
Inferring Structured World Models from Videos
by

Shreyas Kapur
S.B., Computer Science and Engineering, Massachusetts Institute

of Technology (2020)

Submitted to the Department of Electrical Engineering and
Computer Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer
Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 2022

© Massachusetts Institute of Technology 2022. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

May 20, 2022

Certified by .
Joshua B. Tenenbaum

Professor
Thesis Supervisor

Accepted by .
Katrina LaCurts

Chair, Master of Engineering Thesis Committee

2

Inferring Structured World Models from Videos

by

Shreyas Kapur

Submitted to the Department of Electrical Engineering and Computer Science
on May 20, 2022, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract
Advances in reinforcement learning have allowed agents to learn a variety of board
games and video games at superhuman levels. Unlike humans - which can gen-
eralize to a wide range of tasks with very little experience - these algorithms typi-
cally need vast number of experience replays to perform at the same level. In this
thesis, we propose a model-based reinforcement learning approach that repre-
sents the environment using an explicit symbolic model in the form of a domain-
specific language (DSL) that represents the world as a set of discrete objects with
underlying latent properties that govern their dynamical interactions. We present
a novel, neurally guided, on-line inference technique to recover the structured
world representation from raw video observations, with the intent to be used for
downstream model-based planning. We qualitatively evaluate our inference per-
formance on classical Atari games, as well as on physics-based mobile games.

Thesis Supervisor: Joshua B. Tenenbaum
Title: Professor

3

4

Acknowledgments

Thank you to Josh Tenenbaum for his invaluable guidance, technical feedback,

inspiration, and kind humanity throughout this project. Thank you to Ferran Alet

for being an exceptional mentor, and technical advisor, and for his loving guidance

and support. Thank you to Pedro Tsidivis for inspiring me to work on this project,

his research laid the groundwork for this thesis. Thank you to Elizabeth DeTienne

for supporting me with compassion and love throughout my program. Thank you

to Arnav Kapur for his support and writing the physics engine used in this thesis,

and to my mom for her unconditional love. Finally, I want to thank Nick Watters

and Tan Zhi Xuan for deep technical discussions that have influenced this work.

5

6

Contents

1 Introduction 9

1.1 Scope . 11

1.2 Related Work . 12

2 Generative Model 15

2.1 Domain-Specific Language . 15

2.2 Game Engine . 19

2.2.1 Representation . 20

2.2.2 Simulation . 21

2.3 Probabilistic Model . 22

3 Perception 25

3.1 Game Manual Assumption . 25

3.2 Object Detection . 26

3.3 Object Tracking . 28

3.4 Perception Module . 30

4 Inference 33

4.1 Problem . 33

4.1.1 Likelihood . 34

4.2 Classical Inference . 35

4.2.1 Monte-Carlo Markov-Chain 35

4.2.2 Sequential Monte Carlo . 37

7

4.3 Online Neural Amortized Inference 38

4.3.1 Independence and Windowing 39

4.3.2 Neural Conditional Density Estimation 39

4.3.3 Priors and Lonely Spaces . 42

4.3.4 Contrastive Learning of Likelihood 43

4.3.5 Importance Sampling . 43

4.4 Qualitative Results . 44

4.4.1 Synthetic Examples . 44

4.4.2 Tools Challenge . 44

4.4.3 Games . 46

5 Conclusion 47

5.1 Future Work . 47

5.1.1 Rigorous Evaluation on a Diverse Set of Tasks 47

5.1.2 Planning . 48

5.1.3 Loosing The Game Manual Assumption 48

5.1.4 Differentiable Game Description Language 48

8

Chapter 1

Introduction

Reinforcement Learning (RL) is an area of Machine Learning that trains agents to

take actions in some environments to maximize some notion of reward. Video

games, and games in general, provide a convenient test-bed, since games are re-

producible, deterministic, and provide rich, challenging complexities for RL algo-

rithms. Recent advances in reinforcement learning have allowed these agents to

learn a wide variety of board games and video games at superhuman levels [1].

However, unlike humans, these require an enormous number of experience tra-

jectories to learn, typically on the order of millions of replays and do not generalize

to unseen tasks without significant retraining [2].

One approach for tackling sample efficiency is to construct a model of a world

that can predict future states given some simulated actions. We can then use this

model to form a policy for an agent. While the trade-offs between model-based

and model-free approaches are an active area of research [3], recent work has

shown that model representations can have a significant impact on agent perfor-

mance and sample efficiency [4–8].

In this work, we propose an explicit symbolic model for the environment in the

form of a domain-specific language (DSL). We posit that game environments can

be factorized into discreet objects with underlying latent properties that govern

their dynamic interactions. The goal of the project is to design a language that can

express these latent properties and interactions in an explicit symbolic represen-

9

Figure 1-1: Overview of the algorithm proposed in this thesis. We first observe
a sequence of observations from our current task environment. A search-based
Bayesian inference algorithm makes use of a neural proposal to generate a distri-
bution over plausible programs that can potentially explain the input observation
sequence. The program is then used to predict future states and rewards for a
tree-search to decide the best action for the agent.

10

tation that is rich enough to model video-games and to work on approaches to

automatically synthesize this language from a series of raw pixel observations in

a video-game.

We hope that we can learn these symbolic models faster than neural models

while being rich enough to achieve comparable performance on downstream plan-

ning and policy tasks. Since we have access to a deterministic game description

language, we hope that we can leverage the ability to sample a large number of ex-

ample games to train a meta-inference engine that that can generalize to a range

of tasks. We also hope that the learned models will be more interpretable by hu-

mans.

1.1 Scope

While learning symbolic models opens the door to fine-tuning planning algorithms

and heuristics, we are going to limit the scope of the project to focus on just the

inference of the world models. Here, we list a set of potential candidates:

• The Atari game suite is a standard benchmark in reinforcement learning and

has a canonical implementation through the Arcade learning environment

[9]. The task set consists of a range of complexities, from simple control

problems (like Pong) to tasks that require significant long-term planning (like

Frostbite). Since we are limiting the scope to just representation learning,

these tasks provide a challenging benchmark for learning to model complex

interactions between game objects.

• The tools challenge [10] provides a suite of physical intuition tasks where the

agent must use shaped tools to solve physical puzzles. The tools challenge

is an appealing candidate since, in this work, the authors showed that per-

forming trial and error simulations in a noisy physics model can outperform

deep policies. Our approach could potentially build on top of this work, by

first learning the physical model from game-play.

11

• Mobile games is another area we would like to explore. In particular, we

would like to explore simple physics bases games. We have published a few

games in this genre that could be useful to collect data on human learning in

these games. These could provide insightful inspirations and comparisons

for our approaches.

For this thesis, we limit the scope of the work to just the inference, and do not

evaluate sample efficiency for planning using such models.

1.2 Related Work

Model-Based Reinforcement Learning by Simulating Video. Prior work in this

category typically learn neural models that can synthesize future image frames.

The CDNA model [11] uses a convolutional LSTM to directly predict RGB frames.

Lee et al. [12] combine the success of variational auto-encoders at modeling stochas-

ticity and the success of generative-adversarial networks at producing naturalistic

images into a unified video prediction model. Kaiser et al. [4] introduced SimPLe,

which uses a video prediction model for reinforcement learning.

These approaches represent the scene with a single vector, which doesn’t al-

low meaningful disentanglement in the object space. From a cognitive science

perspective, these representations are susceptible to the binding problem [13]

due to the central limiting effect of the permutation invariance of objects. Ide-

ally, we would find components in these vectors that would represent each object

separately but object-level disentanglement can be hard to achieve in practice

without additional inductive biases [14].

