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Abstract

Across the sciences, social sciences and engineering, applied statisticians seek to
build understandings of complex relationships from increasingly large datasets. In
statistical genetics, for example, we observe up to millions of genetic variations in
each of thousands of individuals, and wish to associate these variations with the
development of disease. For ‘high dimensional’ problems like this, the languages of
linear modeling and Bayesian statistics appeal because they provide interpretability,
coherent uncertainty, and the capacity for information sharing across related datasets.
But at the same time, high dimensionality introduces several challenges not solved by
existing methodology.

This thesis addresses three challenges that arise when applying the Bayesian
methodology in high dimensions. A first challenge is how to apply hierarchical modeling,
a mainstay of Bayesian inference, to share information between multiple linear models
with many covariates (for example, genetic studies of multiple related diseases). The
first part of the thesis demonstrates that the default approach to hierarchical linear
modeling fails in high dimensions, and presents a new, effective model for this regime.
The second part of the thesis addresses the computational challenge presented by
Bayesian inference in high dimensions — existing methods demand time that scales
super-linearly with the number of covariates. We present two algorithms that permit
fast, accurate inferences by leveraging (i) low rank approximations of data or (ii)
parallelism across a certain class of Markov chain Monte Carlo algorithms. The final
part of the thesis addresses the challenge of evaluation. Modern statistics provides an
expansive toolkit for estimating unknown parameters, and a typical Bayesian analysis
justifies its estimates through belief in subjective a priori assumptions. We address
this by introducing a measure of confidence in the new estimate (the ‘c-value’), that
can diagnose the accuracy of a Bayesian estimate without requiring this subjectivism.

Thesis Supervisor: Tamara Broderick
Title: Associate Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

Scientists, social scientists and engineers often seek to understand how an outcome

of interest relates to a set of covariates. For example, a geneticist may wish to

understand the effects of natural genetic variation on the presence of disease, or a

medical practitioner may wish to understand the effect of a patient’s history on their

future health. In countless settings like this, the ease of modern data collection often

yields large sets of covariates for data analysts to parse. While these data should

ultimately aid understanding, this “high-dimensionality” adds complication. Because

they offer simplicity and interpretability, linear models are extremely widely used

across the sciences and social sciences. Unfortunately, when (as in genetics) the number

of data points is not substantially larger than the number of covariates, non-trivial

inferential uncertainty persists.

Bayesian statistical approaches naturally confront the challenge of inferential uncer-

tainty in high-dimensional linear models in principle, by offering coherent uncertainty

and the ability to incorporate expert information and share power across datasets.

But realizing these advantages in practice requires methodological choices at three

stages an analysis: (1) modeling, (2) inference and (3) evaluation. While effective sta-

tistical methods developed for low dimensional problems abound, high-dimensionality

introduces challenges across each of these stages not addressed by the established

toolkit.

In this thesis, we characterize methodological gaps in the Bayesian toolkit across
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modeling, inference and evaluation, and develop new approaches to address them.

For modeling, in Chapter 2 we describe how the dominant modeling paradigm for

sharing information across related datasets fails for high-dimensional linear models,

and introduce a complementary approach suited to high-dimensions. For inference, we

argue that existing algorithms are either computationally expensive or inaccurate, and

in Chapters 3 and 4 we introduce new ones that are provably fast and accurate. For

evaluation, because many complex models do not provide more accurate inferences

than simpler baseline approaches, in Chapter 5 we introduce computable criteria for

validating the relative accuracy of the outcomes of sophisticated analyses. To ensure

that these methods are accurate and reliable, we develop theoretical guarantees to

guide their usage.

The contribution of Chapter 2 was completed in collaboration with Hilary Fin-

ucane and Tamara Broderick [Trippe et al., 2021b]. The contribution of Chapter 3

was completed in collaboration with Jonathan Huggins, Raj Agrawal, and Tamara

Broderick [Trippe et al., 2019]. The contribution of Chapter 4 was completed in equal

collaboration with Tin (Stan) Nguyen and is as much his as is mine, as well as with

Tamara Broderick [Trippe et al., 2021c]. The contribution of Chapter 5 was completed

in collaboration with Sameer Deshpande and Tamara Broderick [Trippe et al., 2021a].

The remainder of this chapter summarizes these contributions.

1.1 New Bayesian models for high-dimensional hier-

archical regression

Hierarchical modeling is a mainstay of Bayesian inference that enables information

sharing across regression problems on multiple groups of data. Often covariates are

shared across multiple related groups, but the effects are typically allowed to vary

both by group and by covariate. While standard practice is to model regression

parameters (effects) as (1) exchangeable across the groups and (2) correlated to

differing degrees across covariates, in Chapter 2, we show that this approach exhibits
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poor statistical performance when the number of covariates exceeds the number of

groups. For instance, in statistical genetics, one might regress dozens of traits (defining

groups) for thousands of individuals (responses) on up to millions of genetic variants

(covariates). We argue that when an analyst has more covariates than groups it

preferable to instead model effects as (1) exchangeable across covariates and (2)

correlated to differing degrees across groups. To this end, we propose a hierarchical

model expressing this alternative perspective. We develop theory that demonstrates

that this model produces estimates that are more accurate than the classic approach

when the number of covariates dominates the number of groups, and corroborate this

result empirically on several high-dimensional multiple regression and classification

problems.

1.2 Fast inference with theoretical guarantees

In Bayesian analyses, inference is the computational and algorithmic step of combining

the chosen model with observed data to obtain conclusions about unobserved parame-

ters. The computational challenge of inference remains a barrier to wider adoption

of many Bayesian methods, especially in high dimensions. A variety of inference

methods, such as variational Bayes, can provide fast approximations. However, these

approaches can have pathological behaviour that leads to poor accuracy [MacKay,

2003, Turner and Sahani, 2011, Trippe and Turner, 2018, Huggins et al., 2020]. In this

work, we develop practical approximate inference methods with provable guarantees

on runtime and approximation error.

Low rank approximation for fast inference in generalized linear models:

Generalized linear models (GLMs) are widely used across the sciences and social

sciences to relate covariates of interest to not only real-valued but also binary and

count-valued responses. Unfortunately, existing methods for Bayesian inference in

GLMs require running times roughly cubic in parameter dimension, and so are limited

to settings with at most tens of thousand parameters. In Chapter 3, we propose
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to reduce time and memory costs with a low-rank approximation of the data in an

approach we call LR-GLM. When used with the Laplace approximation or Markov

chain Monte Carlo, LR-GLM provides a full Bayesian posterior approximation and

admits running times reduced by a full factor of the parameter dimension. We

rigorously establish the quality of our approximation and show how the choice of rank

allows a tunable computational-statistical trade-off. Experiments support our theory

and demonstrate the efficacy of LR-GLM on real large-scale datasets.

Recently, [Hauzenberger et al., 2021] extended our approach in an econometrics

application to perform efficient inference in time-varying parameter regressions and

stochastic volatility models. By leveraging our technical advances, these authors were

able to fit models of price inflation in the United States with thousands of parameters

for which traditional methods are impractically slow.

Improving accuracy with embarrassingly parallel computation: Computa-

tional couplings of Markov chains provide a practical route to unbiased Monte Carlo

estimation that can utilize parallel computation [Jacob et al., 2020]. However, these

approaches depend crucially on chains meeting after a small number of transitions.

For models that assign data into groups, e.g. mixture models, the obvious approaches

to couple Gibbs samplers fail to meet quickly. In Chapter 4, we trace this failure to

the so-called “label-switching” problem [Jasra et al., 2005]; semantically equivalent

relabelings of the groups contribute well-separated posterior modes that impede fast

mixing and cause large meeting times. We then demonstrate how to avoid label switch-

ing by considering chains as exploring the space of partitions rather than labelings.

Using a metric on this space, we employ an optimal transport coupling of the Gibbs

conditionals. This coupling outperforms alternative couplings that rely on labelings

and, on a real dataset, provides estimates more precise than usual ergodic averages in

the limited time regime.

Fast and accurate inference in hierarchical modeling: Scalable inference

algorithms are also central to the contributions of Chapter 2. In particular, for our
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approach to inference in the hierarchical models we consider relies on an expectation

maximization algorithm, we de, which enables efficiently solving an empirical Bayes

problem. In that work, we additionally document how to use the conjugate gradient

method for solving up to million dimensional linear systems by taking advantage of

sparsity, Kronecker structure and good initializations for provably fast convergence.

1.3 Evaluation and model selection

A third challenge in high-dimensional Bayesian analyses is model evaluation. Modern

statistics provides an expansive toolkit of methods applicable to high-dimensional

problems. However, this abundance often presents practitioners already familiar with

one mode of analysis with a difficult challenge: choosing between the output of a

familiar method and that of a more complicated method, for example, one that shares

information across related datasets. In Chapter 5 we introduce a statistical tool, the

“c-value”, for computing a measure of confidence that a new estimate is more accurate

than a baseline approach. In analogy to how a small p-value provides evidence to

reject a null hypothesis, a large c-value provides evidence to replace an old estimate

with a new one. For a wide class of problems and estimators, we show how to compute

a c-value by first constructing a data-dependent high-probability lower bound on the

difference in loss. The c-value is frequentist in nature, but we show that it can provide

a validation of Bayesian estimates in real data applications involving hierarchical

models and Gaussian processes.
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Chapter 2

For high-dimensional hierarchical

models, consider exchangeability of

effects across covariates instead of

across datasets

Abstract

Hierarchical Bayesian methods enable information sharing across regression problems

on multiple groups of data. While standard practice is to model regression parameters

(effects) as (1) exchangeable across the groups and (2) correlated to differing degrees

across covariates, we show that this approach exhibits poor statistical performance

when the number of covariates exceeds the number of groups. For instance, in

statistical genetics, we might regress dozens of traits (defining groups) for thousands

of individuals (responses) on up to millions of genetic variants (covariates). When an

analyst has more covariates than groups, we argue that it is often preferable to instead

model effects as (1) exchangeable across covariates and (2) correlated to differing

degrees across groups. To this end, we propose a hierarchical model expressing our

alternative perspective. We devise an empirical Bayes estimator for learning the degree
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of correlation between groups. We develop theory that demonstrates that our method

outperforms the classic approach when the number of covariates dominates the number

of groups, and corroborate this result empirically on several high-dimensional multiple

regression and classification problems.

2.1 Introduction

Hierarchical modeling is a mainstay of Bayesian inference. For instance, in (generalized)

linear models, the unknown parameters are effects, each of which describes the

association of a particular covariate with a response of interest. Often covariates

are shared across multiple related groups, but the effects are typically allowed to

vary both by group and by covariate. A classic methodology, dating back to Lindley

and Smith (1972) [Lindley and Smith, 1972], models the effects as conditionally

independent across groups, with a latent (and learnable) degree of relatedness across

covariates. From a practical standpoint, the model is motivated by the understanding

that it “borrows strength” across different groups [Gelman et al., 2013, Chapter 5.6].

Mathematically, the model is motivated by assuming effects are exchangeable across

groups and applying a de Finetti theorem [Lindley and Smith, 1972, Jordan, 2010].

The methodology of Lindley and Smith is ubiquitous when the number of groups

is larger than the number of covariates. It is a standard component of Bayesian

pedagogy [[Gelman and Hill, 2006, Chapter 13.3]; [Gelman et al., 2013, Chapter 15.4]]

and software; e.g. it is used in the mixed modeling package lme4 [Bates et al., 2015b],

which has over 16 million downloads at the time of writing.

Despite its resounding success when there are more groups than covariates, we

show in the present work that this standard methodology performs poorly when

there are more covariates than groups. To address the many-covariates case, we turn

for inspiration to statistical genetics, where scientists commonly learn linear models

relating genetic variants (covariates) to traits (corresponding to different groups) across

individuals (which each exhibit a response). These applications may exhibit millions

of covariates, thousands of responses, and just a handful of groups. In these cases,
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[Lee et al., 2012, Bulik-Sullivan et al., 2015, Stephens, 2013, Zhou and Stephens, 2014,

Maier et al., 2015, Runcie et al., 2020] use a multivariate Gaussian prior akin to that

of Lindley and Smith, but assume conditional independence across covariates and

prior parameters that encode correlations across groups, rather than than the other

way around.

As we will see, this alternative modeling approach may be motivated from a

Bayesian perspective when one begins from an assumption of a priori exchangeability

of the effects across covariates (rather than across groups). This exchangeability

assumption is reasonable in statistical genetics, where we have little knowledge to

distinguish our expectations about the effects of different genetic variants; we argue this

modeling approach can be effective other modern high-dimensional analyses of multiple

groups of data (beyond statistical genetics) in which large collections of covariates

are frequently treated monolithically, e.g. by applying ridge regression. Namely, when

there are more covariates than groups, we propose to model the effects as exchangeable

across covariates (rather than groups) and learn the degree of relatedness of effects

across groups (rather than covariates). In what follows, we refer to this framework as

ECov, for exchangeable effects across covariates, and distinguish it from exchangeable

effects across groups or EGroup.

While the existing methods in statistical genetics for modeling multiple traits

obtain as a special case of ECov, to the best of our knowledge this approach is absent

from existing literature on hierarchical Bayesian regression. Brown and Zidek (1980)

[Brown and Zidek, 1980] and Haitovsky (1987) [Haitovsky, 1987] form two exceptions,

but these two papers (1) consider only the situation in which a single covariate matrix

is shared across all groups (or equivalently, for each data point all responses are

observed) and (2) include only theory and no empirics. While Lindley and Smith (and

others) discuss a priori exchangeability across covariates in the context of analysis of

a single group, to our knowledge no other work has pushed this idea forward to share

strength across multiple groups.

We suspect that the historical origins of the methodology in statistical genetics

may have hindered earlier expansion of this class of models to a wider audience. In
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particular, this literature traces back to mixed effects modeling for cattle breeding

[Thompson, 1973]; here, an even-earlier notion of the genetic contribution of trait

correlation (i.e. “genetic correlation;” see Hazel (1943) [Hazel, 1943]) informs the

covariance structure of random effects. Although genetic correlation is now commonly

understood to describe the correlation of effects of DNA sequence changes on different

traits [Bulik-Sullivan et al., 2015], its provenance predates even the first identification of

DNA as the genetic material in 1944 [Avery et al., 1944]. As such, this older motivation

obviated the need for a more general justification grounded in exchangeability. See

Appendix A.1 for further discussion of related work, including more recent works from

within the machine learning community on sharing strength across multiple groups of

data.

In the present work, we propose ECov as a general framework for hierarchical

regression when the number of covariates exceeds the number of groups. We show

that the classic model structure from statistical genetics can be seen as an instance

of this framework, much as Lindley and Smith give a (complementary) instance of

an EGroup framework. To make the ECov approach generally practical, we devise

an accurate and efficient algorithm for learning the matrix of correlations between

groups. We demonstrate with theory and empirics that ECov is preferred when the

number of covariates exceeds the number of groups, while EGroup is preferred when

the number of groups exceeds the number of covariates. Our experiments analyze

three real, non-genetic groups in regression and classification, including an application

to transfer learning with pre-trained neural network embeddings. We provide proofs

of theoretical results in the appendix.

2.2 Exchangeability and its applications to hierarchi-

cal linear modeling

We start by establishing the data and model, motivating exchangeability among

covariate effects (ECov), and motivating our Bayesian generative model.
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Setup and notation. Consider 𝑄 groups with 𝐷 covariates. Let 𝑁 𝑞 be the

number of data points in group 𝑞. For the 𝑞th group, the 𝑁 𝑞 × 𝐷 real design

matrix 𝑋𝑞 collects the covariates, and 𝑌 𝑞 is the 𝑁 𝑞-vector of responses. The 𝑛th

datapoint in group 𝑞 consists of covariate 𝐷-vector 𝑋𝑞
𝑛 and scalar response 𝑌 𝑞

𝑛 . We

let 𝒟 := {(𝑋𝑞, 𝑌 𝑞)}𝑄𝑞=1 denote the collection of data from all 𝑄 groups. We consider

the generalized linear model 𝑌 𝑞
𝑛 |𝑋𝑞

𝑛, 𝛽
𝑞 𝑖𝑛𝑑𝑒𝑝∼ 𝑝(·|𝑋𝑞⊤

𝑛 𝛽𝑞) with unknown 𝐷-vector of

real effects 𝛽𝑞. We collect all effects in a 𝐷 ×𝑄 matrix 𝛽 with (𝑑, 𝑞) entry 𝛽𝑞
𝑑. The

linear form of the likelihood allows interpretation of 𝛽𝑞
𝑑 as the association between

the 𝑑th covariate and the response in group 𝑞. In linear regression, the responses are

real-valued and the conditional distribution is Gaussian. In logistic regression, the

responses are binary, and we use the logit link. The independence assumption conflicts

with some models that one might use, for example in some cases when the different

groups partially overlap.

Example. As a motivating non-genetics example, consider a study of the efficacy

of microcredit. There are seven famous randomized controlled trials of microcredit,

each in a different country [Meager, 2019]. We might be interested in the association

between various aspects of small businesses (covariates), including whether or not they

received microcredit, and their business profit (response). In this case, the 𝑑th element

of 𝑋𝑞
𝑛 would be the 𝑑th characteristic of the 𝑛th small business in the 𝑞th country,

and 𝑌 𝑞
𝑛 is the profit of this business. See the experiments for additional examples in

rates of policing, web analytics, and transfer learning.

Exchangeable effects across groups (EGroup). To fully specify a Bayesian

model, we need to choose a prior over the parameters 𝛽. Lindley and Smith assume

the effects are exchangeable across groups. Namely, for every 𝑄-permutation 𝜎,

𝑝(𝛽1, 𝛽2, . . . , 𝛽𝑄) = 𝑝(𝛽𝜎(1), 𝛽𝜎(2), . . . , 𝛽𝜎(𝑄)). Assuming exchangeability holds for an

imagined growing 𝑄 and applying de Finetti’s theorem motivates a conditionally

independent prior. Concretely, Lindley and Smith take 𝛽𝑞 𝑖.𝑖.𝑑.∼ 𝒩 (𝜉,Γ), for 𝐷-vector

𝜉 and 𝐷 × 𝐷 covariance matrix Γ. The (𝑑, 𝑑′) entry of Γ captures the degree of

relatedness between the effects for covariates 𝑑 and 𝑑′. Both 𝜉 and Γ may be learned

in an empirical Bayes procedure. However, when 𝐷 is large relative to 𝑄, learning
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these parameters can present both computational and inferential challenges, as the

𝑂(𝐷2) degrees of freedom in Γ outnumber the 𝑂(𝐷𝑄) effects.

Exchangeable effects across covariates (ECov). We here argue for a com-

plementary approach in settings where 𝐷 > 𝑄. In the microcredit example, notice

that 𝐷 > 𝑄 will arise whenever the experimenter records more characteristics of a

small business than there are locations with microcredit experiments; that is, 𝐷 > 7

in this particular case. Concretely, let 𝛽𝑑 be the 𝑄-vector of effects for covariate 𝑑

across groups. Then, in the ECov approach, we will assume that effects are exchange-

able across covariates instead of across groups. Namely, for every 𝐷-permutation 𝜎,

𝑝(𝛽1, 𝛽2, . . . , 𝛽𝐷) = 𝑝(𝛽𝜎(1), 𝛽𝜎(2), . . . , 𝛽𝜎(𝐷)). We will see theoretical and empirical ben-

efits to ECov in later sections, but note that the ECov assumption is often consistent

with prior beliefs in high dimensional settings. For instance, regarding microcredit,

we may have no prior knowledge about how effects differ for distinct small-business

characteristics. And we may a priori believe that different countries could exhibit more

similar effects – and wish to learn the degree of relatedness across those countries.

We may apply a similar rationale as Lindley and Smith to motivate a conditionally

independent model. Analogous to Lindley and Smith, we propose a Gaussian prior:

𝛽𝑑
𝑖.𝑖.𝑑.∼ 𝒩 (0,Σ). Σ is now a 𝑄 × 𝑄 covariance matrix whose (𝑞, 𝑞′) entry captures

the similarity between the effects in the 𝑞 and 𝑞′ groups. For simplicity, we restrict

to E[𝛽𝑑] = 0; see Appendix A.5.3 for discussion. Another potential benefit to ECov

relative to EGroup is that we might expect a statistically easier problem, with 𝑂(𝑄2)

rather than 𝑂(𝐷2) values to learn in the relatedness matrix. We provide a rigorous

theoretical analysis in Sections 2.4 and 2.5.

2.3 Our method

We next describe our inference method for specific instances of the exchangeable

covariate effects model of Section 2.2. We compute the 𝛽 posterior and take an

empirical Bayes approach to estimate Σ. We find that an expectation maximization

(EM) algorithm estimates Σ effectively; Appendix A.1.2 compares our approach to
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existing methods for the related problem of estimating Γ for EGroup.

Notation. We identify estimates of 𝛽 and Σ with hats. For instance, 𝛽LS is

the least squares estimate, with 𝛽𝑞
LS := (𝑋𝑞⊤𝑋𝑞)−1𝑋𝑞⊤𝑌 𝑞. We will sometimes find it

useful to stack the columns of 𝛽 or its estimates into a length 𝐷𝑄 vector; we denote

such vectors with an arrow; for example, 𝛽 := [𝛽1⊤, 𝛽2⊤, . . . , 𝛽𝑄⊤]⊤. For a natural

number 𝑁, we use 𝐼𝑁 ,1𝑁 , and 𝑒𝑁 to denote the 𝑁 ×𝑁 identity matrix, 𝑁 -vector of

ones, and 𝑁th basis vector, respectively. We use ⊗ to denote the Kronecker product.

2.3.1 Posterior inference with a Gaussian likelihood

We first consider a Gaussian likelihood: for each group 𝑞 and observation 𝑛, we

take 𝑌 𝑞
𝑛 |𝑋𝑞

𝑛, 𝛽
𝑞 𝑖𝑛𝑑𝑒𝑝∼ 𝒩 (𝑋𝑞⊤

𝑛 𝛽𝑞, 𝜎2
𝑞) where 𝜎2

𝑞 is a group-specific variance. When the

relatedness matrix Σ is known, a natural estimate of 𝛽 is its posterior mean. We

obtain the full posterior, including its mean, via a standard conjugacy argument; see

Appendix A.2.1:

Proposition 2.3.1. For each covariate 𝑑, let 𝛽𝑑
𝑖.𝑖.𝑑.∼ 𝒩 (0,Σ) a priori. For each group

𝑞 and data point 𝑛, let 𝑌 𝑞
𝑛 |𝑋𝑞

𝑛, 𝛽
𝑞 𝑖𝑛𝑑𝑒𝑝∼ 𝒩 (𝑋𝑞⊤

𝑛 𝛽𝑞, 𝜎2
𝑞 ). Then 𝛽|𝒟,Σ ∼ 𝒩 (�⃗�, 𝑉 ) for �⃗� =

𝑉 [𝜎−2
1 𝑌 1⊤𝑋1, . . . , 𝜎−2

𝑄 𝑌 𝑄⊤𝑋𝑄]⊤ and 𝑉 −1 = Σ−1⊗𝐼𝐷+diag(𝜎−2
1 𝑋1⊤𝑋1, . . . , 𝜎−2

𝑄 𝑋𝑄⊤𝑋𝑄),

where diag(𝜎−2
1 𝑋1⊤𝑋1, . . . , 𝜎−2

𝑄 𝑋𝑄⊤𝑋𝑄) denotes a 𝐷𝑄×𝐷𝑄 block-diagonal matrix.

