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Abstract
Non-asymptotic understanding of information theoretic and algorithmic limits of estimation in sta-
tistical problems is indispensable for practical applications in engineering. There are two broad
approaches to this end. The first: tools and advances in modern probability theory aid in deriving
fully non-asymptotic bounds for such problems. This approach, while useful, is sometimes insuffi-
cient as the bounds it yields usually have sub-optimal constants and unavoidable logarithmic factors.
Consequently, in some situations where the primary goal is to obtain sharp characterizations, e.g.
error exponents, it can be highly non-trivial to derive fully non-asymptotic results that serve this
purpose, particularly in high dimensional problems of recent times. In aforesaid circumstances there
is a second approach: recourse to asymptotics that can serve as a reasonable substitute for finite
length behavior. In this thesis, we employ both these approaches. First we provide high dimensional
asymptotic bounds for massive multiple access which is an important consideration in upcoming
wireless networks. Then we turn towards streaming system identification where we develop a novel
algorithm provide tight non-asymptotic bounds showing the optimality of our method.

Massive multiple access is an important problem in current and upcoming wireless networks.
Also known as massive machine type communication (mMTC) in 5G, it envisions a scenario of
a large number of transmitters (usually small sensors in IoT for instance) with small payloads
communicating sporadically with a base station. Information theoretic understanding of such a
problem is of paramount importance for evaluating existing multiple access schemes and developing
new strategies that handle such drastic interference. To this end, many-user multiple access channel
(MAC) is a crucial model that captures the new effects in massive multiple access. Previous works
have focused on the additive white Gaussian noise (AWGN) many-user MAC. In this thesis, we
aim to understand the fundamental limits of energy efficiency in the quasi-static Rayleigh fading
many-user MAC. In particular, we provide tight achievability and converse bounds on the minimum
energy-per-bit required to support a certain user density, fixed payload and target per-user error
(in the limit as blocklength grows to infinity). Although asymptotic in nature, the results are
expected to serve as a good proxy for true finite length behavior. We confirm the presence of the
promising almost perfect multi-user interference cancellation, first observed in the AWGN setting, in
the quasi-static case. Further we also provide a new achievability bound for the AWGN many-user
MAC.

Next we turn towards problem of streaming or online system identification with the goal of
designing optimal algorithms and providing non-asymptotic rates on the convergence. In particular,
we consider a class of linear and generalized linear (nonlinear) parametric discrete time dynamical
systems. Observing a single trajectory from such a system, the aim is recover the system parameters
in a streaming fashion. Our work shows that one-pass forward stochastic gradient descent (SGD)
algorithm where samples are read in order is sub-optimal compared to the offline ordinary least
squares (OLS) estimator. More importantly, based on the observation that reading samples in
reverse order mitigates the effect of temporal dependencies, we develop a novel algorithm called
SGD with reverse experience replay (SGD-RER) and derive fully non-asymptotic bounds that show
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it to be near minimax optimal for both stable linear and generalized linear models. Furthermore,
we consider a Quasi-Newton style offline algorithm for the generalized linear setting and show that
is near optimal even when the process is unstable.

Thesis Supervisor: Yury Polyanskiy
Title: Associate Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

Tractable statistical models play an important role in modeling real world engineering problems

in communication, control, learning etc. Theoretical understanding of non-asymptotic information

theoretic and algorithmic limits of relevant tasks on such models is of considerable importance in

development and deployment of practical solutions. As examples , consider the task of parameter

estimation based on observations from a model, or decoding messages using signal received over

a communication channel. Deriving tight sample complexity bounds on estimation error in the

former and finite blocklength bounds on probability of error in the latter is a challenging and fairly

non-trivial exercise. Further complications arise due to the high dimensional nature of modern

problems. Fully non-asymptotic bounds on algorithms usually depict the dependence on all the

problem parameters but with sub-optimal constants (like in the exponential rate) and logarithmic

factors, and such bounds are nonetheless useful in validating those algorithms. But in situations

where one desires very precise bounds, like the error exponent, it is hard to obtain such non-

asymptotic results especially in a high-dimensional setting. In such a scenario, asymptotics that can

serve as an accurate proxy for finite length behavior is invaluable. In this thesis we undertake both

the above paths of obtaining bounds that explain non-asymptotic behaviour in two different topics

of massive multiple access and streaming system identification.

1.1 Massive multiple access : Many-user MAC

First we consider the problem of massive multiple access. The upcoming generation of wireless

networks (such as 5G and beyond) face a unique challenge of supporting massive connectivity with

diverse quality of service (QoS) requirements. One of them is known as massive machine type

communication (mMTC): a large number of sporadically transmitting terminals are serviced by a

single base-station (BS). The characteristics of such a system are high node density, small payloads,

stringent energy constraints, sporadic transmission and constrained computational capabilities (at
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transmission) [1]. A typical example is a large scale internet-of-things. For instance, a smart city

scenario would envision a massive number of battery powered sensors connected to a BS. The in-

creasing dense deployment of miniaturized radio-equipped sensors result in progressively worsening

interference environment and stringent demands on communication energy efficiency. This sug-

gests a bleak picture for the future networks, where a chaos of packet collisions and interference

contamination prevents reliable connectivity.

Classical information theory of multiple access channels (MAC) [2] is not adequate to understand

this new paradigm. This is due to the fact that short packets lead to finite blocklength effects and

the number of active users users can be comparable to the blocklength. Furthermore, it is often

difficult to compare network theoretic solutions (like ALOHA) to this problem with information

theoretic results, mainly due to the models being different in each of these.

A concrete step towards addressing the above issues and providing a firm information theoretic

footing to the question of massive multiple access was carried out in [3, 4]. In particular, [3] provided

the notion of a random access code for a permutation-invariant MAC with a twist that decoding

is done only up to permutation and the error metric is the fraction of decoded messages that are

erroneous – called the per-user probability of error (PUPE). This model is now known as unsourced

MAC in the literature [5] referring to the property that user identities are immaterial. Furthermore,

[3] also gave finite blocklength (FBL) achievability bounds in the case of unsourced Gaussian MAC:

minimum energy-per-bit (Eb/N0) required when Ka active users want to transmit k bits each to a

base-station over n degrees of freedom (or blocklength) such that PUPE is at most ϵ. [3, 4] also

provided reasonable values for Ka, n and k that are relevant for mMTC: few tens to hundred bits of

payload, ∼ 104 real degrees of freedom n and ∼ 102 active users. These numbers are now a standard

in unsourced MAC literature. The proof of the main achievability in [3] uses random coding with

an ML decoder which is computationally infeasible to implement. Evaluation of this bound revealed

an interesting phenomenon: the required Eb/N0 to achieve a target PUPE increases only negligibly

for small values of Ka and this ballpark value of Eb/N0 is dictated by the minimum energy required

to communicate fixed payload for a single user channel [6] rather than the multi-user interference

(MUI) effects of MAC. Comparing this result with ALOHA, TDMA/FDMA and TIN showed that

the latter are sub-optimal and are susceptible to severe MUI even at small Ka. This has led to a

series of works [4, 5, 7–12] aimed at designing practical low-complexity schemes that achieve the

theoretical bound.

In order to rigorously explain the observed FBL behavior in unsourced MAC, [3] also considered

an asymptotic linear scaling regime of the Gaussian (non-random access) MAC which we describe

next. Consider a problem of K nodes communicating over a frame-synchronized multiple-access

channel. When K is fixed and the blocklength n is taken to infinity we get the classical regime [2],

in which the fundamental limits are given by well-known mutual information expressions. A new
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regime, deemed many-access, was put forward by Chen, Chen and Guo [13]. In this regime the

number of nodes K grows with blocklength n. It is clear that the most natural scaling is linear:

K = µn, n→∞, corresponding to the fact that in time n there are linearly many users that will have

updates/traffic to send [3]. That is, if each device wakes up once in every T seconds and transmits

over a frame of length t, then in time (proportional to) t there are K ≈ t/T users where t is large

enough for this approximation to hold but small that no device wakes up twice. Further, asymptotic

results obtained from this linear scaling have been shown to approximately predict behavior of the

fundamental limit at finite blocklength, e.g. at n = 30000 and K <= 300 [3, 14]. The analysis of [13]

focused on the regime of infinitely large payloads (see also [15] for a related massive MIMO MAC

analysis in this setting) along with the classical joint probability of error. In contrast [3] proposed to

focus on a model where each of the K = µn nodes has only finitely many bits to send in conjunction

with the per-user probability of error (PUPE). In this regime, it turned out, one gets the relevant

engineering trade-offs. Namely, the communication with finite energy-per-bit is possible as n →∞

and the optimal energy-per-bit depends on the user density µ.

These two modifications (the scaling K = µn and the PUPE) were investigated in the case of

the AWGN channel in [3, 14, 16]. We next describe the main discovery of that work. The channel

model is1:

Y n =

K∑
i=1

Xi + Zn , Zn ∼ CN (0, In) , (1.1)

and Xi = fi(Wi) ∈ Cn is the codeword of i-th user corresponding to Wi ∈ [2k] chosen uniformly at

random. The system is said to have PUPE ϵ if there exist decoders Ŵi = Ŵi(Y
n) such that

Pe,u =
1

K

K∑
i=1

P
[
Wi ̸= Ŵi

]
≤ ϵ . (1.2)

The energy-per-bit is defined as

Eb

N0
=

1

k
sup

i∈[K],w∈[2k]

∥fi(w)∥2.

The goal in [3, 16] was to characterize the asymptotic limit

E∗(µ, k, ϵ) ≜ lim sup
n→∞

inf Eb

N0
(1.3)

where infimum is taken over all possible encoders {fi} and decoders {Ŵi} achieving the PUPE ϵ for

K = µn users. (Note that this problem may be recast in the language of compressed sensing and

sparse regression codes (SPARCs) – see Section 2.1.1 below.)

To predict how E∗(µ, ϵ) behaves, first consider a naive Shannon-theoretic calculation [17]: if K

1Although real AWGN channel is considered in [3], we state the results for the complex AWGN case.
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users want to send k bits in n degrees of freedom, then their sum-power Ptot should satisfy

n log(1 + Ptot) = kK .

In turn, the sum-power Ptot =
kK
n

Eb

N0
. Overall, we get

E∗ ≈ 2µk − 1

kµ
.

This turns out to be a correct prediction, but only in the large-µ regime. The true behavior of the

fundamental limit is roughly given by

E∗(µ, k, ϵ) ≈ max
(
2µk − 1

kµ
, Es.u.

)
, (1.4)

where Es.u. = Es.u.(k, ϵ) does not depend on µ and corresponds to the single-user minimal energy-

per-bit for sending k bits with error ϵ, for which a very tight characterization is given in [18]. In

particular, with good precision for k ≥ 10 we have

Es.u.(k, ϵ) =
1

k

(
Q−1

(
2−k

)
−Q−1 (1− ϵ)

)2 (1.5)

where Q is the complementary CDF of the standard normal distribution: Q(x) = 1√
2π

∫∞
x
e−

u2

2 du.

In all, results of [3, 14, 16] suggest that the minimal energy-per-bit has a certain “inertia”: as the

user density µ starts to climb from zero up, initially the energy-per-bit should stay the same as in the

single-user µ = 0 limit. In other words, optimal multiple-access architectures should be able to almost

perfectly cancel all multi-user interference (MUI), achieving an essentially single-user performance

for each user, provided the user density is below a critical threshold. Note that this is much better

than orthogonalization, which achieves the same effect at the expense of shortening the available (to

each user) blocklength by a factor of 1
K . Quite surprisingly, standard approaches to multiple-access

such as TDMA and TIN2, while having an optimal performance at µ→ 0 demonstrated a significant

suboptimality for µ > 0 regime. In particular, no “inertia” was observed and the energy-per-bit for

those suboptimal architectures is always a monotonically increasing function of the user density µ.

This opens the (so far open) quest for finding a future-proof MAC architecture that would achieve

Es.u. energy-per-bit for a strictly-positive µ > 0. A thorough discussion of this curious behavior and

its connections to replica-method predicted phase transitions is contained in Section 4.3.

2Note that pseudo-random CDMA systems without multi-user detection and large load factor provide an efficient
implementation of TIN. So throughout our discussions, conclusions about TIN also pertain to CDMA systems of this
kind.
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Contributions A contribution of this thesis is in demonstrating the same almost perfect MUI

cancellation effect in a much more practically relevant communication model, in which the ideal

unit power-gains of (1.1) are replaced by random (but static) fading gain coefficients. We consider

two cases of the channel state information: known at the receiver (CSIR) and no channel state

information (noCSI).

Key technical ideas: For handling the noCSI case we employ the subspace projection decoder

similar to the one proposed in [19], which can be seen as a version of the maximum-likelihood

decoding (without prior on fading coefficients) – an idea often used in support recovery literature [20–

22]. Another key idea is to decode only a subset of users corresponding to the strongest channel gains

– a principle originating from Shamai-Bettesh [23]. While the randomness of channel gains increases

the energy-per-bit requirements, in a related paper we find [24] an unexpected advantage: the

inherent randomization helps the decoder disambiguate different users and improves performance

of the belief propagation decoder. Our second achievability bound improves projection decoder

regime by applying the Approximate Message Passing (AMP) algorithm [25] along with spatially

coupled codebook design [26, 27]. The rigorous analysis of its performance is made possible by

results in [22, 26–28]. On the converse side, we leverage the recent finite blocklength results for the

noCSI channel from [6, 19].

We note that although the bounds are asymptotic, the high dimensional limit considered here

can serve as a reasonable benchmark for the FBL behavior (for the parameter values relevant to

unsourced MAC).

Organization Chapter 2 deals with quasi-static fading many-user MAC with section 2.1 con-

taining the system model, section 2.2 on the classical regime of fixed K and n → ∞, section 2.3

containing the main results and proofs of the many-user MAC. Chapter 3 deals with the AWGN

many-user MAC with system model in 3.1 and main results in 3.2. The experimental results are

provided in chapter 4.

1.2 System identification

Learning with Markovian data is important for problems in time series analysis, control and rein-

forcement learning (RL). Furthermore, methods to learn in a streaming fashion or on-the-go are

necessary for many modern problems in these fields. In this thesis, we consider the problem of

streaming system identification in linear and certain nonlinear time variant dynamical systems. In

particular, we consider observing a single trajectory (X0, · · ·XT ) of vectors in Rd from the dynamical

system:

Xt+1 = ϕ(A∗Xt) + ηt, (1.6)
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where A∗ ∈ Rd×d is the unknown system matrix, ϕ is a known component-wise (possibly nonlinear)

function and ηt are i.i.d noise vectors. The goal is to estimate the system matrix A∗. If ϕ(x) = x,

the the above system is a linear time variant dynamical system with full state observation. Next we

discuss each of these models in detail and place our work in the vast literature on this subject.

1.2.1 Linear system identification

First, we study the problem of learning linear-time invariant (LTI) systems, where the goal is to

estimate the matrix A∗ ∈ Rd×d from the given samples (X0, . . . , XT ) that obey:

Xτ+1 = A∗Xτ + ητ , Xτ ∈ Rd, ητ
i.i.d.∼ µ, (1.7)

where µ is an unbiased noise distribution. The problem is central in control theory and reinforcement

learning (RL) literature [29, 30]. It is also equivalent to estimating Vector Autoregressive (VAR)

model popular in the time-series analysis literature [31], where it has been used in several applications

like finding gene regulatory information network [32].

A natural estimator for the system parameters is the ordinary least squares (OLS) estimator

ÂOLS = arg min
A

T−1∑
t=0

∥AXt −Xt+1∥2 (1.8)

This problem has decades of rich history in many disciplines like control theory and econometrics

with the earliest works on the asymptotic consistency and limiting distribution of the OLS estimator

going back to at least 1940’s (see [33–38] and references therein). Furthermore, online estimation

using recursive methods like stochastic approximation [39] or stochastic gradient descent (SGD) style

methods have also been considered and analyzed for this model (see [40–44] and references therein).

But all of these classical results are asymptotic in nature i.e., they prove strong consistency and

asymptotic normality of the online estimators but do not talk about when the asymptotic effects

kick in, in terms of the sample size.

Early non-asymptotic results focused on time series forecasting i.e., obtaining generalization

bounds instead of parameter estimation, for general stationary mixing time series based on uniform

convergence type arguments [45, 46]. Further extensions have been made in this direction in [47–

49]. Since these bounds are developed in more generality, they are either not sharp in the problem

parameters like mixing time and dimension or involve boundedness assumptions on the loss functions

which does not apply to the case considered in this thesis.

Relegating more extensive literature discussion to a later section, we now present the known

finite time results about the OLS estimator that helps place our bounds in context. These non-

asymptotic near minimax optimal bounds for the OLS estimator of (5.1) i.e., on the operator norm
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∥A∗ − ÂOLS∥op are given in [50–53]. The main takeaways from these works are as follows. Let

E
[
ηtη

⊤
t

]
= σ2I and let Γ =

∑∞
k=0(A

∗)k(A∗,⊤)k be the controllability grammian.

• When the system is stable i.e., spectral radius of A∗ is strictly smaller than 1, then the recovery

guarantees on ÂOLS are quantitatively similar to what one expects when the data are i.i.d i.e.,

in a standard linear regression. In particular,

∥ÂOLS −A∗∥op ≲
√
d+ log(1/δ)
Tλmin(Γ)

with probability at least 1− δ.

• When all eigenvalues of A∗ are in (1− 1/T, 1+1/T ), faster rates are possible: ∥ÂOLS −A∗∥ ≤

O(d/T ).

• When the matrix A∗ is regular and all eigenvalues are larger than 1, the OLS estimator has

exponential rates of convergence.

Notice that the above bounds are independent of the mixing time of the process. In fact, estimation

becomes easier as the system becomes less and less stable. Furthermore, they are minimax optimal

as shown in [51, 54, 55].

The OLS estimator is an offline method that requires access to all the data. Of course, one

can implement OLS in an online fashion using Sherman-Morrison formula. But such a solution is

limited and does not apply to practically important settings like generalized non-linear dynamical

system or when A∗ is high-dimensional and has special structure like low-rank or sparsity [56, 57].

Hence with the goal of potential applicability to certain non-linear dynamical systems, the question

remains as to how do stochastic approximation or stochastic gradient descent (SGD) style one pass

streaming algorithms perform for the online estimation of A∗. This is important for applications like

RL, large-scale forecasting systems, recommendation systems [58, 59].

In [60], the authors consider a projected SGD style algorithm for estimating parameters of a

more general partially observed linear state space model using multiple independent trajectories.

The obtained bounds have sub-optimal dependence on dimension and mixing time. [61, 62] consider

online prediction or output tracking of adversarial linear dynamical systems and prove O(
√
T ) regret

for a trajectory of length T . This is different from the focus of this thesis, which is specifically on

system identification in a non-adversarial situation.

Contributions In this thesis, we study the above mentioned problem of learning LTI systems via

first order gradient oracle with streaming data. The goal is to design an estimator that provides

accurate estimation while ensuring nearly optimal time complexity and space complexity that is

nearly independent of T . In particular, we focus on designing Stochastic Gradient Descent (SGD)
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style methods that can work directly with first order gradient oracle, and hence is more widely

applicable to the settings mentioned above. In fact the algorithm (SGD− RER) and the techniques

introduced for the analysis here are to obtain near-optimal guarantees for learning certain classes of

non-linear dynamical systems [63] described in the next section. Furthermore, this algorthims has

been used to get near-optimal guarantees for Q-learning tabular MDPs in RL [64].

SGD is a popular method for general streaming settings, and has been shown to be optimal for

problems like streaming linear regression [65]. However, when the data has temporal dependencies, as

in the estimation of linear dynamical systems, such a naive implementation of SGD may not perform

well as observed in [66, 67]. In fact, for linear system identification, our experiments suggest that

SGD suffers from a non-zero bias (Section 7.1). In order to address temporal dependencies in data,

practitioners use a heuristic called experience replay, which maintains a buffer of points, and samples

points randomly from the buffer. However, for linear system identification, experience replay does

not seem to provide an accurate unbiased estimator for reasonable buffer sizes (see Section 7.1).

In this work, we propose reverse experience replay for linear system identification. Our method

maintains a small buffer of points, but instead of random ordering, we replay the points in a reverse

order. We show that this algorithm exactly unravels the temporal correlations to obtain a consistent

estimator for A∗. Similar to the standard linear regression problem with i.i.d. samples, we can break

the error in two parts: a) bias: that depends on the initial error ∥A0 −A∗∥, b) variance: the steady

state error due to noise η. We show that our proposed method, under fairly standard assumptions

and with a small buffer size, is able to decrease the bias at fast rate, while the variance error is

nearly optimal (see Theorem 5.3.1), matching the information theoretic lower bounds [51, Theorem

2.3]. To the best of our knowledge, we provide first non-trivial analysis for a purely streaming

SGD-style algorithm with optimal computation complexity and nearly bounded space complexity

that is dependent logarithmically on T . We note here that the idea of reverse experience replay

was independently discovered in experimental reinforcement learning by [68] based on reverse replay

observed in Hippocampal place cells [69] in Neurobiology. We also refer to [70] for more on this

connection.

In addition to the transition matrix estimation error ∥A − A∗∥, we also provide analysis of

prediction error, i.e., E[∥AX −A∗X∥2] (see Theorem 5.3.2). Here again, we bound the bias and the

variance part of the error separately. We further derive new lower bounds for prediction error (see

Theorem 5.3.4) and show that our algorithm is minimax optimal, under standard assumptions on

the model. As mentioned earlier, our method work with general first order oracles, hence applies

to more general problems like sparse LTI estimation with known sparsity structure and unlike

online OLS methods, SGD − RER has nearly optimal time complexity. Finally, we also provide

empirical validation of our method on simulated data, and demonstrate that the proposed method

is indeed able to provide error rate similar to the OLS method while methods like SGD and standard
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experience replay, lead to biased estimates.

Related Work. Due to applications in RL, recently LTI system identification has been widely

studied. In particular, [71] studied the problem in offline setting under the “stability” condition,

i.e., the spectral radius (ρ(A∗)) of A∗ is a constant bounded away from 1. The sequence of papers

[50–53] provide optimal analyses of the offline OLS estimator beyond assumptions of stability. That

is, they show that OLS recovers A∗ near optimally even the process defined by (1.7) is stable but

does not mix within time T (when ρ(A∗) is 1 − O(1/T )) or is unstable (when ρ(A∗) is larger than

1). Further [51, 54] provide information theoretic lower bounds for the LTI system identification

problem. [63, 72, 73] consider the problem of identifying non-linear dynamical systems of the form

Xt+1 = ϕ(A∗Xt) + ηt where ϕ is a one dimensional link function which acts co-ordinate wise. In

this setting, however, there is no closed for expressions for the estimator of A∗. [72, 73] give offline

algorithms whose error guarantees are worse off by factors of mixing time whereas [63] obtains near

optimal offline and streaming algorithms for this setting. In fact, [63] uses SGD − RER which was

first introduced in this work in order to obtain the streaming algorithm.

LTI identification problem has been studied in time series forecasting literature as well. For

example, [35] obtains asymptotic consistency results for system identification problem and [45, 46]

consider the problem of finite time recovery. Both consider a certain parameterized predictor for a

linear system with empirical risk minimization for the parameter and analyzes the deviation from

population risk. Similarly, [49] also studies generalization error guarantees. In contrast, our work

is able to provide precise bias and variance (similar to generalization error) of the estimator in the

streaming setting, and show that the asymptotic error is minimax optimal.

[74] studied SISO systems with observations (xτ , yτ ) ∈ R2 and a hidden state hτ which is high

dimensional, thus their model and applications are significantly different than the LTI system we

study. For the SISO system, [74] analyzes SGD to provide error bounds contain (a large) polynomial

in the hidden state dimension. Here, the hidden state has an evolution similar to Equation 1.7

whereas x1, . . . , xT are drawn i.i.d from some distribution.

System identification has been studied in the context of partially observed LTI systems as well.

Recent works [71, 75–79] focus on identifying a certain Hankel-like matrix of the system. These are

not directly comparable to the fully observed setting in this work since the model parameters are

identifiable only upto a similarity transformation in the partially observed setting.

Recently, there has been an exciting line of work in the related domain of online control (see

[80–83] and references therein). The state equation studied in these papers also contain an additive

term of Buτ for some unknown matrix B and a control signal uτ and the noise ητ is either stochastic

(as in [80]) or adversarial (as in [81–83]). The goal is to output control signals uτ after observing

X1, . . . , Xτ , such that the cost
∑

τ cτ (Xτ , uτ ) is minimized for some sequence of convex costs cτ . We
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focus on the LTI system identification(or estimation) problem while the goal of the above mentioned

line of work is to design an online controller.

We also note here another line of works [61, 77, 84–88] focused on online prediction of both

fully observed and partially observed LTI systems, and the similar problem of time series forecasting

by regret minimization [49, 89]. In particular, the main goal there is to design online prediction

algorithms minimizing regret against a certain class (for instance, against a Kalman filter with

knowledge of the system parameters in the case of partially observed LTI systems). The situation

considered in our work is different in atleast two aspects: 1) we focus significantly on parameter

recovery or system identification and 2) our notion of prediction is prediction at stationarity which

can be thought of as one-step regret (compared to T–step regret for instance in [84, 85]).

Next, [56] considers offline sparse linear regression with ℓ1 penalty where the feature vector is

derived from an auto regressive model. Similarly, [66] considers the problem of linear regression

where the feature vectors come from a Markov chain. This line of work is different from ours in that

we try to estimate the parameters of the Markov process itself.

Finally we note here some recent works on estimation or forecasting in VAR models with struc-

tured system matrices [57, 90–94] and robust estimation [95, 96].

Organization We provide the problem definition and introduce the notations in section 5.1. We

then present our algorithm and the key intuition behind it in Section 5.2. We then present our main

result in Section 5.3 and provide a proof sketch in Section 5.4. The proofs are in sections 5.5-5.11.

Finally, we present simulation results in Section 7.1.

1.2.2 Generalized linear system

Now we consider the generalized linear dynamical system where the data points (X0, X1, . . . , XT )

evolve as:

Xt+1 = ϕ(A∗Xt) + ηt, (1.9)

where ηt ∈ Rd are i.i.d. noise vectors, and ϕ : R → R is a known increasing nonlinear function,

called the ‘link function’, that acts component wise. The goal is to estimate A∗ from observing a

single trajectory. This model is a simplified version of recurrent neural networks based models used

in nonlinear system identification [97–99], in dynamic behavioral modeling of RF power amplifiers

[100] and for long term time series predictions [101].

The general nonlinear system identification problem is extensively studied in control theory

[42, 45, 46, 98, 102, 103] as well as time-series analysis [104]. As with the case of linear system

identification, early non-asymptotic results [45, 46] as well as modern extensions to general time

series [47–49] are suboptimal in various problem parameters.
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As in the case of linear systems, the problem is challenging due to temporal dependencies of the

data, but also compounded by the presence of nonlinearity. If the mixing time τmix of the process

is finite (τmix <∞), then we can make the data approximately i.i.d. by considering only the points

separated by Õ(τmix) time. While this allows using standard techniques for i.i.d. data, it reduces the

effective number of samples to O( T
τmix

), which typically gives an error of the order O( τmix
T ). In fact,

even the state-of-the-art results (prior to our work [105]) have error bounds which are sub-optimal

by a factor of τmix.

Interestingly, as seen before for the special case of linear systems, i.e., when ϕ(x) = x, the results

are significantly stronger i.e., the matrix A∗ can be estimated with an error O(1/T ) even when the

mixing time τmix > T . But these results rely on the fact that for linear systems, the estimation

problem reduces to an ordinary least squares (OLS) problem for which a closed form expression is

available and can be analyzed effectively.

On the other hand, NLDS do not admit such closed form expression. In fact the existing tech-

niques mostly rely on mixing time arguments to induce i.i.d. like behavior in a subset of the points

which leads to sub-optimal rates by τmix factor. Similarly, a direct application of uniform convergence

results [106] to show that the minimizer of the empirical risk is close to the population minimizer

still gives sub-optimal rates as off-the-shelf concentration inequalities (cf. [107]) incur an additional

factor of mixing time. Finally, existing results are mostly focused on offline setting, and do not

apply to the case where the data points are streaming which is critical in several practical problems

like reinforcement learning (RL) and control theory.

In this thesis, we provide algorithms and their corresponding error rates for the NLDS system

identification problem in both offline and online setting, assuming the link function to be expansive

(Assumption 4). The main highlight of our results is that the error rates are independent of the

mixing time τmix, up to leading order, which to the best of our knowledge is first such result for any

non-linear system identification in any setting. In fact, for offline setting, our analysis holds even for

systems which do not mix within time T and even for marginally stable systems which do not mix at

all. Furthermore, in the streaming setting, we adapt and analyze SGD-Reverse Experience Replay

(SGD-RER) that we developed for the case of linear system to NLDS identification and show that

error rate that is independent of τmix in the leading order while still ensuring small space and time

complexity. We argue that expansivity is necessary for learning with polynomial (in d) samples due

to a lower bound on ReLU (a non-expansive function) from [105].

Instead of mixing time arguments, our proofs for offline learning of NLDS use a natural expo-

nential martingale of the kind considered in the analysis of self normalized process ([108, 109]). For

streaming setting, while we do use mixing time arguments (proof of Theorem 6.3.1), we combine

them with a delicate stability analysis of the specific algorithm and the machinery developed for the

linear case [110] to obtain strong error bounds. See Section 6.5 for a description of these techniques.
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Our Contributions. Key contributions of the paper are summarized below:

1. Assuming expansive and monotonic link function ϕ and sub-Gaussian noise, we show that the

offline Quasi Newton Method (Algorithm 2) estimates the parameter A∗ with near optimal errors

of the order O(1/T ), even when the dynamics does not mix within time T .

2. We give a one-pass, streaming algorithm inspired by SGD− RER method by [110], and show that

it achieves near-optimal error rates under the assumption of sub-Gaussian noise, NLDS stability

(see section 6.1.1 for the definition), uniform expansivity and second differentiability of the link

function.

Related Works. NLDS has been studied in a variety of domains like time-series and recurrent

neural networks (RNN). [104] studies specific NLDS models from a time series perspective and

establishes non-asymptotic convergence bounds for natural estimators; their error rates suffer from

mixing time factor τmix. [98] considers asymptotic learning of NLDS via neural networks trained

using SGD, whereas [111] shows that overparametrized LSTMs trained with SGD learn to memorize

the given data. [112–114] consider learning dynamical systems of the form ht+1 = ϕ(A∗ht + B∗ut)

for states ht and inputs ut; this setting is different from standard NLDS model we study. [115]

considers the non linear dynamical systems of the form xt+1 = Aϕ(xt, ut) + ηt which ϕ is a known

non-linearity and matrix A is to be estimated. [116, 117] consider essentially linear dynamics but

allow for certain non-linearities that can be modeled as process noise. All these again differ from

the model we consider.

Standard NLDS identification (1.9) has received a lot of attention recently, with results by [72, 73]

being the most relevant. [72] uses uniform convergence results via. mixing time arguments to obtain

parameter estimation error for offline SGD. [73] obtains similar bounds via. the analysis of the

GLMtron algorithm [118]. However, both these works suffer from sub-optimal dependence on the

mixing time. We refer to Table 1.1 for a comparison of the results.

When ϕ is not uniformly expansive, [73] obtains within sample prediction error, along with

parameter recovery bounds when ϕ is the ReLU function and the driving noise is Gaussian. However,

the parameter estimation bounds for ReLU suffer from an exponential dependence on the dimension d

and mixing time τmix. In Theorem 6.4.1 we establish that indeed we cannot improve the exponential

dependence in the dimension d for the case of parameter estimation. We note that the exponential

dependence arises due to the dynamics present in the system since ReLU regression with isotropic

i.i.d. data in well specified case has only a polynomial dependence in d [119].

In linear system identification considered in the previous section as well as in literature [51, 120–

122], parameter recovery is made by optimizing the (convex) empirical square loss which also has

a closed form solution. However, the square loss in the non-linear case is non-convex. Under the

assumption that the link function is increasing, we consider a convex proxy loss which is widely used
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Paper Guarantee Link Function System Noise Algorithm
[72]

Theorem 6.2
d2τmix

T

Increasing,Lipschitz
Expansive

Mixing Sub-Gaussian Offline

[73]
Theorem 2

d2τmix
T

Increasing,Lipschitz
Expansive

Mixing Sub-Gaussian Offline

This thesis
Theorem 6.2.1

d2σ2

Tλmin(Ĝ)
Increasing,Lipschitz

Expansive
Non-Mixing Sub-Gaussian Offline

This thesis
Theorem 6.3.1

d2σ2

Tλmin(G)

Increasing,Lipschitz
Expansive

Bounded Second Derivative
Mixing Sub-Gaussian Streaming

Table 1.1: Comparison of our results with existing results in terms of mixing time τmix, stability and
number of samples T . Here, we take τmix = Ω̃( 1

1−∥A∗∥op
) as a proxy for the mixing time. Note that

λmin (G) ≥ σ2 in the worst case, and hence our bounds are better by a factor of τmix.

in generalized linear regression literature [118, 119, 123]. Similarly, GLMtron algorithm for learning

NLDS in[73] (see Equation (6.2)) also minimizes a similar proxy loss. In [124], the authors consider

a family of GLMtron-like algorithms call Reflectron under the i.i.d. data setting. But they compare

the performance of these algorithms experimentally on an NLDS similar to one considered in this

work under low rank assumption on the system matrix.

Our offline algorithm, Quasi Newton method, is a standard technique in optimization where

the Hessian in the Newton Method is replaced with an approximation to the Hessian. We refer to

[125–127] and references therein. Finally, streaming setting for linear system identification has been

recently studied in different model settings [66, 110]. These methods observe that by exploiting

techniques like experience replay ([128]) along with squared loss error, one can obtain strong error

rates.

Organization We setup the problem in section 6.1. In section 6.2 we give the Quasi Newton

Method and state results regarding offline estimation of NLDS. In section 6.3 we consider streaming

estimation using SGD− RER and state its estimation guarantees. In section 6.4 we present the lower

bound on ReLU from [105]. Section 6.5 contains the sketch of the proofs and full proofs are in

sections 6.6-6.9. Finally the experimental results are in 7.2.

1.3 Bibliographical notes

Chapters 2, 3 and 4 are primarily based on the journal paper [129] and the manuscript [130] (used

here with permission from ©IEEE). The work in [130] will be published at the Proceedings of the

IEEE International Symposium on Information Theory (ISIT) 2022.

Chapters 5, 6 and 7 are primarily based on the conference publications [122] and [105].
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Chapter 2

Many-user quasi-static fading

MAC

In this chapter, we will consider the quasi-static Rayleigh fading many-user MAC as discussed in

the introduction, and provide tight bounds on the asymptotic minimum energy-per-bit required to

achieve a target per-user error at a given user density and payload size.

2.1 System Model

Fix an integer K ≥ 1 – the number of users. Let {PY n|Xn = PY n|Xn
1 ,Xn

2 ,...,Xn
K
:
∏K

i=1 Xn
i → Yn}∞n=1

be a multiple access channel (MAC). In this work we consider only the quasi-static fading AWGN

MAC: the channel law PY n|Xn is described by

Y n =

K∑
i=1

HiX
n
i + Zn (2.1)

where Zn∼CN (0, In), and Hi
iid∼ CN (0, 1) are the fading coefficients which are independent of {Xn

i }

and Zn. Naturally, we assume that there is a maximum power constraint:

∥Xn
i ∥

2 ≤ nP. (2.2)

We consider two cases: 1) no channel state information (no-CSI): neither the transmitters nor

the receiver knows the realizations of channel fading coefficients, but they both know the law; 2)

channel state information only at the receiver (CSIR): only the receiver knows the realization of

channel fading coefficients. The special case of (2.1) where Hi = 1,∀i is called the Gaussian MAC

(GMAC).
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In the rest of the thesis on many-user MAC, we drop the superscript n unless it is unclear.

Definition 1. An ((M1,M2, ...,MK), n, ϵ)U code for the MAC PY n|Xn is a set of (possibly random-

ized) maps {fi : [Mi]→ Xn
i }Ki=1 (the encoding functions) and g : Yn →

∏K
i=1[Mi] (the decoder) such

that if for j ∈ [K], Xj = fj(Wj) constitute the input to the channel and Wj is chosen uniformly

(and independently of other Wi, i ̸= j) from [Mj ] then the average (per-user) probability of error

satisfies

Pe,u =
1

K

K∑
j=1

P
[
Wj ̸= (g(Y ))j

]
≤ ϵ (2.3)

where Y is the channel output.

We define an ((M1,M2, ...,MK), n, ϵ)J code similarly, where Pe,u is replaced by the usual joint

error

Pe,J = P

 ⋃
j∈[K]

{
Wj ̸= (g(Y ))j

} ≤ ϵ (2.4)

Further, if there are cost constraints, we naturally modify the above definitions such that the

codewords satisfy the constraints.

Remark 1. Note that in (2.3), we only consider the average per-user probability. But in some

situations, it might be relevant to consider maximal per-user error (of a codebook tuple) which is the

maximum of the probability of error of each user. Formally, let C[K] = {C1, ..., CK} denote the set of

codebooks. Then

Pmax
e,u = Pmax

e,u (C[K])

= max
{
P
[
W1 ̸= Ŵ1

]
, ...,P

[
WK ̸= ŴK

]}
(2.5)

where the probabilities are with respect to the channel and possibly random encoding and decoding

functions. In this paper we only consider the fundamental limits with respect to Pe,u and PUPE

always refers to this unless otherwise noted. But we note here that for both asymptotics and FBL the

difference is not important. See appendix 2.5 for a discussion on this – there we show that by random

coding E
[
Pmax
e,u

]
is asymptotically equal to E [Pe,u] (expectations are over random codebooks).

2.1.1 Connection to compressed sensing and sparse regression codes

The system model and coding problem considered in this work (see eqn. (2.1)) can be cast as a

support recovery problem in compressed sensing. Suppose we have K users each with a codebook

of size M and blocklength n. Let Ai be the n ×M matrix consisting of the codewords of user i

as columns. Then the codeword transmitted by the user can be represented as Xi = AiWi where
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Wi ∈ {0, 1}M with a single nonzero entry. Since each codeword is multiplied by a scalar random

gain Hi, we let Ui = HiWi which is again a 1 sparse vector of length M . Finally the received vector

Y can be represented as

Y =
∑
i∈[K]

HiXi + Z = AU + Z (2.6)

where A = [A1, · · · , AK ] is n × KM matrix obtained by concatenating the codebooks, U =

[UT
1 , · · · , UT

K ]T is the MK × 1 length vector denoting the codewords (and fading gains) of each

user. In our problem, the vector U has a block-sparse structure, namely U has K sections, each

of length M , and there is only a single non-zero entry in each section. (Majority of compressed

sensing literature focuses on the non-block-sparse case, where U has just K non-zero entries, which

can be spread arbitrarily inside KM positions.) Decoding of the codewords, then, is equivalent to

the support recovery problem under the block-sparse structure, a problem considered in compressed

sensing. In our setup, we keep M fixed and let K,n → ∞ with constant µ = K/n. Hence 1/M is

the sparsity rate and Mµ is the measurement rate.

This connection is not new and has been observed many times in the past [131, 132]. In [132]

the authors consider a the exact support recovery problem in the case when the vector U is just

sparse (with or without random gains). This corresponds to the random access version of our model

where the users share a same codebook [133]. They analyze the fundamental limits in terms of the

rate (i.e., ratio of logarithm of signal size to number of measurements) necessary and sufficient to

ensure exact recovery in both cases when sparsity is fixed and growing with the signal size. For the

fixed sparsity case and U having only 0, 1 entries, this fundamental limit is exactly the symmetric

capacity of an AWGN multiple access channel with same codebook (with non colliding messages).

With fading gains, they recover the outage capacity of quasi-static MAC [134, 135] (but with same

codebook).

In [131], the authors discuss necessary and sufficient conditions for the exact and approximate

support recovery (in Hamming distortion), and L2 signal recovery with various conditions on signal

X and matrix A (deterministic versus random, discrete versus continuous support etc.). These

results differ from ours in the sense that they are not for block sparse setting and more importantly,

they do not consider approximate support recovery with Hamming distortion when the entries of

the support of the signal are sampled from a continuous distribution, which is the case we analyze.

Hence our results are not directly comparable.

Work [22] comes closest to our work in terms of the flavor of results of achievability. As pointed

out in [22] itself, many other works like [131] focus on the necessary and sufficient scalings (be-

tween sparsity, measurements and signal dimension) for various forms of support recovery. But

the emphasis in [22] and this work is on the precise constants associated with these scalings. In

particular, the authors in [22] consider the approximate support recovery (in Hamming distortion)
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problem when the entries in the support of the signal come from a variety of distributions. They

analyze various algorithms, including matched filter and AMP, to find the minimum measurement

rate required to attain desired support distortion error in terms of signal to noise ratio and other

parameters. Furthermore, they compare these results to that of the optimal decoder predicted by

the replica method [136].

The result on using replica method in [22] is not directly applicable since our signal has block

sparse (as opposed to i.i.d.) coordinates. But the AMP analysis presented there can be extended

to our setting. Because of the generality of the analysis in [28], it turns out to be possible to derive

rigorous claims (and computable expressions) on the performance of the (scalar) AMP even in the

block sparse setting. This is the content of Section 2.3.2 below. Unlike the achievability side, for

the converse we cannot rely on bounds in [22] proven for the i.i.d. coordinates of X. Even ignoring

the difference between the structural assumptions on X, we point out also that our converse bounds

leverage finite-length results from [6], which makes them tighter than the genie-based bounds in [137].

The block-sparse assumption, however, comes very naturally in the area of SPARCs [138–140].

The section error rate (SER) of a SPARC is precisely our PUPE. The vector AMP algorithm has

been analyzed for SPARC with i.i.d Gaussian design matrix in [140] and for the spatially-coupled

matrix in [141] but for the AWGN channel (i.e., when non-zero entries of U in (2.6) are all 1). In[142],

heuristic derivation of state evolution of the vector-AMP decoder for spatially-coupled SPARCS was

presented for various signal classes (this includes our fading scenario). However, the the resulting

fixed point equations may not be possible to solve for our block size as it amounts to computing 2100

dimensional integrals (and this also prevents evaluation of replica-method predictions from [142]).

2.2 Classical regime: K fixed, n→∞

In this section, we focus on the channel under classical asymptotics where K is fixed (and large)

and n→∞. Further, we consider two distinct cases of joint error and per-user error. We show that

subspace projection decoder (2.9) achieves a) ϵ–capacity region (Cϵ,J) for the joint error and b) the

best known bound for ϵ–capacity region Cϵ,PU under per-user error. This motivates using projection

decoder in the many-user regime.

2.2.1 Joint error

A rate tuple (R1, ..., RK) is said to be ϵ–achievable [135] for the MAC if there is a sequence of codes

whose rates are asymptotically at least Ri such that joint error is asymptotically smaller than ϵ.

Then the ϵ–capacity region Cϵ,J is the closure of the set of ϵ–achievable rates. For our channel (2.1),

the Cϵ,J does not depend on whether or not the channel state information (CSI) is available at the

receiver since the fading coefficients can be reliably estimated with negligible rate penalty as n→∞

32



[134][23]. Hence from this fact and using [135, Theorem 5] it is easy to see that, for 0 ≤ ϵ < 1, the

ϵ–capacity region is given by

Cϵ,J = {R = (R1, ..., RK) : ∀i, Ri ≥ 0 and P0(R) ≤ ϵ} (2.7)

where the outage probability P0(R) is given by

P0(R) = P

 ⋃
S⊂[K],S ̸=∅

{
log
(
1 + P

∑
i∈S

|Hi|2
)
≤
∑
i∈S

Ri

} (2.8)

Next, we define a subspace projection based decoder, inspired from [19]. The idea is the following.

Suppose there were no additive noise. Then the received vector will lie in the subspace spanned by

the sent codewords no matter what the fading coefficients are. To formally define the decoder, let C

denote a set of vectors in Cn. Denote PC as the orthogonal projection operator onto the subspace

spanned by C. Let P⊥
C = I − PC denote the projection operator onto the orthogonal complement

of span(C) in Cn.

Let C1, ..., CK denote the codebooks of the K users respectively. Upon receiving Y from the

channel the decoder outputs g(Y ) which is given by

g(Y ) =
(
f−1
1 (ĉ1), ..., f

−1
K (ĉK)

)
(ĉ1, ...ĉK) = arg max

(ci∈Ci)Ki=1

∥∥P{ci:i∈[K]}Y
∥∥2 (2.9)

where fi are the encoding functions.

In this section, we show that using spherical codebook with projection decoding, Cϵ,J of the

K–MAC is achievable. We prove the following theorem

Theorem 2.2.1 (Projection decoding achieves Cϵ,J). Let R ∈ Cϵ,J of (2.1). Then R is ϵ–achievable

through a sequence of codes with the decoder being the projection decoder (2.9).

Proof. We generate codewords iid uniformly on the power sphere and show that (2.9) yields a small

Pe,J . See [129, Appendix A.A] for details.

Remark 2. Note that [132] also analyzed capacity region of the quasi-static MAC, but under the

same codebook requirement, for the joint error probability (as opposed to PUPE), and with a different

decoder.

2.2.2 Per-user error

In this subsection, we consider the case of per-user error under the classical setting. Further, we

assume availability of CSI at receiver (CSIR) which again can be estimated with little penalty.
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The ϵ–capacity region for the channel under per-user error, Cϵ,PU is defined similarly as Cϵ,J but

with per-user error instead of joint error. Cϵ,PU is unknown, but the best lower bound is given by

the Shamai-Bettesh capacity bound [23]: given a rate tuple R = (R1, ..., RK), an upper bound on

the per-user probability of error under the channel (2.1), as n→∞, is given by

Pe,u ≤ PS
e (R)

≡ 1− 1

K
E sup

{
|D| : D ⊂ [K],∀S ⊂ D,S ̸= ∅,

∑
i∈S

Ri < log
(
1 +

P
∑

i∈S |Hi|2

1 + P
∑

i∈Dc |Hi|2

)}
(2.10)

where the maximizing set, among all those that achieve the maximum, is chosen to contain the users

with largest fading coefficients. The corresponding achievability region is

CS.B
ϵ,PU =

{
R : PS

e (R) ≤ ϵ
}

(2.11)

and hence it is an inner bound on Cϵ,PU .

We note that, in [23], only the symmetric rate case i.e, Ri = Rj ∀i, j is considered. So (2.10) is

the extension of that result to the general non-symmetric case.

Here, we show that the projection decoding (suitably modified to use CSIR) achieves the same

asymptotics as (2.10) for per-user probability of error i.e., achieves the Shamai-Bettesh capacity

bound. Next we describe the modification to the projection decoder to use CSIR.

Let {Ci}Ki=1 denote the codebooks of the K users with |Ci| = Mi. We have a maximum power

constraint given by (2.2). Using the idea of joint decoder from [23], our decoder works in 2 stages.

The first stage finds the following set

D ∈ arg max
{
|D| : D ⊂ [K],∀S ⊂ D,S ̸= ∅,

∑
i∈S

Ri < log
(
1 +

P
∑

i∈S |Hi|2

1 + P
∑

i∈Dc |Hi|2

)}
(2.12)

where D is chosen to contain users with largest fading coefficients. The second stage is similar to

(2.9) but decodes only those users in D. Formally, let ? denote an error symbol. The decoder output

gD(Y ) ∈
∏K

i=1 Ci is given by

(gD(Y ))i =

f
−1
i (ĉi) i ∈ D

? i /∈ D

(ĉi)i∈D = arg max
(ci∈Ci)i∈D

∥∥P{ci:i∈D}Y
∥∥2 (2.13)
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where fi are the encoding functions. Our error metric is the average per-user probability of error

(2.4).

The following theorem is the main result of this section.

Theorem 2.2.2. For any R ∈ CS.B
ϵ,PU there exists a sequence of codes with projection decoder (2.12)(2.13)

with asymptotic rate R such that the per-user probability of error is asymptotically smaller than ϵ

Proof. We generate iid (complex) Gaussian codebooks CN (0, P ′In) with P ′ < P and show that for

R ∈ CS.B
ϵ,PU , (2.13) gives small Pe,u. See [129, Appendix A.B] for details.

In the case of symmetric rate, an outer bound on Cϵ,PU can be given as follows.

Proposition 1. If the symmetric rate R is such that Pe,u ≤ ϵ, then

R ≤ min
{

1

K(θ − ϵ)
E

log2

1 + P min
S⊂[K]
|S|=θK

∑
i∈S

|Hi|2


 ,

log2 (1− P ln(1− ϵ))
}
, ∀θ ∈ (ϵ, 1] (2.14)

Proof. The first of the two terms in the min in (2.14) follows from Fano’s inequality (see (2.159),

with µ = K/n, M = 2nR and taking n → ∞). The second is a single-user based converse using a

genie argument. See appendix 2.4.1 for details.

Remark 3. We note here that the second term inside the minimum in (2.14) is the same as the one

we would obtain if we used strong converse for the MAC. To be precise, let {|H(1)| > |H(2)| > ... >

|H(K)|} denote the order statistics of the fading coefficients. If R > log(1 + P |H(t)|2) then, using

a Genie that reveals the codewords (and fading gains) of t − 1 users corresponding to t − 1 largest

fading coefficients, it can be seen that Pe,u ≥ K−t+1
K . Setting t = θK and considering the limit as

K → ∞ (with P = Ptot/K) we obtain S ≤ −Ptot log2(1 − ϵ) which is same as that obtained from

the second term in (2.14) under these limits.

2.2.3 Numerical evaluation

First notice that Cϵ,J (under joint error) tends to {0} as K → ∞ because, it can be seen, for the

symmetric rate, by considering that order statistics of the fading coefficients that P0(R) → 1 for

Ri = O(1/K). Cϵ,PU , however, is more interesting. We evaluate trade-off between system spectral

efficiency and the minimum energy-per-bit required for a target per-user error for the symmetric

rate, in the limit K →∞ and power scaling as O(1/K).
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In the above figure we have also presented the performance of TDMA. That is, if we use orthog-

onalization then for any number of users K (not necessarily large), we have

ϵ = P
[
R > 1/K log(1 +KP |H|2)

]
(2.15)

where ϵ is the PUPE. Thus the sum-rate vs Eb/N0 formula for orthogonalization is

Eb/N0 =
2S − 1

S

1

− ln(1− ϵ) (2.16)

where S is the sum-rate or the spectral efficiency.

We see that orthogonalization is suboptimal under the PUPE criterion. The reason is that it

fails to exploit the multi-user diversity by allocating resources even to users in deep fades. Indeed,

under orthogonalized setting the resources allocated to a user that happens to experience a deep fade

become completely wasted, while non-orthogonal schemes essentially adapt to the fading realization:

the users in deep fades create very little interference for the problem of decoding strong users. This

is the effect stemming from the PUPE criterion for error rate.

2.3 Many user MAC: K = µn, n→∞

This is our main section. We consider the linear scaling regime where the number of users K scales

with n, and n → ∞. We are interested in the tradeoff of minimum Eb/N0 required for the PUPE

to be smaller than ϵ, with the user density µ (µ < 1). So, we fix the message size k. Let S = kµ be

the spectral efficiency.

We focus on the case of different codebooks, but under symmetric rate. So if M denotes the size

of the codebooks, then S = K log M
n = µ logM . Hence, given S and µ, M is fixed. Let Ptot = KP

denote the total power. Therefore denoting by E the energy-per-bit, E = Eb/N0 = nP
log2 M = Ptot

S .

For finite Eb/N0, we need finite Ptot, hence we consider the power P decaying as O(1/n).

Let Cj = {cj1, ..., c
j
M} be the codebook of user j, of size M . The power constraint is given

by
∥∥∥cji∥∥∥2 ≤ nP = E log2M, ∀j ∈ [K], i ∈ [M ]. The collection of codebooks {Cj} is called an

(n,M, ϵ, E ,K)–code if it satisfies the power constraint described before, and the per-user probability

of error is smaller than ϵ. Then, we can define the following fundamental limit for the channel

E∗(M,µ, ϵ) = lim
n→∞

inf {E : ∃(n,M, ϵ, E ,K = µn)− code} .

