛼* log2 𝜙Prob(𝛽
*, 0, 0, 0)− 𝑓 *

4
+𝑂

(︂
log2 𝑛

𝑛

)︂)︂)︂
≤ exp2

(︂
𝑛

(︂
𝜙Count(𝛽

*, 0) + 𝛼* log2 𝜙Prob(𝛽
*, 0, 0, 0)− 𝑓 *

2
+𝑂

(︂
log2 𝑛

𝑛

)︂)︂)︂
≤ exp2

(︂
𝑛

(︂
𝑓 *

2
+𝑂

(︂
log2 𝑛

𝑛

)︂)︂)︂
= exp2

(︁
−Θ(𝑛)

)︁
,

using the fact per (3.41) that 𝑓 * < 0. This completes the proof of Theorem 3.2.3.

3.6.3 Proof of Theorem 3.2.4

Fix 𝜅 > 0. We start by observing the following obvious monotonicity property: for
any fixed 0 < 𝜂 < 𝛽 < 1, 𝑚 ∈ N, ℐ ⊂ [0, 𝜋/2], and 𝛼 ≤ 𝛼′; we have

P
[︁
𝒮𝜅(𝛽, 𝜂,𝑚, 𝛼

′, ℐ) ̸= ∅
]︁
≤ P

[︁
𝒮𝜅(𝛽, 𝜂,𝑚, 𝛼, ℐ) ̸= ∅

]︁
.

For this reason, it suffices to establish the result for 𝛼 = 𝛼OGP(𝜅) = 10𝜅2 log 1
𝜅
. We

will do so by using the first moment method : note that by Markov’s inequality,

P
[︁
𝒮𝜅(𝛽, 𝜂,𝑚, 𝛼, ℐ) ̸= ∅

]︁
= P

[︁⃒⃒⃒
𝒮𝜅(𝛽, 𝜂,𝑚, 𝛼, ℐ)

⃒⃒⃒
≥ 1
]︁
≤ E

[︁⃒⃒⃒
𝒮𝜅(𝛽, 𝜂,𝑚, 𝛼, ℐ)

⃒⃒⃒]︁
.

(3.47)
We now study E

[︁⃒⃒⃒
𝒮𝜅(𝛽, 𝜂,𝑚, 𝛼, ℐ)

⃒⃒⃒]︁
.
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Counting term. Fix any 𝑚 ∈ N, and 0 < 𝜂 < 𝛽 < 1. We upper bound the number
𝑀(𝑚,𝛽, 𝜂) of the 𝑚−tuples

(︀
𝜎(𝑖) : 1 ≤ 𝑖 ≤ 𝑚), 𝜎(𝑖) ∈ ℬ𝑛, subject to the constraint

𝛽 − 𝜂 ≤ 𝑛−1
⟨︀
𝜎(𝑖), 𝜎(𝑗)

⟩︀
≤ 𝛽 for 1 ≤ 𝑖 < 𝑗 ≤ 𝑚.

Lemma 3.6.7.

𝑀(𝑚,𝛽, 𝜂) ≤ exp2

(︂
𝑛+ 𝑛(𝑚− 1)ℎ

(︂
1− 𝛽 + 𝜂

2

)︂
+𝑂(log2 𝑛)

)︂
. (3.48)

Proof of Lemma 3.6.7. Note that for any 𝜎, 𝜎′ ∈ ℬ𝑛, ⟨𝜎, 𝜎′⟩ = 𝑛 − 2𝑑𝐻(𝜎, 𝜎
′). There

are 2𝑛 choices for 𝜎(1). Having chosen a 𝜎(1); any 𝜎(𝑖), 2 ≤ 𝑖 ≤ 𝑚, can be chosen in∑︁
𝜌: 1−𝛽

2
≤𝜌≤ 1−𝛽+𝜂

2
𝜌𝑛∈N

(︂
𝑛

𝑛𝜌

)︂
≤
(︂

𝑛

𝑛1−𝛽+𝜂
2

)︂
𝑛𝑂(1),

different ways, subject to the constraint that 𝛽 − 𝜂 ≤ 𝑛−1
⟨︀
𝜎(1), 𝜎(𝑖)

⟩︀
≤ 𝛽. For any

𝜌 ∈ (0, 1),
(︀
𝑛
𝑛𝜌

)︀
= exp2

(︀
𝑛ℎ(𝜌) + 𝑂

(︀
log2 𝑛

)︀)︀
by Stirling’s approximation. Combining

these, and recalling 𝑚 = 𝑂(1) (as 𝑛→ ∞), we obtain (3.48).

Probability term. Fix any
(︀
𝜎(𝑖) : 1 ≤ 𝑖 ≤ 𝑚

)︀
with the pairwise overlaps

𝑛−1
⟨︀
𝜎(𝑖), 𝜎(𝑗)

⟩︀
= 𝛽 − 𝜂𝑖𝑗, 1 ≤ 𝑖 < 𝑗 ≤ 𝑚.

Evidently, 𝜂𝑖𝑗 ≥ 0 for all 𝑖 < 𝑗. Moreover, if we set

𝜂 =
(︀
𝜂𝑖𝑗 : 1 ≤ 𝑖 < 𝑗 ≤ 𝑚

)︀
∈ R𝑚(𝑚−1)/2,

then,
‖𝜂‖∞ ≤ 𝜂.

Lemma 3.6.8. Let Σ(𝜂) ∈ R𝑚×𝑚 be a matrix with the property that

(a)
(︀
Σ(𝜂)

)︀
𝑖𝑖
= 1 for 1 ≤ 𝑖 ≤ 𝑚.

(b)
(︀
Σ(𝜂)

)︀
𝑖𝑗
=
(︀
Σ(𝜂)

)︀
𝑗𝑖
= 𝛽 − 𝜂𝑖𝑗 for every 1 ≤ 𝑖 < 𝑗 ≤ 𝑚.

Then,

(i) Σ(𝜂) is positive definite (PD) if 𝜂 < 1−𝛽
𝑚

.

(ii) Assume Σ(𝜂) is PD. Let (𝑍1, 𝑍2, . . . , 𝑍𝑚) ∼ 𝒩
(︀
0,Σ(𝜂)

)︀
be a multivariate nor-

mal random vector, and define

𝜙Prob

(︀
𝛽,𝜂, 𝜅

)︀
= P

[︁
|𝑍𝑖| ≤ 𝜅, 1 ≤ 𝑖 ≤ 𝑚

]︁
. (3.49)

Then,

P
[︁
∃𝜏𝑖 ∈ ℐ, 1 ≤ 𝑖 ≤ 𝑚 :

⃒⃒
ℳ𝑖(𝜏𝑖)𝜎

(𝑖)
⃒⃒
≤ (𝜅

√
𝑛)e, 1 ≤ 𝑖 ≤ 𝑚

]︁
≤ |ℐ|𝑚𝜙Prob

(︀
𝛽,𝜂, 𝜅

)︀𝛼𝑛
.

(3.50)
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(iii) We have
𝜙Prob

(︀
𝛽,𝜂, 𝜅

)︀
≤
(︀
2𝜋
)︀−𝑚

2
⃒⃒
Σ(𝜂)

⃒⃒− 1
2
(︀
2𝜅
)︀𝑚
. (3.51)

Proof of Lemma 3.6.8. (i) Note that Σ(𝜂) = (1−𝛽)𝐼+𝛽ee𝑇+𝐸, where 𝐸 ∈ R𝑚×𝑚

with 0 ≤ 𝐸𝑖𝑗 ≤ 𝜂 for 1 ≤ 𝑖 < 𝑗 ≤ 𝑚. In particular, ‖𝐸‖2 ≤ ‖𝐸‖𝐹 ≤ 𝜂𝑚. Noting
that the smallest eigenvalue of (1− 𝛽)𝐼 + 𝛽ee𝑇 is 1− 𝛽, the result follows.

(ii) The result follows by taking a union bound over ℐ; and then applying the
Gaussian comparison inequality, Theorem 3.6.5, in the exact same way as in
the proof of Theorem 3.2.3.

(iii) Recall that the multivariate normal density for (𝑍𝑖 : 1 ≤ 𝑖 ≤ 𝑚) is given by

𝑓(𝑧1, . . . , 𝑧𝑚) =
(︀
2𝜋
)︀−𝑚

2
⃒⃒
Σ(𝜂)

⃒⃒− 1
2 exp

(︂
−1

2
𝑧𝑇Σ(𝜂)𝑧

)︂
,

where 𝑧 = (𝑧𝑖 : 1 ≤ 𝑖 ≤ 𝑚), and thus

P
[︁
(𝑍𝑖 : 1 ≤ 𝑖 ≤ 𝑚) ∈ [−𝜅, 𝜅]𝑚

]︁
≤
(︀
2𝜋
)︀−𝑚

2
⃒⃒
Σ(𝜂)

⃒⃒− 1
2
(︀
2𝜅
)︀𝑚

;

using the fact

exp

(︂
−1

2
𝑧𝑇Σ(𝜂)𝑧

)︂
≤ 1,

for every 𝑧 ∈ R𝑚 as Σ(𝜂) is PD.

Upper bounding the expectation. Assume 0 < 𝜂 < 𝛽 < 1 and 𝑚 ∈ N are fixed
as 𝑛 → ∞; and that 𝜂 is small enough, so that Σ(𝜂) is positive definite. (We will
tune 𝜂 eventually.) Combining the counting bound (3.48) arising from Lemma 3.6.7;
the probability bounds (3.50) and (3.51) arising from Lemma 3.6.8; and |ℐ| ≤ 2𝑐𝑛, we
upper bound the expectation by

E
[︁⃒⃒⃒
𝒮𝜅(𝛽, 𝜂,𝑚, 𝛼, ℐ)

⃒⃒⃒]︁
≤ exp2

(︂
𝑛+ 𝑛(𝑚− 1)ℎ

(︂
1− 𝛽 + 𝜂

2

)︂
+ 𝑐𝑚𝑛− 𝑚𝛼𝑛

2
log2(2𝜋)

+𝑚𝛼𝑛 log2(2𝜅)−
𝛼𝑛

2
inf

𝜂:‖𝜂‖∞≤𝜂
log2

⃒⃒
Σ(𝜂)

⃒⃒
+𝑂(log2 𝑛)

)︁
≤ exp2

(︁
𝑛Ψ(𝑐,𝑚, 𝛽, 𝜂, 𝜅) +𝑂

(︀
log2 𝑛

)︀)︁
, (3.52)

where

Ψ(𝑐, 𝛽, 𝜂,𝑚, 𝛼) ≜ 1 + 𝑐𝑚+𝑚ℎ

(︂
1− 𝛽 + 𝜂

2

)︂
− 𝛼𝑚

2
log2(2𝜋)

+ 𝛼𝑚 log2(2𝜅)−
𝛼

2
inf

𝜂:‖𝜂‖∞≤𝜂
log2

⃒⃒
Σ(𝜂)

⃒⃒
, (3.53)

will be called the free energy term.
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Making the free energy negative. Recall 𝛼 = 10𝜅2 log2
1
𝜅
. We claim that for 𝜅

small, there exist 0 < 𝜂 < 𝛽 < 1, 𝑐 > 0 and 𝑚 ∈ N such that Ψ(𝑐, 𝛽, 𝜂,𝑚, 𝛼) < 0.

To that end, we first establish Ψ(𝑐, 𝛽, 0,𝑚, 𝛼) < 0 for appropriately chosen 0 <
𝛽 < 1, 𝑚 ∈ N and 𝑐 > 0. Once this is ensured, observe that the result follows
immediately: both the binary entropy and log2 |Σ(𝜂)| are continuous, and the domain,
𝜂 ∈ [0, 𝜂]𝑚(𝑚−1)/2 is compact; and thus Ψ(𝑐, 𝛽, 𝜂,𝑚, 𝛼) < 0 for any sufficiently small
𝜂 > 0.

Let Σ ≜ Σ(0) = (1−𝛽)𝐼+𝛽ee𝑇 . Then, the spectrum of Σ consists of the eigenvalue
1− 𝛽 + 𝛽𝑚 with multiplicity one; and the eigenvalue 1− 𝛽 with multiplicity 𝑚− 1.
Consequently,

Ψ(𝑐, 𝛽, 0,𝑚, 𝛼) = 1 +𝑚ℎ

(︂
1− 𝛽

2

)︂
− 𝛼𝑚

2
log2(2𝜋) + 𝛼𝑚 log2(2𝜅) + 𝑐𝑚

− 𝛼

2
(𝑚− 1) log2(1− 𝛽)− 𝛼

2
log2(1− 𝛽 + 𝛽𝑚)

≤ 𝑚

(︂
1

𝑚
− 𝛼

2𝑚
log2(1− 𝛽 + 𝛽𝑚) + 𝑐+ϒ(𝛽, 𝛼)

)︂
, (3.54)

where

ϒ(𝛽, 𝛼) ≜ ℎ

(︂
1− 𝛽

2

)︂
− 𝛼

2
log2(2𝜋) + 𝛼 log2(2𝜅)−

𝛼

2
log2(1− 𝛽). (3.55)

Set
𝛽 = 1− 4𝜅2, (3.56)

and recall 𝛼 = 10𝜅2 log2
1
𝜅
. With these 𝛽 and 𝛼 and 𝜅 > 0 sufficiently small,

1

𝑚
− 𝛼

2𝑚
log2

(︀
1− 𝛽 + 𝛽𝑚

)︀
= 𝑜𝑚(1), as 𝑚→ ∞.

For this reason, it suffices to verify that for every 𝜅 > 0 sufficiently small, ϒ(𝛽, 𝛼) < 0.

Analyzing ϒ(𝛽, 𝛼). Note that 1− 𝛽 = 4𝜅2 = (2𝜅)2, and thus

𝛼 log2(2𝜅)−
𝛼

2
log2(1− 𝛽) = 0. (3.57)

Using the Taylor expansion, log2(1− 𝑥) = − 𝑥
ln 2

+ 𝑜(𝑥) as 𝑥→ 0, we have

log2
(︀
1− 2𝜅2

)︀
= − 2

ln 2
𝜅2 + 𝑜𝜅

(︀
𝜅2
)︀
,
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as 𝜅→ 0. Consequently,

ℎ

(︂
1− 𝛽

2

)︂
= ℎ

(︀
2𝜅2
)︀
= −2𝜅2 log2

(︀
2𝜅2
)︀
−
(︀
1− 2𝜅2

)︀
log2

(︀
1− 2𝜅2

)︀
= 4𝜅2 log2

1

𝜅
+Θ𝜅

(︀
𝜅2
)︀
. (3.58)

Combining (3.57) and (3.58), we thus obtain

ϒ
(︀
𝛽, 𝛼

)︀
=
(︁
−5 log2(2𝜋) + 4

)︁
𝜅2 log2

1

𝜅
+Θ

(︀
𝜅2
)︀
, (3.59)

which is indeed negative for every 𝜅 small.

Combining everything. We now complete the argument. For our choice of 𝛽 and
𝛼, (3.59) implies that ϒ(𝛽, 𝛼) < 0 for every 𝜅 small. Having ensured this (for a
fixed 𝜅), we then simultaneously set 𝑚 ∈ N to be sufficiently large and 𝑐 > 0 to be
sufficiently small, so that

1

𝑚
− 𝛼

2𝑚
log2

(︀
1− 𝛽 + 𝛽𝑚

)︀
+ 𝑐+ϒ(𝛽, 𝛼) < 0.

This, via (3.54), ensures Ψ(𝑐, 𝛽, 0,𝑚, 𝛼) < 0. Finally, (uniform) continuity in 𝜂
ensures that for every small enough 𝜂 > 0, Ψ(𝑐, 𝛽, 𝜂,𝑚, 𝛼) < 0; hence

E
[︁⃒⃒⃒
𝒮𝜅(𝛽, 𝜂,𝑚, 𝛼, ℐ)

⃒⃒⃒]︁
= exp

(︀
−Θ(𝑛)

)︀
by (3.52). Finally, inserting this into (3.47), we complete the proof.

3.6.4 Proof of Theorem 3.3.2

Our proof is quite similar to that of [126, Theorem 3.2], including the aforementioned
Ramsey argument. In order to guide the reader, we commence this section with an
outline of the proof.

Proof Outline for Theorem 3.3.2

Fix a 𝜅 > 0, an 𝛼 ≥ 10𝜅2 log2
1
𝜅
; and recall the parameters, 𝑚 ∈ N and 0 < 𝜂 < 𝛽 < 1,

prescribed by our 𝑚−OGP result, Theorem 3.2.4. In a nutshell, our proof is based
on a contradiction argument. To that end, assume such a stable 𝒜 exists. Using 𝒜;
we create, with positive probability, an instance of the forbidden structure ruled out
by the 𝑚−OGP. A brief roadmap is as follows.

• As customary, we first reduce to the case of deterministic algorithms. That is,
we find an 𝜔* ∈ Ω, set 𝒜*(·) = 𝒜(·, 𝜔*) : R𝑀×𝑛 → ℬ𝑛, and operate with this
deterministic 𝒜*. This is the subject of Lemma 3.6.11.

154



• We then study a certain high-probability event, dubbed as chaos event. This
event pertains to 𝑚−tuples 𝜎(𝑖) ∈ ℬ𝑛, 1 ≤ 𝑖 ≤ 𝑚, where ‖ℳ𝑖𝜎

(𝑖)‖∞ ≤ 𝜅
√
𝑛

for i.i.d. random matrices ℳ𝑖 ∈ R𝑀×𝑛, each with i.i.d. 𝒩 (0, 1) coordinates.
Namely, 𝜎(𝑖) satisfy constraints dictated by independent instances of disorder.
We show the existence of a 𝛽′, such that w.h.p. it is the case that for any such
𝑚−tuple, there exists 1 ≤ 𝑖 < 𝑗 ≤ 𝑚 such that 𝒪(𝜎(𝑖), 𝜎(𝑗)) ≤ 𝛽′. Notably,
𝛽′ < 𝛽 − 𝜂. This is the subject of Lemma 3.6.12.

• We then (a) generate 𝑇 + 1 i.i.d. random matrices ℳ𝑖 ∈ R𝑀×𝑛, 0 ≤ 𝑖 ≤ 𝑇
(dubbed as replicas); (b) divide the interval [0, 𝜋/2] into 𝑄 equal pieces, 0 =
𝜏0 < 𝜏1 < · · · < 𝜏𝑄 = 1; (c) construct interpolation trajectories

ℳ𝑖(𝜏𝑘) = cos(𝜏𝑘)ℳ0 + sin(𝜏𝑘)ℳ𝑖 ∈ R𝑀×𝑛, 1 ≤ 𝑖 ≤ 𝑇, 0 ≤ 𝑘 ≤ 𝑄;

and (d) evaluate 𝒜* along each trajectory and time step, by setting

𝜎𝑖(𝜏𝑘) ≜ 𝒜*(︀ℳ𝑖(𝜏𝑘)
)︀
∈ ℬ𝑛.

We tune 𝑇,𝑄 ∈ N appropriately.

• We next show in Proposition 3.6.13 that since 𝒜* is stable; the overlaps evolve
smoothly along each trajectory. That is, we show that for every 1 ≤ 𝑖 < 𝑗 ≤ 𝑇
and 0 ≤ 𝑘 ≤ 𝑄− 1,⃒⃒⃒

𝒪(𝑖𝑗)(𝜏𝑘)−𝒪(𝑖𝑗)(𝜏𝑘+1)
⃒⃒⃒
, where 𝒪(𝑖𝑗)(𝜏) ≜

1

𝑛
⟨𝜎𝑖(𝜏), 𝜎𝑗(𝜏)⟩ ,

is small.

• We then show, by taking a union bound over 1 ≤ 𝑖 ≤ 𝑇 and 0 ≤ 𝑘 ≤ 𝑄; that
with positive probability, the algorithm is successful along each trajectory and
time step: ⃦⃦⃦

ℳ𝑖(𝜏𝑘)𝜎𝑖(𝜏𝑘)
⃦⃦⃦
∞

≤ 𝜅
√
𝑛, 1 ≤ 𝑖 ≤ 𝑇, 0 ≤ 𝑘 ≤ 𝑄.

This is the subject of Lemma 3.6.14.

• We next take a union bound, over all subsets 𝐴 ⊂ [𝑇 ] with |𝐴| = 𝑚, to extend
the aforementioned chaos event to all such subsets.

• We then let 𝜏 evolve from 𝜏0 = 0 to 𝜏𝑄 = 𝜋/2. Notice that in the beginning,
𝜎𝑖(𝜏0) are all equal; whereas at the end, 𝜎𝑖(𝜏𝑄) are obtained by applying 𝒜* to
i.i.d.matrices, ℳ𝑖(𝜏𝑄). Using this observation, the chaos property, as well as the
stability of the overlaps (in the sense of above), we establish in Proposition 3.6.15
the following. For every 𝐴 ⊂ [𝑇 ] with |𝐴| = 𝑚, there exists 1 ≤ 𝑖𝐴 < 𝑗𝐴 ≤ 𝑇
and a time 𝜏𝐴 ∈ {𝜏1, . . . , 𝜏𝑄} such that

𝒪(𝑖𝐴,𝑗𝐴)
(︀
𝜏𝐴
)︀
∈ (𝛽 − 𝜂, 𝛽).
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• We then construct a graph G = (𝑉,𝐸) on |𝑉 | = 𝑇 vertices. More specifically,
(a) vertex 𝑖 ∈ 𝑉 of G corresponds to 𝑖th interpolation trajectory; and (b) for
any 1 ≤ 𝑖 < 𝑗 ≤ 𝑇 , (𝑖, 𝑗) ∈ 𝐸 iff there is a time 𝑡 ∈ {1, 2, . . . , 𝑄} such that
𝒪(𝑖𝑗)(𝜏𝑡) ∈ (𝛽 − 𝜂, 𝛽). Note, from the previous bullet point, that the largest
independent set of G is of size at most 𝑚− 1. That is 𝛼(G) ≤ 𝑚− 1. We next
color each edge (𝑖, 𝑗) ∈ 𝐸 of G with the first time 𝑡 ∈ {1, 2, . . . , 𝑄} such that
𝒪(𝑖𝑗)(𝜏𝑡) ∈ (𝛽 − 𝜂, 𝛽).

• We next apply the Ramsey argument twice. We first use the so-called two-color
version of Ramsey Theory, Theorem 3.6.9. Using the fact 𝛼(G) ≤ 𝑚 − 1; it
follows that G contains a large clique, provided that the number 𝑇 of vertices is
sufficiently large. Call this large clique 𝐾𝑀 , and observe that each edge of 𝐾𝑀 is
colored with one of 𝑄 potential colors. We then apply the so-called multicolor
version of Ramsey Theory, Theorem 3.6.10. Provided 𝑀 is large (which is
ensured by our eventual choice of parameters), we deduce the original graph G
contains a monochromatic 𝑚−clique 𝐾𝑚. These are done in Proposition 3.6.16.

• We now interpret the monochromatic 𝐾𝑚 extracted above. There exists 1 ≤
𝑖1 < 𝑖2 < · · · < 𝑖𝑚 ≤ 𝑇 and a time 𝑡 ∈ {1, 2, . . . , 𝑄} such that 𝒪(𝑖𝑘,𝑖ℓ)(𝜏𝑡) ∈
(𝛽−𝜂, 𝛽) for 1 ≤ 𝑘 < ℓ ≤ 𝑚. Setting 𝜎(𝑖) ≜ 𝜎𝑖𝑘(𝜏𝑡) ∈ ℬ𝑛, this𝑚−tuple 𝜎(𝑖) ∈ ℬ𝑛

is precisely the forbidden configuration ruled out by our 𝑚−OGP result.

• Finally, under the assumption that such an 𝒜* exists; the whole process outlined
above happens with positive probability. That is, we generate such an 𝑚−tuple
with positive probability; contradicting with the 𝑚−OGP result, where the
guarantee is exponentially small in 𝑛. This settles Theorem 3.3.2.

Before we provide the complete proof, we record the following auxiliary results.

Auxiliary Results from Ramsey Theory in Extremal Combinatorics

As was already noted, our proof uses Ramsey Theory in extremal combinatorics in a
crucial way. To that end, we provide two auxiliary results. The first result pertains
to the so-called two-color Ramsey numbers.

Theorem 3.6.9. Let 𝑘, ℓ ≥ 2 be integers; and 𝑅(𝑘, ℓ) denotes the smallest 𝑛 ∈ N
such that any red/blue (edge) coloring of 𝐾𝑛 necessarily contains either a red 𝐾𝑘 or
a blue 𝐾ℓ. Then,

𝑅(𝑘, ℓ) ≤
(︂
𝑘 + ℓ− 2

𝑘 − 1

)︂
=

(︂
𝑘 + ℓ− 2

ℓ− 1

)︂
.

In the special case where 𝑘 = ℓ =𝑀 ∈ N, we thus have

𝑅(𝑀,𝑀) ≤
(︂
2𝑀 − 2

𝑀 − 1

)︂
.

Theorem 3.6.9 is folklore. For a proof, see e.g. [126, Theorem 6.6].
The second auxiliary result pertains to the so-called multicolor Ramsey numbers.

156



Theorem 3.6.10. Let 𝑞,𝑚 ∈ N. Denote by 𝑅𝑞(𝑚) the smallest 𝑛 ∈ N such that any
𝑞−coloring of the edges of 𝐾𝑛 necessarily contains a monochromatic 𝐾𝑚. Then,

𝑅𝑞(𝑚) ≤ 𝑞𝑞𝑚.

Theorem 3.6.10 can be established by using a minor modification of the so-called
neighborhood chasing argument due to Erdös and Szekeres [108], see [81, Page 6] for
a more elaborate discussion.

Proof of Theorem 3.3.2

Let 𝜅 > 0 be a sufficiently small (fixed) constant, 𝛼 ≥ 𝛼OGP(𝜅) = 10𝜅2 log2
1
𝜅

(with
𝛼 < 𝛼𝑐(𝜅)); and 𝑀 = ⌊𝑛𝛼⌋ ∈ N.

We establish the hardness result for stable algorithms. That is, we show that
there exists no randomized algorithm 𝒜 : R𝑀×𝑛 × Ω → ℬ𝑛 which is(︀

𝜌, 𝑝𝑓 , 𝑝st, 𝑓, 𝐿
)︀
− stable

(for every sufficiently large 𝑛) for the SBP, in the sense of Definition 3.3.1. We argue
by contradiction: suppose such an 𝒜 exists.

Parameter Choice. For the above choice of 𝛼 and 𝜅, let 𝑚 ∈ N, and 0 < 𝜂 < 𝛽 =
1− 4𝜅2 < 1 be 𝑚−OGP parameters prescribed by Theorem 3.2.4. Observe that the
𝑚−OGP statement still holds with parameters 0 < 𝜂′ < 𝛽 < 1 if 𝜂′ < 𝜂. For this
reason, we assume

𝜂 < 𝜅2, 𝛽 − 𝜂 > 1− 5𝜅2. (3.60)

We first set
𝑓 = 𝐶𝑛 where 𝐶 =

𝜂2

1600
; (3.61)

then define auxiliary parameters 𝑄 and 𝑇 , where

𝑄 =
4800𝐿𝜋

𝜂2
√
𝛼 and 𝑇 = exp2

(︀
24𝑚𝑄 log2 𝑄

)︀
; (3.62)

and finally prescribe 𝑝𝑓 , 𝑝st, and 𝜌 where

𝑝𝑓 =
1

9(𝑄+ 1)𝑇
, 𝑝st =

1

9𝑄(𝑇 + 1)
, and 𝜌 = cos

(︂
𝜋

2𝑄

)︂
. (3.63)

Reduction to Deterministic Algorithms. We next establish that randomness
do not improve the performance of a stable algorithm by much.

Lemma 3.6.11. Let 𝜅 > 0, 𝛼 < 𝛼𝑐(𝜅), and 𝑀 = ⌊𝑛𝛼⌋. Suppose that 𝒜 : R𝑀×𝑛×Ω →
ℬ𝑛 is a randomized algorithm that is

(︀
𝜌, 𝑝𝑓 , 𝑝st, 𝑓, 𝐿

)︀
−stable (for the SBP). Then, there

exists a deterministic algorithm 𝒜* : R𝑀×𝑛 → ℬ𝑛 that is
(︀
𝜌, 3𝑝𝑓 , 3𝑝st, 𝑓, 𝐿

)︀
−stable8.

8Lemma 3.6.11 applies also to the deterministic algorithms, see remarks following Definition 3.3.1.
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Proof of Lemma 3.6.11. For any 𝜔 ∈ Ω, define the event

ℰ1(𝜔) ≜
{︁⃒⃒
ℳ𝒜

(︀
ℳ, 𝜔

)︀⃒⃒
≤ (𝜅

√
𝑛)e
}︁
,

where ℳ ∈ R𝑀×𝑛, 𝒜(ℳ, 𝜔) ∈ ℬ𝑛, and the inequality is coordinate-wise. Observe
that

Pℳ,𝜔

[︀⃒⃒
ℳ𝒜

(︀
ℳ, 𝜔

)︀⃒⃒
> (𝜅

√
𝑛)e
]︀
= E𝜔

[︀
Pℳ
(︀
ℰ𝑐
1(𝜔)

)︀]︀
.

Perceiving Pℳ(ℰ𝑐
1) as a random variable with source of randomness 𝜔 (note that the

randomness over ℳ is “integrated" over Pℳ), we have by Markov’s inequality

P𝜔

[︀
Pℳ
[︀
ℰ𝑐
1(𝜔)

]︀
≥ 3𝑝𝑓

]︀
≤ E𝜔

[︀
Pℳ
[︀
ℰ𝑐
1(𝜔)

]︀]︀
3𝑝𝑓

≤ 1

3
.

Hence, P[Ω1] ≥ 2/3, where

Ω1 ≜
{︁
𝜔 ∈ Ω : Pℳ

[︀
ℰ𝑐
1(𝜔)

]︀
< 3𝑝𝑓

}︁
.

Defining next

ℰ2(𝜔) ≜
{︁
𝑑𝐻
(︀
𝒜(ℳ, 𝜔),𝒜(ℳ, 𝜔)

)︀
≤ 𝑓 + 𝐿‖ℳ−ℳ‖𝐹

}︁
,

where ℳ,ℳ ∈ R𝑀×𝑛 with i.i.d. standard normal coordinates subject to the con-
straint E

[︀
ℳ11ℳ11

]︀
= 𝜌. Applying the exact same logic, we find P[Ω2] ≥ 2/3, where

Ω2 ≜
{︁
𝜔 ∈ Ω : Pℳ,ℳ

[︀
ℰ𝑐
2(𝜔)

]︀
< 3𝑝st

}︁
.

Noting P[Ω1] + P[Ω2] = 4/3 > 1, it follows Ω1 ∩ Ω2 ̸= ∅. Now take any 𝜔* ∈ Ω1 ∩
Ω2, and set 𝒜*(·) ≜ 𝒜(·, 𝜔*). Clearly, 𝒜* is

(︀
𝜌, 3𝑝𝑓 , 3𝑝st, 𝑓, 𝐿

)︀
−stable, establishing

Lemma 3.6.11.

In the remainder, we restrict our attention to deterministic 𝒜* : R𝑀×𝑛 → ℬ𝑛

appearing in Lemma 3.6.11 which is
(︀
𝜌, 3𝑝𝑓 , 3𝑝st, 𝑓, 𝐿

)︀
−stable.

Chaos event. We now focus on the so-called chaos event, which pertains to𝑚−tuples
𝜎(𝑖) ∈ ℬ𝑛, 1 ≤ 𝑖 ≤ 𝑚, where

⃦⃦
ℳ𝑖𝜎

(𝑖)
⃦⃦
∞ ≤ 𝜅

√
𝑛 for i.i.d. random matrices ℳ𝑖 ∈

R𝑀×𝑛. Namely, we investigate 𝑚−tuples satisfying constraints dictated by indepen-
dent instances of disorder.

Lemma 3.6.12. For every sufficiently small 𝜅 > 0 and 𝛼 ≥ 𝛼OGP(𝜅) = 10𝜅2 log2
1
𝜅
,

and sufficiently large 𝑚 ∈ N,

P
[︁
𝑆𝜅

(︀
1, 5𝜅2,𝑚, 𝛼, {𝜋/2}

)︀
̸= ∅

]︁
≤ exp2

(︀
−Θ(𝑛)

)︀
.

Proof of Lemma 3.6.12. The proof is quite similar to (and in fact, much simpler than)
that of Theorem 3.2.4. Hence, we only provide a brief sketch. Check that for any
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𝜎 ∈ ℬ𝑛 and 𝑋 𝑑
= 𝒩 (0, 𝐼𝑛),

P
[︁
−𝜅 ≤ 𝑛− 1

2 ⟨𝜎,𝑋⟩ ≤ 𝜅
]︁
≤ 2√

2𝜋
𝜅.

Endowed with this, a straightforward first moment argument yields

E
[︁⃒⃒
𝑆𝜅

(︀
5𝜅2, 1,𝑚, 𝛼, {𝜋/2}

)︀⃒⃒]︁
≤ exp2

(︂
𝑛

(︂
1 +𝑚ℎ

(︂
5𝜅2

2

)︂
+ 𝛼𝑚 log2

(︂
2𝜅√
2𝜋

)︂)︂
+𝑂

(︀
log2 𝑛

)︀)︂
= exp2

(︂
𝑛𝑚

(︂
1

𝑚
+ ℎ

(︂
5𝜅2

2

)︂
+ 𝛼 log2

(︂
2𝜅√
2𝜋

)︂)︂
+𝑂

(︀
log2 𝑛

)︀)︂
.

We now apply the Taylor expansion, log2(1− 𝑥) = − 𝑥
ln 2

+ 𝑜(𝑥) as 𝑥→ 0 to obtain

ℎ

(︂
5𝜅2

2

)︂
=

5𝜅2

2
log2

(︂
5𝜅2

2

)︂
+

(︂
1− 5𝜅2

2

)︂
log2

(︂
1− 5𝜅2

2

)︂
⏟  ⏞  

=−Θ𝜅

(︀
𝜅2
)︀

= −5𝜅2 log2 𝜅+Θ𝜅

(︀
𝜅2
)︀
.

Consequently,

ℎ

(︂
5𝜅2

2

)︂
+ 𝛼 log2

(︂
2𝜅√
2𝜋

)︂
= −10𝜅2

(︂
log2

1

𝜅

)︂2

+Θ𝜅

(︀
𝜅2 log2 𝜅

)︀
,

which is indeed negative for all sufficiently small 𝜅 > 0. Having ensured 𝜅 > 0 is suf-
ficiently small, note that if ℎ(5𝜅2/2) +𝛼 log2(2𝜅/

√
2𝜋) < 0 then for every sufficiently

large 𝑚 ∈ N,
1

𝑚
+ ℎ

(︂
5𝜅2

2

)︂
+ 𝛼 log2

(︂
2𝜅√
2𝜋

)︂
< 0.

This yields the conclusion by Markov’s inequality.

In particular, for every 𝜅 > 0, 𝛼 ≥ 10𝜅2 log2
1
𝜅

and 𝑚 ∈ N large enough, w.h.p. it
is the case that for every 𝑚−tuple 𝜎(𝑖) ∈ ℬ𝑛, 1 ≤ 𝑖 ≤ 𝑚 with ‖ℳ𝑖𝜎

(𝑖)‖∞ ≤ 𝜅
√
𝑛

(where ℳ𝑖 are i.i.d. random matrices with i.i.d.𝒩 (0, 1) coordinates), there exists
1 ≤ 𝑖 < 𝑗 ≤ 𝑚 such that

1

𝑛

⟨︀
𝜎(𝑖), 𝜎(𝑗)

⟩︀
≤ 1− 5𝜅2. (3.64)

Construction of Interpolation Paths. Our proof uses interpolation ideas. To
that end, let ℳ𝑖 ∈ R𝑀×𝑛, 0 ≤ 𝑖 ≤ 𝑇 (recall 𝑇 from (3.62)), be a sequence of
i.i.d. random matrices, each with i.i.d. 𝒩 (0, 1) coordinates. Recall the interpolation
appearing in (3.5), repeated below for convenience:

ℳ𝑖(𝜏) ≜ cos(𝜏)ℳ0 + sin(𝜏)ℳ𝑖, 1 ≤ 𝑖 ≤ 𝑇, 𝜏 ∈ [0, 𝜋/2]. (3.65)
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Observe that for any fixed 𝜏 ∈ [0, 𝜋/2], ℳ𝑖(𝜏) consists of i.i.d. standard normal
entries.

Next for 𝑄 appearing in (3.62); we discretize [0, 𝜋/2] into 𝑄 sub intervals—each
of size Θ

(︀
𝑄−1

)︀
—where the endpoints are given by

0 = 𝜏0 < 𝜏1 < · · · < 𝜏𝑄 =
𝜋

2
. (3.66)

We apply 𝒜* to each ℳ𝑖(𝜏𝑘):

𝜎𝑖(𝜏𝑘) ≜ 𝒜*(︀ℳ𝑖(𝜏𝑘)
)︀
∈ ℬ𝑛, 1 ≤ 𝑖 ≤ 𝑇, 0 ≤ 𝑘 ≤ 𝑄. (3.67)

For every 1 ≤ 𝑖 < 𝑗 ≤ 𝑇 and 0 ≤ 𝑘 ≤ 𝑄, define pairwise overlaps

𝒪(𝑖𝑗)
(︀
𝜏𝑘
)︀
≜

1

𝑛

⟨︀
𝜎𝑖
(︀
𝜏𝑘
)︀
, 𝜎𝑗
(︀
𝜏𝑘
)︀⟩︀
. (3.68)

A useful observation is for 𝑘 = 0, 𝜎1(𝜏0) = · · · = 𝜎𝑇 (𝜏0); and therefore the overlaps
are all unity.

Successive Steps are Stable. We now show the stability of overlaps, that is,⃒⃒
𝒪(𝑖𝑗)(𝜏𝑘)−𝒪(𝑖𝑗)(𝜏𝑘+1)

⃒⃒
is small for all 1 ≤ 𝑖 < 𝑗 ≤ 𝑇 and 0 ≤ 𝑘 ≤ 𝑄− 1. More concretely, we establish the
following proposition.

Proposition 3.6.13.

P
[︀
ℰSt
]︀
≥ 1− 3(𝑇 + 1)𝑄𝑝st − (𝑇 + 1) exp

(︀
−Θ(𝑛2)

)︀
,

where

ℰSt ≜
⋂︁

1≤𝑖<𝑗≤𝑇

⋂︁
0≤𝑘≤𝑄−1

{︁⃒⃒⃒
𝒪(𝑖𝑗)(𝜏𝑘)−𝒪(𝑖𝑗)(𝜏𝑘+1)

⃒⃒⃒
≤ 4

√
𝐶 + 4

√︀
3𝐿𝜋𝑄−1𝛼

1
4

}︁
(3.69)

for 𝐶 defined in (3.61).

Proof of Proposition 3.6.13. We first establish an auxiliary concentration result. Let
ℳ ∈ R𝑀×𝑛 be a random matrix with i.i.d. 𝒩 (0, 1) coordinates. Then by applying
Bernstein’s inequality like in the proof of [281, Theorem 3.1.1], we obtain that for
some absolute constant 𝑐 > 0 and any 𝑡 ≥ 0,

P

[︃⃒⃒⃒⃒
⃒ 1

𝑀𝑛

∑︁
1≤𝑖≤𝑀

∑︁
1≤𝑗≤𝑛

ℳ2
𝑖𝑗 − 1

⃒⃒⃒⃒
⃒ ≥ 𝑡

]︃
≤ exp

(︁
−𝑐𝑀𝑛min{𝑡, 𝑡2}

)︁
.

Taking a union bound and recalling 𝑀 = ⌊𝑛𝛼⌋ = Θ(𝑛), we thus have

P
[︁
‖ℳ𝑖‖𝐹 ≤ 6

√
𝑀𝑛, 0 ≤ 𝑖 ≤ 𝑇

]︁
≥ 1− (𝑇 + 1) exp

(︁
−Θ(𝑛2)

)︁
. (3.70)
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The constant 6 is chosen arbitrarily, and any constant greater than 1 works.

Next, we show a simple Lipschitzness property for cos(·) and sin(·): we claim that
for every 𝑥, 𝑦 ∈ R,⃒⃒

cos(𝑥)− cos(𝑦)
⃒⃒
≤ |𝑥− 𝑦| and

⃒⃒
sin(𝑥)− sin(𝑦)

⃒⃒
≤ |𝑥− 𝑦|.

Indeed, by the mean value theorem, for 𝑥 < 𝑦, it holds that for some 𝑐 ∈ (𝑥, 𝑦);
| cos(𝑥)− cos(𝑦)| = |𝑥− 𝑦| · | sin(𝑐)| ≤ |𝑥− 𝑦|. The result for the sin(·) is analogous.
Consequently,

max
{︁⃒⃒

cos(𝜏𝑘)− cos(𝜏𝑘+1)
⃒⃒
,
⃒⃒
sin(𝜏𝑘)− sin(𝜏𝑘+1)

⃒⃒}︁
≤ |𝜏𝑘 − 𝜏𝑘+1| =

𝜋

2𝑄
, (3.71)

where we used (3.66) at the last step.

We now employ (3.71) to upper bound
⃦⃦
ℳ𝑖(𝜏𝑘)−ℳ𝑖(𝜏𝑘+1)

⃦⃦
𝐹

on the high prob-
ability event appearing in (3.70). Assuming (3.70) takes place, we have that for any
fixed 1 ≤ 𝑖 ≤ 𝑇 and 0 ≤ 𝑘 ≤ 𝑄− 1,⃦⃦⃦
ℳ𝑖(𝜏𝑘)−ℳ𝑖(𝜏𝑘+1)

⃦⃦⃦
𝐹
=
⃦⃦⃦
cos(𝜏𝑘)ℳ0 + sin(𝜏𝑘)ℳ𝑖 − cos(𝜏𝑘+1)ℳ0 − sin(𝜏𝑘+1)ℳ𝑖

⃦⃦⃦
𝐹

≤
⃒⃒
cos(𝜏𝑘)− cos(𝜏𝑘+1)

⃒⃒
‖ℳ0‖𝐹 +

⃒⃒
sin(𝜏𝑘)− sin(𝜏𝑘+1)

⃒⃒
‖ℳ𝑖‖𝐹

(3.72)

≤ 𝜋

2𝑄

(︀
‖𝑀0‖𝐹 + ‖𝑀𝑖‖𝐹

)︀
(3.73)

≤ 3𝜋

𝑄

√
𝑀𝑛; (3.74)

where (3.72) uses triangle inequality for the Frobenius norm; (3.73) uses (3.71); and
finally (3.74) uses the fact that on the event (3.70), ‖ℳ𝑖‖𝐹 ≤ 6

√
𝑀𝑛 for 0 ≤ 𝑖 ≤ 𝑇 .

We next observe that for any fixed 1 ≤ 𝑖 ≤ 𝑇 and 0 ≤ 𝑘 ≤ 𝑄− 1; each of ℳ𝑖(𝜏𝑘)
and ℳ𝑖(𝜏𝑘+1) has i.i.d. 𝒩 (0, 1) entries subject to

E
[︁(︀
ℳ𝑖(𝜏𝑘)

)︀
ℓ,𝑗

(︀
ℳ𝑖(𝜏𝑘+1)

)︀
ℓ,𝑗

]︁
= cos

(︀
𝜏𝑘+1 − 𝜏𝑘

)︀
= cos

(︂
𝜋

2𝑄

)︂
. (3.75)

for 1 ≤ ℓ ≤ 𝑀 and 1 ≤ 𝑗 ≤ 𝑛. Recall now by Lemma 3.6.11 that 𝒜* is stable with
stability probability 1− 3𝑝st. Taking thus a union bound, we find

P
[︁
𝑑𝐻

(︁
𝜎𝑖(𝜏𝑘), 𝜎𝑖(𝜏𝑘+1)

)︁
≤ 𝐶𝑛+ 𝐿

⃦⃦
ℳ𝑖(𝜏𝑘)−ℳ𝑖(𝜏𝑘+1)

⃦⃦
𝐹
, 1 ≤ 𝑖 ≤ 𝑇, 0 ≤ 𝑘 ≤ 𝑄− 1

]︁
≥ 1− 3(𝑇 + 1)𝑄𝑝st. (3.76)

We now combine (3.74) (valid on event (3.70)) and the event (3.76) by a union bound.
We find that

P[ℰ ] ≥ 1− 3(𝑇 + 1)𝑄𝑝st − (𝑇 + 1) exp
(︀
−Θ(𝑛2)

)︀
, (3.77)
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where

ℰ ≜
⋂︁

1≤𝑖≤𝑇

⋂︁
0≤𝑘≤𝑄−1

{︂
𝑑𝐻
(︀
𝜎𝑖(𝜏𝑘), 𝜎𝑖(𝜏𝑘+1)

)︁
≤ 𝐶𝑛+

3𝐿𝜋

𝑄

√
𝑀𝑛

}︂
. (3.78)

In the remainder of the proof, assume we operate on the event ℰ (3.78).
Observe that for any 𝜎, 𝜎′ ∈ ℬ𝑛, ‖𝜎 − 𝜎′‖2 = 2

√︀
𝑑𝐻(𝜎, 𝜎′); and recall from (3.67)

the notation, 𝜎𝑖(𝜏𝑘). We have that for any 1 ≤ 𝑖 ≤ 𝑇 and 0 ≤ 𝑘 ≤ 𝑄− 1,⃦⃦⃦
𝜎𝑖(𝜏𝑘)− 𝜎𝑖(𝜏𝑘+1)

⃦⃦⃦
2
= 2
√︁
𝑑𝐻
(︀
𝜎𝑖(𝜏𝑘), 𝜎𝑘(𝜏𝑘+1)

)︀
≤ 2

√︁
𝐶𝑛+ 3𝐿𝜋𝑄−1

√
𝑀𝑛 (3.79)

≤ √
𝑛
(︁
2
√
𝐶 + 2

√︀
3𝐿𝜋𝑄−1𝛼

1
4

)︁
; (3.80)

where (3.79) follows from the fact we are on event ℰ (3.78); and (3.80) uses the fact
𝑀 ≤ 𝑛𝛼 and the trivial inequality

√
𝑢+ 𝑣 ≤ √

𝑢+
√
𝑣 valid for all 𝑢, 𝑣 ≥ 0.

Equipped with (3.80), we are now in a position to conclude. Fix any 1 ≤ 𝑖 < 𝑗 ≤ 𝑇
and 0 ≤ 𝑘 ≤ 𝑄− 1. We have the following chain of inequalities:⃒⃒⃒
𝒪(𝑖𝑗)(𝜏𝑘)−𝒪(𝑖𝑗)(𝜏𝑘+1)

⃒⃒⃒
=

1

𝑛

⃒⃒⃒
⟨𝜎𝑖(𝜏𝑘), 𝜎𝑗(𝜏𝑘)⟩ − ⟨𝜎𝑖(𝜏𝑘+1), 𝜎𝑗(𝜏𝑘+1)⟩

⃒⃒⃒
≤ 1

𝑛

(︁⃒⃒⃒
⟨𝜎𝑖(𝜏𝑘)− 𝜎𝑖(𝜏𝑘+1), 𝜎𝑗(𝜏𝑘)⟩

⃒⃒⃒
+
⃒⃒⃒
⟨𝜎𝑖(𝜏𝑘+1), 𝜎𝑗(𝜏𝑘)− 𝜎𝑗(𝜏𝑘+1)⟩

⃒⃒⃒)︁
(3.81)

≤ 1√
𝑛

(︁⃦⃦⃦
𝜎𝑖(𝜏𝑘)− 𝜎𝑖(𝜏𝑘+1)

⃦⃦⃦
2
+
⃦⃦⃦
𝜎𝑗(𝜏𝑘)− 𝜎𝑗(𝜏𝑘+1)

⃦⃦⃦
2

)︁
(3.82)

≤ 4
√
𝐶 + 4

√︀
3𝐿𝜋𝑄−1𝛼

1
4 . (3.83)

Indeed, (3.81) follows from the triangle inequality; (3.82) uses Cauchy-Schwarz in-
equality with the fact ‖𝜎‖2 =

√
𝑛 for any 𝜎 ∈ ℬ𝑛; and (3.83) uses (3.80). Recalling

the probability bound (3.77) on the event ℰ that we operated under, the proof of
Proposition 3.6.13 is complete.

𝒜* is Successful along Each Trajectory. We next study the event that 𝒜* is
successful along each interpolation trajectory and across times. We have

Lemma 3.6.14.
P
[︀
ℰSuc

]︀
≥ 1− 3𝑇 (𝑄+ 1)𝑝𝑓 ,

where
ℰSuc ≜

⋂︁
1≤𝑖≤𝑇

⋂︁
0≤𝑘≤𝑄

{︁⃦⃦
ℳ𝑖(𝜏𝑘)𝜎𝑖(𝜏𝑘)

⃦⃦
∞ ≤ 𝜅

√
𝑛
}︁
. (3.84)

Proof of Lemma 3.6.14. The results follows immediately by (a) recalling, from Lemma 3.6.11,
that

Pℳ
[︁⃦⃦

ℳ𝒜*(ℳ)
⃦⃦
∞ ≤ 𝜅

√
𝑛
]︁
≥ 3𝑝𝑓 ,
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(b) observing ℳ𝑖(𝜏𝑘)
𝑑
= ℳ0 for all 𝑖 and 𝑘; and (c) taking a union bound over

1 ≤ 𝑖 ≤ 𝑇 and 0 ≤ 𝑘 ≤ 𝑄.

Combining Everything. Fix any subset 𝐴 ⊂ [𝑇 ] with |𝐴| = 𝑚, and let ℰ𝐴 be

ℰ𝐴 ≜

{︂
∃
(︀
𝜎(𝑖) ∈ ℬ𝑛, 𝑖 ∈ 𝐴

)︀
: max

𝑖∈𝐴

⃦⃦
ℳ𝑖(1)𝜎

(𝑖)
⃦⃦
∞ ≤ 𝜅

√
𝑛, 𝛽 − 𝜂 ≤ 𝑛−1

⟨︀
𝜎(𝑖), 𝜎(𝑗)

⟩︀
≤ 𝛽, 𝑖, 𝑗 ∈ 𝐴, 𝑖 ̸= 𝑗

}︂
.

Namely, ℰ𝐴 is nothing but the chaos event in the sense of Lemma 3.6.12, where
the indices are restricted to 𝐴 ⊂ [𝑇 ]. In particular, P[ℰ𝐴] ≥ exp(−Θ(𝑛)) due to
Lemma 3.6.12. Taking a union bound over 𝐴 ⊂ [𝑇 ], we obtain

P[ℰCh] ≜ P

⎡⎣ ⋂︁
𝐴⊂[𝑇 ],|𝐴|=𝑚

ℰ𝑐
𝐴

⎤⎦ ≥ 1−
(︂
𝑇

𝑚

)︂
𝑒−Θ(𝑛) = 1− exp

(︀
−Θ(𝑛)

)︀
, (3.85)

where we used the fact
(︀
𝑇
𝑚

)︀
= 𝑂(1) (as 𝑛 → ∞) since 𝑇 = 𝑂(1) per (3.62) and

𝑚 = 𝑂(1). Let
ℱ ≜ ℰSt ∩ ℰSuc ∩ ℰCh, (3.86)

where ℰSt, ℰSuc, and ℰCh are defined, respectively, in (3.69), (3.84), and (3.85). We
then have

P[ℱ ] ≥ 1− P
[︀
ℰ𝑐
St

]︀
− P

[︀
ℰ𝑐
Suc

]︀
− P

[︀
ℰ𝑐
Ch

]︀
(3.87)

≥ 1− 3(𝑇 + 1)𝑄𝑝st − (𝑇 + 1)𝑒−Θ(𝑛2) − 3𝑇 (𝑄+ 1)𝑝𝑓 − 𝑒−Θ(𝑛) (3.88)

≥ 1

3
− exp

(︀
−Θ(𝑛)

)︀
, (3.89)

where (3.87) follows from a union bound; (3.88) uses Proposition 3.6.13, Lemma 3.6.14
and (3.85); and (3.89) recalls (3.63) for 𝑝𝑓 and 𝑝st. We operate on the event ℱ in the
remainder of the proof.

Now, inserting into (3.69) the choice of 𝐶 per (3.61) and 𝑄 per (3.62); it is the
case that on ℱ , ⃒⃒⃒

𝒪(𝑖𝑗)(𝜏𝑘)−𝒪(𝑖𝑗)(𝜏𝑘+1)
⃒⃒⃒
≤ 𝜂

5
(3.90)

for every 1 ≤ 𝑖 < 𝑗 ≤ 𝑇 and 0 ≤ 𝑘 ≤ 𝑄− 1. Fix next any 𝐴 ⊂ [𝑇 ] with |𝐴| = 𝑚. We
establish the following proposition.

Proposition 3.6.15. For every 𝐴 ⊂ [𝑇 ] with |𝐴| = 𝑚, there exists 1 ≤ 𝑖𝐴 < 𝑗𝐴 ≤ 𝑚
and 𝜏𝐴 ∈ {𝜏1, . . . , 𝜏𝑄} such that for 𝛿 = 𝜂

100
,

𝒪(𝑖𝐴,𝑗𝐴)(𝜏𝐴) ∈
(︀
𝛽 − 𝜂 + 3𝛿, 𝛽 − 3𝛿) ⊊ (𝛽 − 𝜂, 𝛽).

Proof of Proposition 3.6.15. A consequence of ℰCh (part of ℱ) is that there exists
distinct 𝑖𝐴, 𝑗𝐴 ∈ 𝐴 such that

𝒪(𝑖𝐴,𝑗𝐴)(𝜏𝑄) ≤ 1− 5𝜅2,
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where we utilized (3.64). Recall now the choice of 𝛽 = 1 − 4𝜅2 and 𝜂 such that
𝛽 − 𝜂 > 1 − 5𝜅2. In particular, 𝒪(𝑖𝐴,𝑗𝐴)(𝜏𝑄) < 𝛽 − 𝜂. We now claim for 𝛿 = 𝜂/100,
there exists a 𝑘′ ∈ {1, 2, . . . , 𝑄} such that

𝒪(𝑖𝐴,𝑗𝐴)(𝜏𝑘′) ∈
(︀
𝛽 − 𝜂 + 3𝛿, 𝛽 − 3𝛿

)︀
.

To that end, take 𝐾0 ∈ {1, 2, . . . , 𝑄} to be the last time such that 𝒪(𝑖𝐴,𝑗𝐴)(𝜏𝐾0) ≥
𝛽 − 3𝛿. Note that such a 𝐾0 must exist as 𝒪(𝑖𝑗)(0) = 1 for every 1 ≤ 𝑖 < 𝑗 ≤ 𝑇 .
Then if 𝒪(𝑖𝐴,𝑗𝐴)(𝜏𝐾0+1) ≤ 𝛽 − 𝜂 + 3𝛿, we obtain⃒⃒⃒

𝒪(𝑖𝐴,𝑗𝐴)(𝜏𝐾0)−𝒪(𝑖𝐴,𝑗𝐴)(𝜏𝐾0+1)
⃒⃒⃒
≥ 𝜂 − 6𝛿,

contradicting (3.90) for sufficiently large 𝑛. That is,

𝒪(𝑖𝐴,𝑗𝐴)(𝜏𝐾0+1) ∈ (𝛽 − 𝜂 + 3𝛿, 𝛽 − 3𝛿).

Since 𝐴 ⊂ [𝑇 ] was arbitrary, Proposition 3.6.15 is established.

Constructing an Appropriate Graph, and Applying Ramsey Theory. We
now construct a certain graph G = (𝑉,𝐸) satisfying the following properties.

• The vertex set 𝑉 coincides with [𝑇 ]. That is, 𝑉 = {1, 2, . . . , 𝑇}, where each
vertex 𝑖 corresponds to the interpolation trajectory 𝑖, 1 ≤ 𝑖 ≤ 𝑇 .

• For any 1 ≤ 𝑖 < 𝑗 ≤ 𝑇 , we add (𝑖, 𝑗) ∈ 𝐸 iff there exists a time 𝜏 ∈ [0, 1] such
that 𝒪(𝑖𝑗)(𝜏) ∈ (𝛽 − 𝜂, 𝛽).

Namely, G is a graph with a potentially large number of vertices, and a certain number
of edges.

We next color each (𝑖, 𝑗) ∈ 𝐸 with one of 𝑄 colors. Specifically, for any 1 ≤ 𝑖 <
𝑗 ≤ 𝑇 with (𝑖, 𝑗) ∈ 𝐸; we color the edge (𝑖, 𝑗) ∈ 𝐸 with color 𝑡, 1 ≤ 𝑡 ≤ 𝑄, where
𝜏𝑡 ∈ {𝜏1, . . . , 𝜏𝑄} is the first time such that

𝒪(𝑖𝑗)(𝜏𝑡) ∈ (𝛽 − 𝜂, 𝛽).

Having done this coloring, G = (𝑉,𝐸) satisfies the following properties:e

(a) We have |𝑉 | = 𝑇 ; and for every 𝐴 ⊂ 𝑉 with |𝐴| = 𝑚, there exists distinct
𝑖𝐴, 𝑗𝐴 ∈ 𝐴 such that (𝑖𝐴, 𝑗𝐴) ∈ 𝐸. Namely, G contains no independent sets of
size larger than 𝑚− 1.

(b) Any (𝑖, 𝑗) ∈ 𝐸 is colored with one of colors {1, 2, . . . , 𝑄}.

We claim

Proposition 3.6.16. G = (𝑉,𝐸) defined above contains a monochromatic 𝑚−clique,
𝐾𝑚.
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Proof of Proposition 3.6.16. Recall from (3.62) that G contains 𝑇 = exp2

(︀
exp2

(︀
4𝑚𝑄 log2𝑄

)︀)︀
vertices. Set

𝑀 ≜ 𝑄𝑚𝑄 = 2𝑚𝑄 log2 𝑄. (3.91)

Extracting a Large Clique 𝐾𝑀 . Recall from Theorem 3.6.9 that

𝑅2(𝑀,𝑀) ≤
(︂
2𝑀 − 2

𝑀 − 1

)︂
.

As a result, any graph with at least
(︀
2𝑀−2
𝑀−1

)︀
vertices contains either an independent

set of cardinality 𝑀 , or an 𝑀−clique, 𝐾𝑀 . Now, from property (a) above, the largest
independent set of G is of size at most 𝑚− 1, which is less than 𝑀 . Since

𝑇 = exp2

(︀
24𝑚𝑄 log2 𝑄

)︀
≥ 22𝑀 = 4𝑀 ≥

(︂
2𝑀 − 2

𝑀 − 1

)︂
for 𝑀 defined in (3.91), it follows that G contains a 𝐾𝑀 , where 𝑀 = 𝑄𝑄𝑚, each of
whose edges is colored with one of 𝑄 colors.

Further Extracting a Monochromatic 𝐾𝑚. Now that we extracted a 𝐾𝑀 with
𝑀 = 𝑄𝑄𝑚. Since 𝑅𝑄(𝑚) ≤ 𝑄𝑄𝑚 per Theorem 3.6.10; we obtain, by applying the
multicolor version of Ramsey Theory, that 𝐾𝑀 contains a monochromatic 𝐾𝑚. Since
𝐾𝑀 is a subgraph of G, this establishes Proposition 3.6.16.

We now finalize the proof of Theorem 3.3.2. We interpret 𝐾𝑚 of G extracted in
Proposition 3.6.16: there exists an 𝑚−tuple, 1 ≤ 𝑖1 < 𝑖2 < · · · < 𝑖𝑚 ≤ 𝑇 and a color
𝑡 ∈ {1, 2, . . . , 𝑄} such that

𝒪(𝑖𝑘,𝑖ℓ)(𝜏𝑡) ∈ (𝛽 − 𝜂, 𝛽), 1 ≤ 𝑘 < ℓ ≤ 𝑚.

Now, set 𝜎(𝑘) ≜ 𝒜*(︀ℳ𝑖𝑘(𝜏𝑡)
)︀
∈ ℬ𝑛, 1 ≤ 𝑘 ≤ 𝑚. Observe the following for this

𝑚−tuple:

• Noting we are on ℱ (3.86), and in particular ℱ ⊂ ℰSuc defined in (3.84); we
have ⃦⃦⃦

ℳ𝑖𝑘(𝜏𝑡)𝜎
(𝑘)
⃦⃦⃦
∞

≤ 𝜅
√
𝑛, 1 ≤ 𝑘 ≤ 𝑚.

• For 1 ≤ 𝑘 < ℓ ≤ 𝑚,

𝛽 − 𝜂 <
1

𝑛

⟨︀
𝜎(𝑘), 𝜎(ℓ)

⟩︀
< 𝛽.

In particular, for the choice 𝜁 = {𝑖1, 𝑖2, . . . , 𝑖𝑚} of the 𝑚−tuple of distinct indices,
the set 𝒮𝜁 ≜ 𝒮𝜅

(︀
𝛽, 𝜂,𝑚, 𝛼, ℐ

)︀
with ℐ = {𝜏𝑖 : 0 ≤ 𝑖 ≤ 𝑄} is non-empty. That is,

P
[︁
∃𝜁 ∈ [𝑇 ] : |𝜁| = 𝑚,𝒮𝜁 ̸= ∅

]︁
≥ P[ℱ ] ≥ 1

3
− exp

(︀
−Θ(𝑛)

)︀
.
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Notice, on the other hand, that using the 𝑚−OGP result, Theorem 3.2.4, we have

P
[︁
∃𝜁 ∈ [𝑇 ] : |𝜁| = 𝑚,𝒮𝜁 ̸= ∅

]︁
≤
(︂
𝑇

𝑚

)︂
𝑒−Θ(𝑛) = exp

(︀
−Θ(𝑛)

)︀
,

by taking a union bound and recalling
(︀
𝑇
𝑚

)︀
= 𝑂(1). Combining these, we therefore

obtain
exp
(︀
−Θ(𝑛)

)︀
≥ 1

3
− exp

(︀
−Θ(𝑛)

)︀
,

which is clearly a contradiction for all 𝑛 large enough, establishing the result.

3.6.5 Proof of Theorem 3.3.4

We first provide an auxiliary result.

Proposition 3.6.17. Fix Δ ∈ (0, 1
2
). Let ℳ ∈ R𝑀×𝑛 be a matrix with i.i.d. 𝒩 (0, 1)

coordinates; and let ℳΔ ∈ R𝑀×𝑛 be the matrix obtained from ℳ by resampling its
last Δ · 𝑛 columns independently from 𝒩 (0, 1). Let Ξ(Δ) ⊂ ℬ𝑛 × ℬ𝑛 be the set of all
(𝜎, 𝜎Δ) ∈ ℬ𝑛 × ℬ𝑛 satisfying the following conditions.

•
⃦⃦
ℳ𝜎

⃦⃦
∞ ≤ √

𝑛 and
⃦⃦
ℳΔ𝜎Δ

⃦⃦
∞ ≤ √

𝑛.

• 𝑛−1 ⟨𝜎, 𝜎Δ⟩ ∈ [1− 2Δ, 1].

Then, there is a Δ > 0 such that

P
[︀
Ξ(Δ) = ∅

]︀
≥ 1− exp

(︀
−Θ(𝑛)

)︀
.

Assuming Proposition 3.6.17, we now show how to establish Theorem 3.3.4. Sup-
pose such an 𝒜 that is 𝑝𝑓−online for 𝑝𝑓 < 1

2
−exp(−𝑐𝑓𝑛) exists. Let ℳ ∈ R𝑀×𝑛 with

i.i.d. 𝒩 (0, 1) entries, ℳΔ ∈ R𝑀×𝑛 be the matrix obtained from ℳ by independently
resampling its last Δ𝑛 columns; and set

𝜎 ≜ 𝒜
(︀
ℳ
)︀
∈ ℬ𝑛 and 𝜎Δ ≜ 𝒜

(︀
ℳΔ

)︀
∈ ℬ𝑛.

By a union bound, it is the case that w.p. at least 1 − 2𝑝𝑓 ,
⃦⃦
ℳ𝜎

⃦⃦
∞ ≤ √

𝑛 and⃦⃦
ℳΔ𝜎Δ

⃦⃦
∞ ≤ √

𝑛. Moreover, since the algorithm is online per Definition 3.3.3, it
follows that 𝜎(𝑖) = 𝜎Δ(𝑖) for 1 ≤ 𝑖 ≤ 𝑛−Δ𝑛. Hence,

1

𝑛
⟨𝜎, 𝜎Δ⟩ =

1

𝑛

∑︁
1≤𝑖≤𝑛−Δ𝑛

𝜎(𝑖)𝜎Δ(𝑖) +
1

𝑛

∑︁
𝑛−Δ𝑛+1≤𝑖≤𝑛

𝜎(𝑖)𝜎Δ(𝑖) ≥ 1− 2Δ.

As (𝜎, 𝜎Δ) ∈ Ξ(Δ), we have P
[︀
Ξ(Δ) ̸= ∅

]︀
≥ 1 − 2𝑝𝑓 ≥ 2 exp(−𝑐𝑓𝑛). On the other

hand, P
[︀
Ξ(Δ) ̸= ∅

]︀
≤ exp

(︀
−Θ(𝑛)

)︀
. This is a clear contradiction if 𝑐𝑓 > 0 is small

enough. Therefore, it suffices to prove Proposition 3.6.17.

166



Proof of Proposition 3.6.17. The proof is similar to that of 2−OGP result, Theo-
rem 3.2.2; and is based, in particular, on the first moment method. Let

𝑁 =
∑︁

𝜎,𝜎Δ:𝑛−1⟨𝜎,𝜎Δ⟩∈[1−2Δ,1]

1
{︀⃦⃦

ℳ𝜎
⃦⃦
∞ ≤ √

𝑛,
⃦⃦
ℳΔ𝜎Δ

⃦⃦
∞ ≤ √

𝑛
}︀

Clearly, 𝑁 = |Ξ(Δ)|. By Markov’s inequality,

P
[︀
Ξ(Δ) ̸= ∅

]︀
= P

[︀
𝑁 ≥ 1

]︀
≤ E[𝑁 ]. (3.92)

Thus, it suffices to show E[𝑁 ] = exp(−Θ(𝑛)) for Δ > 0 small.

Counting term. There are 2𝑛 choices for 𝜎 ∈ ℬ𝑛. Note that 𝑛−1 ⟨𝜎, 𝜎Δ⟩ ∈ [1 −
2Δ, 1] ⇐⇒ 𝑑𝐻

(︀
𝜎, 𝜎Δ

)︀
≤ Δ𝑛. Thus, having fixed a 𝜎, there are

∑︁
𝑘∈N∩[0,Δ𝑛]

(︂
𝑛

𝑘

)︂
≤ (1 + Δ𝑛) ·

(︂
𝑛

Δ𝑛

)︂
= exp2

(︁
𝑛ℎ(Δ) +𝑂(log2 𝑛)

)︁
choices for 𝜎Δ ∈ ℬ𝑛, where we used the fact

(︀
𝑛
𝑘

)︀
≤
(︀

𝑛
Δ𝑛

)︀
for any 𝑘 ≤ Δ𝑛 (as Δ < 1/2)

and Stirling’s approximation. Thus,⃒⃒⃒{︁
(𝜎, 𝜎Δ) ∈ ℬ𝑛×ℬ𝑛 : 𝑛−1 ⟨𝜎, 𝜎Δ⟩ ≥ 1−2Δ

}︁}︁
≤ exp2

(︁
𝑛+𝑛ℎ(Δ)+𝑂(log2 𝑛)

)︁
. (3.93)

Probability term. Now, fix 𝜎, 𝜎Δ with 𝑛−1 ⟨𝜎, 𝜎Δ⟩ ≥ 1−2Δ. Let𝑅 = (𝑍1, 𝑍2, . . . , 𝑍𝑛) ∈
R𝑛 and 𝑅Δ = (𝑍1, 𝑍2, . . . , 𝑍𝑛−Δ𝑛, 𝑍

′
𝑛−Δ𝑛+1, · · · , 𝑍 ′

𝑛) ∈ R𝑛 respectively be the first
rows of ℳ and ℳΔ, where 𝑍1, . . . , 𝑍𝑛, 𝑍

′
𝑛−Δ𝑛+1, . . . , 𝑍

′
𝑛 are i.i.d. standard normal.

Using the independence of rows of ℳ and ℳΔ, we have

P
[︁⃦⃦

ℳ𝜎
⃦⃦
∞ ≤ √

𝑛,
⃦⃦
ℳΔ𝜎Δ

⃦⃦
∞ ≤ √

𝑛
]︁
= P

[︁
𝑛− 1

2

⃒⃒
⟨𝑅, 𝜎⟩

⃒⃒
≤ 1, 𝑛− 1

2

⃒⃒
⟨𝑅Δ, 𝜎Δ⟩

⃒⃒
≤ 1
]︁𝛼𝑛

.

We next study bivariate normal variables 𝑛− 1
2 ⟨𝑅, 𝜎⟩ 𝑑

= 𝒩 (0, 1) and 𝑛− 1
2 ⟨𝑅Δ, 𝜎Δ⟩ 𝑑

=
𝒩 (0, 1). Note that

1

𝑛
E
[︁
⟨𝑅, 𝜎⟩ ⟨𝑅Δ, 𝜎Δ⟩

]︁
=

1

𝑛

∑︁
1≤𝑖≤𝑛−Δ𝑛

E
[︀
𝑍2

𝑖 𝜎(𝑖)𝜎Δ(𝑖)
]︀
+

1

𝑛

∑︁
𝑛−Δ𝑛+1≤𝑖≤𝑛

E
[︀
𝑍𝑖𝑍

′
𝑖𝜎(𝑖)𝜎Δ(𝑖)

]︀⏟  ⏞  
=0

=
1

𝑛

∑︁
1≤𝑖≤𝑛−Δ𝑛

𝜎(𝑖)𝜎Δ(𝑖) ∈ [1− 2Δ, 1−Δ]

since 𝑑𝐻
(︀
𝜎, 𝜎Δ

)︀
≤ Δ𝑛. Letting 𝜆 ≜ 𝑛−1E

[︁
⟨𝑅, 𝜎⟩ ⟨𝑅Δ, 𝜎Δ⟩

]︁
/(1 −Δ) ∈

[︀
1−2Δ
1−Δ

, 1
]︀
, we

therefore obtain that 𝑛− 1
2 ⟨𝑅, 𝜎⟩ , 𝑛− 1

2 ⟨𝑅Δ, 𝜎Δ⟩ is bivariate normal with parameter
𝜆(1 − Δ). Let 𝑝(𝜌) ≜ P

[︀
(𝑍1, 𝑍2) ∈ [−1, 1]2

]︀
where 𝜌 ∈ [0, 1] and (𝑍1, 𝑍2) bivariate

normal with parameter 𝜌. Using Theorem 3.6.5 with 𝑘 = 2 and 𝜆1 = 𝜆2 =
√
𝜆, we
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thus obtain max0≤𝜆≤1 𝑝
(︀
𝜆(1−Δ)

)︀
= 𝑝
(︀
1−Δ

)︀
. Hence,

P
[︁⃦⃦

ℳ𝜎
⃦⃦
∞ ≤ √

𝑛,
⃦⃦
ℳΔ𝜎Δ

⃦⃦
∞ ≤ √

𝑛
]︁
≤ 𝑝
(︀
1−Δ

)︀𝛼𝑛
. (3.94)

Upper bounding E[𝑁 ]. Combining (3.92), (3.93) and (3.94), we obtain

P
[︀
Ξ(Δ) ̸= ∅

]︀
≤ E[𝑁 ] ≤ exp2

(︁
𝑛
(︁
1 + ℎ(Δ) + 𝛼 log2 𝑝

(︀
1−Δ

)︀)︁
+𝑂(log2 𝑛)

)︁
≤ exp2

(︀
𝑛𝑓1(Δ, 𝛼) +𝑂(log2 𝑛)

)︀
,

where 𝑓1(Δ, 𝛼) = 1+ℎ(Δ)+𝛼 log2 𝑝(1−Δ), per Lemma 3.6.1. Since log2 𝑝(1−Δ) < 0,
it suffices to consider 𝛼 = 1.77. Setting Δ such that

𝑓1(Δ, 1.77) = inf
𝑥∈[10−5,10−1]

𝑓1(𝑥, 1.77),

Lemma 3.6.1 (a) implies 𝑓1(Δ, 1.77) < 0. With this choice of Δ, we complete the
proof of Proposition 3.6.17.

3.6.6 Proof of Theorem 3.3.8

In this section, we establish Theorem 3.3.8. That is, we show that 𝒜KR is stable in
the probabilistic sense. We first set the stage. Recall from (3.14) the interpolation

ℳ(𝜏) ≜ cos(𝜏)ℳ+ sin(𝜏)ℳ′ ∈ R𝑘×𝑛, 𝜏 ∈
[︁
0,
𝜋

2

]︁
,

where ℳ,ℳ′ ∈ R𝑘×𝑛 are two i.i.d. random matrices each with i.i.d. 𝒩 (0, 1) entries.
In particular, ℳ(𝜏) has i.i.d. 𝒩 (0, 1) coordinates for each 𝜏 ∈ [0, 𝜋/2].

Next, denote by 𝑅1, . . . , 𝑅𝑘 ∈ R𝑛 the rows of ℳ; and by 𝐶1, . . . , 𝐶𝑛 ∈ R𝑘 the
columns of ℳ. Likewise, let 𝑅1, . . . , 𝑅𝑘 ∈ R𝑛 and 𝐶1, . . . , 𝐶𝑛 ∈ R𝑘 be the rows and
columns of ℳ(𝜏), respectively. (Whenever appropriate, we drop 𝜏 for convenience.)
As in Theorem 3.3.8, set

𝜎 = 𝒜KR

(︀
ℳ
)︀
∈ ℬ𝑛 and 𝜎 = 𝒜KR

(︁
ℳ(𝜏)

)︁
∈ ℬ𝑛.

We first establish the following proposition which pertains the 𝐿 round implementa-
tion of Kim-Roche algorithm, where 𝐿 ≤ 𝑐 log10 log10 𝑛 for 𝑐 > 0 sufficiently small (as
opposed to its full implementation).

Proposition 3.6.18. Let 𝑐 > 0 be a sufficiently small constant, and 𝐿 ≤ 𝑐 log10 log10 𝑛
be an arbitrary non-negative integer. Define

𝛼ℓ = 𝛼0 · 10−ℓ, 1 ≤ ℓ ≤ 𝐿 with 𝛼0 = 0.01; (3.95)

and set 𝜏 = 𝑛−2𝛼0. Let 𝜎 ∈ {−1, 1}
∑︀

0≤ℓ≤𝐿 𝑛ℓ and 𝜎 ∈ {−1, 1}
∑︀

0≤ℓ≤𝐿 𝑛ℓ respectively be
the outputs generated by running 𝐿 rounds of Kim-Roche algorithm on ℳ and ℳ(𝜏)
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defined in (3.14). Define

𝐽ℓ ≜
{︁
𝑖 ∈ [𝑛0 + 𝑛1 + · · ·+ 𝑛ℓ] : 𝜎𝑖 ̸= 𝜎𝑖

}︁
, 0 ≤ ℓ ≤ 𝐿. (3.96)

Then, for any 0 ≤ ℓ ≤ 𝐿,

P
[︁⃒⃒
𝐽ℓ
⃒⃒
≤ 𝑛1−𝛼ℓ

]︁
≥ 1−𝑂

(︁
𝑛− 1

40
+𝜖
)︁
,

where 𝜖 > 0 is arbitrary.

Proof of Proposition 3.6.18

This section is devoted to the proof of Proposition 3.6.18. We proceed by establishing
several auxiliary results.

Majority is stable. As a first step, we establish the stability of the majority
algorithm. This algorithm assigns, to each column 𝐶𝑗 ∈ R𝑘 of ℳ, the sign of entries
in 𝐶𝑗. That is,

𝜎𝑗 = sgn

(︃∑︁
1≤𝑖≤𝑘

ℳ𝑖𝑗

)︃
∈ {−1, 1}.

Namely, this algorithm is simply the very first round of 𝒜KR assigning 𝑛0 ≤ 𝑛 entries
of 𝜎 ∈ ℬ𝑛, where 𝑛0 ≈ 𝑛.

Lemma 3.6.19. Let 𝒜maj : R𝑘×𝑛 → ℬ𝑛 be the “majority" algorithm defined above.
Recall ℳ(𝜏) from (3.14). Then,

𝑑𝐻

(︁
𝒜maj(ℳ),𝒜maj

(︀
ℳ(𝜏)

)︀)︁ 𝑑
= Bin

(︁
𝑛,
𝜏

𝜋

)︁
.

Proof of Lemma 3.6.19. Define 𝐼𝑗, 1 ≤ 𝑗 ≤ 𝑛 by

𝐼𝑗 = 1

{︁
𝒜maj(ℳ)𝑗 ̸= 𝒜maj

(︀
ℳ(𝜏)

)︀
𝑗

}︁
.

Then, 𝐼𝑗 are i.i.d. Bernoulli. In particular, it suffices to show 𝐼𝑗 ∼ Ber(𝜏/𝜋). To that
end, we study 𝐼1. Let (𝑋1, . . . , 𝑋𝑘) be the first column of ℳ and (𝑌1, . . . , 𝑌𝑘) be the
first column of ℳ′. Furthermore, set

𝑍𝑖 ≜ cos(𝜏)𝑋𝑖 + sin(𝜏)𝑌𝑖, 1 ≤ 𝑖 ≤ 𝑘.

Note that, 𝐼𝑖 = 1 if and only if

sgn

(︃∑︁
1≤𝑖≤𝑘

𝑋𝑖

)︃
̸= sgn

(︃∑︁
1≤𝑖≤𝑘

𝑍𝑖

)︃
.
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From symmetry,

P

(︃
sgn

(︃∑︁
1≤𝑖≤𝑘

𝑋𝑖

)︃
̸= sgn

(︃∑︁
1≤𝑖≤𝑘

𝑍𝑖

)︃)︃
= 2P

(︃
𝑘−

1
2

∑︁
1≤𝑖≤𝑘

𝑋𝑖 > 0,−𝑘− 1
2

∑︁
1≤𝑖≤𝑘

𝑍𝑖 > 0

)︃
.

(3.97)
Observe that E[𝑋𝑖𝑍𝑗] = cos(𝜏)1{𝑖 = 𝑗}. Hence,(︃

𝑘−
1
2

∑︁
1≤𝑖≤𝑘

𝑋𝑖,−𝑘−
1
2

∑︁
1≤𝑖≤𝑘

𝑍𝑖

)︃
𝑑
= 𝒩

(︂[︂
0
0

]︂
,

[︂
1 − cos(𝜏)

− cos(𝜏) 1

]︂)︂
.

Next, applying Lemma 3.6.2, the probability in (3.97) evaluates to

2 ·
(︂
1

4
+

1

2𝜋
sin−1 (− cos(𝜏))

)︂
=

1

2
+

1

𝜋
sin−1

(︁
− sin

(︁𝜋
2
− 𝜏
)︁)︁

=
𝜏

𝜋
.

Hence 𝐼𝑗
𝑑
= Ber(𝜏/𝜋), 1 ≤ 𝑗 ≤ 𝑛 i.i.d. Finally, since 𝑑𝐻

(︁
𝒜maj(ℳ),𝒜maj

(︀
ℳ(𝜏)

)︀)︁
=∑︀

1≤𝑗≤𝑛 𝐼𝑗, the proof of Lemma 3.6.19 is complete.

Correlated ensemble is close to the original. Next, assume that for some
𝑇 ∈ N, 𝑇 rounds (of the algorithm) are completed so far. In particular, the algorithm
produced 𝜎, 𝜎 ∈ {±1}

∑︀
0≤𝑗≤𝑇 𝑛𝑗 . Recall the variables from Section 3.3.4:

⟨𝑅𝑖, 𝜎⟩ , 1 ≤ 𝑖 ≤ 𝑘 and
⟨︀
𝑅𝑖, 𝜎

⟩︀
, 1 ≤ 𝑖 ≤ 𝑘,

where the inner products are defined in R
∑︀

0≤𝑗≤𝑇 𝑛𝑗 and 𝑅𝑖, 1 ≤ 𝑖 ≤ 𝑘 are the rows of
ℳ(𝜏) appearing in (3.14). We show that these ensembles are “close" to each other
in the following sense.

Lemma 3.6.20. Let 𝛼 > 0 satisfy

𝛼 ≥ 10−𝑐 log10(log10 𝑛) (3.98)

for a sufficiently small constant 𝑐 > 0 and 𝑘 = Θ(𝑛). Then with probability at least
1− exp(−𝑘/3),

sup
∑︁
1≤𝑖≤𝑘

⃒⃒⃒
⟨𝑅𝑖, 𝜎⟩ −

⟨︀
𝑅𝑖, 𝜎

⟩︀⃒⃒⃒
≤ 𝐶𝑘

√
𝑛
(︁
𝜏 log10 𝑛+ 𝑛−𝛼/2

)︁
(3.99)

for all large enough 𝑛, where the supremum is over all pairs (𝜎, 𝐽), 𝜎 ∈ ℬ𝑛 and
𝐽 = {𝑖 ∈ [𝑛] : 𝜎𝑖 ̸= 𝜎𝑖} ⊂ [𝑛] with |𝐽 | ≤ 𝑛1−𝛼. Here, 𝐶 > 0 is an absolute constant.

