
Modeling Outdoor Air Pollution and the Urban Form

by

Natasha Lia Stamler

Submitted to the

Department of Mechanical Engineering

in Partial Fulfillment of the Requirements for the Degree of

Bachelor of Science in Mechanical Engineering

at the

Massachusetts Institute of Technology

May 2022

© 2022 Natasha Lia Stamler. This work is licensed under a CC BY-NC-SA 4.0 license.

The author hereby grants to MIT permission to reproduce and to distribute publicly paper

and electronic copies of this thesis document in whole or in part in any medium now known or

hereafter created.

Signature of Author:

 Department of Mechanical Engineering

 May 6, 2022

Certified by:

 Leslie K. Norford

 Professor of Building Technology

 Thesis Supervisor

Accepted by:

 Kenneth Kamrin

 Associate Professor of Mechanical Engineering

 Undergraduate Officer

https://creativecommons.org/licenses/by-nc-sa/4.0/

 2/31

Modeling Outdoor Air Pollution and the Urban Form

by

Natasha Lia Stamler

Submitted to the Department of Mechanical Engineering

on May 6, 2022 in Partial Fulfillment of the

Requirements for the Degree of

Bachelor of Science in Mechanical Engineering

ABSTRACT

As cities continue to grow rapidly, air pollution is becoming an increasing health problem.

However, air pollution’s spatial and temporal variability make it difficult to quantify, even with

field measurements. Models are thus useful to understand how pollutants interact with the built and

natural environment. Computational fluid dynamics (CFD) offers the highest spatial and temporal

resolution for aerial pollutant dispersion modeling within dense urban environments such as urban

canyons. Open-source platforms such as OpenFOAM are valuable as they can be customized for

the varying intricacies of urban airflow and are accessible to a wide audience. This thesis develops

a solver for aerial pollutant transport by adding a passive-scalar transport equation to

buoyantBoussinesqPimpleFoam, the OpenFOAM transient solver for buoyant, turbulent flow of

incompressible fluids, with Reynolds Averaged Navier-Stokes (RANS) turbulence modeling. It

then demonstrates that this solver can be applied to cases, such as that of an urban canyon, with

geometry generated parametrically using Grasshopper, a design tool commonly used by architects

and urban designers. The successful implementation of this solver could enable future integration

into a streamlined Grasshopper tool that allows designers to easily evaluate the impacts of their

designs on urban air pollution during the design process.

Thesis Supervisor: Leslie K. Norford

Tile: Professor of Building Technology

 3/31

Table of Contents

Table of Contents ... 3

Table of Figures ... 3

Table of Tables ... 4

1. Background .. 5

2. Motivation, Scope, and Objectives ... 6

3. Methods .. 6

3.1. Computational Fluid Dynamics (CFD) Simulations 6
3.1.1. Solver and Governing Equations .. 6
3.1.2. Algorithm .. 8

4.1. Test Case: Simple Box ... 9
4.1.1. Boundary Conditions .. 9
4.1.2. Schemes .. 11
4.1.3. Computational Grid .. 12
4.1.4. Results ... 13

4.2. Application: Urban Canyon .. 15
4.2.1. Parametric Urban Canyon Model ... 15
4.2.2. Virtual Wind Tunnel ... 16
4.2.3. Computational Grid .. 16
4.2.4. Simplified Conditions ... 18
4.2.5. Results ... 18
4.2.6. ABL Boundary Conditions ... 20

5. Discussion, Conclusions, and Further Work .. 21

Acknowledgments... 22

Appendix A – buoyantBoussinesqPimpleFoamS.C .. 23

Appendix B – createFields.H ... 25

Appendix C – readTransportProperties.H ... 28

References .. 29

Table of Figures
Figure 1. Size comparisons for particulate matter particles. ... 5
Figure 2. PIMPLE algorithm flowchart. ... 8
Figure 3. Normalized variable diagram for upwind divergence scheme. 11
Figure 4. Normalized variable diagram for linear divergence scheme. 12
Figure 5. Meshed box in Paraview. ... 13
Figure 6. Model of urban canyon labeled with dimensions. ... 15
Figure 7. Grasshopper script for parametric urban canyon model. 16
Figure 8. (a) Side and (b) top view schematics of simulated building (grey) in virtual wind

tunnel (blue), not to scale. .. 16
Figure 9. (a) Meshed regions with non-uniform grid shown in Paraview and (b) slice of

non-uniform mesh in SALOME. .. 17
Figure 10. The Law of the Wall. ... 18

 4/31

Figure 11. Results of urban canyon simulation with simplified boundary condition after (a)

400s and (b) 2000s. (c) shows the semi-log concentration residuals plot. 19
Figure 12. Properties and sublayers of the atmospheric boundary layer (ABL), including

the inlet velocity profile. .. 20

Table of Tables
Table 1. Test case results for (a) small and (b) large concentration gradient. 13
Table 2. List of simplified boundary conditions for simulated wind tunnel. 18
Table 3. List of boundary conditions for simulated wind tunnel. 20

 5/31

1. Background
Air pollution kills seven million people around the world every year through stroke, heart

disease, lung cancer, and acute respiratory infections (Air Pollution, n.d.). There are several

different pollutants that cause human health detriments, in particular PM2.5, which is fine inhalable

particles, with diameters that are generally less than 2.5 micrometers (Particulate Matter (PM)
Basics, 2016). The relative size of a PM2.5 particle is shown in Figure 1. PM2.5 is the sixth highest

risk factor for death around the world, killing over four million people each year (Larry C. Price,

n.d.). These tiny particles of solids or liquids are leached into the air by dust, dirt, soot, smoke, and

drops of liquid. Air pollution is a particular problem in cities because urban areas produce higher

than average concentrations of air pollutants that can be traced to vehicle exhaust and industrial

emissions. Urban air pollution is especially important due to its growing potential for exposure: In

2018, over 55% of the population lived in urban areas, a number that is expected to increase to over

60% by 2030 (The World’s Cities in 2018 - Data Booklet (ST/ESA/SER.A/417), 2018).

Figure 1. Size comparisons for particulate matter particles (Particulate Matter (PM) Basics, 2016).

However, air pollution can be difficult to quantify with field measurements due to its spatial

and temporal variability (Mayer, 1999). Modeling can provide valuable insight into this variability

in pollution concentration. These models can then be used to predict human impacts and to inform

mitigation measures, such as changes to the built environment. Computational Fluid Dynamics

(CFD) provides the highest spatial and temporal resolution for air pollution modeling. Other

models, such as AEROMOD, a Gaussian Plume Model (GPM) developed by the US Environmental

Protection Agency (EPA), cannot accurately compute concentrations for complex building

geometries or time scales finer than an hour (Cimorelli et al., 2004). However, CFD’s potential for

high computational cost necessitates the development of solvers that implement efficient schemes.