At first glance, the posterior mean �⃗� for this model might seem to introduce a

computational challenge because exact computation of 𝑉 involves an 𝑂(𝐷3𝑄3)-time

matrix inversion. Our experiments (Section 2.6), however, involve on the order of

𝐷𝑄 ≈ 1,000 parameters, so direct inversion of 𝑉 demands less than a single second.

Moreover, in much larger problems �⃗� may still be computed very efficiently using the

conjugate gradient algorithm [Nocedal and Wright, 2006, Chapter 5], with convergence

in a small number of 𝑂(𝐷2𝑄) time iterations; see Appendix A.2.2.
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Algorithm 1 Expectation Maximization for Exchangeability Among Covariate Effects
1: // Initialize covariance
2: Σ(0) ← 𝐼𝑄
3: // Run EM algorithm
4: for 𝑡 = 0, 1, . . . do
5: // Expectation step
6: 𝜇1, . .., 𝜇𝐷, 𝑉1, . .., 𝑉𝐷 ← E_Step(Σ(𝑡))
7:
8: // Maximization step
9: Σ(𝑡+1) ← 𝐷−1

∑︀𝐷
𝑑=1(𝜇𝑑𝜇

⊤
𝑑 + 𝑉𝑑)

10:
11: Return Σ(𝑡+1)

2.3.2 Empirical Bayes estimation of Σ by expectation maxi-

mization

The posterior mean of 𝛽 in Proposition 2.3.1 requires Σ, which is typically unknown.

Accordingly, we propose an empirical Bayes approach of estimating Σ by maximum

marginal likelihood:

𝛽ECov := E[𝛽 | 𝒟, Σ̂] where Σ̂ := argmax
Σ⪰0

𝑝(𝒟 | Σ). (2.1)

Eq. (2.1) defines a two step procedure. In the first step, we learn the similarity

between groups via estimation of Σ. In the second step, we use this similarity to

compute an estimate, 𝛽ECov, that correspondingly shares strength. Though we have

been unable to identify a general analytic form for Σ̂, we can compute it with an

expectation maximization (EM) algorithm [McLachlan and Krishnan, 2007, Chapter

1.5]. Algorithm 1 summarizes this procedure; see Appendix A.2.3 for details.

2.3.3 Classification with logistic regression

We can extend the approach above to inference for multiple related classification

problems. We assume a logistic likelihood; for each 𝑞 and 𝑛, 𝑌 𝑞
𝑛 |𝑋𝑞

𝑛, 𝛽
𝑞 𝑖𝑛𝑑𝑒𝑝∼ Bern[(1 +

exp{−𝑋𝑞⊤
𝑛 𝛽𝑞})−1]. In the classification case, we cannot use Gaussian conjugacy directly,
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Algorithm 2 E-Step: Linear Regression

1: �⃗�, 𝑉 ← E[𝛽|𝒟,Σ],Var[𝛽|𝒟,Σ]
2: for 𝑑 = 1, . .., 𝐷 do
3: 𝜇𝑑 ← (𝑒𝑑 ⊗ 𝐼𝑄)

⊤�⃗�
4: 𝑉𝑑 ← (𝑒𝑑 ⊗ 𝐼𝑄)

⊤𝑉 (𝑒𝑑 ⊗ 𝐼𝑄)

5: Return 𝜇1, . .., 𝜇𝐷, 𝑉1, . .., 𝑉𝐷

Algorithm 3 E-Step: Logistic Regression

1: �⃗�* ← argmax𝛽 log 𝑝(𝛽|𝒟,Σ)
2: 𝑉 ← −[∇2

𝛽 log 𝑝(𝛽|𝒟,Σ)
⃒⃒
𝛽=�⃗�* ]

−1

3: for 𝑑 = 1, . .., 𝐷 do
4: 𝜇𝑑 ← (𝑒𝑑 ⊗ 𝐼𝑄)

⊤�⃗�*

5: 𝑉𝑑 ← (𝑒𝑑 ⊗ 𝐼𝑄)
⊤𝑉 (𝑒𝑑 ⊗ 𝐼𝑄)

6: Return 𝜇1, . .., 𝜇𝐷, 𝑉1, . .., 𝑉𝐷

so we apply an approximation. Specifically, we adapt the original E-step in Algorithm 3

by using a Laplace approximation to the posterior [Bishop, 2006, Chapter 4.4]. We

approximate the posterior mean of 𝛽 by the maximum a posteriori value. We leave

extensions to other generalized linear models to future work.

2.4 Theoretical comparison of frequentist risk

In this section, we prove theory that suggests ECov has better frequentist risk than

EGroup when 𝐷 is large relative to 𝑄. Analyzing 𝛽ECov directly is challenging due to

its non-differentiability as a function of the data, so we take a multipart approach.

First, in Theorem 2.4.2, we show that an ECov estimate based on moment-matching

(MM), 𝛽MM
ECov, dominates least squares, 𝛽LS, when 𝐷 is large relative to 𝑄; 𝛽LS in turn

dominates 𝛽MM
EGroup (a similar estimator for EGroup). Second, in Theorem 2.4.3, we

show that 𝛽ECov uniformly improves on 𝛽MM
ECov.

Setup. Take a fixed value of 𝛽 and an estimator 𝛽. We use squared error risk,

R(𝛽, 𝛽) := E
[︁
‖𝛽 − 𝛽‖2𝐹 | 𝛽

]︁
, as our measure of performance. ‖ · ‖𝐹 is the Frobenius

norm of a matrix, and the expectation is over all observations 𝑌 1, . . . , 𝑌 𝑄 jointly. We
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require the following orthogonal design condition.

Condition 2.4.1. For each group 𝑞, 𝜎−2
𝑞 𝑋𝑞⊤𝑋𝑞 = 𝜎−2𝐼𝐷 for some shared variance 𝜎2.

Though restrictive, this condition is useful for theory, as other authors have found;

see Appendix A.3.1. We empirically demonstrate that our theoretical conclusions

apply more broadly in Section 2.6.

ECov vs. EGroup when using moment matching in high dimensions.

For ECov, the following estimate for Σ is unbiased under correct prior specification:

Σ̂MM := 𝐷−1𝛽⊤
LS𝛽LS−𝐷−1diag(𝜎2

1‖𝑋1†‖2𝐹 , . . . , 𝜎2
𝑄‖𝑋𝑄†‖2𝐹 ), where † denotes the Moore-

Penrose pseudoinverse of a matrix and 𝛽LS is the least squares estimate. We define

𝛽MM
ECov := E[𝛽|𝒟, Σ̂MM] to be the resulting parameter estimate, and define 𝛽MM

EGroup

analogously for EGroup; see Appendix A.3.2 for details. While 𝛽MM
ECov and 𝛽MM

EGroup are

naturally defined only when 𝐷 ≥ 𝑄 and 𝐷 ≤ 𝑄, respectively, we find it informative

to compare how their performances depend on 𝐷 and 𝑄 nonetheless.

Before our theorem, a lemma provides concise expressions for the risks of 𝛽MM
ECov

and 𝛽MM
EGroup.

Lemma 2.4.1. Under Condition 2.4.1 and when 𝐷 ≥ 𝑄, R(𝛽, 𝛽MM
ECov) = 𝜎2𝐷𝑄 −

𝜎4𝐷(𝐷 − 2− 2𝑄)E[‖𝛽†
LS‖2𝐹 | 𝛽]. Additionally, when 𝐷 ≤ 𝑄, R(𝛽, 𝛽MM

EGroup) = 𝜎2𝐷𝑄−

𝜎4𝑄(𝑄− 2− 2𝐷)E[‖𝛽†
LS‖2𝐹 | 𝛽].

Lemma 2.4.1 reveals forms for the risks of 𝛽MM
ECov and 𝛽MM

EGroup that are surprisingly

simple. The symmetry between the forms and risks of these estimators, however, is

intuitive; under Condition 2.4.1, 𝛽MM
ECov and 𝛽MM

EGroup can be seen as respectively arising

from the same procedure applied to 𝛽LS and its transpose.

With Lemma 2.4.1 in hand, we can now compare the risk of 𝛽MM
ECov, 𝛽LS, and 𝛽MM

EGroup.

Theorem 2.4.2. Let Condition 2.4.1 hold. Then (1) if 𝐷 > 2𝑄+ 2, 𝛽MM
ECov dominates

𝛽LS with respect to squared error risk. In particular, for any 𝛽, R(𝛽, 𝛽MM
ECov) <

R(𝛽, 𝛽LS). Additionally, (2) if 𝐷 > 𝑄/2− 1, 𝛽MM
EGroup is dominated by 𝛽LS.

Since 𝛽LS is minimax [Lehmann and Casella, 2006, Chapter 5], Theorem 2.4.2

implies that 𝛽MM
ECov has minimax risk in the high-dimensional setting. It follows that,
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regardless of how well the ECov prior assumptions hold, 𝛽MM
ECov will not perform very

poorly.

Further improvement with maximum marginal likelihood. The moment

based approach analyzed above has a limitation: with positive probability, Σ̂MM is not

positive semi-definite (PSD). Though our expression for 𝛽MM
ECov remains well-defined in

this case, this non-positive definiteness obscures the interpretation of 𝛽MM
ECov as a Bayes

estimate. We next show that performance further improves if Σ is instead estimated

by maximum marginal likelihood (Eq. (2.1)) and is thereby constrained to be PSD.

Our next lemma characterizes the form of the resulting estimator, 𝛽ECov, and

establishes a connection to the positive part James-Stein estimator [Baranchik, 1964].

Lemma 2.4.2. Assume 𝐷 > 𝑄 and consider the singular value decomposition

𝛽LS = 𝑉 diag(𝜆
1
2 )𝑈⊤ where 𝑉 and 𝑈 satisfy 𝑉 ⊤𝑉 = 𝑈⊤𝑈 = 𝐼𝑄, and 𝜆 is a 𝑄-

vector of non-negative reals. Under Condition 2.4.1, Eq. (2.1) reduces to Σ̂ =

𝑈diag
[︀
(𝐷−1𝜆− 𝜎21𝑄)+

]︀
𝑈⊤ and 𝛽ECov = 𝑉 diag

[︁
𝜆

1
2 ⊙ (1𝑄 − 𝜎2𝐷𝜆−1)+

]︁
𝑈⊤, where

(·)+ is shorthand for max(·, 0) element-wise, ⊙ is the Hadamard (i.e. element-wise)

product, and the powers in 𝜆
1
2 and 𝜆−1 are applied element-wise.

Lemma 2.4.2 allows us to see 𝛽ECov as shrinking 𝛽LS toward 0 in the direction of

each singular vector to an extent proportional to the inverse of the associated singular

value. The transition from 𝛽MM
ECov to 𝛽ECov is then analogous to the taking the “positive

part” of the James-Stein estimator in vector estimation, which provides a uniform

improvement in risk [Baranchik, 1964]. Though R(𝛽, 𝛽ECov) is not easily available

analytically, we nevertheless find that it dominates its moment-based counterpart.

Theorem 2.4.3. Assume 𝐷 > 𝑄+ 1. Under Condition 2.4.1 𝛽ECov dominates 𝛽MM
ECov

with respect to squared error loss, achieving strictly lower risk for every value of 𝛽.

We establish Theorem 2.4.3 using a proof technique adapted from Baranchik [1964];

see also Lehmann and Casella [2006][Thm. 5.5.4]. The standard approach we build

upon is complicated by the fact that the directions in which we apply shrinkage are

themselves random.
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Theorem 2.4.3 provides a strong line of support for using 𝛽ECov over 𝛽MM
ECov that

does not rely on any assumption of “correct” prior specification; in particular the risk

improves without any subjective assumptions on 𝛽. We discuss related earlier work in

Appendix A.1.4.

2.5 Gains from ECov in the high-dimensional limit

The results of Section 2.4 give a promising endorsement of ECov but face two important

limitations. First, the domination results relative to least squares do not directly

demonstrate that 𝛽ECov attains improvements by leveraging similarities across groups

in a meaningful way; indeed for a single group (i.e. 𝑄 = 1) 𝛽ECov can be understood as

a ridge regression estimate [Hoerl and Kennard, 1970], and Theorems 2.4.2 and 2.4.3

provide that 𝛽ECov dominates 𝛽LS for 𝐷 > 3. Second, domination results reveal nothing

about the size of the improvement or how it depends on any structure of 𝛽; intuitively,

we should expect better performance when 𝛽 is in some way representative of the

assumed prior. To address these limitations, we analyze the size of the gap between

the risk of (1) 𝛽ECov and (2) our method applied to each group independently (ID),

which we denote by 𝛽ID.1 We will characterize the dependence of this gap on 𝛽.

Reasoning quantitatively about the dependence of the risk on the unknown pa-

rameter poses significant analytical challenges. In particular, Lemma 2.4.1 shows that

R(𝛽, 𝛽MM
ECov) depends on 𝛽 through E[‖𝛽†

LS‖2𝐹 |𝛽]; however, ‖𝛽†
LS‖2𝐹 is the sum of the

eigenvalues of a non-central inverse Wishart matrix, a notoriously challenging quantity

to work with; see e.g. [Letac and Massam, 2004, Hillier and Kan, 2019]. To regain

tractability, we (1) develop an analysis asymptotic in the number of covariates 𝐷

and (2) shift to a Bayesian analysis in order to sensibly consider a growing collection

of covariate effects. In particular, we consider a sequence of regression problems,

with parameters {𝛽𝑑}∞𝑑=1 distributed as 𝛽𝑑
𝑖.𝑖.𝑑.∼ 𝜋 for some distribution 𝜋. Accordingly,

instead of using the frequentist risk as in Section 2.4, we now use the Bayes risk to

1Our approach 𝛽ECov is well defined in the 𝑄 = 1 single group case; for each group 𝑞, we obtain
𝛽𝑞
ID by computing 𝛽ECov on the group 𝒟 = {(𝑋𝑞, 𝑌 𝑞)}.

33



measure performance. Specifically, for a group with 𝐷 covariates and an estimator

𝛽, the Bayes risk is R𝐷
𝜋 (𝛽) := E𝜋[R(𝛽, 𝛽)] where R(𝛽, 𝛽) is the usual frequentist risk.

In the following, we describe the results of this analysis with proofs and additional

details left to Appendix A.4.

For a single metric characterizing the benefits of joint modeling, we will define the

asymptotic gain as the relative performance between our two estimators of interest

here, 𝛽ECov and 𝛽ID.

Definition 2.5.1. Consider a sequence of datasets of 𝑄 regression problems with an

increasing number of covariates 𝐷, {𝒟𝐷}∞𝐷=1. Assume that for each group Condi-

tion 2.4.1 is satisfied with variance 𝜎2 and that each 𝛽𝑑
𝑖.𝑖.𝑑.∼ 𝜋. The asymptotic gain of

joint modeling is Gain(𝜋, 𝜎2) := lim𝐷→∞(𝜎2𝐷𝑄)−1[R𝐷
𝜋 (𝛽ID)− R𝐷

𝜋 (𝛽ECov)].

The factor of 𝜎2𝐷𝑄 in Definition 2.5.1 puts Gain(𝜋, 𝜎2) on a scale that is roughly

invariant to the size and noise level of the problem; for example, (𝜎2𝐷𝑄)−1R𝐷
𝜋 (𝛽LS) = 1

for any 𝜋,𝐷, and 𝑄. In Appendix A.4.5 we discuss how this asymptotic formulation

may allow relaxation of Condition 2.4.1 if one considers certain random design matrices;

for simplicity, the present analysis considers only fixed designs.

Our next lemma gives an analytic expression for Gain(𝜋, 𝜎2) that provides a

starting point for understanding its problem dependence.

Lemma 2.5.1. Assume Σ̃ := Var𝜋[𝛽1] is finite and has eigenvalues 𝜆1, . . . , 𝜆𝑄. If

Condition 2.4.1 satisfied asymptotically, Gain(𝜋, 𝜎2) = 𝜎2𝑄−1[
∑︀𝑄

𝑞=1(𝜆𝑞 + 𝜎2)−1 −∑︀𝑄
𝑞=1(Σ̃𝑞,𝑞 + 𝜎2)−1].

Lemma 2.5.1 reveals that the diagonals and eigenvalues and Σ̃ are key determinants

of Gain(𝜋, 𝜎2), but does not directly provide an interpretation of when 𝛽ECov offers

benefits over 𝛽ID. Our next theorem demonstrates when an improvement can be

achieved from joint modeling.

Theorem 2.5.2. Gain(𝜋, 𝜎2) ≥ 0, with equality only when Σ̃ = Var𝜋[𝛽1] is diagonal.

Proof. From Lemma 2.5.1 we see Gain(𝜋, 𝜎2) is the difference between a strictly Schur-

convex function applied to the eigenvalues of Σ̃ and to its diagonals (since (𝑥+ 𝜎2)−1
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is convex on R+). By the Schur-Horn theorem, the eigenvalues of Σ̃ majorize its

diagonals, providing the result.

Theorem 2.5.2 tells us that 𝛽ECov succeeds at adaptively learning and leveraging

similarities among groups in the high-dimensional limit. In particular, Gain(𝜋, 𝜎2)

reduces to zero only when the eigenvalues of Σ̃ are arbitrarily close to the entries of its

diagonal, which occurs only when the covariate effects are uncorrelated across groups.

However, when covariate effects are correlated, we obtain an improvement.

Our next theorem quantifies this relationship through upper and lower bounds.

Theorem 2.5.3. Let 𝜆↓ and ℓ↓ denote the eigenvalues and diagonals of Σ̃, respectively,

sorted in descending order. Then Gain(𝜋, 𝜎2) ≤ 2𝜎2𝑄−1‖𝜆‖2‖ℓ↓ − 𝜆↓‖2/(𝜆min + 𝜎2)3

and Gain(𝜋, 𝜎2) ≥ 𝜎2𝑄−1‖ℓ↓ − 𝜆↓‖22/(𝜆max + 𝜎2)3, where 𝜆max and 𝜆min are the largest

and smallest, respectively, eigenvalues of Σ̃.

Theorem 2.5.3 allows us to see several aspects of when our method will and will

not perform well. First, the presence of ‖ℓ↓−𝜆↓‖22 in both the upper and lower bounds

demonstrates that Gain(𝜋, 𝜎2) will be small when the eigenvalues are close to the

diagonal entries, with Euclidean distance as an informative metric.

As we find in our next corollary, Theorem 2.5.3 additionally allows us to see that

nontrivial gains may be obtained only in an intermediate signal-to-noise regime, where

signal is given by the size of the covariate effects and noise is the variance level 𝜎2.

Notably, under Condition 2.4.1, 𝜎2 relates directly to the variance of 𝛽LS, and is

influenced by both the residual variances and the group sizes; see Appendix A.3.1.

In particular we interpret 𝜆min as a proxy for signal strength since it captures the

magnitude of typical 𝛽𝑑’s along their direction of least variation.

Corollary 2.5.4. Gain(𝜋, 𝜎2) ≤ 4𝜅2𝜆min/𝜎
2 and Gain(𝜋, 𝜎2) ≤ 4𝜅2(𝜆min/𝜎

2)−1, where

𝜅 := 𝜆max/𝜆min is the condition number of Σ̃.

Corollary 2.5.4 formalizes the intuitive result that with enough noise, the little

recoverable signal is insufficient to effectively share strength. And furthermore, in the

low-noise and high-signal regime 𝛽ID is very accurate on its own and there is little
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need for joint modeling. However, when there is a large gap between the largest and

smallest eigenvalues of Σ̃, leading 𝜅 to be large, the gain could be larger. 𝜅 will be

large, for example, when the covariate effects are very correlated across groups.

2.6 Experiments

2.6.1 Simulated data

We first conduct simulations, where we can directly control the relatedness among

groups and where we know the ground truth values of the parameters. We show that

ECov is more accurate than EGroup when covariates outnumber groups, whether

effects are correlated across groups or not.

In particular, we simulated covariates, parameters, and responses for 𝑄 = 10

groups across a range of covariate dimensions. We generated covariate effects as

𝛽𝑑
𝑖.𝑖.𝑑.∼ 𝒩 (0,Σ). We chose Σ so that effects were either correlated (Figure 2-1 Left)

or independent (Figure 2-1 Right) across groups; see Appendix A.5 for details. We

compare performance of six estimates on these groups. These are estimates assuming

EGroup/ECov using moment matching and maximum marginal likelihood to choose

Σ/Γ (𝛽MM
EGroup/𝛽MM

ECov and 𝛽EGroup/𝛽ECov, respectively), as well as least squares (𝛽LS),

and ECov applied to each group independently (𝛽ID).

Figure 2-1 reinforces our theoretical conclusions that (1) 𝛽ECov is more accurate

when covariates outnumber groups and (2) 𝛽EGroup is more accurate when groups

outnumber covariates. Our simulated 𝑋 matrices are somewhat relaxed from a strict

orthogonal design (Appendix A.5), so these experiments suggest that our conclusions

hold beyond Condition 2.4.1. Additionally, 𝛽ECov and 𝛽EGroup both outperform their

moment based counterparts, 𝛽MM
ECov and 𝛽MM

EGroup.

Even for the simulations with independent effects, Theorem 2.4.2 suggests 𝛽ECov

should still outperform 𝛽LS and 𝛽EGroup in the higher dimensional regime, and we

see this behavior in the right panel of Figure 2-1. Additionally, in agreement with

Theorem 2.5.2, 𝛽ECov does not improve over 𝛽ID in the presence of independent effects,
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Figure 2-1: Dimension dependence of parameter estimation error in simulation. Co-
variate effects are either [Left] correlated or [Right] independent across the 𝑄 = 10
groups. Each point is the mean ±1SEM across 20 replicates.

and the performances of these two estimators converge as 𝐷 grows.

2.6.2 Real data

We find that ECov beats EGroup, as well as least squares and independent estima-

tion, across three real groups. We describe the datasets (with additional details in

Appendix A.5.4) and then our results.

