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We assess the privacy properties of the count function, an essential data aggrega-
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aggregation applications.
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Chapter 1

Introduction

Aggregation and sharing of data have been key drivers behind societal advancement,

technological and otherwise. Finance, agriculture, education [6], and pandemic re-

sponse efforts [4, 18] have all benefited from wide-scale data aggregation. Given the

proliferation of such tools in recent years, it is safe to assume that they are here to

stay. Unfortunately, the privacy properties of secure data aggregation functions are

not well understood, especially when the number of data points and the number of

data contributors is small (i.e. less than 100).

Assessing the landscape of tools for privately releasing aggregate statistics, we

believe this field has tended toward two extremes. On one end, there is Multiparty

Computation-style privacy, which is essentially no output privacy at all. The Multi-

party Computation (MPC) definition makes no guarantees on what an output itself

may reveal about the inputs that produced it [12]. The advantage of the MPC-style

privacy definition is that it offers maximal utility, since there is no distortion of the

data. The disadvantage, of course, is the lack of privacy guarantees. On the other

end, there is the differential privacy [15], which by definition limits how much infor-

mation is revealed by a function’s output and holds true even in the face of worst-case

adversarial knowledge [15]. The advantage of this approach is the strong and widely

accepted privacy guarantees it offers [1, 4]. The disadvantage of differential privacy is

two-fold. First, it requires the data to be distorted by the addition of noise, and this

noise diminishes the utility of the data. Second, the parameters of 𝜖 and 𝛿 in its def-
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inition are not very intuitive. It is not clear how much privacy is afforded by specific

values of 𝜖 and 𝛿, which is why the National Institute of Standards and Technology

has issued broad guidance on setting the parameters for differential privacy [7]. At

both of these extremes, insufficient attention has been paid to offering privacy when

the number of data contributors is small, and not enough effort has been placed on

reducing the amount of noise used to provide privacy. Our work attempts to highlight

this gap and address it for a specific data aggregation function, the count function.

1.1 Major Contributions

In this work, we provide an empirical assessment of the privacy guarantees inherent to

one specific data aggregation function: the count function, as defined in Section 3.3.3.

This empirical assessment first explains the risks and protections afforded by the

count function when no noise is added to its output. This is what we refer to as

the noiseless approach to privacy, which is based on the work of Bhaskar et al. [10].

The noiseless approach to privacy relies on randomness embedded in the data itself

to provide privacy. Our analysis reveals the fact that, for the count function, this

noiseless approach to privacy does not offer protections when the number of data

providers to the count function is less than 31, assuming a binomial distribution

over the output data and privacy parameter 𝛿 = 10−9. This leads us to design a new

privacy mechanism: deniable privacy. As shown in Chapter 3, deniable privacy allows

us to execute the count function privately, even when the number of data providers,

or inputs, to the count function is less than 31. Further, our analysis of noiseless

privacy and deniable privacy provides an intuitive explanation for the relationships

between the privacy parameters 𝜖 and 𝛿 and the number of data contributors 𝑛, as

well as the distribution 𝒟 of the input data.

In sum, our major contributions are three-fold. First, we conduct a baseline pri-

vacy assessment of the count function, as applied to a specific secure data aggregation

platform. We show the concrete values for a variety of parameters, including 𝜖 and 𝛿,

that are required to achieve noiseless privacy. Second, we offer a new notion of pri-
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vacy, specific to the count function, called deniable privacy. Deniable privacy adds the

minimum amount of noise necessary to hide outputs that are inherently non-private,

and in doing so it offers stronger privacy guarantees for smaller 𝑛, as compared with

the noiseless approach to privacy. Finally, we generalize the notion of deniable pri-

vacy to produce 𝑘-deniable privacy, which further improves the privacy guarantees

afforded by the count function at the expense of additional noise.
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Chapter 2

Background

2.1 Secure Data Aggregation

Before diving into the details of Multiparty Computation (MPC) and the platform

called Secure Cyber Risk Aggregation and Measurement (SCRAM) that motivated

this work, it is critical to note that our analysis and findings pertaining to the count

function are applicable to secure data aggregation platforms generally. Though we

discuss MPC and SCRAM in detail, we do so only in an effort to demonstrate the

utility of our findings in a real-world application. Throughout this work, keep in

mind that the privacy insights we derive from assessing the secure data aggregation

functions implemented by SCRAM apply broadly to most, if not all, secure data

aggregation protocols.

2.1.1 Multiparty Computation (MPC)

One tool that has aided in the success of data aggregation in recent year is Multiparty

Computation (MPC) [19]. Though MPC has existed for decades, it is now becoming

a popular and reliable replacement for trusted third party data aggregators [13]. Even

so, for the privacy-conscious data owner, MPC alone is not always a satisfying solution

to data aggregation needs.

To understand why this is the case, it is essential to start by understanding what
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MPC protects against, and what it does not. MPC, as first defined in the two-party

setting by Yao [23], is a tool that facilitates anonymous and secure data aggregation.

Its increasingly popularity is shown by the work of Boston University’s Accessible

and Scalable Secure Multi-Party Computation group [19]. While MPC is provably

secure [17], it fails to address a critical dilemma in data aggregation: the output

of its aggregation function may leak information that the parties intended to keep

private, especially if this output can be can combined with information external to the

computation. We often refer to this type of extra information as auxiliary information.

Crucially, this is not a failure of MPC. The definition of MPC guarantees that

the only new information revealed by the MPC protocol itself is the output of the

protocol [12]. If the output of a secure multiparty aggregation function 𝑓 is some

dataset 𝑌 , the definition claims that 𝑌 is the only new information revealed, which

is a very powerful property provided the output 𝑌 of aggregation function 𝑓 does

not leak much, if any, additional information. However, the MPC definition makes

no claim about the privacy properties of output 𝑌 , including what 𝑌 implies about

the inputs to 𝑓 . So, even though MPC is often used as a replacement for a trusted

third-party data aggregator [13], data owners cannot be sure the functions being

computed will produce privacy-preserving outputs. This results in data owners who

are hesitant or outright unwilling to share their data despite the potential MPC has to

unlock collectively beneficial insights, such as industry-wide trends in cybersecurity

[13], that would otherwise be unknown and untapped.

Popular literature might suggest that differential privacy is the best solution to

ensuring a securely aggregated dataset preserves privacy. In fact, differential privacy

is widely deployed because it is both powerful and versatile; it makes no assumptions

about the distribution over the input data and it holds even in the face of worst-case

adversarial knowledge [15]. However, differential privacy relies on the addition of

noise to the output of the aggregation function [15], and there are situations in which

noisy data is unacceptable. Dwork [14] points out one instance where a noisy output

is unacceptable: price setting in auctions. While each bidder may have an interest

in keeping their exact bid private, noise can unnaturally inflate or deflate the true
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selling price [14]. Another situation where a noisy output is unacceptable is financial

auditing. Take, for example, a financial auditor who needs to know the exact revenues

and expenditures, including salaries, of a company [10]. Such an individual will not

tolerate a noisy dataset, though the company may have in interest in keeping certain

details about their revenues and expenditures private.

Clearly, there is a need for secure data aggregation functions that offer privacy

guarantees while faithfully representing the data over which they compute. Ideally,

this faithful representation would involve no noise at all. This is the focus of our

work, as existing literature on secure data aggregation does not sufficiently address

privacy, or its relationship with utility, especially for small datasets.

2.1.2 Secure Cyber Risk Aggregation and Measurement

To ground our discussion of MPC and the broader family of secure data aggrega-

tion protocols, we rely on the platform named Secure Cyber Risk Aggregation and

Measurement (SCRAM) [13] as a case study.

SCRAM is an MPC platform that computes aggregate statistics over encrypted

data. Specifically, SCRAM handles cybersecurity-related data. Despite this specific

use case, SCRAM’s foundational MPC infrastructure can handle data of any kind.

This further ensures the lessons we derive from SCRAM apply more broadly to secure

data aggregation. As with any MPC application, the SCRAM server never sees the

plain-text inputs of the participants. Instead, it executes an aggregation function,

agreed upon by the participants ahead of the computation, over the encrypted data

and returns an encrypted result. It is then up to the participants to jointly decrypt

this result into plain-text.

SCRAM’s computation process is secure in accordance with the definition of MPC

[13]. But, as we pointed out in Chapter 1, this does not mean the outputs released

by SCRAM are private. For this reason, we must zoom in on the particular functions

deployed by SCRAM before we begin the privacy analysis of Chapter 3.
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SCRAM Functions

To begin any assessment of the privacy afforded by secure data aggregation, we find

that it is essential to define and analyze the intended aggregate output and the partic-

ular functions used to compute this output. In the case of SCRAM, two key metrics,

both intended to inform future cybersecurity investment, are computed:

1. Implementation level of cybersecurity controls

2. Dollar losses per cybersecurity control

A cybersecurity control, as defined in [13], is one of 171 defensive measures specified

by the Center for Internet Security (CIS). So, the implementation level metric gives

an individual firm perspective on how their defensive posture compares to other firms.

The dollar losses metric gives perspective on which CIS controls are most important

to implement from an economic value perspective, as a firm is inclined to invest more

in defenses that protect against larger losses.

The implementation level metric is computed via a count function that follows

Definition 5 in Section 3.3.3. The desire among existing SCRAM computation par-

ticipants to compute this metric privately motivates our analysis in Chapter 3. In

fact, it is the focus of our work. We save analysis of the second metric, computed

via a sum function, for future work, as discussed in Chapter 4. Individually, these

two functions are key building blocks of many secure data aggregation computations,

which is what makes our analysis and conclusions broadly applicable.

SCRAM Privacy Constraints

Notably, we have executed many aggregation operations in the real-world with SCRAM

[13]. Throughout all of these operations, we have encountered two key privacy con-

straints on SCRAM:

1. Each computation consists of very few data contributors. In practice, the num-

ber of participants 𝑛 in any given SCRAM computation is often less than 20

(𝑛 < 20).

18



2. Noise greatly diminishes the utility of a SCRAM computation because our real-

world participants do not want to add noise to their data directly, or to the

output of the aggregation function.

Taken together, these constraints pose a great challenge to the privacy guarantees

sought by SCRAM. Producing a very large dataset and adding noise to a dataset are

generally thought of as reliable techniques to improving privacy, but the use case of

SCRAM limits our ability to use on them.