CFD is increasingly being used to understand the dynamics of urban physics at scales from

the meteorological to human to address problems related to health, energy, and climate (Blocken,

2015; Nakajima et al., 2018; Zheng et al., 2010). Within cities, urban (or street) canyons, canyon-

like environments created on streets flanked by tall buildings on both sides, are of interest for air

pollution modeling due to their prevalence and tendency to trap pollutants near the ground (Eeftens

et al., 2013; Huang et al., 2021; Tauer, 2021). At this level, trapped particles increase pedestrians’

exposure to pollution. At the same time, structures along the street can significantly affect pollutant

concentrations, meaning the built environment plays a key role in mitigating the impacts of air

pollution (Huang et al., 2021; Murena & Mele, 2016; Tauer, 2021).

https://www.zotero.org/google-docs/?B2L1OC
https://www.zotero.org/google-docs/?B2L1OC
https://www.zotero.org/google-docs/?B2L1OC
https://www.zotero.org/google-docs/?B2L1OC
https://www.zotero.org/google-docs/?4niQdJ
https://www.zotero.org/google-docs/?4niQdJ

 6/31

2. Motivation, Scope, and Objectives
Air pollution modeling is currently largely limited to complex, government-run models, or

expensive software, such as Ansys Fluent, a well-known CFD software. Open-source CFD

software, such as OpenFOAM, only track wind velocity and pressure, rather than particle

concentration, with their built-in solvers. However, using open-source software enables

streamlined integration with design software, allowing architects and designers to consider air

pollution in their designs. This is demonstrated by Eddy3D (Kastner & Dogan, 2021) and Butterfly

(Chronis et al., n.d.; Maffessanti, 2019), two add-ons for Grasshopper, a parametric design

software, that utilize OpenFOAM to evaluated wind flow around buildings during the design phase.

This thesis develops a solver for aerial pollutant transport building off the existing free,

open-source OpenFOAM CFD software. It then demonstrates that this solver can be applied to a

case of an urban canyon, with geometry generated parametrically using Grasshopper, a design tool

commonly used by architects and urban designers. The successful implementation of this solver

could enable future integration into a streamlined Grasshopper tool, similar to Eddy3D and

Butterfly, that allows designers to easily evaluate the impacts of their designs on urban air pollution

during the design process. This tool would facilitate a built environment that strives to reduce the

impacts of air pollution.

3. Methods

3.1. Computational Fluid Dynamics (CFD) Simulations
Airflow speed, flow, and pollutant concentration were calculated for test cases using

OpenFOAM v5 (Weller et al., 1998) in Windows 10 using blueCFD-Core 2017. Urban canyons

are inherently turbulent airflow regimes; the large length scales attributed to buildings and the

potential for high wind speeds can lead to high Reynolds numbers (𝑅𝑒) on the order of 107 – 109

(fluids become turbulent around 𝑅𝑒 = 2 × 103). This turbulence is represented using Reynolds-

averaged Navier-Stokes (RANS) turbulence modeling. RANS is used despite the higher accuracy

of Large Eddy Simulation (LES) for street canyon airflow simulations (Chew & Norford, 2018;

Nakajima et al., 2018) due to the computational intensity of LES that makes it infeasible for

domains larger than idealized urban canyons (Elfverson & Lejon, 2021; Tauer, 2021). Similarly,

most large-scale, urban simulations use RANS turbulence modeling (Toparlar et al., 2017).

Computational efficiency is especially important in the case of a design tool as many simulations

must be run throughout the process of designing a building or neighborhood.

3.1.1. Solver and Governing Equations
This study builds on buoyantBoussinesqPimpleFoam, OpenFOAM’s transient solver for

buoyant, turbulent flow of incompressible fluids. Using a transient model instead of a steady state

one enables the handling of conditions that change with time, such as time-varying pollutant

sources. Air was assumed to be an incompressible fluid despite its gaseous state due to its low

speed (less than 100 m/s).

This solver uses the Boussinesq approximation for thermal convection, defined in Equation

1, due to the small temperature variations in the cases.

 𝜌𝑘 = 1 − 𝛽(𝑇 − 𝑇𝑟𝑒𝑓), (1)

where 𝜌𝑘 =
𝜌

𝜌𝑟𝑒𝑓
 is the effective (driving) kinematic density, 𝜌 is the fluid (air) density

[kg/m³], 𝜌𝑟𝑒𝑓 is the fluid reference density [kg/m³], 𝛽 is the thermal expansion coefficient [1/K], 𝑇

is the temperature [K], and 𝑇𝑟𝑒𝑓 is the reference temperature [K], such that

 7/31

𝛽(𝑇 − 𝑇𝑟𝑒𝑓)

𝜌𝑟𝑒𝑓
≪ 1 (2)

(i.e., 𝜌 ≈ 𝜌𝑟𝑒𝑓 and 𝑇 ≈ 𝑇𝑟𝑒𝑓). For an ideal gas, 𝛽 =
1

𝑇𝑟𝑒𝑓
, so the Boussinesq approximation

for the Navier-Stokes equation (Boussinesq equation) with gravity as a body force becomes

 ρ
∂𝒖

∂𝑡
+ 𝜌(𝒖 ⋅ ∇)𝒖 = −∇𝑝2 + 𝜇∇2𝒖 − 𝜌𝑔𝛽(𝑇 − 𝑇𝑟𝑒𝑓)𝒆𝑦, (3)

where 𝒖 is the fluid flow velocity [
𝑚

𝑠2] and 𝒆𝑦 is the unit vector in the 𝑦-direction, the direction in

which gravity points. Note that bolded variables indicate vectors, while unbolded variables are

scalars. This approximation introduces errors on the order of 1% if the temperature differences are
below 15K (or °C) for air, as in the cases evaluated in this study.

 This study uses the k-epsilon (𝑘 − 𝜀) turbulence model to simulate mean flow

characteristics (Launder & Spalding, 1974). It describes turbulence using one equation for 𝑘, the

turbulent kinetic energy [m2/s2],

 𝑘 =
𝑢𝜏

2

√𝐶𝜇

, (4)

and one for 𝜀, the turbulent kinetic energy dissipation rate [m2/s3], represented as epsilon in

OpenFOAM,

𝜀(𝑧) =

𝑢𝜏
3

𝜅(𝑧 + 𝑧0)
,

(5)

where 𝜅 is the dimensionless von Karman constant (0.41), 𝑧 is the height [m] at which the

ground-normal streamwise flow speed profile, 𝑢 [m/s], is calculated, 𝐶𝜇 is the dimensionless

turbulent viscosity constant (0.09), and 𝑧0 is the aerodynamic roughness length [m], which defines

the boundary with the roughness sublayer. 𝑧0 varies by landscape and is taken as 0.005 m, the

accepted value for unobstructed flow on unvegetated land (World Meteorological Organization,

2008).

 𝑢𝜏 =
√𝜏𝑤

𝜌
 (6)

is the friction or shear velocity [m/s], where

 𝜏𝑤 =
1

2
𝐶𝑓𝜌𝑈∞

2 (7)

is the wall shear stress [N/m2], where 𝐶𝑓 is the dimensionless skin friction coefficient, which is a

function of 𝑅𝑒 dependent on the problem geometry, and 𝑈∞ is the freestream (“far away”) velocity

[m/s2].

 8/31

3.1.2. Algorithm
This solver uses the PIMPLE algorithm, which combines the Pressure Implicit with

Splitting of Operators (PISO) (Issa, 1986) and Semi-Implicit Method for Pressure Linked Equations

(SIMPLE) (Caretto et al., 1973) algorithms. It first computes density, then velocity, then energy,

and then pressure. If pressure does not converge, a new pressure is guessed until convergence. Once

pressure converges, velocity and energy are recomputed until the solution converges. The PIMPLE

algorithm flowchart is shown in Figure 2.

Figure 2. PIMPLE algorithm flowchart (Garcia-Alcaide et al., 2017).