Community level law enforcement in the United States. Policing rates

vary dramatically across different communities, mediating disparate impacts of crimi-

nal law enforcement across racial and socioeconomic groups [Weisburd et al., 2019,

Slocum et al., 2020]. Understanding how demographic and socioeconomic attributes of

communities relate to variation in rates of law enforcement is crucial to understanding

these impacts. Linear models provide the desired interpretability. We use a dataset

[Redmond and Baveja, 2002] consisting of 𝐷 = 117 community characteristics and

their rates of law enforcement (per capita) for different crimes. We consider 𝑄 = 4

group subsets corresponding to distinct (region, crime) pairs: (Midwest, Robbery),

(South, Assault), (Northeast, Larceny), and (West, Auto-theft). This data setup

illustrates a small 𝑄 and accords with the independent residuals assumption in the

likelihood shared by ECov and EGroup (Section 2.2). Across 𝑞, 𝑁 𝑞 represents between
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400 and 600 communities.

Blog post popularity. We regress reader engagement (responses) on 𝐷 = 279

characteristics of blog posts (covariates) [Buza, 2014]. We divided the corpus based

on an included length attribute into 𝑄 = 3 groups, corresponding to (1) long posts,

(2) short posts, and (3) posts from an earlier corpus with missing length attribute.

We hypothesized that the relationships between the characteristics of posts and

engagement would differ across these three groups. We randomly downsampled to

𝑁 𝑞 = 500 posts in each group to mimic a low sample-size regime, in which sharing

strength is crucial.

Figure 2-2: Prediction performance on held out data in three applications (mean
±1SEM across 5-fold cross-validation splits).

Multiple binary classifications using pre-trained neural network embed-

dings on CIFAR10. Modern machine learning methods have proved very successful

on large datasets. Translating this success to smaller datasets is one of the most

actively pursued algorithmic challenges in machine learning. It has spurred the devel-

opment of frameworks from transfer learning [Weiss et al., 2016] to one-shot learning

[Vinyals et al., 2016] to meta-learning [Finn et al., 2017]. One common and simple

strategy starts with a learned representation (or “embedding”) from an expressive

neural network fit to a large group. Then one can use this embedding as a covariate

vector for classification tasks with few labeled data points.

We take a 𝐷 = 128 dimensional embedding of the CIFAR10 image group [Krizhevsky,

2009, Van Looveren et al., 2019]. We create 𝑄 = 8 different binary classification tasks

using the classes in CIFAR10 (Appendix A.5.4). We downsampled to 𝑁 𝑞 varying from

100 to 1000 to mimic a setting in which we hope to share strength from large groups
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to improve performance on smaller datasets.

Discussion of evaluation and results. In previous sections we have focused

on parameter estimation. Here we instead evaluate with prediction error on held-

out data since the true parameters are not observed. Specifically we perform 5-fold

cross-validation and report the mean squared errors and classification errors on test

splits. To reduce variance of out-of-sample error estimates on the applications in

which we downsampled, we also evaluate on the additional held-out data. Because

the residual variances were unknown, we estimated these for each application and

group as �̂�2
𝑞 := ‖𝑃⊥

𝑋𝑞𝑌 𝑞‖2/(𝑁𝑞 −𝐷), where 𝑃⊥
𝑋𝑞 := 𝐼𝑁𝑞 −𝑋𝑞(𝑋𝑞⊤𝑋𝑞)−1𝑋𝑞⊤ (see e.g.

[Gelman and Hill, 2006, Chapter 18.1]). All methods ran quickly on a 36 CPU machine;

computation of 𝛽ECov, including the EM algorithm, required 2.04 ± 0.64, 6.89 ± 3.19

and 37.14 ± 3.39 seconds (mean ± st-dev across splits) on the law enforcement, blog,

and CIFAR10 tasks, respectively.

Our results further reinforce the main aspects of our theory. 𝛽ECov outperformed

𝛽EGroup, independent Bayes estimates (𝛽ID), and least squares (𝛽LS) in all applications

(at > 95% nominal confidence with a paired t-test).2 Additionally, 𝛽ECov outperformed

the baseline of ignoring heterogeneity, pooling groups together, and using the same

effect estimates for every group (“Least Sqrs./MLE Pool”).

Appendix A.5 includes additional results and comparisons. In particular, we provide

the performance of the estimators on each component group for each application.

Additionally, we report the performances of (1) stable and computationally efficient

moment based alternatives to 𝛽ECov and 𝛽EGroup and (2) variants of 𝛽ECov and 𝛽EGroup

that include a learned (rather than zero) prior mean. Appendix A.5.5 reports the

licenses of software we used.
2We did not develop an extension akin to Algorithm 3 for EGroup, and so do not report 𝛽EGroup

for CIFAR10. Additionally, we report a maximum likelihood estimate (MLE) instead of 𝛽LS for
CIFAR10.

39



2.7 Discussion

The Bayesian community has long used hierarchical modeling with priors encoding

exchangeability of effects across groups of data (EGroup). In the present work, we

have made a case for instead using priors that encode exchangeability across covariates

(ECov) – in particular, when the number of covariates exceeds the number of groups.

We have presented a corresponding concrete model and inference method. We have

shown that ECov outperforms EGroup in theory and practice when the number of

covariates exceeds the number of groups.

Our approach is, of course, not a panacea. In some settings, a priori exchangeability

among covariate effects will be inconsistent with prior beliefs. For example, imagine

in the CIFAR10 application if meta-data covariates (such as geo-location and date)

were available, in addition to embeddings. Then we might achieve better performance

by treating meta-data covariates as distinct from embedding covariates. Additionally,

we focused on a Gaussian prior for convenience. In cases where practitioners have

more specific prior beliefs about effects, alternative priors and likelihoods may be

warranted, though they may be more computationally challenging. Moreover, while

relatively interpretable, linear models have their downsides. The linear assumption

can be overly simplistic in many applications. It is common to misinterpret effects

as causal rather than associative. Both the linear model and squared error loss lend

themselves naturally to reporting means, but in many applications a median or other

summary is more appropriate; so using a mean for convenience can be misleading.

Many exciting directions for further investigation remain. For example, the

covariance Σ may provide an informative measure of task similarity; this similarity

measure can be useful in, e.g., meta learning [Jerfel et al., 2019] and statistical genetics

[Bulik-Sullivan et al., 2015]. Additionally, we here explored two approaches to choosing

the covariance matrices in the empirical Bayes step; more sophisticated approaches to

covariance estimation may provided improved performance. It also remains to extend

our methodology to other generalized linear models.
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Chapter 3

LR-GLM: High-Dimensional Bayesian

Inference Using Low-Rank Data

Approximations

Abstract

Due to the ease of modern data collection, applied statisticians often have access

to a large set of covariates that they wish to relate to some observed outcome.

Generalized linear models (GLMs) offer a particularly interpretable framework for

such an analysis. In these high-dimensional problems, the number of covariates is

often large relative to the number of observations, so we face non-trivial inferential

uncertainty; a Bayesian approach allows coherent quantification of this uncertainty.

Unfortunately, existing methods for Bayesian inference in GLMs require running times

roughly cubic in parameter dimension, and so are limited to settings with at most

tens of thousand parameters. We propose to reduce time and memory costs with a

low-rank approximation of the data in an approach we call LR-GLM. When used with

the Laplace approximation or Markov chain Monte Carlo, LR-GLM provides a full

Bayesian posterior approximation and admits running times reduced by a full factor

of the parameter dimension. We rigorously establish the quality of our approximation
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and show how the choice of rank allows a tunable computational–statistical trade-off.

Experiments support our theory and demonstrate the efficacy of LR-GLM on real

large-scale datasets.

3.1 Introduction

Scientists, engineers, and social scientists are often interested in characterizing the

relationship between an outcome and a set of covariates, rather than purely optimizing

predictive accuracy. For example, a biologist may wish to understand the effect

of natural genetic variation on the presence of a disease or a medical practitioner

may wish to understand the effect of a patient’s history on their future health. In

these applications and countless others, the relative ease of modern data collection

methods often yields particularly large sets of covariates for data analysts to study.

While these rich data should ultimately aid understanding, they pose a number of

practical challenges for data analysis. One challenge is how to discover interpretable

relationships between the covariates and the outcome. Generalized linear models

(GLMs) are widely used in part because they provide such interpretability – as well as

the flexibility to accommodate a variety of different outcome types (including binary,

count, and heavy-tailed responses). A second challenge is that, unless the number of

data points is substantially larger than the number of covariates, there is likely to be

non-trivial uncertainty about these relationships.

A Bayesian approach to GLM inference provides the desired coherent uncertainty

quantification as well as favorable calibration properties [Dawid, 1982, Theorem 1].

Bayesian methods additionally provide the ability to improve inference by incorporating

expert information and sharing power across experiments. Using Bayesian GLMs

leads to computational challenges, however. Even when the Bayesian posterior can

be computed exactly, conjugate inference costs 𝑂(𝑁2𝐷) in the case of 𝐷 ≫ 𝑁 . And

most models are sufficiently complex as to require expensive approximations.

In this work, we propose to reduce the effective dimensionality of the feature set as

a pre-processing step to speed up Bayesian inference, while still performing inference
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in the original parameter space; in particular, we show that low-rank descriptions

of the data permit fast Markov chain Monte Carlo (MCMC) samplers and Laplace

approximations of the Bayesian posterior for the full feature set. We motivate our

proposal with a conjugate linear regression analysis in the case where the data are

exactly low-rank. When the data are merely approximately low-rank, our proposal

is an approximation. Through both theory and experiments, we demonstrate that

low-rank data approximations provide a number of properties that are desirable in

an efficient posterior approximation method: (1) soundness: our approximations

admit error bounds directly on the quantities that practitioners report as well as

practical interpretations of those bounds; (2) tunability: the choice of the rank of

the approximation defines a tunable trade-off between the computational demands of

inference and statistical precision; and (3) conservativeness: our approximation never

reports less uncertainty than the exact posterior, where uncertainty is quantified via

either posterior variance or information entropy. Together, these properties allow a

practitioner to choose how much information to extract from the data on the basis of

computational resources while being able to confidently trust the conclusions of their

analysis.

3.2 Bayesian inference in GLMs

Suppose we have 𝑁 data points {(𝑥𝑛, 𝑦𝑛)}𝑁𝑛=1. We collect our covariates, where 𝑥𝑛

has dimension 𝐷, in the design matrix 𝑋 ∈ R𝑁×𝐷 and our responses in the column

vector 𝑌 ∈ R𝑁 . Let 𝛽 ∈ R𝐷 be an unknown parameter characterizing the relationship

between the covariates and the response for each data point. In particular, we take

𝛽 to parameterize a GLM likelihood 𝑝(𝑌 | 𝑋, 𝛽) = 𝑝(𝑌 | 𝑋𝛽). That is, 𝛽𝑑 describes

the effect size of the 𝑑th covariate (e.g., the influence of a non-reference allele on an

individual’s height in a genomic association study). Completing our Bayesian model

specification, we assume a prior 𝑝(𝛽), which describes our knowledge of 𝛽 before

seeing data. Bayes’ theorem gives the Bayesian posterior 𝑝(𝛽 | 𝑌,𝑋) = 𝑝(𝛽)𝑝(𝑌 |

𝑋𝛽)/
∫︀
𝑝(𝛽′)𝑝(𝑌 | 𝑋𝛽′)𝑑𝛽′, which captures the updated state of our knowledge after
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Table 3.1: Time complexities of naive inference and LR-GLM with a rank 𝑀 approxi-
mation when 𝐷 ≥ 𝑁 .

Method Naive LR-GLM speedup

Laplace 𝑂(𝑁2𝐷) 𝑂(𝑁𝐷𝑀) 𝑁/𝑀
MCMC (iter.) 𝑂(𝑁𝐷) 𝑂(𝑁𝑀 +𝐷𝑀) 𝑁/𝑀

observing data. We often summarize the 𝛽 posterior via its mean and covariance. In all

but the simplest settings, though, computing these posterior summaries is analytically

intractable, and these quantities must be approximated.

Related work. In the setting of large 𝐷 and large 𝑁 , existing Bayesian inference

methods for GLMs may lead to unfavorable trade-offs between accuracy and compu-

tation; see Appendix B.2 for further discussion. While Markov chain Monte Carlo

(MCMC) can approximate Bayesian GLM posteriors arbitrarily well given enough

time, standard methods can be slow, with 𝑂(𝐷𝑁) time per likelihood evaluation.

Moreover, in practice, mixing time may scale poorly with dimension and sample

size; algorithms thus require many iterations and hence many likelihood evaluations.

Subsampling MCMC methods can speed up inference, but they are effective only with

tall data [𝐷 ≪ 𝑁 ; Bardenet et al., 2017].

An alternative to MCMC is to use a deterministic approximation such as the Laplace

approximation [Bishop, 2006, Chap. 4.4], integrated nested Laplace approximation

[Rue et al., 2009], variational Bayes [VB; Blei et al., 2017], or an alternative likelihood

approximation [Huggins et al., 2017, Campbell and Broderick, 2019, Huggins et al.,

2016]. However these methods are computationally efficient only when 𝐷 ≪ 𝑁 (and

in some cases also when 𝑁 ≪ 𝐷). For example, the Laplace approximation requires

inverting the Hessian, which uses 𝑂(min(𝑁,𝐷)𝑁𝐷) time (Appendix B.3). Improving

computational tractability by, for example, using a mean field approximation with VB

or a factorized Laplace approximation can produce substantial bias and uncertainty

underestimation [MacKay, 2003, Turner and Sahani, 2011].

A number of papers have explored using random projections and low-rank approx-

imations in both Bayesian [Lee and Oh, 2013, Spantini et al., 2015, Guhaniyogi and

Dunson, 2015, Geppert et al., 2017] and non-Bayesian [Zhang et al., 2014, Wang et al.,
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Figure 3-1: LR-Laplace with a rank-1 data approximation closely matches the Bayesian
posterior of a toy logistic regression model. In each pair of plots, the left panel depicts
the same 2-dimensional dataset with points in two classes (black and white dots) and
decision boundaries (black lines) separating the two classes, which are sampled from
the given posterior approximation (see title for each pair). In the right panel, the red
contours represent the marginal posterior approximation of the parameter 𝛽 (a bias
parameter is integrated out).

2017] settings. The Bayesian approaches have a variety of limitations. E.g., Lee and

Oh [2013], Geppert et al. [2017], Spantini et al. [2015] give results only for certain

conjugate Gaussian models. And Guhaniyogi and Dunson [2015] provide asymptotic

guarantees for prediction but do not address parameter estimation.

See Section 3.6 for a demonstration of the empirical disadvantages of mean field

VB, factored Laplace, and random projections in posterior inference.

3.3 LR-GLM

The intuition for our low-rank GLM (LR-GLM) approach is as follows. Supervised

learning problems in high-dimensional settings often exhibit strongly correlated co-

variates [Udell and Townsend, 2019]. In these cases, the data may provide little

information about the parameter along certain directions of parameter space. This ob-

servation suggests the following procedure: first identify a relatively lower-dimensional
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subspace within which the data most directly inform the posterior, and then perform

the data-dependent computations of posterior inference (only) within this subspace,

at lower computational expense. In the context of GLMs with Gaussian priors, the

singular value decomposition (SVD) of the design matrix 𝑋 provides a natural and

effective mechanism for identifying a subspace. We will see that this perspective

gives rise to simple, efficient, and accurate approximate inference procedures. In

models with non-Gaussian priors the approximation enables more efficient inference

by facilitating faster likelihood evaluations.

Formally, the first step of LR-GLM is to choose an integer 𝑀 such that 0 < 𝑀 < 𝐷.

For any real design matrix 𝑋, its SVD exists and may be written as

𝑋⊤ = 𝑈diag(𝜆)𝑉 ⊤ + �̄�diag(�̄�)𝑉 ⊤,

where 𝑈 ∈ R𝐷×𝑀 , �̄� ∈ R𝐷×(𝐷−𝑀), 𝑉 ∈ R𝑁×𝑀 , and 𝑉 ∈ R𝑁×(𝐷−𝑀) are matrices of

orthonormal rows, and 𝜆 ∈ R𝑀 and �̄� ∈ R𝐷−𝑀 are vectors of non-increasing singular

values 𝜆1 ≥ · · · ≥ 𝜆𝑀 ≥ �̄�1 ≥ · · · ≥ �̄�𝐷−𝑀 ≥ 0. We replace 𝑋 with the low-rank

approximation 𝑋𝑈𝑈⊤. Note that the resulting posterior approximation 𝑝(𝛽 | 𝑋, 𝑌 )

is still a distribution over the full 𝐷-dimensional 𝛽 vector:

𝑝(𝛽 | 𝑋, 𝑌 ) :=
𝑝(𝛽)𝑝(𝑌 | 𝑋𝑈𝑈⊤𝛽)∫︀
𝑝(𝛽′)𝑝(𝑌 | 𝑋𝑈𝑈⊤𝛽′)𝑑𝛽′ (3.1)

In this way, we cast low-rank data approximations for approximate Bayesian

inference as a likelihood approximation. This perspective facilitates our analysis of

posterior approximation quality and provides the flexibility either to use the likelihood

approximation in an otherwise exact MCMC algorithm or to make additional fast

approximations such as the Laplace approximation.

We let LR-Laplace denote the combination of LR-GLM and the Laplace approxi-

mation. Figure 3-1 illustrates LR-Laplace on a toy problem and compares it to full

Laplace, the prior, and diagonal Laplace. Diagonal Laplace refers to a factorized

Laplace approximation in which the Hessian of the log posterior is approximated

with only its diagonal. While this example captures some of the essence of our pro-
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posed approach, we emphasize that our focus in this paper is on problems that are

high-dimensional.

3.4 Low-rank data approximations for conjugate Gaus-

sian regression

We now consider the quality of approximate Bayesian inference using our LR-GLM

approach in the case of conjugate Gaussian regression. We start by assuming that the

data is exactly low rank since it most cleanly illustrates the computational gains from

LR-GLM. We then move on to the case of conjugate regression with approximately low-

rank data and rigorously characterize the quality of our approximation via interpretable

error bounds. We consider non-conjugate GLMs in Section 3.5. We defer all proofs to

the Appendix.

3.4.1 Conjugate regression with exactly low-rank data

Classic linear regression fits into our GLM likelihood framework with 𝑝(𝑌 |𝑋, 𝛽) =

𝒩 (𝑌 |𝑋𝛽, (𝜏𝐼𝑁 )
−1), where 𝜏 > 0 is the precision and 𝐼𝑁 is the identity matrix of size 𝑁 .

For the conjugate prior 𝑝(𝛽) = 𝒩 (𝛽|0,Σ𝛽), we can write the posterior in closed form:

𝑝(𝛽|𝑌,𝑋) = 𝒩 (𝛽|𝜇𝑁 ,Σ𝑁), where Σ𝑁 := (Σ−1
𝛽 + 𝜏𝑋𝑇𝑋)−1 and 𝜇𝑁 := 𝜏Σ𝑁𝑋

⊤𝑌.

While conjugacy avoids the cost of approximating Bayesian inference, it does

not avoid the often prohibitive 𝑂(𝑁𝐷2 +𝐷3) cost of calculating Σ𝑁 (which requires

computing and then inverting Σ−1
𝑁 ) and the 𝑂(𝐷2) memory demands of storing it. In

the 𝑁 ≪ 𝐷 setting, these costs can be mitigated by using the Woodbury formula to

obtain 𝜇𝑁 and Σ𝑁 in 𝑂(𝑁2𝐷) time with 𝑂(𝑁𝐷) memory (Appendix B.3). But this

alternative becomes computationally prohibitive as well when both 𝑁 and 𝐷 are large

(e.g., 𝐷 ≈ 𝑁 > 20, 000).

Now suppose that 𝑋 is rank 𝑀 ≪ min(𝐷,𝑁) and can therefore be written as

𝑋 = 𝑋𝑈𝑈𝑇 exactly, where 𝑈 ∈ R𝐷×𝑀 denotes the top 𝑀 right singular vectors of

𝑋. Then, if Σ𝛽 = 𝜎2
𝛽𝐼𝐷 and 1𝑀 is the ones vector of length 𝑀 , we can write (see
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Appendix B.4.1 for details)

Σ𝑁 = 𝜎2
𝛽

⎧⎨⎩𝐼 − 𝑈diag

(︃
𝜏𝜆⊙ 𝜆

𝜎−2
𝛽 1𝑀 + 𝜏𝜆⊙ 𝜆

)︃
𝑈⊤

⎫⎬⎭
and 𝜇𝑁 = 𝑈diag

(︃
𝜏𝜆

𝜎−2
𝛽 1𝑀 + 𝜏𝜆⊙ 𝜆

)︃
𝑉 ⊤𝑌,

(3.2)

where multiplication (⊙) and division in the diag input are component-wise across

the vector 𝜆. Eq. (3.2) provides a more computationally efficient route to inference.

The singular vectors in 𝑈 may be obtained in 𝑂(𝑁𝐷 log𝑀) time via a randomized

SVD [Halko et al., 2011] or in 𝑂(𝑁𝐷𝑀) time using more standard deterministic

methods Press et al. [2007]. The bottleneck step is finding 𝜆 via diag(𝜆 ⊙ 𝜆) =

𝑈⊤𝑋⊤𝑋𝑈 , which can be computed in 𝑂(𝑁𝐷𝑀) time. As for storage, this approach

requires keeping only 𝑈 , 𝜆, and 𝑉 ⊤𝑌 , which takes just 𝑂(𝑀𝐷) space. In sum, utilizing

low-rank structure via Eq. (3.2) provides an order min(𝑁,𝐷)/𝑀 -fold improvement in

both time and memory over more naive inference.

3.4.2 Conjugate regression with low-rank approximations

While the case with exactly low-rank data is illustrative, real data are rarely exactly

low rank. So, more generally, LR-GLM will yield an approximation 𝒩 (𝛽|�̃�𝑁 , Σ̃𝑁) to

the posterior 𝒩 (𝛽|𝜇𝑁 ,Σ𝑁), rather than the exact posterior as in Section 3.4.1. We

next provide upper bounds on the error from our approximation. Since practitioners

typically report posterior means and covariances, we focus on how well LR-GLM

approximates these functionals.