Object-Centric Representation Learning. Learning disentangled object repre-

sentations from pixels has been an active area of research. Approaches like MONet

[15] can perform unsupervised scene decomposition by using an attention-like

mechanism before a variational auto-encoder. IODINE [16] improves on this by

12

introducing a probabilistic generative model that assumes separate latent vec-

tors for each object. The final image is modeled as a mixture of these individual

objects, and the posterior is estimated via iterated variational inference. Recently,

approaches like slot attention [17] show how a transformer-like attention model

for each object slot can be used for object-based scene decomposition. In all

these approaches, the latent representations are discovered in an unsupervised

manner. Since we impose a DSL, we also impose a strict structure to the latent

variables, making them disentangled by construction.

Object-Centric Model-Based Reinforcement Learning. These approaches are

the closest prior work to the proposed thesis project. The Transporter algorithm

[18] learns to disambiguate key-points from an observation image to predict future

frames. COBRA [5] uses an autoregressive neural network to factorize the scene

into objects. It has an adversarial exploration phase where the agent freely learns

the objects and dynamics of the scene which it can then use for model-based RL.

C-SWM [19] and OP3 [8] follows [16] by using an object-based probabilistic gener-

ative model, explicitly modeling discreet entities, their symmetric dynamics, and

observations.

Program Synthesis and Reinforcement Learning. Program synthesis has seen

success with neurally-guided search [20–22]. Reinforcement learning has also

been used in optimizing program traces [23]. Close to the proposed work is prior

work learning RL policies as symbolic programs [24]. We do not know any publicly

available approaches that model the environment in a domain-specific language.

Inferring Symbolic Models The closest work to this thesis, and what we build

on is the EMPA agent described by Tsividis et al. [25]. Here, the authors posited

a domain-specific language and performed Bayesian inference to learn the game

rules, successfully achieving human-efficient performance on a diverse set of tasks.

In this work, however, the authors used hand designed heuristics to drive the in-

13

ference and applied the technique to grid games. Ullman et al. [26] similarly de-

veloped novel techniques to infer physical properties from dynamical scenes but

on a hypothesis space that is computationally enumerable.

14

Chapter 2

Generative Model

2.1 Domain-Specific Language

We first introduce our custom domain-specific language (DSL) that can describe

2D video games. The design goals for this language are,

1. We want to be able to represent a variable number of multiple objects in a

scene, alongside their fixed dynamical properties and time-varying state.

2. We want to be able to flatten this representation into a single fixed-size vec-

tor such that it could be the output of a neural network.

3. We would like the language to have inherent performance features that would

allow us to perform a large number of game simulations in parallel.

To this end, we opted for an Entity-Component-System (ECS) like design pattern,

inspired by its wide usage in the video game development community. Härkönen

[27] provides a deeper review of the trade-offs for this pattern.

In our language, Entities represent an abstract container for each game object

and can be indexed using the object’s entity index. Figure 2-1 shows an example

of the Donkey Kong game, which we will use as a running example to illustrate the

DSL. Here, all game objects are entities. The player’s sprite, each obstacle, the

goal (E), each ladder (C), etc.

15

Figure 2-1: A screenshot from the Atari 2600 version of Donkey Kong. We will use
this screenshot as a running example to describe our DSL. The goal of the game
is for the player (A) to reach (E) while avoiding the obstacles (B). The player is
allowed to climb ladders (C). The obstacles are spawned at random instances.

Entities themselves do not hold any state or rules, except for their entity in-

dex. Instead, entities hold a collection of Components. A component is a parame-

terized rule or state. For instance, a Position(x: float32, y: float32)

component holds data about the position of the entity it is attached to. ASticky()

component enables an entity to allow other entities to not be influenced by grav-

ity (for instance, ladders would be sticky). In our language, we pre-define a set of

primitive attachable components alongside their behaviors. A full list of them can

be found in Table 2.1. Components that change their data values over time are

marked as dynamic.

Component Signature Behaviour Dynamic Generic

Position(

x: float32,

y: float32,

)

Stores the current position of the

game object.

✓

16

Velocity(

vx: float32,

vy: float32,

)

Stores the current velocity of the

game object.

✓

Gravity(

gx: float32,

gy: float32,

)

Acceleration due to gravity.

CollidingBody(

size_x: float32,

size_y: float32,

body_type:

{

STATIC,

DYNAMIC,

SENSOR

},

shape: {RECT, ELLIPSE},

)

Dynamical body of the object.

Includes the size and shape of

the object. If the body is static,

it is not allowed to move. A sen-

sor body is allowed to move but

does not respond to physical col-

lisions.

ActionSetVelocity<K>(

vx: float32,

vy: float32,

is_zero: bool,

)

Set the velocity of the object to

(𝑣𝑥, 𝑣𝑦) for action 𝐾.

✓

Perishable()
Object is destroyed if contacted

by a Killer.

17

Killer()
Object destroys a Perishable.

Sticky()
Temporarily sets gravity to 0 for

a contacting object.

Scoreable()
Enables scoring for object.

GameOver()
Stops the game with negative re-

ward if Scoreable contacts.

Score()
Earns positive reward on contact

with Scoreable.

OOBGameOver<E>()
Trigger game over if object goes

out of bounds at edge 𝐸 ∈ {

TOP,LEFT,BOTTOM,RIGHT}

✓

Table 2.1: Complete list of primitive components avail-

able to our DSL.

In a traditional ECS design, a system performs the actual computation to simu-

late the rules and states described by the components. For instance, a physics sys-

tem would process the physical dynamics, an action system would process key-

board/mouse inputs, etc. For our DSL, we have a single system we call the simula-

tor, which performs the necessary computations to step the scene one time-step.

The language is compositional, as opposed to hierarchical, which is traditional

in object-oriented design patterns. This is a salient feature that makes our lan-

guage particularly expressive for games, allowing us to layer complex behavior for

entities by simply attaching or removing specific components.

The reader might notice that we do not have any components that describe the

visual properties of game objects. This is by design and is discussed extensively

18

Figure 2-2: A visualization of the Entity-Component DSL. Each box is an entity in
our game. The left hand side shows all the components that are attached to the
selected entity (in red).

in the next chapter on perception. For simplicity, our generative model produces

bounding box observations for each game object. Additionally, we have not yet

specified any assumptions about object types that are critical in describing games.

We sidestep this issue by lifting the object types to the perception stack as well,

as discussed in the next chapter.

2.2 Game Engine

The game engine is responsible for performing the computation needed to ad-

vance the game state, execute the rules, and process the physics.

19

Figure 2-3: An example of how a latent representation for a single entity gets
translated into its respective components. The vector 𝑧𝑖 consists of the compo-
nent’s presence bit followed by the component’s parameters. Since we establish
a fixed library of components, the size, 𝐿 of each 𝑧𝑖 is fixed across all entities.

2.2.1 Representation

Our DSL is embedded inside Python for ease of developer use. Embedding our

DSL also allows us to skip expensive parser and lexer steps. Since our DSL is en-

tirely compositional, we do not need to maintain a complex abstract-syntax tree.

Instead, we can flatten the entire state of the game at any point into 𝑧 ∈ R𝑀×𝐿

tensor, where 𝑀 is the maximum number of object slots for the engine. Each of

those 𝑀 slots consists of the 𝑖th object vector, 𝑧𝑖. Figure 2-3 shows how we inter-

pret each 𝑧𝑖. The number of components in our primitive library is fixed, allowing

us to fix the indexes where we would find a particular component’s parameters.

Leveraging this property allows us to have a direct mapping of states to mem-

ory, skipping any expensive parsing. For a better developer experience, we imple-

ment a schema object that provides us with the relevant slices for specific prop-

erties in the state tensor, mapping human-readable component names to their

relevant indexes. In Python, the schema is used as,

Initialize a schema.

schema = Schema(...)

20

Some game state.

state = np.array([...])