It is worth noting that due to sup term, Lemma 3.6.20 provides a uniform control
for any pair (𝜎, 𝜎) ∈ ℬ𝑛 × ℬ𝑛 with 𝑑𝐻(𝜎, 𝜎) ≤ 𝑛1−𝛼. We will show that this, in
particular, captures the outputs of Kim-Roche algorithm.
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Proof of Lemma 3.6.20. We start by observing that for any 𝜎 ∈ ℬ𝑛, if 𝐽 = {𝑖 : 𝜎𝑖 ̸=
𝜎𝑖}, then

⟨𝑅𝑖, 𝜎⟩ −
⟨︀
𝑅𝑖, 𝜎

⟩︀
=
∑︁
𝑗∈𝐽

(︀
𝑅𝑖𝑗 +𝑅𝑖𝑗

)︀
𝜎𝑗 +

∑︁
𝑗∈𝐽𝑐

(︀
𝑅𝑖𝑗 −𝑅𝑖𝑗

)︀
𝜎𝑗. (3.100)

Next, for any fixed 𝜎 and 𝐽 , we have by (3.14) that∑︁
𝑗∈𝐽

(︀
𝑅𝑖𝑗 +𝑅𝑖𝑗

)︀
𝜎𝑗

𝑑
= 𝒩

(︁
0,
(︁
sin2 𝜏 +

(︀
1 + cos(𝜏)

)︀2)︁|𝐽 |)︁ (3.101)

∑︁
𝑗∈𝐽𝑐

(︀
𝑅𝑖𝑗 −𝑅𝑖𝑗

)︀
𝜎𝑗

𝑑
= 𝒩

(︁
0,
(︁
sin2 𝜏 +

(︀
1− cos(𝜏)

)︀2)︁|𝐽 𝑐|
)︁
. (3.102)

Using simple bounds, 1 − 𝜏2

2
≤ cos(𝜏) ≤ 1 and sin(𝜏) ≤ min{1, 𝜏}, we obtain the

following upper bounds (︀
sin2 𝜏 + (1 + cos 𝜏)2

)︀
|𝐽 | ≤ 5|𝐽 |(︀

sin2 𝜏 + (1− cos 𝜏)2
)︀
|𝐽 𝑐| ≤ 100𝑛𝜏 2

on the variances of variables appearing in (3.101) and (3.102).

We next set the stage to apply Bernstein’s inequality [281, Proposition 5.16]: for
i.i.d. 𝑍𝑖 ∼ 𝒩 (0, 1), 1 ≤ 𝑖 ≤ 𝑛, there exists an absolute constant 𝐴 > 0 such that for
all 𝑡 > 0,

P

(︃ ∑︁
1≤𝑖≤𝑛

|𝑍𝑖| ≥ 𝑛E[|𝑍1|] + 𝑡

)︃
≤ exp

(︂
−min

(︂
𝑡2

4𝑛𝐴2
,
𝑡

2𝐴

)︂)︂
. (3.103)

Fix any absolute constant 𝐶 > 0. Note that using the variance upper bound above

P

(︃∑︁
1≤𝑖≤𝑘

⃒⃒⃒⃒
⃒∑︁
𝑗∈𝐽

(︀
𝑅𝑖𝑗 +𝑅𝑖𝑗

)︀
𝜎𝑗

⃒⃒⃒⃒
⃒ ≥ 𝐶𝑘

√︀
|𝐽 |
)︃

≤ P

(︃∑︁
1≤𝑖≤𝑘

|𝑍𝑖| ≥
𝐶𝑘
√︀
|𝐽 |√︀

5|𝐽 |

)︃
, (3.104)

where 𝑍𝑖
𝑑
= 𝒩 (0, 1), 1 ≤ 𝑖 ≤ 𝑘 i.i.d. Recall that E[|𝑍𝑖|] =

√︀
2/𝜋. Furthermore, for

𝑡 =

(︃
𝐶√
5
−
√︂

2

𝜋

)︃
𝑘,

𝑘 = Θ(𝑛) implies that

min

(︂
𝑡2

4𝑛𝐴2
,
𝑡

2𝐴

)︂
≥ 𝑘
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for 𝐶 > 0 large enough. Likewise,

P

(︃∑︁
1≤𝑖≤𝑘

⃒⃒⃒⃒
⃒∑︁
𝑗∈𝐽𝑐

(︀
𝑅𝑖𝑗 −𝑅𝑖𝑗

)︀
𝜎𝑗

⃒⃒⃒⃒
⃒ ≥ 𝐶𝑘

√
𝑛𝜏 2 log10 𝑛

)︃
≤ P

(︃∑︁
1≤𝑖≤𝑘

|𝑍𝑖| ≥
𝐶𝑘

√
𝑛𝜏 2 log10 𝑛

10
√
𝑛𝜏 2

)︃
.

(3.105)
This time, choosing

𝑡 =
𝐶

10
𝑘 log10 𝑛− 𝑘

√︂
2

𝜋
,

and recalling 𝑘 = Θ(𝑛), we have

min

(︂
𝑡2

4𝑛𝐴2
,
𝑡

2𝐴

)︂
≥ 𝑘 log10 𝑛

provided 𝐶 > 0 is large. Consequently, applying Bernstein’s inequality (3.103)
to (3.104) and (3.105), we obtain

P

(︃∑︁
1≤𝑖≤𝑘

⃒⃒⃒⃒
⃒∑︁
𝑗∈𝐽

(︀
𝑅𝑖𝑗 +𝑅𝑖𝑗

)︀
𝜎𝑗

⃒⃒⃒⃒
⃒ ≥ 𝐶𝑘

√︀
|𝐽 |
)︃

≤ exp(−𝑘) (3.106)

P

(︃∑︁
1≤𝑖≤𝑘

⃒⃒⃒⃒
⃒∑︁
𝑗∈𝐽𝑐

(︀
𝑅𝑖𝑗 −𝑅𝑖𝑗

)︀
𝜎𝑗

⃒⃒⃒⃒
⃒ ≥ 𝐶𝑘

√
𝑛𝜏 2 log10 𝑛

)︃
≤ exp(−𝑘 log10 𝑛) (3.107)

for any sufficiently large constant 𝐶 > 0.

The bounds above are valid for any such (𝜎, 𝐽). We next upper bound the number
of all such pairs. Note that,⃒⃒⃒

(𝜎, 𝐽) : 𝜎 ∈ {−1, 1}𝐽 , |𝐽 | ≤ 𝑛1−𝛼
⃒⃒⃒
=

∑︁
𝑚≤𝑛1−𝛼

2𝑚
(︂
𝑛

𝑚

)︂
≤

∑︁
𝑚≤𝑛1−𝛼

(2𝑛)𝑚

≤ 𝑛1−𝛼(2𝑛)𝑛
1−𝛼

≤ exp
(︀
𝐶 ′𝑛1−𝛼 log10 𝑛

)︀
, (3.108)

for some absolute 𝐶 ′ > 0. Likewise,⃒⃒⃒
(𝜎, 𝐽) : 𝜎 ∈ {−1, 1}𝐽𝑐

, |𝐽 | ≤ 𝑛1−𝛼
⃒⃒⃒
=

∑︁
𝑚≤𝑛1−𝛼

2𝑛−𝑚

(︂
𝑛

𝑚

)︂
≤ 2𝑛

∑︁
0≤𝑚≤𝑛

2−𝑚

(︂
𝑛

𝑚

)︂
= exp

(︀
𝑛 ln 3

)︀
, (3.109)

where we used the binomial theorem,
∑︀

0≤𝑚≤𝑛 2
−𝑚
(︀
𝑛
𝑚

)︀
= 3𝑛/2𝑛.
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We now prepare the stage to take union bounds. Note that since 𝑘 = Θ(𝑛),
𝑘 log10 𝑛 = Θ

(︀
𝑛 log 𝑛

)︀
= 𝜔

(︀
𝑛 ln 3

)︀
. In particular, the cardinality term appearing

in (3.109) is dominated by the corresponding probability term (3.107). Next, we
compare the (order of) cardinality term (3.108) with the corresponding probability
term (3.106). Note that

10−𝑐 log10(log10 𝑛) =
(︀
log10 𝑛

)︀−𝑐
.

Employing this and the lower bound (3.98) on 𝛼, we obtain

𝑛1−𝛼 log10 𝑛 ≤ 𝑛1−10−𝑐 log10(log10 𝑛)

log10 𝑛

= 𝑛 · exp
(︂

1

log10 𝑒
log10(log10 𝑛)−

1

log10 𝑒

(︀
log10 𝑛

)︀1−𝑐
)︂

⏟  ⏞  
= 𝑜(1), provided 𝑐 < 1

= 𝑜(𝑛).

Since 𝑘 = Θ(𝑛) and 𝑐 > 0 is sufficiently small, it follows that the probability term
appearing in (3.106) dominates the cardinality term (3.108).

Taking union bounds, we obtain

P

(︃
sup
𝜎,𝐽

∑︁
1≤𝑖≤𝑘

⃒⃒⃒⃒
⃒∑︁
𝑗∈𝐽

(︀
𝑅𝑖𝑗 +𝑅𝑖𝑗

)︀
𝜎𝑗

⃒⃒⃒⃒
⃒ ≥ 𝐶𝑘

√
𝑛1−𝛼

)︃
≤ exp(−𝑘/2) (3.110)

and

P

(︃
sup
𝜎,𝐽

∑︁
1≤𝑖≤𝑘

⃒⃒⃒⃒
⃒∑︁
𝑗∈𝐽𝑐

(︀
𝑅𝑖𝑗 −𝑅𝑖𝑗

)︀
𝜎𝑗

⃒⃒⃒⃒
⃒ ≥ 𝐶𝑘

√
𝑛𝜏 2 log10 𝑛

)︃
≤ exp

(︀
−𝑘 log10 𝑛/2

)︀
. (3.111)

Finally, combining (3.110) and (3.111) via a union bound, we conclude that (3.99)
holds with probability at least 1− exp(−𝑘/3), completing the proof of Lemma 3.6.20.

Distribution of inner products. Next, as an auxiliary step, we study the param-
eters of distribution of ⟨𝑅𝑖, 𝜎⟩, where 𝜎 is generated by the application of majority
protocol: 𝜎𝑗 = sgn (⟨𝐶𝑗, 𝑒⟩), where 𝑒 is the vector of all ones. Note that

⟨𝑅𝑖, 𝜎⟩ =
∑︁

1≤𝑗≤𝑛

𝑋𝑖𝑗𝜎𝑗 =
∑︁

1≤𝑗≤𝑛

𝑋𝑖𝑗sgn

(︃∑︁
1≤𝑖≤𝑘

𝑋𝑖𝑗

)︃
=
∑︁

1≤𝑗≤𝑛

𝑋𝑖𝑗sgn

(︃
1√
𝑘

∑︁
1≤𝑖≤𝑘

𝑋𝑖𝑗

)︃
.

Notice that for any fixed row index 𝑖, the collection 𝑋𝑖𝑗𝜎𝑗, 1 ≤ 𝑗 ≤ 𝑛 is i.i.d.We now
compute the relevant statistics.
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Lemma 3.6.21. For any 1 ≤ 𝑖 ≤ 𝑘 and 1 ≤ 𝑗 ≤ 𝑛,

E
[︀
𝑋𝑖𝑗𝜎𝑗

]︀
=

√︂
2

𝜋𝑘
.

Consequently, for any distinct (𝑖, 𝑗), (𝑖′, 𝑗′) ∈ [𝑘]× [𝑛],

E
[︀
𝑋𝑖𝑗𝜎𝑗𝑋𝑖′𝑗′𝜎𝑗′

]︀
= 1{𝑗 ̸= 𝑗′} 2

𝜋𝑘

Proof of Lemma 3.6.21. For simplicity, we drop the index 𝑖 below whenever conve-
nient. Observe that P(𝜎1 = +1) = P(𝜎1 = −1) = 1

2
. We then have

E
[︀
𝑋1𝜎1

]︀
=

1

2

(︁
E
[︀
𝑋1|𝜎1 = +1

]︀
− E

[︀
𝑋1|𝜎1 = −1

]︀)︁
=

1

2

(︃
E

[︃
𝑋1

⃒⃒⃒⃒
⃒ 1√
𝑘

∑︁
1≤𝑗≤𝑘

𝑋𝑗 ≥ 0

]︃
+ E

[︃
−𝑋1

⃒⃒⃒⃒
⃒− 1√

𝑘

∑︁
1≤𝑗≤𝑘

𝑋𝑗 ≥ 0

]︃)︃

= E

[︃
𝑋1

⃒⃒⃒⃒
⃒ 1√
𝑘

∑︁
1≤𝑗≤𝑘

𝑋𝑗 ≥ 0

]︃
=

√︂
2

𝜋𝑘
,

where we applied Lemma 3.6.3 for the bivariate normal(︃
𝑋1,

1√
𝑘

∑︁
1≤𝑗≤𝑘

𝑋𝑗

)︃
𝑑
= 𝒩

(︃[︂
0
0

]︂
,

[︃
1 1√

𝑘
1√
𝑘

1

]︃)︃
.

Having established the claim for E[𝑋𝑖𝑗𝜎𝑗], the rest is straightforward. Take (𝑖, 𝑗) ̸=
(𝑖′, 𝑗′). Note that if 𝑗 = 𝑗′, we are done since 𝑋𝑖𝑗 and 𝑋𝑖′𝑗 are independent with mean
zero. Assume 𝑗 ̸= 𝑗′. Then, 𝑋𝑖𝑗𝜎𝑗 and 𝑋𝑖′𝑗′𝜎𝑗′ are i.i.d. This completes the proof of
Lemma 3.6.21.

Thresholding suffices to find 𝑘𝑗 indices. We now establish that for finding the
𝑘𝑗 (row) indices to be used in round 𝑗 of the algorithm, it suffices to threshold the
inner products. This is a consequence of the following concentration result.

Lemma 3.6.22. Suppose that 0 < 𝑐 < log10 2 is an arbitrary constant, and 1 ≤ 𝑇 ≤
𝑐 log10 log10 𝑛 is an arbitrary integer. Let 𝜎 ∈ R𝑆𝑇 for 𝑆𝑇 =

∑︀
0≤𝑠≤𝑇 𝑛𝑠 be the output

of 𝒜KR at the end of 𝑇 th round. Then, for any 𝑥 ∈ R, and 𝜖 > 0,

E

⎡⎣(︃⃒⃒⃒{︀1 ≤ 𝑖 ≤ 𝑘 : ⟨𝑅𝑖, 𝜎⟩ < 𝑥
}︀⃒⃒⃒

− 𝑘Φ

(︃
1√
𝑆𝑇

(︃
𝑥−

∑︁
0≤𝑠≤𝑇

𝑛𝑠

√︂
2𝑘𝑠
𝜋𝑘2

)︃)︃)︃2
⎤⎦ ≤ 𝑂

(︁
𝑛

39
20

+𝜖
)︁
,

where Φ(𝑡) = P(𝑍 ≤ 𝑡) for 𝑍 ∼ 𝒩 (0, 1), 𝑘𝑠 is defined in (3.11) and 𝑛𝑠 is defined
in (3.13).
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Proof of Lemma 3.6.22. We consider

P
(︁
⟨𝑅𝑖, 𝜎⟩ < 𝑥

)︁
and P

(︁
⟨𝑅𝑖, 𝜎⟩ < 𝑥, ⟨𝑅𝑖′ , 𝜎⟩ < 𝑥

)︁
(3.112)

for 1 ≤ 𝑖, 𝑖′ ≤ 𝑘 and 𝑖 ̸= 𝑖′. Define the running sums

𝑆𝑡 =
∑︁
0≤𝑗≤𝑡

𝑛𝑗, 0 ≤ 𝑡 ≤ 𝑇. (3.113)

That is, 𝑆𝑡 is the number of entries of 𝜎 assigned at the end of round 𝑡. Suppose that
the algorithm run for 𝑇 rounds, where 1 ≤ 𝑇 ≤ 𝑐 log10 log10 𝑛 for 𝑐 > 0 sufficiently
small. With this notation,

⟨𝑅𝑖, 𝜎⟩ =
∑︁

1≤𝑗≤𝑆𝑇

𝑋𝑖𝑗𝜎𝑗 =
∑︁

1≤𝑗≤𝑛0

𝑋𝑖𝑗𝜎𝑗 +
∑︁

1≤𝑡≤𝑇

∑︁
𝑆𝑡−1+1≤𝑗≤𝑆𝑡

𝑋𝑖𝑗𝜎𝑗.

To analyze the distribution of this value, let us define

𝑈(𝑖, 𝑖′) ≜
∑︁

0≤𝑡≤𝑇

∑︁
𝑆𝑡−1+1≤𝑗≤𝑆𝑡

𝑋𝑖𝑗̃︀𝜎𝑗 + ∑︁
0≤𝑡≤𝑇

𝑛𝑡𝜇𝑡, (3.114)

where for 𝑆𝑡−1 + 1 ≤ 𝑗 ≤ 𝑆𝑡, and 0 ≤ 𝑡 ≤ 𝑇 (with the convention 𝑆−1 ≜ 0, ℐ0 ≜ [𝑘]
and 𝑘0 ≜ 𝑘)

̃︀𝜎𝑗 ≜ sgn

⎛⎝ ∑︁
ℓ∈ℐ𝑡∖{𝑖,𝑖′}

𝑋ℓ𝑗

⎞⎠ and 𝜇𝑡 = E
[︀
𝑋𝑖𝑗𝜎𝑗

]︀
.

We suppress the dependence of ̃︀𝜎 on 𝑖, 𝑖′ for convenience. Observe that ̃︀𝜎𝑗 is indepen-
dent of all 𝑋𝑖𝑗 and 𝑋𝑖′𝑗.

We now compute 𝜇𝑡 appearing above. To that end, we remind the reader the
(index) set ℐ𝑡 for convenience: for any 1 ≤ 𝑖 ≤ 𝑘, 𝑖 ∈ ℐ𝑡 iff the (partial) inner
product, ⟨𝑅𝑖, 𝜎⟩, is among the smallest 𝑘𝑡 (partial) inner products ⟨𝑅𝑗, 𝜎⟩, 1 ≤ 𝑗 ≤ 𝑘.

Next, note that 𝜎𝑗 (the sign assigned to column 𝑗) is obtained by taking a majority
vote in 𝑘𝑡 × 𝑛𝑡 submatrix with row indices prescribed by ℐ𝑡. Note that if 𝑖 /∈ ℐ𝑡, 𝑋𝑖𝑗

and 𝜎𝑗 are independent. Furthermore, given any 𝑖,

P(𝑖 ∈ ℐ𝑡) =

(︂
𝑘

𝑘𝑡

)︂−1(︂
𝑘 − 1

𝑘𝑡 − 1

)︂
=
𝑘𝑡
𝑘
.

from symmetry. Consequently,

𝜇𝑡 = E
[︀
𝑋𝑖𝑗𝜎𝑗 | 𝑖 ∈ ℐ𝑡

]︀
P(𝑖 ∈ ℐ𝑡) + E

[︀
𝑋𝑖𝑗𝜎𝑗 | 𝑖 /∈ ℐ𝑡

]︀⏟  ⏞  
=0

P(𝑖 /∈ ℐ𝑡)

=

√︂
2

𝜋𝑘𝑡
· 𝑘𝑡
𝑘

=

√︂
2𝑘𝑡
𝜋𝑘2

, (3.115)
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where we used Lemma 3.6.21 to invoke E
[︀
𝑋𝑖𝑗𝜎𝑗 | 𝑖 ∈ ℐ𝑡

]︀
=
√︁

2
𝜋𝑘𝑡

.
Define now

Δ𝑖,𝑖′ ≜ ⟨𝑅𝑖, 𝜎⟩ − 𝑈(𝑖, 𝑖′).

Since E
[︀
𝑋𝑖𝑗̃︀𝜎𝑗]︀ = 0, we obtain E[Δ𝑖,𝑖′ ] = 0 from the choice of 𝜇𝑡, 0 ≤ 𝑡 ≤ 𝑇 . We now

claim

Lemma 3.6.23.

Var
(︁
Δ𝑖,𝑖′

)︁
= 𝑂

(︃ ∑︁
0≤𝑡≤𝑇

𝑛𝑡 · 𝑘−
1
4

𝑡

)︃
. (3.116)

Moreover, if 𝑇 ≤ 𝑐 log10 log10 𝑛 with 𝑐 < log10 2, then

Var
(︁
Δ𝑖,𝑖′

)︁
= 𝑂

(︁
𝑛

3
4
+𝜖
)︁

(3.117)

for any 𝜖 > 0.

Proof of Lemma 3.6.23. Note that for 𝑆𝑡−1 +1 ≤ 𝑗 ≤ 𝑆𝑡, 𝜎𝑗 is a function of a 𝑘𝑡 × 𝑛𝑡

submatrix with i.i.d. 𝒩 (0, 1) entries that has not been inspected yet. Hence

Var
(︁
Δ𝑖,𝑖′

)︁
= Var

⎛⎝ ∑︁
0≤𝑡≤𝑇

∑︁
𝑆𝑡−1+1≤𝑗≤𝑆𝑡

𝑋𝑖𝑗 (𝜎𝑗 − ̃︀𝜎𝑗)
⎞⎠

=
∑︁

0≤𝑡≤𝑇

𝑛𝑡Var
(︁
𝑋𝑖𝑗 (𝜎𝑗 − ̃︀𝜎𝑗))︁

≤
∑︁

0≤𝑡≤𝑇

𝑛𝑡E
[︁
𝑋2

𝑖𝑗 (𝜎𝑗 − ̃︀𝜎𝑗)2]︁
≤
∑︁

0≤𝑡≤𝑇

𝑛𝑡

√︁
E
[︀
𝑋4

𝑖𝑗

]︀
E
[︀
(𝜎𝑗 − ̃︀𝜎𝑗)4]︀

= 𝑂

(︃ ∑︁
0≤𝑡≤𝑇

𝑛𝑡

√︁
P (𝜎𝑗 ̸= ̃︀𝜎𝑗))︃ ,

where the second line uses the fact that for any fixed 𝑡 and 𝑆𝑡−1 + 1 ≤ 𝑗 ≤ 𝑆𝑡 the
distributions of 𝑋𝑖𝑗

(︀
𝜎𝑗 − ̃︀𝜎𝑗)︀ are identical; the third line uses Var(𝑈) ≤ E[𝑈2]; and

the fourth line uses Cauchy-Schwarz inequality.
We now show that for 𝑆𝑡−1 + 1 ≤ 𝑗 ≤ 𝑆𝑡, 0 ≤ 𝑡 ≤ 𝑇 ,

P
(︁
𝜎𝑗 ̸= ̃︀𝜎𝑗)︁ = 𝑂

(︂
1√
𝑘𝑡

)︂
which will establish Lemma 3.6.23. We have that

P
(︁
𝜎𝑗 ̸= ̃︀𝜎𝑗)︁ ≤ P

(︁
𝜎𝑗 ̸= ̃︀𝜎𝑗 ⃒⃒𝑖, 𝑖′ /∈ ℐ𝑡

)︁
⏟  ⏞  

=0

+P
(︁
𝜎𝑗 ̸= ̃︀𝜎𝑗 ⃒⃒⃒|ℐ𝑡 ∩ {𝑖, 𝑖′}| = 1

)︁
+ P

(︁
𝜎𝑗 ̸= ̃︀𝜎𝑗 ⃒⃒𝑖, 𝑖′ ∈ ℐ𝑡

)︁
.
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Recall now from Lemma 3.6.2 that for a pair (𝑆1, 𝑆2) of bivariate normal random
variables 𝑆1, 𝑆2

𝑑
= 𝒩 (0, 1) with parameter 𝜌,

P
(︁
sgn(𝑆1) ̸= sgn(𝑆2)

)︁
=

1

2
− 1

𝜋
sin−1(𝜌),

which, in particular, is a decreasing function of 𝜌. Now,

P
(︁
𝜎𝑗 ̸= ̃︀𝜎𝑗 ⃒⃒⃒|ℐ𝑡∩{𝑖, 𝑖′}| = 1

)︁
= P

(︃
sgn

(︃
1√
𝑘𝑡 − 1

∑︁
1≤𝑖≤𝑘𝑡−1

𝑍𝑖

)︃
̸= sgn

(︃
1√
𝑘𝑡

∑︁
1≤𝑖≤𝑘𝑡

𝑍𝑖

)︃)︃
,

where 𝑍𝑖, 1 ≤ 𝑖 ≤ 𝑘𝑡 are i.i.d. 𝒩 (0, 1). Setting 𝑆1 = (𝑘𝑡 − 1)−
1
2

∑︀
1≤𝑖≤𝑘𝑡−1 𝑍𝑖

and 𝑆2 = 𝑘
− 1

2
𝑡

∑︀
1≤𝑖≤𝑘𝑡

𝑍𝑖, we find that (𝑆1, 𝑆2) is a bivariate normal with param-

eter
√︁
1− 1

𝑘𝑡
. Likewise, a similar argument yields that P

(︁
𝜎𝑗 ̸= ̃︀𝜎𝑗|𝑖, 𝑖′ ∈ ℐ𝑡

)︁
=

P
(︀
sgn(𝑆 ′

1) ̸= sgn(𝑆 ′
2)
)︀
, where 𝑆 ′

1, 𝑆
′
2

𝑑
= 𝒩 (0, 1) is a bivariate normal with parameter√︁

1− 2
𝑘𝑡

. Consequently,

P
(︁
𝜎𝑗 ̸= ̃︀𝜎𝑗)︁ ≤ P

(︁
𝜎𝑗 ̸= ̃︀𝜎𝑗 ⃒⃒⃒|ℐ𝑡 ∩ {𝑖, 𝑖′}| = 1

)︁
+ P

(︁
𝜎𝑗 ̸= ̃︀𝜎𝑗 ⃒⃒𝑖, 𝑖′ ∈ ℐ𝑡

)︁
≤ 2P

(︁
𝜎𝑗 ̸= ̃︀𝜎𝑗 ⃒⃒𝑖, 𝑖′ ∈ ℐ𝑡

)︁
.

Next, for fixed 𝑖 ̸= 𝑖′; set 𝑆 ≜
∑︀

ℓ∈ℐ𝑡∖{𝑖,𝑖′}𝑋ℓ𝑗. We then have,

P
(︁
𝜎𝑗 ̸= ̃︀𝜎𝑗 ⃒⃒𝑖, 𝑖′ ∈ ℐ𝑡

)︁
= 2P

(︀
𝑆 +𝑋𝑖 +𝑋𝑖′ ≥ 0, 𝑆 ≤ 0

)︀
= 2P

(︃
1√︀
𝑘𝑗
(𝑆 +𝑋𝑖 +𝑋𝑖′) ≥ 0,− 1√︀

𝑘𝑗 − 2
𝑆 ≥ 0

)︃

=
1

2
− 1

𝜋
sin−1

(︃√︃
1− 2

𝑘𝑗

)︃

=
1

2
− 1

𝜋
sin−1

(︂
1− 1

𝑘𝑗
+𝑂

(︂
1

𝑘2𝑗

)︂)︂
=

1

2
− 1

𝜋

(︃
𝜋

2
−𝑂

(︃
1√︀
𝑘𝑗

)︃)︃
= 𝑂

(︃
1√︀
𝑘𝑗

)︃
,

where the first line uses symmetry; the third line uses Lemma 3.6.2; and the fourth
line uses

√
1− 𝑥 = 1− 𝑥

2
+𝑂(𝑥2) and sin−1(1− 𝑥) = 𝜋

2
−
√
2𝑥+𝑂(𝑥3/2). Hence, we

established

Var
(︁
Δ𝑖,𝑖′

)︁
= 𝑂

(︃ ∑︁
0≤𝑡≤𝑇

𝑛𝑡 · 𝑘−
1
4

𝑡

)︃
,

where 𝑂(·) only hides absolute constants. Namely, (3.116) holds. Next, let 𝑐 < log10 2.
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Then we claim ∑︁
0≤𝑗≤𝑐 log10 log10 𝑛

𝑛𝑗√︀
𝑘𝑗

= 𝑂
(︁
𝑛

3
4
+𝜖
)︁

for any 𝜖 > 0, which will yield (3.117).
In the remainder, we omit floor/ceiling operators whenever convenient. Note that

for 𝑘𝑗 defined in (3.11),

𝑘𝑗 = 2⌊(1/2)𝑓 3
𝑗 · 𝑛⌋+ 1 ≥ 𝑓 3

𝑗 𝑛− 1.

Moreover, for 𝑛𝑗 appearing in (3.13),

𝑛𝑗 =

⌊︃
𝑛

𝐴

∑︁
0≤𝑖≤𝑗

𝑓𝑖

⌋︃
−
⌊︃
𝑛

𝐴

∑︁
0≤𝑖≤𝑗−1

𝑓𝑖

⌋︃
≤ 𝑛

𝐴
𝑓𝑗 + 1 ≤ 𝑛𝑓𝑗 + 1,

using the fact that 𝐴 ≥ 1 per (3.12). Next, using 𝑓𝑗 ≤ 1, we have

𝑛𝑓𝑗 ≥ 𝑛𝑓 3
𝑗 ≥ 𝑛 · exp10

(︁
−3 · 2𝑐 log10 log10 𝑛

)︁
= exp10

(︁
log10 𝑛− 3 · (log10 𝑛)𝑐

′
)︁
= 𝜔(1)

where 𝑐′ = 𝑐 log10 2 < (log10 2)
2 < 1. Here, we used the fact that 𝑗 ≤ 𝐿, where

𝐿 = 𝑐 log10 log10 𝑛 appears in Proposition 3.6.18 with 𝑐 > 0 small enough.
Namely, 𝑛𝑓𝑗, 𝑛𝑓 3

𝑗 = 𝜔(1). Employing this, together with 𝑛𝑗 ≤ 𝑛𝑓𝑗 and 𝑘𝑗 ≥ 𝑛𝑓 3
𝑗 −1

established above, we have

𝑂

⎛⎝ ∑︁
0≤𝑗≤𝑐 log10 log10 𝑛

𝑛𝑗 · 𝑘−
1
4

𝑗

⎞⎠ = 𝑂

⎛⎝ ∑︁
0≤𝑗≤𝑐 log10 log10 𝑛

𝑛𝑓𝑗 · (𝑛𝑓 3
𝑗 )

− 1
4

⎞⎠
= 𝑂

⎛⎝ ∑︁
0≤𝑗≤𝑐 log10 log10 𝑛

𝑛
3
4𝑓

1
4
𝑗

⎞⎠
= 𝑂

(︁
log10 log10 𝑛 · 𝑛 3

4

)︁
= 𝑂

(︁
𝑛

3
4
+𝜖
)︁
, ∀𝜖 > 0,

where the first line uses the bounds 𝑛𝑗 ≤ 𝑛𝑓𝑗 +1 and 𝑘𝑗 ≥ 𝑛𝑓 3
𝑗 − 1 and the third line

uses the fact 𝑓𝑗 = 𝑜(1). This concludes the proof of Lemma 3.6.23.

Lemma 3.6.23 yields

E
[︀
Δ2

𝑖,𝑖′

]︀
= Var

(︀
Δ𝑖,𝑖′

)︀
= 𝑂

(︁
𝑛

3
4
+𝜖
)︁

(3.118)

for any 𝜖 > 0. Now, recall that

⟨𝑅𝑖, 𝜎⟩ = 𝑈(𝑖, 𝑖′) + Δ𝑖,𝑖′ and ⟨𝑅𝑖′ , 𝜎⟩ = 𝑈(𝑖′, 𝑖) + Δ𝑖′,𝑖.
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In particular, using Chebyshev’s inequality and (3.118), we obtain

P
(︁⃒⃒
Δ𝑖′,𝑖

⃒⃒
> 𝑘

2
5

)︁
= P

(︁⃒⃒
Δ𝑖,𝑖′

⃒⃒
> 𝑘

2
5

)︁
≤ 𝑘−

4
5E
[︁
Δ2

𝑖,𝑖′

]︁
= 𝑂

(︁
𝑛− 1

20
+𝜖
)︁
, (3.119)

for any 𝜖 > 0, as 𝑘 = Θ(𝑛). Equipped with these,

P
(︁
⟨𝑅𝑖, 𝜎⟩ < 𝑥, ⟨𝑅𝑖′ , 𝜎⟩ < 𝑥

)︁
= P

(︁
𝑈(𝑖, 𝑖′) + Δ𝑖,𝑖′ < 𝑥,𝑈(𝑖′, 𝑖) + Δ𝑖′,𝑖 < 𝑥

)︁
≤ P

(︁
𝑈(𝑖, 𝑖′) < 𝑥+ 𝑘

2
5 , 𝑈(𝑖′, 𝑖) < 𝑥+ 𝑘

2
5

)︁
+ P

(︁⃒⃒
Δ𝑖,𝑖′

⃒⃒
> 𝑘

2
5

)︁
+ P

(︁⃒⃒
Δ𝑖′,𝑖

⃒⃒
> 𝑘

2
5

)︁
= P

(︁
𝑈(𝑖, 𝑖′) < 𝑥+ 𝑘

2
5 , 𝑈(𝑖′, 𝑖) < 𝑥+ 𝑘

2
5

)︁
+𝑂

(︁
𝑛− 1

20
+𝜖
)︁
,

where the last line uses (3.119). Next, we establish an auxiliary lemma.

Lemma 3.6.24. The random variables

1√
𝑆𝑇

∑︁
1≤𝑗≤𝑆𝑇

𝑋𝑖𝑗̃︀𝜎𝑗 and
1√
𝑆𝑇

∑︁
1≤𝑗≤𝑆𝑇

𝑋𝑖′𝑗̃︀𝜎𝑗
are i.i.d. standard normal.

Proof of Lemma 3.6.24. Note that 𝑋𝑖𝑗, 1 ≤ 𝑗 ≤ 𝑆𝑇 and 𝑋𝑖′𝑗, 1 ≤ 𝑗 ≤ 𝑆𝑇 are i.i.d.
𝒩 (0, 1). Moreover, ̃︀𝜎𝑗, 1 ≤ 𝑗 ≤ 𝑆𝑇 is an i.i.d. collection with

P
[︀̃︀𝜎𝑗 = 1

]︀
=

1

2
= P

[︀̃︀𝜎𝑗 = −1
]︀

(3.120)

and that ̃︀𝜎𝑗 are independent of 𝑋𝑖𝑗 and 𝑋𝑖′𝑗. Next, we show if 𝑋 𝑑
= 𝒩 (0, 1) and ̃︀𝜎

has the distribution (3.120) and is independent of 𝑋, then ̃︀𝜎𝑋 𝑑
= 𝒩 (0, 1). To see

this, we rely on characteristic functions: for any 𝑡 ∈ R,

E
[︀
𝑒𝑖𝑡̃︀𝜎𝑋]︀ = E

[︀
𝑒𝑖𝑡̃︀𝜎𝑋 ⃒⃒̃︀𝜎 = 1

]︀
P
[︀̃︀𝜎 = 1

]︀
+ E

[︀
𝑒𝑖𝑡̃︀𝜎𝑋 ⃒⃒̃︀𝜎 = −1

]︀
P
[︀̃︀𝜎 = −1

]︀
=

1

2

(︀
E
[︀
𝑒𝑖𝑡𝑋

]︀
+ E

[︀
𝑒−𝑖𝑡𝑋

]︀)︀
= exp

(︀
−𝑡

2

2

)︀
.

Using Lévy’s inversion theorem [288, Section 16.6], it follows that ̃︀𝜎𝑋 𝑑
= 𝒩 (0, 1).

Applying this fact, since 𝑋𝑖𝑗̃︀𝜎𝑗, 1 ≤ 𝑗 ≤ 𝑆𝑇 is an i.i.d. 𝒩 (0, 1) collection, we deduce

1√
𝑆𝑇

∑︁
1≤𝑗≤𝑆𝑇

𝑋𝑖𝑗̃︀𝜎𝑗 𝑑
= 𝒩 (0, 1) and

1√
𝑆𝑇

∑︁
1≤𝑗≤𝑆𝑇

𝑋𝑖′𝑗̃︀𝜎𝑗 𝑑
= 𝒩 (0, 1).

Finally, we show 𝑋𝑖𝑗̃︀𝜎𝑗 ⊥ 𝑋𝑖′𝑗̃︀𝜎𝑗, which will yield Lemma 3.6.24. Once again, we rely
on Lévy’s inversion theorem. Let

𝑍 = (𝑋𝑖𝑗̃︀𝜎𝑗, 𝑋𝑖′𝑗̃︀𝜎𝑗) and 𝑡 = (𝑡1, 𝑡2).
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We have

E
[︀
𝑒𝑖𝑡

𝑇𝑍
]︀
= E

[︂
𝑒𝑖̃︀𝜎𝑗

(︀
𝑡1𝑋𝑖𝑗+𝑡2𝑋𝑖′𝑗

)︀]︂
= E

[︂
𝑒𝑖̃︀𝜎𝑗

(︀
𝑡1𝑋𝑖𝑗+𝑡2𝑋𝑖′𝑗

)︀⃒⃒⃒̃︀𝜎𝑗 = 1

]︂
P
[︀̃︀𝜎𝑗 = 1

]︀
+ E

[︂
𝑒𝑖̃︀𝜎𝑗

(︀
𝑡1𝑋𝑖𝑗+𝑡2𝑋𝑖′𝑗

)︀⃒⃒⃒̃︀𝜎𝑗 = −1

]︂
P
[︀̃︀𝜎𝑗 = −1

]︀
= exp

(︂
−𝑡

2
1 + 𝑡22
2

)︂
,

where we used the fact 𝑡1𝑋𝑖𝑗 + 𝑡2𝑋𝑖′𝑗
𝑑
= 𝒩

(︀
0, 𝑡21 + 𝑡22

)︀
. Clearly,

E
[︀
𝑒𝑖𝑡

𝑇𝑍
]︀
= E

[︀
𝑒𝑖𝑡1𝑋𝑖𝑗̃︀𝜎𝑗

]︀
E
[︀
𝑒𝑖𝑡2𝑋𝑖′𝑗̃︀𝜎𝑗

]︀
,

since 𝑡1𝑋𝑖𝑗̃︀𝜎𝑗 𝑑
= 𝒩 (0, 𝑡21) and 𝑡22𝑋𝑖′𝑗̃︀𝜎𝑗 𝑑

= 𝒩 (0, 𝑡22). Since 𝑡1, 𝑡2 ∈ R are arbitrary,
we complete the proof of Lemma 3.6.24 by appealing once again to Lévy’s inversion
theorem.

Denote Φ(𝑡) = P[𝒩 (0, 1) ≤ 𝑡]. For 𝑆𝑇 =
∑︀

0≤𝑡≤𝑇 𝑛𝑡, we have

P
(︁
𝑈(𝑖, 𝑖′) < 𝑥+ 𝑘

2
5 , 𝑈(𝑖′, 𝑖) < 𝑥+ 𝑘

2
5

)︁
= P

(︃
1√
𝑆𝑇

∑︁
1≤𝑗≤𝑆𝑇

𝑋𝑖𝑗̃︀𝜎𝑗, 1√
𝑆𝑇

∑︁
1≤𝑗≤𝑆𝑇

𝑋𝑖′𝑗̃︀𝜎𝑗 < 𝑥√
𝑆𝑇

− 1√
𝑆𝑇

∑︁
0≤𝑡≤𝑇

𝑛𝑡

√︂
2𝑘𝑡
𝜋𝑘2

+
𝑘

2
5√
𝑆𝑇

)︃

= Φ

(︃
𝑥√
𝑆𝑇

− 1√
𝑆𝑇

∑︁
0≤𝑡≤𝑇

𝑛𝑡

√︂
2𝑘𝑡
𝜋𝑘2

+
𝑘

2
5√
𝑆𝑇

)︃2

,

where the second line uses the expressions for 𝑈(𝑖, 𝑖′) and 𝑈(𝑖′, 𝑖) per (3.114) and for
𝜇𝑡 per (3.115); and the last line uses Lemma 3.6.24. Observe next that Φ(·) is trivially
1−Lipschitz:

⃒⃒
Φ(𝑡1)− Φ(𝑡2)

⃒⃒
=

∫︁ max{𝑡1,𝑡2}

min{𝑡1,𝑡2}

1√
2𝜋
𝑒−

𝑡2

2 𝑑𝑡 ≤
⃒⃒
𝑡1 − 𝑡2

⃒⃒
.

With this, we have

Φ

(︃
𝑥√
𝑆𝑇

− 1√
𝑆𝑇

∑︁
0≤𝑡≤𝑇

𝑛𝑡

√︂
2𝑘𝑡
𝜋𝑘2

+
𝑘

2
5√
𝑆𝑇

)︃
−Φ

(︃
𝑥√
𝑆𝑇

− 1√
𝑆𝑇

∑︁
0≤𝑡≤𝑇

𝑛𝑡

√︂
2𝑘𝑡
𝜋𝑘2

)︃
≤ 𝑘

2
5√
𝑆𝑇

.

Moreover, note that Θ(𝑛) = 𝑛0 ≤ 𝑆𝑇 ≤ 𝑛 yields 𝑆𝑇 = Θ(𝑛), hence in particular
𝑘2/5/

√
𝑆𝑇 = Θ(𝑛−1/10) as 𝑘 = Θ(𝑛) too. Consequently,

Φ

(︃
𝑥√
𝑆𝑇

− 1√
𝑆𝑇

∑︁
0≤𝑡≤𝑇

𝑛𝑡

√︂
2𝑘𝑡
𝜋𝑘2

+
𝑘

1
3√
𝑆𝑇

)︃2

≤ Φ

(︃
𝑥√
𝑆𝑇

− 1√
𝑆𝑇

∑︁
0≤𝑡≤𝑇

𝑛𝑡

√︂
2𝑘𝑡
𝜋𝑘2

)︃2

+𝑂
(︁
𝑛− 1

10

)︁
.
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Likewise, using inequality P(ℰ1 ∩ ℰ2) ≥ P(ℰ1) − P(ℰ𝑐
2) valid for all events ℰ1, ℰ2, we

have

P
(︁
⟨𝑅𝑖, 𝜎⟩ < 𝑥, ⟨𝑅𝑖′ , 𝜎⟩ < 𝑥

)︁
≥ P

(︁
𝑈(𝑖, 𝑖′) < 𝑥− 𝑘

2
5 , 𝑈(𝑖′, 𝑖) < 𝑥− 𝑘

2
5 ,Δ𝑖,𝑖′ < 𝑘

1
3 ,Δ𝑖′,𝑖 < 𝑘

2
5

)︁
≥ P

(︁
𝑈(𝑖, 𝑖′) < 𝑥− 𝑘

2
5 , 𝑈(𝑖′, 𝑖) < 𝑥− 𝑘

2
5

)︁
− P

(︁
Δ𝑖,𝑖′ > 𝑘

2
5 or Δ𝑖′,𝑖 > 𝑘

2
5

)︁
≥ Φ

(︃
𝑥√
𝑆𝑇

− 1√
𝑆𝑇

∑︁
0≤𝑡≤𝑇

𝑛𝑡

√︂
2𝑘𝑡
𝜋𝑘2

)︃2

−𝑂
(︁
𝑛− 1

20
+𝜖
)︁
,

where in the last line we have once again used (3.119). Combining these, we arrive at⃒⃒⃒⃒
⃒⃒P(︁⟨𝑅𝑖, 𝜎⟩ < 𝑥, ⟨𝑅𝑖′ , 𝜎⟩ < 𝑥

)︁
− Φ

(︃
𝑥√
𝑆𝑇

− 1√
𝑆𝑇

∑︁
0≤𝑡≤𝑇

𝑛𝑡

√︂
2𝑘𝑡
𝜋𝑘2

)︃2
⃒⃒⃒⃒
⃒⃒ = 𝑂

(︁
𝑛− 1

20
+𝜖
)︁
.

(3.121)

Similarly, we have⃒⃒⃒⃒
⃒P(︁⟨𝑅𝑖, 𝜎⟩ < 𝑥

)︁
− Φ

(︃
𝑥√
𝑆𝑇

− 1√
𝑆𝑇

∑︁
0≤𝑡≤𝑇

𝑛𝑡

√︂
2𝑘𝑡
𝜋𝑘2

)︃⃒⃒⃒⃒
⃒ = 𝑂

(︁
𝑛− 1

20
+𝜖
)︁
. (3.122)

Next, let

𝜉 ≜ Φ

(︃
𝑥√
𝑆𝑇

− 1√
𝑆𝑇

∑︁
0≤𝑡≤𝑇

𝑛𝑡

√︂
2𝑘𝑡
𝜋𝑘2

)︃
.

Moreover, set

Δ1 ≜ P
(︁
⟨𝑅𝑖, 𝜎⟩ < 𝑥, ⟨𝑅𝑖′ , 𝜎⟩ < 𝑥

)︁
− Φ

(︃
𝑥√
𝑆𝑇

− 1√
𝑆𝑇

∑︁
0≤𝑡≤𝑇

𝑛𝑡

√︂
2𝑘𝑡
𝜋𝑘2

)︃2

Δ2 ≜ P
(︁
⟨𝑅𝑖, 𝜎⟩ < 𝑥

)︁
− Φ

(︃
𝑥√
𝑆𝑇

− 1√
𝑆𝑇

∑︁
0≤𝑡≤𝑇

𝑛𝑡

√︂
2𝑘𝑡
𝜋𝑘2

)︃
.
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Then, |Δ1|, |Δ2| = 𝑂(𝑛− 1
20

+𝜖). Using (3.121) and (3.122), we obtain⃒⃒⃒⃒
⃒E
[︃(︁

1
{︀
⟨𝑅𝑖, 𝜎⟩ < 𝑥

}︀
− 𝜉
)︁(︁

1
{︀
⟨𝑅𝑖′ , 𝜎⟩ < 𝑥

}︀
− 𝜉
)︁]︃⃒⃒⃒⃒⃒

=

⃒⃒⃒⃒
⃒P(︁⟨𝑅𝑖, 𝜎⟩ < 𝑥, ⟨𝑅𝑖′ , 𝜎⟩ < 𝑥

)︁
− 2P

(︀
⟨𝑅𝑖, 𝜎⟩ < 𝑥

)︀
𝜉 + 𝜉2

⃒⃒⃒⃒
⃒

=
⃒⃒⃒
Δ1 + 𝜉2 − 2𝜉

(︀
Δ2 + 𝜉

)︀
+ 𝜉2

⃒⃒⃒
=
⃒⃒⃒
Δ1 − 2𝜉Δ2

⃒⃒⃒
= 𝑂

(︁
𝑛− 1

20
+𝜖
)︁

as 𝜉 < 1. Hence, we arrive at

E

⎡⎣(︃⃒⃒⃒{1 ≤ 𝑖 ≤ 𝑘 : ⟨𝑅𝑖, 𝜎⟩ < 𝑥}
⃒⃒⃒
− 𝑘Φ

(︃
𝑥√
𝑆𝑇

− 1√
𝑆𝑇

∑︁
0≤𝑡≤𝑇

𝑛𝑡

√︂
2𝑘𝑡
𝜋𝑘2

)︃)︃2
⎤⎦

= E

⎡⎣(︃∑︁
1≤𝑖≤𝑘

(︃
1
{︀
⟨𝑅𝑖, 𝜎⟩ < 𝑥

}︀
− Φ

(︃
𝑥√
𝑆𝑇

− 1√
𝑆𝑇

∑︁
0≤𝑡≤𝑇

𝑛𝑡

√︂
2𝑘𝑡
𝜋𝑘2

)︃)︃)︃2
⎤⎦

= 𝑂(𝑘) + 𝑘2𝑂
(︁
𝑛− 1

20
+𝜖
)︁
= 𝑂

(︁
𝑛

39
20

+𝜖
)︁
,

since 𝑘 ≤ 𝑛. This concludes the proof of Lemma 3.6.22.

Index sets are nearly identical. Next, assume that the algorithm completed ℓ−1
rounds and generated 𝜎, 𝜎 ∈ {±1}

∑︀
0≤𝑡≤ℓ−1 𝑛𝑡 . Recall that ℐℓ is the set of (row) indices

1 ≤ 𝑖 ≤ 𝑘 corresponding to smallest 𝑘ℓ elements among
(︀∑︀

0≤𝑡≤ℓ−1 𝑛𝑡

)︀− 1
2 ⟨𝑅𝑖, 𝜎⟩, 1 ≤

𝑖 ≤ 𝑘. Likewise, ℐℓ denotes the corresponding set of indices for
(︀∑︀

0≤𝑡≤ℓ−1 𝑛𝑡

)︀− 1
2
⟨︀
𝑅𝑖, 𝜎

⟩︀
,

1 ≤ 𝑖 ≤ 𝑘. In particular, Lemma 3.6.22 yields that there is an 𝑥ℓ such that w.h.p.,

ℐℓ ≈
{︁
1 ≤ 𝑖 ≤ 𝑘 : ⟨𝑅𝑖, 𝜎⟩ < 𝑥ℓ

}︁
and ℐℓ ≈

{︁
1 ≤ 𝑖 ≤ 𝑘 :

⟨︀
𝑅𝑖, 𝜎

⟩︀
< 𝑥ℓ

}︁
.

We now show ℐℓ and ℐℓ are nearly identical: |ℐℓ ∩ ℐℓ| ≥ 𝑘ℓ − 𝑜(𝑘ℓ).

Lemma 3.6.25. Recall 𝐽ℓ from (3.96) and assume that |𝐽ℓ−1| ≤ 𝑛1−𝛼ℓ−1 for 𝛼ℓ−1

defined in (3.95). Then, ⃒⃒⃒
ℐℓ ∩ ℐℓ

⃒⃒⃒
≥ 𝑘ℓ −𝑂

(︀
𝑛1−𝛼ℓ−1/4

)︀
with probability at least 1−𝑂

(︀
𝑛−1/40+𝜖

)︀
, where 𝜖 > 0 is arbitrary.

Proof of Lemma 3.6.25. Recall 𝑆ℓ−1 =
∑︀

0≤𝑠≤ℓ−1 𝑛𝑠 appearing in Lemma 3.6.22. We
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find 𝑥ℓ ∈ R satisfying

𝑘Φ

(︃
1√
𝑆ℓ−1

(︃
𝑥ℓ −

∑︁
0≤𝑠≤ℓ−1

𝑛𝑠

√︂
2𝑘𝑠
𝜋𝑘2

)︃)︃
= 𝑘ℓ (3.123)

as Φ(·) is continuous. For this choice of 𝑥ℓ, using Lemma 3.6.22 with 𝑇 = ℓ− 1 and
applying Markov’s inequality, we arrive at

P
(︁⃒⃒⃒⃒⃒

{1 ≤ 𝑖 ≤ 𝑘 : ⟨𝑅𝑖, 𝜎⟩ < 𝑥ℓ}
⃒⃒
− 𝑘ℓ

⃒⃒⃒
> 𝑛

79
80

)︁
≤ 𝑂

(︁
𝑛− 1

40
+𝜖
)︁
, (3.124)

where 𝜖 > 0 is arbitrary.

We now claim that as long as ℓ ≤ 𝑐 log10 log10 𝑛 for 𝑐 > 0 small enough,

𝑘ℓ = 𝜔
(︁
𝑛

79
80

)︁
.

Recall 𝑘ℓ from (3.11). We have

𝑘ℓ = 2

⌊︂
1

2
𝑛𝑓 3

ℓ

⌋︂
+ 1 ≥ 𝑛𝑓 3

ℓ − 1 = 𝑛 · 10−3·2ℓ − 1 ≥ 𝑛 · 10−3·2𝑐 log10 log10 𝑛 − 1.

Above, we used the fact ℓ ≤ 𝐿 ≤ 𝑐 log10 log10 𝑛.

Rearranging, we have

𝑛 · 10−3·2𝑐 log10 log10 𝑛 − 1 = exp10

(︁
log10 𝑛− 3 ·

(︀
log10 𝑛

)︀𝑐 log10 2)︁− 1.

From here, it is evident that if 𝑐 log10 2 < 1, then indeed 𝑘ℓ = 𝜔(𝑛79/80). Consequently,
(3.124) yields

𝑘ℓ +𝑂
(︁
𝑛

79
80

)︁
≥
⃒⃒⃒
{1 ≤ 𝑖 ≤ 𝑘 : ⟨𝑅𝑖, 𝜎⟩ < 𝑥ℓ}

⃒⃒⃒
≥ 𝑘ℓ −𝑂

(︁
𝑛

79
80

)︁
,

with probability 1−𝑂(𝑛−1/40+𝜖). Define next the sets

LG𝑗 ≜
{︁
1 ≤ 𝑖 ≤ 𝑘 :

⃒⃒
⟨𝑅𝑖, 𝜎⟩ −

⟨︀
𝑅𝑖, 𝜎

⟩︀⃒⃒
≥ 𝑛1/2−𝛽𝑗

}︁
, (3.125)

where the inner product appearing in LG𝑗 is taken over R
∑︀

0≤𝑠≤𝑗 𝑛𝑠 and

𝛽𝑗 = 𝛼𝑗/4 = 𝛼0 · 10−𝑗/4, where 𝛼0 = 0.04. (3.126)

Note that under the assumption |𝐽ℓ−1| ≤ 𝑛1−𝛼ℓ−1 , Lemma 3.6.20 yields∑︁
1≤𝑖≤𝑘

⃒⃒
⟨𝑅𝑖, 𝜎⟩ −

⟨︀
𝑅𝑖, 𝜎

⟩︀⃒⃒
≤ 𝐶𝑘

√
𝑛
(︀
𝜏 log10 𝑛+ 𝑛−𝛼ℓ−1/2

)︀
,

(where the inner product is taken over R𝑆ℓ−1) with probability at least 1−exp(−𝑘/3).
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Note also from the definition of LGℓ−1 that∑︁
1≤𝑖≤𝑘

⃒⃒
⟨𝑅𝑖, 𝜎⟩ −

⟨︀
𝑅𝑖, 𝜎

⟩︀⃒⃒
≥ |LGℓ−1|𝑛1/2−𝛽ℓ−1 .

Since 𝑘 = Θ(𝑛), we arrive at

P
(︁⃒⃒
LGℓ−1

⃒⃒
= 𝑂

(︀
𝑛1+𝛽ℓ−1−𝛼ℓ−1/2

)︀)︁
≥ 1− exp (−𝑘/2) .

Next, introduce the sets

𝒮(𝑥) ≜
{︁
1 ≤ 𝑖 ≤ 𝑘 : ⟨𝑅𝑖, 𝜎⟩ < 𝑥

}︁
and 𝒮(𝑥) ≜

{︁
1 ≤ 𝑖 ≤ 𝑘 :

⟨︀
𝑅𝑖, 𝜎

⟩︀
< 𝑥

}︁
.

In particular by (3.124) w.p. at least 1−𝑂
(︀
𝑛−1/40+𝜖

)︀
,

𝑘ℓ −𝑂
(︁
𝑛

79
80

)︁
≤
⃒⃒
𝒮(𝑥ℓ)

⃒⃒
,
⃒⃒
𝒮(𝑥ℓ)

⃒⃒
≤ 𝑘ℓ +𝑂

(︁
𝑛

79
80

)︁
.

We now record some useful set inclusion properties (each holding w.p. 1−𝑂
(︀
𝑛− 1

40
+𝜖
)︀
,

which is suppressed for convenience).

• We claim⃒⃒
ℐℓ ∩ 𝒮(𝑥ℓ)

⃒⃒
≥ 𝑘ℓ −𝑂

(︁
𝑛

79
80

)︁
and

⃒⃒
ℐℓ ∩ 𝒮(𝑥ℓ)

⃒⃒
≥ 𝑘ℓ −𝑂

(︁
𝑛

79
80

)︁
.

To see this, let 𝑥ℓ = max𝑖∈ℐℓ ⟨𝑅𝑖, 𝜎⟩. Note that if 𝑥ℓ ≤ 𝑥ℓ, then ℐℓ ⊂ 𝒮
(︀
𝑥ℓ
)︀
,

yielding the conclusion as |ℐℓ| = 𝑘ℓ. If 𝑥ℓ > 𝑥ℓ, then 𝒮
(︀
𝑥ℓ
)︀
⊂ ℐℓ, and we have

the claim since |𝒮
(︀
𝑥ℓ
)︀
| ≥ 𝑘ℓ−𝑂

(︀
𝑛

79
80

)︀
. The same argument applies also to 𝒮(𝑥ℓ)

and ℐℓ.

• Next, observe that if 𝑖 ∈ 𝒮
(︀
𝑥ℓ − 𝑛1/2−𝛽ℓ−1

)︀
∖ LGℓ−1 then 𝑖 ∈ 𝒮(𝑥ℓ). Likewise, if

𝑖 ∈ 𝒮(𝑥ℓ) ∖ LGℓ−1, then 𝑖 ∈ 𝒮
(︀
𝑥ℓ + 𝑛1/2−𝛽ℓ−1

)︀
. That is, except for the indices

in LGℓ−1, we have

𝒮
(︀
𝑥ℓ − 𝑛1/2−𝛽ℓ−1

)︀
⊂ 𝒮(𝑥ℓ) ⊂ 𝒮

(︀
𝑥ℓ + 𝑛1/2−𝛽ℓ−1

)︀
.

Recall now the relation between 𝑘ℓ and 𝑥ℓ from (3.123). Using the fact Φ(·) is
1−Lipschitz, we obtain⃒⃒⃒⃒
⃒𝑘ℓ − 𝑘Φ

(︃
1√
𝑆ℓ−1

(︃
𝑥ℓ − 𝑛

1
2
−𝛽ℓ−1 −

∑︁
0≤𝑠≤ℓ−1

𝑛𝑠

√︂
2𝑘𝑠
𝜋𝑘2

)︃)︃⃒⃒⃒⃒
⃒ ≤ 𝑘

𝑛
1
2
−𝛽ℓ−1

√
𝑆ℓ−1

= 𝑂
(︀
𝑛1−𝛽ℓ−1

)︀
,

as 𝑘 = Θ(𝑛) and Θ(𝑛) = 𝑛0 ≤
∑︀

0≤𝑠≤ℓ−1 𝑛𝑠 = 𝑆ℓ−1 ≤ 𝑛 and thus 𝑆ℓ−1 = Θ(𝑛).
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Consequently,⃒⃒⃒
𝒮
(︀
𝑥ℓ − 𝑛1/2−𝛽ℓ−1

)︀⃒⃒⃒
≥ 𝑘ℓ −𝑂(𝑛79/80)−𝑂

(︀
𝑛1−𝛽ℓ−1

)︀⃒⃒⃒
𝒮
(︀
𝑥ℓ + 𝑛1/2−𝛽ℓ−1

)︀⃒⃒⃒
≤ 𝑘ℓ +𝑂(𝑛79/80) +𝑂

(︀
𝑛1−𝛽ℓ−1

)︀
.

Finally, observe that any subset of

𝒮
(︀
𝑥ℓ − 𝑛1/2−𝛽ℓ−1

)︀
∖ LGℓ−1

of cardinality at least

𝑘ℓ −𝑂
(︁
𝑛

79
80

)︁
−𝑂

(︀
𝑛1−𝛽ℓ−1

)︀
− |LGℓ−1|

is necessarily contained in ℐℓ ∩ ℐℓ. Thus, we arrive at⃒⃒
ℐℓ ∩ ℐℓ

⃒⃒
≥ 𝑘ℓ −𝑂

(︁
𝑛

79
80

)︁
−𝑂

(︀
𝑛1−𝛽ℓ−1

)︀
− |LGℓ−1|

≥ 𝑘ℓ −𝑂
(︁
𝑛

79
80

)︁
−𝑂

(︀
𝑛1−𝛽ℓ−1

)︀
−𝑂

(︀
𝑛1+𝛽ℓ−1−𝛼ℓ−1/2

)︀
≥ 𝑘ℓ −𝑂

(︀
𝑛1−𝛼ℓ−1/4

)︀
using (3.126) and (3.95). Noticing that this process is valid with probability at least

1−𝑂
(︀
𝑛−1/40+𝜖

)︀
− exp(−𝑘/3)

with 𝑘 = Θ(𝑛), the proof of Lemma 3.6.25 is complete.

Index Sets Being Nearly Identical Implies Next Block Being Nearly Iden-
tical. Denote

𝜎
(︀
𝑘 : ℓ

)︀
≜ (𝜎𝑖 : 𝑘 ≤ 𝑖 ≤ ℓ) ∈ {−1, 1}ℓ−𝑘+1.

The last auxiliary result we need is the following.

Lemma 3.6.26. Suppose that the algorithm run for 𝑇 − 1 rounds generating 𝜎, 𝜎 ∈
{−1, 1}

∑︀
0≤𝑡≤𝑇−1 𝑛𝑡. Consider the inner products ⟨𝑅𝑖, 𝜎⟩, 1 ≤ 𝑖 ≤ 𝑘 (taken on R

∑︀
0≤𝑡≤𝑇−1 𝑛𝑡)

and let ℐ𝑇 with |ℐ𝑇 | = 𝑘𝑇 be such that 𝑖 ∈ ℐ𝑇 iff ⟨𝑅𝑖, 𝜎⟩ is among 𝑘𝑇 smallest in-
ner products. Similarly, define the set ℐ𝑇 with |ℐ𝑇 | = 𝑘𝑇 for the collection

⟨︀
𝑅𝑖, 𝜎

⟩︀
,

1 ≤ 𝑖 ≤ 𝑘; and the random variable

𝒯 ≜
⃒⃒
ℐ𝑇 ∩ ℐ𝑇

⃒⃒
.

Then, conditional on 𝒯 = 𝐷,

𝑑𝐻

(︁
𝜎
(︀
𝑆𝑇−1 + 1 : 𝑆𝑇

)︀
, 𝜎
(︀
𝑆𝑇−1 + 1 : 𝑆𝑇

)︀)︁ 𝑑
= Bin

(︂
𝑛𝑇 ,

1

2
− 1

𝜋
sin−1

(︁
𝐷 cos(𝜏)/𝑘𝑇

)︁)︂
.

Proof of Lemma 3.6.26. For convenience, drop 𝜏 appearing in ℳ(𝜏). Observe that
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the randomness in ℐ𝑇 and ℐ𝑇 are due to ℳ[𝑘]:[𝑠𝑇−1] and ℳ[𝑘]:[𝑠𝑇−1], respectively (that
is, due to first 𝑛0 +𝑛1 + · · ·+𝑛𝑇−1 columns of corresponding matrices). Having fixed
ℐ𝑇 and ℐ𝑇 , note that the next 𝑛𝑇 entries of 𝜎 and 𝜎 are obtained by running the
majority algorithm on the submatrices

ℳ
(︁
ℐ𝑇 : [𝑆𝑇−1 + 1, 𝑆𝑇 ]

)︁
and ℳ

(︁
ℐ𝑇 : [𝑆𝑇−1 + 1, 𝑆𝑇 ]

)︁
,

respectively. Now, condition on |ℐ ∩ ℐ| = 𝐷. Define variables 𝐴,𝐵,𝐴, and 𝐵 as
follows:

𝐴 ≜
∑︁

1≤𝑖≤𝐷

𝑋𝑖, 𝐴 ≜
∑︁

1≤𝑖≤𝐷

(︀
cos(𝜏)𝑋𝑖 + sin(𝜏)𝑌𝑖

)︀
;

and
𝐵 ≜

∑︁
𝐷+1≤𝑖≤𝑘𝑇

𝑋𝑖, 𝐵 ≜
∑︁

𝐷+1≤𝑖≤𝑘𝑇

𝑋 ′
𝑖,

where 𝑋𝑖, 𝑋
′
𝑖, 𝑌𝑖 are i.i.d. 𝒩 (0, 1). It is then clear that

𝑑𝐻

(︁
𝜎
(︀
𝑆𝑇−1 + 1 : 𝑆𝑇

)︀
, 𝜎
(︀
𝑆𝑇−1 + 1 : 𝑆𝑇

)︀)︁ 𝑑
= Bin(𝑛𝑇 , 𝑝),

where

𝑝 ≜ P
(︁
sgn(𝐴+𝐵) ̸= sgn(𝐴+𝐵)

)︁
= 2P

(︁
𝐴+𝐵 ≥ 0, 𝐴+𝐵 ≤ 0

)︁
by symmetry. Observe that

E[𝐴+𝐵] = E[𝐴+𝐵] = 0 and E[(𝐴+𝐵)(𝐴+𝐵)] = E[𝐴𝐴] = 𝐷 cos(𝜏).

From here, applying Lemma 3.6.2 to bivariate standard normal variables 𝑘−
1
2

𝑇 (𝐴+𝐵)

and −𝑘−
1
2

𝑇 (𝐴+𝐵), we conclude

𝑝 = 2

(︂
1

4
+

1

2𝜋
sin−1(−𝐷 cos(𝜏)/𝑘𝑇 )

)︂
=

1

2
− 1

𝜋
sin−1(𝐷 cos(𝜏)/𝑘𝑇 ),

where we used the fact sin−1(·) is an odd function, completing the proof of Lemma 3.6.26.

Equipped with all necessary auxiliary tools, we now complete the proof of Propo-
sition 3.6.18.

Proof of Proposition 3.6.18. Let 𝑇 ≤ 𝑐 log10 log10 𝑛 for some 𝑐 > 0 small enough,
recall 𝛼ℓ from (3.95) and 𝐽ℓ from (3.96). Note that applying Lemma 3.6.19 we imme-
diately obtain

|𝐽0| = 𝑑𝐻

(︁
𝜎(1 : 𝑛0), 𝜎(1 : 𝑛0)

)︁
𝑑
= Bin

(︁
𝑛0,

𝜏

𝜋

)︁
.
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In particular, applying a Chernoff bound, and recalling 𝑛0 = Θ(𝑛),

|𝐽0| = 𝑂(𝑛𝜏) = 𝑂
(︀
𝑛1−2𝛼0

)︀
< 𝑛1−𝛼0

with probability at least 1− exp
(︀
−Ω (𝑛1−2𝛼0)

)︀
.

We now proceed by inducting on ℓ, where the base case, ℓ = 0, has been verified
above. Assume now that

P
(︁
|𝐽ℓ−1| ≤ 𝑛1−𝛼ℓ−1

)︁
≥ 1− 𝑝ℓ−1. (3.127)

Using Lemma 3.6.25, we obtain

P
(︁⃒⃒
ℐℓ ∩ ℐℓ

⃒⃒
≥ 𝑘ℓ −𝑂

(︀
𝑛1−𝛼ℓ−1/4

)︀)︁
≥ 1−𝑂

(︀
𝑛−1/40+𝜖

)︀
. (3.128)

Now, conditional on |ℐℓ ∩ ℐℓ| = 𝐷, Lemma 3.6.26 implies that

|𝐽ℓ| − |𝐽ℓ−1| = 𝑑𝐻

(︁
𝜎(𝑆ℓ−1 + 1 : 𝑆ℓ), 𝜎(𝑆ℓ−1 + 1 : 𝑆ℓ)

)︁
𝑑
= Bin

(︁
𝑛ℓ,

1

2
− 1

𝜋
sin−1

(︁
𝐷 cos(𝜏)/𝑘ℓ

)︁)︁
, (3.129)

where 𝑆𝑇 ≜
∑︀

0≤𝑗≤𝑇 𝑛𝑗 for any 𝑇 ∈ N.

Now, recall that 𝑘ℓ ≥ 𝑛𝑓 3
ℓ − 1 for 𝑓ℓ = 10−2ℓ (see (3.10) and (3.11)). Hence,

𝑘ℓ −𝑂
(︀
𝑛1−𝛼ℓ−1/4

)︀
𝑘ℓ

= 1−𝑂

(︂
𝑛1−𝛼ℓ−1/4

𝑘ℓ

)︂
≥ 1−𝑂

(︂
𝑛−𝛼ℓ−1/4

10−3·2ℓ

)︂
.

We now claim

1−𝑂

(︂
𝑛−𝛼ℓ−1/4

10−3·2ℓ

)︂
≥ 1−𝑂

(︀
𝑛−𝛼ℓ−1/4.5

)︀
for all large enough 𝑛, provided 𝑐 > 0 is small enough. Ignoring the absolute constants,
it suffices to verify

𝑛−𝛼ℓ−1
4.5 ≥ 103·2

ℓ · 𝑛−𝛼ℓ−1
4 ⇐⇒ 𝑛

𝛼ℓ−1
36 ≥ 103·2

ℓ ⇐⇒ 1

36
log10 𝑛 · 𝛼ℓ−1 ≥ 3 · 2ℓ.

Recall that 𝛼ℓ−1 = 0.4 · 10−ℓ. Thus, it suffices to verify

1

270
log10 𝑛 ≥ 20ℓ.

Recalling ℓ ≤ 𝑐 log10 log10 𝑛 for 𝑐 > 0 small enough, we have

20ℓ ≤ 20𝑐 log10 log10 𝑛 = (log10 𝑛)
𝑐′′ , where 𝑐′′ = 𝑐 log10 20.
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Finally, provided 𝑐′′ < 1, we indeed have

1

270
log10 𝑛 ≥ log𝑐

′′

10 𝑛,

thus the claim.

We next employ this claim and the inequality, cos(𝜏) ≥ 1 − 𝜏 2/2, which is valid
for all 𝜏 . Using (3.128) it follows that there is an event of probability at least 1 −
𝑂
(︀
𝑛−1/40+𝜖

)︀
such that on this event, |𝐽ℓ| − |𝐽ℓ−1| is stochastically dominated by the

binomial random variable

Bin

(︂
𝑛ℓ,

1

2
− 1

𝜋
sin−1

(︁(︀
1−Θ

(︀
𝑛−𝛼ℓ−1/4.5

)︀)︀(︀
1− 𝜏 2/2

)︀)︁)︂
. (3.130)

Using Taylor series sin−1(1 − 𝑥) = 𝜋
2
−

√
2𝑥 + 𝑜(

√
𝑥), we obtain that the binomial

variable appearing in (3.130) is stochastically dominated further by a binomial random
variable Bin(𝑛ℓ, 𝑞ℓ) where 𝑞ℓ = Θ(𝑛−𝛼ℓ−1/9). Since 𝑛ℓ ≤ 𝑛 per (3.13), we also have by
Chernoff bound

P
(︁
Bin
(︀
𝑛ℓ, 𝑞ℓ

)︀
= 𝑂

(︀
𝑛1−𝛼ℓ−1/9

)︀)︁
≥ 1− exp

(︁
−Ω
(︁
𝑛1−𝛼ℓ−1/9

)︁)︁
. (3.131)

Combining (3.127), (3.129) and (3.131) via a union bound, we conclude that

P
(︁
|𝐽ℓ| ≤ 𝑛1−𝛼ℓ−1 +𝑂

(︀
𝑛1−𝛼ℓ−1/9

)︀)︁
≥ 1− 𝑝ℓ−1 −𝑂

(︀
𝑛−1/40+𝜖

)︀
− exp

(︁
−Ω
(︁
𝑛1−𝛼ℓ−1/9

)︁)︁
.

(3.132)
We set

𝑝ℓ ≜ 𝑝ℓ−1 +𝑂
(︀
𝑛−1/12+𝜖

)︀
+ exp

(︁
−Ω
(︁
𝑛1−𝛼ℓ−1/9

)︁)︁
= 𝑝ℓ−1 +𝑂

(︀
𝑛−1/40+𝜖

)︀
. (3.133)

We now ensure |𝐽ℓ| ≤ 𝑛1−𝛼ℓ w.h.p., where 𝛼ℓ = 𝛼ℓ−1/10. To that end, we first claim

𝑛1−𝛼ℓ−1 +𝑂
(︀
𝑛1−𝛼ℓ−1/9

)︀
≤ 𝑛1−𝛼ℓ−1 + 𝑛1−𝛼ℓ−1/9.5. (3.134)

To prove this, it suffices to verify 𝑛
𝛼ℓ−1

9
−𝛼ℓ−1

9.5 = 𝑛
𝛼ℓ−1
171 = 𝜔(1). Using the fact 𝛼ℓ−1 =

0.1 · 10−ℓ per (3.95) and ℓ ≤ 𝐿 ≤ 𝑐 log10 log10 𝑛 in the setting of Proposition 3.6.18,
we have

𝑛
𝛼ℓ−1
171 = exp10

(︁𝛼ℓ−1

171
log10 𝑛

)︁
≥ exp10

(︂
10−𝑐 log10 log10 𝑛

1710
log10 𝑛

)︂
= exp10

(︂
1

1710

(︀
log10 𝑛

)︀1−𝑐
)︂
,

which is indeed 𝜔(1) if 𝑐 < 1. This yields (3.134). Hence, it suffices to show 𝑥+𝑥1/9.5 ≤
𝑥1/10 for 𝑥 = 𝑛−𝛼ℓ−1 . Now, assume ℓ ≤ 𝐿 ≤ 𝑐 log10 log10 𝑛 (where 𝐿 is the number of
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steps analyzed) for 𝑐 > 0 small enough. Then

𝑥 = exp10

(︁
−𝛼ℓ−1 log10 𝑛

)︁
= exp10

(︁
−0.04 · 10−(ℓ−1) · log10 𝑛

)︁
≤ exp10

(︁
−0.4 · 10−𝑐 log10 log10 𝑛 · log10 𝑛

)︁
= exp10

(︁
−0.4 · (log10 𝑛)1−𝑐

)︁
.

We have 𝑡 + 𝑡1/9.5 < 𝑡1/10 for 𝑡 sufficiently small (e.g. 0 ≤ 𝑡 < 0.01 suffices). Hence,
provided 𝑐 < 1, it is the case that for 𝑛 sufficiently large, 𝑥 + 𝑥1/9.5 ≤ 𝑥1/10 for
𝑥 = 𝑛−𝛼ℓ−1 and for any ℓ ≤ 𝑐 log10 log10 𝑛. Thus,

P
(︁
|𝐽ℓ| ≤ 𝑛1−𝛼ℓ

)︁
≥ 1− 𝑝ℓ where 𝑝ℓ = 𝑝ℓ−1 +𝑂

(︀
𝑛−1/40+𝜖

)︀
. (3.135)

Since the inductive step from ℓ − 1 → ℓ (more concretely from (3.127) to (3.135)),
increases the probability by 𝑂

(︀
𝑛−1/40+𝜖

)︀
and the whole process runs log10 log10 𝑛

rounds, we complete the proof of Proposition 3.6.18.

Proof of Theorem 3.3.8

Having established Proposition 3.6.18, we now finish the proof of Theorem 3.3.8. For
simplicity, we omit floor/ceiling operators whenever convenient.

Proof of Theorem 3.3.8. Let 𝐿 = 𝑐 log10 log10 𝑛 be as in Proposition 3.6.18 for 𝑐 > 0
small enough. We now show that it suffices to analyze 𝐿 rounds as opposed to the full
implementation of 𝐶 log10 log10 𝑛 rounds, where 𝐶 > 𝑐 > 0. In particular, we claim∑︁

𝑐 log10 log10 𝑛≤𝑗≤𝐶 log10 log10 𝑛

𝑛𝑗 = 𝑜(𝑛), (3.136)

for any constant 𝑐 > 0. For 𝑁 ≜ 𝐶 log10 log10 𝑛, the number of rounds, and 0 ≤
𝑗 ≤ 𝑁 ; recall 𝑓𝑗 from (3.10), 𝑛𝑗 from (3.13), and 𝑘𝑗 from (3.11). Applying now a
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telescoping argument,

∑︁
𝑐 log10 log10 𝑛≤𝑗≤𝐶 log10 log10 𝑛

𝑛𝑗 =
∑︁

𝑐 log10 log10 𝑛≤𝑗≤𝐶 log10 log10 𝑛

(︃⌊︃
𝑛

𝐴

∑︁
0≤𝑖≤𝑗

𝑓𝑖

⌋︃
−
⌊︃
𝑛

𝐴

∑︁
0≤𝑖≤𝑗−1

𝑓𝑖

⌋︃)︃

=

⎢⎢⎢⎢⎢⎢⎢⎣𝑛𝐴
∑︁

0≤𝑖≤𝐶 log10 log10 𝑛

𝑓𝑖⏟  ⏞  
=𝐴

⎥⎥⎥⎥⎥⎥⎥⎦−

⎢⎢⎢⎣𝑛
𝐴

∑︁
0≤𝑖≤𝑐 log10 log10 𝑛−1

𝑓𝑖

⎥⎥⎥⎦

≤ 𝑛

⎛⎝1− 1

𝐴

∑︁
0≤𝑖≤𝑐 log10 log10 𝑛

𝑓𝑖

⎞⎠+ 1

≤ 𝑛

𝐴

∑︁
𝑐 log10 log10 𝑛+1≤𝑖≤𝐶 log10 log10 𝑛

𝑓𝑖 + 1

= 𝑂
(︁
𝑛 log10 log10 𝑛 · 10−2𝑐 log10 log10 𝑛

)︁
= 𝑂

(︁
𝑛 · log10 log10 𝑛 · 10−(log10 𝑛)

𝑐′
)︁

for 𝑐′ = 𝑐 log10 2 < 1. We now verify

𝑛 · log10 log10 𝑛 · 10−(log10 𝑛)
𝑐′

= 𝑜(𝑛) ⇐⇒ log10 log10 𝑛 · 10−(log10 𝑛)
𝑐′

= 𝑜(1).

Indeed,

log10 log10 𝑛 · 10−(log10 𝑛)
𝑐′

= exp10

(︁
log10 log10 log10 𝑛−

(︀
log10 𝑛

)︀𝑐′)︁
= 𝑜(1)

for any 𝑐 > 0. This yields (3.136).

Finally, combining (3.136) with Proposition 3.6.18, we complete the proof of The-
orem 3.3.8.

3.6.7 Proof of Theorem 3.5.2

Proof of Theorem 3.5.2. The proof is quite similar to that of Theorem 3.2.4, hence
we only point out the necessary modification. Note that the probability term that
one considers (cf. Lemma 3.6.8) is

P
[︁⃒⃒⟨︀

𝜎(𝑖), 𝑋
⟩︀⃒⃒

≤ 𝜅
√
𝑛, 1 ≤ 𝑖 ≤ 𝑚

]︁𝛼𝑛
,
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where 𝑋 = (𝑋1, . . . , 𝑋𝑛) has i.i.d. entries with 𝑋𝑖 ∼ 𝒟. To apply Theorem 3.5.1, set

𝑌𝑗 ≜

⎛⎜⎜⎜⎝
1√
𝑛
𝜎1(𝑗)𝑋𝑗

1√
𝑛
𝜎2(𝑗)𝑋𝑗

...
1√
𝑛
𝜎𝑚(𝑗)𝑋𝑗

⎞⎟⎟⎟⎠ ∈ R𝑚. (3.137)

Indeed 𝑌𝑗 ∈ R𝑚, 1 ≤ 𝑗 ≤ 𝑛, is a collection of independent centered random vectors,
and {︁⃒⃒⟨︀

𝜎(𝑖), 𝑋
⟩︀⃒⃒

≤ 𝜅
√
𝑛, 1 ≤ 𝑖 ≤ 𝑚

}︁
=
{︀
𝑆 ∈ 𝑈

}︀
,

for 𝑆 =
∑︀

𝑗≤𝑛 𝑌𝑗 and 𝑈 = [−𝜅, 𝜅]𝑛. Furthermore, Σ ≜ Cov(𝑆) ∈ R𝑚×𝑚 is such that
(a) Σ𝑖𝑖 = 1 for 1 ≤ 𝑖 ≤ 𝑚; and (b) Σ𝑖𝑗 = Σ𝑗𝑖 = 𝑛−1

⟨︀
𝜎(𝑖), 𝜎(𝑗)

⟩︀
for 1 ≤ 𝑖 < 𝑗 ≤ 𝑚.

Next, observe that since Σ ∈ R𝑚×𝑚 with 𝑚 = 𝑂𝑛(1), it follows that

E
[︁⃦⃦

Σ− 1
2𝑌𝑗
⃦⃦3
2

]︁
≤
⃦⃦
Σ− 1

2

⃦⃦3E[︁⃦⃦𝑌𝑗⃦⃦32]︁
=
⃦⃦
Σ− 1

2

⃦⃦3E [︂(︁𝑚
𝑛
𝑋2

𝑗

)︁3/2]︂
= 𝑂

(︀
𝑛− 3

2

)︀
.

Applying now Theorem 3.5.1, we obtain

P
[︀
𝑆 ∈ 𝑈

]︀
≤ P

[︀
𝑍 ∈ 𝑈

]︀
+𝑂

(︀
𝑛− 1

2

)︀
.