The PIMPLE algorithm was modified to model pollutant transport using a passive-scalar

transport equation, similar to the work of Tauer (2021), defined as

∂

∂𝑡
𝐶 + ∇ ⋅ (𝝓 𝐶) − ∇2(𝐷𝑡,𝑡 𝐶), (8)

where 𝝓 is the volumetric face-flux (flow through the cell faces) [
𝑚3

𝑠
], 𝐶 is the pollutant

concentration, and 𝐷𝑡,𝑡 is the effective time-dependent turbulent mass diffusivity of the pollutant

[
𝑚2

𝑠
], defined as

 𝐷𝑡,𝑡 = 𝐷𝑡 +
𝜈𝑡

𝑆𝑐𝑡
, (9)

 9/31

where 𝐷𝑡 is the mass diffusivity of the pollutant [
𝑚2

𝑠
], 𝜈𝑡 is the turbulent kinematic viscosity

[
𝑚2

𝑠
], and 𝑆𝑐𝑡 is the turbulent Schmidt number, a dimensionless quantity that compares the

importance of advection and diffusion for mass transport. For urban environments, 𝑆𝑐𝑡 should be

between 0.3 and 1.2 (Longo et al., 2019; Monbureau et al., 2020; Santiago et al., 2020; Shi et al.,

2019; Toja-Silva et al., 2017). Equation 9 was implemented in OpenFOAM using a scalar field

defined at the cell center (volScalarField):

volScalarField DTT (“DTT”, DT + turbulence->nut()/Sct);

Equation 8 was implemented implicitly in OpenFOAM using the finite volume method

(fvm):

 fvScalarMatrix ConcEqn
 (
 fvm::ddt(Conc)
 + fvm::div(phi, Conc)
 - fvm::laplacian(DTT, Conc)
);
 ConcEqn.solve();

4.1. Test Case: Simple Box
A box with simple boundary conditions was used to verify the solver.

4.1.1. Boundary Conditions
Table 1 lists the simple boundary conditions for this test case. The fixed downwards airflow

was 1 cm/s. The fixed concentrations at the floor and ceiling were varied for different trials.

Table 1. List of boundary conditions for simple box test case.
boundary

Field

αt 𝐶𝑜𝑛𝑐 𝜀

k 𝜈𝑡 𝑝 𝑝𝑟𝑔ℎ 𝑇 𝑢

Floor alphatJayatilleke

WallFunction

fixedValue epsilonWall

Function

kqRWall

Function

nutkWall

Function

calculated fixedFlux

Pressure

fixed

Value

noSlip

Ceiling alphatJayatilleke

WallFunction

fixedValue epsilonWall

Function

kqRWall

Function

nutkWall

Function

calculated fixedFlux

Pressure

fixed

Value

noSlip

FixedWalls alphatJayatilleke

WallFunction

zero

Gradient

epsilonWall

Function

kqRWall

Function

nutkWall

Function

calculated fixedFlux

Pressure

zero

Gradient

fixed

Value

αt is the turbulent thermal diffusivity [m2/s], represented as alphat in OpenFOAM; Conc

is the pollutant concentration [kg/m3]; 𝜀 is the turbulent kinetic energy dissipation rate [m2/s3],

represented as epsilon in OpenFOAM; 𝑘 is the turbulent kinetic energy [m2/s2]; 𝜈𝑡 is the turbulent

viscosity [m2/s], represented as nut in OpenFOAM; 𝑝 is the static pressure [kg/ms2]; 𝑝𝑟𝑔ℎ is the

total hydrostatic pressure [kg/ms2], represented as p_rgh in OpenFOAM; 𝑇 is the temperature [K];

and 𝑢 is the air velocity, represented as U in OpenFOAM [m/s2].

zeroGradient applies a zero-gradient condition from the patch internal field onto the

patch faces such that

𝜕

𝜕𝑛
𝜙 = 0. (10)

fixedFluxPressure sets the pressure gradient to the provided value such that the flux

on the boundary is that specified by the velocity boundary condition. noSlip fixes the velocity as

zero at walls.

 10/31

4.1.1.1. Wall Functions
All surfaces were modeled by wall functions to represented physical boundaries, the

simplest case. Wall functions provide larger meshes near walls to accurately predict the velocity

gradient across boundary layer without necessitating very fine mesh resolution near the walls. 𝛼𝑡

was represented by the alphatJayatillekeWallFunction boundary condition, which

describes the wall using the Jayatilleke P-function, defined in Equation 11, which accounts for the

resistance to heat transfer across the viscous sublayer (Malin, 1987).

 𝑃 = 9.24(𝛽
3

4 − 1)(1 + 0.28𝑒−0.007𝛽),

(11)

where 𝑃 is the P-function [-] and 𝛽 =
𝜎𝑙

𝜎𝑡
, where 𝜎𝑙 and 𝜎𝑡 are the dimensionless laminar

and turbulent Prandtl/Schmidt numbers, respectively. It follows that the dimensionless near-wall

temperature (𝑇+) is

𝑇+ = 𝜎𝑡(𝑢+ + 𝑃),

(12)

where 𝑢+ is the dimensionless near-wall velocity defined using the universal Law of the

Wall for momentum transfer, described in detail in Section 4.2.3.

𝜀 was represented by an epsilonWallFunction boundary condition, which provides a

wall constraint on 𝜀 for low- and high-Re turbulence models. Applying the stepwise switch

(discontinuous) method to blend the 𝜀 predictions for the viscous and inertial sublayers, if 𝑦+ <
𝑦𝑙𝑎𝑚

+ , then 𝜀 = 𝜀𝑣𝑖𝑠 , and if 𝑦+ ≥ 𝑦𝑙𝑎𝑚
+ , then 𝜀 = 𝜀𝑙𝑜𝑔. 𝜀𝑣𝑖𝑠 is 𝜀 computed by the viscous sublayer

assumptions [m2/s3], defined as

𝜀𝑣𝑖𝑠 = 2𝑤𝑘

𝜈𝑤

𝑦2 ,

(13)

where 𝑤 is the cell-corner weights [-], 𝑘 is the turbulent kinetic energy [m2/s2], 𝜈𝑤 is the

kinematic viscosity of the fluid near the wall [m2/s], and 𝑦 is the wall-normal distance [m]. 𝜀𝑙𝑜𝑔 is

𝜀 computed by the inertial sublayer assumptions [m2/s3], defined as

 𝜀𝑙𝑜𝑔 = 𝑤𝐶𝜇

𝑘
3
2

𝜈𝑡𝑤
𝑦

 ,

(14)

where 𝐶𝜇 is the empirical model constant [-] and 𝜈𝑡𝑤
 is the turbulent viscosity near the wall [m2/s].

𝑘 was represented by the kqRWallFunction boundary condition, which provides a

simple wrapper around the zero-gradient condition for the cases of high Re (turbulent) flow using

wall functions.

𝜈𝑡 was represented by the nutkWallFunction boundary condition, which provides a wall

constraint on 𝜈𝑡 based on 𝑘 for low- and high-Re turbulence models, expressed as

𝜈𝑡 = 𝑓𝑏𝑙𝑒𝑛𝑑 (𝜈𝑡𝑣𝑖𝑠, 𝜈𝑡 𝑙𝑜𝑔)

(15)

with

 11/31

 𝜈𝑡𝑣𝑖𝑠 = 0 (16)

 𝜈𝑡 𝑙𝑜𝑔 = 𝜈𝑤(
𝑦+𝜅

ln(𝐸𝑦+)
− 1) (17)

 𝑦+ = 𝐶𝜇

1
4𝑦

√𝑘

𝜈𝑤
, (18)

where 𝑓𝑏𝑙𝑒𝑛𝑑 is a wall-function blending operator between the viscous and inertial sublayer

contributions, 𝜈𝑡 𝑣𝑖𝑠 is 𝜈𝑡 computed by the viscous sublayer assumptions [m2/s], 𝜈𝑡𝑙𝑜𝑔 is

𝜈𝑡 computed by the inertial sublayer assumptions [m2/s], 𝜈𝑤 is the kinematic viscosity of fluid near

wall [m2/s], 𝑦+ is the estimated wall-normal height of the cell center in wall units, and 𝐸 is the wall

roughness parameter [-].