SCRAM Privacy Goal

The last step, before beginning our privacy analysis of the count function, is to define

what privacy guarantees a secure data aggregation platform intends to offer. This is

necessary to provide us with a clear success metric to measure our privacy guarantees

against. Crucially, different platforms will seek different privacy standards, so we

focus on the privacy standard sought by our use case of SCRAM.

We define SCRAM privacy as the disassociation of participant identities from

their inputs. We do not want an adversary to be able to prove with certainty that

a particular participant in the computation input a particular response. Making this

explicit, we define 𝑌 = SCRAM𝑃 (𝑋) as a SCRAM computation with a group of 𝑛

individual data contributors 𝑃 = {𝑝1, . . . , 𝑝𝑛}, private input 𝑋 = {𝑥1, . . . , 𝑥𝑛}, and

aggregate output 𝑌 . We assume each data contributor 𝑝𝑖 is responsible for input 𝑥𝑖

for 𝑖 ∈ [𝑛]. We define the disassociation of participant identities from their inputs

as the property that the aggregate output 𝑌 should not enable a participant 𝑝𝑖 for

𝑖 ∈ [𝑛] to determine with certainty the input 𝑥𝑗 for 𝑗 ̸= 𝑖 ∈ [𝑛] of participant 𝑥𝑗.

This privacy definition for SCRAM embraces the fact that an adversary or curious

observer, especially one possessing substantial auxiliary information as described in

Chapter 1, will be able to make inferences about the input provided by each data

contributor provided. Based on the Reiter and Rubin notion of possible innocence

[21], the SCRAM privacy definition is not concerned with preventing inference. In-

stead, it seeks to offer participants deniability. We wish to provide participants of the

SCRAM computation the ability to deny any inference of their input by an adversary.

19



To make the idea of deniability more clear, we briefly describe the concept of possible

innocence [21].

Possible Innocence

Reiter and Rubin [21] define possible innocence in terms of web transactions, but the

notion extends to privacy in data aggregation. They specify possible innocence as

one level of privacy on a spectrum from absolute privacy to provably exposed [21].

The exact definition of possible innocence is as follows:

Definition 1 (Possible Innocence ([21], figure 1)). A sender is possibly innocent if,

from the attacker’s point of view, there is a nontrivial probability that the real sender

is someone else.

In the case of SCRAM, we replace the sender with the data contributor, and then

we set this definition as our standard.

Justifying Possible Innocence for SCRAM

We explain why possible innocence is the right privacy definition for SCRAM by

describing the three most potent forms of risk posed by the SCRAM computation:

regulatory, reputational and adversarial. We define regulatory risk as the likelihood a

participant faces adverse regulatory action [3, 9], possibly in the form of fines, as a re-

sult of the output leaking unintended information. We define reputational risk as the

likelihood a participant suffers reputational harm as a result of the output leaking

unintended information [9]. We define adversarial risk as the likelihood a partici-

pant becomes a target of a cyberattack as a result of the output leaking unintended

information, such as cyber-vulnerabilities [3].

Considering these three forms of risk, we adopt the notion of possible innocence

as SCRAM’s privacy standard because we believe a data contributor can avoid the

bulk of regulatory, reputational, and adversarial consequences if they are simply able

to deny wrong-doing or vulnerability. Of course, possible innocence does not protect
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against the suspicion of wrong-doing or vulnerability, but it does offer data con-

tributors the ability to deny suspicion. As described in Section 3.5, this notion of

deniability is achieved by our key contribution of deniable privacy.

2.2 Differential Privacy

Having defined our use case of SCRAM and its privacy definition, we now provide an

overview of differential privacy. As explained in Chapter 1, differential privacy is often

thought of as the best method for providing privacy to aggregate datasets. For this

reason, we provide its definition and key characteristics so that we can benchmark

the notions of noiseless privacy (Definition 4) and deniable privacy (described in

Section 3.5) against differential privacy in Chapter 3.

Differential Privacy, as defined by Dwork and Roth [15], is widely considered the

gold standard for privacy because it protects against arbitrary auxiliary information

[15]. Its definition is as follows:

Definition 2 ((𝜖, 𝛿)-Differential Privacy ([15], definition 2.4)). A randomized algo-

rithm 𝑀 with domain 𝑁 |𝑋| is (𝜖, 𝛿)-Differentially Private if for all 𝑆 ⊆ Range(𝑀)

and for all 𝑥, 𝑦 ∈ 𝑁 |𝑋| such that ||𝑥− 𝑦||1 ≤ 1:

Pr[𝑀(𝑥) ∈ 𝑆] ≤ 𝑒𝜖 · Pr[𝑀(𝑦) ∈ 𝑆] + 𝛿

where the probability space is over the coin flips of the mechanism 𝑀 .

Importantly, differential privacy achieves the guarantees in Definition 2 by adding

noise to the output of mechanism 𝑀 . This noise can be drawn from a variety of

distributions, including the Laplace and Gaussian distributions. While work has

been done to improve utility when adding Gaussian noise [8], Dwork and Roth [15]

argue it is often best to draw noise from the Laplace distribution as follows:

Definition 3 (Laplace Distribution with Scale 1
𝜖

and Mean 0 ([15], definition 3.2)).

Lap

(︂
𝑥
⃒⃒⃒1
𝜖

)︂
=

𝜖

2
· exp(−𝜖 · |𝑥|)
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While differential privacy has been widely adopted, including by Apple for pur-

poses such as improving Emoji suggestions and gather Safari crash data [1] and Google

for COVID-19 disease tracking [4], it has drawbacks. One such drawback has been

highlight by the U.S. Census Bureau, which claims difficulty in setting the differ-

ential privacy parameters [16]. Another drawback, as mentioned in Chapter 1 and

highlighted by Dwork [14], is that the noise it adds is unacceptable for various data

aggregation tasks. Our work in Chapter 3 calls attention to both of these drawbacks

by analyzing the privacy properties of the count function.

The remaining Chapters of this work serve to illustrate how the privacy vulnera-

bilities of a specific data aggregation function, the count function, can be understood

and mitigated. Throughout this work, we call attention to the two major drawbacks

of differential privacy, as stated in Section 2.2.
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Chapter 3

Privacy Analysis of the Count

Function

3.1 Introduction

The purpose of this chapter is two-fold. First, we empirically define the baseline

privacy offered by a secure data aggregation function, namely the count function,

when no noise or other privacy-preserving mechanisms are added to the function. We

find that this approach fails when the number of data contributors 𝑛 is less than 31,

given our application-specific 𝛿 = 10−9 (explained in Section 3.4.2). This approach is

what we refer to as the noiseless approach to privacy [10]. Then, in order to provide

privacy when the number of data contributors to the count function is smaller than

31 (𝑛 < 31), we define the deniable approach to privacy. This approach is grounded

in a new mechanism that both ensures privacy for all values of 𝑛 and does not suffer

from the same utility loss as differential privacy.

Both the noiseless approach to privacy and the deniable approach to privacy are

motivated by the two major drawbacks of differential privacy, as explained in Sec-

tion 2.2. Specifically, the utility loss from differential privacy motivates the noiseless

approach [10] to privacy, as described in Section 3.3.2. Further, the lack of intu-

ition behind how to set the parameters of differential privacy motivates the way we

describe deniable privacy in Section 3.5. Finally, the lack of clarity in differential

23



privacy literature on the trade-off between privacy and utility when the number of

data points is small, combined with the small 𝑛 constraint on SCRAM (described in

Section 2.1.2), motivates our desire to achieve deniable privacy for small numbers of

data contributors.

3.2 Road Map

Recognizing the count function to be a critical data aggregation primitive, as well as

a key component of SCRAM, we assess its privacy properties in depth. The structure

of this chapter is as follows:

In Section 3.3, we define our notation, provide the definition of noiseless privacy

(Definition 4, [10]), and detail how this definition can be applied to the count function.

In Section 3.4, we show how to model the count function as a binomial random

variable, as done by Bhaskar et al. [10]. We then define the parameters of 𝜖 and 𝛿 in

terms of the count function, and show how to set these parameters to achieve noiseless

privacy. In Section 3.5, motivated by the failures of noiseless privacy, we define a

modified count function, denoted as Count𝑑𝑒𝑛𝑖𝑎𝑏𝑙𝑒(). We show that this function

improves the privacy afforded by the noiseless approach, while adding a very limited

amount of noise to the aggregate output. We call this deniable privacy. In Section 3.6,

we generalize deniable privacy and introduce a noisier version of Count𝑑𝑒𝑛𝑖𝑎𝑏𝑙𝑒() that

further improves privacy guarantees.

3.3 Background on Noiseless Privacy

3.3.1 Notation

Binomial Distribution Notation

The binomial distribution is a discrete probability distribution of the sum of 𝑛 in-

dependent and repeated Bernoulli trials. A Bernoulli trial is a random variable that

takes the value of 1 with probability 𝑝 and takes the value of 0 with probability 1−𝑝.
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We denote the Bernoulli distribution as Bernoulli(𝑝), where 𝑝 is the probability of

1 in any given sample. We denote the binomial distribution as ℬ(𝑛, 𝑝), where 𝑛 is

the number of Bernoulli trials and 𝑝 is the probability of 1 in any given trial. A

binomial random variable is a discrete random variable sampled from the binomial

distribution. We denote the probability mass function (PMF) of a binomial random

variable ℬ(𝑛, 𝑝) = 𝑘 for 𝑘 ∈ {0, . . . , 𝑛} as PMF(𝑘;ℬ(𝑛, 𝑝)). The definition of this

quantity is as follows:

PMF(𝑘;ℬ(𝑛, 𝑝)) =
(︂
𝑛

𝑘

)︂
· 𝑝𝑘 · (1− 𝑝)𝑛−𝑘

Negligible Function Notation

The negligible function is defined as a function negl : N → R such that for every

positive polynomial poly(·) there exists and integer 𝑁𝑝𝑜𝑙𝑦 > 0 such that for all 𝑥 >

𝑁𝑝𝑜𝑙𝑦:

|negl(𝑥)| < 1

poly(𝑥)

We denote a function that is negligible in its input 𝑥 as negl(𝑥).