Consequently, for 𝑍 ∼ 𝒩 (0,Σ),

P
[︀
𝑆 ∈ 𝑈

]︀𝛼𝑛 ≤ P
[︀
𝑍 ∈ 𝑈

]︀𝛼𝑛(︁
1 +𝑂(𝑛− 1

2 )
)︁𝛼𝑛

= P
[︀
𝑍 ∈ 𝑈

]︀𝛼𝑛
exp
(︁
𝛼𝑛 ln

(︁
1 +𝑂

(︀
𝑛−1/2

)︀)︁)︁
= P

[︀
𝑍 ∈ 𝑈

]︀𝛼𝑛
exp
(︁
Θ
(︀√

𝑛
)︀)︁
,

where in the last step we used the Taylor expansion, ln(1 − 𝑥) = −𝑥 + 𝑜(𝑥) as
𝑥 → 0. Modifying Lemma 3.6.8 by taking the extra 𝑒Θ(

√
𝑛) factor into account and

then applying the first moment method, we establish Theorem 3.5.2.
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Chapter 4

Computing the Partition Function of
the Sherrington-Kirkpatrick Model is
Hard on Average

4.1 Introduction

The subject of this chapter is the algorithmic hardness of the problem of exactly
computing the partition function associated with the Sherrington-Kirkpatrick (SK)
model of spin glasses, a mean field model that was first introduced by Sherrington and
Kirkpatrick in 1975 [255], to propose a solvable model for the ’spin-glass’ phase, an
unusual magnetic behaviour predicted to occur in spatially random physical systems.
The model is as follows. Fix a positive integer 𝑛, and consider 𝑛 sites 𝑖 ∈ {1, 2, . . . , 𝑛},
a naming motivated from a site of a magnet. To each site 𝑖, assign a spin, 𝜎𝑖 ∈ {−1, 1},
and define the energy Hamiltonian 𝐻(𝜎) for this spin configuration 𝜎 = (𝜎𝑖 : 1 ≤
𝑖 ≤ 𝑛) ∈ {−1, 1}𝑛 via 𝐻(𝜎) = 𝛽√

𝑛

∑︀
1≤𝑖<𝑗≤𝑛 𝐽𝑖𝑗𝜎𝑖𝜎𝑗, where the parameters J = (𝐽𝑖𝑗 :

1 ≤ 𝑖 < 𝑗 ≤ 𝑛) ∈ R𝑛(𝑛−1)/2 are called spin-spin interactions (or shortly, couplings),
and the parameter 𝛽 is called the inverse temperature. The associated partition
function is given by, 𝑍(J, 𝛽) =

∑︀
𝜎∈{−1,1}𝑛 exp

(︁
− 𝛽√

𝑛

∑︀
1≤𝑖<𝑗≤𝑛 𝐽𝑖𝑗𝜎𝑖𝜎𝑗

)︁
. The SK

model corresponds to the case, where the couplings 𝐽𝑖𝑗 are iid standard normal;
and the partition function, 𝑍(J, 𝛽) carries useful information about the underlying
physical system [59]. The SK model is a mean-field model of spin glasses, namely the
interaction between any two distinct sites, 1 ≤ 𝑖 < 𝑗 ≤ 𝑛, is modeled with random
coupling parameters 𝐽𝑖𝑗, which do not depend on the spatial location of 𝑖 and 𝑗.
The rationale behind the scaling

√
𝑛 is to ensure that the average energy per spin is

roughly independent of 𝑛, and consequently, the free energy limit, lim𝑛 𝑛
−1 log𝑍(J, 𝛽)

is non-trivial. Namely, the limits

lim
𝑛→∞

1

𝑛

(︃
max
𝜎∈ℬ𝑛

1√
𝑛

∑︁
1≤𝑖<𝑗≤𝑛

𝐽𝑖𝑗𝜎𝑖𝜎𝑗

)︃
and lim

𝑛→∞
log𝑍(𝐽 , 𝛽)

𝑛
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exist and they are non-trivial: they remain bounded away from zero as 𝑛→ ∞. The
computation of the free energy limit is a long journey on which we now elaborate.
Without proving the existence of the limit, Parisi put forth a formula for the limiting
value of the free energy per spin in his celebrated paper [232] using the non-rigorous
replica method. The very existence of the limit was established rigorously much
later by Guerra and Toninelli [155] using a simple, though very clever, interpolation
argument. Later, Talagrand rigorously verified in the breakthrough paper [272] that
Parisi’s prediction is indeed correct. Parisi’s formula for the free energy limit was
extended to more general spin glass models by Panchenko [228, 230].

Despite the simplicity of its formulation, it turns out that the SK model is highly
non-trivial to study, and analyzing the behaviour of a more elaborate model (such
as a model where the spatial positions of the sites are incorporated, by modelling
them as the vertices of Z2 and the couplings are modified to be position-dependent)
is really difficult. For a more detailed discussion on these and related issues, see the
monographs by Panchenko [229] and Talagrand [273].

In addition to its relevance in statistical physics and in spin glass theory, it is
worth mentioning that the problem of computing the partition function has ties to
Bayesian inference and machine learning as well, as demonstrated by the following
example [31]. Consider the Rademacher spiked Wigner model where i) a signal 𝜎* is
drawn uniformly at random from {−1, 1}𝑛, and ii) the learner sees the measurement

𝑌 =
𝜆

𝑛
𝜎*(𝜎*)𝑇 +

1√
𝑛
𝑊 ∈ R𝑛×𝑛.

Here, 𝑊 ∈ R𝑛×𝑛 is a symmetric random matrix, whose upper triangular part consists
of i.i.d. standard normal entries (in this case 𝑊 is said to be a “GOE matrix", where
GOE stands for the Gaussian orthogonal ensemble) and the parameter 𝜆 > 0 is
called the signal-to-noise ratio (SNR). The goal of the learner is to recover 𝜎* (up to
a sign flip). It is then natural to study the posterior distribution P[𝜎|𝑌 ] of 𝜎, having
measured 𝑌 . After some algebra [31, p.5], we arrive at

P[𝜎|𝑌 ] ∝
∏︁

1≤𝑖<𝑗≤𝑛

exp (𝜆𝑌𝑖𝑗𝜎𝑖𝜎𝑗) = exp

(︃
𝜆
∑︁

1≤𝑖<𝑗≤𝑛

𝑌𝑖𝑗𝜎𝑖𝜎𝑗

)︃
.

Ignoring the scaling −𝑛− 1
2 present in our case, it is evident that the observation 𝑌

defines here the couplings for a Hamiltonian (with no external field), where the SNR
parameter 𝜆 plays the role of the inverse temperature 𝛽. In particular, the posterior
distribution P[𝜎|𝑌 ] enjoys the spin glass equations. Thus in this case, the partition
function has a natural interpretation of being the normalizer for the associated Gibbs
distribution.

In addition, the SK model also captures the limiting behaviour of much studied
models in computer science, including the MaxCUT [87] and the MAXSAT [231].

Having mentioned the relevance of the problem of computing the partition func-
tion in statistical physics, in inference/machine learning, and in theoretical computer
science; we now proceed with the settings we consider here in more details.
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In the first part of this work, we focus on the SK model with the (random)
external field, which was studied by Talagrand [273] (equation 1.61 therein), namely,
the model, where the energy Hamiltonian is given by,

𝐻(𝜎) =
𝛽√
𝑛

∑︁
1≤𝑖<𝑗≤𝑛

𝐽𝑖𝑗𝜎𝑖𝜎𝑗 +
𝑛∑︁

𝑖=1

𝐴𝑖𝜎𝑖. (4.1)

Here, the iid standard normal random variables J = (𝐽𝑖𝑗 : 1 ≤ 𝑖 < 𝑗 ≤ 𝑛) ∈ R𝑛(𝑛−1)/2

are the couplings, and the independent zero-mean normal random variables, A =
(𝐴𝑖 : 𝑖 ∈ [𝑛]) ∈ R𝑛 incorporate the external field contribution. To address this model
we study the following equivalent model with the energy Hamiltonian:

𝐻(𝜎) =
𝛽√
𝑛

∑︁
1≤𝑖<𝑗≤𝑛

𝐽𝑖𝑗𝜎𝑖𝜎𝑗 +
𝑛∑︁

𝑖=1

𝐵𝑖𝜎𝑖 −
𝑛∑︁

𝑖=1

𝐶𝑖𝜎𝑖, (4.2)

where J = (𝐽𝑖𝑗 : 1 ≤ 𝑖 < 𝑗 ≤ 𝑛) ∈ R𝑛(𝑛−1)/2 are the couplings as above, B = (𝐵𝑖 :
𝑖 ∈ [𝑛]) ∈ R𝑛 and C = (𝐶𝑖 : 𝑖 ∈ [𝑛]) ∈ R𝑛 are independent zero-mean normal random
variables, which we still refer to as external field components. Observe that, if 𝒜1

is an oracle, which, for input (J,A), computes the partition function for the model
whose Hamiltonian is given by (4.1), then 𝒜1 with input (J,B−C) computes the
partition function of the model whose Hamiltonian is given by (4.2). Similarly, if 𝒜2

is an oracle, which, for input (J,B,C) computes the partition function of the model
in (4.2), then 𝒜2 with input, (J, A+G

2
, G−A

2
), where G = (𝐺𝑖 : 𝑖 ∈ [𝑛]) is an iid copy of

the random vector A = (𝐴𝑖 : 𝑖 ∈ [𝑛]), computes the partition function of the model in
(4.1), recalling that if 𝐴𝑖 and 𝐺𝑖 are iid Gaussian random variables, then 𝐴𝑖+𝐺𝑖 and
𝐴𝑖 − 𝐺𝑖 are independent. In spite of being equivalent, the model in (4.2), however,
is more convenient to work with, in particular, for establishing a a certain downward
self-recursive formula which expresses the partition function of an 𝑛-spin SK model
as a weighted sum of the partition functions of two (𝑛 − 1)-spin SK models, with
properly adjusted external field components.

The algorithmic problem is the problem of computing the partition function
𝑍(J,B,C) associated to the modified model in (4.2), when (J,B,C) ∈ R𝑛(𝑛−1)/2+2𝑛

is given as a (random) input. The (worst-case) algorithmic problem of computing
𝑍(J,B,C) for an arbitrary input (J,B,C) is known to be #P-hard for a much
broader class of statistical physics models and associated partition functions, see
e.g. [37] and [175]. On the other hand, the classical reduction techniques that are
used for establishing worst-case hardness do not seem to transfer to the problems
with random inputs. The subject of this work is the case of Gaussian random inputs,
(J,B,C). The computational model that we adopt in the first part of the work is the
finite-precision arithmetic for which the real-valued vector (J,B,C) cannot be used
as a formal algorithmic input. In order to handle this issue, we consider a model,
where the algorithm designer first selects a level 𝑁 of digital precision, and the values
of 𝐽𝑖𝑗, 𝐵𝑖, 𝐶𝑖, or more concretely, ̂︀𝐽𝑖𝑗 = exp(

𝛽𝐽𝑖𝑗√
𝑛
), ̂︀𝐵𝑖 = exp(𝐵𝑖), and ̂︀𝐶𝑖 = exp(𝐶𝑖) are

computed, up to this selected level 𝑁 of digital precision: ̂︀𝐽 [𝑁 ]
𝑖𝑗 , ̂︀𝐵[𝑁 ]

𝑖 , and ̂︀𝐶 [𝑁 ]
𝑖 , where

195



𝑥[𝑁 ] = 2−𝑁⌊2𝑁𝑥⌋. The task of the algorithm designer is to exactly compute the par-
tition function, associated with the input ( ̂︀𝐽 [𝑁 ]

𝑖𝑗 : 1 ≤ 𝑖 < 𝑗 ≤ 𝑛), ( ̂︀𝐵[𝑁 ]
𝑖 : 1 ≤ 𝑖 ≤ 𝑛),

and ( ̂︀𝐶 [𝑁 ]
𝑖 : 1 ≤ 𝑖 ≤ 𝑛) in polynomial (in 𝑛) time.

Under the aforementioned assumptions, our main result is as follows. Let 𝑘 > 0 be
any arbitrary constant. If there exists a polynomial time algorithm, which computes
the partition function with input ( ̂︀𝐽 [𝑁 ]

𝑖𝑗 : 1 ≤ 𝑖 < 𝑗 ≤ 𝑛), ( ̂︀𝐵[𝑁 ]
𝑖 : 1 ≤ 𝑖 ≤ 𝑛), and

( ̂︀𝐶 [𝑁 ]
𝑖 : 1 ≤ 𝑖 ≤ 𝑛) exactly with probability at least 1/𝑛𝑘, then 𝑃 = #𝑃 . Here,

the probability is taken with respect to the randomness of (J,B,C). To the best of
our knowledge, this is the first result establishing formal algorithmic hardness of a
computational problem arising in the field of spin glasses.

The approach we pursue here aims at capturing a worst-case to average-case
reduction, and is similar to establishing the average-case hardness of other problems
involving counting, such as the problem of computing the permanent of a matrix
modulo 𝑝, with entries chosen independently and uniformly over finite field Z𝑝. One
recent application of this idea includes also the problem of counting cliques in Erdös-
Rényi hypergraphs [53].

Lipton observed in [208] that, for a suitably chosen prime 𝑝, the permanent of a
matrix can be expressed as a univariate polynomial, generated using integer multiples
of a random uniform input. Hence, provided this polynomial can be recovered, the
permanent of any arbitrary matrix can be computed. Therefore, the average-case
hardness of computing the permanent of a matrix modulo 𝑝 equals the worst-case
hardness of the same problem, which is known to be #P-hard. Lipton proves his
result, by assuming there exists an algorithm, which correctly computes the perma-
nent for at least 1 − 𝑂(1/𝑛) fraction of matrices over Z𝑛×𝑛

𝑝 . Subsequent research
weakened this assumption to the existence of an algorithm with constant probability
of success [109], and finally, to the existence of an algorithm with inverse polynomial
probability (1/𝑛𝑂(1)) of success, Cai et al. [67], a regime, which is also our focus. The
proof technique that we follow is similar to that of Cai et al. [67], and is built upon
earlier ideas from Gemmell and Sudan [146], Feige and Lund [109], and Sudan [270].

More specifically, the argument of Cai et al. [67] is as follows. The permanent of a
given matrix 𝑀 ∈ Z𝑛×𝑛

𝑝 equals, via Laplace expansion, a weighted sum of the perma-
nents of 𝑛 minors 𝑀11,𝑀21, . . . ,𝑀𝑛1 of 𝑀 , each of dimension 𝑛− 1. Then a certain
matrix polynomial is constructed, whose value at 𝑘 is equal to 𝑀𝑘1, by incorporat-
ing two random matrices, independently generated from the uniform distribution on
Z(𝑛−1)×(𝑛−1)

𝑝 . The permanent of this matrix polynomial is a univariate polynomial over
a finite field with a known upper bound on its degree, and the problem boils down
to recovering this polynomial from a list of pairs of numbers intersecting the graph
of the polynomial at sufficiently many points. This, in fact, is a standard problem
in coding theory, and the recovery of this polynomial is achieved by a list-decoding
algorithm by Sudan [270], which is an improved version of Berlekamp-Welch decoder.

The method that we use follows the proof technique of Cai et al. [67], with sev-
eral additional modifications. First, to avoid dealing with correlated random inputs,
we reduce the problem of computing the partition function of the model in (4.2) to
computing the partition function of a different object, where the underlying cuts and
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polarities induced by the spin assignment 𝜎 ∈ {−1, 1}𝑛 are incorporated. Second, a
downward self-recursion formula for computing the partition function, analogous to
Laplace expansion for permanent, is established; and this is the rationale for using
the aforementioned equivalent model whose Hamiltonian is given by (4.2). This is
achieved by recursing downward with respect to the sign of 𝜎𝑛, and expressing the
partition function of an 𝑛-spin system, with a weighted sum of the partition functions
of two (𝑛 − 1)-spin systems, with appropriately adjusted external field components.
Third, recalling that, we are interested in the case of random Gaussian inputs, we es-
tablish a probabilistic coupling between truncated version of log-normal distribution,
and uniform distribution modulo a large prime 𝑝. Towards this goal, we establish
that the log-normal distribution is "sufficiently" Lipschitz in a small interval and
near-uniform modulo 𝑝. Finally, we also need to connect modulo 𝑝 computation to
the exact computation of the partition function, in the sense defined above, i.e., trun-
cating the inputs up to a certain level 𝑁 of digital precision, and computing the
associated partition function. This is achieved by using a standard Chinese remain-
dering argument: Take prime numbers 𝑝1, . . . , 𝑝𝐾 , compute 𝑍 (mod 𝑝𝑖), for every 𝑖,
and use this information to compute compute 𝑍 (mod 𝑃 ) where 𝑃 =

∏︀𝐾
𝑘=1 𝑝𝑘, via

Chinese remaindering. Provided 𝑃 > 𝑍, 𝑍 (mod 𝑝) is precisely 𝑍. The existence of
sufficiently many such primes of appropriate size that we can work with is justified
through the prime number theorem.

In the second part of this work, we focus on the same problem without the external
field component, but this time under the real-valued computational model. We recall
the model for convenience. First, generate iid standard normal random variables,
𝐽𝑖𝑗; and let the elements of the sequence J = (𝐽𝑖𝑗 : 1 ≤ 𝑖 < 𝑗 ≤ 𝑛) ∈ R

𝑛(𝑛−1)
2 be

the couplings. For each spin configuration 𝜎 = (𝜎𝑖 : 1 ≤ 𝑖 ≤ 𝑛) ∈ {−1, 1}𝑛, define
the associated energy Hamiltonian 𝐻(𝜎) =

∑︀
𝑖<𝑗 𝐽𝑖𝑗𝜎𝑖𝜎𝑗. The algorithmic question

of interest is the exact computation of the associated partition function, namely the
object,

𝑍(J) =
∑︁

𝜎∈{−1,1}𝑛
exp

(︃
−

∑︁
1≤𝑖<𝑗≤𝑛

𝐽𝑖𝑗𝜎𝑖𝜎𝑗

)︃
=

∑︁
𝜎∈{−1,1}𝑛

exp(−𝐻(𝜎)),

using the real-valued computational model, i.e. a computational engine operating
over real-valued inputs, appropriately defined, as opposed to the previous setting,
where the computational engine performs floating point operations. The input vec-
tor, namely the vector of real-valued couplings J ∈ R𝑛(𝑛−1)/2, is given as a random
input. Albeit the usual definition of the partition function involves also the inverse
temperature parameter 𝛽, and a normalization factor by

√
𝑛; we suppress these in

order to keep the discussion simple.

The main result towards this direction is as follows. If there exists a polynomial
time algorithm, which computes the partition function exactly with probability at
least 3/4+1/poly(𝑛) under real-valued computational model, then 𝑃 = #𝑃 . Similar
to the previous setting, the probability here is taken with respect to the randomness
in the input of the algorithm, namely, with respect to the distribution of J.
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The techniques of the previous setting (finite-precision arithmetic) do not, how-
ever, transform to real-valued computational model, since the finite field structure
Z𝑝 utilized for the proof is lost, upon passing to real-valued computation model. We
bypass this obstacle by building on an argument of Aaronson and Arkhipov [3], where
they established the average-case hardness of the exact computation of the perma-
nent of a random matrix with iid Gaussian entries. Informally, their argument is as
follows. The basis is the #𝑃 -hardness of exactly computing the permanent for ar-
bitrary matrices. Suppose, for the sake of the contradiction, that a polynomial-time
algorithm 𝒜 exactly computing the permanent (with a certain probability of success)
exists. Consider a “natural interpolation" 𝑋(𝑡) = 𝑡𝑋 + (1− 𝑡)𝑌 , 𝑡 ∈ [0, 1], between a
worst-case input 𝑋 ∈ {0, 1}𝑛×𝑛 and a random input 𝑌 ∈ R𝑛×𝑛. Define the univariate
polynomial 𝑞(𝑡) to be the permanent of 𝑋(𝑡). It then follows that deg(𝑞) ≤ 𝑛 and 𝑞(1)
is the permanent of the worst-case input 𝑋. In particular, the permanent of 𝑋 can
be computed (in polynomial time) provided 𝑞 can be reconstructed (in polynomial
time). 𝒜 is then used to create a list of sufficiently many noisy samples of 𝑞(·). With
this, the problem boils down to recovering a low-degree univariate polynomial 𝑞 from
a list of its noisy samples. This is a natural problem in coding theory, and one can
efficiently recover 𝑞 using the Berlekamp-Welch decoder.

We close this section with the set of notational convention. The set of integers
and positive integers are respectively denoted by Z and Z+. The set, {1, 2, . . . , 𝑛} is
denoted by [𝑛], and the set {0, 1, . . . , 𝑝−1}, namely the set of all residues modulo 𝑝, is
denoted by Z𝑝. Given a real number 𝑥, the largest integer not exceeding 𝑥 is denoted
by ⌊𝑥⌋. We say 𝑎 ≡ 𝑏 (mod 𝑝), if 𝑝 divides 𝑎 − 𝑏, abbreviated as 𝑝 | 𝑎 − 𝑏. Given
an 𝑥 > 0, log 𝑥 denotes logarithm of 𝑥, base 2. Given a (finite) set 𝑆, denote the
number of elements (i.e., the cardinality) of 𝑆 by |𝑆|. Given a finite field F, denote by
F[𝑥] the set of all (finite-degree) polynomials, whose coefficients are from F. Namely,
𝑓 ∈ F[𝑥] if there is a positive integer 𝑛, and 𝑎0, . . . , 𝑎𝑛 ∈ F, such that for every 𝑥 ∈ F,
𝑓(𝑥) =

∑︀𝑛
𝑘=0 𝑎𝑘𝑥

𝑘. The degree of 𝑓 ∈ F[𝑥] is, deg(𝑓) = max{0 ≤ 𝑘 ≤ 𝑛 : 𝑎𝑘 ̸= 0}. For
two random variables 𝑋 and 𝑌 , the total variation distance between (the distribution
functions of) 𝑋 and 𝑌 is denoted by 𝑑𝑇𝑉 (𝑋, 𝑌 ). For any given vector 𝑣 ∈ R𝑑, we

denote by ‖𝑣‖ the Euclidean norm of 𝑣, that is,
√︁∑︀𝑑

𝑖=1 𝑣
2
𝑖 . Θ(·), 𝑂(·), 𝑜(·), and Ω(·)

are standard (asymptotic) order notations for comparing the growth of two sequences.
Finally, we use the words oracle and algorithm interchangeably in the sequel, and
denote them by 𝒪 and 𝒜. These objects will be assumed to exist for the sake of
proof purposes.
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4.2 Average-Case Hardness under Finite-Precision Arith-
metic

4.2.1 Model and the Main Result

Our focus is on computing the partition function of the model, whose Hamiltonian
for a given spin configuration 𝜎 ∈ {−1, 1}𝑛 at inverse temperature 𝛽 is given by:

𝐻(𝜎) =
𝛽√
𝑛

∑︁
1≤𝑖<𝑗≤𝑛

𝐽𝑖𝑗𝜎𝑖𝜎𝑗 +
𝑛∑︁

𝑖=1

𝐵𝑖𝜎𝑖 −
𝑛∑︁

𝑖=1

𝐶𝑖𝜎𝑖,

where the random variables J = (𝐽𝑖𝑗 : 1 ≤ 𝑖 < 𝑗 ≤ 𝑛) ∈ R𝑛(𝑛−1)/2 are the couplings;
and the random variables B = (𝐵𝑖 : 𝑖 ∈ [𝑛]) ∈ R𝑛, and C = (𝐶𝑖 : 𝑖 ∈ [𝑛]) ∈ R𝑛

are the external field components. For simplicity, we study the case, where (J,B,C)
consists of i.i.d. standard normal entries.

While our focus is on the case where the vector (J,B,C) consists of i.i.d. standard
normal entries, it is worth mentioning the following. We anticipate that our analysis
will still remain valid under the following, more general, setting. Suppose 𝐽𝑖𝑗, 1 ≤
𝑖 < 𝑗 ≤ 𝑛; 𝐵𝑖, 1 ≤ 𝑖 ≤ 𝑛; and 𝐶𝑖, 1 ≤ 𝑖 ≤ 𝑛 are independent normal random
variables with zero-mean and possibly different variances, where the variances are
strictly positive and are not too small (e.g., they are of order at least 1

𝑛𝑂(1) ). In
particular, variances are allowed to be distinct even within each J, B, and C as long
as they are strictly positive and not too small: for instance, 𝐽𝑖𝑗 need not have the
same variance across 1 ≤ 𝑖 < 𝑗 ≤ 𝑛. In this more general setting, we still anticipate
that our techniques and analysis apply.

The associated partition function (at the temperature 1/𝛽) reads as:

𝑍(J,B,C) =
∑︁

𝜎∈{−1,1}𝑛
exp(−𝐻(𝜎)).

We now incorporate the cuts and polarities induced by 𝜎 ∈ {−1, 1}𝑛. Observe that,

𝐻(𝜎) =
𝛽√
𝑛

∑︁
𝑖<𝑗:𝜎𝑖=𝜎𝑗

𝐽𝑖𝑗 +
∑︁

𝑖:𝜎𝑖=+1

𝐵𝑖 +
∑︁

𝑖:𝜎𝑖=−1

𝐶𝑖

−

⎛⎝ 𝛽√
𝑛

∑︁
𝑖<𝑗:𝜎𝑖 ̸=𝜎𝑗

𝐽𝑖𝑗 +
∑︁

𝑖:𝜎𝑖=−1

𝐵𝑖 +
∑︁

𝑖:𝜎𝑖=+1

𝐶𝑖

⎞⎠ ,

where the ranges for the indices are 1 ≤ 𝑖 < 𝑗 ≤ 𝑛 and 1 ≤ 𝑖 ≤ 𝑛. For convenience,
we will denote the first part above by Σ+

𝜎 , and the second part inside the brackets
by Σ−

𝜎 . Observe that, the object, Σ ≜
∑︀

𝑖𝐵𝑖 +
∑︀

𝑖𝐶𝑖 +
𝛽√
𝑛

∑︀
𝑖<𝑗 𝐽𝑖𝑗 = Σ+

𝜎 + Σ−
𝜎 , is

independent of 𝜎, and trivially computable. Now, note that, Σ−𝐻(𝜎) = 2Σ−
𝜎 , and
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therefore,
𝑍(J,B,C) =

∑︁
𝜎∈{−1,1}𝑛

exp(−Σ) exp(2Σ−
𝜎).

Namely, 𝑍(J,B,C) is computable, if and only if,
∑︀

𝜎∈{−1,1}𝑛 exp(2Σ
−
𝜎) is computable.

The presence of the factor 2 is, again, a minor detail that we omit in the sequel, since
our techniques transfer without any modification. Thus, our focus is on computing∑︀

𝜎∈{−1,1}𝑛 exp(Σ
−
𝜎); and denoting exp(𝛽𝐽𝑖𝑗/

√
𝑛) by ̂︁𝐽𝑖𝑗, exp(𝐵𝑖) by ̂︁𝐵𝑖, and exp(𝐶𝑖)

by ̂︀𝐶𝑖, the object we are interested in computing is given by,

𝑍(̂︀J, ̂︀B, ̂︀C) =
∑︁

𝜎∈{−1,1}𝑛

(︃ ∏︁
𝑖:𝜎𝑖=−

̂︁𝐵𝑖

)︃(︃ ∏︁
𝑖:𝜎𝑖=+

̂︀𝐶𝑖

)︃⎛⎝ ∏︁
𝑖<𝑗:𝜎𝑖 ̸=𝜎𝑗

̂︁𝐽𝑖𝑗
⎞⎠ .

Our focus is on algorithms, that can compute 𝑍(̂︀J, ̂︀B, ̂︀C) exactly, in the following
sense. The algorithm designer first selects a certain level 𝑁 of digital precision, and
computes these numbers, up to the selected precision level. Given a real number
𝑥 ∈ R, let 𝑥[𝑁 ] = 2−𝑁⌊2𝑁𝑥⌋ be the number obtained by keeping only first 𝑁 binary
bits of 𝑥 after the binary point. The computational goal of the algorithm designer
is to compute 𝑍(̂︀J[N], ̂︀B[N], ̂︀C[N]) exactly, where ̂︀J[N] = (̂︁𝐽𝑖𝑗 [𝑁 ]

: 1 ≤ 𝑖 < 𝑗 ≤ 𝑛),̂︀B[N] = (̂︁𝐵𝑖

[𝑁 ]
: 𝑖 ∈ [𝑛]), and ̂︀C[N] = ( ̂︀𝐶𝑖

[𝑁 ]
: 𝑖 ∈ [𝑛]).

We now switch to a model with integer inputs. For convenience, let ̃︁𝐽𝑖𝑗 =

⌊2𝑁̂︁𝐽𝑖𝑗⌋ = 2𝑁̂︁𝐽𝑖𝑗 [𝑁 ]
, ̃︁𝐵𝑖 = ⌊2𝑁̂︁𝐵𝑖⌋ = 2𝑁̂︁𝐵𝑖

[𝑁 ]
, ̃︀𝐶𝑖 = ⌊2𝑁 ̂︀𝐶𝑖⌋ = 2𝑁 ̂︀𝐶𝑖

[𝑁 ]
; and define

𝑓(𝑛,𝜎) to be

𝑓(𝑛,𝜎) =
𝑛(𝑛− 1)

2
− 𝑛− 𝐼𝑛(𝜎), (4.3)

where 𝐼𝑛(𝜎) = |{(𝑖, 𝑗) : 𝜎𝑖 ̸= 𝜎𝑗, 1 ≤ 𝑖 < 𝑗 ≤ 𝑛}|. Equipped with this, we will focus
on computing the following object with integer-valued inputs,

𝑍𝑛(̃︀J, ̃︀B, ̃︀C) =
∑︁

𝜎∈{−1,1}𝑛
2𝑁𝑓(𝑛,𝜎)

(︃ ∏︁
𝑖:𝜎𝑖=−

̃︁𝐵𝑖

)︃(︃ ∏︁
𝑖:𝜎𝑖=+

̃︀𝐶𝑖

)︃⎛⎝ ∏︁
𝑖<𝑗:𝜎𝑖 ̸=𝜎𝑗

̃︁𝐽𝑖𝑗
⎞⎠ , (4.4)

where the subscript 𝑛 highlights the dependence on 𝑛, indicating that the system
consists of 𝑛 spins. Observe that, 𝑍𝑛(̃︀J, ̃︀B, ̃︀C) = 2𝑁𝑛(𝑛−1)/2𝑍(̂︀J[N], ̂︀B[N], ̂︀C[N]). As a
sanity check, note that |𝐼𝑛(𝜎)|+ 𝑛 ≤ max0<𝑘<𝑛 𝑘(𝑛− 𝑘) + 𝑛 < 𝑛(𝑛− 1)/2 for 𝑛 > 6,
and every 𝜎 ∈ {−1, 1}𝑛. Thus the model is indeed integral-valued.

We now state our main result, for the average-case hardness of computing 𝑍𝑛(̃︀J, ̃︀B, ̃︀C).

Theorem 4.2.1. Let 𝑘, 𝛼 > 0 be arbitrary fixed constants. Suppose that, the precision
value 𝑁 satisfies, 𝐶(𝑘) log 𝑛 ≤ 𝑁 ≤ 𝑛𝛼, where 𝐶(𝑘) is a constant, depending only
on 𝑘. Suppose that there exists a polynomial in 𝑛 time algorithm 𝒜, which on input
(̃︀J, ̃︀B, ̃︀C) produces a value 𝑍𝒜(̃︀J, ̃︀B, ̃︀C) satisfying

P(𝑍𝒜(̃︀J, ̃︀B, ̃︀C) = 𝑍𝑛(̃︀J, ̃︀B, ̃︀C)) ≥ 1

𝑛𝑘
,
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for all sufficiently large 𝑛, where 𝑍𝑛(̃︀J, ̃︀B, ̃︀C) is defined in (4.4). Then, 𝑃 = #𝑃 .

Quantitatively, the constant 𝐶(𝑘) can be taken as 21𝑘 + 20 + 𝜖, where 𝜖 > 0 is
arbitrary (and this constant 𝐶(𝑘) can potentially be improved). The probability in
Theorem 4.2.1 is taken with respect to the randomness of (̃︀J, ̃︀B, ̃︀C), which, in turn,
is derived from the randomness of (J,B,C). The logarithmic lower bound on the
number of bits is imposed to address the technical issues when establishing the near-
uniformity of the random variables (̃︀J, ̃︀B, ̃︀C) modulo an appropriately chosen prime.
The upper bound on the number of bits that we retain is for ensuring that the input
to the algorithm is of polynomial length in 𝑛.

4.2.2 Proof of Theorem 4.2.1

For any given Ξ ∈ Z𝑛(𝑛−1)/2+2𝑛 (note that, any algorithm computing the partition
function of an 𝑛-spin system with external field accepts an input of size 𝑛(𝑛− 1)/2+
2𝑛), let 𝑍𝑛(Ξ, 𝑝𝑛) ∈ Z𝑝𝑛 denotes 𝑍𝑛(Ξ) (mod 𝑝𝑛), and similarly let 𝑍𝒜(Ξ; 𝑝𝑛) de-
notes 𝑍𝒜(Ξ) (mod 𝑝𝑛). Let U ∈ Z𝑛(𝑛−1)/2+2𝑛

𝑝𝑛 be a random vector, consisting of iid
entries, drawn independently from uniform distribution on Z𝑝𝑛 . The following result
is our main proposition, and establishes the average-case hardness of computing the
partition function defined in (4.4) modulo 𝑝𝑛, when the entry to the algorithm is U.
This, together with a coupling argument will establish Theorem 4.2.1.

Proposition 4.2.2. Let 𝑘 > 0 be an arbitrary constant. Suppose 𝒜 is a polynomial
in 𝑛 time algorithm, which for any positive integer 𝑛, any prime number 𝑝𝑛 ≥ 9𝑛2𝑘+2,
and any input a = (aJ, aB, aC) ∈ Z𝑛(𝑛−1)/2+2𝑛

𝑝𝑛 produces some output 𝑍𝒜(a; 𝑝𝑛) ∈ Z𝑝𝑛;
and satisfies

P(𝑍𝒜(U; 𝑝𝑛) = 𝑍𝑛(U; 𝑝𝑛)) ≥
1

𝑛𝑘
,

where U = (UJ,UB,UC) ∈ Z𝑛(𝑛−1)/2+2𝑛
𝑝𝑛 consists of iid entries chosen uniformly at

random from Z𝑝𝑛, and the probability is taken with respect to the randomness in U.
Then, 𝑃 = #𝑃 .

We now provide an outline of the proof of Proposition 4.2.2, which is the main
building block of the proof of Theorem 4.2.1.

Proof Outline for Proposition 4.2.2 The proof of Proposition 4.2.2 is based
on the #𝑃−hardness of the algorithmic problem of exactly computing the partition
function for arbitrary inputs, and is inspired by the proof of the average-case hardness
of computing the permanent [67].

The argument is by contradiction. Suppose that such an algorithm, 𝒜, exists.
Analogous to the Laplace expansion for permanent, we first establish a downward
self-recursion for the partition function with respect to the sign of 𝜎𝑛. Specifically,
we establish that the partition function of an 𝑛−spin system (modulo 𝑝𝑛) can be
expressed as a weighted sum of the partition functions of two (𝑛 − 1)−spin systems
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with adjusted parameters:

𝑍𝑛(J,B,C; 𝑝𝑛) = 𝐶 ′
𝑛𝑍𝑛−1(J

′,B+,C+; 𝑝𝑛) +𝐵′
𝑛𝑍𝑛−1(J

′,B−,C−; 𝑝𝑛),

for suitable 𝐵′
𝑛, 𝐶

′
𝑛 ∈ Z𝑝𝑛 , B+,B−,C+,C− ∈ Z𝑛−1

𝑝𝑛 .

Next, we let 𝑣1 = (J′,B+,C+) and 𝑣2 = (J′,B−,C−). We then generate two i.i.d.
random vectors 𝐾 and 𝑀 (each of whose coordinates are distributed uniformly on
Z𝑝𝑛), and through interpolation, construct a “vector polynomial"

𝐷(𝑥) ≜ (2− 𝑥)𝑣1 + (𝑥− 1)𝑣2 + (𝑥− 1)(𝑥− 2)(𝐾 + 𝑥𝑀).

Here, 𝐷(𝑥) admits a natural interpretation: it corresponds to the parameters (i.e.
the couplings and the external field) of an (𝑛− 1)−spin system. Next, we define the
univariate polynomial 𝜑(𝑥) = 𝑍𝑛−1(𝐷(𝑥); 𝑝𝑛). Namely, 𝜑(𝑥) is the partition function
(modulo 𝑝𝑛) associated to the (𝑛 − 1)-spin system whose parameters are stored in
the vector 𝐷(𝑥). One can verify that 𝑑 ≜ deg(𝜑) < 𝑛2, 𝜑(1) = 𝑍𝑛−1(𝐷(1); 𝑝𝑛) =
𝑍𝑛−1(J

′,B+,C+; 𝑝𝑛), and 𝜑(2) = 𝑍𝑛−1(𝐷(2); 𝑝𝑛) = 𝑍𝑛−1(J
′,B−,C−; 𝑝𝑛). In particu-

lar, our object of interest, 𝑍𝑛(J,B,C; 𝑝𝑛), satisfies

𝑍𝑛(J,B,C; 𝑝𝑛) = 𝐶 ′
𝑛𝜑(1) +𝐵′

𝑛𝜑(2).

Therefore, provided 𝜑(·) can be reconstructed, the partition function can be com-
puted. We then define the set

𝒟 ≜ {𝐷(𝑥) : 𝑥 = 3, 4, . . . , 𝑝𝑛}.

The extra randomness incorporated via𝐾 and𝑀 above ensures 𝒟 consists of pairwise
independent samples. We then use the algorithm 𝒜(·) to obtain a list (𝑥,𝒜(𝐷(𝑥)))
of pairs, where 𝑥 ∈ 𝒟. This list is nothing but a list of noisy samples of the poly-
nomial 𝜑(·), whose degree is bounded from above by 𝑛2. After a series of techni-
cal steps, we show how to identify 𝜑(·). These steps consist of lower bounding the
number of correct evaluations of 𝜑 in the list above, as well as a list-decoding algo-
rithm by Sudan [270]. This yields that under the hypothesis of Proposition 4.2.2,
there is a (randomized) polynomial-time procedure, which for any a ∈ Z𝑛(𝑛−1)/2+2𝑛

𝑝𝑛

computes 𝑍𝑛(a; 𝑝𝑛) with high probability. We then use the Gaussian tail estimate,
P(𝒩 (0, 1) > 𝑡) = exp(−Θ(𝑡2)), to upper bound the partition function (whp); and
generate sufficiently many primes 𝑝𝑛 of sufficient size for which the product

∏︀
𝑛 𝑝𝑛

is larger than the partition function itself. The latter step uses the prime density.
Chinese remainder theorem then allows the exact computation of the partition func-
tion. All of the steps and reductions above run in polynomial time, as we show;
and by controlling the probability of error along the route, we establish the desired
contradiction.

Taking Proposition 4.2.2 for granted, we now provide an outline of how one con-
cludes the proof of Theorem 4.2.1.
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Proof Outline for Theorem 4.2.1 Provided that we are equipped with Proposi-
tion 4.2.2, we conclude the proof of Theorem 4.2.1, again by relying on a contradiction
argument. Suppose, for the sake of the contradiction, that such a (polynomial-time)
algorithm, 𝒜, as in Theorem 4.2.1 exists.

We establish the near-uniformity of the log-normal distribution modulo 𝑝𝑛, where
𝑝𝑛 is a sufficiently large prime. This will allow us to show that the total variation dis-
tance between the parameters of the partition function we are interested in computing
and the uniform distribution modulo 𝑝𝑛 is small. In particular, considering a cou-
pling between the parameters of interest and the uniform distribution, we show that
𝒜 succeeds in computing the partition function modulo 𝑝𝑛 in polynomial-time with
inverse polynomial probability of success. This contradicts with Proposition 4.2.2;
and thus concludes the proof of Theorem 4.2.1.

Equipped with this outline, we now proceed with the full proofs.

Proof. (of Proposition 4.2.2) We will use as basis the #P-hardness of computing
the partition function, for arbitrary inputs. Namely, if there exists a polynomial
time algorithm computing 𝑍(j,b, c) for any arbitrary input j,b, c with probability
bounded away from zero as 𝑛→ ∞, then P=#P.

Let 𝑞 ≥ 1/𝑛𝑘 be the success probability of 𝒜, and a = (aJ, aB, aC) ∈ Z𝑛(𝑛−1)/2+2𝑛
𝑝𝑛

be an arbitrary input, whose partition function we want to compute. For convenience,
we drop a, denote (aJ, aB, aC) by (J,B,C). The following lemma establishes the
downward self-recursive behaviour of the partition function (modulo 𝑝𝑛) by expressing
the partition function of an 𝑛-spin system as a weighted sum of partition functions
of two (𝑛− 1)-spin systems, with appropriately adjusted external field components.

Lemma 4.2.3. The following identity holds:

𝑍𝑛(J,B,C; 𝑝𝑛) = 𝐶 ′
𝑛𝑍𝑛−1(J

′,B+,C+; 𝑝𝑛) +𝐵′
𝑛𝑍𝑛−1(J

′,B−,C−; 𝑝𝑛),

where, 𝑍𝑛(J,B,C; 𝑝𝑛) = 𝑍𝑛(J,B,C) (mod 𝑝𝑛) with 𝑍𝑛 defined in (4.4); J′ ∈ Z(𝑛−1)(𝑛−2)/2
𝑝𝑛

is such that 𝐽 ′
𝑖𝑗 = 𝐽𝑖𝑗 for every 1 ≤ 𝑖 < 𝑗 ≤ 𝑛 − 1; B+,B−,C+,C− ∈ Z𝑛−1

𝑝𝑛 are
such that 𝐵+

𝑖 = 2−𝑁𝐵𝑖𝐽𝑖𝑛, 𝐵−
𝑖 = 𝐵𝑖, 𝐶+

𝑖 = 𝐶𝑖, and 𝐶−
𝑖 = 2−𝑁𝐶𝑖𝐽𝑖𝑛, for every

1 ≤ 𝑖 ≤ 𝑛− 1; and 𝐶 ′
𝑛 = 𝐶𝑛2

(𝑛−2)𝑁 , 𝐵′
𝑛 = 𝐵𝑛2

(𝑛−2)𝑁 .

The proof of this lemma is provided in Section 4.5.2. Namely, provided we can
compute 𝑍𝑛−1(J

′,B+,C+; 𝑝𝑛) and 𝑍𝑛−1(J
′,B−,C−; 𝑝𝑛), we can compute 𝑍𝑛(J,B,C; 𝑝𝑛).

Note that, since we are interested in modulo 𝑝𝑛 computation, the number 2−𝑁 is noth-
ing but 𝑔𝑁 , where 𝑔 ∈ Z𝑝𝑛 satisfies 2𝑔 ≡ 1 (mod 𝑝𝑛), that is, 𝑔 is the multiplicative
inverse of 2 modulo 𝑝𝑛.

Next, let 𝑣1 = (J′,B+,C+) ∈ Z𝑇
𝑝𝑛 , and 𝑣2 = (J′,B−,C−) ∈ Z𝑇

𝑝𝑛 ; where the input
dimension (𝑛− 1)(𝑛− 2)/2 + 2(𝑛− 1) of the algorithm computing partition function
for a model with (𝑛 − 1)-spins is denoted by 𝑇 for convenience. Now, we construct
the vector polynomial

𝐷(𝑥) = (2− 𝑥)𝑣1 + (𝑥− 1)𝑣2 + (𝑥− 1)(𝑥− 2)(𝐾 + 𝑥𝑀), (4.5)
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of dimension 𝑇 , where 𝐾,𝑀 are iid random vectors, drawn from uniform distribution
on Z𝑇

𝑝𝑛 . The incorporation of this extra randomness is due to an earlier idea by
Gemmell and Sudan [146].

Next, consider 𝜑(𝑥) = 𝑍𝑛−1(𝐷(𝑥); 𝑝𝑛), namely, the partition function of an (𝑛 −
1)-spin system, associated with the vector 𝐷(𝑥) (where the first (𝑛 − 1)(𝑛 − 2)/2
components correspond to couplings, the following (𝑛 − 1) components correspond
to 𝐵𝑖’s, and the last (𝑛 − 1) components correspond to 𝐶𝑖’s), which is a univariate
polynomial in 𝑥. We now upper bound the degree of 𝜑(𝑥). Note that,

𝑑 = deg(𝜑) ≤ 3

(︂
max

𝜎∈{−1,1}𝑛−1
|𝐼(𝜎)|+ 𝑛− 1

)︂
= 3

(︂
max

1≤𝑘≤𝑛−1
𝑘(𝑛− 1− 𝑘) + 𝑛− 1

)︂
< 𝑛2,

for 𝑛 large. Observe also that, 𝜑(1) = 𝑍𝑛−1(𝐷(1); 𝑝𝑛) = 𝑍𝑛−1(J
′,B+,C+; 𝑝𝑛), 𝜑(2) =

𝑍𝑛(𝐷(2); 𝑝𝑛) = 𝑍𝑛−1(J
′,B−,C−; 𝑝𝑛), hence, 𝑍𝑛(J,B,C; 𝑝𝑛) = 𝐶 ′

𝑛𝜑(1) + 𝐵′
𝑛𝜑(2).

Therefore, provided that we can recover 𝜑(·), 𝑍𝑛(J,B,C; 𝑝𝑛) can be computed. With
this, we now turn our attention to recovering the polynomial 𝜑(·). Let 𝒟 be a set
of cardinality 𝑝𝑛 − 2, defined as 𝒟 = {𝐷(𝑥) : 𝑥 = 3, 4, . . . , 𝑝𝑛}. We claim that, 𝒟
consists of pairwise independent samples.

Lemma 4.2.4. For every distinct 𝑥1, 𝑥2 ∈ {3, 4, . . . , 𝑝𝑛}, the random vectors 𝐷(𝑥1)
and 𝐷(𝑥2) are independent and uniformly distributed over Z𝑇

𝑝𝑛. That is, for every such
𝑥1, 𝑥2 and every 𝑦1, 𝑦2 ∈ Z𝑇

𝑝𝑛; it holds that P(𝐷(𝑥1) = 𝑦1) = 1/𝑝𝑇𝑛 = P(𝐷(𝑥2) = 𝑦2),
and

P(𝐷(𝑥1) = 𝑦1, 𝐷(𝑥2) = 𝑦2) = 1/𝑝2𝑇𝑛 = P(𝐷(𝑥1) = 𝑦1)P(𝐷(𝑥2) = 𝑦2),

where the probability is taken with respect to the randomness in 𝐾 and 𝑀 .

The proof of this lemma is provided in Section 4.5.3. Now, we run 𝒜 on 𝒟,
and will use the independence to deduce via Chebyshev’s inequality that, with high
probability, 𝒜 runs correctly, on at least 𝑞/2 fraction of inputs in 𝒟, where 𝑞 ≥ 1/𝑛𝑘

is the success probability of our algorithm. This is encapsulated by the following
lemma.

Lemma 4.2.5. Let the random variable 𝒩 be the number of points 𝐷(𝑥) ∈ 𝒟, such
that 𝒜(𝐷(𝑥)) = 𝜑(𝑥) = 𝑍𝑛−1(𝐷(𝑥); 𝑝𝑛), namely 𝒜 correctly computes the partition
function at 𝐷(𝑥). Then,

P(N ≥ (𝑝𝑛 − 2)𝑞/2) ≥ 1− 1

(𝑝𝑛 − 2)𝑞2
,

where 𝑞 is the success probability of 𝒜, and the probability is taken with respect to the
randomness in 𝒟, which, in turn, is due to the randomness in 𝐾 and 𝑀 .

The proof of this lemma can be found in Section 4.5.4. Now, let𝐺(𝑓) = {(𝑥, 𝑓(𝑥)) :
𝑥 = 1, 2, . . . , 𝑝𝑛} be the graph of a function 𝑓 ∈ Z𝑝𝑛 [𝑥]. Define the set 𝒮 =
{(𝑥,𝒜(𝐷(𝑥))) : 𝑥 = 3, 4, . . . , 𝑝𝑛}, and let ℱ be a set of polynomials, defined as,

ℱ = {𝑓 ∈ Z𝑝𝑛 [𝑥] : deg(𝑓) < 𝑛2, |𝐺(𝑓) ∩ 𝒮| ≥ (𝑝𝑛 − 2)𝑞/2}.
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Namely, 𝑓 ∈ ℱ if and only if, its coefficients are from Z𝑝𝑛 , it is of degree at most
𝑛2 − 1; and its graph intersects the set 𝒮 on at least (𝑝𝑛 − 2)𝑞/2 points. Due to
Lemma 4.2.5, we know that 𝜑(𝑥) ∈ ℱ , with probability at least 1− 1

(𝑝𝑛−2)𝑞2
. We now

show that this set ℱ of candidate polynomials contains at most polynomial in 𝑛 many
polynomials.

Lemma 4.2.6. If 𝑝𝑛 ≥ 9𝑛2𝑘+2, then |ℱ| ≤ 3/𝑞, where 𝑞 is the success probability
of 𝒜. In particular, ℱ contains at most polynomial in 𝑛 many polynomials, since
𝑞 ≥ 1/𝑛𝑘.

The proof of this lemma is provided in Section 4.5.5.
In what remains, we will show how to explicitly construct all such polynomials,

through a randomized algorithm, which succeeds with high probability. To that end,
we use the following elegant result, due to Cai et al. [67].

Lemma 4.2.7. There exists a randomized procedure running in polynomial time,
through which, with high probability, one can generate a list ℒ = (𝑥𝑖, 𝑦𝑖)

𝐿
𝑖=1 of 𝐿 pairs,

such that, 𝑦𝑖 = 𝜑(𝑥𝑖), for at least 𝑡 pairs from the list with distinct first coordinates,
where 𝑡 >

√
2𝐿𝑑, with 𝑑 = deg(𝜑), and 𝜑(𝑥) = 𝑍𝑛−1(𝐷(𝑥); 𝑝𝑛).

The proof of this lemma is isolated from the argument of [67], and provided in
Section 4.5.6 for completeness. Of course, these discussions are all based on the
assumption that we condition on the high probability event that {N ≥ (𝑝𝑛 − 2)𝑞/2},
where N is the random variable defined in Lemma 4.2.5.

Having obtained this list, we now turn our attention to finding all polynomials
(where, by Lemma 4.2.6, there is at most polynomial in 𝑛 many of those), whose
graph intersects the list at at least 𝑡 points with distinct first coordinates (for the
specific values of 𝑡 depending on the magnitude of 𝑝𝑛, see the proof of Lemma 4.2.7
in Section 4.5.6). For this, we use the following list-decoding algorithm of [270],
introduced originally in the context of coding theory, which is an improved version of
Berlekamp-Welch decoder.

Lemma 4.2.8. (Theorem 5 in [270]) Given a sequence {(𝑥𝑖, 𝑦𝑖)}𝐿𝑖=1 of 𝐿 distinct
pairs, where 𝑥𝑖s and 𝑦𝑖s are an element of a field F, and integer parameters 𝑡 and 𝑑,
such that 𝑡 ≥ 𝑑⌈

√︀
2(𝐿+ 1)/𝑑⌉ − ⌊𝑑/2⌋, there exists an algorithm which can find all

polynomials 𝑓 : F → F of degree at most 𝑑, such that the number of points (𝑥𝑖, 𝑦𝑖)
satisfying 𝑦𝑖 = 𝑓(𝑥𝑖) is at least 𝑡.

The algorithm is a probabilistic polynomial time algorithm. For the sake of com-
pleteness, we briefly sketch his algorithm here. For weights 𝑤𝑥, 𝑤𝑦 ∈ Z+, define
(𝑤𝑥, 𝑤𝑦)-weighted degree of a monomial 𝑞𝑖𝑗𝑥𝑖𝑦𝑗 to be 𝑖𝑤𝑥+𝑗𝑤𝑦. The (𝑤𝑥, 𝑤𝑦)-weighted
degree of a polynomial, 𝑄(𝑥, 𝑦) =

∑︀
(𝑖,𝑗)∈𝐼 𝑞𝑖𝑗𝑥

𝑖𝑦𝑗 is defined to be max(𝑖,𝑗)∈𝐼 𝑖𝑤𝑥+ 𝑗𝑤𝑦.
Let 𝑚, ℓ ∈ Z+ be positive integers, to be determined. Construct a non-zero poly-
nomial 𝑄(𝑥, 𝑦) =

∑︀
𝑖,𝑗 𝑞𝑖𝑗𝑥

𝑖𝑦𝑗, whose (1, 𝑑)-weighted degree is at most 𝑚 + ℓ𝑑, and
𝑄(𝑥𝑖, 𝑦𝑖) = 0, for every 𝑖 ∈ [𝐿]. The number of coefficients 𝑞𝑖𝑗 of any such polyno-
mial is at most,

∑︀ℓ
𝑗=0

∑︀𝑚+(ℓ−𝑗)𝑑
𝑖=0 1 = (𝑚 + 1)(ℓ + 1) + 𝑑ℓ(ℓ + 1)/2. Hence, provided

(𝑚+ 1)(ℓ+ 1) + 𝑑ℓ(ℓ+ 1)/2 > 𝐿, we have more unknowns (i.e., coefficients 𝑞𝑖𝑗) than
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equations, 𝑄(𝑥𝑖, 𝑦𝑖) = 0, for 𝑖 ∈ [𝐿], and thus, such a 𝑄(𝑥𝑖, 𝑦𝑖) exists, and more-
over, can be found in polynomial time. Now, we look at the following univariate
polynomial, 𝑄(𝑥, 𝑓(𝑥)) ∈ F[𝑥]. This polynomial has degree, at most 𝑚 + ℓ𝑑. Note
that, for every 𝑖 such that 𝑓(𝑥𝑖) = 𝑦𝑖, 𝑄(𝑥𝑖, 𝑓(𝑥𝑖)) = 𝑄(𝑥𝑖, 𝑦𝑖) = 0. Hence, pro-
vided that, 𝑚, ℓ are chosen, such that 𝑚 + ℓ𝑑 < 𝑡, it holds that, this polynomial
has 𝑡 > 𝑚 + ℓ𝑑 = deg𝑄(𝑥, 𝑓(𝑥)) zeroes, hence, it must be identically zero. Now,
viewing 𝑄(𝑥, 𝑦) to be 𝑄𝑥(𝑦), a polynomial in 𝑦, with coefficients from F[𝑥], we have
that whenever 𝑄𝑥(𝜉) = 0, it holds that, (𝑦 − 𝜉) divides 𝑄𝑥(𝑦), hence, for 𝜉 = 𝑓(𝑥),
we get 𝑦 − 𝑓(𝑥) | 𝑄(𝑥, 𝑦). Provided that 𝑄(𝑥, 𝑦) exists (which will be guaranteed
by parameter assumptions) and can be reconstructed in polynomial in 𝑛 time, it can
also be factorized in probabilistic polynomial time [181], and 𝑦 − 𝑓(𝑥) will be one of
its irreducible factors. For a concrete choice of parameters, see [270]; or [67], which
also has a brief and different exposition of the aforementioned ideas. We will use this
result with 𝑡 >

√
2𝐿𝑑, where 𝑑 = deg(𝜑) < 𝑛2.

Now, we have a randomized procedure, which outputs a certain list 𝒦 of at most
3/𝑞 polynomials, one of which is the correct 𝜑(𝑥) = 𝑍𝑛−1(𝐷(𝑥); 𝑝𝑛). The idea for the
remainder is as follows. We will find a point 𝑥, at which, all polynomials from the
list 𝒦 disagree. Towards this goal, define a set 𝒯 of triples,

𝒯 = {(𝑥, 𝑓(𝑥), 𝑔(𝑥)) : 𝑓(𝑥) = 𝑔(𝑥), 𝑥 ∈ Z𝑝𝑛 , 𝑓, 𝑔 ∈ 𝒦}.

We now use a double-counting argument. Note that, every pair (𝑓, 𝑔) of distinct
polynomials from the list 𝒦 can agree on at most 𝑛2 − 1 points. Since, the total
number of such pairs (𝑓, 𝑔) of distinct polynomials from 𝒦 is less than (3/𝑞)2, we
deduce |𝒯 | < 9𝑛2𝑘+2. Since |Z𝑝𝑛| > |𝒯 |, it follows that, there exists a 𝑣, such that,
no triple, whose first coordinate is 𝑣 belongs to 𝒯 . Clearly, this point 𝑣 can be found
in polynomial time, since 𝑝𝑛 and the size of the list are polynomial in 𝑛. Thus,
there is at least one point on which all polynomials from the list 𝒦 disagree. It is
possible now to identify 𝜑(𝑥) = 𝑍𝑛−1(𝐷(𝑥); 𝑝𝑛), by evaluating 𝑍𝑛−1(𝐷(𝑣); 𝑝𝑛), since
whp, 𝜑(·) ∈ 𝒦, and all polynomials from list 𝒦 take distinct values at 𝑣. Provided
𝜑(𝑥) can be identified, we can compute 𝑍𝑛(J,B,C; 𝑝𝑛), the original partition function
of interest, simply via 𝐶 ′

𝑛𝜑(1) +𝐵′
𝑛𝜑(2), as mentioned in the beginning.

Therefore, 𝑍𝑛(J,B,C; 𝑝𝑛) can be computed, provided that 𝑍𝑛−1(𝐷(𝑣); 𝑝𝑛) can be
computed, a reduction from an 𝑛−spin system, to an (𝑛 − 1)−spin system. Note
that, the probability of error in this randomized reduction is upper bounded, via the
union bound, by the sum of probabilities that, N, defined in Lemma 4.2.5 is less than
(𝑝𝑛 − 2)𝑞/2, which is of probability at most 1

(𝑝𝑛−2)𝑞2
, which is 𝑐/𝑛2 for some constant

𝑐 > 0, independent of 𝑛; plus, the probability of failure during the construction of a list
of 𝐿 pairs (𝑥𝑖, 𝑦𝑖)𝐿𝑖=1 with 𝑡 >

√
2𝐿𝑑, which, conditional on the high probability event,

{𝒩 ≥ (𝑝𝑛 − 2)𝑞/2}, is exponentially small in 𝑛; and finally, the probability that we
encounter an error during generating the list of polynomials through factorization,
per Lemma 4.2.8, which can again be made exponentially small in 𝑛. Thus, the
overall probability of error for this reduction is 𝑐′/𝑛2, for some absolute constant
𝑐′ > 0, independent of 𝑛. Next, select a large 𝐻 and repeat the same downward
reduction protocol 𝑛 → 𝑛 − 1, 𝑛 − 1 → 𝑛 − 2, · · · , 𝐻 + 1 → 𝐻, such that the total
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probability of error
∑︀𝑛

𝑗=𝐻 𝑐
′/𝑗2 during the entire reduction is less than 1/2 (note that,

the reduction step, 𝑛 − 1 → 𝑛 − 2 aims at computing 𝜑(𝑣) = 𝑍𝑛−1(𝐷(𝑣); 𝑝𝑛), where
𝑣 is the element of Z𝑝𝑛 discussed earlier; and each step, we reduce the problem of
recovering the associated polynomial to evaluating the partition function of a system
with one less number of spins, at a single input point). Once the system has 𝐻
spins, compute the partition function by hand. This procedure yields an algorithm
computing 𝑍𝑛(J,B,C; 𝑝𝑛), the partition function value we wanted to compute in the
beginning of the proof of Proposition 4.2.2, with probability greater than 1/2. Now,
if we repeat this algorithm 𝑅 times, and take the majority vote (i.e., the number that
appeared the majority number of times), the probability of having a wrong answer
appearing as majority vote is, by Chernoff bound, exponentially small in 𝑅. Taking 𝑅
to be polynomial in 𝑛, we have that with probability at least 1−𝑒−Ω(𝑛) this procedure
correctly computes 𝑍𝑛(J,B,C; 𝑝𝑛).

We have now established that, provided, there is a polynomial time algorithm
𝒜, which exactly computes the partition function on 1/𝑛𝑘 fraction of inputs (from
Z𝑛(𝑛−1)/2+2𝑛
𝑝𝑛 ), then there exists a (randomized) polynomial time procedure, for which,

for every a ∈ Z𝑛(𝑛−1)/2+2𝑛
𝑝𝑛 (including, in particular, the adversarially-chosen ones),

it correctly evaluates 𝑍𝑛(a) (mod 𝑝𝑛) with probability 1 − 𝑜(1). We now use this
procedure to show, how to evaluate 𝑍𝑛(a) (without the mod operator). We use the
Chinese Remainder Theorem, which, for convenience, is stated below.

Theorem 4.2.9. Let 𝑝1, . . . , 𝑝𝑘 be distinct pairwise coprime positive integers, and
𝑎1, . . . , 𝑎𝑘 be integers. Then, there exists a unique integer 𝑚 ∈ {0, 1, . . . , 𝑃} where
𝑃 =

∏︀𝑘
ℓ=1 𝑝ℓ, such that, 𝑚 ≡ 𝑎𝑖 (mod 𝑝𝑖), for every 1 ≤ 𝑖 ≤ 𝑘.

In particular, letting 𝑃𝑖 = 𝑃/𝑝𝑖, 𝑚 =
∑︀𝑘

ℓ=1 𝑐𝑖𝑃𝑖𝑎𝑖 (mod 𝑃 ) works, where 𝑐𝑖 ≡ 𝑃−1
𝑖

(mod 𝑝𝑖). The number 𝑐𝑖 can be computed by running Euclidean algorithm: Since
gcd(𝑃𝑖, 𝑝) = 1, it follows from Bézout’s identity that, there exists integers 𝑐𝑖, 𝑏 ∈ Z
such that, 𝑐𝑖𝑃𝑖+𝑝𝑏 = 1, and thus, 𝑐𝑖𝑃𝑖 ≡ 1 (mod 𝑝). Now, we proceed as follows. Fix
a positive integer 𝑚. If we can find a collection {𝑝1, . . . , 𝑝ℓ} of primes such that the
corresponding product 𝑃 =

∏︀ℓ
𝑘=1 𝑝𝑘 exceeds 𝑚, then we can recover 𝑚, from (𝑟𝑖)

ℓ
𝑖=1,

where 𝑟𝑖 ∈ Z𝑝𝑖 is such that 𝑚 ≡ 𝑟𝑖 (mod 𝑝𝑖), namely, 𝑟𝑖 is the remainder obtained
upon dividing 𝑚 by 𝑝𝑖, for each 𝑖.

For this goal, we now establish a bound, where with high probability, the original
partition function is less than this bound. Recall the standard Gaussian tail estimate,
P(𝑍 > 𝑡) = 𝑂(exp(−𝑡2/2)). Using this,

P(𝑒𝛽𝑛−1/2𝐽 > 𝑡) = 𝑂(exp(−𝑛 log2(𝑡)/(2𝛽2))),

which, for 𝑡 = 𝑛, gives a bound, 𝑜(𝑛−2). Now, for external field contribution, we
have P(𝑒𝐵 > 𝑡) ≤ 𝑂(exp(− log2(𝑡)/(2𝛽2))) (also for 𝐶), which, for 𝑡 = 𝑛, gives
𝑂(𝑛− log𝑛/(2𝛽2)), which is, again, 𝑜(𝑛−2). Hence, with high probability, the 𝑛(𝑛 −
1)/2 + 2𝑛-dimensional vector, V = (J,B,C) is such that, ‖V‖∞ ≤ 𝑛. Therefore,
with high probability, the partition function is at most sum of 2𝑛 terms, each of
which is a product of at most 𝑛2 terms (since, we have 𝑛 terms for external field, and
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at most 𝑛2/2 terms for spin-spin couplings) each bounded by 2𝑁𝑛. This establishes,
the partition function is at most 2𝑛(2𝑁𝑛)𝑛

2
= 2𝑁𝑛2+𝑛2 log2 𝑛+𝑂(𝑛).

It now remains to show that, there exists sufficiently many prime numbers of
appropriate size, that we can use for Chinese remaindering.

Lemma 4.2.10. Let 𝑘, 𝛼 > 0 be a fixed constants, and 𝑁 satisfies Ω(log 𝑛) ≤ 𝑁 ≤ 𝑛𝛼.
The number of primes between 9𝑛2𝑘+2 and 2(2+𝛼+2𝑘)𝑁𝑛2𝑘+2 log 𝑛 is at least 𝑁𝑛2𝑘+2,
for all sufficiently large 𝑛.

The proof of this lemma can be found in Section 4.5.7.
Having done this, we will find a sequence of 𝑁𝑛2𝑘+2 primes via brute force search

in polynomial time, since 𝑁 ≤ 𝑛𝛼 for some constant 𝛼, with 𝑝𝑗 > Ω(𝑛2𝑘+2). This
will establish,

∏︀
𝑗 𝑝𝑗 > Ω((𝑛2𝑘+2)𝑁𝑛2𝑘+2

) = Ω(2𝑁𝑛2𝑘+2(2𝑘+2) log𝑛). Since the partition
function is at most 2𝑁𝑛2+𝑛2 log2 𝑛+𝑂(𝑛) and since 𝑁 = Ω(log2 𝑛), we therefore conclude
that the product of primes we have selected is, whp, larger than the partition func-
tion itself, and therefore, by running 𝒜 with each of these prime basis, and Chinese
remaindering, we can compute the partition function exactly. Therefore, the proof of
Proposition 4.2.2 is complete.

We now establish that the density of log-Normal distribution is Lipschitz contin-
uous within a finite interval, and will bound the Lipschitz constant, to establish a
certain probabilistic coupling.Recall that 𝐽𝑖𝑗, 1 ≤ 𝑖 < 𝑗 ≤ 𝑛 are i.i.d. standard normal
and ̂︀𝐽𝑖𝑗 = 𝑒𝛽/

√
𝑛𝐽𝑖𝑗 . Let 𝑓 ̂︀𝐽 denote the common density of ̂︀𝐽𝑖𝑗.

Lemma 4.2.11. For every 0 < 𝛿 < Δ satisfying logΔ > 𝛽2 and every 𝛿 ≤ 𝑡, 𝑡 ≤ Δ,
the following bound holds.

exp

(︂
−2𝑛 logΔ

𝛽2𝛿
|𝑡− 𝑡|

)︂
≤ 𝑓 ̂︀𝐽(𝑡)
𝑓 ̂︀𝐽(𝑡) ≤ exp

(︂
2𝑛 logΔ

𝛽2𝛿
|𝑡− 𝑡|

)︂
. (4.6)

The proof of this lemma is provided in Section 4.5.1. Furthermore, letting ̂︀𝐵𝑖 =
𝑒𝐵𝑖 and ̂︀𝐶𝑖 = 𝑒𝐶𝑖 , and denoting the (common) densities by 𝑓 ̂︀𝐵 and 𝑓 ̂︀𝐶 , we have
that the same Lipschitz condition holds also for 𝑓 ̂︀𝐵(𝑡) and 𝑓 ̂︀𝐶(𝑡), and therefore, the
result of Lemma 4.2.11 applies also to the exponentiated version of the external field
components, see Remark 4.5.1.

The idea for the remaining part is as follows. We will establish that, the algorith-
mic inputs (obtained by exponentiating the real-valued inputs and truncating at an
appropriate level 𝑁), are close to uniform distribution (modulo 𝑝𝑛), in total variation
sense, which will establish the existence of a desired coupling to conclude the proof
of Theorem 4.2.1. To that end, we now establish an auxiliary result, showing that
the log-Normal distribution is nearly uniform, modulo 𝑝𝑛.

Lemma 4.2.12. The following bound holds for every 𝐴 ∈ { ̃︀𝐽𝑖𝑗 : 1 ≤ 𝑖 < 𝑗 ≤ 𝑛}∪{ ̃︀𝐵𝑖 :

𝑖 ∈ [𝑛]} ∪ { ̃︀𝐶𝑖 : 𝑖 ∈ [𝑛]}:

max
0≤ℓ≤𝑝𝑛−1

|P(𝐴 ≡ ℓ mod (𝑝𝑛))− 𝑝−1
𝑛 | = 𝑂(𝑁−1𝑛−5𝑘−4).
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The proof of this lemma is provided in Section 4.5.8. We now return to the proof
of Theorem 4.2.1. Using Lemma 4.2.12, the total variation distance between any
𝐴 ∈ { ̃︀𝐽𝑖𝑗, ̃︀𝐵𝑖, ̃︀𝐶𝑖} and 𝑈 ∼ Unif(Z𝑝𝑛) is at most, 𝑂(𝑝𝑛𝑁−1𝑛−5𝑘−4), which, using the
trivial inequality 𝑝𝑛 ≤ 𝑂(𝑁𝑛3𝑘+2), is𝑂(𝑛−2𝑘−2). We now use the following well-known
maximal total variation coupling result.

Theorem 4.2.13. Let the random variables 𝑋, 𝑌 have marginal distributions, 𝜇 and
𝜈, and let 𝑑𝑇𝑉 (𝜇, 𝜈) denotes the total variation distance between 𝜇 and 𝜈. Then, for
any coupling (namely, any joint distribution with marginals of 𝑋 and 𝑌 being 𝜇 and 𝜈,
respectively) of 𝑋 and 𝑌 , it holds that, P(𝑋 = 𝑌 ) ≤ 1−𝑑𝑇𝑉 (𝜇, 𝜈). Moreover, there is
a coupling of 𝑋 and 𝑌 , under which, we have the equality P(𝑋 = 𝑌 ) = 1−𝑑𝑇𝑉 (𝜇, 𝜈).

Using this maximal coupling result, we now observe that, we can couple 𝐴 (where,
𝐴 ∈ {̃︁𝐽𝑖𝑗,̃︁𝐵𝑖, ̃︀𝐶𝑖}) with a random variable 𝑈 , uniformly distributed on Z𝑝𝑛 , such that

P(𝐴 = 𝑈) ≥ 1−𝑂(𝑛−2𝑘−2).

Now, let 𝑈𝑖𝑗, 𝑈𝐵
𝑖 , and 𝑈𝐶

𝑖 be random variables, uniform over Z𝑝𝑛 , such that,

P( ̃︀𝐽𝑖𝑗 ̸= 𝑈𝑖𝑗) ≤ 𝑂(𝑛−2𝑘−2), P( ̃︀𝐵𝑖 ̸= 𝑈𝐵
𝑖 ) ≤ 𝑂(𝑛−2𝑘−2), and P( ̃︀𝐶𝑖 ̸= 𝑈𝐶

𝑖 ) ≤ 𝑂(𝑛−2𝑘−2).

In particular, using union bound, we can couple Ξ = (̃︀J, ̃︀B, ̃︀C), with a vector, U =

(UJ,UB,UC) ∈ Z𝑛(𝑛−1)/2+2𝑛
𝑝𝑛 , such that, P(Ξ = U) ≥ 1 − 𝑂(𝑛−2𝑘). Now, we define

several auxiliary events. Let ℰ1 = {𝑍𝑛(Ξ; 𝑝𝑛) = 𝑍𝑛(U; 𝑝𝑛)}, ℰ2 = {𝑍𝒜(Ξ; 𝑝𝑛) =
𝑍𝒜(U; 𝑝𝑛)}, and ℰ3 = {𝑍𝒜(Ξ) = 𝑍𝑛(Ξ)}. Observe that, due to the coupling, we have
P(ℰ1),P(ℰ2) ≥ 1−𝑂(𝑛−2𝑘). Now, suppose, the statement of the Theorem 4.2.1 holds,
and that, P(ℰ3) ≥ 1/𝑛𝑘. Observe that, ℰ1 ∩ ℰ2 ∩ ℰ3 ⊆ {𝑍𝑛(U; 𝑝𝑛) = 𝑍𝒜(U; 𝑝𝑛)}.
Hence, 𝒜 satisfies,

P(𝑍𝑛(U; 𝑝𝑛) = 𝑍𝒜(U; 𝑝𝑛)) ≥ P(ℰ1 ∩ ℰ2 ∩ ℰ3)
= 1− P(ℰ𝑐

1 ∪ ℰ𝑐
2 ∪ ℰ𝑐

3)

≥ P(ℰ3)− P(ℰ𝑐
1)− P(ℰ𝑐

2)

≥ 1

𝑛𝑘
−𝑂(𝑛−2𝑘) ≥ 1

𝑛𝑘′
,

using union bound, where 𝑘′ obeys: 𝑘 < 𝑘′ < 2𝑘 and 𝑛2𝑘′+2 log 𝑛 = 𝑂(𝑛3𝑘+2). This
contradicts with Proposition 4.2.2, with the probability of success taken to be as 1/𝑛𝑘′

for this value of 𝑘′.

4.3 Average-Case Hardness under Real-Valued Com-
putational Model

In this section, we study the problem of exactly computing the partition function as-
sociated with the Sherrington-Kirkpatrick model, but this time under the real-valued
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computation model, as opposed to the finite precision arithmetic model adopted in
previous section.

Details on the Model of Computation More specifically, we assume that there
exists a computational engine which can store arbitrary real-valued inputs, and oper-
ate on them. The allowed operations are the arithmetic operations (such as addition,
subtraction, multiplication, and division), including also the computation of polyno-
mials. Each such operation on real-valued inputs is assumed to require a unit time
and is assumed to be of unit cost. An example of such a computation engine operating
over real-valued inputs is the so-called Blum-Shub-Smale (BSS) machine [51, 50].

The techniques employed in the previous section do not extend to real-valued
computational model, since it is not clear what the appropriate real-valued analogue
of Z𝑝 is.

4.3.1 Model and the Main Result

We start by incorporating the cuts induced by the spin assignment 𝜎 ∈ {−1, 1}𝑛, and
reduce the problem to computing a partition function associated with the cuts, in a
manner analogous to the previous setting. Let Σ =

∑︀
𝑖<𝑗 𝐽𝑖𝑗 =

∑︀
𝜎𝑖 ̸=𝜎𝑗

𝐽𝑖𝑗+
∑︀

𝜎𝑖=𝜎𝑗
𝐽𝑖𝑗.

Note that, Σ is independent of the spin assignment 𝜎 ∈ {−1, 1}𝑛, and is computable
in polynomial time. Observe also that, Σ − 𝐻(𝜎) = 2

∑︀
𝜎𝑖 ̸=𝜎𝑗

𝐽𝑖𝑗, where 𝐻(𝜎) =∑︀
𝑖<𝑗 𝐽𝑖𝑗𝜎𝑖𝜎𝑗. Therefore,

𝑍(J) =
∑︁

𝜎∈{−1,1}𝑛
exp(−𝐻(𝜎)) =

∑︁
𝜎∈{−1,1}𝑛

exp(−Σ) exp

⎛⎝2
∑︁

𝑖<𝑗:𝜎𝑖 ̸=𝜎𝑗

𝐽𝑖𝑗

⎞⎠ .

Letting 𝑋𝑖𝑗 = 𝑒2𝐽𝑖𝑗 , we observe that since exp(−Σ) is a trivially computable constant,
it suffices to compute ̂︀𝑍(J), where

̂︀𝑍(J) = ∑︁
𝜎∈{−1,1}𝑛

∏︁
𝑖<𝑗:𝜎𝑖 ̸=𝜎𝑗

𝑋𝑖𝑗.

Note that, ̂︀𝑍(J) involves 𝑋𝑖𝑗, which are, in turn, derived from 𝐽𝑖𝑗. For this reason,
we will refer to this object as ̂︀𝑍(X), as well.

In what follows, we are interested in computing ̂︀𝑍(X), when X is given as a
random input to the real-valued computational engine that we operate under. We now
elaborate on this. Let J = (𝐽𝑖𝑗 : 1 ≤ 𝑖 < 𝑗 ≤ 𝑛) ∈ R𝑛(𝑛−1)/2 be a random vector with
i.i.d. standard normal coordinates; and let X = (𝑋𝑖𝑗 : 1 ≤ 𝑖 < 𝑗 ≤ 𝑛) ∈ R𝑛(𝑛−1)/2 be
the random vector with 𝑋𝑖𝑗 = exp(2𝐽𝑖𝑗), for 1 ≤ 𝑖 < 𝑗 ≤ 𝑛. The oracle receives X as
its input, and the goal is to compute

̂︀𝑍(X) ≜
∑︁

𝜎∈{−1,1}𝑛

∏︁
𝑖<𝑗:𝜎𝑖 ̸=𝜎𝑗

𝑋𝑖𝑗. (4.7)
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Our main result under this setting is as follows:

Theorem 4.3.1. Let 𝛿 ≥ 1/poly(𝑛) > 0 be an arbitrary real number, J = (𝐽𝑖𝑗 : 1 ≤
𝑖 < 𝑗 ≤ 𝑛) ∈ R𝑛(𝑛−1)/2 with 𝐽𝑖𝑗

𝑑
= 𝒩 (0, 1) i.i.d.; and X = (𝑋𝑖𝑗 : 1 ≤ 𝑖 < 𝑗 ≤ 𝑛) ∈

R𝑛(𝑛−1)/2 with 𝑋𝑖𝑗 = exp(2𝐽𝑖𝑗) for 1 ≤ 𝑖 < 𝑗 ≤ 𝑛. Suppose that 𝒪 is an algorithm,
such that:

P
(︁
𝒪(X) = ̂︀𝑍(X)

)︁
≥ 3

4
+ 𝛿,

where ̂︀𝑍(X) is defined in (4.7). Then, 𝑃 = #𝑃 .

Note that the probability in Theorem 4.3.1 is taken with respect to the randomness
in X, which, in turn, stems from the randomness in the (i.i.d. standard normal)
couplings J. We recall here one more time that, the input to the algorithm 𝒪 is real-
valued, and that, the algorithm operates under a real-valued computational engine,
e.g. using a Blum-Shub-Smale machine.

Proof Outline for Theorem 4.3.1 We provide an outline of the proof of The-
orem 4.3.1 below. The basis of our proof is the #𝑃−hardness of the algorithmic
problem of computing the partition function for arbitrary inputs. The argument is
by contradiction. Assume, for the sake of the contradiction, that such an algorithm
𝒪(·) exists. Let 𝒬 = (𝑞𝑖𝑗 : 1 ≤ 𝑖 < 𝑗 ≤ 𝑛) be an arbitrary input of couplings, and
let a = (𝑎𝑖𝑗 : 1 ≤ 𝑖 < 𝑗 ≤ 𝑛) be such that 𝑎𝑖𝑗 = exp(𝑞𝑖𝑗). Recall that it is #𝑃−hard
to compute the associated partition function for arbitrary inputs, thus it is illustra-
tive to think of a as a worst-case input. Define also X = (𝑋𝑖𝑗 : 1 ≤ 𝑖 < 𝑗 ≤ 𝑛) with
𝑋𝑖𝑗 = exp(2𝐽𝑖𝑗). We consider a standard interpolation X(𝑡) = (1−𝑡)X+𝑡a, 𝑡 ∈ [0, 1],
between a random input X and an arbitrary input a.

We next define the (univariate) polynomial

𝑓(𝑡) = ̂︀𝑍(X(𝑡)) =
∑︁

𝜎∈{−1,1}𝑛

∏︁
𝑖<𝑗:𝜎𝑖 ̸=𝜎𝑗

𝑋𝑖𝑗(𝑡).

Namely, 𝑓(𝑡) corresponds to the “partition function" of an 𝑛−spin system whose
parameters are stored in the vector X(𝑡). It is not hard to see that deg(𝑓) = 𝑛2/2 +

𝑜(𝑛), and 𝑓(1) = ̂︀𝑍(a). Our ultimate goal is to establish that 𝑓 can be recovered
from its noisy samples, and consequently, 𝑓(1) = ̂︀𝑍(a) can be computed (whp) in
polynomial time, which by assumption is #𝑃−hard.

We next show that the total variation distance between X(0) and X(𝑡) is small,
when 𝑡 is small. That is, the distributions of X(0) and X(𝑡) are close, when 𝑡 is small.
Considering now a coupling between X(0) and X(𝑡); we establish that 𝒪 can also
compute 𝑓(𝑡) = ̂︀𝑍(X(𝑡)) with probability at least 3

4
+ 𝛿

2
(which is very close to the

success probability 3
4
+ 𝛿 that 𝒪(·) has as per Theorem 4.3.1), when 𝑡 is small.

Using 𝒪, we then generate a list of sufficiently many (noisy) samples of the (low-
degree) polynomial 𝑓(·). Provided that the number of points in the list at which
𝑓 is evaluated correctly is sufficient, one can use the Berlekamp-Welch decoder to
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reconstruct 𝑓(·). This will establish that 𝑓(1) = ̂︀𝑍(a) can be computed in polynomial
time, with probability at least 1

2
+ 𝛿

2
.

Finally, we repeat this process 𝑅 times (with 𝑅 being at most polynomial in 𝑛) and
take the majority vote. Using Chernoff bound, we have that ̂︀𝑍(a) can be computed,
in polynomial time, with probability at least 1− exp(−Ω(𝑛)), contradicting with the
fact that a is a worst-case input.

We now proceed with the full proof.