We make an important remark here that all the following results also hold for maximal per-user

error (PUPE-max) (2.5) as discussed in appendix 2.5.
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2.3.1 No-CSI: Projection decoding

In this subsection, we focus on the no-CSI case. The difficulty here is that, a priori, we do not know

which subset of the users to decode. We have the following theorem.

Theorem 2.3.1. Consider the channel (2.1) (no-CSI) with K = µn where µ < 1. Fix the spectral

efficiency S and target probability of error (per-user) ϵ. Let M = 2S/µ denote the size of the

codebooks and Ptot = KP be the total power. Fix ν ∈ (1 − ϵ, 1]. Let ϵ′ = ϵ − (1 − ν). Then if

E > E∗no−CSI = sup ϵ′
ν <θ≤1 supξ∈[0,ν(1−θ)]

Ptot,ν(θ,ξ)
S , there exists a sequence of (n,M, ϵn, E ,K = µn)

codes such that lim supn→∞ ϵn ≤ ϵ, where, for ϵ′

ν < θ ≤ 1 and ξ ∈ [0, ν(1− θ)],

Ptot,ν(θ, ξ) =
f̂(θ, ξ)

1− f̂(θ, ξ)α (ξ + νθ, ξ + 1− ν(1− θ))
(2.17)

f̂(θ, ξ) =
f(θ)

α(ξ, ξ + νθ)
(2.18)

f(θ) =

1+δ∗1 (1−Vθ)
Vθ

− 1

1− δ∗2
(2.19)

Vθ = e−Ṽθ (2.20)

Ṽθ = δ∗ +
θµν lnM
1− µν

+
1− µν(1− θ)

1− µν
h

(
θµν

1− µν(1− θ)

)
+

µ(1− ν(1− θ))
1− µν

h

(
θν

1− ν(1− θ)

)
(2.21)

δ∗ =
µh(1− ν(1− θ))

1− µν
(2.22)

cθ =
2Vθ

1− Vθ
(2.23)

qθ =
µh(1− ν(1− θ))
1− µν(1− θ)

(2.24)

δ∗1 = qθ(1 + cθ) +√
q2θ(c

2
θ + 2cθ) + 2qθ(1 + cθ) (2.25)

δ∗2 = inf
{
x : 0 < x < 1,− ln(1− x)− x > µh(1− ν(1− θ))

1− µν(1− θ)

}
(2.26)

α(a, b) = a ln(a)− b ln(b) + b− a. (2.27)

Hence E∗ ≤ E∗no−CSI .

Proof Idea. Before we present the full proof, the main ideas are presented here. Also, over the

course, we explain the quantities that are present in the statement of the theorem. We start with

choosing independent random Gaussian codebooks for all users. That is, for each message of each

user there is an independent complex Gaussian CN (0, P ′In) codeword where P ′ < P . The choice

P ′ < P is to ensure we can control the maximum power constraint violation events.

For simplicity we will consider ν = 1. Here ν represents the fraction of users that the decoder

can choose to decode. Due to random coding, we can assume that a particular tuple of codewords
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(c1, c2, · · · , cK) were transmitted i.e., the received vector at the decoder is Y =
∑K

i=1Hici+Z. Then

the decoder performs subspace projection decoding. The idea is that in the absence of noise, the

received vector lies in the subspace spanned by the K codewords. Since we assume µ = K/n < 1,

and the K codewords are linearly independent, we can uniquely decode them by projecting the

received vector onto various K dimensional subspaces formed by taking a codeword from each of

the codebooks. Formally,

{ĉi : i ∈ [K]} = arg max
(ci∈Ci:i∈[K])

∥∥P{ci:i∈S}Y
∥∥2 (2.28)

Notice that the PUPE is given by

Pe =
1

K

∑
i∈[K]

P [ci ̸= ĉi] .

We will bound this error with the probability of events Ft– event that exactly t users were misde-

coded. That is

Pe ≤ ϵ+ P
[ ⋃
t>ϵK

Ft

]
(2.29)

Hence it is enough to find conditions under which the second term (call it p1) in the above display

goes to 0 in our scaling. To analyze Ft, we consider subsets S ⊂ [K] with |S| = t and a choice of

incorrect codewords (c′i ∈ Ci : i ∈ S) where c′i ̸= ci, and bound Ft as union (over S and (c′i : i ∈ [S]))

of events
{∥∥∥Pc′

[S]
,c[[K]\S]

Y
∥∥∥2 > ∥∥Pc[[K]]

Y
∥∥2}. With abuse of notation, denote this set as F (S, t).

Let c[S] = {ci : i ∈ S}, similarly we have H[S]. We make a crucial observation that, condi-

tioned on c[K], H[K] and Z, the random variable
∥∥∥Pc′

[S]
,c[[K]\S]

Y
∥∥∥2 can be written as

∥∥Pc[K\S]
Y
∥∥2 +∥∥∥P⊥

c[K\S]
Y
∥∥∥2 Beta(t, n−K) where Beta(a, b) is a beta distributed random variable with parameters

a and b.

Let GS =

∥∥∥∥P⊥
c[[K]]

Y

∥∥∥∥2∥∥∥∥P⊥
c[K\S]

Y

∥∥∥∥2 . Then we show that

P
[
F (S, t)|c[K],H[K], Z

]
= P

[
Beta(n−K, t) < GS |c[K],H[K], Z

]
≤
(
n−K + t− 1

t− 1

)
(GS)

n−K (2.30)

Next, we use the idea of random coding union (RCU) bound [143] to get

P
[⋃

t

Ft

]
≤ E

[
min

{
1,
∑
t,S

P
[
F (S, t)|c[K],H[K], Z

]}]
(2.31)

Let θ = t/K, which is the fraction of misdecoded users. Now, by thresholding the value of GS

(this threshold is parameterized by a δ > 0) we get from (2.31) a sum of an exponentially decaying
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term with combinatorial factors and the probability that GS violates this threshold for some S and

t (call this probability p2). Choosing the right threshold (δ∗ and corresponding threshold value Vθ
in the theorem) the first term vanishes (in the limit) and we are left with p2.

This is analyzed by conditioning on c[K] and H[K] along with using concentration of non-central

chi-squared distributed variables (see claim 3). We follow similar procedure to above (using RCU and

thresholding) multiple times to obtain thresholds parameterized by δ∗1 and δ∗2 to vanish combinatorial

factors (like qθ in the theorem which is the exponent of a binomial coefficient) and finally we are left

with the bottleneck term:

lim sup
n

Pe ≤ ϵ+ lim sup
n

P
[⋃

t,S

{
P ′
∑
i∈[S]

|Hi|2 < g (δ∗1 , δ
∗
2 , δ

∗
3 ,M, µ, θ)

}]
(2.32)

where g is some specific function. In essence, this bottleneck term is precisely the event that > ϵ

fraction of users are outside the Gaussian capacity region!

Next step is to replace ∪S with minS and use the convergence of order statistics of fading

coefficients i.e., |H(1)| > · · · > |H(K)|:

lim sup
n

Pe ≤ ϵ+ lim sup
n

P
[⋃

t

{
P ′

K∑
i=K−t+1

|H(i)|2 < g (δ∗1 , δ
∗
2 , δ

∗
3 ,M, µ, t/K)

}]
(2.33)

Then we show that, for t = θK, 1
K

∑K
i=K−t+1 |H(i)|2 →

∫ 1

1−θ
F−1
|H|2(1 − γ) dγ ≡ α(1 − θ, 1) in

probabilty as n → ∞. Hence the bottleneck term becomes deterministic in the limit. The choice

Ptot such that this terms vanishes is precisely the one given in the statement of the theorem.

Proof. The proof uses random coding. Let each user generate a Gaussian codebook of size M

and power P ′ < P independently such that KP ′ = P ′
tot < Ptot. Let Wj denote the random (in

[M ]) message of user j. So, if Cj = {cji : i ∈ [M ]} is the codebook of user j, he/she transmits

Xj = cjWj
1

{∥∥∥cjWj

∥∥∥2 ≤ nP}. For simplicity let (c1, c2, ..., cK) be the sent codewords. Hence the

received vector is Y =
∑

i∈[K]Hici+Z where Z is the noise vector. Fix ν ∈ (1− ϵ, 1]. Let K1 = νK

be the number of users that are decoded. Since there is no knowledge of CSIR, it is not possible

to, a priori, decide what set to decode. Instead, the decoder searches of all K1 sized subsets of [M ].

Formally, let ? denote an error symbol. The decoder output gD(Y ) ∈
∏k

i=1 Ci is given by

[
Ŝ, (ĉi)i∈Ŝ

]
= arg max

S⊂[K]
|S|=K1

max
(ci∈Ci)i∈S

∥∥P{ci:i∈S}Y
∥∥2

(gD(Y ))i =

f
−1
i (ĉi) i ∈ Ŝ

? i /∈ Ŝ
(2.34)
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where fi are the encoding functions. The probability of error (averaged over random codebooks) is

given by

Pe =
1

K

K∑
j=1

P
[
Wj ̸= Ŵj

]
(2.35)

where Ŵj = (g(Y ))j is the decoded message of user j.

We perform a change of measure to Xj = cjWj
. Since Pe is the expectation of a non-negative

random variable bounded by 1, this measure change adds a total variation distance which can

bounded by p0 = KP
[
χ2(2n)

2n > P
P ′

]
→ 0 as n → ∞, where χ2(d) is the distribution of sum of

squares of d iid standard normal random variables (the chi-square distribution). The reason is

as follows. If we have two random vectors U1 and U2 on a the same probability space such that

U1 = U21[U2 ∈ E], where E is a Borel set, then for any Borel set A, we have

|P [U1 ∈ A]− P [U2 ∈ A] | = |1[0 ∈ A]P [U2 ∈ Ec]− P [U2 ∈ A ∩ Ec] |

≤ P [U2 ∈ Ec] . (2.36)

Henceforth we only consider the new measure.

Let ϵ > 1− ν and ϵ′ = ϵ− (1− ν). Now we have

Pe ≤ ϵ+ P
[
1

K

K∑
j=1

1[Wj ̸= Ŵj ] > ϵ

]

= ϵ+ P
[ K∑

j=1

1[Wj ̸= Ŵj ] > Kϵ′ +K −K1

]
= ϵ+ p1. (2.37)

where

p1 = P
[ νK⋃
t=ϵ′K

{ K∑
j=1

1[Wj ̸= Ŵj ] = K −K1 + t

}]
.

Let Ft =
{∑K

j=1 1[Wj ̸= Ŵj ] = K −K1 + t
}

. Let c[S] ≡ {ci : i ∈ S} and H[S] ≡ {Hi : i ∈ S},

where S ⊂ [K]. Conditioning on c[K],H[K] and Z, we have
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P
[
Ft|c[K],H[K], Z

]
≤ P

[
∃S ⊂ [K] : |S| = K −K1 + t,∃S1 ⊂ S : |S1| = t,

∃{c′i ∈ Ci : i ∈ S1, c
′
i ̸= ci} :

∥∥∥Pc′
[S1]

,c[[K]\S]
Y
∥∥∥2 >

max
S2⊂S
|S2|=t

∥∥∥Pc[S2],c[[K]\S]
Y
∥∥∥2∣∣∣∣c[K],H[K], Z

]

≤ P
[ ⋃

S⊂[K]
|S|=K−K1+t

⋃
S1⊂S
|S1|=t

⋃
{c′i∈Ci:

i∈S1,c
′
i ̸=ci}

F (S, S∗
2 , S1, t)

∣∣∣∣c[K],H[K], Z

]

(2.38)

where

F (S, S∗
2 , S1, t) =

{∥∥∥Pc′
[S1]

,c[[K]\S]
Y
∥∥∥2 > ∥∥∥Pc[S∗

2 ],c[[K]\S]
Y
∥∥∥2}

and S∗
2 ⊂ S is a possibly random (depending only on H[K]) subset of size t, to be chosen later. Next

we will bound P
[
F (S, S∗

2 , S1, t)|c[K],H[K], Z
]
.

For the sake of brevity, let A0 = c[S∗
2 ]
∪ c[[K]\S], A1 = c[[K]\S] and B1 = c′[S1]

. We have the

following claim.

Claim 1. For any S1 ⊂ S with |S1| = t, conditioned on c[K], H[K] and Z, the law of
∥∥∥Pc′

[S1]
,c[[K]\S]

Y
∥∥∥2

is same as the law of ∥PA1Y ∥
2
+∥(I − PA1)Y ∥

2 Beta(t, n−K1) where Beta(a, b) is a beta distributed

random variable with parameters a and b.

Proof. Let us write V = span{A1, B1} = A ⊕ B where A ⊥ B are subspaces of dimension K1 − t

and t respectively, with A = span(A1) and B is the orthogonal complement of A1 in V . Hence

∥PV Y ∥2 = ∥PAY ∥2+ ∥PBY ∥2 (by definition, PA = PA1
). Now we analyze ∥PBY ∥2. We can further

write PBY = PBP
⊥
A Y . Observe that the subspace B is the span of P⊥

AB1, and, conditionally,

P⊥
AB1∼CN⊗|S|(0, P ′P⊥

A ) which is the product measure of |S| complex normal vectors in a subspace

of dimension n − K1 + t. Hence, the conditional law of
∥∥PBP

⊥
A Y

∥∥2 is the law of squared length

of projection of a fixed n − K1 + t dimensional vector of length ∥(I − PA)Y ∥2 onto a (uniformly)

random t dimensional subspace.

Further, the law of the squared length of the orthogonal projection of a fixed unit vector in Cd

onto a random t–dimensional subspace is same as the law of the squared length of the orthogonal

projection of a random unit vector in Cd onto a fixed t–dimensional subspace, which is Beta(t, d− t)

(see for e.g. [144, Eq. 79]): that is, if u is a unit random vector in Cd and L is a fixed t dimensional

subspace, then P
[
∥PLu∥2 ≤ x

]
= P

[∑t
i=1 |Zi|2∑d
i=1 |Zi|2

≤ x
]
= Fβ(x; t, n − K1) where Zi

iid∼ CN (0, 1) and
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Fβ(x; a, b) =
Γ(a+b)
Γ(a)Γ(b)

∫ x

0
wa−1(1−w)b−1dw denotes the CDF of the beta distribution with parameters

a and b. Hence the conditional law of
∥∥PBP

⊥
A Y

∥∥2 is ∥(I − PA)Y ∥2 Beta(t, n−K1).

Therefore we have,

P
[
F (S, S∗

2 , S1, t)|c[K],H[K], Z
]
= P

[
Beta(n−K1, t) < GS |c[K],H[K], Z

]
= Fβ (GS ;n−K1, t) (2.39)

where

GS =
∥Y ∥2 − ∥PA0

Y ∥2

∥Y ∥2 − ∥PA1
Y ∥2

. (2.40)

Since t ≥ 1, we have

Fβ (GS ;n−K1, t) ≤
(
n−K1 + t− 1

t− 1

)
Gn−K1

S . (2.41)

Let us denote
⋃νK

t=ϵ′K as
⋃

t,
⋃

S⊂[K]
|S|=K−K1+t

as
⋃

S,K1
, and

⋃
t

⋃
S⊂[K]

|S|=K−K1+t

as
⋃

t,S,K1
; similarly

for
∑

and
⋂

for the ease of notation. Using the above claim, we get,

P
[
Ft|c[K],H[K], Z

]
≤
∑
S,K1

(
K −K1 + t

t

)
M t

(
n−K1 + t− 1

t− 1

)
Gn−K1

S . (2.42)

Therefore p1 can be bounded as

p1 = P
[⋃

t

Ft

]
≤ E

[
min

{
1,
∑

t,S,K1

(
K −K1 + t

t

)
M t

(
n−K1 + t− 1

t− 1

)
Gn−K1

S

}]
= E

[
min

{
1,
∑

t,S,K1

e(n−K1)stM tGn−K1

S

}]
(2.43)

where st =
ln
(
(K−K1+t

t )(n−K1+t−1
t−1 )

)
n−K1

.

Now we can bound the binomial coefficient [145, Ex. 5.8] as

(
n−K1 + t− 1

t− 1

)
≤

√
n−K1 + t− 1

2π(t− 1)(n−K1)
e(n−K1+t−1)h( t−1

n−K1+t−1 )

= O

(
1√
n

)
en(1−µν(1−θ))h( θµν

1−µν(1−θ)
). (2.44)

42



Similarly,

(
K −K1 + t

t

)
≤ O

(
1√
n

)
enµ(1−ν(1−θ))h( θν

1−ν(1−θ) ) (2.45)

Let rt = st +
t ln M
n−K1

. For δ > 0, define Ṽn,t = rt + δ and Vn,t = e−Ṽn,t . Let E1 be the event

E1 =
⋂

t,S,K1

{− lnGS − rt > δ} =
⋂

t,S,K1

{GS < Vn,t} . (2.46)

Let p2 = P
[⋃

t,S,K1
{GS > Vn,t}

]
. Then

p1 ≤ E
[

min
{
1,
∑

t,S,K1

e(n−K1)rtGn−K1

S

}
(1[E1] + 1[Ec

1])

]

≤ E

 ∑
t,S,K1

e−(n−K1)δ

+ p2

=
∑
t

(
K

K −K1 + t

)
e−(n−K1)δ + p2. (2.47)

Observe that, for t = θK1 = θνK,

st =
1− µν(1− θ)

1− µν
h

(
θµν

1− µν(1− θ)

)
+

µ(1− ν(1− θ))
1− µν

h

(
θν

1− ν(1− θ)

)
−O

(
ln(n)
n

)

and rt = st +
θµν
1−µν lnM . Therefore n→∞ with θ fixed, we have

lim
n→∞

Ṽn,θνµ = Ṽθ (2.48)

where Ṽθ is given in (2.21).

Now, note that, for 1 < t < K1,

(
K

K −K1 + t

)
≤

√
K

2π(K −K1 + t)(K1 − t)
eKh(

K−K1+t
K ). (2.49)

Hence choosing δ > Kh(
K−K1+t

K )

n−K1
will ensure that the first term in (2.47) goes to 0 as n→∞. So for

t = θK1 = θνK, we need to have

δ > δ∗. (2.50)

where δ∗ is given in (2.22).

Let us bound p2. Let Ẑ = Z +
∑

i∈S\S∗
2
Hici. We have
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Claim 2.

p2 = P
[ ⋃
t,S,K1

{GS > Vn,t}
]

≤ P
[ ⋃
t,S,K1

{∥∥∥∥(1− Vn,t)P⊥
A1
Ẑ − Vn,tP⊥

A1

∑
i∈S∗

2

Hici

∥∥∥∥2 ≥ Vn,t∥∥∥∥P⊥
A1

∑
i∈S∗

2

Hici

∥∥∥∥2}]
(2.51)

Proof. See appendix 2.4.2.

Let χ′
2(λ, d) denote the non-central chi-squared distributed random variable with non-centrality

λ and degrees of freedom d. That is, if Wi ∼N (µi, 1), i ∈ [d] and λ =
∑

i∈[d] µ
2
i , then χ′

2(λ, d) has

the same distribution as that of
∑

i∈[d]W
2
i . We have the following claim.

Claim 3. Conditional on H[K] and A0,

∥∥∥∥P⊥
A1

(
Ẑ − Vn,t

1− Vn,t

∑
i∈S∗

2

Hici

)∥∥∥∥2 ∼ (1 + P ′
∑

i∈S\S∗
2

|Hi|2
)
1

2
χ′
2 (2F, 2n

′) (2.52)

where

F =

∥∥∥ Vn,t

1−Vn,t
P⊥
A1

∑
i∈S∗

2
Hici

∥∥∥2(
1 + P ′∑

i∈S\S∗
2
|Hi|2

) (2.53)

n′ = n−K1 + t. (2.54)

Hence its conditional expectation is

µ = n′ + F. (2.55)

Proof. See appendix 2.4.2.

Now let

T =
1

2
χ′
2(2F, 2n

′)− µ (2.56)

U =
Vn,t

(1− Vn,t)

∥∥∥P⊥
A1

∑
i∈S∗

2
Hici

∥∥∥2(
1 + P ′∑

i∈S\S∗
2
|Hi|2

) − n′ (2.57)

U1 =
1

1− Vn,t
(Vn,tWS − 1) (2.58)
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where

WS =

(
1 +

∥∥∥P⊥
A1

∑
i∈S∗

2
Hici

∥∥∥2
n′
(
1 + P ′∑

i∈S\S∗
2
|Hi|2

)).
Notice that U = n′U1 and F =

Vn,t

1−Vn,t
n′(1 + U1).

Then we have

RHS of (2.51) = P
[ ⋃
t,S,K1

{∥∥∥∥P⊥
A1
Ẑ − Vn,t

(1− Vn,t)
P⊥
A1

∑
i∈S∗

2

Hici

∥∥∥∥2 − µ ≥ U}]

= P
[ ⋃
t,S,K1

{T ≥ U}
]
. (2.59)

Now, let δ1 > 0, and E2 = ∩t,S,K1

{
U1 > δ1

}
. Taking expectations over E1 and its complement,

we have

P
[ ⋃
t,S,K1

{T ≥ U}
]
≤

∑
t,S,K1

P
[
T > U,U1 > δ1

]
+ P [Ec

2]

=
∑

t,S,K1

E
[
P
[
T > U |H[K], A0

]
1[U1 > δ1]

]
+ P [Ec

2] (2.60)

which follows from the fact that {U1 > δ1} ∈ σ(H[K], A0). To bound this term, we use the following

concentration result from [146, Lemma 8.1].

Lemma 2.3.2 ([146]). Let χ = χ′
2(λ, d) be a non-central chi-squared distributed variable with d

degrees of freedom and non-centrality parameter λ. Then ∀x > 0

P
[
χ− (d+ λ) ≥ 2

√
(d+ 2λ)x+ 2x

]
≤ e−x

P
[
χ− (d+ λ) ≤ −2

√
(d+ 2λ)x

]
≤ e−x

(2.61)

Hence, for x > 0, we have

P [χ− (d+ λ) ≥ x] ≤ e−
1
2 (x+d+2λ−

√
d+2λ

√
2x+d+2λ). (2.62)

and for x < (d+ λ), we have

P [χ ≤ x] ≤ e−
1
4

(d+λ−x)2

d+2λ . (2.63)

Observe that, in (2.62), the exponent is always negative for x > 0 and finite λ due to AM-GM

inequality. When λ = 0, we can get a better bound for the lower tail in (2.63) by using [22, Lemma

25].

Lemma 2.3.3 ([22]). Let χ = χ2(d) be a chi-squared distributed variable with d degrees of freedom.
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Then ∀x > 1

P
[
χ ≤ d

x

]
≤ e−

d
2 (ln x+ 1

x−1) (2.64)

Therefore, from (2.51), (2.59), (2.60) and (2.62), we have

p2 ≤
∑

t,S,K1

E
[
e−n′fn(U

1)1[U1 > δ1]
]
+ P

[ ⋃
t,S,K1

{
U1 ≤ δ1

}]
(2.65)

where fn is given by

fn(x) = x+ 1 +
2Vn,t

1− Vn,t
(1 + x)

−

√
1 +

2Vn,t
1− Vn,t

(1 + x)

√
2x+ 1 +

2Vn,t
1− Vn,t

(1 + x). (2.66)

Next, we have the following claim.

Claim 4. For 0 < Vn,t < 1 and x > 0, fn(x) is a monotonically increasing function of x.

Proof. See appendix 2.4.2.

From this claim, we get

p2 ≤
∑

t,S,K1

e−n′fn(δ1) + p3 (2.67)

where p3 = P [Ec
2].

Now, if, for each t, δ1 is chosen such that fn(δ1) > Kh(
K−K1+t

K )

n−K1+t , then the first term in (2.144)

goes to 0 as n → ∞. Therefore, for t = θK1, setting cθ and qθ as in (2.23) and (2.24) respectively,

and choosing δ1 such that

δ1 > δ∗1 (2.68)

with δ∗1 given by (2.25), will ensure that the first term in (2.67) goes to 0 as n→∞.

Note that

p3 = P [Ec
2] = P

[ ⋃
t,S,K1

{
Vn,tWS − 1 ≤ δ1(1− Vn,t)

}]
. (2.69)

Conditional on H[K], ∥∥∥∥P⊥
A1

∑
i∈S∗

2

Hici

∥∥∥∥2 ∼ 1

2
P ′
∑
i∈S∗

2

|Hi|2χ
S∗
2

2 (2n′)

46



where χ2(2n
′) is a chi-squared distributed random variable with 2n′ degrees of freedom (here the

superscript S∗
2 denotes the fact that this random variable depends on the codewords corresponding

to S∗
2 ). For 1 > δ2 > 0, consider the event E4 =

⋂
t,S,K1

{
χ
S∗
2

2 (2n′)
2n′ > 1− δ2

}
. Using (2.64) , we can

bound p3 as

p3 ≤
∑
t

(
K

K −K1 + t

)
e−n′(− ln(1−δ2)−δ2) + p4 (2.70)

where

p4 = P [Ec
4]

= P
[ ⋃
t,S,K1

{
Vn,t

(
1 +

P ′∑
i∈S∗

2
|Hi|2(1− δ2)(

1 + P ′∑
i∈S\S∗

2
|Hi|2

)) ≤ 1 + δ1(1− Vn,t)
}]
. (2.71)

Again, it is enough to choose δ2 such that

δ2 > δ∗2 (2.72)

with δ∗2 given by (2.26), to make sure that the first term in (2.70) goes to 0 as n→∞.

Note that the union bound over S is the minimum over S, and this minimizing S should be

contiguous amongst the indices arranged according the decreasing order of fading powers. Further,

S∗
2 is chosen to be corresponding to the top t fading powers in S. Hence, we get

p4 = P
[⋃

t

{
min

0≤j≤K1−t

(
P ′∑j+t

i=j+1 |H(i)|2(1− δ2)
1 + P ′∑j+t+K−K1

i=j+t+1 |H(i)|2

)
≤ 1 + δ1(1− Vn,t)

Vn,t
− 1

}]
.

(2.73)

We make the following claim

Claim 5.

lim sup
n→∞

p4 ≤

1

[ ⋃
θ∈( ϵ′

ν ,1]∩Q

{
inf

ξ∈[0,ν(1−θ)]

(
(1− δ2)P ′

totα(ξ, ξ + νθ)

1 + P ′
totα(ξ + νθ, ξ + 1− ν(1− θ))

)
≤ 1 + δ1(1− Vθ)

Vθ
− 1

}]
(2.74)

where α(a, b) is given by (2.27).

Proof. We have |H1|2, ..., |HK |2 with CDF F (x) = (1−e−x)1[x >= 0]. Let F̃K(x) = 1
K

∑K
i=1 1[|Hi|2 ≤
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x] be the empirical CDF (ECDF). Then standard Chernoff bound gives, for 0 < r < 1,

P
[
|F̃K(x)− F (x)| > rF (x)

]
≤ 2e−KcF (x)r2 (2.75)

where c is some constant.

From [147], we have the following representation. Let 0 < γ < 1. Then

|H(⌈nγ⌉)|2 = F−1(1− γ)− F̃K(F−1(1− γ))− (1− γ)
f (F−1(1− γ))

+RK (2.76)

where f is the pdf corresponding to F, and with probability 1, we have RK = O(n−3/4 log(n)) as

n→∞.

Let τ > 0. Then using (2.75) and (2.76), we have

∣∣|H(⌈nγ⌉)|2 − F−1(1− γ)
∣∣ ≤ O( 1

n
1−τ
2

)
(2.77)

with probability atleast 1− e−O(nτ ).

Hence, for 0 < ξ < ζ < 1, we have, with probability 1− e−O(nτ ),

1

K

⌈βK⌉∑
i=⌈αK⌉

|H(i)|2 =

[
1

K

K∑
i=1

|Hi|21
[
b ≤ |Hi|2 ≤ a

]]
+ o(1) (2.78)

where a = F−1(1−ξ) and b = F−1(1−ζ). Now, by law of large numbers (and Bernstein’s inequality

[148]), with overwhelming probability (exponentially close to 1), we have

1

K

K∑
i=1

|Hi|21
[
b ≤ |Hi|2 ≤ a

]
=

∫ a

b

xdF (x) + o(1) (2.79)

and
∫ a

b
xdF (x) =

∫ ζ

ξ
F−1(1− γ)dγ = α(ξ, ζ).
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Define the events

Jn,θ,ξ =

{(
P ′∑⌈(ξ+νθ)K⌉

i=⌈ξK⌉+1 |H(i)|2(1− δ2)

1 + P ′∑⌈(ξ+1−ν(1−θ))K⌉
i=⌈(ξ+νθ)K⌉+1 |H(i)|2

)
≤

1 + δ1(1− Vn,⌈θνK⌉)

Vn,⌈θνK⌉
− 1

}
(2.80)

In,θ,ξ =

{(
(1− δ2)P ′

totα(ξ, ξ + νθ)

1 + P ′
totα(ξ + νθ, ξ + 1− ν(1− θ))

)
≤

1 + δ1(1− Vn,⌈θνK⌉)

Vn,⌈θνK⌉
− 1

}
(2.81)

Iθ,ξ =

{(
(1− δ2)P ′

totα(ξ, ξ + νθ)

1 + P ′
totα(ξ + νθ, ξ + 1− ν(1− θ))

)
≤ 1 + δ1(1− Vθ)

Vθ
− 1

}
(2.82)

En,θ,ξ =

{∣∣∣∣ 1K
⌈(ξ+νθ)K⌉∑
i=⌈ξK⌉+1

|H(i)|2 − α (ξ, ξ + νθ) ≤ o(1)
∣∣∣∣}

⋂{∣∣∣∣ 1K
⌈(ξ+1−ν(1−θ))K⌉∑
i=⌈(ξ+νθ)K⌉+1

|H(i)|2 − α (ξ + νθ, ξ + 1− ν(1− θ)) ≤ o(1)
∣∣∣∣}

(2.83)

En =

 ⋂
θ∈An

⋂
ξ∈BK,θ

En,θ,ξ

 (2.84)

where An =
(

ϵ′

ν , 1
]
∩
{

i
K1

: i ∈ [K1]
}

and BK,θ = [0, ν(1− θ)] ∩
{

i
K : i ∈ [K]

}
. Note that, from

(2.78) and (2.79), P
[
Ec

n,θ,ξ

]
is exponentially small in n.

Then we have

p4 = P

 ⋃
θ∈An

⋃
ξ∈BK,θ

Jn,θ,ξ


≤ P

[ ⋃
θ∈An

⋃
ξ∈BK,θ

Jn,θ,ξ ∩ En,θ,ξ

]
+
∑
θ∈An

∑
ξ∈BK,θ

P
[
Ec

n,θ,ξ

]
≤ 1

[ ⋃
θ∈An

⋃
ξ∈BK,θ

In,θ,xi

]
+ o(1)

≤ 1

[ ⋃
θ∈( ϵ′

ν ,1]

⋃
ξ∈[0,ν(1−θ)]

In,θ,ξ

]
+ o(1). (2.85)

Therefore

lim sup
n→∞

p4 ≤ 1

[ ⋃
θ∈( ϵ′

ν ,1]

⋃
ξ∈[0,ν(1−θ)]

Iθ,ξ

]
(2.86)

This concludes the proof of claim 5.

The statement of the theorem follows by choosing P ′
tot to make sure that lim supn→∞ p4 = 0.
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Remark 4. In retrospect, our analysis is rather similar to the one in [22]. We remind that the

problem considered there can be seen (as argued in [3]) as a version of the many-MAC problem with

random-access, cf. Section 2.1.1 for more.

2.3.2 No-CSI: Scalar AMP with i.i.d Gaussian codebook

In this section, we will given an achievability bound on Eb/N0 for the no-CSI case by the asymptotic

analysis of the scalar AMP algorithm [22, 25, 28, 142]. Here, we recall the compressed sensing view

of our model (2.6) where U is block sparse. As discussed in section 2.1.1, a better algorithm to

use in this case would be the vector or block version of AMP, whose analysis is also well studied,

e.g. [142]. However, as we discussed in Section 2.1.1 evaluation of performance of this block-AMP

requires computing M = 2100 dimensional integrals, and thus does not result in computable bounds.

Instead, here we take a different approach by analyzing the scalar AMP algorithm, whose asymptotic

analysis in [28] in fact only requires that the empirical distribution of entries of U be convergent –

a fact emphasized in [22]. Let us restate the signal model we have:

Y = AU + Z, Ai,j
iid∼ CN (0, E/n), i ∈ [n], j ∈ [KM ] , (2.87)

where E = Ptot

µ is the total energy of each codeword, U ∈ CKM is block sparse with K = µn blocks

each of length M , with a single non-zero entry Uj in each block with Uj ∼ CN (0, 1) (Rayleigh

fading), and Z∼CN (0, In). The support of U , denoted by S ∈ {0, 1}KM , is sampled uniformly from

all such block sparse supports (there are MK of them). The goal is to get an estimate Ŝ = Ŝ(Y,A)

of S where our figure of merit is the following:

PUPE(Ŝ) = 1

K

K∑
k=1

P
[
SkM
1+(k−1)M ̸= ŜkM

1+(k−1)M

]
, (2.88)

which is also known as section error rate (SER) in the SPARC literature [139].

The AMP-based algorithm operates as follows. First we estimate U iteratively, then after esti-

mating U we threshold its values to obtain an estimator for S.

To describe scalar AMP we first introduce the following scalar problem. For each σ > 0 define

µ(σ) = PX,V to be the joint distribution of variables X and V :

V = X + σW, X ⊥W ∼ CN (0, 1) (2.89)
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and

X ∼ BG(1, 1/M) =

CN (0, 1) w.p. 1
M

0 w.p. 1− 1
M

(2.90)

We also define

η(z, σ2) ≜ E[X|V = z] ,mmse(σ2) ≜ E[(X − E[X|V ])2] . (2.91)

Next, start with U (0) = 0 ∈ CKM , R(0) = Y , σ̂2
0 = 1

E + µ. Then for t = 1, 2, · · · we have the

following iterations

U (t) = η
(
A∗R(t−1) + U (t−1), σ̂2

t−1

)
(2.92)

R(t) = Y −AU (t) +

µMR(t−1) 1

KM

KM∑
i=1

η′
((
A∗R(t−1) + U (t−1)

)
i
, σ̂2

t−1

)
(2.93)

σ̂2
t =

1

n

∥∥∥R(t)
∥∥∥2 (2.94)

where η′(x + iy, σ2) denotes 1
2

(
∂η(x+iy,σ2)

∂x − i∂η(x+iy,σ2)
∂y

)
and i =

√
−1 is the imaginary unit (see

[149, 150] for a more general derivation of complex AMP). The estimate of U after t steps is given

by (see [22] for more details)

Û (t) = A∗R(t) + U (t) (2.95)

To convert Û (t) into Ŝ(t) we perform a simple thresholding:

Ŝ(t)(θ) = {i ∈ [KM ] : |Û (t)
i |

2 > θ} . (2.96)

Theorem 2.3.4 (Scalar AMP achievability). Fix any µ > 0, Ptot > 0 and M ≥ 1. Then for every

E > E
log2 M = Ptot

µ log2 M there exist a sequence of (n,M, ϵn, E ,K = µn) codes (noCSI) such that AMP

decoder (2.96) (with a carefully chosen θ = θ(E ,M, µ) and sufficiently large t) achieves

lim sup
n→∞

ϵn ≤ π∗(σ2
∞,M) ,

where π∗(τ,M) = 1− 1
1+τ

(
(M − 1)

(
1
τ + 1

))−τ and σ2
∞ is found from

σ2
∞ ≡ σ2

∞(µ,E,M)

= sup
{
τ ≥ 0 : τ =

1

E
+ µM mmse(τ)

}
(2.97)
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Proof. Denote the Hamming distance

dH(S, Ŝ) =
1

KM

KM∑
i=1

1[Si ̸= Ŝi] (2.98)

Note that according to the definition (2.88) we have a bound

PUPE(Ŝ(t)(θ)) ≤ME
[
dH(S, Ŝ(t)(θ)))

]
(2.99)

Indeed, this is a simple consequence of upper bounding each probability in (2.88) by the union

bound.

The key result of [28] shows the following. Let the empirical joint distribution of entries in

(U, Û (t)) be denoted by

µ̂U,Û(t) ≜
1

KM

KM∑
i=1

δ
(Ui,Û

(t)
i )

,

where δx is the Dirac measure at x. Then as n → ∞ this (random) distribution on C2 converges

weakly to a deterministic limit µX,V almost surely. More precisely, from [28, Lemma 1(b)] and proof

of [22, Theorem 5] for any bounded Lipschitz continuous function f : C2 → R we have

lim
n→∞

∫
f dµ̂U,Û(t) =

∫
f dµ(σt) a.s. (2.100)

where µ(σt) is the joint distribution of (X,V = X + σtW ) defined in (2.89), and σt can further be

determined from the so called state evolution sequence: Set σ2
0 = 1

E + µ and then

σ2
t =

1

E
+ µM mmse(σ2

t−1) (2.101)

where mmse is defined in (2.91).

Note that the assumptions on U A and Z in [28, Lemma 1(b)] hold in our case. In particular,

since the support of U is sampled uniformly from all block sparse supports of size K and the entries

in the support are iid CN (0, 1) random variables, we have that the empirical distribution of entries of

U converge weakly almost surely to the distribution PX of X defined in (2.90). Further the moment

conditions in [28, Theorem 2] are also satisfied. We note here that although [22, 28] consider only

real valued signals, the results there also hold for the complex case (see [151, Theorem III.15], [152,

Chapter 7]).

We next consider the support recovery in the scalar model (2.89). Let S0 = 1[X ̸= 0] denote the

indicator of the event when X is non-zero. Let Ŝ0 ≡ Ŝ0(θ) = 1[|V |2 > θ] denote an estimator of S0

using the observation V = X + σW in (2.89). Let

ψ(σ2, θ,M) = P
[
S0 ̸= Ŝ0

]
(2.102)
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denote the probability of error in the scalar model (2.89) with σ dependence made explicit as an

argument of ψ. The from the convergence of µ̂U,Û(t) we conclude as in [22] that for any number t of

steps of the AMP algorithm Ŝ(t)(θ) achieves

lim
n→∞

PUPE(Ŝ(t)(θ)) ≤Mψ(σ2
t , θ,M) . (2.103)

Since this holds for any t and any θ we can optimize both by taking t → ∞ and infθ>0. From the

proof of [22, Theorem 6] it follows that limt→∞ σ2
t = σ2

∞ exists and σ∞ satisfies (2.97). The proof

is completed by the application of the following Claim, which allows us to compute infimum over θ

in closed form.

Claim 6.

M inf
θ
ψ(τ, θ,M) = 1− 1

1 + τ

1(
(M − 1)

(
1
τ + 1

))τ (2.104)

Proof. Let us define τ = σ2. We have

ψ(τ, θ,M) = P
[
S0 ≠ Ŝ0

]
=

1

M
P
[
Ŝ0 = 0|S0 = 1

]
+(

1− 1

M

)
P
[
Ŝ0 = 1|S0 = 0

]

Now conditioned on S0 = 1, |V |2 ∼ (1 + τ)Exp(1) and conditioned on S0 = 0, |V |2 ∼ τExp(1)

where Exp(1) is the Exponential distribution with density function p(x) = e−x1[x ≥ 0]. Hence

ψ(τ, θ,M) =
1

M

(
1− e−

θ
1+τ

)
+

(
1− 1

M

)
e−

θ
τ (2.105)

The claim follows by optimizing (2.105) over θ. The optimum occurs at

θ∗ = τ(1 + τ) ln
(
1 + τ

τ
(M − 1)

)

Substituting θ∗ in (2.105) proves the claim.

2.3.3 No-CSI: Scalar AMP with spatially coupled codebook

Previously, we presented an achievability bound using the fixed point of the state evolution of the

AMP algorithm that is designed for i.i.d Gaussian codebooks. This is known to be suboptimal [152],

and this is also evident from the figure 4-1. Instead, we can leverage recent rigorous results on the

optimality of AMP with spatially coupled codebook design to get an almost optimal achievability
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bound. In particular, we build on the spatial coupling idea from [27] and the scalar AMP from

section 2.3.2 to provide new achievability bound for the many-user quasi-static fading MAC.

Spatially coupled codebook

Now we describe the spatially coupled codebook design based on [27]. Let R,C ∈ N be such that

R divides n and C divides p = KM . The codebook A is divided into blocks of size n
R ×

p
C and

hence can be considered as a block matrix of size R × C. Let B ∈ RR×C be the base matrix with

nonnegative entries Br,c such that
∑R

r=1Br,c = 1 for all c ∈ [C]. Further, with abuse of notation,

let r : [n] → [R] and c : p → [C] denote functions that map a particular row or column index to

its corresponding block. Let E = Ptot

µ denote the total energy. Then the matrix A is constructed

as Ai,j ∼ CN
(
0, ER

nBr(i),c(j)

)
with {Ai,j} independent across tuples (i, j). In particular we use the

(ω,Λ, ρ) base matrix from [27] as the choice of B. This is as follows. Let ρ ∈ [0, 1), ω ≥ 1 and

Λ ≥ 2ω − 1. Then we choose R = Λ+ ω − 1 and C = Λ. Finally we have

Br,c =


1−ρ
ω , c ≤ r ≤ c+ ω − 1

ρ
Λ−1 , o/w

(2.106)

Let µ̃ = R
Cµ be the effective user density. Since usually ω > 1 we have that µ̃ > µ and thus the

effective user density is higher in such spatially coupled systems [27].

Next we present the AMP algorithm adapted to the spatially coupled codebook (SC-AMP) from

[27] (see also [26, 153]; refer to [154, Sec 4.4] for extension to the complex case). In particular the

section size (denoted as B in [27]) is set to 1 in the main SC-AMP algorithm in [27]. But the main

difference from [27] is that we ignore the block sparse structure of U and just use the fact that the

empirical distribution of entries in U converge to BG(1, 1/M) defined in (2.90). This is sufficient for

the state evolution to be valid [153], and similar to the results in previous section, the state evolution

is defined on the scalar channel (2.89) (instead of the vector channel in [27] which would be infeasible

for numerical evaluation when M is very large but finite). The scalar equivalent channel and related

quantities are restated here for convenience.

Vσ2 = X + σW (2.107)

where X independent of W , and X ∼BG(1, 1/M), W ∼ CN (0, 1). We denote the joint distribution

of X and Vσ2 by PX,Vσ2 . The scalar denoising function is

η(v, σ2) = E [X|Vσ2 = v] = E [X|X + σW = v] . (2.108)
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The minimum mean squared error of estimating X from V is given by

mmse(σ2) = E
[
(X − η(Vσ2 , σ2))2

]
(2.109)

Lastly we define the equivalent of support recovery. Let S0 = 1[X ̸= 0]. Let Ŝ0(θ) be an estimate

of S0 based on observation Vσ2 . In particular we use the following estimator Ŝ0(θ) = 1[|Vσ2 |2 > θ].

Then we denote the probability of error in support recovery by ψ:

ψ(σ2, θ,M) = P
[
S0 ̸= Ŝ0(θ)

]
(2.110)

AMP algorithm: Start with U (0) = 0 ∈ CKM , R(0) = Y . Then for t = 1, 2, · · · we have the

following iterations

U (t) = η(t)
(
(Q̃(t−1) ⊙A)∗R(t−1) + U (t−1)

)
(2.111)

R(t) = Y −AU (t) +
R

C
µM(b̃(t) ⊙R(t−1)) (2.112)

where ⊙ denotes element wise product, and matrix Q̃(t), vector b̃(t) and denoiser η(t) : CKM →

CKM will be defined next via the state evolution.

Let ψ(0)
c =∞. Then for t ≥ 1, for each r ∈ [R] and c ∈ [C] we define

γ(t)r =

C∑
c=1

Br,cψ
(t)
c (2.113)

ϕ(t)r =
1

E
+ µ̃Mγ(t)r (2.114)

τ (t)c =
1∑R

r=1Br,c

(
ϕ
(t)
r

)−1 (2.115)

ψ(t+1)
c = mmse(τ (t)c ) (2.116)

where mmse(·) is defined in (2.109).

Now the matrices Q̃(t) and vectors b̃(t) are defined as follows. For each i ∈ [n] and j ∈ [KM ]

b̃
(t)
i = µ̃M

γ
(t)
r(i)

ϕ
(t−1)
r(i)

Q̃
(t)
i,j =

τ
(t)
c(j)

ϕ
(t)
r(i)

The denoiser at time t is given by η(t) = (η
(t)
1 , · · · , η(t)KM ) with

η
(t)
i (z) = E

[
X|X +

√
τ
(t)
c(i)W = z

]
= η(z, τ

(t)
c(i)) (2.117)
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where η(·, ·) was defined in (2.108).

The estimate of U after t steps is given by (see [22, 27] for more details on hard decision estimate)

Û (t) = (Q̃t ⊙A)∗R(t) + U (t) (2.118)

To convert Û (t) into Ŝ(t) we perform a simple thresholding for each c ∈ [C] i.e., for each i

Ŝ
(t)
i (θc(i)) = 1[|Û (t)

i |
2 > θc(i)] (2.119)

where {θc : c ∈ [C]} is a set of thresholds.

We have the following lemma that follows directly from [27, Theorem 2] (with B = 1 in their

notation which in turn relies on [26, 153]). Define the replica potential

F(τ ;µ,E,M) = (µM)I(X;Vτ ) +

(
ln τ + 1

τE
− 1

)
(2.120)

where (X,Vτ )∼ PX,Vτ
. Further, let M denote the maximum of the global minimizers of F :

M(µ,E,M) = max(arg min
τ> 1

E

F(τ ;µ,E,M)) (2.121)

Lemma 2.3.5 ([27]). For any (ω,Λ, ρ) base matrix B, for each c ∈ [C], τ (t)c is non-increasing in t

and converges to a fixed point τ∞c . Furthermore, for any δ > 0, there exists ω0 < ∞, Λ0 < ∞ and

ρ0 > 0 such that for all ω > ω0, Λ > Λ0 and ρ < ρ0, the fixed points {τ∞c : c ∈ [C]} satisfy

τ∞c ≤ τ∞ (µ̃) + µ̃Mδ (2.122)

where τ (∞)(µ̃) =M (µ̃, E,M).

Notice that τ (t)c tracks the noise variance (and hence also mmse) of estimation in the scalar

channel (2.107). Thus the above lemma says that the fixed points of the spatially coupled system

are at least as good as the uncoupled system (i.e., with A having i.i.d entries as in the previous

section) but with user density increased from µ to µ̃ =
(
1 + ω−1

Λ

)
µ. Notice that if take limits as

Λ→∞ and then ω →∞ we obtain that τ∞(µ̃)→ τ∞(µ). This known in the literature as threshold

saturation (see [27, Remark 3.3]).

Finally we have the main achievability bound based on spatial coupling

Theorem 2.3.6. Fix any µ > 0, E > 0 and k = log2M ≥ 1. Then for every E > E
k there exist a

sequence of (n,M, ϵn, E ,K = µn) codes for the quasi-static fading MAC such that

lim sup
n→∞

ϵn ≤ π∗(τ (∞)(µ),M) (2.123)
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where π∗(τ,M) = 1− 1
1+τ

(
(M − 1)

(
1
τ + 1

))−τ and

τ (∞)(µ) ≡ τ (∞)(µ;E,M) =M(µ,E,M) (2.124)

Proof. The idea is to use random coding along with the spatially coupled codebook described in

the beginning of this section. The proof is similar to that of theorem 2.3.4 but uses the result on

convergence of the empirical joint distribution of entries in (U, Û (t)) in the spatially coupled systems

from [26, 153] (adapted to the complex number setting). Recall that if S is the support of the true

signal U , and Ŝ(t) ≡ (Ŝ
(t)
i (θc(i)))

KM
i=1 (see (2.119)) is the estimate of the support, then from (2.99)

we have that

PUPE(Ŝ(t)) ≤ME
[
dH(S, Ŝ(t)))

]
(2.125)

Notice that

dH(S, Ŝ(t)) =
1

C

C∑
c=1

 C

KM

cKM
C∑

i=(c−1)KM
C +1

1[Si ̸= Ŝ
(t)
i ]


Moreover, from [26, Theorem 1] (see proof of lemma 1 there) we have that for any Lipschitz

function f : C2 → R (or more generally any pseudo-Lipschitz function [28]) the following holds

almost surely (with K = µn):

lim
n→∞

C

KM

cKM
C∑

i=(c−1)KM
C +1

f(Ui, Û
(t)
i ) = E

[
f(X,V

τ
(t)
c

)
]

(2.126)

where X ∼BG(1, 1/M) and Vτ(t)c is the the output of the scalar channel (2.89) with dependence on

σ2 = τ
(t)
c made explicit for convenience:

V
τ
(t)
c

= X +

√
τ
(t)
c W, X ⊥ V

τ
(t)
c

Remark 5. We note here that [26] deal only with real valued system. But as noted in [151, Theorem

III.15] and [154, Sec 4.4], the proofs in [26] go through for complex valued systems as well.

By a standard approximation argument as in proof of [27, Theorem 1 (3)] we get that

lim
n→∞

C

KM

cKM
C∑

i=(c−1)KM
C +1

P
[
Si ̸= Ŝ

(t)
i

]
= ψ(τ (t)c , θc,M) (2.127)

where the function ψ() is defined in (2.110) and {θc : c ∈ [C]} are thresholds (2.119).
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Thus for any {θc > 0 : c ∈ [C]}

lim
n→∞

PUPE(Ŝ(t)) ≤ 1

C

C∑
c=1

Mψ(τ (t)c , θc,M) (2.128)

Now we take t→∞ and use lemma 2.3.5 to obtain

lim
t→∞

lim
n→∞

PUPE(Ŝ(t)) ≤ 1

C

C∑
c=1

Mψ(τ (∞)
c , θc,M) (2.129)

Since {θc} are arbitrary we can minimize over {θc > 0 : c ∈ [C]} and use claim 6 to obtain

lim
t→∞

lim
n→∞

PUPE(Ŝ(t)) ≤ 1

C

C∑
c=1

π∗(τ (∞)
c ,M) (2.130)

where

π∗(τ,M) =

[
1− 1

1 + τ

1(
(M − 1)

(
1
τ + 1

))τ
]

(2.131)

Notice that π∗ is non-decreasing in τ . Thus for any fixed δ > 0, from second item in lemma 2.3.5

we have that for all large enough ω and Λ, and all small enough ρ:

lim
t→∞

lim
n→∞

PUPE(Ŝ(t)) ≤ π∗(τ (∞)(µ̃) + µ̃Mδ,M) (2.132)

Lastly, we take limit as Λ→∞ and then ω →∞ to obtain that for every δ > 0 there is a ρ0 > 0

such that for all 0 < ρ < ρ0 we have

lim
ω→∞

lim
Λ→∞

lim
t→∞

lim
n→∞

PUPE(Ŝ(t)) ≤ π∗(τ (∞)(µ) + µMδ,M) (2.133)

The theorem is proved by noticing that δ > 0 is arbitrary.

2.3.4 CSIR

In this subsection, we focus on the CSIR scenario. We could use projection decoding to decode a

fraction of users where decoding set is a function of CSIR. But a better bound is obtained by directly

using euclidean metric to decode, similar to [3]. Then have the following theorem.