Interpret the tensor in a human-friendly proxy object.

view = schema.interpret(state)

view.CollidingBody.size += 1 # Mutates `state` directly.

Bulk access properties.

state[:, schema.Gravity.gravity.slice] = 5

A side effect of this approach is that whenever a particular property is ac-

cessed, the neighboring properties of the same entity are brought into the cache,

allowing for fast property reads by the simulation engine.

2.2.2 Simulation

The simulator is a function 𝑠 : R𝑀×𝐿 → R𝑀×𝐿 which simulates our world state by

a single time-step, 𝑑𝑡,

𝑧𝑡+1, 𝑟𝑡 = 𝑠(𝑧𝑡; 𝑎𝑡)

where 𝑎𝑡 is the action at time 𝑡 and 𝑟𝑡 is the reward.

Practically, we also need the simulator to be able to do batched simulations,

i.e., forwarding a batch of game states to the next. We implement our physics

engine using Numba [28], which is a high-performance compiler for numerical

Python code. The Numba compiler directly provides us with a high-performance

compiled artifact for batched 𝑠. For simulating the physics, our engine can inter-

face with Chipmunk [29], Box2D [30], Bullet [31] rigid body physics libraries, or our

our own physics engine written in Numba. Our game engine can simulate our DSL

at∼ 104 time-steps per second in batched mode, taking full advantage of multiple

21

threads, CPU vectorization, and caching.

2.3 Probabilistic Model

Figure 2-4: The probabilistic graphical version for our generative model. The ac-
tions are omitted for clarity.

For some time 𝑡, let 𝑧𝑡 represent the latent variables (as described in previous

sections), and 𝑥𝑖,𝑡 represent the observations for the 𝑖th object. Let 𝛿 be the Dirac

delta function, andBoundingBox(𝑧𝑖,𝑡) extract an axis-aligned bounding box of the

𝑖th object’s latent state. Then, our probabilistic generative model is,

𝑧0 ∼ 𝑈{R𝑀×𝐿}

𝑧𝑡+1 ∼ 𝛿(𝑠(𝑧𝑡; 𝑎𝑡))

𝐵𝑖 ∼ Bernoulli[1−𝑚]

𝑥𝑖,𝑡 ∼ 𝐵𝑖 · 𝒩 (BoundingBox(𝑧𝑖,𝑡), 𝜎2
𝑜)

If 𝐴 represents the set of all actions, and 𝑝 represents the probability of pressing

a key, we sample actions as,

𝐾𝑡 ∼ Bernoulli[𝑝]

𝑎𝑡 ∼ 𝐾𝑡 · 𝑈{𝐴}

22

The above two describe a Hidden-Markov Model (HMM), where the observation is

simply a noisy bounding box of the true underlying state, with observation noise as

𝜎2
𝑜 . Sometimes, we might not be able to detect an object in the game, and therefore

include a probability of missing an observation as𝑚 ∈ (0, 1]. The HMM formulation

yields a factorization for the joint distribution for a total of 𝑇 time-steps,

𝑝(𝑧0:𝑇 , 𝑥0:𝑇 ; 𝑎0:𝑇) = 𝑝(𝑧0)
∏︁
𝑡

𝑝(𝑥𝑡|𝑧𝑡)
∏︁
𝑡

𝑝(𝑧𝑡+1|𝑧𝑡; 𝑎𝑡)

For the limiting case when 𝑇 is very large, our joint product is dominated by the

transition and emission distributions. To that end, we assume a uniform prior over

any possible valid instantiation of 𝑧0. Figure 2-4 shows the graphical version of our

probabilistic model.

23

24

Chapter 3

Perception

In the previous chapter, we discussed a generative model that can take some la-

tent game state and simulate it. Additionally, this model can produce noisy bound-

ing box observations for each game object. However, for real game environments,

the observations are in the form of raw pixel image sequences. In this chapter we

discuss how we use generative modeling techniques to infer bounding boxes from

raw pixel observations, to be consumed by an inference pipeline downstream.

3.1 Game Manual Assumption

Inferring game rules and game states directly from video is challenging since we

do not have access to the visual language of the game. This means that a genera-

tive model would not be able to produce image observations that are in-distribution

of a real game. We do not claim that this is an impossible proposition, and existing

work has used generative assumptions [32] or motion assumptions [18] to ex-

tract object-level information from visual videos. In this thesis, we focus on the

inference of dynamical rules and states, and to that end make certain simplifying

assumptions about the visual language of the game.

In particular, we assume access to the visual language of the game in the form

of sprite sheets. Figure 3-1 shows an example sheet we assume access to. In

addition to the sprites used for the game, we also assume semantic labeling of

25

object classes. Under this assumption, all game objects that have the same ob-

ject class will share the same non-dynamic game components. As an example, a

game object that is an instance of the Ladder class, will always have a Sticky()

component attached to it.

We refer to these assumptions as the Game Manual Assumption, which loosely

alludes to how these assumptions are similar to if our system had access to the

game manual, which usually contains descriptions and sprites for the games. To

make in-game data-efficiency comparisons fair against baselines, we will provide

baseline methods with the semantically segmented output from our perception

engine.

Figure 3-1: An example of a sprite-sheet used to train the perception model. This
is only a part of the complete sprite-sheet.

3.2 Object Detection

We use the Faster R-CNN approach [33] to train a neural object detector. We use

the sprite sheet to generate random images with known object bounding boxes to

train the detector.

Algorithm 1 describes the process in which we sample random images pro-

26

Algorithm 1 Probabilistic generative model to train the object detector for percep-
tion.

procedure SampleImage
canvas← EmptyCanvas()
𝑛 ∼ 𝑈{1,𝑀} ◁ Sample number of objects

background ∼ 𝑈{backgrounds}
draw background on canvas

boxes← 𝜑

for 𝑖← 1, 𝑛 do
anti_alias ∼ Bernoulli(0.5)
sprite ∼ 𝑈{sprites}
𝑠𝑥 ∼ 𝑈(𝑠min, 𝑠max) ◁ Sample scale
𝑠𝑦 ∼ 𝑈(𝑠min, 𝑠max)

axis_aligned ∼ Bernoulli(0.5)
if axis_aligned then

𝜃 ∼ 𝑈
{︀
0, 𝜋

2
, 𝜋, 3

2
𝜋, 2𝜋

}︀
else

𝜃 ∼ 𝑈(0, 2𝜋)
end if

𝑥 ∼ 𝑈(0, 1)
𝑦 ∼ 𝑈(0, 1)

tile ∼ Bernoulli(0.1)

set draw tile and anti_alias
draw sprite on canvas with transform (𝑥, 𝑦, 𝑠𝑥, 𝑠𝑦, 𝜃)

boxes← boxes + (𝑥, 𝑦, 𝑠𝑥, 𝑠𝑦)
end for

return canvas and boxes
end procedure

27

vided by the sprite sheet. We first sample a background image and draw it on an

empty canvas. Then we sample the number of objects in the scene uniformly be-

tween 0 and 𝑀 , which is the max number of object slots. For each object slot,

we sample a random sprite image and sample a random transform. We also al-

low the rotation of the sprite to be axis-aligned since this is a prevalent case in

real games. We also randomly apply anti-aliasing or not while drawing since this

behavior is also game dependent. For instance, games that are heavy in pixel art

like to use nearest-neighbor resampling to keep the pixel art aesthetic. In such

games, anti-aliasing would blur the game sprites, making such training examples

out of distribution. We also allow sprites to randomly be tiled across the screen in

the direction chosen by 𝜃. This allows us to represent tileable sprites for objects

like walls, ground, etc.

Figure 3-2: Examples of images sampled by the perception generative model.

