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Abstract

A beautiful array of patterns emerges when one fluid displaces another in porous media, a physical
situation prevalent in many clean energy production and storage applications. These patterns can
be reminiscent of dielectric breakdown, diffusion-limited growth of crystals, or percolation clusters
in polymer gelation, depending on the relative affinity of the two fluids to the porous medium (wet-
tability) and the balance of viscous and capillary forces. Examining this rich system at microscopic
and macroscopic scales is at the center of this dissertation.

In Part I, we build computational models to capture macroscopic fluid-fluid displacement pat-
terns in disordered porous media, which helps synthesize decades’ worth of experimental observa-
tions. We draw parallels between electrical circuits and flow in porous media, where resistors model
viscous effects and a combination of batteries and capacitors model capillary forces. This sim-
ple analogy, augmented with wettability-dependent pore-invasion mechanisms, allows capturing the
rich dynamics of pattern formation within a single pore-network model and helps delineate the role
of wettability. Finally, we explore intriguing features of self-organized criticality during fluid-fluid
displacement in disordered porous media.

In Part II, we examine fluid displacement at a scale of a single capillary. We use lubrication
theory to produce precise predictions of film evolution during spin-coating of capillary tubes—a
technique one can use to fabricate capillaries with controlled surface properties. We then study
the spontaneous imbibition of liquids in capillary tubes, where classical imbibition front slows with
time. We propose a simple modification that renders imbibition constant-rate in capillary tubes and
allows tuning of viscous dissipation; we use this system to characterize sources of dissipation during
fluid-fluid displacement. We conclude Part II by revisiting the theory of moving contact lines over
heterogeneous surfaces and rationalizing the transition from stick-slip to steady sliding.

The physical problems we investigate in this dissertation may prove helpful in addressing our cur-
rent environmental challenges by inspiring physics-informed advances in CO2 storage, electrolyzers
and fuel cells, design of sustainable micromechanical devices and self-cleaning surfaces.

Thesis Supervisor: Ruben Juanes
Title: Professor of Civil and Environmental Engineering
Professor of Earth, Atmospheric and Planetary Sciences
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Chapter 1

Introduction

One fluid displacing another inside porous environments is a very rich problem where experiments
often produce compelling visual patterns, theory offers clever approximations and analogies, and
computation allows probing conditions well outside the experimental and analytical reach. Evidence
of that is, hopefully, sprinkled throughout this dissertation.

The first part of my thesis examines fluid-fluid displacement patterns at the scale of hundreds
or thousands of pores. These patterns emerge in many practical applications like CO2 storage
(Szulczewski et al., 2012), fuel cells and electrolyzers (Anderson et al., 2010), porous chemical reactor
beds (Hill, 1952), paper-based medical diagnostic devices (Yetisen et al., 2013), and hydrocarbon
recovery (Lake, 1989; Blunt, 2017).

In Chapter 2, we explore fluid-fluid displacement in a quasi-static setting and present an invasion-
percolation algorithm that accounts for the wettability of the system, which is the relative affinity
of the two fluids to the porous medium. Here, similarly to cellular automata, we define several pore-
scale displacement mechanisms, which determine the overall macroscopic displacement patterns.
The relative frequency of these pore-scale events, and therefore fluid-front morphology, are strongly
linked to the system’s wettability. The resulting model extends the traditional range of invasion-
percolation algorithms to all wettability conditions. This chapter appeared as a research article in
Physical Review Fluids (Primkulov et al., 2018).

In Chapter 3, we extend our fluid-fluid displacement model to arbitrary flow rates. We build an
analogy between flow in porous media and currents in electrical circuits. In particular, we recognize
that fluid-fluid interfaces in pore spaces act analogously to capacitors: they build Laplace pressure
(charge) until pore-invasion events (dielectric breakdown) occur. However, unlike electric circuits,
our analog allows the movement of these capacitors to new locations after a dielectric breakdown.
This approach reproduces the rich physics of fluid-fluid displacement observed in microfluidic exper-
iments. This chapter appeared as a rapid communication in Journal of Fluid Mechanics (Primkulov
et al., 2019).

In Chapter 4, we utilize our model’s low computational cost and add a wettability axis to the
seminal phase diagram of Lenormand (Lenormand et al., 1988). Lenormand’s diagram has histor-
ically been the primary tool for communicating the physics of fluid-fluid displacement in porous
media. The original diagram delineated the displacement dynamics through two dimensionless
groups: (i) the capillary number, or ratio of viscous to capillary forces, and (ii) the ratio of fluid
viscosities. As valuable as the diagram has been for researchers of porous media flow, the practi-
tioners in the field have been aware of wettability-induced deviations from displacement patterns
of the original diagram for as long as the diagram existed (Stokes et al., 1986). The first glance
of Lenormand’s diagram with the wettability axis we show in this chapter (and the corresponding
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paper) systematizes decades of experimental and numerical results on pattern formation during
fluid-fluid displacement in porous media. This chapter appeared as a research article in Journal of
Fluid Mechanics (Primkulov et al., 2021).

In Chapter 5, we conclude the first part of this thesis by exploring the self-organized criticality
(SOC) features of slow capillary-dominated invasion of a strongly wetting fluid. The displacement
evolves through avalanches, where bursts of rapid coating of post clusters are separated by periods
of apparent inactivity of the displacement front. We demonstrate with experiments and numerical
simulations that many SOC features thought to be exclusive to non-wetting displacement carry
over to strongly-wetting conditions, despite their marked differences in pore-scale mechanisms. This
chapter appeared as a research article in Communications Physics (Primkulov et al., 2022).

The second part of the thesis targets the physics of fluid displacement at the scale of a single
pore, conceptualized as a single capillary tube. Here, the intersection of the fluid-fluid interface
with the solid (i.e., moving contact line) offers complex dynamics that are not yet fully understood.
Moving contact lines are relevant to many practical applications like industrial coating of solids
(Scriven, 1988), design of self-cleaning surfaces (Richard & Quéré, 1999; Aussillous & Quéré, 2001),
and fabrication of micro-mechanical devices (Zimmermann et al., 2007).

In Chapter 6, we develop a spin coating technique for capillary tubes. We repurpose a computer
fan as a spin-coating device with the aid of 3D printing. This devices houses capillary tubes partially
filled with a liquid polymer; axisymmetric rotation of the device expels most of the liquid, leaving
a uniform layer of polymer on the inner walls of the tubes. We use theoretical arguments to
accurately predict the film thickness evolution during the spin-coating process, demonstrating that
one can easily tune the coating layer thickness down to a micrometer scale. This chapter appeared
as a research article in Journal of Fluid Mechanics (Primkulov et al., 2020b).

In Chapter 7, we introduce constant-rate spontaneous imbibition in capillary tubes. Exposing
one end of a capillary tube to an oil reservoir results in spontaneous wetting of the tube, where the
fluid front slows down as it gets further into the tube, following 𝑧 ∼ 𝑡1/2 Lucas-Washburn scaling
(Lucas, 1918; Washburn, 1921). One can achieve 𝑧 ∼ 𝑡 scaling instead by placing a high-viscosity
oil slug into the tube and then exposing the same end to reservoir of water. We use this setup to
show that in some cases, most of the energy dissipation occurs very close to the contact line. This
chapter appeared in Physical Review Letters (Primkulov et al., 2020b).

Finally, in Chapter 8, we revisit the theoretical arguments of Raphaël & De Gennes (1989);
Joanny & Robbins (1990) on moving contact lines over heterogeneous surfaces. We extend their
analysis to higher displacement rates, away from the depinning limit. We demonstrate that one
should expect the transition from stick-slip motion to steady sliding of the contact line at high
displacement rates, where the amplitude of contact-line oscillations dampens linearly with velocity
and applied force. We show that the oscillatory motion of contact lines can be responsible for the
majority of energy dissipation during slow fluid-fluid displacement on heterogeneous surfaces with
strong pinning. This chapter has been submitted for publication as a research article.
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Fluid-fluid displacement patterns in
porous media

17



18



Chapter 2

Quasi-static fluid-fluid displacement in
porous media: invasion-percolation
through a wetting transition

This chapter has been published in Primkulov et al. (2018).

2.1 Introduction

Fluid-fluid displacement in porous media is a rich phenomenon, where the interplay between wetta-
bility, pore-scale disorder, viscosity ratio of invading and defending fluids, and magnitude of viscous
forces relative to that of capillary forces (defined by the capillary number, Ca) generates a wide
spectrum of interface patterns. The study of the mechanisms behind these patterns is of relevance to
many practical applications. For instance, in the limit of high capillary numbers, the displacement
of high-viscosity fluid by a low-viscosity fluid develops a morphology akin to diffusion-limited aggre-
gation (Chen & Wilkinson, 1985; Måløy et al., 1985; Paterson, 1984), and hence serves as an analog
system to dielectric breakdown (Niemeyer et al., 1984), electrodeposition (Meakin et al., 1989), and
propagation of forest fires (Conti & Marconi, 2010). Furthermore, both high and low capillary num-
ber displacement regimes have direct practical significance in soil remediation and chemical filters
(Hill, 1952), fuel cell technology (Anderson et al., 2010), carbon sequestration (Cinar et al., 2007),
oil recovery (Lake, 1989), and design of microfluidic devices (Lee et al., 2017).

For a given fluid pair, the wettability of the porous medium plays a fundamental role in defining
the nature of the displacement both at pore (Hoffman, 1975; Levaché & Bartolo, 2014; Zhao et al.,
2018) and macroscopic scales (Stokes et al., 1986; Trojer et al., 2015). Wettability is often defined
through the contact angle 𝜃 between the fluid-fluid interface and the solid. We adopt the convention
that 𝜃 is measured from the invading phase, such that 𝜃 > 90∘ corresponds to drainage, and 𝜃 < 90∘

corresponds to imbibition. In the limit of low capillary number and strong drainage (i.e. strongly
non-wetting invading fluid), the fluid-fluid interface advances through capillary fingering and forms
a jagged interface that tends to trap defending fluid throughout the displacement (Lenormand
et al., 1983; Lenormand & Zarcone, 1985; Lenormand et al., 1988; Chandler et al., 1982). In
weak imbibition (i.e. weakly wetting invading fluid), in contrast, the interface tends to move as a
compact front (Stokes et al., 1986; Trojer et al., 2015; Jung et al., 2016; Singh et al., 2017), where
capillary forces work to flatten the interface through cooperative pore filling (Cieplak & Robbins,
1988, 1990). While the mechanisms of fluid-fluid displacement in drainage are fairly well explored,
fluid-fluid displacement in imbibition continues to challenge our mathematical descriptions.
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Patterned microfluidic devices offer a convenient way to visualize the fluid-fluid displacement
in a controlled and repeatable environment. As a quasi-two-dimensional analog of natural porous
media, these microfluidic devices are typically fabricated by generating a pattern of posts on a solid
surface and confining it between two flat plates, allowing careful control of both pore geometry
and wettability. Early microfluidic experiments (Chen & Wilkinson, 1985; Lenormand & Zarcone,
1985; Lenormand et al., 1988, 1983) explored the interplay between viscous and capillary forces in
drainage and weak imbibition, and their findings are in line with the theory (Saffman & Taylor,
1958; Chuoke et al., 1959; Stokes et al., 1986; Trojer et al., 2015). Only recently has this body of
work been extended to strong imbibition, where new displacement patterns emerge (Zhao et al.,
2016; Odier et al., 2017).

Zhao et al. (2016) conducted a series of viscously unstable experiments on microfluidic devices
with an irregular pattern of circular posts, where water displaced oil radially from the center of
the flow cell at different injection rates and different contact angles between 150∘ (strong drainage)
and 7∘ (strong imbibition). The authors reported a new wetting transition in the strong imbibition
regime (7∘ < 𝜃 < 45∘): flow reverts from compact displacement to a corner-flow regime, where
the invading fluid advances by preferentially coating the corners between the posts and top/bottom
plates of the flow cell. Similar observations were recently reported on a regularly patterned microflu-
idic cell with square posts (Odier et al., 2017). These new findings may have significant implications
for physical modeling of the displacement processes with tunable wetting conditions.

Several computational approaches are available to model pore-scale fluid-fluid displacement.
These include, in decreasing order of fidelity (and required computational power): (Meakin &
Tartakovsky, 2009) (1) molecular dynamic simulations; (2) numerical solutions of the Navier-Stokes
equations with interface and contact-line tracking; (3) lattice or dissipative particle dynamics based
models; and (4) pore-network models. The first three approaches require a detailed description of
the pore geometry, and are not yet practical for obtaining macroscopic invasion patterns. Pore-
network models, on the other hand, rely on a simplified pore geometry and a simplified description
of the flow, and are therefore less computationally demanding (Blunt, 2001). The geometric details
as well as simplifying assumptions of the interface vary widely from one study to another (Holtzman
& Segre, 2015; Holtzman, 2016; Blunt, 1998; Al-Gharbi & Blunt, 2005).

Two particular subclasses of pore-network models are of interest in reproducing the experimental
observations of Zhao et al. (2016) in the limit of very low Ca: invasion-percolation algorithms
(Chandler et al., 1982; Lenormand et al., 1988) and the quasi-static interface tracking method of
Cieplak & Robbins (1988, 1990). Invasion-percolation algorithms are robust, but can only capture
the invading interface morphology in strong drainage. The interface-tracking algorithm of Cieplak
& Robbins (1988, 1990) is applicable to wettabilities from strong drainage to weak imbibition,
although it is susceptible to the biases of user-defined conventions in injection pressure increments
and scanning order of pore invasion mechanisms. Neither method extends to the corner-flow regime
of strong imbibition.

Here, we implement an invasion-percolation algorithm that qualitatively reproduces fluid-fluid
displacement morphologies for all wettabilities, from strong drainage to strong imbibition. By
building on the work of Cieplak & Robbins (1988, 1990), we are able to explicitly calculate the
critical pressures of pore-scale instabilities, including the instability events potentially responsible
for the corner flow regime in strong imbibition (Zhao et al., 2016). This new approach eliminates
the need for user-assigned pressure increments, instead advancing the interface in the manner of
invasion-percolation. Our quasi-static algorithm captures the fluid-fluid displacement in the limit
of very low Ca, where viscous forces can be neglected.

The algorithm was implemented on a two-dimensional flow geometry similar to the one in the
experiments of Zhao et al. (2016). We used the model to capture the wetting transition in strong
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imbibition and explored the sensitivity of the flow pattern to pore-scale heterogeneity in contact
angle, post spacing, and to three-dimensional effects of finite post height.

2.2 Method

Experimental observations of fluid-fluid displacement in different wettability regimes provide an
intuitive way to understand the underlying assumptions behind different models of multiphase flow.

In drainage, the invasion pattern advances by overcoming local capillary entry pressures within
the porous medium (Lenormand & Zarcone, 1985). In the limit of vanishing Ca, viscous dissipation
can be neglected and the invasion process is well captured by the invasion-percolation algorithm
(Lenormand & Bories, 1980; Chandler et al., 1982; Wilkinson & Willemsen, 1983). This approach
replaces the pore space with a network of nodes (pores) and edges (throats). Throats that contain
a fluid-fluid interface are considered active. Every active throat is ranked according to its critical
capillary pressure, which can be calculated from the throat size. The invading fluid moves by
advancing locally into the throat with the lowest critical capillary pressure, resulting in invasion
avalanches and displacement fronts that often loop on themselves and trap clusters of the defending
fluid behind the advancing front.

While the invasion-percolation algorithm is in good agreement with experiments in drainage
(Lenormand & Zarcone, 1985), it fails to reproduce the invading fluid pattern during imbibition.
Here, cooperative pore filling mechanisms make the invading pattern smoother, and invasion pro-
ceeds through compact fronts (Lenormand et al., 1988).

Cieplak & Robbins (1990, 1988) showed that in order to capture cooperative pore filling effects
during imbibition one needs to account for the local pore geometry (Cieplak & Robbins, 1988, 1990).
They approximated the porous medium by placing posts on a regular 2D lattice; every post was
assigned a random radius from a uniform distribution. The interface consisted of a collection of arcs
between the posts. Every arc intersected nearby posts at a prescribed contact angle and curvature
defined by the Laplace pressure ∆𝑝.

Cieplak & Robbins (1988, 1990) introduced three types of instabilities: “burst” (no stable arc
at given ∆𝑝), “touch” (interface touches opposite post), and “overlap” (two neighbouring interfaces
coalesce within the pore). The algorithm moves the fluid-fluid interface at fixed injection pressures
by searching for unstable arcs and replacing them with new stable configurations (pore invasion).
When no unstable arcs are found, the invading fluid pressure is increased to induce further advance.

Unlike the invasion-percolation algorithm, local interface instabilities are sensitive to geometric
configurations of neighbouring arcs, allowing for cooperative pore filling (mostly dominated by touch
and overlap instabilities) during imbibition. Moreover, the algorithm produces results nearly iden-
tical to invasion-percolation algorithm in drainage, where burst instabilities are prevalent(Cieplak
& Robbins, 1990). Thus, the model of Cieplak & Robbins (1988, 1990) extends the description of
quasi-static fluid-fluid displacement in porous media from strong drainage to weak imbibition.

At the same time, Cieplak & Robbins (1988, 1990) acknowledged that the arbitrary sequence
of pressure increments affects the morphology of simulated invasion fronts. Unlike the invasion-
percolation algorithm, where the sequence of local interface advances is determined through global
critical pressure ranking, the Cieplak & Robbins (1988, 1990) model advances unstable arcs in the
order they are discovered by a user-defined search convention. Moreover, the choice of pressure
increments often results in more than one type of instability within the same arc; instabilities are
removed by authors’ convention where touch instabilities are removed first and burst instabilities
are removed last.

We found that by reformulating the original approach of Cieplak & Robbins (1988, 1990), one
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can explicitly calculate critical pressures of all instability events and advance the interface in an
invasion-percolation-like manner. The interface moves based on the ranking of critical pressures that
are calculated from local arc and post geometries. Thus, this new formulation eliminates the need
for arbitrary pressure increments and allows the least stable arcs to advance first. Below we describe
the details of the new formulation followed by the algorithm in the spirit of invasion-percolation.

Consider a set of neighboring posts (FIG. 2-1). On every image, posts are numbered from 1 to 3
(where applicable): left post is 1, right post is 2, and the top post is 3 (FIG. 2-1(b)-(d)). Each post
is defined through its radius, location expressed in Cartesian coordinates, and a contact angle. For
example post 1 has radius 𝑟1, location (𝑥1,𝑦1), and contact angle 𝜃1 measured from the invading
fluid between posts 1 and 2 (FIG. 2-1(a)). Without loss of generality, we rotate and translate the
coordinate system so that points (𝑥1,𝑦1), (𝑥2,𝑦2), (𝑥3,𝑦3) turn into (0,0), (𝑋2,0), (𝑋3,𝑌3).

For the description that follows, we assume that the posts are tall enough that the events
considered in FIG. 2-1(b)-(d) can be formulated in a two-dimensional sense. The validity and
limitations of this assumption are further explored in section 2.3.

Consider an interface of radius of curvature 𝑟𝑝 that meets post 1 at contact angle 𝜃1 (FIG.
2-1(a)). We define 𝑑1 to be the distance from the center of interface curvature to the center of
post 1. Given an expression for value of ∠𝐴𝐶𝑃 , the distance 𝑑1 can be determined from the law
of cosines for △𝐴𝐶𝑃 . Both ∠𝑃𝐶𝑈 and ∠𝑇𝐶𝐴 are equal to 𝜋/2 and ∠𝑈𝐶𝑇 is 𝜋 − 𝜃1. Since
∠𝐴𝐶𝑃 + ∠𝑃𝐶𝑈 + ∠𝑈𝐶𝑇 + ∠𝑇𝐶𝐴 = 2𝜋, then ∠𝐴𝐶𝑃 = 𝜃1. Therefore,

𝑑1(𝑟𝑝, 𝜃1) = 𝐴𝑃 =
√︁
𝑟12 + 𝑟𝑝2 − 2𝑟1𝑟𝑝 cos 𝜃1. (2.1)

Equation (2.1) defines the distance between the center of curvature (𝑋𝑝,𝑌𝑝) and the center of post
1 (0,0). This means that point (𝑋𝑝,𝑌𝑝) lies on a circle concentric with post 1 and radius 𝑑1, where
the interface satisfies the contact angle 𝜃1 and has radius of curvature 𝑟𝑝. All points satisfying this
requirement are shown as a dashed line on FIG. 2-1(a).

A similar construction for an interface intersecting with a second post of radius 𝑟2 and a contact
angle 𝜃2 centered at (𝑋2, 0) defines a second circle centered at post 2. For a given 𝑟𝑝, this second
circle (dashed line FIG. 2-1(a) opening to the right) will share either two, one or zero common
points with the set of potential centers of curvature for the interfaces which stably contact post 1.
FIG. 2-1(a) shows a case where the interface is stable. Considering only the case when the invading
fluid is sourced from below the 𝑋-axis, the stable interface touching both posts will be centered at
a point (𝑋𝑝, 𝑌𝑝) which is determined to simultaneously satisfy

𝑋2
𝑝 + 𝑌 2

𝑝 = 𝑑1(𝑟𝑝, 𝜃1)
2, (2.2a)

(𝑋𝑝 −𝑋2)
2 + 𝑌 2

𝑝 = 𝑑2(𝑟𝑝, 𝜃2)
2, (2.2b)

𝑌𝑝 ≤ 0. (2.2c)

Subtraction of (2.2a) and (2.2b), allows for the direct calculation of 𝑋𝑝 and then 𝑌𝑝 can be
trivially found as the negative root of equation (2.2a). Equation (2.2c) ensures that one selects the
correct root when solving for 𝑌𝑝 (FIG. 2-1(a)).

The equations considered here are simplified significantly by the choice of post placement. For
posts located at generic grid points, the post centers can be simply translated and subsequently
rotated to achieve this configuration. Following calculations in this modified coordinate system the
results can be simply rotated and translated back to the original coordinate system.

We are now ready to define several instability events that determine interface propagation.
Following the work of Cieplak and Robbins (Cieplak & Robbins, 1988, 1990), we consider “burst”,
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Figure 2-1: (a) Invasion front configuration between two posts; (b) Burst event: unstable interface
(red line) advances into the pore; (c) Touch event: interface touches the nearest post; (d) Overlap
event: two fronts (green lines) coalesce on post surface and fill the pore; (e) Corner flow event:
corner meniscus touches and coats the neighbouring post; (f) Capillary bridge event: corner menisci
coalesce mid-post before reaching the next post; (g) Invading front configuration with post IDs:
red, blue, green interfaces correspond to “burst”, “touch”, “overlap” critical interfaces.

“touch”, and “overlap” events, and we additionally introduce a new class of “corner” events. The
order and frequency of these pore-level events ultimately define the shape of the quasi-static invasion
pattern. Below we find the critical Laplace pressures ∆𝑝 (corresponding to radius of curvature 𝑟𝑝
via the Young-Laplace equation, 1/𝑟𝑝 = ∆𝑝/𝛾) at which each event takes place.

2.2.1 Burst event

As the pressure of the invading phase increases, the radius of interface curvature 𝑟𝑝 decreases. This
results in lower values for both 𝑑1 and 𝑑2. As a result, increasing ∆𝑝 reduces the radii of the dashed
lines in FIG. 2-1(a), and the number of their intersection points (solutions for Equation (2.2))
changes from 2 to 1, and eventually 0. This means that there is no longer a stable interface between
posts 1 and 2; this event is referred to as “burst” (see FIG. 2-1(b)). The “burst” event coincides
with the last stable configuration of the interface between two posts at given contact angles 𝜃1 and
𝜃2. This occurs when there is only a single root to Equation (2.2), and also corresponds to the
case when 𝑌𝑝 = 0 (which implies a zero discriminant in the quadratic equation). Introducing this
condition in Equation (2.2) allows finding the critical radius of curvature 𝑟𝑝 that corresponds to
“burst” as a tangential intersection of dashed circles in FIG. 2-1(a):

𝑋2
𝑝 = 𝑑1(𝑟𝑝, 𝜃1)

2, (2.3a)

(𝑋𝑝 −𝑋2)
2 = 𝑑2(𝑟𝑝, 𝜃2)

2. (2.3b)

Equations (2.3) can be rearranged to give a quadratic equation in 𝑟𝑝; with the burst radius
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chosen to yield a positive burst pressure.

2.2.2 Touch event

The “touch” event refers to the configuration depicted in FIG. 2-1(c). Here, the interface tangentially
intersects the third post centered at (𝑋3,𝑌3) and with radius 𝑟3. This configuration can be viewed as
the intersection of black dotted lines and the circle of radius 𝑟𝑝+𝑟3 centered at (𝑋3,𝑌3), represented
by the blue dotted line in FIG. 2-1(c):

𝑋2
𝑝 + 𝑌 2

𝑝 = 𝑑1(𝑟𝑝, 𝜃1)
2, (2.4a)

(𝑋𝑝 −𝑋2)
2 + 𝑌 2

𝑝 = 𝑑2(𝑟𝑝, 𝜃2)
2, (2.4b)

(𝑋𝑝 −𝑋3)
2 + (𝑌𝑝 − 𝑌3)

2 = (𝑟𝑝 + 𝑟3)
2. (2.4c)

Equation (2.4) can be solved analytically for the critical value of 𝑟𝑝 that satisfies the “touch”
condition. Again, the touch condition given by the solution of Equation (2.4) can be reduced to a
quadratic equation in 𝑟𝑝, although the expansion to this form involves some laborious algebra.

2.2.3 Overlap event

Cieplak & Robbins (1988, 1990) defined the “overlap” event as an instability where two advancing
contact lines meet on the surface of a post (see FIG. 2-1(d)). The solution to the overlap radius of
curvature can be written as the intersection of three circles—the interface between posts 1 and 2,
the interface between posts 2 and 3, and the circle corresponding to the surface of post 2:

(𝑋 −𝑋𝑝12)
2 + (𝑌 − 𝑌𝑝12)

2 = 𝑟𝑝
2, (2.5a)

(𝑋 −𝑋𝑝23)
2 + (𝑌 − 𝑌𝑝23)

2 = 𝑟𝑝
2, (2.5b)

(𝑋 −𝑋2)
2 + 𝑌 2 = 𝑟22. (2.5c)

Here (𝑋𝑝12,𝑌𝑝12) and (𝑋𝑝23,𝑌𝑝23), which are also functions of 𝑟𝑝, denote the centers of curvature
for interfaces between posts 1 and 2, and 2 and 3, respectively. Equation (2.5) coupled with solutions
for (𝑋𝑝12,𝑌𝑝12) and (𝑋𝑝23,𝑌𝑝23) can be solved numerically for a critical value of 𝑟𝑝.

The underlying assumption in the above equations is that both interfaces in FIG. 2-1(d) have
the same radius of curvature 𝑟𝑝. In a quasi-static process, as assumed here, the pressure is spatially
uniform in both invading and defending fluids with a Laplace pressure drop between them. Thus,
we can assume that ∆𝑝12 = ∆𝑝23 in overlap event calculations. Therefore, from the Young-Laplace
equation, we have that 𝛾

𝑟𝑝12
= 𝛾

𝑟𝑝23
or 𝑟𝑝12 = 𝑟𝑝23 = 𝑟𝑝.

2.2.4 Drainage overlap event

The original definition of “overlap” event by Cieplak & Robbins (1990) is valid only for 𝜃 ≤ 90∘.
When 𝜃 > 90∘, the two menisci coalesce away from the post, trapping some defending liquid on
the post wall (Lee et al., 2017), as illustrated for 𝜃 = 120∘ in FIG. 2-2(b). This effect has been
largely ignored in pore-level simulations, and a careful experimental investigation was only reported
recently by Lee et al. (2017).

Consider the “drainage overlap” configuration in FIG. 2-2(a), where overlap occurs at 𝜃 > 90∘ and
a distance 𝑎 away from post 2. The solution for this coalescence can be obtained as an intersection
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Figure 2-2: (a) Schematic diagram of menisci coalescence away from the post surface. (b) The
diagram demonstrates drainage overlap at 𝜃 > 90∘: menisci coalesce inside the pore space, leaving
trapped oil on the wall of the invaded post.

of the two menisci and a circle of radius (𝑟2 + 𝑎) concentric with post 2:

(𝑋 −𝑋𝑝12)
2 + (𝑌 − 𝑌𝑝12)

2 = 𝑟𝑝
2, (2.6a)

(𝑋 −𝑋𝑝23)
2 + (𝑌 − 𝑌𝑝23)

2 = 𝑟𝑝
2, (2.6b)

(𝑋 −𝑋2)
2 + 𝑌 2 = (𝑟2 + 𝑎)2. (2.6c)

Noting that (𝑟2 + 𝑎)2 = 𝑑2 − 𝑟2𝑝, where 𝑑2 is analogous to equation (2.1), unknown 𝑎 can be
eliminated from the above expressions. This allows solving “drainage overlap” numerically for the
critical value of 𝑟𝑝.

2.2.5 Corner and capillary bridge events

In addition to the events described above, all of which apart from “overlap” for 𝜃 > 90∘ had al-
ready been identified previously (Cieplak & Robbins, 1988, 1990), Zhao et al. (2016) experimentally
observed a transition from pore invasion in weak imbibition to corner flow in strong imbibition.
In order to capture this transition it is necessary to consider the shape of the fluid-fluid interface
in 3D. When the solid walls have high affinity for the invading liquid, the liquid accumulates in
corners between the posts and the top/bottom plates of the cell, adopting a constant-curvature
configuration shown in FIG. 2-1(e).

In our model, a “corner” event occurs when the interface swells sufficiently to touch a neighboring
post; this allows flow towards the corner of the neighbor post. The distance from the center of the
wetted post to the surface of its nearest neighbor is denoted by 𝑟𝑛. This distance can be estimated
from a force balance on the corner liquid in the vertical direction (de Gennes et al., 2004):

2𝑟1 cos 𝜃1 − 2𝑟𝑛 sin 𝜃1 + (𝑟2𝑛 − 𝑟21)∆𝑝/𝛾 = 0. (2.7)

Equation (2.7) can be used to determine the critical pressure differential across the interface
that is required for a “corner” event for every post on the invasion front. This equation is valid
when the height of the posts is significantly taller than the spacing between the posts.

When the post height is comparable to the post spacing, the top and bottom corner menisci
might intersect in the middle of the post before a corner event. This results in the coalescence of the
two interfaces, and invading liquid coats the post in the shape of a capillary bridge (FIG. 2-1(f)).
In this case, we use the constant interface curvature equation shown in Appendix A.1 to find the
pressure at which mid-post coalescence takes place. A more detailed discussion of the corner liquid
interface shape and validity of Equation (2.7) is given in Appendix A.1.
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2.2.6 Invasion algorithm

The closest analog to the invasion algorithm presented here is the invasion-percolation method
(Wilkinson & Willemsen, 1983; Lenormand & Bories, 1980; Chandler et al., 1982), where the invasion
front advances by overcoming threshold pressures associated with pore throats. At every step, a
pore with the lowest threshold pressure gets invaded first; the interface is updated and the algorithm
proceeds to the next invasion step. The simplicity of invasion-percolation leaves very little room for
misinterpretation, but it has traditionally been applied only in strong drainage.

The quasi-static invasion of the fluid-fluid interface is governed entirely by the critical pressures of
“burst”, “touch”, “overlap”, and “corner” events. To illustrate how the pore-level threshold pressures
combine to determine the evolution of the invasion front, consider the initial configuration in FIG.
2-1(g). This initial invasion front is obtained by connecting the innermost posts, a procedure which
does not necessarily produce a stable front. Here, every post has an identification number.

We calculate the critical invasion pressures for pore-scale events by solving Equations (2.3)–(2.7)
for every post on the invasion front. To advance the invading fluid, we traverse the invasion front
and select the post with the smallest critical invasion pressure ∆𝑝 (e.g., a “touch” instability for the
interface at post 5 in FIG. 2-1(g)).

The manner in which the invasion front changes following an event depends on the type of
instability that takes place. If a “burst” or “touch” instability occurs, the nearest post to the
interface is added to invasion front (FIG. 2-1(b)-(c)). If the least stable event is “overlap”, the post
where the contact lines meet is removed from the invasion front.

Finally, if a “corner” flow event occurs, a newly captured post is added to the list of corner
invasion posts. We keep track of this list separately from all other events because the manner in
which corner menisci advance is distinctly different. As we show later, this leads to competition
between corner invasion and cooperative pore filling invasion at some contact angles, leading to
the transition in pore-level displacement mechanism observed by Zhao et al. (2016). We assume
that cooperative pore filling front posts are also coated in their corners, so the corner list is at
least as long as the other list; an assumption that is reasonable for the quasi-static description we
employ here, but which will likely be inaccurate at very high capillary numbers, when viscous forces
dominate and films of the defending fluid are left behind.

By following these simple rules, one can capture the complexity of invasion patterns and their
relation to substrate wettability. Although this method was built with the framework initially
proposed by Cieplak & Robbins (1990) in mind, there are several features of our approach that are
important to note.

Firstly, the evolution of the interface in the algorithm of Cieplak & Robbins (1990) was somewhat
sensitive to the arbitrary selection of pressure increments and the order in which the invasion
mechanisms were scanned. In the Cieplak & Robbins (1990) study, after each pressure increment,
every interface was scanned for “burst”, “touch”, and “overlap” in sequence, and an unstable interface
was allowed a single step forward. This means that the natural order of the instability events could be
disturbed with a poor choice of pressure increments or scanning order; a shortcoming acknowledged
by the authors (Cieplak & Robbins, 1988, 1990). In contrast, our algorithm always advances the
least stable interface within the invasion front, therefore eliminating arbitrariness.

Secondly, by maintaining the list of critical pressures, new computations only need to be per-
formed in the neighborhood of newly invaded pores. This feature may prove to be especially useful
should the algorithm be extended to a dynamic invasion front (i.e. when taking into consideration
the pressure changes associated with viscous forces during the motion of the invasion front as in
Holtzman & Segre (2015)).

Finally, within the current framework, we can easily assign unique contact angles to individual
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Figure 2-3: Generated pore geometry along with post diameter and pore throat size histograms.
Posts were placed on irregular triangular lattice generated with MATLAB’s pdemesh, and post radii
were assigned to 45% of the smallest connected edge.

posts. We utilize this feature to generate different realizations of the same invasion experiment. That
is, for every realization, we assign a random contact angle for every post from a narrow distribution
centered around a global mean. This brings us closer to experimental conditions, where small local
deviations from the average contact angle of the substrate exist due to material impurities and
inhomogeneity from the fabrication process.

2.3 Results and discussion

We use the model described in the previous section to address the following objectives: (1) we
test whether our method is able to fully capture the invasion-pattern morphology through the
wetting transition from strong drainage to strong imbibition; (2) we explore the sensitivity of the
wetting transition to local perturbations in contact angles through pore-level event statistics and the
macroscopic fractal dimension; (3) we study the links between pore spacing and mechanisms of pore-
level displacement; (4) finally, we explore the limits of our model by introducing three-dimensional
effects with finite post heights within the flow geometry.

The baseline pore geometry used in this work was generated in a similar manner to Zhao et al.
(2016). MATLAB’s pdemesh was used to generate a circular Hele-Shaw cell configuration with
diameter of 15cm. Centers of the posts were placed at the nodes of the generated irregular mesh.
Then the radius of each individual post was assigned to 45% of the smallest edge at a corresponding
node. The final geometry of posts and the histograms of the resulting post radii and throat sizes
are shown in FIG. 2-3.

2.3.1 Invasion front morphology through the wetting transition

We simulated radial invasion of water into the oil-filled microfluidic cell described above, with
substrate contact angles between 160∘ (strong drainage) and 10∘ (strong imbibition). Pore invasion
simulations in FIG. 2-4 demonstrate that the morphology of the invasion pattern depends strongly
on the wettability of the substrate. In particular, the invasion pattern becomes more compact as
the scenario changes from strong drainage (𝜃 = 160∘) to weak imbibition (𝜃 = 45∘), and this is
accompanied with a reduction in the amount of trapped oil behind the invasion front. In strong
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Figure 2-4: Immiscible fluid invasion simulation results: algorithm presented in section 2.2 covers
the full range of pore wettabilities, from strong drainage (𝜃 = 160∘) to strong imbibition (𝜃 = 10∘).
Dark blue regions represent fully invaded pores; light blue regions represent partially invaded pores
with coated post corners. We include video files of the invasion process at different wettabilities in
supplementary materials.

imbibition, the invading fluid starts to preferentially accumulate in the corners formed by the posts
with the top and bottom plates. This results in an invasion mechanism that competes with “burst”,
“touch”, and “overlap” events.