Theorem 2.3.7. Consider the channel (2.1) (with CSIR) with K = µn where µ < 1. Fix the

spectral efficiency S and target probability of error (per-user) ϵ. Let M = 2S/µ denote the size of

the codebooks and Ptot = KP be the total power. Fix ν ∈ (1 − ϵ, 1]. Let ϵ′ = ϵ − (1 − ν). Then

if E > E∗CSIR = sup ϵ′
ν <θ≤1 inf0≤ρ≤1

Ptot,ν(θ,ρ)
S , there exists a sequence of (n,M, ϵn, E ,K = µn) codes

such that lim supn→∞ ϵn ≤ ϵ, where, for ϵ′

ν < θ ≤ 1,
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Ptot,ν(θ, ρ) =
(1 + ρ)

(
eµν(

h(θ)
ρ +θ ln M) − 1

)
α(ν(1− θ), ν)−

(
eµν(

h(θ)
ρ +θ ln M) − 1

)
α(ν, 1)(1 + ρ)

(2.134)

α(a, b) = a ln(a)− b ln(b) + b− a. (2.135)

Hence E∗ ≤ E∗CSIR.

The proof idea is a combination of techniques similar to [3] and theorem 2.3.1

Proof. Let each user generate a Gaussian codebook of size M and power P ′ < P independently

such that KP ′ = P ′
tot < Ptot. Let Wj denote the random (in [M ]) message of user j. So, if

Cj = {cji : i ∈ [M ]} is the codebook of user j, he/she transmits Xj = cjWj
1

{∥∥∥cjWj

∥∥∥2 ≤ nP}. For

simplicity let (c1, c2, ..., cK) be the sent codewords. Fix ν ∈ (1− ϵ, 1]. Let K1 = νK be the number

of users that are decoded. Fix a decoding set D ⊂ [K], possibly depending on H[K] such that

|D| = K1, a.s. Since the receives knows H[K], we can use the euclidean distance used in [3] as the

decoding metric. Formally, the decoder output gD(Y ) ∈
∏K

i=1 Ci is given by

(gD(Y ))i =

f
−1
i (ĉi) i ∈ D

? i /∈ D

(ĉi)i∈D = arg min
(ci∈Ci)i∈D

∥∥∥∥∥Y −∑
i∈D

Hici

∥∥∥∥∥
2

.

The probability of error is given by

Pe =
1

K

K∑
j=1

P
[
Wj ̸= Ŵj

]
(2.136)

where Ŵj = (g(Y ))j is the decoded message of user j. Similar to the no-CSI case, we per-

form a change of measure to Xj = cjWj
by adding a total variation distance bounded by p0 =

KP
[
χ2(2n)

2n > P
P ′

]
→ 0 as n→∞.

Let ϵ′ = ϵ− (1− ν). Now we have

Pe = E

 1

K

K∑
j=1

1{Wj ̸= Ŵj}


=
K −K1

K
+ E

 1

K

∑
j∈D

1{Wj ̸= Ŵj}
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≤ (1− ν) + ϵ′ + νP

 1

K

∑
j∈D

1{Wj ̸= Ŵj} ≥ ϵ′


= ϵ+ νp1 (2.137)

where p1 = P
[⋃νK

t=ϵ′K

{∑
j∈D 1{Wj ̸= Ŵj} = t

}]
.

From now on, we just write
⋃

t to denote
⋃νK

t=ϵ′K ,
∑

t for
∑νK

t=ϵ′K , and
∑

S for
∑

S⊂D
|S|=t

. Let

c[S] ≡ {ci : i ∈ [S]} and H[K] = {Hi : i ∈ [K]}. Let Ft =
{∑

j∈D 1{Wj ̸= Ŵj} = t
}

. Let ρ ∈ [0, 1].

We bound P [Ft] using Gallager’s rho trick similar to [3] as

P
[
Ft|Z, c[K],H[K]

]
≤ P

[
∃S ⊂ D : |S| = t,∃{c′i ∈ Ci : i ∈ S, c′i ̸= ci} :∥∥∥∥Y −∑

i∈S

Hic
′
i −

∑
i∈D\S

Hici

∥∥∥∥2 <∥∥∥∥Y −∑
i∈D

Hici

∥∥∥∥2∣∣∣∣Z, c[K],H[K]

]

≤
∑
S

P
[ ⋃
c′i∈Ci:i∈S

c′i ̸=ci

{∥∥∥∥ZD +
∑
i∈S

Hici −
∑
i∈S

Hic
′
i

∥∥∥∥2 <∥∥∥∥ZD

∥∥∥∥2}∣∣∣∣Z, c[K],H[K]

]

≤
∑
S

MρtP
[∥∥∥∥ZD +

∑
i∈S

Hici −
∑
i∈S

Hic
′
i

∥∥∥∥2 <∥∥∥∥ZD

∥∥∥∥2∣∣∣∣Z, c[K],H[K]

]ρ
(2.138)

where ZD = Z+
∑

i∈[K]\DHici and c′[S] in the last display denotes a generic set of unsent codewords

corresponding to codebooks of users in set S.

We use the following simple lemma which is a trivial extension of a similar result used in [3] to

compute the above probability.

Lemma 2.3.8. Let Z ∼ CN (0, In) and u ∈ Cn. Let D = diag(d1, ..., dn) ∈ Cn×n be a diagonal

matrix. If γ > supj∈[n]− 1
|dj |2 , then

E
[
e−γ∥DZ+u∥2

]
=

1∏
j∈[n] (1 + γ|dj |2)

e
−γ
∑

j∈[n]

|uj |
2

1+γ|dj |2

Proof. Omitted
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So, using the above lemma, we have, for λ1 > 0,

E{c′S}

[
P
[∥∥∥∥ZD +

∑
i∈S

Hici −
∑
i∈S

Hic
′
i

∥∥∥∥2 < ∥ZD∥2
∣∣∣∣Z, c[K],H[K]

]ρ]

= E{c′S}

[
P
[

exp
(
−λ1

∥∥∥∥ZD +
∑
i∈S

Hici −
∑
i∈S

Hic
′
i

∥∥∥∥2
)
>

exp
(
−λ1 ∥ZD∥2

)∣∣∣∣Z, c[K],H[K]

]ρ]
≤ eρλ1∥ZD∥2(

1 + λ1P ′∑
i∈S |Hi|2

)ρn e−ρλ1∥ZD+
∑

i∈S Hici∥2

1+λ1P ′∑
i∈S |Hi|2 (2.139)

where Ec′S
denotes taking expectation with respect to {c′i : i ∈ S} alone, and 1+λ1P

′∑
i∈S |Hi|2 > 0.

Let λ2 = ρλ1

1+λ1P ′∑
i∈S |Hi|2 . Note that λ2 is a function of HS . Now using lemma 2.3.8 again to

take expectation over cS , we get

EcS

[
eρλ1∥ZD∥2(

1 + λ1P ′∑
i∈S |Hi|2

)ρn e−ρλ1∥ZD+
∑

i∈S Hici∥2

1+λ1P ′∑
i∈S |Hi|2

]
≤ 1(

1 + λ1P ′∑
i∈S |Hi|2

)ρn 1(
1 + λ2P ′∑

i∈S |Hi|2
)n e

(
ρλ1− λ2

1+λ2P ′∑
i∈S |Hi|2

)
∥ZD∥2

(2.140)

with 1 + λ2P
′∑

i∈S |Hi|2 > 0. Finally, taking expectation over Z, we get

P
[
Ft|H[K]

]
≤
∑
S

Mρte−nE0(λ1;ρ,H[K],S) (2.141)

where

E0(λ1; ρ,H[K], S) = ρ ln
(
1 + λ1P

′
∑
i∈S

|Hi|2
)
+ ln

(
1 + λ2P

′
∑
i∈S

|Hi|2
)
+

ln
(
1−

(
1 + P ′

∑
i∈Dc

|Hi|2
)(

ρλ1 −
λ2

1 + λ2P ′∑
i∈S |Hi|2

))
(2.142)

with

1 >

(
1 + P ′

∑
i∈Dc

|Hi|2
)(

ρλ1 −
λ2

1 + λ2P ′∑
i∈S |Hi|2

)
.

It is easy to see that the optimum value of λ1 that maximizes E0 is given by

λ∗1 =
1(

1 + P ′∑
i∈Dc |Hi|2

)
(1 + ρ)

(2.143)
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and hence the maximum value of the exponent

E0(ρ,H[K], S) = E0(λ
∗
1; ρ,H[K], S)

is given by

E0(ρ,H[K], S) = ρ ln
(
1 +

P ′∑
i∈S |Hi|2

(1 + ρ)
(
1 + P ′∑

i∈Dc |Hi|2
)) .

Therefore, we have

p1 ≤ E

[∑
t

∑
S

eρt ln Me−nE0(ρ,H[K],S)

]
. (2.144)

Since we want an upper bound for (2.144), we would like to take minimum over S ⊂ D : |S| = t.

For a given choice of D, this corresponds to minimizing P ′∑
i∈S |Hi|2 which mean we take S to

contain indices in D which correspond to t smallest fading coefficients (within D). Then, the best

such bound is obtained by choosing D that maximizes P ′∑
i∈S |Hi|2

(1+P ′∑
i∈Dc |Hi|2)

. Clearly this corresponds

to choosing D to contain indices corresponding to top K1 fading coefficients.

Therefore, we get

p1 ≤ E
[∑

t

(
K1

t

)
eρt ln Me

−nρ ln
(
1+

P ′∑K1
i=K1−t+1

|H(i)|
2

(1+ρ)(1+P ′∑K
i=K1+1

|H(i)|
2)

)]
.

Let An = [ ϵ
′

ν , 1] ∩
{

i
K1

: i ∈ [K1]
}

. For θ ∈ An and t = θK1, using [145, Ex. 5.8] again, we have

(
K1

t

)
≤

√
K1

2πt(K1 − t)
eK1h(

t
K1

) = O

(
1√
n

)
enµνh(θ).

(2.145)

The choice of ρ was arbitrary, and hence,

p1

≤ E
[

min
{
1,
∑
θ∈An

exp
(
− n sup

ρ∈[0,1]

(

ρ ln
(
1 +

P ′∑νK
i=ν(1−θ)K+1 |H(i)|2

(1 + ρ)(1 + P ′∑K
i=νK+1 |H(i)|2)

)
− µνh(θ)− ρµνθ lnM

))}]
≤ E

[
min

{
1, |An| exp

(
− n inf

θ∈An

sup
ρ∈[0,1]
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(
ρ ln
(
1 +

P ′∑νK
i=ν(1−θ)K+1 |H(i)|2

(1 + ρ)(1 + P ′∑K
i=νK+1 |H(i)|2)

)
− µνh(θ)− ρµνθ lnM

))}]
(2.146)

where we have used min since p1 ≤ 1. Now, using similar arguments as in the proof of claim 5

and taking limits, we can see that

inf
θ∈An

sup
ρ∈[0,1]

(
ρ ln
(
1 +

P ′∑νK
i=ν(1−θ)K+1 |H(i)|2

(1 + ρ)(1 + P ′∑K
i=νK+1 |H(i)|2)

)
− µνh(θ)− ρµνθ lnM

)
= inf

θ∈An

sup
ρ∈[0,1]

(
ρ ln
(
1 +

P ′
totα(ν(1− θ), ν)

(1 + ρ)(1 + P ′
totα(ν, 1))

)
− µνh(θ)− ρµνθ lnM

)
+ o(1) (2.147)

with exponentially high probability. Hence,

p1 ≤ E
[
|An| exp

(
o(n)− n inf

θ∈An

sup
ρ∈[0,1](

ρ ln
(
1 +

P ′
totα(ν(1− θ), ν)

(1 + ρ)(1 + P ′
totα(ν, 1))

)
− µνh(θ)− ρµνθ lnM

))]
+ o(1)

≤ E
[
|An| exp

(
o(n)− n inf

θ∈A
sup

ρ∈[0,1](
ρ ln
(
1 +

P ′
totα(ν(1− θ), ν)

(1 + ρ)(1 + P ′
totα(ν, 1))

)
− µνh(θ)− ρµνθ lnM

))]
+ o(1)]]

(2.148)

where A = [ ϵ
′

ν , 1].

Therefore, choosing P ′
tot > supθ∈A infρ∈[0,1] Ptot(θ, ρ) will ensure that lim supn→∞ p1 = 0.

Remark 6. Note that the analysis of the CSIR case in this paper and the AWGN case in [3] are

similar, in particular both analyze a (suboptimal for PUPE) maximum likelihood decoder. However,

there are two new subtleties, compared to [3]. First, [3] applies Gallager’s ρ-trick twice, where

the second application (with parameter ρ1 in the notation of [3]) is applied just before taking the

expectation over Z in (2.141). In the CSIR case, the summands of
∑

S actually depend on the subset

S through the fading gains, which makes the ρ-trick less appealing, and that is why we omitted it

here. Secondly, because the summands depend on S, we upper bound each by taking the maximum

over S, and this requires analysis of order statistics which is, of course, not present in the AWGN

case.
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2.3.5 Converse

In this section we derive a converse for E∗, based on the Fano inequality and the results from [6].

Theorem 2.3.9. Let M be the codebook size. Given ϵ and µ, let S = µ logM . Then assuming that

the distribution of |H|2 has a density with E
[
|H|2

]
= 1 and E

[
|H|4

]
<∞, E∗(M,µ, ϵ) satisfies the

following two bounds

1.

E∗(M,µ, ϵ) ≥ inf Ptot

S
(2.149)

where infimum is taken over all Ptot > 0 that satisfies

θS − ϵµ log
(
2S/µ − 1

)
− µh2(ϵ) ≤

log (1 + Ptotα (1− θ, 1)) , ∀θ ∈ [0, 1] (2.150)

where α(a, b) =
∫ b

a
F−1
|H|2(1−γ)dγ, and F|H|2 is the CDF of squared absolute value of the fading

coefficients.

2.

E∗(M,µ, ϵ) ≥ inf Ptot

S
(2.151)

where infimum is taken over all Ptot > 0 that satisfies

ϵ ≥ 1− E

[
Q

(
Q−1

(
1

M

)
−

√
2Ptot

µ
|H|2

)]
(2.152)

where Q is the complementary CDF function of the standard normal distribution.

Proof. First, we use the Fano inequality.

Let W = (W1, ...,WK), where Wi
iid∼ Unif [M ] denote the sent messages of K users. Let X =

(X1, ..., XK) where Xi ∈ Cn be the corresponding codewords, Y ∈ Cn be the received vector. Let

Ŵ =
(
Ŵ1, ...ŴK

)
be the decoded messages. Then W → X → Y → Ŵ forms a Markov chain.

Then ϵ = Pe =
1
K

∑
i∈[K] P

[
Wi ̸= Ŵi

]
.

Suppose a genie G reveal a set S1 ⊂ [K] for transmitted messages WS1
= {Wi : i ∈ S1} and the

corresponding fading coefficients HS1
to the decoder. So, a converse bound in the Genie case is a

converse bound for our problem (when there is no Genie). Further, the equivalent channel at the
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receiver is

YG =
∑
i∈S2

HiXi + Z (2.153)

where S2 = [K] \ S1, and the decoder outputs a [K] sized tuple. So, PUPE with Genie is given by

PG
e =

1

K

∑
i∈[K]

P
[
Wi ̸= ŴG

i

]
. (2.154)

Now, it can be seen that the optimal decoder must have the codewords revealed by the Genie in

the corresponding locations in the output tuple, i.e., if ŴG denotes the output tuple (in the Genie

case), for i ∈ S1, we must have that Wi = ŴG
i . Otherwise, PUPE can be strictly decreased by

including these Genie revealed codewords.

So, letting Ei = 1[Wi ̸= ŴG
i ] and ϵGi = E [Ei], we have that ϵGi = 0 for i ∈ S1. For i ∈ S2, a

Fano type argument gives

I(Wi; Ŵ
G
i ) ≥ logM − ϵGi log(M − 1)− h2(ϵGi ). (2.155)

So, using the fact that

∑
i∈S2

I(Wi; Ŵ
G
i ) ≤ I(WS2

; ŴG
S2
)

≤ nE

[
log(1 + P

∑
i∈S2

|Hi|2)

]

we have

|S2| logM −
∑
i∈S2

ϵGi log(M − 1)−
∑
i∈S2

h2(ϵ
G
i )

≤ nE

[
log(1 + P

∑
i∈S2

|Hi|2)

]
. (2.156)

By concavity of h2, we have

1

K

∑
i∈S2

h2(ϵ
G
i ) =

1

K

∑
i∈[K]

h2(ϵ
G
i ) ≤ h2(PG

e ). (2.157)

Hence we get

|S2|
K

logM − PG
e log(M − 1)− h2(PG

e )

≤ n

K
E

[
log(1 + P

∑
i∈S2

|Hi|2)

]
. (2.158)
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Next, notice that PG
e ≤ Pe ≤ 1− 1

M and hence PG
e log(M−1)+h2(PG

e ) ≤ Pe log(M−1)+h2(Pe).

Further the inequality above hols for all S2 ⊂ [K] (which can depend of H[K] as well). Hence, letting

|S2| = θK

θ logM − Pe log(M − 1)− h2(Pe)

≤ 1

µ
E

[
log
(
1 + inf

S2:|S2|=θK

Ptot

K

∑
i∈S2

|Hi|2
)]

. (2.159)

Now, taking limit as K →∞ and using results on strong laws of order statistics [155, Theorem

2.1], we get that

log
(
1 + inf

S2:|S2|=θK

Ptot

K

∑
i∈S2

|Hi|2
)

→ log (1 + Ptotα(1− θ, 1)) . (2.160)

For any a, b ∈ [0, 1] with a < b, let SK ≡ SK(a, b) = 1
K

∑bK
i=aK |H(i)|2. Note that SK → α(a, b)

as K →∞. Then

E
[
S2
K

]
≤ E

( 1

K

K∑
i=1

|Hi|2
)2


= 1 +
E
[
|H|4

]
− 1

K
≤ E

[
|H|4

]
. (2.161)

Hence the family of random variables {SK : K ∈ N} is uniformly integrable. Further

0 ≤ log(1 + PtotSK) ≤ PtotSK .

Hence the family {log(1 + PtotSK) : K ≥ 1} is also uniformly integrable. Then from theorem [156,

Theorem 9.1.6],

E [log(1 + PtotSK)]→ log(1 + Ptotα(a, b)).

Using this in (2.159) with a = 1− θ and b = 1, we obtain (2.150).

Next we use the result from [6] to get another bound.

Using the fact that S/µ bits are needed to be transmitted under a per-user error of ϵ, we can get

a converse on the minimum Eb/N0 required by deriving the corresponding results for a single user

quasi-static fading MAC. In [6], the authors gave the following non-asymptotic converse bound on

the minimum energy required to send k bits for an AWGN channel. Consider the single user AWGN

channel Y = X + Z, Y,X ∈ R∞, Zi
iid∼ N (0, 1). Let M∗(E, ϵ) denote the largest M such that there

exists a (E,M, ϵ) code for this channel: codewords (c1, ..., cM ) with ∥ci∥2 ≤ E and a decoder such

that probability of error is smaller than ϵ. The following is a converse bound from [6].
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Lemma 2.3.10 ([6]). Any (E,M, ϵ) code satisfies

1

M
≥ Q

(√
2E +Q−1 (1− ϵ)

)
(2.162)

Translating to our notations, for the channel Y = HX + Z, conditioned on H, if ϵ(H) denotes

the probability of error for each realization of H, then we have

1

M
≥ Q

(√
2Ptot

µ
|H|2 +Q−1 (1− ϵ(H))

)
. (2.163)

Further E [ϵ(H)] = ϵ. Therefore we have

ϵ ≥ 1− E

[
Q

(
Q−1

(
1

M

)
−

√
2Ptot

µ
|H|2

)]
. (2.164)

Hence we have the required converse bound.

Remark 7. We also get the following converse from [19, theorem 7] by taking the appropriate limits

P = Ptot

µn and n→∞.

logM ≤ − log

E

Q
c+ Ptot|H|2

µ√
2Ptot|H|2

µ

 (2.165)

where c satisfies

E

Q
c− Ptot|H|2

µ√
2Ptot|H|2

µ

 = 1− ϵ. (2.166)

But this is strictly weaker than (2.164). This is because, using lemma 2.3.10, we perform

hypothesis testing (in the meta-converse) for each realization of H but in the bound used in [19],

hypothesis testing is performed over the joint distribution (including the distribution of H). This is

to say that if H is presumed to be constant (and known), then in (2.165) and (2.166) we can remove

the expectation over H and this gives precisely the same bound as (2.163).

Bounds tighter than (2.150) can be obtained if further assumptions are made on the codebook.

For instance, if we assume that each codebook consists of iid entries of the form C
K where C is

sampled from a distribution with zero mean and finite variance, then using ideas similar to [137,

Theorem 3] we have the following converse bound.
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Theorem 2.3.11. Let M be the codebook size, and let µn users (µ < 1) generate their codebooks

independently with each code symbol iid of the form C
K where C is of zero mean and variance Ptot.

Then in order for the iid codebook to achieve PUPE ϵ with high probability, the energy-per-bit E

should satisfy

E ≥ inf Ptot

µ logM (2.167)

where infimum is taken over all Ptot > 0 that satisfies

lnM − ϵ ln(M − 1)− h(ϵ)

≤
(
MV

(
1

µM
,Ptot

)
− V

(
1

µ
, Ptot

))
(2.168)

where V is given by [137]

V(r, γ) = r ln (1 + γ −F(r, γ)) + ln (1 + rγ −F(r, γ))

− F(r, γ)
γ

(2.169)

F(r, γ) = 1

4

(√
γ
(√
r + 1

)2
+ 1−

√
γ
(√
r − 1

)2
+ 1

)2

(2.170)

Proof sketch. The proof is almost the same as in [137, Theorem 3] (see [137, Remark 3] as well).

We will highlight the major differences here. First, our communication system can be modeled as a

support recovery problem as follows. Let A be the n ×KM matrix consisting of n ×M blocks of

codewords of users. Let H be the KM ×KM block diagonal matrix with block i being a diagonal

M ×M matrix with all diagonal entries being equal to Hi. Finally let W ∈ {0, 1}KM with K blocks

of size M each and within each M sized block, there is exactly one 1. So the position of 1 in block

i of W denotes the message or codeword corresponding to the user i which is the corresponding

column in block i of matrix A. Hence our channel can be represented as

Y = AHW + Z (2.171)

with the goal of recovering W .

Next the crucial step is bound RK(ϵ,M) in (2.155) as

RK(ϵ,M) ≤ I(W ;Y |A)

= I(HW ;Y |A)− I(HW ;Y |A,W ) (2.172)
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where the equality in the above display follows from [137, equation (78)]. The first term in above

display is bounded as

I(HW ;Y |A = A1) = I(HW ;A1HW + Z)

≤ sup
U
I(U ;A1U + Z) (2.173)

where A1 is a realization of A and supremum is over random vectors U ∈ CKM such that E [U ] = 0

and E [UU∗] = E [(HW )(HW )∗] =
E[|H1|2]

M IKM×KM . Now similar to [137], the supremum is

achieved when

U ∼ CN

(
0,

E
[
|H1|2

]
M

IKM×KM

)
.

Hence

I(HW ;Y |A = A1) ≤ log det
(
In×n +

1

M
AA∗

)
. (2.174)

Next, for any realization A1 and W1 of A and W respectively, we have

I(HW ;Y |A = A1,W =W1) = I(HW1;A1HW1 + Z)

= I(H̃; (A1)W1H̃ + Z)

≥ I(H̃; H̃ + (A1)
†
W1
Z) (2.175)

where H̃ = [H1, ..., HK ]T and (A1)W1 is the n×K submatrix of A1 formed by columns corresponding

to the support of W1 and † denotes the Moore-Penrose inverse (pseudoinverse). The last equality

in the above follows from the data processing inequality. Now, by standard mutual information of

Gaussians, we have

I(H̃; H̃ + (A1)
†
W1
Z) = log det

(
IK×K + ((A1)W1)

∗
(A1)W1

)
. (2.176)

Hence

I(HW ;Y |A,W ) = E [log det (IK×K +A∗
WAW )] . (2.177)

Hereafter, the we can proceed similarly to the proof of [137, Theorem 3] using results from

random-matrix theory [157, 158] to finish the proof.

We remark here that for a general fading distribution, the term I(H̃; H̃+(A1)
†
W1
Z) can be lower
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bounded similar to the proof of [137, Theorem 3] using EPI (and its generalization [159]) to get

I(H̃; H̃ + ((A1)W1
)
†
Z) ≥ K log

(
1 +NH

(
det
(
((A1)W1

)
∗
(A1)W1

)) 1
K

)
(2.178)

where NH = 1
πe exp(h(H)) is the entropy power of fading distribution. Hence

I(HW ;Y |A,W ) ≥ KE
[
log
(
1 +NH (det (A∗

WAW ))
1
K

)]
. (2.179)

Again, we can use results from random-matrix theory [158] and proceed similarly to the proof of

[137, Theorem 3] to get a converse bound with the second term in (2.168) replaced by VLB

(
1
µ , Ptot

)
and

VLB(r, γ) = ln
(
1 + γr

(
r

r − 1

)r−1
1

e

)
(2.180)

We make a few observations regarding the preceding theorem. First and foremost, this hold

only for the case of no-CSI because the term analogous to I(HW ;Y |A,W ) in the case of CSIR

is I(HW ;Y |A,H,W ) which is zero. Next, it assumes that the codebooks have iid entries with

variance scaling Θ(1/n). This point is crucial to lower bounding I(HW ;Y |A,W ), and this is where

a significant improvement comes when compared to (2.150). Indeed, EPI and results from random

matrix theory give O(n) lower bound for I(HW ;Y |A,W ). This once again brings to focus the

the difference between classical regime and the scaling regime, where in the former, this term is

negligible. Further this leaves open the question of whether we could improve performance in the

high-density of users case by using non-iid codebooks.

Now, as to what types of codebooks give a Θ(n) lower bound for I(HW ;Y |A,W ), a partial

answer can be given by carefully analyzing the full proof of the theorem. In particular, if S =

suppW i.e, the support of W , then as seen from [137, equation (85)], any non zero lower bound on

det(A∗
SAS)

1/K in the limit is enough. So if the matrix A∗
SAS possesses strong diagonal dominance

then it is possible to have such a non zero lower bound on det(A∗
SAS)

1/K for every S [160]. These

could be ensured by having codewords that are overwhelmingly close to orthogonal.

2.4 Technical results

2.4.1 Proof of proposition 1

Proof. We prove the second upper bound in (2.14). This is based on a single-user converse using

the genie argument. Formally, since we consider per-user error, it is enough to look at the event

that a particular user is not decoded. Let Wi
iid∼ unif[M ] be the message of user i. The channel (2.1)

can be written as Y = H1X1 + Ẑ +Z where Ẑ =
∑K

i=2HiXi denotes the interference. Let L(Y ) be

the decoder output. Also, let L(Y, Ẑ) be the decoder output when it has knowledge of Ẑ. Hence a
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converse bound P [W1 ̸= (L(Y ))1] ≥ ϵ is implied by P
[
W1 ̸=

(
L(Y, Ẑ)

)
1

]
≥ ϵ for all L(·, ·). Since

Y − Ẑ is a sufficient statistic of (Y, Ẑ) for W1, we have, equivalently, P
[
W1 ̸=

(
L(Y − Ẑ)

)
1

]
≥ ϵ

for all L(·). Letting Ŷ = Y − Ẑ, this is equivalent to a converse for the channel Ŷ = H1X1 + Z:

P
[
W1 ̸=

(
L(Ŷ )

)
1

]
≥ ϵ for all L(·). This is just the usual single user converse, and hence the bound

is given by R ≤ Cϵ = sup{ξ : P
[
log2(1 + P |H1|2) ≤ ξ

]
≤ ϵ} = log2(1− P ln(1− ϵ))[19].

2.4.2 Proofs of certain claims

Proof of claim 2. We have ∥Y ∥2 − ∥PA0
Y ∥2 =

∥∥∥P⊥
A0
Ẑ
∥∥∥2 ≤ ∥∥∥Ẑ∥∥∥2 − ∥∥∥PA1Ẑ

∥∥∥2 =
∥∥∥P⊥

A1
Ẑ
∥∥∥2.

Also,
∥∥P⊥

A1
Y
∥∥2 =

∥∥∥P⊥
A1

∑
i∈S∗

2
Hici + P⊥

A1
Ẑ
∥∥∥2. Hence we have

p2 = P

 ⋃
t,S,K1

{
∥Y ∥2 − ∥PA0

Y ∥2

∥Y ∥2 − ∥PA1
Y ∥2

≥ Vn,t

}
= P

 ⋃
t,S,K1


∥∥∥Ẑ∥∥∥2 − ∥∥∥PA0

Ẑ
∥∥∥2 ≥ Vn,t

∥∥∥∥∥∥P⊥
A1

∑
i∈S∗

2

Hici + P⊥
A1
Ẑ

∥∥∥∥∥∥
2



≤ P

 ⋃
t,S,K1


∥∥∥P⊥

A1
Ẑ
∥∥∥2 ≥ Vn,t

∥∥∥∥∥∥P⊥
A1

∑
i∈S∗

2

Hici + P⊥
A1
Ẑ

∥∥∥∥∥∥
2



= P

 ⋃
t,S,K1

(1− Vn,t)
∥∥∥P⊥

A1
Ẑ
∥∥∥2 − 2Vn,tRe

〈
P⊥
A1
Ẑ, P⊥

A1

∑
i∈S∗

2

Hici

〉
≥ Vn,t

∥∥∥∥∥∥P⊥
A1

∑
i∈S∗

2

Hici

∥∥∥∥∥∥
2



= P

 ⋃
t,S,K1

(1− Vn,t)2
∥∥∥P⊥

A1
Ẑ
∥∥∥2 − 2Vn,t(1− Vn,t)Re

〈
P⊥
A1
Ẑ, P⊥

A1

∑
i∈S∗

2

Hici

〉
≥ Vn,t(1− Vn,t)

∥∥∥∥∥∥P⊥
A1

∑
i∈S∗

2

Hici

∥∥∥∥∥∥
2



= P

 ⋃
t,S,K1


∥∥∥∥∥∥(1− Vn,t)P⊥

A1
Ẑ − Vn,tP⊥

A1

∑
i∈S∗

2

Hici

∥∥∥∥∥∥
2

≥ Vn,t

∥∥∥∥∥∥P⊥
A1

∑
i∈S∗

2

Hici

∥∥∥∥∥∥
2

 (2.181)

Proof of claim 3. Conditional of H[K] and A0, Ẑ ∼ CN
(
0,
(
1 + P ′∑

i∈S\S∗
2
|Hi|2

))
. Hence

P⊥
A1

Ẑ − Vn,t
1− Vn,t

∑
i∈S∗

2

Hici

∼ CN
− Vn,t

1− Vn,t
P⊥
A1

∑
i∈S∗

2

Hici,

1 + P ′
∑

i∈S\S∗
2

|Hi|2
P⊥

A1

 .

(2.182)

Now, the rank of P⊥
A1

is n −K1 + t because the vectors in A1 are linearly independent almost

surely. Let U be a unitary change of basis matrix that rotates the range space of P⊥
A1

to the space

corresponding to first (n−K1 + t) coordinates. Then
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∥∥∥∥∥∥CN
− Vn,t

1− Vn,t
P⊥
A1

∑
i∈S∗

2

Hici,

1 + P ′
∑

i∈S\S∗
2

|Hi|2
P⊥

A1

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥U
CN

− Vn,t
1− Vn,t

P⊥
A1

∑
i∈S∗

2

Hici,

1 + P ′
∑

i∈S\S∗
2

|Hi|2
P⊥

A1

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥CN
− Vn,t

1− Vn,t
UP⊥

A1

∑
i∈S∗

2

Hici,

1 + P ′
∑

i∈S\S∗
2

|Hi|2
UP⊥

A1
U∗

∥∥∥∥∥∥
2

. (2.183)

Observe that UP⊥
A1
U∗ is a diagonal matrix with first (n − K1 + t) diagonal entries being ones

and rest all 0. Also, if W = P + iQ∼ CN (µ,Γ) (with pseudo-covariance being 0) then

P
Q

∼N
Re(µ)

Im(µ)

 , 1
2

Re(Γ) −Im(Γ)

Im(Γ) Re(Γ)

 . (2.184)

Using this and the definition of non-central chi-squared distribution the claim follows.

Proof of Claim 4. We have

fn(x) = x+ 1 +
2Vn,t

1− Vn,t
(1 + x)−

√
1 +

2Vn,t
1− Vn,t

(1 + x)

√
2x+ 1 +

2Vn,t
1− Vn,t

(1 + x)

=
1

1− Vn,t

(1 + Vn,t)(x+ 1))− 2
√
Vn,t

√(
x+

(1 + Vn,t)2

4Vn,t

)2

−
(1− V 2

n,t)
2

16V 2
n,t

 (2.185)

Hence

f ′(x) =
1

1− Vn,t

[
1 + Vn,t − 2

√
Vn,t

a√
a2 − b2

]
=

1

1− Vn,t

(√
Vn,t −

√
a+ b

a− b

)(√
Vn,t −

√
a− b
a+ b

)
(2.186)

where a =
(
x+

(1+Vn,t)
2

4Vn,t

)
and b =

1−V 2
n,t

4Vn,t
. Also a > 0 and b > 0. Further a+ b > a− b and

√
Vn,t <

√
a− b
a+ b

=

√
Vn,t(1 + Vn,t + 2x)

1 + Vn,t + 2Vn,tx

⇐⇒ 2Vn,tx+ 1 + Vn,t < 2x+ 1 + Vn,t

⇐⇒ 0 < Vn,t < 1
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which is true. Hence both the factors in (2.186) are negative. Therefore f ′(x) > 0.

2.5 Maximal per-user error

In this chapter we briefly describe relations between maximal per-user error (PUPE-max) defined

in (2.5) and PUPE. First, we represent our system as in (2.171)

Y = AHW + Z. (2.187)

Let Pe,i(A) = P
[
Wi ̸= Ŵi

]
. We are interested in bounding the variance of Pe,i(A) so that

E
[
Pmax
e,u (A)

]
= E [max{Pe,i(A) : i ∈ [K]}]

can be related to E [Pe,i(A)] = E [Pe,u] due to symmetry on users by random codebook generation.

Consider two coupled systems

Y = AHW + Z (2.188)

Y ′ = A′HW + Z (2.189)

where A and A′ are fixed so that the channels are dependent on these.

Now we have

|Pe,i(A)− Pe,i(A
′)| ≤ dTV (PY,H,W , PY ′,H,W ) ≤

√
1

2
D (PY,H,W ||PY ′,H,W ) (2.190)

where dTV (P,Q) = sup{|P (A) − Q(A)| : A is measurable} is the total variation distance between

measures P and Q, D(P ||Q) = EP

[
ln dP

dQ

]
is the Kullback-Leibler divergence (in nats) and the last

inequality is the Pinsker’s inequality (see [161]). Now using properties of D (see [162, Theorem 2.2])

D (PY,H,W ||PY ′,H,W ) = D(PY |H,W ||PY ′|H,W |PH,W )

=

∫
H,W

D(PY |H=h,W=w||PY ′|H=h,W=w)dPH,W (h,w) (2.191)

Now note that conditioned on H = h,W = w, we have Y ∼CN (Ahw, In) and Y ′∼CN (A′hw, In).

Hence a simple computation shows that D(PY |H=h,W=w||PY ′|H=h,W=w) = ∥Ahw −A′hw∥2. There-

fore we have

D (PY,H,W ||PY ′,H,W ) = E
[
∥(A−A′)HW∥2

]
. (2.192)
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Now let B = A−A′ and X = HW . Then

E
[
∥BX∥2

]
=
∑
i∈[n]

E

 ∑
j,k∈[KM ]

Bi,jB̄i,kXiX̄k

 (2.193)

Note that E
[
XjX̄k

]
is zero if j ̸= k and it is 1/M otherwise. Hence

E
[
∥BX∥2

]
=

1

M

∑
i∈[n]

∑
j∈[KM ]

Bi,jB̄i,j =
1

M
∥B∥2F . (2.194)

Therefore

D (PY,H,W ||PY ′,H,W ) =
1

M
∥A−A′∥2F . (2.195)

So combining this with (2.190), we obtain

|Pe,i(A)− Pe,i(A
′)| ≤

√
1

2M
∥A−A′∥F . (2.196)

Now let each entry of A and A′ to be distributed iid as CN (0, P ) where P = Ptot/K. Further,

let Ã =
√

K
Ptot

A and Ã′ =
√

K
Ptot

A′. So the entries of Ã and Ã′ are iid CN (0, 1). Therefore, with

slight abuse of notation, we can rewrite (2.196) as

|Pe,i(Ã)− Pe,i(Ã′)| ≤
√

Ptot

2MK

∥∥∥Ã− Ã′
∥∥∥
F
. (2.197)

Hence the function Pe,i is Lipschitz with Lipschitz constant L =
√

Ptot

2MK . By concentration of

Lipschitz functions of Gaussian random vectors [148, Theorems 5.5, 5.6], we have that Pe,i(Ã) is

sub-Gaussian with

Var(Pe,i(A)) ≤ 4L2 =
2Ptot

KM
. (2.198)

Hence, using bounds on expected maximum of sub-Gaussian random variables (see [148, Section

2.5]), we obtain

E
[

max
i∈[K]

Pe,i(A)

]
≤ E [Pe,u] +

√
Var(Pe,i(A)) lnK

= E [Pe,u] +

√
2Ptot

M

lnK
K

K→∞−−−−→ E [Pe,u] . (2.199)

Therefore, a random coding argument along with (2.199) shows that PUPE-max has same asymp-

totics as PUPE in the linear scaling regime. For FBL performance, if each user sends k = 100 bits

then M = 2k and hence E
[
Pmax
e,u

]
≈ E [Pe,u]
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Chapter 3

Many user AWGN MAC

In this chapter we present new achievability bounds for the many user AWGN MAC based on

spatially coupled codes and scalar AMP decoding; this bound turns out to be tighter than [14].

3.1 System model

The AWGN MAC is defined as follows. The channel law PY n|Xn is described by

Y n =

K∑
i=1

Xn
i + Zn (3.1)

where Zn ∼N (0, In). We assume that there is a maximum power constraint:

∥Xn
i ∥

2 ≤ nP. (3.2)

We drop superscript n for brevity. As mentioned in section 2.1.1, we can represent the system

in the language of compressed sensing as

Y = AU + Z (3.3)

where A ∈ Rn×KM denotes the codebook and U ∈ {0, 1}KM is block sparse: for each i ∈ [K] it

satisfies
∑M

j=1 U(i−1)M+j = 1.

As before, we consider the linear scaling regime where the number of users K scales with n, and

n→∞. We are interested in the tradeoff of minimum Eb/N0 required for the PUPE to be smaller

than ϵ, with the user density µ. So, we fix the message size k. Let S = kµ be the spectral efficiency.

We focus on the case of different codebooks, but under symmetric rate. So if M denotes the size

of the codebooks, then S = K log M
n = µ logM . Hence, given S and µ, M is fixed. Let Ptot = KP
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denote the total power. Therefore denoting by E the energy-per-bit, E = Eb/N0 = nP
2 log2 M . We

consider the power P decaying as O(1/n) (required for finite Eb/N0).

Let Cj = {cj1, ..., c
j
M} be the codebook of user j, of size M . The power constraint is given

by ∥cji∥2 ≤ nP = 2E log2M, ∀j ∈ [K], i ∈ [M ]. The collection of codebooks {Cj} is called an

(n,M, ϵ, E ,K)–code if it satisfies the power constraint described before, and the per-user probability

of error is smaller than ϵ. Then, we can define the following fundamental limit for the channel

E∗(M,µ, ϵ) = lim
n→∞

inf {E : ∃(n,M, ϵ, E ,K = µn)− code} .

3.2 Achievability bound: Spatially coupled AMP

Similar to section 2.3.3 we obtain an achievability bound on E based on the spatially coupled code-

book design in conjunction with AMP decoder.

The spatially coupled codebook is almost the same as in 2.3.3. We state it again for convenience.

Let R,C ∈ {1, 2, · · · } be such that R divides n and C divides KM . The codebook A is divided into

blocks of size n
R ×

KM
C and hence can be considered as a block matrix of size R×C. Let B ∈ RR×C

be the base matrix with nonnegative entries Br,c such that
∑R

r=1Br,c = 1 for all c ∈ {1, 2, · · · , C}.

Further, with abuse of notation, let r : [n] → [R] and c : [KM ] → [C] denote functions that map

a particular row or column index to its corresponding block. Then the matrix A is constructed as

Ai,j ∼N
(
0, ER

nBr(i),c(j)

)
(where E = Ptot

µ ) with {Ai,j} independent across tuples (i, j). As in 2.3.3

we use the (ω,Λ, ρ) base matrix from [27] as the choice of B (see (2.106)). Let µ̃ = R
Cµ be the

effective user density.

Next we present the AMP algorithm adapted to the spatially coupled codebook (SC-AMP) in

the AWGN setting from [27]. Consider the scalar channel (with abuse of notation from (2.107))

Vσ2 = X + σW (3.4)

where now X ∼ Ber(1/M), W ∼N (0, 1) with X ⊥ W . Again, the main difference from [27] is that

we ignore the block sparse structure of U and just use the fact that the empirical distribution of

entries in U converge to Ber(1/M). This is sufficient for the state evolution to be valid [153], and

similar to the results in previous section, the state evolution is defined on the scalar channel (3.4)

(instead of the vector channel in [27] which would be infeasible for numerical evaluation when M is

very large but finite).

Start with U (0) = 0 ∈ CKM , R(0) = Y . Then for t = 1, 2, · · · we have the following iterations

U (t) = η(t)
(
(Q̃(t−1) ⊙A)TR(t−1) + U (t−1)

)
(3.5)

R(t) = Y −AU (t) +
R

C
µM(b̃(t) ⊙R(t−1)) (3.6)
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where ⊙ denotes element wise product, and matrix Q̃(t), vector b̃(t) and denoiser η(t) : RKM →

RKM will be defined next via the state evolution.

Let ψ(0)
c =∞. Then for t ≥ 1, for each r ∈ [R] and c ∈ [C] we define

γ(t)r =

C∑
c=1

Br,cψ
(t)
c (3.7)

ϕ(t)r =
1

E
+ µ̃Mγ(t)r (3.8)

τ (t)c =
1∑R

r=1Br,c

(
ϕ
(t)
r

)−1 (3.9)

ψ(t+1)
c = mmse(τ (t)c ) (3.10)

where mmse(·) is defined as

mmse(σ2) = E
[
(X − E [X|Vσ2 ])

2
]

(3.11)

where V is the output of the scalar channel (3.4).

Now the matrices Q̃(t) and vectors b̃(t) are defined as follows. For each i ∈ [n] and j ∈ [KM ]

b̃
(t)
i = µ̃M

γ
(t)
r(i)

ϕ
(t−1)
r(i)

Q̃
(t)
i,j =

τ
(t)
c(j)

ϕ
(t)
r(i)

The denoiser at time t is given by η(t) = (η
(t)
1 , · · · , η(t)KM ) with

η
(t)
i (z) = E

[
X|X +

√
τ
(t)
c(i)W = z

]
= η(z, τ

(t)
c(i)) (3.12)

where η(·, ·) is scalar denoiser

η(z, σ2) = E [X|Vσ2 = z] = E [X|X + σW = z] (3.13)

The estimate of U after t steps is given by (see [22, 27] for more details on hard decision estimate)

Û (t) = (Q̃t ⊙A)TR(t) + U (t) (3.14)

Let Ŝ(t) denote the estimate of U . To convert Û (t) into Ŝ(t) we perform a simple thresholding

for each c ∈ [C] i.e., for each i

Ŝ
(t)
i (θc(i)) = 1[Û

(t)
i > θc(i)] (3.15)

where {θc : c ∈ [C]} is a set of thresholds.
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To state the main achievability bound, define the replica potential

Fawgn(τ ;µ,E,M) = (µM)I(X;X +
√
τW ) +

1

2

(
ln τ + 1

τE
− 1

)
(3.16)

where X ∼ Ber(1/M), W ∼N (0, 1) and X ⊥W .

Theorem 3.2.1. Fix any µ > 0, E > 0 and k = log2M ≥ 1. Then for every E > E
2k there exist a

sequence of (n,M, ϵn, E ,K = µn) codes for the AWGN MAC such that

lim sup
n→∞

ϵn ≤ 2ϵ∗(τ (∞)(µ),M) ,

where ϵ∗(τ,M) is the solution to

1√
τ
= Q−1 (ϵ∗) +Q−1

(
ϵ∗

M − 1

)
(3.17)

and τ (∞)(µ) =MAWGN(µ,E,M) ≡ max(arg minτ> 1
E
Fawgn(τ ;µ,E,M)).

Proof. The proof is similar to that of theorem 2.3.6 and theorem 2.3.4. In particular, we have

PUPE(Ŝ(t)) ≤ME
[
dH(U, Ŝ(t)))

]
(3.18)

From state evolution, it can be shown that

lim
n→∞

C

KM

cKM
C∑

i=(c−1)KM
C +1

P
[
Ui ̸= Ŝ

(t)
i

]
= P

[
X ̸= Ŝ0

]
(3.19)

where Ŝ0 = 1[X +

√
τ
(t)
c W > θc] is the estimator for X is the scalar channel (3.4). Notice that the

Bayes’ optimal estimator for X is of the form Ŝ0 for some carefully chosen θc.

As in the proof of theorem 2.3.6, we take limit as t → ∞, apply (an equivalent of) lemma 2.3.5

and then optimize over θc we obtain

lim
t→∞

lim
n→∞

PUPE(Ŝ(t)) ≤ 1

C

C∑
c=1

Mϵ̃∗(τ (∞)
c ,M) (3.20)

where ϵ̃∗(τ,M) is the minimum probability of error for decoding X from the scalar channel (3.4):

V = X +
√
τW . It can be shown that ϵ̃∗(τ,M) satisfies

1√
τ
= Q−1

(
Mϵ̃∗

2

)
+Q−1

(
Mϵ̃∗

2(M − 1)

)
(3.21)

Now define ϵ∗(τ,M) = Mϵ̃∗(τ,M)
2 . Using monotonicity of ϵ∗ with respect to τ and the second
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item in lemma 2.3.5 (along with threshold saturation) concludes the proof.
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Chapter 4

Numerical evaluation

4.1 Fading MAC: Numerical evaluation and discussion

In this section, we provide the results of numerical evaluation of the bounds in the chapter 2. We

focus on the trade-off of user density µ with the minimum energy-per-bit E∗ for a given message size

k and target probability of error Pe.

For k = 100 bits, we evaluate the trade-off from the bounds in this paper for Pe = 0.1 and Pe =

0.001 in figures 4-2 and 4-1 respectively. For TDMA, we split the frame of length n equally among

K users, and compute the smallest Ptot the ensures the existence of a single user quasi-static AWGN

code of rate S, blocklength 1
µ and probability of error ϵ using the bound from [19]. The simulations of

the single user bound is performed using codes from [163]. TIN is computed using a method similar

to theorem 2.3.7. In particular, the codeword of user i is decoded as ĉi = arg minc′∈Ci
∥Y −Hici∥2

where we assume that the decoder has the knowledge of CSI. The analysis proceeds in a similar way

as theorem 2.3.7.

Achievability bounds. It can be seen that for small µ the scalar-AMP bound of Theorem 2.3.4

is better than the projection decoder bounds of Theorems 2.3.7 and 2.3.1. The latter bounds have

another artifact. For example, the no-CSI bound on E∗ from Theorem 2.3.1 increases sharply as

µ ↓ 0, in fact one can show that the said bound behaves as E = Ω(
√
− lnµ).

Engineering insights. From these figures, we clearly observe the perfect MUI cancellation effect

mentioned in the introduction and previously observed for the non-fading model [3, 16]. Namely, as µ

increases from 0, the E∗ is almost a constant, E∗(µ, ϵ, k) ≈ Es.u.(ϵ, k) for 0 < µ < µs.u.. As µ increases

beyond µs.u. the tradeoff undergoes a “phase transition” and the energy-per-bit E∗ exhibits a more

familiar increase with µ. Further, standard schemes for multiple-access like TDMA and TIN do not

have this behavior. Moreover, although these suboptimal schemes have an optimal trade-off at µ→ 0

they show a significant suboptimality at higher µ. We note again that this perfect MUI cancellation
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which was observed in standard AWGN MAC [3, 16] is also present in the more practically relevant

quasi-static fading model. So, we suspect that this effect is a general characteristic of the many-user

MAC.

Suboptimality of orthogonalization. The fact that orthogonalization is not optimal is one of the

key practical implications of our work. It was observed before in the GMAC and here we again

witness it in the more relevant QS-MAC. How to understand this suboptimality? First, in the

fading case we have already seen this effect even in the classical regime (but under PUPE) – see

(2.16). To give another intuition we consider a K = µn user binary adder MAC

Y =

K∑
i=1

Xi (4.1)

where Xi ∈ {0, 1} and addition is over Z. Now, using TDMA on this channel, each user can send at

most n/K = 1/µ bits. Hence the message size is bounded by

logM ≤ 1

µ
. (4.2)

Next, let us consider TIN. Assume Xi ∼ Ber(1/2). For user 1, we can treat
∑µn

i=2Xi as noise.

By central limit theorem, this noise can be approximated as
√

1
4µnZ where Z ∼N(0, 1). Thus we

have a binary input AWGN (BIAWGN) channel

Y = X1 +

√
1

4
µnZ. (4.3)

Therefore, the message size is bounded as

logM ≤ nCBIAWGN

(
1 +

4

µn

)
≤ n

2
log
(
1 +

4

µn

)
→ 2

µ ln 2
(4.4)

where CBIAWGN is the capacity of the BIAWGN channel. Note that in both the above schemes the

achievable message size is a constant as n→∞.

On the other hand, the true sum-capacity of the K-user adder MAC is given by

Csum = max
X1,··· ,XK

H(X1 + · · ·+XK) .

As shown in [164] this maximum as achieved at Xi
iid∼ Ber(1/2). Since the the entropy of binomial

distributions [165] can be computed easily, we obtain

Csum =
1

2
logK + o(logK) .

In particular, for our many-user MAC setting we obtain from the Fano inequality (and assuming
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PUPE is small)

logM ⪅ log(µn)
2µ

.

Surprisingly, there exist explicit codes that achieve this limit and with a very low-complexity (each

message bit is sent separately),– a construction rediscovered several times [166–168]. Hence the

optimal achievable message size is

logM ≈ logn
2µ
→∞ (4.5)

as n→∞. And again, we see that TDMA and TIN are severely suboptimal for the many-user adder

MAC as well.
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Figure 4-1: Fading Many MAC: µ vs Eb/N0 for ϵ ≤ 10−3, k = 100
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Figure 4-2: Fading Many MAC: µ vs Eb/N0 for ϵ ≤ 10−1, k = 100
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4.2 Numerical evaluation of AWGN MAC

In this section we present the numerical evaluation of the bound from theorem 3.2.1 and compare

it to the main achievability bound from [14].
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Figure 4-3: AWGN Many-MAC:µ vs Eb/N0 for ϵ ≤ 10−3, k = 100

4.3 The “curious behavior” in phase transition

As we emphasized in the Introduction, the most exciting conclusion of our work is the existence of

the almost vertical part on the µ vs Eb

N0
plots of Fig. 4-2 and 4-1. In this section we want to explain

how this effect arises, why it can be called the “almost perfect MUI cancellation” and how it relates

(but is not equivalent) to well-known phase transitions in compressed sensing.

To make things easier to evaluate, however, we depart from the model in the previous sections and

do two relaxations. First, we consider a non-fading AWGN. Second, we endow all users with the same

codebook. The second assumption simply means that the decoding from now on is only considered

up to permutation of messages, see [3] for more on this. Technically, these two assumptions mean

that we are considering a model (2.6) with U vector that is K-sparse (as opposed to block-sparse)

and that all non-zero entries of U are equal to 1. Finally, we will consider the real-valued channel.

In all, we get the following signal model [14, Section IV]:

Y n = AUp + Zn , Zn ∼N (0, In) , (4.6)

with Ai,j
iid∼ N (0, b2/n), (i, j) ∈ [n]× [p], Ui

iid∼ Ber(K/p), so that E[∥Up∥0] = K. We take the

proportional scaling limit with K = µn and p = KM . Interpretation of these parameters in the

context of communication problem are:
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• M as the number of messages that each user wantes to communicate

• µ is the user density per (real) degree of freedom

• b2 = Ptot

µ where Ptot is the total received power from all K users at the receiver.