3.3 Object Tracking

The Object Detection module provides us with bounding box detection of game

objects for every video frame. Without any object tracking, the inference engine

must consider all permutations of objects for every frame. While straight bound-

28

ing boxes are sufficient to perform inference for the model described in Section

2.3, we also perform object tracking between time steps to ease the computation

burden on the inference engine.

Just like object detection, we treat object tracking through an inference and

generative model lens. Since we are no longer in the visual domain, we can lever-

age our generative simulator, 𝑠 as a motion model for object tracking. We amortize

the inverse inference model by training a graph neural network (GNN) [34] to pre-

dict object associations across time steps.

Object tracking is traditionally performed by treating the problem as a graph

flow problem [35]. Each node is a bounding box prediction produced by the de-

tection engine, and edges represent potential associations between two bound-

ing boxes across time. Weights on these edges represent a heuristic metric of the

probability that the two bounding boxes refer to the same object. If all edges are

given unit capacity, and appropriate source and sink nodes are added, the min-

cost flow problem on this graph allows us to associate bounding boxes across

time.

Instead of solving the resulting flow problem, we choose to learn to directly

predict edge labels (whether the edge is active or not) using a graph neural net-

work akin to Brasó and Leal-Taixé [36]. Training data is generated in windows of𝑊

time-steps by sampling an initial state 𝑧0 ∼ 𝑝(𝑧0) from the prior, and unrolling for

𝑊 time-steps by repeatedly applying 𝑠. Training the GNN based object tracker us-

ing data from our game engine makes it familiar with game rules, motion models,

and potential actions. Since our generative model simulates observation noise

and potentially missing objects, our object tracker robustly handles cases when

the object detector fails to detect an object. In the current version, we do not

handle the case when there is a spurious detection, or if the detector misclassi-

fied an object. Figure 3-3 shows the input graph and the output from our tracker

module.

29

Figure 3-3: Input to the GNN based object tracker (top) and predictions from the
GNN (bottom). Each red circle represents a bounding box, with time varying across
the 𝑥-axis. In the top image, we see all possible associations between bounding
boxes across time and on the bottom we see a thresholded output from the GNN.
Note how we can trace trajectories of objects across time. The object tracker is
also robust to missing bounding boxes.

3.4 Perception Module

We refer to the combination of the object detector and object tracker as our per-

ception module. A key advantage to this approach is that the tracker neural net-

work only needs to be trained once and works out of the box for novel game en-

vironments. The detector neural network must be trained once for every game

environment. Figure 3-4 shows the result of the techniques described above on

a real game. In all, this module turns video frames into associated bounding box

observations to be consumed by a downstream inference engine to infer rules.

30

Figure 3-4: Result of the perception module on the game, Flappy Bird. On the left
we see the raw pixel observation and on the right we see detection and tracking
results. Each white box represents a game object detection and each colored line
represents an individual object trajectory for the last 30 time-steps.

31

32

Chapter 4

Inference

In this chapter, we first formalize the inference problem for the generative model

we introduced in Chapter 2. Then, we will motivate some of the challenges of per-

forming inference for our specific problem by reviewing state-of-the-art inference

techniques.

4.1 Problem

As defined in Chapter 2, we would like to ingest a sequence of images, 𝐼0, 𝐼1, . . . , 𝐼𝑇
and infer a distribution of games rules and game state encapsulated by the latent

variable, 𝑧𝑇 . As mentioned in Chapter 3, we are able to translate image observa-

tions into tracked bounding box observations over time, denoted by, 𝑥0, 𝑥1, . . . , 𝑥𝑇 .

From Bayes Law, our posterior of interest is,

𝑝(𝑧0:𝑇 |𝑥0:𝑇) ∝ 𝑝(𝑧0:𝑇)𝑝(𝑥0:𝑇 |𝑧0:𝑇) (4.1)

= 𝑝(𝑧0)
∏︁
𝑡

𝑝(𝑥𝑡|𝑧𝑡)
∏︁
𝑡

𝑝(𝑧𝑡+1|𝑧𝑡) (4.2)

Here, we omit auxiliary variables such as actions (𝑎𝑡) and rewards (𝑟𝑡). Actions are

treated as constants and rewards are treated as part of the observations. Since

our simulator is deterministic, 𝑝(𝑧𝑡+1|𝑧𝑡) is a delta mass, and will always be unity

if 𝑧𝑡+1 did exactly arrive from 𝑧𝑡 and 0 otherwise. This yields an intuitive algorithm

33

for computing the density for a specific query 𝑧0,

1. Unroll the query 𝑧0 deterministically using the simulator 𝑠 into 𝑧1, 𝑧2, . . . , 𝑧𝑇 .

2. Compute the likelihood for each 𝑧𝑡 against 𝑥𝑡 and take the product.

3. Multiply this product with the prior density of 𝑧0, by evaluating 𝑝(𝑧0).

Our final goal is to be able to efficiently sample from the posterior 𝑝(𝑧0|𝑥0:𝑇)

(the smoothing distribution) or sample from the posterior 𝑝(𝑧𝑇 |𝑥0:𝑇) (the filtering

distribution) since our simulation is deterministic.

4.1.1 Likelihood

Step 2 above requires us to repeatedly evaluate 𝑝(𝑥𝑡|𝑧𝑡), which intuitively refers to

the likelihood we would observe bounding boxes specified in 𝑥𝑡 if 𝑧𝑡 contained the

true game state and game rules. In Section 2.3, we modeled bounding boxes as

noisy version of the true position and size of the game object. Let Φ𝜇,𝜎2(𝑥) be the

probability density function of a normal,𝒩 (𝜇, 𝜎2) evaluated at 𝑥. Then,

𝑧𝑡+1 = 𝑠(𝑧𝑡) (4.3)

log 𝑝(𝑧0|𝑥0:𝑇) = log 𝑝(𝑧0) +
∑︁
𝑡

log 𝑝(𝑥𝑡|𝑧𝑡) (4.4)

log 𝑝(𝑥𝑡|𝑧𝑡) =
∑︁
𝑖

∑︁
𝑗

log Φ𝑥𝑖,𝑡,𝜎2
𝑜
(BoundingBox(𝑧𝑗,𝑡)) (4.5)

For 𝑀 object slots, the above computation takes Θ(𝑀2) time, since we compute

the PDF between the bounding boxes and the observations in a pair-wise manner.

We optimize this by noting that the contribution of the PDFs for boxes that are far

away is going to be negligible. We leverage an efficient data structure such as a

k-d tree, to be able to compute the nearest neighbor, and only evaluate PDFs for

that.

34

4.2 Classical Inference

In this section, we will discuss various standard inference techniques in literature,

and discuss their respective challenges, trade-offs, and drawbacks for our spe-

cific problem. A straw man inference technique would be to enumerate the entire

space of 𝑧0 and evaluate the posterior density of the smoothing distribution as in

Equation 4.5. However, enumerating the space of all latents is intractable. Addi-

tionally, we would like to perform our time-series inference online. Since evaluat-

ing the density for a single 𝑧0 isΘ(𝑇) time, every time we receive a new observation

𝑥𝑡+1, we will be forced to perform a Θ(𝑇) computation. Instead, we would like to

make 𝑂(1) time updates to our posterior.

While offering a promising future direction of work, our generative model and

game engine contain a lot of discontinuities and branches and is not differen-

tiable. Inference techniques such as Vocational Inference (VI) [37–39] and Hamil-

tonian Monte-Carlo (HMC) [40] that utilize the gradients are therefore not appli-

cable here. We, therefore, explore techniques that can effectively leverage the

forward model in a black-box manner.