3.3.2 Defining Noiseless Privacy

As a response to the diminished utility afforded by the noisy outputs of differen-

tially private mechanisms [22], Bhaskar et al. present noiseless privacy in their paper

Noiseless Database Privacy [10]. Its definition is as follows:

Definition 4 ((𝜖, 𝛿)-Noiseless Privacy ([10], definition 4)). Let 𝑓 : 𝐷𝑛 → 𝑌 be a

deterministic query function on a database of length 𝑛 drawn from domain 𝐷. Let

𝒟 be a distribution on 𝐷𝑛. Let 𝑆1 ⊆ 𝑌 and 𝑆2 ⊆ 𝐷 be two sets such that for all

𝑗 ∈ [𝑛], Pr𝑇∼𝒟[𝑓(𝑇 ) ∈ 𝑆1] + Pr𝑇∼𝒟[𝑡𝑗 ∈ 𝑆2] ≤ 𝛿, where 𝑡𝑗 is the 𝑗𝑡ℎ entry of 𝑇 .

The function 𝑓 is said to be (𝜖, 𝛿)-Noiseless Private under distribution 𝒟 and some

auxiliary information 𝐴𝑢𝑥, if there exists 𝑆1, 𝑆2 as defined above such that, for all

measurable sets 𝒪 ∈ 𝑌 − 𝑆1, for all 𝑎, 𝑎′ ⊆ 𝐷 − 𝑆2 and for all 𝑙 ∈ [𝑛] the following
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holds:

Pr
𝑇∼𝒟

[𝑓(𝑇 ) ∈ 𝒪|𝑡𝑙 = 𝑎,𝐴𝑢𝑥] ≤ 𝑒𝜖 · Pr
𝑇∼𝒟

[𝑓(𝑇 ) ∈ 𝒪|𝑡𝑙 = 𝑎′, 𝐴𝑢𝑥] (3.1)

Similar to the definition of (𝜖, 𝛿)-differential privacy (Definition 2 in Section 2.2)

(𝜖, 𝛿)-noiseless privacy is also parameterized by 𝜖, a quantity to bound the probability

ratio of two outcomes, and 𝛿, a failure rate of the privacy definition itself. However,

(𝜖, 𝛿)-noiseless privacy is distinctly different from (𝜖, 𝛿)-differential privacy in four

critical ways:

1. It can hold for a deterministic function 𝑓 because it relies on the randomness

within the input to 𝑓 , whereas (𝜖, 𝛿)-differential privacy relies on the randomness

of the function itself.

2. It assumes a distribution 𝒟 over the inputs, whereas (𝜖, 𝛿)-differential privacy

does not assume any distribution.

3. It protects against auxiliary information possessed by an adversary only if that

information is specified in the parameter 𝐴𝑢𝑥, whereas (𝜖, 𝛿)-differential privacy

protects against arbitrary auxiliary information.

4. It explicitly does not add noise to the inputs or outputs of function 𝑓 , whereas

(𝜖, 𝛿)-differential privacy adds noise.

The key idea behind (𝜖, 𝛿)-noiseless privacy in Definition 4 is that the data itself

adds entropy to the output of the deterministic function 𝑓 . Further, Definition 4

does not assume worst-case adversarial knowledge, like differential privacy. Together,

the entropy in the data and limit on adversarial knowledge enable Definition 4 to

hold without the addition of noise to the output of mechanism 𝑓 . Equipped with

Definition 4, we assess what it reveals about the privacy properties of the count

function, specifically.
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3.3.3 Defining the Count Function

The count function is simple, yet powerful. The count function is often used to

tally the number of individuals who express a property of interest [5, 13]. Notably,

the count function is a symmetric function. Bhaskar et al. [10] define a symmetric

function as follows:

Definition 5 (Symmetric Function ([10], definition 8)). A function 𝑓 : {0, 1}𝑛 → R

is said to be symmetric, if for any input string 𝑇 = ⟨𝑡1𝑡2 . . . 𝑡𝑛⟩ ∈ {0, 1}𝑛 and for

all permutations 𝜎 from the set of permutations over the set {1, . . . , 𝑛} the following

holds 𝑓(𝑡1, . . . , 𝑡𝑛) = 𝑓(𝑡𝜎(1), . . . , 𝑡𝜎(𝑛))

Throughout this analysis we denote the count function as Count(𝑇 ), where 𝑇

is the collection of 𝑛 input bits 𝑡𝑖 for 𝑖 ∈ [𝑛]. When we assume each input bit

𝑡𝑖 to Count(𝑇 ) to be a repeated and independent Bernoulli trial, as explained in

Section 3.4.1, we denote the random variable that represents the output of Count(𝑇 )

as 𝒞.

The utility of such a function is best illustrated with an example. In the case of

SCRAM, Count(𝑇 ) can be used to answer questions like "How many firms partici-

pating in this computation deploy Multi-Factor Authentication (MFA) on company-

owned devices?" To answer this question, each of the 𝑛 firms participating in the

computation would submit a single bit answer 𝑡𝑖 that is 1 if they deploy MFA and 0 if

they do not. Together these 𝑡𝑖 for 𝑖 ∈ [𝑛] would form the input string 𝑇 , where each

𝑡𝑖 comes from a unique data contributor. In accordance with Definition 5, regardless

of who inputs which bit 𝑡𝑖, the count computed is simply the sum of all the bits.

Therefore, in addition to being an essential data aggregation primitive, Count(𝑇 )

is also a crucial component of SCRAM. For these reasons, we assess its privacy prop-

erties in depth.

3.3.4 Privacy of the Count Function

Applying the definition of (𝜖, 𝛿)-noiseless privacy (Definition 4) to Count(𝑇 ), Bhaskar

et al. [10] show that satisfying the following maximum-likelihood estimator (MLE) is
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sufficient for satisfying (𝜖, 𝛿)-noiseless privacy:

Lemma 1 (Count MLE Ratio ([10])). Let 𝑇 ∈ {0, 1}𝑛 be sampled from the distribu-

tion 𝒟 where each bit is 1 with probability 𝑝. Let 𝑐𝑇 be the count of the number of bits

in 𝑇 which are 1 and let 𝑎 be any element from the set {0, . . . , 𝑛}. Count(𝑇 ) satisfies

(𝜖, 𝛿)-noiseless privacy if for all 𝑖 ∈ [𝑛] the following ratio holds with probability 1− 𝛿:

⃒⃒⃒
ln( Pr

𝑇∼𝒟
[𝐶𝑇 = 𝑎|𝑡𝑖 = 0])− ln( Pr

𝑇∼𝒟
[𝐶𝑇 = 𝑎|𝑡𝑖 = 1])

⃒⃒⃒
≤ 𝜖 (3.2)

We explain Lemma 1 by first conveying what is represented by Equation 3.2 itself.

Intuitively, the difference in logs in Equation 3.2 represents an adversary’s ability to

predict the output of the count function 𝑎, knowing the input bit 𝑡𝑖 of a particular data

contributor 𝑖 ∈ [𝑛]. The minuend represents the likelihood an adversary would infer

𝒞 = 𝑎 given knowledge that data contributor 𝑖 ∈ [𝑛] provided input bit 𝑡𝑖 = 0. The

subtrahend represents the likelihood an adversary would infer 𝒞 = 𝑎 given knowledge

that 𝑡𝑖 = 1. Simply put, by conditioning the value of the count on the value of 𝑡𝑖, the

probabilities themselves answer the question, "What’s the likelihood we see a count

of 𝑎, given this particular input from data contributor 𝑖?"

Bounding this difference of logs below by −𝜖 and above by 𝜖 ensures that, after

seeing the true count, an adversary will never be more than 𝑒𝜖 times more confident

that data contributor 𝑖 ∈ [𝑛] gave a particular response, either 0 or 1, instead of the

other. In sum, Lemma 1 bounds the performance of an adversary by the performance

of the maximum-likelihood estimator (Equation 3.2).

Using the Equation 3.2 from Lemma 1, Bhaskar et al. [10] prove the following

theorem:

Theorem 1 ((𝜖, 𝑛𝑒𝑔𝑙(𝑛))-Noiseless Privacy ([10], theorem 5)). Let 𝑇 be from the

distribution 𝒟 where each bit is 1 with probability 𝑝 (a constant). Let 𝑐𝑇 be the count

of number of bits in 𝑇 ∈ {0, 1}𝑛 which are 1 and let 𝑎 be any element from the set

{0, . . . , 𝑛}. For any constant 𝜖 > 0, 𝑐𝑇 is (𝜖, 𝑛𝑒𝑔𝑙(𝑛))-noiseless private.

28



The key result of this theorem is the asymptotic guarantee that as 𝑛 → ∞ every

𝜖 > 0 will satisfy (𝜖, 𝑛𝑒𝑔𝑙(𝑛))-noiseless privacy, given some function 𝑛𝑒𝑔𝑙(𝑛). However,

Theorem 1 does not specify a particular function for 𝑛𝑒𝑔𝑙(𝑛), and is consequently not

precise enough to be actionable. By guaranteeing (𝜖, 𝛿)-noiseless privacy relative to 𝑛

and not in absolute terms, Theorem 1 only offers the promise that as 𝑛 grows, (𝜖, 𝛿)-

noiseless privacy will eventually be achieved. Theorem 1 does not provide any insight

into if (𝜖, 𝛿)-noiseless privacy can be achieved when 𝑛 is small, nor does it explain how

a data aggregator should set 𝛿 for a given 𝜖 and a given 𝑛 in order to satisfy (𝜖, 𝛿)-

noiseless privacy under a distribution 𝒟. This is where the contributions of this work

begin. We show precisely when (𝜖, 𝛿)-noiseless privacy will hold for a specific 𝛿, given

exact parameters of 𝜖 from Definition 4 and 𝑛 and 𝑝 from the binomial distribution,

ℬ(𝑛, 𝑝).

3.4 (𝜖, 𝛿)-Noiseless Privacy Baseline

3.4.1 Modeling the Count with a Binomial

Following the analysis of Bhaskar et al. [10], we assume the output 𝒞 of Count()

follows a binomial distribution ℬ(𝑛, 𝑝). This assumption enables us to show privacy

guarantees via Bayesian analysis, even when we do not add noise to output 𝒞 or

randomness to the function Count().

It is helpful to grasp both mathematically and graphically what it means for

the count to be a binomial random variable ℬ(𝑛, 𝑝). Take, for example, a SCRAM

computation with 20 participants (𝑛 = 20) where each participant has a 50% chance

of implementing a given cybersecurity control (𝑝 = 0.5). This translates to 𝒞 = ℬ(𝑛 =

20, 𝑝 = 0.5), as plotted in Figure 3-1.