4.3.2 Proof of Theorem 4.3.1

Let 𝒬 = (𝑞𝑖𝑗 : 1 ≤ 𝑖 < 𝑗 ≤ 𝑛) be an arbitrary input (of couplings), so that it is
#𝑃−hard to compute the associated partition function, ̂︀𝑍(a), which is

̂︀𝑍(a) = ∑︁
𝜎∈{−1,1}𝑛

∏︁
𝑖<𝑗:𝜎𝑖 ̸=𝜎𝑗

𝑎𝑖𝑗,

with a = (𝑎𝑖𝑗 : 1 ≤ 𝑖 < 𝑗 ≤ 𝑛), where 𝑎𝑖𝑗 = 𝑒𝑞𝑖𝑗 . In particular, 𝑎𝑖𝑗 > 0 for any
1 ≤ 𝑖 < 𝑗 ≤ 𝑛. Now, let J be a vector with iid standard normal components, and let
X = (𝑋𝑖𝑗 : 1 ≤ 𝑖 < 𝑗 ≤ 𝑛) be a vector, where 𝑋𝑖𝑗 = 𝑒2𝐽𝑖𝑗 for every 1 ≤ 𝑖 < 𝑗 ≤ 𝑛.
Define X(𝑡) via the following interpolation:

X(𝑡) = (1− 𝑡)X+ 𝑡a, 0 ≤ 𝑡 ≤ 1. (4.8)

Let 𝑓(𝑡) be

𝑓(𝑡) = ̂︀𝑍(X(𝑡)) =
∑︁

𝜎∈{−1,1}𝑛

∏︁
𝑖<𝑗:𝜎𝑖 ̸=𝜎𝑗

((1− 𝑡)𝑋𝑖𝑗 + 𝑡𝑎𝑖𝑗) . (4.9)

Note that, 𝑓(𝑡) is a univariate polynomial in 𝑡, with degree

deg(𝑓) = max
𝜎∈{−1,1}𝑛

|{(𝑖, 𝑗) : 1 ≤ 𝑖 < 𝑗 ≤ 𝑛, 𝜎𝑖 ̸= 𝜎𝑗}| =
𝑛2

2
+ 𝑜(𝑛),

and 𝑓(1) = ̂︀𝑍(a). Assuming the existence of an algorithm 𝒪(·) whose probability of
success is at least 3

4
+ 1

poly(𝑛)
, we will show the existence of a randomized polynomial

time algorithm which, with probability 1
2
+ 1

poly(𝑛)
, recovers the polynomial 𝑓(𝑡). In

particular repeating this algorithm 𝑅 times to compute 𝑓(1), where 𝑅 is chosen to
be polynomial in 𝑛; and taking majority vote, the probability that an incorrect value
appears more than the half of time is exponentially small by Chernoff bound. Thus,
one can compute ̂︀𝑍(a) with probability at least 1− exp(−Ω(𝑛)).

Lemma 4.3.2. Let X(𝑡) be defined as above. Fix any 1 ≤ 𝑖 < 𝑗 ≤ 𝑛, and let
𝑋(𝑡) ≜ 𝑋𝑖𝑗(𝑡). Then, there exists an absolute constant 𝒞𝑖𝑗 > 0, depending only on
𝑎𝑖𝑗, such that, 𝑑𝑇𝑉 (𝑋(𝑡), 𝑋(0)) ≤ 𝒞𝑖𝑗𝑡 for every 𝑡 ∈ [0, 1].

An informal, information-theoretic way, of seeing the hypothesis of Lemma 4.3.2
is as follows. Using Pinsker’s inequality [85, 236], we have
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𝑑𝑇𝑉 (𝑋𝑖𝑗(𝑡), 𝑋𝑖𝑗(0)) ≤ 𝜅
√︀
𝐷(𝑋𝑖𝑗(𝑡)‖𝑋𝑖𝑗(0)), where 𝐷(·‖·) is the KL divergence, and

𝜅 > 0 is some absolute constant. Next, using the fact that, KL divergence locally
looks like the chi-square divergence, which is essentially a weighted Euclidean ℓ2
distance between two probability distributions, defined on the same probability space,
𝜒2(·‖·) (see, e.g., [236]), one expects for 𝑡 small, 𝐷(𝑋𝑖𝑗(𝑡)‖𝑋𝑖𝑗(0)) ≈ 𝑂(𝑡2), and thus,
𝑑𝑇𝑉 (𝑋𝑖𝑗(𝑡), 𝑋𝑖𝑗(0)) ≈ 𝑂(𝑡).

The full proof of this lemma is deferred to Section 4.5.9.
We next state a tensorization inequality for the total variation distance.

Lemma 4.3.3. Let 𝑃1, . . . , 𝑃ℓ and 𝑄1, . . . , 𝑄ℓ be probability measures, defined on the
same sample space Ω. Then,

𝑑𝑇𝑉

(︀
⊗ℓ

𝑖=1𝑃𝑖,⊗ℓ
𝑖=1𝑄𝑖

)︀
≤

ℓ∑︁
𝑖=1

𝑑𝑇𝑉 (𝑃𝑖, 𝑄𝑖).

While this lemma is known, we provide a proof in Section 4.5.10 for completeness.
Using Lemma 4.3.2, together with the tensorization property above, we deduce

𝑑𝑇𝑉 (X(𝑡),X(0)) ≤ 𝐶𝑛2𝑡
2

, where

𝐶 =
∑︁

1≤𝑖<𝑗≤𝑛

𝒞𝑖𝑗,

the sum of the constants 𝒞𝑖𝑗 prescribed by Lemma 4.3.2.
Now, let 𝐿 = ⌈𝑛2/𝛿⌉, and 𝜖 = 𝛿

2𝐶𝑛2𝐿
. For every 𝑘 ∈ [𝐿], we will evaluate ̂︀𝑍(X(𝜖𝑘))

via the oracle 𝒪(·), and will use these values to reconstruct 𝑓(𝑡), from which, 𝑓(1) =̂︀𝑍(a) can be computed. Note that, with this choice of 𝐿 and 𝜖, 𝑑𝑇𝑉 (X(𝜖𝑘),X(0)) ≤ 𝛿
4
,

for every 𝑘 ∈ [𝐿].
Fix an arbitrary 𝑘 ∈ [𝐿], and consider a coupling between X(𝜖𝑘) and X(0), which

maximizes P(X(𝜖𝑘) = X(0)). Note that, in this case, P(X(𝜖𝑘) = X(0)) ≥ 1 −
𝑑𝑇𝑉 (X(𝜖𝑘),X(0)). Define the events ℰ1 = {𝒪(X(𝜖𝑘)) = 𝒪(X(0))}, ℰ2 = {𝒪(X(0)) =̂︀𝑍(X(0))}, and finally, ℰ3 = { ̂︀𝑍(X(0)) = ̂︀𝑍(X(𝜖𝑘))}. Clearly, P(ℰ𝑐

1),P(ℰ𝑐
3) ≤ 𝑑𝑇𝑉 (X(𝜖𝑘),X(0));

and P(ℰ𝑐
2) ≤ 1

4
− 𝛿, since X(0) = (𝑋𝑖𝑗 : 1 ≤ 𝑖 < 𝑗 ≤ 𝑛) with 𝑋𝑖𝑗 = exp(2𝐽𝑖𝑗) with

𝐽𝑖𝑗
𝑑
= 𝒩 (0, 1). Since

ℰ1 ∩ ℰ2 ∩ ℰ3 ⊆ {𝒪(X(𝜖𝑘)) = ̂︀𝑍(X(𝜖𝑘))},

it follows that,

P
(︁
𝒪(X(𝜖𝑘)) = ̂︀𝑍(X(𝜖𝑘))

)︁
≥ 3

4
+ 𝛿 − 2𝑑𝑇𝑉 (X(𝜖𝑘),X(0)) ≥ 3

4
+
𝛿

2
.

Now, let 𝐼1, 𝐼2, . . . , 𝐼𝐿 be Bernoulli random variables, where for each 𝑘 ∈ [𝐿],
𝐼𝑘 = 1 if and only if 𝒪(X(𝜖𝑘)) = ̂︀𝑍(X(𝜖𝑘)). Clearly, P(𝐼𝑘 = 1) ≥ 3

4
+ 𝛿

2
.

Lemma 4.3.4. Let 𝑋1, 𝑋2, . . . , 𝑋ℓ be Bernoulli random variables (not necessarily
independent), where there exists 0 < 𝑞 < 1, such that E[𝑋𝑘] ≥ 𝑞, for every 𝑘 ∈ [ℓ].
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Let 0 < 𝜖 < 𝑞 be arbitrary. Then,

P

(︃
1

ℓ

ℓ∑︁
𝑘=1

𝑋𝑘 > 𝜖

)︃
≥ 𝑞 − 𝜖

1− 𝜖
.

The proof of this lemma is provided in Section 4.5.11. In particular, letting 𝑁 =∑︀𝐿
𝑘=1 𝐼𝑘, and using Lemma 4.3.4 with 𝜖 = 1

2
+ 𝛿

2
and 𝑞 = 3

4
+ 𝛿

2
, we deduce

P
(︂
𝑁 ≥

(︂
1

2
+
𝛿

2

)︂
𝐿

)︂
≥ 1

2
+
𝛿

2
.

Let ℒ = {(𝑥𝑘, 𝑦𝑘) : 𝑘 ∈ [𝐿]} where 𝑥𝑘 = 𝜖𝑘, and 𝑦𝑘 = 𝒪(X(𝜖𝑘)). The next result
shows, provided 𝑁 ≥

(︀
1
2
+ 𝛿

2

)︀
𝐿, one can recover 𝑓(𝑡) = ̂︀𝑍(X(𝑡)) in polynomial time.

Theorem 4.3.5 (Berlekamp-Welch). Let 𝑓 be a univariate polynomial, with deg(𝑓) =
𝑑 over any field F. Let ℒ = {(𝑥𝑖, 𝑦𝑖) : 1 ≤ 𝑖 ≤ 𝐿} be a list such that, for at least 𝑡
pairs of the list, where 𝑡 > 𝐿+𝑑

2
, 𝑦𝑖 = 𝑓(𝑥𝑖) holds. Then, there exists an algorithm

which recovers 𝑓 , using at most polynomial in 𝐿 and 𝑑 many field operations over F.

Note that, provided 𝑁 ≥
(︀
1
2
+ 𝛿

2

)︀
𝐿, the list ℒ constructed above will satisfy the

requirements of Berlekamp-Welch algorithm, and therefore, the value of 𝑓(1) = ̂︀𝑍(a)
can be computed efficiently, with probability 1

2
+ 𝛿

2
, using at most polynomial in 𝑛

many arithmetic operations over reals.
Now we repeat this process by 𝑅 times, and take majority vote. The probability

that, a wrong answer will appear as a majority vote, is exponentially small, using
Chernoff bound. Taking 𝑅 to be polynomial in 𝑛, we deduce this process efficiently
computes ̂︀𝑍(a) with probability at least 1 − exp(−Ω(𝑛)), which is known to be a
#𝑃−hard problem.

4.4 Conclusion and Future Work

In this work, we have studied the average-case hardness of the algorithmic problem of
exactly computing the partition function associated with the Sherrington-Kirkpatrick
model of spin glass with Gaussian couplings and random external input. We have
established that, unless 𝑃 = #𝑃 , there does not exists a polynomial time algorithm
which exactly computes the partition function on average. We have established our
result by combining the approach of Cai et al. [67] for establishing the average-case
hardness of computing the permanent of a (random) matrix, modulo a prime number
𝑝; with a probabilistic coupling between log-normal inputs and random uniform inputs
over a finite field. To the best of our knowledge, ours is the first such result, pertaining
the statistical physics models. We also note that, our approach is not limited to the
case of Gaussian inputs: for random variables with sufficiently well-behaved density,
for which, one can establish a coupling as in Lemma 4.2.12 to a prime of appropriate
size, our techniques transfer.
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Several future research directions are as follows. The proof sketch outlined in this
work, as well as in the previous works [67, 109, 208] do not transfer to the several other
fundamental open problems aiming at establishing similar hardness results related to
SK model. One such fundamental problem is the problem of exactly computing
a ground state, namely, the problem of finding a state 𝜎* ∈ {−1, 1}𝑛, such that,
𝐻(𝜎*) = max𝜎∈{−1,1}𝑛 𝐻(𝜎). Arora et al. [16] established that the problem of exactly
computing a ground state is NP-hard in the worst case sense. Furthermore, Montanari
[220] recently proposed a message-passing algorithm, which, for a fixed 𝜖 > 0 finds a
state 𝜎* such that 𝐻(𝜎*) ≥ (1−𝜖)max𝜎∈{−1,1}𝑛 𝐻(𝜎) with high probability, in a time
at most 𝑂(𝑛2), assuming a widely-believed structural conjecture in statistical physics.
Namely, it is possible to efficiently approximate the ground state of SK model within
a multiplicative factor of 1 − 𝜖. The proof techniques of Cai et al. [67], as well as
Lipton’s approach [208], do not, however, seem to be useful in addressing the average-
case hardness of the algorithmic problem of exactly computing the ground state since
the algebraic structure relating the problem into the recovery of a polynomial is lost,
when one considers the maximization; and this problem remains open.

Another fundamental problem, which remains open, is the average-case hardness
of the problem of computing the partition function approximately, namely, computing
𝑍(J, 𝛽) to within a multiplicative factor of (1± 𝜖), which has been of interest in the
field of approximation algorithms.

Yet another natural question is whether the assumption on the oracle 𝒪(·) in
Theorem 4.3.1 for the real-valued computational model, that is,

P
(︁
𝒪(X) = ̂︀𝑍(X)

)︁
≥ 3

4
+

1

poly(𝑛)

can be weakened e.g., to 1/2+1/poly(𝑛) or even to 1/poly(𝑛), as handled in the finite-
precision setting. As we have mentioned previously, our approach for establishing the
average-case hardness of the problem of exact computation of the partition function
under the finite-precision arithmetic model is in parallel with the line of research
dealing with the average-case hardness of computing the permanent over a finite
field. A typical result along these lines is obtained under the assumption that there
exists an oracle which computes the permanent with a certain probability of success,
𝑞. The first such result, under the weakest assumption of 𝑞 = 1−1/3𝑛, is obtained by
Lipton [208]. Subsequent research weakened this assumption to 𝑞 = 3/4 + 1/poly(𝑛)
by Gemmell et al. [145], then to 𝑞 = 1/2 + 1/poly(𝑛) by Gemmell and Sudan [146];
and finally to 𝑞 = 1/poly(𝑛), by Cai et al. [67].

The assumption on the success probability of the oracle that we have adopted in
this work for the real-valued computational model is similar to that of Gemmell et
al. [145], and thus, the most natural question is to ask, whether, at the very least,
the technique of Gemmell and Sudan [146] can be applied. We now discuss that this
seems to be a challenging task, and show where the extension fails.

The idea of Gemmell and Sudan, essentially, aims at reconstructing a certain
polynomial (similar to (4.9)), which is observed through its noisy samples (e.g., similar
to the list ℒ = {(𝑥𝑘,𝒪(𝜖𝑘)) : 𝑘 ∈ [𝐿]}, that we have defined earlier), and is adapted

215



to our case as follows. Let J = (𝐽𝑖𝑗 : 1 ≤ 𝑖 < 𝑗 ≤ 𝑛) and J′ = (𝐽 ′
𝑖𝑗 : 1 ≤ 𝑖 < 𝑗 ≤ 𝑛)

be two iid random vectors, each with iid standard normal components, and let X =
(𝑋𝑖𝑗 : 1 ≤ 𝑖 < 𝑗 ≤ 𝑛) and X′ = (𝑋 ′

𝑖𝑗 : 1 ≤ 𝑖 < 𝑗 ≤ 𝑛), where 𝑋𝑖𝑗 = 𝑒2𝐽𝑖𝑗 , 𝑋 ′
𝑖𝑗 = 𝑒2𝐽

′
𝑖𝑗 ,

for 1 ≤ 𝑖 < 𝑗 ≤ 𝑛. Define:

X(𝑡) = 𝑡(1− 𝑡)X+ (1− 𝑡)X′ + 𝑡2a, (4.10)

where a is a worst-case input. Note that, the sampling set {X(𝑡) : 𝑡 ∈ [0, 1]} is defined
more carefully, by incorporating an extra randomness via X′ (cf. equation (4.8)). The
purpose of this extra randomness in Gemmell and Sudan’s work was to bring pairwise
independence, that is to ensure the independence of X(𝑡) and X(𝑡′) for 𝑡 ̸= 𝑡′, in order
to be able to use a tighter concentration inequality (namely, Chebyshev’s inequality)
as a replacement of our Lemma 4.3.4 while obtaining a high probability guarantee on
the constructed list. In their work, this is successful: X and X′ consist of iid samples,
drawn independently from uniform distribution over a finite field F𝑝, in which case,
it is not hard to show, X(𝑡) and X(𝑡′) are always independent for 𝑡 ̸= 𝑡′. For us,
however, this is no longer true: X and X′ both consist of iid log-normal components,
which breaks down uniformity and independence.

We leave the following problem open for future work: Let J = (𝐽𝑖𝑗 : 1 ≤ 𝑖 < 𝑗 ≤
𝑛) ∈ R𝑛(𝑛−1)/2 be a random vector with 𝐽𝑖𝑗

𝑑
= 𝒩 (0, 1), i.i.d; and let X = (𝑋𝑖𝑗 : 1 ≤

𝑖 < 𝑗 ≤ 𝑛) ∈ R𝑛(𝑛−1)/2 with 𝑋𝑖𝑗 = exp(2𝐽𝑖𝑗), 1 ≤ 𝑖 < 𝑗 ≤ 𝑛, as in the setting of
Theorem 4.3.1. Suppose that, there is an algorithm 𝒜(·), such that

P( ̂︀𝑍(X) = 𝒜(X)) ≥ 1

2
+

1

poly(n)
,

and that, the algorithm operates over real-valued inputs. Then 𝑃 = #𝑃 . An even
more challenging variant of this problem is to establish the same result, under a
weaker assumption on the success probability of the algorithm:

P( ̂︀𝑍(X) = 𝒜(X)) ≥ 1

poly(n)
,

like we established under the finite-precision computational model.

As we have noted, our approach is not limited to the Gaussian inputs, so long as
the distributions involved are well-behaved. The current method, however, does not
address the case of couplings with iid Rademacher inputs, and the average-case hard-
ness of the exact computation of partition function with iid Rademacher couplings
remains open. It is not surprising though in light of the fact that the average-case
hardness of the problem of computing the permanent of a matrix with 0/1 entries
remains open, as well.
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4.5 Appendix : Proofs of the Technical Lemmas

4.5.1 Proof of Lemma 4.2.11

Proof. The density of ̂︀𝐽𝑖𝑗 is given by

𝑓 ̂︀𝐽(𝑡) = 𝑑

𝑑𝑡
P
(︁
𝑒

𝛽√
𝑛
𝐽 ≤ 𝑡

)︁
=

𝑑

𝑑𝑡
P
(︂
𝐽 ≤ √

𝑛
log 𝑡

𝛽

)︂
=

√
𝑛√

2𝜋𝛽𝑡
𝑒
−𝑛 log2 𝑡

2𝛽2 .

Here 𝐽 denotes the standard normal random variable. It is easy to see that

𝑓 ̂︀𝐽(𝑡) = 𝑂
(︀√

𝑛𝑡
)︀
, (4.11)

as 𝑡 ↓ 0 since 𝑒log2 𝑥 diverges faster than 𝑥𝑐 for every constant 𝑐 as 𝑥→ ∞. Also

𝑓 ̂︀𝐽(𝑡) = 𝑂

(︂√
𝑛

𝑡2

)︂
, (4.12)

as 𝑡→ ∞. Both bounds are very crude of course, but suffice for our purposes.
We have for every 𝑡, 𝑡 > 0

| log 𝑓 ̂︀𝐽(𝑡)− log 𝑓 ̂︀𝐽(𝑡)| ≤ | log(𝑡)− log 𝑡|+ 𝑛

2𝛽2
| log2(𝑡)− log2(𝑡)|.

Now since |𝑑 log 𝑡
𝑑𝑡

| = 1/𝑡 ≤ 1/𝛿 for 𝑡 ≥ 𝛿, we obtain that in the range 0 < 𝛿 ≤ 𝑡, 𝑡 ≤ Δ

| log 𝑓 ̂︀𝐽(𝑡)− log 𝑓 ̂︀𝐽(𝑡)| ≤ (1/𝛿)|𝑡− 𝑡|,

| log2(𝑡)− log2(𝑡)| ≤ 2 logΔ

𝛿
|𝑡− 𝑡|.

Applying these bounds, exponentiating, and using the assumption on the lower bound
on logΔ and 𝑛 > 𝛽2, we obtain

exp

(︂
−2𝑛 logΔ

𝛽2𝛿
|𝑡− 𝑡|

)︂
≤ 𝑓 ̂︀𝐽(𝑡)
𝑓 ̂︀𝐽(𝑡) ≤ exp

(︂
2𝑛 logΔ

𝛽2𝛿
|𝑡− 𝑡|

)︂
. (4.13)

Remark 4.5.1. Let ̂︀𝐵𝑖 = 𝑒𝐵𝑖 and ̂︀𝐶𝑖 = 𝑒𝐶𝑖; and denote the (common) densi-
ties by 𝑓 ̂︀𝐵 and 𝑓 ̂︀𝐶. 𝑓 ̂︀𝐵(𝑡) = 𝑓 ̂︀𝐶(𝑡) = 1√

2𝜋𝑡
exp

(︁
− log2 𝑡

2

)︁
, and therefore, as 𝑡 ↓ 0,

𝑓 ̂︀𝐵(𝑡) = 𝑂(𝑡) = 𝑂(
√
𝑛𝑡), and furthermore, as 𝑡 → ∞, 𝑓 ̂︀𝐵(𝑡) = 𝑂(1/𝑡2) = 𝑂(

√
𝑛/𝑡2).

Similarly, the same Lipschitz condition holds, also for 𝑓 ̂︀𝐵(𝑡) and 𝑓 ̂︀𝐶(𝑡), and therefore,
the result of Lemma 4.2.11 applies also to the exponentiated version of the external
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field components. Note also that, we still have the same asymptotic behaviour, even
if the external field components 𝐵𝑖 and 𝐶𝑖 have a constant variance, different than 1.

4.5.2 Proof of Lemma 4.2.3

Proof. We begin by deriving a downward self recursion formula for 𝐼𝑛(𝜎) = |{(𝑖, 𝑗) :
1 ≤ 𝑖 < 𝑗 ≤ 𝑛, 𝜎𝑖 ̸= 𝜎𝑗}|. Note that, for a given spin configuration 𝜎 ∈ {−1, 1}𝑛
if 𝜎𝑛 = +1, then 𝐼𝑛(𝜎) = 𝐼𝑛−1(𝜎) + |{𝑖 : 𝜎𝑖 = −1, 1 ≤ 𝑖 ≤ 𝑛 − 1}|, where we take
the projection of 𝜎 onto its first (𝑛 − 1) coordinates. Similarly, if 𝜎𝑛 = −1, then
𝐼𝑛(𝜎) = 𝐼𝑛−1(𝜎) + |{𝑖 : 𝜎𝑖 = +1, 1 ≤ 𝑖 ≤ 𝑛 − 1}|. For a given spin configuration 𝜎,
and dimension 𝑛 − 1, recalling the definition of 𝑓(𝑛,𝜎) in (4.3), we observe that for
𝜎𝑛 = +1

𝑓(𝑛,𝜎)− 𝑓(𝑛− 1,𝜎) = (𝑛− 2)− |{𝑖 : 𝜎𝑖 = −1, 1 ≤ 𝑖 ≤ 𝑛− 1}|,

and similarly, for 𝜎𝑛 = −1,

𝑓(𝑛,𝜎)− 𝑓(𝑛− 1,𝜎) = (𝑛− 2)− |{𝑖 : 𝜎𝑖 = +1, 1 ≤ 𝑖 ≤ 𝑛− 1}|.

Now, observe that, using the relation between 𝑓(𝑛,𝜎) and 𝑓(𝑛 − 1,𝜎) with respect
to polarity of 𝜎𝑛, we have:

𝑍𝑛(J,B,C; 𝑝𝑛) = 𝐶𝑛2
(𝑛−2)𝑁

∑︁
𝜎∈{−1,1}𝑛−1

𝜎𝑛=+1

2𝑁𝑓(𝑛−1,𝜎)

⎡⎢⎣
⎛⎜⎝ ∏︁

1≤𝑖≤𝑛−1
𝜎𝑖=−

2−𝑁𝐵𝑖𝐽𝑖𝑛

⎞⎟⎠

·

⎛⎜⎝ ∏︁
1≤𝑖≤𝑛−1
𝜎𝑖=+

𝐶𝑖

⎞⎟⎠
⎛⎜⎜⎝ ∏︁

1≤𝑖<𝑗≤𝑛−1
𝜎𝑖 ̸=𝜎𝑗

𝐽𝑖𝑗

⎞⎟⎟⎠
⎤⎥⎥⎦

+𝐵𝑛2
(𝑛−2)𝑁

∑︁
𝜎∈{−1,1}𝑛−1

𝜎𝑛=−1

2𝑁𝑓(𝑛−1,𝜎)

⎡⎢⎣
⎛⎜⎝ ∏︁

1≤𝑖≤𝑛−1
𝜎𝑖=−

𝐵𝑖

⎞⎟⎠

·

⎛⎜⎝ ∏︁
1≤𝑖≤𝑛−1
𝜎𝑖=+

2−𝑁𝐶𝑖𝐽𝑖𝑛

⎞⎟⎠
⎛⎜⎜⎝ ∏︁

1≤𝑖<𝑗≤𝑛−1
𝜎𝑖 ̸=𝜎𝑗

𝐽𝑖𝑗

⎞⎟⎟⎠
⎤⎥⎥⎦

= 𝐶 ′
𝑛𝑍𝑛−1(J

′,B+,C+; 𝑝𝑛) +𝐵′
𝑛𝑍𝑛−1(J

′,B−,C−; 𝑝𝑛).
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4.5.3 Proof of Lemma 4.2.4

Proof. Fix an 1 ≤ 𝑖 ≤ 𝑇 , and let 𝜉𝑖 denote the 𝑖𝑡ℎ component of an arbitrary vector
𝜉. Note that, the event {𝐷(𝑥1) = 𝑦1, 𝐷(𝑥2) = 𝑦2} implies:

(𝑦1)𝑖 = (2− 𝑥1)(𝑣1)𝑖 + (𝑥1 − 1)(𝑣2)𝑖 + (𝑥1 − 1)(𝑥1 − 2)(𝐾𝑖 + 𝑥1𝑀𝑖)

(𝑦2)𝑖 = (2− 𝑥2)(𝑣1)𝑖 + (𝑥2 − 1)(𝑣2)𝑖 + (𝑥2 − 1)(𝑥2 − 2)(𝐾𝑖 + 𝑥2𝑀𝑖).

Since this is a pair of equations with two unknowns (namely, 𝐾𝑖 and 𝑀𝑖), it has a
unique solution, which holds with probability 1/𝑝2𝑛 (note that, 𝑥1, 𝑥2 /∈ {1, 2}, hence
for 𝑖 = 1, 2, (𝑥𝑖−1)(𝑥𝑖−2) terms are not zero, and thus their modulo 𝑝𝑛 inverse exists).
Finally, using independence across 𝑖 ∈ {1, 2, . . . , 𝑇}, we get P(𝐷(𝑥1) = 𝑦1, 𝐷(𝑥2) =
𝑦2) = 1/𝑝2𝑇𝑛 . For P(𝐷(𝑥1) = 𝑦1), it is not hard to show by conditioning that, this
event has probability 1/𝑝𝑇𝑛 .

4.5.4 Proof of Lemma 4.2.5

Proof. Let N𝑥 ∈ {0, 1}, 𝑥 = 3, 4, . . . , 𝑝𝑛, be random variables, where N𝑥 = 1 iff
𝒜(𝐷(𝑥)) = 𝜑(𝑥) = 𝑍𝑛−1(𝐷(𝑥); 𝑝𝑛). Namely, N𝑥 ∼ Ber(𝑞). Note that, N =

∑︀𝑝𝑛
𝑥=3 N𝑥.

Let 𝑍 = N/(𝑝𝑛 − 2). We have E[𝑍] = 𝑞. Hence,

P(N < (𝑝𝑛 − 2)𝑞/2) = P
(︂∑︀𝑝𝑛

𝑥=3 N𝑥

𝑝𝑛 − 2
< 𝑞/2

)︂
= P(𝑍 − E[𝑍] < −𝑞/2)

≤ P(|𝑍 − E[𝑍]| > 𝑞/2)

≤ Var(𝑍)

(𝑞/2)2
≤ 1

(𝑝𝑛 − 2)𝑞2
,

by Chebyshev’s inequality, and the trivial inequality, 4𝑞 − 4𝑞2 ≤ 1. Note that, since
we only have pairwise independence as opposed to iid, a Chernoff-type bound do not
apply.

4.5.5 Proof of Lemma 4.2.6

Proof. Assume the contrary, and take a subset ℱ ′ ⊆ ℱ with |ℱ ′| = ⌈3/𝑞⌉. Let,
𝐺𝒮(𝑓) = {𝑖 : (𝑖, 𝑓(𝑖)) ∈ 𝐺(𝑓) ∩ 𝒮}. Note that,

⋃︀
𝑓∈ℱ 𝐺𝒮(𝑓) ⊆ {3, 4, . . . , 𝑝𝑛}, and

furthermore, for any distinct 𝑓, 𝑓 ′ ∈ ℱ ′, it holds that, |𝐺𝒮(𝑓) ∩ 𝐺𝒮(𝑓 ′)| ≤ 𝑛2 − 1.
Indeed, if not, define ̂︀𝑓 = 𝑓 − 𝑓 ′, and observe that deg( ̂︀𝑓) ≤ 𝑛2 − 1. If |𝐺𝒮(𝑓) ∩
𝐺𝒮(𝑓 ′)| ≥ 𝑛2, then, on at least 𝑛2 values of 𝑖, 𝑓(𝑖) = 𝑓 ′(𝑖), and thus, ̂︀𝑓(𝑖) = 0,
yielding that ̂︀𝑓 has at least 𝑛2 distinct zeroes (modulo 𝑝𝑛), a contradiction to the
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degree of ̂︀𝑓 . Now, using inclusion-exclusion principle,

𝑝𝑛 − 2 ≥
⃒⃒⃒⃒
⃒ ⋃︁
𝑓∈ℱ ′

𝐺𝒮(𝑓)

⃒⃒⃒⃒
⃒ ≥ ∑︁

𝑓∈ℱ ′

|𝐺𝒮(𝑓)| −
∑︁

𝑓,𝑓 ′∈ℱ ′,𝑓 ̸=𝑓 ′

|𝐺𝒮(𝑓) ∩𝐺𝒮(𝑓
′)|

≥ ⌈3
𝑞
⌉(𝑝𝑛 − 2)𝑞

2
− 1

2
⌈3
𝑞
⌉(⌈3

𝑞
⌉ − 1)(𝑛2 − 1)

=
1

2
⌈3
𝑞
⌉
(︀
(𝑝𝑛 − 2)𝑞 − (⌈3/𝑞⌉ − 1)(𝑛2 − 1)

)︀
≥ (𝑝𝑛 − 2) +

𝑝𝑛 − 2

2
− 3

2𝑞
(⌈3/𝑞⌉ − 1)(𝑛2 − 1).

However, contradicting with this inequality, we claim that in fact 𝑝𝑛 − 2 > 3
𝑞
(⌈3/𝑞⌉−

1)(𝑛2 − 1). Since ⌈3/𝑞⌉ < 3/𝑞 + 1, it is sufficient to show that, 𝑝𝑛 − 2 > 9
𝑞2
(𝑛2 − 1).

Since 𝑞 ≥ 1/𝑛𝑘, we have 9
𝑞2
(𝑛2 − 1) ≤ 9𝑛2𝑘(𝑛2 − 1) = 9𝑛2𝑘+2 − 9𝑛2𝑘 < 𝑝𝑛 − 2, for 𝑛

large (for any 𝑘). Hence, we arrive at a contradiction.

4.5.6 Proof of Lemma 4.2.7

Proof. We condition on the high probability event, {N ≥ (𝑝𝑛 − 2)𝑞/2}, where N is
the random variable defined in Lemma 4.2.5. We divide the construction, into two
cases, depending on the magnitude of 𝑝𝑛 that we are working at.

First, suppose 9𝑛2𝑘+2 ≤ 𝑝𝑛 ≤ 161𝑛3𝑘+2. Apply 𝒜 on 𝐷(𝑥), for every 𝑥 =
3, 4, . . . , 𝑝𝑛 (which, due to magnitude constraint on 𝑝𝑛, takes at most polynomial
in 𝑛 many operations). By Lemma 4.2.5, with probability at least 1 − 1

(𝑝𝑛−2)𝑞2
,

𝒜(𝐷(𝑥)) = 𝜑(𝑥) = 𝑍𝑛−1(𝐷(𝑥); 𝑝𝑛) for at least (𝑝𝑛−2)𝑞
2

points. Now, since 𝑞 ≥ 1/𝑛𝑘, we
have a list (𝑥𝑖, 𝑦𝑖)𝐿𝑖=1 (where 𝐿 = 𝑝𝑛−2 and 𝑦𝑖 = 𝒜(𝐷(𝑥))), and there is a polynomial
𝑓 of degree 𝑑 less than 𝑛2 (namely, 𝜑(𝑥) = 𝑍𝑛−1(𝐷(𝑥); 𝑝𝑛)), such that, the graph of 𝑓
intersects the list at at least 𝑡 = 𝑝𝑛−2

2𝑛𝑘 points. As 𝑝𝑛 ≥ 9𝑛2𝑘+2, it holds that 𝑡 >
√
2𝐿𝑑.

Clearly, for all such pairs, the first coordinates are all distinct.
Next, suppose 𝑝 ≥ 161𝑛3𝑘+2. In this case, it is not clear, whether running the

algorithm on {𝐷(𝑥) : 𝑥 = 3, 4, . . . , 𝑝𝑛} takes polynomial in 𝑛 many calls to 𝒜. To
handle this issue, we apply the following resampling procedure (where the choice
of numbers is to make sure the argument works). Select 𝐿 = 40𝑛2𝑘+2 numbers
𝑥1, 𝑥2, . . . , 𝑥𝐿, uniformly and independently from {3, 4, . . . , 𝑝𝑛}. Our goal is to find a
lower bound on the number of 𝑥𝑖’s, for which with high probability we have at least
a certain number of distinct 𝑥𝑖’s, on which 𝒜 run correctly. We claim that, with high
probability, we will end up with at least 9𝑛𝑘+2 distinct 𝑥𝑖’s on which 𝒜(𝐷(𝑥𝑖)) =
𝑍𝑛−1(𝐷(𝑥𝑖); 𝑝𝑛). We argue as follows. Define a collection {𝐸𝑗 : 1 ≤ 𝑗 ≤ 𝐿} of events,

𝐸𝑗 = {𝑥𝑗 ̸= 𝑥𝑖, for 𝑖 ≤ 𝑗 − 1, 𝒜(𝐷(𝑥𝑗)) = 𝜑(𝑥𝑗) = 𝑍𝑛−1(𝐷(𝑥𝑗); 𝑝𝑛)}.

Namely, 𝐸𝑗 is the event that, (𝑥𝑗, 𝑦𝑗) is a ’nice’ sample, in the sense that, 𝑥𝑗 is distinct
from all preceding 𝑥𝑖’s, and 𝑦𝑗 = 𝜑(𝑥𝑗) = 𝑍𝑛−1(𝐷(𝑥𝑗); 𝑝𝑛). Now, we can change
the perspective slightly, and imagine that, (𝑥𝑗, 𝑦𝑗) is samples from a set, where 𝑥𝑗 ∈
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{3, 4, . . . , 𝑝𝑛}, and 𝑦𝑗 = 𝒜(𝐷(𝑥𝑗)). Recall that, among the set {𝐷(𝑥) : 𝑥 = 3, . . . , 𝑝𝑛},
the algorithm computes the partition function on at least (𝑝𝑛−2)𝑞

2
≥ 𝑝𝑛−2

2𝑛𝑘 locations
(conditional on the high probability event {𝒩 ≥ (𝑝𝑛− 2)𝑞/2} of Lemma 4.2.5). Note
that,

P(𝐸𝑗) ≥
𝑝𝑛−2
2𝑛𝑘 − 𝐿

𝑝𝑛 − 2
=

1

2𝑛𝑘
− 40𝑛2𝑘+2

161𝑛3𝑘+2 − 2
≥ 1

4𝑛𝑘
,

since, the worst case for 𝐸𝑗 is that, all preceding chosen entries are distinct, leaving
less number of choices for 𝑥𝑗, and we repeat the procedure 𝐿 times. With this, we
now claim that with high probability, at least 9𝑛𝑘+2 of events (𝐸𝑗)

𝐿
𝑗=1 occur. To

see this, we note that, the event of interest (9𝑛𝑘+2 of events (𝐸𝑗 : 𝑗 ∈ 𝐿) occur), is
stochastically dominated by the event that, a binomial random variable Bin(𝐿, 1/4𝑛𝑘),
whose expectation is 𝐿/4𝑛𝑘 = 10𝑛𝑘+2 is at least 𝐿 = 9𝑛𝑘+2, which, by a standard
Chernoff bound, is exponentially small. At the end , we have a list of 𝐿 = 40𝑛2𝑘+2

pairs, (𝑥𝑖, 𝑦𝑖)𝐿𝑖=1, on which we have at least 𝑡 ≥ 9𝑛𝑘+2 correct evaluations (whp), where
𝑡 ≥ 9𝑛𝑘+2 >

√
2𝐿𝑑 with 𝑑 = 𝑛2.

4.5.7 Proof of Lemma 4.2.10

Proof. Suppose, this is false, and the number of primes between 9𝑛2𝑘+2 and 2(2 +
𝛼 + 2𝑘)𝑁𝑛2𝑘+2 log 𝑛 is at most 𝑁𝑛2𝑘+2, for all large 𝑛. Recall that, prime number
theorem (PNT) states,

lim
𝑚→∞

𝜋(𝑚)

𝑚/ log𝑚
= 1,

where 𝜋(𝑚) =
∑︀

𝑝≤𝑚,𝑝 prime 1 is the prime counting function. Now we have, for 𝑚 ≜
2(2+𝛼+2𝑘)𝑁𝑛2𝑘+2 log 𝑛, 𝜋(𝑚) ≤ 𝑁𝑛2𝑘+2 +9𝑛2𝑘+2 = 𝑁𝑛2𝑘+2(1+ 𝑜(1)). Now, using
𝑁 ≤ 𝑛𝛼, we have, log𝑚 ≤ (2 + 𝛼 + 2𝑘 + 𝑜(1)) log 𝑛, and therefore,

𝑚

log𝑚
≥ 2(2 + 𝛼 + 2𝑘)𝑁𝑛2𝑘+2 log 𝑛

(2 + 𝛼 + 2𝑘 + 𝑜(1)) log 𝑛
= 2(1− 𝑜(1))𝑁𝑛2𝑘+2,

and since 𝜋(𝑚) ≤ 𝑁𝑛2𝑘+2(1 + 𝑜(1)), we get a contradiction with PNT, for 𝑛 large
enough.

4.5.8 Proof of Lemma 4.2.12

Proof. We have for every ℓ ∈ [0, 𝑝𝑛 − 1]

P(𝐴 = ℓ mod (𝑝𝑛)) =
∑︁
𝑚∈Z

∫︁ 𝑚𝑝𝑛+ℓ+1

2𝑁

𝑚𝑝𝑛+ℓ

2𝑁

𝑓𝑋 (𝑡) 𝑑𝑡.

We now let,

𝑀*(𝑛) =
𝑛5𝑘+9/2𝑁2𝑁

𝑝𝑛
and 𝑀*(𝑛) =

2𝑁

𝑁𝑛5𝑘/2+3𝑝𝑛
.
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Note the following bound on the size of 𝑝𝑛 = 𝑜(𝑁𝑛3𝑘+2), due to Lemma 4.2.10. We
now consider separately the case 𝑚 ∈ [𝑀*(𝑛),𝑀*(𝑛)−1] and 𝑚 /∈ [𝑀*(𝑛),𝑀*(𝑛)−1].
For 𝑚 ∈ [𝑀*(𝑛),𝑀*(𝑛)− 1] applying Lemma 4.2.11 with

𝛿 =
𝑀*(𝑁)𝑝𝑛

2𝑁

Δ =
𝑀*(𝑁)𝑝𝑛

2𝑁
,

we have for very 𝑡 and 𝑡 such that

2𝑁 𝑡 ∈ [𝑚𝑝𝑛 + ℓ,𝑚𝑝𝑛 + ℓ+ 1]

2𝑁 𝑡 ∈ [𝑚𝑝𝑛,𝑚𝑝𝑛 + 1]

𝑓𝑋
(︀
𝑡
)︀

𝑓𝑋 (𝑡)
≤ exp

⎛⎝2𝑛2𝑁 log
(︁

𝑀*(𝑛)𝑝𝑛
2𝑁

)︁
𝛽2𝑀*(𝑛)𝑝𝑛

|𝑡− 𝑡|

⎞⎠ .

Since |𝑡− 𝑡| ≤ 𝑝𝑛/2
𝑁 , we obtain

𝑓𝑋
(︀
𝑡
)︀

𝑓𝑋 (𝑡)
≤ exp

⎛⎝2𝑛 log
(︁

𝑀*(𝑛)𝑝𝑛
2𝑁

)︁
𝛽2𝑀*(𝑛)

⎞⎠ .

Applying the value of and 𝑀*(𝑛) we have log
(︁

𝑀*(𝑛)𝑝𝑛
2𝑁

)︁
= 𝑂(log 𝑛). Given an upper

bound 𝑝𝑛 = 𝑂(𝑁𝑛3𝑘+2), we have that the exponent is

𝑂

(︂
𝑛 log 𝑛

𝑀*(𝑛)

)︂
= 𝑂

(︂
𝑛11𝑘/2+6𝑁2

2𝑁

)︂
.

We now claim

𝑂

(︂
𝑛11𝑘/2+6𝑁2

2𝑁

)︂
= 𝑂

(︀
𝑁−1𝑛−5𝑘−4

)︀
.

To show this, it suffices to show

𝑁3𝑛
21𝑘
2

+10 = 𝑂
(︀
2𝑁
)︀

We now verify this: note that this is true if there exists a constant 𝒞 > 0 such that
for all sufficiently large 𝑛 (and 𝑁):

2𝑁 > 𝒞𝑁3𝑛
21𝑘
2

+10 ⇐⇒ 𝑁 > log 𝒞 + 3 log𝑁 +

(︂
21𝑘

2
+ 10

)︂
log 𝑛.

222



Fix 𝒞 > 0 arbitrary, and observe that

𝑁 − 3 log𝑁 − log 𝒞 > 𝑁

2

for all 𝑁 that is sufficiently large. Thus it suffices to ensure

𝑁 > (21𝑘 + 20) log 𝑛.

But due to the hypothesis on 𝑁 stating 𝑁 ≥ 𝐶(𝑘) log 𝑛 with 𝐶(𝑘) = 21𝑘 + 20 + 𝜖,
for some 𝜖 > 0, we indeed have this. Thus the term above is

𝑂
(︀
𝑁−1𝑛−5𝑘−4

)︀
.

We obtain a bound

exp
(︀
𝑂
(︀
𝑁−1𝑛−5𝑘−4

)︀)︀
= 1 +𝑂

(︀
𝑁−1𝑛−5𝑘−4

)︀
.

Similarly, we obtain for the same range of 𝑡, 𝑡

𝑓𝑋
(︀
𝑡
)︀

𝑓𝑋 (𝑡)
≥ 1−𝑂

(︀
𝑁−1𝑛−5𝑘−4

)︀
.

Thus

|
∑︁

𝑀*(𝑛)≤𝑚≤𝑀*(𝑛)

(︃∫︁ 𝑚𝑝𝑛+ℓ+1

2𝑁

𝑚𝑝𝑛+ℓ

2𝑁

𝑓𝑋(𝑡)𝑑𝑡−
∫︁ 𝑚𝑝𝑛+1

2𝑁

𝑚𝑝𝑛
2𝑁

𝑓𝑋(𝑡)𝑑𝑡

)︃
|

|
∑︁

𝑀*(𝑛)≤𝑚≤𝑀*(𝑛)

∫︁ 𝑚𝑝𝑛+1

2𝑁

𝑚𝑝𝑛
2𝑁

(︂
𝑓𝑋

(︂
𝑡+

ℓ

2𝑁

)︂
− 𝑓𝑋(𝑡)

)︂
𝑑𝑡|

≤ 𝑂
(︀
𝑁−1𝑛−5𝑘−4

)︀ ∑︁
𝑀*(𝑛)≤𝑚≤𝑀*(𝑛)

∫︁ 𝑚𝑝𝑛+1

2𝑁

𝑚𝑝𝑛
2𝑁

𝑓𝑋(𝑡)𝑑𝑡

= 𝑂
(︀
𝑁−1𝑛−5𝑘−4

)︀
,

as the sum above is at most the integral of the density function, and thus at most 1.
We now consider the case 𝑚 ≤𝑀*(𝑛). We have applying (4.11)∫︁ 𝑀*(𝑛)𝑝𝑛

2𝑁

0

𝑓𝑋(𝑡)𝑑𝑡 = 𝑂

(︃(︂
𝑀*(𝑛)𝑝𝑛

2𝑁

)︂2√
𝑛

)︃

which applying the value of 𝑀*(𝑛) is 𝑂
(︀
𝑁−2𝑛−5𝑘−6+1/2

)︀
= 𝑂

(︀
𝑁−1𝑛−5𝑘−4

)︀
.

Finally, suppose 𝑚 ≥𝑀*(𝑛). Applying (4.12)∫︁
𝑡≥𝑀*(𝑛)𝑝𝑛

2𝑁

𝑓𝑋(𝑡)𝑑𝑡 = 𝑂

(︃ √
𝑛

𝑀*(𝑛)𝑝𝑛
2𝑁

)︃
= 𝑂(𝑁−1𝑛−5𝑘−4).
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We conclude that

max
0≤ℓ≤𝑝𝑛−1

|P(𝐴𝑖𝑗 = ℓ mod (𝑝𝑛))− P(𝐴𝑖𝑗 = 0 mod (𝑝𝑛))| = 𝑂(𝑁−1𝑛−5𝑘−4).

Thus

P(𝐴𝑖𝑗 = ℓ mod (𝑝𝑛))− 𝑝−1
𝑛

=
𝑝𝑛P(𝐴𝑖𝑗 = ℓ mod (𝑝𝑛))−

∑︀
ℓ P(𝐴𝑖𝑗 = ℓ mod (𝑝𝑛))

𝑝𝑛

≤ 𝑝𝑛
(︀
P(𝐴𝑖𝑗 = 0 mod (𝑝𝑛)) +𝑂(𝑁−1𝑛−5𝑘−4)

)︀
− 𝑝𝑛

(︀
P(𝐴𝑖𝑗 = 0 mod (𝑝𝑛))−𝑂(𝑁−1𝑛−5𝑘−4)

)︀
𝑝𝑛

= 𝑂(𝑁−1𝑛−5𝑘−4),

completing the proof of the lemma. A lower bound 𝑂(𝑁−1𝑛−5𝑘−4) is shown similarly.

4.5.9 Proof of Lemma 4.3.2

Proof. Let 𝑋(𝜆) = (1 − 𝜆)𝑒𝐽 + 𝜆𝑎, with 𝑎 > 0, and 𝐽
𝑑
= N(0, 4). Note that, the

density of 𝐽 is 𝑓𝐽(𝑡) = 1√
8𝜋

exp(−𝑡2/8), for every 𝑡 ∈ R. Fix a 𝜆0 ∈ (0, 1). Note that
since the total variation distance is upper bounded by one, it suffices to establish that
there exists a constant 𝒞𝜆0 , such that

𝑑𝑇𝑉 (𝑋(𝜆), 𝑋(0)) ≤ 𝒞𝜆0𝜆, ∀𝜆 ∈ [0, 𝜆0].

We begin with a calculation of the density of 𝑋(𝜆). Note that, the density of 𝑋(𝜆) is
supported on [𝜆𝑎,∞). Fix a 𝑡 ≥ 𝜆𝑎. Observe that, P (𝑋(𝜆) ≤ 𝑡) = P

(︀
𝐽 ≤ log

(︀
𝑡−𝜆𝑎
1−𝜆

)︀)︀
,

and thus, differentiation with respect to 𝑡 yield the density of 𝑋(𝜆) to be:

𝑓𝑋(𝜆)(𝑡) =
1√

8𝜋(𝑡− 𝜆𝑎)
exp

(︃
−1

8
log

(︂
𝑡− 𝜆𝑎

1− 𝜆

)︂2
)︃
, ∀𝑡 ≥ 𝜆𝑎.

Now let
𝑓𝑋(𝑡) =

1√
8𝜋𝑡

exp

(︂
−1

8
log(𝑡)2

)︂
,

be the density of the log-normal 𝑒𝐽 , with 𝐽
𝑑
= N(0, 4). Observe that, wherever it is

defined,

𝑓𝑋(𝜆)(𝑡) =
1

1− 𝜆
𝑓𝑋

(︂
𝑡− 𝜆𝑎

1− 𝜆

)︂
.

Recall next the definition of the TV distance, for two continuous random variables
𝑌, 𝑍 with densities 𝑓𝑌 and 𝑓𝑍 , respectively: 𝑑𝑇𝑉 (𝑌, 𝑍) = 1

2

∫︀
|𝑓𝑌 (𝑡) − 𝑓𝑍(𝑡)| 𝑑𝑡. In
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particular, we need to control the following quantity:

𝑑𝑇𝑉 (𝑋(𝜆), 𝑋(0)) =
1

2

∫︁ ∞

−∞
|𝑓𝑋(𝜆)(𝑡)− 𝑓𝑋(𝑡)| 𝑑𝑡 (4.14)

=
1

2

∫︁ 𝜆𝑎

0

𝑓𝑋(𝑡) 𝑑𝑡+
1

2

∫︁ ∞

𝜆𝑎

|𝑓𝑋(𝜆)(𝑡)− 𝑓𝑋(𝑡)| 𝑑𝑡 (4.15)

≤ 1

2
ℳ1𝜆𝑎+

1

2

∫︁ ∞

𝜆𝑎

|𝑓𝑋(𝜆)(𝑡)− 𝑓𝑋(𝑡)| 𝑑𝑡 (4.16)

where ℳ1 = sup𝑡∈R 𝑓𝑋(𝑡), which is easily found to be finite. With this, we now focus
on bounding the second term:

|𝑓𝑋(𝜆)(𝑡)− 𝑓𝑋(𝑡)| =
⃒⃒⃒⃒

1

1− 𝜆
𝑓𝑋

(︂
𝑡− 𝜆𝑎

1− 𝜆

)︂
− 𝑓𝑋(𝑡)

⃒⃒⃒⃒
≤
⃒⃒⃒⃒

1

1− 𝜆
𝑓𝑋

(︂
𝑡− 𝜆𝑎

1− 𝜆

)︂
− 1

1− 𝜆
𝑓𝑋(𝑡)

⃒⃒⃒⃒
+

⃒⃒⃒⃒
1

1− 𝜆
𝑓𝑋(𝑡)− 𝑓𝑋(𝑡)

⃒⃒⃒⃒
≤ 1

1− 𝜆0

⃒⃒⃒⃒
𝑓𝑋

(︂
𝑡− 𝜆𝑎

1− 𝜆

)︂
− 𝑓𝑋(𝑡)

⃒⃒⃒⃒
+

𝜆

1− 𝜆0
𝑓𝑋(𝑡),

where the first inequality uses the triangle inequality, and the second inequality uses
the fact that 𝜆 ≤ 𝜆0 < 1. We then have:∫︁ ∞

𝜆𝑎

|𝑓𝑋(𝜆)(𝑡)− 𝑓𝑋(𝑡)| 𝑑𝑡 ≤
1

1− 𝜆0

∫︁ ∞

𝜆𝑎

⃒⃒⃒⃒
𝑓𝑋

(︂
𝑡− 𝜆𝑎

1− 𝜆

)︂
− 𝑓𝑋(𝑡)

⃒⃒⃒⃒
𝑑𝑡+

𝜆

1− 𝜆0

∫︁ ∞

𝜆𝑎

𝑓𝑋(𝑡) 𝑑𝑡

(4.17)

≤ 1

1− 𝜆0

∫︁ ∞

𝜆𝑎

⃒⃒⃒⃒
𝑓𝑋

(︂
𝑡− 𝜆𝑎

1− 𝜆

)︂
− 𝑓𝑋(𝑡)

⃒⃒⃒⃒
𝑑𝑡+

𝜆

1− 𝜆0
, (4.18)

using the fact that 𝑓𝑋(𝑡) is a legitimate density, and thus, 𝑓𝑋(𝑡) ≥ 0 and
∫︀∞
0
𝑓𝑋(𝑡) = 1.

Combining everything we have thus far, in particular, Equations (4.16) and (4.18);
we arrive at:

𝑑𝑇𝑉 (𝑋(𝜆), 𝑋(0)) ≤ 𝜆

(︂
1

2(1− 𝜆0)
+
𝑎

2
ℳ1

)︂
+

1

2(1− 𝜆0)

∫︁ ∞

𝜆𝑎

⃒⃒⃒⃒
𝑓𝑋

(︂
𝑡− 𝜆𝑎

1− 𝜆

)︂
− 𝑓𝑋(𝑡)

⃒⃒⃒⃒
𝑑𝑡,

(4.19)
where ℳ1 = sup𝑡∈R 𝑓𝑋(𝑡), is the maximum value of the log-normal density, which is
a finite absolute constant. The remaining task is to bound the integral in Equation
(4.19). Now, let

𝐼𝑡,𝜆 =

(︂
min

(︂
𝑡− 𝜆𝑎

1− 𝜆
, 𝑡

)︂
,max

(︂
𝑡− 𝜆𝑎

1− 𝜆
, 𝑡

)︂)︂
.

We now make the following observation:

𝑡− 𝜆𝑎

1− 𝜆
≥ 𝑡 ⇐⇒ 𝑡− 𝜆𝑎 ≥ 𝑡− 𝜆𝑡 ⇐⇒ 𝑡 ≥ 𝑎.
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Namely, we have that for 𝑡 ≥ 𝑎:

𝐼𝑡,𝜆 =

(︂
𝑡,
𝑡− 𝜆𝑎

1− 𝜆

)︂
. (4.20)

By the mean-value theorem, and the fact that 𝜆 ≤ 𝜆0 < 1, we have:⃒⃒⃒⃒
𝑓𝑋

(︂
𝑡− 𝜆𝑎

1− 𝜆

)︂
− 𝑓𝑋(𝑡)

⃒⃒⃒⃒
=

⃒⃒⃒⃒
𝑡− 𝜆𝑎

1− 𝜆
− 𝑡

⃒⃒⃒⃒
· |𝑓 ′

𝑋(𝜉)|, ∃𝜉 ∈ 𝐼𝑡,𝜆 (4.21)

≤ 𝜆

1− 𝜆0
|𝑡− 𝑎| sup

𝜉∈𝐼𝑡,𝜆
|𝑓 ′

𝑋(𝜉)|. (4.22)

Now, we study the derivative 𝑓 ′
𝑋(𝑡) of the log-normal density, which computes easily

as:

𝑓 ′
𝑋(𝑡) = −exp(−1

8
log(𝑡)2)(4 + log 𝑡)

8
√
2𝜋𝑡2

.

Note that, as 𝑡→ 0, −(4 + log 𝑡) = log(1/𝑡)(1 + 𝑜(1)), and thus, as 𝑡→ 0,

𝑓 ′
𝑋(𝑡) =

1 + 𝑜(1)

8
√
2𝜋

exp

(︂
−1

8
log(1/𝑡)2 + log(log(1/𝑡)) + 2 log(1/𝑡)

)︂
= 𝑜(1).

A similar conclusion holds also as 𝑡 → ∞. Inspecting the graph of this function, we
encounter the following features:

• 𝑓 ′
𝑋(𝑡) ≥ 0 on [0, 𝑒−4], and 𝑓𝑋(𝑡) < 0 on (𝑒−4,∞).

• There exists a 𝑇1 ∈ (0, 𝑒−4) , such that 𝑓 ′
𝑋(𝑡) is increasing on (0, 𝑒−4), and

decreasing on (𝑇1, 𝑒
−4).

• There exists a 𝑇2 ∈ (𝑒−4,∞) such that, 𝑓 ′
𝑋(𝑡) is decreasing on (𝑒−4, 𝑇2), and is

increasing on (𝑇2,∞).

In particular, sup𝑡∈R |𝑓 ′
𝑋(𝑡)| ≤ max{𝑓𝑋(𝑇1),−𝑓𝑋(𝑇2)} ≜ ℳ2 (an absolute constant),

recalling that 𝑓𝑋(𝑇2) < 0. Now, as long as 𝑡 ≥ max(𝑎, 𝑇2), and recalling Equation
(4.20), since |𝑓 ′

𝑋(𝑡)| is decreasing on 𝐼𝑡,𝜆 = (𝑡, 𝑡−𝜆
1−𝜆

) (since 𝑓 ′
𝑋(𝑡) is increasing, and

negative on this interval, we have the aforestated condition for |𝑓 ′
𝑋(𝑡)|), we have that

sup𝜉∈𝐼𝑡,𝜆 |𝑓 ′
𝑋(𝜉)| = |𝑓 ′

𝑋(𝑡)|. We now upper bound the integral:∫︁ ∞

𝜆𝑎

⃒⃒⃒⃒
𝑓𝑋

(︂
𝑡− 𝜆𝑎

1− 𝜆

)︂
− 𝑓𝑋(𝑡)

⃒⃒⃒⃒
𝑑𝑡,

by splitting into two pieces: 𝑡 ∈ [𝜆𝑎,max(𝑎, 𝑇2)], and 𝑡 ∈ (max(𝑎, 𝑇2),∞). Recalling
Equation (4.22), we have:∫︁ ∞

𝜆𝑎

⃒⃒⃒⃒
𝑓𝑋

(︂
𝑡− 𝜆𝑎

1− 𝜆

)︂
− 𝑓𝑋(𝑡)

⃒⃒⃒⃒
𝑑𝑡 ≤ 𝜆

1− 𝜆0

∫︁ ∞

𝜆𝑎

|𝑡− 𝑎| sup
𝜉∈𝐼𝑡,𝜆

|𝑓 ′
𝑋(𝜉)| 𝑑𝑡.
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Now, investigating right-hand-side, we have:

𝜆

1− 𝜆0

(︃∫︁ max(𝑎,𝑇2)

𝜆𝑎

|𝑡− 𝑎| sup
𝜉∈𝐼𝑡,𝜆

|𝑓 ′
𝑋(𝜉)| 𝑑𝑡+

∫︁ ∞

max(𝑎,𝑇2)

|𝑡− 𝑎| sup
𝜉∈𝐼𝑡,𝜆

|𝑓 ′
𝑋(𝜉)| 𝑑𝑡

)︃

≤ 𝜆

1− 𝜆0

(︃∫︁ max(𝑎,𝑇2)

𝜆𝑎

|𝑡− 𝑎|ℳ2 𝑑𝑡+

∫︁ ∞

max(𝑎,𝑇2)

|𝑡− 𝑎| · |𝑓 ′
𝑋(𝑡)| 𝑑𝑡

)︃

≤ 𝜆

1− 𝜆0

(︂
𝒞1(𝑎) +

∫︁ ∞

max(𝑎,𝑇2)

|𝑡− 𝑎| · |𝑓 ′
𝑋(𝑡)| 𝑑𝑡

)︂
,

using the fact that,
∫︀ max(𝑎,𝑇2)

𝜆𝑎
|𝑡 − 𝑎|ℳ2 𝑑𝑡 is upper bounded by some absolute con-

stant 𝒞1(𝑎), depending only on 𝑎 (by simply considering integral from 0 to avoid 𝜆
dependency, and the fact that ℳ2 is finite). For the second integral, observe that:∫︁ ∞

max(𝑎,𝑇2)

|𝑡− 𝑎| · |𝑓 ′
𝑋(𝑡)|; 𝑑𝑡 =

∫︁ ∞

max(𝑎,𝑇2)

(𝑡− 𝑎) · exp(−
1
8
log(𝑡)2)(4 + log(𝑡))

8
√
2𝜋𝑡2

𝑑𝑡

≤ 1

8
√
2𝜋

∫︁ ∞

max(𝑎,𝑇2)

exp(−1
8
log(𝑡)2)(4 + log 𝑡)

𝑡
𝑑𝑡 = 𝒞2(𝑎) <∞,

using the fact that the integrand is equal to,

exp

(︂
−1

8
log(𝑡)2 + log(4 + log(𝑡))− log(𝑡)

)︂
,

which is
exp

(︂
−1

8
log(𝑡)2 +𝑂(log 𝑡)

)︂
,

as 𝑡→ ∞. Combining these lines, we therefore have,∫︁ ∞

𝜆𝑎

⃒⃒⃒⃒
𝑓𝑋

(︂
𝑡− 𝜆𝑎

1− 𝜆
− 𝑓𝑋(𝑡)

⃒⃒⃒⃒)︂
𝑑𝑡 ≤ 𝜆

1− 𝜆0
(𝒞1(𝑎) + 𝒞2(𝑎)),

where 𝒞1(𝑎) and 𝒞2(𝑎) are two finite constants, depending only on 𝑎. Finally, recalling
Equation (4.19), we then have:

𝑑𝑇𝑉 (𝑋(𝜆), 𝑋(0)) ≤ 𝜆

(︂
1

2(1− 𝜆0)
+

1

2
ℳ1

)︂
+

𝜆

2(1− 𝜆0)2
(𝒞1(𝑎) + 𝒞2(𝑎))

= 𝜆

(︂
1

2(1− 𝜆0)
+

1

2
ℳ1 +

1

2(1− 𝜆0)2
(𝒞1(𝑎) + 𝒞2(𝑎))

)︂
≜ 𝜆𝒞𝜆0

for every 𝜆 ∈ [0, 𝜆0], as claimed earlier. Finally, taking 𝒞𝑖𝑗 = max{𝒞𝜆0 , 1/𝜆0}, we have
𝑑𝑇𝑉 (𝑋(𝜆), 𝑋(0)) ≤ 𝒞𝑖𝑗𝜆 for every 𝜆 ∈ [0, 1].
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4.5.10 Proof of Lemma 4.3.3

Proof. Recall the following coupling interpretation of total variation distance:

𝑑𝑇𝑉 (𝑃,𝑄) = inf{P(𝑋 ̸= 𝑌 ) : (𝑋, 𝑌 ) is such that 𝑋 𝑑
= 𝑃, 𝑌

𝑑
= 𝑄}.

Now, let 𝑃1, . . . , 𝑃ℓ and 𝑄1, . . . , 𝑄ℓ be measures defined on a sample space Ω. Suppose
𝑋1, . . . , 𝑋ℓ are independent random variables with 𝑋𝑖

𝑑
= 𝑃𝑖 for 1 ≤ 𝑖 ≤ ℓ; and

𝑌1, . . . , 𝑌ℓ are independent random variables with 𝑌𝑖
𝑑
= 𝑄𝑖 for 1 ≤ 𝑖 ≤ ℓ. Consider

the vectors, X = (𝑋1, . . . , 𝑋ℓ) and Y = (𝑌1, . . . , 𝑌ℓ). Observe that, X 𝑑
= ⊗ℓ

𝑘=1𝑃𝑘 and
Y

𝑑
= ⊗ℓ

𝑘=1𝑄𝑘. Note that,

{X ̸= Y} ⊆
ℓ⋃︁

𝑘=1

{𝑋𝑘 ̸= 𝑌𝑘}.

Now, using union bound, we have:

𝑑𝑇𝑉

(︀
⊗ℓ

𝑘=1𝑃𝑘,⊗ℓ
𝑘=1𝑄𝑘

)︀
≤ P(X ̸= Y) ≤

ℓ∑︁
𝑘=1

P(𝑋𝑘 ̸= 𝑌𝑘).

Now, recalling
𝑑𝑇𝑉 (𝑃𝑘, 𝑄𝑘) = inf

(𝑋𝑘,𝑌𝑘):𝑋𝑘
𝑑
=𝑃𝑘,𝑌𝑘

𝑑
=𝑄𝑘

P(𝑋𝑘 ̸= 𝑌𝑘),

and taking infimums on the right hand side, we immediately obtain:

𝑑𝑇𝑉

(︀
⊗ℓ

𝑘=1𝑃𝑘,⊗ℓ
𝑘=1𝑄𝑘

)︀
≤

ℓ∑︁
𝑘=1

𝑑𝑇𝑉 (𝑃𝑘, 𝑄𝑘),

as claimed.

4.5.11 Proof of Lemma 4.3.4

Proof. Letting 𝑌𝑘 = −𝑋𝑘 with E[𝑌𝑘] ≤ −𝑞, we have:

P

(︃
1

ℓ

ℓ∑︁
𝑘=1

𝑋𝑘 > 𝜖

)︃
= 1− P

(︃
1

ℓ

ℓ∑︁
𝑘=1

𝑌𝑘 ≥ −𝜖
)︃

= 1− P

(︃
1

ℓ

ℓ∑︁
𝑘=1

(1 + 𝑌𝑘) ≥ 1− 𝜖

)︃
≥ 1− 1− 𝑞

1− 𝜖
=
𝑞 − 𝜖

1− 𝜖

since for 𝑌 = 1
ℓ

∑︀ℓ
𝑘=1(1+𝑌𝑘) ≥ 0, it holds that E[𝑌 ] ≤ 1−𝑞, and therefore by Markov

inequality, we have P(𝑌 ≥ 1− 𝜖) ≤ E[𝑌 ]
1−𝜖

≤ 1−𝑞
1−𝜖

.
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Chapter 5

Self-Regularity of Non-Negative
Output Weights for
Overparameterized Two-Layer Neural
Networks

5.1 Introduction

Neural network (NN) architectures achieved a great deal of success in practice. An
ever-growing list of their applications includes image recognition [165], image classi-
fication [192], speech recognition [219], natural language processing [79], game play-
ing [257] and more. Despite this great empirical success, however, a rigorous under-
standing of these networks is still an ongoing quest.

A common paradigm in classical statistics is that overparameterized models, that
is, models with more parameters than necessary, pick on the idiosyncrasies of the
training data itself—dubbed as overfitting ; and as a consequence, tend to predict
poorly on the unseen data—called poor generalization. The aforementioned success
of the NN architectures, however, stands in the face of this conventional wisdom; and
a growing body of recent literature, starting from [294], has demonstrated exactly the
opposite effect for a broad class of NN models: even though the number of parameters,
such as the number of hidden units (neurons), of a NN significantly exceeds the sample
size, and a perfect (zero) in-training error is achieved (commonly called as data in-
terpolation); they still retain a good generalization ability. Some partial and certainly
very incomplete list of references to this point are found in [99, 203, 156, 152, 46, 17].
Defying statistical intuition even further, it was established empirically in [46] that
beyond a certain point, increasing the number of parameters increases out of sample
accuracy.

Explaining this conundrum is arguably one of the most vexing current problems in
the field of theoretical machine learning. Standard Vapnik-Chervonenkis (VC) theory
do not help explaining the good generalization ability of overparameterized NN models,
since the VC-dimension of these networks grows (at least) linearly in the number
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of parameters [162, 42]. These findings fueled significant research efforts aiming at
understanding the generalization ability of such networks. One such line of research is
the algorithm-independent front; and is through the lens of controlling the norm of the
matrices carrying weights [225, 41, 207, 153, 104], PAC-Bayes theory [224, 223], and
compression-based bounds [20], among others. A major drawback of these approaches,
however, is that they require certain norm constraints on the weights considered;
therefore making their guarantees a posteriori in nature: whether or not the weights
of the NN are bounded (hence a good generalization holds) can be determined only
after the training process is complete. An alternative line of research (detailed below)
focuses on the end results of the algorithms, and potentially yields a priori guarantees:
for instance, relatively recently, Arora et al. gave in [18] a priori guarantees for the
solution found by the gradient descent algorithm under random initialization.

A predominant explanation of the aforementioned phenomenon (that the overpa-
rameterization does not hurt the generalization ability of the NN architectures) which
has emerged recently is based on the idea of self-regularization. Specifically, it is
argued that even though there is an abundance of parameter choices perfectly fitting
(interpolating) the data (and thus achieving zero in-training error); the algorithms
used in training the models, such as the gradient descent and its many variants such as
stochastic gradient descent, mirror descent, etc., tend to find solutions which are reg-
ularized according to some additional criteria, such as small norms, thus introducing
algorithm dependent inductive bias. Namely, the algorithms implemented for mini-
mizing training error “prefer" certain kinds of solutions. The use of these solutions for
model building in particular is believed to result in low generalization errors. Thus a
significant research effort (as was partially mentioned above) was devoted to the anal-
ysis of the end results of the implementation of such algorithms. This line of research
include the analysis of the end results of the gradient descent [64, 115], stochastic
gradient descent [160, 65, 203, 69], as well as the stochastic gradient Langevin dy-
namics [222].

In this work, we consider two-layer NN models (5.1)—also known as shallow architectures—
consisting of an arbitrary number 𝑚 ∈ N of hidden units and sigmoid, rectified linear
unit (ReLU), or binary step activations—activations that are arguably among the
most popular practical choices—and investigate the following question: to what ex-
tent a low training error itself places a restriction on the weights of the learned NN?
We take an algorithm-independent route; and establish the following “picture", under
the assumption that the output weights 𝑎 = (𝑎𝑖 : 1 ≤ 𝑖 ≤ 𝑚) ∈ R𝑚 of the “learned"
NN are non-negative. When the number 𝑁 of training samples is at least an ex-
plicit (low-degree) polynomial function in 𝑑, 𝑁 = 𝑑𝑂(1), the norm ‖𝑎‖1 of the output
weights 𝑎 ∈ R𝑚

≥0 of any NN model achieving a small training error is well-controlled:
‖𝑎‖1 = 𝑂(1), with high probability over the training data set. In particular, for
the ReLU and step networks, we obtain a near-linear sample complexity bound,
𝑁 = Θ(𝑑 log 𝑑) for such a result to hold. Note that a condition such as the non-
negativity of 𝑎𝑖 is necessary in a strict sense for such a bound on ‖𝑎‖1. Indeed, notice
that by growing the width 𝑚 arbitrarily and appropriately choosing alternating signs
for the new weights 𝑎𝑖; one can introduce cancellations and make ‖𝑎‖1 to explode;
while keeping the training error unchanged.
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Our results are established using elementary tools, in particular through an 𝜖-net
argument (Definition 5.1.2). Notably, our results (a) are independent of the number
𝑚 of the hidden units (which can potentially be quite large), (b) are oblivious to the
way the training is done (that is, independent of the choice of the training algorithm);
and (c) are valid under quite mild distributional assumptions on the input/label pairs
(𝑋, 𝑌 ) ∈ R𝑑 × R. In particular, the coordinates of 𝑋 need not be independent.

Moreover, a bounded outer norm for such network models implies a well-controlled
fat-shattering dimension (FSD) [40]—a measure of the complexity of the model class
achieving a low training error. In Section 5.3, we leverage our outer norm bounds and
the FSD to establish generalization guarantees for the networks that we investigate.
This work presents extensions of certain results in our unpublished preprint [107].

Preliminaries

We commence this section with a list of notational convention that we follow through-
out.

Notation The set of reals, non-negative reals, and positive integers are denoted
respectively by R,R≥0, and N. For any set 𝑆, |𝑆| denotes its cardinality. For any
𝑁 ∈ N, [𝑁 ] ≜ {1, 2, . . . , 𝑁}. For any 𝑣 ∈ R𝑛, its ℓ𝑝 norm is denoted by ‖𝑣‖𝑝.
𝐵2(0, 𝑅) ≜

{︀
𝑥 ∈ R𝑑 : ‖𝑥‖2 ≤ 𝑅

}︀
denotes the Euclidean ball (of radius 𝑅), and S𝑑−1 ≜

{𝑥 ∈ R𝑑 : ‖𝑥‖2 = 1} denotes the Euclidean unit sphere. For 𝑢, 𝑣 ∈ R𝑛, their Euclidean
inner product is denoted by 𝑢𝑇𝑣. For any 𝑟 ∈ R, exp(𝑟) denotes 𝑒𝑟; and ln(𝑟) denotes
the logarithm of 𝑟 base 𝑒. For any “event" 𝐸; 1{𝐸} = 1 when 𝐸 is true; and 1{𝐸} = 0
when 𝐸 is false. SGM(𝑥) denotes the sigmoid activation function, 1/(1 + exp(−𝑥));
ReLU(𝑥) denotes the ReLU activation function, max{𝑥, 0}; and Step(𝑥) denotes the
(binary) step activation, 1{𝑥 > 0}. 𝑋

𝑑
= 𝒩 (0,Σ) if 𝑋 is a zero-mean multivariate

normal vector with covariance Σ. A random variable 𝑈 is symmetric around zero if
𝑈 and −𝑈 have the same distribution, that is 𝑈 𝑑

= −𝑈 . For any random variable 𝑈 ,
(if finite) its moment generating function (MGF) at 𝑠 ∈ R, E[exp(𝑠𝑈)], is denoted by
𝑀𝑈(𝑠). Finally, Θ(·), 𝑜(·), 𝑂 (·) are the standard asymptotic order notations.

Setup A two-layer NN (𝑎,𝑊 ) ∈ R𝑚 × R𝑚×𝑑 with 𝑚 hidden units (neurons) com-
putes, for each 𝑋 ∈ R𝑑, ∑︁

1≤𝑗≤𝑚

𝑎𝑗𝜎
(︀
𝑤𝑇

𝑗 𝑋
)︀
. (5.1)

Here, 𝜎(·) is the activation; 𝑤𝑗 ∈ R𝑑, the 𝑗th row of 𝑊 , carries the weights of neuron
𝑗; and 𝑎 = (𝑎𝑗 : 1 ≤ 𝑗 ≤ 𝑚) ∈ R𝑚 carries the output weights. ‖𝑎‖1 is referred to as
the outer norm. The problem of “learning" such two-layer NN models with nonlinear
activations under no restrictions on the signs of weights has been previously studied,
see e.g. [210, 261, 262, 260, 280] (and the references therein) for the case of quadratic
activation function, 𝜎(𝑥) = 𝑥2.

In this work, we investigate the self-regularization for the aforementioned architec-
tures under the assumption that 𝑎𝑗 ≥ 0 for 𝑗 ∈ [𝑚]. This non-negativity assumption
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appears often in the theoretical study of this model: see [143, 93, 204] for generic
𝑎 ∈ R𝑚

≥0; and [98, 250, 295, 150] for the case 𝑎𝑗 are equal to the same positive num-
ber.

Our study of NN models under the non-negativity assumption is also partly moti-
vated from an applied point of view, in that, non-negativity is inherent to many data
sets appearing in practice, including audio data and data on muscular activity [259, 1],
and it allows interpretability. Furthermore, non-negativity is also a commonly used
assumption in the context of matrix factorization, termed as the non-negative matrix
factorization problem (NMF): given a matrix 𝑀 ∈ R𝑛×𝑚 with non-negative entries
and an integer 𝑟 ≥ 1, the goal of the NMF is to find matrices 𝐴 ∈ R𝑛×𝑟 and𝑊 ∈ R𝑟×𝑚

with non-negative entries such that the product 𝐴𝑊 is as “close" to 𝑀 as possible;
as quantified, e.g., by the Frobenius norm. This problem is a fundamental problem
appearing in many practical applications, including information retrieval, document
clustering, image segmentation, demography and chemometrics, see [19] and the ref-
erences therein. Moreover, NMF is also related to the neural network models that
we consider herein with a non-negative activation 𝜎(·): observe that in the context
of NN models we consider, given data (𝑋𝑖, 𝑌𝑖), 1 ≤ 𝑖 ≤ 𝑁 , the goal of the learner is
to find a (𝑎,𝑊 ) ∈ R𝑚 × R𝑚×𝑑 such that 𝑌𝑖 and 𝑎𝑇𝜎 (𝑊𝑋𝑖) are as close as possible,
as quantified by the ℓ2 norm (here, 𝜎 acts coordinate-wise to the vector 𝑊𝑋). In
addition to its key role in the NMF problem; the non-negativity was also argued as
a natural assumption for representing objects in the seminal papers by Lee and Se-
ung [196, 195]; and also has roots in biology, in particular in the context of neuronal
firing rates, see [171], and the references therein.

In the sequel, 𝑑 ∈ N is reserved for the input dimension; and 𝑚 ∈ N is reserved
for the number of neurons. We consider herein two-layer NN models with sigmoid,
SGM(𝑥); rectified linear unit, ReLU(𝑥); and binary step, Step(𝑥), activation functions.
We refer to these as sigmoid, ReLU; and step networks, respectively. The sigmoid and
the ReLU are arguably among the most popular practical choices. The step function,
on the other hand, is one of the initial activations considered in the NN literature, and
is inspired from a biological point of view: it resembles the firing pattern of a neuron,
an initial motivation for studying NN architectures.

Given the data (𝑋𝑖, 𝑌𝑖) ∈ R𝑑 × R, 1 ≤ 𝑖 ≤ 𝑁 , consider the problem of finding
a two-layer NN (𝑎,𝑊 ) ∈ R𝑚 × R𝑚×𝑑 which “fits" the data as accurately as possible.
This is achieved by solving the so-called empirical risk minimization problem, where
the accuracy is quantified by the training error

̂︀ℒ (𝑎,𝑊 ) ≜
1

𝑁

∑︁
1≤𝑖≤𝑁

(︃
𝑌𝑖 −

∑︁
1≤𝑗≤𝑚

𝑎𝑗𝜎
(︀
𝑤𝑇

𝑗 𝑋𝑖

)︀)︃2

. (5.2)

One then runs a training algorithm, e.g., the gradient descent algorithm or one of
its variants (such as stochastic gradient descent or mirror descent), to find an (𝑎,𝑊 )

with a small ̂︀ℒ (𝑎,𝑊 ).
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Distributional assumption We study the case where the input/label pairs (𝑋𝑖, 𝑌𝑖),
1 ≤ 𝑖 ≤ 𝑁 , are i.i.d. samples of a distribution on R𝑑 × R (which is potentially un-
known to the learner). For our outer norm bounds, we assume that their distribution
satisfies the following.

• We assume the input 𝑋 ∈ R𝑑 satisfies P (‖𝑋‖22 ≤ 𝐶𝑑) ≥ 1 − exp (−Θ(𝑑)) for
some constant 𝐶 > 0.

• We assume the label 𝑌 is such that E[|𝑌 |] ≜𝑀 <∞.

Later in Section 5.3 when we study generalization guarantees, we consider a stronger
assumption on labels: we assume the labels 𝑌 are bounded, that is, for some 𝑀 > 0,
|𝑌 | ≤𝑀 almost surely.

These assumptions are quite mild. For instance,𝑋 ∈ R𝑑 need not have i.i.d. coordinates.
Moreover, most real data sets indeed have bounded labels [99]; and this bounded label
assumption is employed extensively in literature, see e.g. [144, 18, 96, 151, 206]. Our
next assumption regards the number 𝑁 of training samples.

Assumption 5.1.1. Throughout, we assume that the sample size 𝑁 satisfies 𝑁 ≤
exp(𝑐𝑑) for some 𝑐 > 0.

Assumption 5.1.1 is required for technical reasons: observe that since P (‖𝑋𝑖‖22 > 𝐶𝑑) ≤
exp(−Θ(𝑑)); it holds, by a union bound, that

P
(︁
‖𝑋𝑖‖22 ≤ 𝐶𝑑, 1 ≤ 𝑖 ≤ 𝑁

)︁
≥ 1−𝑁 exp(−Θ(𝑑)).

For this bound to be non-vacuous, 𝑁 should at most be exp(𝑐𝑑) for a small enough
𝑐 > 0. This assumption, again, is very benign due to obvious practical reasons.
Moreover, in fact, it suffices to have 𝑁 ≥ poly(𝑑) for our results to hold.

Nets and Covering Numbers The crux of our proofs is the so-called 𝜖−net
argument [113, 281, 282]. This (rather elementary) argument is also known as the
covering number argument ; and has been employed extensively in the literature; in-
cluding compressed sensing, machine learning and probability theory.

Definition 5.1.2. Let 𝜖 > 0. Given a metric space (𝑋, 𝜌), a subset 𝒩𝜖 ⊂ 𝑋 is
called an 𝜖−net of 𝑋 if, for every 𝑥 ∈ 𝑋, there is a 𝑦 ∈ 𝒩𝜖 such that 𝜌(𝑥, 𝑦) ≤ 𝜖.
The smallest cardinality of such an 𝒩𝜖, if finite, is called the covering number of 𝑋,
denoted by 𝒩 (𝑋, 𝜖).

The next result, verbatim from [282, Corollary 4.2.13], is an upper bound on the
covering number of the Euclidean ball.