Theorem 3.4.1. For conjugate Bayesian linear regression, the LR-GLM approxima-

tion Eq. (3.1) satisfies

‖�̃�𝑁 − 𝜇𝑁‖2 ≤
�̄�1

(︀
�̄�1‖�̄�⊤�̃�𝑁‖2 + ‖𝑉 ⊤𝑌 ‖2

)︀
‖𝜏Σ𝛽‖−1

2 + �̄�2
𝐷−𝑀

(3.3)

and Σ−1
𝑁 − Σ̃−1

𝑁 = 𝜏(𝑋⊤𝑋 − 𝑈𝑈⊤𝑋⊤𝑋𝑈𝑈⊤). (3.4)
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In particular, ‖Σ−1
𝑁 − Σ̃−1

𝑁 ‖2 = 𝜏 �̄�2
1.

The major driver of the approximation error of the posterior mean and covariance

is �̄�1 = ‖𝑋 −𝑋𝑈𝑈⊤‖2, the largest truncated singular value of 𝑋. This result accords

with the intuition that if the data are “approximately low-rank” then LR-GLM should

perform well.

The following corollary shows that the posterior mean estimate is not, in general,

consistent for the true parameter. But it does exhibit reasonable asymptotic behavior.

In particular, �̃�𝑁 is consistent within the span of 𝑈 and converges to the a priori most

probable vector with this characteristic (see the toy example in Figure B.5.1).

Corollary 3.4.2. Suppose 𝑥𝑛
i.i.d.∼ 𝑝*, for some distribution 𝑝*, and 𝑦𝑛 | 𝑥𝑛

indep∼

𝒩 (𝑥⊤
𝑛𝜇*, 𝜏

−1), for some 𝜇* ∈ R𝐷. Assume E𝑝* [𝑥𝑛𝑥
⊤
𝑛 ] is nonsingular. Let the columns

of 𝑈* ∈ R𝐷×𝑀 be the top eigenvectors of E𝑝* [𝑥𝑛𝑥
𝑇
𝑛 ]. Then �̃�𝑁 converges weakly to the

maximum a priori vector �̃� satisfying 𝑈⊤
* �̃� = 𝑈⊤

* 𝜇*.

In the special case that Σ𝛽 is diagonal this result implies that �̃�𝑁
𝑝→ 𝑈*𝑈

⊤
* 𝜇*

(Appendices B.5.3 and B.6.2). Thus Corollary 3.4.2 reflects the intuition that we

are not learning anything about the relation between response and covariates in the

data directions that we truncate away with our approach. If the response has little

dependence on these directions, �̄�*�̄�
⊤
* 𝜇* = lim𝑁→∞ �̃�𝑁 − 𝜇* will be small and the

error in our approximation will be low (Appendix B.5.3). If the response depends

heavily on these directions, our error will be higher. This challenge is ubiquitous

in dealing with projections of high-dimensional data. Indeed, we often see explicit

assumptions encoding the notion that high-variance directions in 𝑋 are also highly

predictive of the response [see, e.g., Zhang et al., 2014, Theorem 2].

Our next corollary captures that LR-GLM never underestimates posterior uncer-

tainty (the conservativeness property).

Corollary 3.4.3. LR-GLM approximate posterior uncertainty in any linear combi-

nation of parameters is no less than the exact posterior uncertainty. Equivalently,

Σ̃𝑁 − Σ𝑁 is positive semi-definite.
1This manipulation is purely symbolic. See Appendix B.6.1 for details.
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Algorithm 4 LR-Laplace for Bayesian inference in GLMs with low-rank data approx-
imations and zero-mean prior – with computation costs. See Appendix B.8 for the
general algorithm.
1: Input: prior 𝑝(𝛽) = 𝒩 (0,Σ𝛽), data 𝑋 ∈ R𝑁,𝐷, rank 𝑀 ≪ 𝐷, GLM mapping 𝜑 with �⃗�′′ (see Eq. (3.5)

and Section 3.5.1)
2: Pseudo-Code 3: Time Complexity 4: Mem. Complexity
5: Data preprocessing — 𝑀-Truncated SVD
6: 𝑈,diag(𝜆), 𝑉 := truncated-SVD(𝑋𝑇 ,𝑀) 𝑂(𝑁𝐷𝑀) 𝑂(𝑁𝑀 +𝐷𝑀)

7: Optimize in projected space, find approximate MAP
8: 𝛾* := argmax𝛾∈R𝑀

∑︀𝑁
𝑖=1 𝜑(𝑦𝑖, 𝑥𝑖𝑈𝛾)− 1

2
𝛾⊤𝑈⊤Σ𝛽𝑈𝛾 𝑂(𝑁𝑀 +𝐷𝑀2) 𝑂(𝑁 +𝑀2)

9: �̂� = 𝑈𝛾* + �̄��̄�⊤Σ𝛽𝑈(𝑈⊤Σ𝛽𝑈)−1𝛾* 𝑂(𝐷𝑀) 𝑂(𝐷𝑀)

10: Compute approximate posterior covariance
11: 𝑊−1 := 𝑈⊤Σ𝛽𝑈 − (𝑈⊤𝑋⊤diag(�⃗�′′(𝑌,𝑋𝑈𝑈⊤�̂�))𝑋𝑈)−1 𝑂(𝑁𝑀2 +𝐷𝑀) 𝑂(𝑁𝑀)

12: Σ̂ := Σ𝛽 − Σ𝛽𝑈𝑊𝑈⊤Σ𝛽 0 (see note1) 𝑂(𝐷𝑀)

13: Compute variances and covariances
14: Var𝑝(𝛽𝑖) = 𝑒⊤𝑖 Σ̂𝑒𝑖 𝑂(𝑀2) 𝑂(𝐷𝑀)

15: Cov𝑝(𝛽𝑖, 𝛽𝑗) = 𝑒⊤𝑖 Σ̂𝑒𝑗 𝑂(𝑀2) 𝑂(𝐷𝑀)

See Figure 3-1 for an illustration of this result. From an approximation perspective,

overestimating uncertainty can be seen as preferable to underestimation as it leads

to more conservative decision-making. An alternative perspective is that we actually

engender additional uncertainty simply by making an approximation, with more

uncertainty for coarser approximations, and we should express that in reporting our

inferences. This behavior stands in sharp contrast to alternative fast approximate

inference methods, such as diagonal Laplace approximations (Appendix B.6.8) and

variational Bayes [MacKay, 2003], which can dramatically underestimate uncertainty.

We further characterize the conservativeness of LR-GLM in Corollary B.5.1, which

shows that the LR-GLM posterior never has lower entropy than the exact posterior

and quantifies the bits of information lost due to approximation.

3.5 Non-conjugate GLMs with approximately low-

rank data

While the conjugate linear setting facilitates intuition and theory, GLMs are a larger

and more broadly useful class of models for which efficient and reliable Bayesian

inference is of significant practical concern. Assuming conditional independence of the
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observations given the covariates and parameter, the posterior for a GLM likelihood

can be written

log 𝑝(𝛽 | 𝑋, 𝑌 ) = log 𝑝(𝛽) +
𝑁∑︁

𝑛=1

𝜑(𝑦𝑛, 𝑥
⊤
𝑛𝛽) + 𝑍 (3.5)

for some real-valued mapping function 𝜑 and log normalizing constant 𝑍. For priors and

mapping functions that do not form a conjugate pair, accessing posterior functionals of

interest is analytically intractable and requires posterior approximation. One possibility

is to use a Monte Carlo method such as MCMC, which has theoretical guarantees

asymptotic in running time but is relatively slow in practice. The usual alternative is a

deterministic approximation such as VB or Laplace. These approximations are typically

faster but do not become arbitrarily accurate in the limit of infinite computation.

We next show how LR-GLM can be applied to facilitate faster MCMC samplers and

Laplace approximations for Bayesian GLMs. We also characterize the additional error

introduced to Laplace approximations by low-rank data approximations.

3.5.1 LR-GLM for fast Laplace approximations

The Laplace approximation refers to a Gaussian approximation obtained via a second-

order Taylor approximation of the log density. In the Bayesian setting, the Laplace

approximation 𝑝(𝛽 | 𝑋, 𝑌 ) is typically formed at the maximum a posteriori (MAP)

parameter: 𝑝(𝛽 | 𝑋, 𝑌 ) := 𝒩 (𝛽 | �̄�, Σ̄), where �̄� := argmax𝛽 log 𝑝(𝛽 | 𝑋, 𝑌 ) and

Σ̄−1 := −∇2
𝛽 log 𝑝(𝛽 | 𝑋, 𝑌 )|𝛽=�̄�. When computing and analyzing Laplace ap-

proximations for GLMs, we will often refer to vectorized first, second, and third

derivatives �⃗�′, �⃗�′′, �⃗�′′′ ∈ R𝑁 of the mapping function 𝜑. For 𝑌,𝐴 ∈ R𝑁 , we define

�⃗�′(𝑌,𝐴)𝑛 := 𝜕
𝜕𝑎
𝜑(𝑌𝑛, 𝑎)|𝑎=𝐴𝑛 . The higher-order derivative definitions are analogous,

with the derivative order of 𝜕
𝜕𝑎

increased commensurately.

Laplace approximations are typically much faster than MCMC for moderate/large

𝑁 and small 𝐷, but they become expensive or intractable for large 𝐷. In particular,

they require inverting a 𝐷 ×𝐷 Hessian matrix, which is in general an 𝑂(𝐷3) time
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operation, and storing the resulting covariance matrix, which requires 𝑂(𝐷2) memory.2

As in the conjugate case, LR-GLM permits a faster and more memory-efficient route

to inference. Here, we say that the LR-Laplace approximation, 𝑝(𝛽 | 𝑋, 𝑌 ) = 𝒩 (𝛽 |

�̂�, Σ̂), denotes the Laplace approximation to the LR-GLM approximate posterior. The

special case of LR-Laplace with zero-mean prior is given in Algorithm 4 as it allows

us to easily analyze time and memory complexity. For the more general LR-Laplace

algorithm, see Appendix B.8.

Theorem 3.5.1. In a GLM with a zero-mean, structured-Gaussian prior3 and a

log-concave likelihood,4 the rank-𝑀 LR-Laplace approximation may be computed via

Algorithm 4 in 𝑂(𝑁𝐷𝑀) time with 𝑂(𝐷𝑀 + 𝑁𝑀) memory. Furthermore, any

posterior covariance entry can be computed in 𝑂(𝑀2) time.

Algorithm 4 consists of three phases: (1) computation of the 𝑀 -truncated SVD of

𝑋⊤; (2) MAP optimization to find �̂�; and (3) estimation of Σ̂. In the second phase we

are able to efficiently compute �̂� by first solving a lower-dimensional optimization for

the quantity 𝛾* ∈ R𝑀 (Line 8), from which �̂� is available analytically. Notably, in the

common case that 𝑝(𝛽) is isotropic Gaussian, the expression for �̂� reduces to 𝑈𝛾* and

the full time complexity of MAP estimation is 𝑂(𝑁𝑀 +𝐷𝑀). Though computing

the covariance for each pair of parameters and storing Σ̂ explicitly would of course

require a potentially unacceptable 𝑂(𝐷2) storage, the output of Algorithm 4 is smaller

and enables arbitrary parameter variances and covariances to be computed in 𝑂(𝑀2)

time. See Appendix B.6.1 for additional details.

3.5.2 Accuracy of the LR-Laplace approximation

We now consider the quality of the LR-Laplace approximate posterior relative to the

usual Laplace approximation. Our first result concerns the difference of the posterior

means
2Notably, as in the conjugate setting, an alternative matrix inversion using the Woodbury identity

reduces this cost when 𝑁 < 𝐷 to 𝑂(𝑁2𝐷) time and 𝑂(𝑁𝐷) memory (Appendix B.3).
3For example (banded) diagonal or diagonal plus low-rank, such that matrix vector multiplies

may be computed in 𝑂(𝐷) time.
4This property is standard for common GLMs such as logistic and Poisson regression.
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Theorem 3.5.2 (Non-asymptotic). In a generalized linear model with an 𝛼–strongly

log concave posterior, the exact and approximate MAP values, �̂� = argmax𝛽 𝑝(𝛽 | 𝑋, 𝑌 )

and �̄� = argmax𝛽 𝑝(𝛽 | 𝑋, 𝑌 ), satisfy

‖�̂�− �̄�‖2 ≤
�̄�1

(︀
‖�⃗�′(𝑌,𝑋�̂�)‖2 + 𝜆1‖�̄�⊤�̂�‖2‖�⃗�′′(𝑌,𝐴)‖∞

)︀
𝛼

for some vector 𝐴 ∈ R𝑁 such that 𝐴𝑛 ∈ [𝑥⊤
𝑛𝑈𝑈⊤�̂�, 𝑥⊤

𝑛 �̂�].

This bound reveals several characteristics of the regimes in which LR-Laplace

performs well. As in conjugate regression, we see that the bound tightens to 0 as the

rank of the approximation increases to capture all of the variance in the covariates

and �̄�1 → 0.

Remark 3.5.3. For many common GLMs, ‖�⃗�′‖2, ‖�⃗�′′‖∞, and ‖�⃗�′′′‖∞ are well controlled;

see Appendix B.6.4. ‖�⃗�′′′‖∞ appears in an upcoming corollary.

Remark 3.5.4. The 𝛼–strong log concavity of the posterior is satisfied for any strongly

log concave prior (e.g., a Gaussian, in which case we have 𝛼 ≥ ‖Σ𝛽‖−1
2 ) and 𝜑(𝑦, ·) is

concave for all 𝑦. In this common case, Theorem 3.5.2 provides a computable upper

bound on the posterior mean error.

Remark 3.5.5. In contrast to the conjugate case (Corollary 3.4.2), general LR-GLM

parameter estimates are not necessarily consistent within the span of the projection.

That is, 𝑈⊤�̂�𝑁 may not converge to 𝑈⊤𝛽 (see Appendix B.6.5).

We next consider the distance between our approximation and target posterior

under a Wasserstein metric [Villani, 2008]. Let Γ(𝑝, 𝑝) be the set of all couplings of

distributions 𝑝 and 𝑝, i.e. joint distributions 𝛾(·, ·) satisfying 𝑝(𝛽) =
∫︀
𝛾(𝛽, 𝛽′)𝑑𝛽′ and

𝑝(𝛽) =
∫︀
𝛾(𝛽′, 𝛽)𝑑𝛽′ for all 𝛽. Then the 2-Wasserstein distance between 𝑝 and 𝑝 is

defined

𝑊2(𝑝, 𝑝) = inf
𝛾∈Γ(𝑝,𝑝)

E𝛾[‖𝛽 − 𝛽‖22]
1
2 . (3.6)

Wasserstein bounds provide tight control of many functionals of interest, such as

means, variances, and standard deviations Huggins et al. [2018]. For example, if
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𝜉𝑖 ∼ 𝑞𝑖 for any distribution 𝑞𝑖 (𝑖 = 1, 2), then |E[𝜉1] − E[𝜉2]| ≤ 𝑊2(𝑞1, 𝑞2) and

|Var[𝜉1]
1
2 − Var[𝜉2]

1
2 | ≤ 2𝑊2(𝑞1, 𝑞2).

We provide a finite-sample upper bound on the 2-Wasserstein distance between

the Laplace and LR-Laplace approximations. In particular, the 2-Wasserstein will

decrease to 0 as the rank of the LR-Laplace approximation increases since the largest

truncated singular value �̄�1 will approach zero.

Corollary 3.5.6. Assume the prior 𝑝(𝛽) is Gaussian with covariance Σ𝛽 and the

mapping function 𝜑(𝑦, 𝑎) has bounded 2nd and 3rd derivatives with respect to 𝑎. Take

𝐴 and 𝛼 as in Theorem 3.5.2. Then 𝑝(𝛽) and 𝑝(𝛽) satisfy

𝑊2(𝑝, 𝑝) ≤
√
2�̄�1‖Σ̄‖2

{︁
𝑐
[︀
‖Σ−1

𝛽 ‖2 + (𝜆1 + �̄�1)
2‖�⃗�′′‖∞

]︀
+ (𝜆2

1𝑟 + (�̄�1 + 2𝜆1)‖�⃗�′′‖∞
√︁
tr(Σ̂)

}︁
, (3.7)

where 𝑐 :=
(︀
‖�⃗�′(𝑌,𝑋�̂�)‖2 + 𝜆1‖�̄�⊤�̂�‖2‖�⃗�′′(𝑌,𝐴)‖∞

)︀
/𝛼 and 𝑟 := ‖𝑈⊤�̂�‖∞‖�⃗�′′′‖∞ +

𝜆1𝑐‖�⃗�′′′‖∞.

When combined with Huggins et al. [2018, Prop. 6.1], this result guarantees

closeness in 2-Wasserstein of LR-Laplace to the exact posterior.

We conclude with a result showing that the error due to the LR-GLM approximation

cannot grow without bound as the sample size increases.

Theorem 3.5.7 (Asymptotic). Under mild regularity conditions, the error in the

posterior means, ‖�̂�𝑛 − �̄�𝑛‖2, converges as 𝑛 → ∞, and the limit is finite almost

surely.

For the formal statement see Theorem B.6.2 in Appendix B.6.7.

3.5.3 LR-MCMC for faster MCMC in GLMs

LR-Laplace is inappropriate when the posterior is poorly approximated by a Gaussian.

This may be the case, for example, when the posterior is multi-modal, a common

characteristic of GLMs with sparse priors. To remedy this limitation of LR-Laplace, we
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introduce LR-MCMC, a wrapper around the Metropolis–Hastings algorithm using the

LR-GLM approximation. For a GLM, each full likelihood and gradient computation

takes 𝑂(𝑁𝐷) time but only 𝑂(𝑁𝑀 + 𝐷𝑀) time with the LR-GLM approxima-

tion, resulting in the same min(𝑁,𝐷)/𝑀 -fold speedup obtained by LR-Laplace. See

Appendix B.7 for further details on LR-MCMC.

3.6 Experiments

We empirically evaluated LR-GLM on real and synthetic datasets. For synthetic data

experiments, we considered logistic regression with covariates of dimension 𝐷 = 250

and 𝐷 = 500. In each replicate, we generated the latent parameter from an isotropic

Gaussian prior, 𝛽 ∼ 𝒩 (0, 𝐼𝐷), correlated covariates from a multivariate Gaussian, and

responses from the logistic regression likelihood (see Appendix B.1.1 for details). We

compared to the standard Laplace approximation, the diagonal Laplace approximation,

the Laplace approximation with a low-rank data approximation obtained via random

projections rather than the SVD (“Random-Laplace”), and mean-field automatic

differentiation variational inference in Stan (ADVI-MF).5

Figure 3-2: Left : Error of the approximate posterior (A1.) mean and (A2.) variances
relative to ground truth (running NUTS with Stan). Lower and further left is better.
Right (B.): Credible set calibration across all parameters and repeated experiments.
(C.): Approximate posterior standard deviations for a subset of parameters. The grey
line reflects zero error.

Computational–statistical trade-offs. Figure 3-2A shows empirically the

tunable computational–statistical trade-off offered by varying 𝑀 in our low-rank data
5We also tested ADVI using a full rank Gaussian approximation but found it to provide near

uniformly worse performance compared to ADVI-MF. So we exclude full-rank ADVI from the
presented results.

55



approximation. This plot depicts the error in posterior mean and variance estimates

relative to results from the No-U-Turn Sampler (NUTS) in Stan [Hoffman and Gelman,

2014, Carpenter et al., 2017], which we treat as ground truth. As expected, LR-Laplace

with larger 𝑀 takes longer to run but yields lower errors. Random-Laplace was usually

faster but provided a poor posterior approximation. Interestingly, the error of the

Random-Laplace approximate posterior mean actually increased with the dimension of

the projection. We conjecture this behavior may be due to Random-Laplace prioritizing

covariate directions that are correlated with directions where the parameter, 𝛽, is

large.

We also consider predictive performance via the classification error rate and the

average negative log likelihood. In particular, we generated a test dataset with

covariates drawn from the same distribution as the observed dataset and an out-of-

sample dataset with covariates drawn from a different distribution (see Appendix B.1.1).

The computation time vs. performance trade-offs, presented in Figure B.1.1 on the

test and out-of-sample datasets, mirror the results for approximating the posterior

mean and variances. In this evaluation, correctly accounting for posterior uncertainty

appears less important for in-sample prediction. But in the out-of-sample case, we

see a dramatic difference in negative log likelihood. Notably, ADVI-MF and diagonal

Laplace exhibit much worse performance. These results support the utility of correctly

estimating Bayesian uncertainty when making out-of-sample predictions.

Conservativeness. A benefit of LR-GLM is that the posterior approximation

never underestimates the posterior uncertainty (see Corollary 3.4.3). Figure 3-2C

illustrates this property for LR-Laplace applied to logistic regression. When LR-Laplace

misestimates posterior variances, it always overestimates. Also, when LR-Laplace

misestimates means (Figure B.1.2), the estimates shrink closer to the prior mean,

zero in this case. These results suggest that LR-GLM interpolates between the exact

posterior and the prior. Notably, this property is not true of all methods. The diagonal

Laplace approximation, by contrast, dramatically underestimates posterior marginal

variances (see Appendix B.6.8).

Reliability and calibration. Bayesian methods enjoy desirable calibration
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properties under correct model specification. But since LR-Laplace serves as a

likelihood approximation, it does not retain this theoretical guarantee. Therefore, we

assessed its calibration properties empirically by examining the credible sets of both

parameters and predictions. We found that the parameter credible sets of LR-Laplace

are extremely well calibrated for all values of 𝑀 between 20 and 400 (Figure 3-2B and

Figure B.1.4). The prediction credible sets were well calibrated for all but the smallest

value of 𝑀 tested (𝑀 = 20); in the 𝑀 = 20 case, LR-Laplace yielded under-confident

predictions (Figure B.1.5). The good calibration of LR-Laplace stood in sharp contrast

to the diagonal Laplace approximation and ADVI-MF. Random-Laplace also provided

inferior calibration (Figures B.1.4 and B.1.5).

LR-GLM with MCMC and non-Gaussian priors. In Section 3.5.3 we argued

that LR-GLM speeds up MCMC for GLMs by decreasing the cost of likelihood and

gradient evaluations in black-box MCMC routines. We first examined LR-MCMC

with NUTS using Stan on the same synthetic datasets as we did for LR-Laplace.

In Figures B.1.3 and B.1.6, we see a similar conservativeness and computational–

statistical trade-off as for LR-Laplace, and superior performance relative to alternative

methods.

We expect MCMC to yield high-quality posterior approximations across a wider

range of models than Laplace approximations. For example, for multimodal posteriors

and other posteriors that deviate substantially from Gaussianity. We next demonstrate

that LR-MCMC is useful in these more general cases. In high-dimensional settings,

practitioners are often interested in identifying a sparse subset of parameters that

significantly influence responses. This belief may be incorporated in a Bayesian setting

through a sparsity-inducing prior such as the spike and slab prior or the horseshoe

George and McCulloch [1993], Carvalho et al. [2009]. However, posteriors in these cases

may be multimodal, and scalable Bayesian inference with such priors is a challenging,

active area of research Guan and Stephens [2011], Yang et al. [2016], Johndrow et al.