As can be seen in Figure 3-1, such a representation necessarily implies that most

of the probability mass falls around the mean (𝑛 ·𝑝 = 10), while very little probability

mass is attributed to extreme counts, like 𝒞 = 0 and 𝒞 = 20. Practically speaking,

this means we expect to see 𝒞 = 10 and we will rarely see 𝒞 = 0 or 𝒞 = 20. Observing
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Figure 3-1: Count Represented as a Binomial Random Variable

how little probability mass falls on these extreme cases is essential to the privacy

analysis ahead.

Critically, we refer to the two cases of 𝒞 = 0 and 𝒞 = 𝑛 as failure cases throughout

our analysis. We describe them as failure cases because they are the two outputs of

the count function for which privacy is necessarily impossible. Upon seeing 𝒞 = 0 or

𝒞 = 𝑛, the exact input of every data contributor is learned.

Defining (𝜖, 𝛿)-Noiseless Privacy with Binomials

Adopting the binomial random variable representation 𝒞 = ℬ(𝑛, 𝑝), we show the

following lemma:

Lemma 2 (Count-Binomial Equivalence ([10], proof of Theorem 5)).

Pr[𝒞 = 𝑎|𝑡𝑖 = 0] = Pr[ℬ(𝑛− 1, 𝑝) = 𝑎]

Pr[𝒞 = 𝑎|𝑡𝑖 = 1] = Pr[ℬ(𝑛− 1, 𝑝) = 𝑎− 1]
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where 𝑇 is from the distribution 𝒟 and each bit 𝑡𝑖 is 1 with probability 𝑝. 𝒞 is the

count of number of bits in 𝑇 ∈ {0, 1}𝑛 which are 1 and 𝑎 is any element from the set

{0, . . . , 𝑛}.

As shown in the first equality, when 𝑡𝑖 = 0, the remaining 𝑛 − 1 inputs must

account for the entire 𝒞 = 𝑎. However, as shown in the second equality, when 𝑡𝑖 = 1

the remaining 𝑛 − 1 inputs must account for precisely (𝒞 − 1) = (𝑎 − 1). Putting

together Lemma 1 and Lemma 2, we show:

Lemma 3 (Bounded Binomial Ratio). (𝜖, 𝛿)-Noiseless privacy for Count(𝑇 ) = 𝒞

holds if, with probability 1− 𝛿:

⃒⃒⃒
ln(Pr[ℬ(𝑛− 1, 𝑝) = 𝑎])− ln(Pr[ℬ(𝑛− 1, 𝑝) = 𝑎− 1])

⃒⃒⃒
≤ 𝜖 (3.3)

where the input 𝑇 ∈ {0, 1}𝑛 is from 𝒟 and is comprised of individual bits 𝑡𝑖 for all

𝑖 ∈ [𝑛]. Further, each 𝑡𝑖 is 1 with probability 𝑝 and 0 otherwise. 𝒞 is number of

bits in 𝑇 ∈ {0, 1}𝑛 which are 1, and 𝑎 is any element from the set {0, . . . , 𝑛}, which

represents the true value of 𝒞.

Both the minuend and the subtrahend in Lemma 3 represent the probability of

the count 𝒞 being some fixed value 𝑎 given the input bit 𝑡𝑖 of data contributor 𝑖 ∈ [𝑛].

Since the input bit 𝑡𝑖 is known and we assume the remaining input bits to be drawn

via independent Bernoulli trials, we can represent the sum of those remaining bits as

ℬ(𝑛− 1, 𝑝); the number of Bernoulli trials decreases by 1 while the the probability 𝑝

remains fixed. Then, bounding this ratio with 𝜖, except with probability 𝛿, we can

achieve the (𝜖, 𝛿)-noiseless privacy standard in Definition 4.

3.4.2 Describing "Good" 𝜖 and 𝛿 Values

Once we establish that (𝜖, 𝛿)-noiseless privacy (Definition 4) can be met for the count

function Count() according to Lemma 3, we concretely explain what the (𝜖, 𝛿)-

noiseless privacy parameters of 𝜖 and 𝛿 represent for Count(), specifically.
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The parameter 𝜖, just as in (𝜖, 𝛿)-differential privacy (Definition 2), sets the mul-

tiplicative loss bound between two outcomes, namely the outcome of 𝒞 = 𝑎 for some

𝑎 ∈ {0, . . . , 𝑛} given that data contributor 𝑖 ∈ [𝑛] input a bit of 0 and the outcome

of 𝒞 = 𝑎 given that same data contributor 𝑖 input 1. Throughout our analysis, we

assume 𝜖 values 0 to 5 are "strong," in accordance with guidance from the National

Institute of Standards and Technology (NIST) on setting (𝜖, 𝛿)-differential privacy

parameters [7]. We refer often to these "strong" 𝜖 values, and, when we do so, we are

referencing NIST’s guidance.

NIST advocates for 0 < 𝜖 < 5 as offering "strong privacy" because Apple’s dif-

ferential privacy system [2], the U.S. Census Bureau’s redistricting data [11], and

Google’s Community Mobility Reports [4] all use 𝜖 > 1 and none of them have faced

a successful privacy attack [7]. Importantly, these three examples represent a diver-

sity of data types and data aggregation techniques, so it is reasonable for NIST to

suggest that this guidance is broadly applicable.

While we illustrated in Section 3.3.2 that (𝜖, 𝛿)-differential privacy (Definition 2)

and (𝜖, 𝛿)-noiseless privacy (Definition 4) are substantively different in four critical

ways, we start our privacy analysis of Count() by assuming the NIST guidance [7] on

𝜖 translates to noiseless privacy. We do so precisely because 𝜖 has the same meaning

in both definitions: it defines the multiplicative loss bound between the probabilities

of two outcomes, or datasets. Of course, (𝜖, 𝛿)-differential privacy takes the added

step of injecting noise based on 𝜖 (described in Section 2.2), but it does so only to

achieve this multiplicative loss bound in face of worst-case adversarial knowledge.

The parameter 𝛿, just as in (𝜖, 𝛿)-differential privacy (Definition 2), sets the tol-

erated failure probability for the privacy definition itself. As shown in Lemma 3,

this tolerated failure probability is the maximum likelihood with which the absolute

value of the difference in logs from Lemma 3 can fail to be bounded by 𝜖. Based on

work by Nissim et al. we assume an "application-specific" 𝛿 = 10−9 [22]. Different

applications may have different failure tolerances, but for SCRAM we seek to set a

high standard of privacy, and therefore a low failure rate. We believe the guidance

from Nissim et al. ensures exactly this [22].
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3.4.3 Setting up the Binomial Analysis

With a mathematical definition for noiseless privacy, a concrete model of the count

function Count(), and constraints on both 𝜖 and 𝛿, we are able to analyze the baseline

privacy guarantees of (𝜖, 𝛿)-noiseless privacy (Definition 4) for the count function

Count(). Given our interest in privacy guarantees when 𝑛 is small (e.g. 𝑛 < 20 in

SCRAM), a natural place to begin is analyzing how (𝜖, 𝛿)-noiseless privacy guarantees

evolve as 𝑛 grows, for a fixed 𝑝. This is the first step toward showing when (𝜖, 𝛿)-

noiseless privacy is attainable, given specific values of 𝛿, 𝜖, 𝑛, and 𝑝.

Our results show that (𝜖, 𝛿)-noiseless privacy is attainable for 𝑛 ≥ 31 using 0 <

𝜖 < 5, when 𝛿 = 10−9. This is a stronger privacy guarantee than that offered by

Theorem 1, as it offers privacy for a concrete values of 𝛿, not just an asymptotic

privacy guarantee. And, fortunately, this privacy guarantee applies when 𝑛 is small.

The Process to Compute the Minimum 𝜖

Using the probability mass function (PMF) of the binomial random variable (defined

in Section 3.3.1) 𝒞, which represents the output of the count function, we developed

computational tools in the Python programming language [20] to explicitly compute

Equation 3.3 in Lemma 3. The general process for computing this quantity is as

follows:

1. We specify 𝑛 and 𝑝 as constants to define the binomial random variable ℬ(𝑛, 𝑝),

such that 𝒞 = ℬ(𝑛, 𝑝).

2. Given 𝒞 = ℬ(𝑛, 𝑝), we define the actual value of 𝒞 as 𝒞 = 𝑎, and we iterate

through all possible values 𝑎 ∈ {0, ..., 𝑛}.

3. For each 𝑎, we compute the minimum 𝜖 required to satisfy the inequality in

Lemma 3 given 𝒞 = 𝑎.

4. After computing an 𝜖 for every 𝑎, we repeatedly exclude the 𝑎 value with the

greatest associated 𝜖 and subtract its probability mass from 𝛿, until the prob-

ability mass on the 𝑎 in question exceeds the remaining value of 𝛿. We then
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take the maximum 𝜖 value over the 𝑎 values that have not been excluded to

determine the smallest 𝜖 possible to achieve (𝜖, 𝛿)-noiseless privacy.

In order to explain the computation described in Step 3 above, we first recall the

MLE contained in Lemma 3 (Equation 3.3):

⃒⃒⃒
ln(Pr[ℬ(𝑛− 1, 𝑝) = 𝑎])− ln(Pr[ℬ(𝑛− 1, 𝑝) = 𝑎− 1])

⃒⃒⃒
≤ 𝜖

As described in Step 3 above, we can compute the minimum 𝜖 necessary to satisfy

the MLE from Lemma 3 for a given 𝒞 = ℬ(𝑛, 𝑝) = 𝑎 using PMF(𝑎;ℬ(𝑛, 𝑝)) (defined

in Section 3.3.1) in the following way:

Pr[ℬ(𝑛− 1, 𝑝) = 𝑎] = PMF(𝑎;ℬ(𝑛− 1, 𝑝)) (3.4)

Pr[ℬ(𝑛− 1, 𝑝) = 𝑎− 1] = PMF(𝑎− 1;ℬ(𝑛− 1, 𝑝)) (3.5)

𝜖 =
⃒⃒⃒
log[PMF(𝑎;ℬ(𝑛− 1, 𝑝))]− log[PMF(𝑎− 1;ℬ(𝑛− 1, 𝑝))]

⃒⃒⃒
(3.6)

The application of this process is best illustrated through an example. Consider

the task of computing the minimum 𝜖 required to satisfy (𝜖, 𝛿=0)-noiseless privacy

for 𝒞 = ℬ(𝑛 = 20, 𝑝 = 0.5). Executing the steps above for each possible 𝒞 = 𝑎 for all

𝑎 ∈ {0, . . . , 𝑛}, we plot the minimum value of 𝜖 required for each 𝑎 in Figure 3-2.