Theorem 5.1.3. For 𝑅 ≥ 1 and any 𝜖 > 0, 𝒩 (𝐵2(0, 𝑅), 𝜖) ≤ (3𝑅/𝜖)𝑑; and 𝒩
(︀
S𝑑−1, 𝜖

)︀
≤

(3/𝜖)𝑑.
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Organization of Chapter. The rest of the chapter is organized as follows. Our
main results on the self-regularity of output weights are presented in Section 5.2. In
particular, see Sections 5.2.1, 5.2.2, and 5.2.3 for the cases of sigmoid, ReLU, and step
networks, respectively. By leveraging our outer norm bounds and employing earlier
results on the fat shattering dimension, we establish in Section 5.3 generalization
guarantees. We outline several future directions in Section 5.4. Finally, we present
our proofs in Section 5.5.

5.2 Outer Norm Bounds
In this section, we establish the self-regularity of the output weights for the aforemen-
tioned networks. That is, we establish that the outer norms of sigmoid, ReLU, and
step networks with non-negative output weights achieving a small training error (5.2)
on polynomially many data is 𝑂(1).

5.2.1 Self-Regularity for the Sigmoid Networks

Our first focus in on the sigmoid networks. This object, for each 𝑋 ∈ R𝑑, computes
the function (5.1) with 𝜎(𝑥) = SGM(𝑥) = (1 + exp(−𝑥))−1. Our first main result
establishes an outer norm bound for this architecture.

Theorem 5.2.1. Let 𝛿,𝑀,𝑅 > 0; and (𝑋𝑖, 𝑌𝑖) ∈ R𝑑 × R, 𝑖 ∈ [𝑁 ] be i.i.d. data with
E [|𝑌𝑖|] =𝑀 <∞; where 𝑁 satisfies Assumption 5.1.1. For any 𝑚 ∈ N, define

𝒮 (𝑚, 𝛿,𝑅) =
{︁
(𝑎,𝑊 ) ∈ R𝑚

≥0 × R𝑚×𝑑 : max
1≤𝑗≤𝑚

‖𝑤𝑗‖2 ≤ 𝑅, ̂︀ℒ (𝑎,𝑊 ) ≤ 𝛿2
}︁
,

where ̂︀ℒ (·) is defined in (5.2) with 𝜎(·) = SGM(·). Suppose, in addition, that the
random variable 𝑤𝑇𝑋 ∈ R is symmetric around zero for every 𝑤 ∈ R𝑑. Then,

P

(︃
sup

(𝑎,𝑊 )∈𝒮(𝛿,𝑅)

‖𝑎‖1 ≤ 3(1 + 𝑒)(𝛿 + 2𝑀)

)︃
(5.3)

≥ 1−
(︁
3𝑅

√
𝐶𝑑
)︁𝑑

exp (−Θ(𝑁))−𝑁 exp (−Θ(𝑑))− 𝑜𝑁(1),

where 𝒮(𝛿, 𝑅) ≜ ⋃︀𝑚∈N 𝒮 (𝑚, 𝛿,𝑅).

Corollary 5.2.2. Let 𝑅 = exp
(︀
𝑑𝑂(1)

)︀
. Then, under the assumptions of Theo-

rem 5.2.1; it holds, w.h.p., that sup(𝑎,𝑊 )∈𝒮(𝛿,𝑅) ‖𝑎‖1 ≤ 3(1+ 𝑒)(𝛿+2𝑀), if 𝑁 ≥ 𝑑𝑂(1).

The proof of Theorem 5.2.1 is provided in Section 5.5.1.
Above, 𝑜𝑁(1) is a function which depends only on the distribution of 𝑌 and 𝑁 ;

and tends to zero as 𝑁 → ∞. Several remarks are now in order. Theorem 5.2.1 states
that any two-layer sigmoid NN which (a) consists of internal weights 𝑤𝑗 bounded in
norm by an exponentially large (in 𝑑) quantity and non-negative output weights; and
(b) achieves a small training error on a sufficiently large data set, has a well-controlled
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outer norm. It is worth noting that Theorem 5.2.1 is oblivious to how the training is
done: this result not only applies to the weights obtained, say, via the gradient descent
algorithm; but applies to any weights (subject to the aforementioned assumptions)
achieving a small training loss.

Moreover, the upper bound established in Theorem 5.2.1 is also oblivious to the
number 𝑚 of the neurons of the NN used for fitting, provided that a small training
error is attained. (Here, it is worth noting that our results are contingent upon a
small training error of 𝛿2; and in practice, one needs a large number 𝑚 of neurons to
ensure a small training error. Namely, 𝑚, in some sense, controls ̂︀ℒ (𝑎,𝑊 ). We do not
focus on the question of whether such a small training error is attainable; but rather
establish self-regularity for any (𝑎,𝑊 ) with ̂︀ℒ (𝑎,𝑊 ) ≤ 𝛿2.) In particular, adopting a
teacher/student setting as in [152] where the input/label pairs (𝑋𝑖, 𝑌𝑖) are generated
by a teacher NN; the output norm of any student NN—which may potentially be sig-
nificantly overparameterized with respect to the teacher NN—is still well-controlled,
provided the assumptions of Theorem 5.2.1 are satisfied. The extra requirement
that 𝑤𝑇𝑋 is symmetric is quite mild: it holds for many data distributions, e.g., for
𝑋

𝑑
= 𝒩 (0,Σ) where Σ is an arbitrary positive semidefinite matrix.
The 𝑜𝑁(1) term is due to a certain high probability event ℰ0, see (5.10) in the proof.

The probability of this event is controlled through the weak law of large numbers;
and the 𝑜𝑁(1) term can be improved explicitly (a) to 𝑂(1/𝑁) if E[𝑌 2] <∞; and (b)
to exp(−Θ(𝑁)) if 𝑌𝑖 satisfy the large deviations bounds (which holds, for instance,
when the moment generating function of 𝑌𝑖 exists in a neighbourhood around zero).
Moreover, if 𝑌 is (almost surely) bounded (which holds for real data sets, as noted
earlier), then it can be dropped altogether.

Furthermore, Corollary 5.2.2—which follows immediately from Theorem 5.2.1—
asserts that even under the mild assumption 𝑅 = exp

(︀
𝑑𝑂(1)

)︀
(i.e., the weights 𝑤𝑗 are

unbounded from a practical perspective),
∑︀

𝑗 𝑎𝑗 is still 𝑂(1), provided that that the
number 𝑁 of data is polynomial in 𝑑.

Moreover, an inspection of the proof of Theorem 5.2.1 reveals the following. The
constant 3(1 + 𝑒) can be improved to any constant greater than four with slightly
more work. Moreover, the thesis of Theorem 5.2.1 still remains valid (with appropri-
ately modified constants) for any non-negative activation which is continuous at the
origin and whose value at the origin is positive. This includes the softplus activation
ln (1 + 𝑒𝑥) [148], the Gaussian activation, exp(−𝑥2); among others.

5.2.2 Self-Regularity for the ReLU Networks

Our next focus is on the ReLU networks. This object, for each input 𝑋 ∈ R𝑑,
computes the function (5.1) with 𝜎(𝑥) = ReLU(𝑥) = max{𝑥, 0} = 1

2
(𝑥+ |𝑥|).

We first observe that the ReLU function is positive homogeneous: for any 𝑐 ≥ 0
and 𝑥 ∈ R, ReLU(𝑐𝑥) = 𝑐 · ReLU(𝑥). For this reason, we assume, without loss of
generality, that ‖𝑤𝑗‖2 = 1 for 1 ≤ 𝑗 ≤ 𝑚. Indeed, if 𝑤𝑗 ̸= 0, one can simply “push"
its norm outside; whereas if 𝑤𝑗 = 0, then one can replace it with any unit norm vector
and set 𝑎𝑗 = 0 instead.
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It is worth noting that since the ReLU case requires no explicit assumptions on
‖𝑤𝑗‖2, an outer bound for this case is a somewhat stronger conclusion than an outer
bound for the case of sigmoid activation.

Equipped with this, we now present our next result.

Theorem 5.2.3. Let 𝛿,𝑀 > 0; and (𝑋𝑖, 𝑌𝑖) ∈ R𝑑 × R, 𝑖 ∈ [𝑁 ] be i.i.d. data with
E [|𝑌𝑖|] =𝑀 <∞; where 𝑁 satisfies Assumption 5.1.1. For any 𝑚 ∈ N, define

𝒢 (𝑚, 𝛿) =
{︁
(𝑎,𝑊 ) ∈ R𝑚

≥0 × R𝑚×𝑑 : ‖𝑤𝑗‖2 = 1, 1 ≤ 𝑗 ≤ 𝑚; ̂︀ℒ (𝑎,𝑊 ) ≤ 𝛿2
}︁
,

where ̂︀ℒ (·) is defined in (5.2) with 𝜎(·) = ReLU(·). Suppose, in addition, that for
𝑌𝑤 ≜ 𝑤𝑇𝑋, (a) there exists a 𝜇* > 0 such that E [ReLU(𝑌𝑤)] ≥ 𝜇* for any 𝑤 ∈ R𝑑

with ‖𝑤‖2 = 1; and (b) for some 𝑠 > 0, 𝑀1(𝑠) and 𝑀2(𝑠) are independent of 𝑑 and are
finite; where 𝑀1(𝑠) ≜ sup𝑤:‖𝑤‖2=1𝑀𝑌𝑤(𝑠) and 𝑀2(𝑠) ≜ sup𝑤:‖𝑤‖2=1𝑀𝑌𝑤(−𝑠). Then,

P

(︃
sup

(𝑎,𝑊 )∈𝒢(𝛿)
‖𝑎‖1 ≤ 4(𝛿 + 2𝑀)(𝜇*)−1

)︃
(5.4)

≥ 1−
(︃
12
√
𝐶𝑑

𝜇*

)︃𝑑

exp (−Θ(𝑁))−𝑁 exp (−Θ(𝑑))− 𝑜𝑁(1),

where 𝒢(𝛿) ≜ ⋃︀𝑚∈N 𝒢 (𝑚, 𝛿).

The proof of Theorem 5.2.3 is provided in Section 5.5.2.
In particular, it suffices to have a near-linear number of samples, 𝑁 = Θ(𝑑 log 𝑑),

to obtain a good uniform control over ‖𝑎‖1. As mentioned above, we managed to
bypass the dependence on the term 𝑅 appearing in Theorem 5.2.1 by leveraging the
fact that ReLU is a positive homogenenous function.

Analogous to Theorem 5.2.1, the bound established in Theorem 5.2.3 is also
oblivious to (a) how the training is done, and (b) the number 𝑚 of neurons. In
particular, even potentially overparameterized networks have a well-controlled outer
norm; provided that they achieve a small training error on a sufficient number 𝑁 of
data. The additional distributional requirements are still mild. For instance, when
𝑋

𝑑
= 𝒩 (0, 𝐼𝑑), 𝑤𝑇𝑋

𝑑
= 𝒩 (0, 1) for any 𝑤 with ‖𝑤‖2 = 1; and 𝜇* can be taken to be

1/
√
2𝜋. The requirement (b) ensures the existence of the moment generating func-

tion in a neighborhood around zero, hence the large deviations bounds are applicable.
The same remarks on 𝑜𝑁(1) term following Theorem 5.2.1 also apply here: it can be
improved to 𝑂(1/𝑁) or exp(−Θ(𝑁)) under slightly stronger assumptions on 𝑌𝑖.

5.2.3 Self-Regularity for the Step Networks

Our final focus is on the step networks. This object, for each 𝑋 ∈ R𝑑, computes (5.1)
with 𝜎(𝑥) = Step(𝑥) = 1{𝑥 > 0} (which is the Heaviside step function).

Like the ReLU case, Step(𝑥) is also homogeneous: for every 𝑐 > 0, Step(𝑐𝑥) =
Step(𝑥). For this reason, we assume, without loss of generality, ‖𝑤𝑗‖2 = 1, 1 ≤ 𝑗 ≤ 𝑚.
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Theorem 5.2.4. Let 𝛿,𝑀 > 0; and (𝑋𝑖, 𝑌𝑖) ∈ R𝑑 × R, 𝑖 ∈ [𝑁 ] be i.i.d. data with
E [|𝑌𝑖|] =𝑀 <∞; where 𝑁 satisfies Assumption 5.1.1. For any 𝑚 ∈ N, define

ℋ (𝑚, 𝛿) =
{︁
(𝑎,𝑊 ) ∈ R𝑚

≥0 × R𝑚×𝑑 : ‖𝑤𝑗‖2 = 1, 1 ≤ 𝑗 ≤ 𝑚; ̂︀ℒ (𝑎,𝑊 ) ≤ 𝛿2
}︁
,

with ̂︀ℒ (·) as in (5.2) with 𝜎(·) = Step(·). Moreover, assume that for some 𝜂 > 0,
inf𝑤:‖𝑤‖2=1 P

(︀
𝑤𝑇𝑋 ≥ 𝜂

)︀
≥ 𝜂. Then,

P

(︃
sup

(𝑎,𝑊 )∈ℋ(𝛿)

‖𝑎‖1 ≤ 2(𝛿 + 2𝑀)𝜂−1

)︃

≥ 1−
(︃
6
√
𝐶𝑑

𝜂

)︃𝑑

exp (−Θ(𝑁))−𝑁 exp (−Θ(𝑑))− 𝑜𝑁(1)

where ℋ(𝛿) ≜
⋃︀

𝑚∈N ℋ (𝑚, 𝛿).

The proof of Theorem 5.2.4 is quite similar to that of Theorems 5.2.1 and 5.2.3; and
is provided in Section 5.5.3 for completeness. Furthermore; main remarks following
Theorems 5.2.1 and 5.2.3—in particular, independence from 𝑚 as well as the training
algorithm—apply here, as well.

The extra condition on the distribution ensures that the collection
{︀
P(𝑤𝑇𝑋 ≥ 𝜂) : ‖𝑤‖2 = 1

}︀
is uniformly bounded away from zero. This is again quite mild, as demonstrated by
the following example. Suppose 𝑌𝑤 ≜ 𝑤𝑇𝑋 is centered and equidistributed for 𝑤 with
‖𝑤‖2 = 1. (Observe that this is indeed the case, e.g. when 𝑋

𝑑
= 𝒩 (0, 𝐼𝑑).) Then as

long as Var(𝑌𝑤) > 0 the extra requirement per Theorem 5.2.4 is satisfied. Indeed, for
this case P(𝑌𝑤 > 0) > 0. Hence, using the continuity of probabilities

P(𝑌𝑤 > 0) = P(𝑤𝑇𝑋 > 0) = lim
𝑡→∞

P
(︀
𝑤𝑇𝑋 > 𝑡−1

)︀
> 0,

one ensures the existence of such an 𝜂. In the case where 𝑋 𝑑
= 𝒩 (0, 𝐼𝑑), one can

concretely take 𝜂 = 0.3.

5.3 Generalization Guarantees via Outer Norm Bounds

5.3.1 The Learning Setting

In this section, we leverage the outer norm bounds we established in Theorems 5.2.1-
5.2.4 to provide generalization guarantees for the neural network architectures having
non-negative output weights that we investigated.

Our approach is through a quantity called the fat-shattering dimension (FSD) of
such networks introduced by Kearns and Schapire [187]. This quantity is essentially
a scale-sensitive measure of the complexity of the “class" (appropriately defined) that
the network architecture being considered belongs to. We introduce the FSD formally
in Definition 5.5.1 found in Section 5.5.4. For more information on the FSD, we refer
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the interested reader to the original paper by Kearns and Schapire [187]; as well as
earlier papers by Bartlett, Long, and Williamson [43], and Bartlett [40].

In what follows, we prove our promised generalization guarantee (Theorem 5.3.1
below) by combining the prior results on the FSD of such networks with our outer
norm bounds. Bartlett provides in [40] upper bounds on the FSD of certain function
classes 𝐻. He then leverages these bounds to give good generalization guarantees.
One of the classes he studies is precisely the class of two-layer NN with a bounded
outer norm (as we do). In particular, he establishes in [40, Corollary 24] (which is
restated as Theorem 5.5.2 below) that the class of two-layer networks with bounded
outer norm has a well-controlled FSD: informally, it has “low complexity". He then
leverages the FSD bounds to devise good generalization guarantees for the architec-
tures that he investigates. It is worth noting, however, that he establishes this link
in the context of classification setting, 𝑌 ∈ {±1}. Since we assume 𝑎𝑗 ≥ 0, and the
activations we study are non-negative, this does not apply to our case: the outputs
of the networks we study are always non-negative. Nevertheless, we by-pass this by
combining our outer norm bounds (Theorems 5.2.1-5.2.4), Theorem 5.5.2, as well as
building upon several other prior results tailored for the regression setting.

We next recall the learning setting for convenience. Let 𝒟 be a distribution on
R𝑑 × R for the input/label pairs (𝑋, 𝑌 ); and let (𝑋𝑖, 𝑌𝑖) ∼ 𝒟, 1 ≤ 𝑖 ≤ 𝑁 , be the
i.i.d. training data. The goal of the learner is to find a NN (𝑎,𝑊 ) ∈ R𝑚 × R𝑚×𝑑

with 𝑚 hidden units (neurons) and activation 𝜎(·) which “explains" the data (𝑋𝑖, 𝑌𝑖),
1 ≤ 𝑖 ≤ 𝑁 , as accurately as possible, often by solving the empirical risk minimization
problem, min𝑎,𝑊

̂︀ℒ (𝑎,𝑊 ) (5.2). The “learned" network is then used for predicting the
unseen data. The generalization ability of the “learned" network (𝑎,𝑊 ) ∈ R𝑚×R𝑚×𝑑

is quantified by the so-called generalization error (also known as the population risk)

ℒ(𝑎,𝑊 ) ≜ E(𝑋,𝑌 )∼𝒟

⎡⎣(︃𝑌 −
∑︁

1≤𝑗≤𝑚

𝑎𝑗𝜎
(︀
𝑤𝑇

𝑗 𝑋
)︀)︃2

⎤⎦ . (5.5)

Here, the expectation is taken w.r.t. to a fresh sample (𝑋, 𝑌 ) ∼ 𝒟, which is inde-
pendent of the training data. The “gap"

⃒⃒⃒ ̂︀ℒ (𝑎,𝑊 )− ℒ(𝑎,𝑊 )
⃒⃒⃒

between the training
error and the generalization error is called the generalization gap.

In what follows, we focus our attention on the generalization ability (5.5) of the
learned networks (𝑎,𝑊 ) that achieved a small training error, ̂︀ℒ (𝑎,𝑊 ) ≤ 𝛿2 (5.2), on
a polynomial (in 𝑑) number of data. The details of the training process (such as the
algorithm used for training) are immaterial to us; and our results apply to any NN
(𝑎,𝑊 ) provided it achieved a small training error, ̂︀ℒ (𝑎,𝑊 ) ≤ 𝛿2.

In this section, we also assume that the labels 𝑌 are bounded: 𝒟 is such that
for some 𝑀 > 0, |𝑌 | ≤ 𝑀 almost surely. This is necessary, as the prior results we
employ from Haussler [164] and Bartlett, Long, and Williamson [43] (in particular, see
Theorem 5.5.5 below) apply only to the case where the labels are bounded. For this
reason, the 𝑜𝑁(1) terms present in Theorems 5.2.1-5.2.3 disappear, see the remarks
following each theorem.
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5.3.2 The Generalization Guarantees

Equipped with our outer norm bounds (Theorems 5.2.1-5.2.4), and Theorem 5.5.2, we
now provide the promised generalization guarantees for the aforementioned networks
whose output weights 𝑎𝑖 are non-negative. To that end, let 𝛼,𝑀,ℳ, 𝐴 > 0 be certain
parameters (elaborated below); and set

𝜉 (𝛼,𝑀,ℳ, 𝐴) ≜
2

ln 2
· 𝑐 · 128

2 · ℳ6𝐴6 ·max{ℳ𝐴, 2𝑀}2
𝛼2

· ln
(︂
128ℳ3𝐴3max{ℳ𝐴, 2𝑀}

𝛼

)︂
,

(5.6)

where 𝑐 > 0 is the absolute constant appearing in Theorem 5.5.2. Our result is as
follows.

Theorem 5.3.1. Let 𝛼, 𝛿,𝑀,𝑅 > 0, and (𝑋𝑖, 𝑌𝑖) ∈ R𝑑 × R, 1 ≤ 𝑖 ≤ 𝑁 , be
i.i.d. samples drawn from an arbitrary distribution 𝒟 on R𝑑×R with |𝑌 | ≤𝑀 almost
surely; where 𝑁 satisfies Assumption 5.1.1. For the 𝜉 term defined in (5.6), set

𝜁(𝛼,𝑀,𝐴,𝑁) ≜ exp
(︁
𝜉(𝛼,𝑀, 2, 𝐴) · 𝑑 · ln2

(︂
2304 ·𝑁 · 𝐴2 ·max{2𝐴,𝑀}

𝛼

)︂
− 𝛼2 ·𝑁

64 ·max{2𝐴,𝑀}2
)︁
.

(5.7)

(a) (Sigmoid Networks) Under the assumptions of Theorem 5.2.1, with probabil-
ity at least

1−𝜁(𝛼,𝑀, 3(1+𝑒)(𝛿+2𝑀), 𝑁)−
(︁
3𝑅

√
𝐶𝑑
)︁𝑑

exp (−Θ(𝑁))−𝑁 exp (−Θ(𝑑))

over (𝑋𝑖, 𝑌𝑖) ∼ 𝒟, 1 ≤ 𝑖 ≤ 𝑁 , it holds that

sup
(𝑎,𝑊 )∈𝒮(𝛿,𝑅)

E(𝑋,𝑌 )∼𝒟

⎡⎣(︃𝑌 −
𝑚∑︁
𝑗=1

𝑎𝑗SGM
(︀
𝑤𝑇

𝑗 𝑋
)︀)︃2

⎤⎦
is at most 𝛼 + 𝛿2, provided

𝑁 ≥ 𝑐 · 221 · 𝐴
6 ·max{𝐴,𝑀}2

𝛼2
· 𝑑

and 𝛼 ≤ 211 ·𝐴3 ·max{𝐴,𝑀} with 𝐴 = 3(1 + 𝑒)(𝛿 + 2𝑀). Here, 𝒮(𝛿, 𝑅) is the
set introduced in Theorem 5.2.1.

(b) (ReLU Networks) Under the assumptions of Theorem 5.2.3 and assuming
additionally (𝜇*)−1 = exp

(︁
𝑜(𝑑)

)︁
, with probability at least

1−𝜁
(︃
𝛼,𝑀,

4
√
𝐶𝑑(𝛿 + 2𝑀)

𝜇* , 𝑁

)︃
−
(︃
12
√
𝐶𝑑

𝜇*

)︃𝑑

exp (−Θ(𝑁))−𝑁 exp (−Θ(𝑑))
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over (𝑋𝑖, 𝑌𝑖) ∼ 𝒟, 1 ≤ 𝑖 ≤ 𝑁 , it holds that

sup
(𝑎,𝑊 )∈𝒢(𝛿)

E(𝑋,𝑌 )∼𝒟

⎡⎣(︃𝑌 −
𝑚∑︁
𝑗=1

𝑎𝑗ReLU
(︀
𝑤𝑇

𝑗 𝑋
)︀)︃2

⎤⎦
is at most 𝛼 + 𝛿2 + 𝑒−Θ(𝑑) provided

𝑁 ≥ 𝑐 · 221 · 𝐴
6 ·max{𝐴,𝑀}2

𝛼2
· 𝑑

and 𝛼 ≤ 211 · 𝐴3 · max{𝐴,𝑀} with 𝐴 = 4
√
𝐶𝑑(𝛿+2𝑀)

𝜇* . Here, 𝒢(𝛿) is the set
introduced in Theorem 5.2.3.

(c) (Step Networks) Under the assumptions of Theorem 5.2.4, with probability
at least

1 − 𝜁

(︂
𝛼,𝑀,

2(𝛿 + 2𝑀)

𝜂
,𝑁

)︂
−
(︃
6
√
𝐶𝑑

𝜂

)︃𝑑

exp (−Θ(𝑁)) − 𝑁 exp (−Θ(𝑑))

over (𝑋𝑖, 𝑌𝑖) ∼ 𝒟, 1 ≤ 𝑖 ≤ 𝑁 , it holds that

sup
(𝑎,𝑊 )∈ℋ(𝛿)

E(𝑋,𝑌 )∼𝒟

⎡⎣(︃𝑌 −
𝑚∑︁
𝑗=1

𝑎𝑗Step
(︀
𝑤𝑇

𝑗 𝑋
)︀)︃2

⎤⎦ ,
is at most 𝛼 + 𝛿2, provided

𝑁 ≥ 𝑐 · 221 · 𝐴
6 ·max{𝐴,𝑀}2

𝛼2
· 𝑑

and 𝛼 ≤ 211 ·𝐴3 ·max{𝐴,𝑀} with 𝐴 = 2(𝛿+2𝑀)
𝜂

. Here, ℋ(𝛿) is the set introduced
in Theorem 5.2.4.

Theorem 5.3.1 is established by combining various individual results established
in separate works [164, 43, 12, 40] together with our outer norm bounds. See Sec-
tion 5.5.4 for its proof.

We next comment on the performance parameters appearing in Theorem 5.3.1.
The parameter 𝛼 controls the so-called generalization gap: the gap between the train-
ing error and the generalization error. The parameter 𝛿 controls the training error:
we study those (𝑎,𝑊 ) with ̂︀ℒ (𝑎,𝑊 ) ≤ 𝛿2. The parameter 𝑀 is an (almost sure)
upper bound on the labels; whereas 𝑅 is an (quite mild) upper bound on internal
weights required for the technical reasons, only for the case of sigmoid networks, see
Theorem 5.2.1, Corollary 5.2.2; and the remarks following them.

The term 𝜁(𝛼,𝑀,𝐴,𝑁) is a probability term appearing in the uniform convergence
result (Proposition 5.5.3) that we employ. This proposition provides a control for the
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generalization gap uniformly over all two-layer neural networks with bounded outer
norm like we investigate herein.

In what follows, we think of the parameter 𝛼 as a sufficiently small, though con-
stant, quantity. It is worth noting that in the high-dimensional regime 𝑑 → ∞
(which is a legitimate assumption for many existing guarantees in the field of ma-
chine learning) and for 𝑁 ≥ 𝑑𝑂(1); 𝜉(𝛼,𝑀,𝐴) = 𝑂(1) (with respect to 𝑑), provided
that 𝐴 = 𝑂(1) like we establish earlier. Namely, this object is simply a constant in
𝑑. Furthermore, while we made no attempts in simplifying it, it can potentially be
improved. In the sigmoid and step cases, the value of 𝐴 that we consider is indeed
𝑂(1). For the ReLU case, however, the situation is more involved; and a certain
scaling which makes 𝐴 = poly(𝑑) is necessary, as we elaborate soon. Soon in Sec-
tion 5.3.3, we investigate the probability term 𝜁(𝛼,𝑀,𝐴,𝑁) appearing in (5.7). We
show that provided 𝑁 is sufficiently large (while remaining polynomial in 𝑑), the 𝜁
term behaves like exp

(︀
−𝑑𝑂(1)

)︀
, thus it is indeed 𝑜𝑑(1). Moreover, our analysis will

also reveal that the dependence of 𝑁 on 𝑑 is quite mild; and is in fact near-linear in
some important cases of interest. To that end, we now inspect the lower bound on
𝑁 appearing in Theorem 5.3.1; and claim that it scales polynomially in 𝑑. Note that
in the high-dimensional regime where 𝑑 → ∞ while all other parameters are kept as
constants in 𝑑, this immediately follows. (It is worth noting that that this assumption
in a sense is also necessary so that the high probability guarantees hold.) In the case
𝑑 is of constant order itself, all lower bounds can, in principle, be perceived as poten-
tially high degree polynomials in 𝑑. As an example back-of-the-envelope calculation,
if 𝑑 = 100 and 𝛼 = 0.01, then 221/𝛼2 is roughly 2 · 1010, which is of order 𝑑5. Thus,
it suffices to have, e.g. 𝑁 = Ω(𝑑6) in this case. See below for a much more elaborate
sample complexity analysis in the high-dimensional regime, 𝑑→ ∞.

Theorem 5.5.2 as well as the uniform generalization gap guarantee, Proposi-
tion 5.5.3, apply to activations with a bounded output; whereas the output of ReLU
is potentially unbounded. In our proof, we bypass this by considering an auxiliary
activation S-ReLU(·), which is a “saturated" version of the ReLU. Specifically, we let
S-ReLU(𝑥) = 0 for 𝑥 ≤ 0, S-ReLU(𝑥) = 𝑥 for 0 < 𝑥 ≤ 1; and S-ReLU(𝑥) = 1 for 𝑥 ≥ 1.
We then rescale 𝑤𝑗 to have ‖𝑤𝑗‖2 = 1/

√
𝐶𝑑 and multiply 𝐴 by

√
𝐶𝑑 (we therefore

consider 𝐴 = 4
√
𝐶𝑑(𝛿+2𝑀)/𝜇*,

√
𝐶𝑑 times the bound appearing in Theorem 5.2.3).

Note that this step is indeed valid due to the homogeneity of the ReLU activation,
see also Section 5.2.2. Since ‖𝑋‖2 ≤

√
𝐶𝑑 with probability at least 1 − exp(−Θ(𝑑))

and since |𝑤𝑇
𝑗 𝑋| ≤ 1 for ‖𝑤𝑗‖2 = 1/

√
𝐶𝑑 and ‖𝑋‖2 ≤

√
𝐶𝑑 by Cauchy-Schwarz

inequality; the output of this activation will, w.h.p., coincide with that of the ReLU
activation. We then control the difference between the generalization errors for a pair
of two-layer neural networks having the same architecture, the same number 𝑚 ∈ N
of hidden units, the same weights (𝑎,𝑊 ); but different activations (one with ReLU(·)
and the other with S-ReLU(·)). This done by a conditioning argument. See the proof
for further details.

Similar to what we have noted previously for our outer norm bounds, Theo-
rem 5.3.1 is also oblivious to (a) how the training is done and (b) the number 𝑚
of hidden units as long as 𝑎𝑖 ≥ 0, and ̂︀ℒ (𝑎,𝑊 ) ≤ 𝛿2 for the learned network. More-
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over, similar to prior cases, the extra conditional expectation requirement (5.22) is
quite mild.

Our next focus is on the sample complexity required by Theorem 5.3.1. We show
that they are indeed polynomial in 𝑑. Furthermore for some very important cases,
they are even near-linear.

5.3.3 Sample Complexity Analysis

While the required sample complexity 𝑁 can simply be inferred from Theorem 5.3.1,
we spell out the implied scaling analysis below for convenience. In what follows, all
asymptotic notations are w.r.t. the natural parameter 𝑑 (namely the dimension) of
the problem in the regime 𝑑 → ∞; and our goal is to ensure that the corresponding
probability term is 1 − 𝑜𝑑(1) for an appropriate function 𝑜𝑑(1). (It is worth noting
though that our bounds will be in fact much stronger, e.g. 1− exp(−𝑑𝑂(1)).)

To that end, recall the term (5.6) with ℳ = 2 appearing in Theorem 5.3.1:

𝜉 (𝛼,𝑀, 2, 𝐴) =
223 · 𝑐 · 𝐴6 ·max{𝐴,𝑀}2

ln 2 · 𝛼2
· ln
(︂
211 · 𝐴3 ·max{𝐴,𝑀}

𝛼

)︂
. (5.8)

Sigmoid and Step Networks

First, the outer norm bounds we establish indicate 𝐴 = 𝑂(1). Hence, the “𝐴 parame-
ter" considered in parts (a) and (c) of Theorem 5.3.1 are 𝑂(1). Moreover, 𝑀 = 𝑂(1)
(since it is not sound for the real-valued label 𝑌 to grow with dimension 𝑑). Treat-
ing 𝛼 as a constant in 𝑑, we then obtain 𝜉(𝛼,𝑀,𝐴) = 𝑂(1) for the term appearing
in (5.8). Hence, in order to ensure that the probability term 𝜁 appearing in (5.7)
is 𝑜𝑑(1), a necessary and sufficient condition is 𝑁 = Ω

(︀
𝑑 ln2𝑁

)︀
. We claim that it

suffices to have
𝑁 = Ω

(︀
𝑑 ln2 𝑑

)︀
. (5.9)

Indeed, if 𝑁 satisfies (5.9), then provided 𝑁 remains polynomial in 𝑑, 𝑁 = poly(𝑑),
it holds that

ln2𝑁 = 𝑂
(︀
ln2 𝑑

)︀
=⇒ 𝑑 ln2𝑁 = 𝑂

(︀
𝑑 ln2 𝑑

)︀
= 𝑂(𝑁).

We now investigate the sample complexity required by the corresponding outer norm
bounds for the case of sigmoid and step networks.

Sigmoid networks Note, in this case, that the dominant contribution to the
probability term appearing in Theorem 5.2.1/Theorem 5.3.1(a) (other than 𝜉 term)
is (3𝑅

√
𝐶𝑑)𝑑 exp(−Θ(𝑁)). Suppose first that 𝑅 = 𝑑𝐾 where 𝐾 = 𝑂(1) (namely 𝑅 re-

mains polynomial in 𝑑). Then (3𝑅
√
𝐶𝑑)𝑑 exp(−Θ(𝑁)) = exp

(︁
−Θ(𝑁)+𝑑

(︀
𝐾 + 1

2

)︀
ln 𝑑+

𝑑 ln(3
√
𝐶)
)︁

= exp
(︁
−Θ(𝑁) + Θ(𝑑 ln 𝑑) + 𝑜(𝑑 ln 𝑑)

)︁
. Provided 𝑁 = Ω(𝑑 ln 𝑑), this

bound is indeed 𝑜𝑑(1). Taking the maximum between this and (5.9), we obtain that
it suffices to have 𝑁 = Ω(𝑑 ln2 𝑑), which is near-linear.
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Suppose next that 𝑅 = exp(𝑑𝐾), like in Corollary 5.2.2. Then provided 𝐾 > 0,
(3𝑅

√
𝐶𝑑)𝑑 exp(−Θ(𝑁)) = exp

(︁
−Θ(𝑁)+𝑑𝐾+1+1

2
𝑑 ln 𝑑+𝑑 ln(3

√
𝐶)
)︁
= exp

(︁
−Θ(𝑁)+

𝑑𝐾+1+𝑜
(︀
𝑑𝐾+1

)︀)︁
. Hence, provided 𝑁 = Ω(𝑑𝐾+1), this bound is indeed 𝑜𝑑(1). Taking

the maximum between this and (5.9), we obtain that it suffices to have 𝑁 = Ω(𝑑𝐾+1),
which is polynomial in 𝑑.

Step networks Treating the distributional parameter 𝜂 appearing in Theorem 5.2.4/The-

orem 5.2.3 as a constant in 𝑑, we have exp (−Θ(𝑁))
(︁

6
√
𝐶𝑑
𝜂

)︁𝑑
= exp

(︁
−Θ(𝑁) + 1

2
𝑑 ln 𝑑+ 𝑑 ln

(︁
6
√
𝐶

𝜂

)︁)︁
=

exp (−Θ(𝑁) + Θ(𝑑 ln 𝑑) + 𝑜(𝑑 ln 𝑑)) . Thus, provided 𝑁 = Ω(𝑑 ln 𝑑), this bound is in-
deed 𝑜𝑑(1). Taking the maximum between this and (5.9), we obtain that it suffices
to have 𝑁 = Ω(𝑑 ln2 𝑑), which, again, is near-linear.

ReLU Networks

The situtation is more involved for the case of ReLU networks. We first study the
𝜉 term (5.8). Treating 𝑀,𝛼,𝐶, 𝛿,𝜇* = 𝑂(1) (in 𝑑), 𝜉

(︁
𝛼,𝑀, 2, 4

√
𝐶(𝛿+2𝑀)
𝜇*

√
𝑑
)︁

=

Θ(𝑑4 ln 𝑑). Hence, 𝜁
(︁
𝛼,𝑀, 4

√
𝐶𝑑(𝛿+2𝑀)

𝜇* , 𝑁
)︁
= exp

(︁
Θ
(︁
𝑑4·ln 𝑑·𝑑·ln2(𝑁𝑑)

)︁
−Θ

(︀
𝑁
𝑑

)︀)︁
=

exp
(︁
Θ
(︁
𝑑5 · ln 𝑑 · ln2(𝑁𝑑)

)︁
−Θ

(︀
𝑁
𝑑

)︀)︁
= exp

(︁
Θ
(︁
𝑑5 · ln3 𝑑

)︁
−Θ

(︀
𝑁
𝑑

)︀)︁
, where we used the

fact ln(𝑁𝑑) = Θ(ln 𝑑) if 𝑁 = poly(𝑑). Thus, provided 𝑁 = Ω
(︀
𝑑6 ln3 𝑑

)︀
, this bound

is indeed 𝑜𝑑(1). Inspecting next the term (12
√
𝐶𝑑/𝜇*)𝑑 exp(−Θ(𝑁)) appearing in

the probability bound, we observe as long as 𝑁 = Ω(𝑑 ln 𝑑), this term is also 𝑜𝑑(1).
Taking the maximum of these two, it suffices to have 𝑁 = Ω

(︀
𝑑6 ln3 𝑑

)︀
. This, again,

is a polynomial in 𝑑; albeit having a slightly worse degree (of six).

5.4 Conclusion and Future Directions

We have studied two-layer NN models with sigmoid, ReLU, and step activations; and
established that the outer norm of any such NN achieving a small training loss on
a polynomially (in 𝑑) many data and having non-negative output weights is well-
controlled. Our results are independent of the width𝑚 of the network and the training
algorithm; and are valid under very mild distributional assumptions on input/label
pairs. We then leveraged the outer norm bounds we established to obtain good gen-
eralization guarantees for the networks we investigated. Our generalization results
are obtained by employing earlier results on the fat-shattering dimension of such net-
works, and have good sample complexity bounds as we have discussed. In particular,
for certain important cases of interest, we obtain near-linear sample guarantees.

We now provide future directions. As was already mentioned, our approach op-
erates under mild distributional requirements; and can potentially handle different
distributions as well as other activations, provided (rather natural) certain properties
of these objects we leveraged remain in place.
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A very important question is to which extent our approach applies to deeper
networks. In what follows, we give a very brief argument demonstrating that for
such an extension, one needs much more stringent regularity assumptions on the
internal weights. Consider, as an example, a ReLU network with three hidden layers.
Observe that the outputs of the neurons at the first hidden layer are non-negative as
ReLU(𝑥) ≥ 0 for all 𝑥 ∈ R. Let us now focus on its second hidden layer, which takes
weighted sums of the outputs of the first hidden layer. If all the weights in the second
layer are negative, then upon passing to ReLU, one obtains all zeroes, forcing the
final output to be zero. Now, let us assume, instead, that the weights of the second
layer are such that the input to the ReLU functions are positive, though arbitrarily
close to zero (this can potentially be achieved, e.g., by taking many small negative
weights and few large positive weights in a way that ensures proper cancellation).
If this holds, then even if the outer norm, ‖𝑎‖1, is very large, one still obtains a
bounded output at the end of the network. As demonstrated by this conceptual
example, one indeed needs more stringent assumptions on the internal weights so
as to address larger depth. At the present time, we are unable to have a complete
resolution of necessary and sufficient assumptions for addressing deeper architectures
(while maintaining the position that these assumptions must also be sound from a
practical point of view).

Yet another important direction pertains to the non-negativity of the weights,
and a crucial question is whether this assumption can be relaxed. We now provide a
brief argument demonstrating that in full generality, this is not necessarily the case.
Namely, strictly speaking, the non-negativity assumption is necessary. We focus on
the so-called “teacher/student" setting, a setting that has been quite popular recently,
see, e.g. [152]. In this setting, given i.i.d. input data 𝑋𝑖 ∈ R𝑑, 1 ≤ 𝑖 ≤ 𝑁 , a teacher
network (𝑎*,𝑊 *) ∈ R𝑚* ×R𝑚*×𝑑 with 𝑚* ∈ N neurons and activation 𝜎(·) generates
the labels 𝑌𝑖. That is, 𝑌𝑖 =

∑︀
1≤𝑗≤𝑚* 𝑎*𝑗𝜎

(︀
(𝑤*

𝑗 )
𝑇𝑋𝑖

)︀
. A student network with an

𝑚 ∈ N number of hidden units (where 𝑚 is not necessarily equal to 𝑚*) is then
“trained" by minimizing the objective function (5.2) on the data (𝑋𝑖, 𝑌𝑖), 1 ≤ 𝑖 ≤ 𝑁 ;
and the resulting network is then used for predicting the unseen data. We now
construct a wider student network interpolating the data whose vector of output
weights has arbitrarily large norm, by introducing many cancellations. Fix 𝑧 ∈ N, a
non-zero 𝑣 ∈ R𝑑; and 𝜈 > 0. Construct a new network

(︀
𝑎,𝑊

)︀
on 𝑚* +2𝑧 neurons as

follows. Set 𝑎𝑗 = 𝑎*𝑗 and 𝑊𝑗 = 𝑊 *
𝑗 for 1 ≤ 𝑗 ≤ 𝑚*. For any 𝑚* + 1 ≤ 𝑗 ≤ 𝑚* + 2𝑧,

set 𝑎𝑗 = 𝜈 if 𝑗 is even, and −𝜈, if 𝑗 is odd. At the same time, set 𝑊𝑗 = 𝑣 for
𝑚* +1 ≤ 𝑗 ≤ 𝑚* +2𝑧. This network interpolates the data while ‖𝑎‖1 = ‖𝑎*‖1 +2𝑧𝜈.
Hence, ‖𝑎‖1 can be made arbitrarily large by amplifying 𝑧 and/or 𝜈 > 0. In particular,
in full generality, such a non-negativity assumption is indeed necessary. It is worth
noting, however, that the example above is a somewhat tailored one involving many
dependencies/cancellations. It might still be possible to establish similar bounds for
the case of potentially negative weights under more stringent constraints on them
which prevent such cancellations.
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5.5 Proofs

In this section, we provide complete proofs of all of our results.

5.5.1 Proof of Theorem 5.2.1

Proof of Theorem 5.2.1. Observe that

P(ℰ0) ≥ 1− 𝑜𝑁(1) for ℰ0 ≜ {∑︀𝑁
𝑖=1 |𝑌𝑖| ≤ 2𝑀𝑁}, (5.10)

using the weak law of large numbers. Next, let (𝑎,𝑊 ) ∈ 𝒮 (𝛿, 𝑅). Then there exists
an 𝑚 ∈ N such that (𝑎,𝑊 ) ∈ 𝒮 (𝑚, 𝛿,𝑅). Applying Cauchy-Schwarz inequality,∑︀

1≤𝑖≤𝑁

⃒⃒⃒
𝑌𝑖 −

∑︀
1≤𝑗≤𝑚 𝑎𝑗SGM

(︀
𝑤𝑇

𝑗 𝑋𝑖

)︀⃒⃒⃒
≤ 𝑁𝛿. Next, by the triangle inequality and the

fact
∑︀

𝑖 |𝑌𝑖| ≤ 2𝑀𝑁 on ℰ0,∑︁
1≤𝑖≤𝑁

∑︁
1≤𝑗≤𝑚

𝑎𝑗SGM
(︀
𝑤𝑇

𝑗 𝑋𝑖

)︀
≤ 𝑁(𝛿 + 2𝑀), (5.11)

on the event ℰ0. Now, let 𝒩𝜖 be a minimal 𝜖−net for 𝐵2(0, 𝑅), 𝜖 > 0 to be tuned
appropriately. Using Theorem 5.1.3, one can ensure |𝒩𝜖| ≤ (3𝑅/𝜖)𝑑. Next, fix anŷ︀𝑤 ∈ 𝒩𝜖, and set 𝑍𝑖 ≜ ̂︀𝑤𝑇𝑋𝑖, 1 ≤ 𝑖 ≤ 𝑁 . Since 𝑍𝑖 is symmetric, P(𝑍𝑖 ≥ 0) =
P(−𝑍𝑖 ≤ 0) = P(𝑍𝑖 ≤ 0), implying P(𝑍𝑖 ≥ 0) ≥ 1

2
. Define now 𝑍𝑖 ≜ 1

{︀
𝑍𝑖 ≥ 0

}︀
.

Since 𝑍𝑖 “stochastically dominates" Bernoulli(1/2), we have P
(︀∑︀

1≤𝑖≤𝑁 𝑍𝑖 ≥ 𝑁/3
)︀
≥

P (Binomial (𝑁, 1/2) ≥ 𝑁/3) ≥ 1− exp (−Θ(𝑁)). The last inequality is due to stan-
dard large deviations bounds. Taking a union bound over the net 𝒩𝜖, we obtain

P(ℰ1) ≥ 1− (3𝑅/𝜖)𝑑 exp (−Θ(𝑁)) , (5.12)

where ℰ1 ≜
⋂︁
̂︀𝑤∈𝒩𝜖

{︃ ∑︁
1≤𝑖≤𝑁

1
{︀̂︀𝑤𝑇𝑋𝑖 ≥ 0

}︀
≥ 𝑁/3

}︃
.

Furthermore, another union bound over the data yields

P(ℰ2) ≥ 1−𝑁 exp (−Θ(𝑑)) , (5.13)

where ℰ2 ≜
{︀
‖𝑋𝑖‖22 ≤ 𝐶𝑑, 1 ≤ 𝑖 ≤ 𝑁

}︀
.

We now choose 𝜖 = 1/
√
𝐶𝑑. We claim that on the event ℰ1 ∩ ℰ2, it is the case

that for every 𝑤 ∈ 𝐵2(0, 𝑅);
∑︀

1≤𝑖≤𝑁 1
{︀
𝑤𝑇𝑋𝑖 ≥ −1

}︀
≥ 𝑁

3
. Let 𝑤 ∈ 𝐵2(0, 𝑅), and̂︀𝑤 ∈ 𝒩𝜖 be such that ‖𝑤 − ̂︀𝑤‖2 ≤ 𝜖 = (𝐶𝑑)−1/2. Using Cauchy-Schwarz inequal-

ity,
⃒⃒ ̂︀𝑤𝑇𝑋𝑖 − 𝑤𝑇𝑋𝑖

⃒⃒
≤ ‖𝑋𝑖‖2(𝐶𝑑)−1/2 ≤ 1, where ‖𝑋𝑖‖2 ≤

√
𝐶𝑑 due to the event ℰ2

(5.13). In particular, if ̂︀𝑤𝑇𝑋𝑖 ≥ 0, then 𝑤𝑇𝑋𝑖 ≥ −1. Hence
∑︀

1≤𝑖≤𝑁 1
{︀
𝑤𝑇𝑋𝑖 ≥ −1

}︀
≥∑︀

1≤𝑖≤𝑁 1
{︀̂︀𝑤𝑇𝑋𝑖 ≥ 0

}︀
≥ 𝑁

3
. Using now the fact 𝑎𝑗 ≥ 0, and SGM(·) ≥ 0 for the sig-
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moid activation, we arrive at∑︁
1≤𝑗≤𝑚

𝑎𝑗
∑︁

1≤𝑖≤𝑁

SGM
(︀
𝑤𝑇

𝑗 𝑋𝑖

)︀
≥ 𝑁

3
· SGM(−1) ·

∑︁
1≤𝑗≤𝑚

𝑎𝑗. (5.14)

We now combine the facts SGM(−1) = (1 + 𝑒)−1, (5.11) and (5.14), to obtain that on
the event ℰ0 ∩ ℰ1 ∩ ℰ2,

∑︀
1≤𝑗≤𝑚 𝑎𝑗 ≤ 3(1 + 𝑒)(𝛿 + 2𝑀). Since the event ℰ0 ∩ ℰ1 ∩ ℰ2

holds with probability at least 1−
(︁
3𝑅

√
𝐶𝑑
)︁𝑑

exp (−Θ(𝑁))−𝑁 exp (−Θ(𝑑))−𝑜𝑁(1)
by a union bound, the proof is complete.

5.5.2 Proof of Theorem 5.2.3

Proof of Theorem 5.2.3. Recall from (5.10) the event ℰ0 = {∑︀1≤𝑖≤𝑁 |𝑌𝑖| ≤ 2𝑀𝑁}
where P(ℰ0) ≥ 1− 𝑜𝑁(1).

Let (𝑎,𝑊 ) ∈ 𝒢(𝛿). Then, for some 𝑚 ∈ N, (𝑎,𝑊 ) ∈ 𝒢(𝑚, 𝛿). Using Cauchy-
Schwarz inequality and the triangle inequality like in the beginning of the proof of
Theorem 5.2.1; we first establish that on the event ℰ0, the following holds:∑︁

1≤𝑖≤𝑁

∑︁
1≤𝑗≤𝑚

𝑎𝑗ReLU
(︀
𝑤𝑇

𝑗 𝑋𝑖

)︀
≤ 𝑁(𝛿 + 2𝑀). (5.15)

Next, let 𝒩𝜖 be a minimal 𝜖−net for S𝑑−1, 𝜖 > 0 to be tuned. Using Theorem 5.1.3,
one can ensure |𝒩𝜖| ≤ (3/𝜖)𝑑. Fix any ̂︀𝑤 ∈ 𝒩𝜖; and consider the i.i.d. random
variables 𝑌 ̂︀𝑤,𝑖 ≜ ReLU

(︀ ̂︀𝑤𝑇𝑋𝑖

)︀
, 𝑖 ∈ [𝑁 ], whose mean is bounded from below by 𝜇*

due to condition (a). Note that the event
{︀∑︀

1≤𝑖≤𝑁 𝑌 ̂︀𝑤,𝑖 ≤ 1
2
𝜇*𝑁

}︀
is then a large

deviations event. Moreover, the condition (b) on the distribution of 𝑌 ̂︀𝑤,𝑖 ensures the
existence of the log-MGF in a neighborhood around zero; hence a large deviations
bound via Chernoff’s inequality [58] is applicable. Applying Chernoff’s inequality, we
thus obtain P

(︀∑︀
1≤𝑖≤𝑁 𝑌 ̂︀𝑤,𝑖 ≥ 1

2
𝜇*𝑁

)︀
≥ 1− exp (−Θ(𝑁)). Due to the distributional

assumption, the lower bound is uniform in ̂︀𝑤 ∈ 𝒩𝜖.

Taking now a union bound over ̂︀𝑤 ∈ 𝒩𝜖, we obtain P(ℰ1) ≥ 1−(3/𝜖)𝑑 exp (−Θ(𝑁))
where ℰ1 ≜

⋂︀ ̂︀𝑤∈𝒩𝜖

{︀∑︀
1≤𝑖≤𝑁 ReLU

(︀ ̂︀𝑤𝑇𝑋𝑖

)︀
≥ 1

2
𝜇*𝑁

}︀
. Another union bound over data

𝑋𝑖, 1 ≤ 𝑖 ≤ 𝑁 , yields that P(ℰ2) ≥ 1−𝑁 exp (−Θ(𝑑)) where ℰ2 ≜ {‖𝑋𝑖‖22 ≤ 𝐶𝑑, 1 ≤ 𝑖 ≤ 𝑁}.
Choose 𝜖 ≜ 𝜇*

4
√
𝐶𝑑

, and assume in the remainder that we are on the event ℰ1 ∩ ℰ2.
Next, observe that ReLU is 1−Lipschitz: |ReLU(𝑥)− ReLU(𝑦)| =

⃒⃒⃒
𝑥+|𝑥|

2
− 𝑦+|𝑦|

2

⃒⃒⃒
≤ |𝑥−

𝑦|, using triangle inequality twice. Now, fix any 𝑤 ∈ S𝑑−1. Let ̂︀𝑤 ∈ 𝒩𝜖 be the member
of the net closest to 𝑤. Using the Lipschitz property, and the Cauchy-Schwarz, we
obtain

⃒⃒
ReLU

(︀
𝑤𝑇𝑋𝑖

)︀
− ReLU

(︀ ̂︀𝑤𝑇𝑋𝑖

)︀⃒⃒
≤
⃒⃒
𝑤𝑇𝑋𝑖 − ̂︀𝑤𝑇𝑋𝑖

⃒⃒
≤ ‖𝑤 − ̂︀𝑤‖2 · ‖𝑋𝑖‖2 ≤ 𝜇*

4
.

Consequently, ReLU
(︀
𝑤𝑇𝑋𝑖

)︀
≥ ReLU

(︀ ̂︀𝑤𝑇𝑋𝑖

)︀
− 𝜇*

4
. Summing this over 1 ≤ 𝑖 ≤ 𝑁 , we

have
∑︀

1≤𝑖≤𝑁 ReLU
(︀
𝑤𝑇𝑋𝑖

)︀
≥∑︀1≤𝑖≤𝑁 ReLU

(︀ ̂︀𝑤𝑇𝑋𝑖

)︀
− 𝜇*

4
𝑁 ≥ 𝜇*

4
𝑁 . Using 𝑎𝑗 ≥ 0, we
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obtain by taking 𝑤𝑗 in place of 𝑤:∑︁
1≤𝑗≤𝑚

𝑎𝑗
∑︁

1≤𝑖≤𝑁

ReLU
(︀
𝑤𝑇

𝑗 𝑋𝑖

)︀
≥ 𝜇*

4
𝑁
∑︁

1≤𝑗≤𝑚

𝑎𝑗. (5.16)

Combining (5.15) and (5.16), we obtain that on the event ℰ0 ∩ ℰ1 ∩ ℰ2,
∑︀

1≤𝑗≤𝑚 𝑎𝑗 ≤
4(𝛿 + 2𝑀) (𝜇*)−1. Since the event ℰ0 ∩ ℰ1 ∩ ℰ2 holds with probability at least

1−
(︁
12
√
𝐶𝑑(𝜇*)−1

)︁𝑑
exp (−Θ(𝑁))−𝑁 exp (−Θ(𝑑))− 𝑜𝑁(1) via a union bound, we

complete the proof.

5.5.3 Proof of Theorem 5.2.4

Proof of Theorem 5.2.4. The proof is quite similar to that of the proof of Theo-
rems 5.2.1 and 5.2.3, and is provided for completeness.

Again, recall from (5.10) the event ℰ0 = {∑︀1≤𝑖≤𝑁 |𝑌𝑖| ≤ 2𝑀𝑁} where P(ℰ0) ≥
1− 𝑜𝑁(1). Then, take an (𝑎,𝑊 ) ∈ ℋ(𝛿). There exists an 𝑚 ∈ N such that (𝑎,𝑊 ) ∈
ℋ(𝑚, 𝛿). Using again Cauchy-Schwarz inequality and the triangle inequality like in
the beginning of the proof of Theorems 5.2.1/ 5.2.3; we have that on the event ℰ0,
the following holds:

∑︁
1≤𝑖≤𝑁

⃒⃒⃒⃒
⃒𝑌𝑖 − ∑︁

1≤𝑗≤𝑚

𝑎𝑗Step
(︀
𝑤𝑇

𝑗 𝑋𝑖

)︀⃒⃒⃒⃒⃒ ≤ 𝑁𝛿.

This, together with (a) the fact that the labels are bounded, |𝑌𝑖| ≤ 𝑀 ; and (b) the
triangle inequality; then yields∑︁

1≤𝑖≤𝑁

∑︁
1≤𝑗≤𝑚

𝑎𝑗Step
(︀
𝑤𝑇

𝑗 𝑋𝑖

)︀
≤ 𝑁 (𝛿 +𝑀) . (5.17)

Let 𝒩𝜖 be a minimal 𝜖−net for S𝑑−1, where 𝜖 > 0 to be tuned appropriately. Using
Theorem 5.1.3, one can ensure |𝒩𝜖| ≤ (3/𝜖)𝑑.

Next, fix any ̂︀𝑤 ∈ 𝒩𝜖; and set 𝑍𝑖 ≜ 1
{︀̂︀𝑤𝑇𝑋𝑖 ≥ 𝜂

}︀
, 1 ≤ 𝑖 ≤ 𝑁 (where we drop

the dependence of 𝑍𝑖 on ̂︀𝑤 for convenience). Evidently, 𝑍𝑖 is an i.i.d. collection of
Bernoulli random variables, with E[𝑍𝑖] ≥ 𝜂 (due to the assumption on the distribution
of 𝑋). Hence, using standard concentration results, P

(︀∑︀
1≤𝑖≤𝑁 𝑍𝑖 ≥ 𝑁𝜂/2

)︀
≥ 1 −

exp (−Θ(𝑁)). Moreover, the lower bound is, again, uniform in ̂︀𝑤 via an exact same
stochastic domination argument, like in the proof of Theorem 5.2.1.

Taking now a union bound over the net 𝒩𝜖,

P(ℰ1) ≥ 1− (3/𝜖)𝑑 exp (−Θ(𝑁)) , (5.18)

where

ℰ1 ≜
⋂︁
̂︀𝑤∈𝒩𝜖

{︃ ∑︁
1≤𝑖≤𝑁

1
{︀̂︀𝑤𝑇𝑋𝑖 ≥ 𝜂

}︀
≥ 𝑁𝜂/2

}︃
.

247



Furthermore, another union bound over data, 1 ≤ 𝑖 ≤ 𝑁 , yields

P(ℰ2) ≥ 1−𝑁 exp (−Θ(𝑑)) , (5.19)

where
ℰ2 ≜

{︀
‖𝑋𝑖‖22 ≤ 𝐶𝑑, 1 ≤ 𝑖 ≤ 𝑁

}︀
.

We now choose 𝜖 = 𝜂

2
√
𝐶𝑑

; and assume in the remainder that we are on the event
ℰ1 ∩ ℰ2.

Fix any 𝑤 ∈ S𝑑−1; and let ̂︀𝑤 ∈ 𝒩𝜖 be such that ‖𝑤− ̂︀𝑤‖2 ≤ 𝜂

2
√
𝐶𝑑

. Using Cauchy-
Schwarz inequality,

⃒⃒ ̂︀𝑤𝑇𝑋𝑖 − 𝑤𝑇𝑋𝑖

⃒⃒
≤ ‖𝑤− ̂︀𝑤‖2‖𝑋𝑖‖2 ≤ 𝜂/2, for every 𝑖 ∈ [𝑁 ], since

the event we are on is a subset of ℰ2 in (5.19). Observe now that { ̂︀𝑤𝑇𝑋 ≥ 𝜂} ⊆
{𝑤𝑇𝑋 ≥ 𝜂/2}. Thus, on the event ℰ1 ∩ ℰ2, it holds that∑︁

1≤𝑖≤𝑁

1{𝑤𝑇𝑋𝑖 ≥ 𝜂/2} ≥
∑︁

1≤𝑖≤𝑁

1{ ̂︀𝑤𝑇𝑋𝑖 ≥ 𝜂/2} ≥ 𝑁𝜂/2.

Since 𝑤 ∈ S𝑑−1 is arbitrary, and Step(𝑤𝑇𝑋𝑖) = 1 if 𝑤𝑇𝑋𝑖 ≥ 𝜂/2 > 0, we arrive at∑︁
1≤𝑗≤𝑚

𝑎𝑗
∑︁

1≤𝑖≤𝑁

Step
(︀
𝑤𝑇

𝑗 𝑋𝑖

)︀
≥ 𝑁𝜂

2

∑︁
1≤𝑗≤𝑚

𝑎𝑗. (5.20)

We now combine (5.17) and (5.20) to arrive at the conclusion that on the event ℰ1∩ℰ2,
it holds ∑︁

1≤𝑗≤𝑚

𝑎𝑗 ≤ 2(𝛿 +𝑀)𝜂−1.

Finally, we combine (5.18) (with 𝜖 = 𝜂

2
√
𝐶𝑑

) and (5.19) via a union bound; and arrive at

the conclusion that P(ℰ1∩ℰ2) ≥ 1−
(︁
6
√
𝐶𝑑 · (𝜂)−1

)︁𝑑
exp (−Θ(𝑁))−𝑁 exp (−Θ(𝑑))−

𝑜𝑁(1). This concludes the proof.

5.5.4 Proof of Theorem 5.3.1

In this section, we establish Theorem 5.3.1. We build upon earlier results by Bartlett [40]
and Bartlett, Long, and Williamson [43].

The FSD of the Networks with a Bounded Outer Norm We now recall the
definition of the fat-shattering dimension (FSD), verbatim from [40], for convenience.

Definition 5.5.1. Let 𝑋 be an input space, 𝐻 be a class of real-valued functions
defined on 𝑋 (that is, 𝐻 consists of functions 𝑓 : 𝑋 → R). Fix a 𝛾 > 0, which
is a certain scale parameter. We say that a sequence (𝑥1, 𝑥2, . . . , 𝑥𝑚) of 𝑚 points
from 𝑋 is 𝛾-shattered by 𝐻 if there is an 𝑟 = (𝑟1, . . . , 𝑟𝑚) ∈ R𝑚 such that, for all
𝑏 = (𝑏1, . . . , 𝑏𝑚) ∈ {−1, 1}𝑚 there is an ℎ ∈ 𝐻 satisfying (ℎ(𝑥𝑖) − 𝑟𝑖)𝑏𝑖 ≥ 𝛾. Define
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the fat-shattering dimension of 𝐻 as the function

FSD𝐻(𝛾) ≜ max
{︁
𝑚 : 𝐻 𝛾-shatters some 𝑥 ∈ 𝑋𝑚

}︁
. (5.21)

We next record the following result.

Theorem 5.5.2. [40, Corollary 24] Let ℳ > 0, and 𝜎 : R → [−ℳ/2,ℳ/2] be a
non-decreasing function. Define a class 𝐹 of functions on R𝑑 by

𝐹 ≜
{︀
𝑋 ↦→ 𝜎

(︀
𝑤𝑇𝑋 + 𝑤0

)︀
: 𝑤 ∈ R𝑑, 𝑤0 ∈ R

}︀
and let 𝐻(𝐴) ≜

{︁∑︀
1≤𝑗≤𝑚 𝑎𝑗𝑓𝑗 : 𝑚 ∈ N, 𝑓𝑗 ∈ 𝐹, ‖𝑎‖1 ≤ 𝐴

}︁
where 𝐴 ≥ 1. Then for

every 𝛾 ≤ ℳ𝐴,

FSD𝐻(𝐴)(𝛾) ≤
𝑐ℳ2𝐴2𝑑

𝛾2
ln

(︂ℳ𝐴

𝛾

)︂
for some universal constant 𝑐 > 0.

Here 𝑎 = (𝑎𝑗 : 1 ≤ 𝑗 ≤ 𝑚) ∈ R𝑚 is the vector of output weights, ‖𝑎‖1 is the outer
norm; and 𝛾 > 0 is a certain scale parameter. Observe that 𝐻(𝐴) is precisely the
class of two-layer NN with activation function 𝜎(·) whose outer norm is at most 𝐴.
Per Theorem 5.5.2, the FSD of the class of two-layer networks with bounded outer
norm is upper bounded by an explicit quantity.

Our next proposition provides a control for the generalization gap uniformly over
all two-layer NN models with bounded outer norm.

Proposition 5.5.3. Let 𝑀,ℳ, 𝐴 > 0; 𝜎 : R → [−ℳ/2,ℳ/2] be a non-decreasing
activation function; and 𝒟 be an arbitrary distribution on R𝑑 ×R for the input/label
pairs (𝑋, 𝑌 ) where |𝑌 | ≤𝑀 almost surely. Recall the class 𝐻(𝐴) of two-layer neural
networks with activation 𝜎 and outer norm at most 𝐴 from Theorem 5.5.2; and let
(𝑋𝑖, 𝑌𝑖), 1 ≤ 𝑖 ≤ 𝑁 , be i.i.d. samples drawn from 𝒟. Then for any 𝛼 > 0, with
probability at least

1− 4 exp

(︂
𝜉(𝛼,𝑀,ℳ, 𝐴) · 𝑑 · ln2

(︂
576𝑁ℳ2𝐴2max{ℳ𝐴, 2𝑀}

𝛼

)︂
− 𝛼2𝑁

64max{ℳ𝐴, 2𝑀}2
)︂

over the draw of the training data (𝑋𝑖, 𝑌𝑖), 1 ≤ 𝑖 ≤ 𝑁 , it holds that

sup
𝜙∈𝐻(𝐴)

⃒⃒⃒⃒
⃒ 1𝑁

𝑁∑︁
𝑖=1

(︁
𝜙(𝑋𝑖)− 𝑌𝑖

)︁2
− E(𝑋,𝑌 )∼𝒟

[︁(︁
𝜙(𝑋)− 𝑌

)︁2]︁⃒⃒⃒⃒⃒
is at most 𝛼, provided

𝑁 ≥ 64 · 128𝑐 · ℳ
6𝐴6max{ℳ𝐴, 2𝑀}2

𝛼2
𝑑.

Here, 𝑐, 𝑐′ > 0 are absolute constants, the term 𝜉 is introduced in (5.6) and the
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expectation is taken with respect to a fresh sample (𝑋, 𝑌 ) ∼ 𝒟 independent of (𝑋𝑖, 𝑌𝑖),
1 ≤ 𝑖 ≤ 𝑁 .

It is worth noting that while we made no attempts for simplifying the constants ap-
pearing throughout Proposition 5.5.3, we believe that they can be improved. Proposi-
tion 5.5.3 is established by combining various existing auxiliary results from literature.
However, its proof requires certain extra notation. In order to avoid notational clut-
ter, we provide the proof in Section 5.5.5. From now on, we assume Proposition 5.5.3
is at our disposal.

We finally provide a technical lemma to be used in the proof for the ReLU case.

Lemma 5.5.4. Suppose that the distribution of 𝑋 ∈ R𝑑 satisfies the assumptions of
Theorem 5.2.3. Then,

𝜆(𝑑) ≜ sup
𝑤∈R𝑑:‖𝑤‖2=1/

√
𝐶𝑑

E
[︁⃒⃒
𝑤𝑇𝑋

⃒⃒2
1
{︀
‖𝑋‖22 > 𝐶𝑑

}︀]︁
≤ exp (−Θ(𝑑)) . (5.22)

The scaling ‖𝑤‖2 = 1/
√
𝐶𝑑 is required for technical reasons for the proof of the

part (b) of Theorem 5.3.1. Proof of Lemma 5.5.4 uses routine manipulations; and is
provided next.

Proof of Lemma 5.5.4. Set

�̄�(𝑑) := sup
𝑤∈R𝑑:‖𝑤‖2=1

E
[︁⃒⃒
𝑤𝑇𝑋

⃒⃒2
1
{︀
‖𝑋‖22 > 𝐶𝑑

}︀]︁
.

Clearly �̄�(𝑑) = 𝐶𝑑𝜆(𝑑). Since 𝐶 = 𝑂(1), it suffices to prove �̄�(𝑑) ≤ exp (−Θ(𝑑)).
Next, fix a 𝑤 ∈ R𝑑 with ‖𝑤‖2 = 1. Observe that using the inequality 𝑒𝑥 ≥ 1 + 𝑥,
we obtain 𝑒𝑟𝑤

𝑇𝑋 + 𝑒−𝑟𝑤𝑇𝑋 ≥ 𝑟
⃒⃒⃒
𝑤𝑇𝑋

⃒⃒⃒
for any 𝑟 ≥ 0. Using the chain of inequalities

8 (𝑎4 + 𝑏4) ≥ 4 (𝑎2 + 𝑏2)
2 ≥ (𝑎+ 𝑏)4 , both due to Cauchy-Schwarz, we thus obtain

8
𝑟4

(︁
𝑒4𝑟𝑤

𝑇𝑋 + 𝑒−4𝑟𝑤𝑇𝑋
)︁
≥
⃒⃒⃒
𝑤𝑇𝑋

⃒⃒⃒4
. Now, take 𝑟 = 𝑠/4 and then take the expectation

of both sides to obtain

2048

𝑠4

(︁
𝑀1(𝑠) +𝑀2(𝑠)

)︁
≥ E

[︁⃒⃒⃒
𝑤𝑇𝑋

⃒⃒⃒4]︁
, (5.23)
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where 𝑀1(𝑠) and 𝑀2(𝑠) are defined in Theorem 5.2.3. Thus,

E
[︁⃒⃒
𝑤𝑇𝑋

⃒⃒2
1
{︀
‖𝑋‖22 > 𝐶𝑑

}︀]︁2
≤ E

[︁⃒⃒⃒
𝑤𝑇𝑋

⃒⃒⃒4]︁
E
[︁
1
{︀
‖𝑋‖22 > 𝐶𝑑

}︀2]︁ (5.24)

= E
[︁⃒⃒⃒
𝑤𝑇𝑋

⃒⃒⃒4]︁
P
(︁
‖𝑋‖22 > 𝐶𝑑

)︁
(5.25)

≤ 2048

𝑠4
·
(︁
𝑀1(𝑠) +𝑀2(𝑠)

)︁
· exp

(︁
−Θ(𝑑)

)︁
(5.26)

≤ exp
(︁
−Θ(𝑑)

)︁
, (5.27)

where (5.24) uses Cauchy-Schwarz inequality; (5.25) uses the fact E[1{𝐸}2] = P(𝐸)
valid for any event 𝐸; (5.26) uses (5.23) and the fact P (‖𝑋‖22 > 𝐶𝑑) ≤ exp(−Θ(𝑑));
and finally (5.27) uses the condition (b) on the distribution of 𝑋 stated in Theo-
rem 5.2.3. Taking square roots and taking the supremum over all ‖𝑤‖2 = 1, we
obtain 𝜆(𝑑) ≤ exp(−Θ(𝑑)); establishing Lemma 5.5.4.

Equipped with Proposition 5.5.3 and Lemma 5.5.4, we now complete the proof of
Theorem 5.3.1.

Proof of Theorem 5.3.1. Throughout the proof, we assume that 𝑁 is a sufficiently
large polynomial in 𝑑 and satisfies Assumption 5.1.1. Moreover, since the labels are
bounded, |𝑌 | ≤𝑀 almost surely, the 𝑜𝑁(1) terms in Theorems 5.2.1-5.2.4 disappear,
as noted previously.

For the case of sigmoid and step activations, ℳ can be taken as 2. Thus, for the
𝜉 term appearing in Proposition 5.5.3, we simply employ 𝜉(𝛼,𝑀, 2, 𝐴).

Part (a) Define the class 𝒮(𝛿, 𝑅) =
{︁
𝑋 ↦→∑︀

1≤𝑗≤𝑚 𝑎𝑗SGM
(︀
𝑤𝑇

𝑗 𝑋
)︀
: (𝑎,𝑊 ) ∈ 𝒮(𝛿, 𝑅)

}︁
,

where 𝒮(𝛿, 𝑅) is introduced in Theorem 5.2.1. Note, by the definition of 𝒮(𝛿, 𝑅), that

sup
(𝑎,𝑊 )∈𝒮(𝛿,𝑅)

̂︀ℒ (𝑎,𝑊 )

= sup
(𝑎,𝑊 )∈𝒮(𝛿,𝑅)

1

𝑁

𝑁∑︁
𝑖=1

(︃
𝑌𝑖 −

𝑚∑︁
𝑗=1

𝑎𝑗SGM
(︀
𝑤𝑇

𝑗 𝑋𝑖

)︀2)︃2

≤ 𝛿2.

Applying Theorem 5.2.1, we find that provided 𝑁 ≥ poly(𝑑), 𝒮(𝛿, 𝑅) ⊂ 𝐻(𝐴) with
probability bounded by (5.3), where 𝐻(𝐴) is the class defined in Theorem 5.5.2 with
𝜎(·) = SGM(·) and 𝐴 = 3(1 + 𝑒)(𝛿 + 2𝑀).

Finally, we (a) set ℳ = 2 in Proposition 5.5.3; (b) then consider 𝜉(𝛼,𝑀, 2, 𝐴); and
(c) set 𝜁(𝛼,𝑀,𝐴,𝑁) as in (5.7). Combining now Theorem 5.2.1 and Proposition 5.5.3
via a union bound, we establish the desired conclusion.

Part (b) As the output of the ReLU is not bounded, the situation is more involved.
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First, recall from Theorem 5.2.3 the set 𝒢(𝑚, 𝛿) ≜
{︁
(𝑎,𝑊 ) ∈ R𝑚

≥0 × R𝑚×𝑑 :

‖𝑤𝑗‖2 = 1, 1 ≤ 𝑗 ≤ 𝑚, ̂︀ℒ (𝑎,𝑊 ) ≤ 𝛿2
}︁

and 𝒢(𝛿) ≜
⋃︀

𝑚∈N 𝒢(𝑚, 𝛿). By Theo-
rem 5.2.3, it holds that with probability bounded by (5.4), for any (𝑎,𝑊 ) ∈ 𝒢(𝛿),
‖𝑎‖1 ≤ 4(𝛿+2𝑀)(𝜇*)−1. Using the homogeneity of the ReLU activation, we instead
rescale 𝑤𝑗 by 1/

√
𝐶𝑑; and consider throughout the sets

̃︀𝒢(𝑚, 𝛿) ≜ {︁(𝑎,𝑊 ) ∈ R𝑚
≥0 × R𝑚×𝑑 : ‖𝑤𝑗‖2 =

1√
𝐶𝑑

;

𝑗 ∈ [𝑚], ̂︀ℒ (𝑎,𝑊 ) ≤ 𝛿2
}︁

and ̃︀𝒢(𝛿) ≜ ⋃︁
𝑚∈N

𝒢(𝑚, 𝛿). (5.28)

Then, with probability at least

1−
(︃
12
√
𝐶𝑑

𝜇*

)︃𝑑

exp (−Θ(𝑁))−𝑁 exp (−Θ(𝑑)) , (5.29)

it holds that

sup
(𝑎,𝑊 )∈ ̃︀𝐺(𝛿)

‖𝑎‖1 ≤
4
√
𝐶𝑑(𝛿 + 2𝑀)

𝜇* . (5.30)

We now define an activation function, S-ReLU(·), which is a “saturated" version of
the ReLU: S-ReLU(𝑥) = 0 for 𝑥 < 0, is 𝑥 for 0 ≤ 𝑥 < 1; and is 1 for 𝑥 ≥ 1. Next,
using a union bound over data (𝑋𝑖, 𝑌𝑖), 1 ≤ 𝑖 ≤ 𝑁 , P

(︁
‖𝑋𝑖‖22 ≤ 𝐶𝑑, 1 ≤ 𝑖 ≤ 𝑁

)︁
≥ 1−

𝑁 exp (−Θ(𝑑)) .Hence by Cauchy-Schwarz inequality, P
(︁
sup‖𝑤‖2= 1√

𝐶𝑑

⃒⃒
𝑤𝑇𝑋𝑖

⃒⃒
≤ 1, 1 ≤ 𝑖 ≤ 𝑁

)︁
≥

1 − 𝑁 exp (−Θ(𝑑)) . Consequently, w.p. at least 1 − 𝑁 exp(−Θ(𝑑)) over (𝑋𝑖, 𝑌𝑖); it
holds that for all (𝑎,𝑊 ) ∈ ̃︀𝐺(𝛿)
1

𝑁

∑︁
1≤𝑖≤𝑁

(︃
𝑌𝑖 −

∑︁
1≤𝑗≤𝑚

𝑎𝑗ReLU
(︀
𝑤𝑇

𝑗 𝑋𝑖

)︀)︃2

=
1

𝑁

∑︁
1≤𝑖≤𝑁

(︃
𝑌𝑖 −

∑︁
1≤𝑗≤𝑚

𝑎𝑗S-ReLU
(︀
𝑤𝑇

𝑗 𝑋𝑖

)︀)︃2

≤ 𝛿2.

(5.31)

Define next the class

𝒢(𝛿) ≜
{︃
𝑋 ↦→

∑︁
1≤𝑗≤𝑚

𝑎𝑗S-ReLU
(︀
𝑤𝑇

𝑗 𝑋
)︀
: (𝑎,𝑊 ) ∈ ̃︀𝒢(𝛿)}︃ . (5.32)

Note that, this set consists of all two-layer neural networks with (a) activation
S-ReLU(·), the saturated version of ReLU(·); and (b) weights trained on the ReLU(·)
network.

By Theorem 5.2.3 and (5.30), we find that provided 𝑁 ≥ poly(𝑑), 𝒢(𝛿) ⊂ 𝐻(𝐴)
with probability given by (5.29), where 𝐻(𝐴) is the class defined in Theorem 5.5.2
with 𝜎(·) = S-ReLU(·) and 𝐴 = 4

√
𝐶𝑑(𝛿 + 2𝑀)/𝜇*.
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Observe that S-ReLU is a non-decreasing activation with bounded range. Hence,
Proposition 5.5.3 applies: one can simply take ℳ = 2. We now apply Proposi-
tion 5.5.3 with ℳ = 2, and 𝐴 = 4

√
𝐶𝑑(𝛿 + 2𝑀)(𝜇*)−1 as in (5.30). Combining the

probability bound (5.29) and the one in Proposition 5.5.3 by a union bound, we find
that for every 𝛼 > 0, with probability at least

1− 𝜁

(︃
𝛼,𝑀,

4
√
𝐶𝑑(𝛿 + 2𝑀)

𝜇* , 𝑁

)︃
−
(︃
12
√
𝐶𝑑

𝜇*

)︃𝑑

exp (−Θ(𝑁))−𝑁 exp (−Θ(𝑑))

(5.33)

(where 𝜉 is introduced in (5.7)) over training data (𝑋𝑖, 𝑌𝑖), 1 ≤ 𝑖 ≤ 𝑁 , it holds that

sup
𝜙∈𝒢(𝛿)

⃒⃒⃒⃒
⃒ 1𝑁

𝑁∑︁
𝑖=1

(𝑌𝑖 − 𝜙 (𝑋𝑖))
2 − E(𝑋,𝑌 )∼𝒟

[︁(︁
𝑌 − 𝜙(𝑋)

)︁2]︁⃒⃒⃒⃒⃒ ,
is at most 𝛼, where 𝒢(𝛿) introduced in (5.32). Recalling also (5.31) holding w.p. 1−
𝑁 exp(−Θ(𝑑)); we conclude that

sup
(𝑎,𝑊 )∈̃︀𝒢(𝛿)E(𝑋,𝑌 )∼𝒟

⎡⎣(︃𝑌 −
𝑚∑︁
𝑗=1

𝑎𝑗S-ReLU
(︀
𝑤𝑇

𝑗 𝑋
)︀)︃2

⎤⎦ , (5.34)

is at most 𝛼 + 𝛿2, with probability at least

1− 𝜁

(︃
𝛼,𝑀,

4
√
𝐶𝑑(𝛿 + 2𝑀)

𝜇* , 𝑁

)︃
−
(︃
12
√
𝐶𝑑

𝜇*

)︃𝑑

exp (−Θ(𝑁))− 2𝑁 exp (−Θ(𝑑)) .

(5.35)

We next fix an (𝑎,𝑊 ) ∈ ̃︀𝒢(𝛿), and study the quantity

Δ(𝑎,𝑊 ) ≜

⃒⃒⃒⃒
⃒⃒E(𝑋,𝑌 )∼𝒟

⎡⎣(︃𝑌 −
𝑚∑︁
𝑗=1

𝑎𝑗ReLU
(︀
𝑤𝑇

𝑗 𝑋
)︀)︃2

⎤⎦
−E(𝑋,𝑌 )∼𝒟

⎡⎣(︃𝑌 −
𝑚∑︁
𝑗=1

𝑎𝑗S-ReLU
(︀
𝑤𝑇

𝑗 𝑋
)︀)︃2

⎤⎦⃒⃒⃒⃒⃒⃒ . (5.36)

This quantity is nothing but the difference of generalization errors between two net-
works of same architecture, same number 𝑚 of hidden units and same weights (𝑎,𝑊 );
but different activations, ReLU(·) and S-ReLU(·).

For convenience, denote

𝜙𝑆𝑅(𝑋) ≜
∑︁

1≤𝑗≤𝑚

𝑎𝑗S-ReLU
(︀
𝑤𝑇

𝑗 𝑋
)︀
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and
𝜙𝑅(𝑋) ≜

∑︁
1≤𝑗≤𝑚

𝑎𝑗ReLU
(︀
𝑤𝑇

𝑗 𝑋
)︀
.

In what follows, we employ the simple observation that since 𝑎𝑗 ≥ 0 and 0 ≤
S-ReLU(𝑥) ≤ 1, 0 ≤ 𝜙SR(𝑋) ≤ ‖𝑎‖1.