4.2.1 Monte-Carlo Markov-Chain

Instead of enumerating the entire latent space, Monte-Carlo Markov-Chain (MCMC)

methods stochastically explore the latent space towards areas with higher proba-

bility mass by repeatedly applying a transition kernel to an initial guess. A Metropolis-

Hastings accept-reject step decides if a particular transition is useful. A key advan-

tage of MCMC is a guarantee of generating samples from the target posterior den-

sity if the number of MCMC iterations goes to∞. However, in a practical sense, we

realize that inferring over physical dynamics and game rules in a high-dimensional

latent space tends to be very sensitive to the initial state. Here we used a random-

walk kernel of adding normal noise to the latent vector.

Figure 4-1 shows the needle in a haystack behavior of the likelihood surface

for a simpler 2 dimensional posterior. A slight change in the initial velocity of an

35

object can cause a chaotic difference in the final trajectory of an object. With-

out engineering the kernel, a random-walk MCMC kernel exploring this probability

space would aimlessly explore regions of low probability unless it gets lucky to be

near the high probability region.

Figure 4-1: Enumerated likelihood surface for a two-dimensional latent space
where we are just inferring over the velocity of a single object. We see how the
liklihood is very sensitive to the initialization, since a slight change in the initial
velocity of an object can result in a very different trajectory.

Even if we solve the scalability issues, this naïve way of using MH-MCMC still

does not allow us to perform online inference by repeatedly applying Bayesian

updates to a fixed posterior representation. Instead, we have to simulate all 𝑇

steps to perform a Bayesian update. These issues warrant a method that can zoom

into areas of high probability over time and discriminate more higher-level game

rules abstractions instead of just state estimation.

36

4.2.2 Sequential Monte Carlo

Sequential Monte Carlo (SMC) methods (also known as Particle Filters) tend to ad-

dress these challenges and have been successfully, and widely used in online state

estimation tasks [41] where the filtering distribution is desirable. These methods

have also been successfully used to infer physical properties in dynamical scenes

[42]. However, they do also suffer a dimensionality curse and do not adequately

scale to our generative model without proposal engineering. Here, we will briefly

review Doucet et al. [41] in the context of our problem.

SMC methods represent the current posterior as a weighted set of 𝐾 particles,

{(𝑤𝑘, 𝑝𝑘)}𝐾𝑘=1, which is used to approximate the posterior as,

𝑝(𝑧|𝑥) =
𝐾∑︁
𝑘=1

𝑤𝑘𝛿(𝑝𝑘)/
𝐾∑︁
𝑘=1

𝑤𝑘

We first sample an initial set of 𝐾 particles from the prior, 𝑝(𝑧0). And scrutinize

these particles against the likelihood 𝑝(𝑥0|𝑧0) to compute their corresponding weights.

Then, each particle is deterministically propagated using 𝑝(𝑧𝑡+1|𝑧𝑡) = 𝛿(𝑠(𝑧𝑡)), and

scrutinized again using the likelihood to update the weights. The final collection

of particles at time 𝑡 = 𝑇 represent the desired posterior samples.

Resampling and Rejuvenation

In this simplistic method of performing SMC, we can see how the initial draw from

the prior can affect the performance of the filter. Very similar to the MCMC case,

we require a hypothesis in the latent space that is close to the ground truth hy-

pothesis to be sampled in that initial step. Since we have a needle in a haystack

problem, most particle weights would degenerate to zero. To counter this, most

SMC methods additionally add a resampling step, where the particles with higher

weight are duplicated and particles with lower weights are dropped, resetting the

weights back to unity. In our experiments, we used the systematic resampling

method [43].

37

For our generative model, the simulation for 𝑝(𝑧𝑡+1|𝑧𝑡) is entirely deterministic.

This means that the resampling step does not help us, since it will just duplicate

one particle 𝐾 times in the end. To fix this issue, we added rejuvenation MCMC

moves [44]. Here, we simply add a random-walk kernel (in the form of Gaussian

noise) and an MH accept-reject step, perturbing all the particles from their deter-

ministic predicted state, encouraging exploration in the hypothesis space. Despite

these improvements, we were unable to get SMC to scale beyond a single object.

4.3 Online Neural Amortized Inference

Tsividis et al. [25] and [26] both make use of hand-designed heuristics to per-

form inference. Intuitively, one can construct heuristics that can estimate game

rules and game state without having to perform search as SMC and MCMC meth-

ods would do. As an example, one can estimate the velocity of an object by taking

local derivatives in the position. One can estimate if an object is Perishable by

checking if it disappeared after a collision etc. Hand designing heuristics, how-

ever, don’t respond to changes in the DSL. If we want to add or remove new game

rules, or subtly change the behavior of existing rules, we would need to tune these

heuristics again.

In this section, we introduce our novel technique for performing time-series

inference for our game engine. Our method builds on previous literature [45–48]

for using neural density estimators for simulator-based inference, and extends

them to the online, time-series domain. We leverage the ability to generate high-

quality training examples from our forward model to train a data-driven neural

proposal that can serve as high-quality initializations for the classical algorithms

we described in the previous section.

38

4.3.1 Independence and Windowing

Variables inside the latent space are correlated. For instance, if we observe an

object disappear, that object must have a Perishable component and another

object must have the Killer component. For game-like environments, we make

a simplifying assumption that these correlations would be observed in windows

of 𝑊 time-steps and that across these windows, we can treat each rule as inde-

pendent random variables. Note that this is not true for our generative model,

but allows us to aggregate distributions over time in an online manner by simply

adding logits across multiple time windows.

4.3.2 Neural Conditional Density Estimation

We want our proposal neural network must predict distributions over the latents,

as opposed to point estimates, conditioned on an observation sequence of 𝑊

time-steps. For discrete properties, we can simply interpret the output from a

softmax as a probability mass function. For continuous latents we follow Papa-

makarios et al. [46], and make use the Masked Autoregressive Flow (MAF) [49]

architecture. MAFs allow us to condition the network, produce sample from the

predicted continuous distributions, and evaluate PDFs.

The input to our neural network is a set of bounding box observations for each

object slot. We treat this input as a graph, where nodes are 𝑊 × 𝐹 tensors repre-

senting the trajectory of that bounding box. Each tensor here also has the entire

sequence of actions that were executed in the observation sequence. Therefore,

𝐹 is the number of dimensions needed to express a bounding box and a one hot

encoding of the action. As shown in Figure 4-2, the input graph is fully connected

to capture predicting causal dynamics between objects.

The input graph is then fed into a Temporal Graph Convolutional Network (TGCN).

We loosely follow the architecture laid out by Zhao et al. [50] from traffic predic-

tion literature, and Yan et al. [51] from the skeleton-based action recognition lit-

erature, since the spatio-temporal nature of our problem is very similar. For each

39

Figure 4-2: Input graph to the neural network. Each node is a bounding box ob-
servation. The graph is directed and fully connected.

edge, we have a convolutional edge encoder, 𝜑𝑒(𝑂𝑖, 𝑂𝑗) that produces directed

messages. The messages are aggregated by taking their sum to produce node-

level edge embeddings, 𝑔𝑖𝑒. We also pass node features into a node-level encoder,

𝜑𝑛(𝑂𝑖) to produce node-level node embeddings, 𝑔𝑖𝑛. Finally, the two embeddings

are concatenated to produce node-level embeddings for each node, 𝑔𝑖 = [𝑔𝑖𝑒, 𝑔
𝑖
𝑛].

The schema interface as described in Chapter 2 allows us to automatically at-

tach prediction heads on top of these embeddings for each property we want to

predict. Figure 4-3 shows the overall neural architecture. For each continuous

property, we attach a MAF prediction head and for each discrete property, we at-

tach an MLP with a softmax prediction output layer. We will refer to our neural

network as 𝑞𝜑(𝑧0|𝑥0:𝑊), since we can concatenate independent samples from each

property head to reconstruct a latent vector. Evaluating the log density follows

similarly, by adding the log density of each prediction head. Since MAFs can fit

arbitrary distribution, we noticed that we were able to easily overfit the data. We

add small Gaussian noise to the targets while training to regularize.