4.1.2. Schemes
The temporal scheme (ddtSchemes) was a Euler implicit time scheme

𝜕

𝜕𝑡
(𝜙) =

𝜙 − 𝜙0

Δ𝑡
. (19)

For the spatial schemes, the gradient scheme (gradSchemes) was least-squares, which

calculates the cell gradient using least squares.

All divergence schemes (divSchemes) were Gauss upwind, except for

div((nuEff*dev2(T(grad(U))))), which was Gauss linear. Gauss upwind, defined in

Equation 20, is first order and bounded. It sets the face value according to the upstream value and

is equivalent to assuming that the cell values are isotropic (same in all directions) with a value that

represents the average value. Its normalized variable diagram is shown in Figure 3.

 𝜙𝑓 = 𝜙𝑐 (20)

Figure 3. Normalized variable diagram for upwind divergence scheme (Upwind Divergence

Scheme, 2017).

 12/31

Gauss linear, defined in Equation 21, is second order and unbounded. It is often used for

isotropic meshes due to low dissipation. Its normalized variable diagram is shown in Figure 4.

 𝜙𝑓 = 0.5(𝜙𝑐 + 𝜙𝑑) (21)

Figure 4. Normalized variable diagram for linear divergence scheme (Linear Divergence Scheme,

2017).

The Laplacian scheme (laplacianSchemes) was Gauss linear corrected, which is

unbounded, second order, and conservative. The interpolation scheme

(interpolationSchemes) was linear (central differencing). The surface-normal gradient

scheme (snGradSchemes) was corrected, an explicit central-difference scheme with non-

orthogonal correction defined as

 ∇𝑓
⊥𝑄 = 𝛼

𝑄𝑃 − 𝑄𝑁

|𝒅|
+ (�̂� − 𝛼�̂�) ⋅ (∇𝑄)𝑓 , (22)

where 𝛼 =
1

cos (𝜃)
. The first term is the implicit scheme and the second is the explicit

correction.

4.1.3. Computational Grid
The geometry was meshed using a coarse, uniform grid, as shown in Figure 5, to reduce

computational intensity and simulation runtime.

 13/31

Figure 5. Meshed box in Paraview.

4.1.4. Results
The results of the test case converged for both small and large concentration gradients, as

shown in Table 1. Convergence is demonstrated by the residuals approaching zero as time

increases. Only the residuals for concentration are shown in Table 1, but similar results were

achieved for the other variables.

Table 1. Test case results for (a) small and (b) large concentration gradient. Semi-log plots of

residuals show that residuals are below 10-5 for both cases.
 (a) Ceiling: 2 μg/s, floor: 1 μg/s (b) Ceiling: 2 kg/s, floor: 1 μg/s

0s

800s

 14/31

1200s

1600s

2000s

Residuals

After the run of the test case verified the solver, the solver was applied to a more realistic

case: buildings in an urban canyon.

-6

-5

-4

-3

-2

-1

0

2

12
8

25
4

38
0

50
6

63
2

75
8

88
4

10
1

0

11
3

6

12
6

2

13
8

8

15
1

4

16
4

0

17
6

6

18
9

2

lo
g(

C
o

n
ce

n
tr

at
io

n
 R

es
id

u
al

s)

Time [s]
-6

-5

-4

-3

-2

-1

0

2

12
8

25
4

38
0

50
6

63
2

75
8

88
4

10
1

0

11
3

6

12
6

2

13
8

8

15
1

4

16
4

0

17
6

6

18
9

2

lo
g(

C
o

n
ce

n
tr

at
io

n
 R

es
id

u
al

s)

Time [s]

 15/31

4.2. Application: Urban Canyon

4.2.1. Parametric Urban Canyon Model
A parametric model of a symmetric urban canyon, shown in Figure 6, was modeled in

Grasshopper, a visual programming environment that runs within the Rhinoceros 3D computer-

aided design (CAD) application. This model allows building dimensions to be easily changed to

explore their effect on the spread of air pollution in an urban canyon. It consists of two identical

buildings, separated by a street, with four modifiable parameters: 𝑋, the building width; 𝑌, the

building height (or 𝐻, the canyon height); 𝑍, the building depth (or 𝐿, the length of the street

canyon); and 𝐷, the width of the street, defined as the distance between the buildings (or 𝑊, the

canyon width). The left building is defined as a rectangular box with the front left point

(− (𝑋 +
𝐷

2
) ,

𝑌

2
, 0) and the back right point (−

𝐷

2
, −

𝑌

2
, 𝑍). The right building is defined as a

rectangular box with the front left point (
𝐷

2
,

𝑌

2
, 0) and the back right point (𝑋 +

𝐷

2
, −

𝑌

2
, 𝑍).

Figure 6. Model of urban canyon labeled with dimensions.

Vardoulakis et al. (2003) classify street canyons into three categories based on the aspect

ratio,
𝑌

𝐷
:

1. Regular canyon: aspect ratio ≈ 1

2. Avenue canyon: aspect ratio < 0.5

3. Deep canyon: aspect ratio ≈ 2

These three categories can be further sub-classified by the distance between two major

intersections along the street, defined as the length of the street canyon (𝑍):

1. Short canyon:
𝑍

𝑌
≈ 3

2. Medium canyon:
𝑍

𝑌
≈ 5

3. Long canyon:
𝑍

𝑌
≈ 7

By creating a parametric model of urban canyon geometry, the effect of these different

canyon dimensions on air pollution dispersion can be evaluated. The geometric parametrization

was implemented in Grasshopper with the recipe shown in Figure 7. The two boxes were merged

into a single boundary representation (BREP). This means that the boxes became a solid
represented as a collection of connected surface elements, which define the boundary between

interior and exterior points. This single BREP was meshed as the geometry for the CFD model.

 16/31

Figure 7. Grasshopper script for parametric urban canyon model.

4.2.2. Virtual Wind Tunnel
The modeled urban canyon was simulated in a wind tunnel to ensure proper boundary

conditions. The dimensions of the wind tunnel were selected relative to the building height, based

on the Best Practice Guidelines for the CFD Simulation of Flows in the Urban Environment from

COST Action 732 (Schatzmann & Britter, 2011). As shown in Figure 8, the wind tunnel was created

by drawing a buffer of 5 times the building height on all sides except for the outlet, which had a

buffer of 15 times the building height, and the bottom, which was coplanar with the ground.

(a) (b)

Figure 8. (a) Side and (b) top view schematics of simulated building (grey) in virtual wind tunnel

(blue), not to scale. Ground highlighted in green.

4.2.3. Computational Grid
The full geometry (buildings and wind tunnel) was baked in Grasshopper, exported as a

STEP (.stp) file, and imported into SALOME version 9.7.0 (Salome Platform, 2022) for meshing.