Suppressing the subscript (𝑋, 𝑌 ) ∼ 𝒟 from the expectations, we have

Δ(𝑎,𝑊 )

=
⃒⃒⃒
E
[︀
(𝑌 − 𝜙𝑆𝑅(𝑋))2

]︀
− E

[︀
(𝑌 − 𝜙𝑅(𝑋))2

]︀⃒⃒⃒
(5.37)

=
⃒⃒⃒
E [2𝑌 𝜙𝑅(𝑋)− 2𝑌 𝜙𝑆𝑅(𝑋)] + E

[︀
𝜙𝑆𝑅(𝑋)2 − 𝜙𝑅(𝑋)2

]︀⃒⃒⃒
(5.38)

≤
⃒⃒⃒
E [2𝑌 𝜙𝑅(𝑋)− 2𝑌 𝜙𝑆𝑅(𝑋)]

⃒⃒⃒
+
⃒⃒⃒
E
[︀
𝜙𝑆𝑅(𝑋)2 − 𝜙𝑅(𝑋)2

]︀⃒⃒⃒
(5.39)

≤ E
[︁⃒⃒⃒
2𝑌 𝜙𝑅(𝑋)− 2𝑌 𝜙𝑆𝑅(𝑋)

⃒⃒⃒]︁
+ E

[︁⃒⃒⃒
𝜙𝑆𝑅(𝑋)2 − 𝜙𝑅(𝑋)2

⃒⃒⃒]︁
. (5.40)

Above, (5.37) follows by the definition of Δ(𝑎,𝑊 ) per (5.36); (5.38) follows after
simple algebra; (5.39) follows by the triangle inequality; and (5.40) follows by the
Jensen’s inequality.

We next study two individual terms appearing in (5.40) separately, while keeping
in mind that (𝑎,𝑊 ) ∈ ̃︀𝒢(𝛿) implies 𝑎𝑗 ≥ 0 for 1 ≤ 𝑗 ≤ 𝑚 and ‖𝑤𝑗‖2 = 1/

√
𝐶𝑑 for

1 ≤ 𝑗 ≤ 𝑚. For convenience, set ℰ ≜ {‖𝑋‖22 > 𝐶𝑑}. We have

E
[︁⃒⃒⃒
2𝑌 𝜙𝑅(𝑋)− 2𝑌 𝜙𝑆𝑅(𝑋)

⃒⃒⃒]︁
≤ 2𝑀E

[︁⃒⃒⃒
𝜙𝑅(𝑋)− 𝜙𝑆𝑅(𝑋)

⃒⃒⃒]︁
(5.41)

= 2𝑀
(︁
E
[︁
|𝜙𝑅(𝑋)− 𝜙𝑆𝑅(𝑋)|

⃒⃒⃒
ℰ𝑐
]︁
P
(︀
ℰ𝑐)︀)︁

+ 2𝑀
(︁
E
[︁⃒⃒⃒
𝜙𝑅(𝑋)− 𝜙𝑆𝑅(𝑋)

⃒⃒⃒
1

{︁
ℰ
}︁]︁

(5.42)

≤ 2𝑀E
[︁⃒⃒⃒
𝜙𝑅(𝑋)− 𝜙𝑆𝑅(𝑋)

⃒⃒⃒
1

{︁
ℰ
}︁]︁

(5.43)

≤ 2𝑀
(︁
E
[︁
𝜙𝑅(𝑋)1

{︁
ℰ
}︁]︁

+ E
[︁
𝜙𝑆𝑅(𝑋)1

{︁
ℰ
}︁]︁)︁

(5.44)

≤ 2𝑀𝑒−Θ(𝑑)‖𝑎‖1
(︁√︀

𝜆(𝑑) + 1
)︁
. (5.45)

Here, (5.41) uses the fact |𝑌 | ≤𝑀 almost surely; (5.42) is by the law of total expec-
tation; (5.43) uses the fact that on the event ‖𝑋‖22 ≤ 𝐶𝑑, 𝜙𝑅(𝑋) = 𝜙𝑆𝑅(𝑋) since
‖𝑤𝑗‖2 = 1/

√
𝐶𝑑; (5.44) uses the triangle inequality; and finally (5.45) uses the facts

0 ≤ S-ReLU(𝑥) ≤ 1 for every 𝑥, 𝑎𝑗 ≥ 0 for every 1 ≤ 𝑗 ≤ 𝑚; ReLU(𝑥) ≤ |𝑥|; and

E
[︁⃒⃒⃒
𝑤𝑇

𝑗 𝑋
⃒⃒⃒
1{ℰ}

]︁
≤
√︂

E
[︁⃒⃒⃒
𝑤𝑇

𝑗 𝑋
⃒⃒⃒2
1

{︁
ℰ
}︁]︁

·E
[︁
1

{︁
ℰ
}︁]︁

≤ 𝑒−Θ(𝑑)
√︀
𝜆(𝑑) using Lemma 5.5.4

and Cauchy-Schwarz inequality. Here, 𝜆(𝑑) is the function defined in (5.22).
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We now study the second term in (5.40). Observe that

E
[︁⃒⃒⃒
𝜙𝑆𝑅(𝑋)2 − 𝜙𝑅(𝑋)2

⃒⃒⃒]︁
= E

[︁⃒⃒
𝜙𝑆𝑅(𝑋)2 − 𝜙𝑅(𝑋)2

⃒⃒ ⃒⃒⃒
ℰ𝑐
]︁
P
(︀
ℰ𝑐)︀

+ E
[︁⃒⃒⃒
𝜙𝑆𝑅(𝑋)2 − 𝜙𝑅(𝑋)2

⃒⃒⃒
1

{︁
ℰ
}︁]︁

(5.46)

= E
[︁⃒⃒⃒
𝜙𝑆𝑅(𝑋)2 − 𝜙𝑅(𝑋)2

⃒⃒⃒
1

{︁
ℰ
}︁]︁

(5.47)

≤
(︁
E
[︁
𝜙𝑆𝑅(𝑋)21

{︁
ℰ
}︁]︁

+ E
[︁
𝜙𝑅(𝑋)21

{︁
ℰ
}︁]︁)︁

(5.48)

≤
(︁
𝑒−Θ(𝑑) · ‖𝑎‖21 +

∑︁
1≤𝑗≤𝑚

𝑎2𝑗E
[︁
ReLU

(︀
𝑤𝑇

𝑗 𝑋
)︀2
1{ℰ}

]︁
+ 2

∑︁
1≤𝑗1<𝑗2≤𝑚

𝑎𝑗1𝑎𝑗2E
[︁
ReLU

(︀
𝑤𝑇

𝑗1
𝑋
)︀
ReLU

(︀
𝑤𝑇

𝑗2
𝑋
)︀
1{ℰ}

]︁)︁
(5.49)

≤ 𝑒−Θ(𝑑)‖𝑎‖21 + 𝜆(𝑑)
∑︁

1≤𝑗≤𝑚

𝑎2𝑗 + 2𝜆(𝑑)
∑︁

1≤𝑗1<𝑗2≤𝑚

𝑎𝑗1𝑎𝑗2 (5.50)

= 𝑒−Θ(𝑑)‖𝑎‖21 + 𝜆(𝑑)‖𝑎‖21. (5.51)

Indeed, (5.46) is again by the law of total expectation; (5.47) uses the fact that on
‖𝑋‖22 ≤ 𝐶𝑑, 𝜙𝑆𝑅(𝑋) = 𝜙𝑅(𝑋) since ‖𝑤𝑗‖2 = 1/

√
𝐶𝑑; (5.48) uses triangle inequal-

ity; (5.49) is obtained by opening the parantheses while using 𝑎𝑖 ≥ 0, 0 ≤ S-ReLU(𝑥) ≤
1; (5.50) uses the fact 𝑎𝑗 ≥ 0, Lemma 5.5.4 as well as the Cauchy-Schwarz inequality

E
[︁
ReLU

(︀
𝑤𝑇

𝑗1
𝑋
)︀
ReLU

(︀
𝑤𝑇

𝑗2
𝑋
)︀
1{ℰ}

]︁
≤
√︂

E
[︁
ReLU2

(︀
𝑤𝑇

𝑗1
𝑋
)︀
1{ℰ}

]︁
·
√︂

E
[︁
ReLU2

(︀
𝑤𝑇

𝑗2
𝑋
)︀
1{ℰ}

]︁
which is at most 𝜆(𝑑) as ReLU(𝑥) ≤ |𝑥|. Finally, (5.51) is obtained by just noticing

that for 𝑎𝑗 ≥ 0, ‖𝑎‖21 =
(︁∑︀

1≤𝑗≤𝑚 𝑎𝑗

)︁2
=
∑︀

1≤𝑗≤𝑚 𝑎
2
𝑗 + 2

∑︀
1≤𝑗1<𝑗2≤𝑚 𝑎𝑗1𝑎𝑗2 . We

now combine (5.45) and (5.51) to upper bound the right hand side of (5.40) and
arrive at Δ(𝑎,𝑊 ) ≤ 2𝑀𝑒−Θ(𝑑)‖𝑎‖1

(︁√︀
𝜆(𝑑) + 1

)︁
+ ‖𝑎‖21𝑒−Θ(𝑑), where we used the

fact 𝜆(𝑑) ≤ exp(−Θ(𝑑)) by (5.22). Since ‖𝑎‖1 ≤ 4
√
𝐶𝑑(𝛿 + 2𝑀)/𝜇* on ̃︀𝒢(𝛿) as

recorded in (5.30), we obtain that sup(𝑎,𝑊 )∈̃︀𝒢(𝛿) Δ(𝑎,𝑊 ) is at most

sup
(𝑎,𝑊 )∈̃︀𝒢(𝛿)Δ(𝑎,𝑊 ) ≤ 𝑒−Θ(𝑑)

(︃
8𝑀

√
𝐶(𝛿 + 2𝑀)

𝜇* ×
√
𝑑
(︁√︀

𝜆(𝑑) + 1
)︁
+

16𝐶(𝛿 + 2𝑀)2

𝜇*2 𝑑

)︃
.

(5.52)

Recall that 𝜆(𝑑) ≤ exp(−Θ(𝑑)) by (5.22). Note that as long as 𝑀,𝐶, 𝛿, (𝜇*)−1 =
exp(𝑜(𝑑)) as well, the term on the right hand side of (5.52) is 𝑒−Θ(𝑑).
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We finally combine (5.34), (5.36); and (5.52) to obtain

sup
(𝑎,𝑊 )∈𝒢(𝛿)

E(𝑋,𝑌 )∼𝒟

⎡⎣(︃𝑌 −
𝑚∑︁
𝑗=1

𝑎𝑗ReLU
(︀
𝑤𝑇

𝑗 𝑋
)︀)︃2

⎤⎦
is at most 𝛼 + 𝛿2 + 𝑒−Θ(𝑑) with probability at least

1−𝜁
(︃
𝛼,𝑀,

4
√
𝐶𝑑(𝛿 + 2𝑀)

𝜇* , 𝑁

)︃
−
(︃
12
√
𝐶𝑑

𝜇*

)︃𝑑

exp (−Θ(𝑁))−2𝑁 exp (−Θ(𝑑)) ,

as shown in (5.35). This concludes the proof of Part (b).

Part (c) This is quite similar to Part (a). Define the class

ℋ(𝛿) ≜

{︃
𝑋 ↦→

∑︁
1≤𝑗≤𝑚

𝑎𝑗Step
(︀
𝑤𝑇

𝑗 𝑋
)︀
: (𝑎,𝑊 ) ∈ ℋ(𝛿)

}︃

where ℋ(𝛿) is introduced in Theorem 5.2.4. Note, by definition, that

sup
(𝑎,𝑊 )∈ℋ(𝛿)

̂︀ℒ (𝑎,𝑊 ) = sup
(𝑎,𝑊 )∈ℋ(𝛿)

1

𝑁

𝑁∑︁
𝑖=1

(︃
𝑌𝑖 −

𝑚∑︁
𝑗=1

𝑎𝑗Step
(︀
𝑤𝑇

𝑗 𝑋𝑖

)︀2)︃ ≤ 𝛿2.

Applying Theorem 5.2.4, we find that provided 𝑁 ≥ poly(𝑑), ℋ(𝛿) ⊂ 𝐻(𝐴) w.h.p.
, where 𝐻(𝐴) is the class defined in Theorem 5.5.2 with 𝜎(·) = Step(·) and 𝐴 =
2(𝛿 + 2𝑀)/𝜂.

Like in the previous case, we then (a) set ℳ = 2 in Proposition 5.5.3; (b) then
let 𝜉(𝛼,𝑀, 2) to be 𝜉(𝛼,𝑀, 2, 𝐴); and (c) set 𝜁(𝛼,𝑀,𝐴,𝑁) as in (5.7). Combining
now Theorem 5.2.4 and Proposition 5.5.3 via a union bound, we establish the desired
conclusion.

5.5.5 Proof of Proposition 5.5.3

In this section, we prove Proposition 5.5.3. For the results we cite from [43], the
numbers recorded below are from the version accessed at http://phillong.info/
publications/fatshat.pdf1.

Some Extra Notation on Covering Numbers We introduce several quantities
verbatim from [43]. Let 𝑊 be an arbitrary set, and 𝑓 : 𝑊 → R be any function. For
any 𝑤 = (𝑤1, . . . , 𝑤𝑁) ∈ 𝑊𝑁 , denote by 𝑓 |𝑤 the 𝑁 -tuple (𝑓(𝑤1), 𝑓(𝑤2), . . . , 𝑓(𝑤𝑁)) ∈

1See the archived version at http://web.archive.org/web/20200921180645/http:
//phillong.info/publications/fatshat.pdf if the link above is expired.
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R𝑁 . For a class 𝒞 of functions 𝑓 : 𝑊 → R, let 𝒞|𝑤 ⊆ R𝑁 denotes the set

𝒞|𝑤 ≜
{︁
𝑓 |𝑤 : 𝑓 ∈ 𝒞

}︁
=
{︁(︁
𝑓(𝑤1), . . . , 𝑓(𝑤𝑁)

)︁
: 𝑓 ∈ 𝒞

}︁
⊆ R𝑁 . (5.53)

Next, recall the covering numbers from Definition 5.1.2. Throughout this section,
and in particular the proof of Theorem 5.3.1, we take the metric 𝜌 appearing in
Definition 5.1.2 to be the normalized ℓ1 distance: for any 𝑤, �̄� ∈ R𝑁 , set 𝜌(𝑤, �̄�) =
1
𝑁

∑︀
1≤𝑖≤𝑁 |𝑤𝑖 − �̄�𝑖|. For any 𝑈 ⊆ R𝑁 , denote by 𝒩 (𝜖, 𝑈) the covering number of 𝑈

(at scale 𝜖) with respect to the metric 𝜌 above. That is, 𝒩 (𝜖, 𝑈) is the cardinality
of the smallest 𝒩𝜖 ⊂ 𝑈 (if finite) such that for every 𝑤 ∈ 𝑈 , there exists a �̄� ∈ 𝑁𝜖

with 𝜌(𝑤, �̄�) = 1
𝑁

∑︀
1≤𝑖≤𝑁 |𝑤𝑖 − �̄�𝑖| ≤ 𝜖. (It is worth noting that here we flipped the

order of arguments in 𝒩 appearing in Definition 5.1.2. The rationale for this is to be
consistent with the notation of Bartlett et al. [43].)

Throughout this section, we often consider the following special case of 𝒩 (·, ·):
we employ 𝒩 (·, 𝒞|𝑤) for appropriate classes 𝒞 of functions where 𝑤 is an element of
the Euclidean space R𝑁 for some 𝑁 .

Proof of Proposition 5.5.3. We first provide a result established originally in [164,
Theorem 3,p. 107].

Theorem 5.5.5. Let 𝑋, 𝑌 be sets; 𝐺 be a PH-permissible class of [0, 𝑇 ]-valued func-
tions defined on 𝑍 ≜ 𝑋×𝑌 where 𝑇 ∈ R+, and 𝑃 be any distribution on 𝑍. Suppose
𝑍𝑖, 1 ≤ 𝑖 ≤ 𝑁 , are i.i.d. samples from 𝑃 . Then for any 𝛼 > 0, with probability at
least

1− 4

(︂
sup

𝑧∈𝑍2𝑁

𝒩
(︁ 𝛼
16
, 𝐺
⃒⃒⃒
𝑧

)︁)︂
· exp

(︀
−𝛼2𝑁/64𝑇 2

)︀
over data 𝑍𝑖, 1 ≤ 𝑖 ≤ 𝑁 , it holds that

sup
𝑔∈𝐺

⃒⃒⃒⃒
⃒ 1𝑁

𝑁∑︁
𝑖=1

𝑔(𝑍𝑖)− E𝑍∼𝑃 [𝑔(𝑍)]

⃒⃒⃒⃒
⃒ ≤ 𝛼,

where E[𝑔(𝑍)] is taken with respect to a fresh sample (namely a sample drawn from
𝑃 , and independent of 𝑍𝑖).

The version we record above is verbatim from [43, Theorem 13]. (The parameters
𝑀 and 𝑚 in [43] are replaced, respectively, with the parameters 𝑇 and 𝑁 above.)

Here, PH-permissible refers to a rather mild measurability constraint2, see [164,
Section 9.2]. The precise details of this technicality are immaterial to us; and it is
satisfied for our purposes. Moreover, 𝒩 (·, ·) is the covering numbers quantity defined
above.

In what follows, we apply Theorem 5.5.5. Specifically, we take𝑋 = R𝑑, 𝑌 = [0,𝑀 ]
(recall that the labels are bounded almost surely by 𝑀) thus 𝑍 = R𝑑× [0,𝑀 ] and we

2The letters 𝐻 and 𝑃 stand, respectively, for Haussler and Pollard—who gave a preliminary
version of Theorem 5.5.5.
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set 𝑃 to simply be 𝒟, the distribution from which the data are drawn. We then set

𝐺 ≜
{︁
(𝜙(𝑋)− 𝑌 )2 : 𝑋 ∈ R𝑑, 𝑌 ∈ [0,𝑀 ], 𝜙(·) ∈ 𝐻(𝐴)

}︁
, (5.54)

and take 𝑇 to be max{ℳ𝐴, 2𝑀}2 (see below).This is nothing but the ℓ2 error obtained
for predicting the label 𝑌 with 𝜙(𝑋), with 𝑋 being the input and 𝜙(·) being the
“predictor". With these, we obtain immediately

sup
𝜙∈𝐻(𝐴)

⃒⃒⃒⃒
⃒ 1𝑁

𝑁∑︁
𝑖=1

(︁
𝜙(𝑋𝑖)− 𝑌𝑖

)︁2
− E(𝑋,𝑌 )∼𝒟

[︁
(𝜙(𝑋)− 𝑌 )2

]︁⃒⃒⃒⃒⃒ (5.55)

is at most 𝛼; with probability at least

1− 4

(︂
sup

𝑧∈𝑍2𝑁

𝒩
(︁ 𝛼
16
, 𝐺
⃒⃒⃒
𝑧

)︁)︂
· exp

(︂
− 𝛼2𝑁

64max{ℳ𝐴, 2𝑀}2
)︂

(5.56)

over data 𝑍𝑖 = (𝑋𝑖, 𝑌𝑖) ∼ 𝒟, 1 ≤ 𝑖 ≤ 𝑁 . Above, we used the facts (a) |𝑌 | ≤𝑀 almost
surely; and (b) for any 𝜙 ∈ 𝐻(𝐴), it is the case 𝜙(𝑋) =

∑︀
1≤𝑗≤𝑚 𝑎𝑗𝜎

(︀
𝑤𝑇

𝑗 𝑋
)︀

(for an
𝑚 ∈ N and 𝑤𝑗 ∈ R𝑑, 1 ≤ 𝑗 ≤ 𝑚), where ‖𝑎‖1 ≤ 𝐴 and sup𝑥∈R |𝜎(𝑥)| ≤ ℳ/2. These
together with the triangle inequality yield −ℳ𝐴/2 ≤ 𝜙(𝑋) ≤ ℳ𝐴/2 and −
𝑀 ≤ 𝑌 ≤ 𝑀 . Hence, −max{ℳ𝐴/2,𝑀} ≤ 𝜙(𝑋), 𝑌 ≤ max{ℳ𝐴/2,𝑀}; implying(︁
𝜙(𝑋) − 𝑌

)︁2
≤ max{ℳ𝐴, 2𝑀}2. Thus, 𝑇 can be taken as max{ℳ𝐴, 2𝑀}2. We

next study covering number quantity sup𝑧∈𝑍2𝑁 𝒩 (𝛼/16, 𝐺|𝑧) appearing in (5.56). For
this, we rely on the following result taken verbatim from [43, Lemma 17].

Lemma 5.5.6. Let 𝑋 be a set, and 𝐹 be a set of functions from 𝑋 to [0, 1]. Then
for any 𝜖 > 0 and any 𝑁 ∈ N, if 𝑎 ≤ 0 and 𝑏 ≥ 1, we have

sup
𝑧∈(𝑋×[𝑎,𝑏])𝑁

𝒩
(︁
𝜖, (ℓ𝐹 )

⃒⃒⃒
𝑧

)︁
≤ sup

𝑥∈𝑋𝑁

𝒩
(︂

𝜖

3|𝑏− 𝑎| , 𝐹
⃒⃒⃒
𝑥

)︂
.

Here, ℓ𝑓 (𝑥, 𝑦) = (𝑓(𝑥) − 𝑦)2, ℓ𝐹 = {ℓ𝑓 : 𝑓 ∈ 𝐹}, and for 𝑧 = (𝑧1, . . . , 𝑧𝑁) (where
𝑧𝑖 = (𝑥𝑖, 𝑦𝑖)), (ℓ𝐹 )|𝑧 = {(ℓ𝑓 (𝑥𝑖, 𝑦𝑖)2 : 1 ≤ 𝑖 ≤ 𝑁) : 𝑓 ∈ 𝐹}, which is the notation intro-
duced in (5.53) with 𝒞 := ℓ𝐹 and 𝑤 := 𝑧.

We take 𝐹 = 𝐻(𝐴) and ℓ𝐹 = 𝐺 to arrive at

sup
𝑧∈𝑍2𝑁

𝒩
(︁ 𝛼
16
, 𝐺
⃒⃒⃒
𝑧

)︁
≤ sup

𝑥∈(R𝑑)
2𝑁

𝒩
(︂

𝛼

32ℳ𝐴max{ℳ𝐴, 2𝑀} , 𝐻(𝐴)|𝑥
)︂
. (5.57)

Here, in addition to inserting 𝛼/16, we also rescaled 𝜖 so as to reflect the fact that
the functions in 𝐻(𝐴) take values in [0,ℳ𝐴]. (While all the bounds established
by Bartlett et al. in [43] assume the output space to be [0, 1], they extend in a
straightforward manner to any output spaces of form [𝐿,𝑈 ] by rescaling corresponding
parameters. This is already noted in the beginning of [43, Section 6].)

We next record yet another result by Bartlett et al. [43, Corollary 16].
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Lemma 5.5.7. Let 𝐹 be a class of [0, 1]-valued functions defined on 𝑋, 0 < 𝜖 < 1/2
and 2𝑁 ≥ FSD𝐹 (𝜖/4). Then,

sup
𝑥∈𝑋𝑁

𝒩 (𝜖, 𝐹 |𝑥) ≤ exp

(︂
2

ln 2
FSD𝐹 (𝜖/4) ln

2 9𝑁

𝜖

)︂
,

where the quantity FSD𝐹 (·) stands for the fat-shattering dimension introduced in (5.21).

(While we again skip the proof of this lemma, it is worth noting that it is obtained
by combining two earlier results by Alon et al. [12, Lemmas 14,15].)

Taking now 𝑋 = R𝑑 and 𝐹 = 𝐻(𝐴) in Lemma 5.5.7; rescaling 𝜖 to 𝜖
ℳ𝐴

; and then
plugging 𝜖 = 𝛼

32ℳ𝐴max{ℳ𝐴,2𝑀} as in (5.57), we obtain

sup
𝑥∈(R𝑑)

2𝑁

𝒩
(︂

𝛼

32ℳ𝐴max{ℳ𝐴, 2𝑀} , 𝐻(𝐴)|𝑥
)︂

≤ exp

(︂
2

ln 2
FSD𝐻(𝐴)

(︂
𝛼

128ℳ2𝐴2max{ℳ𝐴, 2𝑀}

)︂
· ln2

(︂
576𝑁ℳ2𝐴2max{ℳ𝐴, 2𝑀}

𝛼

)︂)︂
. (5.58)

We finally apply Theorem 5.5.2 above to upper bound the FSD term appearing
in (5.58). Provided

𝛼

128ℳ2𝐴2max{ℳ𝐴, 2𝑀} ≤ ℳ𝐴

that is 𝛼 ≤ 128ℳ3𝐴3max{ℳ𝐴, 2𝑀}; it holds that

FSD𝐻(𝐴)

(︂
𝛼

128ℳ2𝐴2max{ℳ𝐴, 2𝑀}

)︂
≤ 1282𝑐ℳ6𝐴6max{ℳ𝐴, 2𝑀}2

𝛼2
𝑑

· ln
(︂
128ℳ3𝐴3max{ℳ𝐴, 2𝑀}

𝛼

)︂
where 𝑐 > 0 is the absolute constant appearing in Theorem 5.5.2.

Finally, combining this bound with chain of equations (5.56), (5.57), (5.58) we
complete the proof.
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Chapter 6

Stationary Points of Two-Layer
Quadratic Networks and the Global
Optimality of the Gradient Descent
Algorithm

6.1 Introduction

Neural network architectures are demonstrated to be extremely powerful in practical
tasks such as natural language processing [79], image recognition [165], image clas-
sification [192], speech recognition [219], and game playing [257]; and is becoming
popular in other areas, such as applied mathematics [72, 286], clinical diagnosis [86];
and so on. Despite this empirical success, a rigorous mathematical understanding of
these architectures is still an ongoing quest.

While it is NP-hard to train such architectures in the worst-case setting, it has
been observed empirically that the gradient descent, albeit being a simple first-order
local procedure, is rather successful in training such networks. This is somewhat
surprising due to the highly non-convex nature of the associated objective function.
Our main motivation in this work is to provide further insights into the optimization
landscape and generalization abilities of these networks.

6.1.1 Model, Contributions, and Comparison with the Prior
Work

In this section, we introduce the model considered in this work, describe our contri-
butions and discuss the relevant literature.

Model. In this work, we consider a shallow neural network architecture with one
hidden layer of width 𝑚. Namely, the network consists of 𝑚 neurons. We study it
under the realizable model assumption, that is, the labels are generated by a teacher
network with ground truth weight matrix 𝑊 * ∈ R𝑚×𝑑 whose 𝑗th row 𝑊 *

𝑗 ∈ R𝑑 car-
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ries the weights of 𝑗th neuron and 𝑚 ≥ 𝑑. We assume that the input data 𝑋 ∈ R𝑑

consists of i.i.d. centered sub-Gaussian coordinates. It is worth noting that such shal-
low architectures with planted weights and Gaussian input data have been explored
extensively in the literature, see e.g. [101, 205, 276, 297, 263, 64].

Our focus is in particular on networks with quadratic activation, studied also by
Soltanolkotabi, Javanmard and Lee [264]; and Du and Lee [98], among others. This
object, an instance of what is known as a polynomial network [210], computes for
every input data 𝑋 ∈ R𝑑 the function:

𝑓(𝑊 *;𝑋) =
𝑚∑︁
𝑗=1

⟨︀
𝑊 *

𝑗 , 𝑋
⟩︀2

= ‖𝑊 *𝑋‖22. (6.1)

We note that albeit being a stylized activation function, blocks of quadratic activa-
tions can be stacked together to approximate deeper networks with sigmoid activa-
tions as shown by Livni et al. [210]; and furthermore this activation serves as a second
order approximation of general non-linear activations as noted by Venturi et al. [279].
Thus, we study the quadratic networks as an attempt to gain further insights on more
complex networks.

Let𝑋𝑖 ∈ R𝑑, 1 ≤ 𝑖 ≤ 𝑁 be an i.i.d. collection of input data, and let 𝑌𝑖 = 𝑓(𝑊 *;𝑋𝑖)
be the corresponding label generated per (6.1). The goal of the learner is as follows:
given the training data (𝑋𝑖, 𝑌𝑖) ∈ R𝑑×R, 1 ≤ 𝑖 ≤ 𝑁 , find a weight matrix 𝑊 ∈ R𝑚×𝑑

that explains the input-output relationship on the training data set in the best possible
way, often by solving the so-called “empirical risk minimization" (ERM) optimization
problem

min
𝑊∈R𝑚×𝑑

̂︀ℒ(𝑊 ) where ̂︀ℒ(𝑊 ) ≜
1

𝑁

∑︁
1≤𝑖≤𝑁

(︁
𝑌𝑖 − 𝑓(𝑊 ;𝑋𝑖)

)︁2
; (6.2)

and understand its generalization ability, quantified by the “generalization error"
(also known as the “population risk" associated with any solution candidate 𝑊 ∈
R𝑚×𝑑) that is given by

ℒ(𝑊 ) ≜ E
[︁(︁
𝑓(𝑊 *;𝑋)− 𝑓(𝑊 ;𝑋)

)︁2]︁
, (6.3)

where the expectation is with respect to a “fresh" sample 𝑋, which has the same
distribution as 𝑋𝑖, 1 ≤ 𝑖 ≤ 𝑁 , but is independent from the sample. The landscape
of the loss function ̂︀ℒ(·) is non-convex, therefore rendering the optimization problem
(potentially) difficult. Nevertheless, the gradient descent algorithm, despite being a
simple first-order procedure, is rather successful in training neural networks in general:
it appears to find a 𝑊 ∈ R𝑚×𝑑 with near-optimal ̂︀ℒ(𝑊 ). Our partial motivation is to
investigate this phenomenon in the case where the activation function is quadratic.

Contributions. We first study the landscape of risk functions and quantify an
“energy barrier" separating rank-deficient matrices from the full-rank planted weights.
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Specifically, if 𝑊 * ∈ R𝑚×𝑑 is full-rank, namely rank 𝑑 (recall 𝑚 ≥ 𝑑), then the
risk function for any rank-deficient 𝑊 is bounded away from zero by an explicit
constant—independent of 𝑑—controlled by the smallest singular value 𝜎min(𝑊

*) of
𝑊 *, as well as the second and the fourth moments of the data. See Theorem 6.2.1 for
the population and Theorem 6.2.2 for the empirical versions of this result. (Theorem
6.2.2 holds w.h.p. with respect to the observed sample.)

Next, we study the full-rank stationary points of the risk functions and the per-
formance of the gradient descent algorithm. We first establish that when 𝑊 * is full
rank, any full-rank stationary point 𝑊 of the risk functions is necessarily global min-
imum, and that any such 𝑊 is of form 𝑊 = 𝑄𝑊 * where 𝑄 ∈ R𝑚×𝑚 is orthonormal.
See Theorem 6.2.3 for the population; and Theorem 6.2.4 for the empirical versions.
Namely, 𝑊 is a global optimum up to a rotation. We then establish that all “approx-
imate" stationary points (appropriately defined) 𝑊 of ̂︀ℒ(·) below the aforementioned
“energy barrier" are “nearly" global optimum. Furthermore, we establish that if the
number 𝑁 of samples is poly(𝑑), then the weights 𝑊 of any full-rank “approximate"
stationary point are uniformly close to 𝑊 *. As a corollary, gradient descent with
initialization below the “energy barrier" recovers in time poly (𝜖−1, 𝑑) a solution 𝑊
for which the weights are “𝜖-close" to the planted weights. Consequently, the gener-
alization error ℒ(𝑊 ) for this solution 𝑊 is at most 𝜖. The bound on ℒ(𝑊 ) is derived
by controlling the condition number of a certain matrix whose i.i.d. rows consists of
tensorized data 𝑋⊗2

𝑖 ; using a recently developed machinery in [107] studying the spec-
trum of expected covariance matrices of tensorized data. See Theorem 6.2.5 for the
population; and Theorem 6.2.6 for the empirical version.

Subsequently, we study the question whether one can find the initialization of
the gradient descent algorithm below the aforementioned energy barrier. We answer
affirmatively this question in the context of randomly generated 𝑊 * ∈ R𝑚×𝑑, and es-
tablish in Theorem 6.2.8 that as long as the network is sufficiently overparameterized,
specifically 𝑚 > 𝐶𝑑2, for some sufficiently large constant 𝐶, it is possible to initialize
𝑊0 such that w.h.p. the risk associated to 𝑊0 is below the required threshold. This
is achieved by using tools from random matrix theory, specifically a semicircle law for
Wishart matrices which shows the spectrum of (𝑊 *)𝑇𝑊 * is tightly concentrated [25].
See Theorem 6.2.7 for the population; and Theorem 6.2.8 for the empirical version. It
is worth noting that neural networks with random weights is an active area of research
by itself due to the relationship with random feature methods. For example, Rahimi
and Recht showed in [243] that shallow architectures trained by choosing the inter-
nal weights randomly and optimizing only over the output weights return a classifier
with reasonable generalization performance at accelerated training speed. Random
shallow networks were also shown to well-approximate dynamical systems [154]; have
been successfully employed in the context of extreme learning machines [173]; and
were studied in the context of random matrix theory, see [233] and references therein.

Our next focus is on the sample complexity for generalization. While we study
the landscape of the empirical risk, it is not by any means certain that any (poten-
tially not full-rank) optimizer of min𝑊

̂︀ℒ(𝑊 ) also achieve zero generalization error.
We give necessary and sufficient conditions on the samples 𝑋𝑖, 1 ≤ 𝑖 ≤ 𝑁 so that
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any minimizer has indeed zero generalization error in our setting. We show that, if
span(𝑋𝑖𝑋

𝑇
𝑖 : 1 ≤ 𝑖 ≤ 𝑁) is the space of all 𝑑×𝑑-dimensional real symmetric matrices,

then any global minimum of the empirical risk is necessarily a global optimizer of the
population risk, and thus, has zero generalization error. Note that, this geometric
condition is not retrospective in manner: it can be checked ahead of the optimization
procedure by computing span(𝑋𝑖𝑋

𝑇
𝑖 : 1 ≤ 𝑖 ≤ 𝑁). Conversely, we show that if

the span condition above is not met then there exists a global minimum 𝑊 of the
empirical risk function which induces a strictly positive generalization error. This is
established in Theorem 6.2.9.

To complement our analysis, we then ask the following question: what is the
“critical number" 𝑁* of the training samples, under which the (random) data 𝑋𝑖, 1 ≤
𝑖 ≤ 𝑁 enjoys the aforementioned span condition? We prove this number to be
𝑁* = 𝑑(𝑑 + 1)/2, under a very mild assumption that the coordinates of 𝑋𝑖 ∈ R𝑑

are jointly continuous. This is shown in Theorem 6.2.10. Finally in Theorem 6.2.11,
we show that when 𝑁 < 𝑁*, not only that there exists 𝑊 with zero empirical risk
and strictly positive generalization error, we also bound this error from below by an
amount very similar to the bound for rank-deficient matrices discussed in our earlier
Theorem 6.2.2.

We end with a comment on overparameterization and generalization. A common
paradigm in statistical learning theory is that, overparameterized models, that is,
models with more parameters than necessary, while being capable of interpolating
the training data, tend to generalize poorly because of overfitting to the proposed
model. Yet, it has been observed empirically that neural networks tend to not suffer
from this complication [294]: despite being overparameterized, they seem to have
a good generalization performance, provided the interpolation barrier is exceeded.
In Theorem 6.2.9 (a) we establish the following result which sheds some light on
this phenomenon for the case of shallow neural networks with quadratic activations:
suppose that the data enjoys the aforementioned geometric condition. Then, any
interpolator achieves zero generalization error, even when the interpolator is a neural
network with a potentially larger number ̂︀𝑚 of internal nodes compared to the one that
generated the data, namely by using a weight matrix 𝑊 ∈ R̂︀𝑚×𝑑 where ̂︀𝑚 ≥ 𝑚. In
other words, the model does not overfit when a much larger width of the interpolator
is chosen at the learning state.

Comparison with [264] and [98]. We now make a comparison with two very
related prior work, also studying the quadratic activations. We start with the work
by Soltanolkotabi, Javanmard and Lee [264]. In [264, Theorem 2.2], the authors
study the empirical risk landscape of a slightly more general version of our model:
𝑌𝑖 =

∑︀𝑚
𝑗=1 𝑣

*
𝑗

⟨︀
𝑊 *

𝑗 , 𝑋𝑖

⟩︀2, assuming rank(𝑊 *) = 𝑑 like us, and assuming all non-
zero entries of 𝑣* have the same sign. Thus our model is the special case where all
entries of 𝑣* are equal to unity. The authors establish that as long as 𝑑 ≤ 𝑁 ≤ 𝑐𝑑2 for
some small fixed constant 𝑐, every local minima of the empirical risk function is also a
global minima (namely, there exists no spurious local minima), and furthermore, every
saddle point has a direction of negative curvature. As a result they show that gradient
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descent with an arbitrary initialization converges to a globally optimum solution of the
ERM problem (6.2). In particular, their result does not require the initialization point
to be below some risk value (the energy barrier), like in our case. Nevertheless, our
results show that one needs not to worry about saddle points below the energy barrier
as none exists per our Theorem 6.2.2. Importantly, though, the regime 𝑁 < 𝑐𝑑2

for small 𝑐 that [264, Theorem 2.2] applies is below the provable sample complexity
value 𝑁* = 𝑑(𝑑 + 1)/2 when the data are drawn from a continuous distribution as
per our Theorem 6.2.10. In particular, as we establish when 𝑁 < 𝑁*, the ERM
problem (6.2) admits global optimum solutions with zero empirical risk value, but
with generalization error bounded away from zero. Thus, the regime 𝑁 < 𝑁* does
not correspond to the regime where solving the ERM has a guaranteed control on
the generalization error. The same theorem in [264] also studies the approximate
stationary points, and shows that for any such point 𝑊 , the associated empirical
risk, ̂︀ℒ(𝑊 ), is also small. Our Theorem 6.2.6, though, takes a step further and shows
that not only the empirical risk is small but the recovered𝑊 is close to planted weights
𝑊 *; and therefore it has small generalization error ℒ(𝑊 ), by explicitly bounding the
generalization error from above.

It is also worth noting that albeit not being our focus in the present work, [264,
Theorem 2.1] also studies the landscape of the empirical risk when a quadratic network
model 𝑋 ↦→ ∑︀𝑚

𝑗=1 𝑣
*
𝑗

⟨︀
𝑊 *

𝑗 , 𝑋
⟩︀2 is used for interpolating arbitrary input/label pairs

(𝑋𝑖, 𝑌𝑖) ∈ R𝑑 ×R, 1 ≤ 𝑖 ≤ 𝑁 , that is, without making an assumption that the labels
are generated according to a network with planted weights. They establish similar
landscape results; namely, the absence of spurious local minima, and the fact that
every saddle point has a direction of negative curvature, as long as the output weights
𝑣* has at least 𝑑 positive and at least 𝑑 negative entries (consequently, the width 𝑚
has to be at least 2𝑑). While this result does not assume any rank condition on 𝑊 the
assumption on the minimum number of positive and minimum number of negative
entries such as the one above is somewhat unnatural.

Yet another closely related work studying quadratic activations is the paper by Du
and Lee [98], which focuses on the shallow architectures with all unity output weights
as we do. This paper establishes that for any smooth and convex loss ℓ(·, ·), the land-
scape of the regularized loss function 1

𝑁

∑︀𝑁
𝑖=1 ℓ(𝑓(𝑊 ;𝑋𝑖), 𝑌𝑖) +

𝜆
2
‖𝑊‖2𝐹 still admits

aforementioned favorable geometric characteristics. Furthermore, since the learned
weights are of bounded Frobenius norm due to the norm penalty ‖𝑊‖2𝐹 imposed on
objective, they retain good generalization via Rademacher complexity considerations.
While this work addresses the training and generalization error when the norm of 𝑊
is controlled during training; it does not carry out approximate stationarity analysis
like Soltanolkotabi et al. [264] and we do; and does not study their associated loss/-
generalization like in our case. Even though they show that optimal solutions to the
optimization problem incorporating bounded norms generalize well; it remains un-
clear from their analysis whether the approximate stationary points of this objective
also have a well-controlled norm.

It is worth mentioning that the two main directions that we undertake in this
work were not explored in neither of these two prior work. These include the di-
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rection pertaining to the initialization (Theorems 6.2.7 and 6.2.8); and the direction
pertaining to the sample complexity (Theorems 6.2.9-6.2.11). The latter direction
relates to an interesting interpolation/overparameterization property which we have
discussed before. We will return later to this direction in Section 6.2.3 after we present
Theorem 6.2.9.

Further relevant prior work. As noted in the introduction, neural networks
achieved remarkable empirical success which fueled research starting from the ex-
pressive ability of these networks, going as early as Barron [39]. More recent works
along this front focused on deeper and sparser models, see e.g. [218, 275, 105, 252,
235, 66]. In particular, the expressive power of such network architectures is relatively
well-understood. Another issue pertaining such architectures is their computational
tractability: Blum and Rivest established in [49] that it is NP-complete to train a
very simple, 3-node, network; whose nodes compute a linear thresholding function.
Despite this worst-case result, it has been observed empirically that local search algo-
rithms such as gradient descent (GD), are rather successful in training. While several
authors, including [253, 176, 149], devised provable training algorithms for such net-
works; these algorithms unfortunately are based on methods other than the gradient
descent; thus not shedding any light on its apparent empirical success.

On a parallel front, many papers studied the behaviour of the GD by analyzing the
trajectory of it or its stochastic variant (SGD), under certain stylistic assumptions
on the data as well as the network. These assumptions include Gaussian inputs,
shallow networks (with or without the convolutional structure) and the existence of
planted weights (the so-called teacher network) generating the labels. Some partial
and certainly very incomplete references to this end include [276, 64, 65, 296, 263, 205,
101]. Later work relaxed the distributional assumptions. For instance, [100] studied
the problem of learning a convolutional unit with ReLU with no specific distributional
assumption on input, and established the convergence of SGD with rate depending
on the smoothness of the input distribution and the closeness of the patches. Several
other works along this line, in particular under the presence of overparameterization,
are the works by Du et al. [99, 102].

Yet another line of research on the optimization front, rather than analyzing the
trajectory of the GD, focuses on the mean-field analysis: empirical distribution of
the parameters of network with infinitely many internal nodes can be described as a
Wasserstein gradient flow, thus some tools from the theory of optimal transport can
be used, see e.g. [284, 247, 74, 265, 258]. Albeit explaining the story to some extent for
infinitely wide networks, it remains unclear whether these techniques provide results
for a more realistic network model with finitely many internal nodes.

As noted earlier, the optimization landscape of such networks is usually highly
non-convex. More recent research on such non-convex objectives showed that if the
landscape has certain favorable geometric properties such as the absence of spurious
local minima and the existence of direction with negative curvature for every saddle
point, local methods can escape the saddle points and converge to the global minima.
Examples of this line of research on loss functions include [142, 202, 197, 179, 97].
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Motivated by this front of research, many papers analyzed geometric properties of
the optimization landscape, including [237, 157, 75, 158, 185, 159, 266, 114, 298, 226,
143, 249, 267, 299, 227, 279, 98, 264].

We now touch upon yet another very important focus, that is the generalization
ability of such networks: how well a solution found, e.g. by GD, predicts an un-
seen data? A common paradigm in statistical learning theory that was mentioned
previously is that overparameterized models tend to generalize poorly. Yet, neural
networks tend to not suffer from this complication [294]. Since the VC-dimension of
these networks grow (at least) linear in the number of parameters [162, 42], standard
Vapnik-Chervonenkis theory do not help explaining the good generalization ability un-
der presence of overparameterization. This has been studied, among others, through
the lens of the norm of weight matrices [225, 41, 207, 153, 104, 290]; PAC-Bayes the-
ory [224, 223], and compression-based bounds [20]. A main drawback is that these
papers require some sort of constraints on the weights and are mostly a posteriori :
whether or not a good generalization takes place can be determined only when the
training process is finished. A recent work by Arora et al. [18] provided an a priori
guarantee for the solution found by the GD. Our result regarding the generalization
guarantee described in Theorem 6.2.11 also provides simple a priori guarantee on the
generalization.

A Follow-up Work. After our work appeared on arXiv, a follow-up work was
done by Mannelli, Vanden-Eijnden, and Zdeborová [251]. In this paper, the authors
consider the same architecture (namely, a shallow network with quadratic activations)
under the so-called teacher/student setting; and study the landscape of the empirical
risk as well as the performance of the gradient flow, the continuous-time analogue of
the gradient descent. Importantly, they consider also the regime where the number
𝑚* of the hidden units of the teacher network is less than the dimension 𝑑 (whereas
our focus is on 𝑚* ≥ 𝑑). In particular when 𝑚* = 1, the width 𝑚 of the student
network is at least 𝑑, and the data consists of i.i.d. standard normal entries; they prove
the following. In the limit as 𝑑 → ∞, if 𝑛 > 2𝑑 then with positive probability the
only minimizer of the empirical risk is the matrix 𝐴* of teacher weights itself; whereas
for 𝑛 < 2𝑑, the empirical risk admits spurious minima with probability tending to
one. (Namely, the geometry of the empirical risk undergoes a phase transition as
𝛼 ≜ 𝑛/𝑑 crosses 𝛼𝑐 = 2). Moreover, they also prove that for 𝑚 ≥ 𝑑, the gradient
flow converges to a global minima of the empirical risk and to the global minimum
of the population risk (which is 𝐴*); and characterize the rate of convergence for the
latter case. (It is worth noting that running gradient flow on the population risk can
be perceived as running it on the empirical risk in the limit of the large number 𝑛 of
samples.)

Chapter organization. In Section 6.2.1 we present our main results on the land-
scape of the risk functions, including our energy barrier result for rank-deficient ma-
trices, our result about the absence of full-rank stationary points of the risk function
except the globally optimum points; and our result on the convergence of gradient

267



descent. In Section 6.2.2, we present our results regarding randomly generated weight
matrices 𝑊 * and sufficient conditions for good initializations. In Section 6.2.3, we
study the critical number of training samples guaranteeing good generalization prop-
erty. We collect useful auxiliary lemmas in Section 6.3; and provide the proofs of all
of our results in Section 6.4.

Notation. The set of reals, positive reals; and the set {1, 2, . . . , 𝑘} are denoted
respectively by R, R+, and [𝑘]. For any matrix 𝐴, its smallest and largest singular
values, spectrum, trace, Frobenius and the spectral norm are denoted respectively by
𝜎min(𝐴), 𝜎max(𝐴), 𝜎(𝐴), trace(𝐴), ‖𝐴‖𝐹 , and ‖𝐴‖2. 𝐼𝑛 denotes the 𝑛 × 𝑛 identity
matrix. Planted weights are denoted with an asterisk, e.g. 𝑊 *. exp(𝛼) denotes
𝑒𝛼. Given any 𝑣 ∈ R𝑛, ‖𝑣‖2 denotes its Euclidean ℓ2 norm

√︁∑︀
1≤𝑖≤𝑛 𝑣

2
𝑖 . Given two

vectors 𝑥, 𝑦 ∈ R𝑛, their Euclidean inner product
∑︀

1≤𝑖≤𝑛 𝑥𝑖𝑦𝑖 is denoted by ⟨𝑥, 𝑦⟩.
Given a collection 𝑍1, . . . , 𝑍𝑘 of objects of the same kind (e.g., vectors or matrices),
span(𝑍𝑖 : 𝑖 ∈ [𝑘]) is the set,

{︁∑︀𝑘
𝑗=1 𝛼𝑗𝑍𝑗 : 𝛼𝑗 ∈ R

}︁
. We say a random variable 𝑋

is “centered" if E[𝑋] = 0. Θ(·), 𝑂(·), 𝑜(·), and Ω(·) are standard (asymptotic) order
notations for comparing the growth of two sequences. ̂︀ℒ(·), ∇ ̂︀ℒ(·), ℒ, and ∇ℒ denote
respectively the empirical risk, its gradient; the population risk, and its gradient.

6.2 Main Results
Our main results are now in order.

6.2.1 Optimization Landscape

Existence of an Energy Barrier

Our first result shows the presence of an energy barrier in the landscape of the pop-
ulation risk ℒ(·) below which any rank-deficient 𝑊 ∈ R𝑚×𝑑 ceases to exist.

Theorem 6.2.1. Suppose that 𝑋 ∈ R𝑑 has i.i.d. centered coordinates with variance
𝜇2, (finite) fourth moment 𝜇4, rank(𝑊 *) = 𝑑, and let ℒ(𝑊 ) be defined as (6.3).

(a) (Lower bound) It holds that

min
𝑊∈R𝑚×𝑑:rank(𝑊 )<𝑑

ℒ(𝑊 ) ≥ min
{︁
𝜇4 − 𝜇2

2, 2𝜇
2
2

}︁
· 𝜎min(𝑊

*)4.

(b) (Tightness) There exists a matrix 𝑊 ∈ R𝑚×𝑑 such that rank(𝑊 ) ≤ 𝑑− 1 and

ℒ(𝑊 ) ≤ max
{︀
𝜇4, 3𝜇

2
2

}︀
· 𝜎min(𝑊

*)4.

The proof of Theorem 6.2.1 is deferred to Section 6.4.2. Two remarks are in order.
First, the hypothesis of Theorem 6.2.1 holds under mild distributional assumptions

on the coordinates of data: a finite fourth moment and zero mean suffices.
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Second, part (b) of Theorem 6.2.1 implies that our lower bound on the energy
value is tight up to a multiplicative constant determined by the moments of the data.
That is, there exists a 𝑊 with rank(𝑊 ) ≤ 𝑑 − 1 such that ℒ(𝑊 ) = Θ(𝜎min(𝑊

*)4),
where the asymptotic Θ(·) hides the constants 𝜇2 and 𝜇4.

Our next result is an analogue of Theorem 6.2.1 for the empirical risk ̂︀ℒ(·); and
it establishes the presence of a similar energy barrier in the landscape of the empir-
ical risk ̂︀ℒ(·) below which any rank-deficient 𝑊 ∈ R𝑚×𝑑 ceases to exist, with high
probability.

Theorem 6.2.2. Let 𝐾 > 0 be an arbitrary constant; and 𝑋𝑖 ∈ R𝑑, 1 ≤ 𝑖 ≤ 𝑁
be a collection of i.i.d. random vectors each having centered i.i.d. sub-Gaussian
coordinates. That is, for some 𝐶 > 0, P(|𝑋(𝑗)| > 𝑡) ≤ exp(−𝐶𝑡2) for every 𝑡 ≥ 0, 𝑗 ∈
[𝑑]. Suppose, furthermore, that for every 𝑀 > 0, the distribution of 𝑋(𝑗), conditional
on |𝑋(𝑗)| ≤𝑀 , is centered: E

[︁
𝑋(𝑗)

⃒⃒⃒
|𝑋(𝑗)| ≤𝑀

]︁
= 0. Let 𝑌𝑖 = 𝑓(𝑊 *;𝑋𝑖), 1 ≤ 𝑖 ≤

𝑁 be the corresponding label generated by a planted teacher network per (6.1), where
rank(𝑊 *) = 𝑑 and ‖𝑊 *‖𝐹 ≤ 𝑑𝐾. Then, for some absolute constants 𝐶3, 𝐶

′ > 0, with
probability at least

1− exp(−𝐶 ′𝑑)−
(︀
9𝑑4𝐾+9

)︀𝑑2−1 · exp
(︀
−𝐶3𝑁𝑑

−4−4𝐾
)︀
−𝑁𝑑𝑒−𝐶𝑑

it holds that

min
𝑊∈R𝑚×𝑑:rank(𝑊 )≤𝑑−1

̂︀ℒ(𝑊 ) ≜ min
𝑊∈R𝑚×𝑑:rank(𝑊 )≤𝑑−1

1

𝑁

∑︁
1≤𝑖≤𝑁

(𝑌𝑖−𝑓(𝑊 ;𝑋𝑖))
2 ≥ 1

2
𝐶5𝜎min(𝑊

*)4.

Here,

𝐶5 = min
{︁
𝜇4(1/2)−𝜇2(1/2)

2, 2𝜇2(1/2)
2
}︁
, where 𝜇𝑡(1/2) = E

[︁
𝑋(𝑗)𝑡

⃒⃒⃒
|𝑋(𝑗)| ≤ 𝑑1/2

]︁
.

Furthermore, if the dimension 𝑑 of data is constant (𝑑 = 𝑂(1)); then with probability
1−𝑂(1/𝑁),

min
𝑊∈R𝑚×𝑑:rank(𝑊 )≤𝑑−1

̂︀ℒ(𝑊 ) ≥ 1

2
𝐶5𝜎min(𝑊

*)4,

where
𝐶5 = min

{︁
𝜇4 − 𝜇2

2, 2𝜇
2
2

}︁
and 𝜇𝑛 = E

[︁
𝑋(𝑗)𝑛

]︁
.

The proof of Theorem 6.2.2 is provided in Section 6.4.9. Several remarks are now
in order.

Assuming 𝑑 is large, Theorem 6.2.2 shows that with high probability, ̂︀ℒ(𝑊 ) is
bounded away from zero by an explicit constant for any 𝑊 that is rank-deficient,
provided 𝑁 = 𝑑𝑂(1); where the 𝑂(1) term depends on 𝐾. Furthermore, provided
𝑁 is a sufficiently large polynomial-in-𝑑 quantity, the probability estimate is of form
1− exp(−Θ(𝑑)) which is exponential in the dimension.

Note that one indeed needs a “finite 𝑑 correction" for the case when the data
is low-dimensional, 𝑑 = 𝑂(1): for 𝑑 = 𝑂(1), the term 𝑁𝑑 exp (−Θ(𝑑)) makes the
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probability estimate vacuous. The constant 𝐶5 appearing in this case is precisely
the same constant appearing in Theorem 6.2.1; and in particular no conditioning is
required. Furthermore, while we establish the probability estimate to be 1−𝑂(1/𝑁)
for simplicity; it can be improved: it appears, from our analysis (which uses Cheby-
shev’s inequality), that for any 𝛼 > 0, one can show the probability estimate to
be 1 − 𝑂(𝑁−𝛼). Furthermore, using more elaborate tools (such as concentration
for heavy-tailed variables, in particular for i.i.d. averages of fourth moments of sub-
Gaussian variables), this estimate can potentially be improved to 1 − exp(−𝑐0𝑁 𝑐0)
for suitable constants 𝑐0, 𝑐0 > 0. Finally, our analysis yields also that the 1−𝑂(1/𝑁)
probability estimate still remains valid even when 𝑋𝑖 has centered i.i.d coordinates
with a finite eight moment. That is, the sub-Gaussianity assumption can be relaxed.
Indeed, the expression ̂︀ℒ(𝑊 ) is an i.i.d. sum of form 𝑁−1

∑︀
1≤𝑖≤𝑁(𝑋

𝑇
𝑖 𝑀𝑋𝑖)

2 for a
suitable matrix 𝑀 , and one needs the finiteness of E[(𝑋𝑇𝑀𝑋)4] to apply Cheby-
shev’s inequality: this quantity is finite provided E[𝑋𝑖(𝑗)

8] < ∞ and ‖𝑀‖𝐹 = 𝑂(1).
We do not pursue these extensions for keeping the presentation clear.

The assumption that the conditional mean of 𝑋𝑖(𝑗) is zero is benign: it holds, e.g.,
for random variables whose distributions are symmetric around zero. For instance,
any normal distribution with zero-mean satisfies this assumption. Furthermore, an
inspection of its proof reveals that Theorem 6.2.2 still remains valid even when the
coordinates of the data have heavier tails: our techniques apply also to the tails
of form P (|𝑋𝑖(𝑗)| > 𝑡) ≤ exp(−𝐶𝑡𝛼) where 𝐶, 𝛼 > 0 are arbitrary. We use 𝛼 = 2
throughout for simplicity.

An inspection of the proofs of Theorems 6.2.1 and 6.2.2 yield that the landscapes
of the corresponding risks still admit an energy barrier, even if we consider the same
network architecture with planted weight matrix 𝑊 * ∈ R𝑚×𝑑, and quadratic ac-
tivation function having lower order terms, that is, the activation 𝛼𝑥2 + 𝛽𝑥 + 𝛾,
with 𝛼 ̸= 0. In this case, in addition to 𝜎min(𝑊

*) and the corresponding moments
of the data; the coefficient 𝛼 also appears in the barrier expression. In particu-
lar, Theorem 6.2.1 still remains valid with min{𝜇4 − 𝜇2

2, 2𝜇
2
2} · 𝜎min(𝑊

*)4 replaced
with 𝛼2 · min{𝜇4 − 𝜇2

2, 2𝜇
2
2} · 𝜎min(𝑊

*)4; and Theorem 6.2.2 still remains valid with
1
2
𝐶5𝜎min(𝑊

*)4 replaced with 𝛼2

2
𝐶5𝜎min(𝑊

*)4.

Global Optimality of Full-Rank Stationary Points

We now establish that if 𝑊 is a full-rank stationary point of the population risk, ℒ(·),
then 𝑊 is necessarily a global minimum.

Theorem 6.2.3. Suppose 𝑊 * ∈ R𝑚×𝑑 with rank(𝑊 *) = 𝑑. Suppose 𝑋 ∈ R𝑑 has
centered i.i.d. coordinates with E [𝑋2

𝑖 ] = 𝜇2, E [𝑋4
𝑖 ] = 𝜇4; and Var(𝑋2

𝑖 ) > 0. Let 𝑊 ∈
R𝑚×𝑑 be a stationary point of the population risk with full-rank, that is, ∇ℒ(𝑊 ) =
E[∇(𝑓(𝑊 *;𝑋) − 𝑓(𝑊 ;𝑋))2] = 0, and rank(𝑊 ) = 𝑑. Then, 𝑊 = 𝑄𝑊 * for some
orthogonal matrix 𝑄, and that, ℒ(𝑊 ) = 0.

The proof of Theorem 6.2.3 is deferred to Section 6.4.6.
Our next result is an analogue of Theorem 6.2.3 for the empirical risk, ̂︀ℒ(·), and

shows that if 𝑁 ≥ 𝑑(𝑑+1)/2 and 𝑊 is any full-rank stationary point of the empirical
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risk then 𝑊 is necessarily a global minimum.

Theorem 6.2.4. Let 𝑋𝑖 ∈ R𝑑, 1 ≤ 𝑖 ≤ 𝑁 ; 𝑊 * ∈ R𝑚×𝑑 with rank(𝑊 *) = 𝑑, and
suppose 𝑊 is a full-rank stationary point of the empirical risk: rank(𝑊 ) = 𝑑, and
∇𝑊

̂︀ℒ(𝑊 ) = 0. Then, ̂︀ℒ(𝑊 ) = 0. Furthermore; if 𝑋𝑖 are i.i.d. random vectors
having a jointly continuous distribution and 𝑁 ≥ 𝑑(𝑑 + 1)/2, then with probability
one 𝑊 = 𝑄𝑊 * for some orthogonal matrix 𝑄 ∈ R𝑚×𝑚.

The proof of Theorem 6.2.4 is given in Section 6.4.10.
Note that an implication of Theorems 6.2.3 and 6.2.4 is that the corresponding

losses admit no full-rank saddle points. Namely, the landscape of the corresponding
losses have fairly benign properties below the aforementioned energy barrier. We soon
show how this implies the convergence of gradient descent in the next section.

Convergence of Gradient Descent

We now combine Theorems 6.2.1 and 6.2.3 to obtain the following conclusion on the
performance of the gradient descent algorithm for the population risk. Suppose that
the algorithm is initialized at a point 𝑊0 having a small population risk ℒ(𝑊0), in
particular lower than the smallest risk value achieved by the rank-deficient matrices.
Then with a properly chosen step size, the algorithm converges to a global optimum: it
generates a trajectory {𝑊𝑘}𝑘≥0 of weights such that lim𝑘→∞ ℒ(𝑊𝑘) = min𝑊 ℒ(𝑊 ) =
0.

Theorem 6.2.5. Let 𝑊0 ∈ R𝑚×𝑑 be a matrix of weights, with the property that

ℒ(𝑊0) < min
𝑊∈R𝑚×𝑑:rank(𝑊 )<𝑑

ℒ(𝑊 ).

Define
𝐿 = sup

{︀
‖∇2ℒ(𝑊 )‖ : ℒ(𝑊 ) ≤ ℒ(𝑊0)

}︀
,

where by ‖∇2ℒ(𝑊 )‖ we denote the spectral norm of the matrix ∇2ℒ(𝑊 ). Then,
𝐿 < ∞ and the gradient descent algorithm with initialization 𝑊0 ∈ R𝑚×𝑑 and any
fixed step size of 0 < 𝜂 < 1/2𝐿 generates a trajectory {𝑊𝑘}𝑘≥0 of weights such that
lim𝑘→∞ ℒ(𝑊𝑘) = min𝑊 ℒ(𝑊 ) = 0.

The proof of Theorem 6.2.5 is provided in Section 6.4.7.
Our next focus is on the performance of the gradient descent algorithm for the

empirical risk. By combining Theorems 6.2.2 and 6.2.4 we obtain the following con-
clusions. Suppose that the gradient descent algorithm is initialized at a point with
a sufficiently small empirical risk, in particular lower than the smallest risk value
achieved by rank-deficient matrices (i.e. the energy barrier); and fix an 𝜖 > 0. Then,
with a properly chosen step size; it finds an approximate stationary point 𝑊 (that
is, a 𝑊 ∈ R𝑚×𝑑 with a small ‖∇ ̂︀ℒ(𝑊 )‖𝐹 ) in time poly (𝜖−1, 𝜎min(𝑊

*)−1, 𝑑) for which
the weights 𝑊 𝑇𝑊 are uniformly “𝜖-close" to the planted weights (𝑊 *)𝑇𝑊 *, and
consequently the generalization error ℒ(𝑊 ) is at most 𝜖. Furthermore, the algo-
rithm converges to a global optimum of the empirical risk minimization problem
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min𝑊
̂︀ℒ(𝑊 ), which is zero; thus recovering planted weights, due to the absence of

spurious stationary points within the set of full-rank matrices.

Theorem 6.2.6. Let 𝜖,𝐾 > 0 be arbitrary. Suppose that 𝑋𝑖 ∈ R𝑑, 1 ≤ 𝑖 ≤ 𝑁
satisfies the assumptions in Theorem 6.2.2; 𝑊0 ∈ R𝑚×𝑑 is a matrix of weights with
the property ̂︀ℒ(𝑊0) <

1

2
𝐶5𝜎min(𝑊

*)4,

where 𝐶5 is the constant defined in Theorem 6.2.2; and ‖𝑊 *‖𝐹 ≤ 𝑑𝐾. Define

𝐿 = 𝐿(𝑊0) ≜ sup
{︁
‖∇2 ̂︀ℒ(𝑊 )‖ : ̂︀ℒ(𝑊 ) ≤ ̂︀ℒ(𝑊0)

}︁
where by ‖∇2 ̂︀ℒ(𝑊 )‖ we denote the spectral norm of the (Hessian) matrix ∇2 ̂︀ℒ(𝑊 );
and

𝜁 ≜ min

{︂
𝜖 · 𝜎min(𝑊

*)2

32𝑑4𝐾+4
,
𝜖2 · 𝜎min(𝑊

*)2

(𝐶 ′)2𝑑4𝐾+15
,
𝜖 · 𝜎min(𝑊

*)

2(𝐶 ′)2𝜇2
2𝑑

4𝐾+16

}︂
, (6.4)

where 𝐶 ′ > 0 is some absolute constant, and 𝜇2 = E[𝑋(𝑗)2]. Then, with probability
at least

1− exp
(︀
−𝑐′𝑁1/4

)︀
−
(︀
9𝑑4𝐾+9

)︀𝑑2−1 · exp
(︁
−𝐶4𝑁𝑑

−4−4𝐾
)︁
−𝑁𝑑 exp(−𝐶𝑑),

(where 𝑐′, 𝐶, 𝐶4 > 0 are also absolute constants)

(a) For any 𝑊 with ̂︀ℒ(𝑊 ) < 1
2
𝐶5𝜎min(𝑊

*)4, ‖𝑊 |𝐹 ≤ 𝑑𝐾+1. Moreover, 𝐿 =
poly(𝑑) <∞.

(b) Running gradient descent algorithm starting from 𝑊0 with a step size of 0 <

𝜂 < 1/2𝐿 generates a full-rank 𝑊 ∈ R𝑚×𝑑 with ‖∇ ̂︀ℒ(𝑊 )‖𝐹 ≤ 𝜁 in time
poly (𝜖−1, 𝜎min(𝑊

*)−1, 𝑑). Furthermore, for this 𝑊 , ̂︀ℒ(𝑊 ) ≤ 𝜖.

(c) For 𝑊 in (b), it holds that ‖𝑊 𝑇𝑊 − (𝑊 *)𝑇𝑊 *‖𝐹 ≤ 𝜖; and the generalization
error ℒ(𝑊 ) is at most 𝜖, provided 𝑁 ≥ 𝑑58/3.

Furthermore, suppose the data dimension 𝑑 is constant, 𝑑 = 𝑂(1), and 𝑊0 ∈ R𝑚×𝑑 is
a matrix of weights with the property ̂︀ℒ(𝑊0) <

1
2
𝐶5𝜎min(𝑊

*)4 for the same constant
𝐶5 appearing in Theorem 6.2.2. Then, for 𝜁 chosen per (6.4), with probability at least
1−𝑂(1/𝑁),

(a’) For any 𝑊 with ̂︀ℒ(𝑊 ) ≤ 1
2
𝐶5𝜎min(𝑊

*)4 it is the case ‖𝑊‖𝐹 = 𝑂(1). Moreover,
𝐿 = 𝑂(1) <∞.

(b’) Running gradient descent algorithm starting from 𝑊0 with a step size of 0 <

𝜂 < 1/2𝐿 generates a full-rank 𝑊 with ‖∇ ̂︀ℒ(𝑊 )‖ ≤ 𝜁 and ̂︀ℒ(𝑊 ) ≤ 𝜖;

(c’) For any 𝑊 in (b), max
{︁⃦⃦⃦
𝑊 𝑇𝑊 − (𝑊 *)𝑇𝑊 *

⃦⃦⃦
𝐹
,ℒ(𝑊 )

}︁
≤ 𝜖.
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The proof of Theorem 6.2.6 is provided in Section 6.4.11. Several remarks are now
in order.

As a simple corollary to (b), we thus obtain that for 𝑑 large enough, the gradient
descent algorithm with initialization 𝑊0 ∈ R𝑚×𝑑 and a step size of 0 < 𝜂 < 1/2𝐿

generates a trajectory {𝑊𝑘}𝑘≥0 of weights such that lim𝑘→∞ ̂︀ℒ(𝑊𝑘) = min𝑊
̂︀ℒ(𝑊 ) =

0. This yields an analogue of Theorem 6.2.5 for the empirical risk, ̂︀ℒ(·).
Note that, when 𝑁 is a sufficiently large, polynomial-in-𝑑 function, the probability

estimate for the first part is essentially 1 − exp(−Θ(𝑑)). Furthermore, we note that
the exponent 1/4 in the probability estimate and the sample bound 𝑑58/3 are required
only for part (c), and can potentially be improved. In particular, the exponent can
be improved to one for parts (a),(b) and (d).

Note again that analogous to Theorem 6.2.2, one needs a correction for “finite
𝑑 case" since the term 𝑁𝑑 exp(−Θ(𝑑)) makes the probability estimate vacuous for
𝑑 = 𝑂(1). Furthermore, the remarks following Theorem 6.2.2 still remain valid.
In particular, the choice of 1 − 𝑂(1/𝑁) is for simplicity; and the estimate can be
improved, almost immediately, to 1−𝑂(𝑁−𝛼) for any 𝛼 > 0; and to 1− exp(−𝑐0𝑁 𝑐0)
for some 𝑐0, 𝑐0 > 0 using more delicate concentration tools.

We now provide an important remark pertaining (c): as we show in the proof,
provided 𝑁 grows at least polynomially in 𝑑; with probability 1− exp(−𝐶 ′𝑁1/4) over
𝑋𝑖 it holds that for any 𝑊 having a small risk, ̂︀ℒ(𝑊 ); 𝑊 𝑇𝑊 is close to (𝑊 *)𝑇𝑊 *:
‖𝑊 𝑇𝑊 − (𝑊 *)𝑇𝑊 *‖𝐹 is small. Consequently ℒ(𝑊 ) is small. This is one of the
additional technical results of our work; and is achieved by controlling the condition
number of a certain matrix whose i.i.d. rows consist of the tensorized data 𝑋⊗2

𝑖 . The
proof uses a recent work analyzing the spectrum of expected covariance matrices of
tensorized data [107].

The above results concern the performance of gradient descent assuming the ini-
tialization is proper, i.e. it is below the aforementioned energy barrier. One can then
naturally ask whether such an initialization is indeed possible in some generic con-
text. In the next section, we address this question of proper initialization when the
(planted) weights are generated randomly, in order to complement Theorems 6.2.5
and 6.2.6. We establish that such a proper initialization is indeed possible by pro-
viding a deterministic initialization guarantee, which with high probability beats the
aforementioned energy barrier.

6.2.2 On Initialization: Randomly Generated Planted Weights

Our results in the previous section showed that provided the initialization of the
gradient descent method occurs below the critical energy, the algorithm converges to
the global minimum. This raises the question whether such an initialization can be
found in a constructive way.

In this section, we show that the answer is yes in the setting of randomly generated
weights of the ground truth matrix 𝑊 *. Specifically, we provide a way to properly
initialize such networks under the assumption that the (planted) weight matrix 𝑊 * ∈
R𝑚×𝑑 has arbitrary i.i.d. centered entries with unit variance and finite fourth moment;
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and the data has centered i.i.d. sub-Gaussian coordinates. (It is worth mentioning that
similar to before, the sub-Gaussianity assumption on the data is required only for
the case of empirical risk and the corresponding population risk result holds under
a milder distributional assumption, see Theorem 6.2.7 below.) Our result is valid
provided that the network is sufficiently overparameterized: 𝑚 > 𝐶𝑑2 for some large
constant 𝐶. Note that this implies 𝑊 * is a tall matrix sending R𝑑 into R𝑚. The
rationale behind this approach is as follows. The value of the risk is determined by
the spectrum of Δ ≜ 𝑊 𝑇𝑊 − (𝑊 *)𝑇𝑊 * and the moments of the data distribution.
Under our randomness assumption, the so-called Wishart matrix (𝑊 *)𝑇𝑊 * is tightly
concentrated around a multiple of the identity if 𝑚 is sufficiently large. Hence one can
control the spectrum of Δ, and therefore the loss functions (ℒ and ̂︀ℒ(·)) by properly
choosing the initialization 𝑊 .

We now state the main results of this section, starting with the population risk
version.

Theorem 6.2.7. Suppose that the data 𝑋 ∈ R𝑑 consists of i.i.d. centered coordinates
with Var(𝑋2

𝑖 ) > 0 and E [𝑋4
𝑖 ] <∞. Recall ℒ(𝑊 ) from (6.3).

(a) (Gaussian case) Suppose that the planted weight matrix 𝑊 * ∈ R𝑚×𝑑 has i.i.d.
standard normal entries. Let the initial weight matrix 𝑊0 ∈ R𝑚×𝑑 be defined by
(𝑊0)𝑖,𝑖 =

√
𝑚+ 4𝑑 for 1 ≤ 𝑖 ≤ 𝑑, and (𝑊0)𝑖,𝑗 = 0 otherwise, that is 𝑊 𝑇

0 𝑊0 =
𝛾𝐼𝑑 with 𝛾 = 𝑚+ 4𝑑. Then, provided 𝑚 > 𝐶𝑑2 for a sufficiently large absolute
constant 𝐶 > 0,

ℒ(𝑊0) < min
𝑊∈R𝑚×𝑑:rank(𝑊 )<𝑑

ℒ(𝑊 ),

with probability at least 1− exp(−Ω(𝑑)), where the probability is with respect to
the draw of 𝑊 *.

(b) (General case) Suppose the planted weight matrix 𝑊 * ∈ R𝑚×𝑑 has centered
i.i.d. entries with unit variance and finite fourth moment. Let the initial weight
matrix 𝑊0 ∈ R𝑚×𝑑 be defined by (𝑊0)𝑖,𝑖 =

√
𝑚 for 1 ≤ 𝑖 ≤ 𝑑, and (𝑊0)𝑖,𝑗 = 0

otherwise, that is 𝑊 𝑇
0 𝑊0 = 𝑚𝐼𝑑. Then, provided 𝑚 > 𝐶𝑑2 for a sufficiently

large absolute constant 𝐶 > 0,

ℒ(𝑊0) < min
𝑊∈R𝑚×𝑑:rank(𝑊 )<𝑑

ℒ(𝑊 ),

with high probability, as 𝑑→ ∞, where the probability is with respect to the draw
of 𝑊 *.

The proof of this theorem is provided in Section 6.4.8.
Note that, the part (a) of Theorem 6.2.7 gives an explicit rate for probability,

in the case when the i.i.d. entries of the planted weight matrix 𝑊 * are standard
normal, and is based on a non-asymptotic concentration result for the spectrum of
such matrices. The extension in part (b) is based on a semicircle law obtained by Bai
and Yin [25].

The corresponding result for the empirical risk is provided below.
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Theorem 6.2.8. Suppose that the planted weight matrix 𝑊 * ∈ R𝑚×𝑑 has centered
i.i.d. entries with unit variance and finite fourth moment; the (i.i.d.) data 𝑋𝑖 ∈ R𝑑,
1 ≤ 𝑖 ≤ 𝑁 , has i.i.d. centered sub-Gaussian coordinates (namely for some 𝐶 > 0,
P(|𝑋𝑖(𝑗)| > 𝑡) ≤ exp(−𝐶𝑡2) for any 𝑡 > 0, 1 ≤ 𝑖 ≤ 𝑁 and 1 ≤ 𝑗 ≤ 𝑑); and the
𝑊0 ∈ R𝑚×𝑑 satisfies (𝑊0)𝑖𝑖 =

√
𝑚 for 𝑖 ∈ [𝑑] and (𝑊0)𝑖𝑗 = 0 for 𝑖 ̸= 𝑗, that is

𝑊 𝑇
0 𝑊0 = 𝑚𝐼𝑑 ∈ R𝑑×𝑑. Then for some absolute constants 𝐶,𝐶 ′ > 0 with probability

at least
1− exp

(︂
−𝐶 ′ 𝑁

𝑑5𝑚

)︂
−𝑁𝑑 exp(−𝐶𝑑)− 𝑜𝑑(1),

it is the case that for the constant 𝐶5 defined in Theorem 6.2.2,

̂︀ℒ(𝑊0) <
1

2
𝐶5𝜎min(𝑊

*)4

provided 𝑚 > 𝐶
′′
𝑑2 for a sufficiently large constant 𝐶 ′′

> 0.

The proof of Theorem 6.2.8 is provided in Section 6.4.12.
It is worth noting that unlike earlier Theorems 6.2.2 and 6.2.6; Theorems 6.2.7

and 6.2.8 do not have a separate statement for the case of finite 𝑑 (𝑑 = 𝑂(1)): in
order to ensure the concentration property for the Wishart ensemble takes place, one
should consider the regime 𝑑→ ∞. That is, our initialization results do not hold for
the regime where 𝑑 is constant.

With this, we now turn our attention to the number of training samples required
to learn such models.

6.2.3 Critical Number of Training Samples

The focus of previous sections is on landscape results pertaining the empirical risk
minimization problem. One can then naturally ask the following question: what is the
smallest number of samples required to claim that a small empirical risk “controls"
also the generalization error?

In this section, we focus on this condition; namely our focus is on the number
of training samples required for bounding the generalization error. We identify a
necessary and sufficient condition on the training data under which any minimizer of
the empirical risk (which, in the case we consider of planted weights, simply inter-
polates the data) has zero generalization error. We obtain our results for potentially
overparameterized interpolators, that is for networks of potentially larger width than
the width of the original network generating the labels. Furthermore we identify the
smallest number 𝑁* of training samples, such that (randomly generated) training
data 𝑋1, . . . , 𝑋𝑁 satisfies the aforementioned condition, so long as 𝑁 ≥ 𝑁*.

A Necessary and Sufficient Geometric Condition on the Training Data

We start by providing a necessary and sufficient (geometric) condition on the training
data under which any minimizer of the empirical risk (which, in the case of planted
weights, necessarily interpolates the data) has zero generalization error.
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Theorem 6.2.9. Let 𝑋1, . . . , 𝑋𝑛 ∈ R𝑑 be a set of data.
(a) Suppose

span{𝑋𝑖𝑋
𝑇
𝑖 : 1 ≤ 𝑖 ≤ 𝑁} = 𝒮,

where 𝒮 is the set of all 𝑑 × 𝑑 symmetric real-valued matrices. Let ̂︀𝑚 ∈ N be
arbitrary. Then for any 𝑊 ∈ R̂︀𝑚×𝑑 interpolating the data, that is satisfying
𝑓(𝑊 *;𝑋𝑖) = 𝑓(𝑊 ;𝑋𝑖) for every 𝑖 ∈ [𝑁 ], it holds that 𝑊 𝑇𝑊 = (𝑊 *)𝑇𝑊 *.
In particular, if ̂︀𝑚 ≥ 𝑚, then for some matrix 𝑄 ∈ R̂︀𝑚×𝑚 with orthonormal
columns (i.e. 𝑄𝑇𝑄 = 𝐼𝑚), 𝑊 = 𝑄𝑊 *, and if 𝑚 ≥ ̂︀𝑚, then for some matrix
𝑄′ ∈ R𝑚×̂︀𝑚 with orthonormal columns (i.e. (𝑄′)𝑇𝑄′ = 𝐼̂︀𝑚), 𝑊 * = 𝑄′𝑊 .

(b) Suppose,
span{𝑋𝑖𝑋

𝑇
𝑖 : 1 ≤ 𝑖 ≤ 𝑁},

is a strict subset of 𝒮. Then, for any 𝑊 * ∈ R𝑚×𝑑 with rank(𝑊 *) = 𝑑 and any
positive integer ̂︀𝑚 ≥ 𝑑, there exists a 𝑊 ∈ R̂︀𝑚×𝑑 such that 𝑊 𝑇𝑊 ̸= (𝑊 *)𝑇𝑊 *,
while 𝑊 interpolates the data, that is, 𝑓(𝑊 *;𝑋𝑖) = 𝑓(𝑊 ;𝑋𝑖) for all 𝑖 ∈ [𝑁 ].
In particular, for this 𝑊 ∈ R𝑚×𝑑, ℒ(𝑊 ) > 0, where ℒ is defined with respect to
any jointly continuous distribution on R𝑑.

The proof of Theorem 6.2.9 is deferred to Section 6.4.13.
Several remarks are now in order. The condition stated in Theorem 6.2.9 is not

retrospective in manner: it can be checked ahead of the optimization process. Next,
there are no randomness assumptions in the setting of Theorem 6.2.9 (except the last
part regarding the population risk), and it provides a purely geometric necessary and
sufficient condition: as long as span(𝑋𝑖𝑋

𝑇
𝑖 : 𝑖 ∈ [𝑁 ]) is the space of all symmetric

matrices (in R𝑑×𝑑) we have that any (global) minimizer of the empirical risk has zero
generalization error. Conversely, in the absence of this geometric condition, there
are optimizers 𝑊 ∈ R𝑚×𝑑 of the empirical risk ̂︀ℒ(·) such that while ̂︀ℒ(𝑊 ) = 0, the
generalization error of 𝑊 is bounded away from zero, and 𝑊 𝑇𝑊 ̸= (𝑊 *)𝑇𝑊 *. It
is also worth recalling that in the case when 𝑊 does not interpolate the data but
has a rather small training error, the result of Theorem 6.2.6(c) allows one to control
‖𝑊 𝑇𝑊 − (𝑊 *)𝑇𝑊 *‖𝐹 , and consequently the generalization error ℒ(𝑊 ). Soon in
Theorem 6.2.11, we give a more refined version of Theorem 6.2.9, with a concrete
lower bound on ℒ(𝑊 ), in the setting where the training data is generated randomly.

We further highlight the presence of the parameter ̂︀𝑚 ∈ N. In particular, part
(a) of Theorem 6.2.9 states that provided the span condition is satisfied, any neural
network with ̂︀𝑚 internal nodes interpolating the data has necessarily zero generaliza-
tion error, regardless of whether ̂︀𝑚 is equal to 𝑚, in particular, even when ̂︀𝑚 ≥ 𝑚.
This, in fact, is an instance of an interesting phenomenon empirically observed about
neural networks, which somewhat challenges one of the main paradigms in statisti-
cal learning theory: overparameterizartion does not hurt generalization performance
of neural networks once the data is interpolated. Namely beyond the interpolation
threshold, one retains good generalization property.

It is worth noting that Theorem 6.2.9 still remains valid under a slightly more
general setup where each node 𝑗 ∈ [𝑚] has an associated positive but otherwise arbi-
trary output weight 𝑎*𝑗 ∈ R+. That is, the network computes, instead, the function
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∑︀
1≤𝑗≤𝑚 𝑎

*
𝑗

⟨︀
𝑊 *

𝑗 , 𝑋
⟩︀2 with 𝑎*𝑗 > 0. Indeed, in this case, the (output) weights 𝑎*𝑗 can

be “pushed" inside the matrix 𝑊 *
𝑗 : one can set ̂︁𝑊𝑗 ≜

√︀
𝑎*𝑗𝑊

*
𝑗 ∈ R𝑑 and observe that

for any 𝑋 ∈ R𝑑,
∑︀

1≤𝑗≤𝑚 𝑎
*
𝑗

⟨︀
𝑊 *

𝑗 , 𝑋
⟩︀2

=
∑︀

1≤𝑗≤𝑚

⟨̂︁𝑊𝑗, 𝑋
⟩2

. Considering ̂︁𝑊 ∈ R𝑚×𝑑

instead, we are indeed under the setting of Theorem 6.2.9.