In practice, we noticed that some properties were much easier to train than

others. For starters, predicting Position is equivalent to learning the identity

40

Figure 4-3: Overview of the proposal neural network architecture. The input is a
spatio-temporal graph as illustrated by Figure 4-2. The TGCN module produces
node-level embeddings after message passing. These embeddings are then used
by individual property heads to make density predictions.

function since a noisy version of the position is directly observed. However, pre-

dicting something likeGravity is much harder since it relies on estimating second-

order effects. This problem is well studied in the literature under the multi-task

learning name. We attempted to use Gradient Surgery [52] and GradNorm [53],

but discovered a significant performance impact from using these techniques. In-

stead, we manually label properties into difficulty categories, where each cate-

gory has its own TGCN, and categories don’t share weights. For the components

described in Table 2.1, we were able to split them up into 4 difficulty categories.

Let 𝑧 = 𝑧0, and 𝑋 = 𝑥0:𝑊 . To train the proposal neural network, we follow Le

41

et al. [54] and minimize the Kullback–Leibler divergence, 𝐷KL (𝑝(𝑧|𝑋) ‖ 𝑞𝜑(𝑧|𝑋)),

ℒ𝜑 = E𝑝(𝑋) [𝐷KL (𝑝(𝑧|𝑋) ‖ 𝑞𝜑(𝑧|𝑋))]

=

∫︁
𝑋

𝑝(𝑋)

∫︁
𝑧

𝑝(𝑧|𝑋) log
𝑝(𝑧|𝑋)

𝑞𝜑(𝑧|𝑋)
𝑑𝑧𝑑𝑋

≥ E𝑝(𝑋,𝑧) [− log 𝑞𝜑(𝑧|𝑋)]

Therefore, to generate training data, we can sample a 𝑧0 from the prior, unroll it for

𝑊 time-steps and simulate corresponding observations, 𝑋 = [𝑥0, 𝑥1, . . . , 𝑥𝑊]. We

can then train the neural network using mini-batches of (𝑋, 𝑧) pairs and optimize

for the negative log-likelihood.

4.3.3 Priors and Lonely Spaces

Generating training data by sampling initial states, 𝑧0 ∼ 𝑝(𝑧) from the prior usu-

ally leads to cases where no rules can be inferred. If an object is simply moving

in free space, we cannot infer any rules about it: we do not know if this object is a

Perishable, or a Killer or any other causal rules. This naïve training data gen-

eration leads to us training the proposal neural network with mostly noise, which

is unlikely to learn useful data-driven heuristics.

To alleviate this issue we add a notion of component flags to our game engine.

After a round of simulation, if a particular component’s rule was executed, that

component’s flag is set. At any point, we can reset these flags. Then, while gen-

erating training data, we can filter for training examples where some collection of

component flags were set. This sort of post-filtering of the training data ensures

that there is something learnable going on in each example and that we are not

training merely with noise. Of course, we still want the neural network to under-

stand when a property is not inferrable, and include a small percentage of exam-

ples where rules cannot be inferred.

42

4.3.4 Contrastive Learning of Likelihood

Training a density estimator as described above bounds the neural network to

have a strong dependence on the prior. While we assume a uniform prior, filtering

training examples makes this prior non-uniform. For instance, if the prior probabil-

ity of an object having Perishable component is 0.7, the network will default to

outputting 0.7 if the observation sequence is uninformative about Perishable.

Since we aggregate the posteriors by multiplying each window of observations,

this would end up multiplying a biased prior for every time-step.

To fix this issue we use a contrastive based loss as described in Greenberg

et al. [47] to train our neural network. We sample a mini-batch of 𝑀 latents, 𝑍 =

{𝑧1, 𝑧2, . . . , 𝑧𝑀}, and optimize the objective,

ℒ = log
𝑞𝜑(𝑧|𝑋)/𝑝(𝑧)∑︀

𝑧′∈𝑍 𝑞𝜑(𝑧′|𝑋)/𝑝(𝑧′)

Where 𝑝(𝑧) = 𝑝(𝑧′) is the original intended uniform prior, and can be cancelled,

ℒ = log
𝑞𝜑(𝑧|𝑋)∑︀

𝑧′∈𝑍 𝑞𝜑(𝑧′|𝑋)
(4.6)

Training the network using a contrastive loss as in Equation 4.6 yields us a neural

network that can produce samples from the posterior if the prior was uninforma-

tive, even if we perform training example filtering.

4.3.5 Importance Sampling

We treat the output of the neural network as a heuristic and use importance sam-

pling on the output to refine the prediction using simulation. For every sample

from the neural network, we evaluate the likelihood as in Equation 4.3 and 4.5 by

performing a simulation of the trajectory and update the importance weight of the

sample accordingly. The samples are resampled using the importance weights

and each property variable is bucketed to form logits which are then aggregated

across multiple time windows in 𝑂(1) time per window.

43

4.4 Qualitative Results

In this section, we evaluate the above approach on multiple real-world and syn-

thetic environments. We note that we were not able to get successful results with

the MCMC and SMC approaches, and hence explore the inference results from the

perspective of the neural network and importance sampling.

4.4.1 Synthetic Examples

As a sanity check for our system, we apply the algorithm to a two-object system

where we only observe the center position of the objects and need to infer their

size, position, velocity, and gravity. Figure 4-4 shows the result of our technique on

this system. We show the output of using the neural network without importance

sampling and with importance sampling. We first note that the neural network

largely performed well at estimating key properties. We also note how the impor-

tance sampling can discover multi-modality in the posterior that was undiscovered

by the neural network alone.

4.4.2 Tools Challenge

Here, we apply our technique to a scene from the Tools Challenge [10]. Here, we

have a complex multi-object scene with high dimensional dynamical properties

such as velocity, angle, angular velocity, size, and shape.

Figure 4-5 shows qualitative results on one scene of the tools challenge. Here,

we draw samples from the inferred posterior colored by their importance weight.

We qualitatively note how our technique can capture uncertainty in the inference.

The base block and the pillar never really move, and thus over time, our system

is very certain about its position, shape, and body type. The other dynamically

moving objects have higher tracking uncertainty.

44

Figure 4-4: Output of multi-object inference using our technique. On the left we
see the scene frozen in time. The ground truth objects are drawn in red, the blue
dot is the noisy observation. On the right, we see the output of the inference. The
top panel shows the output from the neural network (dark orange) and the out-
put from importance sampling after the neural network. The bottom shows the
posterior for each property aggregated up until the current time. Ground truth is
indicated with black vertical lines.

Figure 4-5: Our technique applied to a scene in the tools challenge. Instead of
showing the distributions for each property, we show samples from the posterior
distribution on the right. The left shows the ground truth scene frozen in time.

45

Bird:
ActionSetVelocity<W_UP>(0, -0.11)
Gravity(0.4)
Scoreable()
CollidingBody(..., DYNAMIC, RECT)

Ground:
GameOver()
CollidingBody(..., STATIC, RECT)

Pipe:
GameOver()
CollidingBody(..., DYNAMIC, RECT)

Figure 4-6: MAP output of our inference engine after observation 500 timesteps
(16 seconds) of Flappy Bird gameplay.

PlayerBat:
ActionSetVelocity<A_DOWN>(0, -0.10)
ActionSetVelocity<D_DOWN>(0, 0.12)
ActionSetVelocity<A_UP>(0, 0)
ActionSetVelocity<D_UP>(0, 0)
CollidingBody(..., DYNAMIC, RECT)

Ball:
GameOverOOB<RIGHT>()

Figure 4-7: MAP output of our inference engine after observation 500 timesteps
(16 seconds) of Pong gameplay.