Consider a single post with invading liquid accumulating in its corners with top/bottom plates.
As the pressure of the invading fluid increases, the size of the “corner” meniscus increases, and at
some critical pressure the liquid extends far enough to reach the post’s closest neighbour. At this
point, the invading liquid flows into the corner of the next post. Here, invasion proceeds akin to
invasion-percolation, albeit on a dual network, where the sites are the posts and the links are the
edges of the corresponding Delaunay tesselation. This mode of invasion leads to fingering patterns,
in contrast with the compact invasion characteristic of weak imbibition. The pattern at 𝜃 = 40∘

in FIG. 2-4 is particularly noteworthy: here, frequencies of cooperative pore filling and corner flow
events are comparable, and the invasion front advances in a mixed regime.

More generally, the invading front morphology in FIG. 2-4 can be classified into three categories:
(1) invasion-percolation in strong drainage (mostly “burst” events, 𝜃 = 160∘), (2) cooperative pore
filling in weak imbibition (mostly “touch” and “overlap” events, 𝜃 = 45∘), (3) and “post chaining” due
to “corner flow” or “capillary bridge” events in strong imbibition (𝜃 = 10∘). The first two categories
take place at contact angles between 160∘ and 45∘, and they are very much in line with the quasi-
static simulations of Cieplak & Robbins (1988, 1990). The latter category was experimentally
observed only recently(Zhao et al., 2016).

Furthermore, we find that the finger width measurements (FIG. A-5) of the emerging patterns
are in line with experimental observations (Stokes et al., 1986; Trojer et al., 2015; Zhao et al.,
2016) and numerical predictions (Cieplak & Robbins, 1988, 1990). In strong drainage, the invading
patterns have finger width comparable to the size of a typical pore. When the flow is dominated
by cooperative pore filling events, the finger width diverges to a size of about 18 pores. Finally, the
finger width reduces to a fraction of a pore size in corner flow dominated regime. We include the
detailed discussion on finger width measurements in Appendix A.3, and we include video files of
the invasion process at different wettabilities in supplementary materials.

2.3.2 Sensitivity of macroscopic invasion to local contact angle perturbations

Any real substrate is bound to have imperfections that perturb local contact angles from the global
mean. In the context of the experiments by Zhao et al. (2016), local imperfections in contact angle
could arise from dust deposition on the substrate during fabrication of the microfluidic cell, and one
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Figure 2-5: Cooperative pore filling and fractal dimension plots. Invasion patterns for different
realizations at each fixed global contact angle. As the system moves from strong drainage (𝜃 = 160∘)
to weak imbibition (𝜃 = 45∘), the percentage of cooperative pore-filling events gradually increases.
The transition from weak to strong imbibition is marked with a sharp drop in both fraction of
cooperative pore filling events and fractal dimension.

typically takes a great deal of care in minimizing these effects.
In practice, no two invasion tests look exactly the same, even when conducted following the same

experimental protocol. However, while different realizations of the same experimental conditions
can be expected to produce non-identical invasion patterns, those patterns should possess a common
quality. This raises an interesting question of quantifying the similarity of the invasion patterns.

We mimic local imperfections in contact angle by assigning unique contact angles to every post
in the flow geometry. In particular, we select the contact angles from a uniform distribution with 2∘

range centered around the global mean. FIG. 2-5 presents the summary from multiple realizations.
Every “experiment” was repeated four times for contact angles between 160∘ and 10∘, producing
four different realizations for each set of invasion conditions.

The degree of similarity of the resulting invasion patterns was assessed by means of two metrics:
(1) the percentage of cooperative pore filling events (“touch” and “overlap”), and (2) the fractal
dimension of the invasion pattern. The fractal dimension was calculated using the box counting
method (Kenkel & Walker, 1996; Iannaccone & Khokha, 1996). The details of the box counting
calculations are included in Appendix A.2.

The results in FIG. 2-5 demonstrate that the percentage of cooperative pore filling events is a
robust classifying metric for the invasion shapes; it exhibits negligible variability among realizations.
As the contact angle changes from 160∘ to 45∘, “touch” and “overlap” events become dominant. At
contact angles below 45∘, “corner flow” events take over.
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In contrast, the fractal dimension shows a higher variability from one realization to another, and
here we can appreciate the difference in invasion shapes quantitatively. For example, consider the
two realizations with 𝜃 = 84∘ in FIG. 2-5. At a glance, the two invasion patterns look similar, but
there are subtle differences in the invaded regions and clusters of trapped oil. The fractal dimension
reflects this difference, resulting in appreciable scatter of points at 𝜃 = 84∘ in FIG. 2-5.

The fractal dimension data reported in FIG. 2-5 is computed with box counting method, and
shows reasonable values for all flow regimes. The mean fractal dimension for invasion-percolation
is 1.83; for cooperative pore filling is between 1.83 and 1.96; and in the corner flow regime is 1.65.

Overall, we were able to mimic the simulation of the same experimental conditions with local
imperfections in the wetting properties of the substrate. While every simulation produces a “unique”
pattern, each pattern falls into one of the shape categories (invasion-percolation, cooperative filling,
corner flow) based on the percentage of cooperative pore filling events plot.

2.3.3 Influence of drainage overlap and post spacing on cooperative pore filling

Consider the schematic diagrams of “drainage overlap” and the original “overlap” events in FIG.
2-6(a). During the invasion process, the “drainage overlap” always precedes the original “overlap”
event of Cieplak and Robbins (Cieplak & Robbins, 1988, 1990) and thus corresponds to a lower
critical pressure. Since we advance the invasion front into pores with lowest critical pressures, by
overestimating the critical pressures of “overlap” events, one would erroneously advance the invasion
front through spurious “burst” instabilities. This is especially likely to happen when the spacing
between the posts is large. We examine the significance of “drainage overlap” by increasing the
spacing between posts in the original pore geometry by a factor 𝜆 > 1.

FIG. 2-6(b) shows that by considering “drainage overlap”, we recover a considerable number of
cooperative pore filling events otherwise lost if one follows the original definition of “overlap” event
of Cieplak and Robbins (Cieplak & Robbins, 1988, 1990). Simulations with “drainage overlap” result
in about 30% cooperative pore filling event ratio at 𝜃 = 160∘ for 𝜆 = 4, while the original “overlap”
produces no cooperative filling events at 𝜃 = 160∘ for all 𝜆.

One can intuitively understand why larger spacing between posts increases the frequency of
cooperative pore filling events by examining two posts and a fluid-fluid interface between them at
𝜆 = 1 and 𝜆 = 4 (FIG. 2-6(c)). In drainage, as the pressure of the invading fluid increases, the
interface approaches its “burst” configuration. When the spacing between the posts is small (𝜆 = 1),
the fluid-fluid interface remains mainly within the gap between the two posts. In contrast, when the
spacing is wide (𝜆 = 4), the interface extrudes significantly away from the gap between two posts
before reaching the “burst” configuration. As a result, this interface is more likely to encounter
— and coalesce with — the neighboring fluid interfaces. In the extreme limit, when 𝜆 ≫ 1, we
expect the fluid front to advance mainly through cooperative pore filling via “drainage overlap”
events, even in strong drainage. Therefore, the “drainage overlap” presented in section II is crucial
for the validity of the quasi-static invasion model on a wide range of pore geometries, especially in
simulating multiphase flow through highly porous materials such as low-density micropillar arrays
(Jung et al., 2016) or fibrous media (Peek & Mclean, 1934; Thompson, 2002; Calhoun & Mortensen,
1992).

The “drainage overlap” events (see section II) result in trapping of the defending liquid on the
surfaces of the posts at 𝜃 > 90∘ (FIG. 2(b)). Furthermore, the earlier onset of cooperative pore
filling due to 𝜆 changes the amount and the manner in which the defending fluid is trapped behind
the invasion front. Trapping of the defending liquid is an interesting problem on its own, but it is
not the focus of this work.
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Figure 2-6: (a) Schematic diagrams of “drainage overlap” and “overlap” event of Cieplak and
Robbins (Cieplak & Robbins, 1988, 1990). (b) Percentage of cooperative pore filling events for
posts spaced out by a factor of 𝜆 from the original post geometry. The colored circles represent
simulations with “drainage overlap” considered; solid lines represent simulations with the original
“overlap” definition of Cieplak and Robbins (Cieplak & Robbins, 1988, 1990). (c) Schematic diagram
of post spacing and fluid-fluid interface.

2.3.4 Three-dimensional effects: out-of-plane curvature

In the simulations described so far, we neglected the out of plane curvature contributions in the
Young-Laplace equation when calculating critical pressures of “burst”, “touch” and “overlap” events
in section 2.2, akin to the simulations of Cieplak & Robbins (1988, 1990). The ascribed correction
to the critical pressures is that Δ𝑝

𝛾 = 1
𝑟𝑝

is replaced by Δ𝑝
𝛾 = 1

𝑟𝑝
− 2 cos 𝜃

ℎ for “burst”, “touch”, and
“overlap” events.

As the height of the posts decreases, the relative magnitudes of the critical pressures change.
This, in turn, alters the final patterns of the invasion fronts (FIG. 2-7). As the post heights approach
100𝜇𝑚, the critical pressures of “burst”, “touch”, “overlap” events become lower than critical pressures
of “corner” and “capillary bridge” flow events, leading to a dominance of cooperative pore filling at
low contact angles. However, in reality, Zhao et al. (2016) observed corner flow dominated regime
at 𝜃 = 7∘.

This discrepancy between the experiment and our quasi-static simulations can be due to several
factors. Firstly, this out of plane curvature adjustment is rather crude, and was only implemented
to test the limits of our 2D model. A full three-dimensional consideration of the invasion would be
more accurate, although the formulation would also be significantly more complex. Secondly, and
perhaps more importantly, we have likely overestimated the critical pressures of “corner” events.
This can be appreciated from a close examination of invasion progression at strong imbibition in
the experiments of Zhao et al. (2016). There, on average, corner menisci appeared to grow only up
to about the middle of pore throats, at which point the neighbouring posts were coated. In our
model, the critical pressures of corner flow events were calculated assuming the full growth of the
corner meniscus across the throat, which results in higher critical pressures. Indeed, imposing the
half-throat rule in our model, produces a transition to corner flow at around 𝜃 = 22∘. This earlier
coating of the posts could be due to the establishment of a conductive film ahead of the corner
meniscus that was not visible in the experimental images. Indeed, the fluid invasion through thin
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Figure 2-7: Figure shows how post heights alter the shapes of the invasion fronts: the onset of the
corner flow dominated regime is heavily influenced by the out-of-plane curvature correction of the
“burst”, “touch”, and “overlap” instabilities. The magnitude of the correction is controlled by the
height of the posts. Invasion fronts on the right are plotted for different ℎ at 𝜃 = 10∘.

film flow in strong imbibition and accumulation of invading fluid in the corners was also observed
by Odier et al. (2017). Resolving the detailed dynamics of post bridging in the strong imbibition
regime warrants further experimental and theoretical investigations.

Furthermore, solid surface roughness in realistic 3D rock geometries may provide continuity to
the wetting layers. In the presence of strong surface roughness, growth of the corner menisci would
still dominate in strong imbibition, but the morphology of the invading pattern would likely be
controlled by the heterogeneity in surface roughness rather than the spacing between the posts.
While the considerations of roughness and film flow in realistic 3D geometries are outside the scope
of this work, they are, however, potentially important mechanisms in strong imbibition.

2.4 Conclusions

Overall, our approach to immiscible fluid invasion in disordered micropillar arrays can be viewed as
an extension of the invasion-percolation algorithm to include wettability through critical invasion
pressures for cooperative filling and corner flow events. This approach eliminates the need for (and
thus the sensitivity to) arbitrary increments in the invading pressures and scanning order of the
interface for instability events observed in the earlier work (Cieplak & Robbins, 1988, 1990). Our
algorithm also allows assigning a unique contact angle to every post, to study the sensitivity of the
invasion patterns to local wettability variations.

The invasion model presented here was coded into an efficient simulation algorithm, making it
an attractive starting point for dynamic pore invasion simulations. A natural way of extending
this algorithm is through incorporating viscous forces with a coupled pore-network model (Jain &
Juanes, 2009; Holtzman & Juanes, 2010; Holtzman & Segre, 2015).

We have tested the invasion model by comparing the simulation outputs with the experiments
of Zhao et al. (2016). Our quasi-static model was able to capture the nature of the invasion
fronts at low capillary numbers for the full range of substrate wettabilities, including the transition
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from invasion-percolation to cooperative filling to corner flow as a function of contact angle. This
can have important implications in enhanced oil recovery, carbon sequestration, and microfluidic
applications. For example, in petroleum production, a more compact invasion pattern is preferred
when displacing oil from the reservoir by water injection. In some instances of reactive transport
in microfluidic applications, however, one might want to induce the fingering invasion to maximize
the interface area between invading and defending liquids.

Fluid injection can result in localized redistribution of stress loads within porous media accom-
panied with dilation of the pore space (Jain & Juanes, 2009; Holtzman & Juanes, 2010). Some
of the recent experimental observations of pore-scale poroelasticity include localized fluid-induced
deformation of hydrogel packs(MacMinn et al., 2015) and glass bead pack deformation caused by
immiscible liquid infiltration(Dalbe & Juanes, 2018; Holtzman et al., 2012). The dynamic extension
of the model presented here could be further extended to include pore deformations due to changes
in effective stress under different wettability conditions, which could capture the potential interplay
between pore wettability and deformation during fluid-fluid displacement.
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Chapter 3

Signatures of fluid-fluid displacement in
porous media: wettability, patterns, and
pressures

This chapter has been published in Primkulov et al. (2019).

3.1 Introduction

A beautiful array of flow patterns arises when a low-viscosity fluid displaces a more-viscous fluid
in a porous medium. The problem has been extensively examined through laboratory experiments,
as well as numerical simulations and theoretical models (Saffman & Taylor, 1958; Bensimon et al.,
1986; Homsy, 1987; Paterson, 1981; Tryggvason & Aref, 1983; Nittmann et al., 1985; Kadanoff, 1985;
Arnéodo et al., 1989; Li et al., 2009; Bischofberger et al., 2015; Chen & Wilkinson, 1985; Måløy et al.,
1985; Chen, 1987; Fernández et al., 1990). The dynamics of such displacement can be characterized
by two dimensionless groups: the ratio of viscous to capillary forces, or the capillary number (Ca),
and the ratio of defending to invading fluid viscosities, or viscosity contrast (𝑀). For high Ca, the
resulting displacement patterns are reminiscent of diffusion limited aggregation (Witten et al., 1981;
Daccord et al., 1986; Meakin et al., 1989; Niemeyer et al., 1984; Conti & Marconi, 2010). For low
Ca, the displacement dynamics becomes more intricate, and the emerging patterns display a strong
dependence on the pore geometry (Lenormand & Zarcone, 1985; Lenormand et al., 1983, 1988;
Fernandez et al., 1991; Måløy et al., 1992; Furuberg et al., 1996; Ferer et al., 2004; Toussaint et al.,
2005; Holtzman et al., 2012) and the wettability of the medium, that is, the chemical affinity of the
solid for each fluid (Stokes et al., 1986; Trojer et al., 2015; Zhao et al., 2016; Odier et al., 2017).
In particular, an intermittent injection pressure signal emerges in the limit of low Ca (Furuberg
et al., 1996; Måløy et al., 1992). Given that in most practical applications visualization of the
flow in porous media is not possible, the pressure signal is often the only source of information.
Surprisingly, no modeling approach to date has been able to capture the injection pressure signal
across different Ca and pore wettabilities. Here, we develop a new pore-network model that fills
this gap, and we use it to explore the transition from viscous-dominated to capillary-dominated flow
regimes by examining the connections among fluid morphology and pressure signal.

Pore network models of flow in porous media can be broadly classified into two groups: quasi-
static and dynamic models (Blunt, 2001; Meakin & Tartakovsky, 2009; Joekar-Niasar & Has-
sanizadeh, 2012). Quasi-static models neglect viscous effects and advance the invading fluid through
either invasion-percolation (Chandler et al., 1982; Lenormand et al., 1988) or event-based algorithms

35



Figure 3-1: (a) Schematic diagram of in-plane and out-of-plane curvatures within the flow cell.
Out-of-plane curvature represents the overall affinity of the porous medium to the invading fluid. It
is determined by 𝜃 and is analogous to a battery. In-plane curvature changes as the local interface
evolves while pinned to a pore throat, and it is analogous to a capacitor. (b) Evolution of burst,
touch, and overlap events. (c) Temporal profiles of the injection pressure bear close resemblance
to similar experiments in the drainage regime at low (orange) and high (blue) Ca (Furuberg et al.,
1996; Zhao et al., 2016).

(Cieplak & Robbins, 1990, 1988). Although a quasi-static approach can be effective in reproduc-
ing experimental invasion patterns at low Ca (Primkulov et al., 2018), it is unable to capture the
temporal evolution of the injection pressure signal. Dynamic network models approximate the flow
channels with a network of interconnected capillary tubes. Viscous pressure drops are calculated
by assuming fully developed viscous flow within each tube. Local capillary pressures within the
network are calculated from either the interface position within pore throats (Aker et al., 1998b;
Gjennestad et al., 2018) or through mass balance of the two phases in pore bodies (Al-Gharbi &
Blunt, 2005; Joekar-Niasar et al., 2010). Another notable class of models is invasion-percolation in a
gradient: a percolation model designed to incorporate buoyancy forces (Wilkinson, 1984; Birovljev
et al., 1991; Frette et al., 1992; Meakin et al., 1992), and then extended to model (linear) pressure
gradients (Yortsos et al., 1997). None of the invasion-percolation in a gradient studies, however,
incorporate any notion of wettability (they all deal exclusively with strong drainage), pore-scale
dynamics, or capillary-number-dependent pressure fluctuations.

In fact, most existing pore-network models, both quasi-static and dynamic, are limited to strong
drainage (or injection of non-wetting fluid) and do not include wettability-induced cooperative pore
filling (Joekar-Niasar et al., 2010; Aker et al., 1998b; Al-Gharbi & Blunt, 2005; Holtzman & Juanes,
2010). The only dynamic pore network model to date that includes cooperative pore filling events
(Holtzman & Segre, 2015) does so by combining pore-level invasion events of Cieplak & Robbins
(1988, 1990) with viscous relaxation through the pore-network. This viscous-relaxation assumption
is at odds with the physics of interface motion in the capillary-dominated regime and, as a result,
this model is unable to capture the injection pressure signal observed experimentally in the limit
of intermediate and low Ca (Zhao et al., 2016; Furuberg et al., 1996; Måløy et al., 1992). We
present in §3.2 a consistent framework that combines viscous, capillary, and wettability effects in a
single dynamic network model that builds a direct analogy between local fluid-fluid interfaces and
electric capacitors. Our model reproduces, quantitatively, the fluid-fluid displacement patterns for
a wide range of Ca and wettabilities (§3.3), and points to a surprising and heretofore unrecognized
transition in the pressure fluctuations between the low and high Ca flow regimes (§3.4).
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3.2 Moving capacitor model

Consider a moving fluid-fluid interface in a micromodel (FIG 3-1a). Neglecting dynamic-contact-
angle effects (Hoffman, 1975) for simplicity, the shape of the meniscus between posts is uniquely
defined by the combination of Laplace pressure and substrate wettability defined through a contact
angle 𝜃 at which the interface meets post surfaces (Cieplak & Robbins, 1988, 1990). As the interface
advances, the Laplace pressure increases until the interface encounters a burst, touch or overlap
event, as defined by Cieplak & Robbins (1988, 1990). The burst event is equivalent to a Haines
jump (Haines, 1930; Berg et al., 2013), while the touch and overlap events take place when the
local interface either touches the nearest opposing post or coalesces with a neighboring interface
respectively [FIG. 3-1(b)]. If the interface becomes unstable due to burst or touch, a single pore
is invaded and two new interfaces appear. In the case of an overlap event, two (in some cases
more) pores are filled simultaneously. These pore-level events are an integral part of the model and,
indeed, this sensitivity is what permits capturing wettability effects within the model. The events
evolve differently at different wettabilities—burst events are most frequent in drainage, while touch
and overlap are most frequent in imbibition (or injection of wetting fluid) (Cieplak & Robbins, 1990;
Primkulov et al., 2018).

We can explicitly calculate the critical Laplace pressure ∆𝑝crit corresponding to all events from
the values of the contact angle, radii and coordinates of the posts (Primkulov et al., 2018), and
thus can use the analogy between electric capacitors and fluid-fluid interfaces in constructing our
network model. A capacitor represents the pinning of the fluid–fluid interface at a pore throat,
and is active in both drainage and imbibition: the interface moves only when a local depinning
threshold (∆𝑝crit) is reached, and the fluid front moves to restart the pinning–depinning cycle from
zero in-plane curvature [Fig. 1(b)]. This progression of the in-plane curvature in our model was
motivated by the work of Cieplak and Robbins (Cieplak & Robbins, 1988, 1990) [see also (Rabbani
et al., 2018)] and experiments on the progression of the in-plane curvature between the Hele-Shaw
cell posts (Jung et al., 2016; Lee et al., 2017). This is what allows capturing pressure fluctuations
in the limit of low Ca [Fig. 1(c)]. The battery analogy represents the overall affinity of the porous
medium to the invading fluid, set by the out-of-plane curvature at the fluid front. The out-of-plane
curvature is fixed throughout a single simulation, and determined by the value of the contact angle
(given the constant gap between the flow-cell plates): it is positive in drainage and negative in
imbibition [Fig. 1(a)]. To complete the analogy between an electric circuit and a pore network,
one can think of a network of resistors being responsible for viscous effects, capacitors and batteries
responsible for capillary effects, and local rules for circuit rearrangements responsible for wettability
effects [FIG. 3-1(b)].

Therefore, the pressure drop across an edge of the network containing a fluid-fluid interface has
three components: (i) pressure drop due to viscous dissipation, (ii) Laplace pressure drop due to
in-plane curvature of the interface, and (iii) Laplace pressure drop due to out-of-plane curvature
of the interface. We calculate the viscous pressure drop assuming Poiseuille flow in a capillary
tube, which is analogous to the potential drop across a resistor. The out-of-plane component of the

Laplace pressure can be expressed as either a positive or negative pressure jump (∆𝑝⊥ = −2𝛾 cos 𝜃

ℎ
,

where 𝛾 is the interfacial tension, and ℎ is the cell height) depending on the substrate wettability;
this is analogous to a battery in an electric circuit. The Laplace pressure due to in-plane curvature
of the interface is analogous to a capacitor which allows flow until it reaches the critical pressure
(∆𝑝crit = min{𝑝burst, 𝑝touch, 𝑝overlap}). Since we can calculate ∆𝑝crit for all edges at the invading
fluid front, we use a linear estimate of the in-plane Laplace pressure drops within our network
(Φ(𝑡)∆𝑝crit), where Φ(𝑡) stands for the filling ratio of a given throat. When Φ(𝑡) → 0, the in-
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Figure 3-2: (a) Phase diagram of the invading fluid morphology at breakthrough; (b) Fractal
dimension, computed by means of the box-counting method; (c) Number of fingers per unit area
of injected fluid, which exhibits a maximum near 𝜃 = 90∘; (d) Normalized finger width (𝑤/𝑎)
at different Ca and wettabilities measured at breakthrough. Finger width increases as the posts
become more wetting to the invading fluid.

plane Laplace pressure is negligible. When Φ(𝑡) → 1, the throat is nearly full and has a critical
in-plane Laplace pressure ∆𝑝crit. This analogy between local interfaces and capacitors allows us
to incorporate local changes in Laplace pressure due to filling of pore throats. Once a node in the
network reaches its maximal potential, which coincides with its filling capacity, it becomes unstable
and the interface advances. We assume that the in-plane and out-of-plane Laplace pressures are
decoupled, and this is done to maintain the simplicity of the overall model. With this assumption,
one can run the model for either ℎ

𝑎 ≫ 1 or ℎ
𝑎 ≪ 1, where these conditions would result in negligible

or dominant contributions of the out-of-plane curvature in the model, respectively.
The topology of the pore network is captured through the incidence matrix 𝐴 by examining the

adjacency of the pores (Strang, 2007). We number all pores and adopt the convention that pore
connections are oriented in the direction of increasing pore numbers. Rows of 𝐴 represent edges,
and columns of 𝐴 represent nodes of the network. We also make use of the diagonal conductance
matrix 𝐶, whose elements are hydraulic conductivities of the network edges. The elements of this
matrix can be calculated as 𝑐 = 𝜋𝑟4

8𝜇𝐿 , assuming fully developed Hagen-Poiseuille flow through a
rectangular tube with hydraulic radius 𝑟 and length 𝐿, where 𝜇 is the effective viscosity of the fluid
in the channel.

The pressure difference across the network edges can be calculated as 𝑒 = 𝑏−𝐴𝑝, where 𝑏 and 𝑝
stand for pressure change due to out-of-plane contribution to Laplace pressure (batteries) and node
pressures, respectively. The network flow rates can be calculated from this pressure difference as
𝑞 = 𝐶𝑒. At the same time, flow rates must obey mass conservation, 𝐴𝑇 𝑞 = 𝑓 , where 𝑓 stands for
flow sources at the nodes. After eliminating 𝑒, the flow through the network without the in-plane
contribution to Laplace pressure (capacitors) is obtained through the following system of equations:

𝑞 = 𝐶(𝑏−𝐴𝑝), (3.1)

𝐴𝑇 𝑞 = 𝑓. (3.2)

We set constant flow boundary conditions at the inlet pores (at the center of the flow cell) and
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constant pressure boundary conditions at the outlet pores (at the edges of the flow cell). We note
that 𝐴𝑝 can be decomposed into components of nodes with prescribed pressure and all other nodes
(𝐴𝑝 = 𝐴outer𝑝outer +𝐴𝑝), and therefore Eqs. (3.1)-(3.2) transform to:[︃

𝐶−1 𝐴

𝐴𝑇 0

]︃ [︂
𝑞
𝑝

]︂
=

[︂
𝑏−𝐴outer𝑝outer

𝑓

]︂
=

[︂
�̃�

𝑓

]︂
. (3.3)

The solution to (3.3) provides values of both edge flow rates and node pressures for given boundary
conditions.

Finally, we incorporate the pressure drop due to in-plane Laplace pressure (capacitors) within
the network. Taking into account the direction of the edges (an array 𝑑(𝑡) consisting of 1 and −1),
the total pressure drop across the network edges can be written as 𝑒 = �̃�−𝐴𝑝− 𝑑(𝑡)Φ(𝑡)∆𝑝crit. In
other words, the in-plane Laplace pressure is the product of the filling ratio and the critical pressure
from the quasi-static model (Primkulov et al., 2018). Therefore, the equations governing two-phase
flow through the network can be written as:[︃

𝐶−1(𝑡) 𝐴

𝐴𝑇 0

]︃ [︂
𝑞(𝑡)
𝑝(𝑡)

]︂
=

[︂
�̃�− 𝑑(𝑡)Φ(𝑡)∆𝑝crit

𝑓

]︂
. (3.4)

We now discuss the mechanics of the time-stepping in our two-phase flow model. After we
initialize the interface locations within the network, we use an adaptive forward Euler time stepping
to update the filling ratios of the network edges at the interface Φ(𝑡). We ensure that only a fraction
of the edge total volume at the interface flows within the time-step (Aker et al., 1998b). After every
time-step, we use Φ(𝑡) to update the conductance matrix 𝐶(𝑡) and resolve the flow through Eq. (3.4)
with updated pressure drops across the fluid-fluid front.

In the spirit of the fundamental contributions from Cieplak and Robbins (Cieplak & Robbins,
1988, 1990), our model takes the form of an arrangement of cylindrical posts confined between
the plates of a Hele-Shaw cell. The approach is simple enough to lead to universal findings, yet
sufficiently complex to have direct relevance to microfluidic geometries, as well as engineered and
natural porous media—much like Lenormand’s phase diagram (Lenormand et al., 1988). By doing
so, we demonstrate the ability to reproduce physics—in particular, pressure fluctuations under a
wide range of wetting conditions—which, until now, were inaccessible to pore-network modeling. A
limitation of the model presented here is that it does not extend to contact angles below 45∘, where
the wetting fluid preferentially wets the corners of the pore-geometry at low Ca and forms film flow
at high Ca (Zhao et al., 2016; Odier et al., 2017).

3.3 Invasion patterns

We simulate immiscible fluid-fluid displacement by setting a constant injection rate at the center of
the flow cell and zero pressure at the outlets. The invading and defending fluid viscosities are set
to 8.9× 10−4 Pa · s and 0.34 Pa · s respectively. The post height ℎ is 100𝜇m, and interfacial tension
𝛾 is set to 13 × 10−3 N/m. These parameters as well as the pore geometry are chosen to mimic
the experiments of Zhao et al. (2016). The flow cell has an outer diameter of 30 cm. We perform
simulations for wetting conditions from strong drainage (𝜃 = 160∘) to weak imbibition (𝜃 = 46∘).
FIG. 3-1(c) shows the pressure profiles for 𝜃 = 160∘ at Ca ∈ {10−3, 10−7}, respectively. In the limit
of high Ca, the more-viscous defending fluid sustains substantial spatial pressure gradients, and the
injection pressure gradually drops as more of the defending fluid is displaced (Zhao et al., 2016). In
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contrast, in the limit of low Ca, the pressure field is virtually uniform in each fluid, and the injection
pressure exhibits intermittent fluctuations typical of slow capillary-dominated drainage (Knudsen
& Hansen, 2002; Aker et al., 1998a; Måløy et al., 1992; Moebius & Or, 2012).

The morphology of the invading fluid at breakthrough can be analyzed by means of a binary-
image representation of the invasion patterns (Cieplak & Robbins, 1990, 1988; Primkulov et al.,
2018) [FIG. 3-2(a)]. We estimate the width and number of fingers in the invading fluid pattern
following the protocol outlined in (Cieplak & Robbins, 1988, 1990) and modified in (Primkulov
et al., 2018). The binary image is sliced horizontally and vertically, with each slice containing
clusters of invading fluid pixels. We calculate the finger width as the mean size of these clusters.
FIG. 3-2(d) shows that the finger width, normalized by the typical pore size, increases as 𝜃 → 46∘

for all Ca, which is in agreement with experimental observations (Stokes et al., 1986; Trojer et al.,
2015; Zhao et al., 2016). While FIG. 3-2(a) demonstrates that the number of fingers increases with
Ca (Lenormand et al., 1988; Fernández et al., 1990; Zhao et al., 2016), we observe an unexpected
behavior [FIG. 3-2(b)]: the finger density changes with the substrate wettability, and exhibits a
maximum around 𝜃 = 90∘. This effect is most pronounced for 10−6 < Ca < 10−3 (when viscous
and capillary effects are comparable).

We explain the peak in the viscous finger density at 𝜃 ≈ 90∘ in FIG. 3-2(b) by considering
in-plane and out-of-plane contributions to the Laplace pressure. At a fixed Ca, the ratio of viscous
and capillary forces in the micromodel changes as a function of substrate wettability. The capillary
forces have out-of-plane contributions, which are nominally equal to zero when 𝜃 = 90∘, so the ratio
of viscous and capillary forces increases as 𝜃 changes from 160∘ to 90∘ at fixed Ca. In addition,
when 𝜃 changes from 90∘ to 46∘, the cooperative pore filling mechanisms become dominant and
widen the largest fingers, which in turn consume the smaller ones and reduce the number of fingers.
The combination of these two effects results in the local maximum in the number of viscous fingers
around 𝜃 ≈ 90∘ across different Ca [FIG. 3-2(b)].

For a contact angle 𝜃 near 160∘ (strong drainage) and high values of Ca (10−3 and 10−4), the
invading fluid front advances through viscous fingers with fractal dimension close to 1.71, typical
of DLA-type morphology (Witten et al., 1981). As Ca is reduced to a low value (10−7), the fractal
dimension increases to about 1.82, characteristic of invasion-percolation (Wilkinson & Willemsen,
1983) [FIG. 3-2(b)]. This increasing trend in fractal dimension is consistent with the decrease in
finger density [FIG. 3-2(c)] and the increase in finger width [FIG. 3-2(d)].

As the contact angle approaches 46∘, cooperative pore filling becomes the dominant flow mech-
anism at all values of Ca. This flow regime results in the compact displacement of the defending
fluid, and thus the fractal dimension increases, approaching a value of 2 at low Ca, indicative of
stable displacement.

3.4 Pressure signature

The fundamental difference in the fluid-fluid displacement process between low and high Ca is re-
flected in the temporal injection-pressure signals [FIG. 3-3]. When the capillary number is relatively
high (Ca = 10−3), viscous forces dominate, and the injection pressure decreases with time for all
substrate wettabilities (Zhao et al., 2016) [FIG. 3-3(a)]. Here, most of the pressure drop takes place
in the more-viscous defending fluid. Consequently, as more of the defending fluid is displaced, the
pressure required to maintain the prescribed injection flow rate decreases. In contrast, at Ca = 10−7,
viscous dissipation is negligible, and the injection pressure is determined by the sum of outlet and
Laplace pressures. As a result, the injection pressure fluctuates in a stick-slip manner around a
mean value [FIG. 3-3(b)], as has been documented in slow drainage experiments (Måløy et al.,
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Figure 3-3: (a)-(b) Temporal evolution of the injection pressure at Ca = 10−3 and Ca = 10−7

respectively. At high Ca, the injection pressure decreases as the viscous fingers approach the outer
boundary of the flow cell. At low Ca, the injection pressure is dominated by Laplace pressure
fluctuations at the interface. We use wavelet decomposition (Cai, 2002; Sygouni et al., 2006, 2007)
to split the pressure signal (Ca = 10−5 and 𝜃 = 160∘ here) into its (c) global trend and (d) cyclic
component. (e) The standard deviation of the pressure fluctuations point at two different regimes.
At low Ca, pressure fluctuations are dominated by stick-slip changes in Laplace pressure. At high Ca,
pressure fluctuations are dominated by changes in the effective hydraulic conductance of dominant
flow channels.

1992; Furuberg et al., 1996; Moebius & Or, 2012). The pressure signals in FIG. 3-3(b) highlight the
roles that in-plane and out-of-plane curvatures play in our model. Out-of-plane curvature plays the
role of batteries, and thus provides additional resistance/drive (in drainage/imbibition, respectively)
to the flow at the interface. The magnitude of the pressure drop/rise at the batteries is a function
of wettability, which explains why the mean value of the injection pressure signal also varies with
wettability [FIG. 3-3(b)]. The in-plane curvature plays the role of capacitors. As the invading fluid
is injected, the in-plane component of Laplace pressure grows at the interface until the meniscus
near the pore with lowest critical entry pressure becomes unstable due to burst, touch or overlap.
This results in the rapid advance of the local interface, which pressurizes the defending fluid ahead.
This overpressure then dissipates (see video S1 in supplemental materials). The critical pressures of
touch and overlap are always smaller than the critical pressures of burst events (Primkulov et al.,
2018; Cieplak & Robbins, 1990, 1988), so the magnitude of the pressure fluctuations decreases as
the substrate becomes more wetting to the invading fluid [FIG. 3-3(b)].

To gain further insight into the difference in the pressure signature between low and high Ca,
we decompose the injection pressure signal into its global trend and fluctuating components with
Block James-Stein wavelet decomposition (Cai, 2002) (see FIG. 3-3c-d). We compute the standard
deviation of the fluctuating component of the pressure signal for both drainage and imbibition
conditions (𝜃 = 160∘ and 46∘, respectively) for a wide range of Ca, and find that it exhibits two
distinct regimes [FIG. 3-3(e)]. At low Ca, pressure fluctuations are controlled by the stick-slip-type
changes in local Laplace pressures. In contrast, at high Ca, pressure fluctuations are controlled by
changes in the effective hydraulic conductance of the dominant flow channels. In the limit of high
Ca, the Laplace pressure drop is negligible in comparison with the viscous pressure gradient, but the
dominant flow channels are rearranged slightly as the fingers grow (see video S2 in supplementary
materials). Since the pore geometry has a heterogeneous distribution of throat sizes, shifts in the
dominant flow channels result in viscosity-driven pressure fluctuations at high Ca.