Randomized Data Enjoys the Geometric Condition

We now identify the smallest number 𝑁* of training samples, such that (randomly
generated) training data 𝑋1, . . . , 𝑋𝑁 satisfies the aforementioned geometric condition
almost surely; as soon as 𝑁 ≥ 𝑁*.

Theorem 6.2.10. Let 𝑁* = 𝑑(𝑑 + 1)/2, and 𝑋1, . . . , 𝑋𝑁 ∈ R𝑑 be i.i.d. random
vectors with jointly continuous distribution. Then,

(a) If 𝑁 ≥ 𝑁*, then P(span(𝑋𝑖𝑋
𝑇
𝑖 : 𝑖 ∈ [𝑁 ]) = 𝒮) = 1.

(b) If 𝑁 < 𝑁*, then for arbitrary 𝑍1, . . . , 𝑍𝑁 ∈ R𝑑, span(𝑍𝑖𝑍
𝑇
𝑖 : 𝑖 ∈ [𝑁 ]) ⊊ 𝒮.

The proof of Theorem 6.2.10 is deferred to Section 6.4.14.
The critical number 𝑁* is obtained to be 𝑑(𝑑 + 1)/2 since dim(𝒮) =

(︀
𝑑
2

)︀
+ 𝑑 =

𝑑(𝑑+1)/2. Note also that, with this observation, part (𝑏) of Theorem 6.2.10 is trivial,
since we do not have enough number of matrices to span the space 𝒮.

Sample Complexity Bound for the Planted Network Model

Combining Theorems 6.2.9 and 6.2.10, we arrive at the following sample complexity
result.

Theorem 6.2.11. Let 𝑋𝑖, 1 ≤ 𝑖 ≤ 𝑁 be i.i.d. with a jointly continuous distribution
on R𝑑. Let the corresponding labels (𝑌𝑖)

𝑁
𝑖=1 be generated via 𝑌𝑖 = 𝑓(𝑊 *;𝑋𝑖), with

𝑊 * ∈ R𝑚×𝑑 with rank(𝑊 *) = 𝑑.

(a) Suppose 𝑁 ≥ 𝑁*, and ̂︀𝑚 ∈ N. Then with probability one over the training data
𝑋1, . . . , 𝑋𝑁 , if 𝑊 ∈ R̂︀𝑚×𝑑 is such that 𝑓(𝑊 ;𝑋𝑖) = 𝑌𝑖 for every 𝑖 ∈ [𝑁 ], then
𝑓(𝑊 ;𝑋) = 𝑓(𝑊 *;𝑋) for every 𝑋 ∈ R𝑑.

(b) Suppose 𝑋𝑖, 1 ≤ 𝑖 ≤ 𝑁 are i.i.d. random vectors with i.i.d. centered coordinates
having variance 𝜇2 and finite fourth moment 𝜇4. Suppose that 𝑁 < 𝑁*. Then
there exists a 𝑊 ∈ R𝑚×𝑑 such that 𝑓(𝑊 ;𝑋𝑖) = 𝑌𝑖 for every 𝑖 ∈ [𝑁 ], yet the
generalization error satisfies

ℒ(𝑊 ) ≥ min{𝜇4 − 𝜇2
2, 2𝜇

2
2} · 𝜎min(𝑊

*)4.

The proof of Theorem 6.2.11 is deferred to Section 6.4.15.
We highlight that the lower bound arising in Theorem 6.2.11 (b) is very similar to

the energy barrier bounds obtained earlier for rank-deficient matrices in Theorem 6.2.2
and Theorem 6.2.1 (a). Note also that the interpolating network in part (a) can
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potentially be larger than the original network generating the data: any large network,
despite being overparameterized, still generalizes well, provided it interpolates on a
training set enjoying the aforementioned geometric condition.

Theorem 6.2.11 provides the necessary and sufficient number of data points for
training a shallow neural network with quadratic activation function so as to guarantee
good (perfect) generalization property.

6.3 Preliminaries

We collect herein several useful auxiliary results that we employ in our proofs.

6.3.1 An Analytical Expression for the Population Risk

Towards proving our energy barrier results, Theorem 6.2.2 and Theorem 6.2.1, we
start with providing an analytical expression for the population risk ℒ(𝑊 ) of any
𝑊 ∈ R𝑚×𝑑 in terms of how close it is to the planted weight matrix 𝑊 * ∈ R𝑚×𝑑.

We recall that a random vector 𝑋 in R𝑑 is defined to have jointly continuous
distribution if there exists a measurable function 𝑓 : R𝑑 → R such that for any
𝑖 ∈ [𝑁 ] and Borel set ℬ ⊆ R𝑑,

P(𝑋 ∈ ℬ) =
∫︁
ℬ
𝑓(𝑥1, . . . , 𝑥𝑑) 𝑑𝜆(𝑥1, . . . , 𝑥𝑑),

where 𝜆 is the Lebesgue measure on R𝑑.

Theorem 6.3.1. Let 𝑊 * ∈ R𝑚×𝑑, 𝑓(𝑊 *;𝑋) be the function computed by (6.1); and
𝑓(𝑊 ;𝑋) be similarly the function computed by (6.1) for 𝑊 ∈ R𝑚×𝑑. Recall,

ℒ(𝑊 ) = E[(𝑓(𝑊 *;𝑋)− 𝑓(𝑊 ;𝑋))2],

where the expectation is with respect to the distribution of 𝑋 ∈ R𝑑.

(a) Suppose the distribution of 𝑋 is jointly continuous. Then ℒ(𝑊 ) = 0, that is,
𝑓(𝑊 *;𝑋) = 𝑓(𝑊 ;𝑋) almost surely with respect to 𝑋, if and only if 𝑊 = 𝑄𝑊 *

for some orthonormal matrix 𝑄 ∈ R𝑚×𝑚.

Suppose now that the coordinates of 𝑋 ∈ R𝑑 are i.i.d. with E [𝑋𝑖] = 0,E [𝑋2
𝑖 ] = 𝜇2,

and E [𝑋4
𝑖 ] = 𝜇4.

(b) It holds that:

ℒ(𝑊 ) = 𝜇2
2 · trace(𝐴)2 + 2𝜇2

2 · trace(𝐴2) + (𝜇4 − 3𝜇2
2) · trace(𝐴 ∘ 𝐴),

where 𝐴 = (𝑊 *)𝑇𝑊 * −𝑊 𝑇𝑊 ∈ R𝑑×𝑑, and 𝐴 ∘ 𝐴 is the Hadamard product of
𝐴 with itself. In particular, if 𝑋 ∈ R𝑑 has i.i.d. standard normal coordinates,
we obtain ℒ(𝑊 ) = trace(𝐴)2 + 2trace(𝐴2).
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(c) The following bounds hold:

𝜇2
2 · trace(𝐴)2 +min

{︀
𝜇4 − 𝜇2

2, 2𝜇
2
2

}︀
· trace(𝐴2) ≤ ℒ(𝑊 ),

and
𝜇2
2 · trace(𝐴)2 +max

{︀
𝜇4 − 𝜇2

2, 2𝜇
2
2

}︀
· trace(𝐴2) ≥ ℒ(𝑊 ).

The proof of Theorem 6.3.1 is provideed in Section 6.4.1.
In a nutshell, Theorem 6.3.1 states that the population risk ℒ(𝑊 ) of any 𝑊 ∈ R𝑑

is completely determined by how close it is to the planted weights 𝑊 * as measured
by the matrix 𝐴 = (𝑊 *)𝑇𝑊 * −𝑊 𝑇𝑊 ; and the second and fourth moments of the
data. This is not surprising: ℒ(𝑊 ) is essentially a function of the first four moments
of the data, and the difference of the quadratic forms generated by 𝑊 and 𝑊 *, which
is precisely encapsulated by the matrix 𝐴. Note also that the characterization of the
“optimal orbit" per part (a) is not surprising either: any matrix 𝑊 with the property
𝑊 = 𝑄𝑊 * where 𝑄 ∈ R𝑚×𝑚 is an orthonormal matrix, that is, 𝑄𝑇𝑄 = 𝐼𝑚, has the
property that 𝑓(𝑊 ;𝑋) = ‖𝑊𝑋‖22 = 𝑋𝑇𝑊 𝑇𝑊𝑋 = 𝑓(𝑊 *;𝑋) for any data 𝑋 ∈ R𝑑.
Part (a) then says the the reverse is true as well, provided that the distribution of 𝑋 is
jointly continuous. Note also that for 𝑋 with centered i.i.d. entries the thesis of part
(a) follows also from part (c): ℒ(𝑊 ) = 0 implies that trace(𝐴2) = 0, which, together
with the fact that 𝐴 is symmetric, then yields 𝐴 = 0, that is, 𝑊 𝑇𝑊 = (𝑊 *)𝑇𝑊 *.

6.3.2 Useful Lemmas and Results from Linear Algebra and
Random Matrix Theory

Our next result is a simple norm bound for the ensemble 𝑋𝑖 ∈ R𝑑, 1 ≤ 𝑖 ≤ 𝑁 with
sub-Gaussian coordinates.

Lemma 6.3.2. Let 𝑋𝑖 ∈ R𝑑, 1 ≤ 𝑖 ≤ 𝑁 be an i.i.d. collection of random vectors
with centered i.i.d. sub-Gaussian coordinates, that is, for some constant 𝐶 > 0,
P(|𝑋𝑖(𝑗)| > 𝑡) ≤ exp(−𝐶𝑡2) for every 𝑖 ∈ [𝑁 ], 𝑗 ∈ [𝑑], and 𝑡 ≥ 0. Then,

P
(︀
‖𝑋𝑖‖∞ ≤ 𝑑𝐾1 , 1 ≤ 𝑖 ≤ 𝑁

)︀
≥ 1−𝑁𝑑 exp(−𝐶𝑑2𝐾1).

The proof of Lemma 6.3.2 is provided in Section 6.4.3.
Our energy barrier result Theorem 6.2.2 for the empirical risk is proven by estab-

lishing the emergence of a barrier for a single rank-deficient 𝐴 ∈ R𝑑×𝑑, together with
a covering numbers argument.

Lemma 6.3.3. Let 𝐾1 > 0 be an arbitrary constant; and 𝑋𝑖 ∈ R𝑑, 1 ≤ 𝑖 ≤ 𝑁
be a collection of i.i.d. data with centered i.i.d. sub-Gaussian coordinates where for
any 𝑀 > 0, the mean of |𝑋1(1)| conditional on |𝑋1(1)| ≤ 𝑀 is zero; and let
𝑌𝑖 = 𝑓(𝑊 *;𝑋𝑖) be the corresponding label generated by a neural network with planted
weights 𝑊 * ∈ R𝑚×𝑑 as per (6.1), where ‖𝑊 *‖𝐹 ≤ 𝑑𝐾2. Fix any 𝐴 ∈ R𝑑×𝑑, where
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‖𝐴‖𝐹 ≤ 𝑑2𝐾2, rank(𝐴) ≤ 𝑑− 1, and 𝐴 ⪰ 0. Define the event

ℰ(𝐴) ≜
{︃

1

𝑁

∑︁
1≤𝑖≤𝑁

(︀
𝑌𝑖 −𝑋𝑇

𝑖 𝐴𝑋𝑖

)︀2 ≥ 1

2
𝐶5(𝐾1)𝜎min(𝑊

*)4
}︃
,

where
𝐶5(𝐾1) ≜ min

{︁
𝜇4(𝐾1)− 𝜇2(𝐾1)

2, 2𝜇2(𝐾1)
2
}︁

for 𝜇𝑛(𝐾) = E
[︁
𝑋1(1)

𝑛
⃒⃒⃒
|𝑋1(1)| ≤ 𝑑𝐾

]︁
. Then, there exists a constant 𝐶 ′ > 0 (inde-

pendent of 𝑊 , and depending only on data distribution, 𝐾1, and 𝑊 *) such that

P
(︁
ℰ(𝐴)𝑐

⃒⃒⃒
‖𝑋𝑖‖∞ ≤ 𝑑𝐾1 , 1 ≤ 𝑖 ≤ 𝑁

)︁
≤ exp

(︂
−𝐶3

𝑁

𝑑4𝐾1+4𝐾2+2

)︂
.

In particular,

P
(︀
ℰ(𝐴)

)︀
≥ 1− exp

(︂
−𝐶3

𝑁

𝑑4𝐾1+4𝐾2+2

)︂
−𝑁𝑑𝑒−𝐶𝑑2𝐾1 ,

where 𝐶 > 0 is the same constant as in Lemma 6.3.2.

The parameter 𝐾1 appearing in Lemma 6.3.3 controls the amount of truncation
applied on training data; and 𝐾2 controls the norm of the planted weight matrix.
The proof of Lemma 6.3.3 is provided in Section 6.4.4.

The next result is a covering number bound, adopted from [68, Lemma 3.1] with
minor modifications.

Lemma 6.3.4. Let

𝑆𝑅 ≜
{︀
𝐴 ∈ R𝑑×𝑑 : rank(𝐴) ≤ 𝑟, 𝐴 ⪰ 0, ‖𝐴‖𝐹 ≤ 𝑅

}︀
.

Then there exists an 𝜖−net 𝑆𝑅 for 𝑆𝑅 in Frobenius norm (that is, for every 𝐴 ∈ 𝑆𝑅

there exists a ̂︀𝐴 ∈ 𝑆𝑅 such that ‖𝐴− ̂︀𝐴‖𝐹 ≤ 𝜖) such that

|𝑆𝑅| ≤
(︂
9𝑅

𝜖

)︂𝑑𝑟+𝑟

.

The proof of Lemma 6.3.4 is provided in Section 6.4.5.
Some of our results use the following well-known results. These results are verba-

tim from the literature and provided herein without proof.

Theorem 6.3.5. ([70]) Let ℓ be an arbitrary positive integer; and 𝑃 : Rℓ → R be a
polynomial. Then, either 𝑃 is identically 0, or {𝑥 ∈ Rℓ : 𝑃 (𝑥) = 0} has zero Lebesgue
measure, namely, 𝑃 (𝑥) is non-zero almost everywhere.

Theorem 6.3.6. ([170, Theorem 7.3.11]) For two matrices 𝐴 ∈ R𝑝×𝑛 and 𝐵 ∈ R𝑞×𝑛

where 𝑞 ≤ 𝑝; 𝐴𝑇𝐴 = 𝐵𝑇𝐵 holds if and only if 𝐴 = 𝑄𝐵 for some matrix 𝑄 ∈ R𝑝×𝑞

with orthonormal columns.
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Our results regarding the initialization guarantees use the several auxiliary results
from random matrix theory: The spectrum of tall random matrices are essentially
concentrated:

Theorem 6.3.7. ([281, Corollary 5.35]) Let 𝐴 be an 𝑚× 𝑑 matrix with independent
standard normal entries. For every 𝑡 ≥ 0, with probability at least 1− 2 exp(−𝑡2/2),
we have: √

𝑚−
√
𝑑− 𝑡 ≤ 𝜎min(𝐴) ≤ 𝜎max(𝐴) ≤

√
𝑚+

√
𝑑+ 𝑡.

Theorem 6.3.8. ([24],[281, Theorem 5.31])
Let 𝐴 = 𝐴𝑁,𝑛 be an 𝑁 ×𝑛 random matrix whose entries are independent copies of

a random variable with zero mean, unit variance, and finite fourth moment. Suppose
that the dimensions 𝑁 and 𝑛 grow to infinity while the aspect ratio 𝑛/𝑁 converges to
a constant in [0, 1]. Then

𝜎min(𝐴) =
√
𝑁 −√

𝑛+ 𝑜(
√
𝑛), and 𝜎min(𝐴) =

√
𝑁 +

√
𝑛+ 𝑜(

√
𝑛),

almost surely.

The following concentration result, recorded herein verbatim from Vershynin [281],
will be useful for our approximate stationarity analysis.

Theorem 6.3.9. ([281, Theorem 5.44]) Let 𝐴 be an 𝑁 × 𝑛 matrix whose rows 𝐴𝑖

are independent random vectors in R𝑛 with the common second moment matrix Σ =
E[𝐴𝑖𝐴

𝑇
𝑖 ]. Let 𝑚 be a number such that ‖𝐴𝑖‖2 ≤

√
𝑚 almost surely for all 𝑖. Then, for

every 𝑡 ≥ 0, the following inequality holds with probability at least 1− 𝑛 · exp(−𝑐𝑡2):⃦⃦⃦⃦
1

𝑁
𝐴𝑇𝐴− Σ

⃦⃦⃦⃦
≤ max

(︀
‖Σ‖1/2𝛿, 𝛿2

)︀
where 𝛿 = 𝑡

√︀
𝑚/𝑁.

Here, 𝑐 > 0 is an absolute constant.

Finally, we make use of the matrix-operator version of the Hölder’s inequality:

Theorem 6.3.10. ([48, p.95]) For any matrix 𝑈 ∈ R𝑘×ℓ, let ‖𝑈‖𝜎𝑝 denotes the ℓ𝑝
norm of the vector

(𝜎1(𝑈), . . . , 𝜎min{𝑘,ℓ}(𝑈))

of singular values of 𝑈 . Then, for any 𝑝, 𝑞 > 0 with 1
𝑝
+ 1

𝑞
= 1, it holds that

| ⟨𝑈, 𝑉 ⟩ | = |trace(𝑈𝑇𝑉 )| ≤ ‖𝑈‖𝜎𝑝‖𝑉 ‖𝜎𝑞 .

6.4 Proofs
In this section, we present the proofs of the main results of this work.

The order of the proofs presented herein is slightly different from the order of
the corresponding results in the main body, in that none of the proofs below (with
one exception that we detail below) use a proof presented later than itself. That
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is, whenever we present the proof of a result below, it is ensured that if this proof
requires another result as a building block, this building block is shown earlier. The
rationale behind this is to avoid any potential confusion and to ensure that no cyclic
reasoning is present.

With this arrangement, only Theorem 6.2.4 uses results presented later in this
section (more precisely, it uses Theorems 6.2.9 and 6.2.10); and it can be checked
directly that there is no cyclic reasoning in the proof of Theorem 6.2.4.

6.4.1 Proof of Theorem 6.3.1

First, we have

𝑓(𝑊 ;𝑋)− 𝑓(𝑊 *;𝑋) = 𝑋𝑇 ((𝑊 *)𝑇𝑊 * −𝑊 𝑇𝑊 )𝑋 ≜ 𝑋𝑇𝐴𝑋, (6.5)

where 𝐴 = (𝑊 *)𝑇𝑊 * −𝑊 𝑇𝑊 ∈ R𝑑×𝑑 is a symmetric matrix. Note also that,

trace(𝐴)2 =
𝑑∑︁

𝑖=1

𝐴2
𝑖𝑖 + 2

∑︁
𝑖<𝑗

𝐴𝑖𝑖𝐴𝑗𝑗, (6.6)

and

trace(𝐴2) = trace(𝐴𝑇𝐴) = ‖𝐴‖2𝐹 =
∑︁
𝑖,𝑗

𝐴2
𝑖𝑗 =

𝑑∑︁
𝑖=1

𝐴2
𝑖𝑖 + 2

∑︁
𝑖<𝑗

𝐴2
𝑖𝑗, (6.7)

where 𝐴2 is equal to 𝐴𝑇𝐴, as 𝐴 is symmetric.

(a) Recall Theorem 6.3.5. In particular, if ℒ(𝑊 ) = 0, then we have 𝑃 (𝑋) =
𝑋𝑇𝐴𝑋 = 0 almost surely. Since 𝑃 (·) : R𝑑 → R a polynomial, it then follows
that 𝑃 (𝑋) = 0 identically. Now, since 𝐴 is symmetric, it has real eigenvalues,
called 𝜆1, . . . , 𝜆𝑑 with corresponding (real) eigenvectors 𝜉1, . . . , 𝜉𝑑. Now, taking
𝑋 = 𝜉𝑖, we have 𝑋𝑇𝐴𝑋 = 𝜉𝑇𝑖 𝐴𝜉 = 𝜆𝑖 ⟨𝜉𝑖, 𝜉𝑖⟩ = 0. Since 𝜉𝑖 ̸= 0, we get 𝜆𝑖 = 0
for any 𝑖. Finally, since 𝐴 = 𝑄Λ𝑄𝑇 , it must necessarily be the case that 𝐴 = 0.
Hence, 𝑊 𝑇𝑊 = (𝑊 *)𝑇𝑊 *, which imply 𝑊 = 𝑄𝑊 * for some 𝑄 ∈ R𝑚×𝑚

orthonormal, per Theorem 6.3.6.

(b) Using Equation (6.5), we first have

ℒ(𝑊 ) =
∑︁

1≤𝑖,𝑗,𝑖′,𝑗′≤𝑑

𝐴𝑖𝑗𝐴𝑖′,𝑗′E [𝑋𝑖𝑋𝑗𝑋𝑖′𝑋𝑗′ ] .

Note that if |{𝑖, 𝑗, 𝑖′, 𝑗′}| ∈ {3, 4}, then E [𝑋𝑖𝑋𝑗𝑋𝑖′𝑋𝑗′ ] = 0, since𝑋 has centered
i.i.d. coordinates. Keeping this in mind, and carrying out the algebra we then
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get:

ℒ(𝑊 ) =
𝑑∑︁

𝑖=1

𝐴2
𝑖𝑖E
[︀
𝑋4

𝑖

]︀
+ 2

∑︁
𝑖<𝑗

𝐴𝑖𝑖𝐴𝑗𝑗E
[︀
𝑋2

𝑖

]︀
E
[︀
𝑋2

𝑗

]︀
+ 4

∑︁
𝑖<𝑗

𝐴2
𝑖𝑗E
[︀
𝑋2

𝑖

]︀
E
[︀
𝑋2

𝑗

]︀
= 𝜇4

𝑑∑︁
𝑖=1

𝐴2
𝑖𝑖 + 2𝜇2

2

∑︁
𝑖<𝑗

𝐴𝑖𝑖𝐴𝑗𝑗 + 4𝜇2
2

∑︁
𝑖<𝑗

𝐴2
𝑖𝑗.

Using now Equations (6.6) and (6.7), we get:

ℒ(𝑊 ) = (𝜇4 − 3𝜇2
2) · trace(𝐴 ∘ 𝐴) + 𝜇2

2 · trace(𝐴)2 + 2𝜇2
2 · trace(𝐴2),

since 𝐴2
𝑖𝑖 = (𝐴 ∘ 𝐴)𝑖𝑖.

(c) Define 𝑘 to be such that 𝜇4 − 𝜇2
2 = 2𝑘𝜇2

2, namely, 𝑘 is related to measures of
dispersion pertaining 𝑋𝑖:

√
2𝑘 is the coefficient of variation and (2𝑘 + 1) is the

kurtosis associated to the random variable 𝑋𝑖. With this, we have:

ℒ(𝑊 ) = 𝜇2
2 · trace(𝐴)2 + 2𝜇2

2

(︃
𝑘

𝑑∑︁
𝑖=1

𝐴2
𝑖𝑖 + 2

∑︁
𝑖<𝑗

𝐴2
𝑖𝑗

)︃
.

From here, the desired conclusion follows since

𝜇2
2 · trace(𝐴)2 + 2min{𝑘, 1}𝜇2

2

(︃
𝑑∑︁

𝑖=1

𝐴2
𝑖𝑖 + 2

∑︁
𝑖<𝑗

𝐴2
𝑖𝑗

)︃
≤ ℒ(𝑊 ),

and

𝜇2
2 · trace(𝐴)2 + 2max{𝑘, 1}𝜇2

2

(︃
𝑑∑︁

𝑖=1

𝐴2
𝑖𝑖 + 2

∑︁
𝑖<𝑗

𝐴2
𝑖𝑗

)︃
≥ ℒ(𝑊 ),

together with Equation (6.7).

6.4.2 Proof of Theorem 6.2.1

(a) Note first that using Theorem 6.3.1 part (c), we have:

ℒ(𝑊 ) ≥ min{Var(𝑋2
𝑖 ), 2E

[︀
𝑋2

𝑖

]︀2}trace(𝐴2).

Now, fix any𝑊 ∈ R𝑚×𝑑 with rank(𝑊 ) < 𝑑. Let 𝑎1 ≥ · · · ≥ 𝑎𝑑 be the eigenvalues
of (𝑊 *)𝑇𝑊 *; 𝑏1 ≥ · · · ≥ 𝑏𝑑 be the eigenvalues −𝑊 𝑇𝑊 ; and 𝜆1 ≥ · · · ≥ 𝜆𝑑 be
the eigenvalues of (𝑊 *)𝑇𝑊 *−𝑊 𝑇𝑊 . Since 𝑊 is rank-deficient, we have 𝑏1 = 0.
Furthermore, 𝑎𝑑 = 𝜎min(𝑊

*)2, since the eigenvalues of (𝑊 *)𝑇𝑊 * are precisely
the squares of the singular values of 𝑊 *. Now, recall the (Courant-Fischer)
variational characterization of the eigenvalues [170]. If 𝑀 is a 𝑑×𝑑 matrix with
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eigenvalues 𝑐1 ≥ · · · ≥ 𝑐𝑑, then:

𝑐1 = max
𝑥:‖𝑥‖2=1

𝑥𝑇𝑀𝑥 and 𝑐𝑑 = min
𝑥:‖𝑥‖2=1

𝑥𝑇𝑀𝑥.

With this, fix an 𝑥 ∈ R𝑑 with ‖𝑥‖2 = 1. Then,

𝑥𝑇 ((𝑊 *)𝑇𝑊 *−𝑊 𝑇𝑊 )𝑥 ≥ min
𝑥:‖𝑥‖2=1

𝑥𝑇 (𝑊 *)𝑇𝑊 *𝑥+𝑥𝑇 (−𝑊 𝑇𝑊 )𝑥 = 𝑎𝑑+𝑥
𝑇 (−𝑊 𝑇𝑊 )𝑥.

Since this inequality holds for every 𝑥 with ‖𝑥‖2 = 1, we can take the max over
all 𝑥, and arrive at,

𝜆1 = max
𝑥:‖𝑥‖2=1

𝑥𝑇 ((𝑊 *)𝑇𝑊 * −𝑊 𝑇𝑊 )𝑥 ≥ 𝑎𝑑 + 𝑏1 = 𝑎𝑑 ≥ 𝜎min(𝑊
*)2.

Now, since 𝜆21, . . . , 𝜆2𝑑 are precisely the eigenvalues of 𝐴2, we have trace(𝐴2) =∑︀𝑑
𝑖=1 𝜆

2
𝑖 ≥ 𝜆21. Hence, for any 𝑊 with rank(𝑊 ) < 𝑑, it holds that:

ℒ(𝑊 ) ≥ min
{︁
Var(𝑋2

𝑖 ), 2E
[︀
𝑋2

𝑖

]︀2}︁
𝜆21.

Finally, since 𝜆21 ≥ 𝜎min(𝑊
*)4, the desired conclusion follows by taking the

minimum over all rank-deficient 𝑊 .

(b) Let the eigenvalues of (𝑊 *)𝑇𝑊 * be denoted by 𝜆*1, . . . , 𝜆
*
𝑑, with the corre-

sponding orthogonal eigenvectors 𝑞*1, . . . , 𝑞*𝑑. Namely, diagonalize (𝑊 *)𝑇𝑊 * as
𝑄*Λ*(𝑄*)𝑇 where the columns of 𝑄* ∈ R𝑑×𝑑 are 𝑞*1, . . . , 𝑞*𝑑, and Λ* ∈ R𝑑×𝑑 is a
diagonal matrix with (Λ*)𝑖,𝑖 = 𝜆*𝑖 for every 1 ≤ 𝑖 ≤ 𝑑. Let

𝑊 =
𝑑−1∑︁
𝑗=1

√︁
𝜆*𝑗𝑞

*
𝑗 (𝑞

*
𝑗 )

𝑇 ∈ R𝑑×𝑑.

Observe that, 𝑊 𝑇
𝑊 = 𝑄*Λ𝑄*, where Λ ∈ R𝑑×𝑑 is a diagonal matrix with

(Λ)𝑖,𝑖 = (Λ*)𝑖,𝑖 for every 1 ≤ 𝑖 ≤ 𝑑−1, and (Λ)𝑑,𝑑 = 0; and that, rank(𝑊 ) = 𝑑−1.
Now, let 𝑊1, . . . ,𝑊𝑑 ∈ R𝑑 be the rows of 𝑊 , and fix a 𝑗 ∈ [𝑑] such that 𝑊𝑗 ̸= 0.

Having constructed a 𝑊 ∈ R𝑑×𝑑, we now prescribe 𝑊 ∈ R𝑚×𝑑 as follows. For
1 ≤ 𝑖 ≤ 𝑑, 𝑖 ̸= 𝑗, let 𝑊𝑖 = 𝑊𝑖, where 𝑊𝑖 is the 𝑖𝑡ℎ row of 𝑊 . Then set
𝑊𝑗 =

1
2
𝑊𝑗, and for every 𝑑 + 1 ≤ 𝑖 ≤ 𝑚, set 𝑊𝑖 =

√
3

2
√
𝑚−𝑑

𝑊𝑗. For this matrix,
we now claim

𝑊 𝑇𝑊 = 𝑊
𝑇
𝑊.

To see this, fix an 𝑋 ∈ R𝑑, and recall that 𝑋𝑇𝑊 𝑇𝑊𝑋 − 𝑋𝑇𝑊
𝑇
𝑊𝑋 =
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‖𝑊𝑋‖22 − ‖𝑊𝑋‖22. We now compute this quantity more explicitly:

‖𝑊𝑋‖22 − ‖𝑊𝑋‖22 =
𝑑∑︁

𝑘=1

⟨𝑊𝑘, 𝑋⟩2 −
𝑚∑︁
𝑘=1

⟨︀
𝑊 𝑘, 𝑋

⟩︀2
=

𝑑∑︁
𝑘=1,𝑘 ̸=𝑗

⟨𝑊𝑘, 𝑋⟩2 + ⟨𝑊𝑗, 𝑋⟩2

−
𝑑∑︁

𝑘=1,𝑘 ̸=𝑗

⟨𝑊𝑘, 𝑋⟩2 −
⟨
1

2
𝑊𝑗, 𝑋

⟩2

−
𝑚∑︁

𝑘=𝑑+1

⟨ √
3

2
√
𝑚− 𝑑

𝑊𝑗, 𝑋

⟩2

= ⟨𝑊𝑗, 𝑋⟩2 − 1

4
⟨𝑊𝑗, 𝑋⟩2 − 3

4(𝑚− 𝑑)
(𝑚− 𝑑) ⟨𝑊𝑗, 𝑋⟩2 = 0.

Hence, for every 𝑋 ∈ R𝑑, we have:

𝑋𝑇𝑊 𝑇𝑊𝑋 = 𝑋𝑇𝑊
𝑇
𝑊𝑋.

Now let Ξ = 𝑊 𝑇𝑊 −𝑊 𝑇
𝑊 . Note that Ξ ∈ R𝑑×𝑑 is symmetric, and 𝑋𝑇Ξ𝑋 = 0

for every𝑋 ∈ R𝑑. Now, taking𝑋 to be 𝑒𝑖, that is, the 𝑖𝑡ℎ element of the standard
basis for the Euclidean space R𝑑, we deduce Ξ𝑖,𝑖 = 0 for every 𝑖 ∈ [𝑑]. For the
off-diagonal entries, let 𝑋 = 𝑒𝑖+ 𝑒𝑗. Then, 𝑋𝑇Ξ𝑋 = Ξ𝑖,𝑖+Ξ𝑖,𝑗 +Ξ𝑗,𝑖+Ξ𝑗,𝑗 = 0,
which, together with the fact that the diagonal entries of Ξ are zero, imply
Ξ𝑖,𝑗 = −Ξ𝑗,𝑖; namely Ξ is skew-symmetric. Finally, since Ξ is also symmetric we
have Ξ𝑖,𝑗 = Ξ𝑗,𝑖, which then implies for every 𝑖, 𝑗 ∈ [𝑑], Ξ𝑖,𝑗 = 0, that is, Ξ = 0,
and thus, 𝑊 𝑇𝑊 = 𝑊

𝑇
𝑊 .

Hence, we have for 𝑊 ∈ R𝑚×𝑑 with rank(𝑊 ) = 𝑑− 1,

𝑊 𝑇𝑊 − (𝑊 *)𝑇𝑊 * = 𝑄*Λ′(𝑄*)𝑇 ,

with (Λ′)𝑖,𝑖 = 0 for every 1 ≤ 𝑖 ≤ 𝑑 − 1; and (Λ′)𝑑,𝑑 = −𝜆*𝑑. Namely, the
spectrum of the matrix 𝐴 = (𝑊 *)𝑇𝑊 * − 𝑊 𝑇𝑊 contains only two values: 0
with multiplicity 𝑑− 1, and 𝜆*𝑑 with multiplicity one. In particular,

trace(𝐴) = 𝜆*𝑑 and trace(𝐴2) = (𝜆*𝑑)
2.

Using now the upper bound provided by Theorem (6.3.1) part (c) yields the
desired claim. Therefore, the energy band lower bound is tight, up to a multi-
plicative constant.

6.4.3 Proof of Lemma 6.3.2

For any fixed 𝑖 ∈ [𝑁 ], 𝑗 ∈ [𝑑], note that using sub-Gaussian property one has
P(|𝑋𝑖(𝑗)| > 𝑑𝐾1) ≤ exp(−𝐶𝑑2𝐾1), thus P(∃𝑖 ∈ [𝑁 ], 𝑗 ∈ [𝑑] : |𝑋𝑖(𝑗)| > 𝑑𝐾1) ≤
𝑁𝑑 exp(−𝐶𝑑2𝐾1), using union bound, which yields the conclusion.
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6.4.4 Proof of Lemma 6.3.3

Let
ℰ1 ≜

{︁
‖𝑋𝑖‖∞ ≤ 𝑑𝐾1 , 1 ≤ 𝑖 ≤ 𝑁

}︁
.

By Lemma 6.3.2, P(ℰ1) ≥ 1−𝑁𝑑 exp(−𝐶𝑑2𝐾1). Now, note that

P(ℰ(𝐴)𝑐) = P(ℰ(𝐴)𝑐|ℰ1)P(ℰ1) + P(ℰ(𝐴)𝑐|ℰ𝑐
1)P(ℰ𝑐

1) ≤ P(ℰ(𝐴)𝑐|ℰ1) +𝑁 exp(−𝐶𝑑2𝐾1).
(6.8)

We now study P(ℰ(𝐴)𝑐|ℰ1), hence assume we condition on ℰ1 from now on. Triangle
inequality yields

|𝑌𝑖 −𝑋𝑇
𝑖 𝐴𝑋𝑖| ≤ |𝑋𝑇

𝑖 𝐴𝑋𝑖|+ |𝑋𝑇
𝑖 (𝑊

*)𝑇𝑊 *𝑋𝑖|.

Observe now that

‖𝑋𝑖𝑋𝑖‖2𝐹 = trace(𝑋𝑖𝑋
𝑇
𝑖 𝑋𝑖𝑋

𝑇
𝑖 ) = ‖𝑋𝑖‖22trace(𝑋𝑖𝑋

𝑇
𝑖 ) = ‖𝑋𝑖‖42,

which implies (conditional on ℰ1)

‖𝑋𝑖𝑋
𝑇
𝑖 ‖𝐹 = ‖𝑋𝑖‖22 ≤ 𝑑2𝐾1+1.

Now, Cauchy-Schwarz inequality with respect to inner product ⟨𝑈, 𝑉 ⟩ ≜ trace(𝑈𝑇𝑉 )
yields

|𝑋𝑇
𝑖 𝐴𝑋𝑖| =

⟨︀
𝐴,𝑋𝑖𝑋

𝑇
𝑖

⟩︀
≤ ‖𝐴‖𝐹‖𝑋𝑖𝑋

𝑇
𝑖 ‖𝐹 ≤ 𝑑2𝐾1+2𝐾2+1,

for every 𝑖 ∈ [𝑁 ], using ‖𝐴‖𝐹 ≤ 𝑑2𝐾2 .
Next, let 𝐴* = (𝑊 *)𝑇𝑊 * ∈ R𝑑×𝑑, and let 𝜂*1, . . . , 𝜂*𝑑 be the eigenvalues of 𝐴*, all

non-negative. Observe that

‖𝑊 *‖2𝐹 = trace(𝐴*) =
∑︁

1≤𝑗≤𝑑

𝜂*𝑗 ≤ 𝑑2𝐾2 .

Now note that (𝜂*1)
2, (𝜂*2)

2, . . . , (𝜂*𝑑)
2 are the eigenvalues of (𝐴*)2 = (𝐴*)𝑇𝐴*. With

this reasoning, we have

‖𝐴*‖2𝐹 = trace((𝐴*)𝑇𝐴*) = trace((𝐴*)2) =
∑︁

1≤𝑗≤𝑑

(𝜂*𝑗 )
2 ≤

(︃ ∑︁
1≤𝑗≤𝑑

𝜂*𝑗

)︃2

≤ 𝑑4𝐾2 .

Consequently, ‖𝐴*‖𝐹 ≤ 𝑑2𝐾2 , and therefore, the exact same reasoning yields

|𝑋𝑇
𝑖 (𝑊

*)𝑇𝑊 *𝑋𝑖| = 𝑋𝑇
𝑖 𝐴

*𝑋𝑖 ≤ 𝑑2𝐾1+2𝐾2+1,

for every 𝑖 ∈ [𝑁 ]. Hence, conditional on ℰ1, it holds that for every 𝑖 ∈ [𝑁 ]:(︀
𝑋𝑇

𝑖 𝐴𝑋𝑖 −𝑋𝑇
𝑖 (𝑊

*)𝑇𝑊 *𝑋𝑖

)︀2 ≤ 4𝑑4𝐾1+4𝐾2+2.
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We now apply concentration to i.i.d. sum

1

𝑁

∑︁
1≤𝑖≤𝑁

(︀
𝑋𝑇

𝑖 𝐴𝑋𝑖 −𝑋𝑇
𝑖 (𝑊

*)𝑇𝑊 *𝑋𝑖

)︀2
is a sum of bounded random variables that are at most 4𝑑4𝐾1+4𝐾2+2.

Now, recalling the distributional assumption on the data, we have that conditional
on ‖𝑋𝑖‖∞ ≤ 𝑑𝐾1 , the data still has i.i.d. centered coordinates. In particular, the
“energy barrier" result for the population risk as per Theorem 6.2.1 applies:

E
[︁(︀
𝑋𝑇𝐴𝑋 −𝑋𝑇 (𝑊 *)𝑇𝑊 *𝑋

)︀2⃒⃒ℰ1]︁ ≥ 𝐶5(𝐾1)𝜎min(𝑊
*)4,

where
𝐶5(𝐾1) = min{𝜇4(𝐾1)− 𝜇2(𝐾1)

2, 2𝜇2(𝐾1)
2},

is controlled by the conditional moments of data coordinates.
Finally applying Hoeffding’s inequality for bounded random variables we arrive at

1

𝑁

∑︁
1≤𝑖≤𝑁

(︀
𝑋𝑇

𝑖 𝐴𝑋𝑖 −𝑋𝑇
𝑖 (𝑊

*)𝑇𝑊 *𝑋𝑖

)︀2 ≥ 1

2
𝐶5𝜎min(𝑊

*)4,

with probability at least 1− exp
(︀
−𝐶3𝑁𝑑

−4𝐾1−4𝐾2−2
)︀
. Namely,

P
(︁
ℰ(𝐴)𝑐

⃒⃒⃒
ℰ1
)︁
≤ exp(−𝐶3𝑁𝑑

−4𝐾1−4𝐾2−2).

Returning to (6.8), this yields

P(ℰ𝐴) ≥ 1− exp(−𝐶3𝑁𝑑
−4𝐾1−4𝐾2−2)−𝑁𝑑 exp(−𝐶𝑑2𝐾1).

This completes the proof of Lemma 6.3.3.

6.4.5 Proof of Lemma 6.3.4

The proof is almost verbatim from [68, Lemma 3.1], and included herein for com-
pleteness.

Note that any 𝐴 ∈ R𝑑×𝑑, 𝐴 ⪰ 0 and rank(𝐴) = 𝑟 decomposes as 𝐴 = 𝑄Λ𝑄𝑇 ,
where 𝑄 ∈ R𝑑×𝑟 satisfying 𝑄𝑇𝑄 = 𝐼𝑑, and Λ ∈ R𝑟×𝑟, a diagonal matrix with non-
negative diagonal entries. Notice, furthermore, that ‖𝐴‖𝐹 = ‖Λ‖𝐹 ≤ 𝑅 as 𝑄 is
orthonormal. With this, we now construct an appropriate net covering the set of all
permissible 𝑄 and Σ.

Let 𝐷 be the set of all 𝑟× 𝑟 diagonal matrices with non-negative diagonal entries
with Frobenius norm at most 𝑅. Let �̄� be an 𝜖

3
−net for 𝐷 in Frobenius norm. Using

standard results (see, e.g. [281, Lemma 5.2]), we have

|�̄�| ≤
(︂
9𝑅

𝜖

)︂𝑟

.
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Now let 𝑂𝑑,𝑟 = {𝑄 ∈ R𝑑×𝑟 : 𝑄𝑇𝑄 = 𝐼𝑑}. To cover 𝑂𝑑,𝑟 we use a more convenient
norm ‖ · ‖1,2 defined as

‖𝑋‖1,2 = max
𝑖

‖𝑋𝑖‖2,

where 𝑋𝑖 is the 𝑖th column of 𝑋. Define 𝑄𝑑,𝑟 = {𝑋 ∈ R𝑑×𝑟 : ‖𝑋‖1,2 ≤ 1}. Note that
𝑂𝑑,𝑟 ⊂ 𝑄𝑑,𝑟. Furthermore, observe also that 𝑄𝑑,𝑟 has an 𝜖−net of cardinality at most
(3/𝜖)𝑑𝑟. With this, we now take �̄�𝑑,𝑟 to be an 𝜖

3𝑅
−net for 𝑂𝑑,𝑟. Consider now the set

𝑆𝑅 ≜ {�̄�Λ̄�̄�𝑇 : �̄� ∈ �̄�𝑑,𝑟, Λ̄ ∈ �̄�}.

Clearly,
|𝑆𝑅| ≤ |�̄�𝑑,𝑟||�̄�| ≤ (9𝑅/𝜖)𝑑𝑟+𝑟.

We now claim 𝑆𝑅 is indeed an 𝜖−net for 𝑆𝑅 in Frobenius norm. To prove this, take
an arbitrary 𝐴 ∈ 𝑆𝑅, and let 𝐴 = 𝑄Λ𝑄𝑇 . There exists a �̄� ∈ �̄�𝑑,𝑟, and a Σ̄ ∈ �̄� such
that ‖Σ − Σ̄‖𝐹 ≤ 𝜖/3, and ‖𝑄 − �̄�‖1,2 ≤ 𝜖/3𝑅. Now, let 𝐴 = �̄�Σ̄�̄�𝑇 . Observe that
using triangle inequality

‖𝐴− 𝐴‖𝐹 = ‖𝑄Λ𝑄𝑇 − �̄�Λ̄�̄�𝑇‖𝐹
≤ ‖𝑄Λ𝑄𝑇 − �̄�Λ𝑄𝑇‖𝐹 + ‖�̄�Λ𝑄𝑇 − �̄�Λ̄𝑄𝑇‖𝐹 + ‖�̄�Λ̄𝑄𝑇 − �̄�Λ̄�̄�𝑇‖𝐹 .

For the first term, notee that since 𝑄 is orthonormal, ‖(𝑄−�̄�)Λ𝑄𝑇‖𝐹 = ‖(𝑄−�̄�)Λ‖𝐹 .
Next,

‖(𝑄− �̄�)Λ‖2𝐹 =
∑︁
1≤𝑖≤𝑑

Λ2
𝑖𝑖‖𝑄𝑖 − �̄�𝑖‖22 ≤ ‖𝑄− �̄�‖21,2‖Σ‖2𝐹 ≤ (𝜖/3)2,

using ‖𝑄− �̄�‖1,2 ≤ 𝜖/3𝑅 and ‖Σ‖𝐹 ≤ 𝑅. Thus, ‖𝑄Λ𝑄𝑇 − �̄�Λ𝑄𝑇‖𝐹 ≤ 𝜖/3. Similarly,
we also have ‖�̄�Λ̄𝑄𝑇 − �̄�Λ̄�̄�𝑇‖𝐹 ≤ 𝜖/3. Finally, ‖�̄�Λ𝑄𝑇 − �̄�Λ̄𝑄𝑇‖𝐹 = ‖Λ𝑄𝑇 −
Λ̄𝑄𝑇‖𝐹 = ‖Λ− Λ̄‖𝐹 ≤ 𝜖/3 using again the facts that 𝑄 and �̄� are both orthonormal.
This concludes that ‖𝐴−𝐴‖𝐹 ≤ 𝜖; thus |𝑆𝑅| is indeed an 𝜖−net for 𝑆𝑅, in Frobenius
norm, of cardinality at most (9𝑅/𝜖)𝑑𝑟+𝑟.

As a side remark observe that we gain an extra factor of 2 in the exponent owing
to the fact that 𝐴 is positive semidefinite (otherwise the bound would be (9𝑅/𝜖)2𝑑𝑟+𝑟).

6.4.6 Proof of Theorem 6.2.3

We first establish the following proposition, for any 𝑊 , which is a stationary point of
the population risk.

Proposition 6.4.1. Let 𝒟* ∈ R𝑑×𝑑 be a diagonal matrix with 𝒟*
𝑖𝑖 = ((𝑊 *)𝑇𝑊 *)𝑖𝑖,

and define 𝒟 ∈ R𝑑×𝑑 analogously. Then, 𝑊 ∈ R𝑚×𝑑 enjoys the “stationarity equa-
tion":

(𝜇4 − 3𝜇2
2)𝑊𝒟* + 𝜇2

2𝑊‖𝑊 *‖2𝐹 + 2𝜇2
2(𝑊 (𝑊 *)𝑇𝑊 *)

= (𝜇4 − 3𝜇2
2)𝑊𝒟 + 𝜇2

2𝑊‖𝑊‖2𝐹 + 2𝜇2
2(𝑊 (𝑊 𝑇𝑊 )).
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Proof. To that end, fix a 𝑘0 ∈ [𝑚] and ℓ0 ∈ [𝑑]. Note that, ∇𝑘0,ℓ0ℒ(𝑊 ) = E [∇𝑘0,ℓ0(𝑓(𝑊
*;𝑋)− 𝑓(𝑊 ;𝑋))2],

using dominated convergence theorem. Next, E [∇𝑘0,ℓ0(𝑓(𝑊
*;𝑋)− 𝑓(𝑊 ;𝑋))2] = 0

implies that, for every 𝑘0 ∈ [𝑚] and ℓ0 ∈ [𝑑]:

𝑚∑︁
𝑗=1

E
[︁⟨︀
𝑊 *

𝑗 , 𝑋
⟩︀2 ⟨𝑊𝑘0 , 𝑋⟩𝑋ℓ0

]︁
=

𝑚∑︁
𝑗=1

E
[︀
⟨𝑊𝑗, 𝑋⟩2 ⟨𝑊𝑘0 , 𝑋⟩𝑋ℓ0

]︀
.

Note next that,
∑︀𝑚

𝑗=1 E
[︁⟨︀
𝑊 *

𝑗 , 𝑋
⟩︀2 ⟨𝑊𝑘0 , 𝑋⟩𝑋ℓ0

]︁
computes as,

𝜇4

𝑚∑︁
𝑗=1

(𝑊 *
𝑗,ℓ0

)2𝑊𝑘0,ℓ0 + 𝜇2
2

𝑚∑︁
𝑗=1

∑︁
1≤ℓ≤𝑑,ℓ ̸=ℓ0

𝑊𝑘0,ℓ0(𝑊
*
𝑗,ℓ)

2 + 2𝜇2
2

𝑚∑︁
𝑗=1

∑︁
1≤ℓ≤𝑑,ℓ ̸=ℓ0

𝑊𝑘0,ℓ𝑊
*
𝑗,ℓ𝑊

*
𝑗,ℓ0
.

We now put this object into a more convenient form. Notice that the expression
above is

(𝜇4 − 3𝜇2
2)𝐴𝑘0,ℓ0 + 𝜇2

2𝐵𝑘0,ℓ0 + 2𝜇2
2𝐶𝑘0,ℓ0 ,

where

𝐴𝑘0,ℓ0 = 𝑊𝑘0,ℓ0

𝑚∑︁
𝑗=1

(𝑊 *
𝑗,ℓ0

)2 and 𝐵𝑘0,ℓ0 =
𝑚∑︁
𝑗=1

𝑑∑︁
ℓ=1

𝑊𝑘0,ℓ0(𝑊
*
𝑗,ℓ)

2 and 𝐶𝑘0,ℓ0 =
𝑚∑︁
𝑗=1

𝑑∑︁
ℓ=1

𝑊𝑘0,ℓ𝑊
*
𝑗,ℓ0
𝑊 *

𝑗,ℓ.

Observe that, 𝐵𝑘0,ℓ0 = 𝑊𝑘0,ℓ0‖𝑊 *‖2𝐹 . We now study 𝐴𝑘0,ℓ0 and 𝐶𝑘0,ℓ0 more carefully.
Observe that

∑︀𝑚
𝑗=1(𝑊

*
𝑗,ℓ0

)2 = ((𝑊 *)𝑇𝑊 *)ℓ0,ℓ0 . Now, let 𝒟* ∈ R𝑑× 𝑑 be a diagonal
matrix where (𝒟*)𝑖𝑗 = ((𝑊 *)𝑇𝑊 *)𝑖𝑖, if 𝑖 = 𝑗; and 0 otherwise. We then have 𝐴𝑘0,ℓ0 =
(𝑊𝒟*)𝑘0,ℓ0 . We now study 𝐶𝑘0,ℓ0 . Recall that 𝑊 *

𝑖 is the 𝑖𝑡ℎ row 𝑊 *. Observe that,∑︀𝑚
𝑗=1𝑊

*
𝑗,ℓ0
𝑊 *

𝑗,ℓ = ((𝑊 *)𝑇𝑊 *)ℓ0,ℓ. Hence,

𝑚∑︁
𝑗=1

𝑑∑︁
ℓ=1

𝑊𝑘0,ℓ𝑊
*
𝑗,ℓ0
𝑊 *

𝑗,ℓ =
𝑑∑︁

ℓ=1

𝑚∑︁
𝑗=1

𝑊𝑘0,ℓ𝑊
*
𝑗,ℓ0
𝑊 *

𝑗,ℓ =
𝑑∑︁

ℓ=1

𝑊𝑘0,ℓ((𝑊
*)𝑇𝑊 *)ℓ0,ℓ = (𝑊 ((𝑊 *)𝑇𝑊 *))𝑘0,ℓ0 ,

that is, 𝐶𝑘0,ℓ0 = (𝑊 ((𝑊 *)𝑇𝑊 *))𝑘0,ℓ0 . Combining everything, we have that for every
𝑘0 ∈ [𝑚] and ℓ0 ∈ [𝑑]:

𝑚∑︁
𝑗=1

E
[︁⟨︀
𝑊 *

𝑗 , 𝑋
⟩︀2 ⟨𝑊𝑘0 , 𝑋⟩𝑋ℓ0

]︁
= (𝜇4−3𝜇2

2)(𝑊𝒟*)𝑘0,ℓ0+𝜇
2
2𝑊𝑘0,ℓ0‖𝑊 *‖2𝐹+2𝜇2

2(𝑊 ((𝑊 *)𝑇𝑊 *))𝑘0,ℓ0 .

In particular, stationarity yields:

(𝜇4−3𝜇2
2)𝑊𝒟*+𝜇2

2𝑊‖𝑊 *‖2𝐹+2𝜇2
2(𝑊 ((𝑊 *)𝑇𝑊 *)) = (𝜇4−3𝜇2

2)𝑊𝒟+𝜇2
2𝑊‖𝑊‖2𝐹+2𝜇2

2𝑊 (𝑊 𝑇𝑊 ),
(6.9)

where the 𝑑 × 𝑑 diagonal matrix 𝒟 is defined as 𝒟𝑖𝑖 = (𝑊 𝑇𝑊 )𝑖𝑖; and entrywise
equalities are converted into equality of two matrices by varying 𝑘0 ∈ [𝑚] and ℓ0 ∈
[𝑑].
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Having now established the Proposition 6.4.1 for the ”stationarity equation", we
now study its implications for any full-rank 𝑊 .

Let 𝑊 ∈ R𝑚×𝑑 be a stationary point with rank(𝑊 ) = 𝑑. We first establish
‖𝑊‖𝐹 = ‖𝑊 *‖𝐹 . Since 𝑊 ∈ R𝑚×𝑑 is a stationary point, it holds that for every
(𝑘0, ℓ0) ∈ [𝑚]× [𝑑], ∇𝑘0,ℓ0ℒ(𝑊 ) = 0. In particular, Equation (6.9) holds.

Recalling now that 𝑊 is full rank, it follows from the rank-nullity theorem that
ker(𝑊 ) is trivial, that is, ker(𝑊 ) = {0}. Hence, for matrices 𝑀1,𝑀2 (with matching
dimensions), whenever 𝑊𝑀1 = 𝑊𝑀2 holds, we deduce 𝑀1 =𝑀2, since each column
of 𝑀1 −𝑀2 is contained in ker(𝑊 ). Thus, Equation (6.9) then yields:

(𝜇4 − 3𝜇2
2)𝒟* + 𝜇2

2‖𝑊 *‖2𝐹 𝐼𝑑 + 2𝜇2
2(𝑊

*)𝑇𝑊 * = (𝜇4 − 3𝜇2
2)𝒟 + 𝜇2

2‖𝑊‖2𝐹 𝐼𝑑 + 2𝜇2
2𝑊

𝑇𝑊.
(6.10)

Next, note that trace(𝒟*) =
∑︀𝑑

𝑖=1((𝑊
*)𝑇𝑊 *)𝑖𝑖 = trace((𝑊 *)𝑇𝑊 *) = ‖𝑊 *‖2𝐹 , and

similarly, trace(𝒟) = ‖𝑊‖2𝐹 . In particular, taking traces of both sides in Equation
(6.10), we get

(𝜇4 − 𝜇2
2)‖𝑊 *‖2𝐹 + 𝜇2

2𝑑‖𝑊 *‖2𝐹 = (𝜇4 − 𝜇2
2)‖𝑊‖2𝐹 + 𝜇2

2𝑑‖𝑊‖2𝐹 ,

implying that ‖𝑊 *‖2𝐹 = ‖𝑊‖2𝐹 . Incorporating this into Equation (6.10), we then
arrive at:

(𝜇4 − 3𝜇2
2)𝒟* + 2𝜇2

2(𝑊
*)𝑇𝑊 * = (𝜇4 − 3𝜇2

2)𝒟 + 2𝜇2
2𝑊

𝑇𝑊.

Now, suppose 𝑖 ∈ [𝑑]. Note that inspecting (𝑖, 𝑖) coordinate above, we get:

(𝜇4 − 3𝜇2
2)((𝑊

*)𝑇𝑊 *)𝑖𝑖 + 2𝜇2
2((𝑊

*)𝑇𝑊 *)𝑖𝑖 = (𝜇4 − 3𝜇2
2)(𝑊

𝑇𝑊 )𝑖𝑖 + 2𝜇2
2(𝑊

𝑇𝑊 )𝑖𝑖.

Since 𝜇4 − 𝜇2
2 = Var(𝑋2

𝑖 ) > 0, we then get

((𝑊 *)𝑇𝑊 *)𝑖𝑖 = (𝑊 𝑇𝑊 )𝑖𝑖.

Now, focus on off-diagonal entries, by fixing 𝑖 ̸= 𝑗. Observe that since Var(𝑋2
𝑖 ) > 0,

it also holds E [𝑋2
𝑖 ] = 𝜇2 > 0. Now note that, 𝒟*

𝑖𝑗 = 𝒟𝑖𝑗 = 0 in this case. We then
have,

2𝜇2((𝑊
*)𝑇𝑊 *)𝑖𝑗 = 2𝜇2(𝑊

𝑇𝑊 )𝑖𝑗 ⇒ (𝑊 *)𝑇𝑊 * = 𝑊 𝑇𝑊.

We conclude that the matrix (𝑊 *)𝑇𝑊 * −𝑊 𝑇𝑊 is a zero matrix. Hence, 𝑊 = 𝑄𝑊 *

for some orthonormal 𝑄 ∈ R𝑚×𝑚 per Theorem 6.3.6, and ℒ(𝑊 ) = 0.

6.4.7 Proof of Theorem 6.2.5

Let {𝑊𝑡}𝑡≥0 be a sequence of 𝑚× 𝑑 matrices corresponding to the weights along the
trajectory of gradient descent, that is, 𝑊𝑡 ∈ R𝑚×𝑑 is the weight matrix at iteration
𝑡 of the algorithm. We first show 𝐿 < ∞. To see this, recall Theorem 6.3.1 (c):
ℒ(𝑊 ) ≥ 𝜇2

2 · trace(𝐴)2, where trace(𝐴) = ‖𝑊‖2𝐹 − ‖𝑊 *‖2𝐹 . In particular, this yields
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𝜇2
2(‖𝑊‖2𝐹 − ‖𝑊 *‖2𝐹 )2 ≤ ℒ(𝑊 ). Hence, for any 𝑊 with ℒ(𝑊 ) ≤ ℒ(𝑊0), it holds that

‖𝑊‖𝐹 ≤
(︃√︀

ℒ(𝑊0)

𝜇2

+ ‖𝑊 *‖2𝐹

)︃1/2

<∞.

Namely, the (Frobenius) norm of the weights of any 𝑊 with ℒ(𝑊 ) ≤ ℒ(𝑊0) remains
uniformly bounded from above. This, in turn, yields that the (spectral norm of the)
Hessian of the objective function remains uniformly bound from above for any such
𝑊 , since the objective is a polynomial function of 𝑊 , which is precisely what we
denote by 𝐿.

We now run gradient descent with a step size of 𝜂 < 1/2𝐿: a second order Taylor
expansion reveals that

ℒ(𝑊1)− ℒ(𝑊0) ≤ −𝜂‖∇ℒ(𝑊0)‖22/2,

where ∇ℒ(𝑊 ) is the gradient of the population risk, evaluated at 𝑊 .

In particular, ℒ(𝑊1) ≤ ℒ(𝑊0), and furthermore, ‖∇2ℒ(𝑊1)‖ ≤ 𝐿, where ‖∇2ℒ(𝑊 )‖
is the spectral norm of the Hessian matrix ∇2ℒ(𝑊 ). From here, we induct on
𝑘: induction argument reveals we can retain a step size of 𝜂 < 1/2𝐿, and fur-
thermore we deduce that the gradient descent trajectory {𝑊𝑘}𝑘≥0 is such that: (i)
ℒ(𝑊𝑘) ≥ ℒ(𝑊𝑘+1), for every 𝑘 ≥ 0, and furthermore, (ii) it holds for every 𝑘 ≥ 0:

ℒ(𝑊𝑘+1)− ℒ(𝑊𝑘) ≤ −𝜂‖∇ℒ(𝑊𝑘)‖22/2.

We now establish that ‖∇ℒ(𝑊𝑘)‖2 → 0 as 𝑘 → ∞. Note that the objective function
is lower bounded (by zero). If the gradient is non-vanishing then (by passing to a
subsequence, if necessary) each step reduces the value of the objective function at
least by a certain amount, that is (uniformly) bounded away from zero. But this
contradicts with the fact that the objective is lower bounded. Thus we deduce

lim
𝑘→∞

‖∇ℒ(𝑊𝑘)‖2 = 0.

Now, recall that the trajectory is such that ℒ(𝑊𝑘) ≥ ℒ(𝑊𝑘+1), and that, ‖∇ℒ(𝑊𝑘)‖2 →
0 as 𝑘 → ∞. Suppose that the initial value, ℒ(𝑊0), is such that

ℒ(𝑊0) < min
𝑊∈R𝑚×𝑑:rank(𝑊 )<𝑑

ℒ(𝑊 ).

In particular, for every 𝑘 ∈ Z+,

ℒ(𝑊𝑘) ≤ ℒ(𝑊0) < min
𝑊∈R𝑚×𝑑:rank(𝑊 )<𝑑

ℒ(𝑊 ). (6.11)

and therefore 𝑊𝑘 ∈ R𝑚×𝑑 is full-rank, for all 𝑘, per Theorem 6.2.1. We now establish

lim
𝑘→∞

ℒ(𝑊𝑘) = 0.
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To see this, observe that the sequence {ℒ(𝑊𝑘)}𝑘≥0 is monotonic (non-increasing), and
furthermore, is bounded by zero from below. Hence,

lim
𝑘→∞

ℒ(𝑊𝑘) ≜ ℓ

exists [248, Theorem 3.14]. We now show ℓ = 0.
Since the weights remain bounded along the trajectory, it follows that there exists

a subsequence {𝑊𝑘𝑛}𝑛∈N with a limit, that is, 𝑊𝑘𝑛 → 𝑊∞ as 𝑛 → ∞, where 𝑊∞ ∈
R𝑚×𝑑. Now, the continuity of ∇ℒ, together with the continuity of the norm ‖·‖2, imply
that ‖∇ℒ(𝑊∞)‖2 = 0. Furthermore, continuity of ℒ(·) then implies ℒ(𝑊∞) = ℓ.
Now, since 𝑊𝑘𝑛 ’s are such that ℒ(𝑊𝑘𝑛) ≤ ℒ(𝑊0) for all 𝑛 ∈ N, and ℒ(𝑊0) is stricly
smaller than the rank-deficient energy barrier, by taking limits as 𝑘 → ∞ and using
(6.11), we conclude that 𝑊∞ is full rank. Since 𝑊∞ is also a stationary point of the
loss, by Theorem 6.2.3, we deduce ℒ(𝑊∞) = 0, which yields ℓ = 0, as desired.

6.4.8 Proof of Theorem 6.2.7

Part (a)

Let 𝑡 =
√
𝑑. Then, using Theorem 6.3.7, it holds that with probability 1−2 exp(−𝑑/2):
√
𝑚− 2

√
𝑑 ≤ 𝜎min(𝑊

*) ≤ 𝜎max(𝑊
*) ≤ √

𝑚+ 2
√
𝑑

⇒ 𝑚+ 4𝑑− 4
√
𝑚𝑑 ≤ 𝜆min((𝑊

*)𝑇𝑊 *) ≤ 𝜆𝑚𝑎𝑥((𝑊
*)𝑇𝑊 *) ≤ 𝑚+ 4𝑑+ 4

√
𝑚𝑑.

Recall that 𝜎(𝐴) denotes the spectrum of𝐴, i.e., 𝜎(𝐴) = {𝜆 : 𝜆 is an eigenvalue of 𝐴}.
We claim then the spectrum of 𝛾𝐼 − 𝐴 is 𝛾 − 𝜎(𝐴). To see this, simply note the fol-
lowing line of reasoning:

𝛾−𝜆 ∈ 𝜎(𝛾𝐼−𝐴) ⇐⇒ det((𝛾−𝜆)𝐼−(𝛾𝐼−𝐴)) = 0 ⇔ det(𝜆𝐼−𝐴) = 0 ⇔ 𝜆 ∈ 𝜎(𝐴).

Now, let 𝑊0 ∈ R𝑚×𝑑 be such that 𝑊 𝑇
0 𝑊0 = 𝛾𝐼 with 𝛾 = 𝑚 + 4𝑑. In particular, if

𝜆1 ≤ · · · ≤ 𝜆𝑑 are the eigenvalues of 𝛾𝐼 − (𝑊 *)𝑇𝑊 * with 𝛾 = 𝑚+ 4𝑑; then, it holds
that:

−4
√
𝑚𝑑 ≤ 𝜆1 ≤ · · · ≤ 𝜆𝑑 ≤ 4

√
𝑚𝑑.

Now, recall by Theorem 6.3.1 (c) that,

ℒ(𝑊0) ≤ 𝜇2
2

(︃
𝑑∑︁

𝑖=1

𝜆𝑖

)︃2

+max
{︁
Var(𝑋2

𝑖 ), 2E
[︀
𝑋2

𝑖

]︀2}︁(︃ 𝑑∑︁
𝑖=1

𝜆2𝑖

)︃
,

where 𝜎(𝑊 𝑇
0 𝑊0 − (𝑊 *)𝑇𝑊 *) = {𝜆1, . . . , 𝜆𝑑}. For the second term, we immediately

have
∑︀𝑑

𝑖=1 𝜆
2
𝑖 ≤ 16𝑚𝑑2.

For the first term, note first that, if 𝜆′1 ≤ · · · ≤ 𝜆′𝑑 are the eigenvalues of (𝑊 *)𝑇𝑊 *,

292



then

𝑑∑︁
𝑘=1

𝜆′𝑘 = trace((𝑊 *)𝑇𝑊 *) =
𝑚∑︁
𝑖=1

𝑑∑︁
𝑗=1

(𝑊 *
𝑖𝑗)

2 ⇒
𝑑∑︁

𝑘=1

(𝜆′𝑘 −𝑚) =
𝑚∑︁
𝑖=1

𝑑∑︁
𝑗=1

((𝑊 *
𝑖𝑗)

2 − 1),

where 𝑊 *
𝑖𝑗

𝑑
= 𝑁(0, 1) i.i.d.. Note also that, (𝑊 *

𝑖𝑗)
2 − 1 is a centered random variable,

and has sub-exponential tail, see [281, Lemma 5.14]. Now, letting 𝑍𝑖𝑗 = (𝑊 *
𝑖𝑗)

2 − 1,
and applying the Bernstein-type inequality [281, Proposition 5.16], we have that for
some absolute constants 𝐾, 𝑐 > 0, it holds:

P

(︃⃒⃒⃒⃒
⃒

𝑚∑︁
𝑖=1

𝑑∑︁
𝑗=1

𝑍𝑖𝑗

⃒⃒⃒⃒
⃒ > 𝑑

√
𝑚

)︃
≤ 2 exp

(︂
−𝑐min

(︂
𝑑

𝐾2
,
𝑑
√
𝑚

𝐾

)︂)︂
≤ 2 exp(−𝑐𝑑/𝐾2) = exp(−Ω(𝑑)),

for 𝑚 sufficiently large. In particular, with probability at least 1 − exp(−Ω(𝑑)), it
therefore holds that, ⃒⃒⃒⃒

⃒
𝑑∑︁

𝑘=1

(𝜆′𝑘 −𝑚)

⃒⃒⃒⃒
⃒ ≤ 𝑑

√
𝑚.

Finally, using triangle inequality,⃒⃒⃒⃒
⃒

𝑑∑︁
𝑘=1

𝜆𝑘

⃒⃒⃒⃒
⃒ =

⃒⃒⃒⃒
⃒

𝑑∑︁
𝑘=1

(𝜆′𝑘 − (𝑚+ 4𝑑))

⃒⃒⃒⃒
⃒ ≤

⃒⃒⃒⃒
⃒

𝑑∑︁
𝑘=1

(𝜆′𝑘 −𝑚)

⃒⃒⃒⃒
⃒+ 4𝑑2 ≤ 𝑑

√
𝑚+ 4𝑑2,

with probability 1 − exp(−Ω(𝑑)). After squaring, we obtain that
(︁∑︀𝑑

𝑖=1 𝜆𝑖

)︁2
≤

16𝑑4 + 8𝑑3
√
𝑚+ 𝑑2𝑚. In particular, we get:

ℒ(𝑊0) ≤ 𝜇2
2

(︃
𝑑∑︁

𝑖=1

𝜆𝑖

)︃2

+max
{︁
Var(𝑋2

𝑖 ), 2E
[︀
𝑋2

𝑖

]︀2}︁(︃ 𝑑∑︁
𝑖=1

𝜆2𝑖

)︃
≤ 𝜇2

2(16𝑑
4 + 8𝑑3

√
𝑚+𝑚𝑑2) + max

{︁
Var(𝑋2

𝑖 ), 2E
[︀
𝑋2

𝑖

]︀2}︁
16𝑚𝑑2.

Using now the overparameterization 𝑚 > 𝐶𝑑2, we further have:

E
[︀
𝑋2

𝑖

]︀2
(16𝑑4 + 8𝑑3

√
𝑚+𝑚𝑑2) + max

{︁
Var(𝑋2

𝑖 ), 2E
[︀
𝑋2

𝑖

]︀2}︁
16𝑚𝑑2 ≤ 𝒞 ′(𝐶)𝑚2,

where

𝒞 ′(𝐶) = E
[︀
𝑋2

𝑖

]︀2(︂ 16

𝐶2
+

8

𝐶3/2
+

1

𝐶

)︂
+

16

𝐶
max

{︁
Var(𝑋2

𝑖 ), 2E
[︀
𝑋2

𝑖

]︀2}︁
.

Note that for the constant 𝒞 ′(𝐶),

𝒞 ′(𝐶) → 0 as 𝐶 → ∞.
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Next, observe that,
√
𝑚− 2

√
𝑑 ≥ 1

2

√
𝑚 for 𝑚 large (in the regime 𝑚 > 𝐶𝑑2, with 𝐶

large enough). Thus, using what we have established in Theorem 6.2.1, we arrive at:

min
𝑊∈R𝑚×𝑑:rank(𝑊 )<𝑑

ℒ(𝑊 ) > min
{︁
Var(𝑋2

𝑖 ), 2E
[︀
𝑋2

𝑖

]︀2}︁
𝜎min(𝑊

*)4

≥ min
{︁
Var(𝑋2

𝑖 ), 2E
[︀
𝑋2

𝑖

]︀2}︁
(
√
𝑚− 2

√
𝑑)4

≥ 1

16
min

{︁
Var(𝑋2

𝑖 ), 2E
[︀
𝑋2

𝑖

]︀2}︁
𝑚2.

Finally, observe also that if Var(𝑋2
𝑖 ) > 0, then E [𝑋2

𝑖 ] > 0 as well: indeed observe
that if E [𝑋2

𝑖 ] = 0, then 𝑋𝑖 = 0 almost surely, for which Var(𝑋2
𝑖 ) = 0. In particular,

min
{︁
Var(𝑋2

𝑖 ), 2E [𝑋2
𝑖 ]

2
}︁
> 0. Equipped with this, we then observe that provided:

1

16
min

{︁
Var(𝑋2

𝑖 ), 2E
[︀
𝑋2

𝑖

]︀2}︁
> 𝒞 ′(𝐶) = E

[︀
𝑋2

𝑖

]︀2(︂ 16

𝐶2
+

8

𝐶3/2
+

1

𝐶

)︂
+
16

𝐶
max

{︁
Var(𝑋2

𝑖 ), 2E
[︀
𝑋2

𝑖

]︀2}︁
,

that is, provided 𝐶 > 0 is sufficiently large, we are done.

Part (b)

Note that, the result of Bai and Yin [25] asserts that if {𝜇1, . . . , 𝜇𝑑} are the eigenvalues
of

𝒜 ≜
1

2
√
𝑚𝑑

((𝑊 *)𝑇𝑊 * −𝑚𝐼𝑑),

and if we define the empirical measure

𝐹𝒜(𝑥) =
1

𝑑
|{𝑖 : 𝜇𝑖 ≤ 𝑥}|

then in the regime 𝑑→ +∞, 𝑑/𝑚→ 0, it holds that:

𝐹𝒜(𝑥) → 𝜔(𝑥),

almost surely, where 𝜔(𝑥) is the semicircle law; and moreover

1

𝑑

𝑑∑︁
𝑖=1

𝜇2
𝑖 →

∫︁
𝑥2 𝑑𝜔(𝑥) ≜ 𝜒2

namely, 𝜒2 is respectively the second moment under semicircle law, whp. Now, define
the same quantities as in proof of part (a), where this time 𝑊 𝑇

0 𝑊0 = 𝑚𝐼𝑑, and
{𝜆1, . . . , 𝜆𝑑} = 𝜎((𝑊 *)𝑇𝑊 * −𝑚𝐼𝑑). In particular, we still retain the inequality per
Theorem 6.3.1 (c):

ℒ(𝑊0) ≤ 𝜇2
2

(︃
𝑑∑︁

𝑖=1

𝜆𝑖

)︃2

+max
{︁
Var(𝑋2

𝑖 ), 2E
[︀
𝑋2

𝑖

]︀2}︁(︃ 𝑑∑︁
𝑖=1

𝜆2𝑖

)︃
.
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Note that 𝜆𝑖 = 2
√
𝑚𝑑𝜇𝑖. Hence, we obtain

𝑑∑︁
𝑖=1

𝜆2𝑖 < (4 + 𝑜(1))𝑚𝑑2𝜒2

whp. We now control
∑︀𝑑

𝑖=1 𝜆𝑖 using central limit theorem (CLT). Observe that,

𝑑∑︁
𝑖=1

𝜆𝑖 = trace((𝑊 *)𝑇𝑊 * −𝑚𝐼𝑑) =
𝑚∑︁
𝑖=1

𝑑∑︁
𝑗=1

((𝑊 *
𝑖𝑗)

2 − 1).

Now, note that

𝜎2
* ≜ Var((𝑊 *

𝑖𝑗)
2 − 1) = Var((𝑊 *

𝑖𝑗)
2) < E

[︀
(𝑊 *

𝑖𝑗)
4
]︀
<∞.

We now use CLT, as 𝑑 → ∞ and 𝑚/𝑑 → ∞. To that end, let 1/2 > 𝜖 > 0 be fixed.
Observe now that, for any arbitrary 𝑀 > 0, and sufficiently large 𝑑,{︃
−1 ≤ 1

𝜎*
√
𝑚𝑑𝑑𝜖

𝑚∑︁
𝑖=1

𝑑∑︁
𝑗=1

((𝑊 *
𝑖𝑗)

2 − 1) ≤ 1

}︃
⊃
{︃
−𝑀 ≤ 1

𝜎*
√
𝑚𝑑

𝑚∑︁
𝑖=1

𝑑∑︁
𝑗=1

((𝑊 *
𝑖𝑗)

2 − 1) ≤𝑀

}︃
.

In particular, using central limit theorem, we deduce

lim inf
𝑑→∞

P

(︃
−1 ≤ 1

𝜎*
√
𝑚𝑑𝑑𝜖

𝑚∑︁
𝑖=1

𝑑∑︁
𝑗=1

((𝑊 *
𝑖𝑗)

2 − 1) ≤ 1

)︃
≥ P(𝑍 ∈ [−𝑀,𝑀 ]),

where 𝑍 is a standard normal random variable. Now since 𝑀 > 0 is arbitrary, we
have, by sending 𝑀 → +∞, we obtain

lim inf
𝑑→∞

P

(︃
−1 ≤ 1

𝜎*
√
𝑚𝑑𝑑𝜖

𝑚∑︁
𝑖=1

𝑑∑︁
𝑗=1

((𝑊 *
𝑖𝑗)

2 − 1) ≤ 1

)︃
≥ 1,

and we then conclude

lim
𝑑→∞

P

(︃
−1 ≤ 1

𝜎*
√
𝑚𝑑𝑑𝜖

𝑚∑︁
𝑖=1

𝑑∑︁
𝑗=1

((𝑊 *
𝑖𝑗)

2 − 1) ≤ 1

)︃
= 1.

Hence, ⃒⃒⃒⃒
⃒

𝑑∑︁
𝑖=1

𝜆𝑖

⃒⃒⃒⃒
⃒ ≤ 𝜎*

√
𝑚𝑑𝑑𝜖,

with probability 1− 𝑜𝑑(1), for 𝑑 sufficiently large.

Moreover,

𝜎min(𝑊
*)4 ≥ 1

16
𝑚2,
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for 𝑚 large, using yet another result of Bai and Yin, see Theorem 6.3.8. From here,
carrying the exact same analysis as in part (a) we obtain provided 𝑚 > 𝐶𝑑2 for some
large constant 𝐶 > 0, and 𝑑 sufficiently large the following holds with probability
1− 𝑜𝑑(1):

ℒ(𝑊0) < min
𝑊∈R𝑚×𝑑:rank(𝑊 )<𝑑

ℒ(𝑊 ),

where 𝑊0 is prescribed such that 𝑊 𝑇
0 𝑊0 = 𝑚𝐼𝑑.

6.4.9 Proof of Theorem 6.2.2

First, let

𝒮1 ≜

{︂
𝑊 ∈ R𝑚×𝑑 : rank(𝑊 ) < 𝑑, ̂︀ℒ(𝑊 ) <

1

2
𝐶5𝜎min(𝑊

*)4
}︂
.

We start with the following claim.

Claim 6.4.2. In the setting of Theorem 6.2.2 the following holds. With probability
at least 1− exp(−𝐶 ′𝑑) (where 𝐶 ′ > 0 is some absolute constant) it holds that for any
𝑊 ∈ R𝑚×𝑑 with ̂︀ℒ(𝑊 ) ≤ 1

2
𝐶5𝜎min(𝑊

*)4,

‖𝑊‖𝐹 ≤ 𝑑𝐾+1,

provided 𝑁 ≥ 𝐶
′′′
𝑑 for some absolute constant 𝐶 ′′′

> 0.

Proof of Claim 6.4.2. For convenience, let ̂︀ℒ0 ≜ 1
2
𝐶5𝜎min(𝑊

*)4, and for the random
data vector 𝑋 = (𝑋1, . . . , 𝑋𝑑) ∈ R𝑑 let 𝜎2 = E[𝑋2

1 ]. Recall that 𝑋 has i.i.d. centered
coordinates with a sub-Gaussian coordinate distribution.

We have the following, where the implication is due to Cauchy-Schwarz:

̂︀ℒ0 ≥
1

𝑁

∑︁
1≤𝑖≤𝑁

(𝑌𝑖 − 𝑓(𝑋𝑖;𝑊 ))2 ⇒ ( ̂︀ℒ0)
1/2 ≥

⃒⃒⃒⃒
⃒ 1𝑁 ∑︁

1≤𝑖≤𝑁

(𝑌𝑖 − 𝑓(𝑋𝑖;𝑊 ))

⃒⃒⃒⃒
⃒

We now establish that with probability at least 1 − 2 exp(−𝑡2𝑑), the following
holds, provided 𝑁 ≥ 𝐶(𝑡/𝜖)2𝑑: for every 𝑊 ∈ R𝑚×𝑑,⃒⃒⃒⃒

⃒ 1𝑁 ∑︁
1≤𝑖≤𝑁

𝑋𝑇
𝑖 𝑊

𝑇𝑊𝑋𝑖 − 𝜎2‖𝑊‖2𝐹

⃒⃒⃒⃒
⃒ ≤ 𝜖𝜎2‖𝑊‖2𝐹 .

To see this, we begin by noticing𝑋𝑇
𝑖 𝑊

𝑇𝑊𝑋𝑖 = trace(𝑋𝑇
𝑖 𝑊

𝑇𝑊𝑋𝑖) =
⟨︀
𝑊 𝑇𝑊,𝑋𝑖𝑋

𝑇
𝑖

⟩︀
.

Using this we have⃒⃒⃒⃒
⃒ 1𝑁 ∑︁

1≤𝑖≤𝑁

𝑋𝑇
𝑖 𝑊

𝑇𝑊𝑋𝑖 − 𝜎2‖𝑊‖2𝐹

⃒⃒⃒⃒
⃒ =

⃒⃒⃒⃒
⃒
⟨
𝑊 𝑇𝑊,

1

𝑁

∑︁
1≤𝑖≤𝑁

𝑋𝑖𝑋
𝑇
𝑖 − 𝜎2𝐼𝑑

⟩⃒⃒⃒⃒
⃒ .
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We now use Hölder’s inequality (Theorem 6.3.10) with 𝑝 = 1, 𝑞 = ∞, 𝑈 = 𝑊 𝑇𝑊 and
𝑉 = 1

𝑁

∑︀
𝑖𝑋𝑖𝑋

𝑇
𝑖 − 𝜎2𝐼𝑑. This yields⃒⃒⃒⃒

⃒
⟨
𝑊 𝑇𝑊,

1

𝑁

∑︁
1≤𝑖≤𝑁

𝑋𝑖𝑋
𝑇
𝑖 − 𝜎2𝐼𝑑

⟩⃒⃒⃒⃒
⃒ ≤ ‖𝑊‖2𝐹

⃦⃦⃦⃦
⃦ 1

𝑁

∑︁
1≤𝑖≤𝑁

𝑋𝑖𝑋
𝑇
𝑖 − 𝜎2𝐼𝑑

⃦⃦⃦⃦
⃦ .