SALOME is an open-source scientific computing environment developed by Électricité de France

(EDF), Open Cascade, and the French Alternative Energies and Atomic Energy Commission

(CEA) that is often used with OpenFOAM. Within SALOME, the geometry was separated from

the air, as CFD only evaluates fluid flow, excluding changes to solids. Each of the boundaries (wind

tunnel inlet, outlet, sides, top, ground, and buildings) were then identified to assign boundary

conditions in OpenFOAM. A coarse, uniform grid, as shown in Figure 9a, was selected for the

initial test cases to reduce computational intensity and simulation runtime. This mesh was then

improved to a non-uniform grid in a later trial, as shown in Figure 9b.

 17/31

(a)

(b)

Figure 9. (a) Meshed regions with non-uniform grid shown in Paraview and (b) slice of non-

uniform mesh in SALOME.

Uniform grids may not accurately predict the velocity gradient across the boundary layer,

which forms near wall surfaces. Ideally, for turbulent flows, the first cell from the wall lies within

the very thin viscous sublayer. However, for complex flows and/or geometries, achieving this goal

dramatically increases the computational time due to the required fineness of the mesh near the

wall. A wall function was thus employed for the boundary condition near the wall to enable the use

of a relatively sparser mesh near the wall, reducing the computational time. For the wall function

to be appropriate, the non-dimensional distance from the wall to the first node from the wall (y+)

must be selected to ensure that the flow is simulated within the appropriate region of the turbulent

boundary layer. Since a k-ε model is used for the CFD simulation under conditions without severe

pressure gradients or strong non-equilibrium flows, standard (rather than non-equilibrium) wall

functions were implemented. These wall functions are valid for 30 > y+ > 300, the fully turbulent

zone, as shown in Figure 10. All cases should thus ensure 30 > y+ > 300. In this zone, the log-law,

defined in Equation 23, holds.

 𝑢+ =
1

𝜅
ln(𝑦+) + 𝐶, (23)

 18/31

where 𝑢+ is the non-dimensionalized velocity at a non-dimensionalized distance of 𝑦+

parallel from the wall (defined in Equation 24), 𝜅 is the von Kármán constant (0.41), and 𝐶 is a

constant, which is approximately 5.45 for smooth walls.

 𝑦+ =
𝑦𝑢𝜏

𝜈
, (24)

where 𝑦 is the absolute distance from the wall [m], 𝑢𝜏 is the friction velocity, and 𝜈 is the

kinematic viscosity [m2/s].

Figure 10. The Law of the Wall (Mehta et al., 2018).

4.2.4. Simplified Conditions
The urban canyon geometry was placed inside a virtual wind tunnel (i.e., a box) with the

simplified boundary conditions described in Table 2, mimicking those in Table 1. Additionally, the

same schemes were used as those used in the simple box test case.

Table 2. List of simplified boundary conditions for simulated wind tunnel.
boundary

Field
αt 𝐶𝑜𝑛𝑐 𝜀 k 𝜈𝑡 𝑝 𝑝𝑟𝑔ℎ 𝑇 𝑢

Inlet calculated
fixed
Value

epsilonWall
Function

kqRWall
Function

nutkWall
Function

calculated
fixedFlux
Pressure

fixed
Value

fixed
Value

Outlet calculated
fixed

Value

epsilonWall

Function

kqRWall

Function

nutkWall

Function
calculated

fixedFlux

Pressure

zero

Gradient
noSlip

Top
alphatJayatilleke

WallFunction

zero

Gradient

epsilonWall

Function

kqRWall

Function

nutkWall

Function
calculated

fixedFlux

Pressure

fixed

Value
noSlip

Ground
alphatJayatilleke

WallFunction

zero

Gradient

epsilonWall

Function

kqRWall

Function

nutkWall

Function
calculated

fixedFlux

Pressure

fixed

Value
noSlip

Sides
alphatJayatilleke

WallFunction

zero

Gradient

epsilonWall

Function

kqRWall

Function

nutkWall

Function
calculated

fixedFlux

Pressure

zero

Gradient
noSlip

Buildings
alphatJayatilleke

WallFunction
zero

Gradient
epsilonWall

Function
kqRWall
Function

nutkWall
Function

calculated
fixedFlux
Pressure

fixed
Value

noSlip

4.2.5. Results
The results of the urban canyon case with simplified boundary conditions are shown in

Figure 11. Convergence is demonstrated by the residuals approaching zero as time increases. Only

the residuals for concentration as shown in Figure 11c, but similar results were achieved for the

other variables. While the solver did converge for this test case, the results are not especially useful

due to the coarse mesh, especially around the buildings.

 19/31

(a)

(b)

(c)

Figure 11. Results of urban canyon simulation with simplified boundary condition after (a) 400s

and (b) 2000s. (c) shows the semi-log concentration residuals plot.

Future work would model an urban canyon with boundary conditions that more accurately

model airflow within the atmospheric boundary layer (ABL). Future work is described in more

detail in Section 5.

-7

-6

-5

-4

-3

-2

-1

0

1
54

10
7

16
0

21
3

26
6

31
9

37
2

42
5

47
8

53
1

58
4

63
7

69
0

74
3

79
6

84
9

90
2

95
5

lo
g(

C
o

n
ce

n
tr

at
io

n
 R

es
id

u
al

s)

Time [s]

 20/31

4.2.6. ABL Boundary Conditions
The urban canyon geometry was placed inside of a virtual wind tunnel with the boundary

conditions described in Table 3.

Table 3. List of boundary conditions for simulated wind tunnel. * indicates inlet boundary

conditions in the ABL.
boundary

Field
αt 𝐶𝑜𝑛𝑐 𝜀 k 𝜈𝑡 𝑝 𝑝𝑟𝑔ℎ 𝑇 𝑢

Inlet calculated
fixed

Value
* * calculated

total

Pressure

fixedFlux

Pressure
fixedValue *

Outlet calculated
zero

Gradient

zero

Gradient

zero

Gradient
calculated

zero

Gradient

zero

Gradient

zero

Gradient

zero

Gradient

Top symmetry symmetry symmetry symmetry symmetry symmetry symmetry symmetry symmetry

Ground
alphatJayatilleke

WallFunction

zero

Gradient

epsilonWall

Function

kqRWall

Function

nutkWall

Function

zero

Gradient

fixedFlux

Pressure
fixedValue noSlip

Sides symmetry symmetry symmetry symmetry symmetry symmetry symmetry symmetry symmetry

Buildings
alphatJayatilleke

WallFunction

zero

Gradient

epsilonWall

Function

kqRWall

Function

nutkWall

Function

zero

Gradient

fixedFlux

Pressure
fixedValue noSlip

where the inlet velocity is

𝑢(𝑧) =

𝑢𝜏

𝜅
ln (

𝑧 + 𝑧0

𝑧0
) ,

(25)

where 𝜅 is the von Karman constant (0.41); 𝑧 is the height [m] at which the ground-normal

streamwise flow speed profile, 𝑢 [m/s], is calculated; 𝑧0 is the aerodynamic roughness length [m],

which defines the boundary with the roughness sublayer; and 𝐶𝜇 is the dimensionless turbulent

viscosity constant (0.09). 𝑧0 varies by landscape and is taken as 0.005 m, the accepted value for

unobstructed flow on unvegetated land (World Meteorological Organization, 2008).

4.2.6.1. Inlet
The inlet boundary conditions were constructed to model flow development in the

atmospheric boundary layer (Richards & Hoxey, 1993), shown in Figure 12. In the urban canopy

layer, air is highly turbulent with a logarithmic inlet velocity profile. The log flow profile does not

extend to ground level (𝑧 = 0) but only a height 𝑑0 above the ground.

Figure 12. Properties and sublayers of the atmospheric boundary layer (ABL), including the inlet

velocity profile (Establishment of an Atmospheric Flow Laboratory, 2016).