As we can see in Figure 3-2, under the binomial distribution ℬ(𝑛 = 20, 𝑝 = 0.5),

all 𝒞 = 𝑎 for 𝑎 ∈ {1, ..., 𝑛− 1 = 19} can be bounded by 𝜖 values such that 0 < 𝜖 < 5.

Again, these values of 𝜖 are considered by NIST to offer strong privacy [7]. However,

in accordance with our intuition that 𝒞 = 0 and 𝒞 = 𝑛 can never be private (described

in Section 3.4.1) we see in Figure 3-2 that the 𝜖 value required to bound these failure

cases is infinite; there is no 𝜖 that can bound these failure cases.

The Private Range

With the understanding that there are certain values of 𝒞 = 𝑎 ∈ {0, ..., 𝑛} for which

privacy cannot be attained, the question becomes, "Can we ever offer minimum pri-

vacy guarantees for all possible outputs of Count(𝑇 )?" This brings us to the notion

34



Figure 3-2: Minimum 𝜖 to Bound Each Count for 𝒞 = ℬ(20, 0.5)

of the private range, which we denote as PrivateRange. The private range refers

to the range of outputs 𝒞 = 𝑎 ∈ {0, ..., 𝑛} for which privacy, noiseless privacy in this

case, is achieved. The private range, of course, will never contain 𝒞 = 0 or 𝒞 = 𝑛,

so in the best case PrivateRange = {1, . . . , 𝑛 − 1}. More generally, the all counts

𝒞 = 𝑎 /∈ PrivateRange must occur with combined probability less than or equal to

𝛿.

Importantly, if we use (𝜖, 𝛿=0)-noiseless privacy, the answer to the question of

interest, "Can we ever offer minimum privacy guarantees for all possible outputs of

Count(𝑇 )?" is no. Per Definition 4, (𝜖, 𝛿=0)-noiseless privacy can fail with probabil-

ity 𝛿 = 0. Clearly, the failure cases of 𝒞 = 0 and 𝒞 = 𝑛 occur with probability greater

than 0, but by setting 𝛿 = 0 we are mandating that all outputs 𝒞 = 𝑎 ∈ {0, ..., 𝑛} fall

into the private range, PrivateRange. When PrivateRange = {0, ..., 𝑛}, noiseless

privacy is not attainable.

However, once we specify 𝛿 > 0, we can indeed offer minimum privacy guarantees

for the whole output space of counts, 𝒞 = 𝑎 ∈ {0, ..., 𝑛}, under certain distributions,

particularly those distributions where the failure cases occur with combined proba-

bility less than or equal to 𝛿. In order to understand when privacy is attainable, we
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compute combinations of 𝜖, 𝑛 and 𝑝 that result in 𝛿 = 10−9 capturing the failure

cases. Critically, since we assume 𝛿 to be predetermined and application-specific, we

cannot adjust 𝛿 at will in order to obtain privacy.

3.4.4 Binomial Analysis: Explaining 𝜖 as n Grows

Establishing 𝛿 and 𝜖: The Specific Case of ℬ(n,0.5)

We begin our analysis by examining the relationships between 𝜖, 𝛿, 𝑛, and 𝑝 by

zooming in on the specific input distribution ℬ(𝑛, 0.5) for all 𝑛 ∈ {3, . . . , 100}. We

set the lower bound on 𝑛 at 3 because privacy in data aggregation only makes sense

when there are more than two data providers; if 𝑛 = 2, any data that is not owned

by one party is necessarily the data of the other party. We set the upper bound on 𝑛

at 100 because we are primarily interested in attaining privacy for small numbers of

data providers and we have defined small as 𝑛 ≤ 100.

Setting 𝑝 = 0.5 and iterating over all 𝑛 ∈ {3, . . . , 100}, we compute the minimum

𝜖 required to achieve (𝜖, 𝛿 = 10−9)-noiseless privacy. Since we have set 𝛿 > 0, we allow

our private range PrivateRange to exclude the failure cases under certain binomial

distributions ℬ(𝑛, 0.5). In doing so, we find that once 𝑛 is "large enough," privacy is

achieved. We discuss the meaning of "large enough" in the analysis ahead.

Our results are shown in Figure 3-3. We explain these results by first examining

three key sections of the plot. Then, we describe four high level trends in Figure 3-3

to explain each key section. We later show that these high level trends hold true even

as we vary the value of 𝑝.

Three Key Sections

1. (𝑛 < 31): For these 𝑛 values, there is no value of 𝜖 that can provide (𝜖, 𝛿 =

10−9)-noiseless privacy. This, as we will show shortly, is because the combined

probability of the failure cases, 𝒞 = 0 and 𝒞 = 𝑛 , is greater than 𝛿, until 𝑛 ≥ 31.

2. (31 ≤ 𝑛 < 37): At 𝑛 = 31, we have 𝒞 = ℬ(𝑛 = 31, 𝑝 = 0.5), and this is the

first distribution for which we can achieve (𝜖, 𝛿 = 10−9)-noiseless privacy. For
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Figure 3-3: Minimum 𝜖 to Achieve Noiseless Privacy when 𝑝 = 0.5

each count in this range, we observe that the 𝜖 value required to achieve privacy

grows with 𝑛.

3. (37 ≤ 𝑛): We see a significant drop in the 𝜖 value required to achieve (𝜖,

𝛿 = 10−9)-noiseless privacy and then a continuation of the stair-step behavior,

where the required 𝜖 value grows with 𝑛 and drops, repeatedly.

Four High Level Trends

1. The most extreme count 𝒞 in the PrivateRange sets the lower bound on the

minimum 𝜖 required to satisfy Lemma 3. When we say "the most extreme

count," we mean the count 𝒞 in the PrivateRange that is farthest from the

mean 𝜇 of the output distribution, as defined in Definition 4. In this analysis,

the output distribution is ℬ(𝑛 ∈ {3, . . . , 100}, 0.5).

2. The more extreme the upper or lower bound on PrivateRange, the larger the

𝜖 value required to satisfy the equation in Lemma 3. Intuitively, this can be

explained as the farther a count 𝒞 is from the mean 𝜇 of ℬ(𝑛 ∈ {3, . . . , 100}, 0.5),

the better an adversary is able to predict a participant’s bit, using Bayesian
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reasoning. If the lower or upper bound of the PrivateRange is far from the

mean 𝜇, the PrivateRange offers a lower standard of privacy because 𝜖 has to

be bigger.

3. As 𝑛 increases, the extreme counts become more extreme. In mathematical

terms, this means that with larger 𝑛 there is a larger output space 𝒞 = 𝑎 ∈

{0, ..., 𝑛}, and therefore there is greater distance between the mean 𝜇 and count

values 𝒞 on the ends of distribution ℬ(𝑛 ∈ {3, . . . , 100}, 0.5).

4. As 𝑛 increases, the extreme counts become less likely. In mathematical terms,

this means that, at least for 𝒞 = ℬ(𝑛, 𝑝), the probability mass associated with

the counts farthest from the mean 𝜇 necessarily have the least probability mass.

Equipped with an understanding of these trends, we can use them to explain the

three sections of the graph in Figure 3-3.

For (𝑛 < 31), the most extreme counts for 𝒞 = ℬ(𝑛 < 31, 0.5) are the failure cases

of 𝒞 = 0 and 𝒞 = 𝑛. As we explained, there is no 𝜖 to make these counts private, and

though these failure cases are becoming less and less likely, it is not until 𝑛 = 31 that

they occur with combined probability less than 𝛿.

For (31 ≤ 𝑛 < 37), the failure cases finally occur with combined probability less

than 𝛿, so they are captured by our tolerated failure rate of 𝛿 = 10−9 and can be

removed from the PrivateRange. Now, PrivateRange = {1, . . . , 𝑛−1}. Once this

is true, we can find an 𝜖 value for which (𝜖, 𝛿 = 10−9)-noiseless privacy is met. The

reason the required 𝜖 value increases until a drop off at 𝑛 = 37 is explained by the

fact that the lower and upper bounds of the PrivateRange, which are now 𝒞 = 1

and 𝒞 = 𝑛 − 1, occur with too high probability to be captured by the failure rate

𝛿. In other words, 𝛿 is only large enough to capture the failure cases of 𝒞 = 0 and

𝒞 = 𝑛, but no other outputs occur with small enough probability to be captured by

𝛿, as well. At the same time, the lower and upper bounds on the PrivateRange are

stretching farther and farther from the mean of the binomial distribution as 𝑛 grows.

Consequently, the 𝜖 value required by Lemma 3 must grow.

For (37 ≤ 𝑛), the stair-step behavior is explained by similar logic. At every
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"step down," the most extreme counts in the PrivateRange, which were previously

setting the lower bound on 𝜖, finally occur with combined probability less than 𝛿,

meaning they are captured by the failure rate 𝛿. Once they are captured by the failure

rate 𝛿, they can be removed from the PrivateRange. The most extreme counts in

this updated, and specifically smaller, PrivateRange are slightly less extreme and

therefore require a smaller 𝜖 to bound them. As 𝑛 increases, these extremes become

more extreme, requiring larger 𝜖 until the next "step down."

Clearly, it is the case that, given a set probability 𝑝, (𝜖, 𝛿)-noiseless privacy can

only be achieved when 𝑛 is "large enough." So, what constitutes "large enough?"

Why is 𝑛 = 31 large enough when 𝑝 = 0.5? These questions are answered, in short,

by observing that until 𝑛 reaches a certain value, the failure cases of 𝒞 = 0 and 𝒞 = 𝑛

occur with greater combined probability than 𝛿, as shown in Figure 3-4. This means

that these privacy-less counts occur with too high probability to be captured by the

allowed failure rate 𝛿.