Observing now E[𝑋𝑖𝑋
𝑇
𝑖 ] = 𝜎2𝐼𝑑, we have⃦⃦⃦⃦

⃦ 1

𝑁

∑︁
1≤𝑖≤𝑁

𝑋𝑖𝑋
𝑇
𝑖 − 𝜎2𝐼𝑑

⃦⃦⃦⃦
⃦ ≤ 𝜖𝜎2

with probability at least 1−2 exp(−𝑡2𝑑) provided 𝑁 ≥ 𝐶(𝑡/𝜖)2𝑑, using the concentra-
tion result on sample covariance matrix from Vershynin [281, Corollary 5.50]. Hence,
on this high probability event, the following holds:

1

𝑁

∑︁
1≤𝑖≤𝑁

𝑋𝑇
𝑖 (𝑊

*)𝑇𝑊 *𝑋𝑖 ≤ 𝜎2(1+𝜖)‖𝑊 *‖2𝐹 and
1

𝑁

∑︁
1≤𝑖≤𝑁

𝑋𝑇
𝑖 𝑊

𝑇𝑊𝑋𝑖 ≥ 𝜎2(1−𝜖)‖𝑊‖2𝐹

Hence,

̂︀ℒ0 ≥
1

𝑁

∑︁
1≤𝑖≤𝑁

(𝑋𝑇
𝑖 𝑊

𝑇𝑊𝑋𝑖 −𝑋𝑇
𝑖 (𝑊

*)𝑇𝑊 *𝑋𝑖) ≥ 𝜎2(1− 𝜖)‖𝑊‖2𝐹 − 𝜎2(1 + 𝜖)‖𝑊 *‖2𝐹 .

This yields, for any 𝑊 with ̂︀ℒ(𝑊 ) ≤ ̂︀ℒ0,

‖𝑊‖𝐹 ≤
(︃

( ̂︀ℒ0)
1/2

𝜎2(1− 𝜖)
+

1 + 𝜖

1− 𝜖
‖𝑊 *‖2𝐹

)︃1/2

with probability at least 1− 2 exp(−𝑡2𝑑). Now, observe that

𝜎min(𝑊
*)2 = 𝜆min((𝑊

*)𝑇𝑊 *) ≤ trace((𝑊 *)𝑇𝑊 *) ≤ ‖𝑊 *‖2𝐹 ≤ 𝑑2𝐾 .

Furthermore, 𝐶5 = 𝑂(1). This yields

̂︀ℒ0 =
1

2
𝐶5𝜎min(𝑊

*)4 = 𝑂(𝑑4𝐾). (6.12)

We now take 𝜖 = 1/2 above, and conclude that

‖𝑊‖𝐹 ≤
(︃

( ̂︀ℒ0)
1/2

𝜎2(1− 𝜖)
+

1 + 𝜖

1− 𝜖
‖𝑊 *‖2𝐹

)︃1/2

≤ 𝑑𝐾+1

for 𝑑 large enough; with probability at least 1− 2 exp(−𝑡2𝑑), which is 1− exp(−𝐶 ′𝑑)
for some absolute constant 𝐶 ′ > 0.
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Having established Claim 6.4.2, we now return to the proof of Theorem 6.2.2. Let

𝒮2 ≜

{︂
𝑊 ∈ R𝑚×𝑑 : rank(𝑊 ) < 𝑑, ̂︀ℒ(𝑊 ) <

1

2
𝐶5𝜎min(𝑊

*)4, ‖𝑊‖𝐹 ≤ 𝑑𝐾+1

}︂
.

A consequence of Claim 6.4.2 is that P(𝒮1 = 𝒮2) ≥ 1− exp(−𝐶 ′𝑑). We now establish

Claim 6.4.3.

P(𝒮2 = ∅) ≥ 1−
(︀
9𝑑2+4𝐾+7

)︀𝑑2−1 · exp
(︀
−𝐶3𝑁𝑑

−4−4𝐾
)︀
−𝑁𝑑𝑒−𝐶𝑑.

Note that combining Claims 6.4.2 and 6.4.3 through a union bound yields

inf
𝑊∈R𝑚×𝑑:rank(𝑊 )<𝑑

̂︀ℒ(𝑊 ) ≥ 1

2
𝐶5𝜎min(𝑊

*)4,

with probability at least

1− exp(−𝐶 ′𝑑)−
(︀
9𝑑9+4𝐾

)︀𝑑2−1
exp

(︀
−𝐶3𝑁𝑑

−4−4𝐾
)︀
−𝑁𝑑𝑒−𝐶𝑑,

therefore establishing Theorem 6.2.2.

Proof of Claim 6.4.3. Let 𝐴 = 𝑊 𝑇𝑊 ∈ R𝑑×𝑑. We claim ‖𝐴‖𝐹 ≤ 𝑑2𝐾+2. To see this,
note that ‖𝐴‖2𝐹 = trace(𝐴𝑇𝐴) = trace(𝐴2). Let 𝜃1, . . . , 𝜃𝑑 be the eigenvalues of 𝐴, all
non-negative as 𝐴 ⪰ 0; and 𝜃21, . . . , 𝜃2𝑑 are the eigenvalues of 𝐴2. With this,

trace(𝐴2) =
∑︁
1≤𝑖≤𝑑

𝜃2𝑖 ≤
(︃∑︁

1≤𝑖≤𝑑

𝜆𝑖

)︃2

= trace(𝐴)2.

Hence, ‖𝐴‖𝐹 ≤ trace(𝐴) = ‖𝑊‖2𝐹 ≤ 𝑑2𝐾+2, as requested.

Next, let

𝑆𝑅 =
{︁
𝐴 ∈ R𝑑×𝑑 : rank(𝐴) ≤ 𝑑− 1, 𝐴 ⪰ 0, ‖𝐴‖𝐹 ≤ 𝑅

}︁
;

and let 𝑆𝜖 be an 𝜖−net for 𝑆𝑑2𝐾+2 in Frobenius norm, where 𝜖 to be tuned appropriately
later. Using Lemma 6.3.4 we have

⃒⃒
𝑆𝜖

⃒⃒
≤
(︂
9𝑑2𝐾+2

𝜖

)︂𝑑2−1

.

Now, applying Lemma 6.3.3 with 𝐾1 = 1
2

and 𝐾2 = 𝐾 and taking a union bound
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across the net 𝑆𝜖, we arrive at the following conclusion:

P

⎛⎜⎜⎜⎜⎝
⋃︁
𝐴∈𝑆𝜖

{︃
1

𝑁

∑︁
1≤𝑖≤𝑁

(︁
𝑌𝑖 −𝑋𝑇

𝑖 𝐴𝑋𝑖

)︁2
<

1

2
𝐶5𝜎min(𝑊

*)4
}︃

⏟  ⏞  
ℰ(𝐴)𝑐 from Lemma 6.3.3

⃒⃒⃒
‖𝑋𝑖‖∞ ≤

√
𝑑, 1 ≤ 𝑖 ≤ 𝑁

⎞⎟⎟⎟⎟⎠
≤
(︂
9𝑑2𝐾+2

𝜖

)︂𝑑2−1

exp
(︁
−𝐶3𝑁𝑑

−4+4𝐾
)︁
,

where

𝐶5 = min
{︁
𝜇4(1/2)− 𝜇2(1/2)

2, 2𝜇2(1/2)
2
}︁

and 𝜇𝑛(𝐾) = E
[︁
𝑋𝑛

𝑖

⃒⃒⃒
|𝑋𝑖| ≤ 𝑑𝐾

]︁
.

Now, since P
(︁
‖𝑋𝑖‖∞ <

√
𝑑, 1 ≤ 𝑖 ≤ 𝑁

)︁
≥ 1 − 𝑁𝑑 exp(−𝐶𝑑) by Lemma 6.3.2, we

obtain

P

⎛⎝ ⋂︁
𝐴∈𝑆𝜖

{︃
1

𝑁

∑︁
1≤𝑖≤𝑁

(︁
𝑌𝑖 −𝑋𝑇

𝑖 𝐴𝑋𝑖

)︁2
≥ 1

2
𝐶5𝜎min(𝑊

*)4
}︃⎞⎠

≥ 1−
(︂
9𝑑2𝐾+2

𝜖

)︂𝑑2−1

· exp
(︂
−𝐶3

𝑁

𝑑4+4𝐾

)︂
−𝑁𝑑 exp

(︁
−𝐶𝑑

)︁
.

In the remainder of the proof, suppose for every 𝐴 ∈ 𝑆𝜖,

1

𝑁

∑︁
1≤𝑖≤𝑁

(𝑌𝑖 −𝑋𝑇
𝑖 𝐴𝑋𝑖)

2 ≥ 1

2
𝐶5𝜎min(𝑊

*)4,

and ‖𝑋𝑖‖∞ ≤ 𝑑1/2, 𝑖 ∈ [𝑁 ], which collectively hold with probability at least

1−
(︂
9𝑑2𝐾+2

𝜖

)︂𝑑2−1

· exp
(︂
−𝐶3

𝑁

𝑑4+4𝐾

)︂
− 2𝑁𝑑 exp(−𝐶𝑑).

Now, let 𝑊 ∈ R𝑚×𝑑 with ‖𝑊‖𝐹 ≤ 𝑑𝐾+1, rank(𝑊 ) ≤ 𝑑 − 1. Let 𝐴 = 𝑊 𝑇𝑊 (thus
‖𝐴‖𝐹 ≤ 𝑑2𝐾+2) and ̂︀𝐴 ∈ 𝑆𝜖 be such that ‖𝐴− ̂︀𝐴‖𝐹 ≤ 𝜖. We now estimate

Δ ≜

⃒⃒⃒⃒
⃒ 1𝑁 ∑︁

1≤𝑖≤𝑁

(𝑌𝑖 −𝑋𝑇
𝑖 𝐴𝑋𝑖)

2 − 1

𝑁

∑︁
1≤𝑖≤𝑁

(𝑌𝑖 −𝑋𝑇
𝑖
̂︀𝐴𝑋𝑖)

2

⃒⃒⃒⃒
⃒ .
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For notational convenience, let 𝐴* = (𝑊 *)𝑇𝑊 *. Now

Δ ≤ 1

𝑁

∑︁
1≤𝑖≤𝑁

⃒⃒⃒
(𝑋𝑇

𝑖 (𝐴− 𝐴*)𝑋𝑖)
2 − (𝑋𝑇

𝑖 ( ̂︀𝐴− 𝐴*)𝑋𝑖)
2
⃒⃒⃒

=
1

𝑁

∑︁
1≤𝑖≤𝑁

⃒⃒⃒
𝑋𝑇

𝑖 (𝐴− ̂︀𝐴)𝑋𝑖

⃒⃒⃒
·
⃒⃒⃒
𝑋𝑇

𝑖 (𝐴+ ̂︀𝐴− 2𝐴*)𝑋𝑖

⃒⃒⃒
.

Now, using Cauchy-Schwarz (for inner product ⟨𝑀,𝑁⟩ ≜ trace(𝑀𝑇𝑁))

|𝑋𝑇
𝑖 (𝐴− ̂︀𝐴)𝑋𝑖| = |

⟨
𝐴− ̂︀𝐴,𝑋𝑖𝑋

𝑇
𝑖

⟩
| ≤ ‖𝐴− ̂︀𝐴‖𝐹 · ‖𝑋𝑖‖22,

using ‖𝑋𝑖𝑋
𝑇
𝑖 ‖𝐹 = ‖𝑋𝑖‖22. In particular, we obtain

|𝑋𝑇
𝑖 (𝐴− ̂︀𝐴)𝑋𝑖| ≤ 𝜖𝑑2.

For the term |𝑋𝑇
𝑖 (𝐴+ ̂︀𝐴− 2𝐴*)𝑋𝑖|, we observe that triangle inequality yields

‖𝐴+ ̂︀𝐴− 2𝐴*‖𝐹 ≤ 4𝑑2𝐾+2.

Thus ⃒⃒⃒
𝑋𝑇

𝑖 (𝐴+ ̂︀𝐴− 2𝐴*)𝑋𝑖

⃒⃒⃒
≤ 4𝑑2𝐾+4.

Using these, we obtain⃒⃒⃒⃒
⃒ ̂︀ℒ(𝑊 )− 1

𝑁

∑︁
1≤𝑖≤𝑁

(𝑌𝑖 −𝑋𝑇
𝑖
̂︀𝐴𝑋𝑖)

2

⃒⃒⃒⃒
⃒ ≤ 4𝜖𝑑6+2𝐾 = 𝑂(𝑑−1) = 𝑜𝑑(1),

taking 𝜖 = 𝑑−7−2𝐾 . Using finally the fact that

1

𝑁

∑︁
1≤𝑖≤𝑁

(𝑌𝑖 −𝑋𝑇
𝑖
̂︀𝐴𝑋𝑖)

2

is bounded away from zero across the net 𝑆𝜖, we conclude the proof of Claim 6.4.3.

Since it was already noted that Claims 6.4.2 and 6.4.3 together yield Theo-
rem 6.2.2, we complete the proof of Theorem 6.2.2.

Case of Constant 𝑑: 𝑑 = 𝑂(1).

We now carry out a separate analysis for the case of constant 𝑑 (𝑑 = 𝑂(1)). We only
point out the necessary modifications, while hiding factors depending on the constant
𝑑 under asymptotic notations.

In what follows, we use the fact that if 𝑋 is a sub-Gaussian random variable; then
E [|𝑋|𝑝] < ∞ for every 𝑝 ≥ 1. For a proof, see [281, Lemma 5.5]; which establishes a
stronger conclusion that E [|𝑋|𝑝]1/𝑝 = 𝑂

(︀√
𝑝
)︀

for every 𝑝 ≥ 1.
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Modifying Claim 6.4.2. Claim 6.4.2 modifies to the following: with probability
at least 1−𝑂(1/𝑁), it holds that for any 𝑊 ∈ R𝑚×𝑑 with ̂︀ℒ(𝑊 ) ≤ 1

2
𝐶5𝜎min(𝑊

*)4,

‖𝑊‖𝐹 = 𝑂(1).

We now sketch the proof of this modified claim. For a matrix 𝑀 ∈ R𝑑×𝑑, denote by
‖𝑀‖∞ := max1≤𝑖,𝑗≤𝑑 |𝑀𝑖𝑗|; and let 𝜖 > 0 be arbitrary. Then, we show that over the
randomness in 𝑋𝑖 ∈ R𝑑, 1 ≤ 𝑖 ≤ 𝑁 , with probability at least 1−𝑂(1/𝑁),⃦⃦⃦⃦

⃦ 1

𝑁

∑︁
1≤𝑖≤𝑁

𝑋𝑖𝑋
𝑇
𝑖 − 𝜎2𝐼𝑑

⃦⃦⃦⃦
⃦
∞

≤ 𝜖.

Indeed, fix an 𝜖 > 0. Then for any 1 ≤ 𝑗 ≤ 𝑑,

P

(︃⃒⃒⃒⃒
⃒ 1𝑁 ∑︁

1≤𝑖≤𝑁

𝑋𝑖(𝑗)
2 − 𝜎2

⃒⃒⃒⃒
⃒ ≤ 𝜖

)︃
≥ 1−𝑂(1/𝑁).

by Chebyshev’s inequality (here, 𝑋𝑖 = (𝑋𝑖(𝑗) : 1 ≤ 𝑗 ≤ 𝑑) ∈ R𝑑). Here, we used in
particular the fact E[𝑋𝑖(𝑗)

4] <∞. Likewise, for any 1 ≤ 𝑗 < 𝑗′ ≤ 𝑑,

P

(︃⃒⃒⃒⃒
⃒ 1𝑁 ∑︁

1≤𝑖≤𝑁

𝑋𝑖(𝑗)𝑋𝑖(𝑗
′)

⃒⃒⃒⃒
⃒ ≤ 𝜖

)︃
≥ 1−𝑂(1/𝑁).

Taking a union bound over these 𝑑(𝑑 + 1)/2 events corresponding to the entries of
matrix 𝑁−1

∑︀
1≤𝑖≤𝑁 𝑋𝑖𝑋

𝑇
𝑖 , we are done. (Note that the number of events, 𝑑(𝑑+1)/2,

is 𝑂(1). This, and other factors depending on 𝜖 are hidden under 𝑂(·).) Using the
trivial bound ‖𝑀‖ ≤ ‖𝑀‖2𝐹 valid for any matrix 𝑀 ∈ R𝑑×𝑑, we arrive at the operator
norm bound ⃦⃦⃦⃦

⃦ 1

𝑁

∑︁
1≤𝑖≤𝑁

𝑋𝑖𝑋
𝑇
𝑖 − 𝜎2𝐼𝑑

⃦⃦⃦⃦
⃦ ≤ 𝜖2𝑑2.

Finally, taking 𝜖 = 1/(2𝑑2) = 𝑂(1), we finish the proof of modified Claim 6.4.2.

Modifying Claim 6.4.3. Claim 6.4.3 now modifies to P(𝒮2 = ∅) ≥ 1 − 𝑂(1/𝑁);
and this modified version is shown as follows. Note that for any 𝜖 = 𝑂(1), the size of
the “net" we consider is 𝑂(1). We claim that with probability 1 − 𝑂(1/𝑁), it holds
that for any 𝐴 ∈ 𝑆𝜖,

1

𝑁

∑︁
1≤𝑖≤𝑁

(︁
𝑌𝑖 −𝑋𝑇

𝑖 𝐴𝑋𝑖

)︁2
≥ 2

3
𝐶5𝜎min(𝑊

*)4,

where
𝐶5 = min

{︁
𝜇4 − 𝜇2

2, 2𝜇
2
2

}︁
and 𝜇𝑛 = E

[︁
𝑋1(1)

𝑛
]︁
.

301



To show this, fix an 𝐴 ∈ 𝑆𝜖. Now, instead of Lemma 6.3.3; one can apply Chebyshev’s
inequality:

1

𝑁

∑︁
1≤𝑖≤𝑁

(︁
𝑋𝑇

𝑖 𝐴𝑋𝑖 −𝑋𝑇
𝑖 (𝑊 *)𝑇 𝑊 *𝑋𝑖

)︁2
≥ 2

3
E
[︁(︁
𝑋𝑇𝐴𝑋 −𝑋𝑇 (𝑊 *)𝑇 𝑊 *𝑋

)︁2]︁
,

with probability at least 1−𝑂(1/𝑁). Here, we in particular used the fact E[𝑋𝑖(𝑗)
8] <

∞. Since
E
[︁(︁
𝑋𝑇𝐴𝑋 −𝑋𝑇 (𝑊 *)𝑇 𝑊 *𝑋

)︁2]︁
≥ 𝐶5𝜎min(𝑊

*)4

by Theorem 6.2.1, we establish the claim by taking a union bound over the net 𝑆𝜖

which has 𝑂(1) cardinality. The rest of the argument for Claim 6.4.3 remains (nearly)
intact. In particular, the bound ‖𝐴− ̂︀𝐴‖𝐹 ≤ 𝜖 remains intact; and ‖𝐴 + ̂︀𝐴− 2𝐴*‖𝐹
is now 𝑂(1). Finally, keeping in mind that 1

𝑁

∑︀
1≤𝑖≤𝑁 ‖𝑋𝑖‖42 = 𝑂(1) with probability

1−𝑂(1/𝑁), we complete the proof by taking 𝜖 small enough.

Putting these together like in the proof of Theorem 6.2.2, we complete the proof.

6.4.10 Proof of Theorem 6.2.4

We start by computing ∇ ̂︀ℒ(𝑊 ). Taking derivatives with respect to 𝑗𝑡ℎ row 𝑊𝑗 of
𝑊 ∈ R𝑚×𝑑, we arrive at

∇𝑊𝑗
̂︀ℒ(𝑊 ) =

4

𝑁

∑︁
1≤𝑖≤𝑁

(︃ ∑︁
1≤𝑗≤𝑚

⟨𝑊𝑗, 𝑋𝑖⟩2 − 𝑌𝑖

)︃
⟨𝑊𝑗, 𝑋𝑖⟩𝑋𝑖.

Interpreting these gradients as a row vector and aggregating into a matrix, we then
have

∇𝑊
̂︀ℒ(𝑊 ) = 𝑊

(︃
4

𝑁

∑︁
1≤𝑖≤𝑁

(︃ ∑︁
1≤𝑗≤𝑚

⟨𝑊𝑗, 𝑋𝑖⟩2 − 𝑌𝑖

)︃
𝑋𝑖𝑋

𝑇
𝑖

)︃
.

Assume now that rank(𝑊 ) = 𝑑, and ∇ ̂︀ℒ(𝑊 ) = 0. We then arrive at

1

𝑁

∑︁
1≤𝑖≤𝑁

(︃ ∑︁
1≤𝑗≤𝑚

⟨𝑊𝑗, 𝑋𝑖⟩2 − 𝑌𝑖

)︃
𝑋𝑖𝑋

𝑇
𝑖 = 0.

We now claim that ̂︀ℒ(𝑊 ) = 0. To see this, we take a route similar to [264, Lemma 6.1].
Let 𝑀 ≜ 𝑊 𝑇𝑊 , and consider the function

𝑓(𝑀) ≜
1

𝑁

∑︁
1≤𝑖≤𝑁

(𝑌𝑖 −𝑋𝑇
𝑖 𝑀𝑋𝑖)

2.
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Observe that 𝑓(·) is quadratic in 𝑀 . Thus, any ̂︁𝑀 with ∇𝑓(̂︁𝑀) = 0, that is

1

𝑁

∑︁
1≤𝑖≤𝑁

(𝑋𝑇
𝑖
̂︁𝑀𝑋𝑖 − 𝑌𝑖)𝑋𝑖𝑋

𝑇
𝑖 = 0

it is the case that ̂︁𝑀 is a global optimum of 𝑓 . In particular for any 𝑀 ∈ R𝑑×𝑑,
𝑓(𝑀) ≥ 𝑓(̂︁𝑀). Now, take any �̄� ∈ R𝑚×𝑑, and observe that ̂︀ℒ(�̄� ) = 𝑓(�̄� 𝑇 �̄� ).
Since ∇𝑓(𝑊 𝑇𝑊 ) = 0, it follows that

̂︀ℒ(�̄� ) = 𝑓(�̄� 𝑇 �̄� ) ≥ 𝑓(𝑊 𝑇𝑊 ) = ̂︀ℒ(𝑊 ).

Namely, 𝑊 is indeed a global optimizer of ̂︀ℒ(·). Since 𝑊 = 𝑊 * makes the cost zero,
we obtain ̂︀ℒ(𝑊 ) = 0.

Now, using Theorem 6.2.10, we obtain that span(𝑋𝑖𝑋
𝑇
𝑖 : 1 ≤ 𝑖 ≤ 𝑁) is the set

of all 𝑑 × 𝑑 symmetric matrices; with probability one, provided 𝑁 ≥ 𝑑(𝑑 + 1)/2. In
this case, using Theorem 6.2.9, we conclude that 𝑊 𝑇𝑊 = (𝑊 *)𝑇𝑊 *, concluding the
proof.

6.4.11 Proof of Theorem 6.2.6

Part (a)

Note that by Claim 6.4.2, it follows that with probability at least 1− exp(−𝐶 ′𝑑), it is
the case that for any 𝑊 with ̂︀ℒ(𝑊 ) ≤ ̂︀ℒ(𝑊0) <

1
2
𝐶5𝜎min(𝑊

*)4, ‖𝑊‖𝐹 ≤ 𝑑𝐾+1. Now
let

ℰ1 ≜
{︃

sup
𝑊 : ̂︀ℒ(𝑊 )≤ ̂︀ℒ0

‖𝑊‖𝐹 ≤ 𝑑𝐾+1

}︃
(6.13)

thus P(ℰ1) ≥ 1− exp(−𝐶 ′𝑑) and

ℰ2 ≜
{︁
‖𝑋𝑖‖∞ ≤ 𝑑1/2, 1 ≤ 𝑖 ≤ 𝑁

}︁
, (6.14)

such that P(ℰ2) ≥ 1−𝑁𝑑 exp(−𝐶𝑑) per Lemma 6.3.2.
Note that the ‖∇2 ̂︀ℒ(𝑊 )‖ = poly(‖𝑊‖𝐹 , ‖𝑋1‖, . . . , ‖𝑋𝑁‖). Thus on the event

ℰ1∩ℰ2, which holds with probability at least 1−𝑁𝑑 exp(−𝐶𝑑)− exp(−𝐶 ′𝑑), we have
that

𝐿 = sup
{︁
‖∇2 ̂︀ℒ(𝑊 )‖ : ̂︀ℒ(𝑊 ) ≤ ̂︀ℒ0

}︁
= poly(𝑑) < +∞

as claimed.

Part (b)

Suppose that the event ℰ1 ∩ ℰ2 (where ℰ1 and ℰ2 are defined respectively in (6.13)
and (6.14)) takes place. We run the gradient descent with a step size of 𝜂 < 1/2𝐿: a
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second order Taylor expansion reveals that

̂︀ℒ(𝑊1)− ̂︀ℒ(𝑊0) ≤ −𝜂‖∇ ̂︀ℒ(𝑊0)‖2𝐹/2

where ∇ ̂︀ℒ(𝑊 ) is the gradient of the empirical risk evaluated at 𝑊 . In particular,̂︀ℒ(𝑊1) ≤ ̂︀ℒ(𝑊0). Since ℰ1 takes place, we conclude ‖∇2 ̂︀ℒ(𝑊1)‖ ≤ 𝐿 = poly(𝑑),
where ‖∇2 ̂︀ℒ(𝑊 )‖ is the spectral norm of the Hessian matrix ∇2 ̂︀ℒ(𝑊 ). From here,
we induct on 𝑘: induction argument reveals that we can retain a step size of 𝜂 < 1/2𝐿
(thus 𝜂 = poly(𝑑)), and furthermore along the trajectory {𝑊𝑘}𝑘≥0, it holds:

̂︀ℒ(𝑊𝑘+1)− ̂︀ℒ(𝑊𝑘) ≤ −𝜂‖∇ ̂︀ℒ(𝑊𝑘)‖2𝐹/2.

Now let 𝑇 be the first time for which ‖∇ ̂︀ℒ(𝑊 )‖𝐹 ≤ 𝜁, namely the horizon required to
arrive at an 𝜁−stationary point. In what follows, we carry out our analysis in terms
of 𝜁. At the end, we incorporate the bound (6.4) on 𝜁.

We claim 𝑇 = poly (𝜁−1, 𝑑, 𝜎min(𝑊
*)−1).

To see this, note that from the definition of 𝑇 , it holds that ‖∇ ̂︀ℒ(𝑊𝑡)‖𝐹 ≥ 𝜁 as
𝑡 ≤ 𝑇 − 1. Now, a telescoping argument together with 𝜂 = 1/poly(𝑑) reveals

̂︀ℒ(𝑊𝑇 )− ̂︀ℒ(𝑊0) ≤ −𝑇 (poly(𝑑))−1𝜁2.

Using now ̂︀ℒ(𝑊𝑇 ) ≥ 0, we conclude ̂︀ℒ(𝑊0) ≥ 𝑇𝜁2poly(𝑑). Since ̂︀ℒ(𝑊0) = ̂︀ℒ0 is at
most polynomial in 𝑑 as per (6.12), we conclude 𝑇 = poly(𝜁−1, 𝑑).

We now turn our attention to bounding its risk. Let 𝑟𝑖 ≜ 𝑌𝑖 −𝑋𝑇
𝑖 𝑊

𝑇𝑊𝑋𝑖. Note
that ̂︀ℒ(𝑊 ) = 1

𝑁

∑︀
1≤𝑖≤𝑁 𝑟

2
𝑖 . Now,

̂︀ℒ(𝑊 ) =
1

𝑁

∑︁
1≤𝑖≤𝑁

𝑟𝑖(𝑋
𝑇
𝑖 (𝑊

*)𝑇𝑊 *𝑋𝑖 −𝑋𝑇
𝑖 𝑊

𝑇𝑊𝑋𝑖)

=
⟨
𝑊 𝑇𝑊 − (𝑊 *)𝑇𝑊 *,

1

𝑁

∑︁
1≤𝑖≤𝑁

𝑟𝑖𝑋𝑖𝑋
𝑇
𝑖

⟩
.

Using Cauchy-Schwarz inequality, we have

̂︀ℒ(𝑊 ) =

⃒⃒⃒⃒
⃒⟨𝑊 𝑇𝑊 − (𝑊 *)𝑇𝑊 *,

1

𝑁

∑︁
1≤𝑖≤𝑁

𝑟𝑖𝑋𝑖𝑋
𝑇
𝑖

⟩⃒⃒⃒⃒⃒
≤
⃦⃦⃦
𝑊 𝑇𝑊 − (𝑊 *)𝑇𝑊 *

⃦⃦⃦
𝐹
·
⃦⃦⃦⃦
⃦ 1

𝑁

∑︁
1≤𝑖≤𝑁

𝑟𝑖𝑋𝑖𝑋
𝑇
𝑖

⃦⃦⃦⃦
⃦
𝐹

.

Next, ‖𝑊 𝑇𝑊‖2𝐹 = trace((𝑊 𝑇𝑊 )2) ≤ (trace(𝑊 𝑇𝑊 ))2 = ‖𝑊‖4𝐹 , using the fact that
𝑊 𝑇𝑊 ⪰ 0. In particular, on the event ℰ1 defined as per (6.13), we conclude that
‖𝑊‖𝐹 ≤ 𝑑𝐾+1, and therefore ‖𝑊 𝑇𝑊‖𝐹 ≤ 𝑑3. This, together with ‖𝑊 *‖𝐹 ≤ 𝑑𝐾 and
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triangle inequality then yields⃦⃦⃦
𝑊 𝑇𝑊 − (𝑊 *)𝑇𝑊 *

⃦⃦⃦
𝐹
≤ 2𝑑2𝐾+2,

with probability at least 1− exp(−𝐶 ′𝑑). Hence, on this event

̂︀ℒ(𝑊 ) ≤ 2𝑑2𝐾+2

⃦⃦⃦⃦
⃦ 1

𝑁

∑︁
1≤𝑖≤𝑁

𝑟𝑖𝑋𝑖𝑋
𝑇
𝑖

⃦⃦⃦⃦
⃦
𝐹

. (6.15)

With this, we now turn our attention to bounding⃦⃦⃦⃦
⃦ 1

𝑁

∑︁
1≤𝑖≤𝑁

𝑟𝑖𝑋𝑖𝑋
𝑇
𝑖

⃦⃦⃦⃦
⃦
𝐹

.

We establish that for the event

ℰ3 ≜

⎧⎪⎨⎪⎩ inf
𝑊∈R𝑚×𝑑:𝜎min(𝑊 )< 1

2
𝜎min(𝑊

*)

‖𝑊‖𝐹≤𝑑𝐾+1

̂︀ℒ(𝑊 ) ≥ 1

2
𝐶5𝜎min(𝑊

*)4

⎫⎪⎬⎪⎭ , (6.16)

it is the case that

P(ℰ3) ≥ 1−
(︀
9𝑑4𝐾+9

)︀𝑑2−1 · exp
(︀
−𝐶4𝑁𝑑

−4−4𝐾
)︀
−𝑁𝑑 exp(−𝐶𝑑). (6.17)

This is almost a straightforward modification of the proof of earlier energy barrier
result Theorem 6.2.2, and we only point out required modifications. Take any 𝑊 ∈
R𝑚×𝑑 with 𝜎min(𝑊 ) < 1

2
𝜎min(𝑊

*). In particular,

𝜆min(𝑊
𝑇𝑊 ) = 𝜎min(𝑊 )2 <

1

4
𝜎min(𝑊

*)2.

Inspecting now the proof of Theorem 6.2.1(a), we obtain that for such a 𝑊 ,

E
[︁
(𝑋𝑇𝑊 𝑇𝑊𝑋 −𝑋𝑇 (𝑊 *)𝑇𝑊 *𝑋)2

⃒⃒⃒
‖𝑋‖∞ ≤ 𝑑1/2

]︁
≥ 3

4
𝐶5𝜎min(𝑊

*)4,

and consequently, modifying Lemma 6.3.3, we have that

P

(︃
1

𝑁

∑︁
1≤𝑖≤𝑁

(𝑌𝑖 −𝑋𝑇
𝑖 𝑊

𝑇𝑊𝑋𝑖)
2 ≥ 1

2
𝐶5𝜎min(𝑊

*)4
⃒⃒⃒
‖𝑋𝑖‖∞ ≤

√
𝑑, 1 ≤ 𝑖 ≤ 𝑁

)︃
≥ 1− exp

(︁
−𝐶 ′𝑁𝑑−4−4𝐾

)︁
.

Using now a covering numbers bound, in an exact same manner as in the proof of
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Theorem 6.2.2, we conclude that

inf
𝑊∈R𝑚×𝑑:𝜎min(𝑊 )< 1

2
𝜎min(𝑊

*)

‖𝑊‖𝐹≤𝑑𝐾+1

̂︀ℒ(𝑊 ) ≥ 1

2
𝐶5𝜎min(𝑊

*)4

with probability at least

1− (9𝑑4𝐾+9)𝑑
2−1 · exp

(︀
−𝐶4𝑁𝑑

−4−4𝐾
)︀
−𝑁𝑑 exp(−𝐶𝑑).

Now suppose in the remainder of this part that the event ℰ1 ∩ ℰ2 ∩ ℰ3 which is{︃
sup

𝑊 : ̂︀ℒ(𝑊 )≤ ̂︀ℒ0

‖𝑊‖𝐹 ≤ 𝑑𝐾+1

}︃⋂︁{︁
‖𝑋𝑖‖∞ ≤ 𝑑1/2, 1 ≤ 𝑖 ≤ 𝑁

}︁
⋂︁⎧⎪⎨⎪⎩ inf

𝑊∈R𝑚×𝑑:𝜎min(𝑊 )< 1
2
𝜎min(𝑊

*)

‖𝑊‖𝐹≤𝑑𝐾+1

̂︀ℒ(𝑊 ) ≥ 1

2
𝐶5𝜎min(𝑊

*)4

⎫⎪⎬⎪⎭
holds true. In particular, for any 𝑊 with risk less than 1

2
𝐶5𝜎min(𝑊

*)4, we have
𝜎min(𝑊 ) > 1

2
𝜎min(𝑊

*) > 0 (in particular, any such 𝑊 is invertible). Now, take any
𝜁−stationary point 𝑊 generated by the gradient descent. Due to the event ℰ3, and
the fact ̂︀ℒ(𝑊 ) < ̂︀ℒ0 proven earlier; it holds that rank(𝑊 ) = 𝑑, and from the definition
of 𝜁−stationarity, we have

‖∇ ̂︀ℒ(𝑊 )‖𝐹 ≤ 𝜁.

Inspecting the proof of Theorem 6.2.4, we observe that

∇ ̂︀ℒ(𝑊 ) = 4𝑊

(︃
1

𝑁

∑︁
1≤𝑖≤𝑁

𝑟𝑖𝑋𝑖𝑋
𝑇
𝑖

)︃
.

Thus we arrive at ⃦⃦⃦⃦
⃦𝑊

(︃
1

𝑁

∑︁
1≤𝑖≤𝑁

𝑟𝑖𝑋𝑖𝑋
𝑇
𝑖

)︃⃦⃦⃦⃦
⃦
𝐹

≤ 4𝜁.

Let

𝐵 ≜ 𝑊

(︃
1

𝑁

∑︁
1≤𝑖≤𝑁

𝑟𝑖𝑋𝑖𝑋
𝑇
𝑖

)︃
.

Note now that
1

𝑁

∑︁
1≤𝑖≤𝑁

𝑟𝑖𝑋𝑖𝑋
𝑇
𝑖 = (𝑊 𝑇𝑊 )−1𝑊 𝑇𝐵.

Next, we have

‖(𝑊 𝑇𝑊 )−1‖2 =
1

𝜎min(𝑊 𝑇𝑊 )
=

1

𝜎min(𝑊 )2
<

4

𝜎min(𝑊 *)2
,
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due to conditioning on ℰ3 (6.16) above. Furthermore,

‖𝑊 𝑇‖2 = ‖𝑊‖2 =
√︀
𝜆max(𝑊 𝑇𝑊 ) ≤

√︀
trace(𝑊 𝑇𝑊 ) = ‖𝑊‖𝐹 ≤ 𝑑𝐾+1.

We now combine these finding.⃦⃦⃦⃦
⃦ 1

𝑁

∑︁
1≤𝑖≤𝑁

𝑟𝑖𝑋𝑖𝑋
𝑇
𝑖

⃦⃦⃦⃦
⃦
𝐹

= ‖(𝑊 𝑇𝑊 )−1𝑊 𝑇𝐵‖𝐹

≤ ‖(𝑊 𝑇𝑊 )−1‖2‖𝑊 𝑇𝐵‖𝐹
≤ ‖(𝑊 𝑇𝑊 )−1‖2‖𝑊 𝑇‖2‖𝐵‖𝐹
≤ 16𝜁𝜎min(𝑊

*)−2𝑑𝐾+1.

We now use the bounds on P(ℰ1) as per (6.13), on P(ℰ2) as per (6.14), and on
P(ℰ3) as per (6.17); to control P(ℰ1 ∩ ℰ2 ∩ ℰ3). We conclude by the union bound that
with probability at least

1− exp(−𝐶 ′𝑑)− (9𝑑4𝐾+9)𝑑
2−1 · exp

(︀
−𝐶4𝑁𝑑

−4−4𝐾
)︀
−𝑁𝑑 exp(−𝐶𝑑),

it holds that for any 𝑊 with ‖∇ ̂︀ℒ(𝑊 )‖𝐹 ≤ 𝜁, its empirical risk is controlled as per
(6.15): ̂︀ℒ(𝑊 ) ≤ 32𝜁𝜎min(𝑊

*)−2𝑑4𝐾+4. (6.18)

Finally, since
𝜁 ≤ 𝜖

32
𝜎min(𝑊

*)2𝑑−4𝐾−4

per (6.4), we deduce ̂︀ℒ(𝑊 ) ≤ 𝜖, as claimed. The running time is polynomial in 𝜁−1

and 𝑑; and therefore is polynomial in 𝜖−1, 𝜎min(𝑊
*)−1; and 𝑑. This completes the

proof of Part (b).

Part (c)

Let 𝑊 ∈ R𝑚×𝑑 be such that ̂︀ℒ(𝑊 ) ≤ 𝜅. Define the matrix

𝑀 ≜ 𝑊 𝑇𝑊 − (𝑊 *)𝑇𝑊 *.

We will bound ‖𝑀‖𝐹 , which will ensure weights 𝑊 𝑇𝑊 are uniformly close to ground
truth weights defined (𝑊 *)𝑇𝑊 *. We start by conditioning: assume in the remainder
that the event ℰ2 in (6.14) stating ‖𝑋𝑖‖∞ ≤ 𝑑1/2, for every 𝑖 ∈ [𝑁 ] is true: this holds
with probability at least 1−𝑁𝑑 exp(−𝐶𝑑), as per Lemma 6.3.2.

Note that ̂︀ℒ(𝑊 ) =
1

𝑁

∑︁
1≤𝑖≤𝑁

(𝑋𝑇
𝑖 𝑀𝑋𝑖)

2.

To this end, consider a matrix Ξ ∈ R𝑁×𝑑(𝑑+1)/2, consisting of i.i.d. rows where 𝑖th row
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of Ξ is ℛ𝑖 ≜ (𝑋𝑖(1)
2, . . . , 𝑋𝑖(𝑑)

2, 𝑋𝑖(𝑘)𝑋𝑖(ℓ) : 1 ≤ 𝑘 < ℓ ≤ 𝑑) ∈ R𝑑(𝑑+1)/2. Next, let

Σ = E[ℛ𝑖ℛ𝑇
𝑖 ] ∈ R

𝑑(𝑑+1)
2

× 𝑑(𝑑+1)
2 ,

where ℛ𝑖 is the 𝑖th row of matrix Ξ. Furthermore, let ℳ ∈ R𝑑(𝑑+1)/2 be a vector
consisting of entries 𝑀11, . . . ,𝑀𝑑𝑑; and 2𝑀𝑖𝑗, 1 ≤ 𝑖 < 𝑗 ≤ 𝑑. With this notation, if
𝑣 = Ξℳ ∈ R𝑁×1, then we have

̂︀ℒ(𝑊 ) = ‖𝑣‖22/𝑁 ⇒ ‖𝑣‖22 ≤ 𝑁𝜅,

since ̂︀ℒ(𝑊 ) ≤ 𝜅 by assumption.
Next, we have

ℳ = (Ξ𝑇Ξ)−1Ξ𝑇𝑣 ⇒ ‖ℳ‖22 ≤ ‖(Ξ𝑇Ξ)−1‖22‖Ξ𝑇𝑣‖22. (6.19)

We start with the second term. Recall that ‖𝑣‖2 ≤
√
𝑁𝜅, and we condition on

‖𝑋𝑖‖∞ < 𝑑1/2, 1 ≤ 𝑖 ≤ 𝑁 . Next, using Cauchy-Schwarz inequality,⃒⃒⃒
(Ξ𝑇𝑣)𝑖

⃒⃒⃒
≤ ‖𝑣‖2

√
𝑁𝑑 ≤ 𝑁𝑑1/2

√
𝜅. (6.20)

Hence,
‖Ξ𝑇𝑣‖22 ≤ 𝑁2𝑑3𝜅. (6.21)

We now control ‖(Ξ𝑇Ξ)−1‖22. This is done in a manner similar to the proof of [107,
Theorem 3.2]. The main tool is the result Theorem 6.3.9 for concentration of the
spectrum of random matrices with i.i.d. non-isotropic rows. The parameter setting
we operate under is provided below.

Parameter Value

𝑚 𝑑2

𝑡 𝑁1/8

𝛿 𝑁−3/8𝑑

𝛾 max(‖Σ‖1/2𝛿, 𝛿2)

Start by verifying that since we condition on ‖𝑋𝑖‖∞ < 𝑑1/2, it is indeed the case that
ℓ2−norm of each row of Ξ is at most 𝑑, thus the value of 𝑚 above works.

We now claim 𝛾 = ‖Σ‖1/2𝛿. To prove this it suffices to show

𝑁 > ‖Σ‖−4/3𝑑
8
3 .

Using [107, Theorem 5.1] (also see Remark 6.4.4 below) with 𝑘 = 2, we obtain
𝜎min(Σ) ≥ 𝑐𝑑−4, for some absolute constant 𝑐 > 0 depending only on the data coor-
dinate distribution. Consequently,

‖Σ‖−4/3 ≤ 𝜎min(Σ)
−4/3 ≤ 𝑐−4/3𝑑16/3 ⇒ ‖Σ‖−4/3𝑑

8
3 < 𝑐−4/3𝑑8,

which is below sample size 𝑁 , as requested. Therefore, 𝛾 = ‖Σ‖1/2𝛿.
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We now claim
1

2
𝜎min(Σ) > 𝛾 = ‖Σ‖1/2𝑁− 3

8𝑑.

This is equivalent to establishing

𝑁 > 28/3
‖Σ‖4/3𝑑 8

3

𝜎min(Σ)8/3
.

Using again [107, Theorem 5.1], we have ‖Σ‖ < 𝑓𝑑4 for some absolute constant 𝑓 > 0.
This yields

28/3
‖Σ‖4/3𝑑 8

3

𝜎min(Σ)8/3
< 𝐶 ′𝑑

56
3

for some absolute constant 𝐶 ′ > 0, which again holds for our case as 𝑁 > 𝑑18+
4
3 .

The rest is verbatim from [107, p.45]: we now apply Theorem 6.3.9. With prob-
ability at least 1 − 𝑑2 exp(−𝑐𝑁1/4) (here 𝑐 > 0 is an absolute constant), it holds
that: ⃦⃦⃦⃦

1

𝑁
Ξ𝑇Ξ− Σ

⃦⃦⃦⃦
≤ 𝛾. (6.22)

Now, for 𝐷 = 𝑑(𝑑+ 1)/2:⃦⃦⃦⃦
1

𝑁
Ξ𝑇Ξ− Σ

⃦⃦⃦⃦
≤ 𝛾 ⇐⇒ ∀𝑣 ∈ R𝐷,

⃒⃒⃒⃒
‖ 1√

𝑁
Ξ𝑣‖22 − 𝑣𝑇Σ𝑣

⃒⃒⃒⃒
≤ 𝛾‖𝑣‖22,

which implies, for every 𝑣 on the sphere S𝐷−1 = {𝑣 ∈ S𝐷 : ‖𝑣‖2 = 1},

1

𝑁
‖Ξ𝑣‖22 ≥ 𝑣𝑇Σ𝑣 − 𝛾 ⇒ 1

𝑁
inf

𝑣:‖𝑣‖=1
‖Ξ𝑣‖22 ≥ inf

𝑣:‖𝑣‖=1
𝑣𝑇Σ𝑣 − 𝛾.

Now, using the Courant-Fischer variational characterization of the smallest singular
value [170], we obtain

𝜎min(Ξ) ≥ 𝑁(𝜎min(Σ)− 𝛾) >
𝑁

2
𝜎min(Σ), (6.23)

with probability at least 1−exp(−𝑐′𝑁1/4), where 𝑐′ > 0 is a positive absolute constant
smaller than 𝑐.

We now return to (6.19), to specifically bound ‖(Ξ𝑇Ξ)−1‖. Let 𝐴 be any matrix 𝐴.
Note that, ‖𝐴−1‖ = 𝜎min(𝐴)

−1. Indeed, taking the singular value decomposition 𝐴 =
𝑈Σ𝑉 𝑇 , and observing, 𝐴−1 = (𝑉 𝑇 )−1Σ−1𝑈−1 we obtain ‖𝐴−1‖ = max𝑖(𝜎𝑖(𝐴))

−1 =
𝜎min(𝐴)

−1. This, together with (6.23), yields:

‖(Ξ𝑇Ξ)−1‖ ≤ 2

𝑁𝜎min(Σ)
, (6.24)

with probability at least 1− exp(−𝑐′𝑁1/4).
We now have all ingredients to execute the bound in (6.19). Combining Equations
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(6.21) and (6.24), we get:

ℳ = (Ξ𝑇Ξ)−1Ξ𝑇𝑣 ⇒ ‖ℳ‖22 ≤ ‖(Ξ𝑇Ξ)−1‖22 · ‖Ξ𝑇𝑣‖22
≤ 4

𝑁2𝜎min(Σ)2⏟  ⏞  
from (6.24)

· 𝑁2𝑑3𝜅⏟  ⏞  
from (6.21)

= 4𝜅𝜎min(Σ)
−2𝑑3 ≤ 4𝐶𝜅𝑑11,

for some constant 𝐶 > 0. Using (6.18) from Part (b) above, we have that 𝜅 can be
taken

32𝜁𝜎min(𝑊
*)−2𝑑4𝐾+4

with probability at least

1− exp(−𝐶 ′𝑑)− (9𝑑4𝐾+9)𝑑
2−1 · exp(−𝐶4𝑁𝑑

−4−4𝐾)−𝑁𝑑 exp(−𝐶𝑑).

Since ‖ℳ‖22 ≤ 4𝐶𝜅𝑑11 with probability at least 1− exp(−𝑐′𝑁1/4), we have that

‖ℳ‖2 ≤ 𝐶 ′√︀𝜁𝑑15/2+2𝐾𝜎min(𝑊
*)−1

with probability at least

1− exp(−𝑐′𝑁1/4)−
(︁
9𝑑4𝐾+9

)︁𝑑2−1

· exp
(︁
−𝐶4𝑁𝑑

−4−4𝐾
)︁
−𝑁𝑑 exp(−𝐶𝑑),

by the union bound. As ‖𝑀‖𝐹 ≤ ‖ℳ‖2; and√︀
𝜁 ≤ 𝜖

𝐶 ′𝑑
−15/2−2𝐾𝜎min(𝑊

*)

per (6.4), we arrive at
⃦⃦
𝑊 𝑇𝑊 − (𝑊 *)𝑇𝑊 *⃦⃦

𝐹
≤ 𝜖 as claimed.

We now show the generalization ability. For any 𝑊 ∈ R𝑚×𝑑, using auxiliary result,
Theorem 6.3.1(c), we have

ℒ(𝑊 ) ≤ 𝜇2
2 · trace(𝑀) + max{𝜇4 − 𝜇2

2, 2𝜇
2
2} · trace(𝑀2),

where 𝑀 = 𝑊 𝑇𝑊 − (𝑊 *)𝑇𝑊 * ∈ R𝑑×𝑑. Now note that trace(𝑀)2 = |∑︀1≤𝑖≤𝑑𝑀𝑖𝑖|2 ≤
𝑑
∑︀

1≤𝑖≤𝑑𝑀
2
𝑖𝑖 ≤ 𝑑‖𝑀‖2𝐹 by Cauchy-Schwarz. Furthermore trace(𝑀2) = trace(𝑀𝑇𝑀) =

‖𝑀‖2𝐹 . Thus,

ℒ(𝑊 ) ≤ ‖𝑀‖2𝐹
(︁
𝑑𝜇2

2 +max{𝜇4 − 𝜇2
2, 2𝜇

2
2}
)︁
≤ 2𝑑𝜇2

2‖𝑀‖2𝐹 ,

for 𝑑 large. Since ‖𝑀‖2𝐹 ≤ ‖ℳ‖22 ≤ (𝐶 ′)2𝜁𝑑15+4𝐾𝜎min(𝑊
*)−2; we obtain

ℒ(𝑊 ) ≤ 𝜁 · 2(𝐶 ′)2𝜇2
2𝑑

16+4𝐾𝜎min(𝑊
*)−2.
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Finally, since
𝜁 ≤ 𝜖

2(𝐶 ′)2𝜇2
2

𝑑−16−4𝐾𝜎min(𝑊
*)2

per (6.4) we conclude the proof of generalization bound, that is ℒ(𝑊 ) ≤ 𝜖.

Remark 6.4.4. The argument presented above uses [107, Theorem 5.1]. While
that result is stated for distributions supported on [−1, 1]𝑑, it still applies under the
weaker assumption that the distribution has finite moments of all orders, see [107,
Remark 5.5].

Case of Constant 𝑑: 𝑑 = 𝑂(1)

We provide a very brief sketch for the argument in the case 𝑑 = 𝑂(1). The argument
is quite similar to the one in Theorem 6.2.2. Similar to the analysis (of 𝑑 = 𝑂(1) case)
conducted for Theorem 6.2.2, we use the fact that if 𝑋 has a sub-Gaussian random
variable, then E [|𝑋|𝑝]1/𝑝 = 𝑂

(︀√
𝑝
)︀

for every 𝑝 ≥ 1; and in particular, E [|𝑋|𝑝] < ∞
for all 𝑝 ≥ 1; see [281, Lemma 5.5] for a more precise statement.

Next, the upper bound on the energy value now modifies to 1
2
𝐶5𝜎min(𝑊

*)4.

Part (a). Note that part (a) for the case of general 𝑑 follows from earlier Claim 6.4.2.
For the case when 𝑑 is constant, part (a) now follows from modified Claim 6.4.2,
provided under Theorem 6.2.2 for the case 𝑑 = 𝑂(1). That is, for the event

ℰ1 ≜
{︃

sup
𝑊 : ̂︀ℒ(𝑊 )≤ 1

2
𝐶5𝜎min(𝑊 *)4

‖𝑊‖𝐹 = 𝑂(1)

}︃

it is the case P(ℰ1) ≥ 1 − 𝑂(1/𝑁), where 𝐶5 is the constant appearing in Theo-
rem 6.2.2.

Furthermore,

⃦⃦⃦
∇2 ̂︀ℒ(𝑊 )

⃦⃦⃦
= Poly

(︃
‖𝑊‖𝐹 ,

1

𝑁

∑︁
1≤𝑖≤𝑁

‖𝑋𝑖‖𝐷2

)︃

for some absolute constant 𝐷 > 0; and for any constant 𝐷 > 0,

1

𝑁

∑︁
1≤𝑖≤𝑁

‖𝑋𝑖‖𝐷2 = 𝑂(1)

with probability at least 1−𝑂(1/𝑁) (where we used, in particular, the fact E
[︀
𝑋𝑖(𝑗)

2𝐷
]︀
<

∞).
Combining these, we find that

𝐿 ≜ sup
{︁⃦⃦⃦

∇2 ̂︀ℒ(𝑊 )
⃦⃦⃦
: ̂︀ℒ(𝑊 ) ≤ 1

2
𝐶5𝜎min(𝑊

*)4
}︁
= 𝑂(1)

with probability at least 1−𝑂(1/𝑁).
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Part (b). The analysis for time horizon 𝑇 remains intact. Furthermore, the entire
analysis leading to (6.15) remains (nearly) intact, and this equation now modifies to

̂︀ℒ(𝑊 ) ≤ 𝑂(1) ·
⃦⃦⃦⃦
⃦ 1

𝑁

∑︁
1≤𝑖≤𝑁

𝑟𝑖𝑋𝑖𝑋
𝑇
𝑖

⃦⃦⃦⃦
⃦
𝐹

,

since the Frobenius norm terms involved (all of which are polynomials in 𝑑) are now
𝑂(1). The event ℰ3 appearing in (6.16) modifies now to

ℰ3 ≜

⎧⎪⎨⎪⎩ inf
𝑊∈R𝑚×𝑑:𝜎min(𝑊 )< 1

2
𝜎min(𝑊

*)

‖𝑊‖𝐹≤𝑑𝐾+1

̂︀ℒ(𝑊 ) ≥ 1

2
𝐶5𝜎min(𝑊

*)4

⎫⎪⎬⎪⎭
which holds with probability at least 1 − 𝑂(1/𝑁) (the modifications are exactly the
same as those noted in Theorem 6.2.2 for the case 𝑑 = 𝑂(1)). The rest of the analysis
in Part (b) is exactly the same: combining modified versions of events ℰ1 and ℰ3 (note
that there is no need to incorporate the event ℰ2 which for the case of general 𝑑 is
required for truncation) via a union bound and recalling the equation (6.4) on 𝜁, it
follows that with probability at least 1−𝑂(1/𝑁), ̂︀ℒ(𝑊 ) ≤ 𝜖.

Part (c). The modification for this part is as follows. First, we do not condition on
ℰ2 like above. Instead, we will apply Chebyshev’s inequality (elaborated below). The
entire analysis leading up to (6.20) remains the same. Note now that Ξ𝑇𝑣 ∈ R𝑑(𝑑+1)/2.
For each coordinate

(︀
Ξ𝑇𝑣

)︀
𝑖
of this vector, we have, using Chebyshev’s inequality,⃒⃒⃒

(Ξ𝑇𝑣)𝑖

⃒⃒⃒
≤ 𝑂(

√
𝑁) · ‖𝑣‖2 ≤ 𝑁 · √𝜅 ·𝑂(1),

with probability 1−𝑂(1/𝑁). Taking a union bound over 𝑑(𝑑+1)/2 = 𝑂(1) coordinates
yields that with probability 1−𝑂(1/𝑁) this remains true over all 1 ≤ 𝑖 ≤ 𝑑(𝑑+1)/2.

Next, to control
⃦⃦⃦(︀

Ξ𝑇Ξ
)︀−1
⃦⃦⃦2
2

we do not need a delicate concentration result (such
as Theorem 6.3.9) like above. Instead, we take the following route.

Fix 𝜖 > 0, to be tuned. Recall the notation ℛ𝑖 from above, where ℛ𝑖 is the 𝑖th row
of matrix Ξ ∈ R𝑁×𝑑(𝑑+1)/2; and recall that ℛ𝑖, 1 ≤ 𝑖 ≤ 𝑁 are i.i.d. random vectors.
Using the outer product reprensentation of matrix multiplication as above, we have

1

𝑁
Ξ𝑇Ξ =

1

𝑁

∑︁
1≤𝑖≤𝑁

ℛ𝑖ℛ𝑇
𝑖 ∈ R

𝑑(𝑑+1)
2

× 𝑑(𝑑+1)
2 .

Consequently,

E
[︂
1

𝑁
Ξ𝑇Ξ

]︂
= E

[︁
ℛ𝑖ℛ𝑇

𝑖

]︁
= Σ ∈ R

𝑑(𝑑+1)
2

× 𝑑(𝑑+1)
2

where E[·] acts entrywise.
Since 𝑑 = 𝑂(1); a simple application of Chebyshev’s inequality together with a
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union bound over Θ(𝑑4) entries (of 𝑁−1Ξ𝑇Ξ) yields

max
1≤𝑖,𝑗≤𝑑(𝑑+1)/2

⃒⃒⃒⃒
⃒
(︂

1

𝑁
Ξ𝑇Ξ− Σ

)︂
𝑖𝑗

⃒⃒⃒⃒
⃒ ≤ 𝜖

with probability at least 1−𝑂(1/𝑁). Using now ‖𝑀‖ ≤ ‖𝑀‖2𝐹 valid for any matrix
𝑀 , we obtain ⃦⃦⃦⃦

1

𝑁
Ξ𝑇Ξ− Σ

⃦⃦⃦⃦
≤ 𝜖2𝑑4

with probability 1 − 𝑂(1/𝑁). Similar to above, 𝜎min(Σ) = Ω(1). Furthermore, the
analysis starting from (6.22) and leading to (6.23) remains intact (with 𝛾 replaced
with 𝜖2𝑑4, 𝜖 > 0 to be tuned). In particular, for 𝜖 sufficiently small, it is the case that
with probability at least 1−𝑂(1/𝑁),

𝜎min(Ξ) >
𝑁

2
𝜎min(Σ).

The rest of the analysis remains intact, except the probability bounds are now mod-
ified to 1 − 𝑂(1/𝑁). Finally, recalling the bound (6.4) on 𝜁, we find that with
probability 1−𝑂(1/𝑁),⃦⃦⃦

𝑊 𝑇𝑊 − (𝑊 *)𝑇𝑊 *
⃦⃦⃦
𝐹
≤ 𝜖 and ℒ(𝑊 ) ≤ 𝜖.

6.4.12 Proof of Theorem 6.2.8

Let 𝑊 𝑇
0 𝑊0 = 𝑚𝐼𝑑, and let {𝜆1, . . . , 𝜆𝑑} = 𝜎((𝑊 *)𝑇𝑊 * − 𝑚𝐼𝑑). In what follows

below, recall the quantities from the proof of Theorem 6.2.7(b): 𝜎* ≜ Var((𝑊 *
𝑖𝑗)

2−1),
𝜒2 ≜

∫︀
𝑥2 𝑑𝜔(𝑥), where 𝜔(𝑥) is the semicircle law. Fix now an arbitrary 𝜖 > 0 and a

𝐾 > 0.

We start by definining several auxiliary events:

ℰ1 ≜
{︃∑︁

1≤𝑖≤𝑑

𝜆2𝑖 < 4(1 + 𝑜(1))𝑚𝑑2𝜒2

}︃
,

ℰ2 ≜
{︃⃒⃒⃒⃒
⃒ ∑︁
1≤𝑖≤𝑑

𝜆𝑖

⃒⃒⃒⃒
⃒ < 𝜎*

√
𝑚𝑑𝑑𝜖

}︃
,

ℰ3 ≜
{︂
𝜎min(𝑊

*)4 ≥ 1

16
𝑚2

}︂
,

ℰ4 ≜
{︀
‖𝑋𝑖‖∞ ≤ 𝑑1/2, 1 ≤ 𝑖 ≤ 𝑁

}︀
.

Note that from the proof of Theorem 6.2.7(b), we have P(ℰ𝑖) ≥ 1−𝑜𝑑(1) for 𝑖 = 1, 2, 3;
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and from union bound and sub-Gaussianity of 𝑋, P(ℰ4) ≥ 1−𝑁 exp(−𝐶𝑑). Thus,

P

(︃ ⋂︁
1≤𝑖≤4

ℰ𝑖
)︃

≥ 1− 𝑜𝑑(1)−𝑁 exp (−𝐶𝑑) .

In what follows, suppose we condition on the event
⋂︀

1≤𝑖≤4 ℰ𝑖. Note that in this
conditional universe, it is still the case that 𝑋𝑖, 1 ≤ 𝑖 ≤ 𝑁 are i.i.d. random vectors
with centered i.i.d. coordinates. Using now Hölder’s inequality (Theorem 6.3.10)
with 𝑝 = 1, 𝑞 = ∞, 𝑈 = 𝑋𝑖𝑋

𝑇
𝑖 and 𝑉 = (𝑊 *)𝑇𝑊 * −𝑚𝐼𝑑, we arrive at

|𝑋𝑇
𝑖 ((𝑊

*)𝑇𝑊 * −𝑚𝐼𝑑)𝑋𝑖| =
⃒⃒⟨︀
𝑋𝑖𝑋

𝑇
𝑖 , (𝑊

*)𝑇𝑊 * −𝑚𝐼𝑑
⟩︀⃒⃒

≤ ‖(𝑊 *)𝑇𝑊 * −𝑚𝐼𝑑‖trace(𝑋𝑖𝑋
𝑇
𝑖 )

≤ 2
√
𝑚𝑑𝑑2,

where we use the fact that trace(𝑋𝑖𝑋
𝑇
𝑖 ) = ‖𝑋𝑖‖22 ≤ 𝑑2 (recall the conditioning on ℰ4).

Using Hoeffding’s inequality, we have

̂︀ℒ(𝑊0) =
1

𝑁

∑︁
1≤𝑖≤𝑁

(︁
𝑋𝑇

𝑖 (𝑊
*)𝑇𝑊 *𝑋𝑖 −𝑋𝑇

𝑖 𝑊
𝑇
0 𝑊0𝑋𝑖

)︁2
≤ 3

2
ℒ(𝑊0),

with probability at least
1− exp

(︁
−𝐶 ′𝑁𝑑−5𝑚−1

)︁
,

where
ℒ(𝑊0) = E

[︁(︀
𝑋𝑇 (𝑊 *)𝑇𝑊 *𝑋 −𝑋𝑇𝑊 𝑇

0 𝑊0𝑋
)︀2 ⃒⃒⃒‖𝑋‖∞ ≤ 𝑑1/2

]︁
.

Namely, ℒ(𝑊0) is the “population risk" in the “conditional universe".
Next, in this conditional space, using Theorem 6.3.1(c), we arrive at

ℒ(𝑊0) ≤ 𝜇2(1/2)
2

⃒⃒⃒⃒
⃒ ∑︁
1≤𝑖≤𝑑

𝜆𝑖

⃒⃒⃒⃒
⃒
2

+max
{︁
𝜇4(1/2)− 𝜇2(1/2)

2, 2𝜇2(1/2)
2
}︁(︃∑︁

1≤𝑖≤𝑑

𝜆2𝑖

)︃
.

Finally, carrying out the exact same analysis as in the end of the proof of Theorem
6.2.7, we deduce ̂︀ℒ(𝑊0) <

1

2
𝐶5𝜎min(𝑊

*)4,

provided 𝑚 > 𝐶
′′
𝑑2 for a large enough constant 𝐶 ′′ , namely provided that the network

is sufficiently overparameterized.

6.4.13 Proof of Theorem 6.2.9

(a) Let span(𝑋𝑖𝑋
𝑇
𝑖 : 𝑖 ∈ [𝑁 ]) = 𝒮, the set of all 𝑑 × 𝑑 symmetric matrices, and

let 𝑀 ∈ 𝒮 be such that for any 𝑖, 𝑋𝑇
𝑖 𝑀𝑋𝑖 = 0. We will establish 𝑀 = 0.

Let 1 ≤ 𝑘, ℓ ≤ 𝑑 be two fixed indices. To that end, let 𝜃(𝑘,ℓ)𝑖 ∈ R be such
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that,
∑︀𝑁

𝑖=1 𝜃
(𝑘,ℓ)
𝑖 𝑋𝑖𝑋

𝑇
𝑖 = 𝑒𝑘𝑒

𝑇
ℓ + 𝑒ℓ𝑒

𝑇
𝑘 , where the column vectors 𝑒𝑘, 𝑒ℓ ∈ R𝑑 are

respectively the 𝑘𝑡ℎ and ℓ𝑡ℎ elements of the standard basis for R𝑑. Such 𝜃
(𝑘,ℓ)
𝑖

indeed exist, due to the spanning property. Observe that 2𝑀𝑘,ℓ = 𝑒𝑇𝑘𝑀𝑒ℓ +
𝑒𝑇ℓ 𝑀𝑒𝑘 = tr(𝑒𝑇𝑘𝑀𝑒ℓ+𝑒

𝑇
ℓ 𝑀𝑒𝑘). Now, using the fact that tr(𝐴𝐵𝐶) = tr(𝐵𝐶𝐴) =

tr(𝐶𝐴𝐵) for every matrices 𝐴,𝐵,𝐶 (with matching dimensions), we have:

2𝑀𝑘,ℓ = tr(𝑀𝑒ℓ𝑒
𝑇
𝑘+𝑀𝑒𝑘𝑒

𝑇
ℓ ) = tr

(︃
𝑁∑︁
𝑖=1

𝜃
(𝑘,ℓ)
𝑖 𝑀𝑋𝑖𝑋

𝑇
𝑖

)︃
=

𝑁∑︁
𝑖=1

𝜃
(𝑘,ℓ)
𝑖 tr(𝑋𝑇

𝑖 𝑀𝑋𝑖) = 0,

for every 𝑘, ℓ ∈ [𝑑]. Finally, if 𝑊 is such that ̂︀ℒ(𝑊 ) = 0, then 𝑋𝑇
𝑖 𝑀𝑋𝑖 = 0

for any 𝑖, where 𝑀 = (𝑊 *)𝑇𝑊 * −𝑊 𝑇𝑊 . Hence, provided that the geometric
condition holds, we have 𝑀 = 0, that is, 𝑊 𝑇𝑊 = (𝑊 *)𝑇𝑊 *. From here, the
final conclusion follows per Theorem 6.3.6. Since 𝑊 𝑇𝑊 = (𝑊 *)𝑇𝑊 *, 𝑊 clearly
has zero generalization error, i.e. ℒ(𝑊 ) = 0.

(b) Our goal is to construct a 𝑊 ∈ R𝑚×𝑑 with 𝑓(𝑊 *;𝑋𝑖) = 𝑓(𝑊 ;𝑋𝑖), for every
𝑖 ∈ [𝑁 ], whereas 𝑊 𝑇𝑊 ̸= (𝑊 *)𝑇𝑊 *. Consider the inner product ⟨𝐴,𝐵⟩ =
trace(𝐴𝐵), in the space of all symmetric 𝑑× 𝑑 matrices. Find 0 ̸=𝑀 ∈ R𝑑×𝑑 a
symmetric matrix, such that, 𝑀 ∈ span⊥(𝑋𝑖𝑋

𝑇
𝑖 : 𝑖 ∈ [𝑁 ]), that is, 𝑋𝑇

𝑖 𝑀𝑋𝑖 = 0
for every 𝑖 ∈ [𝑁 ]. We can find such 𝑀 satisfying ‖𝑀‖2 = 1. Consider the linear
matrix function 𝑀(𝛿) = (𝑊 *)𝑇𝑊 * + 𝛿𝑀 . Note that, 𝑀(𝛿) is symmetric for
every 𝛿. We claim that under the hypothesis of the theorem, there exists a
𝛿0 > 0 such that 𝑀(𝛿) is positive semidefinite for every 𝛿 ∈ [0, 𝛿0], and that
there exists 𝑊𝛿 ∈ R𝑚×𝑑 with 𝑊 𝑇

𝛿 𝑊𝛿 = 𝑀(𝛿), for all 𝛿 ∈ [0, 𝛿0]. Observe
that, since rank(𝑊 *) = 𝑑, then (𝑊 *)𝑇𝑊 * ∈ R𝑑×𝑑 with rank((𝑊 *)𝑇𝑊 *) = 𝑑.
Therefore, the eigenvalues 𝜆*1, . . . , 𝜆*𝑑 of (𝑊 *)𝑇𝑊 * are all positive. In particular
{𝜆*𝑖 : 𝑖 ∈ [𝑑]} ⊂ [𝛿1,∞), with 𝛿1 = 𝜎min(𝑊

*)2. Now, let 𝜇1(𝛿), . . . , 𝜇𝑑(𝛿) be
the eigenvalues of 𝑀(𝛿). Using Weyl’s inequality [170], we have |𝜇𝑖(𝛿)− 𝜆*𝑖 | ≤
𝛿‖𝑀‖2 = 𝛿, for every 𝑖. In particular, taking 𝛿 ≤ 𝛿1, we deduce for every
𝑖 ∈ [𝑑], it holds that 𝜇𝑖(𝛿) ≥ 𝜆*𝑖 − 𝛿1 ≥ 0, that is, {𝜇𝑖(𝛿) : 𝑖 ∈ [𝑑]} ⊂ [0,∞). In
particular, we also have 𝑀(𝛿) is symmetric, and thus, it is PSD. Thus, there
exists a 𝑊𝛿 ∈ R𝑑×𝑑 such that 𝑊𝛿

𝑇
𝑊𝛿 = 𝑀(𝛿). Now, using the same idea as in

the proof of Theorem 6.2.1 part (𝑐), we then deduce that for any ̂︀𝑚 ≥ 𝑑, there
exists a matrix 𝑊𝛿 ∈ R̂︀𝑚×𝑑 such that 𝑊 𝑇

𝛿 𝑊𝛿 = 𝑊𝛿
𝑇
𝑊𝛿 = 𝑀(𝛿). In particular,

for this 𝑊𝛿, if 𝑓(𝑊𝛿, 𝑋) is the function computed by the neural network with
weight matrix 𝑊𝛿 ∈ R̂︀𝑚×𝑑, then on the training data (𝑋𝑖 : 𝑖 ∈ [𝑁 ]), 𝑓(𝑊𝛿;𝑋𝑖) =
𝑋𝑇

𝑖 𝑊
𝑇
𝛿 𝑊𝛿𝑋𝑖 = 𝑋𝑇

𝑖 (𝑊
*)𝑇𝑊 *𝑋𝑖 = 𝑓(𝑊 *;𝑋𝑖), since 𝑋𝑇

𝑖 𝑀𝑋𝑖 = 0 for all 𝑖 ∈ [𝑁 ].
At the same time 𝑊 𝑇

𝛿 𝑊𝛿 − (𝑊 *)𝑇𝑊 * = 𝛿𝑀 ̸= 0, since 𝛿 ̸= 0 and 𝑀 ̸= 0, and
therefore 𝑊 𝑇

𝛿 𝑊𝛿 ̸= (𝑊 *)𝑇𝑊 *.

Finally, to show ℒ(𝑊𝛿) > 0, we argue as follows. Suppose ℒ(𝑊𝛿) = 0. Then,
by Theorem 6.3.5, it follows that 𝜓(𝑋) = 𝑋𝑇𝐴𝑋 = 0 identically, where 𝐴 =
𝑊 𝑇

𝛿 𝑊𝛿 − (𝑊 *)𝑇𝑊 *. Now, letting 𝜉1, . . . , 𝜉𝑑 to be the eigenvectors of 𝐴 (with
corresponding eigenvalues 𝜆1, . . . , 𝜆𝑑), we obtain 𝜉𝑇𝑖 𝐴𝜉𝑖 = 𝜆𝑖𝜉

𝑇
𝑖 𝜉𝑖 = 𝜆𝑖‖𝜉𝑖‖22 = 0,

we namely obtain 𝜆𝑖 = 0 for every 𝑖 ∈ [𝑑]. Finally, since 𝐴 is symmetric, and
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hence admits a diagonalization of form 𝐴 = 𝒬Λ𝒬 with diagonal entries of Λ
being zero, we deduce 𝐴 is identically zero, which contradicts with the fact that
𝐴 = 𝛿𝑀 , which is a non-zero matrix.

6.4.14 Proof of Theorem 6.2.10

Recall that, 𝒮 = {𝑀 ∈ R𝑑×𝑑 :𝑀𝑇 =𝑀}. Note that, this space has dimension
(︀
𝑑
2

)︀
+𝑑:

for any 1 ≤ 𝑘 ≤ ℓ ≤ 𝑑, it is easy to see that the matrices 𝑒𝑘𝑒𝑇ℓ + 𝑒ℓ𝑒
𝑇
𝑘 are linearly

independent; and there are precisely
(︀
𝑑
2

)︀
+ 𝑑 such matrices. With this in mind, the

statement of part (𝑏) is immediate.
We now prove the part (𝑎) of the theorem. For any 𝑋𝑖, let 𝑋𝑖(𝑗) be the 𝑗𝑡ℎ

coordinate of𝑋𝑖, with 𝑗 ∈ [𝑑]; and let 𝒴𝑖 be a 𝑑(𝑑+1)/2−dimensional vector, obtained
by retaining 𝑋𝑖(1)

2, . . . , 𝑋𝑖(𝑑)
2; and the products, 𝑋𝑖(𝑘)𝑋𝑖(ℓ) with 1 ≤ 𝑘 < ℓ ≤ 𝑑.

Now, let 𝒳 be an 𝑛 × 𝑑(𝑑 + 1)/2 matrix, whose rows are 𝒴1, . . . ,𝒴𝑛. Our goal is to
establish,

P[det(𝒳 ) = 0] = 0,

when 𝑛 = 𝑑(𝑑+ 1)/2, where the probability is taken with respect to the randomness
in 𝑋1, . . . , 𝑋𝑛 (in particular, this yields for 𝑛 ≥ 𝑑(𝑑+1)/2, P(rank(𝒳 ) = 𝑑(𝑑+1)/2),
almost surely). Now, recalling Theorem 6.3.5, it then suffices to show that det(𝒳 ) is
not identically zero, when viewed as a polynomial in 𝑋𝑖(𝑗) with 𝑖 ∈ [𝑁 ], 𝑗 ∈ [𝑑].

We now prove part (b) by providing a deterministic construction (of the matrix
𝒳 ) under which det(𝒳 ) ̸= 0. Let 𝑝1 < · · · < 𝑝𝑑 be distinct prime numbers. For every
1 ≤ 𝑡 ≤ 𝑁 , set:

𝑋𝑡 = (𝑝𝑡−1
1 , . . . , 𝑝𝑡−1

𝑑 )𝑇 ∈ R𝑑.

In particular, 𝑋1 = (1, 1, . . . , 1)𝑇 ∈ R𝑑, which then implies 𝒴1 is a vector of all ones.
Now, we study 𝒴2. The entries of 𝒴2, called 𝑧1, . . . , 𝑧𝑑(𝑑+1)/2, are of form 𝑝2𝑖 with 𝑖 ∈ [𝑑];
or 𝑝𝑖𝑝𝑗, where 1 ≤ 𝑖 < 𝑗 ≤ 𝑑. By the fundamental theorem of arithmetic, we have
𝑝𝑖𝑝𝑗 = 𝑝𝑘𝑝ℓ ⇒ {𝑝𝑖, 𝑝𝑗} = {𝑝𝑘, 𝑝ℓ}; and therefore, 𝑧1, . . . , 𝑧𝑑(𝑑+1)/2 are pairwise distinct.
With this construction, the matrix 𝒳 is a Vandermonde matrix with determinant:∏︁

1≤𝑘<ℓ≤𝑑(𝑑+1)/2

(𝑧𝑘 − 𝑧ℓ).

Since 𝑧𝑘 ̸= 𝑧ℓ for every 𝑘 ̸= ℓ (from the construction on 𝒴2, which, in turn, is
constructed from 𝑋2), this determinant is non-zero, proving the claim.

6.4.15 Proof of Theorem 6.2.11

(a) Note that, if 𝑁 ≥ 𝑁*, then combining parts (𝑎) of Theorems 6.2.9 and 6.2.10,
we have that with probability one, span(𝑋𝑖𝑋

𝑇
𝑖 : 𝑖 ∈ [𝑁 ]) = 𝒮, which, together

with ̂︀ℒ(𝑊 ) = 0, imply that,

P(𝐸 ̸= ∅) = 0,
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where 𝐸 = {𝑊 ∈ R𝑚×𝑑 : 𝑊 𝑇𝑊 ̸= (𝑊 *)𝑇𝑊 *; ̂︀ℒ(𝑊 ) = 0}, from which the
desired conclusion follows.

(b) Assume 𝑊 is taken as in proof of Theorem 6.2.9 (b), that is,

𝐴 = (𝑊 *)𝑇𝑊 * −𝑊 𝑇𝑊 = 𝛿𝑀 where 𝛿 = 𝜎min(𝑊
*)2 and ‖𝑀‖ = 1,

with 𝑀𝑇 =𝑀 . Let {𝜆1, . . . , 𝜆𝑑} be the spectrum of the matrix 𝛿𝑀 . Using now
Theorem 6.3.1 (c), we have the lower bound

ℒ(𝑊 ) ≥ E
[︀
𝑋𝑖(𝑗)

2
]︀2
trace(𝐴)2 +min

{︁
Var(𝑋𝑖(𝑗)

2), 2E
[︀
𝑋𝑖(𝑗)

2
]︀2}︁ · trace(𝐴2)

≥ min
{︁
Var(𝑋𝑖(𝑗)

2), 2E
[︀
𝑋𝑖(𝑗)

2
]︀2}︁(︃ 𝑑∑︁

𝑖=1

𝜆2𝑖

)︃
≥ min

{︁
Var(𝑋𝑖(𝑗)

2), 2E
[︀
𝑋𝑖(𝑗)

2
]︀2}︁

𝜆max(𝛿𝑀)2,

since trace(𝐴2) =
∑︀𝑑

𝑖=1 𝜆
2
𝑖 . Finally, since 𝜆max(𝛿𝑀)2 = 𝛿2 = 𝜎min(𝑊

*)4 (as the
spectral norm of 𝑀 is one), we arrive at the desired conclusion.
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Appendix A

MATLAB Code for Verifying
Lemma 3.6.1

We verify Lemma 3.6.1 numerically using the following MATLAB code.
Our experiments demonstrate that the functions 𝑓2(𝛽, 𝛼), 𝑓3(𝛽, 𝛼) appear to be

minimized when 𝛽 is close to one. For this reason, we restrict our attention to 𝛽 ∈
[0.9, 0.999] and generate 𝛽 = 0.9 : sp : 0.999 with sp = 10−3. We take 𝐾 = 1 as in the
rest of the chapter, and set 𝛼 = 1.667. In order the compute the probability term, we
do not resort to any Monte Carlo simulations. Instead, we employ MATLAB’s built-in
mvncdf function to compute the associated “box" probability (for dimensions 2 and 3).
(The function, mvncdf, computes rectangular probabilities for multivariate Gaussian
distribution using numerical integration, see [2] for a more elaborate description.) In
particular, the only potential source of error is the error encountered at the numerical
integration step. A feature of the mvncdf function is that the error guarantee in
probability calculation is available. In particular, an inspection of our plots reveals
that 𝑓3(𝛽, 1.677) is minimized for 𝛽 ≈ 0.978; and for this choice of 𝛽, the probability
term is approximately 0.6205 whereas the error estimate is of order 10−8.

1 close all, clear all;
2 sp = 1e−3; %spacing
3 beta = 0:sp:0.999;
4 L = length(beta);
5 K = 1;
6 alpha = 1.67;
7 %\varphi_count
8 phi_count_2 = 1+binent((1−beta)./2);
9 phi_count_3 = 1+(1−beta)./2 ...

+binent((1−beta)./2)+((1+beta)./2).*binent((1−beta)./(2.*(1+beta)));
10 %probability term
11 mu_2 = zeros(1,2);
12 mu_3 = zeros(1,3); %mean
13 box_low_2 = (−K)*ones(1,2);
14 box_low_3 = (−K)*ones(1,3); %lower limits −K for probability box
15 box_high_3 = K*ones(1,3); %upper limits K for probability box
16 box_high_2 = K*ones(1,2);
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17 f_2 = zeros(1,L);
18 f_3 = zeros(1,L);
19 phi_probs_2 = zeros(1,L);
20 phi_probs_3 = zeros(1,L);
21 for i=1:L
22 phi_probs_2(i) = ...

mvncdf(box_low_2,box_high_2,mu_2,(1−beta(i))*eye(2) + ...
beta(i)*ones(2,2));

23 phi_probs_3(i) = ...
mvncdf(box_low_3,box_high_3,mu_3,(1−beta(i))*eye(3) + ...
beta(i)*ones(3,3)); %evaluate probability

24 f_2(i) = phi_count_2(i) + alpha*log2(phi_probs_2(i));
25 f_3(i) = phi_count_3(i) + alpha*log2(phi_probs_3(i)); ...

%construct f_3
26 end
27 figure
28 title('3−OGP')
29 plot(beta,f_3),
30 hold on
31 plot(beta,f_2,'g')
32 ylabel('$f_3(\beta),f_2(\beta)$','Interpreter','latex');
33 xlabel('$\beta$','Interpreter','latex');
34 legend('f_3','f_2','Zero')
35 RefLine = refline([0,0]);
36 RefLine.Color = 'r';
37 disp(['The minima of f_3 is ',num2str(min(f_3)),'.'])
38

39 figure
40 title('2−OGP')
41 plot(beta,f_2),
42 ylabel('$f_2(\beta)$','Interpreter','latex');
43 xlabel('$\beta$','Interpreter','latex');
44 RefLine = refline([0,0]);
45 RefLine.Color = 'r';
46 disp(['The minima of f_2 is ',num2str(min(f_2)),'.'])
47

48 function ent = binent(x)
49 ent = −x .* log2(x)−(1−x) .* log2(1−x);
50 end
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