Consequently, we may define energy-per-bit as Eb

N0
≜ b2

2 log M .

Given (Y n, A), the decoder outputs an estimate Ûp ∈ {0, 1}p with E[
∥∥∥Ûp

∥∥∥
0
] = K and we are

interested in the minimal achievable PUPE, or

P ∗
e (µ,M, b) ≜ lim sup

n→∞
min

Ûp:E[∥Û∥0]=K

1

K

∑
i∈[p]

P
[
Ui = 1, Ûi = 0

]
(4.7)

To discuss performance of the optimal decoder, we need to return to the scalar channel (2.89) with

the following modifications: X ∼ Ber(1/M), W ∼ N (0, 1). Now, for every value of σ in (2.89) we

may ask for the smallest possible error ϵ∗(σ,M) = minP
[
X̂ ̸= X

]
where minimum is taken over all

estimators X̂ = X̂(V ) such that P
[
X̂ = 1

]
= 1

M . As discussed in [14, Section IV.B], this minimal

ϵ∗(σ,M) satisfies [14] is found from solving:

1

σ
= Q−1

(
ϵ∗

M − 1

)
+Q−1 (ϵ∗) (4.8)

where Q(·) is the complementary CDF of the standard normal distribution.

Now the limit P ∗
e in (4.7) can be computed via the replica method.1 Namely, replica predictions

tell us that

P ∗
e (b, µ) = ϵ∗(σ,M) ,

where σ2 = 1
η∗b2 and the multiuser efficiency η∗ = η∗(M, b, µ) is given by

η∗ = arg min
η∈[0,1]

µMI

(
1

ηb2

)
+

1

2
(η − 1− ln η) (4.9)

where I(σ2) = I(X;X + σW ) is the mutual information between the signal and observation in the

scalar channel (2.89).

In the figure 4-4 we have shown the plots of optimal PUPE Pe for the model (4.6) versus Eb/N0

for various values of µ when M = 2100, computed via replica predictions. What is traditionally

referred to as the phase transition in compressed sensing is the step-function drop from Pe ≈ 1 to

Pe ≪ 1. However, there is a second effect here as well. Namely that all the curves with different µ
1Note that in [169, 170] it was shown that the replica-method prediction is correct for estimating I(Ui;Y

n, A)
and Var[Ui|Y n, A], but what we need for computing the Pe is asymptotic distribution of a random variable
P [Ui = 1|Y n, A]. First, it is known that AMP initialized at the true value U converges to an asymptotically
MMSE-optimal estimate. Second, distribution of the AMP estimates are known to belong to a PX|V in (2.89)
(with σ identified from the replica method). Finally, any asymptotically MMSE-optimal estimator Û should satisfy
Ûi

(d)→ E[Ui|Y n, A] = P [Ui = 1|Y n, A], and thus P [Ui = 1|Y n, A] should match the replica-method predicted one.
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seem to have a common envelope. The former has not only been observed in compressed sensing,

e.g. [22, 137, Fig.1] and [171, Fig.4] among others, but also in a number of other inference problems:

randomly-spread CDMA [136], LDPC codes [172] and random SAT [173]. However, the second effect

appears to be a rather different phenomenon, and in fact it is exactly the one that corresponds to

the existence of the vertical part of the curves on Fig. 4-1-4-2.
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Figure 4-4: AWGN same codebook model: Pe vs Eb/N0 for M = 2100

Let us, for the moment, assume that the envelope is actually exactly the same for all µ. Fix a

value of PUPE Pe = 10−3 (say) and consider how the intercept of the horizontal line at Pe = 10−3 on

Fig. 4-4 changes with µ. It is easy to see that as long as the value of µ is small enough the intercept

will not be moving (corresponding to constancy of the Eb/N0 as a function of µ). However, once the

value of µ exceeds a value (dependent on the fixed value of Pe) the intercept starts moving to the

right together with the step-drop portion of the curves. From this we conclude that indeed, existence

of the (almost) common envelope on Fig. 4-4 results in the (almost) vertical part on Fig. 4-1-4-2.

(As a side note, we also note that since the slanted portions of the tradeoff curves on those figures

correspond to the vertical drop on the Fig. 4-4 and hence the slanted portion is virtually independent

of the fixed value of Pe – as predicted by (1.4).)

How can the curves have common envelope? Notice that in the expression for P ∗
e only η∗ is a

function of µ. Thus, we conclude that for small µ we must have η∗(µ) ≈ const. But as µ → 0 we

should get a η∗ → 1. Thus we see that common envelopes are only possible if to the right of the

step-drops on Fig. 4-4 we get η∗ ≈ 1. Is that indeed so? Fig. 4-5 provides an affirmative answer.

In reality, the “vertical part” is not truly vertical and the common envelope is not exactly

common. In truth the right portions of the curves on Fig. 4-4 (following the drop) are all very

slightly different, but this difference is imperciptible to the eye (and irrelevant to an engineer).
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What makes them so close is the incredible degree of sparsity 1
M = 2−100. Indeed, as Fig. 4-5

demonstrates that as M →∞ the value of η∗ to the right of the step transition approaches 1.

To summarize, we conclude that what determines our “curious behavior” is not a sudden change

in the estimation performance (typically credited as “phase transition” in compressed sensing),

but rather a more subtle effect arising in the super-low sparsity limit: the step-transition of the

parameter η∗ from a moderate value in the interior of (0, 1) to a value close to 1. The fact that only

the incredibly low sparsity values 1
M are relevant for the many-MAC problems makes this new effect

practically interesting.

To close our discussion, we want to further argue that the transition η∗ ≈ 1 is not related to the

so-called “all-or-nothing” property in the sublinear-sparsity regime, cf. [174]. More formally, that

property corresponds to a transition of Var[Ui|Y n,A]
Var[Ui]

≈ 0 to Var[Ui|Y n,A]
Var[Ui]

≈ 1 in a certain limiting

regime of sparsity → 0. To understand relation to our previous discussion, let us again consider the

scalar channel (2.89). We are interested (because of finite Eb

N0
) in the following regime:

σ2 lnM → c ,M →∞

Using the approximation

Q−1(δ) ≈

√
2 ln 1

δ
− ln

(
4π ln 1

δ

)
(4.10)

one can easily check that in this scaling

lim
M→∞

ϵ∗
(
σ2 =

c

lnM ,M
)
→

0, c > 1/2

1, c < 1/2

,

which incidentally corresponds to the two cases Eb

N0
≶ −1.59 dB. Since ϵ∗ → {0, 1} is tantamount to

normalized MMSE converging to {0, 1}, we can see that from replica-prediction the all-or-nothing

transitions corresponds to whether

lim
M→∞

lnM
η∗b2

≶ 1

2

and has no immediate bearing on lim η∗ = 1. It would be interesting to formulate a conjecture that

would be morally equivalent to η∗ → 1 but without going into the unnatural double limit that we

discussed above (i.e. first taking n→∞ with p = Θ(n) and K = Θ(n) and then taking sparsity 1
M

to zero).
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Figure 4-5: AWGN same codebook model: η∗ vs Eb/N0 for M = 2100
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Figure 4-6: AWGN same codebook model: η∗ vs Eb/N0 for µ = 0.006
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Chapter 5

Linear system identification

5.1 Problem setting and notation

In this section, we first introduce the data generation model, the required assumptions and then

provide the precision problem definition. Throughout the paper, we use ∥A∥ to denote the operator

norm of A unless otherwise specified. ∥A∥F denotes the Frobenius norm of A. σi(A) denotes the i-th

largest singular value of A, i.e., σmax(A) = σ1(A). κ(A) := σmax(A)/σmin(A) denotes the condition

number of A. ρ(A) denotes the spectral radius of A. For two symmetric matrices A,B ∈ Rd×d we

say A ⪯ B if B − A is positive semidefinite (psd). For notational simplicity, we use C to denote a

constant, and it’s value can be different in different equations.

Linear dynamical system/VAR(1) model. Given an initial (possibly random) data point X0

which is independent of the noise sequence, we generate the (X0, . . . , XT ) from the VAR model as:

Xτ+1 = A∗Xτ + ητ , 0 ≤ τ ≤ T − 1, (5.1)

where A∗ ∈ Rd×d be the transition matrix. Let η1, . . . , ηT ∈ Rd be an i.i.d noise sequence with 0 mean

and finite second moment with probability measure µ. We will denote this model by VAR(A∗, µ).

We also make the following assumptions about A∗, µ, and X0:

Assumption 1. External Stability. ∥A∗∥ < 1

Assumption 2. Sub-Gaussian Noise. µ has co-variance Σ and for all x ∈ Rd, ⟨x, ητ ⟩ is

Cµ⟨x,Σ · x⟩ sub-Gaussian. Further, Σ is full rank. Also, let µ4 := E
[
∥ητ∥4

]
be the fourth moment

of the noise.

Assumption 3. Stationarity. X0 ∼ π, the stationary distribution corresponding to (A∗, µ). Let

M4 := E
[
∥X0∥4

]
.
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Due to Assumption 1, we can show that the law of the iterate XT from the VAR model defined

above converges to a stationary distribution π as T → ∞ for arbitrary choice of X0 and has a

mixing time of the order τmix = O
(

1
1−∥A∗∥

)
. For simplicity, we will absorb Cµ into other constants.

Finally, we will use (Z0, . . . , ZT ) ∼ VAR(A∗, µ) to mean that Z0, . . . , ZT is a stationary sequence

corresponding to VAR(A∗, µ). We also note that the covariance matrix under stationarity, G :=

EX∼πXX
⊤ =

∑∞
s=0A

∗sΣ(A∗⊤)s ⪰ Σ.

Remark 8. It is indeed possible to replace Assumption 1 with the weaker condition on the spectral

radius of A∗: ρ(A∗) < 1. While our results still hold in this case, the bound might have additional

condition number factors. See Section 5.3.1 for more details.

Remark 9. The full rank assumption on Σ is needed for polynomial sample complexity [55].

Problem statement. Let (X0, X1, · · · , XT ) be sampled from VAR(A∗, µ) model for a fixed hori-

zon T . Then, the goal is to design and analyze an online algorithm that uses only first order gradient

oracle to estimate the system matrix A∗. That is, at each time-step τ , we obtain gradient for the

transition (Xτ , Xτ+1) and output estimate Aτ . The goal is to ensure that each Aτ has small es-

timation error wrt A∗; naturally, we would expect better estimation error with increasing τ . We

quantify estimation error using the following two loss functions:

1. Parameter error: Lop(A;A∗, µ) = ∥A−A∗∥

2. Prediction error at stationarity: Lpred(A;A∗, µ) := EXτ∼π∥Xτ+1 −AXτ∥2

Note that the problem is equivalent to d linear regression problems, but with dependent sam-

ples, making it significantly more challenging. Whenever Assumption 1 holds, stationary distri-

bution π exists, so the prediction error Lpred is meaningful. Furthermore: Lpred(A) − Lpred(A∗) =

Tr
[
(A−A∗)⊤(A−A∗)G

]
where G := EX∼πXX

⊤.

5.2 Algorithm

As mentioned in related works, the standard OLS estimator that minimizes the empirical loss is

known to be nearly optimal in the offline setting [51]:

ÂOLS = arg min
A

T−1∑
τ=0

∥AXτ −Xτ+1∥2 . (5.2)

Note that for least squares loss, one can indeed maintain covariance matrix and residual vector to

compute the OLS solution online. But such a solution does not work if we have access to only

gradients and breaks down even for generalized linear models, whereas as the techniques introduced

in this work has been extended to non-linear systems [63].
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Figure 5-1: Data Processing Order in SGD − RER. A cell represents a data point. Time goes from
left to right, buffers are also considered from left to right. Within each buffer, the data is processed
in the reverse order. Gaps ensure that data in successive buffers are approximately independent.

On the other hand, using standard SGD we can obtain update to A efficiently by using gradient

at the current point. That is, assuming A0 = 0, we get the following SGD update (for all τ ≥ 0):

Aτ+1 = Aτ − 2γ(AτXτ −Xτ+1)X
⊤
τ , (5.3)

where γ is the stepsize. While SGD is known to be an optimal estimator in certain streaming

problems with i.i.d. data, for the VAR(A∗, µ) problem the standard SGD does not apply, as samples

(Xτ , Xτ+1) and (Xτ+1, Xτ+2) are highly correlated. To see why this is the case, let us unroll the

recursion for two steps and using Equation (5.1):

A2 −A∗ = (A0 −A∗)(I − 2γX0X
⊤
0 )(I − 2γX1X

⊤
1 ) + 2γη1X

⊤
1 + 2γη0X

⊤
0 (I − 2γX1X

⊤
1 ).

Note that the last term does not have 0 mean because X1 depends on η0 by Equation (5.1). Even

in the case when A0 = A∗, this means that EA2 ̸= A∗ in general. In fact, in Section 7.1, we show

empirically that SGD with constant step-size converges to a significantly larger error than OLS,

even when T is very large. This shows that we cannot naively treat this problem as a collection of

d linear regressions. This is consistent with the results in [66, 67] which show a similar behavior for

constant step-size SGD with dependent data. Now, one can use techniques like data drop that drops

a large fraction of points (either explicitly or during the mathematical analysis) from the stream

to obtain nearly independent samples [66, 175], but such methods waste a lot of samples and have

significantly suboptimal error rate than OLS.

So, the goal is to design a streaming method for the problem of learning dynamical systems

that at each time-step t provides an accurate estimate of A∗, while also ensuring small space+time

complexity.We now present a novel algorithm that addresses the above mentioned problem.

5.2.1 SGD with Reverse Experience Replay

We now discuss a novel algorithm called SGD with Reverse Experience Replay (SGD − RER) that

addresses the problem of learning stationary auto-regressive models (or linear dynamical systems)

in the streaming setting. Our method is inspired by the experience replay technique [128], used
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extensively in RL to break temporal correlations between dependent data. We make the fol-

lowing crucial observation. Suppose in Equation (5.3), instead of processing the samples in the

order (X1, X2) → (X2, X3) → · · · → (XT−1, XT ), we process it in the reverse order. That is:

(XT−1, XT )→ (XT−2, XT−1)→ · · · → (X1, X2). Then,

A2 −A∗ = (A0 −A∗)(I − 2γXT−1X
⊤
T−1)(I − 2γXT−2X

⊤
T−2) + 2γηT−2X

⊤
T−2

+2γηT−1X
⊤
T−1(I − 2γXT−2X

⊤
T−2) (5.4)

Now, observe that (XT−2, XT−1) are independent of ηT−1. Therefore the problematic last term,

2γηT−1X
⊤
T−1(I − 2γXT−2X

⊤
T−2), now has expectation 0. So the updates for reverse order SGD

would be unbiased. This, however, requires us to know all the data points beforehand which is

infeasible in the streaming setting. We alleviate this issue by designing SGD − RER, which is the

online variant of the above algorithm. SGD− RER uses a buffer of large enough size to store values

of consecutive data points and then performs reverse SGD in each of these buffers and then discards

this buffer. Experience replay methods also use such (small) buffers of data, but typically samples

point randomly from the buffer instead of the reverse order that we propose. We refer to Figure 6-1

for an illustration of the proposed data processing order.

We present a pseudocode of SGD − RER in Algorithm 1. Note that the algorithm forms non-

overlapping buffers of size S = B + u. Here B is the actual size of the buffer while u samples are

used to interleave between two buffers so that the buffers are almost independent of each other.

Now within a buffer, we perform the usual SGD but with samples read in reverse order. Formally,

suppose we index our buffers by t = 0, 1, 2, · · · and let S = B + u be the total samples (including

those that were dropped) in the buffers. Let N denote the total number of buffers in horizon T .

Within each buffer t, we index the samples as Xt
i where i = 0, 1, 2, · · · , S − 1. That is Xt

i ≡ XtS+i

is the i-th sample in buffer t. Similarly ηti ≡ ηtS+i. Further let Xt
−i ≡ Xt

(S−1)−i. Similarly we set

ηt−i ≡ ηt(S−1)−i Then, the algorithm performs the recursion stated in Line 1 of Algorithm 1. Note

that the recursion can also be written as,

At−1
i+1 −A

∗ =
(
At−1

i −A∗) (I − 2γXt−1
−i X

t−1
−i

⊤
)
+ 2γηt−1

−i X
t−1
−i . (5.5)

for 1 ≤ t ≤ N and 0 ≤ i ≤ B − 1 with At
0 = At−1

B and A0
0 = A0.

We then ignore the iterates corresponding to first a buffers as part of the burn-in period, and

output average of the remaining iterates (t > a) at each step as that step’s estimator (see Line 2 of

Algorithm 1). That is, we have the tail-averaged iterate:

Âa,t =
1

t− a

t∑
τ=a+1

Aτ−1
B . (5.6)
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Algorithm 1: SGD− RER
Input : Streaming data {Xτ}, horizon T , buffer size B, buffer gap u, bound R, tail

average start: a
Output: Estimate Âa,t, for all a < t ≤ N − 1; N = T/(B + u)

1 begin
2 Step-size: γ ← 1

8RB , Total buffer size: S ← B + u, Number of buffers: N ← T/S
3 A0

0 = 0 /*Initialization*/
4 for t← 1 to N do
5 Form buffer Buft−1 = {Xt−1

0 , . . . , Xt−1
S−1}, where, Xt−1

i ← X(t−1)·S+i

6 If ∃i, s.t.,
∥∥Xt−1

i

∥∥2 > R, then return Âa,t = 0
7 for i← 0 to B − 1 do
99 At−1

i+1 ← At−1
i − 2γ(At−1

i Xt−1
S−1−i −X

t−1
S−i)

(
Xt−1

S−1−i

)⊤
10 end
11 At

0 = At−1
B

12 If t > a, then Âa,t ← 1
t−a

∑t
τ=a+1A

τ−1
B

13 end
14 end

We output the new iterate Âa,t only at the end of each buffer t. At intermediate steps, (t−1)B+1 ≤

τ ≤ tB, we output Âa,t−1. Also, note that the tail average can be computed in small space and

time complexity, by using a running sum of the tail iterates. The update for each point is rank-one,

so can be computed in time linear in number of parameters (O(d2)). In the next section, we show

that despite using small buffer size S = B+u (that depends logarithmically on T ), and by throwing

away a small constant–independent of any problem parameter–fraction of points u in each buffer,

we are still able to provide error bound similar to that of OLS.

5.3 Main results

We now state our main results with leading order terms. Recall the problem setting, and the

covariance matrix G := EX∼πXX
⊺. Before stating the results, we choose the parameters B,R, α

and u as follows, which can be estimated using upper bounds on ∥A∗∥:

1. d ≤ Poly(T ). We use this to bound the norm of covariates in the next item.

2. α ≥ 22 ; R ≥ C(α)Tr(Σ) log T

1−∥A∗∥2 = O(dτmix logT ) s.t. P
[
∥Xτ∥2 ≤ R, τ ≤ T

]
≥ 1 − 1

Tα . See

lemma 5.5.3 in appendix.

3. u ≥ α log T

log
(

1
∥A∗∥

) = O(τmix logT ); B = 10u

For all the results below, we suppose that Assumptions 1, 2 and 3 hold, the stream of samples

Xτ is sampled from VAR(A∗, µ) model described in Section 5.1 and that R,B, α and u are chosen

as above.

Let t > a and let Âa,t be the tail averaged output of SGD − RER after buffer t − 1. Further let

Tα/2 > cdκ(G).
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Theorem 5.3.1. Suppose we pick the step size γ = min
(

C
Bσmin(G) ,

1
8BR

)
for some constant C

depending only on Cµ. Then, there are constants C, ci > 0, 0 ≤ i ≤ 4 such that if a > c0 (d+ α logT )

then with probability at least 1− C
Tα , we have:

Lop(Âa,t, A
∗, µ) ≤ c1

√
(d+ α logT )σmax(Σ)

(t− a)Bσmin(G)
+ βb ∥A0 −A∗∥+ c4

T 2

B2
∥A∗u∥ (5.7)

where

βb = c3
dκ(G) logT

t− a
e−c2

a
dκ(G) log T (5.8)

The techniques for the proof is developed in Section 5.7 and the Theorem 5.3.1 is proved in

Section 5.8.

Theorem 5.3.2. Let R,B, u, α be chosen as in section 5.3. Let γ = c
4RB ≤

1
2R for 0 < c < 1. Then

there are constants c1, c2, c3, c4 > 0 such that for Tα/2 > c1
√
M4

σmin(G) the expected prediction loss Lpred

is bounded as

E
[
Lpred(Âa,t;A

∗, µ)
]
− Tr(Σ) ≤ c2

[
dTr(Σ)
B(t− a)

+
d2σmax(Σ)

B(t− a)

√
κ(G)

B

]
+

c3

[
d2σmax(Σ)

B2(t− a)2
(κ(G))3/2dB logT+

βb Tr(G) ∥A0 −A∗∥2 +(
T 3

B3
∥A∗u∥+ dσmax(Σ)

R

T 2

B2

1

Tα/2

)
Tr(G)

]
(5.9)

where βb is defined in (5.8).

The above theorem is proven only for the case t = N . The proof for general t is almost the same.

The proof follows by first considering E
[
Lpred(Âa,N ;A∗, µ)1

[
D0,N−1

]]
(D0,N−1 is defined in 5.5.2)

and using theorem 5.10.5 and theorem 5.10.6 along with lemma 5.5.6 in the appendix sections 5.10.1,

5.10.2 and 5.5.3. Then noting that if the norm of any of the covariates Xt exceed
√
R the algorithm

returns the zero matrix we have that E
[
Lpred(Âa,N ;A∗, µ)1

[
D0,N−1,C

]]
≤ c ∥A∗∥Tr(G) 1

Tα .

Remark 10.

(1) In theorem 5.3.2 the term d2σmax(Σ)
B(t−a)

√
κ(G)

B is strictly a lower order term compared to d Tr(Σ)
B(t−a)

when ∥A∗∥ < c0 < 1. To see this note that σmax(G) ≤ σmax(Σ)

1−∥A∗∥2 and σmin(G) ≥ σmin(Σ).

Hence κ(G) ≤ κ(Σ)

1−∥A∗∥2 = O(τmixκ(Σ)). By the choice of B in the section 5.3 we see that
√

κ(G)

B = o(1) and it does not depend on condition number of A∗.

(2) If a = Ω
(
dκ(G) (logT )2

)
the βb is a lower order term. Further choosing u and α as in

section 5.3 we see that the terms depending on ∥A∗u∥ and 1
Tα/2 are strictly lower order.
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(3) Thus for the choice of a as in the previous remark such that a < (1 + c)t (for some c > 0), we

get minimax optimal rates: d Tr(Σ)
Bt for Lpred and up to log factors,

√
dσmax(Σ)
Tσmin(G) for Lop

We now make the following observations:

(1) The dominant term in our bound on Lop (Theorem 5.3.1) matches the information theoretically

optimal bound (up to logarithmic factors) for the VAR(A∗, µ) estimation problem [51] as long

as ∥A∗∥ ≤ 1− 1
T ξ for ξ ∈ (0, 1/2). Note that despite working with dependent data, leading term

in our error bound is nearly independent of mixing time τmix. In contrast, most of the existing

streaming/SGD style methods for dependent data have strong dependence on τmix [66].

(2) SGD for linear regression with independent data [65, 176], but with similar problem setting

incurs error O(d Tr(Σ)
T ) for Lpred. So our bound for SGD − RER matches the independent data

setting bound in the minimax sense.

(3) The space complexity of our method is O(Bd + d2) where B = O(τmix logT ) is independent of

d and only logarithmically dependent on T .

(4) Sparse matrices with known support: Suppose A∗ is known to be sparse and we know

the support (say by running L1 regularized OLS on a small set of samples). Let sj denote the

sparsity of row j of A∗. Then the SGD − RER algorithm can be modified to run row by row

such that it operates only on the support of row j. That is the covariates can be projected

onto the support of each row. Then it can be shown that the prediction error is bounded as

O
(∑d

j=1 σ
2
j sj/T

)
where σ2

j is the j-th diagonal entry of Σ. Note that SGD−RER requires only

O(|supp(A∗)|) operations per iteration while applying online version of standard OLS would

require O(d2) operations. In the simple case of Σ = σ2I, we note that G ⪰ σ2I and hence the

bound for Lpred becomes O
(

|supp(A∗)|
T

)
. We refer to Section 5.11 for a sketch of this extension.

Next, we show that our error bounds are nearly information theoretically optimal. For the lower

bound on Lop we directly use [51, Theorem 2.3].

Theorem 5.3.3. Let ρ < 1 and δ ∈ (0, 1/4). Let µ be the distribution N (0, σ2I). For any estimator

Â ∈ F , there exists an matrix A∗ ∈ Rd×d where A∗ = ρO for some orthogonal matrix O such that

|σmax(A
∗)| = ρ and we have that with probability at least δ:

∥Â−A∗∥ = Ω

√
(d+ log(1/δ))(1− ρ)

T
. (5.10)

Notice that in the setting of Theorem 5.3.3, we have G =
∑∞

i=0 σ
2(A∗)i(A∗)i,⊤ = σ2

1−ρ2 I. There-

fore, σmin(G) =
1

1−ρ2 ∼ 1
1−ρ . The bound in Theorem 5.3.1 matches the above minimax bound up

to logarithmic factors.

Next we consider the prediction loss. We fix dimension d and horizon T and consider the class

of VAR models M such that Assumptions 1, 2, and 3 hold such that Tr(Σ(µ)) = β ∈ R+ be fixed.

Let F be the class of all estimators for parameter A∗ given data (Z0, . . . , ZT ). We want to lower
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bound the minimax error:

Lminmax(M) := inf
f∈F

sup
(A∗,µ)∈M

E(Zt)∼VAR(A∗,µ)Lpred(f(Z0, . . . , ZT );A
∗, µ)− Lpred(A

∗;A∗, µ).

Theorem 5.3.4. For some universal constant c, we have:

Lminmax(M) ≥ cβ(d− 1)min
(
1

T
,
1

d2

)
, where β = Tr(Σ(µ)).

Note that the theorem shows that our algorithm is minimax optimal with respect to the prediction

loss at stationarity, Lpred. The theorem follows from [122, Theorem 4].

5.3.1 Spectral gap condition

In Assumption 1, we could have used the more general spectral radius condition ρ(A∗) = supi |λi(A∗)| <

1 rather than the one on the operator norm. We have the Gelfand formula for spectral radius which

shows that limk→∞ ∥A∗k∥1/k = ρ(A∗). Now, if A∗ is such that ρ(A∗) < 1 but ∥A∗∥ > 1 (a case

studied by [51]), then we need to make u as large as Cd logT which would lead to a relatively large

buffer size B of d logT . To see this, we verify the proof by [177] (by replacing A with A
∥A∥ and ρ(A)

with ρ
∥A∥ in the proof) to show that ∥A∗k∥ ≤ (2k∥A∗∥)d ρk−d whenever k ≥ d. Therefore, in the

worst case, we can pick u = O
(
(log (Tσmax(G)) + d log d∥A∥) / log 1/ρ

)
.

In the case of ρ < 1 but ∥A∗∥ > 1, κ(G) can grow super linearly in d. For instance, consider A∗

to be nilpotent of order d (i.e. A∗d−1 ̸= 0 but A∗d = 0). Here σmax(G) can grow like ∥A∗∥d. So

we need exponentially (in d) many samples for bias decay. However, in many cases of interest (ex:

symmetric matrices, normal matrices etc) the spectral radius is the same as the operator norm.

5.4 Idea behind the proofs

In this section, we provide an overview of the key techniques to prove our results. As observed in the

discussion following Equation (5.4), when the data is processed in the reverse order within a buffer,

it behaves similar to SGD for linear regression with i.i.d. data. Due to the gaps of size u, we can

take the buffers to be approximately independent. Therefore, we analyze the algorithm as follows:

1. Analyze reverse order within a buffer using the property noted in Equation (5.4).

2. Treat different buffers to be i.i.d. due to gap and present an i.i.d data type analysis.

To execute the proposed proof strategy, we introduce the following technical notions:

Coupled Process. For the real data points (Xτ ), the points in different buffers are weakly depen-

dent. In order to make the analysis straight forward, we introduce the fictitious coupled process X̃τ

such that
∥∥∥X̃τ −Xτ

∥∥∥ ≲ 1
Tα for large enough α, for every data point Xτ used by SGD − RER. We
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have the additional property that the successive buffers are actually independent for this coupled

process. We refer to Definition 2 in the appendix for the construction of the coupled process X̃τ .

Suppose we run SGD − RER with the coupled process X̃τ instead of Xτ to obtain the coupled

iterates Ãt
i. We can then show that Ãt

i ≈ At
i. Thus it suffices analyze the coupled iterates Ãt

i. We

refer to Sections 5.5.1 and 5.5.3 for the details.

Bias variance decomposition. We consider the standard bias variance decomposition with in-

dividual buffers as the basic unit as opposed to individual data points. We refer to Section 5.6

for the details. We decompose the error in the iterates into the bias part
(
Ãt−1,b

B −A∗
)
= (A0 −

A∗)
∏t−1

s=0 H̃
s
0,B−1 and the variance part

(
Ãt−1,v

B

)
= 2γ

∑t
r=1

∑B−1
j=0 η

t−r
−j X̃

t−r,⊤
−j H̃t−r

j+1,B−1

∏1
s=r−1 H̃

t−s
0,B−1

where the matrices H̃s
0,B−1 =

∏B−1
i=0

(
I − 2γX̃s

−iX̃
s,⊤
−i

)
are the independent ’contraction’ matrices

associated with each buffer s. This result in the geometric decay of the initial distance between

(A0 − A∗). The variance part is due to the inherent noise present in the data. In Section 5.9.2

we first establish the exponential decay of the ‘bias’. We then consider the second moment of the

variance term. Observe that the distinct terms in the expression for
(
Ãt−1,v

B

)
are uncorrelated either

due to reverse order within a buffer as noted in Equation (5.4) or due to independence between the

data in distinct buffers (due to coupling). This allows us to split the second moment into diagonal

terms with non-zero mean and cross terms with zero mean. Diagonal terms are analyzed via a re-

cursive argument in Claim 10 and the following discussion in order to remove dependence on mixing

time factors. The analysis for parameter recovery (the result of Theorem 5.3.2) is similar but we

bound the relevant exponential moments using sub-Gaussianity of the noise sequence ηt to obtain

high-probability bounds which when combined with standard ϵ-net arguments give us guarantees

for the operator norm error Lop.

Averaged iterates. We then combine the bias and variance bounds obtained for individual iterates

in Section 5.9.2 to analyze the tail averaged output. Using techniques standard in the analysis of

SGD for linear regression, we finally show that this averaging leads error rates of the order d2

T . We

refer to Sections 5.8 (for parameter recover) and 5.10 (for prediction error) for the detailed results.

Picking the step sizes and conditioning. Due to the auto-regressive nature of the data gen-

eration, the iterates can grow to be of the size O( d
1−ρ ). The step sizes need to be set small enough

so that the γ∥XτX
⊤
τ ∥ ≤ 1 in order for the SGD − RER iterations to not diverge to infinity. In the

statement of Theorem 5.3.2, we condition on the event where ∥Xτ∥2 are all bounded by a sufficiently

large number R for every τ in order to ensure this property. The relevant events where the norm is

bounded are defined in Section 5.5.1. Conditioning on these events results in previously zero mean

terms to be not zero mean. Routine calculations using triangle inequality and Cauchy-Schwarz in-
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equality ensure that the means are still of the order 1
Tα for any fixed constant α > 0. Furthermore,

we actually require step sizes such that γ
∥∥∑

τ∈Buffer XτX
⊤
τ

∥∥ ≤ 1 to show exponential contraction

of H̃s
0,B−1 matrices due to the Grammian G as described next.

Probabilistic results. We establish some properties of H̃s
0,B−1, which are products of dependent

random matrices in Section 5.7. Specifically we refer to Lemmas 6.9.3, 5.7.3, 6.9.2, and 5.7.5 which

establish that
∥∥∥∏t−1

s=0 H̃
s
0,B−1

∥∥∥ ≲ (1− γBσmin(G))
t with high probability.

5.5 Preliminaries for the proofs

5.5.1 Basic lemmata

Since the covariates {Xτ}τ≤T are correlated, we will introduce a coupled process such that we

have independence across buffers and that Euclidean distance between the covariates of the original

process and the coupled process can be controlled.

Remark 11. Note that the coupled process is imaginary and we do not actually run the algorithm

with the coupled process. We construct it to make the analysis simple by first analyzing the algorithm

with the imaginary coupled process and then showing that the output of the actual algorithm cannot

deviate too much when run with the actual data.

Definition 2 (Coupled process). Given the covariates {Xτ : τ = 0, 1, . · · ·T} and noise {ητ : τ =

0, 1, · · · , T}, we define {X̃τ : τ = 0, 1, · · · , T} as follows:

1. For each buffer t generate, independently of everything else, X̃t
0∼π, the stationary distribution

of the VAR(A∗, µ) model.

2. Then, each buffer has the same recursion as eq (5.1):

X̃t
i+1 = A∗X̃t

i + ηti , i = 0, 1, · · ·S − 1, (5.11)

where the noise vectors as same as in the actual process {Xτ}.

With this definition, we have the following lemma:

Lemma 5.5.1. For any buffer t, ∥Xt
i − X̃t

i∥ ≤ ∥A∗i∥∥Xt
0 − X̃t

0∥, a.s.. That is,

∥Xt
iX

t
i
T − X̃t

i X̃
t
i

T ∥ ≤ 2 ∥X∥ ∥Xt
i − X̃t

i∥ ≤ (2 ∥X∥)2∥A∗i∥. (5.12)

Here ∥X∥ denotes supτ≤T ∥Xτ∥.

Lemma 5.5.2. Suppose µ obeys Assumption 2 and A∗ obeys Assumption 1. Suppose X ∼ π, which

is the stationary distribution of VAR(A∗, µ). ⟨X,x⟩ has mean 0 and is sub-Gaussian with variance

proxy Cµx
⊤Gx
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Proof. Suppose η1, . . . , ηn, . . . is a sequence of i.i.d random vectors drawn from the noise distri-

bution µ. We consider the partial sums
∑n

i=0A
∗iηi. Call the law of this to be πn. Clearly πn

converges in distribution to π as n → ∞ since πn is the law of the n + 1-th iterate of VAR(A∗, µ)

chain stated at X0 = 0. By Skorokhod representation theorem, we can define the infinite se-

quence X(1), . . . , X(n), . . . , and another random variable X such that X(i) ∼ πi, X ∼ π and

limn→∞X(n) = X a.s. Define Gn =
∑n

i=0A
∗iΣ(A∗i)T . Clearly, Gn ⪯ G =

∑∞
i=0A

∗iΣ(A∗i)T .

A simple evaluation of Chernoff bound for ⟨X(n), x⟩ by decomposing it into the partial sum of noises

shows that:

E exp(λ⟨X(n), x⟩) ≤ exp
(
λ2Cµ

2
⟨x,Gnx⟩

)
≤ exp

(
λ2Cµ

2
⟨x,Gx⟩

)

We now apply Fatou’s lemma, since X(n) → X almost surely, to the inequality above to conclude

that:

E exp(λ⟨X,x⟩) ≤ exp
(
λ2Cµ

2
⟨x,Gx⟩

)
.

Hence ⟨x,Xt⟩ is subgaussian with mean 0 and variance proxy Cµσmax(G) ∥x∥2. This will provide

uniform variance for all x such that ∥x∥2 = 1.

From subgaussianity and standard ϵ-net argument we have the following lemma.

Lemma 5.5.3. For any β > 0 there is a constant c > 0 such that

P
[
∃τ ≤ T : ∥Xτ∥2 > cTrG logT

]
≤ d

T β
(5.13)

Thus as long as d < Poly(T ), for every α > 0 there is a c > 0 such that

P
[
∃τ ≤ T : ∥Xτ∥2 > cTrG logT

]
≤ 1

Tα
(5.14)
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5.5.2 Notations

Before we analyze this algorithm, we define some notations. We work in a probability space (Ω,F ,P)

and all the random elements are defined on this space. We define the following notations:

Xt
−i = Xt

(S−1)−i, 0 ≤ i ≤ S − 1, G =

∞∑
s=0

A∗sΣ(A∗⊤)s, Gt =

t−1∑
s=0

A∗sΣ(A∗⊤)s,

P̃ t
i =

(
I − 2γX̃t

i X̃
t,⊤
i

)
, H̃t

i,j =


∏j

s=i P̃
t
−s i ≤ j

I i > j

,

γ̂ = 4γ(1− γR), Ct−j =
{
∥Xt

−j∥2 ≤ R
}
, C̃t−j =

{
∥X̃t

−j∥2 ≤ R
}
,

Dt
−j =

{
∥Xt

−i∥2 ≤ R : j ≤ i ≤ B − 1
}
=

B−1⋂
i=j

Ct−i,

Ds,t =


⋂t

r=sDr
−0 s ≤ t

Ω s > t

, D̃t
−j =

{
∥X̃t

−i∥2 ≤ R : j ≤ i ≤ B − 1
}
=

B−1⋂
i=j

C̃t−i,

D̃s,t =


⋂t

r=s D̃r
−0 s ≤ t

Ω s > t

, D̂t
−j = Dt

−j ∩ D̃t
−j , D̂s,t = Ds,t ∩ D̃s,t.

Lastly c and ci for i = 0, 1, · · · denote absolute constants that can change from line to line in the

proofs.

5.5.3 Initial coupling

We consider the coupled process introduced in Definition 2 and run SGD − RER with the ficti-

tious coupled process X̃τ instead of Xτ in order to obtain the iterates Ãt
i instead of At−1

i . Using

Lemma 5.5.1, we can show that Ãt−1
i ≈ At−1

i . It is easier to analyze the iterates Ãt
i due to buffer

independence.

Lemma 5.5.4. Let γ ≤ 1
2R . Under the event D0,N−1, for every t ∈ [N ] and 0 ≤ i ≤ B− 1 we have:

∥At−1
i ∥ ≤ 2γRT .

Proof. Consider the SGD− RER iteration:

At−1
i+1 = At−1

i − 2γ(At−1
i Xt−1

−i −X
t−1
−(i+1))X

t−1,⊤
−i

= At−1
i (I − 2γXt−1

−i X
t−1,⊤
−i ) + 2γXt−1

−(i−1))X
t−1,⊤
−(i+1) (5.15)

Observe that for our choice of γ and under the event D0,N−1, we have ∥(I − 2γXt−1
−i X

t−1,⊤
−i )∥ ≤ 1
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and ∥Xt−1
−(i+1)X

t−1,⊤
−i ∥ ≤ R. Therefore, triangle inequality implies:

∥At−1
i+1∥ ≤ ∥A

t−1
i ∥+ 2γR

We conclude the bound in the Lemma.

Lemma 5.5.5. Suppose γ < 1
2R . Under the event D̂0,N−1 we have for every t ∈ [N ] and 0 ≤ i ≤

B − 1. ∥At−1
i − Ãt−1

i ∥ ≤ (16γ2R2T 2 + 8γRT ) ∥A∗u∥

Proof. We again consider the evolution equation: X̃t−1
−i

At−1
i+1 = At−1

i − 2γ(At−1
i Xt−1

−i −X
t−1
−(i+1))X

t−1,⊤
−i

= At−1
i − 2γ(At−1

i X̃t−1
−i − X̃

t−1
−(i+1))X̃

t−1,⊤
−i +∆t,i (5.16)

Where

∆t,i = 2γAt−1
i

(
X̃t−1

−i X̃
t−1,⊤
−i −Xt−1

−i X
t−1,⊤
−i

)
+ 2γ

(
Xt−1

−(i+1)X
t−1,⊤
−i − X̃t−1

−(i+1)X̃
t−1,⊤
−i

)
Using Lemmas 6.8.2 and 5.5.1, we conclude that:

∥∆t,i∥ ≤ (16γ2R2T + 8γR) ∥A∗u∥

Using the recursion for Ãt
i, we conclude:

At−1
i+1 − Ã

t−1
i+1 = (At−1

i − Ãt−1
i )P̃ t

i +∆t,i

=⇒
∥∥∥At−1

i+1 − Ã
t−1
i+1

∥∥∥ ≤ ∥∥∥At−1
i − Ãt−1

i

∥∥∥∥∥∥P̃ t
i

∥∥∥+ (16γ2R2T + 8γR) ∥A∗u∥

=⇒
∥∥∥At−1

i+1 − Ã
t−1
i+1

∥∥∥ ≤ ∥∥∥At−1
i − Ãt−1

i

∥∥∥+ (16γ2R2T + 8γR) ∥A∗u∥ (5.17)

In the last step we have used the fact that under the event D̂0,N−1, we must have
∥∥∥P̃ t

i

∥∥∥ ≤ 1. We

conclude the statement of the lemma from Equation (6.37).

We can now just analyze the iterates Ãt−1
i and then use Lemma 6.8.3 to infer error bounds for

At−1
i . Henceforth, we will only consider Ãt−1

i .

Lemma 5.5.6. Consider the algorithmic iterates obtained from the actual process and coupled process
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(At
j) and (Ãt

j). Then

E
[(
At−1

j −A∗)⊤ (At−1
j −A∗) 1 [D0,t−1

]]
⪯ E

[(
Ãt−1

j −A∗
)⊤ (

Ãt−1
j −A∗

)
1
[
D̃0,t−1

]]
+ c

(
γ3R3T 3 ∥A∗u∥+ γ2dσmax(Σ)RT

2 1

Tα/2

)
I (5.18)

for some constant c. Furthermore, the same conclusion holds for the average iterates. That is let

Âa,N =
1

N − a

N∑
t=a+1

At−1
B

ˆ̃Aa,N =
1

N − a

N∑
t=a+1

Ãt−1
B

Then

E
[(
Âa,N −A∗

)⊤ (
Âa,N −A∗

)
1
[
D0,N−1

]]
⪯ E

[(
ˆ̃Aa,N −A∗

)⊤ ( ˆ̃Aa,N −A∗
)
1
[
D̃0,N−1

]]
+ c

(
γ3R3T 3 ∥A∗u∥+ γ2dσmax(Σ)RT

2 1

Tα/2

)
I (5.19)

Remark 12. The above lemma holds as is when At−1
j , Ãt−1

j is replaced by At−1,v
j , Ãt−1,v

j respectively.

Proof. First we have

E
[(
At−1

j −A∗)⊤ (At−1
j −A∗) 1 [D0,t−1

]]
⪯ E

[(
At−1

j −A∗)⊤ (At−1
j −A∗) 1 [D̂0,t−1

]]
+ 4γ2(Bt)2R

√
µ4

1

Tα/2
I

⪯ E
[(
At−1

j −A∗)⊤ (At−1
j −A∗) 1 [D̂0,t−1

]]
+ cγ2dσmax(Σ)RT

2 1

Tα/2
I (5.20)

Next, we have ∥∥∥∥(At−1
j −A∗)⊤ (At−1

j −A∗)− (Ãt−1
j −A∗

)⊤ (
Ãt−1

j −A∗
)∥∥∥∥

≤
∥∥∥At−1

j − Ãt−1
j

∥∥∥(∥∥(At−1
j −A∗)∥∥+ ∥∥∥(Ãt−1

j −A∗
)∥∥∥)

≤
∥∥∥At−1

j − Ãt−1
j

∥∥∥(2 ∥A∗∥+
∥∥At−1

j

∥∥+ ∥∥∥Ãt−1
j

∥∥∥) (5.21)
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Thus on the event D̂0,t−1, using lemma 6.8.3 and lemma 6.8.2 we get∥∥∥∥(At−1
j −A∗)⊤ (At−1

j −A∗)− (Ãt−1
j −A∗

)⊤ (
Ãt−1

j −A∗
)∥∥∥∥

≤ c(γ2R2T 2 + γRT )(γRT + ∥A∗∥+ ∥A0∥) ∥A∗u∥ ≤ cγ3R3T 3 ∥A∗u∥ (5.22)

for some constant c. (We have suppressed the dependence on A0 and A∗ since they are constants

and γRT grows with T ).

The proof follows by combining (5.20) and (5.22).

The proof of (5.19) follows similarly.

5.6 Bias variance decomposition

Now, we can unroll the recursion in (5.5), but for the coupled iterates Ãt−1
i as

Ãt−1
B −A∗ =

(
Ãt−1,b

B −A∗
)
+
(
Ãt−1,v

B

)
, (5.23)

where (
Ãt−1,b

B −A∗
)
= (A0 −A∗)

t−1∏
s=0

H̃s
0,B−1 (5.24)

is the bias term, and the variance term is given by:

(
Ãt−1,v

B

)
= 2γ

t∑
r=1

B−1∑
j=0

ηt−r
−j X̃

t−r,⊤
−j H̃t−r

j+1,B−1

1∏
s=r−1

H̃t−s
0,B−1 (5.25)

Here we use the convention that whenever r = 1, the product
∏1

s=r−1 is empty i.e, equal to 1.

The ‘bias’ term is obtained when the noise terms are set to 0, and captures the movement of the

algorithm towards the optimal A∗ when we set the initial iterate far away from it. The ‘variance’

term
(
At,v

B −A∗) capture the uncertainty due to the inherent noise in the data. Our main goal is

to understand the performance (estimation and prediction) of the tail-averaged iterates output by

SGD−RER. Here, we consider just the last iterate, but the same technique applies to all the outputs

of SGD−RER. That is, ˆ̃Aa,N = 1
N−a

∑N
t=a+1 Ã

t−1
B , for a = ⌈θN⌉ with 0 < θ < 1. We can decompose

the above into bias and variance as: ˆ̃Aa,N = ˆ̃Av
a,N + ˆ̃Ab

a,N , with,

ˆ̃Av
a,N =

1

N − a

N∑
t=a+1

Ãt−1,v
B (5.26)

ˆ̃Ab
a,N =

1

N − a

N∑
t=a+1

Ãt−1,b
B . (5.27)
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Similarly, we can decompose the final error into ‘bias’ and ‘variance’ as in Lemma 5.6.1 below.

Lemma 5.6.1 (Bias-Variance Decomposition). We have the following decomposition:

(
Ãt−1

B −A∗
)⊤ (

Ãt−1
B −A∗

)
⪯ 2

[(
Ãt−1,b

B −A∗
)⊤ (

Ãt−1,b
B −A∗

)
+(

Ãt−1,v
B

)⊤ (
Ãt−1,v

B

)]
.

5.7 Preliminary results for the parameter error

In this section, we develop the concentration inequalities necessary to obtain bounds on Lop. Consider

Equation (5.25)

(
Ãt−1,v

B

)
= 2γ

t∑
r=1

B−1∑
j=0

ηt−r
−j X̃

t−r,⊤
−j H̃t−r

j+1,B−1

1∏
s=r−1

H̃t−s
0,B−1 (5.28)

Splitting the sum into r = 1 and r = 2, . . . , t, it is easy to show the following recursion:

(
Ãt−1,v

B

)
= 2γ

B−1∑
j=0

ηt−1
−j X̃

t−1,⊤
−j H̃t−1

j+1,B−1 +
(
Ãt−2,v

B

)
H̃t−1

0,B−1 (5.29)

We will consider the matrix ∆t−1 := 2γ
∑B−1

j=0 η
t−1
−j X̃

t−1,⊤
−j H̃t−1

j+1,B−1. Recall the sequence of

events D̃t−1
−j for j = 0, 1, . . . , B − 1 as defined in Section 5.5.2. We will pick R as in Section 5.3 so

that P(D̃t−1
−0 ) is close to 1.

For the sake of clarity, we drop the dependence on t while stating and proving some of the

technical results since the events and random variables considered there are identically distributed

for every t. That is, consider D̃−j instead of D̃t−1
−j and

∆ := 2γ

B−1∑
j=0

η−jX̃
⊤
−jH̃j+1,B−1

We will bound the exponential moment generating function of ∆:

Lemma 5.7.1. Suppose Assumption 2 holds and that γR < 1. Let λ ∈ R and x, y ∈ Rd are

arbitrary. Then, we have:

1.

E
[
exp(γλ2Cµ⟨x,Σx⟩⟨y, H̃⊤

0,B−1H̃0,B−1y⟩+ λ⟨x,∆y⟩)|D̃−0

]
≤

exp
(
γλ2Cµ⟨x,Σx⟩∥y∥2

)
P(D̃−0)
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2.

E
[
exp(λ⟨x,∆y⟩)|D̃−0

]
≤

exp
(
γλ2Cµ⟨x,Σx⟩∥y∥2

)
P(D̃−0)

Where Cµ is as given in Assumption 2

Proof. We will just prove item 1 since item 2 follows from it trivially as

γλ2Cµ⟨x,Σx⟩⟨y, H̃⊤
0,B−1H̃0,B−1y⟩ ≥ 0 .

For the sake of clarity, we will take:

Ξ0 := γλ2Cµ⟨x,Σx⟩⟨y, H̃⊤
0,B−1H̃0,B−1y⟩

and more generally,

Ξk = γλ2Cµ⟨x,Σx⟩⟨y, H̃⊤
k,B−1H̃k,B−1y⟩

Consider ∆−k := 2γ
∑B−1

j=k η−jX̃
⊤
−jH̃j+1,B−1. We will first prove the following claim before

bounding the exponential moment:

Claim 7. Whenever ∥X̃−k∥2 ≤ R and γR < 1/2, we have:

Ξk + 2γ2λ2Cµ⟨x,Σx⟩⟨y, H̃⊤
k+1,B−1X̃−kX̃

⊤
−kH̃k+1,B−1y⟩ ≤ Ξk+1

Proof. We use the fact that H̃⊤
k,B−1H̃k,B−1 = H̃⊤

k+1,B−1(I − 2γX̃−kX̃
⊤
−k)

2H̃k+1,B−1 to conclude

that:

Ξk + 2γ2λ2Cµ⟨x,Σx⟩⟨y, H̃⊤
k+1,B−1X̃−kX̃

⊤
−kH̃k+1,B−1y⟩

= γλ2Cµ⟨x,Σx⟩⟨y, H̃⊤
k+1,B−1

(
I − 2γX̃−kX̃

⊤
−k + 4γ2∥X̃−k∥

2X̃−kX̃
⊤
−k

)
H̃k+1,B−1y⟩

≤ γλ2Cµ⟨x,Σx⟩⟨y, H̃⊤
k+1,B−1H̃k+1,B−1y⟩ = Ξk+1 (5.30)

In the second step we have used the fact that when γ∥X̃−k∥2 ≤ 1/2, we have that

I − 2γX̃−kX̃
⊤
−k + 4γ2∥X̃−k∥

2X̃−kX̃
⊤
−k ⪯ I
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First note that ∆ = 2γη0X̃
⊤
0 H̃1,B−1 +∆−1. Now,

E
[
exp(Ξ0 + λ⟨x,∆y⟩)|D̃−0

]
=

1

P(D̃−0)
E
[
exp(Ξ0 + λ⟨x,∆y⟩)1

(
D̃−0

)]
=

1

P(D̃−0)
E
[
exp

(
Ξ0 + 2λγ⟨x, η−0⟩⟨X̃−0, H̃1,B−1y⟩+ λ⟨x,∆−1y⟩

)
1

(
D̃−0

)]
≤ 1

P(D̃−0)
E
[
exp

(
Ξ0 + 2γ2λ2Cµ⟨x,Σx⟩⟨y, H̃⊤

1,B−1X̃−0X̃
⊤
−0H̃1,B−1y⟩+ λ⟨x,∆−1y⟩

)
1

(
D̃−0

)]
≤ 1

P(D̃−0)
E
[
exp (Ξ1 + λ⟨x,∆−1y⟩)1

(
D̃−0

)]
≤ 1

P(D̃−0)
E
[
exp (Ξ1 + λ⟨x,∆−1y⟩)1

(
D̃−1

)]
(5.31)

In the first step we have used the definition of conditional expectation, in the third step we have

used the fact that η−0 is independent of D̃−0, ∆−1, X̃⊤
−0H̃1,B−1, and ∆−1 and have applied the sub-

Gaussianity from Assumption 2. In the fourth step, using the fact under the event D̃−0, ∥X̃−0∥2 ≤ R

we have applied Claim 7. In the final step, we have used the fact that D̃−0 ⊆ D̃−1. We proceed by

induction over Equation (5.31) to conclude the result.