 21/31

4.2.6.2. Top
The symmetry boundary condition was used for all variables at the top of the domain

because the area of study falls within the surface boundary layer (SBL) and the top of the domain

is very far away from the area of interest. Should the area of study fall within the convective

boundary layer (CBL), the top of the domain would act as an outlet to model vertical motion due

to buoyancy.

5. Discussion, Conclusions, and Further Work
This thesis developed an open-source CFD solver for pollutant transport, building off an

existing OpenFOAM solver. This solver was then demonstrated to converge for example cases with

simple boundary conditions, largely consisting of wall functions. The cases used geometry

generated parametrically in Grasshopper, showing the potential for this solver to be part of a

streamlined design tool, similar to Eddy3D and Butterfly, to enable designers to integrate air

pollution considerations into their designs, beyond just air velocity and pressure.

Subsequently, the next step in this work would be to integrate this pollutant solver into

Grasshopper components (most likely programmed in C#) compatible with Eddy3D and Butterfly.

These two Grasshopper plugins already connect Rhino geometry and Grasshopper scripting to

OpenFOAM through blueCFD-Core running on Windows, but only calculate wind velocity and

pressure, rather than pollutant concentrations. Eddy3D provides inlet boundary conditions for both

uniform and ABL flow, while Butterfly provides all other boundary conditions (wall functions,

zeroGradient, fixedValue, and calculated) and meshing options. Integrating air pollution

would involve connecting Grasshopper to the solver with pollutant transport,

buoyantBoussinesqPimpleFoamS, instead of simpleFoam, and defining the necessary

concentration boundary conditions.

The most significant challenge when running the OpenFOAM simulations with the

pollutant solver was floating point errors (sigFpe), which occur when the solver must do

something impossible with a floating-point number (positive or negative whole number with a

decimal point), such as divide by zero. The two most important factors to consider to avoid floating

point errors in CFD are boundary conditions and meshing.

Appropriate boundary conditions are necessary to ensure realistic conditions, but also to

ensure convergence. Having too many boundary conditions that are being calculated, or too many

Neumann-like boundary conditions, such as symmetry or zeroGradient, which require the

gradient to be zero or two values to be the same without forcing an absolute number like a

fixedValue boundary condition, could make the matrix 𝐴 in the linear system being solved, 𝐴𝑥 =
𝑏, close to being singular. If 𝐴 is singular, it is non-invertible, so the system cannot be solved as

𝑥 = 𝐴−1𝑏, causing the OpenFOAM solution to diverge as 𝐴 becomes singular.

Meshing must be properly performed to identify all surfaces with distinct boundary

conditions and exclude all non-fluid regions. Additionally, mesh sizing in all directions (space step:

Δ𝑥, Δ𝑦, and Δ𝑧 [m]) must be chosen with the time step (deltaT [s]) such that the CFL condition

is satisfied. The CFL condition is important because it is a necessary condition for convergence for

the partial differential equations implemented in this solver. Thus, if the CFL condition is not

satisfied, the solution will diverge. In three dimensions, the CFL condition is defined as

𝐶 =

𝑢𝑥Δ𝑡

Δ𝑥
+

𝑢𝑦Δ𝑡

Δy
+

𝑢𝑧Δ𝑡

Δz
≤ 𝐶𝑚𝑎𝑥 = 1,

(26)

where 𝐶 is the dimensionless Courant number, 𝑢 is the velocity [m/s], Δ𝑡 is the time step

[s], and Δ𝑥, Δ𝑦, and Δ𝑧 are the length intervals [m] in the x-, y-, and z-directions, respectively. In

OpenFOAM, deltaT can either be defined as a constant or chosen to be runtime modifiable with

a maximum Courant number (maxCo) of 1.

 22/31

While this thesis demonstrated the applicability of the pollutant solver for simplified

boundary conditions largely composed of wall functions, it has not been tested for more complex,

realistic conditions, such as an inlet ABL flow velocity or symmetry boundary conditions for the

wind tunnel. The geometry tested was also quite simple, composed of boxes, so future cases could

include more complex geometry, such as trees or additional surrounding buildings. Further work is

necessary to validate this solver, especially for conditions that better represent an urban canyon

environment. Validation could include tests with different geometry and boundary conditions, finer

meshing, and longer time scales. The results of these tests should then be compared to results from

more established air pollution models, or from representative experiments, either at scale or in

physical wind tunnels.

Acknowledgments
Thank you to Professor Les Norford for serving as my thesis advisor and providing feedback

throughout this process. Thank you to Dr. Shabnam Raayai-Ardakani at the Rowland Institute at

Harvard University and to Dr. Lup Wai Chew at the National University of Singapore for

assistance with OpenFOAM, and to Sarah Mokhtar for assistance with Butterfly and Eddy3D.

Further thanks to the 2.29/2.290: Numerical Fluid Mechanics course staff, Professor Pierre

Lermusiaux and Teaching Assistants Wael Ali and Manan Doshi, for teaching me about

numerical methods related to fluid mechanics simulations.

 23/31

Appendix A – buoyantBoussinesqPimpleFoamS.C
Modifications to buoyantBoussinesqPimpleFoam.C are highlighted in orange.

/*---*\
 ========= |
 \\ / F ield | OpenFOAM: The Open Source CFD Toolbox
 \\ / O peration |
 \\ / A nd | Copyright (C) 2011-2016 OpenFOAM Foundation
 \\/ M anipulation |

License
 This file is part of OpenFOAM.

 OpenFOAM is free software: you can redistribute it and/or modify it
 under the terms of the GNU General Public License as published by
 the Free Software Foundation, either version 3 of the License, or
 (at your option) any later version.

 OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
 for more details.

 You should have received a copy of the GNU General Public License
 along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.

Application
 buoyantBoussinesqPimpleFoamS

Description
 Modified buoyantBoussinesqPimpleFoam solver to include
 a passive scalar transport equation with
 turbulent Schmidt number.

---/

#include "fvCFD.H"
#include "singlePhaseTransportModel.H"
#include "turbulentTransportModel.H"
#include "radiationModel.H"
#include "fvOptions.H"
#include "pimpleControl.H"

// * //

int main(int argc, char *argv[])
{
 #include "postProcess.H"
 #include "setRootCase.H"
 #include "createTime.H"
 #include "createMesh.H"
 #include "createControl.H"
 #include "createFields.H"
 #include "createFvOptions.H"
 #include "createTimeControls.H"
 #include "CourantNo.H"
 #include "setInitialDeltaT.H"
 #include "initContinuityErrs.H"

 turbulence->validate();

 24/31

 // * //

 Info<< "\nStarting time loop\n" << endl;

 while (runTime.run())
 {
 #include "readTimeControls.H"
 #include "CourantNo.H"
 #include "setDeltaT.H"

 runTime++;

 Info<< "Time = " << runTime.timeName() << nl << endl;

 // --- Pressure-velocity PIMPLE corrector loop
 while (pimple.loop())
 {
 #include "UEqn.H"
 #include "TEqn.H"

 // --- Pressure corrector loop
 while (pimple.correct())
 {
 #include "pEqn.H"
 }

 if (pimple.turbCorr())
 {
 laminarTransport.correct();
 turbulence->correct();
 }
 }

 // *** Passive Scalar Transport ***
 // Create a scalar field with an effective mass diffusivity
 volScalarField DTT ("DTT", DT + turbulence->nut()/Sct);
 // Define scalar transport equation
 fvScalarMatrix ConcEqn
 (
 fvm::ddt(Conc)
 + fvm::div(phi, Conc)
 - fvm::laplacian(DTT, Conc)
) ;
 ConcEqn.solve();
 // *** End Passive Scalar Transport ***

 runTime.write();

 Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s"
 << "ClockTime = " << runTime.elapsedClockTime() << " s"
 << nl << endl;
 }

 Info<< "End\n" << endl;

 return 0;
}

// *** //

 25/31

Appendix B – createFields.H
Modifications to original createFields.H are highlighted in orange.