[2017]. To demonstrate the applicability of low-rank data approximations to this

setting, we ran NUTS using Stan on a logistic regression model with a regularized

horseshoe prior [Carvalho et al., 2009, Piironen and Vehtari, 2017]. In Figure B.1.7,
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we see an attractive trade-off between computational investment and approximation

error. For example, we obtained relative mean and standard deviation errors of only

about 10−2 while reducing computation time by a factor of three.

We also applied LR-MCMC to linear regression with the regularized horseshoe

prior on a dataset with very correlated covariates and 𝐷 = 6,238. However, this

sampler exhibited severe mixing problems, both with and without the approximation,

as diagnosed by large �̂� values in pyStan. These issues reflect the innate challenges of

high-dimensional Bayesian inference with the horseshoe prior and correlated covariates.

Scalability to large-scale real datasets. Finally, we explored the applicability

of LR-Laplace to two real, large-scale logistic regression tasks (Figure 3-3). The first

is the UCI Farm-Ads dataset, which consists of 𝑁 = 4,143 online advertisements

for animal-related topics together with binary labels indicating whether the content

provider approved of the ad; there are 𝐷 = 54,877 bag-of-words features per ad

[Dheeru and Karra Taniskidou, 2017]. As with the synthetic datasets, we evaluated

the error in the approximations of posterior means and variances. As a baseline to

evaluate this error, we use the usual Laplace approximation because the computational

demands of MCMC preclude the possibility of using it as a baseline.

As a second real dataset we evaluated our approach on the Reuters RCV1 text

categorization test collection Amini et al. [2009], Chang and Lin [2011]. RCV1 consists

of 𝐷 = 47,236 bag-of-words features for 𝑁 = 20,241 English documents grouped into

two different categories. We were unable to compare to the full Laplace approximation

due to the high-dimensionality, so we used LR-Laplace with 𝑀 = 20,000 as a baseline.

For both datasets, we find that as we increase the rank of the data approximation,

we incur longer running times but reduced errors in posterior means and variances.

Laplace and Diagonal Laplace do not provide the same computation–accuracy trade-off.

Choosing 𝑀 . Applying LR-GLM requires choosing the rank 𝑀 of the low

rank approximation. As we have shown, this choice characterizes a computational–

statistical trade-off whereby larger 𝑀 leads to linearly larger computational demands,

but increases the precision of the approximation. As a practical rule of thumb, we

recommend setting 𝑀 to be as large as is allowable for the given application without
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Figure 3-3: LR-Laplace approximation quality on Farm-Ads (top) and RCV-1 (bottom)
datasets with varying 𝑀 . (A.) Farm-Ads error in the posterior mean and (B.) Farm-
Ads error in posterior variances (C.) RCV-1 error in posterior mean and (D.) RCV-1
error in posterior variances.

the resulting inference becoming too slow. For our experiments with LR-Laplace, this

limit was 𝑀 ≈ 20,000. For LR-MCMC, the largest manageable choice of 𝑀 will be

problem dependent but will typically be much smaller than 20,000.

3.7 Conclusion

We have shown through theory and experiments that low-rank data approximations can

enable efficient, high-quality approximate posterior inference in large scale generalized

linear models. Our approximation is transparent; we provide interpretable error bounds
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for conjugate Gaussian regression as well as for Bayesian GLMs. We demonstrate an

attractive computational–statistical trade-off: increasing the rank of our approximation

allows us to achieve higher quality approximations by investing more running time;

moreover, we recover the exact likelihood in the limit of a full rank approximation.

Lastly, we demonstrated that the error introduced by our approximation errs on

the side of conservativeness; that is, we provide approximations that are never less

uncertain than the exact posterior. This conservativeness applies to both parameters

and predictions. We believe these properties of our low-rank data approximations

make them a valuable and practical tool for approximate inference in large-scale

Bayesian GLMs.
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Chapter 4

Optimal Transport Couplings of Gibbs

Samplers on Partitions for Unbiased

Estimation

Abstract

Computational couplings of Markov chains provide a practical route to unbiased Monte

Carlo estimation that can utilize parallel computation. However, these approaches

depend crucially on chains meeting after a small number of transitions. For models

that assign data into groups, e.g. mixture models, the obvious approaches to couple

Gibbs samplers fail to meet quickly. This failure owes to the so-called ‘label-switching’

problem; semantically equivalent relabelings of the groups contribute well-separated

posterior modes that impede fast mixing and cause large meeting times. We here

demonstrate how to avoid label switching by considering chains as exploring the

space of partitions rather than labelings. Using a metric on this space, we employ

an optimal transport coupling of the Gibbs conditionals. This coupling outperforms

alternative couplings that rely on labelings and, on a real dataset, provides estimates

more precise than usual ergodic averages in the limited time regime. Code is available

at github.com/tinnguyen96/coupling-Gibbs-partition.
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4.1 Introduction

Couplings for unbiased Markov chain Monte Carlo. Consider estimating an

analytically intractable expectation of a function ℎ of a random variable 𝑋 distributed

according to 𝑝, 𝐻* :=
∫︀
ℎ(𝑋)𝑝(𝑋)𝑑𝑋. Given a Markov chain {𝑋𝑡}∞𝑡=0 with initial

distribution 𝑋0 ∼ 𝑝0 and evolving according to a transition kernel 𝑋𝑡 ∼ 𝑇 (𝑋𝑡−1, ·)

stationary with respect to 𝑝, one option is to approximate 𝐻* with the empirical

average of samples {ℎ(𝑋𝑡)}. However, while ergodic averages are asymptotically

consistent, they are in general biased when computed from finite simulations. As such,

one cannot effectively utilize parallelism to reduce error to any desired tolerance.

Computational couplings provide a route to unbiased estimation in finite simulation

[Glynn and Rhee, 2014]; in this work we build on the framework of Jacob et al. [2020].

One designs an additional Markov chain {𝑌𝑡} with two properties. First, 𝑌𝑡 |𝑌𝑡−1

also evolves using the transition 𝑇 (·, ·), so that {𝑌𝑡} is equal in distribution to {𝑋𝑡}.

Secondly, there exists a random meeting time 𝜏 <∞ such that the two chains meet

exactly at some time 𝜏 , 𝑋𝜏 = 𝑌𝜏−1, and remain faithful afterwards: for all 𝑡 ≥ 𝜏 ,

𝑋𝑡 = 𝑌𝑡−1. Then, one can compute an unbiased estimate of 𝐻* as

𝐻ℓ:𝑚(𝑋, 𝑌 ) :=
1

𝑚− ℓ+ 1

𝑚∑︁
𝑡=ℓ

ℎ(𝑋𝑡)⏟  ⏞  
Usual MCMC average

+
𝜏−1∑︁

𝑡=ℓ+1

min
(︂
1,

𝑡− ℓ

𝑚− ℓ+ 1

)︂{︀
ℎ(𝑋𝑡)− ℎ(𝑌𝑡−1)

}︀
⏟  ⏞  

Bias correction

(4.1)

where ℓ is the burn-in length, and 𝑚 sets a minimum number of iterations [Jacob

et al., 2020, Equation 2]. One interpretation of this estimator is as the usual MCMC

estimate plus a bias correction. Since 𝐻ℓ:𝑚 is unbiased, we can make the squared error

(for estimating 𝐻*) arbitrarily small by simply averaging many estimates computed

in parallel. However, the practicality of Eq. (4.1) relies on a coupling that provides

sufficiently small meeting times. Large meeting times are doubly problematic: they

lead to greater computational cost and higher variance due to the additional terms.
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Gibbs samplers over discrete structures and their couplings. Gibbs sampling

is a standard inference method for models with discrete structures and tractable

conditional distributions. Numerous applications include Bayesian nonparametric

clustering using Dirichlet process mixture models [Antoniak, 1974, Neal, 2000], graph

coloring for randomized approximation algorithms [Jerrum, 1998], community detection

using stochastic block models [Holland et al., 1983, Geng et al., 2019] and computational

redistricting [DeFord et al., 2021]. In these cases, the discrete structure is the partition

of data into components.

While some earlier works have described couplings of Gibbs samplers, they have

not sought to address computational approaches applicable in these settings. For

example, Jerrum [1998] uses maximal couplings on labelings to prove convergence

rates for graph coloring, and Gibbs [2004] uses a common random number coupling

for two-state Ising models. Notably, these approaches rely on explicit labelings and,

in our experiments, suffer from large meeting times. We attribute this issue to the

label-switching problem [Jasra et al., 2005]; heuristically, many different labelings

imply the same partition, and two chains may nearly agree on the partition but require

many iterations to change label assignments.

Our contribution. We view the Gibbs sampler as exploring a state-space of parti-

tions rather than labelings (as, for example, in Tosh and Dasgupta [2014]), and define

an optimal transport (OT) coupling in this space. We show that our algorithm has a

fast run time and empirically validate it in the context of Dirichlet process mixture

models [Antoniak, 1974, Prabhakaran et al., 2016] and graph coloring [Jerrum, 1998],

where it provides smaller meeting times than the label-based couplings of Jerrum

[1998], Gibbs [2004]. We demonstrate the benefits of unbiasedness by reporting esti-

mates of the posterior predictive density and cluster proportions. Our implementation

is publicly available at github.com/tinnguyen96/coupling-Gibbs-partition.

4.2 Our Method
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4.2.1 Gibbs samplers over partitions

For a natural number 𝑁 , a partition of [𝑁 ] := {1, 2, . . . , 𝑁} is a collection of non-empty

disjoint sets {𝐴1, 𝐴2, . . . , 𝐴𝑘}, whose union is [𝑁 ] [Pitman, 2006, Section 1.2]. We

use 𝒫𝑁 to denote the set of all partitions of [𝑁 ]. Throughout, we use 𝜋 to denote

elements of 𝒫𝑁 and Π for a random partition (i.e. a 𝒫𝑁 -valued random variable) with

probability mass function (PMF) 𝑝Π. Finally 𝜋−𝑛 and Π−𝑛 denote these partitions

with data-point 𝑛 removed. For example, if 𝜋 =
{︀
{1, 3}, {2}

}︀
, then 𝜋−1 =

{︀
{3}, {2}

}︀
.

Drawing direct Monte Carlo samples Π ∼ 𝑝Π is often impossible. However, the

conditional distributions 𝑝Π|Π−𝑛 are supported on at most 𝑁 partitions. Hence, when

𝑝Π is available up to a proportionality constant, computing and sampling from 𝑝Π|Π−𝑛

are tractable operations. A Gibbs sampler exploiting this tractability proceeds as

follows. First, a partition 𝜋 is drawn from an initial distribution 𝑝0 on 𝒫𝑁 . For each

iteration, we sweep through each data-point 𝑛 ∈ [𝑁 ], temporarily remove it from 𝜋,

and then randomly reassign it to one of the sets within 𝜋−𝑛 or add it as singleton

(that is, as a new group) according the conditional PMF 𝑝Π|Π−𝑛(·|𝜋−𝑛).

4.2.2 Our approach: optimal coupling of Gibbs conditionals

Algorithm 5 Gibbs Sweep with Optimal Transport Coupling
1: Input: Target probability mass function (PMF) 𝑝Π. Current partitions 𝜋 and 𝜈.

2: for 𝑛 = 1, 2, . . . , 𝑁 do

3: // Compute Gibbs marginals (PMFs over partitions)

4: 𝑞, 𝑟 ← 𝑝Π|Π−𝑛(·|𝜋−𝑛), 𝑝Π|Π−𝑛(·|𝜈−𝑛)

5:

6: // Compute and sample from optimal transport coupling

7: [𝜋1, 𝜋2, . . . , 𝜋𝐾 ], [𝜈1, 𝜈2, . . . , 𝜈𝐾′
]← support(𝑞), support(𝑟)

8: 𝛾* = argmin𝛾∈Γ(𝑞,𝑟)
∑︀𝐾

𝑘=1

∑︀𝐾′

𝑘′=1 𝛾(𝜋
𝑘, 𝜈𝑘′)d(𝜋𝑘, 𝜈𝑘′)

9: 𝜋, 𝜈 ∼ 𝛾*

10: Return 𝜋, 𝜈

64



Our coupling encourages the chains to become ‘closer’ while maintaining the correct

marginal evolution. To quantify closeness we use a metric on 𝒫𝑁 . While a number

of metrics exist [Meilă, 2007, Section 2], for simplicity we chose a classical metric

introduced by Mirkin and Chernyi [1970], Rand [1971],

d(𝜋, 𝜈) =
∑︁
𝐴∈𝜋

|𝐴|2 +
∑︁
𝐵∈𝜈

|𝐵|2 − 2
∑︁

𝐴∈𝜋,𝐵∈𝜈

|𝐴 ∩𝐵|2, (4.2)

which is equivalent to Hamming distance on the adjacency matrices implied by

partitions [Mirkin and Chernyi, 1970, Theorems 2-3]. We leave investigation of the

impact of metric choice on meeting time distribution to future work.

With the metric in Eq. (4.2), we can formalize an optimal transport coupling of two

Gibbs conditionals, i.e. the coupling that minimizes the expected distances between

the updates. In particular, we let 𝑞 := 𝑝Π|Π−𝑛(·|𝜋−𝑛) and 𝑟 := 𝑝Π|Π−𝑛(·|𝜈−𝑛) with

supports [𝜋1, 𝜋2, . . . , 𝜋𝐾 ] := support(𝑞) and [𝜈1, 𝜈2, . . . , 𝜈𝐾′
] := support(𝑟) and define

the OT coupling as

𝛾* := argmin
𝛾∈Γ(𝑞,𝑟)

𝐾∑︁
𝑘=1

𝐾′∑︁
𝑘′=1

𝛾(𝜋𝑘, 𝜈𝑘′)d(𝜋𝑘, 𝜈𝑘′), (4.3)

where Γ(𝑞, 𝑟) is the set of all couplings of 𝑞 and 𝑟. Algorithm 5 summarizes this

approach.

4.2.3 Efficient computation of optimal couplings

The practicality of our OT coupling depends both on successfully encouraging chains

to meet in a small number of steps and on an implementation with computational

cost comparable to running single chains. If Algorithm 5 required orders of magnitude

more time than the Gibbs sweep of single chains, the extent of parallelism required to

place the unbiased estimates from coupled chains on an even footing with standard

MCMC could be prohibitive.

In many applications, including those in our experiments, for partitions of size

𝐾, the Gibbs conditionals may be computed in Θ(𝐾) time, and a full sweep through
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the 𝑁 data-points takes Θ(𝑁𝐾) time for a single chain. At first consideration, an

implementation of Algorithm 5 with comparable efficiency might seem infeasible.

In particular, when 𝜋 and 𝜈 are of size 𝑂(𝐾), Eq. (4.3) requires computing 𝑂(𝐾2)

pairwise distances, each of which naively might seem to require at least 𝑂(𝐾𝑁)

operations — let alone the OT problem.

The following result shows that we can in fact compute this coupling efficiently.

Theorem 4.2.1 (Gibbs Sweep Time Complexity). Let 𝑝Π be the law of a random

𝑁 -partition. If for any 𝜋 ∈ 𝒫𝑁 , 𝑝Π|Π−𝑛(·|𝜋−𝑛) is computed in constant time, the Gibbs

sweep in Algorithm 5 has 𝑂(𝑁 ̃︀𝐾3 log ̃︀𝐾) run time, where ̃︀𝐾 is the max partition size

encountered.

As a proof of Theorem 4.2.1, we detail an 𝑂(𝑁 ̃︀𝐾3 log ̃︀𝐾) implementation in

Appendix C.1.

Theorem 4.2.1 guarantees that the run time of a coupled-sweep is no more than a

𝑂( ̃︀𝐾2 log ̃︀𝐾) factor slower than a single-sweep. The relative magnitude of ̃︀𝐾 versus

𝑁 depends on the target distribution. For the graph coloring distribution, ̃︀𝐾 is upper

bounded by the numbers of available colors. Under the Dirichlet process mixture

model (DPMM) prior, with high probability, the size of partition of 𝑁 data points is

within multiplicative factors of ln𝑁 [Arratia et al., 2003, Section 5.2]. We conjecture

that under most initializations of the Gibbs sampler (such as from the DPMM prior),̃︀𝐾 = 𝑂(ln𝑁) with high probability.

Remark 4.2.2. The worst-case run time of Theorem 4.2.1 is attained with Orlin’s

algorithm [Orlin, 1993] to solve Eq. (4.3) in 𝑂( ̃︀𝐾3 log ̃︀𝐾) time. However, our imple-

mentation uses the simpler network simplex algorithm [Kelly and O’Neill, 1991] as

implemented by Flamary et al. [2021]. Although Kelly and O’Neill [1991, Section

3.6] upper bound the worst-case complexity of the network simplex as 𝑂( ̃︀𝐾5), the

algorithm’s average-case performance may be as good as 𝑂( ̃︀𝐾2) [Bonneel et al., 2011,

Figure 6].

Although Orlin’s algorithm [Orlin, 1993] has a better worst-case runtime, convenient

public implementations are not available. In addition, our main contribution is the
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formulation of the coupling as an OT problem — in principle, the dependence on ̃︀𝐾
of the runtime in Theorem 4.2.1 inherits from the best OT solver used.

4.3 Empirical Results

In Section 4.3.2, we compare the distribution of meeting times between our partition-

based coupling and two label-based couplings: under our coupling, chains meet earlier.

In Section 4.3.3, we report unbiased estimates of two estimands of common interest:

posterior predictive densities and the posterior mean proportion of data assigned to

the largest clusters. But first, we describe the applications and the target distributions

under consideration in Section 4.3.1.

4.3.1 Applications

Dirichlet process mixture models. Clustering is a core task for understanding

structure in data and density estimation. When the number of latent clusters is a priori

unknown, DPMMs [Antoniak, 1974] are a useful tool. The cluster assignments of data

points in a DPMM can be described with a Chinese restaurant process, or CRP(𝛼,𝑁),

which is a probability distribution over 𝒫𝑁 with mass Pr(Π = 𝜋) =
𝛼𝐾

∏︀
𝐴∈𝜋(|𝐴|−1)!

𝛼(𝛼+1)...(𝛼+𝑁−1)

where 𝐾 is the number of clusters in 𝜋, and
∏︀

𝐴∈𝜋 iterates through the clusters. We

consider a fully conjugate DPMM [MacEachern, 1994],

Π ∼ CRP(𝛼,𝑁), 𝜇𝐴
i.i.d.∼ 𝒩 (𝜇0,Σ0) for 𝐴 ∈ Π, 𝒟𝑗 |𝜇𝐴

i.i.d.∼ 𝒩 (𝜇𝐴,Σ1) for 𝑗 ∈ 𝐴.

(4.4)

The hyper-parameters of Eq. (4.4) are concentration 𝛼, cluster prior mean 𝜇0, observa-

tional covariance Σ1 and cluster covariance Σ0. For this application, the distribution is

the Bayesian posterior, 𝑝Π(𝜋) := Pr(Π = 𝜋 | 𝒟). The Gibbs conditionals of the poste-

rior 𝑝Π|Π−𝑛 can be computed in closed form, using simple formulas for conditioning of

jointly Gaussian random variables and the well-known Polya urn scheme [Neal, 2000,

Equation 3.7].
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Figure 4-1: Reduced meeting times are achieved by OT couplings of Gibbs conditionals
relative to maximal and common random number couplings in applications to (A)
DPMM and (B) graph coloring. (A) Left and (B) left show two representative traces
of the distance between coupled chains by iteration. (A) Right and (B) right show
histograms of meeting times 250 replicate coupled chains.

Graph coloring. Uniform sampling of graph colorings is a problem of fundamental

interest in theoretical computer science for its role as a subroutine within fully

polynomial randomized approximation algorithms, where samples from the uniform

distribution on graph colorings are used to estimate the number of unique colorings

[Jerrum, 1998].

Notably, this sampling problem reduces to sampling from the induced distribution

on partitions, by choosing an ordering of the sets in the partition and associating it

with a random permutation of the set of colors. Accordingly, estimates are just as

easily constructed for a Markov chain defined on partitions. See Appendix C.2 for

additional details.

4.3.2 Reduced meeting times with OT couplings

Figure 4-1 demonstrates that our approach yields faster couplings than the classical

maximal coupling approach [Jerrum, 1998, Section 5], or an analogous coupling

using shared common random numbers (see e.g. Gibbs [2004]). In applications to

both Bayesian clustering and graph coloring, the distance between coupled chains

stochastically decreases to 0 (Figure 4-1 left panels), with our approach leading to

meetings after fewer sweeps. Despite the larger per-sweep computational cost, our
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OT coupled chains typically meet after a shorter wall-clock time as well. We suspect

this improvement comes from avoiding label-switching, which hinders mixing of the

maximal and common-RNG coupled chains.

The tightest bounds for mixing time for Gibbs samplers on graph colorings to

date [Chen et al., 2019] rely on couplings on labeled representations. Our results

suggest better bounds may be attainable by considering convergence of partitions

rather than labelings. Reducing the mixing time for Gibbs samplers of DPMM has

been a motivation behind collapsed samplers [MacEachern, 1994], but the literature

lacks upper bounds on the mixing time.

4.3.3 Unbiased estimation with parallel computation

We adapt the setup from Jacob et al. [2020, Section 3.3]. Fixing a time budget, we

run a single chain until time runs out and report the ergodic average. For coupled

chains, we attempt as many meetings as possible in this time, and report the average

across attempts.

Posterior mean predictive density. The posterior predictive is a key quantity

used in model selection [Görür and Rasmussen, 2010], and is of particular interest for

DPMMs as it is known to be consistent for the underlying data distribution in total

variation distance [Ghosal et al., 1999]. As a proof of concept, we computed unbiased

estimates of the posterior predictive distribution of a DPMM (Figure 4-2 A).

We generated 𝑁 = 100 data points from a 10-component Gaussian mixture model

in one dimension, with the variance around cluster means equal to 4. We used a

DPMM with 𝛼 = 1, 𝜇0 = 0, Σ1 = 4.0, Σ0 = 9.0 to analyze the 𝑁 observations. The

solid blue curve is an unbiased estimate of the posterior predictive density. The black

dashed curve is the true density of the population. The grey histogram bins the

observed data. Because of the finite sample size, the predictive density is not equal

to the true density. In Appendix C.3, the difference between the model’s predictive

density and the true density decreases as sample size 𝑁 increases.
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Figure 4-2: Unbiased estimates for Dirichlet process mixture model are obtained using
OT coupled chains. (A) Unbiased estimate of the posterior predictive density for a toy
problem. (B) Parallelism/accuracy trade-off for single and coupled chain estimators
of the posterior mean portion of cells in the largest cluster. Each process is allocated
250 seconds, error bars indicate ±2SEM. Ground truth denotes estimates from very
long MCMC chains.