We now consider the matrix H̃0,B−1 under the event D̃−0.

Lemma 5.7.2. Suppose that γRB < 1
6 . Then, under the event D̃−0, we have:

I − 4γ
(
1 + 2γBR

1−4γBR

)B−1∑
i=0

X̃−iX̃
⊤
−i ⪯ H̃⊤

0,B−1H̃0,B−1 ⪯ I − 4γ
(
1− 2γBR

1−4γBR

)B−1∑
i=0

X̃−iX̃
⊤
−i

Proof. By definition, we have: H̃0,B−1 =
∏B−1

j=0 (I − 2γX̃−jX̃
⊤
−j). Expanding out the product, we

get an expression of the form:

H̃⊤
0,B−1H̃0,B−1 = I − 4γ

B−1∑
i=0

X̃−iX̃
⊤
−i + (2γ)2

∑
i,j

X̃−iX̃
⊤
−iX̃−jX̃

⊤
−j + . . . (5.32)

Here, the summation
∑

i,j is over all possible combinations possible when the product is expanded

and . . . denotes higher order terms of the form X̃−i1
X̃⊤

−i1
. . . X̃−ik

X̃⊤
−ik

Claim 8. Assume k ≥ 2 and i1, . . . , ik ∈ {0, . . . , B − 1}. Under the event D̃−0, for any x ∈ Rd, we

have: ∣∣∣∣x⊤X̃−i1
X̃⊤

−i1
. . . X̃−ik

X̃⊤
−ik

x

∣∣∣∣ ≤ Rk−1

2

[
x⊤X̃−i1

X̃⊤
−i1

x+ x⊤X̃−ik
X̃⊤

−ik
x
]

Proof. This follows from an application of AM-GM inequality. It is clear by Cauchy-Schwarz in-

equality that |⟨X̃il
, X̃il+1

⟩| ≤ R, which implies:
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∣∣∣∣x⊤X̃−i1
X̃⊤

−i1
. . . X̃−ik

X̃⊤
−ik

x

∣∣∣∣ ≤ Rk−1

∣∣∣∣ [x⊤X̃−i1
X̃⊤

−ik
x
]∣∣∣∣ ≤ Rk−1

2

[
⟨x, X̃−i1

⟩2 + ⟨X̃−ik
, x⟩2

]
.

Where the last inequality follows from an application of the AM-GM inequality.

From Claim 8, we conclude that:

∑
i1,...,ik

X̃−i1
X̃⊤

−i1
. . . X̃−ik

X̃⊤
−ik
⪯ (2B)k−1Rk−1

B−1∑
i=0

X̃−iX̃
⊤
−i

Plugging this into Equation (5.32), we have that under the event D̃−0:

H̃⊤
0,B−1H̃0,B−1 ⪯ I − 4γ

B−1∑
i=0

B−1∑
i=0

X̃−iX̃
⊤
−i +

2B∑
k=2

(2γ)k(2B)k−1Rk−1
B−1∑
i=0

X̃−iX̃
⊤
−i

⪯ I − 4γ

B−1∑
i=0

B−1∑
i=0

X̃−iX̃
⊤
−i + 2γ

4γBR

1− 4γBR

B−1∑
i=0

B−1∑
i=0

X̃−iX̃
⊤
−i (5.33)

Here we have used the fact that 4γBR < 1 to convert the finite sum to an infinite sum. Using the

bound on γ, we conclude the upper bound. The lower bound follows with a similar proof.

Lemma 5.7.3. Suppose γBR < 1
6 . Let G := EX̃−iX̃

⊤
−i and M4 := E

∥∥X̃−i

∥∥4. Then, we have:

E
[
H̃⊤

0,B−1H̃0,B−1

∣∣D̃−0

]
⪯ I − 4γB

P(D̃−0)

(
1− 2γBR

1−4γBR

)
G+

4γB
√
M4(1− P(D̃−0))

P(D̃−0)

(
1− 2γBR

1−4γBR

)
I

Proof. The result follows from the statement of Lemma 6.9.3, once we show the following inequality

via Cauchy Schwarz inequality and the definition of conditional expectation:

E
[
X̃−iX̃

⊤
−i

∣∣D̃−0

]
⪰ G

P(D̃−0)
− I

√
E
∥∥X̃−i

∥∥4√1− P(D̃−0)

P(D̃−0)
.

Now we will show that H̃0,B−1 contracts any given vector with probability at-least p0 > 0. For

this we will refer to lemma 5.5.2 where it is shown that if X ∼ π then ⟨X,x⟩ has mean 0 and is
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sub-Gaussian with variance proxy Cµx
⊤Gx. Using this will show that the matrix H̃0,B−1 operating

on a given vector x contracts it with a high enough probability.

Lemma 5.7.4. Suppose γRB < 1
8 and that µ obeys Assumption 2. There exists a constant c0 > 0

which depends only on Cµ such that whenever 1− P(D̃−0) ≤ c0, then for any arbitrary x ∈ R2

P
(
∥H̃0,B−1x∥

2 ≥ ∥x∥2 −Bγx⊤Gx
∣∣D̃−0

)
≤ 1− p0 < 1 .

Where p0 > 0 depends only on Cµ.

Proof. Initially we do not condition on D̃−0. Consider the quantity: Y :=
∑B−1

i=0 ⟨x, X̃−i⟩2.

Claim 9.

P
(
Y ≥ 1/2Bx⊤Gx

)
≥ q0

where q0 > 0 depends only on sub-Gaussianity parameter Cµ

Proof. We consider the Payley-Zygmund inequality which states that for any positive random vari-

able Y with a finite second moment, we have:

P
(
Y > 1

2EY
)
≥ 1

4

(EY )2

EY 2
.

Note that EY = Bx⊤Gx. The statement of the lemma follows once we lower bound the quantity
(EY )2

EY 2 . Clearly, (EY )2 = B2x⊤Gx. Now,

EY 2 =
∑
i,j

E⟨x,Xi⟩2⟨x,Xj⟩2 ≤
∑
i,j

√
E⟨x,Xi⟩4

√
E⟨x,Xj⟩2 = B2E⟨x,Xi⟩4

≤ B2c1C
2
µ(x

⊤Gx)2 (5.34)

Here, the second step follows from Cauchy-Schwarz inequality. The third step follows from the fact

that Xi are all identically distributed. The fourth step follows from Lemma 5.5.2 and Theorem 2.1

from [148]. The statement of the claim follows once we apply Payley-Zygmund inequality.

Now, by definition of conditional probabililty and Claim 9, we have:

P

(
B−1∑
i=0

⟨x, X̃−i⟩2 ≤
B

2
xTGx

∣∣∣∣D̃−0

)
≤ (1− q0)

P(D̃−0)

Now the statement of the lemma follows from an application of Lemma 6.9.3

Now we want to bound the operator norm of
∏a+b

s=a H̃
s
0,B−1 with high probability under the event

∩a+b
s=aD̃s

−0.
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Lemma 5.7.5. Suppose the conditions in Lemma 6.9.2 hold. Let σmin(G) denote the smallest

eigenvalue of G. We also assume that P(D̃a,b) > 1/2. Conditioned on the event D̃a,b,

1. ∥
∏b

s=a H̃
s
0,B−1∥ ≤ 1 almost surely

2. Whenever b− a+ 1 is larger than some constant which depends only on Cµ, we have:

P

(
∥

b∏
s=a

H̃s
0,B−1∥ ≥ 2(1− γBσmin(G))

c4(b−a+1)

∣∣∣∣D̃a,b

)
≤ exp(−c3(b− a+ 1) + c5d)

Where c3, c4 and c5 are constants which depend only on Cµ

Proof.

1. The proof follows from an application of Lemma 6.9.3.

2. We will prove this with an ϵ net argument over the sphere in Rd dimensions.

Suppose we have arbitrary x ∈ Rd such that ∥x∥ = 1. Conditioned on the event D̃a,b, the

matrices H̃s
0,B−1 are all independent for a ≤ s ≤ b. We also note that H̃s

0,B−1 is independent

of D̃t for t ̸= s. Let Kv :=
∏b

s=v H̃
s
0,B−1. When v ≥ b + 1, we take this product to be

identity. Consider the set of events Gv := {∥H̃v
0,B−1Kv+1x∥2 ≤ ∥Kv+1x∥2(1 − γBσmin(G)}.

From Lemma 6.9.2, we have that whenever v ∈ (a, b):

P(Gcv|D̃v, H̃s
0,B−1 : s ≠ v) ≤ 1− p0 (5.35)

Where p0 is given in Lemma 6.9.2

Let D ⊆ {a, . . . , b} such that |D| = r. It is also clear from item 1 and the definitions above

that whenever the event ∩v∈DGv holds, we have:

∥
b∏

s=a

H̃s
0,B−1x∥ ≤ (1− γBσmin(G))

r
2 . (5.36)

Therefore, whenever Equation (6.119) is violated, we must have a set Dc ⊆ {a, . . . , b} such

that |Dc| ≥ b − a − r and the event ∩v∈DcGcv holds. We will union bound all such events

indexed by Dc to obtain an upper bound on the probability that Equation (6.119) is violated.

Therefore, using Equation (6.118) along with the union bound, we have:

P

(
∥

b∏
s=a

H̃s
0,B−1x∥ ≥ (1− γBσmin(G))

r
2

∣∣∣∣D̃a,b

)
≤
(
b− a+ 1

b− a− r

)
(1− p0)b−a−r

Whenever b − a + 1 is larger than some constant depending only on Cµ, we can pick r =

c2(b− a+ 1) for some constant c2 > 0 small enough such that:

P

(
∥

b∏
s=a

H̃s
0,B−1x∥ ≥ (1− γBσmin(G))

r
2

∣∣∣∣D̃a,b

)
≤ exp(−c3(b− a+ 1))
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Now, let N be a 1/2-net of the sphere Sd−1. Using Corollary 4.2.13 in [178], we can choose

|N | ≤ 6d. By Lemma 4.4.1 in [178] we show that:

∥
b∏

s=a

H̃s
0,B−1∥ ≤ 2 sup

x∈N
∥

b∏
s=a

H̃s
0,B−1x∥ (5.37)

By union bounding Equation (6.120) for every x ∈ N , we conclude that:

P

(
∥

b∏
s=a

H̃s
0,B−1∥ ≥ 2(1− γBσmin(G))

c4(b−a+1)

∣∣∣∣D̃a,b

)
≤ |N | exp(−c3(b− a+ 1))

= exp(−c3(b− a+ 1) + c5d) (5.38)

Now we will give a high probability bound for the following operator:

Fa,N :=

N−1∑
r=a

r∏
s=a+1

H̃s
0,B−1 (5.39)

Here, we use the convention that
∏a

s=a+1 H̃
s
0,B−1 = I

Lemma 5.7.6. Suppose c4γBσmin(G) <
1
4 for the constant c4 as given in Lemma 5.7.5. Suppose

all the conditions given in the statement of Lemma 5.7.5 hold. Then, for any δ ∈ (0, 1), we have:

P
(
∥Fa,N∥ ≥ C

(
d+ log N

δ
+

1

γBσmin(G)

)∣∣∣∣D̃a,N−1

)
≤ δ

Where C is a constant which depends only on Cµ

Proof. We consider the triangle inequality: ∥Fa,N∥ ≤
∑N−1

t=a

∥∥∥∏t
s=a+1 H̃

s
0,B−1

∥∥∥. By Lemma 5.7.5,

we have that whenever t− a ≥ c5d
c3

+
log N

δ

c3
:

P

(
∥

t∏
s=a+1

H̃s
0,B−1∥ ≥ 2(1− γBσmin(G))

c4(t−a)

∣∣∣∣D̃a,N−1

)
≤ δ

N

Using union bound, we show that when conditioned on D̃a,N−1, with probability at least 1 − δ

the following holds:

1. For all a ≤ t ≤ N − 1 such that t− a ≥ c5d
c3

+
log N

δ

c3
:

∥
N∏
s=t

H̃s
0,B−1∥ ≤ 2(1− γBσmin(G))

c4(t−a)

2. For all t such that t − a < c5d
c3

+
log N

δ

c3
, we have: ∥

∏N
s=t H̃

s
0,B−1∥ ≤ 1. For this, we use the
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almost sure bound given in item 1 of Lemma 5.7.5

Therefore, when conditioned on D̃a,N−1, with probability at least 1− δ we have:

∥Fa,N∥ ≤ C(d+ log N
δ
) + 2

∞∑
j=0

(1− γBσmin(G))
c4j

≤ C(d+ log N
δ
) + 2

∞∑
j=0

exp(−c4jγBσmin(G))

≤ C(d+ log N
δ
) +

2

1− exp(−c4γBσmin(G))

≤ C(d+ log N
δ
) +

2

c4γBσmin(G)− c24γ
2Bσmin(G)

2

≤ C
(
d+ log N

δ
+

1

γBσmin(G)

)
(5.40)

In the first step, we have used the event described above to bound the operator norm via. the infinite

geometric series. In the second step, we have used the inequality (1 − x)a ≤ exp(−ax) whenever

x ∈ [0, 1] and a > 0. In the fourth step, we have used the inequality exp(−x) ≤ 1−x+ x2

2 whenever

x ∈ [0, 1]. In the last step, we have absorbed constants into a single constant C

We will now consider the averaged iterate of the coupled process as defined in Equation (5.26)

with a = 0.
ˆ̃Av
0,N :=

1

N

N∑
t=1

(
Ãt−1,v

B

)
(5.41)

We recall the definition of ∆t−1 from the beginning of the Section 5.7 and the recursion shown in

Equation (5.29). We combine these with Equation (5.41) to show:

ˆ̃Av
0,N =

1

N

N∑
t=1

∆t−1Ft−1,N (5.42)

Where Fa,N is as defined in Equation (6.122). Using the results in Lemma 5.7.1 and a similar

proof technique we show the following theorem. We define the following event as considered in

Lemma (5.7.6):

M̃t−1 :=

{
∥Ft−1,N∥ ≤ C

(
d+ log N

δ
+ 1

γBσmin(G)

)}
Define the event M̃0,N−1 = ∩N−1

t=0 M̃t and recall the definition of the event D̃0,N−1.

Theorem 5.7.7. We suppose that the conditions in Lemmas 5.7.1, 5.7.6 and 6.9.3 hold. We also

assume that P(M̃0,N−1 ∩ D̃0,N−1) ≥ 1
2 . Define α := C(d + log N

δ + 1
γBσmin(G) ) as in the definition

of the event M̃t

P
(
∥ ˆ̃Av

0,N∥ > β

∣∣∣∣M̃0,N−1 ∩ D̃0,N−1

)
≤ exp

(
c1d−

β2N

16γCµσmax(Σ)(1 + 2α)

)
.
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Proof. Recall the events D̃t,N−1 and define M̃t,N−1 := ∩N−1
s=t M̃t. We recall that ∆t−1 is indepen-

dent of Ft−1,N and D̃t,N−1. Now consider arbitrary x, y ∈ Rd such that ∥x∥ = ∥y∥ = 1. Define

Γt−1,N−1 := 1
N

∑N
s=t ∆s−1Fs−1,N . For any λ > 0, consider the following exponential moment:

E
[
exp

(
λ⟨x, ( ˆ̃Av

0,N )y⟩
)∣∣∣∣M̃0,N−1 ∩ D̃0,N−1

]

=
E
[
exp

(
λ⟨x, ( ˆ̃Av

0,N )y⟩
)
1

(
M̃0,N−1 ∩ D̃0,N−1

)]
P
(
M̃0,N−1 ∩ D̃0,N−1

)
=

E
[
exp

(
λ
N ⟨x,∆0F0,Ny⟩+ λ⟨x,Γ1,N−1y⟩

)
1

(
M̃0,N−1 ∩ D̃0,N−1

)]
P
(
M̃0,N−1 ∩ D̃0,N−1

) (5.43)

Here, we note that ∆0 is independent of M̃0,N−1, F0,N and D̃1,N−1. We integrate out ∆0 in

Equation (5.43) using item 2 of Lemma 5.7.1 by using the fact that D̃0,N−1 = D̃1,N−1 ∩ D̃0
−0 to

show:

E
[
exp

(
λ⟨x, ( ˆ̃Av

0,N )y⟩
)∣∣∣∣M̃0,N−1 ∩ D̃0,N−1

]

≤
E
[
exp

(
γ
λ2Cµ

N2 ⟨x,Σx⟩∥F0,Ny∥2 + λ⟨x,Γ1,N−1y⟩
)
1

(
M̃0,N−1 ∩ D̃1,N−1

)]
P
(
M̃0,N−1 ∩ D̃0,N−1

) (5.44)

We use the fact that F0,N = I + H̃1
0,B−1F1,N to conclude: ∥F0,Ny∥2 = ∥y∥2 + 2⟨y, H̃1

0,B−1F1,Ny⟩+
⟨y, FT

1,N H̃
1,⊤
0,B−1H̃

1
0,B−1F1,Ny⟩. Under the event M̃0,N−1 ∩ D̃1,N−1, we have: ∥H̃1

0,B−1∥ ≤ 1 and
∥F1,N∥ ≤ α. Therefore, ∥F0,Ny∥2 ≤ ∥y∥2(1 + 2α) + ⟨y, FT

1,N H̃
1,⊤
0,B−1H̃

1
0,B−1F1,Ny⟩. Using this in

Equation (5.44), we conclude:

P
(
M̃0,N−1 ∩ D̃0,N−1

)
E
[
exp

(
λ⟨x, ( ˆ̃Av

0,N )y⟩
)∣∣∣∣M̃0,N−1 ∩ D̃0,N−1

]
≤ E

[
exp (Ω + λ⟨x,Γ1,N−1y⟩)1

(
M̃0,N−1 ∩ D̃1,N−1

)]
≤ E

[
exp (Ω + λ⟨x,Γ1,N−1y⟩)1

(
M̃1,N−1 ∩ D̃1,N−1

)]
, (5.45)

where Ω := γ
λ2Cµ

N2 ⟨x,Σx⟩(1+2α)∥y∥2+γ λ2Cµ

N2 ⟨x,Σx⟩⟨y, FT
1,N H̃

1,⊤
0,B−1H̃

1
0,B−1F1,Ny⟩. In the last step

we have used the fact that M̃0,N−1 ∩ D̃1,N−1 ⊆ M̃1,N−1 ∩ D̃1,N−1. We continue just like before but

use item 1 of Lemma 5.7.1 instead of item 2 to keep peeling terms of the form ⟨x,∆t−1Ft−1,Ny⟩ to
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conclude:

E
[
exp

(
λ⟨x, ( ˆ̃Av

0,N )y⟩
)∣∣∣∣M̃0,N−1 ∩ D̃0,N−1

]
≤ 2 exp

(
γ
λ2Cµ

N
⟨x,Σx⟩(1 + 2α)∥y∥2

)
≤ 2 exp

(
γ
λ2Cµ

N
σmax(Σ)(1 + 2α)

)
(5.46)

Where σmax(Σ) is the maximum eigenvalue of the covariance matrix Σ. Here we have used the

assumption that P
(
M̃0,N−1 ∩ D̃0,N−1

)
≥ 1

2 and the fact that ∥x∥ = ∥y∥ = 1. We apply Chernoff

bound to ⟨x, ( ˆ̃Av
0,N )y⟩ using Equation (5.46) to conclude that for any β, λ ∈ R+

P
(
⟨x, ( ˆ̃Av

0,N )y⟩ > β

∣∣∣∣M̃0,N−1 ∩ D̃0,N−1

)
≤ 2 exp

(
γ
λ2Cµ

N
σmax(Σ)⟩(1 + 2α)− βλ

)
(5.47)

Choose λ = Nβ
2γCµσmax(Σ)(1+2α) to conclude:

P
(
⟨x, ( ˆ̃Av

0,N )y⟩ > β

∣∣∣∣M̃0,N−1 ∩ D̃0,N−1

)
≤ 2 exp

(
− β2N

4γCµσmax(Σ)(1 + 2α)

)

We now apply an ϵ net argument just like in Lemma 5.7.5. Suppose N is a 1/4-net of the sphere

in Rd. By Corollary 4.2.13 in [178], we can choose |N | ≤ 12d. By Exercise 4.4.3 in [178], we conclude

that:

∥ ˆ̃Av
0,N∥ ≤ 2 sup

x,y∈N
⟨x, ( ˆ̃Av

0,N )y⟩.

Therefore,

P
(
∥ ˆ̃Av

0,N∥ > β

∣∣∣∣M̃0,N−1 ∩ D̃0,N−1

)
≤ P

(
sup

x,y∈N
⟨x, ( ˆ̃Av

0,N )y⟩ > β

2

∣∣∣∣M̃0,N−1 ∩ D̃0,N−1

)
≤ |N |2 sup

x,y∈N
P
(
⟨x, ( ˆ̃Av

0,N )y⟩ > β

2

∣∣∣∣M̃0,N−1 ∩ D̃0,N−1

)
≤ 2(12)2d exp

(
− β2N

16γCµσmax(Σ)(1 + 2α)

)
≤ exp

(
c1d−

β2N

16γCµσmax(Σ)(1 + 2α)

)
(5.48)

5.8 Parameter error: Proof of theorem 5.3.1

In this section, we formally prove the bounds on Lop(;A∗, µ), by combining several operator norm

inequalities that we prove in Section 5.7. As mentioned previously, we will just focus on the algo-

rithmic iterates from the coupled process (Ãt−1
j ). Recall the output Ãt−1

B after the t − 1-th buffer

from Equation (5.23). For any initial buffer index a ∈ {0, 1, . . . , N − 1}, the tail averaged output of
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our algorithm is:
ˆ̃Aa,N :=

1

N − a

N∑
t=a+1

Ãt−1
B .

Recall the quantities Ãt−1,v
B and Ãt−1,b

B as defined in (5.24) and (5.25). We can use this decomposition

to write:
ˆ̃Aa,N −A∗ = ˆ̃Ab

a,N −A∗ + ˆ̃Av
a,N .

Here ˆ̃Ab
a,N−A∗ := 1

N−a

∑N
t=a+1

(
Ãt−1,b

B −A∗
)

denotes the bias part and ˆ̃Av
a,N := 1

N−a

∑N
t=a+1

(
Ãt−1,v

B

)
denotes the variance part.

5.8.1 Variance

Note that

ˆ̃Av
a,N =

N

N − a

(
ˆ̃Av
0,N

)
− a

N − a

(
ˆ̃Av
0,a

)
(5.49)

Now, we apply Theorem 5.7.7 with δ in the definition of M̃0,N−1 to be 1
Tυ for some fixed υ ≥ 1.

We conclude that conditioned on the event M̃0,N−1 ∩ D̃0,N−1, with probability at least 1− 1
Tυ , we

have:

∥ ˆ̃Av
0,N∥ ≤ C

√
γ(d+ υ logT )2σmax(Σ)

N
+ C

√
(d+ υ logT )σmax(Σ)

NBσmin(G)
.

Similarly, applying Theorem 5.7.7 with N = a shows that with probability at least 1 − 1
Tυ

conditioned on the event M̃0,N−1 ∩ D̃0,N−1:

∥ ˆ̃Av
0,a∥ ≤ C

√
γ(d+ υ logT )2σmax(Σ)

a
+ C

√
(d+ υ logT )σmax(Σ)

aBσmin(G)
.

Here, the constant C depends only on Cµ. We also note that when we pick γBR ≤ C0 where

R ≳ Tr(G) + υ logT , the first term in the equations above becomes smaller than the second term.

Therefore, under this assumption we can simplify the expressions to:

∥ ˆ̃Av
0,N∥ ≤ C

√
(d+ υ logT )σmax(Σ)

NBσmin(G)
. (5.50)

∥ ˆ̃Av
0,a∥ ≤ C

√
(d+ υ logT )σmax(Σ)

aBσmin(G)
. (5.51)

Applying Equations (5.50) and (5.51) to Equation (5.49) we conclude that conditioned on the
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event M̃0,N−1 ∩ D̃0,N−1, with probability at least 1− 2
Tυ , we have:

∥ ˆ̃Av
a,N∥ ≤

N

N − a
∥
(
ˆ̃Av
0,N

)
∥+ a

N − a
∥
(
ˆ̃Av
0,a

)
∥

≤ CN

N − a

√
(d+ υ logT )σmax(Σ)

NBσmin(G)
+

Ca

N − a

√
(d+ υ logT )σmax(Σ)

aBσmin(G)
. (5.52)

Choose a < N/2. Since

P
[
M̃0,N−1 ∩ D̃0,N−1

]
≥ 1− (

1

T υ
+

1

Tα
)

we have

P

[
∥ ˆ̃Av

a,N∥ > C

√
(d+ υ logT )σmax(Σ)

(N − a)Bσmin(G)

]
≤ 1

Tα
+

3

T υ
(5.53)

5.8.2 Bias

We now consider the bias term: ˆ̃Ab
a,N − A∗ := 1

N−a

∑N
t=a+1

(
Ãt−1,b

B −A∗
)

. First note that, from

equation (5.24), we have

∥∥∥ ˆ̃Ab
a,N −A∗

∥∥∥ ≤ 1

N − a

N∑
t=a+1

∥A0 −A∗∥

∥∥∥∥∥
t−1∏
s=0

H̃s
0,B−1

∥∥∥∥∥ (5.54)

Now from lemma 5.7.5, if a > c1
(
d+ log N

δ

)
then conditional on D̃0,N−1 with probability at

least 1− δ, for all a+ 1 ≤ t ≤ N we have∥∥∥∥∥
t−1∏
s=0

H̃s
0,B−1

∥∥∥∥∥ ≤ 2 (1− γBσmin(G))
c2t (5.55)

Note that in lemma 5.7.5 we only condition on D̃0,t−1 but due to buffer independence and that

P
[
D̃0,N−1

]
≥ 1− 1

Tα we can condition on D̃0,N−1.

Note that in the proof of lemma 5.7.5 the constant c2 is actually at most 1 i.e., 0 < c2 ≤ 1.

Hence from Bernoulli’s inequality, for x < 1

(1− x)c2 ≤ 1− c2x
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Thus conditional on D̃0,N−1 with probability at least 1− δ

∥∥∥ ˆ̃Ab
a,N −A∗

∥∥∥ ≤ ∥A0 −A∗∥
N − a

∞∑
t=a+1

2 (1− γBσmin(G))
c2t

= 2
∥A0 −A∗∥
N − a

(1− γBσmin(G))
c2a

c2γBσmin(G)

≤ c3
∥A0 −A∗∥
N − a

e−c2aγBσmin(G)

γBσmin(G)
(5.56)

Hence choosing δ = 1
Tυ we have for a > c1

(
d+ log N

δ

)
P
[∥∥∥ ˆ̃Ab

a,N −A∗
∥∥∥ > c3

∥A0 −A∗∥
N − a

e−c2aγBσmin(G)

γBσmin(G)

]
≤ 1

Tα
+

1

T υ
(5.57)

Define βb as

βb = c3
1

N − a
e−c2aγBσmin(G)

γBσmin(G)
(5.58)

Thus by union bound and equations (5.53) and (5.57) we get

P

[∥∥∥ ˆ̃Aa,N −A∗
∥∥∥ > C

√
(d+ υ logT )σmax(Σ)

(N − a)Bσmin(G)
+ βb ∥A0 −A∗∥

]
≤ 2

Tα
+

4

T υ
(5.59)

Now from lemma 6.8.3 we see that on the event D̂0,N−1

∥∥∥Âa,N − ˆ̃Aa,N

∥∥∥ ≤ cγ2R2T 2 ∥A∗u∥ (5.60)

Since P
[
D̂0,N−1

]
≥ 1− 1

Tα , we obtain

P
[∥∥∥Âa,N − ˆ̃Aa,N

∥∥∥ ≤ cγ2R2T 2 ∥A∗u∥
]
≥ 1− 1

Tα
(5.61)

Therefore choosing δ = 1
Tυ we have for N/2 > a > c1

(
d+ log N

δ

)
P

[∥∥∥Âa,N −A∗
∥∥∥ > C

√
(d+ υ logT )σmax(Σ)

(N − a)Bσmin(G)
+ βb ∥A0 −A∗∥+ c4γ

2R2T 2 ∥A∗u∥

]
≤ 3

Tα
+

4

T υ
(5.62)

where βb is defined in (5.58).

The theorem follows by adjusting the constants (in choosing δ) such the above probability is at

most 3
Tα + 1

2Tυ and then choosing υ such that 3
Tα ≤ 1

2Tυ .

116



5.9 Preliminary results for prediction error

5.9.1 Bias variance analysis of last and average iterates

In this section, our goal is to provide a PSD upper bound on

E
[(
Ãt−1

B −A∗
)⊤ (

Ãt−1
B −A∗

)]
,E
[(

ˆ̃Aa,N −A∗
)⊤ ( ˆ̃Aa,N −A∗

)]

using the bias variance decomposition in (5.23) and (5.27). This bound leads to Theorem 5.9.2 which

is critical for our parameter error proof (Theorem 5.3.1).

5.9.2 Variance of the last iterate

The goal of this section is to bound error due to
(
Ãt−1,v

B

)
. For brevity, we will introduce the

following notation:

Ṽt−1 = E
[(
Ãt−1,v

B

)⊤ (
Ãt−1,v

B

)
1
[
D̃0,t−1

]]
. (5.63)

The following proposition is the main result of this section.

Proposition 1. Let γ ≤ 1
2R . Let the noise covariance be E

[
ηtη

T
t

]
= Σ. Then,

Ṽt−1 ⪯ γ Tr(Σ)
1− γR

[
I − E

[(
t∏

s=1

H̃t−s,⊤
0,B−1

)(
1∏

s=t

H̃t−s
0,B−1

)
1
[
D̃0,t−1

]]]
+ c1γ

2dσmax(Σ)(Bt)2
1

Tα/2
I,

Ṽt−1 ⪰ γ Tr(Σ)
[
I − E

[(
t∏

s=1

H̃t−s,⊤
0,B−1

)(
1∏

s=t

H̃t−s
0,B−1

)
1
[
D̃0,t−1

]]]
− c4γ

2dσmax(Σ)(Bt)2
1

Tα/2
I,

for some absolute constants ci > 0, 1 ≤ i ≤ 4.

We refer to Section 5.9.6 for a full proof. Note that we have, 1
1−γ∥X∥2 ≤ 2.

Corollary 1. In the same setting as Proposition 1, we have:

Ṽt−1 ⪯ c1γ Tr(Σ)I + c2γ
2dσmax(Σ)(Bt)

2 1

Tα/2
I, (5.64)

for some constants c1, c2 > 0. If Tα/2 > T 2, then Vt,1 ⪯ cγdσmaxI, for some constant c > 0.

5.9.3 Variance of the average iterate

In this section we are interested in bounding: E
[(

ˆ̃Av
a,N

)⊤ ( ˆ̃Av
a,N

)
1
[
D̃0,N−1

]]
, for a = θN with

0 ≤ θ < 1, where,
ˆ̃Av
a,N =

1

N − a

N∑
t=a+1

Ãt−1,v
B , (5.65)
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and further, recall that T = N(B + u). The main bound in this section is given in Proposition 2.

Note that we have,

E
[(

ˆ̃Av
a,N

)⊤ ( ˆ̃Av
a,N

)
1
[
D̃0,N−1

]]
=

1

(N − a)2
N∑

t=a+1

E
[(
Ãt−1,v

B

)⊤ (
Ãt−1,v

B

)
1
[
D̃0,N−1

]]
+

1

(N − a)2
∑
t1 ̸=t2

E
[(
Ãt1−1,v

B

)⊤ (
Ãt2−1,v

B

)
1
[
D̃0,N−1

]]
(5.66)

Proposition 2. Let γ ≤ min{ c
6RB

1
2R} for 0 < c < 1. Then for ˆ̃Av

a,N defined in (5.65), there are

constants c1, c2 > 0 such that if Tα/2 > c1
√
M4

σmin(G) , then:

E
[(

ˆ̃Av
a,N

)⊤ ( ˆ̃Av
a,N

)
1
[
D̃0,N−1

]]

⪯ 1

(N − a)2
N∑

t=a+1

Ṽt−1

(
N−t∑
s=0

Hs

)
+

(
N−t∑
s=0

Hs

)⊤

Ṽt−1

+ c2δI (5.67)

=
1

(N − a)2
N∑

t=a+1

[
Ṽt−1 (I −H)−1

+
(
I −H⊤)−1

Ṽt−1

]
+ c2δI +

1

(N − a)2
N∑

t=a+1

[
Ṽt−1 (I −H)−1HN−t+1 +

(
H⊤)N−t+1 (

I −H⊤)−1
Ṽt−1

]
(5.68)

and,

δ ≡ δ(N,B,R) = γ2T 2Rdσmax(Σ)
1

Tα/2
(5.69)

and H is given by,

H = E

B−1∏
j=0

(
I − 2γX̃0

−jX̃
0,⊤
−j

)
1
[
∩B−1
j=0

{
∥X̃0

−j∥2 ≤ R
}] , (5.70)

with X̃0 sampled from the stationary distribution π and X̃t follows the VAR(A∗, µ).

See section 5.9.7 for the proof.

5.9.4 Bias of the last iterate

In this we will analyze the bias term of the last iterate. That is we want to bound:

E
[(
Ãt−1,b

B −A∗
)⊤ (

Ãt−1,b
B −A∗

)
1
[
D̃0,t−1

]]
.
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Where
(
Ãt−1,b

B −A∗
)

is defined in (5.24).

Theorem 5.9.1. Let γRB ≤ c
6 for some 0 < c < 1 with B such that γR ≤ 1

2 . Then there are

constants c1, c2, c3 > 0 such that if Tα/2 > c1
√
M4

σmin(G) (where M4 = E
[
∥X̃0

−0∥4
]
) then

E
[(
Ãt−1,b

B −A∗
)⊤ (

Ãt−1,b
B −A∗

)
1
[
D̃0,t−1

]]
⪯ ∥A0 −A∗∥2 (1− c2γBσmin(G))

t
I (5.71)

See section 5.9.9 for the proof.

5.9.5 Bias of the tail-averaged iterate

We define the tail averaged bias as

ˆ̃Ab
a,N =

1

N − a

N∑
t=a+1

Ãt−1,b
B (5.72)

Theorem 5.9.2. Let γRB ≤ c
6 for some 0 < c < 1 and B such that γR ≤ 1

2 . There exist constants

c1, c2 > 0 such that if T = N(B + u) satisfies Tα/2 > c1
√
M4

σmin(G) then for a = θN with 0 < θ < 1 we

have ∥∥∥∥E [( ˆ̃Ab
a,N −A

∗
)⊤ ( ˆ̃Ab

a,N −A
∗
)
1
[
D̃0,N−1

]]∥∥∥∥ ≤
c2

1

B(N − a)
e−c3Bγσmin(G)a

γσmin(G)
∥A0 −A∗∥2 (5.73)

See section 5.9.10 for the proof.

5.9.6 Proof of proposition 1

Proof of proposition 1. First note that

(
Ãt−1,v

b

)⊤ (
Ãt−1,v

b

)
=

t∑
r=1

B−1∑
j=0

D̃g(t, r, j) +
t∑

r1,r2=1

B−1∑
j1,j2=0

C̃r(t, r1, j1, r2, j2) (5.74)
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where

D̃g(t, r, j) = 4γ2
∥∥ηt−r

−j

∥∥2 ·(
r−1∏
s=1

H̃t−s,⊤
0,B−1

)
H̃t−r,⊤

j+1,B−1X̃
t−r
−j X̃

t−r,⊤
−j H̃t−r

j+1,B−1

(
1∏

s=r−1

H̃t−s
0,B−1

)
(5.75)

C̃r(t, r1, j1, r2, j2) = 4γ2

(
ηt−r1
−j1

X̃t−r1,⊤
−j1

H̃t−r1
j1+1,B−1

1∏
s=r1−1

H̃t−s
0,B−1

)⊤

·(
ηt−r2
−j2

X̃t−r2,⊤
−j2

H̃t−r2
j2+1,B−1

1∏
s=r2−1

H̃t−s
0,B−1

)
(5.76)

denote the diagonal and cross terms respectively.

We begin by noting the following two facts about
(
Ãt−1,v

b

)
:

• It has zero mean

E
[(
Ãt−1,v

B

)]
= 0 (5.77)

• Let (r1, j1) ̸= (r2, j2). Then

E
[
C̃r(t, r1, j1, r2, j2)

]
= 0 (5.78)

This follows because, assuming r1 > r2, the term ηt−r1
−j1

X̃t−r1,⊤
−j1

H̃t−r1
j1+1,B−1 is independent of ev-

erything else in that expression, and that ηt−r1
−j1

is independent of X̃t−r1,⊤
−j1

H̃t−r1
j1+1,B−1. A similar

argument can be made for the case when r1 = r2 but j1 ̸= j2.

But we are interested in expectation on the event D̃0,t−1.

We will bound the expectation of cross terms in the following lemma.

Lemma 5.9.3. We have∥∥∥∥∥∥E
∑
r1,r2

∑
j1,j2

C̃r(t, r1, j1, r2, j2)

 1
[
D̃0,t−1

]∥∥∥∥∥∥ ≤ 8(Bt)2γ2RTr(Σ) 1

Tα/2
(5.79)

Proof. Let

Consider a single cross term: C̃r(t, r1, j1, r2, j2) and without loss of generality, assume that either

r1 > r2 or r1 = r2 but j1 < j2. In either case, we note that ηt−r1
−j1

is unconditionally independent

of all other terms present in C̃r(t, r1, j1, r2, j2). The main problem here is to bound the expectation

over the event D̃0,t−1. For the sake of convenience, only in this proof, we will define the following

notation:
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C̃r(t, r1, j1, r2, j2) = E1η
t−r1,⊤
−j1

ηt−r2
−j2

E2

Where E1 and E2 are random matrices defined according to the definition of C̃r(t, r1, j1, r2, j2) and

are unconditionally independent of ηt−r1,⊤
−j1

. Let FE = σ(E1, E2, η
t−r2
−j2

). Note that when conditioned

on the event D̃0,t−1, we must have the eventM := {∥E1∥ ≤ 4γ2
√
R}∩{∥E2∥ ≤

√
R} almost surely.

Therefore, we conclude:

E
[
C̃r(t, r1, j1, r2, j2)1

[
D̃0,t−1

]]
= E

[
C̃r(t, r1, j1, r2, j2)1

[
D̃0,t−1

]
1 [M]

]
= E

[
1 [M]E1E

[
ηt−r1,⊤
−j1

1
[
D̃0,t−1

]∣∣∣∣FE

]
ηt−r2
−j2

E2

]
≤ E

[
1 [M] ∥E1∥

∥∥∥∥E [ηt−r1,⊤
−j1

1
[
D̃0,t−1

]∣∣∣∣FE

]∥∥∥∥ ∥∥ηt−r2
−j2

∥∥ ∥E2∥
]

≤ 4γ2RE
[∥∥∥∥E [ηt−r1,⊤

−j1
1
[
D̃0,t−1

]∣∣∣∣FE

]∥∥∥∥ ∥∥ηt−r2
−j2

∥∥] (5.80)

In the third step, we have used the fact that under the event M, the norms ∥E1∥, ∥E2∥ are

bounded. We will now bound E
[
ηt−r1,⊤
−j1

1
[
D̃0,t−1

]∣∣∣∣FE

]
. Clearly, due to the unconditional indepen-

dence, we must have:

E
[
ηt−r1,⊤
−j1

∣∣∣∣FE

]
= 0

=⇒ E
[
ηt−r1,⊤
−j1

1
[
D̃0,t−1

]∣∣∣∣FE

]
= −E

[
ηt−r1,⊤
−j1

1
[
D̃0,t−1,C

]∣∣∣∣FE

]
=⇒

∥∥∥∥E [ηt−r1,⊤
−j1

1
[
D̃0,t−1

]∣∣∣∣FE

]∥∥∥∥ ≤ √TrΣ

√
P
(
D̃0,t−1,C

∣∣∣∣FE

)
(5.81)

In the last step, we have used Cauchy Schwarz inequality and the fact that ηt−r1,⊤
−j1

is independent

of FE . We combine the Equation above with Equation (5.80) and apply Jensen’s inequality once

again to conclude:

∥∥∥E [C̃r(t, r1, j1, r2, j2)1
[
D̃0,t−1

]]∥∥∥ ≤ 4γ2RTr(Σ)
√

P
[
D̃0,t−1,C

]
≤ 4γ2R

Tr(Σ)
Tα/2

(5.82)

In the last step, we have used Lemma 5.5.3 to bound P
(
D̃0,t−1,C

)
. Summing over all the indices

(r1, j1, r2, j2), we conclude the statement of the lemma.
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Lemma 5.9.4. We have:

E

 t∑
r=1

B−1∑
j=0

D̃g(t, r, j)1
[
D̃0,t−1

] ⪯ 4γ2 Tr(Σ)E

 t∑
r=1

B−1∑
j=0

(
r−1∏
s=1

H̃t−s,⊤
0,B−1

)
H̃t−r,⊤

j+1,B−1X̃
t−r
−j ·

X̃t−r,⊤
−j H̃t−r

j+1,B−1

(
1∏

s=r−1

H̃t−s
0,B−1

)
1
[
D̃0,t−1

]]
+ δDgI (5.83)

and

E

 t∑
r=1

B−1∑
j=0

D̃g(t, r, j)1
[
D̃0,t−1

] ⪰ 4γ2 Tr(Σ)E

 t∑
r=1

B−1∑
j=0

(
r−1∏
s=1

H̃t−s,⊤
0,B−1

)
H̃t−r,⊤

j+1,B−1X̃
t−r
−j ·

X̃t−r,⊤
−j H̃t−r

j+1,B−1

(
1∏

s=r−1

H̃t−s
0,B−1

)
1
[
D̃0,t−1

]]
− δDgI (5.84)

where

δDg ≡ δDg(T,Σ, R, µ4) = 4γ2(Bt)R
√
µ4

1

Tα/2
(5.85)

Proof. The evaluation of expectations is clear when there is no indicator 1
[
D̃0,t−1

]
within the

expectation. We will now deal with it just like in the proof of Lemma 5.9.3. Consider D̃g(t, r, j).

For the sake of convenience, only in this proof, we will use the following notation:

D̃g(t, r, j) = 4γ2
∥∥ηt−r

−j

∥∥2E .
Where the random PSD matrix E is unconditionally independent of ηt−r

−j . Let M = {∥E∥ ≤ R}.

Conditioned on the event D̃0,t−1, the event M holds almost surely. Let FE = σ(E).

Now consider:

E
[
D̃g(t, r, j)1

[
D̃0,t−1

]]
= E

[
D̃g(t, r, j)1

[
D̃0,t−1

]
1 [M]

]
= 4γ2E

[∥∥ηt−r
−j

∥∥2E1
[
D̃0,t−1

]
1 [M]

]
= 4γ2E

[
E
[∥∥ηt−r

−j

∥∥2 1 [D̃0,t−1
]
|FE

]
E1 [M]

]
(5.86)

It can be easily shown via similar techniques used in Lemma 5.9.3 that:

Tr(Σ)−√µ4

√
P
(
D̃0,t−1,C

∣∣FE

)
≤ E

[∥∥ηt−r
−j

∥∥2 1 [D̃0,t−1
]
|FE

]
≤ Tr(Σ)

Using this in Equation (5.86), we conclude:
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E
[
D̃g(t, r, j)1

[
D̃0,t−1

]]
⪯ 4γ2 Tr(Σ)E [E1 [M]]

= 4γ2 Tr(Σ)E
[
E1 [M] 1

[
D̃0,t−1

]
+ E1 [M] 1

[
D̃0,t−1,C

]]
= 4γ2 Tr(Σ)E

[
E1
[
D̃0,t−1

]
+ E1 [M] 1

[
D̃0,t−1,C

]]
⪯ 4γ2 TrΣE

[
E1
[
D̂0,t−1

]]
+ 4γ2 Tr(Σ)R I

Tα
(5.87)

In the third step, we have used the fact that D̃0,t−1 ⊆ M. In the last step we have used the fact

that E is PSD and over the event M, E ⪯ RI. We have used Lemma 5.5.3 to bound P(D̃0,t−1,C).

Using a similar technique as above, we can show that:

E
[
D̃g(t, r, j)1

[
D̃0,t−1

]]
⪰ 4γ2 TrΣE

[
E1
[
D̃0,t−1

]]
− 4γ2

√
µ4R

Tα/2
I (5.88)

Note that
√
µ4R

Tα/2 ≥ Tr(Σ)R
Tα . Summing over r, j and combining Equations (5.88) and (5.87), we

conclude the result.

For convenience, define Ks :=
∑B−1

j=0 H̃
s,⊤
j+1,B−1X̃

s
−jX̃

s,⊤
−j H̃

s
j+1,B−1

Claim 10. Suppose γ < 1
R . Under the event D̃0,t−1, for every s ≤ t− 1 we must have:

I − H̃s,⊤
0,B−1H̃

s
0,B−1

4γ
⪯ Ks ⪯

I − H̃s,⊤
0,B−1H̃

s
0,B−1

γ̂

Where γ̂ = 4γ(1− γR)

Proof. In the entire proof, we suppose that the event D̃0,t−1 holds. Consider:

H̃s,⊤
j,B−1H̃

s
j,B−1 + 4γH̃s,⊤

j+1,B−1X̃
s
−jX̃

s,⊤
−j H̃

s
j+1,B−1

= H̃s,⊤
j+1,B−1

(
I −

(
4γ − 4γ2∥X̃s

−j∥2
)
X̃s

−jX̃
s,⊤
−j

)
H̃s

j+1,B−1 + 4γH̃s,⊤
j+1,B−1X̃

s
−jX̃

s,⊤
−j H̃

s
j+1,B−1

= H̃s,⊤
j+1,B−1

(
I + 4γ2∥X̃s

−j∥2X̃s
−jX̃

s,⊤
−j

)
H̃s

j+1,B−1

⪰ H̃s,⊤
j+1,B−1H̃

s
j+1,B−1 (5.89)

Using the recursion in Equation (5.89), we show that:

H̃s,⊤
0,B−1H̃

s
0,B−1 + 4γKs ⪰ I .
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This establishes the lower bound. To establish the upper bound, we consider

H̃s,⊤
j,B−1H̃

s
j,B−1 + γ̂H̃s,⊤

j+1,B−1X̃
s
−jX̃

s,⊤
−j H̃

s
j+1,B−1 .

Following similar technique used to establish Equation (5.89), using the fact that under the event

D̃0,t−1 we have ∥X̃s
−j∥2 ≤ R we show that:

H̃s,⊤
j,B−1H̃

s
j,B−1 + γ̂H̃s,⊤

j+1,B−1X̃
s
−jX̃

s,⊤
−j H̃

s
j+1,B−1 ⪯ H̃

s,⊤
j+1,B−1H̃

s
j+1,B−1 .

Using a similar recursion as before, we establish that:

H̃s,⊤
0,B−1H̃

s
0,B−1 + γ̂Ks ⪯ I .

We are now ready to bound the first term in (5.83):

E

[
t∑

r=1

(
r−1∏
s=1

H̃t−s,⊤
0,B−1

)
Kt−r

(
1∏

s=r−1

H̃t−s
0,B−1

)
1
[
D̃0,t−1

]]
(5.90)

It is easy to show via. telescoping sum argument that:

t∑
r=1

(
r−1∏
s=1

H̃t−s,⊤
0,B−1

)(
I − H̃t−r,⊤

0,B−1H̃
t−r
0,B−1

)( 1∏
s=r−1

H̃t−s
0,B−1

)
= I −

(
t∏

s=1

H̃t−s,⊤
0,B−1

)(
1∏

s=t

H̃t−s
0,B−1

)
(5.91)

We then use Claim 10 to show that under the event D̃0,t−1, we must have:

I −
(∏t

s=1 H̃
t−s,⊤
0,B−1

)(∏1
s=t H̃

t−s
0,B−1

)
4γ

⪯
t∑

r=1

(
r−1∏
s=1

H̃t−s,⊤
0,B−1

)
Kt−r

(
1∏

s=r−1

H̃t−s
0,B−1

)
(5.92)

And:

t∑
r=1

(
r−1∏
s=1

H̃t−s,⊤
0,B−1

)
Kt−r

(
1∏

s=r−1

H̃t−s
0,B−1

)
⪯
I −

(∏t
s=1 H̃

t−s,⊤
0,B−1

)(∏1
s=t H̃

t−s
0,B−1

)
γ̂

(5.93)

Finally, combining Lemma 5.9.3, Lemma 5.9.4, claim 10, Equations (5.92), (5.93) and the bound

on µ4 (stated after assumption 3 in section 5.1) along with γ̂ = 4γ(1− γR) we get the statement of

the proposition.
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5.9.7 Proof of proposition 2

Before delving into the proof, we note some useful results below.

Lemma 5.9.5. For any random matrix B ∈ Rd×d we have that

E
[
B⊤]E [B] ⪯ E

[
B⊤B

]
(5.94)

Hence

∥E [B]∥ ≤
√
∥E [B⊤B]∥ (5.95)

Proof. Note that for any vector x ∈ Rd we have

x⊤E
[
B⊤]E [B]x = ∥E [Bx]∥2 ≤ E

[
∥Bx∥2

]
= x⊤E

[
B⊤B

]
x (5.96)

Lemma 5.9.6. Let γRB ≤ c
6 for 0 < c < 1. The there are constants c1, c2 > 0 such that for

Tα/2 > c1
√
M4

σmin(G) we have

∥H∥ ≤
√
1− c2γBσmin(G) ≤ 1− c2

2
γBσmin(G) (5.97)

with 1− c2γBσmin(G) > 0.

Proof. Note that H can be written as H = E
[
H̃0

0,B−11[D̃0
−0]
]
. First we use Lemma 5.9.5 to get

∥H∥ ≤
√∥∥∥E [H̃0,⊤

0,B−1H̃
0
0,B−11[D̃0

−0]
]∥∥∥ (5.98)

Then, from Lemma 5.7.3 we can show that there are constants c1, c2 > 0 such that

∥∥∥E [H̃0,⊤
0,B−1H̃

0
0,B−11[D̃

0
−0]
]∥∥∥ ≤ (1− c1γBσmin(G) + c2γB

√
M4

1

Tα/2

)
(5.99)

Now choosing T such that Tα/2 > c2
√
M4

2c1σmin(G) we get

∥∥∥E [H̃0,⊤
0,B−1H̃

0
0,B−11[D̃

0
−0]
]∥∥∥ ≤ (1− c3γBσmin(G)) (5.100)

where c3 is such that the RHS in (5.100) is positive. Hence the claim follows.

Proof of Proposition 2. We will prove the proposition only for a = 0. The arguments for general a

are exactly the same.
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For simplicity, we denote
ˆ̃Av
N ≡

(
ˆ̃Av
0,N

)
(5.101)

From recursion (5.5) we have the following relation between
(
Ãt2−1,v

B

)
and

(
Ãt1−1,v

B

)
for t2 > t1

(
Ãt2−1,v

B

)
=
(
Ãt1−1,v

B

)( 1∏
s=t2−t1

H̃t2−s
0,B−1

)
+

2γ

t2−t1∑
r=1

B−1∑
j=0

ηt2−r
−j X̃t2−r,⊤

−j H̃t2−r
j+1,B−1

(
1∏

s=r−1

H̃t2−s
0,B−1

)
. (5.102)

Hence we have

(
Ãt1−1,v

B

)⊤ (
Ãt2−1,v

B

)
=
(
Ãt1−1,v

B

)⊤ (
Ãt1−1,v

B

)( 1∏
s=t2−t1

H̃t2−s
0,B−1

)
+

2γ
(
Ãt1−1,v

B

)⊤ t2−t1∑
r=1

B−1∑
j=0

ηt2−r
−j X̃t2−r,⊤

−j H̃t2−r
j+1,B−1

(
1∏

s=r−1

H̃t2−s
0,B−1

)
. (5.103)

The second term in (5.103) is bounded in claim 11

The first term in (5.103) can be analyzed using independence as follows.