4.4.3 Games

We also apply our technique to two real games, Flappy Bird and Atari Pong. Here

we must infer complex rules about the causal relationship of object rules, their

dynamical state, and their response to actions. Figures 4-6 and 4-7 show the

maximum a posteriori sample from the inferred posterior visualized in our DSL’s

human-readable syntax. We have rounded numbers and omitted certain objects,

parameters, and components for clarity.

46

Chapter 5

Conclusion

In this thesis, we introduced novel techniques to infer structured world models

from pixel observations in the form of video. To our knowledge, this is the first

system that can perform online inference and state estimation at the scale of our

generative model, inferring rich causal game rules and game state. While this work

is very early and has strong assumptions that need further research, we believe

that this work lays important groundwork for data-efficient reinforcement learn-

ing pipelines since we can quickly build world models that can be leveraged for

downstream planning.

5.1 Future Work

5.1.1 Rigorous Evaluation on a Diverse Set of Tasks

In this thesis, we limited our evaluation to qualitative evaluation on simpler game

environments. In the future, we would like to perform a much more rigorous eval-

uation, both quantitatively and qualitatively on a diverse set of tasks and games.

47

5.1.2 Planning

The motivation for this work is to achieve human-efficient reinforcement learning.

To get to this goal, we require to be able to leverage our learned model for deciding

which action to take via planning. Our current work implements a very simple

breadth-first search-based planner that we did not discuss in detail. Future work

should rigorously evaluate if inferred models can be used for planning algorithms

to produce better data efficiency.

5.1.3 Loosing The Game Manual Assumption

While the game manual assumption makes our perception task much easier, we

would ideally like to not leverage having access to the game spite-sheet. We would

like to explore the possibility of automatically extracting sprites through genera-

tive modeling akin to Smirnov et al. [32], where object-based inductive biases help

discover objects. Being able to couple perception with the game engine is also a

future direction that is worth exploring.

5.1.4 Differentiable Game Description Language

A big challenge for inference is that our game engine is treated as a black box,

confining us to black-box inference techniques. We would like to explore the pos-

sibility of building a differentiable game engine that could allow us to use more

scalable inference methods such as Hamiltonian Monte-Carlo and Variational In-

ference.

48

Bibliography

[1] Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan,
Laurent Sifre, Simon Schmitt, Arthur Guez, Edward Lockhart, Demis Hass-
abis, Thore Graepel, et al. Mastering atari, go, chess and shogi by planning
with a learned model. arXiv preprint arXiv:1911.08265, 2019.

[2] Pedro A Tsividis, Thomas Pouncy, Jacqueline L Xu, Joshua B Tenenbaum, and
Samuel J Gershman. Human learning in atari. 2017.

[3] Leslie Pack Kaelbling, Michael L Littman, and Andrew W Moore. Reinforce-
ment learning: A survey. Journal of artificial intelligence research, 4:237–
285, 1996.

[4] Lukasz Kaiser, Mohammad Babaeizadeh, Piotr Milos, Blazej Osinski, Roy H
Campbell, Konrad Czechowski, Dumitru Erhan, Chelsea Finn, Piotr Koza-
kowski, Sergey Levine, et al. Model-based reinforcement learning for atari.
arXiv preprint arXiv:1903.00374, 2019.

[5] Nicholas Watters, Loic Matthey, Matko Bosnjak, Christopher P Burgess, and
Alexander Lerchner. Cobra: Data-efficient model-based rl through unsu-
pervised object discovery and curiosity-driven exploration. arXiv preprint
arXiv:1905.09275, 2019.

[6] Alex X Lee, Richard Zhang, Frederik Ebert, Pieter Abbeel, Chelsea Finn,
and Sergey Levine. Stochastic adversarial video prediction. arXiv preprint
arXiv:1804.01523, 2018.

[7] Michael Janner, Sergey Levine, William T. Freeman, Joshua B. Tenenbaum,
Chelsea Finn, and Jiajun Wu. Reasoning about physical interactions with
object-oriented prediction and planning. In International Conference on
Learning Representations, 2019.

[8] Rishi Veerapaneni, John D Co-Reyes, Michael Chang, Michael Janner,
Chelsea Finn, Jiajun Wu, Joshua Tenenbaum, and Sergey Levine. Entity ab-
straction in visual model-based reinforcement learning. In Conference on
Robot Learning, pages 1439–1456. PMLR, 2020.

[9] Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The ar-
cade learning environment: An evaluation platform for general agents. Jour-
nal of Artificial Intelligence Research, 47:253–279, 2013.

49

[10] Kelsey R Allen, Kevin A Smith, and Joshua B Tenenbaum. The tools challenge:
Rapid trial-and-error learning in physical problem solving. arXiv preprint
arXiv:1907.09620, 2019.

[11] Chelsea Finn, Ian Goodfellow, and Sergey Levine. Unsupervised learn-
ing for physical interaction through video prediction. arXiv preprint
arXiv:1605.07157, 2016.

[12] Alex X Lee, Richard Zhang, Frederik Ebert, Pieter Abbeel, Chelsea Finn,
and Sergey Levine. Stochastic adversarial video prediction. arXiv preprint
arXiv:1804.01523, 2018.

[13] Adina L Roskies. The binding problem. Neuron, 24(1):7–9, 1999.

[14] Francesco Locatello, Stefan Bauer, Mario Lucic, Gunnar Raetsch, Sylvain
Gelly, Bernhard Schölkopf, and Olivier Bachem. Challenging common as-
sumptions in the unsupervised learning of disentangled representations.
In international conference on machine learning, pages 4114–4124. PMLR,
2019.

[15] Christopher P Burgess, Loic Matthey, Nicholas Watters, Rishabh Kabra, Irina
Higgins, Matt Botvinick, and Alexander Lerchner. Monet: Unsupervised scene
decomposition and representation. arXiv preprint arXiv:1901.11390, 2019.

[16] Klaus Greff, Raphaël Lopez Kaufman, Rishabh Kabra, Nick Watters, Chris
Burgess, Daniel Zoran, Loic Matthey, Matthew Botvinick, and Alexander Ler-
chner. Multi-object representation learning with iterative variational infer-
ence. arXiv preprint arXiv:1903.00450, 2019.

[17] Francesco Locatello, Dirk Weissenborn, Thomas Unterthiner, Aravindh Ma-
hendran, Georg Heigold, Jakob Uszkoreit, Alexey Dosovitskiy, and Thomas
Kipf. Object-centric learning with slot attention. Advances in Neural Infor-
mation Processing Systems, 33, 2020.

[18] Tejas D Kulkarni, Ankush Gupta, Catalin Ionescu, Sebastian Borgeaud, Mal-
colm Reynolds, Andrew Zisserman, and Volodymyr Mnih. Unsupervised
learning of object keypoints for perception and control. Advances in neural
information processing systems, 32, 2019.

[19] Thomas Kipf, Elise van der Pol, and Max Welling. Contrastive learning of
structured world models. arXiv preprint arXiv:1911.12247, 2019.

[20] Maxwell I Nye, Armando Solar-Lezama, Joshua B Tenenbaum, and Bren-
den M Lake. Learning compositional rules via neural program synthesis. arXiv
preprint arXiv:2003.05562, 2020.

[21] Kevin Ellis, Daniel Ritchie, Armando Solar-Lezama, and Josh Tenenbaum.
Learning to infer graphics programs from hand-drawn images. Advances in
neural information processing systems, 31:6059–6068, 2018.

50

[22] Kevin Ellis, Catherine Wong, Maxwell Nye, Mathias Sable-Meyer, Luc Cary,
Lucas Morales, Luke Hewitt, Armando Solar-Lezama, and Joshua B Tenen-
baum. Dreamcoder: Growing generalizable, interpretable knowledge with
wake-sleep bayesian program learning. arXiv preprint arXiv:2006.08381,
2020.