Scaling arguments support the findings from the model simulations. Let us take a pore-scale
perspective (see Fig. 3-4). Invading a single pore involves overcoming a capillary pressure and
pushing defending fluid out through a throat of width 𝑎 and height ℎ at a speed proportional to the
injection rate. The capillary pressure is 𝑝cap ≈ 𝛾( 1ℎ + 1

𝑎𝑓(𝜃)), where 𝑓(𝜃) is a wettability-dependent

41



Figure 3-4: (a) Pore-scale perspective for the scaling of pressure fluctuations. The diagram shows a
typical pore being invaded. The characteristic distance between the pore centers is 𝑙 (red line), the
post height is ℎ, and a characteristic throat size is 𝑎. (b) Typical configurations of the fluid-fluid
interface in drainage and imbibition. Burst events are prevalent in drainage and the typical radius
of out-of-plane curvature is of order 𝑎. Overlap events are prevalent in imbibition and the typical
radius of out-of-plane curvature is an order of magnitude greater than 𝑎.

function that takes a value ∼ 1 near drainage and ∼ 10 near strong imbibition [Fig. 3-4(b)]. Taking
variations of 𝑝cap with 𝑎 yields

𝛿𝑝cap ∼ 𝛾

𝑎2𝑓(𝜃)
𝛿𝑎. (3.5)

The characteristic flow velocity through a typical throat is 𝑢 = 𝑘(𝑎,ℎ)
𝜇

𝑝visc
𝑙 , where 𝑘(𝑎, ℎ) = 𝑅2

ℎ/8

is the rectangular channel permeability and 𝑅ℎ = 𝑎ℎ
2(𝑎+ℎ) the hydraulic radius. Thus the viscous

pressure is 𝑝visc ∼ 32(𝑎+ℎ)2

𝑎2ℎ2 𝜇𝑢𝑙 = 32𝜇𝑢𝑙
ℎ2 (1 + ℎ/𝑎)2. Taking variations of 𝑝visc with 𝑎 yields

𝛿𝑝visc ∼
64𝜇𝑢𝑙

ℎ2
(1 + ℎ/𝑎)

ℎ

𝑎2
𝛿𝑎 =

64𝜇𝑢𝑙

ℎ𝑎2
(1 + ℎ/𝑎)𝛿𝑎. (3.6)

The magnitude of the total characteristic pressure fluctuation is 𝛿𝑝cap + 𝛿𝑝visc, and its two compo-
nents are comparable when 𝛿𝑝visc

𝛿𝑝cap
∼ 1. Using equations (3.5) and (3.6),

𝛿𝑝visc

𝛿𝑝cap
∼ 64𝜇𝑢𝑙

ℎ𝑎2
(1 + ℎ/𝑎)

𝑎2𝑓(𝜃)

𝛾
= Ca𝑓(𝜃)64

𝑙

ℎ
(1 + ℎ/𝑎) ∼ 1, (3.7)

which implies a crossover Ca,

Ca* ∼ ℎ

64𝑓(𝜃)(1 + ℎ/𝑎)𝑙
, (3.8)

between flowrate-independent and flowrate-dependent pressure fluctuations [FIG. 3-3(e)]. The above
argument suggests two interesting implications. First, one can potentially infer the characteristic
pore size of the material from the fluctuations of the pressure signal in both viscously-dominated
and capillary-dominated flow regimes. This is especially useful when visualization of the flow in
pore space is not possible, which is the case in most porous materials. Second, the characteristic
ℎ, 𝑎, and 𝑙 used in this study yield Ca* ≈ 10−3

𝑓(𝜃) , which reduces to Ca* ∼ 10−3 for drainage and
Ca* ∼ 10−4 for imbibition, in agreement with the data in FIG. 3(e). This means that one should
expect the transition from capillary-dominated to viscously-dominated flow regimes at different Ca*
in drainage and imbibition. The order of magnitude of 𝑓(𝜃) was obtained by calculating ∆𝑝crit for all
pore throats at 𝜃 ∈ {46∘, 160∘} with the quasi-static model (Primkulov et al., 2018) and taking an
average of 𝑓(𝜃) = 𝛾

𝑎Δ𝑝crit
for each contact angle. Finally, the viscous pressure fluctuation component
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scales as 𝛿𝑝visc ∼ 𝜇𝑢, which is equivalent to 𝛿𝑝visc ∼ Ca when interfacial tension is kept constant.
This explains the slope of the viscously-dominated portion of the graph in FIG. 3-3(e).

3.5 Conclusion

Overall, our moving-capacitor network model provides new fundamental insights into the dynamics
of immiscible fluid-fluid displacement in porous media for a wide range of Ca and wettabilities. The
model completes the picture of the displacement by covering both high and low Ca which allows,
for the first time, to reproduce experimental observations of invading fluid patterns (Zhao et al.,
2016), injection pressure and front velocity in drainage (Måløy et al., 1992; Furuberg et al., 1996;
Moebius & Or, 2012) and imbibition. Our observations and scaling arguments on the transition
from viscous-dominated to capillary-dominated flow regime suggest that it is possible to infer the
character of the multiphase-flow displacement purely from the injection pressure signal. This poses
an exciting prospect for detailed experiments.
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Chapter 4

Wettability and Lenormand’s diagram

This chapter has been published in Primkulov et al. (2021).

4.1 Introduction

Patterns form during fluid-fluid displacement in porous media in many natural and industrial pro-
cesses. As sand castles dry, air percolates into the sand matrix and the integrity of the structure
depends strongly on the resulting moisture distribution (Richefeu et al., 2006; Møller & Bonn,
2007). In sugar processing, liquor-saturated charcoal packs are periodically cleansed with water,
where channeling of the water phase is undesirable (Hill, 1952). In refractory ceramics manufactur-
ing, the ceramic matrix is infiltrated by molten metal, where higher degree of infiltration leads to
more resilient ceramics (Léger et al., 2015). In hydrocarbon recovery, oil is produced by displacing
it with water and higher displacement efficiency is more economically desirable (Datta et al., 2014).
Understanding morphology of the displacement front during such processes is of great value.

Lenormand et al. (1988) presented a phase diagram (Fig. 4-1) to characterize fluid-fluid dis-
placement in a porous medium with two dimensionless parameters: the mobility ratio 𝑀 ≡ 𝜇𝑖/𝜇𝑑

and the capillary number Ca ≡ 𝜇𝑖𝑢/𝛾, where 𝑢 is the characteristic velocity, 𝛾 is the interfacial
tension, and 𝜇𝑖 and 𝜇𝑑 are the dynamic viscosities of the invading and defending fluids, respectively.
For high Ca, viscous forces dominate over capillary forces. For 𝑀 > 1 (favorable displacement)
and high Ca, the displacement front is viscously stable and the invading fluid sweeps the porous
medium compactly (Lenormand et al., 1988). For 𝑀 < 1 (unfavorable displacement) and high Ca,
the displacement front is subject to the Saffman–Taylor instability (1958) and develops a self-similar
viscous-fingering pattern (Hill, 1952; Van Meurs, 1957; Chuoke et al., 1959; Paterson, 1984; Chen &
Wilkinson, 1985; Måløy et al., 1985; Homsy, 1987; Feder et al., 1989; Hinrichsen et al., 1989; Meakin
et al., 1989; Ben Amar, 1991a,b; Li et al., 2009; Patmonoaji et al., 2020). For low Ca, capillary forces
dominate over viscous forces and the displacement front advances via capillary invasion regardless
of 𝑀 (Chandler et al., 1982; Wilkinson & Willemsen, 1983; Lenormand & Zarcone, 1985).

The wetting properties of the fluid-fluid-solid system are not a part of the original Lenormand
et al. (1988) diagram, although significance of wettability has been acknowledged in Lenormand
(1990). A number of studies have discussed the importance of wettability at both high and low Ca
(Stokes et al., 1986; Cieplak & Robbins, 1988, 1990; Trojer et al., 2015; Holtzman & Segre, 2015;
Zhao et al., 2016; Jung et al., 2016; Odier et al., 2017; Singh et al., 2017; Primkulov et al., 2018;
Zhao et al., 2019; Primkulov et al., 2019). Wettability can be characterized by the contact angle 𝜃
at which the fluid-fluid interface meets the solid surface, measured from the invading fluid (Fig. 4-
1b-c). For 𝜃 < 90∘, a more wetting fluid displaces a less wetting fluid and the process is called
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Figure 4-1: (a) Lenormand’s phase diagram for a nonwetting fluid displacing a wetting fluid in a
porous medium. The displacement front advances through either viscous fingering, stable displace-
ment, or invasion percolation, depending on the values of Ca and 𝑀 . Adapted from Lenormand
(1990). We endow Lenormand’s phase diagram with wettability, characterized through angle 𝜃: (b)
𝜃 > 90∘ in drainage, and (c) 𝜃 < 90∘ in imbibition.

imbibition; for 𝜃 > 90∘, a less wetting fluid displaces a more wetting fluid and the process is called
drainage. As the system transitions from strong drainage to weak imbibition, the displacement
becomes more compact: for high Ca and 𝑀 < 1, the viscous fingers become wider (Stokes et al.,
1986; Trojer et al., 2015; Zhao et al., 2016); for low Ca and all 𝑀 , the displacement patterns are
very compact (Cieplak & Robbins, 1988, 1990; Trojer et al., 2015; Zhao et al., 2016; Primkulov
et al., 2018). When a capillary-dominated system (low Ca) is in strong imbibition, the displacement
front advances by preferentially filling crevices and corners in the pore-space (corner-flow) (Levaché
& Bartolo, 2014; Zhao et al., 2016; Odier et al., 2017; Primkulov et al., 2018).

The invading fluid does not always displace the defending fluid completely from invaded pores;
corner-flow is one such case. Another instance of incomplete displacement takes place in strong
drainage at high Ca (Park & Homsy, 1984; Zhao et al., 2016, 2019). Here, solid surfaces behind the
displacement front remain coated with a film of defending fluid (Landau & Levich, 1988; Bretherton,
1961; Zhao et al., 2016, 2019). The opposite happens in strong imbibition for high Ca and 𝑀 < 1:
films of invading fluid advance on the solid surfaces ahead of the bulk displacement front (Levaché
& Bartolo, 2014; Zhao et al., 2016; Odier et al., 2017; Zhao et al., 2019).

Pore-network models are often used to simulate flow in porous media, as they are both intuitive
and computationally inexpensive (Fatt, 1956; Blunt & Scher, 1995; Celia et al., 1995; Øren et al.,
1998; Constantinides & Payatakes, 2000; Patzek, 2001; Blunt, 2001; Joekar-Niasar & Hassanizadeh,
2012). The pore geometry in such models is approximated by a network of nodes and links, and
the flow within each phase is assumed to be fully developed Poiseuille flow. The relatively low
computational cost of such models makes them ideal for exploring full the 𝑀–Ca–𝜃 parameter
space required for extending the original Lenormand diagram. No study to date, pore-network or
otherwise, has produced a three-dimensional version of the Lenormand phase diagram, capturing
gradual wettability-induced changes in the displacement patterns. The majority of pore-network
studies have targeted only a limited range of wettability conditions. While fluid-fluid displacement
has been extensively studied in separate sections of the 𝑀–Ca space in drainage (Chandler et al.,
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1982; Wilkinson & Willemsen, 1983; Chen & Wilkinson, 1985; Lenormand et al., 1988; Aker et al.,
1998b; Joekar-Niasar et al., 2010; Al-Gharbi & Blunt, 2005; Gjennestad et al., 2018), weak imbibition
(Øren et al., 1998; Patzek, 2001; Valvatne & Blunt, 2004), and strong imbibition with precursor
wetting film flow through crevices and micro-roughness (Blunt & Scher, 1995; Vizika et al., 1994;
Tzimas et al., 1997; Constantinides & Payatakes, 2000), only a few pore-network studies have
explored the continuous transition in displacement patterns due to changes in 𝜃.

A substantial advance towards capturing continuous wettability-induced changes in displacement
patterns was made by Cieplak & Robbins (1988, 1990). Their model, which was designed for a
2D-porous medium comprised of a cylindrical obstacle array, reproduced experimentally observed
compaction of the invading fluid as the system shifted from drainage to imbibition. This was done by
introducing three pore-scale invasion mechanisms—burst, touch, and overlap (Fig. 4-3a-c)—whose
relative frequencies shaped the displacement patterns at a given wettability. While this model
was only valid for vanishing injection rates, Holtzman & Segre (2015) extended it by including
viscous effects for 𝑀 ≪ 1. The model allowed capturing the experimentally observed stabilization
of fingering displacement patterns away from Ca → 0 (Trojer et al., 2015; Stokes et al., 1986).

At the same time, both pore-network models fell short of capturing three-dimensional effects
that become important in strong imbibition. When 𝜃 < 45∘, the Laplace pressure of a wetting fluid
in the corner between a post and a plate can be negative (Fig. 4-3d). Therefore, a strongly wetting
invading fluid can advance predominantly through crevices between the top/bottom plates and
the cylindrical obstacles. We account for this three-dimensional mode of invasion by introducing
a corner-flow event to the quasi-static model of Cieplak and Robbins (Primkulov et al., 2018).
Specifically, we incorporate the corner flow event in the “moving-capacitor” framework (Primkulov
et al., 2019), where we treat local fluid-fluid interfaces within a micromodel as analogs to capacitors
in electrical circuits. Our approach in strong imbibition is similar to models by Blunt & Scher (1995)
and Constantinides & Payatakes (2000), where displacement patterns are determined by competing
flow through crevices and pore centers. However, unlike the model of Blunt & Scher (1995), our
model fully accounts for viscous pressure gradients and is therefore not limited to small length
scales. Furthermore, our model does not pre-assign a distribution of micro-channels like the work
of Constantinides & Payatakes (2000); instead, connectivity of the invading fluid through crevices
is determined by local micromodel geometry, and this connectivity evolves with the sequence of
corner flow events. Ours is the first pore-network model to capture the continuous change in
displacement patterns across all wettability conditions at arbitrary Ca and 𝑀 . This feature, along
with its computational efficiency, allows conducting an extensive parameter sweep over the entirety
of 𝑀–Ca–𝜃 space. We utilize this model to build the first picture of a three-dimensional version of
Lenormand’s diagram, including an axis that represents wettability.

Recent studies have made strides in this direction, but stopped short of producing the full 3D
diagram. Holtzman & Segre (2015) outlined the changes in displacement patterns within Ca–𝜃
space for 𝑀 ≪ 1 using a pore-network model, excluding the possibility of corner flow. Hu et al.
(2018) subsequently used continuum simulations to explore boundaries between viscous-dominated
and capillary-dominated regimes for 𝑀 ≈ 26. This study was complemented by Lan et al. (2020),
who used a dynamic pore-network model to explore the interplay between wettability and Ca for
𝑀 ≈ 3 · 10−3 which, like the model of Holtzman & Segre (2015), neglected corner flow and was
therefore limited to 𝜃 > 45∘. The phase diagrams produced in these studies correspond to a set of
partial Ca–𝜃 slices of the 𝑀–Ca–𝜃 diagram we present in this chapter.

In §4.2, we present our “moving-capacitor” pore-network framework in detail (Primkulov et al.,
2019), which has been extended to all 𝜃 by incorporating corner flow events. Our model is based
on the analogy between flow in porous media and currents in electrical circuits (Fatt, 1956), and it
treats the local fluid-fluid interfaces as a combination of batteries and capacitors. The model builds
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on many existing ideas in the porous-media community (Aker et al., 1998b; Holtzman & Segre, 2015;
Cieplak & Robbins, 1988, 1990; Blunt & Scher, 1995; Constantinides & Payatakes, 2000; Primkulov
et al., 2018, 2019) and combines them into a single framework that is able to handle 𝑀–Ca space
over all wettability conditions (0∘ < 𝜃 < 180∘). The model is built for the quasi-two-dimensional,
paradigmatic case of randomly placed cylindrical pillars between the flat plates of a Hele-Shaw cell.
We use the model to explore the principal flow regimes of fluid-fluid displacement in porous media
(§4.3). We then discuss the crossover from capillary invasion to viscous fingering under unfavorable
displacement (𝑀 < 1) through pore-scale event statistics, symmetry of the displacement front, and
autocorrelation of the flow field (§4.4). Finally, we synthesize the results of over 7000 dynamic
simulations into an extension of Lenormand’s phase diagram that accounts for arbitrary wettability
in §4.5.

4.2 Method

The model presented below builds on the analogy originally suggested by Fatt (1956), who pointed
to the similarities between flow of a single fluid through a porous medium and flow of electrical
current through a network of resistors. In this analogy, Ohm’s and Kirchhoff’s laws of electricity
are analogous to the Hagen-Poiseuille law and conservation of mass for incompressible fluids, re-
spectively. Therefore, resolving the viscous pressure drop due to flow through a particular network
of tubes is equivalent to resolving the potential drop through an electrical circuit with identical
topology.

This picture can be extended to two-phase flow by recognizing the similarities between local
fluid-fluid interfaces and electrical capacitors. Electrical capacitors are traditionally used to store
electrical charge: current builds up opposing charges across the capacitor plates, resulting in a step-
change in electrical potential across the capacitor. This potential difference builds with current until
a maximum is reached, which may result in dielectric breakdown of the capacitor. Similarly, when
one fluid displaces another within a porous medium, the curvature of fluid-fluid interfaces increase
as they advance into narrow sections of the pore geometry (i.e., pore throats), corresponding to
higher Laplace pressure across the interface. Overcoming the maximum Laplace pressure (i.e., the
capillary entry pressure) results in rapid invasion of the pore space ahead. This invasion is analogous
to dielectric breakdown; however, unlike capacitors, the fluid-fluid interface will subsequently find
the nearest pore throat and start re-building the Laplace pressure (thus curvature). We therefore
refer to the model presented here as a “moving-capacitor” model.

We use the paradigmatic case of cylindrical obstacles in a Hele-Shaw cell as a quasi-2D porous
medium (Cieplak & Robbins, 1988, 1990; Holtzman & Segre, 2015; Zhao et al., 2016; Jung et al.,
2016; Holtzman, 2016; Primkulov et al., 2018, 2019; Borgman et al., 2019; Hu et al., 2019). In
this case, there is also an out-of-plane contribution to the Laplace pressure that is analogous to
a battery at the displacement front. This “battery” represents the overall affinity of the porous
medium to the invading fluid. For a constant and uniform gap between the plates, we assume that
this out-of-plane curvature is fixed by the value of the contact angle, and is positive in drainage and
negative in imbibition. By doing so, we neglect the effect of dynamic contact angle (Hoffman, 1975;
Voinov, 1977; Cox, 1986).

We organize the remainder of this discussion into three subsections. We begin by explaining how
we construct the pore network in §4.2.1. Then, we discuss the single-phase-flow model in §4.2.2.
Finally we present the details of the two-phase-flow model (i.e., the moving-capacitor model) in
§4.2.3.
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Figure 4-2: Schematic of flow through a porous medium and the analog electrical circuit for
(a) single-phase flow and (b) two-phase flow. Nodes of the electrical circuit correspond to pore
centres. Viscous pressure drop is analogous to potential drop through resistors, and fluid-fluid
interfaces are analogous to a combination of a capacitor and a battery. (c) Schematic of the dynamic
pore-network model in strong imbibition (𝜃 < 45∘), where capacitors are placed at the fluid-fluid
interfaces. Nodes are placed at pore and post centers; black, orange, and green edges correspond to
pore-to-pore, post-to-post, and pore-to-post edges respectively.

4.2.1 Pore-network construction

Unless otherwise specified, simulations are conducted in the geometry of a benchmark flow cell: a
circular, patterned Hele-Shaw cell with a pore-throat size distribution that has a mean of 665 𝜇m
and a standard deviation of 337 𝜇m. The cell is 30 cm in diameter and has a centered injection
port. We set the gap between the two plates of our flow cell to 100 𝜇m. The benchmark flow
geometry is constructed using MATLAB’s pdemesh tool with meshing parameters tuned to match
the pore-throat size distribution reported in Zhao et al. (2016). In this construction, posts are
centered at the nodes of the triangular mesh, and their radii are set to 45% of the length of the
shortest adjacent edge.

Each mesh triangle represents a pore [Fig. 4-2(a)], so we can build the pore-network incidence
matrix (Strang, 2007) by examining the adjacency of the triangles. We number all pores and adopt
the convention that pore connections are oriented in the direction of increasing pore number. As
such, the incidence matrix of the network presented in Fig. 4-2(a) is

𝐴 =

⎡⎣−1 1 0 0
0 −1 1 0
−1 0 0 1

⎤⎦ , (4.1)

where rows and columns of 𝐴 represent edges and nodes, respectively. Here, 1 and -1 indicate
entering and leaving the node, respectively. For example, edge 1 in eq. (4.1) is directed from node
1 to node 2.

We also make use of the diagonal conductance matrix 𝐶, whose elements are the hydraulic
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conductivities of the network edges. The elements of 𝐶 can be calculated as 𝑐 = 𝜋𝑟4/8𝜇𝐿, assuming
fully developed Hagen-Poiseuille flow through a rectangular tube with hydraulic radius 𝑟 and length
𝐿, which correspond to pore-throat radius and distance between pore centers in a micromodel
geometry, respectively.

4.2.2 Single-phase flow

The difference in potential across the network edges can be obtained from the incidence matrix as
𝑒 = −𝐴𝑝 (Strang, 2007). Here, 𝑝 is an array of node potentials, which in the example of Fig. 4-2a
would read as 𝑝 = (𝑝1, 𝑝2, 𝑝3, 𝑝4)

𝑇 . The network currents can be calculated from the potential
difference as 𝑞 = 𝐶𝑒, where the example of Fig. 4-2a would have 𝑞 = (𝑞1, 𝑞2, 𝑞3)

𝑇 and

𝐶 =

⎡⎣𝑐1 0 0
0 𝑐2 0
0 0 𝑐3

⎤⎦ .

At the same time, currents must obey Kirchhoff’s current law (or mass conservation in fluid flow),
𝐴𝑇𝑞 = 𝑓 , where 𝑓 is the array of current sources at the nodes and would read 𝑓 = (𝑓, 0, 0, 0)𝑇 for
the example in Fig. 4-2a. After eliminating 𝑒, single-phase flow through the network is captured by
the following system of equations:

𝑞 = −𝐶𝐴𝑝, (4.2)

𝐴𝑇𝑞 = 𝑓 . (4.3)

Eliminating 𝑞, the node potentials are given by

𝑝 = −(𝐴𝑇𝐶𝐴)−1𝑓 . (4.4)

We set constant-flow boundary conditions at the inlet pores (at the center of the flow cell) and
zero-pressure boundary conditions at the outlet pores (at the edges of the flow cell).

4.2.3 Two-phase flow: moving capacitors

To extend the model to two-phase flow, we take advantage of the analogy between a capacitor and
a fluid-fluid interface, where the drop in potential across the capacitor plates is analogous to the
Laplace pressure. Consider the network diagram in Fig. 4-2(b). Initially, the capacitor is between
nodes 1 and 2. As the current flows through the network, the capacitor accumulates charge and the
potential difference across its plates builds. Capacitors with high accumulated potential difference
hinder further flow, redirecting it elsewhere. Once the capacitor is filled to its maximum capacity,
we allow it to advance to the next stable configuration at the neighboring edges (between nodes 2
and 3).

Our previous work on quasi-static fluid-fluid displacement (Primkulov et al., 2018) provides a
framework for deciding how and when capacitors move. For any given configuration of the fluid-fluid
interface (capacitor locations), the quasi-static model predicts both the critical Laplace pressures
(∆𝑝crit) and the type of interface instability. The type of instability event (i.e., burst, touch, overlap,
or corner flow ; see Fig. 4-3) determines the next stable interface configuration (Cieplak & Robbins,
1990, 1988; Primkulov et al., 2018). The critical Laplace pressure for burst, touch, and overlap
events can be written as

∆𝑝crit = 𝛾

(︂
1

𝑟in
+

1

𝑟out

)︂
, (4.5)
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Figure 4-3: (a) A burst event occurs when the interface pushes past its highest stable curvature.
(b) A touch event occurs when the interface touches the post ahead; (c) An overlap event occurs
when two neighboring interfaces touch and coalesce, filling the pore cooperatively; (d) A corner-flow
event occurs when a corner meniscus touches and coats the neighbouring post; (e) A capillary-bridge
event occurs when corner menisci coalesce mid-post before reaching the next post; (f) A sequence
of interface configurations before and after pore-invasion event at 𝑡 = 𝑡event in capillary-dominated
displacement. Figure adapted from Primkulov et al. (2018).

where 1/𝑟out = 2 cos 𝜃/ℎ is the out-of-plane curvature of the fluid-fluid interface and 1/𝑟in is the in-
plane curvature that corresponds to either burst, touch, or overlap configuration (Fig. 4-3a-c). Burst
events correspond to the highest stable in-plane curvature of the interface between two posts (Fig. 4-
3a). Touch events correspond to the interface coming in contact with a nearby post (Fig. 4-3b).
Overlap events occur when two neighboring interfaces coalesce within the pore space (Fig. 4-3c).
When 𝜃 < 45∘, the invading fluid tends to coat the corners between the posts and top/bottom
plates. Corner-flow events occur when the horizontal extent of such meniscus reaches the nearest
uncoated post (Fig. 4-3d). If these corner menisci instead overlap mid-post, they form a capillary
bridge that expands spontaneously to the nearest post (Fig. 4-3e). The value of ∆𝑝crit for corner-
flow and capillary bridge events is calculated from the total curvature of the meniscus configurations
depicted in Fig. 4-3d-e. A more detailed description of all pore-scale events is given in Primkulov
et al. (2018).

We assume that the pressure drop across a capacitor at time 𝑡 can be written as ∆𝑝critΦ(𝑡) +
∆𝑝min(1−Φ(𝑡)), where the filling ratio Φ(𝑡) measures the fraction of the throat filled with invading
fluid (Holtzman & Segre, 2015). A throat volume is defined as 2𝑟𝐿ℎ. We chose ∆𝑝min so that it
is equal to the smallest value of ∆𝑝crit minus the standard deviation of ∆𝑝crit within the network.
This choice ensures that all menisci have the same Laplace pressure when corresponding throats
are empty. Taking into account the direction of the edges (an array 𝑑(𝑡) consisting of 1 and −1
for edges directed towards and away from the defending fluid, respectively), the total pressure drop
across the network edges can be written as 𝑒 = 𝑏−𝐴𝑝, where non-zero components of pressure drop
array 𝑏(𝑡) are written as −𝑑(𝑡)[∆𝑝critΦ(𝑡) + ∆𝑝min(1 − Φ(𝑡))]. Therefore, the equations governing
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two-phase flow through the network are[︂
𝐶−1(𝑡) 𝐴

𝐴𝑇 0

]︂ [︂
𝑞(𝑡)
𝑝(𝑡)

]︂
=

[︂
𝑏(𝑡)
𝑓

]︂
. (4.6)

We now discuss time-stepping method in our two-phase flow model. After we initialize the
interface locations within the “circuit”, we use adaptive Forward Euler time-stepping to update the
filling ratios of the network edges at the interface, Φ(𝑡). We ensure that no pore throat is filled in
a single time step (Aker et al., 1998b). After every time step, we use the effective viscosity (Aker
et al., 1998b; Holtzman & Segre, 2015) 𝜇 = 𝜇𝑖Φ(𝑡)+𝜇𝑑(1−Φ(𝑡)) to update the conductivity matrix
𝐶(𝑡) and resolve the flow via Eq. (4.6) with updated pressure drops across capacitors.

Whenever we encounter a time step (∆𝑡) where one of the components of Φ(𝑡) is greater than
1 we repeat the time step with an adjusted ∆𝑡 until the unstable edge is exactly filled. Then, we
remove the filled capacitor and replace it with empty capacitors at locations based on the type
of instability that the quasi-static model outputs for the corresponding network edge (Primkulov
et al., 2018). Newly added capacitors are initialized with Φ = 0 and accumulate potential drop as
the above steps are repeated.

The typical solution of equation (4.6) in capillary-dominated regime produces the invasion se-
quence depicted in Fig. 4-3f, which can be separated into three steps: (i) interface curvatures build
slowly across the displacement front (𝑡 < 𝑡event); (ii) one of the interfaces reaches a “burst”, “touch”,
or “overlap” configuration, and the corresponding pore is instantaneously invaded with new inter-
faces having zero in-plane curvature and Φ (𝑡 = 𝑡event); (iii) the invading fluid redistributes to
equalize the Laplace pressures at the displacement front (𝑡 > 𝑡event). The displacement front spends
the majority of its time in step (i). Since capturing the short-time dynamics of invasion events (e.g.,
Haines, 1930) was not the primary objective of this work, we chose to make step (ii) instantaneous,
and chose a relatively coarse ∆𝑡, with (iii) taking up only a few time steps between pore-invasion
events. As a result, having Φ = 0 correspond to zero in-plane curvature (our model) and having
Φ = 0 correspond to a negative in-plane curvature (expected experimentally) would only make an
appreciable difference in the short-time single-pore dynamics, which is outside the scope of interest
of this study. Indeed, it is likely that a fully resolved model of the interface at the pore level is
needed to capture these short-timescale dynamics.

While our model of two-phase flow allows for re-emptying of network edges at the interface
(Fig. 4-3f), our current implementation prohibits instability events in the reverse direction for
simplicity of bookkeeping.

4.2.4 Moving-capacitor model in strong imbibition

When 𝜃 < 45∘, a total curvatures of corner a meniscus (Fig. 4-3d,e) can be negative. This means
that at some 𝜃 < 45∘, invading fluid may advance by coating post corners instead of filling pore
volumes. This was demonstrated in strong imbibition experiments of Zhao et al. (2016). Our
treatment of strong imbibition fits naturally into the two-phase model described above, where the
lowest ∆𝑝crit corresponds to either corner-flow (Fig. 4-3d) or capillary bridge event (Fig. 4-3e).
Below, we highlight a few distinguishing features of the “moving-capacitor” model for 𝜃 < 45∘.

The overall flow network accounts for three distinct components: (i) a pore network, where nodes
are pore centers and edges are pore-to-pore channels (black network in Fig. 4-2c), (ii) a post corner
network, where nodes are placed at the centers of posts and edges are post-to-post connections
(orange network in Fig. 4-2c), and (iii) a network connecting post centers to pore centers (green
network in Fig. 4-2c).
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Hydraulic radii of post-to-post and pore-to-post connections are taken as twice the ratio of
channel cross sectional area to its wetted perimeter, which are calculated from the shape of the
corner meniscus at its critical Laplace pressure (Fig. 4-3d,e). Volume assigned to a corner meniscus
is defined to be 2𝜋𝑟post𝜋𝑟

2
hydr, where 𝑟post and 𝑟hydr are radius of the post and hydraulic radius of

the meniscus respectively.
In post-to-post and pore-to-post capacitors, the value of Φ is assigned to a post, so that capacitors

belonging to the same post have identical Laplace pressures at any given time. When a new post is
coated, only one capacitor is removed from the network, the capacitor at the post-to-post connection
(Fig. 4-2c), and new capacitors are added at the fluid-fluid boundaries of the new post.

Another distinction between the model we present here from the original “moving-capacitor”
model is that the corner events depicted in Fig. 4-3d,e can trigger pore invasion. The volume of
each pore in our network is bounded by three posts. Therefore, if all three posts experience corner
events, the oil phase within the pore space pinches off and pore gets filled with invading fluid (Odier
et al., 2017).

Finally, our model assumes perfectly smooth surfaces and leaves out the role that surface rough-
ness, dynamic contact angle, and potential precursor films may play in the fluid-fluid displacement
experiments. While our model on this idealized substrate predicts no corner flow when ℎ = 100 𝜇m
(Primkulov et al., 2018), experiments detect the onset of corner flow for 𝜃 somewhere between 7∘

and 60∘ (Zhao et al., 2016). This discrepancy between experiment and the model is reconciled
through a fitting parameter that we discuss in detail in Appendix B.1.

4.3 Principal flow regimes

We begin our discussion by exploring the five principal regimes of fluid-fluid displacement in porous
media: (i) viscous fingering, (ii) stable displacement, (iii) invasion percolation, (iv) cooperative pore
filling, and (v) corner flow. We anchor our discussion of principal flow regimes around a few key
metrics that help to characterize and distinguish the regimes:

1. Fractal dimension 𝐷𝑓 is a measure of how a pattern fills the space in which it is embedded.
For a two-dimensional pattern, 𝐷𝑓 varies between 1 (for a line) and 2 (for a compact object).
We calculate 𝐷𝑓 with the box-counting method (Kenkel & Walker, 1996). Following this
method, we tile our flow patterns with boxes of size 𝜖 and count the number of boxes 𝑁 of
that size needed to cover the pattern. We repeat this process for a sequence of 𝜖 and take 𝐷𝑓

to be the slope of 𝑁 against 𝜖 on a log-log plot (see Primkulov et al. (2018) for more details).

2. Finger width 𝑤/𝑎 is the ratio of mean finger width to mean pore size. We estimate 𝑤/𝑎
following a scheme detailed in Primkulov et al. (2018), which is an adaptation of an approach
by Cieplak & Robbins (1988, 1990). Briefly, we divide our images into slices and record the
mean size 𝑤 of one-dimensional clusters containing the pattern. We repeat the same process
for an image where we treat the entire pore space as a pattern and record the mean pore
throat size as 𝑎.

3. Modified capillary number (Ca*) measures the fraction of characteristic viscous to capillary
pressures in our setup. We take

Ca* =
∆𝑝visc

∆𝑝cap
=

max(Ca,Ca/𝑀)

|∆𝑝crit|
𝛾𝑅

𝑎ℎ
, (4.7)

after expanding the characteristic pressure drop as ∆𝑝visc = max(𝜇𝑖, 𝜇𝑑)𝑢𝑅/𝑎ℎ, where 𝑅 is
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Figure 4-4: Stable displacement in the benchmark geometry for Ca = 10−1, 𝑀 = 103, and 𝜃 = 170∘;
(a) the injection pressure increases monotonically (𝑡𝑏 is the breakthrough time); (b) flow rates within
the network show radial symmetry and radially-decreasing intensity (max(𝑞) is the largest local
flowrate at given 𝑡); (c) pore-invasion times reflect the radial symmetry in pattern growth; (d) pore-
pressure distribution, where pressure gradients are significant only in the invading fluid (max(𝑝) is
the largest local pressure at given 𝑡); (e) the evolution of the directional flow rate is indicative of
continuous compact flow, where apparent ridges are artifacts due to discrete pore throats with high
flow rates near the cell center.

the radius of the Hele-Shaw cell. The term max(Ca,Ca/𝑀) ensures that the greater viscous
forces are taken into account, and the magnitude of critical Laplace pressure |∆𝑝crit| is taken
directly from simulations.

All of these metrics are time-dependent. We evaluate 𝐷𝑓 and 𝑤/𝑎 at the moment of breakthrough,
when the invading fluid first reaches the outer boundary of the flow cell. The characteristic velocity
𝑢 used in calculating Ca and Ca* is taken as 𝑄/2𝜋𝑟min, where 𝑟min is the radial distance of the post
closest to center of the Hele-Shaw cell. Additionally, we define a directional flow rate as the mean
flow rate along different directions of the radial flow cell. We do so by dividing the flow cell into
10∘ sectors and calculating the mean flow rate for each sector as time progresses.

4.3.1 Stable displacement (𝐷𝑓 = 1.93, 𝑤/𝑎 = 37, Ca* > 1)

When a more viscous fluid displaces a less viscous fluid (𝑀 > 1), the displacement front is hydro-
dynamically stable (Saffman & Taylor, 1958) because viscous forces smooth perturbations.

Simulations at 𝑀 = 103, Ca = 10−1, 𝜃 ∈ [46∘, 180∘] produce nearly perfectly circular patterns
(Fig. 4-4). The injection pressure increases as the displacement progresses (Fig. 4-4a), with most of
the pressure drop taking place in the invading fluid (Fig. 4-4d). The flow rate is radially symmetric,
decreasing with radius (Fig. 4-4b,e), and pattern symmetry is maintained throughout (Fig. 4-4c).
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Figure 4-5: Viscous fingering in the benchmark geometry for Ca = 10−1, 𝑀 = 10−3, and 𝜃 = 170∘;
(a) the injection pressure decreases monotonically in time (𝑡𝑏 is the breakthrough time); (b) flowrates
within the network are pronounced along the main branches of the viscous fingers (max(𝑞) is the
largest local flowrate at given 𝑡); (c) pore-invasion times reflect the radial symmetry in pattern
growth; (d) pore-pressure distribution, where most pressure changes occur within the defending
fluid (max(𝑝) is the largest local pressure at given 𝑡); (e) the evolution of the directional flow rate
shows persistent (rather than sporadic) growth of viscous fingers.