Info<< "Reading thermophysical properties\n" << endl;

Info<< "Reading field T\n" << endl;
volScalarField T
(
 IOobject
 (
 "T",
 runTime.timeName(),
 mesh,
 IOobject::MUST_READ,
 IOobject::AUTO_WRITE
),
 mesh
);

// *** Create passive scalar field ***
Info<< "Reading field Conc\n" << endl;
volScalarField Conc
(
 IOobject
 (
 "Conc",
 runTime.timeName(),
 mesh,
 IOobject::MUST_READ,
 IOobject::AUTO_WRITE
),
 mesh
) ;
// *** End passive scalar field **

Info<< "Reading field p_rgh\n" << endl;
volScalarField p_rgh
(
 IOobject
 (
 "p_rgh",
 runTime.timeName(),
 mesh,
 IOobject::MUST_READ,
 IOobject::AUTO_WRITE
),
 mesh
);

Info<< "Reading field U\n" << endl;
volVectorField U
(
 IOobject
 (
 "U",
 runTime.timeName(),
 mesh,
 IOobject::MUST_READ,
 IOobject::AUTO_WRITE
),

 26/31

 mesh
);

#include "createPhi.H"
#include "readTransportProperties.H"

Info<< "Creating turbulence model\n" << endl;
autoPtr<incompressible::turbulenceModel> turbulence
(
 incompressible::turbulenceModel::New(U, phi, laminarTransport)
);

// Kinematic density for buoyancy force
volScalarField rhok
(
 IOobject
 (
 "rhok",
 runTime.timeName(),
 mesh
),
 1.0 - beta*(T - TRef)
);

// kinematic turbulent thermal conductivity m2/s
Info<< "Reading field alphat\n" << endl;
volScalarField alphat
(
 IOobject
 (
 "alphat",
 runTime.timeName(),
 mesh,
 IOobject::MUST_READ,
 IOobject::AUTO_WRITE
),
 mesh
);

#include "readGravitationalAcceleration.H"
#include "readhRef.H"
#include "gh.H"

volScalarField p
(
 IOobject
 (
 "p",
 runTime.timeName(),
 mesh,
 IOobject::NO_READ,
 IOobject::AUTO_WRITE
),
 p_rgh + rhok*gh
);

label pRefCell = 0;
scalar pRefValue = 0.0;
setRefCell

 27/31

(
 p,
 p_rgh,
 pimple.dict(),
 pRefCell,
 pRefValue
);

if (p_rgh.needReference())
{
 p += dimensionedScalar
 (
 "p",
 p.dimensions(),
 pRefValue - getRefCellValue(p, pRefCell)
);
}

mesh.setFluxRequired(p_rgh.name());

#include "createMRF.H"
#include "createIncompressibleRadiationModel.H"

 28/31

Appendix C – readTransportProperties.H
Modifications to original readTransportProperties.H are highlighted in orange.

singlePhaseTransportModel laminarTransport (U, phi);

// Thermal expansion coefficient [1/K]
dimensionedScalar beta
(
"beta",
dimless/dimTemperature,
laminarTransport
);

// Reference temperature [K]
dimensionedScalar TRef ("TRef", dimTemperature, laminarTransport);

// Laminar Prandtl number []
dimensionedScalar Pr("Pr", dimless, laminarTransport);

// Turbulent Prandtl number []
dimensionedScalar Prt("Prt", dimless, laminarTransport);

// Mass Diffusivity [m²/s]
dimensionedScalar DT("DT", dimLength*dimLength/dimTime, laminarTransport);

// *** Turbulent Schmidt Number [] ***
dimensionedScalar Sct("Sct", dimless, laminarTransport);

 29/31

References
Air pollution. (n.d.). World Health Organization. Retrieved December 8, 2020, from

https://www.who.int/westernpacific/health-topics/air-pollution

Blocken, B. (2015). Computational Fluid Dynamics for urban physics: Importance, scales,

possibilities, limitations and ten tips and tricks towards accurate and reliable simulations.

Building and Environment, 91, 219–245. https://doi.org/10.1016/j.buildenv.2015.02.015

Caretto, L. S., Gosman, A. D., Patankar, S. V., & Spalding, D. B. (1973). Two calculation

procedures for steady, three-dimensional flows with recirculation. In H. Cabannes & R.

Temam (Eds.), Proceedings of the Third International Conference on Numerical Methods

in Fluid Mechanics (pp. 60–68). Springer. https://doi.org/10.1007/BFb0112677

Chew, L. W., & Norford, L. K. (2018). Pedestrian-level wind speed enhancement in urban street

canyons with void decks. Building and Environment, 146, 64–76.

https://doi.org/10.1016/j.buildenv.2018.09.039

Chronis, A., Dubor, A., Cabay, E., & Roudsari, M. S. (n.d.). Integration of CFD in Computational

Design. 10.

Cimorelli, A., Perry, S., Venkatram, A., Weil, J., Paine, R., Wilson, R., Lee, R., Peters, W., Brode,

R., & Paumier, J. (2004). AERMOD: description of model formulation, US Environmental
Protection Agency. EPA-454/R-03-004.

Eeftens, M., Beekhuizen, J., Beelen, R., Wang, M., Vermeulen, R., Brunekreef, B., Huss, A., &

Hoek, G. (2013). Quantifying urban street configuration for improvements in air pollution

models. Atmospheric Environment, 72, 1–9.

https://doi.org/10.1016/j.atmosenv.2013.02.007

Elfverson, D., & Lejon, C. (2021). Use and Scalability of OpenFOAM for Wind Fields and

Pollution Dispersion with Building- and Ground-Resolving Topography. Atmosphere,

12(9), 1124. https://doi.org/10.3390/atmos12091124

Establishment of an Atmospheric Flow Laboratory. (2016, August 16). Establishment of an

Atmospheric Flow Laboratory. https://bmeafl.com/the-project-proposal/

Garcia-Alcaide, V. M., Pallejà Cabré, S., Castilla, R., Gamez-Montero, P., Romeu, J., Pàmies, T.,

Amate, J., & Milan, N. (2017). Numerical study of the aerodynamics of sound sources in

a bass-reflex port. Engineering Applications of Computational Fluid Mechanics, 11, 210–
224. https://doi.org/10.1080/19942060.2016.1277166

Huang, Y., Lei, C., Liu, C.-H., Perez, P., Forehead, H., Kong, S., & Zhou, J. L. (2021). A review

of strategies for mitigating roadside air pollution in urban street canyons. Environmental

Pollution, 280, 116971. https://doi.org/10.1016/j.envpol.2021.116971

Issa, R. I. (1986). Solution of the implicitly discretised fluid flow equations by operator-splitting.