E

[(
Ãt1−1,v

B

)⊤ (
Ãt1−1,v

B

)
1
[
D̃0,t1−1

]( 1∏
s=t2−t1

H̃t2−s
0,B−1

)
1
[
D̃t1,N−1

]]

= Ṽt1−1E

[(
1∏

s=t2−t1

H̃t2−s
0,B−1

)
1
[
D̃t1,N−1

]]

= Ṽt1−1E

[(
1∏

s=t2−t1

H̃t2−s
0,B−1

)
1
[
D̃t1,t2−1

]]
E
[
1
[
D̃t2,N−1

]]
= Ṽt1−1

(
1∏

s=t2−t1

E
[
H̃t2−s

0,B−11
[
D̃t1,t2−1

]])
E
[
1
[
D̃t2,N−1

]]
= Ṽt1−1Ht2−t1E

[
1
[
D̃t2,N−1

]]
= Ṽt1−1Ht2−t1 − Ṽt1−1Ht2−t1E

[
1
[
D̃t2,N−1,C

]]
. (5.104)

Note that,

(
Ãt1−1,v

B

)⊤ (
Ãt1−1,v

B

)
⪯ 4γ2(Bt1)

t1∑
r=1

B−1∑
j=0

∥∥ηt1−r
−j

∥∥2 ·(
r−1∏
s=1

H̃t1−s,⊤
0,B−1

)
H̃t1−r,⊤

j+1,B−1X̃
t1−r
−j X̃t1−r,⊤

−j H̃t1−r
j+1,B−1

(
1∏

s=r−1

H̃t1−s
0,B−1

)
. (5.105)

From equation (5.105), we have:

∥∥∥Ṽt1−1

∥∥∥ ≤ cγ2(Bt1)2Rdσmax, (5.106)
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and further, ∥H∥ < 1 from Lemma 5.9.6. Hence,

∥∥∥Ṽt1−1Ht2−t1E
[
1
[
D̃t2,N−1,C

]]∥∥∥ ≤ ∥∥∥Ṽt1−1Ht2−t1
∥∥∥ 1

Tα
≤ cγ2(Bt1)2Rdσmax

1

Tα
.

For brevity, given a matrix Q ∈ Rd×d, let,

Sym (Q) = Q+Q⊤. (5.107)

Combining everything so far, we have, for t2 > t1:

Sym
(
E
[(

Ãt1−1,v
B

)⊤ (
Ãt2−1,v

B

)
1
[
D̃0,N−1

]])
⪯ Sym

(
Ṽt1−1Ht2−t1

)
+ c1γ

2(Bt1)
2Rdσmax

1

Tα
I +(

c3γ
2B2t1t2Rdσmax

1

Tα/2

)
I (5.108)

Since Bt2 ≤ T we get:

Sym
(
E
[(
Ãt1−1,v

B

)⊤ (
Ãt2−1,v

B

)
1
[
D̃0,N−1

]])
⪯ Sym

(
Ṽt1−1Ht2−t1

)
+

c3γ
2T 2Rdσmax

1

Tα/2
I. (5.109)

Therefore we have,

1

N2

∑
t1 ̸=t2

E
[(
Ãt1−1,v

B

)⊤ (
Ãt2−1,v

B

)]
⪯ 1

N2

N−1∑
t1=1

Sym
(
Ṽt1−1

(∑
t2>t1

Ht2−t1

))

+c3γ
2T 2Rdσmax

1

Tα/2
I.

Next observe that,

1

N2

N∑
t=1

Ṽt−1 +
1

N2

N−1∑
t1=1

Sym
(
Ṽt1−1

(∑
t2>t1

Ht2−t1

))

=
1

N2

N∑
t=1

Ṽt−1 +
1

N2

N−1∑
t1=1

Sym
(
Ṽt1−1

(
N−t1∑
s=1

Hs

))

⪯ 1

N2

N∑
t=1

Sym
(
Ṽt−1

(
N−t∑
s=0

Hs

))
.

Hence, substituting in (5.66), we obtain:

E
[(
Âv

N

)⊤ (
Âv

N

)
1
[
D̃0,N−1

]]
⪯ 1

N2

N∑
t=1

Sym
(
Ṽt−1

(
N−t∑
s=0

Hs

))
+ (5.110)

c3γ
2T 2Rdσmax

1

Tα/2
I. (5.111)
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From Equations (5.110)-(5.111) we obtain (5.67).

Now
∑N−t

s=0 Hs = (I − H)−1(I − HN−t+1) since from Lemma 5.9.6 we know that ∥H∥ < 1 for

large T . Thus we get (5.68).

5.9.8 Claims

Claim 11. For γ ≤ 1
2R we have∥∥∥∥∥∥E

2γ (Ãt1−1,v
B

)⊤ t2−t1∑
r=1

B−1∑
j=0

ηt2−r
−j X̃t2−r,⊤

−j H̃t2−r
j+1,B−1

(
1∏

s=r−1

H̃t2−s
0,B−1

) 1
[
D̃0,N−1

]∥∥∥∥∥∥
≤ c1γ2B2t1t2Rdσmax

1

Tα/2
(5.112)

for some constant c1 > 0.

Proof. The proof is similar to the proof of Lemma 5.9.3.

5.9.9 Proof of theorem 5.9.1

Proof of theorem 5.9.1. We start with the following

(
Ãt−1,b

b −A∗
)⊤ (

Ãt−1,b
b −A∗

)
=

(
t∏

s=1

H̃t−s,⊤
0,B−1

)
(A0 −A∗)⊤(A0 −A)

(
1∏

s=t

H̃t−s
0,B−1

)

⪯ ∥A0 −A∗∥2
(

t∏
s=1

H̃t−s,⊤
0,B−1

)(
1∏

s=t

H̃t−s
0,B−1

)
(5.113)

From Lemma 5.7.3 we can show that there are constants c1, c2 > 0 such that∥∥∥∥∥E
[(

t∏
s=1

H̃t−s,⊤
0,B−1

)(
1∏

s=t

H̃t−s
0,B−1

)
1
[
D̃0,t−1

]]∥∥∥∥∥
≤
(
1− c1γBσmin(G) + c2γB

√
M4

1

Tα/2

)t

. (5.114)

Now choosing T such that Tα/2 > c2
√
M4

2c1σmin(G) we get,

∥∥∥∥∥E
[(

t∏
s=1

Ĥt−s,⊤
0,B−1

)(
1∏

s=t

Ĥt−s
0,B−1

)]∥∥∥∥∥ ≤ (1− c3γBσmin(G))
t
. (5.115)

Thus we get the theorem.
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5.9.10 Proof of theorem 5.9.2

Proof of theorem 5.9.2. We use the following inequality that is obtained from Lemma 5.9.5

(
ˆ̃Ab
a,N −A

∗
)⊤ ( ˆ̃Ab

a,N −A
∗
)
⪯ 1

N − a

N∑
t=a+1

(
Ãt−1,b

B −A∗
)⊤ (

Ãt−1,b
B −A∗

)
(5.116)

Therefore

E
[(

ˆ̃Ab
a,N −A

∗
)⊤ ( ˆ̃Ab

a,N −A
∗
)
1
[
D̃0,N−1

]]
⪯ 1

N − a

N∑
t=a+1

E
[(
Ãt−1,b

B −A∗
)⊤ (

Ãt−1,b
B −A∗

)
1
[
D̃0,N−1

]]

⪯ 1

N − a

N∑
t=a+1

E
[(
Ãt−1,b

B −A∗
)⊤ (

Ãt−1,b
B −A∗

)
1
[
D̃0,t−1

]]
(5.117)

Now using theorem 5.9.1, we get

E
[(

ˆ̃Ab
a,N −A

∗
)⊤ ( ˆ̃Ab

a,N −A
∗
)
1
[
D̃0,N−1

]]
⪯(

1

N − a
(1− c1γBσmin(G))

a+1

c1γBσmin(G)

)
∥A0 −A∗∥2 I (5.118)

Hence using 1− x ≤ e−x we get∥∥∥∥E [( ˆ̃Ab
a,N −A

∗
)⊤ ( ˆ̃Ab

a,N −A
∗
)
1
[
D̃0,N−1

]]∥∥∥∥
≤ c 1

B(N − a)
e−cBγσmin(G)a

γσmin(G)
∥A0 −A∗∥2 (5.119)

5.10 Prediction error: Proof of theorem 5.3.2

Recall the definition of the prediction error at stationarity.

Lpred(Â;A
∗, µ) := EXt∼π∥Xt+1 − ÂXt∥2 (5.120)

where π is the stationary distribution.

Note that the prediction loss is a function of possibly random estimator Â. Hence the expectation

in (5.120) is only with respect to the process (Xt) (which is considered independent of Â). Letting
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G = E
[
XtX

⊤
t

]
as the covariance matrix of the process at stationarity, we can write

Lpred(Â;A
∗, µ) = Tr(G(Â−A∗)⊤(Â−A∗)) + Tr(Σ) (5.121)

We are interested in bounding the expected prediction loss of the estimator which is the average

iterate Âa,N of our algorithm SGD−RER (with a = θN). Note that Âa,N = Âb
a,N + Âv

a,N where the

superscripts b and v correspond to bias and variance respectively (c.f. (5.27))

Hence

E
[
Lpred(Âa,N ;A∗, µ)

]
= Tr(Σ) + Tr

(
G1/2E

[(
Âa,N −A∗

)⊤ (
Âa,N −A∗

)]
G1/2

)
≤ Tr(Σ) + 2Tr

(
G1/2E

[(
Âv

a,N

)⊤ (
Âv

a,N

)]
G1/2

)
+ 2Tr

(
G1/2E

[(
Âb

a,N −A
∗
)⊤ (

Âb
a,N −A

∗
)]
G1/2

)
(5.122)

But we will only bound E
[
Lpred(Âa,N ;A∗, µ)1

[
D0,N−1

]]
so that we have a tight upper bound

on the conditional expectation of Lpred over a high probability event.

As before we will just focus on the prediction error obtained using the algorithmic iterates from

the coupled process, i.e., we will bound E
[
Lpred(

ˆ̃Aa,N ;A∗, µ)1
[
D̃0,N−1

]]

5.10.1 Variance of prediction error

In this section we will focus on analyzing the variance part of the expected prediction loss under the

coupled process

L̃v = Tr
(
G1/2E

[(
ˆ̃Av
a,N

)⊤ ( ˆ̃Av
a,N

)
1
[
D̃0,N−1

]]
G1/2

)
(5.123)

where T = N(B + u).

We begin with few lemmata which would be useful in bounding L̃v. Recall the definition of H

H = E

B−1∏
j=0

(
I − 2γX̃0

−jX̃
0,⊤
−j

)
1[D̃0

−0]

 (5.124)

with X̃0 sampled from the stationary distribution π.

Lemma 5.10.1. Let γ ≤ 1
8RB . Then

H+H⊤ ⪯ 2

(
I − 4

3
γBG

)
+

8

3
γB
√
M4

1

Tα/2
I (5.125)

130



where M4 = E
[
∥X̃0

−0∥4
]
. For simplicity, we just say that for γRB < c

4 with 0 < c < 1 then

H+H⊤ ⪯ 2 (I − c1γBG) + c2γB
√
M4

1

Tα/2
I (5.126)

for some absolute constants c1, c2 > 0.

The proof is similar to the combined proofs of Lemmas 6.9.3 and 5.7.3. We therefore skip it.

Next we will bound Tr(G(I −H)−1).

Lemma 5.10.2. Let γRB < c1
4 with 0 < c1 < 1. Then for T such that Tα/2 > c2

√
M4

σmin(G) we have

Tr
(
G(I −H)−1

)
≤ c d

γB
(5.127)

for some absolute constant c > 0.

Proof. First note that

Tr
(
G(I −H)−1

)
) = Tr

(
G1/2(I −H)−1G1/2

)
)

= Tr
((

G−1 −G−1/2HG−1/2
)−1

)
≤ d

∥∥∥∥(G−1 −G−1/2HG−1/2
)−1

∥∥∥∥
=

d

σmin
(
G−1 −G−1/2HG−1/2

) (5.128)

Let Q =
(
G−1 −G−1/2HG−1/2

)
. Let Sym (Q) = Q + Q⊤. We will relate σmin(Q) with

σmin

(
Sym(Q)

2

)
. From AM-GM inequality, for any θ > 0, we have

Q⊤Q

θ
+ θI ⪰ Sym (Q) (5.129)

Also

σ2
min(Q) = inf

x:∥x∥=1
x⊤Q⊤Qx (5.130)

Further, from lemma 5.10.1 we have

Sym (Q) = G−1 −G−1/2H+HT

2
G−1/2

⪰ c1γBI − c2γB
√
M4

1

Tα/2
G−1

⪰ c1γBI − c2γB
√
M4

1

Tα/2

1

σmin(G)
I (5.131)
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Hence combining equations (5.129), (5.130) and (5.131) we have:

σ2
min(Q)

θ
+ θ ⪰ c1γB − c2γB

√
M4

1

Tα/2

1

σmin(G)
. (5.132)

Now choosing θ = 1
2c1γB we get:

σ2
min(Q) ≥ c21

4
γ2B2 − c2c1

2
γ2B2

√
M4

1

Tα/2

1

σmin(G)
. (5.133)

Now choose T large enough such that c2c1
2

√
M4

1
Tα/2

1
σmin(G) ≤

c21
8 . Then, σ2

min(Q) ≥ c3γ
2B2, for

some constant c3 > 0. Hence from (5.128),

Tr
(
G(I −H)−1

)
≤ c4

d

γB
.

Next we bound Tr(∆(I −H)−1G) for any symmetric matrix ∆. Let κ(G) = σmax(G)

σmin(G) denote the

condition number of G.

Lemma 5.10.3. Let γRB ≤ c1
4 with 0 < c1 < 1. Then for T such that Tα/2 > c2

√
M4

σmin(G) we have

∣∣Tr
(
∆(I −H)−1G

)∣∣ ≤ c d

γB
∥∆∥

√
κ(G) (5.134)

for some absolute constant c > 0.

Proof. We have

∣∣Tr
(
∆(I −H)−1G

)∣∣ = ∣∣∣Tr
(
G1/2∆G−1/2G1/2(I −H)−1G1/2

)∣∣∣
≤ d

∥∥∥G1/2∆G−1/2
∥∥∥∥∥∥G1/2(I −H)−1G1/2

∥∥∥
≤ d
√
κ(G) ∥∆∥

∥∥∥G1/2(I −H)−1G1/2
∥∥∥ (5.135)

From the proof of lemma 5.10.2, we know that

∥∥∥G1/2(I −H)−1G1/2
∥∥∥ ≤ c 1

γB
(5.136)

for T satisfying the condition the statement of the lemma.

Hence:

∣∣Tr
(
∆(I −H)−1G

)∣∣ ≤ c√κ(G) ∥∆∥ d

γB
(5.137)
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Our goal is to bound Tr(Ṽt−1(I −H)−1G). From proposition 1 we can decompose Ṽt−1 as:

Ṽt−1 = γ Tr(Σ)I + (Ṽt−1 − γ Tr(Σ)I), (5.138)

and hence,

Tr(Ṽt−1(I −H)−1G) = γ Tr(Σ)Tr((I −H)−1G) + Tr
(
(Ṽt−1 − γ Tr(Σ))(I −H)−1G

)
. (5.139)

To bound the second term in (5.139) we want to use lemma 5.10.3. Hence we need to bound the

norm of Ṽt−1 − γ Tr(Σ).

Lemma 5.10.4. Let γ ≤ min
{

c
4RB ,

1
2R

}
for 0 < c < 1. Then there are constants c1, c2, c3 > 0 such

that for Tα/2 > c1
√
M4

σmin(G) we have

∥∥∥Ṽt−1 − γ Tr(Σ)
∥∥∥ ≤ c2γdσmax

[
1

B
+ (1− c3γBσmin(G))

t

]
(5.140)

for some constant c1 > 0.

Proof. From proposition 1 we have

∥∥∥Ṽt−1 − γ Tr(Σ)I
∥∥∥ ≤ γ Tr(Σ) γR

1− γR
+

c1γ Tr(Σ)
∥∥∥∥∥E
[(

t∏
s=1

H̃t−s,⊤
0,B−1

)(
1∏

s=t

H̃t−s
0,B−1

)
1
[
D̃0,t−1

]]∥∥∥∥∥
+ c2γdσmax(Σ)T

2 1

Tα/2
. (5.141)

From lemma 5.9.6 equation (5.100) we can show that∥∥∥∥∥E
[(

t∏
s=1

H̃t−s,⊤
0,B−1

)(
1∏

s=t

H̃t−s
0,B−1

)
1
[
D̃0,t−1

]]∥∥∥∥∥ ≤ (1− c3γBσmin(G))
t
. (5.142)

Hence

∥∥∥Ṽt−1 − γ Tr(Σ)I
∥∥∥ ≤ c4γdσmax(Σ)

[
γR

1− γR
+ (1− c3γBσmin(G))

t

]
≤ c5γdσmax

[
γR+ (1− c3γBσmin(G))

t
]
≤ c6γdσmax

[
1

B
+ (1− c3γBσmin(G))

t

]
. (5.143)

Now we have all required ingredients for the main theorem of this section

Theorem 5.10.5. Let γ ≤ min
{

c
4RB ,

1
2R

}
for 0 < c < 1. Then there are constants c1, c2, c3, c4 > 0

such that for Tα/2 > c1
√
M4

σmin(G) the variance part of the expected prediction loss L̃v (defined in (5.123))
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for a = θN is bounded as

L̃v ≤ c1
dTr(Σ)

NB(1− θ)
+ c2

d2σmax(Σ)

NB(1− θ)

√
κ(G)

B
+ c3

d2σmax(Σ)

(NB)2(1− θ)2
√
κ(G)

1

γσmin(G)

+ c4γ
2Rdσmax(Σ)T

2 1

Tα/2
Tr(G) (5.144)

Proof. From (5.123) and proposition 2 equation (5.68) we have

L̃v ≤ 2

(N − a)2
N∑

t=a+1

Tr
(
Ṽt−1(I −H)−1G

)
(5.145)

+
2

(N − a)2
N∑

t=a+1

Tr
(
Ṽt−1(I −H)−1HN−t+1G

)
(5.146)

+ cδTr(G) (5.147)

where δ = γ2T 2Rdσmax(Σ)
1

Tα/2 as defined in (5.69)

For the first term (5.145) we have from (5.139), lemma 5.10.2, lemma 5.10.3 and lemma 5.10.4

Tr
(
Ṽt−1(I −H)−1G

)
≤ c1γ Tr(Σ) d

γB
+

c2
d

γB

√
κ(G)γdσmax(Σ)

[
1

B
+ (1− c3γBσmin(G))

t

]
= c1

dTr(Σ)
B

+ c2
d2σmax(Σ)

B

√
κ(G)

B
+

c4
d2σmax(Σ)

B

√
κ(G) (1− c3γBσmin(G))

t (5.148)

Therefore

2

(N − a)2
N∑

t=a+1

Tr
(
Ṽt−1(I −H)−1G

)
≤ c1

dTr(Σ)
NB(1− θ)

+ c2
d2σmax(Σ)

NB(1− θ)

√
κ(G)

B
+

c5
d2σmax(Σ)

N2B(1− θ)2
√
κ(G)

(1− c3γBσmin(G))
a+1

γBσmin(G)
(5.149)

Similarly, for the second term (5.146), from corollary 1, lemma 5.10.3, lemma 5.9.6 and the fact

that (I −H)−1 and HN−t+1 commute, we get

∣∣∣Tr
(
Ṽt−1(I −H)−1HN−t+1G

)∣∣∣ ≤ c1 d

γB

√
κ∥Ṽt−1∥∥HN−t+1∥

≤ c2
d

γB

√
κ(G)γdσmax(Σ) (1− c3γBσmin(G))

(N−t+1)

= c2
d2σmax(Σ)

B

√
κ(G) (1− c3γBσmin(G))

(N−t+1) (5.150)
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Therefore∣∣∣∣∣ 2

(N − a)2
N∑

t=a+1

Tr
(
Ṽt−1(I −H)−1HN−t+1G

)∣∣∣∣∣ ≤ c d2σmax(Σ)

N2B(1− θ)2
√
κ(G)

1

γBσmin(G)
(5.151)

Hence we obtain,

L̃v ≤ c1
dTr(Σ)

NB(1− θ)
+ c2

d2σmax(Σ)

NB(1− θ)

√
κ(G)

B
+

c3
d2σmax(Σ)

N2B2(1− θ)2
√
κ(G)

1

γσmin(G)
+ c4γ

2Rdσmax(Σ)T
2 1

Tα/2
Tr(G). (5.152)

5.10.2 Bias of prediction error

In this section we will focus on analyzing the (tail-averaged) bias part of the expected prediction

loss from the coupled process

L̃b = Tr
(
G1/2E

[((
ˆ̃Ab
a,N −A

∗
))⊤ (( ˆ̃Ab

a,N −A
∗
))

1
[
D̃0,N−1

]]
G1/2

)
(5.153)

where T = N(B + u) and a = θN for 0 < θ < 1.

Theorem 5.10.6. Let γRB ≤ c
6 for some 0 < c < 1 and B such that γR ≤ 1

2 . There exist constants

c1, c2, c3, c4 > 0 such that if T satisfies Tα/2 > c1
√
M4

σmin(G) then for a = θN with 0 < θ < 1 we have

L̃b ≤ c2
1

NB(1− θ)
Tr(G)

γσmin(G)
e−c3NBγσmin(G)θ ∥A0 −A∗∥2 (5.154)

Proof. Proof follows directly from (5.153) and theorem 5.9.2.

5.10.3 Overall prediction error

Combining theorem 5.10.5 and theorem 5.10.6 along with lemma 5.5.6 we obtain the main theorem

on prediction error of SGD− RER

Theorem 5.10.7. Let R,B, u, α be chosen as in section 5.3. Let γ = c
4RB ≤

1
2R for 0 < c < 1.

Then there are constants c1, c2, c3, c4 > 0 such that for Tα/2 > c1
√
M4

σmin(G) the expected prediction loss
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L (defined in (5.121)) is bounded as

E
[
Lpred(Âa,N ;A∗, µ)1

[
D0,N−1

]]
≤ c2

[
dTr(Σ)
B(N − a)

+
d2σmax(Σ)

B(N − a)

√
κ(G)

B

]
+

c3

[
d2σmax(Σ)

B2(N − a)2
√
κ(G)

1

γσmin(G)
+

1

B(N − a)
dκ(G)RBe−c4

σmin(G)

R a ∥A0 −A∗∥2 +(
T 3

B3
∥A∗u∥+ dσmax(Σ)

R

T 2

B2

1

Tα/2

)
Tr(G)

]
(5.155)

Hence, if ∥A∗∥ < c0 < 1 then choosing a ≥ C R log T
σmin(G) such that B(N − a) = Θ(T ) and B, u as in

section 5.3 we get

E
[
Lpred(Âa,N ;A∗, µ)1

[
D0,N−1

]]
≤ c2

dTr(Σ)
T

+ o

(
1

T

)
(5.156)

5.11 Prediction error for sparse systems

In this section we consider the VAR(A∗, µ) model with sparse A∗ whose sparsity pattern is known.

We will present a modification of SGD− RER that takes into account the sparsity pattern informa-

tion. Formally, let Sl = {k : A∗
l,k ̸= 0} be support or sparsity pattern of row l of A∗. Further let

sl = |Sl| denote the sparsity of row j. We assume that Sl is known for each 1 ≤ l ≤ d. The claim

is that the excess expected prediction loss is of order
∑

l slσ
2
l

T . We will present only a sketch of the

proof highlighting the main steps. Detailed calculations follow similarly as in sections 5.9.1 and 5.10.

The modification of the SGD − RER algorithm to use the sparsity pattern is as follows. Let

a∗,⊤l denote row l of A∗. The algorithmic iterates are given by (At−1
j ) where row l is at−1,⊤

j,l . Let

a00,l = 0 ∈ Rd. Let {el : 1 ≤ l ≤ d} denote the standard basis of Rd. Let PSl
: Rd → Rd denote

the (self adjoint) orthogonal projection operator onto the subspace spanned by {el : l ∈ Sl}. Then

update for row l is given by

at−1,⊤
j+1,l =

[
at−1,⊤
j,l − 2γ(at−1,⊤

j,l Xt−1
−j − ⟨el, X

t−1
−(j−1)⟩)X

t−1,⊤
−j

]
PSl

(5.157)

and at0,l = at−1
B,l . Since each iterate above has sparsity pattern Sl by construction, we can rewrite

the above as

at−1,⊤
j+1,l = at−1,⊤

j,l − 2γ(at−1,⊤
j,l Xt−1

−j − ⟨el, X
t−1
−(j−1)⟩)

(
PSl

Xt−1
−j

)⊤ (5.158)
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Notice that at−1,⊤
j,l Xt−1

−j = at−1,⊤
j,l PSl

Xt−1
−j and

⟨el, Xt−1
−(j−1)⟩ = a∗,⊤l Xt−1

−j + ηt−1
−j,l

Thus

(
at−1
j+1,l − a

∗
l

)⊤
=
(
at−1
j,l − a

∗
l

)⊤ (
PSl
− 2γ

(
PSl

Xt−1
−j

) (
PSl

Xt−1
−j

)⊤)
+ 2γηt−1

−j,l

(
PSl

Xt−1
−j

)⊤
(5.159)

For a vector v ∈ Rd, let vSl
∈ Rsl be the vector corresponding to the support Sl i.e. entries in

vSl
correspond to the entries in v whose indices are in Sl. So we can rewrite (5.159) completely in

Rsl as

(
at−1
j+1,l − a

∗
l

)⊤
Sl

=
(
at−1
j,l − a

∗
l

)⊤
Sl

(
Isl − 2γ

(
Xt−1

−j

)
Sl

(
Xt−1

−j

)⊤
Sl

)
+ 2γηt−1

−j,l

(
Xt−1

−j

)⊤
Sl

(5.160)

where Isl is the identity matrix of dimension sl.

Our goal is to bound the expected prediction error for this modified SGD − RER. To that end,

we will make some important observations.

(1) Since we focus on prediction error, the entire analysis can be carried out row by row. To see

this, if Â is any estimator, the

Lpred(Â;A
∗, µ)− Tr(Σ) = Tr(G(Â−A∗)⊤(Â−A)) =

d∑
l=1

Tr(G(âl − a∗l )(âl − a∗l )⊤)

where â⊤l is the row l of Â.

(2) If âl and a∗l have sparsity pattern Sl then

Tr(G(âl − a∗l )(âl − a∗l )⊤) = Tr(PSl
GPSl

(âl − a∗l )(âl − a∗l )⊤)

= Tr(GSl
(âl − a∗l )Sl

(âl − a∗l )⊤Sl
)

where GSl
∈ Rsl×sl is the submatrix of G obtained by picking rows and columns corresponding

to indices in Sl.

(3) Under the stationary measure, we have E
[(
PSl

Xt−1
−j

) (
PSl

Xt−1
−j

)⊤]
= PSl

GPSl
. Thus, with

high probability
∥∥PSl

Xt−1
−j

∥∥2 ≤ cslσmax(G) logT .

(4) Letting s0 = maxl sl, we can set R = cs0σmax(G) logT and use step size γ = O(1/RB).

(5) We can perform the same bias-variance decomposition as described in section 5.6 to obtain

at−1,v
B,l and at−1,b

B,l .
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(6) From previous observations, the variance of last iterate corresponding to row l turns out to be

γσ2
l (1− o(1))Isl ⪯ E

[(
at−1,v
B,l

)
Sl

(
at−1,v
B,l

)⊤
Sl

]
⪯ γ

1− γR
σ2
l (1 + o(1))Isl

where σ2
l = Σl,l.

(7) Similarly, the variance of the average iterate E
[
(âv0,N,l)(â

v
0,N,l)

⊤
]

corresponding to row l can

be bounded upto leading order by

1

N2

N∑
t=1

[
Vt−1,l(Isl −HSl

)−1 + (Isl −H⊤
Sl
)−1Vt−1,l

]

where Vt−1,l = E
[(
at−1,v
B,l

)
Sl

(
at−1,v
B,l

)⊤
Sl

]
and (with abuse of notation) HSl

is defined as

HSl
= E

B−1∏
j=0

(
Isl − 2γ(X̃0

−j)Sl
(X̃0

−j)
⊤
Sl

)
1

[
∩B−1
j=0

{∥∥∥(X̃0
−j)Sl

∥∥∥2 ≤ R}]


where X̃0
0 ∼ π.

(8) Now, similar to lemma 5.10.1 we can bound HSl
+H⊤

Sl
by 2(Isl − cγBGsl) upto leading order.

(9) Thus similar to lemma 5.10.2 we obtain

Tr(GSl
(I −HSl

)−1) ≤ c sl
γB

(10) Finally as in section 5.10.1 we can bound the variance of prediction error of row l upto leading

order by

Tr(GE
[
(âv0,N,l)(â

v
0,N,l)

⊤]) ≲ σ2
l sl
T

Thus summing over l we get

Tr
(
GE

[
(Âv

0,N )(Âv
0,N )⊤

])
≲
∑

l σ
2
l sl

T

(11) Bias can also be analyzed in a similar way and it will be of strictly lower order (using suitable

tail-averaging).

(12) Thus the excess prediction loss is given bounded as

E
[
Lpred(ÂN/2,N ;A∗, µ)

]
− Tr(Σ) ≲

∑
l σ

2
l sl

T

So the modified SGD− RER algorithm effectively utilizes the low dimensional structure in A∗.
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Chapter 6

Generalized linear system

identification

6.1 Problem statement

Let ϕ : R → R be an increasing, 1-Lipschitz function such that ϕ(0) = 0. Suppose X0 ∈ Rd is a

random variable and A∗ ∈ Rd×d. We consider the following non-linear dynamical system (NLDS):

Xt+1 = ϕ(A∗Xt) + ηt, (6.1)

where the noise sequence η0, . . . , ηT is i.i.d random vectors independent of X0. The noise ηt is such

that Eηt = 0, Eηtη⊤t = σ2I for some σ > 0. We will also assume that M4 := E∥ηt∥4 < ∞. Let

µ be the law of noise η. We denote the model above as NLDS(A∗, µ, ϕ). Whenever a stationary

distribution exists for the process, we will denote it by π(A∗, µ, ϕ) or just π when the process is clear

from context. We will call the trajectory X0, X1, . . . , XT ‘stationary’ if X0 is distributed according

to the measure π(A∗, µ, ϕ). Unless specified otherwise, we take X0 = 0 almost surely.

The goal is to estimate A∗ given a single trajectory X0, X1, . . . , XT . A natural approach would

be to minimize the empirical square loss, i.e, Lsq(A;X) := 1
T

∑T−1
t=0 ∥ϕ(AXt) − Xt+1∥2. However,

when the link function ϕ is not linear, then this would be non-convex and hard to optimize. Instead,

we use a convex proxy loss given by:

Lprox(A;X) =
1

T

T−1∑
t=0

d∑
i=1

ϕ̄(⟨ai, Xt⟩)− ⟨ei, Xt+1⟩⟨ai, Xt⟩ , (6.2)

where ϕ̄ is the indefinite integral of the link function ϕ and ai is the i-th row of A. Note that the
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gradient of Lprox(A;X) with respect to A is given by:

∇Lprox(A;X) =
1

T

T−1∑
t=0

(ϕ(AXt)−Xt+1)X
⊤
t . (6.3)

When the model is clear from context and the stationary distribution exists, we will denote the second

moment matrix under the stationary distribution by G := E[XtX
⊤
t ]. Note that G ⪰ E[ηtη⊤t ] = σ2I.

Also, the empirical second moment matrix is denoted by Ĝ := 1
T

∑T−1
t=0 XtX

⊤
t .

6.1.1 Assumptions

We now state the assumptions below and use only a subset of the assumptions for each result.

Assumption 4 (Lipschitzness and Uniform Expansivity). ϕ is 1-Lipschitz and |ϕ(x) − ϕ(y)| ≥

ζ|x− y|, for some ζ > 0.

Note that when ϕ is only weakly differentiable but satisfy Assumption 4, with a slight abuse of

notation, we will write down ϕ(x)− ϕ(y) = ϕ′(β)(x− y) for some ϕ′(β) ∈ [ζ, 1].

Assumption 5 (Bounded 2nd Derivative). ϕ is twice continuously differentiable and |ϕ′′| is bounded.

Assumption 6 (Noise Sub-Gaussianity). For any unit norm vector x ∈ Rd, we have ⟨ηt, x⟩ to be

sub-Gaussian with variance proxy Cησ
2.

Next, we extend the definition of exponential stability in [72] to ‘exponential regularity’ to allow

unstable systems.

Assumption 7 (Exponential Regularity). Let XT = hT−1(X0, η0, . . . , ηT ) be the function represen-

tation of XT . We say that NLDS(A∗, µ, ϕ) is (Cρ, ρ) exponentially regular if for any choice of T ∈ N

and X0, X
′
0, η0, . . . , ηT ∈ Rd:

∥hT (X0, η0, . . . , ηT )− hT (X ′
0, η0, . . . , ηT )∥2 ≤ Cρρ

T−1∥X0 −X ′
0∥2 .

When ρ < 1, we will call the system stable. When ρ = 1 we will call it ‘possibly marginally

stable’ and when ρ > 1, we will call it ‘possibly unstable’

Note that when Assumption 7 holds with ρ < 1, the system necessarily mixes and converges to

a stationary distribution as T → ∞. Such systems forget their initial conditions in time scales of

the order τmix = O(
1+log Cρ

log 1
ρ

) = O
(

1+log Cρ

1−ρ

)
, and hence we use this as a proxy for the mixing time.

In what follows, when we say ‘the system does not mix’ we either mean that it does not mix within

time T or it does not converge to a stationary distribution (ex: ρ ≥ 1).

Assumption 8 (Norm Boundedness). ∥A∗∥op = ρ < 1
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Algorithm 2: Quasi Newton Method
Input : Offline data {X0, . . . , XT }, horizon T , no. of iterations m, link function ϕ, step

size γ
Output: Estimate Am

1 begin
2 A0

0 = 0 /*Initialization*/
3 Ĝ← 1

T

∑T−1
t=0 XtX

⊤
t ; If Ĝ is not invertible, then return Am = 0

4 for i← 0 to m− 1 do
66 Ai+1 ← Ai − 2γ (∇Lprox(Ai;X)) Ĝ−1

7 end
8 end

That is, if A∗ satisfies Assumption 8, we have for arbitrary X,X ′ ∈ Rd: ∥ϕ(A∗X)− ϕ(A∗X ′)∥ ≤

ρ ∥X −X ′∥ and
∥∥(ϕ ◦A∗)k(X)

∥∥ ≤ ρk ∥X∥. Hence, for such A∗, NLDS is necessarily stable.

6.2 Offline learning with Quasi Newton method

In this section we consider estimating A∗ using a single trajectory (X1, . . . , XT ) from NLDS(A∗, µ, ϕ).

To this end, we study an offline Quasi Newton Method (Algorithm 2) where the iterates descend

in the directions of the gradient of Lprox normalized by the inverse of the empirical second moment

matrix Ĝ := 1
T

∑T−1
t=0 XtX

⊤
t . That is, the iterates follow an approximation of the standard Newton

update. Next we present the main result from analysis of algorithm 2.

Theorem 6.2.1 (Learning Without Mixing). Suppose Assumptions 4 6 and 7 hold with expan-

sivity factor ζ and regularity parameters (Cρ, ρ). Let C̄, C̄3 be constants depending only on Cη,

and let δ ∈ (0, 12 ). Let R∗ := C2
ρCηdσ

2
(∑T−1

t=1 ρt
)2

log( 4Td
δ ), and the number samples T ≥

C̄3

(
d log

(
R∗

σ2

)
+ log 1

δ

)
. Set the step size γ = 1

4 and m ≥ 10
ζ · log

(
∥A0−A∗∥2

F ·TR∗

σ2d2

)
. Then, the

output Am of Algorithm 2 after m iterations satisfies (w.p. ≥ 1− δ):

∥Am −A∗∥2F ≤ C̄σ2

Tζ2λmin(Ĝ)

[
d2 log

(
1 + R∗

σ2

)
+ d log

(
2d
δ

)]
, where λmin

(
Ĝ
)
≥ σ2

2
.

Note that as λmin(Ĝ) ≥ σ2, the error rate scales as ≈ d2/T , independent of τmix ≈ 1/(1−ρ). The

theorem also holds for non-mixing or possibly unstable systems as long as ρ < 1 + C
T . Furthermore,

the error bound above is similar to the minimax optimal bound by [51] for the linear setting, i.e.,

when ϕ(x) = x. Note that as the link function ϕ tends to decrease the information in x, hence

intuitively lower bound for linear setting should apply for NLDS as well, which would imply our

error rate to be optimal; we leave further investigation into lower bound of NLDS identification for

future work. Interestingly, in the linear case whenever the smallest singular value σmin(A
∗) > 1+ ϵ,

it can be show than λmin(Ĝ) grows exponentially with T , leading to an exponentially small error.

It is not clear how to arrive at such a growth lower bound in the non-linear case.
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Figure 6-1: Data order in SGD− RER, where each block represents a data point. Blue arrows
indicate the data processing order. The gaps ensure approximate independence between successive
buffers.

The computational complexity of the algorithm scales as m·T which depends only logarithmically

on τmix. Interestingly, the algorithm is almost hyperparameter free, and does not require knoweldge

of parameters σ, τmix, ζ. Also note that the stationary points of Algorithm 2 and GLMtron ( [73])

are the same. So, the stronger error rate in the result above compared to the result by [73] is due

to a sharper analysis. However, in dynamical systems of the form 1.9, the squared norm of the

iterates grow as d
1−ρ even in the stable case. Hence, the GLMtron algorithm requires step sizes to

be ≈ 1−ρ
d which implies significantly slower convergence rate for large τmix = 1/(1− ρ). In contrast,

convergence rate for Algorithm 2 depends at most logarithmically on τmix.

See Section 6.5 for a high-level exposition of the key ideas in the analysis and Section 6.8.1 for

a detailed overview of the proof.

6.3 Streaming learning with SGD-RER

In this section, we consider the one-pass, streaming setting, where the data points are presented in

a streaming fashion. The goal is to continuously produce better estimates of A∗ while also ensuring

that the space and the time complexity of the algorithm is small. This disallows approaches that

would just store all the observed points and then apply offline Algorithm 2 to produce strong

estimation error. Such one-pass streaming algorithms are critical in a variety of settings like large-

scale and online time-series analysis [89, 179], TD learning in RL [180], econometrics.

To address this problem, we consider SGD− RER (Algorithm 3) which was introduced in [110]

in the context of linear system identification (LSI). We apply the method for NLDS identification

as well. SGD− RER uses SGD like updates, but the data is processed in a different order than it

is received from the dynamical system. This algorithm is based on the observation made in [110]

that for LSI, when SGD is run on the least squares loss in the forward order, there are spurious

correlations which prevent the algorithm’s convergence to the optimum parameter A∗. Surprisingly,

considering the data in the reverse order exactly unravels these correlations to resolve the problem.

Reverse order traversal of data, even though one pass, does not give a streaming algorithm. Hence,

we divide the data into multiple buffers of size B and leave of size u between the buffers (See Figure 6-
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Algorithm 3: SGD− RER
Input : Streaming data {Xτ}, horizon T , buffer size B, buffer gap u, bound R, tail start:

t0 ≤ N/2, link function ϕ, step size γ
Output: Estimate Ât0,t, for all t0 ≤ t ≤ N − 1; N = T/(B + u)

1 begin
2 Total buffer size: S ← B + u, Number of buffers: N ← T/S
3 A0

0 = 0 /*Initialization*/
4 for t← 1 to N do
5 Form buffer Buft−1 = {Xt−1

0 , . . . , Xt−1
S−1}, where, Xt−1

i ← X(t−1)·S+i

6 If ∃i, s.t.,
∥∥Xt−1

i

∥∥2 > R, then return Ât0,t = 0
7 for i← 0 to B − 1 do
99 At−1

i+1 ← At−1
i − 2γ

[
ϕ(At−1

i Xt−1
S−i−1)−X

t−1
S−i

]
Xt−1,⊤

S−i−1

10 end
11 At

0 = At−1
B

12 If t ≥ t0 + 1, then Ât0,t ← 1
t−t0

∑t
τ=t0+1A

τ−1
B

13 end
14 end

1). The data within each buffer is processed in the reverse order whereas the buffers themselves are

processed in the order received. See Figure 6-1 for an illustration of the processing order. The gaps

u are set large enough so that the buffers behave approximately independently. Setting B ≥ 10u

we note that this simple strategy improves the sample efficiency compared to naive data dropping

since we use most of the samples for estimating A∗. We now present the main result for streaming

setting.

Theorem 6.3.1 (Streaming Algorithm). Suppose Assumptions 4, 5, 6 and 8 hold and that the

data points are stationary. Set α = 100, R =
16(α+2)dCησ

2 log T
1−ρ , u ≥ 2α log T

log( 1ρ )
and

B ≥ max
(
C̄1

d

(1− ρ)(1− ρ2)
log
(

d

1− ρ

)
, 10u

)

for a global constant C̄1 dependent only Cη and α. Let N = T/(B + u) be the number of

buffers. Finally, set step-size γ = C
T ν where ν = 6.5/7 and let T be large enough such that

γ ≤ min
(

ζ
4BR(1+ζ) ,

1
2R

)
. If N/2 > t0 > c1

log T
ζγBλmin(G) = Θ(T ν logT ) for some large enough constant

c1 > 0, then output Ât0,N of Algorithm 3 satisfies:

E
[
∥Ât0,N −A∗∥2F

]
≤ C d2σ2 logT

Tλmin (G) ζ2
+ Lower Order Terms (6.4)

where C is a constant dependent on Cη, α.

Remark 13. The lower order terms are of the order Poly(R,B, β, 1/ζ, 1/λmin, ∥ϕ′′∥)γ7/2T 2 +

γ2Rσ2d 1
Tα/2−2 + ∥A0 −A∗∥2F

[
e−c2ζγBλmint0

Tζγλmin

]
. We refer to the proof in Section 6.8.13 for details.

Remark 14. Although the bound in theorem 6.3.1 is given for the algorithmic iterate at the end of
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the horizon, the proof shows that in fact we can bound the error of the iterates at the end of each

buffer after (1 + c)t0 i.e. if t ≥ (1 + c)t0 for some c > 0 then we obtain

E
[
∥Ât0,t −A∗∥2F

]
≤ C d2σ2 logT

(tB)λmin (G) ζ2
+ Lower Order Terms

Note that the estimation error above matches the error by offline method up to log factors (see

[105, Theorem 2]). Furthermore, while the method requires NLDS to be mixing, i.e., ρ < 1, but the

leading term in error rate does not have an explicit dependence on it. Moreover, the space complexity

of the method is only B · d which scales as d2/((1− ρ)(1− ρ2)), i.e., it is 1/((1− ρ)(1− ρ2)) ∼ τ2mix

factor worse than the obvious lower bound of O(d2) to store A. We leave further investigation

into space complexity optimization or tightening the lower bound for future work. Also, note that

u ≤ B/10, so SGD− RER wastes only about 10% of the samples. Finally, the algorithm requires

a reasonable upper bound on ρ to set up various hyperparameters like R, u,B. However, it is not

clear how to estimate such an upper bound only using the data, and seems like an interesting open

question.

See Section 6.5 for an explanation of the elements involved in the analysis of the algorithm and

to Section 6.8.1 for a detailed overview of the proof.

6.4 Exponential lower bounds for non-Expansive link func-

tions

The previous results showed that we can efficiently recover the matrix A∗ given that the link function

is uniformly expansive. We state a result from [105] that shows that parameter recovery is hard

when the link function is non expansive. In particular, even for the case of ϕ = ReLU, the noise being

N (0, I), and ∥A∗∥ ≤ 1
2 , the error has an information theoretic lower bound which is exponential in

the dimension. We note that this is consistent with Theorem 3 in [73] which too has an exponential

dependence on the dimension (since the matrix K ⪰ I).

Before stating the results, we introduce some notation. Consider any algorithm A, with accepts

input (X0, . . . , XT ) and outputs an estimate Â ∈ Rd×d. For simplicity of calculation, we will assume

that X0 = 0 and Xt+1 = ReLU(A∗Xt) + ηt. Since the mixing time is O(1), similar results should

hold for stationary sequences. We define the loss L(A, T, A∗) = E∥Â−A∗∥2F , where the expectation

is over the randomness in the data and the algorithm. By Θ( 12 ), we denote all the the elements of

B ∈ Rd×d such that ∥B∥ ≤ 1
2 . The minimax loss is defined as:

L(Θ( 12 ), T ) := inf
A

sup
A∗∈Θ(

1
2 )

L(A, T, A∗) .
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We have the following result from [105, Theorem 4]

Theorem 6.4.1 (ReLU Lower Bound [105]). For universal constants c0, c1 > 0, we have:

L(Θ( 12 ), T ) ≥ c0 min
(
1,

exp(c1d)
T

)
.

6.5 Proof sketch

Modified Newton Method. Let a∗i be the i-th row of A∗ and ai(l) be the i-th row of Al both

in column vector form. The proof of theorem 6.2.1 follows once we consider the Lyapunov function

∆l,i = ∥Ĝ1/2(ai(l)− a∗i )∥ and show that

∆l+1,i ≤ (1− 2γζ)∆l + γ∥Ĝ−1/2N̂i∥ (6.5)

Where N̂i := 1
T

∑T−1
t=0 ⟨ei, ηt⟩Xt. In the case of Theorem 6.2.1, we use the sub-Gaussianity

of the noise sequence and a martingale argument to obtain a high probability upper bound on∑d
i=1 ∥Ĝ−1/2N̂i∥2 (see Lemma 6.7.1).

SGD-RER. Due to the observations made in Section 6.3, we can split the analysis into the

following parts, which are explained in detail below.

1. Analyze the reverse order SGD within the buffers.

2. Treat successive buffer as independent samples.

3. Give a bias-variance decomposition similar to the case of linear regression.

4. Use algorithmic stability to control ’spurious’ coupling introduced by non-linearity in the bias-

variance decomposition.

Coupled process. We deal with the dependence between buffers using a fictitious coupled process,

constructed just for the sake of analysis (see Definition 4). Leveraging the gap u, this process (X̃τ )

is constructed such that X̃τ ≈ Xτ with high probability and the ‘coupled buffers’ containing data

X̃ instead of X are exactly independent. Since X̃τ ≈ Xτ , the output of SGD− RER run with the

fictitious coupled process should be close output of SGD− RER run with the actual data points.

We then use the strategy outlined above to analyze SGD− RER with the coupled process. In the

analysis given for SGD− RER, all the quantities with ·̃ involve the coupled process X̃ instead of the

real process X.
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Non-linear bias variance decomposition. We use the mean value theorem to linearize the non-

linear problem. This works effectively when the step size γ is a vanishing function of the horizon T .

Observe that the a single SGD/ SGD− RER step for a single row can be written as:

a′i − a∗i = ai − a∗i − 2γ(ϕ(⟨ai, Xτ ⟩)− ϕ(⟨a∗i , Xτ ⟩))Xτ + 2γ⟨ητ , ei⟩Xτ

=
(
I − 2γϕ′(βτ )XτX

⊤
τ

)
(ai − a∗i ) + 2γ⟨ητ , ei⟩Xτ (6.6)

In the second step, we have used the mean value theorem. Equation (6.6) can be interpreted as

follows: the matrix
(
I − 2γϕ′(βτ )XτX

⊤
τ

)
’contracts’ the distance between ai and a∗i whereas the

noise 2γ⟨ητ , ei⟩Xτ is due to the inherent uncertainty. This gives us a bias-variance decomposition

similar to the case of SGD with linear regression. We refer to Section 6.8.5 for details on unrolling

the recursion in Equation (6.6) to obtain the exact bias-variance decomposition.

Algorithmic stability: Unfortunately, non-linearities result in a ‘coupling’ between the con-

traction matrices through the iterates via the first derivative ϕ′(βτ ) due to reverse order traver-

sal. This is an important issue since unrolling the recursion in (6.6), we encounter terms such as

⟨ητ , ei⟩(I − 2γϕ′(βτ−1)Xτ−1X
⊤
τ−1)Xτ , which have zero mean in the linear case. However, in the

non-linear case, βτ−1 depends on ητ due to reverse order traversal. We show that such dependen-

cies are ‘weak’ using the idea of algorithmic stability ([181, 182]). In particular, we establish that

the output of the algorithm is not affected too much if we re-sample the entire data trajectory by

independently re-sampling a single noise co-ordinate (ητ becomes η′τ and βτ−1 becomes β′
τ−1) when

the step size γ is small enough (in other words, the output is stable under small perturbations). Via

second derivative arguments, we show that βτ−1 ≈ β′
τ−1.

Now observe that resampling noise ητ does not affect the past value of data i.e, Xτ , Xτ−1 and is

independent of β′
τ−1 by construction. Therefore

0 = E⟨ητ , ei⟩
(
I − 2γϕ′(β′

τ−1)Xτ−1X
⊤
τ−1

)
Xτ ≈ E⟨ητ , ei⟩

(
I − 2γϕ′(βτ−1)Xτ−1X

⊤
τ−1

)
Xτ

Such a resampling procedure is also explored in [183] for the analysis of SGD with random reshuffling.

We put together all the ingredients above in order to prove the error bounds given in Theo-

rem 6.3.1

6.6 Preliminaries for the proofs

6.6.1 Concentration under stationary measure

In this section, we will consider the process NLDS(A∗, µ, ϕ) and the concentration of measure under

its stationary distribution. In what follows, we will use the fact that ϕ is 1-Lipschitz as in the
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definition of NLDS, even when we don’t explicitly use Assumption 4.

Proposition 3. Under Assumption 7 with ρ < 1, the process is exponentially Ergodic and has a

stationary distribution π. Suppose X ∼ π then E∥X∥4 <∞.

The result follows from a technique similar to the one used for Proposition [184] by considering

the process in the space of measures endowed with the Wasserstein metric.

Stable Systems

We will first consider the process with X0 = 0 and prove concentration for Xt for arbitrary t, and

then use distributional convergence results to prove the concentration results at stationarity. First,

we prove some preparatory lemmas.

Lemma 6.6.1. Suppose Y is a ν2 sub-Gaussian random variable with zero mean. Then, for any

λ ≤ 1
4ν2 , we have:

E exp(λY 2) ≤ 1 + 8λν2 .

Proof. The proof follows from integrating the tails. Let Z := exp(λY 2). For any γ ∈ R+, we have

from the definition of sub-Gaussianity.

P(Z ≥ γ) =


1 if γ ≤ 1

P
(
|Y | ≥

√
log(γ)

λ

)
if γ > 1

(6.7)

Now,

EZ =

∫ ∞

0

P(Z ≥ γ)dγ

=

∫ 1

0

dγ +

∫ ∞

1

P
(
|Y | ≥

√
log(γ)

λ

)
dγ

≤ 1 +

∫ ∞

1

2 exp
(
− log(γ)

2ν2λ

)
dγ

= 1 + 2

∫ ∞

1

γ−
1

2ν2λ dγ

= 1 +
4ν2λ

1− 2ν2λ

≤ 1 + 8λν2 (6.8)

Now, consider the random variable Zt+1 = ∥Xt+1∥2 −
∑t

s=0 ρ
t−s∥ηs∥2. By assumption, we have

X0 = 0. Therefore we must have Z0 = 0. We have the following lemma:
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Lemma 6.6.2. Suppose that Assumptions 6 and 8 hold and ρ be as given in Assumption 8. For

any λ such that 0 ≤ λ ≤ 1−ρ
2ρCησ2 , we have:

E exp(λZt+1) ≤ 1 .