4.3.2 Viscous fingering (𝐷𝑓 = 1.63, 𝑤/𝑎 = 2.1, Ca* > 1)

Stable displacement is often desirable, but not always attainable in industrial applications like oil
recovery (Chuoke et al., 1959) and sugar processing (Hill, 1952). Viscous fingers develop under
potential flow when a less-viscous fluid displaces a more viscous one (𝑀 < 1).

In Fig. 4-5, we highlight the signatures of viscous fingering for the benchmark pore geometry.
The simulation in Fig. 4-5 is conducted for Ca = 10−1, 𝑀 = 10−3, 𝜃 = 170∘. As the displacement
advances, the injection pressure decreases (Fig. 4-5a) because the majority of the pressure drop takes
place in the defending fluid (Fig. 4-5d). Although the pressure appears to decrease smoothly in time,
removing the global trend from the signal would expose fluctuations due to intermittent activity at
the displacement front (Primkulov et al., 2019). As the fingers develop and grow, they focus the
flow along their main branches (Fig. 4-5b,e). The displacement pattern remains radially symmetric
throughout (Fig. 4-5c). In fact, the diffusive signature of the pressure field in the defending fluid is
what generates the striking similarity between viscous fingering and other patterns in nature, such
as diffusion-limited aggregation (DLA) (Meakin et al., 1989), dielectric breakdown of materials
(Niemeyer et al., 1984), and spreading of fire fronts (Conti & Marconi, 2010). The diffusive pressure
field arises from Darcy flow and incompressibility, which lead to ∇2𝑝 = 0 in the defending fluid,
which is identical to the diffusive solute concentration field in DLA (Paterson, 1984).

4.3.3 Invasion percolation (𝐷𝑓 = 1.8, 𝑤/𝑎 = 3, Ca* < 1)

When the invading fluid advances very slowly and viscous forces are negligible (Ca → 0), the flow is
governed exclusively by capillary forces. In drainage (𝜃 > 90∘), the invading fluid advances mainly
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Figure 4-6: Invasion percolation in the benchmark geometry for Ca = 10−7, 𝑀 = 1, and 𝜃 = 170∘;
(a) the injection pressure fluctuates sharply due to pore-invasion events (𝑡𝑏 is the breakthrough
time); (b) flowrates within the network are very localized, only a small fraction of the pore space is
hydrodynamically active at any given time (max(𝑞) is the largest local flowrate at given 𝑡); (c) pore-
invasion times show asymmetric pore invasion clusters; (d) the pore-pressure distribution is uniform
within each fluid (max(𝑝) is the largest local pressure at given 𝑡); (e) the evolution of the directional
flow rate shows intermittency in flow direction.

through burst events and the flow is well captured by the invasion-percolation model (Chandler
et al., 1982; Wilkinson & Willemsen, 1983; Lenormand & Zarcone, 1985).

We explore the characteristics of invasion percolation by simulating fluid-fluid displacement at
Ca = 10−7, 𝑀 = 1, and 𝜃 = 170∘ on the benchmark pore geometry (Fig. 4-6). The pressure
distribution in the invasion-percolation regime is spatially uniform within each fluid (Fig. 4-6d),
with the two fluid pressures differing by the Laplace pressure. As the displacement front advances,
the pressure in the invading fluid is modulated by the sequence of lowest capillary entry pressures,
and fluctuates sharply (Fig. 4-6a) (Måløy et al., 1992; Furuberg et al., 1996). This intermittency is
also reflected in the flow field: only a small fraction of the pore space is active at any given time
(Fig. 4-6b), and the flow direction changes frequently (Fig. 4-6e). As a result, the emerging flow
pattern lacks radial symmetry throughout the displacement, with invasion-time patches reflecting
invasion avalanches (Fig. 4-6c).

4.3.4 Cooperative pore filling (𝐷𝑓 = 1.93, 𝑤/𝑎 = 15, and Ca* < 1)

Cooperative pore filling is a capillary-dominated regime that produces compact displacement pat-
terns. Although cooperative pore filling can take place in viscous flow regimes, they are most
prominent in weak imbibition and can dominate the displacement pattern when viscous forces are
small. During cooperative pore filling, the displacement front advances mainly through overlap and
touch events (see §2), and the increased fraction of overlap events smooths the displacement front
(Cieplak & Robbins, 1988, 1990; Holtzman & Segre, 2015; Primkulov et al., 2018). As a result, the
displacement front sweeps the defending fluid completely, producing compact displacement patterns
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Figure 4-7: Cooperative pore filling in the benchmark geometry for Ca = 10−7, 𝑀 = 1, and 𝜃 = 46∘;
(a) the injection pressure is highly intermittent (𝑡𝑏 is the breakthrough time); (b) flowrates within
the network are localized, and only a small fraction of them have appreciable flow; (c) pore-invasion
times reveal pore-invasion clusters (max(𝑞) is the largest local flowrate at given 𝑡); (d) the pore-
pressure distribution is uniform within each fluid phase (max(𝑝) is the largest local pressure at
given 𝑡); (e) the evolution of the directional flow rate shows a high degree of intermittency in the
flow direction.

(Fig. B-4).
Cooperative pore-filling simulations on the benchmark pore geometry at Ca = 10−7, 𝑀 = 1, and

𝜃 = 46∘ (Fig. 4-7) show many similarities to invasion percolation (§4.3.3). The pressure is uniform
in each fluid phase (Fig. 4-7d), but exhibits sharp fluctuations in time (Fig. 4-7a). The flow field is
highly intermittent (Fig. 4-7e), with only a small fraction of pores active at any given moment (Fig. 4-
7b). This intermittency results in asymmetric and patch-like growth of the displacement pattern
(Fig. 4-7c). Unlike invasion percolation, cooperative pore filling produces compact displacement
patterns with no trapped patches of defending fluid. The difference stems from the nature of pore-
scale invasion events: invasion percolation is dominated by burst events while cooperative pore filling
is dominated by overlap and touch events (Cieplak & Robbins, 1988, 1990; Holtzman & Segre, 2015;
Primkulov et al., 2018).

4.3.5 Corner flow (𝐷𝑓 = 1.54, 𝑤/𝑎 = 0.8, Ca* < 1)

In strong imbibition, the invading fluid no longer advances by filling the pores completely—instead,
the invading fluid advances mainly through corner-flow events where it coats the corners at the
intersection of posts with the top and bottom plates of the Hele-Shaw cell (Fig. 4-2c).

Fig. 4-8 explores corner flow through simulations at Ca = 5 · 10−7, 𝑀 = 0.1, and 𝜃 = 4∘ on
the benchmark pore geometry. Corner flow shares many similarities with other capillary-dominated
regimes. The spatial distribution of pressure is uniform within each fluid (Fig. 4-8d), while the injec-
tion pressure shows intermittency characteristic of capillary-dominated displacements (Fig. 4-8a).
Only a small fraction of the pore space has appreciable flow (Fig. 4-8b), and flow changes direction
frequently (Fig. 4-8e). The resulting pattern grows asymmetrically throughout the displacement
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Figure 4-8: Corner flow in the benchmark geometry for Ca = 5 · 10−7, 𝑀 = 0.1, and 𝜃 = 4∘;
(a) the injection pressure is highly intermittent (𝑡𝑏 is the breakthrough time); (b) flowrates within
the network are localized, and only a small fraction of them have appreciable flow (max(𝑞) is the
largest local flowrate at given 𝑡); (c) pore-invasion times show radial asymmetry; (d) the pore-
pressure distribution is uniform within each fluid phase (max(𝑝) is the largest local pressure at
given 𝑡); (e) the evolution of the directional flow rate shows a high degree of intermittency in the
flow direction.

(Fig. 4-8c).

4.4 Crossover from viscous-dominated to capillary-dominated flow

We examine the difference in the invasion dynamics between high and low Ca through the spatial and
temporal distributions of pore-invasion events. In this section, we focus on unfavorable viscosity
contrast displacement, 𝑀 = 1/340 (Zhao et al., 2016, 2019). The effective ratio of viscous to
capillary forces is therefore Ca/𝑀 , which we use in this section. Fig. 4-9a shows histograms of the
Euclidean distance ∆𝑠 between consecutive pore-invasion events. The distribution of ∆𝑠 indicates
that consecutive pore-invasion events are significantly more likely to take place near each other for
low Ca/𝑀 than for high Ca/𝑀 . Furthermore, the time ∆𝑡inv between consecutive pore-invasion
events at Ca/𝑀 = 10−7 shows that the median ∆𝑡inv increases as 𝜃 → 46∘ (Fig. 4-9b). As the
wettability of the substrate changes from strong drainage to weak imbibition, the relative frequency
of cooperative pore-filling events increases (Cieplak & Robbins, 1990, 1988; Primkulov et al., 2018).
The increase in ∆𝑡inv is chiefly due to the increase in relative frequency of overlap events, which
result in rapid invasion of several neighboring pores. This in turn leads to significant retraction of
the invading fluid from all of the throats at the displacement front. Thus, more time is needed to
refill the pores at the displacement front, which results in the steady increase in ∆𝑡inv as 𝜃 decreases
(Fig. 4-9b).

The velocity distribution within the porous medium is also strikingly different at low and high
Ca/𝑀 . We plot the temporal evolution of the directional flow rate for 𝜃 = 46∘ in Fig. 4-9(d-f). At
Ca/𝑀 = 10−3, the invading fluid forms high velocity flow channels that persist until breakthrough
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Figure 4-9: (a) Histogram of the distance (∆𝑠) between consecutive pore-invasion events. (b) Me-
dian time (∆𝑡inv) between consecutive pore-invasion events as a function of 𝜃. (c) Spatiotemporal
autocorrelation of the normalized directional flow rate fields for 𝜃 = 46∘. (d-f) Temporal evolution
of the normalized directional-flow-rate fields for 𝜃 = 46∘ and (d) Ca/𝑀 = 10−3, (e) Ca/𝑀 = 10−6,
(f) Ca/𝑀 = 10−7. The plots are complemented with the pore invasion time diagrams (insets).

(Fig. 4-9d). The pressure gradients in the defending fluid dominate the dynamics, and the invading
fluid flows through growing viscous fingers. The displacement front advances with strong radial
symmetry (Fig. 4-9d and video S3), as observed experimentally (Måløy et al., 1985; Løvoll et al.,
2004; Holtzman et al., 2012). As Ca/𝑀 decreases (Fig. 4-9e-f), the front velocity becomes increas-
ingly intermittent. The pressure gradients within the fluids are negligible, and the pressure changes
in the network are due almost exclusively to the Laplace pressure at the displacement front. Only
portions of the displacement front are active at any given time (Holtzman et al., 2012; Ferer et al.,
2004), and the front advances in asymmetric patches (Fig. 4-9e-f and video S1).

This transition from viscous-dominated to capillary-dominated flow can be quantified through
the spatiotemporal autocorrelation of the normalized directional flow rate (Fig. 4-9c). The auto-
correlation is calculated as 𝐶(𝛼, 𝜏) = ⟨𝑞(𝛼,𝑡)𝑞(𝛼,𝑡+𝜏)⟩

⟨𝑞(𝛼,𝑡)𝑞(𝛼,𝑡)⟩ , where ⟨·⟩ indicates the ensemble average over
time, 𝛼 is the direction, and 𝜏 is the time separation between the directional flow rate profiles. The
average of 𝐶(𝛼, 𝜏) over all 𝛼 is shown in Fig. 4-9c for 𝜃 = 46∘. The flow field becomes increasingly
uncorrelated at low Ca/𝑀 , with a qualitative transition taking place below Ca/𝑀 = 10−5.

4.5 Extending Lenormand’s phase diagram

We extend Lenormand’s diagram by simulating fluid-fluid displacement over a wide range of 𝜃,
Ca, 𝑀 on the benchmark pore geometry (7560 simulations in total). This thorough sweep of the
parameter space is possible due to the relatively low computational cost of our model. For each
simulation, we measure 𝐷𝑓 , 𝑤/𝑎, and Ca* at the moment of breakthrough. We use these variables
to delineate regions corresponding to the different principal flow regimes.
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Figure 4-10: Evolution of 𝐷𝑓 in 𝑀–Ca–𝜃 space. Slices of the simulation data in (a) drainage,
(b) weak imbibition, and (c) strong imbibition. (d) The maroon isosurface corresponding to 𝐷𝑓 =
1.92 is used to draw the boundary between compact and non-compact displacement patterns. The
black lines are the intersections of the isosurface with the cross-sections.

Figure 4-11: Viscous-dominated and capillary-dominated regions of 𝑀–Ca–𝜃 space are separated
by setting Ca* = 1 in equation (4.7). This is depicted with a dark grey surface in this figure.

First, we use the fractal dimension 𝐷𝑓 to separate compact patterns from non-compact patterns.
Compact patterns include stable displacement and cooperative pore filling, both of which have
𝐷𝑓 > 1.92 (maroon isosurface in Fig. 4-10d). A threshold based on 𝑤/𝑎 provides similar results
(not shown).

Next, we use Ca* to separate viscous-dominated flow regions (stable displacement and viscous
fingering) from capillary-dominated flow regions (cooperative pore filling, invasion percolation, and
corner flow). The surface resulting from Ca* = 1 in Eq. (4.7) is depicted in Figure 4-11 in dark
grey: the space above this surface is viscous-dominated, the space below it is capillary-dominated.
The crease on the Ca* = 1 surface originates from vanishing out-of-plane contribution to Laplace
pressure near 𝜃 = 90∘.

The combination of the maroon and gray isosurfaces from Figs. 4-10-4-11 is sufficient for delin-
eating the principal flow regimes:

• invasion percolation is capillary dominated (Ca* < 1) and non-compact (𝐷𝑓 < 1.92);

• cooperative pore filling is capillary dominated (Ca* < 1) and compact (𝐷𝑓 > 1.92);

• corner flow is capillary dominated (Ca* < 1) and non-compact (𝐷𝑓 < 1.92);
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• viscous fingering is viscous dominated (Ca* > 1) and non-compact (𝐷𝑓 < 1.92);

• stable displacement is viscous dominated (Ca* > 1) and compact (𝐷𝑓 > 1.92).

Although we use sharp boundaries to outline regions that belong to different flow regimes, the
transitions from one regime to another are smooth, as is evident from the cross-section images in
Figs. 4-10–4-11.

Our extension of Lenormand’s diagram with added wettability axis is presented in Fig. 4-12. Our
model faithfully reproduces the original diagram in drainage (cross-section 𝜃 = 180∘ in Fig. 4-12),
but reveals a more complete picture of the fluid-fluid displacement in porous media by augmenting
the phase diagram with a wettability (𝜃) axis.

To assess the influence of pore-scale disorder on the displacement pattern, we run simulations
on a pore geometry in which we can precisely define, and tune, the degree of geometric variability
among realizations. To do so, we generate a regular triangular lattice with 2.8 mm spacing between
vertices and place posts on its vertices. The radii of the posts are drawn from a uniform distribution
(𝑟0 − 𝜉𝑟𝑣, 𝑟0 + 𝜉𝑟𝑣), where 𝑟0 = 1100 𝜇m and 𝑟𝑣 = 300 𝜇m are selected to match the mean post
size of the benchmark geometry and 𝜉 ∈ [0, 1] is the index of disorder. When 𝜉 = 0, the medium
is ordered and anisotropic; when 𝜉 = 1, the medium is disordered and isotropic. As demonstrated
in Appendix B.2, the values of 𝐷𝑓 and 𝑤/𝑎 do not change significantly with the degree of disorder
𝜉. Therefore, although the data in Fig. 4-12 were collected from simulations on a single benchmark
pore geometry, the results apply generally to porous media with varying degree of disorder. The
capillary-dominated region of the phase diagram (Ca* < 1) is divided into invasion percolation,
cooperative pore filling, and corner flow. The boundary between compact and non-compact flow
in the capillary-dominated region of Fig. 4-12 changes significantly with Ca: the upper and lower
bounds (in 𝜃) of the cooperative pore filling region move apart as Ca approaches the grey surface.
When 𝑀 > 1, viscous forces stabilize the displacement front and aid cooperative pore filling events
in making the patterns more compact (Hu et al., 2018).

The shape of the extended Lenormand diagram can be inferred outside the 𝑀–Ca–𝜃 parameter
space probed with the “moving-capacitor” model in Fig. 4-12. In particular, the cooperative pore
filling region extends further into the 𝑀 < 1 region as Ca decreases. This is evident from the
quasi-static limit of the model, where cooperative pore filling boundaries are independent of 𝑀 .

The extended Lenormand diagram in Fig. 4-12 is generated for a single pore geometry. While
the overall shape of the diagram is expected to hold across different micromodels with a wide range
of pore-scale disorder, spacing between the posts, and gap thickness ℎ, the boundaries between the
principal flow regimes are likely to shift depending on the pore structure. For example, increasing
the spacing between the post centers would bring the onset of cooperative pore filling to higher
𝜃 (Primkulov et al., 2018). Larger spacing between the posts would also make corner flow less
dominant in strong imbibition, as higher critical pressures would be needed to coat post corners.
Therefore, compact displacement would occupy a greater proportion of the overall space in Fig. 4-
12. The degree of disorder is also known to roughen the displacement front and shift the boundary
between invasion percolation and viscous fingering (Holtzman & Juanes, 2010; Holtzman, 2016; Hu
et al., 2019). Given that the pore geometry used in Figure 4-12 is similar to one with 𝜉 = 0.99
in Appendix B.2, a pore space with smaller degree of disorder would make compact displacement
more favorable, which in turn would enlarge the compact displacement region in Fig. 4-12 (stable
displacement and cooperative pore filling).

One should not think of the boundaries between the principal flow regimes in Fig. 4-12 as sharp,
because transitions from one regime to another are gradual. Regions of the 𝑀–𝜃–Ca space near the
maroon and grey boundaries correspond to crossover zones between principal flow regimes.
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Figure 4-12: Extended Lenormand diagram constructed using Ca* and 𝐷𝑓 phase boundaries from
Figs. 4-10-4-11 to separate the five principal flow regimes within the 𝑀–Ca–𝜃 parameter space:
viscous fingering, stable displacement, invasion percolation, and cooperative pore filling. Results
from the “moving-capacitor” model are complemented with results from the quasi-static model that
allows inferring the extent of cooperative pore filling in the limit Ca → 0.
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Figure 4-13: A sketch of Lenormand’s phase diagram in (a) strong drainage, (b) weak imbibition
and (c) strong imbibition. The darker shades in strong imbibition represent partial pore-scale
displacement [art credit: Kamilla Omarova].

We summarize the findings from our comprehensive study with a schematic (Fig. 4-13). The clas-
sic phase diagram of Lenormand was developed for strong drainage (Fig. 4-13a), where displacement
patterns advance through either viscous fingering, stable displacement, or invasion percolation. This
diagram undergoes a qualitative change when the system moves to weak imbibition (Fig. 4-13b), in
which viscous fingers become significantly wider and invasion percolation is replaced by cooperative
pore filling. Therefore, the majority of the 𝑀–Ca space leads to compact displacement patterns.
Strong imbibition has only been sparsely studied (Zhao et al., 2016; Odier et al., 2017; Primkulov
et al., 2018), but enough is known to outline the main modes of displacement (Fig. 4-13c). The
displacement patterns advance through corner flow at low Ca, where the injected fluid occupies only
a fraction of the pore space (denoted by darker shades in Fig. 4-13c). This mode of displacement
has been explored experimentally by Zhao et al. (2016) and Odier et al. (2017), and numerically in
the quasi-static limit (Primkulov et al., 2018). The invasion pattern advances through thin films on
the solid surface for high Ca and 𝑀 < 1 (Levaché & Bartolo, 2014), while maintaining the viscous
fingering morphology (Zhao et al., 2016).

The simulations in Fig. 4-12 reproduce many experimental observations. First, as 𝜃 changes
from 180∘ to 46∘, displacement patterns change from invasion percolation to cooperative pore filling
(Trojer et al., 2015; Zhao et al., 2016), and finger width increases in the viscous-fingering region
of the diagram (Stokes et al., 1986; Trojer et al., 2015; Zhao et al., 2016). Second, the injection
pressure fluctuates sharply in capillary-dominated regimes (Måløy et al., 1992; Furuberg et al.,
1996), but instead varies monotonically with time in viscous-dominated regimes. Third, the model
naturally reproduces the intermittent flow that is modulated by pore disorder in capillary-dominated
flow. Finally, the model reproduces the interplay between imposed ordered post lattice and the flow
morphology: snow flake patterns in viscous fingering (Chen & Wilkinson, 1985; Chen, 1987), regular
crystal-growth morphology in cooperative pore filling regime (Lenormand, 1990), perfect circles in
stable displacement, and disordered morphology in invasion percolation (Lenormand & Zarcone,
1985; Wilkinson & Willemsen, 1983; Måløy et al., 1992).

While our “moving-capacitor” model is successful in reproducing the dynamics of the principal
flow regimes (Fig. 4-13), it assumes piston-like displacement for burst, touch, and overlap events. As
a result, the model overestimates the invading fluid saturation at high Ca, as pointed out by Zhao
et al. (2019). Strong drainage and high Ca features residual films of defending fluid (Bretherton,
1961; Zhao et al., 2016). In strong imbibition, invading fluid films dominate the displacement
patterns in viscous fingering and corner flow regimes (Levaché & Bartolo, 2014; Zhao et al., 2016;
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Odier et al., 2017). These regimes are captured more naturally through pore-scale 3D continuum
models (Zhao et al., 2019), which are unfortunately still prohibitively expensive for populating
significant portions of the 𝑀–Ca–𝜃 parameter space in Lenormand’s diagram (Fig. 4-12).

4.6 Conclusion

We have presented the results of a “moving-capacitor” dynamic pore-network model that is able to
reproduce the full 𝑀–Ca space of Lenormand’s phase diagram and extend it with a third dimension
𝜃, thus accounting for the system’s wettability. The model captures the pressure and flow within
the porous medium, and our analysis of the model results shows the contrast in pore-scale dynamics
between viscous-dominated and capillary-dominated flow through pore-invasion-event statistics and
autocorrelation of the velocity field. The “moving-capacitor” model provides a single framework that
captures the dynamics of fluid-fluid displacement in micromodels across an unprecedented span
of 𝑀–Ca–𝜃 parameters. The model cannot be directly applied to generic porous materials with
complex shapes or hierarchical geometries. However, in the spirit of Lenormand et al. (1988) and
Cieplak & Robbins (1988), here we studied a simpler pore geometry in order to learn something
general about two-phase displacement in more complex porous media. We use our model to build
the first three-dimensional version of Lenormand’s phase diagram with wettability as the third axis,
whose general shape we expect to hold for more complex three-dimensional porous materials. We
demonstrate that cooperative pore filling can occupy a significant portion of 𝑀–Ca–𝜃 space, and
that two metrics—the classical fractal dimension and modified capillary number Ca*—are sufficient
for delineating the five principal displacement regimes. One can use the diagram to design efficient
fluid-fluid displacement in disordered porous media. Furthermore, the “moving-capacitor” model
used in this work enables modeling multiphase flow in deformable granular media (movable posts)
(Jain & Juanes, 2009; Sandnes et al., 2011; Lee et al., 2020), while accounting for the wettability
effects, when combined with discrete element method (DEM) models (Meng et al., 2020).
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Chapter 5

Avalanches in strong imbibition

This chapter has been published in Primkulov et al. (2022)

5.1 Introduction

The complexity of the world around us—in rivers, climate patterns, landslides, and earthquakes—
is often attributed to the prevalence of self-organized criticality (SOC), where systems naturally
evolve toward a state in which small perturbations have scale-free consequences (Bak, 2013). Slow
injection of a non-wetting fluid (i.e. slow drainage) into a porous medium is arguably one of the most
accessible examples of SOC (Bak et al., 1987, 1988; Bak & Chen, 1989; Martys et al., 1991; Moura
et al., 2017b,a). It can be studied in great detail with benchtop experiments and simple pore-
network models (Furuberg et al., 1988; Moura et al., 2017b,a), and the universality of observed
trends can be tested by changing the properties of the fluids and the porous medium (Biswas et al.,
2018).

In drainage, constant-rate displacement is achieved by forcing the invading fluid into the porous
medium. In slow drainage, when viscous forces are negligible, the invading fluid advances into
clusters of pore bodies via intermittent avalanches (Lenormand et al., 1983; Måløy et al., 1992), with
waiting times between events and sizes of invasion clusters exhibiting scale-free behavior (Moura
et al., 2017b). These scale-free features are the hallmarks of SOC.

Wetting conditions have a pronounced influence on invasion mechanisms and patterns in porous
media (Lenormand et al., 1983; Blunt & Scher, 1995; Zhao et al., 2016; Odier et al., 2017). Dur-
ing the injection of a strongly wetting fluid (i.e. strong imbibition), the invading fluid advances
by coating crevices and corners within the pore space (Fig. 5-1). Slow, constant-rate displace-
ment is achieved by resisting spontaneous imbibition, producing invasion patterns distinct from
drainage (Zhao et al., 2016). However, much like slow drainage, slow strong imbibition evolves via
intermittent avalanches (Zhao et al., 2016). Given the disparity in both pore-scale mechanisms and
macroscopic patterns, it is not obvious that the scale-free features associated with drainage would
translate to strong imbibition.

In this letter, we use experiments and simulations to show that slow strong imbibition in porous
media exhibits all of the same scale-free features of SOC documented for drainage. In particular, we
demonstrate that strong imbibition joins drainage as a second known example to follow the remark-
able correlation scaling of Furuberg et al. (1988) describing the space-time statistics of invasion at
the pore scale.
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Figure 5-1: Temporal evolution of slow fluid-fluid displacement in (a) drainage and (d) strong
imbibition from experiments in a micromodel patterned with cylindrical posts, where events are
colored according to invasion time with 𝑡𝑏 the breakthrough time. Invasion events are intermittent
in both cases. (b) In drainage, the invading fluid enters throats with lowest entry pressures and
occupies pore bodies. (c) In the quasi-static limit, this process is equivalent to invasion percolation
on a hexagonal lattice (coordination number 𝑍 = 3). (e) In strong imbibition, the invading fluid
advances by coating corners between posts and top/bottom plates, leaving pore bodies filled with
defending fluid. (f) In the quasi-static limit, this process is equivalent to invasion percolation on a
triangular lattice (𝑍 = 6).
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5.2 Pore-scale physics and intermittency

Experimentally, we examine fluid-fluid displacement in a micromodel, where cylindrical posts are
placed at nodes of an irregular triangular mesh and confined between two transparent disks. Both
node locations and post sizes are disordered. The micromodel is fabricated via soft lithography from
a photocurable polymer (NOA81, Norland Optical Adhesives) (Denis Bartolo et al., 2008; Levaché
et al., 2012), which allows precise control of wettability conditions. We refer to this micromodel
design as the benchmark geometry; micromodel characteristics and fabrication details can be found
in Zhao et al. (2016). We use fixed contact angles of 150∘ ± 5∘ for drainage and 7∘ ± 3∘ for strong
imbibition (Fig. 5-1), as measured through the invading phase. In both cases, we inject the invading
fluid from the center of the micromodel at 0.4 𝜇L/min while maintaining a constant pressure at the
outer perimeter. This slow injection rate provides capillary-dominated flow with negligible viscous
effects (Ca = 5.8× 10−3, see appendix for details).

Slow fluid-fluid displacement in micromodels can be modelled quasi-statically by incorporating
the pore-invasion events of Cieplak & Robbins (1988, 1990) and corner-flow events, as described in
detail in Primkulov et al. (2018), and compared against experiments in (Zhao et al., 2019). In the
model, pore-invasion pressures 𝑝 are determined from local post geometry and wettability: (i) in
slow drainage (Fig. 5-1b), invasion fills pore bodies in sequence according to the widest available
pore throats; (ii) in slow strong imbibition (Fig. 5-1e), invasion proceeds by sequential post coating.
We ran this model in strong imbibition on the benchmark geometry.

In both drainage and strong imbibition, intermittency emerges from capillary-dominated in-
teractions of the fluid-fluid interfaces with the quenched disorder of the pore geometry. In slow
drainage, the invading fluid advances by progressively occupying new pore bodies. Posts act as
local pinning sites of the displacement front (Fig. 5-1). Since viscous forces are negligible, the pres-
sure difference between the two fluids across the interfaces (the Laplace pressure) must be the same
for all menisci (Primkulov et al., 2018). As the invading fluid is injected, Laplace pressure builds
uniformly across the micromodel until it matches the lowest capillary-entry pressure at the displace-
ment front, at which point the associated meniscus becomes unstable. This meniscus then rapidly
advances while all other menisci retract, a process known as a burst event (Cieplak & Robbins,
1988, 1990) or Haines jump (Haines, 1930; Berg et al., 2013). These events often occur in rapid
successions or avalanches, the sizes of which are scale-free (Moura et al., 2017b). The repetition of
this process generates the marked intermittency of slow drainage, where rapid invasion events are
punctuated by periods of apparent inactivity. Since clusters of defending fluid occasionally get sur-
rounded and disconnected (i.e, trapped) during the displacement, the quasi-static invasion process
is analogous to invasion percolation with trapping (see Fig. 5-1 and Table 5.1).

We find that intermittent pore-scale invasion persists in slow strong imbibition, despite the
substantial differences in the pore-scale displacement mechanisms (Fig. 5-1). In strong imbibition,
the invading fluid advances by preferentially coating the corners between posts and top/bottom
plates (Zhao et al., 2016; Primkulov et al., 2018). After a particular post-coating event, the corner
menisci swell as the Laplace pressure increases uniformly across the micromodel until the displace-
ment front touches an uncoated post, triggering rapid coating of the new post (Ponomarenko et al.,
2011). The repetition of this process generates the marked intermittency apparent in experiments
(see supplemental video). As in drainage, the spatiotemporal evolution of the invasion front displays
irregular changes in flow direction and the formation of invasion clusters—a signature of capillary-
dominated flow in disordered porous media (Primkulov et al., 2021). Clusters of defending fluid
occasionally get surrounded by chains of coated posts, but it remains unclear whether these clusters
become disconnected and trapped. Our experimental observations are ambiguous but suggestive
of trapping [supplemental video], but our simulations do not include trapping because our model
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Figure 5-2: (a) Scale-free distribution of waiting times between consecutive post-coating events from
the strong imbibition experiment (see supplemental video). We calculate avalanche size 𝜃 as (b) the
cluster size of consecutive events connected to a reference post (e.g. sequence of posts 88-98), or as
(c) the number of events found by traversing the pressure signal 𝑝 from numerical simulations until
a value higher than the reference value is reached. Here, avalanches originate from all data points
with negative slope. The distribution of 𝜃 is scale-free in (d) experiments and (e) simulations, where
the colors correspond to 𝜃-counting methods in (b) and (c).

does not allow for trapping in strong imbibition (Primkulov et al., 2018). We therefore assume that
the quasi-static invasion process is analogous to invasion percolation without trapping (Fig. 5-1 and
Table 5.1). In the Supplemental Materials, we use a simplified model to show that the presence or
absence of trapping does not have significant influence on the invasion statistics.

5.3 SOC signature in waiting time

Scale-free waiting times between events are a signature of SOC. As a result, the timing of pore-
invasion events in drainage is fundamentally unpredictable. To show that post-coating events in
strong imbibition also behave in this way, we measure the waiting times between consecutive post-
coating events in our experiments. We find that the histogram of waiting times follows a power-law
scaling, similar to drainage (Moura et al., 2017b). The slope of the power-law fit to the experimental
data is smaller than 2 (Fig. 5-2a), confirming that the distribution is scale-free.

5.4 SOC signature in avalanche size

An avalanche in strong imbibition is a cluster of consecutive post-coating events that originate from
the same reference post (e.g. the sequence 88-98 in Fig. 5-2b). Avalanche size 𝜃 can be characterized
by counting the number of events before encountering a post-coating event disconnected from the
cluster (e.g. event 99 in Fig. 5-2b). For quasi-static invasion, a nearly equivalent definition of 𝜃
relies on the pressure signal (Roux & Guyon, 1989; Moura et al., 2017a; Maslov, 1995). Given the
lowest capillary entry pressure 𝑝0 at the displacement front at some reference time, 𝜃 can be defined
as the number of pore-invasion events that occur before 𝑝0 is next exceeded (Fig. 5-2c and (Roux
& Guyon, 1989)).
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As in drainage (Moura et al., 2017b), avalanches in strong imbibition retrieved by the counting
method detailed in Fig. 5-2b reveal power-law distributions in both experiments and simulations
(Fig. 5-2d-e). We obtain a similar power-law distribution from the quasi-static pressure signal, a
portion of which is illustrated in Fig. 5-2c. Again, the slope of these power-law distributions is
less than 2, indicating that avalanche sizes are scale free. For both drainage and strong imbibition,
the scale-free distribution of avalanches is responsible for the fractal nature of the displacement
patterns, which are aggregates of scale-free avalanche clusters. Therefore, slow strong imbibition,
despite its distinct invasion mechanism, exhibits all the characteristics of SOC—scale-free waiting
times between events, scale-free avalanches, and fractal displacement patterns—that have been
documented in slow drainage (Moura et al., 2017b).

5.5 Furuberg scaling

The above findings raise the question of whether the correlation scaling of Furuberg et al. (1988),
originally proposed for drainage, also holds in strong imbibition. The correlation function 𝑁(𝑟, 𝑛)
measures the probability of pore invasion at distance 𝑟 in space and a number of events 𝑛 in time
away from a reference event. Here, we measure 𝑟 as the Euclidean distance normalized by the
characteristic distance between posts, and 𝑛 as consecutive pore-scale event number. Furuberg
et al. (1988) found that in drainage,

𝑁(𝑟, 𝑛) = 𝑟−1𝑓(𝑟𝐷/𝑛), 𝑓(𝑥) ∼

{︃
𝑥𝑎, 𝑥 ≪ 1

𝑥−𝑏, 𝑥 ≫ 1
(5.1)

where 𝐷 is the fractal dimension of the displacement pattern. For slow drainage, Furuberg et al.
(1988) obtained exponents 𝑎 ≈ 1.4 and 𝑏 ≈ 0.6 by fitting the results of an invasion-percolation
model. Roux & Guyon (1989) argued that 𝑎 and 𝑏 are linked to exponents of ordinary percolation
theory, and Maslov (1995) subsequently showed that, under that ansatz,

𝑏 = 1− (𝐷𝑒 − 1/𝜈)/𝐷, (5.2)

where 𝐷𝑒 is the fractal dimension of the fluid-fluid interface and 𝜈 is the correlation-length-divergence
exponent from ordinary percolation. Roux & Guyon (1989) argued that 𝑎 ≥ 1, while Moura et al.
(2017a) showed that 𝑎 = 1 +𝐷𝑒/𝐷 when 𝑛 ≫ 1, so we should expect

1 ≤ 𝑎 ≤ 1 +𝐷𝑒/𝐷. (5.3)

Expected values of exponents 𝑎 and 𝑏 from Eqs. (5.2) and (5.3) are reported in Table 5.1. Equa-
tion (5.1) was only recently verified experimentally in drainage by Moura et al. (2017a).

5.6 Furuberg scaling in strong imbibition

Both model and experiment allow us to test the validity of Eq. (5.1) in strong imbibition. For a
fixed value of 𝑛, 𝑁(𝑟, 𝑛) is the histogram of distances 𝑟 between pore-scale events separated in time
by 𝑛 events (Fig. 5-3b). The data from our model and experiments resemble those reported for
strong drainage (Furuberg et al., 1988; Moura et al., 2017a), with peaks in 𝑁(𝑟, 𝑛) moving to larger
𝑟 as 𝑛 increases. These data collapse for both model and experiment when we plot 𝑟𝑁(𝑟, 𝑛) against
𝑟𝐷/𝑛 (Fig. 5-3c), with a peak near 𝑟𝐷/𝑛 = 1 and power-law behavior on either side of the peak
signifying the validity of Eq. (5.1) in strong imbibition.
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Table 5.1: Critical exponents for invasion percolation for lattice configurations relevant to our study,
with values of 𝐷, 𝐷𝑒, and 𝜈 taken from Stauffer & Aharony (1985); Wilkinson & Willemsen (1983);
Knackstedt et al. (2002). Values of 𝑎 and 𝑏 are calculated from Eqs. (5.2)-(5.3).

lattice square hexagonal triangular
𝐷𝑒 1.22 1.21 1.62
𝐷 1.82 1.83 1.89
𝜈 4/3 4/3 4/3

trapping yes yes no
𝑎 [1,1.67] [1,1.66] [1,1.86]
𝑏 0.74 0.75 0.54

Table 5.2: Result of data collapse analogous to Fig. 5-3c for simulations on the benchmark geometry,
and also on a set of regular lattices with post radii assigned from a uniform distribution. We report
the mean and the standard deviation from 40 realizations.

exponents
drainage
𝜃 = 150∘

strong
imbibition
𝜃 = 7∘

benchmark
geometry

𝑎 1.21 1.05
𝑏 0.58 0.72

regular lattice,
random radii

𝑎 1.41±0.08 1.11±0.06
𝑏 0.72±0.15 0.76±0.13

We confirm the robustness of this collapse by running a set of additional simulations for both
drainage and strong imbibition in which we place posts on a regular triangular lattice and draw
post radii from a uniform distribution; the resulting data also collapses, as in Fig. 5-3, with values
of exponents 𝑎 and 𝑏 reported in Table 5.2.