Journal of Computational Physics, 62(1), 40–65. https://doi.org/10.1016/0021-

9991(86)90099-9

Kastner, P., & Dogan, T. (2021). Eddy3D: A toolkit for decoupled outdoor thermal comfort

simulations in urban areas. Building and Environment, 108639.

https://doi.org/10.1016/j.buildenv.2021.108639

Launder, B. E., & Spalding, D. B. (1974). The numerical computation of turbulent flows. Computer

Methods in Applied Mechanics and Engineering, 3(2), 269–289.

https://doi.org/10.1016/0045-7825(74)90029-2

Longo, R., Fürst, M., Bellemans, A., Ferrarotti, M., Derudi, M., & Parente, A. (2019). CFD

dispersion study based on a variable Schmidt formulation for flows around different

configurations of ground-mounted buildings. Building and Environment, 154, 336–347.

https://doi.org/10.1016/j.buildenv.2019.02.041

Maffessanti, V. (2019). Wind and Urban Spaces. Evaluation of a CFD Parametric Framework for

Early‐Stage Design. Building Simulation Applications BSA 2019, 16.

https://www.ladybug.tools/assets/pdf/Wind_and_Urban_Spaces.pdf

 30/31

Malin, M. R. (1987). On the calculation of heat transfer rates in fully turbulent wall flows. Applied

Mathematical Modelling, 11(4), 281–284. https://doi.org/10.1016/0307-904X(87)90143-0

Mayer, H. (1999). Air pollution in cities. Atmospheric Environment, 33(24), 4029–4037.

https://doi.org/10.1016/S1352-2310(99)00144-2

Mehta, D., Thota Radhakrishnan, A., van Lier, J., & Clemens, F. (2018). A Wall Boundary

Condition for the Simulation of a Turbulent Non-Newtonian Domestic Slurry in Pipes.

Water, 10(2), 124. https://doi.org/10.3390/w10020124

Monbureau, E. M., Heist, D. K., Perry, S. G., & Tang, W. (2020). Modeling lateral plume deflection

in the wake of an elongated building. Atmospheric Environment, 234, 117608.

https://doi.org/10.1016/j.atmosenv.2020.117608

Murena, F., & Mele, B. (2016). Effect of balconies on air quality in deep street canyons.

Atmospheric Pollution Research, 7(6), 1004–1012.

https://doi.org/10.1016/j.apr.2016.06.005

Nakajima, K., Ooka, R., & Kikumoto, H. (2018). Evaluation of k-ε Reynolds stress modeling in an

idealized urban canyon using LES. Journal of Wind Engineering and Industrial

Aerodynamics, 175, 213–228. https://doi.org/10.1016/j.jweia.2018.01.034

Particulate Matter (PM) Basics. (2016, April 19). [Overviews and Factsheets]. US EPA.

https://www.epa.gov/pm-pollution/particulate-matter-pm-basics

Richards, P. J., & Hoxey, R. P. (1993). Appropriate boundary conditions for computational wind

engineering models using the k-ϵ turbulence model. Journal of Wind Engineering and

Industrial Aerodynamics, 46–47, 145–153. https://doi.org/10.1016/0167-6105(93)90124-

7

Salome Platform. (2022). Salome Platform. https://www.salome-platform.org/

Santiago, J. L., Sanchez, B., Quaassdorff, C., de la Paz, D., Martilli, A., Martín, F., Borge, R.,

Rivas, E., Gómez-Moreno, F. J., Díaz, E., Artiñano, B., Yagüe, C., & Vardoulakis, S.

(2020). Performance evaluation of a multiscale modelling system applied to particulate

matter dispersion in a real traffic hot spot in Madrid (Spain). Atmospheric Pollution

Research, 11(1), 141–155. https://doi.org/10.1016/j.apr.2019.10.001

Schatzmann, M., & Britter, R. (2011). Quality assurance and improvement of micro-scale

meteorological models. International Journal of Environment and Pollution, 44(1/2/3/4),

139. https://doi.org/10.1504/IJEP.2011.038412

Shi, X., Sun, D. (Jian), Fu, S., Zhao, Z., & Liu, J. (2019). Assessing On-Road Emission Flow

Pattern under Car-Following Induced Turbulence Using Computational Fluid Dynamics

(CFD) Numerical Simulation. Sustainability, 11(23), 6705.

https://doi.org/10.3390/su11236705

Tauer, A. (2021). CFD Modeling of Aerial Dispersion of Pollutants in Urban Environments

[Marquette University].

https://epublications.marquette.edu/cgi/viewcontent.cgi?article=1660&context=theses_op

en

The World’s Cities in 2018—Data Booklet (ST/ESA/SER.A/417). (2018). United Nations,

Department of Economic and Social Affairs, Population Division.

https://digitallibrary.un.org/record/3799524?ln=en

Toja-Silva, F., Chen, J., Hachinger, S., & Hase, F. (2017). CFD simulation of CO2 dispersion from

urban thermal power plant: Analysis of turbulent Schmidt number and comparison with

Gaussian plume model and measurements. Journal of Wind Engineering and Industrial

Aerodynamics, 169, 177–193. https://doi.org/10.1016/j.jweia.2017.07.015

Toparlar, Y., Blocken, B., Maiheu, B., & van Heijst, G. J. F. (2017). A review on the CFD analysis

of urban microclimate. Renewable and Sustainable Energy Reviews, 80, 1613–1640.

https://doi.org/10.1016/j.rser.2017.05.248

 31/31

Upwind divergence scheme. (2017). OpenFOAM: User Guide V2112.

https://www.openfoam.com/documentation/guides/latest/doc/guide-schemes-divergence-

upwind.html

Vardoulakis, S., Fisher, B. E. A., Pericleous, K., & Gonzalez-Flesca, N. (2003). Modelling air

quality in street canyons: A review. Atmospheric Environment, 37(2), 155–182.

https://doi.org/10.1016/S1352-2310(02)00857-9

Weller, H. G., Tabor, G., Jasak, H., & Fureby, C. (1998). A tensorial approach to computational

continuum mechanics using object-oriented techniques. Computers in Physics, 12(6), 620.

https://doi.org/10.1063/1.168744

World Meteorological Organization. (2008). Guide to Meteorological Instruments and Methods of

Observation (WMO-No. 8) (Seventh edition). World Meteorological Organization.

https://www.posmet.ufv.br/wp-content/uploads/2016/09/MET-474-WMO-Guide.pdf

Zheng, M. H., Guo, Y. R., Ai, X. Q., Qin, T., Wang, Q., & Xu, J. M. (2010). Coupling GIS with

CFD modeling to simulate urban pollutant dispersion. 2010 International Conference on

Mechanic Automation and Control Engineering, 1785–1788.

https://doi.org/10.1109/MACE.2010.5536018

	Table of Contents
	Table of Figures
	Table of Tables
	1. Background
	2. Motivation, Scope, and Objectives
	3. Methods
	3.1. Computational Fluid Dynamics (CFD) Simulations
	3.1.1. Solver and Governing Equations
	3.1.2. Algorithm

	4.
	4.1. Test Case: Simple Box
	4.1.1. Boundary Conditions
	4.1.1.1. Wall Functions

	4.1.2. Schemes
	4.1.3. Computational Grid
	4.1.4. Results

	4.2. Application: Urban Canyon
	4.2.1. Parametric Urban Canyon Model
	4.2.2. Virtual Wind Tunnel
	4.2.3. Computational Grid
	4.2.4. Simplified Conditions
	4.2.5. Results
	4.2.6. ABL Boundary Conditions
	4.2.6.1. Inlet
	4.2.6.2. Top

	5. Discussion, Conclusions, and Further Work
	Acknowledgments
	Appendix A – buoyantBoussinesqPimpleFoamS.C
	Appendix B – createFields.H
	Appendix C – readTransportProperties.H
	References