Proof. First by mean value theorem, we must have: ϕ(A∗Xt) = ϕ(A∗Xt)− ϕ(0) = DA∗Xt for some

diagonal matrix D with entries lying in [0, 1]. Therefore, ∥ϕ(A∗Xt)∥ ≤ ∥D∥∥A∗∥∥Xt∥ ≤ ρ∥Xt∥.

Using this in Equation (1.9), we conclude:

∥Xt+1∥2 − ∥ηt∥2 = ∥ϕ(A∗Xt)∥2 + 2⟨ηt, ϕ(A∗Xt)⟩

≤ ρ2∥Xt∥2 + 2⟨ηt, ϕ(A∗Xt)⟩ (6.9)

Let Fs = σ(X0, η0, . . . , ηs). It is clear that Xs ∈ Fs−1. Using Equation (6.9), we conclude:

E
[
exp(λZt+1)

∣∣Ft−1

]
= E

[
exp

(
λ∥Xt+1∥2 − λ∥ηt∥2

)∣∣Ft−1

]
exp

(
−λ

t−1∑
s=0

ρt−s∥ηs∥2
)

≤ E
[
exp

(
λρ2∥Xt∥2 + 2λ⟨ηt, ϕ(A∗Xt)⟩

)∣∣Ft−1

]
exp

(
−λ

t−1∑
s=0

ρt−s∥ηs∥2
)

≤ exp
(
λρ2∥Xt∥2 + 2λ2Cησ

2∥ϕ(A∗Xt)∥2
)

exp
(
−λ

t−1∑
s=0

ρt−s∥ηs∥2
)

≤ exp
(
λρ2∥Xt∥2 + 2λ2ρ2Cησ

2∥Xt∥2
)

exp
(
−λ

t−1∑
s=0

ρt−s∥ηs∥2
)

≤ exp
(
λρ∥Xt∥2

)
exp

(
−λ

t−1∑
s=0

ρt−s∥ηs∥2
)

= exp (λρZt) (6.10)

In the fourth step, we have used the fact that ∥ϕ(A∗Xt)∥ ≤ ρ∥Xt∥. In the fifth step we have used

the assumption that λ ≤ 1−ρ
2ρCησ2 to show λρ2 + 2λ2ρ2Cησ

2 ≤ ρλ. In the last step, we have used

the definition of Zt. We iterate over Equation (6.10) and use the fact that Z0 = 0 almost surely to

conclude that whenever λ ≤ 1−ρ
2ρCησ2 , we must have:

E exp(λZt+1) ≤ E exp(λZ0) = 1 .

Now, let Yt+1 =
∑t

s=0 ρ
t−s∥ηt∥2. We will now use Lemma 6.6.1 to bound E exp(λYt+1) for λ > 0

small enough.

148



Lemma 6.6.3. Suppose that Assumptions 6 and 8 hold and ρ be as given in Assumption 8. For

any λ such that 0 ≤ λ ≤ 1
4dCησ2 , we have:

E exp(λYt+1) ≤ exp
(
8
λdCησ

2

1−ρ

)
Proof. Let N(β) := E exp(β∥ηs∥2) By independence of the noise sequence, we have:

E exp(λYt+1) =

t∏
s=0

N(ρt−sλ) (6.11)

For β ≤ 1
4dCησ2

N(β) = E exp(β∥ηs∥2) = E exp(β
d∑

i=1

⟨ei, ηs⟩2)

≤ 1

d

d∑
i=1

E exp(βd⟨ei, ηs⟩2) ≤ 1 + 8βdCησ
2 (6.12)

In the last step, we have used Jensen’s inequality for the function x→ exp(x) and then invoked the

Lemma 6.6.1. Plugging this into Equation (6.11), we conclude:

E exp(λYt+1) ≤
t∏

s=0

(
1 + 8λdρt−sdCησ

2
)
≤ exp(

t∑
s=0

8λdρt−sCησ
2)

≤ exp
(
8
λdCησ

2

1−ρ

)
(6.13)

Based on Lemmas 6.6.3 and 6.6.2, we will now state the following concentration inequality:

Theorem 6.6.4. Suppose Assumptions 6 and 8 hold and ρ be as given in Assumption 8. Let X be

distributed according π, the stationary distribution of NLDS(A∗, µ, ϕ). Then, for any 0 < λ ≤ λ∗ :=

min( 1
8dCησ2 ,

1−ρ
4ρCησ2 ), we have:

E exp
(
λ∥X∥2

)
≤ exp( 8λdCησ

2

1−ρ ) .

We conclude:

1. Applying Chernoff bound with λ = λ∗, we conclude:

P
(
∥X∥2 > 8dCησ

2

1− ρ
+ β

)
≤ exp(−λ∗β) .
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2.

E∥X∥2 ≤ 8dCησ
2

1− ρ

The conclusions still hold when X is replaced by Xt for any t ∈ N for the process started at 0.

Proof. We first note that ∥Xt+1∥2 = Zt+1 + Yt+1. Therefore, by Cauchy-Schwarz inequality, we

must have:

E exp
(
λ∥Xt+1∥2

)
= E exp (λ(Zt+1 + Yt+1))

≤
√

E exp(2λZt+1)
√
E exp(2λYt+1)

≤ exp( 8λdCησ
2

1−ρ ) (6.14)

Here we have used Lemmas 6.6.3 and 6.6.2 and the appropriate bounds on λ. Recall that we started

the chain (Xt) with X0 = 0. Denote the law of Xt by πt. By proposition 3, we show that πt
converges weakly to the stationary distribution π. We invoke Skhorokhod representation theorem

to show that there exist random variables X̄t ∼ πt and X ∼ π for t ∈ N, defined on a common

probability space such that X̄t → X almost surely. Now, we have shown that:

E exp
(
λ∥X̄t+1∥2

)
≤ exp( 8λdCησ

2

1−ρ ) .

Now, applying Fatou’s Lemma to the equation above as t→∞, we conclude:

E exp
(
λ∥X∥2

)
≤ exp( 8λdCησ

2

1−ρ ) . (6.15)

The concentration inequality follows from an application of Chernoff bound and the second

moment bound follows from Jensen’s inequality to Equation (6.15) (i.e, E exp(Y ) ≥ exp(EY )).

Possibly unstable systems

We consider the case with (Cρ, ρ) regularity, but we allow ρ > 1.

Lemma 6.6.5. Under Assumption 7, we have:

∥Xt∥ ≤ Cρ

t−1∑
s=0

ρt−s−1∥ηs∥ . (6.16)

No suppose Assumption 6 also holds. Let δ ∈ (0, 1/2). Then with probability atleast 1− δ, we must

have:

sup
0≤t≤T

∥Xt∥ ≤ CCρ

√
CηS(ρ, T )σ

√
d log(Tδ ) .

Where S(ρ, T ) :=
∑T−1

t=0 ρT−t−1 and C is some universal constant.
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Proof. We consider the notations established in Assumption 7. We will define the process X(s)
t by

X
(s)
0 = · · · = X

(s)
s = 0 and X

(s)
t+1 = ϕ(A∗X

(s)
t ) + ηt for t ≥ s, where ηt is the same noise sequence

driving the process X0, X1, . . . , XT . Note that X(s)
t = ht−s(0, ηs, ηs+1, . . . , ηt−1).

Xt − 0 = Xt −X(1)
t +X

(1)
t −X(2)

t + · · ·+X
(t)
t − 0

=⇒ ∥Xt∥ ≤
t−1∑
s=0

∥X(s)
t −X(s+1)

t ∥

=

t−1∑
s=0

∥ht−s−1(ηs, . . . , ηt−1)− ht−s−1(0, ηs+1, . . . , ηt−1)∥

≤
t−1∑
s=0

Cρρ
t−s−1∥ηs∥ (6.17)

In the last step, we have used Assumption 7. To prove the high probability bound, we note that

P(sup0≤s≤T−1 ∥ηs∥ > C
√
Cησ

√
d log(Tδ )) ≤ δ for some universal constant C.

6.7 Analysis of the Quasi Newton method

In this Section, we give the proof of theorem 6.2.1. Let e1, . . . , ed be the standard basis vectors for

Rd. We will analyze the Quasi Newton method row by row.

Definition 3. Given a matrix A = [a1, a2, · · · , ad]⊤, let R(A) = {a1, · · · , ad} denote the set of

vectors that are (transposes of) rows of the matrix A. We use a⊤ to represent a generic row of A.

Follow Defintion 3, we will consider the estimation of the i-th row a∗i . Consider the gradient

∇L(i)
prox : Rd → Rd given by:

∇L(i)
prox(a) :=

1

T

T−1∑
t=0

(ϕ(⟨a,Xt⟩)− ⟨ei, Xt+1⟩)Xt .

We can write

∇L(i)
prox(a) =

1

T

T−1∑
t=0

(ϕ(⟨a,Xt⟩)− ϕ(⟨a∗i , Xt⟩))Xt − ⟨ηt, ei⟩Xt

=
1

T

T−1∑
t=0

ϕ′(βt)⟨a− a∗i , Xt⟩)Xt − ⟨ηt, ei⟩Xt

= K̂a,i(a− a∗i )− N̂i (6.18)

Where βt exist because of the mean value theorem. We can make sense of βt even when ϕ is only

weakly differentiable and check that the proof below still follows. Here, K̂a,i :=
1
T

∑T−1
t=0 ϕ′(βt)XtX

⊤
t

and N̂i :=
1
T

∑T−1
t=0 ⟨ηt, ei⟩Xt. In the first step we have used the dynamics in Equation (1.9) to write
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down Xt+1 in terms of Xt and ηt.

We now define Ĝ ∈ Rd×d by Ĝ := 1
T

∑T−1
t=0 XtX

⊤
t . From the fact that ζ ≤ ϕ′(βt) ≤ 1, we note that

for every a ∈ Rd:

Ĝ ⪰ K̂a,i ⪰ ζĜ (6.19)

Now consider the Quasi Newton Step given in Algorithm 2.

ai(l + 1) = ai(l)− 2γĜ−1∇L(i)
prox(ai(l))

Denoting K̂ai(l),i by K̂l,i we use Equation (6.18) to conclude:

ai(l + 1)− a∗i = ai(l)− a∗i − 2γĜ−1K̂l,i(ai(l + 1)− a∗i ) + 2γĜ−1N̂i

=⇒
√
Ĝ(ai(l + 1)− a∗i ) = (I − 2γĜ−1/2K̂l,iĜ

−1/2)
√
Ĝ(ai(l)− a∗i ) + 2γĜ−1/2N̂i (6.20)

Picking γ < 1
2 , we conclude from Equation (6.19) that:

(1− 2γ)I ⪯ I − 2γĜ−1/2K̂l,iĜ
−1/2 ⪯ (1− 2γζ)I

We use the equation above in Equation (6.20) along with triangle inequality to conclude:

∥
√
Ĝ(ai(l + 1)− a∗i )∥ ≤ (1− 2γζ)∥

√
Ĝ(ai(l)− a∗i )∥+ 2γ∥Ĝ−1/2N̂i∥

Unrolling the recursion above, we obtain that:

∥
√
Ĝ(ai(m)− a∗i )∥ ≤ (1− 2γζ)m∥

√
Ĝ(ai(0)− a∗i )∥+

m−1∑
l=0

2γ(1− 2γζ)l∥Ĝ−1/2N̂i∥

≤ (1− 2γζ)m∥
√
Ĝ(ai(0)− a∗i )∥+

1

ζ
∥Ĝ−1/2N̂i∥

Letting Am be the matrix with rows ai(m), we conclude:

∥Am −A∗∥2F ≤ 2
λmax(Ĝ)
λmin(Ĝ)

(1− 2γζ)2m∥A0 −A∗∥2F + 2

ζ2λmin(Ĝ)

d∑
i=1

∥Ĝ−1/2N̂i∥2 (6.21)

Proof of theorems 6.2.1 follows once we provide high probability bounds for various terms in

Equation (6.21). We will first define some notation. Let S(ρ, T ) :=
∑T

t=0 ρ
T−t. For R, κ > 0, we

define the following events

1. DT (R) := {sup0≤t≤T ∥Xt∥2 ≤ R}

2. ET (κ) := {Ĝ ⪰ σ2I
κ }
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3. DT (R, κ) := DT (R) ∩ ET (κ)

Lemma 6.7.1. Under the Assumptions of Theorem 6.2.1, suppose δ ∈ (0, 1/2) and take R =

C2
ρCη(S(ρ, T ))

2dσ2 log( 2Tδ ), κ = 2, and T ≥ C̄3

(
d log

(
R
σ2

)
+ log 1

δ

)
P

(
d∑

i=1

∥Ĝ− 1
2 N̂i∥2 ≤

C̄σ2

T

[
d2 log

(
1 + R

σ2

)
+ d log( 1δ )

]
∩ DT (R, κ)

)
≥ 1− 2dδ

Where C̄, C̄3 are constants depending only on Cη.

The proof of the above lemma follows from the following result.

Lemma 6.7.2. Let δ ∈ (0, 12 ) Take R = C2
ρCη(S(ρ, T ))

2dσ2 log( 2Tδ ), κ = 2 and suppose T ≥

C̄3

(
d log

(
R
σ2

)
+ log 1

δ

)
for some constant C̄3 depending only on Cη. Then, we have:

P (DT (R, κ)) ≥ 1− δ

Proof. From Lemma 6.6.5, we conclude that taking R ≥ C2
ρCη(S(ρ, T ))

2σ2 log( 2Tδ ) ensures that

P (DT (R)) ≥ 1− δ
2 . Only in this proof, we define the following:

1. X̄t := ϕ(A∗Xt)

2. K̄X := 1
T

∑T−2
t=0 X̄tη

⊤
t + ηtX̄

⊤
t

3. Ḡ := 1
T

∑T−2
t=0 X̄tX̄

⊤
t

4. K̄η := 1
T

∑T−2
t=0 ηtη

⊤
t

Consider Ĝ = 1
T

∑T−1
t=0 XtX

⊤
t = 1

T

∑T−2
t=0 X̄tX̄

⊤
t + X̄tη

⊤
t + ηtX̄

⊤
t + ηtη

⊤
t . For this proof only, we

will define, To show the result, we will prove that K̄X is not too negative with high probability and

that K̄η dominates identity with high probability. Let x ∈ Sd−1 and λ ∈ R Note that due to the

sub-Gaussianity of ηt and the definition of the process,

Ms := exp
(

t∑
s=0

λ⟨x, ηs⟩⟨x, X̄s⟩ −
Cησ

2λ2

2
⟨X̄s, x⟩2

)
.

is a super martingale with respect to the filtration Ft := σ(X0, η0, . . . , ηt), we conclude that

EMT−1 ≤ 1. An application of Chernoff bound shows that for every λ, β > 0, we must have:

P
(
|⟨x, K̄Xx⟩| ≥ 2Cησ

2λx⊤Ḡx+
β

T

∣∣∣∣DT (R)

)
≤ 2

1− δ
exp(−λβ) (6.22)

We will now invoke Theorem 5.39 in [185] to conclude that for some constant C̄2 which depends

only on Cη:

P

(
K̄η ⪯

(
1− C̄2

(√
d
T +

√
log 1

δ
T

))
σ2I

∣∣∣∣DT (R)

)
≤ δ

4
(6.23)
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Consider any ϵ net Nϵ over Sd−1. By Corollary 4.2.13 in [185], we can take |Nϵ| ≤ (1 + 2
ϵ )

d.

From Equations (6.22) and (6.23), we conclude that conditioned on DT (R), with probability at-least

1− δ
4 − |Nϵ| exp(−λβ)

1−δ we have:

inf
x∈Sd−1

x⊤Ĝx ≥ inf
y∈Nϵ

y⊤Ĝy − 2∥Ĝ∥ϵ

≥ inf
y∈Nϵ

y⊤Ḡy − |y⊤K̄Xy|+ y⊤K̄ηy − 2∥Ĝ∥ϵ

≥ inf
y∈Nϵ

y⊤Ḡy − |y⊤K̄Xy|+ y⊤K̄ηy − 2Rϵ

≥ inf
y∈Nϵ

y⊤Ḡy(1− 2λσ2Cη)−
β

T
+ σ2

(
1− C̄2

(√
d
T +

√
log 1

δ
T

))
− 2Rϵ (6.24)

In the third step, we have used the fact that under the event DT (R), ∥Ĝ∥ ≤ R. Take λ = 1
2σ2Cη

and ϵ = 1
8Rσ2 and β = 2σ2dCη log(16 R

σ2 + 1) + 2σ2Cη log 8
δ . We conclude that whenever T ≥

C̄3

(
d log

(
R
σ2

)
+ log 1

δ

)
for some constant C̄3 depending only on Cη, with probability at-least 1 − δ

2

conditioned on DT (R), we have: Ĝ ⪰ σ2

2 I. In the definition of ET (κ), we take κ = 2. Therefore, we

must have:

P(ET (κ) ∩ DT (R)) = P(ET (κ)|DT (R))P(DT (R)) ≥ (1− δ
2 )

2 ≥ 1− δ .

We conclude the result from the equation above.

Now we prove lemma 6.7.1

Proof of lemma 6.7.1. We invoke Theorem 1 in [108] with St = TN̂i, V = Tσ2I, V̄t = V + TĜ. We

know that ⟨η, ei⟩ is Cησ
2 sub-Gaussian. So, we take ‘R’ in the reference to be Cησ

2. Therefore, we

conclude that with probability at least 1− δ:

N̂⊤
i V̄

−1
t N̂i ≤

2Cησ
2

T 2
log
(

det(V̄t)1/2 det(V )−1/2

δ

)
. (6.25)

Under the event DT (R, κ), we must have: V̄t ⪯ σ2TI + TRI. This implies:

det(V̄t)1/2 det(V )−1/2 ≤ (1 + R
σ2 )

d
2 (6.26)

Now, observe that under the event DT (R, κ), Ĝ ⪰ σ2I
2 . Therefore, V̄t ⪯ 3TĜ. This implies:

1

3T
N̂⊤

i Ĝ
−1N̂i ≤ N̂⊤

i V̄
−1
t N̂i (6.27)

Combining Equations (6.25), (6.26) and (6.27) and using Lemma 6.7.2, we conclude that with

probability at-least 1− 2δ, we have:
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N̂⊤
i Ĝ

−1N̂i ≤
6Cησ

2

T

[
d log(1 + R

σ2 ) + log 1
δ

]
Using union bound, we conclude the result.

6.7.1 Proof of theorem 6.2.1

Proof. Note that R in Lemma 6.7.1 is the same as R∗ in the statement of Theorem 6.2.1. We

combine the result of Lemma 6.7.1 with the Equation (6.21). Under the event DT (R
∗, κ), we have

λmax(Ĝ)
λmin(Ĝ)

≤ 2R
σ2 almost surely. Hence the result follows.

6.8 Analysis of SGD-RER

In this section we consider the following (X0, X1, . . . , XT ) to be a stationary sequence from NLDS(A∗, µ, ϕ).

We make Assumptions 4, 5, 6 and 8. We aim to analyze Algorithm 3 and then prove Theorem 6.3.1.

The data is divided into buffers of size B and the buffers have a gap of size u in between them.

Let S = B+ u. The algorithm runs SGD with respect to the proxy loss Lprox in the order described

in Section 6.5. Formally, let Xt
j ≡ XtS+j denote the the j-th sample in buffer t. We denote, for

0 ≤ i ≤ B − 1, Xt
−i ≡ Xt

(S−1)−i i.e., the i-th processed sample in buffer t. We use similar notation

for noise samples i.e., ηtj ≡ ηtS+j and ηt−j ≡ ηt(S−1)−j .

The algorithm iterates are denoted by the sequence (At
i : 0 ≤ t ≤ N − 1, 0 ≤ i ≤ B − 1) where

At
i denotes the iterate obtained after processing i-th (reversed) sample in buffer t and N = T/S is

the total number of buffers. Note that we enumerate buffers from 0, 1, · · ·N − 1. Formally

At−1
i+1 = At−1

i − 2γ
(
ϕ(At−1

i Xt−1
−i )−Xt−1

−(i−1)

)
Xt−1,⊤

−i (6.28)

for 1 ≤ t ≤ N , 0 ≤ i ≤ B − 1 and we set At
0 = At−1

B with A0
0 = A0.

The algorithm outputs the tail-averaged iterate at the end of each buffer t: Ât0,t =
1

t−t0

∑t
τ=t0+1A

τ−1
B

where 1 ≤ t ≤ N and 0 ≤ t0 ≤ t− 1.

6.8.1 Proof strategy

The proof of Theorem 6.3.1 involves many intricate steps. Therefore, we give a detailed overview

about the proof below.

1. In Section 6.8.2 we first construct a fictitious coupled process X̃τ such that for every data point

within a buffer t, ∥X̃τ − Xτ∥ ≲ 1
Tα for some fixed α > 0 chosen arbitrarily beforehand. We

then show that the iterates Ãt
i which are generated with SGD− RER is run with the coupled
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process X̃τ is very close to the actual iterate At
i. The coupled process has the advantage that

the data in the successive buffers are independent. We then only deal with the coupled iterates

Ãt
i and appeal to Lemma 6.8.3 to obtain bounds for At

i.

2. In Section 6.8.5, we give the bias variance decomposition as is standard in the linear regression

literature. We extend it to the non-linear case using the mean value theorem and treat the

buffers as independent data samples. Here, the matrices H̃s
0,B−1 defined on the data in buffer

s ‘contracts’ the norm of As
i − A∗ giving the ‘bias term’ whereas the noise ηsi presents the

‘variance’ term which is due to the inherent uncertaintly in the estimation problem.

3. We refer to Section 6.9.1 where we develop the contraction properties of the matrices
∏t

s=0 H̃
s
0,B−1

where we show that ∥
∏t

s=0 H̃
s
0,B−1∥ ≲ (1− ζγBλmin (G))

t in Theorem 6.9.4 after developing

some probabilistic results regarding NLDS(A∗, µ, ϕ). This allows us show exponential decay of

the bias.

4. We then turn to the squared variance term in Section 6.8.6. We decompose it into ‘diagonal

terms’ with non-zero expectation and ‘cross terms’ with a vanishing expectation. Bounding the

diagonal term is straight forward using standard recursive arguments and we give the bound

in Claim 12.

5. The ‘cross terms’ which vanish in expectation in the linear case, do not because of the coupling

introduced by the non-linearities through the iterates (see Section 6.5 for a short description).

However, we establish ‘algorithmic stability’ in Section 6.8.7 where we show that the iterates

depend only weakly on each of the noise vectors and hence the cross terms have expectation

very close to zero. More specifically, we use the novel idea of re-sampling the whole trajectory

(X̃τ ) by re-sampling one noise vector only and show that the iterates of SGD− RER are not

affected much.

6. We use the ‘algorithmic stability’ bounds to bound the cross terms in Sections 6.8.8. We then

combine the bounds to obtain the bound on the ‘variance term’

7. Finally, we analyze the tail averaged output in Sections 6.8.10, 6.8.11 and 6.8.12 and then

combine these ingredients to prove Theorem 6.3.1.

6.8.2 Basic notations and coupled process

Definition 4 (Coupled process). Given the co-variates {Xτ : τ = 0, 1, . · · ·T} and noise {ητ : τ =

1, 2, · · · , T}, we define {X̃τ : τ = 0, 1, · · · , T} as follows:

1. For each buffer t generate, independently of everything else, X̃t
0∼π, the stationary distribution

of the NLDS(A∗, µ, ϕ) model.
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2. Then, each buffer has the same recursion as eq (1.9):

X̃t
i+1 = ϕ(A∗X̃t

i ) + ηti , i = 0, 1, · · ·S − 1, (6.29)

where the noise vectors as same as in the actual process {Xτ}.

Lemma 6.8.1 (Coupling Lemma). Under Assumption 7, for any buffer t, we have
∥∥∥Xt

i − X̃t
i

∥∥∥ ≤
Cρρ

i
∥∥∥Xt

0 − X̃t
0

∥∥∥ , a.s. Hence

∥∥∥Xt
iX

t,⊤
i − X̃t

i X̃
t,⊤
i

∥∥∥ ≤ 2(sup
τ≤T
∥Xτ∥)

∥∥∥Xt
i − X̃t

i

∥∥∥ ≤ 4 sup
τ≤T
∥Xτ∥2 Cρρ

i (6.30)

With the above notation, we can write (6.28) in terms of a generic row (say row r) at−1,⊤
i+1 of

At−1
i+1 as follows. Let εt−1

−i denote the element of ηt−1
−i in row r. Similarly let a∗,⊤ ≡ (a∗)

⊤ denote the

row r of A∗. Then

at−1,⊤
i+1 = at−1,⊤

i − 2γ
(
ϕ(Xt−1,⊤

−i at−1
i )− ϕ(Xt−1,⊤

−i a∗)
)
Xt−1,⊤

−i + 2γεt−1
−i X

t−1,⊤
−i (6.31)

Now, by the mean value theorem we can write

ϕ(Xt−1,⊤
−i at−1

i )− ϕ(Xt−1,⊤
−i a∗) = ϕ′(ξt−1

−i )(at−1
−i − a∗)

⊤Xt−1
−i (6.32)

where ξt−1
−i lies between Xt−1,⊤

−i at−1
i and Xt−1,⊤

−i a∗. Hence we obtain

(at−1
i+1 − a∗)

⊤ = (at−1
i − a∗)⊤(I − 2γϕ′(ξt−1

−i )Xt−1
−i X

t−1,⊤
−i ) + 2γεt−1

−i X
t−1,⊤
−i (6.33)

Now we provide a bound on the algorithmic iterates.

Lemma 6.8.2. Let Rmax := supτ≤T (∥Xτ∥2 ,
∥∥∥X̃∥∥∥2) and suppose γ ≤ 1

2Rmax
. For every t ∈ [N ] and

i ∈ [B] we have:

∥ati∥ ≤ 2γRmaxT .

Proof. Let the row under consideration be the k-th row and ek be the standard basis vector. Consider

the SGD− RER iteration:

ati+1 = ati − 2γ
(
ϕ(⟨ati, Xt

−i⟩)−Xt
−(i−1)

)
Xt

−i

= (I − 2γζt,iX
t
−iX

t,⊤
−i )a

t
i + 2γ⟨Xt

−(i−1)), ek⟩X
t
−i (6.34)

Where ζt,i :=
ϕ(⟨at

i,X
t
−i⟩)

⟨at
i,X

t
−i⟩

∈ [ζ, 1] exists in a weak sense due to our assumptions on ϕ. Observe that

for our choice of γ, we have ∥(I−2γζt,iX
t
−iX

t,⊤
−i )∥ ≤ 1 and ∥⟨Xt

−(i−1), ek⟩X
t,⊤
−i ∥ ≤ Rmax. Therefore,
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triangle inequality implies:

∥ati+1∥ ≤ ∥ati∥+ 2γRmax

We conclude the bound in the Lemma.

Definition 5 (Coupled SGD Iteration). Consider the process described in Defintion 4. We define

SGD− RER iterates run with the coupled process (X̃t
i ) as follows:

Ã0
0 = A0

0

Ãt−1
i+1 = Ãt−1

i − 2γ
(
ϕ(Ãt−1

i X̃t−1
−i )− X̃t−1

−(i−1)

)
X̃t−1,⊤

−i (6.35)

Using Lemma 6.8.1, we can show that Ãt
i ≈ At

i. Note that successive buffers for the iterates

Ãt
i are actually independent. We state the following lemma which shows that we can indeed just

analyze Ãt
i and then from this obtain error bounds for At

i.

Lemma 6.8.3. Suppose γ < 1
2Rmax

. we have for every t ∈ [N ] and i ∈ [B].

∥ati − ãti∥ ≤ (16γ2R2
maxT

2 + 8γRmaxT )ρ
u

Proof. Let the row under consideration be the k-th row and ek be the standard basis vector.

ati+1 = ati − 2γ(ϕ(⟨ati, Xt
−i⟩)− ⟨ek, Xt

−(i−1)⟩)X
t
−i

= ati − 2γ(ϕ(⟨ati, X̃t
−i⟩)− ⟨ek, X̃t

−(i−1)⟩)X̃
t
−i +∆t,i (6.36)

Where

∆t,i := 2γ
(
ϕ(⟨ati, X̃t

−i⟩)X̃t
−i − ϕ(⟨ati, Xt

−i⟩)Xt
−i

)
+ 2γ

(
⟨Xt

−(i−1), ek⟩X
t
−i − ⟨X̃t

−(i−1), ek⟩X̃
t
−i

)
.

Using Lemmas 6.8.2 and 6.8.1, we conclude that:

∥∆t,i∥ ≤ (16γ2R2
maxT + 8γRmax)ρ

u

Using the recursion for ãti, we conclude:

ati+1 − ãti+1 = (I − 2γζ̃t,iX̃
t
i X̃

t,⊤
i )(ati − ãti) + ∆t,i

=⇒
∥∥ati+1 − ãti+1

∥∥ ≤ ∥∥ati − ãti∥∥∥∥∥(I − 2γζ̃t,iX̃
t
i X̃

t,⊤
i )

∥∥∥+ (16γ2R2
maxT + 8γRmax)ρ

u

=⇒
∥∥ati+1 − ãti+1

∥∥ ≤ ∥∥ati − ãti∥∥+ (16γ2R2
maxT + 8γRmax)ρ

u (6.37)
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In the first step, ζ̃t,i :=
ϕ(⟨at

i,X̃
t
−i⟩)−ϕ(⟨ãt

i,X̃
t
−i⟩

⟨at
i,X̃

t
−i⟩−⟨ãt

i,X̃
t
−i⟩

∈ [ζ, 1]. In the last step we have used the fact that

under the conditions on γ, we must have
∥∥∥(I − 2γζ̃t,iX̃

t
i X̃

t,⊤
i )

∥∥∥ ≤ 1. We conclude the statement of

the lemma from Equation (6.37).

We note that we can just analyze the iterates Ãt
i and then use Lemma 6.8.3 to infer error bounds

for At
i. Henceforth, we will only consider Ãt

i.

Before proceeding, we will set up some notation.

6.8.3 Notations

We define the following notations. Let R > 0 to be decided later.

Xt
−i = Xt

(S−1)−i, 0 ≤ i ≤ S − 1, ϕ′(ξ̃t−i) =
ϕ(ãt,⊤−i X̃

t
−i)− ϕ(a∗,⊤X̃t

−i)(
ãt−i − a∗

)⊤
X̃t

−i

P̃ t
−i =

(
I − 2γϕ′

(
ξ̃t−i

)
X̃t

−iX̃
t,⊤
−i

)
, H̃t

i,j =


∏j

s=i P̃
t
−s i ≤ j

I i > j

,

γ̂ = 4γ(1− γR), Ct−j =
{∥∥Xt

−j

∥∥2 ≤ R} , C̃t−j =

{∥∥∥X̃t
−j

∥∥∥2 ≤ R} ,
Dt

−j =
{∥∥Xt

−i

∥∥2 ≤ R : j ≤ i ≤ B − 1
}
=

B−1⋂
i=j

Ct−i,

Ds,t =


⋂t

r=sDr
−0 s ≤ t

Ω s > t

, D̃t
−j =

{∥∥∥X̃t
−i

∥∥∥2 ≤ R : j ≤ i ≤ B − 1

}
=

B−1⋂
i=j

C̃t−i,

D̃s,t =


⋂t

r=s D̃r
−0 s ≤ t

Ω s > t

, D̂t
−j = Dt

−j ∩ D̃t
−j , D̂s,t = Ds,t ∩ D̃s,t.

To execute algorithmic stability arguments, we will need to independently resample individual

noise co-ordinates. To that end, define (η̄τ )τ drawn i.i.d from the noise distribution µ and inde-

pendent of everything else defined so far. We denote their generic rows by ε̄. We use the following

events which correspond to a generic row

Eti,j =
{
∥εt−k∥2 ≤ β, ∥ε̄t−k∥2 ≤ β : i ≤ k ≤ j

}
6.8.4 Setting the parameter values:

We make Assumptions 4, 5, 6 and 8 throughout. We set the parameters for SGD− RER as follows

for the rest of the analysis. We note that some of these parameter values were set in Section 6.3.

1. α ≥ 10
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2. β = 4Cησ
2(α+ 2) log 2T .

3. R ≥ 16(α+2)dCησ
2 log T

1−ρ

4. δ = 1/(2Tα+1)

5. u ≥ 2α log T

log( 1ρ )
= O(τmix logT )

6. B ≥ max
(
C̄1

d
(1−ρ)(1−ρ2) , 10u

)
where C̄1 depends only on Cη(see Theorem 6.9.4)

7. γ ≤ min
(

ζ
4BR(1+ζ) , 1/2R

)
(see Theorem 6.9.4)

From Assumption 6 and Theorem 6.6.4, we conclude that for this choice of R and β, we must have:

P
[(
D̂0,N−1 ∩ ∩N−1

r=0 Er0,B−1

)C]
≤ 1

2Tα
(6.38)

6.8.5 Bias-variance decomposition

Using the above notation we can unroll the recursion in (6.33) as follows. We will only focus on the

algorithmic iterated at the end of each buffer, i.e., we set i = B − 1 in (6.33).

(ãt−1
B − a∗)⊤ = (a0 − a∗)⊤

t−1∏
s=0

H̃s
0,B−1 + 2γ

t∑
r=1

B−1∑
j=0

εt−r
−j X̃

t−r,⊤
−j H̃t−r

j+1,B−1

1∏
s=r−1

H̃t−s
0,B−1 (6.39)

We call the above the bias-variance decomposition where

(ãt−1,b
B − a∗)⊤ = (a0 − a∗)⊤

t−1∏
s=0

H̃s
0,B−1 (6.40)

is the bias, and

(ãt−1,v
B )⊤ = 2γ

t∑
r=1

B−1∑
j=0

εt−r
−j X̃

t−r,⊤
−j H̃t−r

j+1,B−1

1∏
s=r−1

H̃t−s
0,B−1 (6.41)

is the variance. We have the following simple lemma on bias-variance decomposition.

Lemma 6.8.4.

∥∥ãt−1
B − a∗

∥∥2 ⪯ 2

(∥∥∥ãt−1,b
B − a∗

∥∥∥2 + ∥∥∥ãt−1,v
B

∥∥∥2) (6.42)

6.8.6 Variance of last iterate - Diagonal Terms

In this section our goal is to decompose
∥∥∥ãt−1,v

B

∥∥∥2 into diagonal terms and cross terms. We will then

proceed to bound the diagonal terms. First, we have a preliminary lemma, which can be shown via
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a simple recursion.

Lemma 6.8.5. For k ≤ t define St
k as

St
k =

t∑
r=k

B−1∑
j=0

ϕ′(ξ̃t−r
−j )

(
r−1∏
s=1

H̃t−s,⊤
0,B−1

)
H̃t−r,⊤

j+1,B−1X̃
t−r
−j X̃

t−r,⊤
−j H̃t−r

j+1,B−1

(
1∏

s=r−1

H̃t−s
0,B−1

)
(6.43)

Then, on the event D̃0,t−1, we have

St
1 ⪯

1

γ̂

(
I −

(
t∏

s=1

H̃t−s,⊤
0,B−1

)(
1∏

s=t

H̃t−s
0,B−1

))
(6.44)

where γ̂ = 4γ(1− γR)

Proof. The proof is similar to that of [110, Claim 1].

Next, we write
∥∥∥ãt−1,v

B

∥∥∥2 as

∥∥∥ãt−1,v
B

∥∥∥2 =

t∑
r=1

B−1∑
j=0

Dg(t, r, j) +
∑
r1,r2

∑
j1,j2

Cr(t, r1, r2, j1, j2) (6.45)

where the second sum is over (r1, j1) ̸= (r2, j2) and

Dg(t, r, j) = 4γ2|εt−r
−j |

2 · X̃t−r,⊤
−j H̃t−r

j+1,B−1

(
1∏

s=r−1

H̃t−s
0,B−1

)(
r−1∏
s=1

H̃t−s,⊤
0,B−1

)
H̃t−r,⊤

j+1,B−1X̃
t−r
−j (6.46)

and

Cr(t, r1, r2, j1, j2) = 4γ2εt−r2
−j2

X̃t−r2,⊤
−j2

H̃t−r2
j2+1,B−1

(
1∏

s=r2−1

H̃t−s
0,B−1

)
·(

r1−1∏
s=1

H̃t−s,⊤
0,B−1

)
H̃t−r1,⊤

j1+1,B−1X̃
t−r1
−j1

εt−r1
−j1

(6.47)

Finally, we bound the diagonal term:

Claim 12.

E

 t∑
r=1

B−1∑
j=0

Dg(t, r, j)1
[
D̃0,t−1

] ≤ γd

ζ(1− γR)
β + 16Cησ

2γ2RT
1

Tα/2
(6.48)

Proof. Notice that we can write

Dg(t, r, j) ≤ 4γ2
(
β + |εt−r

−j |
21[|εt−r

−j |
2 > β]

)
·

X̃t−r,⊤
−j H̃t−r

j+1,B−1

(
1∏

s=r−1

H̃t−s
0,B−1

)(
r−1∏
s=1

H̃t−s,⊤
0,B−1

)
H̃t−r,⊤

j+1,B−1X̃
t−r
−j (6.49)
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Further

X̃t−r,⊤
−j H̃t−r

j+1,B−1

(
1∏

s=r−1

H̃t−s
0,B−1

)(
r−1∏
s=1

H̃t−s,⊤
0,B−1

)
H̃t−r,⊤

j+1,B−1X̃
t−r
−j 1

[
D̃0,t−1

]
≤ R (6.50)

Combining the above two we obtain

t∑
r=1

B−1∑
j=0

Dg(t, r, j)1
[
D̃0,t−1

]
≤ 4γ2β

TrSt
1

ζ
+R

t∑
r=1

B−1∑
j=0

|εt−r
−j |

21[|εt−r
−j |

2 > β] (6.51)

where St
1 is defined in (6.43). Now taking expectation, and using lemma 6.8.5 and Caucy-Schwarz

inequality for the first and second terms, respectively, in (6.51) we obtain the claim. Here we use

the fact that E
[
|εt−r

−j |4
]
≤ 16C2

ησ
4 from [148, Theorem 2.1]

6.8.7 Algorithmic stability

In order to bound the cross terms in the variance, we need the notion of algorithmic stability. Here

the idea is that if ϕ was identity, then E [Cr(t, r1, r2, j1, j2)] would vanish. But in the non-linear

setting, this does not happen due to dependencies between εt−r
−j and H̃t−r

j+1,B−1

(∏1
s=r−1 H̃

t−s
0,B−1

)
through the algorithmic iterates. We can still show that E [Cr(t, r1, r2, j1, j2)] ≈ 0 by showing

that the iterates depend very weakly on each of the noise co-ordinates εt−r
−j . So our idea is to

use algorithmic stability: we re-sample the whole trajectory of X by re-sampling a single noise co-

ordinate independently. We then show that the iterates are not affected much by such a re-sampling,

which shows that the iterates are only weakly coupled to each individual noise vector.

To that end, we need some additional notation. We have the data (Xτ )τ and the coupled process

(X̃τ )τ . Let the corresponding (coupled) algorithmic iterates be (ãsi : 0 ≤ s ≤ N − 1, 0 ≤ i ≤ B− 1).

Now ãsi are functions of X0 and noise vectors {ηs−i : 0 ≤ s ≤ N − 1, 0 ≤ i ≤ S − 1}. Suppose we

re-sample the noise ηr−j independently of everything else to get η̄r−j . So the new noise samples are:

(
η00 , η

0
1 , · · · , ηr0, · · · , ηr(S−1)−(j+1), η̄

r
(S−1)−j , η

r
(S−1)−(j−1), · · ·

)
.

We then run the dynamics in Equation (1.9) with the new noise samples to obtain (X̄τ )τ and the

new coupled process ( ¯̃Xτ )τ obtained through the new noise sequence (but same stationary renewal

given in Definition 4), and they satisfy the following:

162



X̄s
−i =

X
s
−i, s < r, 0 ≤ i ≤ S − 1

Xr
−i, s = r, j ≤ i ≤ S − 1

¯̃Xs
−i =

X̃
s
−i, s ∈ {1, · · · , r − 1, r + 1, · · · , N − 1}, 0 ≤ i ≤ S − 1

X̃r
−i, s = r, j ≤ i ≤ S − 1

We obtain the iterates ¯̃asi by running the update Equation (6.28) with the data ¯̃Xτ instead of

Xτ . Accordingly, the algorithmic iterates change to (¯̃asi : 0 ≤ s ≤ N − 1, 0 ≤ i ≤ B − 1) that satisfy

¯̃asi = ãsi for s < r, 0 ≤ i ≤ B − 1

This is because, resampling ητ does note change the value of data X̃τ ′ for τ ′ ≤ τ . Under the setting

we have the following lemma:

Lemma 6.8.6. Let At−1 be the following event

At−1 =

t−1⋂
r=0

B−1⋂
j=0

{∥∥ãrj − a∗∥∥ ≤ ∥a0 − a∗∥+ C̄

√
Rβ

ζλmin

}
(6.52)

For some constant C̄ depending only on Cη, we have for any 1 ≤ t ≤ N

P
[
D̂0,N−1 ∩ AN−1 ∩ ∩N−1

r=0 Er0,B−1

]
≥ 1− 1

Tα
(6.53)

Further more, on the event Er0,j ∩ D̃r,N−1 ∩ Ar we have:

¯̃asi = ãsi , 0 ≤ s < r, 0 ≤ i ≤ B − 1 (6.54)

¯̃ar0 = ãr0 (6.55)

and for s ≥ r we have

∥¯̃asi − ãsi∥ ≤ C̄2γRB

√
Rβ

ζλmin
+ 8γRB ∥a0 − a∗∥ ≤ C̄2γRB

√
Rβ

ζλmin
(6.56)

We give the proof in Section 6.9

Remark 15. In expression (6.56), we have suppressed the dependence of ∥a0 − a∗∥ for the ease of

exposition with the rationale being that since a0 = 0, it sould be lower order compared to
√
Rβ.

Hence we see from the above lemma that changing a particular noise sample in a particular buffer

perturbs the algorithmic iterates by O(γpoly(RB)).

163



Let Rr
−j denote the re-sampling operator corresponding to re-sampling ηr−j . That is, for any

function f((aτ ), (Xτ ), (X̃τ )) we have

Rr
−j

(
f((aτ ), (ãτ ), (Xτ ), (X̃τ ))

)
= f((āτ ), (¯̃aτ ), (X̄τ ), (

¯̃Xτ )) (6.57)

We will drop the subscripts and superscripts on R when there is no ambiguity on which noise is

re-sampled. First we will prove a lemma that bounds the effect of re-sampling.

Lemma 6.8.7. On the event Er0,j ∩ D̃0,t−1 ∩ At−1, for some constant C depending only on Cη:

∥∥∥∥∥H̃t−r
j+1,B−1

(
1∏

s=r−1

H̃t−s
0,B−1

)
−Rt−r

−j H̃
t−r
j+1,B−1

(
1∏

s=r−1

Rt−r
−j H̃

t−s
0,B−1

)∥∥∥∥∥
≤ C̄ Bt ∥ϕ

′′∥ γ2R3B
√
β

ζλmin
(6.58)

Proof. First, note that since we are re-sampling ηt−r
−j , the only difference betweenRt−r

−j H̃
t−r
j+1,B−1

(∏1
s=r−1R

t−r
−j H̃

t−s
0,B−1

)
and H̃t−r

j+1,B−1

(∏1
s=r−1 H̃

t−s
0,B−1

)
is that the algorithmic iterates ãsj that appear in the latter (through

ϕ′(·)) are replaced by ¯̃asj in the former, but the covariates remain the same in both.

Now, the matrix H̃t−r
j+1,B−1

(∏1
s=r−1 H̃

t−s
0,B−1

)
is of the form

∏k
l=1Al where ∥Al∥ ≤ 1 under the

conditioned events and is of the form I−2γϕ′(ξ̃t−s
−i )X̃t−s

−j X̃
t−s,⊤
−i . Similarly, we write: Rt−r

−j H̃
t−r
j+1,B−1

(∏1
s=r−1R

t−r
−j H̃

t−s
0,B−1

)
=∏k

l=1 Āl where Āl = Rt−r
−j Al. Now consider the simple inequality under the condition that ∥Al∥, ∥Āl∥ ≤

1

∥∥∥∥∥
k∏

l=1

Al −
k∏

l=1

Āl

∥∥∥∥∥ ≤
k∑

l=1

∥∥Al − Āl

∥∥ (6.59)

Therefore, we will just bound each of the component differences
∥∥Al − Āl

∥∥. To this end, consider a

typical term I − 2γϕ′(ξ̃t−s
−i )X̃t−s

−j X̃
t−s,⊤
−i . We have

(
I − 2γϕ′(ξ̃t−s

−i )X̃t−s
−i X̃

t−s,⊤
−i

)
−Rt−r

−j

(
I − 2γϕ′(ξ̃t−s

−i )X̃t−s
−i X̃

t−s,⊤
−i

)
= 2γ(ϕ′(ξ̃t−s

−i )−Rt−r
−j ϕ

′(ξ̃t−s
−i ))X̃t−s

−i X̃
t−s,⊤
−i (6.60)

Now

ϕ′(ξ̃t−s
−i )−Rt−r

−j ϕ
′(ξ̃t−s

−i ) =
ϕ(ãt−s,⊤

i X̃t−s
−i )− ϕ(a∗,⊤X̃t−s

−i )

(ãt−s
i − a∗)⊤X̃t−s

−i

−
ϕ(¯̃at−s,⊤

i X̃t−s
−i )− ϕ(a∗,⊤X̃t−s

−i )

(¯̃at−s
i − a∗)⊤X̃t−s

−i

(6.61)

Now we can use the following simple result from calculus. Suppose f is a real valued twice

continuously differentiable function with bounded second derivative (denoted by ∥f ′′∥). Fix x0 ∈ R.
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Let g(x) = f(x)−f(x0)
x−x0

. By the mean value theorem, there exists ξ such that:

g′(x) =
f(x0)− (f(x) + (x0 − x)f ′(x)

(x− x0)2
=

1

2
f ′′(ξ)

Now for any x, y, we have

|g(x)− g(y)| = |g′(ξ1)(x− y)| ≤
1

2
∥f ′′∥ |x− y|

for some ξ1 between x and y. Here again we use the mean value theorem in the equality above. Now

we will apply this result to ϕ with x = ãt−s,⊤
i X̃t−s

−i , y = ¯̃at−s,⊤
i X̃t−s

−i and x0 = a∗,⊤X̃t−s
−i to get

∣∣∣ϕ′(ξ̃t−s
−i )−Rt−r

−j ϕ
′(ξ̃t−s

−i )
∣∣∣ ≤ 1

2
∥ϕ′′∥

∥∥ãt−s
i − ¯̃at−s

i

∥∥∥∥∥X̃t−s
−i

∥∥∥ (6.62)

Now we appeal to lemma 6.8.6. In particular, using equation (6.56) we see that, on the event

Er0,j ∩ D̃0,t−1 ∩ At−1,

∣∣∣ϕ′(ξ̃t−s
−i )−Rt−r

−j ϕ
′(ξ̃t−s

−i )
∣∣∣ ≤ 1

2
∥ϕ′′∥ 128CγRB

√
Rβ

ζλmin

√
R

= 64C ∥ϕ′′∥ γR2B

√
β

ζλmin
(6.63)

=⇒
∥∥∥2γ(ϕ′(ξ̃t−s

−i )−Rt−r
−j ϕ

′(ξ̃t−s
−i ))X̃t−s

−i X̃
t−s,⊤
−i

∥∥∥ ≤ 128C ∥ϕ′′∥ γ2R3B

√
β

ζλmin
(6.64)

We now use Equation (6.59) with k ≤ Bt along with Equation (6.64) to conclude the statement

of the lemma.

6.8.8 Bound Cr(t, r1, r2, j1, j2)

Next we will bound
∑

r

∑
j1 ̸=j2

Cr(t, r, r, j1, j2)

Claim 13.∣∣∣∣∣∣E
 t∑
r=1

∑
j1 ̸=j2

Cr(t, r, r, j1, j2)1
[
D̃0,t−1

]∣∣∣∣∣∣ ≤ C̄
[
σ2γ2RB

Tα/2−1
+
∥ϕ′′∥ γ4T 2R4B2σ2

√
β

ζλmin

]
(6.65)

Where C̄ is a constant depending only on Cη

Proof. Let j1 < j2. We will suppress the arguments of Cr for brevity. First, we re-sample the noise

which is ahead in the time, i.e., ηt−r
−j1

(and hence the entry εt−r
−j1

in the row under consideration).
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Let Cr′ denote the resampled version of Cr as defined below

Cr′(t, r, r, j1, j2) := 4γ2εt−r
−j1

εt−r
−j2
Rt−r

−j1

[
X̃t−r,⊤

−j2
H̃t−r

j2+1,B−1

(
1∏

s=r−1

H̃t−s
0,B−1

)
·(

r−1∏
s=1

H̃t−s,⊤
0,B−1

)
H̃t−r,⊤

j1+1,B−1X̃
t−r
−j1

]

= 4γ2εt−r
−j1

εt−r
−j2

X̃t−r,⊤
−j2

Rt−r
−j1

(
H̃t−r

j2+1,B−1

)
Rt−r

−j1

(
1∏

s=r−1

H̃t−s
0,B−1

)
·

Rt−r
−j1

(
r−1∏
s=1

H̃t−s,⊤
0,B−1

)
Rt−r

−j1

(
H̃t−r,⊤

j1+1,B−1

)
X̃t−r

−j1
(6.66)

where we have used the fact that Rt−r
−j1

has no effect on the items from the process (X̃τ )τ that appear

in the expression above. Note the this is not Rt−r
−j1

Cr, since in Rt−r
−j1

Cr we would have ϵ̄t−r
−j1

instead.

Now, since the new algorithmic iterates (¯̃asi ) depend on η̄t−r
−j1

but not on ηt−r
−j1

, it is immediate that

E
[
Cr′(t, r, r, j1, j2)

]
= 0

For convenience, we introduce some notation which is only used in this proof. Cr′(t, r, r, j1, j2)

can be written in the form 4γ2εt−r
−j1

εt−r
−j2

K1 for some random variable K1 independent of εt−r
−j1

. Under

the event D̃0,t−1, we can easily show that |K1| ≤ R almost surely. Let FK = σ(K1, ε
t−r
−j2

). Let

M := {|K1| ≤ R}. Clearly, D̃0,t−1 ⊆M and εt−r
−j1
⊥ FK . We conclude:

∣∣∣∣E [Cr′ 1
[
D̃0,t−1

]]∣∣∣∣ =∣∣∣∣E [Cr′ 1
[
D̃0,t−1

]
1 [M]

]∣∣∣∣
= 4γ2

∣∣∣∣E [E [εt−r
−j1

1
[
D̃0,t−1

]∣∣FK

]
K1ε

t−r
−j2

1 [M]
]∣∣∣∣

≤ 4γ2E
[∣∣E [εt−r

−j1
1
[
D̃0,t−1

]∣∣FK

]∣∣ · |K1| · |εt−r
−j2
|1 [M]

]
(6.67)

We note that:
∣∣∣∣E [εt−r

−j1
1
[
D̃0,t−1

]∣∣FK

]∣∣∣∣ =∣∣∣∣E [εt−r
−j1

1
[
D̃0,t−1,C

]∣∣FK

]∣∣∣∣ ≤ σ2

√
P
(
1
[
D̃0,t−1,C

]
|FK

)
.