Posterior mean component proportions. A second key quantity of interest in

DPMMs is the posterior mean of the proportion of data-points in the largest cluster(s)

(e.g. as reported by Liverani et al. [2015]). We lastly explored parallel computation

for unbiased estimation of this quantity on a real dataset (Figure 4-2 B). Specifically,

we use a subset of the data used by Prabhakaran et al. [2016], who used a DPMM

to analyse single-cell RNA-sequencing data obtained from Zeisel et al. [2015] (see

Appendix C.2 for details).

Figure 4-2 B presents a series of estimates of the proportion of cells in the largest

component, and approximate frequentist confidence intervals. For each number of

processes 𝑀 , we aggregated 𝑀 independent single and coupled chain estimates, each

from a single processor with a 250 second limit. We compare to the ‘ground-truth’

proportion obtained by MCMC run for 10,000 sweeps. Our results demonstrate the

advantage of unbiased estimates in the high-parallelism, time-limited regime; while

single-chain estimates have lower variance, coupled chains yield smaller error when

aggregated across many processes. In addition, as result of unbiasedness, standard

frequentist intervals may be expected to have good coverage. By contrast, we cannot

expect such intervals from single chains to be calibrated; indeed, the true value is

many standard errors from the single chain estimates (Figure 4-2 B).
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However, due to the variance of the unbiased estimates we require a degree of

parallelism that may be impractical for most practitioners (≈ 5,000 pairs of chains to

attain error comparable to that of as many single chains). Indeed, in our experiments,

we simulated this high parallelism by sequentially running batches of 100 processes in

parallel. Additionally, the estimation strategy can be finicky: unbiasedness requires

coupled chains to meet exactly, and for some models and experiments not shown,

we found that some pairs of coupled chains failed to meet quickly. This difficulty

is expected for problems where single chains mix slowly, as slow mixing precludes

the existence of fast couplings [Jacob, 2020, Chapter 3]. Looking forward, we expect

that our work will naturally benefit from advances in parallel-computation software

and hardware, such as GPU implementations. Reducing the variance of the unbiased

estimates is an open question, and is the target of ongoing work.

71



Chapter 5

Confidently Comparing Estimators

with the c-value

Abstract

Modern statistics provides an ever-expanding toolkit for estimating unknown param-

eters. Consequently, applied statisticians frequently face a difficult decision: retain

a parameter estimate from a familiar method or replace it with an estimate from a

newer or more complex one. While it is traditional to compare estimators using risk,

such comparisons are rarely conclusive in realistic settings.

In response, we propose the “c-value” as a measure of confidence that a new

estimate achieves smaller loss than an old estimate on a given dataset. We show that

it is unlikely that a large c-value coincides with a larger loss for the new estimate.

Therefore, just as a small p-value provides evidence to reject a null hypothesis, a large

c-value provides evidence to use a new estimate in place of the old. For a wide class

of problems and estimators, we show how to compute a c-value by first constructing a

data-dependent high-probability lower bound on the difference in loss. The c-value

is frequentist in nature, but we show that it can provide a validation of shrinkage

estimates derived from Bayesian models in real data applications involving hierarchical

models and Gaussian processes.
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5.1 Introduction

Modern statistics provides an expansive toolkit of sophisticated methodology for

estimating unknown parameters. However, the abundance of different estimators often

presents practitioners with a difficult challenge: choosing between the output of a

familiar method (e.g. a maximum likelihood estimate (MLE)) and that of a more

complicated method (e.g. the posterior mean of a hierarchical Bayesian model). From

a practical perspective, abandoning a familiar approach in favor of a newer alternative

is unreasonable without some assurance that the latter provides a more accurate

estimate. Our goal is to determine whether it is safe to abandon a default estimate in

favor of an alternative, and to provide an assessment of the degree of confidence we

should have in this decision.

Traditionally decisions between estimators are based on risk, the loss averaged

over all possible realizations of the data with respect to a likelihood model [Lehmann

and Casella, 2006, Chapters 4-5]. We note two limitations of using risk. First, it is

rare that one estimator within a given pair will have smaller risk across all possible

parameter values. Instead, it is more often the case that one estimator will have

smaller risk for some unknown parameter values but larger risk for other parameter

values. Second, one estimator may have lower risk than another but incur higher loss

on a majority of datasets; see Appendix D.2 for an example in which an estimator

with smaller risk has larger loss on nearly 70% of simulated datasets.

In this work we propose a framework for choosing between estimators based on

their performance on the observed dataset rather than their average performance.

Specifically, we introduce the “c-value” (“c” for confidence in the new estimate), which

we construct using a data-dependent high-probability lower bound on the difference

in loss. We show that it is unlikely that simultaneously the c-value is large and the

alternative estimate has larger loss than the default. We then demonstrate how to use

the c-value to select between two estimates in a principled, data-driven way. Critically,

the c-value requires no assumptions on the unknown parameter; our guarantees hold

uniformly across the parameter space. Before presenting our general methodology, we
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discuss three motivating examples.

5.1.1 Shrinkage estimates on educational testing data

We revisit Hoff [2021]’s estimates of average student reading ability at several schools

in the 2002 Educational Longitudinal Study. These estimates are obtained from a

hierarchical Bayesian model intended to “share strength” by partially pooling data

across related schools. However, the analysis relied on a simplifying and subjectively

chosen prior, and so it was unclear whether the resulting estimates of school-specific

parameters were more accurate simpler MLE obtained by considering each school

separately. Our analysis is quite confident that Hoff [2021]’s estimates yield smaller

square error than the MLE. We additionally consider a more clearly misspecified

prior and verify that our methodology does not always favor more complex alternate

estimators. Although these estimates have a Bayesian provenance, the use of the c-

value to validate them requires neither subjective belief in the prior nor the assumption

that it is correctly specified.

5.1.2 Estimating violent crime density at the neighborhood

level

Considerable empirical evidence links a community’s exposure to violent crime and

adverse behavioral, mental, and physical health outcomes among its residents [Buka

et al., 2001, Kondo et al., 2018]. Although overall violent crimes rates in the U.S.

have decreased over the last two decades, there is considerable variation in time

trends at the neighborhood level [Balocchi and Jensen, 2019, Balocchi et al., 2019]. A

critical first step in understanding what drives neighborhood-level variation is accurate

estimation of the actual amount of violent crime that occurs in each neighborhood.

Typically, researchers rely on the reported counts of violent crime aggregated at

small spatial resolutions (e.g. at the census tract level). However, in light of sampling

variability due to the relative infrequency of certain crime types in small areas, it is

natural to wonder if auxiliary data can be used to improve estimates of violent crime
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incidence.

As a second application of our framework, we analyze the number of violent crimes

reported per square mile in several neighborhoods in the city of Philadelphia. Our

analysis suggests that one can obtain improved estimates of this violent crime density

by using a shrinkage estimate that incorporates information about non-violent crime

incidence. Further c-value analysis reveals that leveraging spatial information on top

of non-violent incidence does not provide additional improvement.

5.1.3 Gaussian process kernel choice: modeling ocean currents

Accurate estimation of ocean current dynamics is critical for forecasting the dispersion

of oceanic contaminations [Poje et al., 2014]. While it is commonplace to model ocean

flow dynamics at or above the mesoscale (roughly 10 km), Lodise et al. [2020] have

recently advocated modeling dynamics at both the mesoscale and the submesoscale

(roughly 0.1–10 km). They specifically proposed a Gaussian process model that

accounts for variation across multiple resolutions to estimate ocean currents from

positional data taken from hundreds of free-floating buoys.

In a third application of our framework, we find that the multi-resolution procedure

produces a large c-value, indicating that accounting for variation across multiple scales

enables more accurate estimates than are obtained when accounting only for mesoscale

variation.

5.1.4 Organization of the article & contributions

We formally present our general framework and define the c-value in Section 5.2. In

Section 5.2.1 we highlight similarities and differences between our framework and

existing work on preliminary testing and post-selection inference. Our approach to

computing c-values depends on the availability of high-confidence lower bounds on the

difference in the losses of the two estimates that holds uniformly across the parameter

space. Sections 5.3 to 5.5 provide these bounds for several models and classes of

estimators for squared error loss. In Section 5.3, we illustrate our general strategy in
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the canonical normal means problem. Then, in Section 5.4, we generalize this strategy

to compare affine estimates of normal means with correlated observations. Section 5.5

shows how to extend the framework to cover two nonlinear cases: a nonlinear shrinkage

estimator and regularized logistic regression. We provide simulations validating our

approach in these settings. We apply our framework to the aforementioned motivating

examples in Section 5.6.

5.2 Introducing the c-value

We now describe our approach for quantifying confidence in the statement that one

estimate of an unknown parameter is superior to another. We begin by introducing

some notation and building up to a definition of the c-value, before stating our main

results. This development is very general, and we defer practical considerations to the

subsequent sections. We include proofs of the results of this section in Appendix D.1.

Suppose that we observe data 𝑦 drawn from some distribution that depends on an

unknown parameter 𝜃. We consider deciding between two estimates, 𝜃(𝑦) and 𝜃*(𝑦), of

𝜃 on the basis of a loss function 𝐿(𝜃, ·). Our focus is on asymmetric situations in which

𝜃(·) is a standard or more familiar estimator while 𝜃*(·) is a less familiar estimator.

For simplicity, we will refer to 𝜃(·) as the default estimator and 𝜃*(·) as the alternative

estimator.

We next define the “win” obtained by using 𝜃*(𝑦) rather than 𝜃(𝑦) as the difference

in loss, 𝑊 (𝜃, 𝑦) := 𝐿(𝜃, 𝜃(𝑦))− 𝐿(𝜃, 𝜃*(𝑦)). While a typical comparison based on risk

would proceed by taking the expectation of 𝑊 (𝜃, 𝑦) over all possible datasets drawn

for fixed 𝜃, we maintain focus on the single observed dataset. Notably, the win is

positive whenever the alternative estimate achieves a smaller loss than the default

estimate. As such, if we knew that 𝑊 (𝜃, 𝑦) > 0 for the given dataset 𝑦 and unknown

parameter 𝜃, then we would prefer to use the alternative 𝜃*(𝑦) instead of the default

𝜃(𝑦).

Since 𝜃 is unknown, determining whether 𝑊 (𝜃, 𝑦) > 0 is impossible. Nevertheless,

for a broad class of estimators, we can determine whether the win is positive with

76



high probability. To start, we construct a lower bound, 𝑏(𝑦, 𝛼), depending only on the

data and a pre-specified level 𝛼 ∈ [0, 1], that satisfies for all 𝜃

P𝜃

[︀
𝑊 (𝜃, 𝑦) ≥ 𝑏(𝑦, 𝛼)

]︀
≥ 𝛼. (5.1)

For values of 𝛼 close to 1, 𝑏(𝑦, 𝛼) is a high-probability lower bound on the win that holds

uniformly across all possible values of the unknown parameter 𝜃. Loosely speaking,

if 𝑏(𝑦, 𝛼) > 0 for some 𝛼 close to 1, then we can be confident that the alternative

estimate has smaller loss than the default estimate.

The lower bound 𝑏(𝑦, 𝛼) allows us to define a precise measure of confidence that

𝜃*(𝑦) is superior to 𝜃(𝑦), that we call the c-value,

𝑐(𝑦) := inf
𝛼∈[0,1]

{︀
𝛼 | 𝑏(𝑦, 𝛼) ≤ 0

}︀
. (5.2)

The c-value marks a meaningful boundary in the space of confidence levels; it is the

largest value such that for every 𝛼 < 𝑐(𝑦), we have confidence 𝛼 that the win is

positive.

Remark 5.2.1. An alternative definition for the c-value is 𝑐+(𝑦) = sup𝛼∈[0,1]{𝛼|𝑏(𝑦, 𝛼) ≥

0}. Although 𝑐+(𝑦) = 𝑐(𝑦) when 𝑏(𝑦, ·) is continuous and strictly decreasing in 𝛼,

𝑐+(·) may be overconfident otherwise. We detail a particularly pathological example

in Appendix D.3.

Our first main result formalizes the interpretation of 𝑐(𝑦) as a measure of confidence.

Theorem 5.2.2. Let 𝑏(·, ·) be any function satisfying the condition in Eq. (5.1). Then

for any 𝜃 and 𝛼 ∈ [0, 1] and 𝑐(𝑦) as defined in Eq. (5.2),

P𝜃

[︀
𝑊 (𝜃, 𝑦) ≤ 0 and 𝑐(𝑦) > 𝛼

]︀
≤ 1− 𝛼. (5.3)

The result follows directly from the definition of 𝑐(·) and the condition on 𝑏(·, ·).

Informally, Theorem 5.2.2 assures us that it is unlikely that simultaneously (A) the

77



𝑐-value is large and (B) 𝜃*(𝑦) does not provide smaller loss than 𝜃(𝑦). Just as a small

p-value provides evidence to reject a null hypothesis, a large c-value provides evidence

to abandon the default estimate in favor of the alternative.

The strategy described above necessarily uses the data twice, once to compute

the two estimates and once more to compute the c-value to choose between them.

Accordingly, one might justly ask if this “double-dipping” into the dataset is likely to

damage the quality of the resulting estimate. To address this question, we formalize

this two-step procedure with a single estimator

𝜃†(𝑦, 𝛼) := 1[𝑐(𝑦) ≤ 𝛼]𝜃(𝑦) + 1[𝑐(𝑦) > 𝛼]𝜃*(𝑦), (5.4)

which picks between the two estimates 𝜃(𝑦) and 𝜃*(𝑦) based on the value 𝑐(𝑦) and a

pre-specified level 𝛼 ∈ [0, 1]. We can characterize the possible outcomes when using

𝜃†(·, 𝛼) with a contingency table (Table 5.1), where rows correspond to the estimate

with smaller loss, and the columns correspond to the reported estimate.

Table 5.1: Contingency tables with possible outcomes when using the two-staged
estimator 𝜃†(·, 𝛼). By construction, 𝜃†(·, 𝛼) controls the probability of the shaded
event.

Default reported Alternative reported
Default has lower loss Correctly Incorrect
Alternative has lower
loss

Incorrect Correct

Recalling again that we are interested in an asymmetric situation, we focus on the

upper right entry. This entry corresponds to the event that 𝜃†(·, 𝛼) incurs greater loss

than 𝜃(·). Our second main result formalizes that when we use 𝜃†(·, 𝛼) with 𝛼 close to

1, the probability of this event is small.

Theorem 5.2.3. Let 𝑏(·, ·) be any function that satisfies the condition in Eq. (5.1).

Then for any 𝜃 and 𝛼 ∈ [0, 1],

P𝜃

[︂
𝐿
(︁
𝜃, 𝜃†(𝑦, 𝛼)

)︁
> 𝐿

(︁
𝜃, 𝜃(𝑦)

)︁]︂
≤ 1− 𝛼. (5.5)
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When the alternative estimator is less familiar than the default estimator, such

reassurance is highly desirable.

Overview of the remainder of the paper. The c-value is useful insofar as the

lower bound 𝑏(𝑦, 𝛼) is sufficiently tight and readily computable. It remains to show

that such practical bounds exist. A primary contribution of this work is the explicit

construction of these bounds in settings of practical interest. In what follows, we

(A) illustrate one approach for constructing and computing 𝑏(𝑦, 𝛼), (B) explore our

proposed bounds’ empirical properties on simulated data, and (C) demonstrate their

practical utility on real-world data.

5.2.1 Related work

Hypothesis testing, p-values, and pre-test estimation. Our proposed c-value

bears a resemblance to the p-value in hypothesis testing, but with a few key differences.

Indeed, just as a small p-value can provide support to reject a simple null hypothesis in

favor of a more complex alternative, a large c-value can provide support for a rejecting

a familiar default estimate in favor of a more unfamiliar alternative. Furthermore both

tools provide a frequentist notion of confidence based on the idea of repeated sampling.

From this perspective, the two-step estimator 𝜃†(·, 𝛼) resembles a preliminary testing

estimator. Preliminary testing links the choice between estimators to the outcome

of a hypothesis test for the null hypothesis that 𝜃 lies in some pre-specified subspace

[Wallace, 1977].

The similarities to hypothesis testing go only so far. Notably, we consider decisions

made about a random quantity, 𝑊 (𝜃, 𝑦). Hypothesis tests, in contrast, concern

only fixed statements about parameters, with nulls and alternatives corresponding to

disjoint subsets of an underlying parameter space [Casella and Berger, 2002, Definition

8.1.3]. Our approach does not admit an interpretation as testing a fixed hypothesis.

Nevertheless, the connection to p-values can help us understand some limitations

of the c-value. First, just as hypothesis tests may incur Type II errors (i.e. failures

to reject a false null), for certain models and estimators there may be no 𝑏(·, ·) that
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consistently detects improvements by the alternative estimate. Accordingly, the two

stage estimator 𝜃†(·, 𝛼) does not control the probability that we report the default

estimate when the alternative in fact has smaller loss. In such situations, our approach

may consistently report the default estimate even though it has larger loss. Second,

even if good choices of 𝑏(·, ·) exist, it could be challenging to derive them analytically.

This analytical challenge is reminiscent of difficulties for hypothesis testing in many

models, wherein conservative p-values that are stochastically larger than uniform

under the null are used when analytic quantile functions are unavailable. Third, we

note that it may be tempting to interpret c-values as the conditional probability that

the alternative estimate is superior to the default; however, just as it is incorrect

to interpret a p-value as a probability that the null hypothesis is true, such an

interpretation for a c-value is also incorrect.

Post-selection inference. In recent years, there has been considerable progress

on understanding the behavior of inferential procedures that, like 𝜃†(·, 𝛼), use the

data twice, first to select amongst different models and then again to fit the selected

model. Important recent work has focused on computing p-values and confidence

intervals for linear regression parameters that are valid after selection with the lasso

[Lockhart et al., 2014, Lee et al., 2016, Taylor and Tibshirani, 2018] and arbitrary

selection procedures [Berk et al., 2013]. Somewhat more closely related to our focus

on estimation are Tibshirani and Rosset [2019] and Tian [2020], which both bound

prediction error after model selection. Unlike these papers, which study the effects of

selection on downstream inference, we effectively perform inference on the selection

itself.

5.3 Special case: c-values for estimating normal means

In this section, we derive a bound 𝑏(𝑦, 𝛼) and compute the c-value a certain class

of shrinkage estimators to maximum likelihood estimates (MLE) of the mean of a

multivariate normal from a single vector observation (i.e. the normal means problem).
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Our goal is to illustrate a simple instance of a general strategy for lower bounding

the win that we will later generalize to more complex estimators and models. In

Section 5.3.1, we define the model and the estimators that we consider. In Section 5.3.2,

we introduce our lower bound 𝑏(·, ·) and present a theorem that guarantees this bound

satisfies Eq. (5.1). Then, in Section 5.3.3, we examine the resulting c-value empirically

and study the performance of the estimator 𝜃†(·, 𝛼) that chooses between the default

and alternative estimators based on the c-value (Eq. (5.4)). Several details, including

the proof of Theorem 5.3.1, are left to Appendix D.5.

5.3.1 Normal means: notation and estimates

Let 𝜃 ∈ R𝑁 be an unknown vector and consider estimating 𝜃 from a noisy vector

observation 𝑦 = 𝜃+ 𝜖 where 𝜖 ∼ 𝒩 (0, 𝐼𝑁 ) under squared error loss 𝐿(𝜃, 𝜃) := ‖𝜃− 𝜃‖2.

For simplicity, we focus on the case of isotropic noise with variance one; we remove

this restriction in Section 5.4. For our demonstration, we take the MLE 𝜃(𝑦) = 𝑦 to be

the default estimate. As the alternative estimator, we consider a shrinkage estimator

that was first studied extensively by Lindley and Smith [1972],

𝜃*(𝑦) =
𝑦 + 𝜏−2𝑦1𝑁

1 + 𝜏−2

where 1𝑁 is the vector of all ones, 𝜏 > 0 is a fixed positive constant, and 𝑦 := 𝑁−11⊤
𝑁𝑦

is the mean of the observed 𝑦𝑛’s. Operationally, 𝜃*(𝑦) shrinks each coordinate of the

MLE towards the grand mean 𝑦.

5.3.2 Construction of the lower bound

To lower bound the win, we first rewrite 𝜃*(𝑦) = 𝜃(𝑦)−𝐺𝑦 where 𝐺 := (1 + 𝜏 2)−1𝑃⊥
1

and 𝑃⊥
1 = 𝐼𝑁 −𝑁−11𝑁1

⊤
𝑁 is the projection onto the subspace orthogonal to 1𝑁 . The

win in squared error loss may then be written as

𝑊 (𝜃, 𝑦) := ‖𝜃(𝑦)− 𝜃‖2 − ‖𝜃*(𝑦)− 𝜃‖2 = 2𝜖⊤𝐺𝑦 − ‖𝐺𝑦‖2. (5.6)
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Observe that we can compute ‖𝐺𝑦‖ directly from our data. As a result, in

order to lower bound the win 𝑊 (𝜃, 𝑦), it suffices to lower bound 2𝜖⊤𝐺𝑦. As we

detail in Appendix D.5.1, 2𝜖⊤𝐺𝑦 follows a scaled and shifted non-central chi-squared

distribution,

2𝜖⊤𝐺𝑦 ∼ 2

1 + 𝜏 2

[︂
𝜒2
𝑁−1(

1

4
‖𝑃⊥

1 𝜃‖2)− 1

4
‖𝑃⊥

1 𝜃‖2
]︂
,

where 𝜒2
𝑁−1(𝜆) denotes the non-central chi-squared distribution with 𝑁 − 1 degrees of

freedom and non-centrality parameter 𝜆. Thus for any 𝛼 ∈ (0, 1) and any fixed value

of ‖𝑃⊥
1 𝜃‖2,

𝑊 (𝜃, 𝑦) ≥ 2

1 + 𝜏 2
𝐹−1
𝑁−1(1− 𝛼;

1

4
‖𝑃⊥

1 𝜃‖2)− ‖𝑃
⊥
1 𝜃‖2

2(1 + 𝜏 2)
− ‖𝐺𝑦‖2 (5.7)

with probability 𝛼, where 𝐹−1
𝑁−1(1− 𝛼;𝜆) denotes the inverse cumulative distribution

function of 𝜒2
𝑁−1(𝜆) evaluated at 1− 𝛼. Were ‖𝑃⊥

1 𝜃‖2 known, the right hand side of

Eq. (5.7) would immediately provide a valid bound. However since ‖𝑃⊥
1 𝜃‖2 is not

typically known, we use the data to address our uncertainty in this quantity. We

obtain our bound by forming a one-sided confidence interval for ‖𝑃⊥
1 𝜃‖2 that holds

simultaneously with Eq. (5.7).