Establishing 𝜖 and 𝛿: The General Case of ℬ(n,0 < p < 1)

This analysis is supported by the following logarithmic plots (Figure 3-4, Figure 3-6,

and Figure 3-7) that depict how the combined probability mass associated with the

two failure cases shrinks as 𝑛 increases. As seen in Figure 3-4, it is not until 𝑛 = 31,

the same 𝑛 value for which we get our first finite 𝜖 in Figure 3-3, that the probability

mass of the failure cases can be captured by 𝛿. Naturally, we do this same analysis

for varying values of 𝑝 to confirm that these high level trends hold across various

binomial distributions, and they do.

For 𝑝 = 0.75 in Figure 3-5, we see that we get our first finite 𝜖 value only when

𝑛 = 72. For 𝑛 < 72 we get no privacy at all, which is significantly worse than the

guarantees we have under ℬ(𝑛 = 𝑛, 𝑝 = 0.5). Figure 3-6 explains the reason there is

no privacy for 𝑛 < 72 is that the combined probability mass of the failure cases is

greater than 𝛿 up until 𝑛 = 72. For 𝑝 = 0.9, we do not get a finite 𝜖 value for any

𝑛 ≤ 100. Figure 3-7 confirms this by showing the combined probability mass of the

failure cases is larger than 𝛿 for all 𝑛 ≤ 100.
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Figure 3-4: Noiseless: Combined Probability Mass of Failure Cases when 𝑝 = 0.5

Figure 3-5: Minimum 𝜖 to Achieve Noiseless Privacy when 𝑝 = 0.75

Together, Figures 3-3 through 3-7 reveal that the more 𝑝 deviates from 0.5, the

larger the 𝑛 required to achieve noiseless privacy. As we can see, in the cases with

extreme 𝑝 values, the combined probability mass of the failure cases remains larger
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Figure 3-6: Noiseless: Combined Probability Mass of Failure Cases when 𝑝 = 0.75

Figure 3-7: Noiseless: Combined Probability Mass of Failure Cases when 𝑝 = 0.9
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for longer. This means that the failure cases are not captured by 𝛿 until 𝑛 reaches a

higher value than under ℬ(𝑛, 0.5). In particular, when 𝑝 = 0.9, we expect 𝒞 = (0.9·𝑛).

While seeing 𝒞 = 0 would be very unlikely, seeing 𝒞 = 𝑛 would actually occur with

significant probability. For this reason, as 𝑝 tends toward 1, the increasing likelihood

of seeing 𝒞 = 𝑛 dominates the combined probability of failure. As 𝑝 tends toward

0, the increasing likelihood of 𝒞 = 0 dominates the combined probability of failure.

This point is further illustrated by Figure 3-8, where 𝑝 is skewed toward 0 and the

probability mass of 𝒞 = 0 dominates the combined probability of failure. In Figure 3-

9, where 𝑝 is skewed toward 1, the probability mass of 𝒞 = 𝑛 dominates the combined

probability of failure.

3.4.5 Failures of Noiseless Privacy

In summary, our analysis of the behavior of 𝛿 and 𝜖 across 𝑛 ∈ {0, . . . , 𝑛} and across

varying 𝑝, such that 0 < 𝑝 < 1, illuminates the central problem with noiseless privacy:

No matter how 𝜖 is set, for a fixed 𝛿, privacy cannot be achieved when 𝑛 falls below

a certain threshold. This threshold is set by the interaction between the distribution

of the input data 𝒟, the application-specific failure rate 𝛿, and the PrivateRange.

Privacy can only be achieved when 𝛿 is greater than the combined probability mass of

𝒞 = 0 and 𝒞 = 𝑛 under the given distribution of input data. Only when this condition

is met does the PrivateRange exclude the failure cases, which is necessary to provide

privacy.

Assuming 𝛿 = 10−9, privacy cannot be achieved for 𝑛 < 31 under the best-case

input distribution of 𝑝 = 0.5, assuming each input is a repeated and independent

Bernoulli(𝑝). Critically, there are many data aggregation applications, including

SCRAM, where privacy guarantees are needed for single-digit 𝑛, but noiseless privacy

does not offer such a guarantee. We introduce deniable privacy to solve this problem.
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Figure 3-8: Noiseless: Probability Mass of Each Failure Case when 𝑝 = 0.25

Figure 3-9: Noiseless: Probability Mass of Each Failure Case when 𝑝 = 0.75
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3.5 Deniable Privacy

In Section 3.4.5, we observed that the failure cases of 𝒞 = 0 and 𝒞 = 𝑛 drive the

lack of noiseless privacy (Definition 4) for the count function Count() when 𝑛 < 31,

given our application-specific 𝛿 = 10−9. In an effort to address this, we naturally

ask the question, "What happens if we modify the count function itself, such that it

never releases counts of 0 or 𝑛?" This leads us to our central contribution of deniable

privacy.

3.5.1 Defining the Deniable Count Function

Deniable privacy is a privacy mechanism that relies on a modified version of the count

function Count() that we denote as Count𝑑𝑒𝑛𝑖𝑎𝑏𝑙𝑒(). We denote the random variable

that represents that actual value of Count𝑑𝑒𝑛𝑖𝑎𝑏𝑙𝑒(𝑇 ) for some input vector 𝑇 from

distribution 𝒟 as 𝒞𝑑𝑒𝑛𝑖𝑎𝑏𝑙𝑒. We define Count𝑑𝑒𝑛𝑖𝑎𝑏𝑙𝑒() as follows:

Definition 6 (Deniable Count Function).

Count𝑑𝑒𝑛𝑖𝑎𝑏𝑙𝑒(𝑇 ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1, if Count(𝑇 ) ∈ {0, 1}

Count(𝑇 ), if Count(𝑇 ) ∈ {2, . . . , 𝑛− 2}

𝑛− 1, if Count(𝑇 ) ∈ {𝑛− 1, 𝑛}

where 𝑇 is some input string input string ⟨𝑡1𝑡2 . . . 𝑡𝑛⟩ ∈ {0, 1}𝑛 and Count() is the

count function as defined in Section 3.3.3.

Assuming each input bit 𝑡𝑖 for 𝑖 ∈ [𝑛] is sampled as a repeated and independent

Bernoulli trial, like we assumed throughout our analysis of (𝜖, 𝛿)-noiseless privacy, the

output distribution of Count𝑑𝑒𝑛𝑖𝑎𝑏𝑙𝑒() is very similar to that of Count(), which was

presented in Figure 3-1. However, there are two differences:

1. The probability mass assigned to 𝒞𝑑𝑒𝑛𝑖𝑎𝑏𝑙𝑒 = 1 is the combined probability mass

of 𝒞 = 0 and 𝒞 = 1.
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2. The probability mass assigned to 𝒞𝑑𝑒𝑛𝑖𝑎𝑏𝑙𝑒 = 𝑛 − 1 is the combined probability

mass of 𝒞 = 𝑛− 1 and 𝒞 = 𝑛.

Provided both functions operate over input data that follows our assumed input

distribution of repeated and independent Bernoulli trials, the similarity of the output

distribution of Count𝑑𝑒𝑛𝑖𝑎𝑏𝑙𝑒() to that of the Count() can be seen in Figure 3-10, while

the difference in assignment of probability mass can be seen with the logarithmic scale

in Figure 3-11.

Figure 3-10: Output Distributions: Deniable Count vs. Count

3.5.2 Defining Deniable Privacy

We define deniable privacy as satisfying noiseless privacy via Count𝑑𝑒𝑛𝑖𝑎𝑏𝑙𝑒(), in-

stead of Count(). We now show that Count𝑑𝑒𝑛𝑖𝑎𝑏𝑙𝑒() satisfies the definition of (𝜖, 𝛿)-

noiseless privacy (Definition 4) in the same fashion as we showed Count() satisfies

the definition of (𝜖, 𝛿)-noiseless privacy. Specifically, we adapt Lemmas 1-3 to use

Count𝑑𝑒𝑛𝑖𝑎𝑏𝑙𝑒(), instead of Count(). In doing so, we produce Lemmas 4-6.

Lemma 4 (Deniable Count MLE Ratio ([10])). Let 𝑇 be from the distribution 𝒟

where each bit is 1 with probability 𝑝. Let Count𝑑𝑒𝑛𝑖𝑎𝑏𝑙𝑒(𝑇 ) = 𝒞𝑑𝑒𝑛𝑖𝑎𝑏𝑙𝑒 be the count of
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Figure 3-11: Output Distributions: Deniable Count vs. Count (Logarithmic Scale)

the number of bits in 𝑇 ∈ {0, 1}𝑛 which are 1 and let 𝑎 be any element from the set

{1, . . . , 𝑛− 1}. Count𝑑𝑒𝑛𝑖𝑎𝑏𝑙𝑒(𝑇 ) satisfies (𝜖, 𝛿)-noiseless privacy if for all 𝑖 ∈ [𝑛] the

following ratio holds with probability 1− 𝛿:

⃒⃒⃒
ln(Pr[𝒞𝑑𝑒𝑛𝑖𝑎𝑏𝑙𝑒 = 𝑎|𝑡𝑖 = 0])− ln(Pr[𝒞𝑑𝑒𝑛𝑖𝑎𝑏𝑙𝑒 = 𝑎|𝑡𝑖 = 1])

⃒⃒⃒
≤ 𝜖 (3.7)

Because Count𝑑𝑒𝑛𝑖𝑎𝑏𝑙𝑒() is a deterministic function, just like Count(), they are

interchangeable from the perspective of noiseless privacy (Definition 4). We therefore

substitute Count() in Lemma 1 for Count𝑑𝑒𝑛𝑖𝑎𝑏𝑙𝑒() in Lemma 4. Of course, we must

update the valid output space to be {1, . . . , 𝑛− 1}.

Lemma 5 ((Deniable Count)-Binomial Equivalence ([10], proof of Theorem 5)).

Pr[𝒞𝑑𝑒𝑛𝑖𝑎𝑏𝑙𝑒 = 𝑎|𝑡𝑖 = 0] = Pr[ℬ(𝑛− 1, 𝑝) = 𝑎]

Pr[𝒞𝑑𝑒𝑛𝑖𝑎𝑏𝑙𝑒 = 𝑎|𝑡𝑖 = 1] = Pr[ℬ(𝑛− 1, 𝑝) = 𝑎− 1]

where 𝑇 is from the distribution 𝒟 where each bit 𝑡𝑖 is 1 with probability 𝑝. 𝒞𝑑𝑒𝑛𝑖𝑎𝑏𝑙𝑒 =

Count𝑑𝑒𝑛𝑖𝑎𝑏𝑙𝑒(𝑇 ) is the count of number of bits in 𝑇 ∈ {0, 1}𝑛 which are 1 and 𝑎 is

any element from the set {1, . . . , 𝑛− 1}.