Using this in Equation (6.67), and that under event M, |K1| ≤ R we apply Cauchy-Schwarz in-

equality again to conclude:∣∣∣∣E [Cr′ 1
[
D̃0,t−1

]]∣∣∣∣ ≤ 4γ2σ2R

√
P(D̃0,t−1,C) ≤ 4γ2σ2R

Tα/2
(6.68)

Using similar technique as lemma 6.8.7, we have that on the event Er0,j1 ∩ D̃
0,t−1 ∩ At−1,

∥∥∥∥∥H̃t−r
j2+1,B−1

(
1∏

s=r−1

H̃t−s
0,B−1

)
−Rt−r

−j1
H̃t−r

j2+1,B−1

(
1∏

s=r−1

Rt−r
−j2

H̃t−s
0,B−1

)∥∥∥∥∥
≤ C̄ T ∥ϕ

′′∥ γ2R3B
√
β

ζλmin
(6.69)
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Therefore, on the event Er0,j1 ∩ E
r
0,j2
∩ D̃0,t−1 ∩ At−1, we have

∣∣Cr−Cr′
∣∣ ≤ γ4C̄R4

∣∣εt−r
−j1

εt−r
−j2

∣∣T ∥ϕ′′∥B √
β

ζλmin

=⇒ E
[∣∣Cr−Cr′

∣∣ 1 [Er0,j1 ∩ Er0,j2 ∩ D̃0,t−1 ∩ At−1
]]
≤ C̄ ∥ϕ′′∥ γ4TR4B

σ2
√
β

ζλmin
(6.70)

We note that over the event D̃0,t−1, we must have |Cr−Cr′ | ≤ 2R|εt−r
−j1

εt−r
−j2
|. Combining this with

Equation (6.70) and noting that P
(
Er0,j1 ∩ E

r
0,j2
∩ D̃0,t−1 ∩ At−1

)
≥ 1− 1

Tα , we conclude:

E

∣∣∣∣∣∣
t∑

r=1

∑
j1 ̸=j2

Cr(t, r, r, j1, j2)− Cr′(t, r, r, j1, j2)

∣∣∣∣∣∣ 1
[
D̃0,t−1

]
≤ C̄

[
∥ϕ′′∥ γ4T 2R4B2σ

2
√
β

ζλmin
+ σ2γ2RTB

1

Tα/2

]
(6.71)

Hence combining (6.68) and (6.71) we conclude the statement of the claim.

Next we want to bound Cr(t, r1, r2, j1, j2) for r2 > r1 and arbitrary j1 and j2. Recall the definition

of ãt−1,v
B from (6.41). Via simple rearrangement of summation, we can express

∑
r2>r1

∑
j1,j2

Cr(t, r1, r2, j1, j2)

in terms of ãt−r1−1,v
B as follows.

Lemma 6.8.8.

∑
r2>r1

∑
j1,j2

Cr(t, r1, r2, j1, j2)

= 2γ

t−1∑
r1=1

B−1∑
j1=0

(ãt−r1−1,v
B )⊤

(
1∏

s=r1

H̃t−s
0,B−1

)(
r1−1∏
s=1

H̃t−s,⊤
0,B−1

)
H̃t−r1,⊤

j1+1,B−1X̃
t−r1
−j1

εt−r1
−j1

(6.72)

Claim 14. ∣∣∣∣∣∣E
 ∑
r1 ̸=r2

∑
j1,j2

Cr(t, r1, r2, j1, j2)1
[
D̃0,t−1

]∣∣∣∣∣∣ ≤ C̄γ2R(Bt)2σ2 1

Tα/2
+

C̄

(
∥ϕ′′∥ γ3T 2R3B

√
β

ζλmin
+ γ2TRB

)√
Rσ2

√
sup

s≤N−1
E
[
∥ãs,vB ∥

2
1
[
D̃0,s

]]
(6.73)

The proof of the claim essentially proceeds similar to that of Claim 13 but with additional

complications. We refer to Section 6.9 for the proof.

Combining everything in this section we have the following proposition.

Proposition 4. Let

Ṽt−1 = E
[∥∥∥ãt−1,v

B

∥∥∥2 1 [D̃0,t−1
]]

(6.74)
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Then for some constant C̄ which depends only on Cη:

sup
s≤N−1

Ṽs ≤
2γd

ζ(1− γR)
β + C̄ ∥ϕ′′∥ γ4T 2R4B2σ

2
√
β

ζλmin
+ C̄σ2γ2RT 2 1

Tα/2
+

C̄Rσ2

(
∥ϕ′′∥2 γ6T 4R6B2 β

ζ2λ2min
+ γ4T 2R2B2

)
(6.75)

Proof. In the whole proof, we will denote any large enough constant depending on Cη by C̄. From

claims 12, 13 and 14 along with equation (6.45) we have

E
[∥∥∥ãt−1,v

B

∥∥∥2 1 [D̃0,t−1
]]

≤ γd

ζ(1− γR)
β + C̄ ∥ϕ′′∥ γ4T 2R4B2σ

2
√
β

ζλmin
+ C̄σ2γ2RT

1

Tα/2
(1 +B + T ) +(

C̄ ∥ϕ′′∥ γ3T 2R3B

√
β

ζλmin
+ γ2TRB

)√
Rσ2

√
sup

s≤N−1
E
[
∥ãs,vB ∥

2
1
[
D̃0,s

]]
(6.76)

Thus

sup
s≤N−1

Ṽs ≤
γd

ζ(1− γR)
β + C̄ ∥ϕ′′∥ γ4T 2R4B2σ

2
√
β

ζλmin
+ C̄σ2γ2RT 2 1

Tα/2
+

C̄

(
∥ϕ′′∥ γ3T 2R3B

√
β

ζλmin
+ γ2TRB

)√
Rσ2

√
sup

s≤N−1
Ṽs

(6.77)

Finally, we need to solve the above recursive relation. We note a simple fact: Let c1, c2 > 0 be

constants and let x > 0 satisfy

x2 ≤ c1 + c2x (6.78)

then

x2 ≤ 1

4

(
c2 +

√
c22 + 4c1

)2

≤ c22 + 2c1 (6.79)

where in the last inequality above we used the fact that (a+ b)2 ≤ 2(a2 + b2).

Thus,

sup
s≤N−1

Ṽs ≤
2γd

ζ(1− γR)
β + C̄ ∥ϕ′′∥ γ4T 2R4B2σ

2
√
β

ζλmin
+ C̄σ2γ2RT 2 1

Tα/2
+

C̄Rσ2

(
∥ϕ′′∥2 γ6T 4R6B2 β

ζ2λ2min
+ γ4T 2R2B2

)
(6.80)
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6.8.9 Bias of last iterate

In this part, we will bound the expectation of the bias term
∥∥∥ãt−1,b

B − a∗
∥∥∥2.

Theorem 6.8.9. For some universal constant c0:

E
[∥∥∥ãt−1,b

B − a∗
∥∥∥2 1 [D̃0,t−1

]]
≤ ∥a0 − a∗∥2 (1− c0ζγBλmin)

t (6.81)

where ãt−1,b − a∗ is defined in (6.40)

Proof. Define xv =
∏v−1

s=0 H̃
s,⊤
0,B−1(a0 − a∗). Here, we consider the event Gv considered in Claim 17

in the proof of Theorem 6.9.4, and show that for some universal constant q0 > 0,

P(∥H̃v,⊤
0,B−1xv∥

2 ≥ (1− ζγλmin (G))∥xv∥2
∣∣D̃0,t−1, xv) ≥ q0 (6.82)

From Theorem 6.9.4 we also note that conditioned on D̃0,t−1, almost surely:

∥H̃v,⊤
0,B−1xv∥

2 ≤ 1

We let Gv be the event lower bounded in Equation (6.82).

E
[
∥xv+1∥2

∣∣D̃0,t−1
]
= E

[
∥H̃v,⊤

0,B−1xv∥
2
∣∣D̃0,t−1

]
= E

[
∥H̃v,⊤

0,B−1xv∥
21 [Gv] + ∥H̃v,⊤

0,B−1xv∥
21
[
GCv
]∣∣D̃0,t−1

]
≤ E

[
(1− γζλmin (G))∥xv∥21 [Gv] + ∥xv∥21

[
GCv
]∣∣D̃0,t−1

]
= E

[
∥xv∥2

[
1− γζλmin (G)P(Gv

∣∣D̃0,t−1 xv)
]∣∣D̃0,t−1

]
≤ E

[
∥xv∥2 [1− γζλmin (G) q0]

∣∣D̃0,t−1
]

(6.83)

Unrolling the recursion given by Equation (6.83), and noting that ãt−1,b
B − a∗ = xt, we conclude

E
[∥∥∥ãt−1,b

B − a∗
∥∥∥2 1 [D̃0,t−1

]]
≤ (1− c0γBλminζ)

t .

Hence we have the theorem.
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6.8.10 Average iterate: Bias-variance decomposition

In the part, we will consider the tail-averaged iterate where a generic row is given by

ˆ̃at0,N =
1

N − t0

N∑
t=t0+1

ãt−1
B (6.84)

where t0 ∈ {0, 1, · · · , N − 1}.

Thus we can write ât0,N − a∗ as

ˆ̃at0,N − a∗ = (ˆ̃avt0,N ) + (ˆ̃abt0,N − a
∗) (6.85)

where

ˆ̃avt0,N =
1

N − t0

N∑
t=t0+1

(ãt−1,v
B ) (6.86)

ˆ̃abt0,N − a
∗ =

1

N − t0

N∑
t=t0+1

(ãt−1,b
B − a∗) (6.87)

6.8.11 Variance of average iterate

Remark 16. From now on we will use the following notation:

∑
t

≡
N∑

t=t0+1

∑
t1,t2

≡
N∑

t1,t2=t0+1

∑
t1 ̸=t2

≡
N∑

t1,t2=t0+1
t1 ̸=t2

∑
t2>t1

≡
N−1∑

t1=t0+1

N∑
t2=t1+1

Next we expand
∥∥∥ˆ̃avt0,N∥∥∥2

∥∥∥ˆ̃avt0,N∥∥∥2 =
1

(N − t0)2
∑
t

∥∥∥ãt−1,v
B

∥∥∥2 +
1

(N − t0)2
∑
t1 ̸=t2

(ãt2−1,v
B )⊤(ãt1−1,v

B ) (6.88)
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Claim 15. For t2 > t1∣∣∣∣∣E
[[

(ãt2−1,v
B )⊤

(
(ãt1−1,v

B )−

(
1∏

s=t2−t1

H̃t2−s
0,B−1

)
(ãt1−1,v

B )

)]
1
[
D̃0,N−1

]]∣∣∣∣∣
≤ C1 Poly(R,B, β, 1/ζ, 1/λmin, ∥ϕ′′∥)

(
γ7/2T 2 + γ5T 3 + γ6T 4

)
(6.89)

Proof. From (6.41) we can write

(ãt2−1,v
B )⊤ = (ãt1−1,v

B )⊤

(
1∏

s=t2−t1

H̃t2−s
0,B−1

)
+

2γ

t2−t1∑
r=1

B−1∑
j=0

εt2−r
−j X̃t2−r,⊤

−j H̃t2−r
j+1,B−1

(
1∏

s=r−1

H̃t2−s
0,B−1

)
(6.90)

Hence

(ãt2−1,v
B )⊤(ãt1−1,v

B ) = (ãt1−1,v
B )⊤

(
1∏

s=t2−t1

H̃t2−s
0,B−1

)
(ãt1−1,v

B ) +

2γ

t2−t1∑
r=1

B−1∑
j=0

εt2−r
−j X̃t2−r,⊤

−j H̃t2−r
j+1,B−1

(
1∏

s=r−1

H̃t2−s
0,B−1

)
(ãt1−1,v

B ) (6.91)

Now recall the noise re-sampling operator Rt2−r
−j from (6.57). It is easy to see that

E

2γ t2−t1∑
r=1

B−1∑
j=0

εt2−r
−j R

t2−r
−j

[
X̃t2−r,⊤

−j H̃t2−r
j+1,B−1

(
1∏

s=r−1

H̃t2−s
0,B−1

)
(ãt1−1,v

B )

] = 0

(6.92)

(Note that Rt2−r
−j X̃t2−r,⊤

−j = X̃t2−r,⊤
−j )

Thus, using the decomposition

D̃0,N−1 = D̃0,t2−r−1 ∩ D̃t2−r+1,N−1 ∩ D̃t2−r
−j ∩ ∩j−1

i=0 C̃
t2−r
−i

we get ∣∣∣∣∣∣E
2γ t2−t1∑

r=1

B−1∑
j=0

εt2−r
−j X̃t2−r,⊤

−j ·

Rt2−r
−j

[
H̃t2−r

j+1,B−1

(
1∏

s=r−1

H̃t2−s
0,B−1

)
(ãt1−1,v

B )

]
1
[
D̃0,N−1

]]∣∣∣∣∣
≤ 4γ2R(Bt1)(B(t2 − t1))Cησ

2 1

Tα/2

≤ 4γ2RCησ
2T 2 1

Tα/2
(6.93)
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Next we need to bound the effect due to noise re-sampling. On the event D̃0,N−1 ∩ AN−1 ∩

∩N−1
r=0 Er0,B−1, we have

∥∥∥∥∥H̃t2−r
j+1,B−1

(
1∏

s=r−1

H̃t2−s
0,B−1

)
−Rt2−r

−j

[
H̃t2−r

j+1,B−1

(
1∏

s=r−1

H̃t2−s
0,B−1

)]∥∥∥∥∥
≤ C ∥ϕ′′∥ γ2TR3B

√
β

ζλmin
(6.94)

Thus

2γ

∣∣∣∣∣∣E
t2−t1∑

r=1

B−1∑
j=0

εt2−r
−j X̃t2−r,⊤

−j 1
[
D̃0,N−1

]
·

(
H̃t2−r

j+1,B−1

(
1∏

s=r−1

H̃t2−s
0,B−1

)
−Rt2−r

−j

[
H̃t2−r

j+1,B−1

(
1∏

s=r−1

H̃t2−s
0,B−1

)])
(ãt1−1,v

B )

]∣∣∣∣∣
≤ C̄γ

(
∥ϕ′′∥ γ2TR3B

√
β

ζλmin

)
B(t2 − t1)

√
Rσ2E

[∥∥∥(ãt1−1,v
B )

∥∥∥ 1 [D̃0,t1−1
]]

+ C̄γ2(2R)σ2(Bt1)(B(t2 − t1))
1

Tα/2
(6.95)

Now from proposition 4, there is a constant C1 such that

(
E
[∥∥ãt1−1,v

∥∥ 1 [D̃0,t1−1
]])2

≤

C1

(
γd

ζ(1− γR)
β + ∥ϕ′′∥ γ4T 2R4B2σ

2
√
β

ζλmin
+ σ2γ2RT 2 1

Tα/2
+

Rσ2

(
∥ϕ′′∥2 γ6T 4R6B2 β

ζ2λ2min
+ γ4T 2R2B2

))
(6.96)

So

2γ

∣∣∣∣∣∣E
t2−t1∑

r=1

B−1∑
j=0

εt2−r
−j X̃t2−r,⊤

−j 1
[
D̃0,N−1

]
·

(
H̃t2−r

j+1,B−1

(
1∏

s=r−1

H̃t2−s
0,B−1

)
−Rt2−r

−j

[
H̃t2−r

j+1,B−1

(
1∏

s=r−1

H̃t2−s
0,B−1

)])
(ãt1−1,v

B )

]∣∣∣∣∣
≤ Poly(R,B, β, 1/ζ, 1/λmin, ∥ϕ′′∥)

(
γ7/2T 2 + γ5T 3 + γ6T 4

)
(6.97)

where we absorbed terms involving 1
Tα since α is taken to be large.
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Claim 16. ∣∣∣∣∣E
[
(ãt1−1,v

B )⊤
∑
t2>t1

(
1∏

s=t2−t1

H̃t2−s
0,B−1

)
(ãt1−1,v

B )1
[
D̃0,N−1

]]∣∣∣∣∣
≤ Vt1−1

C

ζγBλmin
+ 16(N − t1)γ2RCησ

2T 2 1

Tα/2
(6.98)

where Vt1−1 is defined in (6.74).

Proof. Note that
1∏

s=t2−t1

H̃t2−s
0,B−1 =

t2−1∏
s=t1

H̃s
0,B−1

From theorem 6.9.5, there is a universal constant C such that with δ = 1
2Tα we have

P

[∥∥∥∥∥∑
t2>t1

t2−1∏
s=t1

H̃s
0,B−1

∥∥∥∥∥ > C

(
d+ log N

δ
+

1

ζγBλmin

)
|D̃t1,N−1

]
≤ 1

2Tα
(6.99)

Since P
[
D̃t1,N−1

]
≤ 1

2Tα we obtain

P

[∥∥∥∥∥∑
t2>t1

t2−1∏
s=t1

H̃s
0,B−1

∥∥∥∥∥ > C

(
d+ log N

δ
+

1

ζγBλmin

)]
≤ 1

Tα
(6.100)

Choosing γ such that

d+ log N
δ
≤ 1

ζγBλmin

we get

P

[∥∥∥∥∥∑
t2>t1

t2−1∏
s=t1

H̃s
0,B−1

∥∥∥∥∥ > C

ζγBλmin

]
≤ 1

Tα
(6.101)

Thus conditioning on the event

∥∥∥∥∥∑
t2>t1

t2−1∏
s=t1

H̃s
0,B−1

∥∥∥∥∥ ≤ C

ζγBλmin

we obtain ∣∣∣∣∣E
[
(ãt1−1,v

B )⊤
∑
t2>t1

(
1∏

s=t2−t1

H̃t2−s
0,B−1

)
(ãt1−1,v

B )1
[
D̃0,N−1

]]∣∣∣∣∣
≤ E

[∥∥∥ãt1−1,v
B

∥∥∥2 1 [D̃0,t−1
]] C

ζγBλmin
+ (N − t1)4γ2R(4Cησ

2)(Bt1)
2 1

Tα/2

≤ Vt1−1
C

ζγBλmin
+ 16(N − t1)γ2RCησ

2T 2 1

Tα/2
(6.102)

173



Thus combining everything we have the following theorem

Theorem 6.8.10. Suppose γ ≳ 1
T . Then

E
[∥∥∥ˆ̃avt0,N∥∥∥2 1 [D̃0,N−1

]]
≤ C1

dβ

ζ2λminB(N − t0)
+ P̄ ·

(
γ7/2T 2 + γ6T 4

)
(6.103)

P̄ = Poly(R,B, β, 1/ζ, 1/λmin, ∥ϕ′′∥ , Cη) and C1 > 0 is some constant.

6.8.12 Bias of average iterate

Theorem 6.8.11. There are constants C, c1, c2 such that :

E
[∥∥∥ˆ̃abt0,N − a∗∥∥∥2 1 [D̃0,N−1

]]
≤ C ∥a0 − a∥2

[
e−c2ζγBλmint0 min

{
1,

1

(N − t0)ζγBλmin

}]
(6.104)

The proof follows from an application of Theorem 6.8.9.

6.8.13 Proof of theorem 6.3.1

Proof. Let P̄ denote the polynomial in Theorem 6.8.10. Theorems 6.8.11 and 6.8.10, imply for

every row of the coupled iterate:

E
[
∥ˆ̃at0,N − a∗∥21

[
D̃0,N−1

]]
≤ 2E

[
∥ˆ̃avt0,N∥

21
[
D̃0,N−1

]]
+ 2E

[
∥ˆ̃abt0,N − a

∗∥21
[
D̃0,N−1

]]
≤ C2

dβ

ζ2λmin (G)B(N − t0)
+ P̄ ·

(
γ7/2T 2 + γ6T 4

)
+ C ∥a0 − a∥2

[
e−c2ζγBλmint0 min

{
1,

1

(N − t0)ζγBλmin

}]
(6.105)

Thus for the actual process we can use the following decomposition

E
[
∥ât0,N − a∗∥

2
1
[
D0,N−1

]]
≤ E

[
∥ât0,N − a∗∥

2
1
[
D̂0,N−1

]]
+

E
[
∥ât0,N − a∗∥

2
1
[
D0,N−1

]
1
[
D̃0,N−1,C

]]
≤ E

[
∥ât0,N − a∗∥

2
1
[
D̂0,N−1

]]
+ Cγ2T 2RCησ

2 1

Tα/2

+ 2 ∥a0 − a∗∥2
1

Tα

where we used the fact on the event D0,N−1

∥ât0,N − a∗∥
2 ≤ 1

N − t0

N∑
t=t0+1

2 ∥a0 − a∗∥2 + 2(Bt)(4γ2R

t∑
r=1

B−1∑
j=0

|εt−r
−j |

2)

 (6.106)

and then used Cauchy-Schwarz inequality for the expectation over D̃0,N−1,C .
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Now using lemma 6.8.3 we get

E
[
∥ât0,N − a∗∥

2
1
[
D̂0,N−1

]]
≤ E

[∥∥∥ˆ̃at0,N − a∗∥∥∥2 1 [D̂0,N−1
]]

+ Cγ2R2T 2 1

Tα
(6.107)

since we are choosing u such that ρu ≤ 1
Tα . Using D̂0,N−1 ⊂ D̃0, N − 1 we get

E
[
∥ât0,N − a∗∥

2
1
[
D0,N−1

]]
≤ E

[∥∥∥ˆ̃at0,N − a∗∥∥∥2 1 [D̃0,N−1
]]

+ Cγ2Rσ2 1

Tα/2−2
(6.108)

where we absorbed all terms of order 1
Tα (including those depending on ∥a0 − a∗∥) to the last term

in the above display.

Thus

E
[
∥ˆ̃at0,N − a∗∥21

[
D̃0,N−1

]]
≤ C1

dβ

ζ2λmin (G)B(N − t0)
+ P̄ ·

(
γ7/2T 2 + γ6T 4

)
+ C2 ∥a0 − a∥2

[
e−c2ζγBλmint0

(N − t0)ζγBλmin

]
+ C3γ

2Rσ2 1

Tα/2−2
(6.109)

Summing over all the rows we get a bound on the Frobenius norm. Lastly if the event D0,N−1

does not occur, the Ât0,N is the zero matrix and hence

E
[
∥Ât0,N −A∗∥2F1

[
D0,N−1,C

]]
≤ ∥A∗∥2 1

Tα
. (6.110)

Therefore:

E
[
∥Ât0,N −A∗∥2F

]
≤ C̄ d2β

ζ2λmin (G)B(N − t0)
+ P̄ · d

(
γ7/2T 2 + γ6T 4

)
+ C̄ ∥A0 −A∗∥2F

[
e−c2ζγBλmint0

(N − t0)ζγBλmin

]
+ C̄γ2Rσ2d

1

Tα/2−2
(6.111)

6.9 Technical results

6.9.1 Well conditioned second moment matrices

In this section we will consider a stationary sequenceX0, . . . , XT derived from the process NLDS(A∗, µ, ϕ),

with the corresponding noise sequence η0, . . . , ηT . We want to show that the matrix 1
B

∑B−1
t=0 XtX

⊤
t
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behaves similar to G := EXtX
⊤
t . To do this, we will first to control the quantity: E⟨Xt, x⟩2⟨Xs, x⟩2

for arbitrary fixed vector x ∈ Rd. Clearly, E⟨Xt, x⟩2 = x⊤Gx.

Lemma 6.9.1. Without loss of generality, we suppose that t > s. Suppose X0, . . . , XT be a stationary

sequence from NLDS(A∗, µ, ϕ). Suppose Assumptions 6 and 8 hold. Then we have:

E⟨Xt, x⟩2⟨Xs, x⟩2 ≤ 2(x⊤Gx)2 + C̄1ρ
2(t−s) dσ

2

1− ρ
x⊤Gx log

(
d

1− ρ

)

Where C̄1 depends only on Cη.

Proof. We draw X̃s ∼ π, independent of Xs. We obtain X̃s+k by running the markov chain with

the same noise sequence. i.e, X̃s+k+1 = ϕ(A∗X̃s+k) + ηs+k. We then obtain X̃t. Then, it is clear

that:

⟨Xt, x⟩2⟨Xs, x⟩2 = ⟨Xt − X̃t + X̃t, x⟩2⟨Xs, x⟩2

≤ 2⟨X̃t, x⟩2⟨Xs, x⟩2 + 2⟨Xt − X̃t, x⟩2⟨Xs, x⟩2

Taking expectation on both sides and noting that X̃t is independent of Xs, we conclude:

E⟨Xt, x⟩2⟨Xs, x⟩2 ≤ 2(x⊤Gx)2 + 2E⟨Xt − X̃t, x⟩2⟨Xs, x⟩2 (6.112)

By Assumption 7, we have: ∥Xt−X̃t∥2 ≤ C2
ρρ

2(t−s)∥Xs−X̃s∥2. Plugging this into Equation (6.112),

we conclude:

E⟨Xt, x⟩2⟨Xs, x⟩2 ≤ 2(x⊤Gx)2 + 2E∥x∥2C2
ρρ

2(t−s)∥Xs − X̃s∥2⟨Xs, x⟩2

≤ 2(x⊤Gx)2 + 4∥x∥2C2
ρρ

2(t−s)E
(
∥Xs∥2 + ∥X̃s∥2

)
⟨Xs, x⟩2

= 2(x⊤Gx)2 + 4∥x∥2C2
ρρ

2(t−s)
[
E∥Xs∥2⟨Xs, x⟩2 + x⊤GxE∥X̃s∥2

]
(6.113)

We can evaluate E∥X̃s∥2 from Theorem 6.6.4. Consider the Sub-Gaussian setting with ∥A∗∥ = ρ < 1

and Cρ = 1. Fix R > 0. We will use the notation from Theorem 6.6.4 below. We can then write,

E∥Xs∥2⟨Xs, x⟩2 = E∥Xs∥2⟨Xs, x⟩21(∥Xs∥2 ≤ R) + E∥Xs∥2⟨Xs, x⟩21(∥Xs∥2 > R)

≤ ER⟨Xs, x⟩21(∥Xs∥2 ≤ R) + E∥Xs∥41(∥Xs∥2 > R)

≤ Rx⊤Gx+ E∥Xs∥41(∥Xs∥2 > R)

≤ Rx⊤Gx+
√

E∥Xs∥8
√
P(∥Xs∥2 > R) (6.114)

From Theorem 6.6.4 and Proposition 2.7.1 in [186], we show that E∥Xs∥8 ≤ C
(

dCησ
2

1−ρ

)4
for some uni-

versal constant C. Again, taking R =
8dCησ

2

1−ρ +
2 log 1

δ

λ∗ ≤ 24dCησ
2 log( 1

δ )

1−ρ , we have:
√
P(∥Xs∥2 > R) ≤
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δ. We plug this into Equation (6.114), take δ = (1−ρ)x⊤Gx
dσ2 after noting that x⊤Gx ≥ σ2∥x∥2 to

show that:

E∥Xs∥2⟨Xs, x⟩2 ≤ C̄
dσ2

1− ρ
x⊤Gx log

(
d

1− ρ

)
(6.115)

Where C̄ is a constant which depends only on Cη. Using Equation (6.115) in Equation (6.113), we

conclude that:

E⟨Xt, x⟩2⟨Xs, x⟩2 ≤ 2(x⊤Gx)2 + C̄1C
2
ρρ

2(t−s) dσ
2

1− ρ
x⊤Gx log

(
d

1− ρ

)
(6.116)

Now, consider the random matrix ĜB := 1
B

∑B−1
t=0 XtX

⊤
t . Clearly, ĜB ⪰ 0 and because of

stationarity, EĜB = G. We write down the following lemma:

Lemma 6.9.2. Suppose X0, . . . , XT be a stationary sequence from NLDS(A∗, µ, ϕ). Suppose As-

sumptions 6 and 8 hold. Let C̄1 be as in Lemma 6.9.1. Suppose B ≥ C̄1
d

(1−ρ)(1−ρ2) log
(

d
1−ρ

)
. Then,

for any fixed vector x ∈ Rd,

P
(
x⊤ĜBx ≥

1

2
x⊤Gx

)
≥ p0 > 0 .

Where p0 is a universal constant which can be taken to be 1
16 . Furthermore, for any event A such

that P(A) > 1− p0, we must have:

P
(
x⊤ĜBx ≥

1

2
x⊤Gx

∣∣∣∣A) ≥ q0 :=
p0 − P(Ac)

P(A)
> 0 .

Proof. Without loss of generality, take ∥x∥ = 1. We start with the Paley-Zygmund inequality. Let

Z be any random variable such that Z ≥ 0 almost surely and EZ2 <∞. For any θ ∈ [0, 1] we must

have:

P(Z ≥ θEZ) ≥ (1− θ)2 (EZ)
2

EZ2
.

Now consider Z = x⊤ĜBx and θ = 1
2 .

The simple calculation shows that:

177



P
(
x⊤ĜBx ≥

1

2
x⊤Gx

)
≥ 1

4

B2(x⊤Gx)2∑B−1
s,t=0 E⟨Xt, x⟩2⟨Xs, x⟩2

≥ 1

4

B2(x⊤Gx)2

2B2(x⊤Gx)2 +
∑B−1

s,t=0 C̄1ρ2|t−s| dσ2

1−ρx
⊤Gx log

(
d

1−ρ

)
≥ 1

4

B2(x⊤Gx)2

2B2(x⊤Gx)2 + 2
∑B−1

t=0 C̄1
dσ2

(1−ρ)(1−ρ2)x
⊤Gx log

(
d

1−ρ

)
=

1

4

B2(x⊤Gx)2

2B2(x⊤Gx)2 + 2BC̄1
dσ2

(1−ρ)(1−ρ2)x
⊤Gx log

(
d

1−ρ

)
=

1

8

1

1 + τB
(6.117)

Here, τB := C̄1

x⊤Gx
dσ2

B(1−ρ)(1−ρ2) log
(

d
1−ρ

)
. In the second step we have used item 1 of Lemma 6.9.1.

In the third step, we have summed the infinite series
∑

s≥t ρ
2(t−s). Using the hypothesis that

B ≥ C̄1
d

(1−ρ)(1−ρ2) log
(

d
1−ρ

)
and G ⪰ σ2I, we conclude the result.

We will now follow the method used to prove [110, Lemma 31]. We now consider the matrix

H̃s
0,B−1 under the event D̃s

−0 in order to prove Theorem 6.9.4, where the terms are as defined in

Section 6.8.3. For the sake of clarity, we will drop the superscript s.

Remark 17. We prove the results below for H̃s
0,B−1 but they hold unchanged when the matrices

are all replaced with H̃s,⊤
0,B−1 given that we reverse the order of taking products whenever they are

encountered.

Lemma 6.9.3. Suppose Assumption 4 holds. Suppose that γRB < 1
4 . Then, for any buffer s, under

the event D̃s
−0, we have:

I − 4γ
(
1 + 2γBR

1−4γBR

)B−1∑
i=0

X̃s
−iX̃

s,⊤
−i ⪯ H̃s

0,B−1H̃
s,⊤
0,B−1 ⪯ I − 4γ

(
ζ − 2γBR

1−4γBR

)B−1∑
i=0

X̃s
−iX̃

s,⊤
−i

In particular, whenever we have γBR ≤ ζ
4(1+ζ) , we must have:

I − 4γ

(
1 +

ζ

2

)B−1∑
i=0

X̃s
−iX̃

s,⊤
−i ⪯ H̃s

0,B−1H̃
s,⊤
0,B−1 ⪯ I − 2γζ

B−1∑
i=0

X̃s
−iX̃

s,⊤
−i

Proof. The proof follows from the proof of [110, Lemma 28] with minor modifications to account for

the fact that ϕ′(β) ∈ [ζ, 1].

Combining Lemma 6.9.3 with Lemma 6.9.1 we will show that H̃s
0,B−1 contracts any given vector

with probability at-least p0 > 0.
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Theorem 6.9.4. Suppose Assumptions 4, 6 and 8 hold. Assume that B and γ are such that:

B ≥ C̄1
d

(1−ρ)(1−ρ2) log
(

d
1−ρ

)
and γBR ≤ ζ

4(1+ζ) where C̄1 is as given in Lemma 6.9.2. We also

assume that P(D̂b,a) > max( 12 , 1−
p0

2 ), where p0 is as given in Lemma 6.9.2. Let a ≥ b. Let λmin (G)

denote the smallest eigenvalue of G. Conditioned on the event D̃b,a,

(1) ∥
∏b

s=a H̃
s,⊤
0,B−1∥ ≤ 1 almost surely

(2) Whenever b− a+ 1 is larger than some universal constant C0,

P

(
∥

b∏
s=a

H̃s,⊤
0,B−1∥ ≥ 2(1− ζγBλmin (G))

c4(a−b+1)

∣∣∣∣D̃b,a

)
≤ exp(−c3(a− b+ 1) + c5d)

Where c3, c4 and c5 are universal constants.

Proof. The proof of (1) above follows from an application of Lemma 6.9.3. So we will just prove (2).

We will prove this with an ϵ net argument over the unit ℓ2 sphere in Rd.

Suppose we have arbitrary x ∈ Rd such that ∥x∥ = 1. Let Kv :=
∏b

s=v H̃
s,⊤
0,B−1. When v ≤ b, we

take this product to be identity. Now, define Ĝv
B := 1

B

∑B−1
j=0 X

v
jX

v,⊤
j

Consider the class of events indexed by v: Gv := {∥H̃v,⊤
0,B−1Kv−1x∥2 ≤ ∥Kv−1x∥2(1−γζBλmin (G)}.

From Lemma 6.9.2, we will prove the following claim:

Claim 17. Whenever v ∈ [b, a] ∩ Z:

P(Gcv|D̃b,a, H̃s,⊤
0,B−1 : s < v) ≤ 1− q0 (6.118)

Where q0 > 0 is as given in Lemma 6.9.2 and can be taken to be a universal constant under the

present hypotheses.

Proof. We will denote Kv−1x by xv for the sake of convenience. We note that when conditioned on

H̃s,⊤
0,B−1 for s < v, xv is fixed. Using Lemma 6.9.3, we note that:

P(Gcv|D̃b,a, H̃s,⊤
0,B−1 : s < v) ≤ P(x⊤v Ĝv

Bxv <
1
2x

⊤
v Gxv|D̃b,a, H̃s,⊤

0,B−1 : s < v)

We note that Ĝv
B is independent of H̃s,⊤

0,B−1 for s ≤ v (eventhough H̃v
0,B−1 is not necessarily). Now

we also note that Ĝv
B is independent of D̃s for s ̸= v. Therefore, we can apply Lemma 6.9.2 to

conclude the claim.

Let D ⊆ {b, . . . , a} such that |D| = r. It is also clear from item 1 and the definitions above that

whenever the event ∩v∈DGv holds, we have:

∥
b∏

s=a

H̃s,⊤
0,B−1x∥ ≤ (1− γBλmin (G))

r
2 . (6.119)
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Therefore, whenever Equation (6.119) is violated, we must have a set Dc ⊆ {b, . . . , a} such that

|Dc| ≥ b − a − r and the event ∩v∈DcGcv holds. We will union bound all such events indexed by

Dc to obtain an upper bound on the probability that Equation (6.119) is violated. Therefore, using

Equation (6.118) along with the union bound, we have:

P

(
∥

b∏
s=a

H̃s,⊤
0,B−1x∥ ≥ (1− γBλmin (G))

r
2

∣∣∣∣D̃b,a

)
≤
(
a− b+ 1

a− b− r

)
(1− q0)a−b−r

Whenever a − b + 1 is larger than some universal constant, we can pick r = c2(b − a + 1) for some

constant c2 > 0 small enough such that:

P

(
∥

b∏
s=a

H̃s,⊤
0,B−1x∥ ≥ (1− γBλmin (G))

r
2

∣∣∣∣D̃b,a

)
≤ exp(−c3(b− a+ 1))

Now, let N be a 1/2-net of the sphere Sd−1. Using Corollary 4.2.13 in [186], we can choose

|N | ≤ 6d. By Lemma 4.4.1 in [186] we show that:

∥
b∏

s=a

H̃s,⊤
0,B−1∥ ≤ 2 sup

x∈N
∥

b∏
s=a

H̃s,⊤
0,B−1x∥ (6.120)

By union bounding Equation (6.120) for every x ∈ N , we conclude that:

P

(
∥

b∏
s=a

H̃s,⊤
0,B−1∥ ≥ 2(1− ζγBλmin (G))

c4(b−a+1)

∣∣∣∣D̃b,a

)
≤ |N | exp(−c3(a− b+ 1))

= exp(−c3(a− b+ 1) + c5d) (6.121)

We will now state the equivalent of [110, Lemma 32]. The proof proceeds similarly, but using

Theorem 6.9.4 instead. Consider the following operator:

Fa,N :=

N−1∑
t=a

a+1∏
s=t

H̃s,⊤
0,B−1 (6.122)

Here we choose the convention that whenever s > t, then in any product involving H̃s,⊤
0,B−1 and

H̃t
0,B−1, s appears to the right of t. Hence, we use the take

∏a+1
s=a H̃

s,⊤
0,B−1 = I

Theorem 6.9.5. Suppose all the conditions in Theorem 6.9.4 hold. Then, for any δ ∈ (0, 1), we

have:

P
(
∥Fa,N∥ ≥ C

(
d+ log N

δ
+

1

ζγBλmin (G)

)∣∣∣∣D̃a,N

)
≤ δ

Where C is a universal constant.
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6.9.2 Proof of lemma 6.8.6

First, we will obtain a crude upper bound on
∥∥ãt−1

j − a∗
∥∥ using Theorem 6.9.4. That is, we want

to show that
∥∥ãt−1

j − a∗
∥∥ does not grow too large with high probability.

Proposition 5. Let λmin ≡ λmin(G). Conditional on D̃0,t−1 ∩ ∩t−1
r=0Er0,B−1, with probability at least

1−Nδ, for all 1 ≤ t ≤ N , all 1 ≤ j ≤ B we have

∥∥ãt−1
j − a∗

∥∥ ≤ ∥a0 − a∥+ 2γB
√
RβC

(
d+ log N

δ
+

1

ζγBλmin

)
(6.123)

where C is constant depending only on Cη.

Proof. Let us start with the expression for ãt−1
j − a∗

(ãt−1
j − a∗)⊤ = (a0 − a∗)⊤

(
t−2∏
s=0

H̃s
0,B−1

)
H̃t−1

0,j−1 + 2γ

j−1∑
i=0

ϕ′(ξ̃t−1
−i )εt−1

−i X̃
t−1,⊤
−i H̃t−1

i+1,j−1

+ 2γ

t∑
r=2

B−1∑
i=0

ϕ′(ξ̃t−r
−i )εt−r

−i X̃
t−r,⊤
−i H̃t−r

i+1,B−1

(
1∏

s=r−1

H̃t−s
0,B−1

)
(6.124)

We will work on the event D̃0,t−1 ∩ ∩t−1
r=0Er0,B−1. It is clear from Equation (6.124) that:

∥∥ãt−1
j − a∗

∥∥ ≤ ∥a0 − a∗∥+ 2γB
√
Rβ + 2γ

√
RβB

t∑
r=2

∥∥∥∥∥
(

1∏
s=r−1

H̃t−s
0,B−1

)∥∥∥∥∥
We use Theorem 6.9.5 (with appropriate constant C > 1 to account for minor differences in

indexing) to show that conditional on D̃0,t−1 ∩ ∩t−1
r=0Er0,B−1, for fixed t, with probability at least

1− δ, for all 1 ≤ j ≤ B

∥∥ãt−1
j − a∗

∥∥ ≤ ∥a0 − a∗∥+ 2γB
√
RβC

(
d+ log N

δ
+

1

ζγBλmin

)

Thus taking union bound we get that conditional on D̃0,t−1 ∩ ∩t−1
r=0Er0,B−1 with probability at

least 1−Nδ, for all 1 ≤ t ≤ N − 1 and all 1 ≤ j ≤ B

∥∥ãt−1
j − a∗

∥∥ ≤ ∥a0 − a∗∥+ 2γB
√
RβC

(
d+ log N

δ
+

1

ζγBλmin

)

Proof of Lemma 6.8.6. On the event Er0,j ∩ D̃r,N−1, we note the following inequalities

¯̃asi = ãsi 0 ≤ s < r, 0 ≤ i ≤ B − 1 (6.125)

¯̃ar0 = ãr0 (6.126)
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∥¯̃asi − ãsi∥ ≤


4iγ
√
Rβ +

∑i−1
k=0 4γR ∥ãrk − a∗∥ , s = r, 1 ≤ i ≤ j

4(j + 1)γ
√
Rβ +

∑j−1
k=0 4γR ∥ãrk − a∗∥ , s = r, j + 1 ≤ i ≤ B − 1

4(j + 1)γ
√
Rβ +

∑j−1
k=0 4γR ∥ãrk − a∗∥ , r < s, 0 ≤ i ≤ B − 1

(6.127)

The result then follows from an application of Proposition 5 with δ chosen as in 6.8.4

6.9.3 Proof of claim 14

Proof. Let r2 > r1. As in proof of Claim 13, let Cr′ denote the resampled version of Cr obtained by

re-sampling ηt−r1
−j1

i.e.,

Cr′(t, r1, r2, j1, j2) := 4γ2εt−r1
−j1

εt−r2
−j2
Rt−r1

−j1

[
X̃t−r2,⊤

−j2
H̃t−r2

j2+1,B−1

(
1∏

s=r2−1

H̃t−s
0,B−1

)
·(

r1−1∏
s=1

H̃t−s,⊤
0,B−1

)
H̃t−r1,⊤

j1+1,B−1X̃
t−r1
−j1

]

= 4γ2εt−r1
−j1

εt−r2
−j2

X̃t−r2,⊤
−j2

(
H̃t−r2

j2+1,B−1

)( r1+1∏
s=r2−1

H̃t−s
0,B−1

)
·

Rt−r1
−j1

(
1∏

s=r1

H̃t−s
0,B−1

)
Rt−r1

−j1

(
r1−1∏
s=1

H̃t−s,⊤
0,B−1

)
Rt−r1

−j1

(
H̃t−r1,⊤

j1+1,B−1

)
X̃t−r1

−j1

(6.128)

Here we have used the fact that Rt−r1
−j1

does not affect the buffers up to t− r1 − 1 and only X̃s that

are affected are in the term H̃t−r1
0,j1−1. Like in Claim 13, notice that

E

 ∑
r2>r1

∑
j1,j2

Cr′(t, r1, r2, j1, j2)

 = 0

Applying Lemma 6.8.8, we conclude that:

∑
r2>r1

∑
j1,j2

Cr′(t, r1, r2, j1, j2)

= 2γ

t−1∑
r1=1

B−1∑
j1=0

(ãt−r1−1,v
B )⊤Rt−r1

−j1

(
H̃t−r1

0,B−1

)
Rt−r1

−j1

(
1∏

s=r1−1

H̃t−s
0,B−1

)
·

Rt−r1
−j1

(
r1−1∏
s=1

H̃t−s,⊤
0,B−1

)
Rt−r1

−j1

(
H̃t−r1,⊤

j1+1,B−1

)
X̃t−r1

−j1
εt−r1
−j1

(6.129)

We cannot continue our analysis like in Claim 13 because due to resampling of εt−r1
−j1

, H̃t−r1
0,B−1

changes not just because of the iterates ãt−r1
i but also due to X̃ → ¯̃X.
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Further

E

 ∑
r2>r1

∑
j1,j2

Cr′(t, r1, r2, j1, j2)1
[
D̃0,t−r1−1

]
1
[
D̃t−r1+1,t−1

]
1
[
D̃t−r1

−j1

] = 0 (6.130)

Next we have simple lemma

Lemma 6.9.6. Consider for each (r1, j1), the re-sampling operator Rt−r1
−j1∣∣∣∣∣∣E

 ∑
r2>r1

∑
j1,j2

Cr(t, r1, r2, j1, j2)1
[
D̃0,t−1

]∣∣∣∣∣∣ ≤ 4γ2R
(Bt)2

2
Cησ

2 1

Tα/2
+∣∣∣∣∣∣E

 ∑
r2>r1

∑
j1,j2

Cr(t, r1, r2, j1, j2)1
[
D̃0,t−1

]
Rt−r1

−j1
1
[
D̃t−r1

−0

]∣∣∣∣∣∣ (6.131)

Proof. We have

1
[
D̃0,t−1

]
= 1

[
D̃0,t−1

]
Rt−r1

−j1
1
[
D̃t−r1

−0

]
+ 1

[
D̃0,t−1

]
Rt−r1

−j1
1
[
D̃t−r1,C

−0

]
(6.132)

Hence ∣∣∣∣∣∣E
 ∑
r2>r1

∑
j1,j2

Cr(t, r1, r2, j1, j2)1
[
D̃0,t−1

]∣∣∣∣∣∣
≤

∣∣∣∣∣∣E
 ∑
r2>r1

∑
j1,j2

Cr(t, r1, r2, j1, j2)1
[
D̃0,t−1

]
Rt−r1

−j1
1
[
D̃t−r1

−0

]∣∣∣∣∣∣+
4γ2R

(Bt)2

2
Cησ

2 1

Tα/2
(6.133)

where we usedRt−r1
−j1

1
[
D̃t−r1,C

−0

]
is identically distributed as 1

[
D̃t−r1,C

−0

]
and hence E

[
Rt−r1

−j1
1
[
D̃t−r1,C

−0

]]
≤

1
Tα

So, based on the above lemma, we focus on bounding∣∣∣∣∣∣E
 ∑
r2>r1

∑
j1,j2

Cr(t, r1, r2, j1, j2)1
[
D̃0,t−1

]
Rt−r1

−j1
1
[
D̃t−r1

−0

]∣∣∣∣∣∣
183



Now notice that

E

 ∑
r2>r1

∑
j1,j2

Cr′(t, r1, r2, j1, j2)·

1
[
D̃0,t−r1−1

]
1
[
D̃t−r1+1,t−1

]
1
[
D̃t−r1

−j1

]
Rt−r1

−j1
1
[
D̃t−r1

−0

]]
= 0 (6.134)

Hence

E

 ∑
r2>r1

∑
j1,j2

Cr′(t, r1, r2, j1, j2)1
[
D̃0,t−1

]
Rt−r1

−j1
1
[
D̃t−r1

−0

] = 0−

E
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r2>r1

∑
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Cr′(t, r1, r2, j1, j2)1
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D̃0,t−r1−1
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1
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·
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1
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i=0 C̃
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−i
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−j1
1
[
D̃t−r1

−0

]]
(6.135)

Thus∣∣∣∣∣∣E
 ∑
r2>r1

∑
j1,j2

Cr′(t, r1, r2, j1, j2)1
[
D̃0,t−1

]
Rt−r1

−j1
1
[
D̃t−r1

−0

]∣∣∣∣∣∣ ≤ 2γ2R
(Bt)2

2
Cησ

2 1

Tα/2
(6.136)

Now, similar to lemma 6.8.7, on the event Er10,j1 ∩ D̃
0,t−1 ∩ At−1 we have:

∥∥∥∥∥
(

1∏
s=r1−1

H̃t−s
0,B−1

)
−Rt−r1

−j1

(
1∏

s=r1−1

H̃t−s
0,B−1

)∥∥∥∥∥ ≤ CBt ∥ϕ′′∥ γ2R3B

√
β

ζλmin
(6.137)

Next, similar to lemma 6.8.7 for γR ≤ 1
2 , on the event D̃t−r1

−0 ∩∩
B−1
i=0

{∥∥∥Rt−r1
j1

X̃t−r1
−i

∥∥∥2 ≤ R} we

have

∥∥∥H̃t−r1
0,B−1 −R

t−r1
−j1

(
H̃t−r1

0,B−1

)∥∥∥ ≤ 4γRB (6.138)

Finally we can bound the norm of the expected difference of sums of Cr and Cr′ using lemma 6.8.8
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and (6.129) as∣∣∣∣∣∣E
 ∑
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1
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(6.139)

Thus ∣∣∣∣∣∣E
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r2>r1
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2
1
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(6.140)

Combining everything we conclude the claim.
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Chapter 7

Numerical evaluation

7.1 Linear system identification
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Figure 7-1: Gaussian VAR(A∗, µ): Parameter error for tail averaged and full average iterates of
SGD− RER and baselines. SGD− RER and OLS incur similar parameter error, while error incurred
by SGD and SGD−ER saturate at significantly higher level, indicating non-zero bias. The parameters
used are ρ = 0.9, d = 5, T = 107, B = 100, u = 10. R is estimated and γ = 1/2R.

In this section, we compare performance of our SGD−RER method on synthetic data generated

from a linear dynamical system against the performance of standard baselines OLS and SGD, along

with SGD− ER method that applies standard experience replay technique, but where points from a

buffer are sampled randomly.

Synthetic data: We sample data from VAR(A∗, µ) with X0 = 0, µ∼N (0, σ2I) and A∗ ∈ Rd×d is

generated from the ”RandBiMod” distribution. That is, A∗ = UΛU⊤ with random orthogonal U ,

and Λ is diagonal with ⌈d/2⌉ entries on diagonal being ρ and the remaining diagonal entries are set

to ρ/3. We set d = 5, ρ = 0.9 and σ2 = 1. We fix a horizon T = 107 and set the buffer size as

B = 100 and u = 10. To estimate R from the data, we use the first ⌊2 logT ⌋ = 32 samples and set
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R as the sum of the norms of these samples. We let the stepsize to be γ = 1
2R which is aggressive

compared to our theorems. We start the SGD−RER and other SGD-like algorithms from the second

buffer onward.

For tail averaging, as described in algorithm 1, we ignore the first ⌊logT ⌋ = 16 buffers, and

maintain a running tail average at the end of each of the subsequent buffers. In figure 7-1, we plot

the parameter errors
∥∥∥Âlog T,t −A∗

∥∥∥ and
∥∥∥Â0,t −A∗

∥∥∥ versus the buffer index t as the algorithm runs

for horizon T . For OLS, we include samples in the first buffer as well (which were used for estimating

R). Clearly, SGD− RER has very similar performance as that of OLS whereas SGD− ER and SGD
seem to display residual bias for the chosen step-size (which is logarithmic in the horizon T ) and

buffer lengths. We also observe a similar behavior when we choose A∗ = ρI.

7.2 Generalized linear system identification

In this section, we compare performance of our methods SGD − RER and Quasi Newton method

on synthetic data generated from a generalized linear dynamical system against the performance

of standard baselines SGD (called ‘Forward SGD’ here), GLMtron, along with SGD − ER method

that applies standard experience replay technique i.e, the points from a buffer are sampled randomly

instead of the reverse order. Since GLMtron and Quasi Newton Method are offline and SGD−RER,

SGD and SGD−ER are streaming, we compare the algorithms by plotting parameter error measured

by the Frobenius norm with respect to the compute time. We also compare error vs. number of

iterations for the streaming algorithms.
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Figure 7-2: Error vs. Computation

Synthetic data: We sample data from NLDS(A∗, µ, ϕ) where µ∼N (0, σ2I) and A∗ ∈ Rd×d is

generated from the ”RandBiMod” distribution. That is, A∗ = UΛU⊤ with random orthogonal U ,
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Figure 7-3: Error vs. SGD updates

Figure 7-4: Performance of various algorithms for the case of ϕ = LeakyReLU

and Λ is diagonal with ⌈d/2⌉ entries on diagonal being ρ and the remaining diagonal entries are set

to ρ/3. ϕ is the leaky ReLU function given by ϕ(x) = 0.5x1(x < 0) + x1(x ≥ 0). We set d = 5,

ρ = 0.98 and σ2 = 1. We set a horizon of T = 105.

Algorithm Parameters We set B = 240 and u = 10 for the buffer size and gap size respectively

for both SGD− RER and SGD− ER and use full averaging (i.e, θ = 0 in Algorithm 3 ). We set the

step size γ = 5 log T
T for SGD, SGD− RER, and SGD− ER and γnewton = 0.2 and γGLMtron = 0.017.

From Figure 7-4 observe that SGD−ER and SGD obtain sub-optimal results compared SGD−RER,

Quasi Newton Method and GLMtron. After a single pass, the performance of SGD − RER almost

matches that of the offline algorithms. The step sizes for GLMtron have to be chosen to be small

in-order to ensure that the algorithm does not diverge as noted in Section 6.2, which slows down its

convergence time compared to the Quasi Newton method.
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