Roux & Guyon (1989) demonstrated that the robustness of the collapse suggested by Eq. (5.1)
relies on the power-law distributions of avalanches (𝑃𝑛(𝜃) ∼ 𝜃−𝜏𝑏) and distances between active
pores at the displacement front (𝑄𝜃(𝑟) ∼ 𝑟𝛼). These conditions are satisfied in both drainage and
strong imbibition, where fluid displacement exhibits features of SOC. However, the predictions of
Eqs. (5.2) and (5.3) for the slopes 𝑎 and 𝑏 appear not to hold in strong imbibition, with the expected
value of 𝑏 (Table 5.1) significantly different from the value in the experiment (Fig. 5-3c) and almost
two standard deviations away from the mean value in simulations (Table 5.2). In fact, Biswas et al.
(2018) showed that 𝜏𝑏 is sensitive to the details of the pore structure and the presence of spatial
correlation, something that the relatively wide standard deviation across our simulations also shows.
This dependence is absent from Eq. (5.2), where 𝑏 (which is a function of 𝜏𝑏 (Roux & Guyon, 1989))
depends only on 𝜈 and fractal dimensions.

5.7 Discussion and conclusion

We have demonstrated that slow fluid-fluid displacement in strong imbibition exhibits features of
SOC previously documented for drainage. The invading fluid advances intermittently, and scale-free
distributions emerge for waiting times and avalanche sizes. Both our model and our experiment
also show that avalanches in strong imbibition robustly follow the pore-scale event correlation of
Furuberg et al. (1988). Slow drainage and strong imbibition are thus the only two known examples of
SOC that follow a definitive correlation of events in space and time [Eq. (5.1)]. It is remarkable that
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Figure 5-3: Verification of Eq. (5.1) in slow strong imbibition for our experiment (top row) and
model (bottom row). (a) Invasion-event-number plot, where events are colored by event number
𝑛 with 𝑛𝑏 the number of events at breakthrough. (b) Plots of 𝑁(𝑟, 𝑛) vs. 𝑟 for several values of
𝑛. (c) Collapse of 𝑟𝑁(𝑟, 𝑛) vs. 𝑟𝐷/𝑛 points to the validity of the scaling in Eq. (5.1). Here, data
points correspond to all different values of the time delay 𝑛, while the insets show the collapse for
a selection of 𝑛 from (b).

these two phenomena—governed by entirely distinct pore-level mechanisms—both exhibit collapse
in the correlated nature of invasion percolation.

Furthermore, we anticipate that the correlation scaling of Furuberg et al. (1988) would still be
valid in 3D, as long as the two assumptions of Roux & Guyon (1989) (power-law scaling of avalanche
sizes and distance between active pores) still hold. Validating this correlation scaling in 3D with
either simulations or experiments would be an intriguing next step. Additionally, we found that
increasingly strong spatial correlation in wettability or pore-sizes eventually breaks the collapse
of the correlation data (Fig. 3c). This is especially true in weak imbibition, where the invasion
dynamics on a highly correlated regular lattice resembles the growth of a crystal (Lenormand,
1990). While this discussion falls outside the scope of this letter, it is another great direction for
follow-up studies.

Scientific understanding of SOC is still at a relatively early stage (Yang et al., 2004; Bak,
2013; Marković & Gros, 2014), and much of the progress in the field is made by studying one
example of SOC and trying to extrapolate to others (Goldenfeld & Kadanoff, 1999). Many other
natural examples of SOC, like landslides, snow avalanches, and earthquakes, share features similar
to avalanches in drainage and strong imbibition (Bak, 2013). For instance, in earthquakes: (i) the
sliding of geologic faults occurs by means of intermittent stick-slip motion; (ii) magnitudes and
waiting times between consecutive earthquakes are scale-free (Bak, 2013), and (iii) earthquake
locations within slip planes have been speculated to form fractal patterns (Bak & Chen, 1989). An
intriguing follow-up to this work would be to investigate whether the scaling in Eq. (5.1) holds for
earthquakes, given the density and precision of modern earthquake catalogs (DeVries et al., 2018;
Ross et al., 2019).
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Part II

Moving fluid interfaces and contact lines
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Chapter 6

Spin coating of capillary tubes

This chapter has been published in Primkulov et al. (2020b).

6.1 Introduction

Use of capillary tubes is widespread in a range of health and industrial applications, for example, in
the studies of film instability (Goren, 1962; Rossen, 2000; Duclaux et al., 2006), wetting (Washburn,
1921; Hoffman, 1975; Walls et al., 2016; Zhao et al., 2018), blood flow (Goldsmith & Spain, 1984;
Pries et al., 1992), and oil recovery (Morrow & Mason, 2001; Patzek & Kristensen, 2001; Blunt,
2001). In many of these applications, precise control of the surface properties of the capillary tubes
is critical. Here, we demonstrate that such control is possible through the deposition of thin layers
of functional polymers via spin-coating (Emslie et al., 1958; Scriven, 1988), a technique that has
not previously been explored for coating capillary tubes.

The prevalent approach to coating the inner wall of a capillary tube dates back to G.I. Taylor
(Taylor, 1961). A tube is filled with viscous liquid, which is subsequently expelled by air at a
prescribed flow rate. As the air bubble propagates through the tube, a liquid film of uniform
thickness is left on the wall of the tube. When Ca ≪ 1, the thickness ℎ can be estimated from
Bretherton’s law (Bretherton, 1961) as ℎ ∼ 𝑅Ca2/3, where Ca = 𝜇𝑢

𝜎 is the capillary number, 𝜇 the
liquid viscosity, 𝑢 the bubble velocity, 𝜎 the surface tension and 𝑅 the tube radius. This method
has been used extensively to generate annular films of controlled thickness (Goren, 1962; Aussillous
& Quéré, 2000; Duclaux et al., 2006). While it is well suited to generating relatively thick films at
moderate bubble speeds, practical difficulties in maintaining very low gas flow rates may preclude
the deposition of films of uniform thickness at very low displacement rates. In particular, syringe
pumps operating at low constant injection rates are known to have stepper-motor-induced pressure
fluctuations (Li et al., 2014; Zeng et al., 2015).

Here, we explore centrifugally-forced deposition of viscous liquids in capillary tubes, which offers
an easily accessible alternative to Taylor’s method that is particularly advantageous for micron-
scale films. In §6.2, we describe the details of the experimental setup. We present theoretical
arguments for the early and late-time flow dynamics in §6.3. Control over the film thickness allows
for manipulation of the timescale of the subsequent Rayleigh-Plateau instability described in §6.5.
We thus present methods for generating both cylindrical and corrugated coatings on capillary tubes
with a curable polymer, and point to potential applications in §6.6.
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Figure 6-1: (a) Diagram of the computer fan repurposed as a spin-coater. (b) Schematic of the
capillary tubes filled with liquid slugs, spun at angular velocity 𝜔. (c) Schematic of the slug-flow
regime. (d) Schematic of the film-thinning regime.

6.2 Experimental method

We repurpose a computer fan as a spin-coater: the blades of the fan are removed and a 3D-printed
platform for holding capillary tubes is attached, centered at the spin axis (fig. 6-1a). The fan is
connected through an Arduino board to MATLAB, where we fix the angular velocity at 854±10 rpm
for all of the experiments presented below.

First, we explore how liquid slugs move within the spinning capillary tubes with high speed
imaging (see Supplemental Materials, video V1). We introduce 20 mm-long liquid slugs into the
capillary tubes (Hilgenberg borosilicate glass, 75 mm in length, 290 𝜇m inner radius), place them
onto the spin-coating platform as shown in fig. 6-1b, and spin. We track the slug length 𝑙(𝑡) and
slug-center distance 𝑥𝑐(𝑡) from the spin-axis (fig. 6-2a-b). As the slug moves outwards, it leaves a
film of liquid behind, reducing the slug length 𝑙 as 𝑥𝑐 increases. Notably, the evolution of 𝑙 with 𝑥𝑐
is nearly independent of the liquid viscosity (fig. 6-2b), which means that the film thickness profile
deposited by the slug is also independent of viscosity. Furthermore, 𝑥𝑐 grows exponentially with
time (fig. 6-2a), which makes the slug flow regime very brief. Both of these observations are to be
rationalized in §6.3.2.

In the second set of experiments, we explore the thinning dynamics of the liquid films on the
capillary tube walls arising after the slug has exited the tube. We introduce a sufficient volume
of liquid into the capillary tubes such that the film is deposited throughout the tube. The excess
liquid is allowed to escape from the outer end of the tube. The thickness of the liquid film left on
the walls is estimated from the weight difference of the dry and coated tubes. This is done in groups
of ten capillary tubes—weights are measured with an Ohaus Explorer EX225D scale, which allows
0.1 mg precision, corresponding to sub-micrometer precision in the final film thickness.

When capillary tubes are spun at sufficiently high angular speed, the amount of liquid within
the tubes drops sharply at first, then slowly approaches its long-time limit. The experimental
results of spin-coating capillary tubes with different liquids (50-1000 cSt silicone oils and NOA81)
are reported in fig. 6-3a. Silicone oils and NOA81 show similar trends, with the value of the final
thickness increasing with viscosity.

We rationalize these observations with theoretical models developed in the next section, where
we distinguish two flow modes: slug motion and film thinning. We find the characteristic timescales
of these two modes and show that the temporal evolution evident in fig. 6-3 is largely associated
with the slow thinning of the viscous films. Note that we do not attempt to model the film thinning
of NOA81, as its rheology is yet to be fully characterized. We found that its viscosity (∼ 240 cSt)
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Figure 6-2: (a) Exponential change in the slug-center position 𝑥𝑐 with time, where the timescales
(inverse of the slope) are [0.9, 3.2, 4.0, 7.5] s for [50, 350, 500, 1000] cSt, respectively. Here 𝑥0 is the
initial coordinate of the slug-center. (b) Measurements of the slug length 𝑙 with 𝑥𝑐 suggest viscosity-
independent film-deposition profiles (see Appendix D.1 for a discussion of the deviation of the 50 cSt
oil curve).

Figure 6-3: (a) Temporal evolution of the deposited film thickness long after the slug-motion:
measurements are denoted with circles (and squares), theory with solid lines. (b) Film thickness
evolution of 1000 cSt silicone oil spun at 651, 854, and 1285 rpm. (c) Collapse of the data from
fig. 6-3a and fig. 6-3b using (6.11). Each point corresponds to 10 spin-coating experiments, with
over 350 total coated tubes.

increases with shelf-life and that it exhibits non-Newtonian behavior at low film heights. As a result,
the polymer is primarily used here to illustrate the possibility of making channels with wavy walls
in §6.6.

6.3 Theory

Consider a capillary tube, containing a liquid slug of density 𝜌 and dynamic viscosity 𝜇, that is spun
at a prescribed angular speed 𝜔 (fig. 6-1c). As the slug moves outwards, it deposits a liquid film
on the tube walls. We consider the control region containing the slug only. Three forces may be
significant in this configuration: the capillary (𝐹cap), viscous (𝐹visc), and centrifugal (𝐹centr) forces.
The capillary force can be estimated from the different end-curvatures of the liquid slug; the Laplace
pressure difference on its ends opposes the outward motion (Bico & Quéré, 2001):

𝐹cap = −𝜋𝑅2 2𝜎

𝑅
+ 𝜋(𝑅− ℎ0)

2 2𝜎

𝑅− ℎ0
= −2𝜋𝜎ℎ0,
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where ℎ0 is the characteristic thickness of the film deposited by the slug motion, and we assume a
completely wetting liquid. The viscous force associated with Poiseuille flow can be estimated from
the drag on the tube walls:

𝐹visc = −2𝜋𝑅𝑙(𝑡)
4𝜇

𝑅
�̇�𝑐 = −8𝜋𝜇𝑙(𝑡)�̇�𝑐,

where 𝑙(𝑡) is the liquid slug length, 𝑥𝑐 the position of the slug center, and �̇�𝑐 its velocity. Finally,
the centrifugal force acting at the slug can be expressed as:

𝐹centr =

∫︁ 𝑥𝑐+𝑙/2

𝑥𝑐−𝑙/2
𝜌𝜋𝑅2𝜔2𝑥𝑑𝑥 = 𝜌𝜋𝑅2𝜔2𝑙(𝑡)𝑥𝑐.

Therefore, the motion of the slug is governed by 𝑑(𝑚�̇�𝑐)
𝑑𝑡 = 𝐹cap+𝐹visc+𝐹centr, from which it follows

that

�̇��̇�𝑐
𝑚

+ �̈�𝑐 = − 2𝜎ℎ0
𝜌𝑙(𝑡)𝑅2

− 8𝜇�̇�𝑐
𝜌𝑅2

+ 𝜔2𝑥𝑐.

We neglect �̇��̇�𝑐 since �̇��̇�𝑐
𝑚�̈�𝑐

= 𝜌2𝜋𝑅ℎ𝑖�̇�
2
𝑐

𝜌𝜋𝑅2𝑙�̈�𝑐
= ℎ𝑖

𝑅
2�̇�2

𝑐
�̈�𝑐𝑙

∼ ℎ𝑖
𝑅

𝑙2/𝜏2inert
𝑙2/𝜏2inert

= ℎ𝑖
𝑅 ≪ 1, where ℎ𝑖 is the film

thickness deposited in the inertial regime and 𝜏inert the inertial timescale (see §6.3.1). Furthermore,
𝐹cap
𝐹centr

= ℎ
𝑅

2𝜎
𝜌𝑙𝑥𝑐𝑅𝜔2 ∼ 10−2 ℎ

𝑅 ≪ 1; hence, we may safely neglect the contribution of the capillary force
from this point on. The force balance then reduces to:

�̈�𝑐 = −8𝜇�̇�𝑐
𝜌𝑅2

+ 𝜔2𝑥𝑐. (6.1)

We proceed by separating the slug dynamics (fig. 6-1c) into early inertial (§6.3.1) and late viscous
(§6.3.2) regimes. The subsequent thinning of the film on the tube walls (fig. 6-1d) is described
thereafter.

6.3.1 Inertial slug-flow (𝑡 < 𝜌𝑅2

8𝜇
)

When the flow is dominated by inertia, the viscous term in (6.1) can be neglected and the motion
of the slug is governed by

�̈�𝑐 = 𝜔2𝑥𝑐. (6.2)

The position of the slug can be expressed as 𝑥𝑐(𝑡) = 𝑥0 cosh (𝜔𝑡), where 𝑥0 is the initial coordinate
of the slug-center.

The inertial flow persists until the boundary effects diffuse across the tube and motion becomes
viscosity-dominated. The crossover between the two regimes occurs when the viscous term becomes
comparable to inertia and �̈�𝑐 ∼ 8𝜇�̇�𝑐

𝜌𝑅2 , which allows us to establish the characteristic time for the

inertial flow as 𝜏inert ≡ 𝜌𝑅2

8𝜇 . The characteristic timescale of inertial slug-flow ranges between 10−5

and 2 · 10−4 s for the silicone oils used in our study. Notably, these times correspond to the oil
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slug displacements between 8 nm and 3 𝜇m (for 1000 cSt and 50 cSt oils, respectively): in our
experiments, the system quickly switches to the viscosity-dominated regime.

6.3.2 Viscous slug-flow (𝜌𝑅2

8𝜇
< 𝑡 < 8𝜇

𝜌𝜔2𝑅2 )

In the viscosity-dominated slug regime, we neglect the inertial terms so that (6.1) reduces to

8𝜇�̇�𝑐
𝜌𝑅2

= 𝜔2𝑥𝑐, (6.3)

and the slug position can be expressed as 𝑥𝑐 = 𝑥0𝑒
𝜌𝜔2𝑅2

8𝜇
𝑡. The characteristic time for the slug flow

is 𝜏slug ≡ 8𝜇
𝜌𝜔2𝑅2 , which corresponds to 0.6 and 11.7 s for 50 and 1000 cSt silicone oils, respectively.

These times are in close agreement with the experimental measurements of the slug-flow timescale
reported in fig. 6-2a.

As the liquid slug moves through the tube, it deposits a film on the wall. This film is also subject
to centrifugal forces; however, we neglect its thinning within the relatively brief time frame of the
viscous slug-flow (an approximation to be justified a posteriori by comparison with the thinning
timescale). Then, the thickness of the deposited film can be estimated from Bretherton’s scaling
(Bretherton, 1961) as:

ℎ0(𝑥) ∼ 𝑅Ca2/3 = 𝑅

(︂
𝜇�̇�

𝜎

)︂2/3

= 𝑅

(︂
𝜌𝜔2𝑅2

8𝜎
𝑥

)︂2/3

. (6.4)

Notably, this thickness is independent of the liquid viscosity, in agreement with the experimental
data in fig. 6-2b.

As the slug speed increases, the Ca increases from 0 to about 0.8 in our experiments. Therefore,
the Bretherton’s scaling (6.4) is only applicable while the slug is near the inner end of the tube,
where Ca ≪ 1. While a more accurate scaling of ℎ𝑜(𝑥) ∼ 𝑅 Ca2/3

1+Ca2/3
can be used for Ca between

0.01 and 1 (Aussillous & Quéré, 2000), we demonstrate in §6.4 that the late-time thinning profile is
not sensitive to the film thickness profile left after the viscous slug-flow regime. This is consistent
with the work of Emslie et al. (1958). Therefore, we use the expression (6.4) as a leading order
approximation for simplicity in this work.

6.3.3 Film thinning (𝑡 > 8𝜇
𝜌𝜔2𝑅2 )

In the late-time flow regime, we start with the film thickness profiles from (6.4). Subsequent thinning
of the film is resisted predominantly by the viscosity of the liquid. As the liquid film thins, viscous
resistance balances the centrifugal force, 𝐹visc ∼ 𝐹centr, as is the case in the spin-coating of flat
surfaces (Emslie et al., 1958). Then, in the absence of inertia and provided that ℎ ≪ 𝑅, we can
invoke the lubrication approximation, according to which

0 = 𝜇
𝜕2𝑢

𝜕𝑟2
+ 𝜌𝜔2𝑥. (6.5)

By imposing the no-slip boundary condition at the wall and zero shear stress at the liquid surface,
we obtain from direct integration of (6.5) the velocity field: 𝑢(𝑥, 𝑟) = 𝜌𝜔2𝑥

𝜇 (−𝑟2/2 + 𝑟(𝑅 − ℎ(𝑥)) +
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Figure 6-4: (a) Silicon oil (500 cSt) film thickness profiles at various times, where the initial
profile (blue) is estimated with (6.4). Subsequent thickness profiles are obtained by evolving the
surface coordinates with the system (6.9). Dotted lines represent the material point trajectories. (b)
Collapse of the film thinning profiles onto a single curve via the similarity transformation developed
in §6.4.

𝑅(ℎ(𝑥)−𝑅/2)). Thus, we estimate the volume flow rate as:

𝑞(𝑥) =

∫︁ 𝑅

𝑅−ℎ(𝑥)
2𝜋𝑟𝑢(𝑥, 𝑟)𝑑𝑟 =

𝜋𝜌ℎ(𝑥)3𝜔2𝑥

12𝜇
(8𝑅− 5ℎ(𝑥)). (6.6)

Conservation of mass in a representative section of the liquid film (see fig. 6-1d) yields 𝑞(𝑥)− 𝑞(𝑥+

𝛿𝑥) = 2𝜋(𝑅−ℎ(𝑥))𝛿ℎ𝛿𝑥
𝛿𝑡 , which can be re-written as

𝑑ℎ

𝑑𝑡
= − 1

2𝜋(𝑅− ℎ(𝑥))

𝑑𝑞(𝑥)

𝑑𝑥
. (6.7)

This is a first-order partial differential equation for ℎ(𝑡, 𝑥), equivalent to

24𝜇(𝑅− ℎ)

𝜌𝜔2

𝑑ℎ

𝑑𝑡
+ 4𝑥ℎ2(6𝑅− 5ℎ)

𝑑ℎ

𝑑𝑥
= −ℎ3(8𝑅− 5ℎ). (6.8)

If we define 𝑑𝑛 ≡ 𝜌𝜔2𝑑𝑡
24𝜇(𝑅−ℎ) =

𝑑𝑥
4𝑥ℎ2(6𝑅−5ℎ)

= − 𝑑ℎ
ℎ3(8𝑅−5ℎ)

, then the solution of (6.8) can be written
as (Cheng, 2007):

𝑑𝑡

𝑑𝑛
=

24𝜇(𝑅− ℎ)

𝜌𝜔2
,
𝑑𝑥

𝑑𝑛
= 4𝑥ℎ2(6𝑅− 5ℎ),

𝑑ℎ

𝑑𝑛
= −ℎ3(8𝑅− 5ℎ). (6.9)

Evolution of the film thickness can be resolved by taking the (𝑥, ℎ) coordinates of the Brether-
ton’s film from (6.4), and solving the system (6.9). We do so for all silicone oils used in our exper-
iments and plot the theoretical film thicknesses in fig. 6-3a and fig. 6-3b, where the theory closely
matches the experimental measurements. The typical temporal evolution of the liquid thickness pro-
files is reported in fig. 6-4a. Noting that the scales of the vertical and horizontal axes are very differ-
ent in fig. 6-4a, we see that when capillary tubes are spun at high 𝜔, the film thickness very quickly
becomes nearly uniform. In that case, 𝑑ℎ

𝑑𝑥 ≪ 1 and (6.7) yields 𝑑ℎ
𝑑𝑡 = −𝜌𝜔2ℎ3

24𝜇
8𝑅−5ℎ
𝑅−ℎ [1+ 3𝑥

ℎ (1− 5
24

ℎ
𝑅)

𝑑ℎ
𝑑𝑥 ]

which reduces to:
𝑑ℎ

𝑑𝑡
= −𝜌𝜔2ℎ3

24𝜇

8𝑅− 5ℎ

𝑅− ℎ
. (6.10)
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We note that in the above approximation, the rate of thinning is independent of 𝑥. This feature
is consistent with numerous spin-coating applications in which the film thickness is known to be
nearly uniform and insensitive to the initial shape of the liquid bulk (Emslie et al., 1958; Scriven,
1988).

Since ℎ ≪ 𝑅, the expression (6.10) reduces to 𝑑ℎ
𝑑𝑡 = −𝜌𝜔2ℎ3

3𝜇 . Then, the evolution of the film
thickness is independent of the tube radius, and integration yields

ℎ−2
0 − ℎ−2 = −2𝜌𝜔2

3𝜇
𝑡. (6.11)

This suggests that if we plot the data in figs. 6-2a-b as ℎ against
√︁

3𝜇
2𝜌𝜔2𝑡

, when ℎ ≪ ℎ0 the data
should collapse onto a straight line, as is indeed evident in fig. 6-3c. The characteristic timescale of
the film thinning changes with the film thickness as 𝜏thinning ≡ 3𝜇

2𝜌𝜔2ℎ2 , which is significantly larger

than the timescale of the viscous slug motion: 𝜏slug
𝜏thinning

= ℎ2

𝑅2 ≪ 1. This disparity in the timescales
justifies our neglecting the film thinning in §6.3.2.

6.4 Self-similar solution of film thinning

We proceed by developing a similarity solution suggested by our governing equations. The film
thinning in capillary tubes is governed by (6.8), which can be rewritten as

𝑘2(𝑅− ℎ)
𝑑ℎ

𝑑𝑡
+ 4𝑥ℎ2(6𝑅− 5ℎ)

𝑑ℎ

𝑑𝑥
= −ℎ3(8𝑅− 5ℎ), (6.12)

where 𝑘2 =
24𝜇
𝜌𝜔2 . The initial conditions are set by:

ℎ(0, 𝑥) = 𝑘1𝑥
2/3, (6.13)

where 𝑘1 = 𝑅
(︁
𝜌𝜔2𝑅2

8𝜎

)︁2/3
.

The equations of characteristics for (6.12) yield (Cheng, 2007):

𝑑𝑡

𝑘2(𝑅− ℎ)
=

𝑑𝑥

4𝑥ℎ2(6𝑅− 5ℎ)
= − 𝑑ℎ

ℎ3(8𝑅− 5ℎ)
. (6.14)

Resolving the first and second equalities in (6.14) results in the following equations:

ln𝑥 =
4ℎ2(6𝑅− 5ℎ)

𝑘2(𝑅− ℎ)
𝑡+ ln 𝑐1 and ln𝑥 = −3 lnℎ− ln(ℎ− 8𝑅/5) + ln 𝑐2,

which simplify to

𝑥 = 𝑐1𝑒
4ℎ2(6𝑅−5ℎ)
𝑘2(𝑅−ℎ)

𝑡 and 𝑥 =
𝑐2

ℎ3(ℎ− 8𝑅/5)
,

respectively, with:

𝑐1 = 𝑥𝑒
− 4ℎ2(6𝑅−5ℎ)

𝑘2(𝑅−ℎ)
𝑡 ≡ 𝑓(𝑡, 𝑥, ℎ) and 𝑐2 = 𝑥ℎ3(ℎ− 8𝑅/5) ≡ 𝑔(𝑡, 𝑥, ℎ). (6.15)
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With given values of 𝑐1 and 𝑐2, (6.15) describes two-dimensional surfaces in (𝑡, 𝑥, ℎ) space. The
intersection of these two surfaces is a characteristic curve, and one obtains the characteristic curves
of (6.12) by spanning all possible combinations of 𝑐1 and 𝑐2. The solution that satisfies the initial
condition (6.13) can be found graphically (Cheng, 2007). We choose characteristic curves that pass
through points (0, 𝑥, ℎ(0, 𝑥)), and the aggregate of these curves forms a solution surface in the
(𝑡, 𝑥, ℎ) space.

Alternatively, one can find the analytical solution by finding the curves that satisfy the relation:

𝑐1 = 𝐹 (𝑐2) or 𝑔(𝑡, 𝑥, ℎ) = 𝐹 (𝑓(𝑡, 𝑥, ℎ)), (6.16)

where 𝐹 is an arbitrary function. Here, (6.16) is the general solution of (6.12), and the function
𝐹 can be determined from the initial condition 𝑔(0, 𝑥, ℎ(0, 𝑥)) = 𝐹 (𝑓(0, 𝑥, ℎ(0, 𝑥))), which using
ℎ(0, 𝑥) from (6.13) yields

𝐹 (𝑥) = 𝑘31𝑥
3(𝑘1𝑥

2/3 − 8𝑅/5). (6.17)

Finally, the general solution of (6.12) with initial condition (6.13) is 𝑔(𝑡, 𝑥, ℎ) = 𝐹 (𝑓(𝑡, 𝑥, ℎ)), which
can be rewritten as 𝑔 = 𝑘31𝑓

3(𝑘1𝑓
2/3 − 8𝑅/5) or

𝑥ℎ3(ℎ− 8𝑅/5) = 𝑘31

[︂
𝑥𝑒

− 4ℎ2(6𝑅−5ℎ)
𝑘2(𝑅−ℎ)

𝑡
]︂3(︃

𝑘1

[︂
𝑥𝑒

− 4ℎ2(6𝑅−5ℎ)
𝑘2(𝑅−ℎ)

𝑡
]︂2/3

− 8𝑅/5

)︃
. (6.18)

Here, (6.18) can be solved implicitly for ℎ given a combination of 𝑡 and 𝑥. When solved for 500 cSt
silicone oil spun at 854 rpm, (6.18) produces the curves in fig. 6-4a.

The solution (6.18) at later times, when ℎ ≪ 𝑅 and 𝑡 ≫ 1, reduces to:

𝑥ℎ3 = 𝑘31𝑥
3𝑒

− 24ℎ2

𝑘2
𝑡
. (6.19)

We substitute ℎ = 𝑡𝛼𝐻 and 𝑥 = 𝑡𝛽𝜉 into (6.19) to obtain:

𝑡3𝛼−2𝛽𝐻
3

𝜉2
= 𝑘31𝑒

− 24𝐻2

𝑘2
𝑡2𝛼+1

. (6.20)

The profile 𝐻(𝜉) is self-similar when (6.20) is independent of 𝑡. This happens when:

3𝛼− 2𝛽 = 0 and 2𝛼+ 1 = 0, or equivalently 𝛼 = −1/2, 𝛽 = −3/4.

Plotting ℎ𝑡1/2 versus 𝑥𝑡3/4 collapses all curves from fig. 6-4a onto the self-similar profile shown in
fig. 6-4b.

6.5 Rayleigh-Plateau instability

Having produced nearly uniform micrometer-scale films on the inner walls of the capillary tubes by
spin-coating over the timescales reported in fig. 6-3a, we stop the spinning, making 𝐹centr vanish.
In this setting, the ratio of gravitational to capillary forces is relatively low, so that Bo ≡ (𝑅−ℎ0)2

ℓ2cap
≈

0.04, where ℓcap ≡
√︁

𝜎
𝜌𝑔 is the capillary length. Therefore, these thin films are subject to Rayleigh–

Plateau instability (fig. 6-5a), with the fastest growing wavelength and timescale of the instability
depending on the film thickness ℎ0 after spin-coating (Goren, 1962; Duclaux et al., 2006; Eggers
& Villermaux, 2008). Consequently, one should be able to control these parameters by tuning the
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Figure 6-5: Rayleigh-Plateau instability of 500 cSt silicone oil films. (a) Typical temporal evolution
of liquid film instability. Note that the liquid-solid boundary is not visible because the refractive
indices of the oil (𝑛 = 1.41) and glass (𝑛 = 1.51) are very similar. (b) Evolution of the Rayleigh-
Plateau crest thickness 𝜖. The instability timescale 𝜏 is the inverse of the slope. Such plots are used
to measure 𝜏 values in fig. 6-5d. (c) Measurements of instability wavelengths. (d) The timescale
of the Rayleigh-Plateau instability, as estimated from the slope of the linear portion of ln(𝜖(𝑡))
in fig. 6-5b. The film thickness is estimated from (6.10). A conservative estimate of the error is
taken as the largest difference between the experimental and theoretical film thicknesses in fig. 6-3a.
Vertical error bars represent standard deviations in both (c) and (d).

spinning and curing times of the polymer film, thereby generating either flat or wavy surfaces inside
the capillary tubes.

We track the temporal progression of the film instability by detecting inner boundaries of the
liquid from the top-view images of the experiment (fig. 6-5a). The wavelength of instability 𝜆 is
measured as the distance between the crests on the liquid surface. Depending on ℎ0, the mean
experimental values of 𝜆 range between 2.5 and 3.5 mm (fig. 6-5c), which are about 32% higher
than the expected wavelength of 𝜆 ∼ 2

√
2𝜋(𝑅 − ℎ0) for viscous annular films (Goren, 1962). This

discrepancy has been attributed to gravity effects by Duclaux et al. (2006), who suggested a corrected
expression for the wavelength of 𝜆 ∼ 2

√
2𝜋(𝑅− ℎ0)/

√
1− 𝛼Bo, where 𝛼 is an empirical coefficient.

Adapting this expression would require 𝛼 ≈ 12 to fit our data. Duclaux et al. (2006) outline three
distinct regimes of film instability in terms of two parameters:

√
Bo and Bo(𝑅 − ℎ0)/ℎ0. When√

Bo ≪ 1 and Bo(𝑅− ℎ0)/ℎ0 ≪ 1, the effects of gravity are negligible and the classical wavelength
of 𝜆 ∼ 2

√
2𝜋(𝑅− ℎ0) is recovered (Goren, 1962). When

√
Bo ≪ 1 and Bo(𝑅− ℎ0)/ℎ0 = 𝑂(1), the

wavelength is unaffected, but the instability grows faster on the lower side of the horizontal tube.
Finally, as

√
Bo approaches 𝑂(1), the wavelength increases as compared to the classical scaling. In

our experiments
√

Bo ≈ 0.2, hence the wavelength 𝜆 is quite possibly being affected by gravitational
effects.

Despite the discrepancy in the observed wavelength, our measurements of the instability timescale
closely match the theory. The growth rate is expected to follow an exponential law 𝑑𝜖

𝑑𝑡 ∼ 𝜏−1𝜖, where
𝜏 is the characteristic timescale (Plateau, 1873; Rayleigh, 1892). Indeed, significant portions of the
ℎ(𝑡) are linear on a semi-logarithmic plot (fig. 6-5b). The timescales 𝜏 for different ℎ0 are estimated
from the slopes of these linear sections. The experimental data follows the theoretically expected
scaling of 𝜏 ∼ 𝜇(𝑅−ℎ0)4

𝜎ℎ3
0

(Goren, 1962; Johnson et al., 1991), which reduces to 𝜏 ∼ 𝜇𝑅4

𝜎ℎ3
0

for thin films
(see fig. 6-5d).

We observe that Rayleigh-Plateau instabilities grow nearly simultaneously throughout the cap-
illary tubes in all of our experiments (see Supplemental Materials, video V2). Therefore, the data in
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Figure 6-6: Capillary imbibition of silicone oil in two horizontal capillary tubes coated with NOA81:
one with a flat, another with a corrugated inner channel. The inset shows the temporary acceleration
of the liquid interface arising at the narrowest parts of the channel.

fig. 6-5d provide further confirmation that centrifugal spin coating produces films of nearly uniform
thickness on the tube wall. Note that as the film thickness changes from 20 𝜇m to 13 𝜇m, the
characteristic timescale of instability changes from a minute to more than an hour (fig. 6-5d). If
the film thickness were to change appreciably from one end of the tube to the other, we would thus
expect to see significant variations in the timescale of the Rayleigh-Plateau instability along the
tube, which is not the case in our experiments.

6.6 Coating with curable polymers

Having explored the coating of the capillary tubes with 500 cSt silicone oil and the subsequent
instability of the resulting films, we illustrate one particularly interesting application of the spin-
coating method. We coat the inner walls of two capillary tubes with a 13 𝜇m film of NOA81. We
cure one tube with UV light immediately after depositing the film, and let the other form Rayleigh-
Plateau instabilities for one hour prior to curing. By doing so, we fabricate two capillary tubes:
one with straight and the other with wavy inner walls. Since these surfaces are generated by curing
liquid polymers, one may obtain surfaces that are smooth down to a molecular scale (de Gennes
et al., 2004).

Capillary tubes are often used in flow experiments as analogs of porous media. The two tubes
we generated here represent two types of pore channels. Liquid should spontaneously imbibe into
them following the Washburn law (Washburn, 1921) 𝐿 ∼ ( (𝑅−ℎ0)𝜎

2𝜇 𝑡)1/2, where 𝐿 is the axial distance
of the liquid penetration. Since both tubes have nearly identical mean inner radii, we expect that
their experimental 𝐿(𝑡) curves would be nearly identical, with both following 𝐿(𝑡) ∼ 𝑡1/2. This
is indeed the case (fig. 6-6), with an important distinction between the two: the liquid in a wavy
tube gets intermittent boosts in the capillary driving force whenever the liquid front passes through
constrictions in the film’s wavy pattern. This effect results in a distinct temporal profile of the
liquid in a wavy tube compared to that in a flat one (fig. 6-6).
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6.7 Conclusion

We have proposed and realized experimentally a robust and practical method of spin-coating the in-
ner wall of capillary tubes with viscous liquids. We first demonstrated the dynamics of centrifugally-
driven slug motion within the tubes. We then showed that the dynamics of the film thinning is
governed by the balance of viscous and centrifugal forces, and that the thickness of the film can be
anticipated through theoretical arguments. The method of coating presented here is an alternative
to that of Taylor (1961), and is well suited to generating micron-scale liquid films.