Again, because Count𝑑𝑒𝑛𝑖𝑎𝑏𝑙𝑒() is interchangeable with Count() from the perspec-

tive of noiseless privacy (Definition 4), we simply substitute Count() in Lemma 2 for
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Count𝑑𝑒𝑛𝑖𝑎𝑏𝑙𝑒() in Lemma 5 and update the valid output space to be {1, . . . , 𝑛− 1}.

In Section 3.4 we produced Lemma 3 by combining Lemma 1 and Lemma 2. In

this section, we produce Lemma 6 by combining Lemma 4 and Lemma 5.

Lemma 6 (Bounded Binomial Ratio using Deniable Count Function). (𝜖, 𝛿)-Noiseless

privacy for Count𝑑𝑒𝑛𝑖𝑎𝑏𝑙𝑒(𝑇 ) = 𝒞𝑑𝑒𝑛𝑖𝑎𝑏𝑙𝑒 holds if, with probability 1− 𝛿:

⃒⃒⃒
ln(Pr[ℬ(𝑛− 1, 𝑝) = 𝑎])− ln(Pr[ℬ(𝑛− 1, 𝑝) = 𝑎− 1])

⃒⃒⃒
≤ 𝜖 (3.8)

where the input 𝑇 ∈ {0, 1}𝑛 is from 𝒟 and is comprised of individual bits 𝑡𝑖 for

all 𝑖 ∈ [𝑛]. Further, each 𝑡𝑖 is 1 with probability 𝑝 and 0 otherwise. 𝒞𝑑𝑒𝑛𝑖𝑎𝑏𝑙𝑒 =

Count𝑑𝑒𝑛𝑖𝑎𝑏𝑙𝑒(𝑇 ) is number of bits in 𝑇 ∈ {0, 1}𝑛 which are 1. And, 𝑎 is any element

from the set {1, . . . , 𝑛− 1}, which represents the true value of 𝒞𝑑𝑒𝑛𝑖𝑎𝑏𝑙𝑒.

Crucially, deniable privacy is not a new definition of privacy, per se. Instead it

is a mechanism to achieve (𝜖, 𝛿)-noiseless privacy by explicitly adding the minimal

amount of noise necessary to mask the failure cases of the general count function

Count(). Deniable privacy is a small yet powerful adjustment to Count() such that

(𝜖, 𝛿)-noiseless privacy can be satisfied without requiring 𝛿 to capture the failure cases.

Equally important, deniable privacy provides possible innocence [21] (Definition 1)

because given 𝒞𝑑𝑒𝑛𝑖𝑎𝑏𝑙𝑒 = 𝑎 ∈ {1, . . . , 𝑛 − 1}, no one can claim with certainty that a

particular participant input 0 or 1 using just the output 𝒞𝑑𝑒𝑛𝑖𝑎𝑏𝑙𝑒 = 𝑎. As an example,

if 𝒞𝑑𝑒𝑛𝑖𝑎𝑏𝑙𝑒 = 𝑛 − 1, each participant can claim that she was the one individual who

input 0, even though this is quite unlikely. Using deniable privacy, of course, is

equivalent to adding noise, but the noise that is added is limited in scope and it

is only applied to the most unlikely of outputs. All other counts are noise free. In

contrast with differential privacy, where noise is added to all outputs, deniable privacy

presents clear utility benefits by reducing the number of noisy outputs it will produce.

3.5.3 Applying Deniable Privacy

Analyzing this new definition via similar computational tools also contained in our

GitHub repository [20], we obtain improvements in the privacy guarantees we can
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offer to SCRAM, or any secure data aggregation platform implementing Count(𝑇 )

for small 𝑛. Our results are shown in Figure 3-12.

Specifically, as illustrated by our results in Figure 3-12, deniable privacy offers

privacy for computations of any size 𝑛 > 2, whereas the noiseless approach only offers

privacy for 𝑛 > 30, under a best case distribution of inputs. Further, the guarantees

offered by deniable privacy, as defined by 𝜖 and 𝛿, comply with NIST’s guidance [7]

on strong 𝜖 and the Nissim et al. guidance [22] on 𝛿.

Figure 3-12: Noiseless vs. Deniable Privacy: Minimum Achievable 𝜖 when 𝑝 = 0.5

We now explain Figure 3-12 in detail. First, we point out key sections of the plot.

Then, we offer explanations of the behavior in each section using high level trends,

just as we did in Section 3.4. As we go through our analysis, we designate one privacy

approach as having "better performance" than another approach when it is able to

offer privacy guarantees for a smaller 𝜖 value. The value of 𝛿 remains set at 10−9, just

as it was in our assessment of noiseless privacy from Section 3.4.

Three Key Sections

1. (3 ≤ 𝑛 < 31): In this section, we see there is no finite 𝜖 that can provide

(𝜖, 𝛿)-noiseless privacy when using Count() but there are finite 𝜖 values that
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can provide (𝜖, 𝛿)-noiseless privacy when using Count𝑑𝑒𝑛𝑖𝑎𝑏𝑙𝑒(). As we can see,

the 𝜖 value required by deniable privacy is growing with 𝑛.

2. (31 ≤ 𝑛 < 37): In this section, we see that (𝜖, 𝛿)-noiseless privacy can be

achieved by both Count() and Count𝑑𝑒𝑛𝑖𝑎𝑏𝑙𝑒(). Further, the 𝜖 value required by

Count() to satisfy (𝜖, 𝛿)-noiseless privacy is actually smaller than that required

by Count𝑑𝑒𝑛𝑖𝑎𝑏𝑙𝑒() in this range. This represents a small range of 𝑛 for which

the noiseless approach actually performs better than the deniable approach.

Even so, the difference in these 𝜖 values is approximately 0.02, which may not

be significant depending on the data aggregation application.

3. (37 ≤ 𝑛): This section occurs after the first "step down." The performance of

the two privacy approaches, noiseless and deniable, is the same here because

their minimum achievable 𝜖 values are equivalent.

To explain these three key sections, we offer high level trends that mirror those we

previously enumerated.

Four High Level Trends

1. The most extreme count in the PrivateRange sets the lower bound on the

minimum 𝜖 required to satisfy the equation in Lemma 6. When we say "the

most extreme count," we mean the count 𝒞𝑑𝑒𝑛𝑖𝑎𝑏𝑙𝑒 = 𝑎 for 𝑎 ∈ PrivateRange

that is farthest from the mean 𝜇 of the random variable 𝒞𝑑𝑒𝑛𝑖𝑎𝑏𝑙𝑒

2. The more extreme the upper or lower bound on PrivateRange, the larger

the 𝜖 value must be to satisfy the equation in Lemma 6. Mathematically, this

means that the farther 𝒞𝑑𝑒𝑛𝑖𝑎𝑏𝑙𝑒 = 𝑎 is from the mean 𝜇 of the random variable

𝒞𝑑𝑒𝑛𝑖𝑎𝑏𝑙𝑒, the better an adversary is able to predict a participant’s input bit,

using Bayesian reasoning.

3. As 𝑛 increases, the extreme counts become more extreme. In mathematical

terms, this means that with larger 𝑛 there is a larger output space, 𝒞𝑑𝑒𝑛𝑖𝑎𝑏𝑙𝑒 =
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𝑎 ∈ {1, ..., 𝑛− 1} in the case of deniable privacy, and therefore there is greater

distance between the mean 𝜇 of 𝒞𝑑𝑒𝑛𝑖𝑎𝑏𝑙𝑒 and the extreme counts.

4. As 𝑛 increases, the extreme counts become less likely. In mathematical terms,

this means that the probability mass associated with the counts farthest from

the mean 𝜇 of 𝒞𝑑𝑒𝑛𝑖𝑎𝑏𝑙𝑒 necessarily have the least probability mass.

For (3 ≤ 𝑛 < 31), we can explain the fact that 𝜖 increases with 𝑛 because,

similar to the trends in noiseless privacy, the extreme counts of 𝒞𝑑𝑒𝑛𝑖𝑎𝑏𝑙𝑒 = 1 and

𝒞𝑑𝑒𝑛𝑖𝑎𝑏𝑙𝑒 = 𝑛 − 1 set the minimum achievable 𝜖 but these counts are becoming more

extreme as 𝑛 grows. In other words, they are stretching farther from the mean 𝜇.

For (31 ≤ 𝑛 < 37), we can explain the slight difference in performance between

the noiseless approach and the deniable approach by recognizing that the probabil-

ity masses of the extreme cases differ slightly between the two for this range of 𝑛.

Specifically, we remember that (𝜖, 𝛿)-noiseless privacy was first achieved by Count()

at 𝑛 = 31 because, at this 𝑛-value, 𝒞 = 0 and 𝒞 = 𝑛 were first captured by the failure

rate 𝛿. In the case of deniable privacy, 𝒞𝑑𝑒𝑛𝑖𝑎𝑏𝑙𝑒 = 0 and 𝒞𝑑𝑒𝑛𝑖𝑎𝑏𝑙𝑒 = 𝑛 are not valid

outputs, and their probability masses are added to the probability masses already at

𝒞𝑑𝑒𝑛𝑖𝑎𝑏𝑙𝑒 = 1 and 𝒞𝑑𝑒𝑛𝑖𝑎𝑏𝑙𝑒 = 𝑛−1, respectively. So, with lower probability mass on the

extreme counts of 𝒞 = 1 and 𝒞 = 𝑛− 1 , the noiseless approach is able to outperform

deniable privacy.

For (37 ≤ 𝑛), we can explain the familiar stair-step behavior using the same

logic as before. What is important to address, however, is the fact that the noiseless

approach and the deniable approach have identical performance in this range be-

cause 𝛿 captures the same number of extreme counts in each instance. More simply,

PrivateRange is equivalent for deniable privacy and noiseless privacy when 𝑛 ≥ 37.