[23] Yujia Li, Felix Gimeno, Pushmeet Kohli, and Oriol Vinyals. Strong general-
ization and efficiency in neural programs. arXiv preprint arXiv:2007.03629,
2020.

[24] Abhinav Verma, Vijayaraghavan Murali, Rishabh Singh, Pushmeet Kohli, and
Swarat Chaudhuri. Programmatically interpretable reinforcement learning.
arXiv preprint arXiv:1804.02477, 2018.

[25] Pedro A Tsividis, Joao Loula, Jake Burga, Nathan Foss, Andres Campero,
Thomas Pouncy, Samuel J Gershman, and Joshua B Tenenbaum. Human-
level reinforcement learning through theory-based modeling, exploration,
and planning. arXiv preprint arXiv:2107.12544, 2021.

[26] Tomer Ullman, Andreas Stuhlmuller, Noah Goodman, and Josh Tenenbaum.
Learning physical theories from dynamical scenes. In Proceedings of the An-
nual Meeting of the Cognitive Science Society, volume 36, 2014.

[27] Toni Härkönen. Advantages and implementation of entity-component-
systems. 2019.

[28] Siu Kwan Lam, Antoine Pitrou, and Stanley Seibert. Numba: A llvm-based
python jit compiler. In Proceedings of the Second Workshop on the LLVM Com-
piler Infrastructure in HPC, pages 1–6, 2015.

[29] Slembcke. Slembcke/chipmunk2d: A fast and lightweight 2d game physics
library. URL https://github.com/slembcke/Chipmunk2D.

[30] Erin Catto. Box2d: A 2d physics engine for games. 2011. URL http://www.
box2d.org.

[31] Erwin Coumans. Bullet physics simulation. In ACM SIGGRAPH 2015 Courses,
page 1. 2015.

[32] Dmitriy Smirnov, Michael Gharbi, Matthew Fisher, Vitor Guizilini, Alexei Efros,
and Justin M Solomon. Marionette: Self-supervised sprite learning. Ad-
vances in Neural Information Processing Systems, 34, 2021.

[33] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: To-
wards real-time object detection with region proposal networks. Advances
in neural information processing systems, 28, 2015.

51

https://github.com/slembcke/Chipmunk2D
http://www.box2d.org
http://www.box2d.org

[34] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and
Gabriele Monfardini. The graph neural network model. IEEE transactions
on neural networks, 20(1):61–80, 2008.

[35] Li Zhang, Yuan Li, and Ramakant Nevatia. Global data association for multi-
object tracking using network flows. In 2008 IEEE Conference on Computer
Vision and Pattern Recognition, pages 1–8. IEEE, 2008.

[36] Guillem Brasó and Laura Leal-Taixé. Learning a neural solver for multiple ob-
ject tracking. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 6247–6257, 2020.

[37] Michael I Jordan, Zoubin Ghahramani, Tommi S Jaakkola, and Lawrence K
Saul. An introduction to variational methods for graphical models. Machine
learning, 37(2):183–233, 1999.

[38] David M Blei, Alp Kucukelbir, and Jon D McAuliffe. Variational inference: A
review for statisticians. Journal of the American statistical Association, 112
(518):859–877, 2017.

[39] Rajesh Ranganath, Sean Gerrish, and David Blei. Black box variational infer-
ence. In Artificial intelligence and statistics, pages 814–822. PMLR, 2014.

[40] Michael Betancourt. A conceptual introduction to hamiltonian monte carlo.
arXiv preprint arXiv:1701.02434, 2017.

[41] Arnaud Doucet, Nando De Freitas, Neil James Gordon, et al. Sequential
Monte Carlo methods in practice, volume 1. Springer, 2001.

[42] Kevin Smith, Lingjie Mei, Shunyu Yao, Jiajun Wu, Elizabeth Spelke, Josh
Tenenbaum, and Tomer Ullman. Modeling expectation violation in intuitive
physics with coarse probabilistic object representations. Advances in neural
information processing systems, 32, 2019.

[43] Jeroen D Hol, Thomas B Schon, and Fredrik Gustafsson. On resampling algo-
rithms for particle filters. In 2006 IEEE nonlinear statistical signal processing
workshop, pages 79–82. IEEE, 2006.

[44] Walter R Gilks and Carlo Berzuini. Following a moving target—monte carlo in-
ference for dynamic bayesian models. Journal of the Royal Statistical Society:
Series B (Statistical Methodology), 63(1):127–146, 2001.

[45] George Papamakarios and Iain Murray. Fast 𝜀-free inference of simulation
models with bayesian conditional density estimation. Advances in neural in-
formation processing systems, 29, 2016.

[46] George Papamakarios, David Sterratt, and Iain Murray. Sequential neural
likelihood: Fast likelihood-free inference with autoregressive flows. In The
22nd International Conference on Artificial Intelligence and Statistics, pages
837–848. PMLR, 2019.

52

[47] David Greenberg, Marcel Nonnenmacher, and Jakob Macke. Automatic pos-
terior transformation for likelihood-free inference. In International Confer-
ence on Machine Learning, pages 2404–2414. PMLR, 2019.

[48] Owen Thomas, Ritabrata Dutta, Jukka Corander, Samuel Kaski, and
Michael U Gutmann. Likelihood-free inference by ratio estimation. Bayesian
Analysis, 17(1):1–31, 2022.

[49] George Papamakarios, Theo Pavlakou, and Iain Murray. Masked autoregres-
sive flow for density estimation. Advances in neural information processing
systems, 30, 2017.

[50] Ling Zhao, Yujiao Song, Chao Zhang, Yu Liu, Pu Wang, Tao Lin, Min Deng,
and Haifeng Li. T-gcn: A temporal graph convolutional network for traffic
prediction. IEEE Transactions on Intelligent Transportation Systems, 21(9):
3848–3858, 2019.

[51] Sijie Yan, Yuanjun Xiong, and Dahua Lin. Spatial temporal graph convolutional
networks for skeleton-based action recognition. In Thirty-second AAAI con-
ference on artificial intelligence, 2018.

[52] Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine, Karol Hausman,
and Chelsea Finn. Gradient surgery for multi-task learning. Advances in Neu-
ral Information Processing Systems, 33:5824–5836, 2020.

[53] Zhao Chen, Vijay Badrinarayanan, Chen-Yu Lee, and Andrew Rabinovich.
Gradnorm: Gradient normalization for adaptive loss balancing in deep multi-
task networks. In International Conference on Machine Learning, pages 794–
803. PMLR, 2018.

[54] Tuan Anh Le, Atilim Gunes Baydin, and Frank Wood. Inference compilation
and universal probabilistic programming. In Artificial Intelligence and Statis-
tics, pages 1338–1348. PMLR, 2017.

53

	Introduction
	Scope
	Related Work

	Generative Model
	Domain-Specific Language
	Game Engine
	Representation
	Simulation

	Probabilistic Model

	Perception
	Game Manual Assumption
	Object Detection
	Object Tracking
	Perception Module

	Inference
	Problem
	Likelihood

	Classical Inference
	Monte-Carlo Markov-Chain
	Sequential Monte Carlo

	Online Neural Amortized Inference
	Independence and Windowing
	Neural Conditional Density Estimation
	Priors and Lonely Spaces
	Contrastive Learning of Likelihood
	Importance Sampling

	Qualitative Results
	Synthetic Examples
	Tools Challenge
	Games

	Conclusion
	Future Work
	Rigorous Evaluation on a Diverse Set of Tasks
	Planning
	Loosing The Game Manual Assumption
	Differentiable Game Description Language