The ability to produce both cylindrical and undulatory inner surfaces may be useful in many
practical applications. For instance, coating capillary tubes with NOA81 would allow for careful
control of the substrate wettability (Zhao et al., 2016; Odier et al., 2017), while having wavy inner
surfaces may prove useful in studying the pinch-off and trapping of the resident liquid in porous
media. Finally, the inner wall of the tubes can be coated sequentially with polymers with different
electric conductivity, which would allow for the generation of electrowetting (Mugele & Baret, 2005),
where wettability may be modulated by a time-varying electric current. This may ultimately enable
the manufacturing of capillary tubes that act like pressure oscillators in microfluidic devices.
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Chapter 7

Characterizing dissipation in fluid–fluid
displacement using constant-rate
spontaneous imbibition

This chapter has been published in Primkulov et al. (2020a).

7.1 Introduction

Many of our daily experiences involve one fluid displacing another on a solid surface: from cooking
oil spreading on a frying pan to paper absorbing ink (Alava et al., 2004; Kim et al., 2011) and tea
flowing up a biscuit (Fisher, 1999). In all of these examples, capillarity drives the flow as energy
dissipates within the fluid bulk and near the contact line (the intersection of the fluid–fluid interface
with the solid surface). While dissipation in the fluid bulk is purely viscous, dissipation near the
contact line is not yet fully understood (de Gennes, 1985; Snoeijer & Andreotti, 2013; Brochard-
Wyart & de Gennes, 1992; Joanny & Robbins, 1990; Raphaël & De Gennes, 1989; Sheng & Zhou,
1992; De Coninck & Blake, 2008; Pahlavan et al., 2015; Levaché & Bartolo, 2014; Eggers & Stone,
2004; Bird et al., 2008). Characterizing what fraction of energy is lost in each region is a nontrivial
task; the contact-line dynamics remains in many respects unresolved and continues to challenge our
descriptions of multiphase flow (de Gennes, 1985; De Coninck & Blake, 2008; Bonn et al., 2009;
Snoeijer & Andreotti, 2013).

In this work, we unambiguously separate contact-line and bulk dissipation and map out their
relative importance within a simple fluid–fluid displacement system. This is challenging since the
dynamics of moving contact lines is nonlinear and rate-dependent: the macroscopic contact angle 𝜃
at which the fluid–fluid interface meets the solid surface changes with the rate of displacement, and
dissipation at the contact line, in turn, changes with 𝜃 (Huh & Scriven, 1971). The dynamics of mov-
ing contact lines has traditionally been studied through two classes of experiments: (i) constant-rate
displacement under an external force (e.g., dip-coating (Moulinet et al., 2004; Perrin et al., 2016),
forced displacement in capillary tubes (Hoffman, 1975; Fermigier & Jenffer, 1991)) and (ii) spon-
taneous, variable-rate displacement (e.g., spreading of a droplet on a solid surface (Seaver & Berg,
1994; Tanner, 1979), imbibition of a liquid into a capillary tube (Mumley et al., 1986; Hilpert, 2009,
2010; Schäffer & Wong, 1998, 2000; Walls et al., 2016)).
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Figure 7-1: Experimental snapshots of (a) the classical spontaneous imbibition (𝑧 ∼ 𝑡1/2) of 50 cSt
silicone oil in a capillary tube and (b) constant-rate spontaneous imbibition (𝑧 ∼ 𝑡) of water with a
50 cSt silicone oil slug precursor.

7.2 Experimental method

Here, we present an alternative experimental setup whose novelty is the result of combining, for
the first time, three key ingredients: (i) moving contact line dynamics, (ii) confined geometries, and
(iii) spontaneous, constant-rate interfacial motion. Although the dynamics of the moving contact
lines was first properly described by Voinov (Voinov, 1977) and Cox (Cox, 1986), most studies
have focused on unconfined configurations such as spreading of liquid drops on solid surfaces (Oron
et al., 1997; Bonn et al., 2009; Snoeijer & Andreotti, 2013). Confinement increases the ratio of
interfacial area (solid-fluid and fluid-fluid) to bulk volume, often by orders of magnitude, which
raises a fundamental question about the balance among different dissipation sources. While many
studies have analyzed the importance of the different contributions to energy dissipation in the
context of spontaneous imbibition of a liquid displacing air, as described by the Lucas–Washburn
law (Washburn, 1921; Alava et al., 2004), bulk viscous dissipation is the dominant dissipation
contribution at all times, except for the early onset of the flow (Delannoy et al., 2019). What sets
our experimental setup apart from previous studies is that it allows us to achieve constant-rate
imbibition, and therefore keep the ratio of the different dissipation contributions fixed throughout
each experiment. This allows us to unambiguously extract the sources of dissipation in the different
regimes and construct a phase diagram describing the ratio of the energy that is dissipated at the
contact line.

Our experimental setup is built upon the classical case of spontaneous imbibition into a capillary
tube. By exposing one end of a horizontal capillary tube to a silicone oil reservoir, oil spontaneously
wets the capillary (“classical imbibition”, FIG. 7-1a). The position of the oil front (𝑧) mostly follows
Washburn’s scaling (𝑧 ∼ 𝑡1/2) (Washburn, 1921). The mechanism behind the slowing of the liquid
front is well understood: the capillary driving force remains nearly constant, while viscous resistance
increases in proportion to 𝑧. We modify this setup to achieve constant-rate spontaneous imbibition
by restricting the viscous resistance to an oil slug of fixed length (“constant-rate imbibition”, FIG. 7-
1b). We place a silicone oil (Sigma-Aldrich) slug of viscosity 𝜇𝑜 and length 𝑙 into a hydrophilic glass
tube (untreated Hilgenberg GmbH borosilicate glass 3.3), and then expose the end with the slug to
a reservoir of water with viscosity 𝜇𝑤. The bulk viscous resistance is then proportional to 𝜇𝑜𝑙+𝜇𝑤𝑧;
when 𝜇𝑜𝑙 ≫ 𝜇𝑤𝑧, the slug moves at a constant rate that can be controlled by tuning 𝑙 and/or 𝜇𝑜.
In our experiments, the length of the oil slug does not change as water penetrates the tubes, which
implies that the oil slug does not leave a film of oil behind (Bico & Quéré, 2002, 2001; Zhao et al.,
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Figure 7-2: (a) Constant-rate imbibition experiments for 𝜇𝑜 ∈ {48, 485, 970} mPa·s and 𝑙 ∈
[2, 14] mm. Solid lines represent theoretical predictions of constant-rate imbibition after accounting
for dissipation sources within the oil slug. The experimental data is captured accurately by equa-
tion (7.5) (or equivalently equation (7.6)). (b) Measurements of 𝜃𝑓 (blue diamonds) and 𝜃𝑏 (green
squares) during constant-rate imbibition were taken under a microscope, with typical snapshots for
slugs of different lengths (and thus Ca) displayed beside the figure. The solid lines show the gener-
alized Cox relation (Cox, 1986) with Γ = 6.9, and purple triangles indicate the data from Hoffman
(Hoffman, 1975). The blue shaded region indicates the range of Ca in our constant-rate imbibition
experiments.

2018). We include further experimental details in the supplemental materials E.
In contrast with classical imbibition, the oil slug in our experiments has two menisci: one at

the front (oil–air) and one at the back (water–oil) (FIG. 7-1b). The contact angles of these two
menisci are expected to change with the contact-line speed, and we use the term “dynamic contact
angle” for angles at nonzero speeds. We denote the dynamic contact angles of the back and front
menisci as 𝜃𝑏 and 𝜃𝑓 , and their respective static-advancing values as 𝜃𝑏,𝑎 and 𝜃𝑓,𝑎. Each individual
experiment has a fixed speed and thus fixed dynamic contact angles. To probe the dynamics of the
system at different spontaneous contact-line speeds, we span a wide range of slug viscosities and
lengths, with 𝜇𝑜 ∈ {48, 485, 970} mPa·s and 𝑙 ∈ [2, 14] mm. We characterize the nominal ratio of
viscous to capillary forces in each experiment through the capillary number Ca ≡ 𝜇𝑜�̇�

𝛾𝑜
, where �̇� is

the slug speed and 𝛾𝑜 the surface tension of the oil. We plot Ca against the ratio of tube radius 𝑅
to slug length 𝑙 in FIG. 7-2a, where 44 constant-rate imbibition experiments collapse onto a single
curve. While each individual experiment is constant-rate, the nonlinear global trend emerges from
the dynamics near the contact lines. We begin to rationalize this trend through force balance.

7.3 Theory

Constant-rate imbibition is governed by the balance of bulk viscous resisting force (𝐹bulk) and
capillary driving force (𝐹cap). The bulk viscous force can be calculated from the drag on the tube
walls by assuming classical Poiseuille flow (see supplemental materials E) as 𝐹bulk = 2𝜋𝑅(𝑙 4𝜇𝑜

𝑅 +

𝑧 4𝜇𝑤

𝑅 )�̇�. Since 𝜇𝑤𝑧
𝜇𝑜𝑙

∈ [0.001, 0.2] in our experiments, we neglect the viscous pressure drop within
the water phase and the expression for 𝐹bulk reduces to

𝐹bulk = 8𝜋𝜇𝑜𝑙�̇�. (7.1)

The capillary driving force can be expressed through the dynamic contact angles of the back and
front menisci:

𝐹cap = 2𝜋𝑅(𝛾𝑜𝑤 cos 𝜃𝑏 + 𝛾𝑜 cos 𝜃𝑓 ), (7.2)
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where 𝛾𝑜𝑤 is the oil–water interfacial tension. For quasi-static displacement in the absence of gravity,
𝐹cap and 𝐹bulk must balance to yield the speed of the oil slug, �̇� = 𝑅

4𝜇𝑜𝑙
(𝛾𝑜𝑤 cos 𝜃𝑏+𝛾𝑜 cos 𝜃𝑓 ), which

in dimensionless form reads:
Ca =

(︂
𝛾𝑜𝑤
𝛾𝑜

cos 𝜃𝑏 + cos 𝜃𝑓

)︂
𝑅

4𝑙
. (7.3)

To fully resolve equation (7.3), we need to know how 𝜃𝑏 and 𝜃𝑓 evolve with Ca (de Gennes, 1985;
Bonn et al., 2009; Snoeijer & Andreotti, 2013). When the solid surface is perfectly smooth and
homogeneous, both angles are expected to follow the generalized Cox equation (Cox, 1986), which
can be written as

𝑔(𝜃,𝑀)− 𝑔(𝜃𝑎,𝑀) = CaΓ, (7.4)

where Γ = ln(𝑅/ℎmicro), ℎmicro is the microscopic cut-off-length near the contact line, 𝑀 is the ratio
of the defending to invading fluid viscosities, and the function 𝑔(𝜃,𝑀) is defined in the supplemental
materials E. Indeed, when using 𝑀 = 0 for the oil–air interface, 𝑀 = 1000 for the water–oil interface,
and ℎmicro/𝑅 = 10−3 (Γ = 6.9) for both (Cox, 1986), the generalized Cox equation produces good
agreement with the experimental measurements of 𝜃𝑓 and 𝜃𝑏 (FIG. 7-2b). Although equations (7.3)
and (7.4) can be used to reproduce the constant-rate imbibition trend in FIG. 7-2a, we seek further
simplifications of equation (7.4) for the two menisci. First, we take 𝜃𝑏 = 72∘. This is justified since
both 𝜃𝑏 measurements and the generalized Cox trend in FIG. 7-2b appear to be approximately
constant within the Ca range of our constant-rate imbibition experiments. Second, we note that
equation (7.4) simplifies greatly for the oil–air meniscus: when 𝑀 ≪ 1, it reduces to the commonly-
used Cox–Voinov relation 𝜃3𝑓 = 𝜃3𝑓,𝑎 + 9ΓCa (Cox, 1986; Voinov, 1977). This further reduces to
𝜃𝑓 = (9ΓCa)1/3 since silicone oil wets the glass surface completely (𝜃𝑓,𝑎 = 0∘). Therefore, after
using the expansion cos 𝜃𝑓 = 1 − 𝜃2𝑓/2 + 𝑂(𝜃4𝑓 ) and the Cox–Voinov expression, equation (7.3)
yields:

Ca =

[︂
𝛾𝑜𝑤
𝛾𝑜

cos 𝜃𝑏 + 1− 1

2
(9ΓCa)2/3

]︂
𝑅

4𝑙
, (7.5)

which accurately reproduces the experimental trend (FIG. 7-2a). Note that the generalized Cox
relation predicts approximately constant 𝜃𝑏 within the Ca of our experiments for any liquid pair as
long as 𝑀 ≪ 1 and 𝜃𝑏,𝑎 is not much greater than the value in our experiments (𝜃𝑏,𝑎 = 64∘).

7.4 Contact-line dissipation

We can now use this theoretical description of constant-rate imbibition [Eq. (7.5)] to evaluate
the contributions of the two moving contact lines to the macroscopic trend in FIG. 7-2a. It is
important to make a distinction between the two menisci in FIG. 7-1b, because wettability plays a
key role in how they interact with surface defects. The water–oil interface is in partial wetting, and
can experience pinning at surface defects (Joanny & Robbins, 1990); whenever 𝜃𝑏 < 𝜃𝑏,𝑎, surface
tensions at the contact line are in static balance. This balance no longer holds when 𝜃𝑏 > 𝜃𝑏,𝑎, and
the contact line sets in motion. We define the dynamic contact-line force at the back meniscus as
𝑓𝑏 = 𝛾𝑜𝑤(cos 𝜃𝑏,𝑎 − cos 𝜃𝑏). We measure 𝜃𝑏,𝑎 ≈ 64∘, and thus 𝑓𝑏 ≈ 0.13𝛾𝑜𝑤. In contrast, the oil–air
interface is in complete wetting, and is not sensitive to most surface defects (Joanny & Robbins,
1990). We define 𝑓𝑓 = 𝛾𝑜(cos 𝜃𝑓,𝑎 − cos 𝜃𝑓 ) in analogy to the water–oil meniscus. Recall that
𝜃𝑓,𝑎 = 0∘. Then, the force at the front meniscus reduces to 𝑓𝑓 = 𝛾𝑜

2 (9ΓCa)2/3. We can then rewrite
equation (7.5) through the dynamic contact-line forces,

4𝑙

𝑅
Ca +

𝑓𝑏
𝛾𝑜

+
𝑓𝑓 (Ca)

𝛾𝑜
= 1 +

𝛾𝑜𝑤
𝛾𝑜

cos 𝜃𝑏,𝑎, (7.6)
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Figure 7-3: Phase diagram of forced, rate-controlled imbibition of viscous oil slugs. An external
force is needed to move the slug at higher Ca (“push”) or lower Ca (“pull”) than the spontaneous
rate predicted by equation (7.6) (black solid line). The color of the 𝑅/𝑙 − Ca space represents the
ratios of contact-line to total dissipation in such moving slugs, Ξ = Φcl/(Φcl +Φbulk).

where “driving” terms are grouped on the right-hand-side, and “resisting” terms are grouped on
the left-hand-side. Equation (7.6) is equivalent to equation (7.5), but its form is convenient for
inferring the relative importance of 𝑓𝑏 and 𝑓𝑓 to the overall trend in FIG. 7-2a. If there were no
dynamic contact-line forces at the two menisci (𝑓𝑓 = 𝑓𝑏 = 0), the equation of motion would reduce
to equation (7.3) with 𝜃𝑏 = 𝜃𝑏,𝑎 and 𝜃𝑓 = 𝜃𝑓,𝑎. This scenario corresponds to the red line in FIG. 7-2a.
If we now remove the dynamic contact-line force at the front meniscus only, equation (7.6) would
reduce to equation (7.5) with term 𝛾𝑜

2 (9ΓCa)2/3 = 0, corresponding to the black line in FIG. 7-2a.
This allows making several conclusions: (i) neglecting the dynamic contact-line forces produces a
trend with a significant qualitative and quantitative disagreement with the experiments in FIG. 7-
2a, (ii) non-linearity in constant-rate imbibition comes from the dynamic contact-line force at the
front meniscus, (iii) the contribution of 𝑓𝑏 to the overall trend in FIG. 7-2a is relatively small (see
Eq. (7.6) with 𝑓𝑏 = 0 in FIG. 2a), with 2 < 𝑓𝑓/𝑓𝑏 < 8 within the experimental range of constant-rate
imbibition.

Although our experiments are in spontaneous imbibition, our results are also relevant to forced
imbibition. Addition of an external force would not change the sources of dissipation within the
moving slug. There are only three dissipative forces in our system: bulk viscous force, and contact
line forces at the two menisci. The energy dissipation in the bulk is Φbulk = 8𝜋𝜇𝑜𝑙�̇�

2, again assuming
Poiseuille flow and 𝜇𝑜𝑙 ≫ 𝜇𝑤𝑧. The dissipation due to dynamic contact-line forces is Φcl = 2𝜋𝑅(𝑓𝑓+
𝑓𝑏)�̇�. We can map the relative magnitudes of Φbulk and Φcl during arbitrary motion of the oil slug.
FIG. 7-3 shows a phase diagram where spontaneous imbibition [Eq. (7.5)] separates regions where an
external force either “pushes” the slug to move faster or “pulls” it to move slower than the spontaneous
rate. The ratio of contact-line to total dissipation within the moving slug is Ξ = Φcl/(Φcl +Φbulk),
which is equivalent to

Ξ =
𝑓𝑏 + 𝑓𝑓

𝑓𝑏 + 𝑓𝑓 + 4𝑙
𝑅Ca𝛾𝑜

, (7.7)

and can be alternatively derived by considering dissipative forces within the system (contact line
vs. total). The black lines in FIG. 7-3 represent isolines corresponding to different values of Ξ in
equation (7.7). A surprisingly large fraction of the dissipation (between 20% for 14 mm slugs and
50% for 2 mm slugs) occurs in the vicinity of the contact line during our constant-rate imbibition
experiments. Dissipation isolines in FIG. 7-3 are valid within the Ca range of our experiments.
However, it is important to note what would happen in the upper and lower bounds of Ca in
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FIG. 7-3. In the upper bound (Ca > 0.02), our approximation of constant 𝜃𝑏 would no longer
hold (see FIG. 7-2b). Thus, the isolines in FIG. 7-3 likely underestimate the true dissipation ratio
when Ca > 0.02. In the lower bound (Ca → 0), the system would approach a depinning threshold,
where the water–oil contact line would move by hopping between surface defects, resulting in 𝜃𝑏(Ca)
relation that is very different from the generalized Cox equation (Joanny & Robbins, 1990; Raphaël
& De Gennes, 1989; Sheng & Zhou, 1992). The fact that the motion of the water–oil meniscus in our
experiments appears to be smooth and 𝜃𝑏 is in good agreement with the generalized Cox equation
suggests that we are either sufficiently far from the depinning threshold or that the strength of the
surface defects on our glass surface is too small to have appreciable influence on the overall trend
in FIG. 7-3.

The ratio of contact-line to bulk dissipation in FIG. 7-3 has important macroscopic implications
for problems beyond the constant-rate imbibition we present in this work. Neglecting dissipation
near the contact lines would lead to erroneous (linear) relation between dissipation and Ca; FIG. 7-3
demonstrates that this relation is nonlinear and is a function of the slug dimensions. One example
where this may be significant is the flow of foam or ganglia in porous media (Tallakstad et al.,
2009a,b), a system that has an inherently large number of (potentially very short) viscous slugs
and thus might be expected to have significant energy dissipation associated with dynamic contact
angle effects. Another example is classical imbibition in capillary tubes. It has been recently
demonstrated that early-time viscous effects near the contact line move the system away from the
commonly known form of the Washburn equation (𝑧 ∼ 𝑡1/2), towards 𝑧 ∼ 𝑡 (Delannoy et al.,
2019). This is when Φbulk and Φcl are comparable. However, this flow regime is rather brief in
classical imbibition (see supplemental materials E, which includes (Bico & Quéré, 2002; Delannoy
et al., 2019; Hilpert, 2009, 2010; Heshmati & Piri, 2014; Hoffman, 1975; Thielicke & Stamhuis, 2014;
Cox, 1986)). Alternatively, one can readily access the flow regime with significant Φcl contribution
through constant-rate imbibition, as we demonstrate in FIG. 7-3.

7.5 Conclusion

In summary, we have mapped out the contributions of contact-line and bulk dissipation during
fluid–fluid displacement, and we have shown that a large portion of the dissipation takes place in
the vicinity of the contact line. We did so using constant-rate spontaneous imbibition, achieved
by introducing a viscous oil slug in front of the invading fluid inside a capillary tube. The rate of
imbibition in such experiments can be precisely controlled through the viscosity and length of the
oil slug. This setup allows probing flow regimes that would otherwise be accessible only during the
early-time spontaneous flow—a novel feature of our experimental setup that has significant utility
in the study of moving contact line problems. Alternatively, one can ensure that dynamic contact
line effects are negligible by making the oil slugs sufficiently long (Ξ → 0 when 𝑙/𝑅 ≫ 1). For
example, in order for contact-line dissipation to account for less than 5% of total dissipation, a slug
must be longer than 𝑙/𝑅 = 155 at Ca = 0.02 and longer than 𝑙/𝑅 = 65 at Ca = 0.2.

The system we present in this work could be utilized for fabrication of precise micro- and
nano-pumps. The ability to precisely control the flowrate without external forces would be useful
in designing passive microfluidic devices (Zimmermann et al., 2007), which have applications in
miniature heat pipes for cooling of electronic components (Vasiliev, 2008), patterning biomolecules
in microchannels (Delamarche et al., 2005), and clinical diagnostics (Ahn et al., 2004). Indeed, a
known method of maintaining a fixed flowrate in such devices is by having a constriction ahead of
the flow channel that is about an order of magnitude smaller than the rest of the channel (Guo
et al., 2018). However, it can be technically challenging to scale down this technique to sizes below
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a micron, where one would need to precisely fabricate nanometer-scale constrictions. The constant-
rate imbibition depicted in FIG. 7-1b does not have such scaling limitations, and it is a cheap
technique that can be used for passive control of flowrates in microfluidic devices.
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Chapter 8

Moving contact lines over heterogeneous
surfaces: from stick–slip to steady sliding

8.1 Introduction

The vast majority of solid surfaces exhibit physical and chemical defects. For instance, surface
heterogeneity of window glass is apparent in how it interacts with rain—here, larger raindrops
slide smoothly down the slope, smaller ones remain pinned, and droplets of intermediate size un-
dergo macroscopic stick–slip motion. The complex behavior of fluid-fluid interfaces moving over
heterogeneous solid surfaces has captivated the fluid-mechanics community over the past several
decades (de Gennes, 1985; Bonn et al., 2009; Snoeijer & Andreotti, 2013), driven by elegant
physics of the problem and the multitude of relevant practical applications, such as CO2 sequestra-
tion (MacMinn et al., 2010, 2011; Szulczewski et al., 2012), geologic storage of hydrogen, and design
of electrolyzers (Lee et al., 2019).

At the same time, experiments exhibiting intermittent motion of fluid-fluid-solid contact lines
have been often dismissed whenever the surfaces were considered not sufficiently smooth and clean,
with researchers developing widely-adopted surface-cleaning protocols (de Gennes et al., 2004). This
introduced a historical bias, and most of the experimental and, therefore, theoretical progress in the
physics of moving contact lines was made for surfaces with the highest practically-attainable degree
of homogeneity.

As a result, many previous studies have examined the motion of contact lines over solid surfaces
with nanometer-scale heterogeneity. Here, fluid-fluid interfaces appear to move smoothly, and in-
terface distortions due to defects are not directly observable. Even on those surfaces, defects at the
nanometer scale can impact the macroscopic motion of contact lines. Perrin et al. (Perrin et al.,
2016, 2018a,b) demonstrated that while the balance of viscous and capillary forces governs the in-
terface shape at high velocities (Voinov, 1977; Cox, 1986), macroscopic dynamics is dominated by
thermally-activated interactions of the interface with nano-scale defects at slow displacement rates.

A much less theoretically explored physical situation arises when surface defects are on the
micrometer scale, where distinct stick–slip motion of the fluid-fluid interface can emerge. Thiele
and Knobloch (Thiele & Knobloch, 2006a,b) developed a thin-film model that captures how droplets
transition from a pinned state to intermittent motion on surfaces with pre-wetting films. In that
model, a constant body force drives the droplet, while hydrophobic defects pin the drop at the front,
and hydrophilic defects stretch it at the back. A similar system was realized experimentally by
fabricating hydrophilic/hydrophobic stripes on glass, where stick–slip dynamics resulted in slowing
of droplets by an order of magnitude (Varagnolo et al., 2013). Equally intriguing experiments have
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Figure 8-1: (a) Viscous slug schematic, where only the back meniscus is in partial wetting and
therefore interacts with surface defects. (b) Constant-force experiment can be realized by imposing
a fixed pressure difference across the viscous slug (neglecting the pressure gradient in water) by
controlling the reservoir height ∆ℎ. (c) Constant-rate experiment can be realized by supplying
water through a syringe at a prescribed flowrate. (d) A slug of viscous oil displaced by water inside
NOA81-coated capillary tube crosses over from stick–slip motion (left) to steady sliding (right) as
the displacement rate increases.

been reported for systems driven at a constant rate. Zuo et al. (Zuo et al., 2012) reported stick–slip
droplet motion during advancing contact angle measurements. In these experiments, the amplitude
of contact-line oscillations decreased on surfaces with higher concentration and, therefore, spacing
of impurities on the surface. Finally, we show in this study that the stick–slip motion crosses over
to steady sliding with increasing displacement rates (Fig. 8-1). No model exists to date able to
delineate the link between the amplitude of stick–slip cycles and the spacing of surface defects, let
alone predict the rate-dependent transition from stick–slip to steady sliding shown in Fig. 8-1.

Here, we build on the work of Raphaël–de Gennes and Joanny–Robbins (Raphaël & De Gennes,
1989; Joanny & Robbins, 1990) by reducing the dynamics of fluid-fluid displacement in partial
wetting to a system of coupled ordinary differential equations. We take a step further and connect
these equations to a mechanical analog (Adler, 1946) that allows reducing the complexity of stick–slip
dynamics to a few key parameters, elucidating both constant-force and constant-rate displacement
regimes. While the work of Raphaël–de Gennes and Joanny–Robbins (Raphaël & De Gennes,
1989; Joanny & Robbins, 1990) focused on the force–velocity scaling at diminishing displacement
rates, ours provides a rationale for the crossover between stick–slip and steady sliding motion at
high displacement rates. This transition is characterized by a simple scaling relation between the
spacing of the defects, the characteristic size of the fluid-fluid interface, and the capillary number—a
scaling relation that can help explain disparate stick–slip phenomenology from recent experimental
studies.

8.2 Physical setup and governing equations

Consider a viscous silicone oil slug of length 𝑙 being displaced by water inside a capillary tube with
an inner radius 𝑅, whose surface is not perfectly smooth or homogeneous (Fig. 8-1a). Here, 𝜃𝑏 and
𝜃𝑓 are water-oil and oil-air contact angles; 𝑧𝑏 and 𝑧𝑐 are positions of water-oil meniscus center and
contact line along the tube. We chose a silicone oil with viscosity much greater than the viscosity
of water (𝜇𝑜 ≫ 𝜇𝑤), which allows neglecting pressure gradients outside the slug. Furthermore, only
the partially wetting water-oil interface interacts with the surface imperfections; the oil-air interface
is in complete wetting, where a precursor film (or hemi-wicking front) masks surface defects (Joanny
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& Robbins, 1990). One can drive the viscous slug at either constant force (Fig. 8-1b) or constant
rate (Fig. 8-1c). At low displacement rates the slug moves through stick–slip motion, while at high
velocity it experiences steady sliding (Fig. 8-1d). This is reminiscent of a solid block being pulled
through a spring (a spring-slider model (Brace & Byerlee, 1966), Fig. 8-1a). However, while the
transition from stick–slip to steady sliding is controlled by the stiffness of the spring in the spring
slider, the analogous transition in viscous slugs seems to be also controlled by the displacement rate.

To rationalize the transition from stick–slip to steady sliding, we simplify the system in Fig. 8-
1a, producing governing equations identical to the ones in the depinning dynamics framework by
Raphaël-de Gennes and Joanny-Robbins (Raphaël & De Gennes, 1989; Joanny & Robbins, 1990).
In fact, by forcing the viscous slug at either constant force (Fig. 8-1b) or constant rate (Fig. 8-1c)
one can experimentally probe the seminal force-velocity scaling relations proposed in (Raphaël &
De Gennes, 1989; Joanny & Robbins, 1990) (see force-velocity arguments in section F.2). Here,
we examine how the governing equations behave away from the depinning limit and rationalize the
transition from stick–slip to steady motion for both constant-rate and constant-force settings.

The overall motion can be described by several forces. We can express the externally applied
force through the pressure difference ∆𝑝 at the two ends of the slug as

𝐹ext = ∆𝑝𝜋𝑅2. (8.1)

The bulk viscous force of the slug due to Poiseuille flow is

𝐹v.bulk = 8𝜋𝜇𝑜𝑙�̇�𝑏. (8.2)

Since the front meniscus is completely wetting, its capillary force can be approximated with

𝐹𝑓 ≈ 2𝜋𝑅𝛾𝑜, (8.3)

where we neglected the dynamic contribution of 𝐹𝑓 , assuming a sufficiently long slug (Primkulov
et al., 2020a). We model the chemical heterogeneity of the solid surface by a spatially-periodic
perturbation ℎ(𝑧𝑐) to a spreading coefficient (Joanny & Robbins, 1990; Raphaël & De Gennes,
1989), which is equivalent to

cos 𝜃𝑏 = cos 𝜃𝑏0 + ℎ(𝑧𝑐)/𝛾ow, (8.4)

where 𝜃𝑏0 is the contact angle on an ideally smooth and homogeneous surface. For simplicity, we
assume 𝜃𝑏0 = 𝜋/2 and neglect the viscous bending of the interface in both the front and back
menisci. We can then treat the water-oil interface as a linear spring, where

𝐹spring = 2𝜋𝑅𝑘(𝑧𝑏 − 𝑧𝑐), (8.5)

and the spring constant can be approximated as 𝑘 = 𝛾𝑜𝑤/𝑅. Finally, we approximate the local
viscous force of the back meniscus as a cumulative force of moving wedge-shaped fluid slices with
contact angle 𝜃𝑏0 (de Gennes, 1985; Joanny & Robbins, 1990; Golestanian, 2004)

𝐹v.b ≈ 2𝜋𝑅
3Γ𝜇𝑜

𝜋 − 𝜃𝑏0
𝑧𝑐 ≈ 2𝜋𝑅

6Γ𝜇𝑜

𝜋
𝑧𝑐, (8.6)

where Γ is the logarithmic factor of order one (de Gennes, 1985). 𝐹v.b ∼ 𝑧𝑐 in Eq. 8.6 means that
the water-oil contact line acts similarly to a viscous dashpot in the classic spring-slider model. We
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Figure 8-2: Mechanical analog of the spring oscillator model in a constant-force regime (a) moves
through either stick–slip (b) or steady motion (c). This analog can be extended to a constant
displacement regime by introducing a spring that is pulled at constant 𝜔𝑢 (d).

can then write down the coupled dynamics of the back contact line and the slug as

𝐹v.bulk = 𝐹𝑓 + 𝐹ext − 𝐹spring, (8.7)
𝐹v.b = 𝐹spring + 2𝜋𝑅ℎ(𝑧𝑐). (8.8)

Equations 8.7-8.8 reduce to

slug dashpot⏞ ⏟ 
𝑏𝑏𝑧𝑏 =

applied force⏞ ⏟ 
𝑓 −

coupling spring⏞  ⏟  
𝑘(𝑧𝑏 − 𝑧𝑐) , (8.9)

𝑏𝑐𝑧𝑐⏟ ⏞ 
contact-line dashpot

= 𝑘(𝑧𝑏 − 𝑧𝑐) + ℎ(𝑧𝑐)⏟  ⏞  
pinning force

, (8.10)

where 𝑏𝑏 = 4𝜇𝑜𝑙/𝑅, 𝑏𝑐 = 6Γ𝜇𝑜/𝜋, and 𝑓 = 𝛾𝑜 +∆𝑝𝑅/2.

Following (Joanny & Robbins, 1990) we model heterogeneity in the spreading coefficient with
a sine function as this minimal model still allows to capture the essential physics of interest here.
Therefore,

ℎ(𝑧𝑐) = −𝜖𝛾𝑜𝑤 sin(2𝜋𝑧𝑐/𝑞), (8.11)

where 𝜖 < 1 and 𝑞 is the distance between the consecutive peaks of the sine function. We write
down the system of Eqs. 8.9-8.10 in a reduced form by defining 𝛼 = 2𝜋𝑧/𝑞 as

𝛼𝑏 =

force term⏞ ⏟ 
𝜔0 −

spring term⏞  ⏟  
𝐾(𝛼𝑏 − 𝛼𝑐), (8.12)

𝜆�̇�𝑐 = 𝐾(𝛼𝑏 − 𝛼𝑐)− 𝐵 sin𝛼𝑐⏟  ⏞  
pinning term

, (8.13)

where 𝜆 = 𝑏𝑐/𝑏𝑏, 𝜔0 = 2𝜋𝑓/𝑏𝑏𝑞, 𝐾 = 𝑘/𝑏𝑏, and 𝐵 = 2𝜋𝛾𝑜𝑤𝜖/𝑏𝑏𝑞. This dynamical system has two
interacting parts: bulk motion of the slug and the local motion of the water-oil contact line. These
two parts interact through a spring (water-oil interface). One can either drive this system at a
constant force (by fixing 𝜔0) or at a constant rate (by imposing �̇�𝑏 = 𝜔𝑢).
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8.3 Results and Discussion

8.3.1 Constant-force analog

When the system is driven at a constant force, 𝜔0 is constant in equation 8.12. We can neglect 𝜆�̇�𝑐

assuming 𝜆 = 𝑏𝑐/𝑏𝑏 ≪ 1, so Eqs. 8.12-8.13 reduce to �̇�𝑏 = 𝜔0 −𝐵 sin𝛼𝑐 or

�̇�𝑐⏟ ⏞ 
pendulum velocity

=

drum velocity⏞ ⏟ 
𝜔0 − 𝐵 sin𝛼𝑐⏟  ⏞  

gravity term

, (8.14)

if we assume that 𝑑
𝑑𝑡(𝛼𝑏 − 𝛼𝑐) ≈ 0, which is in agreement with numerical solution of Eqs. 8.12-8.13

at nearly all times during slow displacement (see section F.2). This corresponds to the adiabatic
approximation of Raphaël-de Gennes and Joanny-Robbins (Raphaël & De Gennes, 1989; Joanny
& Robbins, 1990). Eq. 8.14 has been examined in the context of locking phenomena in electric
oscillators by Adler (Adler, 1946), who proposed a mechanical analog that we will use to understand
our system.

Eq. 8.14 describes the dynamics of a pendulum inside a drum filled with viscous fluid, where
the drum is rotated at a fixed angular velocity 𝜔0, and −𝐵 sin𝛼𝑐 is the gravity term acting on
the pendulum (Fig. 8-2a). The pendulum acquires a static angle 𝛼𝑐 when the applied force is
insufficient for overcoming gravity (𝜔0 < 𝐵). This represents a pinned state of the viscous slug.
When 𝜔0 is infinitesimally greater than 𝐵, the pendulum goes through distinct stick–slip motion;
it is slower when moving against gravity and faster when moving in the direction of gravity (Fig. 8-
2b). The pendulum spends most of its period near the value of 𝛼𝑐 corresponding to the maximum
of the gravity term. This regime corresponds to the stick–slip motion of the viscous slug near the
depinning limit. Adler (Adler, 1946) demonstrated that the pendulum’s mean angular velocity is
�̄� =

√︀
𝜔2
0 −𝐵2, whenever 𝜔0 > 𝐵 (see section F.2).

When 𝜔0 ≫ 𝐵, the viscous fluid within the drum sweeps up the pendulum (Fig. 8-2c) and its
mean angular velocity �̄� approaches 𝜔0. This means that the amplitude of pendulum oscillations
about �̄�𝑡 diminishes at large 𝜔0. In fact, if we take �̃�𝑐 = 𝛼𝑐 − �̄�𝑡, we can rewrite Eq. 8.14 in this
moving frame as 𝑑�̃�𝑐

𝑑𝑡 = 𝜔0 − �̄� − 𝐵 sin(𝛼𝑐 + �̄�𝑡) ≈ −𝐵 sin(𝜔0𝑡), where we assumed �̃�𝑐 ≪ �̄�𝑡. This
allows approximating the oscillations about the moving frame as

�̃�𝑐(𝑡) ≈

amplitude⏞ ⏟ 
𝐵

𝜔0
cos(𝜔0𝑡) + 𝐶. (8.15)

In other words, we expect the amplitude of oscillations to decay with increasing 𝜔0, following 𝐵/𝜔0

scaling, which is indeed what we observe in the numerical solution to Eq. 8.14 (see Fig. F-4).