Bound 5.3.1 (Normal means: Lindley and Smith estimate v.s. MLE). Observe 𝑦 = 𝜃+𝜖

with 𝜖 ∼ 𝒩 (0, 𝐼𝑁) and consider 𝜃(𝑦) = 𝑦 vs. 𝜃*(𝑦) = (𝑦 + 𝜏−2𝑦1𝑁)/(1 + 𝜏−2). We

propose

𝑏(𝑦, 𝛼) := inf
𝜆∈[0,𝑈(𝑦, 1−𝛼

2
)]

{︃
2

1 + 𝜏 2
𝐹−1
𝑁−1

(︂
1− 𝛼

2
;
𝜆

4

)︂
− 𝜆

2(1 + 𝜏 2)
− ‖𝑃

⊥
1 𝑦‖2

(1 + 𝜏 2)2

}︃
(5.8)

as an 𝛼-confidence lower bound on the win, where

𝑈

(︂
𝑦,

1− 𝛼

2

)︂
:= inf

𝛿>0

{︃
𝛿
⃒⃒⃒
‖𝑃⊥

1 𝑦‖2 ≤ 𝐹−1
𝑁−1

(︂
1− 𝛼

2
; 𝛿

)︂}︃
(5.9)

is a high-confidence upper bound on ‖𝑃⊥
1 𝜃‖2.

Bound 5.3.1 relies on a high-confidence upper bound on ‖𝑃⊥
1 𝜃‖2, but a two-sided

interval could in principle provide a valid bound as well. In Appendix D.5.3 we provide
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an intuitive justification for the choice of an upper bound. Theorem 5.3.1 justifies the

use of Bound 5.3.1 for computing c-values.

Theorem 5.3.1. Define 𝑐(𝑦) := inf𝛼∈[0,1]{𝛼|𝑏(𝑦, 𝛼) ≤ 0} for 𝑏(·, ·) in Bound 5.3.1.

Then 𝑐(𝑦) is a valid c-value, satisfying the guarantees of Theorems 5.2.2 and 5.2.3.

Remark 5.3.2 (Computability of the bound). Eq. (5.8) in Bound 5.3.1 can be readily

computed. Notably, many standard statistical software packages provide numerical

approximation to non-central 𝜒2 quantiles. Further, the one-dimensional optimization

problems in Eqs. (5.8) and (5.9) can be solved numerically.

Remark 5.3.3 (When the variance is unknown). For cases when the noise variance 𝜎2

is unknown but a confidence interval is available, one can adapt the procedure above

by replacing 𝑏(𝑦, 𝛼) with its infimum with respect to 𝜎2 over the confidence interval

and reducing the confidence level 𝛼 accordingly.

Remark 5.3.4. The alternative estimator 𝜃*(𝑦) considered in this section is the posterior

mean of 𝜃 corresponding to the hierarchical prior 𝜃|𝜇 ∼ 𝒩 (𝜇1𝑁 , 𝜏
2𝐼𝑁) with further

improper hyper-prior on 𝜇. This prior encodes a belief that 𝜃 lies close to the one-

dimensional subspace spanned by 1𝑁 . Using a similar approach to the one above,

we can derive lower bounds on the win for a more general class of estimators that

shrink the MLE towards a pre-specified 𝐷-dimensional subspace. See Appendix D.5.4

for details and an application to a real dataset on which a large computed c-value

indicates an improved estimate.

5.3.3 Empirical verification

To explore the empirical properties of Bound 5.3.1, we simulated 500 datasets with

𝑁 = 50 as 𝑦 ∼ 𝒩 (𝜃, 𝐼𝑁) for each of several values of 𝜃. For each simulated dataset 𝑦,

we computed the win 𝑊 (𝜃, 𝑦), the proposed lower bound 𝑏(𝑦, 𝛼), and the c-value 𝑐(𝑦).

Conveniently, for this likelihood, the distributions of 𝑊 (𝜃, 𝑦) and 𝑏(𝑦, 𝛼) depend on 𝜃

only through 𝑁− 1
2‖𝑃⊥

1 𝜃‖. Consequently, we can exhaustively assess how our procedure

behaves for different 𝜃 by varying this norm. Throughout our simulation study, we
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fixed 𝜏 = 1. With larger 𝜏, the alternative 𝜃* behaves more similarly to the default 𝜃,

but the qualitative properties of the c-value and estimators remain similar.

We first checked that the empirical probability that the win 𝑊 (𝑦, 𝛼) exceeded

the bound 𝑏(𝑦, 𝛼) in Bound 5.3.1 was at least as large as the nominal probability 𝛼

(Figure 5-1a). Across various choices of 𝑁− 1
2‖𝑃⊥

1 𝜃‖, we see that 𝑏(·, 𝛼) is conservative,

typically providing higher than nominal coverage. Surprisingly, the gap between the

actual and nominal coverages does not seem to depend heavily on 𝜃, suggesting we

could potentially obtain a tighter bound by calibrating 𝑏(𝑦, 𝛼) to its actual coverage.

We next examined the probability that that alternative estimate is selected on the

basis of a large c-value but obtains higher loss than the default estimate, Theorem 5.2.3

upper bounds this probability and in Figure 5-1b we confirm it holds in practice across

different thresholds 𝛼. Figure 5-1b additionally compares our proposed approach to

using Stein’s unbiased estimate of the risk [Stein, 1981]) of 𝜃*(·) to select between the

estimates. This approach, which we label “SURE”, returns 𝜃*(·) if the risk estimate

exceeds 𝑁 and returns 𝜃(·) otherwise, and is akin to the focused information criterion

[Claeskens and Hjort, 2003]. However, in contrast to the two stage estimate 𝜃†(·, 𝛼),

SURE does not provide tunable control over the probability that the alternative

estimate 𝜃*(·) is mistakenly returned.

Table 5.2: Contingency tables of simulation outcomes with ‖𝑃⊥
1 𝜃‖/

√
𝑁 = 1.7 when

using Stein’s unbiased risk estimate (SURE), 𝜃†(·, 𝛼 = 0.95), or 𝜃†(·, 𝛼 = 0.5) to choose
between the default and alternative estimates. DLL: default has lower loss, ALL:
alternative has lower loss, DR: default reported, AR: alternative reported.

SURE c-values w/ 𝛼 = 0.95 c-values w/ 𝛼 = 0.5

DR AR DR AR DR AR

DLL 2% 44% 46% 0% 37% 9%

ALL 36% 18% 54% 0% 54% 0.1%

In the case that ‖𝑃⊥
1 𝜃‖/

√
𝑁 = 1.7, choosing based on SURE gives the wrong

estimate 80% of the time. Moreover, in the majority of these cases it is the alternative

that is incorrectly returned (Table 5.2a, Figure 5-1b). By contrast, the estimator

that chooses based on the c-value (with a threshold 𝛼 = 0.95) conservatively returns
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the default estimate in every replicate for this ‖𝑃⊥
1 𝜃‖/

√
𝑁 (Figure 5-1c). While this

approach provides the estimate with greater loss in 54% of cases, it incorrectly reports

the alternative in 0% of cases (Table 5.2 b). This behavior is expected as Theorem 5.2.3

provides an upper bound of 100 * (1− 𝛼)% = 5%. An estimator using the unbiased

risk estimate satisfies no such guarantee.

We next checked that our computed c-values successfully detected improvements

by the alternative estimate. Recall that the alternative estimate 𝜃*(𝑦) shrinks all

components of 𝑦 towards the global mean 𝑦. Further, recall that by construction

𝜃†(𝑦, 𝛼) = 𝜃*(𝑦) if and only if 𝑐(𝑦) > 𝛼. Intuitively, then, we would expect the

alternative estimator to improve over the MLE and for the two-staged 𝜃†(·, 𝛼) to

select 𝜃*(·) when 𝜃 is close to the subspace spanned by 1𝑁 and 𝑁− 1
2‖𝑃⊥

1 𝜃‖ is small.

Figure 5-1c, which plots the probability that 𝜃†(·, 𝛼) selects 𝜃*(·) across different values

of 𝜃 and 𝛼, confirms this intuition; when 𝑁− 1
2‖𝑃⊥

1 𝜃‖ is small, we very often obtain

large c-values and select the alternative estimator.

For completeness, we also considered the risk profile of the two-stage estimator

𝜃†(·, 𝛼) (Figure 5-1d). Specifically, for different choices of 𝜃 we computed a Monte

Carlo estimate of the expected squared error loss. For the most part, the risk of

𝜃†(·, 𝛼) lies between the risks of 𝜃(·) and 𝜃*(·). However, the risk of the two-stage

estimator appears to exceed the risks of the default and alternative estimators for a

narrow range of values of ‖𝑃⊥
1 𝜃‖. While it is tempting to characterize this excess risk

as the price we must pay for “double-dipping” into our data, we note that the bump

in risk appears to be non-trivial only for very small values of 𝛼. Recall again that we

recommend choosing 𝜃*(𝑦) in place of 𝜃(𝑦) only when 𝑐(𝑦) is close to 1. As such, we

do not expect this type of risk increase to be much of a concern in practice.

Interpreted together, Figures 5-1c and 5-1d illustrate the conservatism of the two

stage approach with 𝛼 = 0.95. For ‖𝑃⊥
1 𝜃‖ between 1 and 1.5, 𝜃†(·, 𝛼) only rarely

evaluates to 𝜃*(·) even though this estimator has lower risk and typically has smaller

loss.

Unlike conventional p-values under a null hypothesis, we should not expect the

distribution of informative c-values to be uniform; indeed for parameters such that
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(a) (b)

(c) (d)

Figure 5-1: Bound calibration and the two-stage estimator for a hierarchical normal
model in simulation. (a) Empirical coverage of the lower bound 𝑏(·, 𝛼) across different
levels 𝛼. Coverage is nearly identical across the parameter space. (b) Probability that
the default has smaller loss but the alternative estimate is selected across the parameter
space. (c) Probability of selecting the alternative estimate. Selection probability is
higher for lower thresholds 𝛼. (d) Risk profiles of the two-stage estimators for different
choices of 𝛼, as well as the MLE 𝜃(·) and the shrinkage estimator 𝜃*(·). Each data
point is computed from 500 replicates with 𝑁 = 50.

the win is consistently positive or negative, c-values can concentrate near 1 or 0,

respectively.

5.4 Comparing affine estimates with correlated noise

We now generalize the situation described in the previous section in two ways. First, we

consider correlated Gaussian noise with covariance Σ, where Σ is any 𝑁 ×𝑁 positive
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definite covariance matrix rather than restricting to Σ = 𝐼𝑁 . Second, we let our

default and alternative estimates, 𝜃(𝑦) and 𝜃*(𝑦), be arbitrary affine transformations

of the data 𝑦. Though these two estimates take similar functional forms in this section,

we remain concerned with asymmetric comparisons wherein 𝜃*(𝑦) is less familiar than

𝜃(𝑦).

This situation introduces analytical challenges beyond those encountered in Sec-

tion 5.3, but we nevertheless obtain an approximate bound that works well in practice.

Specifically, for Bound 5.3.1, we used the tractable quantile function of the non-central

𝜒2 to guarantee exact coverage in Theorem 5.3.1. In the present case, we encounter

sums of differently scaled non-central 𝜒2 random variables, which do not admit analyt-

ically tractable quantiles. However, by approximating these sums with Gaussians with

matched means and variances, we can proceed in essentially the same manner as in

Section 5.3 to derive an approximate lower bound on the win. After introducing the

bound, we comment on the key steps in its derivation to highlight the approximations

involved, but leave details of intermediate steps to Appendix D.6. We conclude with

a non-asymptotic bound on the error introduced by these approximations on the

coverage of the proposed bound on the win.

Approximate Bound 5.4.1 (Correlated Gaussian likelihood: arbitrary affine estimates).

Observe 𝑦 = 𝜃 + 𝜖 with 𝜖 ∼ 𝒩 (0,Σ) and consider 𝜃(𝑦) = 𝐴𝑦 + 𝑘 vs. 𝜃*(𝑦) = 𝐶𝑦 + ℓ,

where 𝐴,𝐶 ∈ R𝑁×𝑁 are matrices and 𝑘, ℓ ∈ R𝑁 are 𝑁 -vectors. We propose

𝑏(𝑦, 𝛼) = ‖𝜃 − 𝑦‖2 − ‖𝜃* − 𝑦‖2 + 2tr[(𝐴− 𝐶)Σ] +

2𝑧 1−𝛼
2

√︂
𝑈(‖𝐺(𝑦)‖2Σ,

1− 𝛼

2
) +

1

2
‖Σ 1

2 (𝐴+ 𝐴⊤ − 𝐶 − 𝐶⊤)Σ
1
2‖2𝐹

(5.10)

as an approximate high-probability lower bound for the win. In this expression, tr[·]

denotes the trace of a matrix, 𝐺(𝑦) := (𝐴 − 𝐶)𝑦 + (𝑘 − ℓ), ‖ · ‖Σ denotes the Σ

quadratic norm of a vector (‖𝑣‖Σ :=
√
𝑣⊤Σ𝑣), ‖ · ‖𝐹 denotes the Frobenius norm of a
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matrix, and 𝑧𝛼 denotes the 𝛼-quantile of the standard normal.

𝑈(‖𝐺(𝑦)‖2Σ,1− 𝛼) := inf
𝛿>0

{︂
𝛿

⃒⃒⃒⃒
‖𝐺(𝑦)‖2Σ ≤ (𝛿 + ‖Σ

1
2 (𝐴− 𝐶)Σ

1
2‖2𝐹 ) +

𝑧1−𝛼

√︁
2‖Σ 1

2 (𝐴− 𝐶)Σ(𝐴− 𝐶)⊤Σ
1
2‖2𝐹 + 4‖Σ 1

2 (𝐴− 𝐶)Σ
1
2‖2OP𝛿

}︂ (5.11)

is an approximate high-confidence upper bound on ‖𝐺(𝜃)‖2Σ where ‖ · ‖OP denotes the

L2 operator norm of a matrix.

To derive Approximate Bound 5.4.1 we again start by rewriting the alternative

estimate as 𝜃*(𝑦) = 𝜃(𝑦) − 𝐺(𝑦), where now 𝐺(·) is an affine transformation of 𝑦,

𝐺(𝑦) := (𝐴 − 𝐶)𝑦 + (𝑘 − ℓ). We next write the squared error win of using 𝜃*(𝑦) in

place of 𝜃(𝑦) as

𝑊 (𝜃, 𝑦) = 2𝜖⊤𝐺(𝑦) +
(︁
‖𝜃(𝑦)− 𝑦‖2 − ‖𝜃*(𝑦)− 𝑦‖2

)︁
(5.12)

and observe that it suffices to obtain a high-probability lower bound for this first term.

For tractability, we approximate the distribution of 𝜖⊤𝐺(𝑦) by a normal with matched

mean and variance. As we will soon see, this approximation is accurate when 𝑁 is

large and 𝐴−𝐶 is well conditioned; in this case 𝜖⊤𝐺(𝑦) may be written as the sum of

many of uncorrelated terms of similar size. The mean and variance may be expressed

as

E[𝜖⊤𝐺(𝑦)] = tr[(𝐴− 𝐶)Σ] , Var[𝜖⊤𝐺(𝑦)] = ‖𝐺(𝜃)‖2Σ +
‖Σ 1

2 (𝐴+ 𝐴⊤ − 𝐶 − 𝐶⊤)Σ
1
2‖2𝐹

2
.

(5.13)

With these moments in hand, we form a probability 𝛼 lower bound approximately as

𝑊 (𝜃, 𝑦) ≥ ‖𝜃(𝑦)− 𝑦‖2 − ‖𝜃*(𝑦)− 𝑦‖2 + 2tr[(𝐴− 𝐶)Σ] +

2𝑧1−𝛼

√︂
‖𝐺(𝜃)‖2Σ +

1

2
‖Σ 1

2 (𝐴+ 𝐴⊤ − 𝐶 − 𝐶⊤)Σ
1
2‖2𝐹 .

(5.14)

However, as before, in order to use this approximate bound we require a simulta-

neous upper bound on a norm of a transformation of the unknown parameter, in this
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case ‖𝐺(𝜃)‖2Σ. We compute one by considering the test statistic ‖𝐺(𝑦)‖2Σ and again

appealing to approximate normality. In particular we characterize the dependence of

the distribution of this statistic on ‖𝐺(𝜃)‖2Σ through its mean and variance. We find

its mean as

E[‖𝐺(𝑦)‖2Σ] = ‖𝐺(𝜃)‖2Σ + ‖Σ
1
2 (𝐴− 𝐶)Σ

1
2‖2𝐹 (5.15)

and upper bound its variance by

Var[‖𝐺(𝑦)‖2Σ] ≤ 2‖Σ
1
2 (𝐴− 𝐶)Σ(𝐴− 𝐶)⊤Σ

1
2‖2𝐹 + 4‖Σ

1
2 (𝐴− 𝐶)Σ

1
2‖2OP‖𝐺(𝜃)‖2Σ.

(5.16)

Using the two quantities above and an appeal to approximate normality, we propose

the approximate high-confidence upper bound, 𝑈(‖𝐺(𝑦)‖2Σ, 1− 𝛼), in Eq. (5.11). As

before, by splitting our 𝛼 across these two bounds we obtain the desired expression,

Eq. (5.10) in Approximate Bound 5.4.1.

Approximation Quality. Due to the two Gaussian approximations, Approximate

Bound 5.4.1 does not provide nominal coverage by construction. Our next result

shows that little error is introduced when 𝑁 is large enough and the problem is well

conditioned.

Theorem 5.4.1 (Berry–Esseen bound). Let 𝛼 ∈ (0, 1) and consider 𝑏(·, 𝛼) in Approx-

imate Bound 5.4.1. If both 𝐴 and 𝐶 are symmetric, then

P𝜃

[︀
𝑊 (𝜃, 𝑦) ≥ 𝑏(𝑦, 𝛼)

]︀
≥ 𝛼− 10

√
2√

𝑁
𝐶1 · 𝜅(Σ

1
2 (𝐴− 𝐶)Σ

1
2 )2 (5.17)

where 𝜅(·) denotes the condition number of its matrix argument (i.e. the ratio of its

largest to smallest singular values) and 𝐶1 ≤ 1.88 is a universal constant [Berry, 1941,

Theorem 1].

Remark 5.4.2. Theorem 5.4.1 is a special case of a more general result that we provide

in Appendix D.6.4, which does not require 𝐴 and 𝐶 to be symmetric. We highlight this
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special case here because the bound takes a simpler form from which the dependence

on the conditioning of 𝐴−𝐶 is clearer, and because this condition is satisfied for many

important estimates. Notably 𝐴 and 𝐶 are symmetric in all applications discussed in

this paper.

Though Theorem 5.4.1 provides an expected 𝑂(𝑁− 1
2 ) drop in approximation error,

the bound itself may be too loose to be useful in practice. In Section 5.6.1 we show in

simulation that Approximate Bound 5.4.1 provides sufficient coverage even without

this correction. This conservatism likely owes to slack from (A) the operator norm

bound in Eq. (5.16) and (B) the union bound ensuring that the confidence interval for

‖𝐺(𝜃)‖2Σ and the quantile in Eq. (5.14) hold simultaneously.

We conclude this section with a remark about computation of Approximate

Bound 5.4.1.

Remark 5.4.3 (Fast computation of 𝑏(𝑦, 𝛼)). A naive approach to computing 𝑏(𝑦, 𝛼)

in Eq. (5.10) involves finding 𝑈(‖𝐺(𝑦)‖2Σ, 1−𝛼
2
) with a binary search. For more rapid

computation, we can recognize 𝑈(‖𝐺(𝑦)‖2Σ, 1−𝛼
2
) as the root of a quadratic. Specifically,

define 𝛾 := ‖𝐺(𝑦)‖2Σ−‖Σ
1
2 (𝐴−𝐶)Σ

1
2‖2𝐹 , 𝜂 := 𝑧𝛼

2
, 𝜌 := 2‖Σ 1

2 (𝐴−𝐶)Σ(𝐴−𝐶)⊤Σ
1
2‖2𝐹 ,

and 𝜈 := 4‖Σ 1
2 (𝐴− 𝐶)Σ

1
2‖2OP; then from Eq. (5.11) we have that the 𝛿 that achieves

the supremum satisfies 𝛾 = 𝛿 + 𝜂
√
𝜌+ 𝜈𝛿. Rearranging, we find that 𝑈(‖𝐺(𝑦)‖2Σ, 1−𝛼

2
)

is the larger root of 𝑥2 − (2𝛾 + 𝜂2𝜈)𝑥+ (𝛾2 − 𝜂2𝜌) = 0.

5.5 Extending the reach of the c-value

Up to this point, we focused on estimating normal means with fixed affine estimators.

Now we extend our c-value framework in two important directions, which we support

with both theoretical and empirical results. In Section 5.5.1, we derive c-values for

a nonlinear shrinkage estimator of normal means. We then move beyond Gaussian

likelihoods in Section 5.5.2 and derive c-values for regularized logistic regression. In

contrast to the earlier cases, these introduce nonlinear estimates and non-Gaussian

models. To gain analytical tractability, we approximate the estimates by linear

transformations of a statistic that is asymptotically Gaussian. This allows us to derive
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bounds 𝑏(𝑦, 𝛼) that we show have the correct coverage in an asymptotic regime. Our

approach provides a template that can be followed for other nonlinear estimates and

models for which the MLE is asymptotically Gaussian. We defer all proofs and details

of synthetic data experiments to Appendices D.7 and D.8.

5.5.1 Empirical Bayes shrinkage estimates

While many Bayesian estimates are affine in the data for fixed settings of prior pa-

rameters, when prior parameters are chosen using the data, the resulting empirical

Bayesian estimates are not affine in general. In this subsection we explore computa-

tion of approximate high-confidence lower bounds on the win of empirical Bayesian

estimators. In particular, we consider an approach that essentially amounts to ignoring

the randomness in estimated prior parameters and computing the bound as if the

prior were fixed. For simplicity, we focus on a particularly simple empirical Bayesian

estimator for the normal means problem that coincides with the James–Stein estimator

[Efron and Morris, 1973]. We find that, in the high-dimensional limit, bounds obtained

with this naive approach achieve at least the desired nominal coverage. Finally, we

show in simulation that the approximate bound has favorable finite sample coverage

properties.