3.5.4 Assessing Deniable Privacy Across 𝑝-Values

Just as before, we would like to see how deniable privacy performs as the 𝑝-value

used to parameterize the input distribution skews away from 𝑝 = 0.5. Figure 3-

13 offers a performance comparison between noiseless privacy and deniable privacy
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when 𝑝 = 0.75, which by symmetry is the same as the performance comparison when

𝑝 = 0.25. Figure 3-14 offers a performance comparison between noiseless privacy and

deniable privacy when 𝑝 = 0.9, which by symmetry is the same as the performance

comparison when 𝑝 = 0.1. Importantly, no matter what the skew, deniable privacy

offers privacy using NIST’s strong 𝜖 values for all 𝑛 > 2, given 𝛿 = 10−9. In contrast,

under noiseless privacy, a 𝑝 skewed away from 𝑝 = 0.5 means larger 𝑛 is required

to achieve privacy. Under deniable privacy, the skew of 𝑝 does not impact whether

privacy can be achieved.

Figure 3-13: Noiseless vs. Deniable Privacy: Minimum Achievable 𝜖 when 𝑝 = 0.75

3.6 𝑘-Deniable Privacy

3.6.1 Defining the 𝑘-Deniable Count Function

We now extend the notion of deniable privacy by defining 𝑘-deniable privacy, which

is simply a generalized notion of deniable privacy that relies on what we call the 𝑘-

deniable count function. We denote the 𝑘-deniable count function as Count𝑘−𝑑𝑒𝑛𝑖𝑎𝑏𝑙𝑒().

We denote the random variable that represents the value of Count𝑘−𝑑𝑒𝑛𝑖𝑎𝑏𝑙𝑒(𝑇 ) for

some input vector 𝑇 under distribution 𝒟 as 𝒞𝑘−𝑑𝑒𝑛𝑖𝑎𝑏𝑙𝑒. We define Count𝑘−𝑑𝑒𝑛𝑖𝑎𝑏𝑙𝑒()

in Definition 7.
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Figure 3-14: Noiseless vs. Deniable Privacy: Minimum Achievable 𝜖 when 𝑝 = 0.9
Note: Count() does not satisfy noiseless privacy for 𝑛 ≤ 100 when 𝑝 = 0.9 and

𝛿 = 10−9, so it does not appear in this plot.

Definition 7 (𝑘-Deniable Count Function).

Count𝑘−𝑑𝑒𝑛𝑖𝑎𝑏𝑙𝑒() =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝑘, if Count(𝑇 ) ∈ {0, . . . , 𝑘}

Count(𝑇 ), if Count(𝑇 ) ∈ {𝑘 + 1, . . . , 𝑛− 𝑘 − 1}

𝑛− 𝑘, if Count(𝑇 ) ∈ {𝑛− 𝑘, . . . , 𝑛}

where 𝑇 is some input string input string ⟨𝑡1𝑡2 . . . 𝑡𝑛⟩ ∈ {0, 1}𝑛 and Count() is the

count function as defined in Section 3.3.3.

There are two key differences between the output distribution of Count𝑘−𝑑𝑒𝑛𝑖𝑎𝑏𝑙𝑒()

and that of Count():

1. The probability mass assigned to 𝒞𝑘−𝑑𝑒𝑛𝑖𝑎𝑏𝑙𝑒 = 𝑘 for is the combined probability

mass of {𝒞 = 0, . . . , 𝒞 = 𝑘}.

2. The probability mass assigned to 𝒞𝑘−𝑑𝑒𝑛𝑖𝑎𝑏𝑙𝑒 = 𝑛−𝑘 is the combined probability

mass of {𝒞 = 𝑛− 𝑘, . . . , 𝒞 = 𝑛}.
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In a similar fashion to the deniable count function Count𝑑𝑒𝑛𝑖𝑎𝑏𝑙𝑒(), any 𝒞 =

{0, ..., 𝑘} will be output as 𝒞𝑘−𝑑𝑒𝑛𝑖𝑎𝑏𝑙𝑒 = 𝑘 and any 𝒞 = {𝑛 − 𝑘, ..., 𝑘} will be out-

put as 𝒞𝑘−𝑑𝑒𝑛𝑖𝑎𝑏𝑙𝑒 = 𝑛− 𝑘.

3.6.2 Analyzing 𝑘-Deniable Privacy

This generalization to 𝑘-deniable privacy is helpful primarily because certain applica-

tions may wish to mask more than just the inherent failure cases of the count function

Count(), namely 𝒞 = 0 and 𝒞 = 𝑛. Take the immediate example of defending against

other participants, who know their inputs. In the noiseless approach, if 𝒞 = 1 then the

individual who input 1 knows with certainty the inputs of all other data providers. In

the deniable approach, if 𝒞𝑑𝑒𝑛𝑖𝑎𝑏𝑙𝑒 = 1 then this is also true, provided some individual

did in fact input 1. However, under 2-deniable privacy, this problem is solved. Even

if a singular individual input 1, she will see 𝒞𝑘−𝑑𝑒𝑛𝑖𝑎𝑏𝑙𝑒 = 2 and be uncertain if she is is

the only individual who input 1. Under 𝑘-deniable privacy for 𝑘 ≥ 2, data contribu-

tors must collude in order to breach the standard of possible innocence (Definition 1,

[21]).

To protect against scenarios like the one described above, Figure 3-15 and our

GitHub repository [20] offer analytical tools to quantify privacy for different values of

𝑘. Our results are shown in Figure 3-15. The key takeaway from 𝑘-deniable privacy,

as shown in Figure 3-15, is that larger 𝑘-values enable smaller 𝜖 values when 𝑛 is very

small (i.e. 𝑛 < 40). This is because the most extreme output that can be released by

Count𝑘−𝑑𝑒𝑛𝑖𝑎𝑏𝑙𝑒(𝑇 ), for some input bit string 𝑇 , becomes less extreme as 𝑘 increases.

All in all, for a data aggregator who wishes to mask more than the inherent failure

cases of Count(), 𝑘-deniable privacy is a reasonable mechanism to use, especially if

she is confident that the data contributors will not collude.
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Figure 3-15: 𝑘-Deniable Privacy when 𝑝 = 0.5
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Chapter 4

Conclusion

In this work, we have shown three key results. First, we have applied the Bhaskar et

al. notion of noiseless privacy [10] to a real-world data aggregation platform, namely

SCRAM [13], and proven that privacy of the count function can be achieved for

relatively small numbers of data contributors (𝑛 ≥ 31) without introducing any noise

to the count function’s output. Second, we have defined a new privacy mechanism,

deniable privacy, that ensures privacy of a modified count function for any number of

data contributors (𝑛 > 2), while introducing the minimum amount of noise necessary

to deliver possible innocence (Definition 1, [21]) to every data contributor. Third,

we have presented a generalized notion of deniable privacy, called 𝑘-deniable privacy,

that ensures possible innocence (Definition 1, [21]) for all data contributors in a count

computation of any size, even in the face of collusion between data contributors.

Throughout this work, we have also made an effort to explain the differential

privacy (Definition 2, [15]) parameters of 𝜖 and 𝛿 in intuitive terms, offering the

notion of the PrivateRange as a new tool to describe the interaction between 𝛿

and the underlying distribution 𝒟 of the input data. It is our hope that this analysis

advances efforts to make privacy understandable and intuitive for practitioners whose

primary objective is not necessarily privacy.
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4.1 Recommendations

We offer one broad recommendation to privacy-aware data owners: Seek privacy

guarantees that are intuitive and explainable over those that are described only by

their parameters. This is easier said than done, as much of the privacy literature

operates in terms of 𝜖 and 𝛿. However, we believe the value of our work on deniable

privacy is best described not in terms of the particular 𝜖 and 𝛿 values we computed,

but instead in terms of the end goal of possible innocence (Definition 1, [21]). With

this in mind, we feel there is substantial work to be done within the privacy field

to translate privacy defined by parameters to privacy defined by outcomes. Bridging

the gap between privacy parameters and privacy outcomes will enable data owners

to make better-informed privacy decisions with their data.

To further illustrate this point, NIST’s guidance [7] suggests certain 𝜖 values are

strong because Google or Apple use them, but our analysis shows that the privacy

afforded by a particular set of privacy parameters depends heavily on the particular

application, including the specific function that is being computed. Consequently,

a data owner should not equate standardized privacy parameters with standardized

privacy outcomes.

We also offer one primary recommendation for data aggregators: Work closely

with your data providers to define what they intend to learn from the aggregate

and what they intend to keep private throughout the computation. As we have

experienced with SCRAM, without an explicit understanding of these two information

categories, it is nearly impossible to make the optimal trade-off between privacy and

utility. However, once constraints are explicitly defined (e.g. SCRAM’s constraints as

defined in Section 2.1.2) it becomes easier to design and deploy privacy mechanisms,

like deniable privacy, tailored to the privacy needs of the application.
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4.2 Future Work

There are four avenues for future work that we believe require immediate attention.

First, while this work offers intuition behind the meaning and effect of 𝛿 by tying

it to the notion of the PrivateRange, it does not sufficiently explore the meaning

of 𝜖. Does 0 < 𝜖 < 5 really provide strong privacy as stated by NIST [7]? If

so, under what circumstances? One approach to answering these questions would

be to define a method that translates 𝜖 into an adversary’s likelihood of success in

predicting some well-defined private attribute. We see this as a critical next step in

our research. Second, we believe it is necessary to analyze noiseless privacy [10] and

deniable privacy under different distributions of the inputs. For example, though we

assumed all input bits to SCRAM’s count function to be independent and repeated

Bernoulli trials, it is quite possible that they are correlated, and perhaps not even

Bernoulli. Understanding how privacy guarantees change in the face of correlation

and varying input distributions is essential. Third, the count function is not the only

useful data aggregation primitive. Future work should certainly explore the privacy

properties of other data aggregation functions, especially the sum function. Fourth,

and perhaps most importantly, we believe the impact of auxiliary information on

the privacy of secure data aggregation functions must be analyzed in greater detail.

Our analysis in this work assumed the absence of auxiliary information from the

computation environment, but in practice this is not a realistic assumption. As we

discussed, differential privacy is enticing precisely because it protects against arbitrary

auxiliary information, but we believe substantial work is left to be done in defining

less noisy mechanisms that protect against specific classes of auxiliary information.

Work across these four avenues will certainly advance privacy offerings in the field of

secure data aggregation.
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