8.3.2 Constant-rate analog

When the viscous slug is driven at a constant rate �̇�𝑏 = 𝜔𝑢, a modified version of the drum analog
still holds. In the constant-rate analog, the drum is free, while the pendulum is pulled at a fixed
angular velocity 𝜔𝑢 through a spring (Fig. 8-2d). It is useful to switch to a frame moving with the
viscous slug. In this coordinate system, 𝑑�̃�𝑏

𝑑𝑡 = 0 and we can choose the frame in a way that �̃�𝑏 = 0,
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Figure 8-3: (a) Quasi-static motion of the pendulum in the constant-rate displacement is governed
by the balance between spring and gravity terms, where latter shifts left with time. When 𝐾 < 𝐵,
two lines occasionally intersect more than once, which results in disanchoring events depicted here.
(b) Evolution of �̃�𝑐 from numerical solution of Eq. 8.17 for 𝜔𝑢/𝐵 ∈ [10−3, 102] shows that amplitude
of �̃�𝑐 vanishes at increasing rate 𝜔𝑢.

so Eqs. 8.12-8.13 transform to

𝜔0 − 𝜔𝑢 = −𝐾�̃�𝑐, (8.16)

𝜆
𝑑�̃�𝑐

𝑑𝑡⏟  ⏞  
dynamic term

+𝐾�̃�𝑐⏟ ⏞ 
spring

= −𝐵 sin(�̃�𝑐 + 𝜔𝑢𝑡)⏟  ⏞  
gravity (pinning)

, (8.17)

where 𝜔0 −𝜔𝑢 is the force term due to loading of the spring, and the pendulum motion is governed
by Eq. 8.17.

In the quasi-static limit we can neglect 𝜆𝑑�̃�𝑐
𝑑𝑡 , and Eq. 8.17 reduces to 𝐾�̃�𝑐 = −𝐵 sin(�̃�𝑐 + 𝜔𝑢𝑡).

Therefore, the position of the pendulum is determined by the balance of a linear spring and a
sinusoidal gravity term, where the graphical solution for �̃�𝑐 is the intersection of the respective
functions (Raphaël & De Gennes, 1989) (see Fig. 8-3a). If the slope of 𝐾�̃�𝑐 is greater than the
maximal slope of −𝐵 sin(�̃�𝑐+𝜔𝑢𝑡) (or 𝐾 > 𝐵), the red line (which shifts to the left with time) and
the blue line in Fig. 8-3a intersect only once at any given time. This results in relatively smooth
motion of the pendulum. If 𝐾 < 𝐵, the two functions intersect more than once. An abrupt change
in �̃�𝑐 takes place whenever the system moves past the point where spring and pinning functions are
tangent to each other (i.e. disanchoring configuration depicted in Fig. 8-3a). This is when the term
𝜆𝑑�̃�𝑐

𝑑𝑡 becomes important, and quasi-static assumption breaks down.

The term 𝜆𝑑�̃�𝑐
𝑑𝑡 regularizes the quasi-static jump discontinuity until the spring and gravity terms

are balanced again. As a result, periods of relatively gradual motion of the pendulum are punctuated
by rapid disanchoring events. This corresponds to the stick–slip motion of the water-oil interface at
low displacement rates in Fig. 8-1d.

Numerical solution of Eq. 8.17 shows that the amplitude of pendulum oscillations �̃�𝑐(𝑡) dimin-
ishes with increasing angular velocity 𝜔𝑢 (Fig. 8-3b). In fact, when 𝜔𝑢 is sufficiently high, so that
�̃�𝑐 ≪ 𝜔𝑢𝑡, we can approximate Eq. 8.17 as 𝜆𝑑�̃�𝑐

𝑑𝑡 + 𝐾�̃�𝑐 = −𝐵 sin(𝜔𝑢𝑡), whose solution can be
written as

�̃�𝑐(𝑡) = −

amplitude⏞  ⏟  
𝐵√︀

𝐾2 + 𝜆2𝜔2
𝑢

sin(𝜔𝑢𝑡− 𝜑) +

transient solution⏞  ⏟  
𝐶𝑒−𝐾𝑡/𝜆 , (8.18)
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Figure 8-4: (a) Fraction of the total dissipation Ξ due to stick–slip motion of the contact line. The
dashed line represents inequality 8.19. (b) Phase-field simulations reveal a similar Ξ trend, where
dashed line represents inequality 8.22.

where 𝐵√
𝐾2+𝜆2𝜔2

𝑢

is the amplitude of oscillations, 𝜑 = Arg(𝐾 + 𝑖𝜆𝜔𝑢), and the transient solution

constant 𝐶 is determined by the initial conditions. This solution reveals two characteristic timescales
of our system: 1/𝜔𝑢 is the time interval between disanchoring events, 𝜆/𝐾 is the timescale for
relaxation of the contact line. When

𝜔𝑢 ≫ 𝐾/𝜆, (8.19)

the contact line is unable to keep up with the local changes in the forcing by surface imperfections,
so the amplitude of oscillations diminishes. This corresponds to the steady sliding of the water-oil
contact line at high displacement rates in Fig. 8-1. Here, the amplitude of oscillations scales as
𝐵/𝜔𝑢, which is consistent with the simulation results (see Fig. F-10).

8.3.3 Energy dissipation

The transition from stick–slip to steady sliding also signifies a change in the dominant dissipation
mechanisms. The fraction of the total dissipation due to stick–slip motion of the contact line reads
as

Ξ =
⟨−𝐾�̃�𝑐⟩

⟨−𝐾�̃�𝑐⟩+ 𝜔𝑢
, (8.20)

in a drum analog. This is equivalent to

Ξ =
⟨𝑘(𝑧𝑏 − 𝑧𝑐)⟩

⟨𝑘(𝑧𝑏 − 𝑧𝑐)⟩+ 𝑏𝑏�̇�𝑏
=

⟨𝑘(𝑧𝑏 − 𝑧𝑐)⟩
⟨𝑓⟩

, (8.21)

where numerator is the mean spring force, and ⟨𝑓⟩ is the mean total driving force in the spring-
dashpot analog in Eq. 8.9. Multiplying both numerator and denominator by the prescribed dis-
placement rate of the slug �̇�𝑏 converts this force fraction to an estimate of dissipation fraction.

Fig. 8-4a shows that the contribution to the total energy dissipation due to contact-line oscilla-
tions depends on both the displacement rate and the relative magnitudes of 𝐾 and 𝐵. When 𝐵 > 𝐾,
most of the energy dissipation can take place near the oscillating contact line. This state can be
achieved on dirty surfaces (large 𝐵) or with fluids with low surface tension (small spring-stiffness
parameter 𝐾). In contrast, systems with clean surfaces (small 𝐵) or with high surface energy liquids
(small spring-stiffness parameter 𝐾) would dissipate most of the energy away from the contact line.
Another practical way of reducing contact-line oscillations and dissipation is reducing the radius 𝑅
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of the tube in Fig. 8-1, which would result in a higher stiffness parameter 𝐾. Ultimately, the fraction
of contact-line dissipation diminishes for all 𝐵/𝐾 at high displacement rates, where inequality 8.19
is satisfied (to the right of the dashed line in Fig. 8-4a).

8.3.4 Phase-field simulations

Our drum analog system accurately predicts the main displacement regimes on heterogeneous sur-
faces: smooth displacement in weakly pinning settings, stick–slip motion in strong pinning, and
steady sliding at high displacement rates. We verify this by means of 2D phase-field simulations,
where -1 and 1 values of the phase-field parameter 𝜑 mark two fluids, and their diffuse interface is
the region where ∇𝜑 ̸= 0. The evolution of 𝜑 in space and time is resolved through coupled Cahn-
Hilliard and creeping flow equations (Eqs. F.24-F.25), where position-dependent contact angle is
prescribed by imposing the angle between ∇𝜑 and the normal vector at the solid surface through
Eq. F.26.

We restrict our phase-field simulations to a single meniscus moving inside a channel with
constant-flowrate and constant-pressure boundaries imposed at its two ends. We assign equal vis-
cosities to the invading and the defending fluids, so that the bulk viscous resistance due to Poiseuille
flow is fixed in a single simulation. This allows isolating the pressure fluctuations across the channel
due to stick–slip motion of the contact line and allows finding its respective contribution to total
dissipation (see section F.3).

Phase-field simulations qualitatively reproduce the transition from stick–slip motion at low flow
rates to steady sliding at high flow rates. The condition for the dynamic transition from stick–slip
to steady sliding in inequality 8.19 is equivalent to

Ca ≫ 𝑞

𝑅

1

12Γ
. (8.22)

In fact, after running a sweep of phase-field simulations for a range of pinning force strengths
(controlled through 𝜖) and Ca, we can characterize the contribution of contact line oscillations to
the overall dynamics. We do so by tracking Ξ through phase-field pressure measurements (Eq. F.28),
which essentially reproduces the trends from the drum analog (Fig. 8-4b).

8.4 Conclusions

Our model provides a rationale to many recent experimental observations related to stick–slip
dynamics of moving contact lines. For example, Fig. 8-4 shows that stick–slip dynamics accounts
for nearly all of the dissipation under strong pinning. This is in agreement with experiments of
Varagnolo et al. (Varagnolo et al., 2013) (see Fig. F-1a), where droplets move an order of magnitude
more slowly on surfaces with hydrophilic/hydrophobic stripes. Additionally, our approximation
leading up to Eq. 8.18 is consistent with temporal modulation of the contact angle on electrowetting
surfaces. Therefore, 𝜔𝑢 in Eq. 8.18 can represent the frequency of ac signal. Eq. 8.18 shows that the
amplitude of oscillations decays with 𝜔𝑢, which is indeed what has been reported in experiments
of Mannetje et al. (Mannetje et al., 2013) (Fig. F-1b). Finally, inequality 8.22 suggests that by
decreasing the spacing between defects on a solid surface, one can trigger the transition from stick–
slip to steady sliding at lower Ca. This appears to be happening in experiments of Zuo et al. (Zuo
et al., 2012), where by increasing the concentration of impurities in a polymer substrate, authors
generate surfaces with varying spatial correlation lengths of defects. Closer spacing of defects
corresponds to decreased amplitude of stick–slip in their experiments (Fig. F-1c), which is consistent
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with the expectations from our model. If we allow stretching this trend to a nanometer scale 𝑞 (nano-
scale spacing of defects), inequality 8.22 predicts steady sliding for most experimentally attainable
Ca.

At last, since Eq. 8.18 is the solution to a linear equation, our analysis extends to arbitrary
pinning landscapes (Savva et al., 2011), where Eq. 8.18 would still hold for each Fourier mode of
an arbitrary pinning function. In fact, natural surfaces are known to exhibit fractal features, from
nanometer to geologic scales (Chiarello et al., 1991; Sparrow & Mandelbrot, 1984). This means
that the roughness profile power spectrum has a power-law distribution (Majumdar & Tien, 1990).
This suggests that in contact-line experiments on natural rough surfaces, shorter wavelength modes
are often in either weak pinning or steady sliding regime of the phase diagram in Fig. 8-4. In
other words, on natural surfaces the longer wavelength modes exhibit strongest effective pinning
and, therefore, dictate when a fluid-fluid interface crosses over from stick–slip to steady sliding
dynamics, much like the experimental example inFig. F-1c.

Overall, we capture the complex motion of partially-wetting contact lines over heterogeneous
surfaces with a system of ordinary differential equations and connect these equations to a mechanical
analog in Fig. 8-2. This allows reducing the complexity of the motion to a few key parameters. We
present a simple model that connects the stick–slip amplitudes of contact-line motion with the
strength and spacing of surface defects, explaining the rate-dependent transition from stick–slip to
steady sliding shown in Fig. 8-1.
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Chapter 9

Summary

This thesis examined a range of interfacial fluid dynamics problems in porous media. Part I focused
on the dynamics of fluid-fluid displacement at the scale of hundreds to thousands of pores.

• In Chapter 2, we extended the classical invasion-percolation model to account for wettability
conditions. Using this model alongside microfluidics can help improve applications like CO2
storage, reinforcement of ceramics, and soil remediation.

• In Chapter 3, we developed a “moving-capacitor” pore-network model. We did so by extending
our quasi-static model from chapter 2 to account for viscous forces by drawing an analogy
between fluid-fluid displacement in porous media and currents in electrical circuits. This sim-
ple model reproduces a wide range of experimentally documented patterns and helps predict
changes with increasing displacement rates.

• Our modeling efforts allowed completing Lenormand’s seminal diagram with a missing wetta-
bility axis in Chapter 4. This study may be particularly impactful since it synthesized decades’
worth of experimental observation within a single pore-network model, highlighting a subtle
interplay of viscous and capillary forces with wettability.

• Finally, in Chapter 5, we characterized avalanches in strong imbibition. We demonstrated
that strong imbibition shares all features of self-organized criticality, previously thought to be
exclusive to drainage.

Part II of this thesis zoomed into the fluid displacement at the scale of a single capillary.

• In Chapter 6, we developed a spin-coating technique, alongside its accurate mathematical
model, that allows coating capillary ducts with viscous fluids. This method may be very
impactful in fabricating microelectromechanical systems and micro-channels with functional
surfaces.

• In Chapter 7, we developed a fluid-fluid displacement system to tune the ratio of contact-line
to bulk viscous dissipation experimentally. While this constant-rate imbibition setup may
prove helpful in practical applications like miniature pumps and cooling pipes for electronics,
it enables controlled studies of wetting on heterogeneous surfaces.

• Finally, in Chapter 8, we theoretically examined the contact-line motion over heterogeneous
surfaces. We rationalized the transition of moving contact lines from stick-slip to steady sliding
at increasing displacement rates.
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Appendix A

Corner meniscus and characteristics of
displacement patterns

A.1 Corner meniscus

In this appendix we examine the shape of the corner meniscus around a typical post. We follow a
similar derivation to that of the droplet shape on a fiber (de Gennes et al., 2004). We treat our post
as a fiber and impose desired contact angles as boundary conditions at the interface ends, imposing
that contact angles of 𝜃 are maintained at both post and plate contacts. Finally, we examine the
growth and potential mid-post coalescence of the top/bottom menisci.

A.1.1 Corner meniscus shape

Here we determine how far the meniscus extends in the horizontal and vertical directions for a given
Laplace pressure, and check whether the force balance equation suggested in this work adequately
captures the horizontal extent of the meniscus.

FIG. A-1 shows a cross section of the corner meniscus around a post with radius 𝑟1. By de-
veloping an argument very similar to the formulation of the droplet shape on a fiber of de Gennes
et al. (2004), we can find the meniscus shape equation. We start with the Young-Laplace equation
for an arbitrary point A on the liquid interface:

1

𝐴𝑁
− 1

𝐴𝑀
=

∆𝑝

𝛾
. (A.1)

Noting that 𝑟 = 𝐴𝑁 · cos𝛼 and 𝑑𝑠 = 𝐴𝑀 · 𝑑𝛼, Equation (A.1) can be written as:

cos𝛼

𝑟
− 𝑑𝛼

𝑑𝑠
=

cos𝛼

𝑟
− 𝑑𝛼

𝑑𝑟

𝑑𝑟

𝑑𝑠
=

∆𝑝

𝛾
. (A.2)

Furthermore, 𝑑𝑟 = sin𝛼𝑑𝑠, so the Young-Laplace equation takes the following form:

cos𝛼

𝑟
− 𝑑𝛼

𝑑𝑟
sin𝛼 =

∆𝑝

𝛾
. (A.3)

Noting that 𝑑𝑟 = sin𝛼𝑑𝑠 and 𝑑𝑥 = cos𝛼𝑑𝑠,

𝑑𝑥

𝑑𝑟
= �̇� = cot𝛼. (A.4)
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Figure A-1: Shape of the corner meniscus around the post with radius 𝑟1. AM and AN are the
principal radii of curvature at point A, where AM is in plane and AN is perpendicular to the plane.

Squaring both sides of Equation (A.4) leads to the following equations:

sin𝛼 =
1

(1 + �̇�2)1/2
, (A.5a)

cos𝛼 =
�̇�

(1 + �̇�2)1/2
. (A.5b)

Differentiating Equation (A.4) with respect to 𝑟, yields:

�̈� = − 1

sin2 𝛼

𝑑𝛼

𝑑𝑟
. (A.6)

Finally, substituting Equations (A.5) and (A.6) into Equation (A.3), we obtain the final equation
for the liquid interface:

�̇�

𝑟(1 + �̇�2)1/2
+

�̈�

(1 + �̇�2)3/2
=

∆𝑝

𝛾
. (A.7)

Now, Equation (A.7) with �̇�(𝑟1) = cot 𝜃1 and 𝑥(𝑟1) = 0 can be used to find the corner meniscus
profile. FIG. A-2 shows the solution of Equation (A.7) for 𝑟 = (𝑟1, 𝑟𝑛) with a typical geometry and
contact angle used in this study.

The pressure drop across the interface should be such that �̇�(𝑟𝑛) = tan 𝜃1. It turns out that
this condition is exactly satisfied when ∆𝑝 is calculated from the force balance equation (2.7). This
verifies the validity of the force balance approach in finding critical values of ∆𝑝 for corner flow.

At the same time, FIG. A-2 shows that the extent of the corner meniscus is of comparable size
in horizontal and vertical directions. Since the height of the posts in Zhao et al. (2016) experiments
is 100𝜇𝑚, we need to consider two cases: (1) corner menisci at the top and bottom which do not
touch; and (2) corner menisci that meet and merge at the mid-height of the cell. When the liquid
menisci do not meet in the middle of the post, the critical ∆𝑝 for corner flow can be estimated from
the force balance equation (2.7). However, when corner liquids meet, the shape of the interface can
be estimated as a capillary bridge between two flat plates, described by the equation (de Gennes
et al., 2004):
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Figure A-2: Interface shape of a corner meniscus outside a post. Equation (A.7) solved with
𝜃 = 40∘, 𝑟1 = 500𝜇𝑚, 𝑟𝑛 = 1200𝜇𝑚. Here, ∆𝑝𝑓 represents the Laplace pressure obtained from the
force balance Equation (2.7). Condition �̇�(𝑟𝑛) = tan 𝜃1 is exactly satisfied when ∆𝑝 = ∆𝑝𝑓 .

1

𝑟𝑛 − ℎ
2 cos 𝜃1

(1− sin 𝜃1)
− 2 cos 𝜃1

ℎ
=

∆𝑝

𝛾
(A.8)

A.1.2 Corner meniscus growth

We now consider the growth of the corner meniscus on a post with height of 100𝜇𝑚 (FIG. A-3(a)).
At first, the invading liquid is confined to the top and bottom corners of the post—growth of the
meniscus in the horizontal direction increases the Laplace pressure requirement. Top and bottom
menisci grow to the point that they touch at mid-height of the post. At this point, the shape of the
corner liquid changes into a capillary bridge.

We make the following observations. Firstly, before the menisci merge, the Laplace pressure
increases with growing 𝑟𝑛. After they merge, the shape turns into a capillary bridge, and the
Laplace pressure decreases with growing 𝑟𝑛. This means that if the liquid invasion was stimulated
with small pressure increments, the corner liquid would grow gradually with increasing ∆𝑝, and
then grow spontaneously after assuming a capillary bridge shape.

Secondly, the magnitude of the discontinuity in ∆𝑝 at the corner liquid merger point is smaller
at low contact angles (FIG. A-3(a)). This can be explained intuitively by visualizing the corner
merging instant at contact angles of 0∘ and 45∘. For 𝜃 = 0∘, when two corner liquids meet at the
mid-height of the post, 𝑑𝑟

𝑑𝑥 |𝑥=ℎ/2 = 0 both before and after the merger. However, for 𝜃 = 45∘,
𝑑𝑟
𝑑𝑥 |𝑥=ℎ/2 = 1 before and 𝑑𝑟

𝑑𝑥 |𝑥=ℎ/2 = 0 after the merger. This means that at 45∘ the invading liquid
needs to “snap” from the corner to bridge shape. The magnitude of this “snap” is small at contact
angles near 0∘.

Finally, FIG. A-3(b) shows that the Laplace pressure is smaller for larger posts. The out-of-
plane radius of curvature (AN in FIG. A-1) is always greater than the radius of the post, and hence
posts with greater radius correspond to lower Laplace pressures (Equation (A.1)). In other words,
it is easier to grow the corner menisci around the posts with larger radius.
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Figure A-3: Laplace pressure for a growing corner meniscus. Initially, the invading liquid is
confined to the corners. As the horizontal extent of the liquid grows, the top and bottom corners
meet at the mid-height of the post, and the shape changes into a capillary bridge. This transition
point corresponds to the negative jump in Laplace pressure. (a) Evolution of the corner menisci for
contact angles between 4∘ and 44∘ and 𝑟1 = 500𝜇𝑚. (b) Evolution of the corner menisci for post
radii between 300𝜇𝑚 and 800𝜇𝑚 and contact angle of 40∘.

A.2 Measuring fractal dimension

The morphology of the invading fluid phase can be complex (FIG. 2-4), and fractal dimension can be
an intuitive way to capture this complexity. Fractal dimension can be thought of as an “index of the
scale-dependency of a pattern” (Kenkel & Walker, 1996). In this work, we utilize the box-counting
method (Kenkel & Walker, 1996; Iannaccone & Khokha, 1996) to estimate the fractal dimension of
the invading fluid patterns.

The box counting method iteratively tiles the image containing the flow pattern with boxes of
size 𝜖. Each iteration uses increasingly greater value of 𝜖 and measures the number 𝑁 of boxes
that contain (or “directly cover”) the flow pattern. The magnitude of the slope of 𝑁 against 𝜖 on a
log-log plot defines the box-counting fractal dimension (Iannaccone & Khokha, 1996).

To estimate the fractal dimension of the invading fluid we took the following steps: (1) obtain
the invasion pattern image from the simulation, with fully surrounded posts treated as part of the
invading phase (FIG. A-4(a)); this step typically produced images of 1200× 1200 pixels in size; (2)
convert image to black and white (FIG. A-4(b)); (3) grid the image with boxes of size 𝜖 between
1 and the number of pixels in each direction of the image (𝑛pix) (FIG. A-4(c)-(d)); (4) record the
number 𝑁 of boxes required to fill the pattern for each 𝜖; (5) calculate the fractal dimension as an
absolute value of the slope of 𝑁 against 𝜖 on a log-log plot (FIG. A-4(e)).

When calculating the slope of 𝑁 against 𝜖 on the log-log plot, we imposed user-defined expec-
tations on the bounds of the fractal behavior. We exclude the boxes close to the image size, so we
set 𝜖 <

𝑛pix
8 .

A.3 Measuring finger width

In order to estimate the invading fluid finger width (𝑤), Cieplak and Robbins (Cieplak & Robbins,
1988, 1990) put forward the following method. First, they slice the invasion pattern along the nodes
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Figure A-4: Fractal dimensions calculated with the box-counting method. (a) color image (1500×
1500 pixels) produced by the invasion algorithm for 𝜃 = 40∘; (b)-(d) black and white versions of
the invasion pattern placed on a grid of size 𝜖 = [1, 𝑛pix]; (e) fractal dimension measured as a
slope of number 𝑁 of filled boxes against 𝜖 on a log-log plot, slope was calculated from points with
𝜖 = [1,

𝑛pix
8 ].

of their regular lattice. Then, they measure the size of the invaded region clusters along each 1D
slice. The mean size of the clusters was taken as an estimate of 𝑤, which was then divided by the
lattice length 𝑎.

We cannot follow the method of Cieplak and Robbins (Cieplak & Robbins, 1988, 1990) precisely
since our post geometry was built on an irregular lattice. We use a close equivalent estimate of
𝑤 instead. We start with black and white images used to measure box-counting fractal dimension
and slice it into separate rows. We collect the statistic of the invading clusters in resulting slices
using MATLAB’s bwconncomp function, where mean size of the clusters estimates 𝑤 in pixels. We
repeat the same procedure on an image where pore spaces and posts have white and black colors
respectively. This allows estimating 𝑎 as an average pore size in pixels. Thus, we recover the 𝑤/𝑎
used by Cieplak and Robbins. The above procedure was repeated for vertical slices as well.

FIG. A-5 shows that the finger width spans several pores in the invasion-percolation regime, and
starts diverging at contact angles below 60∘. This growth of finger width is abruptly interrupted
below 40∘, where fluid invasion is dominated by corner flow and 𝑤 is only a fraction of the mean
pore size 𝑎.
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Figure A-5: Ratio of the invading pattern finger width to mean pore size, estimated in analogy to
the work of Cieplak and Robbins (Cieplak & Robbins, 1988, 1990).
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Appendix B

Corner-flow parameter and pore-scale
disorder

B.1 Fitting parameter for corner flow

Ideal system. We first highlight how changes in ℎ—the height of posts within our micromodel—
impact the onset of corner flow. This has been explored in earlier work (Primkulov et al., 2018),
but we include it here for completeness. We examine the transition to corner flow in the quasi-static
limit, where we set the outer radius of the micromodel to 15 cm.

The out-of-plane contribution to Laplace pressure for burst, touch, and overlap events is a
function of ℎ and reads as −𝛾 cos 𝜃

ℎ/2 . Therefore, the total Laplace pressure of burst, touch, and
overlap decreases with decreasing ℎ. In contrast, the critical Laplace pressure of corner-flow event
is independent of ℎ (Primkulov et al., 2018). In capillary-dominated displacement, events with
lowest critical Laplace pressure take precedence. Therefore, the onset of corner flow depends on ℎ.
The impact of ℎ on the onset of corner flow at Ca = 0 is summarized in Figure B-1. When the posts
are infinitely tall (ℎ → ∞), the mode of fluid-fluid displacement changes smoothly from invasion
percolation to cooperative pore filling and then sharply to corner flow as wettability conditions
change from drainage to weak and then strong imbibition. For ℎ → ∞, 𝜃 = 39∘ marks the onset of
corner flow. Decreasing the value of ℎ moves the onset of corner flow towards lower 𝜃, until corner
flow disappears altogether. Corner flow does not take place when ℎ = 100 𝜇m in our micromodel.

Alternatively, one can shift the onset of corner flow by changing the spacing between the posts:
narrower spacing would trigger corner flow at higher 𝜃. The Laplace pressure of a corner meniscus
is a monotonically increasing function of its size: it increases from −∞ to ∆𝑝crit as the meniscus
volume increases from zero to its critical volume (Fig. 4-3d). Therefore, smaller spacing between
the posts lowers critical Laplace pressures for corner-flow events and shifts the onset of corner flow
to higher 𝜃. The changes in the spacing between the posts would also shift the transition from
invasion percolation to cooperative filling (Primkulov et al., 2018), where wider spacing extends the
cooperative pore filling regime to higher 𝜃.

Real system. We now compare the model outcomes to experimental data from Zhao et al.
(2016). The major difference between the model and experiments is in the onset of corner flow:
corner flow is the primary mode of capillary-dominated displacement in experiments with ℎ =
100 𝜇m and 𝜃 = 7∘, while our model anticipates no corner flow for ℎ = 100 𝜇m (Fig. 4-3d). In our
model, corner flow is triggered when the horizontal radius of a corner meniscus reaches a neighboring
uncoated post; this radius is marked 𝑟𝑛 in Fig. 4-3d. In the experiments, in contrast, neighboring
posts are frequently coated well before the corner meniscus swells to the radius 𝑟𝑛 (Fig. 4-3d).
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Figure B-1: Transition to corner-flow regime as a function of post height ℎ. Decreasing ℎ narrows
the range of 𝜃 where corner flow dominates.

Experiments suggest that more complex dynamics at the scale of the contact line can trigger the
transition to corner flow.

While our model is strictly applicable for micromodels with ideal surfaces, the model can be
tuned to match the experimentally observed onset of corner flow at ℎ = 100 𝜇m by introducing
a fitting parameter. Motivated by the observations in Fig. B-2a, we can either trigger corner flow
before the horizontal radius of a corner meniscus reaches 𝑟𝑛 or lower the critical Laplace pressure
of corner flow events by out-of-plane curvature multiplied by coefficient 𝑐parm. We chose the latter
approach in this study. Setting 𝑐parm > 0 triggers earlier coating of the nearest posts through corner
flow. We explore the sensitivity of our model to 𝑐parm in Fig. B-2b by reporting the fraction of corner-
flow events as a function of 𝜃 and 𝑐parm. We set 𝑐parm = 1 for the remainder of the discussion, which
corresponds to a transition from cooperative pore filling to corner flow at 𝜃 = 39∘, in agreement
with known experimental data (Zhao et al., 2016), where the transition from cooperative pore filling
to corner flow takes place somewhere between 7∘ and 60∘.

The physical mechanisms behind the earlier onset of corner flow are not yet known. We speculate
that since UV-treated NOA81 surfaces are highly hydrophilic (Levaché et al., 2012) and not ideally
smooth, micron-scale water films may be present throughout the micromodel—between oil and the
solid. This is in line with postulated film flow through micro-roughness by Vizika et al. (1994);
Tzimas et al. (1997); Constantinides & Payatakes (2000). However, since water saturation was
tracked through concentration of the dye within the injected water phase in experiments of Zhao
et al. (2016), detecting such films was not trivial. More detailed pore-scale studies are needed to fill
this gap, where either water-sensitive dye is added to NOA81 or electric conductivity is utilized to
sense pre-existing water films.

B.2 Impact of pore-scale disorder on displacement patterns

Displacement patterns in each principal flow regime outlined in §4.3 interact with pore-scale disorder.
We document this dependence briefly below.

Stable displacement. When Ca is sufficiently high and 𝑀 ≫ 1, the displacement pattern
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Figure B-2: (a) Experimental image sequences of corner flow taken from Zhao et al. (2016) demon-
strate instances where post-coating events take place before a circular portion of the corner meniscus
swells to the extend of the nearby post; (b) changes in the fraction of corner flow events as a function
of 𝜃 and the fitting parameter 𝑐parm are explored through the sweep of quasi-static simulations. The
value of 𝑐parm used in this work and corresponding transition to corner flow are highlighted in red.

becomes insensitive to both wettability (given 𝜃 > 45∘) and disorder. The pattern is insensitive
to wettability because viscosity dominates capillarity at high Ca, and the pattern is insensitive to
disorder because viscosity stabilizes the small perturbations from disorder.

Viscous fingering. In a circular Hele-Shaw cell without obstacles, the most unstable wave-
length 𝜆 of the instability follows (Saffman & Taylor, 1958)

𝜆

ℎ
= 𝜋

√︃
𝑀

Ca(1−𝑀)
, (B.1)

where ℎ is the spacing between the plates. In a radial Hele-Shaw cell, the number of viscous fingers
with thickness 𝜆/2 increases with the radial distance from the center as the displacement evolves
(Chen, 1987, 1989).

Heterogeneity and anisotropy in the pore geometry can control the number of viscous fingers.
In general, the degree of rotational symmetry of viscous fingers in ordered anisotropic media can be
controlled by changing the post pattern. For instance, setting a rectangular lattice pattern on one
plate of a circular Hele-Shaw cell promotes four-fold symmetry in finger growth (Chen, 1987). A
similar pattern occurs when posts are arranged on a rectangular lattice (Chen & Wilkinson, 1985).
The simulations in Fig. B-3 reproduce the results of the seminal work of Chen & Wilkinson (1985),
but on a triangular lattice. As 𝜉 increases from 0 to 1, the invasion pattern moves away from
the six-fold symmetry imposed by the lattice (Fig. B-3a) (Holtzman, 2016). The fractal dimension
remains within the range 1.61 < 𝐷𝑓 < 1.73, consistent with experiments (Chen & Wilkinson, 1985;
Måløy et al., 1985), while the finger width ranges from two to five pores (2 < 𝑤/𝑎 < 5).

Whether the flow cell is ordered or disordered, wettability strongly influences the invasion pat-
terns. Stokes et al. (1986) were the first to report that viscous fingers in imbibition are wider than
in drainage. This observation has been confirmed in subsequent experimental studies (Trojer et al.,
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Figure B-3: Viscous-fingering simulations (Ca = 10−1 and 𝑀 = 10−3) conducted on a regular
triangular lattice with varying degree of disorder 𝜉. (a) Black invasion patterns are in drainage
(𝜃 = 170∘), blue patterns are in imbibition (𝜃 = 46∘). (b) Fractal dimension 𝐷𝑓 and (c) finger
width 𝑤/𝑎 are higher in imbibition across all degrees of disorder 𝜉. The error bars in (b-c) represent
standard deviation of nine realizations.

2015; Zhao et al., 2016; Lan et al., 2020). We observe the same trend for all degrees of disorder: both
the finger width and the fractal dimension are consistently higher in imbibition than in drainage
(Fig. B-3b-c).

Invasion percolation. In this regime, the invading fluid preferentially enters pores with the
lowest capillary entry pressures, one at a time. This process results in incomplete displacement
of the defending fluid, which becomes trapped in clusters (Fig. B-4, black). Both 𝐷𝑓 and 𝑤/𝑎 of
the resulting patterns remain nearly unaffected by the degree of disorder, with 1.61 < 𝐷𝑓 < 1.79
and 𝑤/𝑎 ≈ 3 (Fig. B-4b-c). Invasion percolation requires disorder in the throat sizes, but the
actual degree of disorder does not matter when viscous forces are negligible (Ca → 0). The lack of
sensitivity of such invasion-percolation patterns to disorder is intuitive, as the pattern is ultimately
determined only by the sequence in which pores are invaded. Therefore, a porous medium with
small variations in throat size is equivalent to a porous medium with large variations in throat
size—only the relative order of the throat sizes and their locations matter in shaping the invasion-
percolation fronts. Therefore, unlike most fluid-fluid displacement regimes, it is very difficult to
alter invasion-percolation patterns by imposing the order in the post lattice (see Fig. B-4, black).
This lack of sensitivity to disorder is likely responsible for the robustness and universality of the
resulting patterns across different kinds of disordered media (Wilkinson & Willemsen, 1983; Cieplak
et al., 1996; Sheppard et al., 1999).

Cooperative pore filling. Cooperative pore-filling events, which tend to smooth local con-
cavities of the displacement front, allows patterns to be controlled by the post configuration. Slow
injection of a wetting fluid into a porous medium with a regular triangular lattice results in a hexag-
onal invasion pattern (Fig. B-4, blue). In fact, equivalents to our crystal-like patterns in imbibition
and 𝜉 = 0.01 have been observed experimentally by Lenormand (1990). One can tune the displace-
ment patterns to be squares, triangles (Lenormand, 1990), and hexagons (Fig. B-4, blue), via the
lattice structure. Increasing 𝜉 makes the regular structure of the invading fluid become distorted.

Corner flow. Corner flow is remarkably similar to invasion percolation in how it interacts
with disorder. While corner flow is sensitive to even mild disorder, it does not distinguish between
different degrees of disorder, much like invasion percolation. Therefore corner flow is, in a sense, an
analogue of invasion percolation for strong imbibition and may therefore possess universal features—
producing robustly similar invasion pattern across different kinds of disordered media (Fig. B-5).
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Figure B-4: Capillary-dominated simulations (Ca = 10−7 and 𝑀 = 1) conducted on a regular
triangular lattice with varying degree of disorder 𝜉. (a) Black invasion patterns are in drainage
(𝜃 = 170∘) and correspond to invasion percolation, blue patterns are in imbibition (𝜃 = 46∘) and
correspond to cooperative pore filling. (b) Fractal dimension 𝐷𝑓 and (c) finger width 𝑤/𝑎 are
higher in imbibition across all degrees of disorder 𝜉. The error bars in (b-c) represent standard the
deviation of nine realizations.

Figure B-5: Quasi-static simulations in strong imbibition (𝜃 = 10∘) in a flow cell with a triangular
post lattice and different degrees of disorder 𝜉. Dark blue regions represent fully invaded pores;
light blue regions represent partially invaded pores with coated post corners.
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Appendix C

Experimental and computational
protocols for strong imbibition

C.1 Experimental details

For our experiments, we used the same micromodel geometry (benchmark geometry) as in our pre-
vious work (Zhao et al., 2016), where disordered placement of cylindrical posts was generated using
MATLAB’s pdemesh tool. The micromodel was fabricated via multi-step soft lithography process
(Zhao et al., 2016) with a photocurable polymer (NOA81, Norland Optical Adhesives) (Denis Bar-
tolo et al., 2008; Levaché et al., 2012). NOA81 surface was coated with trimethoxysilane through
the chemical vapor deposition process (30 min in a desiccator) in order to obtain the contact an-
gles of 150∘ ± 5∘. In order to obtain the contact angle of 7∘ ± 3∘, we exposed NOA81 surfaces
to high-intensity UV light for 30 min in Samco’s UV Ozone Cleaner UV-1. These contact angles
were measured using Ramé-Hart goniometer (Model 590) by placing water droplets on flat, treated
substrates submerged in silicone oil; these substrates were fabricated via the same protocol as our
micromodels.

We first saturated our micromodel with silicone oil (𝜇𝑜 = 0.34 Pa·s; 350 cSt, Sigma-Aldrich), and
then injected DI water at 𝑄 = 0.4 𝜇L/min. Given the oil-water interfacial tension of 𝛾 = 13 mN/m,
the ratio of viscous to capillary forces (capillary number) in our experiments was Ca = 𝜇𝑜𝑢

𝜎 =
5.8× 10−3, where 𝑢 = 𝑄/(𝑏𝑑) is the characteristic displacement rate, 𝑏 = 100 𝜇m is the thickness of
the gap between the top and bottom plates, and 𝑑 = 300 𝜇m is the characteristic pore-throat size.

Different definitions of the characteristic velocity would result in different values of Ca. For
example, taking 𝑢 = 𝑄/(2𝜋𝑅min𝑏), where 𝑅min is the radial distance of the post closes to the

Figure C-1: Optical measurements of water-oil contact angle on flat substrates (a) NOA81 treated
with chemical vapour deposition of trimethoxysilane (𝜃 = 150∘ ± 5∘) and (b) NOA81 treated with
high-intensity UV-light (𝜃 = 7∘ ± 3∘). Reprinted from Zhao et al. (2016).
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Figure C-2: Post-size distribution for (a) the benchmark geometry and (b) micromodel with regular
triangular lattice and random post-size assignment.

injection port (2.8 mm) (Primkulov et al., 2019) would lead to Ca = 9.8 × 10−5. Alternatively,
taking 𝑢 = 𝑄/(2𝜋𝑅out𝑏), where 𝑅out is the radial distance to the edge of the cell (50 mm) would
lead to Ca = 5.5× 10−6.

C.2 Simulation protocol

Simulations in this manuscript were conducted on two micromodel geometries. The first one (the
benchmark geometry) was generated using MATLAB’s pdemesh tool to create an irregular triangular
mesh (Zhao et al., 2016). Post centers were placed on the nodes of this mesh and post radii were
taken to be 45% of the length of the shortest associated edge, resulting in a median pore-throat size
of 300 𝜇m and the post-size distribution reported in Fig. C-2a.

The second micromodel geometry was generated by placing posts on a regular triangular lattice
with edge length 2.8 mm and then drawing random post radii from a uniform distribution between
1.2 mm and 1.4 mm (Fig. C-2b). This protocol produced a median pore-throat size of 280 𝜇m,
which is close to that of the benchmark geometry (300 𝜇m). This second method allowed us to
easily generate different realizations of the same pore geometry in order to obtain error bars for the
exponents 𝑎 and 𝑏 (Table II).

C.3 Influence of trapping on the displacement statistics

Our experiments in strong imbibition are not definitive but suggest that trapping of the defending
fluid may be taking place. The trapping can happen when the corner films swell and locally fill the
entire gap between the top/bottom plates of the Hele-Shaw cell. However, our quasi-static model
only accounts for trapping by pore bodies and not by corner films (Primkulov et al., 2018, 2021).
Therefore, here we use a simple invasion percolation model on a square lattice, where trapping is
easily enabled/disabled, to examine the influence of trapping on the values of exponents 𝑎 and 𝑏 in
the paper.

Fig. C-3 shows the results of invasion percolation simulations on a 200 by 200 square lattice. We
assign capillary-entry pressures 𝑝 from a uniform distribution between 0 and 1 and start the invasion
process at the center of the domain. We use the same seed number to generate 𝑝 in simulations with
and without trapping, where the resulting differences in the values of exponents 𝑎 and 𝑏 are not
significant. Here, we used the literature values of 𝐷 = 1.82 and 𝐷 = 1.88 for invasion percolation
with and without trapping, respectively (Wilkinson & Willemsen, 1983).
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Figure C-3: Verification of Eq. (5.1) using invasion percolation model on a square lattice with (top
row) and without trapping (bottom row). (a) Invasion-event-number plot, where events are colored
by event number 𝑛 with 𝑛𝑏 the number of events at breakthrough. (b) The plots of 𝑁(𝑟, 𝑛) vs.
𝑟 for several values of 𝑛. (c) Collapse of 𝑟𝑁(𝑟, 𝑛) vs. 𝑟𝐷/𝑛, where slopes 𝑎 and 𝑏 do not change
significantly due to trapping.
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Appendix D

Spin-coater speed and experimental
details

D.1 Spin-coater speed and experimental data

In this section we assess two potential sources of error that come from the design of the spin-coater
system. First, it takes about 1 s for our computer fan to reach its target speed. Second, the speed
of the computer fan is found to fluctuate within a ±10 rpm window, which has implications for
the error in the film thickness. The size of the error window would depend on the details of the
electric circuit and power source. We took steps to reduce the heating of the electric components
and variations in the power supply from the building in order to minimize the error.

D.1.1 Deviation of 50 cSt oil from more viscous oils in figure 2b

The discrepancy between the 50 cSt silicone oil and more viscous oils stems from the fact that it
takes ∼ 1 s for the fan to reach the target speed of 854 rpm. Incidentally, the characteristic timescale
for the slug flow of 50 cSt silicone oil is 0.9 s (figure 6-2a). As a result, the 50 cSt silicone oil slug
flow regime effectively sets in at lower angular velocity, 673 rpm compared to 854 rpm for higher
viscosity oils. This results in a thinner initial film coating, which explains the deviation in the 𝑙(𝑥𝑐)
profile evident in figure 2b.

D.1.2 Estimating film thickness variation in comparison to Taylor’s coating
method

Below, we briefly compare the expected variation in thickness of the deposited liquid films using
Taylor’s method and our spin-coating method.

Imagine one wants to coat our tube with a 20 𝜇m thick layer of 1000 cSt silicone oil. In Taylor’s
method, the oil is removed from one end of the tube with the syringe pump while the other end is
exposed to air. When the oil completely wets the glass, the thickness of the film left behind follows
Bretherton’s scaling (Bretherton, 1961):

ℎ ∼ 𝑅
(︁𝜇𝑢
𝜎

)︁2/3
. (D.1)

One would need to draw out the silicone oil at 𝑢 = 0.36 mm/s to leave a 20 𝜇m film behind. Taking
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the variation of ℎ with respect to 𝑢 yields

𝛿ℎ ∼ 2𝑅

3

(︁𝜇𝑢
𝜎

)︁2/3 𝛿𝑢
𝑢
. (D.2)

The assumption of fully developed Poiseuille flow leads to 𝛿𝑢/𝑢 = 𝛿𝑝/𝑝. If we take the characteristic
value of normalized pressure fluctuations due to the syringe pump to be 1% as in Zeng et al. (2015),
then (D.2) gives an estimate of thickness variation to be 𝛿ℎ ∼ 0.13 𝜇m.

Similarly, estimating the variation in thickness induced by fluctuation of angular velocity during
spin-coating, we use the results of figure 6-3c, where the film thickness at sufficiently long time
follows:

ℎ ∼
√︂

3𝜇

2𝜌𝜔2𝑡
. (D.3)

We would then need to spin 1000 cSt silicone oil for about 4 min to obtain a film thickness of 20 𝜇m.
Taking the variation of ℎ with respect to 𝜔:

𝛿ℎ ∼
√︂

3𝜇

2𝜌𝑡

𝛿𝜔

𝜔2
. (D.4)

The variation of thickness in the film for the angular velocity of 854± 10 rpm yields 𝛿ℎ ∼ 0.03 𝜇m,
a variation about 4 times smaller than in Taylor’s method.
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Appendix E

Spontaneous imbibition experiments and
classical imbibition

E.1 Details of the experimental setup

All of the experiments were conducted in Hilgenberg borosilicate glass tubes that are 75 mm in
length and 290 𝜇m in inner radius. The interfacial tensions of the oil–air and oil–water interfaces
were 𝛾𝑜 = 22 mN/m and 𝛾𝑜𝑤 = 13 mN/m, respectively. The dynamic contact angles of the water-
oil interface in glass capillaries were measured under a microscope. The tubes were submerged
into glycerol, which has a matching refractive index with the borosilicate glass in use (1.473).
Contact angles were measured from the curvature of the interface, with parallax correction applied
as in (Hoffman, 1975).

Throughout this manuscript we assumed that Hagen–Poiseuille flow is maintained through the
oil slug and that, therefore, the velocity profile is parabolic. This assumption was used to calculate
the viscous drag and dissipation within the bulk of the oil slug. We confirmed the parabolic velocity
profile within the oil slug through PIV tracing (Thielicke & Stamhuis, 2014). In FIG. E-1 we show
that even for the shortest slug used in this study (2 mm), the majority of the bulk space maintains
the parabolic velocity profile.

E.2 Generalized Cox equation

In the main body of the manuscript we use the generalized Cox equation Cox (1986)

𝑔(𝜃,𝑀)− 𝑔(𝜃𝑎,𝑀) = CaΓ, (E.1)

where 𝑀 is the ratio of the defending to invading fluid viscosities, Γ = ln(𝑅/ℎmicro) is the cut-off-
length parameter near the contact line, and function 𝑔(𝜃,𝑀) is

𝑔(𝜃,𝑀) =

∫︁ 𝜃

0

𝑑𝛽

𝑓(𝛽,𝑀)
, (E.2)

and

𝑓(𝛽,𝑀) =
2 sin𝛽[𝑀2(𝛽2 − sin2 𝛽) + 2𝑀(𝛽(𝜋 − 𝛽) + sin2 𝛽) + (𝜋 − 𝛽)2 − sin2 𝛽]

𝑀(𝛽2 − sin2 𝛽)(𝜋 − 𝛽 + sin𝛽 cos𝛽) + ((𝜋 − 𝛽)2 − sin2 𝛽)(𝛽 − sin𝛽 cos𝛽)
. (E.3)
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E.3 Classical imbibition

FIG. 3 in the manuscript demonstrates that contact-line dissipation can be responsible for a sig-
nificant portion of the energy loss in capillary-driven flow systems. To stress this point further,
we return to the classical imbibition depicted in FIG. 1a of the manuscript. The need to account
for contributions of the contact-line dynamics to the rate of classical imbibition has been the fo-
cus of a series of recent studies (Bico & Quéré, 2002; Delannoy et al., 2019; Hilpert, 2009, 2010;
Heshmati & Piri, 2014). We plot the evolution of the front position 𝑧(𝑡) for 50 cSt silicon oil in
FIG. E-2. The classical Washburn scaling for 𝑧(𝑡) can be obtained by balancing 𝐹bulk = 8𝜋𝜇𝑜𝑧�̇�
with 𝐹cap = 2𝜋𝑅𝛾𝑜 cos 𝜃𝑜 = 2𝜋𝑅𝛾𝑜(1 − 1

2(9Γ
𝜇𝑜�̇�
𝛾𝑜

)2/3) and neglecting the dynamic contact angle.
Then the force balance reduces to

4𝜇𝑜

𝑅𝛾𝑜
𝑧�̇� = 1. (E.4)

The solution to equation (E.4) is 𝑧2 = 𝛾𝑜𝑅
2𝜇𝑜

𝑡, which differs from the early-time experimental data in
FIG. E-2. A more complete description emerges by considering the dynamic contact angle

4𝜇𝑜

𝑅𝛾𝑜
𝑧�̇� = 1− 1

2
(9Γ

𝜇𝑜�̇�

𝛾𝑜
)2/3. (E.5)

Equation (E.5) captures the dynamics of viscosity-dominated classical imbibition at both early-
and late-times. At early times (when 𝑧 is small), Φbulk and Φcl are comparable (see FIG. E-2) and
therefore the dynamics is best described by including both dissipation sources. At late times, the
liquid front slows and 𝜃𝑜 approaches 𝜃𝑜,𝑎, making Φcl negligible. As a result, the experimental 𝑧(𝑡)
approaches the 𝑧 ∼ 𝑡1/2 scaling (FIG. E-2).

Figure E-1: PIV measurements of the velocity profile in spontaneously moving 2 mm slug with
1000 cSt viscosity. The plot is the 2D representation of a histogram, where color stands for the
frequency. The data was collected over the entire length of the 2 mm slug, over all frames. The
figure demonstrates that even in the shortest slug used in this study (2 mm), the majority of the
bulk space maintains the parabolic velocity profile.
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Figure E-2: Evolution of 𝑧(𝑡) during classical imbibition of 50 cSt silicon oil depicted in FIG. 1a of
the manuscript. Here the black line represents the classical Washburn solution [Eq. (E.4)], the red
line represents the solution corrected for dynamic contact angle [Eq. (E.5)]. The ratio of contact-line
to total dissipation is denoted with a colormap.
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Appendix F

Contact-line dynamics over imperfect
surfaces

F.1 Experimental details

In this study we used capillary tubes with inner radius of 𝑅 = 290 𝜇m (Hilgenberg GmbH borosil-
icate glass 3.3). We spin-coated the inner walls of the tubes with NOA81 photocurable poly-
mer Primkulov et al. (2020b). While the surface properties of NOA81 polymer cured with high-
intensity UV light have not yet been fully explored, we observed the growth of surface crystals
(Fig. F-2). These crystals cover the cured polymer within several hours, generating a carpet of
surface roughness.

F.2 Force-velocity relations

Here, we first revisit the force-velocity scaling of Raphaël-de Gennes and Joanny-Robbins Raphaël
& De Gennes (1989); Joanny & Robbins (1990) in constant-force and constant-speed settings, and
then examine how the system evolves away from the depinning limit. We are particularly interested
in how the amplitude of oscillations evolves at higher forcing and velocities.

F.2.1 Constant-force displacement

Consider a pendulum inside a drum that is filled with viscous fluid and rotated at angular velocity
𝜔0 (Fig. 8-2). As one gradually increases 𝜔0, the system undergoes several distinct regimes.

Static state. The system would be in a static state for a range of very small 𝜔0. Here, left-hand
side of Eq. 8.14 vanishes, and the equation reduces to

𝜔0 = 𝐵 sin𝛼𝑐.

The back meniscus and the slug get pinned where local imperfections match the driving force.
Depinning limit. When the driving force is marginally stronger than the peak pinning site, or

𝜔0 → 𝐵+, the slug moves forward in a stick–slip manner (Fig. F-3). We can rearrange and integrate
Eq. 8.14 to get ∫︁

𝑑𝛼𝑐

𝜔0 −𝐵 sin𝛼𝑐
= 𝑡+ 𝐶, (F.1)
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Figure F-1: Examples of stick–slip motion of contact lines. (a) stick–slip motion of a droplet sliding
down a surface with hydrophobic–hydrophilic stripes. Reprinted from Varagnolo et al. (2013).
(b) stick–slip dynamics can also emerge on electrowetting surfaces, where temporal changes in
wettability are actuated through ac signal. Reprinted from Mannetje et al. (2013). (c) Amplitude
of stick–slip oscillations are smaller on surfaces with more closely-spaced impurities. Adapted from
Zuo et al. (2012).

Figure F-2: Crystalline structures growing on cured NOA81 surfaces are reminiscent of the images
obtained in the context of coarsening solidification via solvent-annealing in thin liquid films Yu
et al. (2013). Liquid droplets, visible at the center of the image, are replaced by growing crystal
structures as time advances.
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Figure F-3: Evolution of 𝛼𝑐 in Eq. 8.14 for 𝜔0 ∈ (𝐵, 2𝐵].

or
tan

𝛼𝑐

2
=

𝐵

𝜔0
+

�̄�

𝜔0
tan

�̄�(𝑡+ 𝐶)

2
, (F.2)

where the average frequency is Adler (1946)

�̄� =
√︁
𝜔2
0 −𝐵2. (F.3)

When 𝜔0 → 𝐵+, �̄� =
√︀
[(𝜔0 −𝐵) +𝐵]2 −𝐵2 =

√︀
2𝐵(𝜔0 −𝐵) + (𝜔0 −𝐵)2 ≈

√︀
2𝐵(𝜔0 −𝐵). We

can therefore write the force-velocity relation near the depinning limit as

𝜔0 −𝐵

𝐵
=

1

2
(
�̄�

𝐵
)2, (F.4)

which is equivalent to the expressions obtained by Raphaël-de Gennes and Joanny-Robbins Raphaël
& De Gennes (1989); Joanny & Robbins (1990). In fact, a relation equivalent to Eq. F.4 can be
obtained from Eq. F.1 after realizing that when 𝜔0 → 𝐵+, the dominant contribution to the integral
comes from the neighborhood of the strongest pinning site.

Away from the depinning limit. When 𝜔0 ≫ 𝐵, Eq. F.3 simply reduces to �̄� = 𝜔0, which we
can rewrite in a form analogous to Eq. F.4

𝜔0 −𝐵

𝐵
≈ �̄�

𝐵
. (F.5)

Away from the depinnig limit force scales linearly with the speed.
Fig. F-3 shows that as one moves away from the depinning limit, the amplitude of oscillations

diminishes in a frame moving at �̄�. In the limit where 𝜔0 ≫ 𝐵 and therefore �̄� → 𝜔0 (Eq. F.3).
We can then rewrite Eq. 8.14 in this moving frame as

𝑑�̃�𝑐

𝑑𝑡
= 𝜔0 − �̄� −𝐵 sin(𝛼𝑐 + �̄�𝑡) (F.6)

≈ −𝐵 sin(𝜔0𝑡), (F.7)

where we assumed �̃�𝑏 ≪ �̄�𝑡. This allows to approximate the oscillations about the moving frame
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Figure F-4: Diminishing amplitude of oscillations with 𝜔0/𝐵 in constant force setting. Blue dots
correspond to numerical solutions of Eq. 8.14 at varying 𝜔0/𝐵.

Figure F-5: Adiabatic approximation leading up to Eq. 8.14 assumes that 𝛼𝑏 = 𝛼𝑐+∆𝛼, where ∆𝛼
is constant. Numerical solution of Eqs. 8.12-8.13 shows that this is a good approximation near the
depinning limit, where 𝜔0 −𝐵 ≪ 𝐵.

as
�̃�𝑐 = 𝛼𝑐 − �̄�𝑡 ≈ 𝐵

𝜔0
cos(𝜔0𝑡). (F.8)

In other words, when 𝜔0 ≫ 𝐵, we can expect the magnitude of oscillations decay following (𝜔0/𝐵)−1

scaling, which is indeed what we observe in the numerical solution to Eq. 8.14 (Fig. F-4).
Our assumption that 𝛼𝑏 = 𝛼𝑐 + ∆𝛼, where ∆𝛼 is constant holds up during slow displacement

or when 𝜔0 −𝐵 ≪ 𝐵. Here, 𝑑
𝑑𝑡(𝛼𝑏 − 𝛼𝑐) ≈ 0 at all times except near brief slip events (Fig. F-5).

F.2.2 Constant-rate displacement

Unlike the constant-force displacement, as long as the prescribed rate is not zero, pendulum does
not have a static state.

Quasi-static state. However, at diminishing rates, we can take 𝜆𝑑�̃�𝑐
𝑑𝑡 → 0, which reduces Eq. 8.17

to
𝐾�̃�𝑐.𝑞𝑠 = −𝐵 sin(�̃�𝑐.𝑞𝑠 + 𝜔𝑢𝑡). (F.9)

The balance of the spring and the pinning force can then be visually examined (Fig. F-6a), as
suggested by Raphaël-de Gennes Raphaël & De Gennes (1989). Here, two distinct modes of motion
emerge: (i) when 𝐾 ≥ 𝐵, a unique solution 𝛼𝑐 exists at any given time; (ii) when 𝐾 < 𝐵, or a slope
of the spring term is smaller than the greatest slope of the pinning term, more than one solution 𝛼𝑐

can emerge (Fig. F-6).
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Figure F-6: (a) Quasi-static motion of the contact line is governed by the balance of the linear
spring term 𝐾�̃�𝑐 and surface imperfection term 𝐵 sin(�̃�𝑐+𝜔𝑢𝑡). Here, solution for �̃�𝑐 is non-unique
for certain 𝑡 when 𝐾 < 𝐵. (b) Typical motion near depinning limit. A region highlighted in green
corresponds to a disanchoring event, where quasi-static solution experiences jump-discontinuity in
�̃�𝑐. This state is also depicted in (a). (c) Solution of Eq. 8.17 (blue curve) deviates from the quasi-
static profile �̃�𝑐.𝑞𝑠 (red curve) only near disanchoring event.

We can calculate the average force term of the quasi-static displacement as

�̄�0.𝑞𝑠 = − 1

𝑇

∫︁ 𝑇

0
𝐾�̃�𝑐.𝑞𝑠(𝑡)𝑑𝑡, (F.10)

where 𝑇 is the period of motion, and �̃�𝑐.𝑞𝑠(𝑡) is calculated from Eq. F.9.

Depinning limit. We now examine how the average force term evolves as we increase 𝜔𝑢 and
therefore move away from the quasi-static approximation.

Fig. F-6b shows the typical �̃�𝑐(𝑡) profile obtained by solving Eq. 8.17. We are particularly inter-
ested in the dynamics near the disanchoring event highlighted in green. Here, in quasi-static limit,
�̃�𝑐.𝑞𝑠(𝑡) experiences jump-discontinuity. In the dynamic model, this discontinuity is regularized by
the viscous term in Eq. 8.17. In fact, the solution of Eq. 8.17 deviates from the quasi-static solution
only immediately after these disanchoring events (see Fig. F-6c). This deviation is responsible for
the force-velocity scaling near depinning limit of Raphaël-de Gennes and Joanny-Robbins Raphaël
& De Gennes (1989); Joanny & Robbins (1990).

We can write the average force term from Eq. 8.16 as

�̄�0 = − 1

𝑇

∫︁ 𝑇

0
𝐾�̃�𝑐(𝑡)𝑑𝑡, (F.11)

or alternatively we can use Eq. F.10 to rewrite the above equation as

�̄�0 − �̄�0.𝑞𝑠 = − 1

𝑇

∫︁ 𝑇

0
𝐾[�̃�𝑐(𝑡)− �̃�𝑐.𝑞𝑠(𝑡)]𝑑𝑡. (F.12)

The value of this integral can be approximated by treating the area between two curves in Fig. F-6c
as a rectangle and finding its characteristic width in 𝑡. This is what we do next.

To understand how �̃�𝑐 evolves near the disanchoring point (𝑡𝑑, 𝛼𝑑), we substitute 𝑡 = 𝑡𝑑+ 𝑡𝜖 and
�̃�𝑐 = 𝛼𝑑 + 𝛼𝜖 into Eq. 8.17 and obtain

𝜆
𝑑𝛼𝜖

𝑑𝑡𝜖
+𝐾(𝛼𝑑 + 𝛼𝜖) = −𝐵 sin(𝛼𝑑 + 𝜔𝑢𝑡𝑑 + 𝛼𝜖 + 𝜔𝑢𝑡𝜖). (F.13)
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We then note that sin(𝛼𝑑+𝜔𝑢𝑡𝑑+𝛼𝜖+𝜔𝑢𝑡𝜖) = sin(𝛼𝑑+𝜔𝑢𝑡𝑑) cos(𝛼𝜖+𝜔𝑢𝑡𝜖)+cos(𝛼𝑑+𝜔𝑢𝑡𝑑) sin(𝛼𝜖+
𝜔𝑢𝑡𝜖) ≈ sin(𝛼𝑑 + 𝜔𝑢𝑡𝑑)(1 − (𝛼𝜖 + 𝜔𝑢𝑡𝜖)

2/2) + cos(𝛼𝑑 + 𝜔𝑢𝑡𝑑)(𝛼𝜖 + 𝜔𝑢𝑡𝜖). We also note that at
disanchoring point −𝐵 sin(𝛼𝑑 + 𝜔𝑢𝑡𝑑) = 𝐾𝛼𝑑 and −𝐵 cos(𝛼𝑑 + 𝜔𝑢𝑡𝑑) = 𝐾. Therefore, Eq. F.13
simplifies to

𝜆
𝑑𝛼𝜖

𝑑𝑡𝜖
= 𝐾𝜔𝑢𝑡𝜖 −

𝐾𝛼𝑑

2
(𝛼𝜖 + 𝜔𝑢𝑡𝜖)

2, (F.14)

or if we assume that for very slow displacement 𝜔𝑢𝑡𝜖 ≪ 𝛼𝜖,

𝜆
𝑑𝛼𝜖

𝑑𝑡𝜖
= 𝐾𝜔𝑢𝑡𝜖 −

𝐾𝛼𝑑

2
𝛼2
𝜖 . (F.15)

We can rescale the above equation with �̂� = 𝑎𝛼𝜖 and 𝑡 = 𝑏𝑡𝜖, where taking

𝑎 =

(︂
𝐾𝛼2

𝑑

4𝜆

1

𝜔𝑢

)︂1/3

(F.16)

𝑏 =

(︂
𝐾2(−𝛼𝑑)

2𝜆2
𝜔𝑢

)︂1/3

(F.17)

reduces Eq. F.15 to
𝑑�̂�

𝑑𝑡
= 𝑡+ �̂�2, (F.18)

which is a Riccati equation. Our solution should approach the quasi-static profile �̂�𝑞.𝑠(𝑡) = −
√︀
−𝑡

when 𝑡 → −∞. Therefore,
�̂�(𝑡) = Ai′(−𝑡)/Ai(−𝑡), (F.19)

where Ai is the Airy function of the first kind.

We plot Eq. F.19 along with the quasi-static profile in Fig. F-7. Here, point (0, 0) corresponds to
(𝑡𝑑, 𝛼𝑑) in Fig. F-6c; the solution �̂�(𝑡) crosses abscissa at 𝑡1, and it is singular at 𝑡2. The contact line
detaches from the pinning site somewhere between 𝑡1 and 𝑡2 and relaxes exponentially towards the
new near-static state. Therefore, the disanchoring event takes place at 𝑡 = 𝒪(1) or 𝑡𝜖 ∼ 1/𝑏. Then,
we can approximate the integral in Eq. F.12 as �̄�0 − �̄�0.𝑞𝑠 ≈ 𝜔𝑢

2𝜋𝐾(𝛼𝑑+ − 𝛼𝑑)
1
𝑏 . In other words, at

very slow displacement rates, the average extra force term (compared to quasi-static displacement)
needed to move the slug scales as

�̄�0 − �̄�0.𝑞𝑠 ∼ 𝜔2/3
𝑢 . (F.20)

This scaling, however, relies on the 𝜔𝑢𝑡𝜖 ≪ 𝛼𝜖 assumption we have made to arrive at Eq. F.15.
This, in our conditions of interest, is equivalent to 𝜔𝑢

𝐵 ≪ 2𝐾
𝛼𝑑𝜆𝐵

= 𝒪(10).

Away from the depinning limit. While the force-velocity scaling is valid for a wide range of
�̄�/𝐵 in the constant force experiment (Fig. F-8a), the equivalent scaling in the constant velocity
setting only applies for 𝜔𝑢/𝐵 ≪ 2𝐾

𝛼𝑑𝜆𝐵
(Fig. F-8b). In the latter case, the force-velocity relation is

non-monotonous away from the depinning limit.

To rationalize the shape of the curve in Fig. F-8b we solve Eq. 8.17 and plot �̃�𝑐(𝑡) profiles for
a wide range of 𝜔𝑢/𝐵 in Fig. F-9. As 𝜔𝑢/𝐵 increases, at first, only portion of the �̃�𝑐(𝑡) curve
immediately after the disanchoring events deviates significantly from the quasi-static profile. In
particular, the area between quasi-static and dynamic curves increases with 𝜔𝑢/𝐵 (see Fig. F-6c
and Fig. F-9), following scaling in Eq. F.20 for 𝜔𝑢/𝐵 ≪ 1, where dynamics can be approximated
by Eq. F.15. The area between the quasi-static and dynamic curves, increases a little more rapidly
and reaches maximum as 𝜔𝑢

𝐵 approaches 2𝐾
𝛼𝑑𝜆𝐵

.
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Figure F-7: Solution to equation F.18 (blue) as well as the quasi-static solution �̂�𝑞.𝑠(𝑡) = −
√︀
−𝑡

(red). Here, 𝑡1 is the first root of Eq. F.19 and 𝑡2 is its first singularity.

Figure F-8: Scaling of force-velocity terms in (a) constant force (Eqs. F.4-F.5) and (b) constant
velocity settings, where inset demonstrates the scaling in Eq. F.20 for 𝜔𝑢/𝐵 ≪ 1.
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Figure F-9: Evolution of �̃�𝑐 in Eq. 8.17 for 𝜔𝑢/𝐵 ∈ [10−3, 102].

Eventually, the average value of �̃�0/𝐵 starts diminishing with increasing 𝜔𝑢 when 𝜔𝑢
𝐵 > 2𝐾

𝛼𝑑𝜆𝐵
.

This is the result of the oscillation amplitude dampening in �̃�𝑐(𝑡). In fact, when 𝜔𝑢 is sufficiently
high, so that �̃�𝑐 ≪ 𝜔𝑢𝑡, we can approximate Eq. 8.17 as

𝜆
𝑑�̃�𝑐

𝑑𝑡
+𝐾�̃�𝑐 = −𝐵 sin(𝜔𝑢𝑡), (F.21)

which is a first-order ODE with constant coefficients and periodic forcing. Then the solution to
Eq. F.21 can be written as

�̃�𝑐(𝑡) = − 𝐵√︀
𝐾2 + 𝜆2𝜔2

𝑢

sin(𝜔𝑢𝑡− 𝜑) + 𝐶𝑒−𝐾𝑡/𝜆, (F.22)

where 𝐵√
𝐾2+𝜆2𝜔2

𝑢

is the amplitude of oscillations, 𝜑 = Arg(𝐾 + 𝑖𝜆𝜔𝑢), and the transient solution

constant 𝐶 is determined determined by the initial conditions. When 𝜔𝑢
𝐵 ≫ 2𝐾

𝛼𝑑𝜆𝐵
, the amplitude of

oscillations would scale as
𝐵√︀

𝐾2 + 𝜆2𝜔2
𝑢

∼ 𝐵

𝜆𝜔𝑢
. (F.23)

This is consistent with the simulation results in Fig. F-10.

F.2.3 Total force

The force-velocity scaling relations we showed until now do not represent the total force one would
need to apply to move the slug inside the capillary tube (Fig. 8-1). The scaling relation in sec-
tion F.2.1 is for the force above the static threshold (𝜔0 −𝐵). The scaling relation in section F.2.2
is for the force above the quasi-static threshold (�̄�0−�̄�0.𝑞𝑠). Additionally, the relation in section F.2.2
was derived in a moving frame of reference and does not account for the bulk viscous force. This
can be remedied by taking 𝜔0 = �̄�0 + 𝜔𝑢.

We plot the force-velocity curves for the total force in Fig. F-11 for both constant-rate and
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Figure F-10: Change in the amplitude of oscillations of �̃�𝑐 with increasing 𝜔𝑢/𝐵. Data is obtained
through numerical solution of Eq. 8.17.

Figure F-11: Total force scaling for both constant-force (red) and constant-velocity (color-scaled)
settings.
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Figure F-12: Phase-field simulation of constant-rate fluid-fluid displacement in a 2D channel (𝑅 =
290 𝜇m), where the top boundary is the plane of symmetry.

constant-force settings. In constant-force setting, the dominant contribution to the total force
comes from the contact line interaction with surface imperfections until �̄�

𝐵 = 4𝑙
𝜖𝑅Ca = 𝒪(1). In

constant-rate setting, the crossover from stick–slip dominated to bulk-viscous force dominated dy-
namics depends on relative magnitudes of parameters 𝐵 and 𝐾. The relative importance of surface
imperfections can be negligible for weakly pinning surfaces (small 𝐵) and/or stiff oil/water interface
(large 𝐾).

F.3 Phase-field simulations of the viscous slug displacement at a
constant rate

Fig. F-12 shows a typical 2D phase-field simulation of fluid-fluid displacement, where invading fluid
is marked with phase-field parameter 𝜑 = 1, defending fluid with 𝜑 = −1, and diffuse interface
has values of 𝜑 in between. Spatio-temporal changes in 𝜑 are governed by the Cahn-Hilliard equa-
tion Cahn & Hilliard (2004) in the form

𝜕𝜑

𝜕𝑡
+ 𝑢 · ∇𝜑⏟  ⏞  

transport from
flow field

= ∇ · 𝛾�̃�
𝜖2

∇(𝜑(𝜑2 − 1)−∇ · 𝜖2∇𝜑)⏟  ⏞  
transport from

chemical potential

, (F.24)

where 𝛾 is the mobility, �̃� is the mixing energy density, and 𝜖 is the interface thickness. The coupled
flow field 𝑢 is obtained using the creeping flow approximation

𝜌
𝜕𝑢

𝜕𝑡
= ∇ · [−𝑝𝐼 + 𝜇(∇𝑢+ (∇𝑢)𝑇 )] +

�̃�

𝜖2
(𝜑(𝜑2 − 1)− 𝜖2∇2𝜑)∇𝜑⏟  ⏞  

interfacial tension term

, (F.25)

where 𝑝, 𝜌, and 𝜇 are the fluid pressure, density, and viscosity. We set the constant flowrate on
the left boundary and constant pressure on the right boundary (Fig. F-12). We set a space-varying
contact angle 𝜃𝑏(𝑧) at the impermeable wall (bottom), such that cos 𝜃𝑏(𝑧) = cos 𝜃𝑏0 − 𝜖 sin(2𝜋𝑧/𝑞)
by imposing

−∇𝜑 · 𝑛 = |∇𝜑|(cos 𝜃𝑏0 − 𝜖 sin(2𝜋𝑧/𝑞)), (F.26)

as well as no-slip boundary condition, where 𝑛 is the normal unit vector at the wall.
Phase-field modeling of a viscous oil slug that is preceded by air and displaced by water would

require a relatively long channel with reasonably fine mesh. That would translate into a significant
computational cost. Since we are only interested in the dynamics of the stick–slip motion near the
contact line, we instead model viscosity-matched displacement inside the 2D channel. This way the
total pressure drop ∆𝑝total(𝑡) across the channel has three components for any given simulation:
time-dependent pressure due to stick–slip dynamics ∆𝑝slip(𝑡), time-independent pressure due to
Poiseuille flow in the bulk of the channel ∆𝑝pois, and the time-independent pressure due to sharp
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velocity gradients near the mean contact line geometry ∆𝑝c.l.. For a given capillary number Ca, we
find ∆𝑝pois +∆𝑝c.l. by running a simulation on a smooth surface (𝜖 = 0 in Eq. 8.11). Then, we can
isolate ∆𝑝slip(𝑡) through

∆𝑝slip(𝑡) = ∆𝑝total(𝑡)− (∆𝑝pois +∆𝑝c.l.) (F.27)

for any combination of 𝜖 and Ca of interest. Then, we compute the total dissipation due to oscillatory
motion of the contact line in Figure 8-4b as

Ξ =
⟨∆𝑝slip⟩
⟨∆𝑝total⟩

, (F.28)

where ⟨∆𝑝total⟩ = 1
𝑡max

∫︀ 𝑡max
0 ∆𝑝total(𝑡)𝑑𝑡. We set the static contact 𝜃𝑏0 to 𝜋/2 (see Eq. 8.11) to

match our assumptions in the analytic model.
While our phase-field simulations reported in Fig. 8-4b reproduce the main dynamic regimes of

the drum analog (Fig. 8-4a), the mean value of the contact angle 𝜃𝑏0 increases with Ca due to viscous
bending of the fluid-fluid interface. We marked a Ca region where this angle reaches 𝜋 on a smooth
surface with green shading in Fig. 8-4b. A film of defending fluid is deposited on the channel walls
in this region. We neglected the dependence of the wetting transition on 𝜖 in Fig. 8-4 Golestanian
(2004).
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