Empirical Bayes for estimation of normal means. Consider a sequence of

real-valued parameters 𝜃1, 𝜃2, . . . , and corresponding observations 𝑦𝑛
𝑖𝑛𝑑𝑒𝑝∼ 𝒩 (𝜃𝑛, 1).

For each 𝑁 ∈ N, let Θ𝑁 := [𝜃1, 𝜃2, . . . , 𝜃𝑁 ]
⊤ and 𝑌𝑁 := [𝑦1, 𝑦2, . . . , 𝑦𝑁 ]

⊤ denote the

first 𝑁 parameters and observations, respectively.

We consider the MLE for Θ𝑁 (i.e. 𝑌𝑁 ) as our default, which we denote by Θ̂𝑁 (𝑌𝑁 ) =

𝑌𝑁 , and we take the James–Stein estimate as our alternative; we compare on the

basis of squared error loss. We write the James–Stein estimate on the first 𝑁 data

points as Θ*
𝑁(𝑌𝑁) :=

(︀
1− (1 + 𝜏 2𝑁(𝑌𝑁))

−1
)︀
𝑌𝑁 , where 𝜏 2𝑁(𝑌𝑁) := ‖𝑌𝑁‖2/(𝑁 − 2)− 1.

Θ*
𝑁 (𝑌𝑁 ) corresponds to the Bayes estimate under the prior 𝜃𝑛

𝑖.𝑖.𝑑.∼ 𝒩 (0, 𝜏 2𝑁 ) [Efron and

Morris, 1973]. For this comparison, the win is 𝑊𝑁(𝑌𝑁 ,Θ𝑁) := ‖Θ̂𝑁(𝑌𝑁)−Θ𝑁‖2 −

‖Θ*
𝑁 (𝑌𝑁 )−Θ𝑁‖2, and Appendix D.7 details the associated bound 𝑏𝑁 (𝑌𝑁 , 𝛼) obtained
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with Bound D.5.1. In the following theorem, we lower bound the win by applying our

earlier machinery for Bayes rules with fixed priors. We find that the desired coverage

is obtained in the high-dimensional limit.

Theorem 5.5.1. For each 𝑁 ∈ N, let 𝜏 2𝑁 := 𝑁−1
∑︀𝑁

𝑛=1 𝜃
2
𝑛. If the sequence 𝜏1, 𝜏2, . . .

is bounded, then for any 𝛼 ∈ [0, 1], lim𝑁→∞ P
[︀
𝑊𝑁(𝑌𝑁 ,Θ𝑁) ≥ 𝑏𝑁(𝑌𝑁 , 𝛼)

]︀
≥ 𝛼.

The key step in the proof of Theorem 5.5.1 is establishing an 𝑂𝑝(𝑁
− 1

2 ) rate of

convergence of 𝜏 2𝑁 − 𝜏 2𝑁 to zero; under this condition the empirical Bayes estimate

and bound converge to the analogous estimates and bounds computed with the prior

variance fixed to 𝜏 2𝑁 . Accordingly, we expect similar results to hold for other models

and empirical Bayes estimates when the standard deviations of the empirical Bayes

estimates of the prior parameters drop as 𝑂𝑝(𝑁
− 1

2 ).

Remark 5.5.2. Theorem 5.5.1 easily extends to cover the case in which we consider a

sequence of random (rather than fixed) parameters drawn i.i.d. from a Bayesian prior,

which is a more classical setup for guarantees of empirical Bayesian methods; see e.g.

Robbins [1964]. Specifically, our proof goes through in this Bayesian setting so long

as the sequence 𝜏 21 , 𝜏
2
2 , . . . is bounded in probability. This condition is satisfied, for

example, when the 𝜃𝑛 are i.i.d. from any prior with a finite second moment.

To check finite sample coverage, we performed a simulation and evaluated calibra-

tion of the associated c-values (Figure D.7.1). Despite the empirical Bayes step, the

c-values appear to be similarly conservative to those computed with the exact bound

in Figure 5-1a. Furthermore, this calibration profile does not appear to be sensitive to

the magnitude of the unknown parameter.

5.5.2 Logistic regression

In this subsection we illustrate how to compute an approximate high-confidence lower

bound on the win in squared error loss with a logistic regression likelihood. Our key

insight is that by appealing to limiting behavior, this non-Gaussian problem may be

approached with the same machinery developed in Section 5.4.
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Notation and estimates. Consider a collection of 𝑀 data points with random

covariates 𝑋𝑀 := [𝑥1, 𝑥2, . . . , 𝑥𝑀 ]⊤ ∈ R𝑀×𝑁 and responses 𝑌𝑀 := [𝑦1, 𝑦2, . . . , 𝑦𝑀 ]⊤ ∈

{1,−1}𝑀 . For the 𝑚th data point, assume

𝑦𝑚
𝑖𝑛𝑑𝑒𝑝∼ 𝑝(· | 𝑥𝑚; 𝜃) := (1 + exp{−𝑥⊤

𝑚𝜃})−1𝛿1 + (1 + exp{𝑥⊤
𝑚𝜃})−1𝛿−1, (5.18)

where 𝜃 ∈ R𝑁 is an unknown parameter of covariate effects and 𝛿1 and 𝛿−1 denote

Dirac masses on 1 and −1, respectively.

In this section, we choose the MLE as our default, 𝜃(𝑋𝑀 , 𝑌𝑀 ) := argmax𝜃 log 𝑝(𝑌𝑀 |

𝑋𝑀 ; 𝜃). And we choose our alternative to be a Bayesian maximum a posteriori (MAP)

estimate under a standard normal prior (𝜃 ∼ 𝒩 (0, 𝐼𝑁)):

𝜃*(𝑋𝑀 , 𝑌𝑀) := argmax
𝜃

{︂
log 𝑝(𝑌𝑀 | 𝑋𝑀 ; 𝜃)− 1

2
‖𝜃‖2

}︂
.

While a first choice for a Bayesian estimate might be the posterior mean, the MAP is

an effective and widely used alternative to the MLE in practice. Notably, the MAP

estimate is easier to compute and is often close to the posterior mean; see Huggins

et al. [2018, Proposition 6.2] and Schervish [1995, Theorem 7.116]. In particular, the

distance between the posterior mean and the MAP estimate decays at an 𝑂(𝑀−1)

rate with the number of observations 𝑀. Furthermore, 𝜃*(𝑋𝑀 , 𝑌𝑀) is also of interest

as an L2 regularized logistic regression estimate.

Approximating 𝜃* by an affine transformation. In moving away from a Gaussian

likelihood we forfeit prior-to-likelihood conjugacy. In previous sections, conjugacy

provided analytically convenient expressions for Bayes estimates. In order to regain

analytical tractability, we appeal to a Gaussian approximation of the likelihood,

defined with a second order Taylor approximation of the log likelihood about the

MLE. This approximation is equivalent to approximating the distribution of the

MLE as 𝜃(𝑋𝑀 , 𝑌𝑀 ) ∼ 𝒩 (𝜃, Σ̃𝑀 ), where Σ̃𝑀 := −∇2
𝜃 log 𝑝(𝑌𝑀 | 𝑋𝑀 ; 𝜃)

⃒⃒
𝜃=𝜃(𝑋𝑀 ,𝑌𝑀 )

. As

such, we regain conjugacy, and we obtain an approximate Bayes estimate as an affine
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transformation of the MLE,

𝜃*(𝑋𝑀 , 𝑌𝑀) =
[︁
𝐼𝑁 + Σ̃𝑀

]︁−1

𝜃(𝑋𝑀 , 𝑌𝑀). (5.19)

As we show in Appendix D.8, 𝜃*(𝑋𝑀 , 𝑌𝑀 ) is a very close approximation of 𝜃*(𝑋𝑀 , 𝑌𝑀 ),

with distance decreasing at an 𝑂𝑝(𝑀
−2) rate.

An approximate bound and an asymptotic guarantee. We leverage the form

in Eq. (5.19) to compute Approximate Bound 5.4.1 as a lower bound on the win in

squared error of using the MAP estimate in place of the MLE. In particular, we take

𝑦 := 𝜃(𝑋𝑀 , 𝑌𝑀 ) as the data in Approximate Bound 5.4.1 (this corresponds to 𝐴 = 𝐼𝑁

and 𝑘 = 0) and approximate the distribution of 𝜖 := 𝜃(𝑋𝑀 , 𝑌𝑀) − 𝜃 as 𝒩 (0, Σ̃𝑀).

Further, to compute the bound, we approximate 𝜃*(𝑋𝑀 , 𝑌𝑀) by 𝜃*(𝑋𝑀 , 𝑌𝑀) as in

Eq. (5.19), corresponding to 𝐶 =
[︁
𝐼𝑁 + Σ̃𝑀

]︁−1

and ℓ = 0.

While the precise coverage of this bound is difficult to analyze, our next result

reveals favorable properties in the large sample limit.

Theorem 5.5.3. Consider a sequence of random covariates 𝑥1, 𝑥2, . . . and responses

𝑦1, 𝑦2, . . . distributed as in Eq. (5.18). For each 𝑀 ∈ N, let 𝑊𝑀 := ‖𝜃(𝑋𝑀 , 𝑌𝑀 )−𝜃‖2−

‖𝜃*(𝑋𝑀 , 𝑌𝑀 )−𝜃‖2 be the win of using the MAP estimate in place of the MLE. Finally,

let 𝑏𝑀(𝛼) be the level-𝛼 approximate bound on 𝑊𝑀 described above. If 𝑥1, 𝑥2, . . . are

i.i.d. with finite third moment and with positive definite covariance, then for any

𝛼 ∈ (0, 1), lim𝑀→∞ P𝜃

[︀
𝑊𝑀 ≥ 𝑏𝑀(𝛼)

]︀
≥ 𝛼.

Theorem 5.5.3 guarantees that in the large sample limit, 𝑏𝑀 (·) has at least nominal

coverage. We provide a proof of the theorem and demonstrate its favorable empirical

properties in simulation in Appendix D.8.

5.6 Applications

We now demonstrate our approach on the three applications introduced in Section 5.1.

Our goal in this section is to demonstrate how one can compute and interpret c-values
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in realistic workflows. In analogy to hypothesis testing, where a p-value cutoff of 0.05

is standard for rejecting a null, we require a c-value of at least 0.95 to accept the

alternative estimate; with this threshold, we expect to incorrectly reject the default

estimate in at most 5% of our decisions. This choice, instead of 0.5 for example,

reflects the presumed asymmetry of the comparisons; we require strong evidence to

adopt the alternative over the default. For all applications, we provide substantial

additional details in Appendix D.9.

5.6.1 Estimation from educational testing data and empirical

Bayes

In this section we apply our methodology to a model and dataset considered by Hoff

[2021, Section 3.2], in which the goal is to estimate the average student reading ability

at different schools in the 2002 Educational Longitudinal Study. At each of 𝑁 = 676

schools, between 5 and 50 tenth grade students were given a standardized test of reading

ability. We let 𝑦 = [𝑦1, 𝑦2, . . . , 𝑦𝑁 ]
⊤ denote the average scores, and for each school,

indexed by 𝑛, model 𝑦𝑛
𝑖𝑛𝑑𝑒𝑝∼ 𝒩 (𝜃𝑛, 𝜎

2
𝑛), where 𝜃 = [𝜃1, 𝜃2, . . . , 𝜃𝑁 ]

⊤ denotes the school-

level means and each 𝜎𝑛 is the school-level standard error; specifically 𝜎𝑛 := 𝜎/
√
𝑁𝑛

where 𝜎 denotes a student-level standard deviation and 𝑁𝑛 is the number of students

tested at school 𝑁𝑛. For convenience, we let Σ := diag([𝜎2
1, 𝜎

2
2, . . . , 𝜎

2
𝑁 ]) so that we

may write 𝑦 ∼ 𝒩 (𝜃,Σ). The goal is to estimate the school-level performances 𝜃.

Following Hoff [2021], we perform small area inference with the Fay-Herriot model

[Fay and Herriot, 1979] to estimate 𝜃 under the assumption that similar schools

may have similar student performances. Specifically, we consider a vector of 𝐷 = 8

attributes of each school 𝑋 = [𝑥1, 𝑥2, . . . , 𝑥𝑁 ]
⊤; these include participation levels in a

free lunch program, enrollment, and other characteristics such as region and school

type. We model the school-level mean as a priori distributed as 𝜃 ∼ 𝒩 (𝑋𝛽, 𝜏 2𝐼𝑁)

where 𝛽 is an unknown 𝐷-vector of fixed effects and 𝜏 2 is an unknown scalar that

describes variation in 𝜃 not captured by the covariates. Following Hoff [2021], we

take an empirical Bayesian approach and estimate 𝛽, 𝜏 , and 𝜎 with lme4 [Bates et al.,
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2015a]. We then compare the posterior mean — which is affine in 𝑦 for fixed 𝛽, 𝜏 ,

and 𝜎 — as an alternative to the MLE as a default; we use Approximate Bound 5.4.1.

Specifically, we take 𝜃*(𝑦) := E[𝜃 | 𝑦; 𝛽, 𝜏, 𝜎] = [𝐼𝑁 + 𝜏−2Σ]−1𝑦 + [𝐼𝑁 + 𝜏 2Σ−1]−1𝑋𝛽

and 𝜃(𝑦) = 𝑦. We compute a large c-value (𝑐 = 0.9926); its closeness to one strongly

suggests that 𝜃*(𝑦) is more accurate than 𝜃(𝑦).

We should not always expect to obtain a large c-value for any alternative estimate,

however. We next describe a case where we expect the alternative estimate to be less

accurate than the default, and we check that we obtain a small c-value. In particular,

we now let our alternative estimate be the posterior mean under the same model as

above but with the covariates, 𝑋, randomly permuted across schools. In this situation,

the responses 𝑦 have no relation to the covariates, and we should not expect an

improvement. Indeed, on this dataset we compute a c-value of exactly zero. However,

we recall that just as a large p-value in hypothesis testing does not provide evidence

that a null hypothesis is true, a small c-value does not provide direct evidence that

the alternative estimate is less accurate than the default.

We provide additional details for all parts of this application in Appendix D.9.1.

There, we demonstrate in a simulation study that our bounds remain substantially

conservative for these estimators and model even with an empirical Bayes step.

5.6.2 Estimating violent crime density in Philadelphia

As a second application, we consider estimating the areal density of violent crimes

(i.e. counts per square mile) reported in each of Philadelphia’s 𝑁 = 384 census tracts.

Following Balocchi et al. [2019], we work with the inverse hyperbolic sine transformed

density. Letting 𝑦𝑛 be the observed transformed density of reported violent crimes

in census tract 𝑛, we model 𝑦𝑛
𝑖𝑛𝑑𝑒𝑝∼ 𝒩 (𝜃𝑛, 𝜎

2
𝑦) where 𝜃𝑛 represents the underlying

transformed density and 𝜎2
𝑦 is the noise variance. While one might interpret 𝜃𝑛 as the

true density of violent crime in census tract 𝑛, we note that the implicit assumption

of zero-mean error in each tract may not be realistic. Namely, systematic biases may

impact the rates at which police receive and respond to calls and file incident reports

in different parts of the city. Unfortunately, we are unable to probe this possibility
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with the available data. Nevertheless, our goal is to estimate the vector of unknown

rates, 𝜃 = [𝜃1, 𝜃2, . . . , 𝜃𝑁 ]
⊤ from 𝑦 = [𝑦1, 𝑦2, . . . , 𝑦𝑁 ]

⊤. The observations 𝑦 are a simple

proxy of transformed violent crime density, but they are noisy. So it is natural to

wonder if we might obtain a more accurate estimate of 𝜃.

Figure 5-2 plots the transformed densities of both violent and non-violent crimes

reported in October 2018 in each census tract. Immediately, we see that, for any

particular census tract, the observed densities of the two types of crime are similar.

Further, we observe considerable spatial correlation in each plot. It is tempting to

use a Bayesian hierarchical model that exploits this structure in order to produce

more accurate estimates of 𝜃. In this application, we consider iteratively refining an

estimate of 𝜃 by (A) incorporating the observed non-violent crime data and then

by (B) carefully accounting for the observed spatial correlation. At each step of our

refinement, we use a c-value to decide whether to continue. Before proceeding, we

make a remark about our sequential approach.

(a) (b)

Figure 5-2: Transformed densities of reported (a) violent and (b) non-violent crimes
in each census tract in Philadelphia in October 2018.

Remark 5.6.1. Consider using 𝑐-values and a chosen level 𝛼 to choose one of three

estimates (say 𝜃(𝑦), 𝜃*(𝑦), and 𝜃∘(𝑦)) in two stages. Suppose we first choose 𝜃*(𝑦) over

𝜃(𝑦) only if the associated c-value is greater than 𝛼. Second, only if we chose 𝜃*(𝑦), we
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next choose 𝜃∘(𝑦) over 𝜃*(𝑦) only if the new c-value associated with those estimates

exceeds 𝛼. Then a union bound guarantees that 𝜃∘(𝑦) will be incorrectly chosen with

probability at most 2(1− 𝛼).

We begin by seeing if we can improve upon the MLE, 𝜃(𝑦) = 𝑦, by leveraging the

auxiliary dataset of transformed non-violent crimes in each tract, 𝑧1, 𝑧2, . . . , 𝑧𝑁 . To

this end, we model these auxiliary data analogously to 𝑦; in each tract 𝑛, we let 𝜂𝑛

be the unknown transformed density and independently model 𝑧𝑛
𝑖𝑛𝑑𝑒𝑝∼ 𝒩 (𝜂𝑛, 𝜎

2
𝑧). We

next introduce a hierarchical prior that captures the apparent similarity between 𝜃

and 𝜂 within each tract. Specifically, for each tract 𝑛 we decompose 𝜃𝑛 = 𝜇𝑛 + 𝛿𝑦𝑛

and 𝜂𝑛 = 𝜇𝑛 + 𝛿𝑧𝑛, where 𝜇𝑛 is a shared mean for the transformed densities of violent

and non-violent reports and 𝛿𝑦𝑛 and 𝛿𝑧𝑛 represent deviations from the shared mean

specific to each crime type. Rather than encode explicit prior beliefs about 𝜇𝑛, we

express ignorance in these quantities with an improper uniform prior. Additionally,

we model 𝛿𝑦𝑛, 𝛿𝑧𝑛
𝑖.𝑖.𝑑∼ 𝒩 (0, 𝜎2

𝛿 ). We fix the values of 𝜎𝑦, 𝜎𝑧, and 𝜎𝛿 using historical data.

We then compute the posterior mean of 𝜃 as an alternative estimate, 𝜃*(𝑦). Thanks

to the Gaussian conjugacy of this model, 𝜃*(𝑦) is affine in the data 𝑦, and a closed

form expression is available. See Appendix D.9.2 for additional details. The resulting

c-value exceeded 0.999, suggesting that we should be highly confident that 𝜃*(𝑦) is a

more accurate estimate of 𝜃 than 𝜃(𝑦).

We next consider additionally sharing strength amongst spatially adjacent census

tracts. To this end, consider a second model with spatially correlated variance

components: 𝜃𝑛 = 𝜇𝑛 + 𝛿𝑦𝑛 + 𝜅𝑦
𝑛 and 𝜂𝑛 = 𝜇𝑛 + 𝛿𝑧𝑛 + 𝜅𝑧

𝑛. The additional terms

𝜅𝑦 = [𝜅𝑦
1, 𝜅

𝑦
2, . . . , 𝜅

𝑦
𝑁 ]

⊤ and 𝜅𝑧 = [𝜅𝑧
1, 𝜅

𝑧
2, . . . , 𝜅

𝑧
𝑁 ]

⊤ capture a priori spatial correlations;

we model 𝜅𝑦, 𝜅𝑧 𝑖.𝑖.𝑑.∼ 𝒩 (0, 𝐾), where 𝐾 is an 𝑁 ×𝑁 covariance matrix determined by

a squared exponential covariance function [Rasmussen and Williams, 2006, Chapter

4] that depends on the distance between the centroids of the census tracts. Once

again, we exploit conjugacy in this second hierarchical model to derive the posterior

mean 𝜃∘(𝑦) in closed form. As 𝜃∘(𝑦) is also an affine transformation of 𝑦, we can

use Approximate Bound 5.4.1 to compute the c-value for comparing 𝜃∘(𝑦) to 𝜃*(𝑦).

The c-value for this comparison is only 0.843, providing much weaker support for
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using 𝜃∘(𝑦) over 𝜃*(𝑦). Because this c-value is less than 0.95, we conclude our analysis

content with 𝜃*(𝑦) as our final estimate.

5.6.3 Gaussian process kernel choice: modeling ocean currents

Accurate understanding of ocean current dynamics is important for forecasting the

dispersion of oceanic contaminations, such as after the Deepwater Horizon oil spill [Poje

et al., 2014]. Lodise et al. [2020] have recently advocated for a statistical approach

to inferring ocean currents from observations of free-floating, GPS-trackable buoys.

Their approach seeks to provide improved estimates by incorporating variation at the

submesoscale (roughly 0.1–10 km) in addition to more commonly considered mesoscale

variation (roughly 10 km and above). In this section we apply our methodology to

assess if this approach provides improved estimates relative to a baseline including

only mesoscale variation.

In our analysis, we consider a segment of the Carthe Grand Lagrangian Drifter

(GLAD) deployment dataset [Özgökmen, 2013]. Specifically, we model a set of 50 buoys

with velocities estimated at 3 hour intervals over one day (𝑁 = 400 observations total).

Each observation 𝑛 consists of latitudinal and longitudinal ocean current velocity

measurements 𝑦𝑛 = [𝑦
(1)
𝑛 , 𝑦

(2)
𝑛 ]⊤ ∈ R2 and associated spatio-temporal coordinates

[lat𝑛, lon𝑛, 𝑡𝑛]. Following Lodise et al. [2020], we model each measurement as a noisy

observation of an underlying time varying vector-field distributed independently as

𝑦𝑛
𝑖𝑛𝑑𝑒𝑝∼ 𝒩

(︀
𝐹 (lat𝑛, lon𝑛, 𝑡𝑛), 𝜎

2
𝜖 𝐼2
)︀
, where 𝐹 : R3 → R2 denotes the time evolving

vector-field of ocean currents and 𝜎2
𝜖 is the error variance. Our goal is to estimate 𝐹

at the observation points 𝜃 := [𝜃1, 𝜃2, . . . , 𝜃𝑁 ]
⊤, where for each 𝑛, 𝜃𝑛 = [𝜃

(1)
𝑛 , 𝜃

(2)
𝑛 ]⊤ =

𝐹 (lat𝑛, lon𝑛, 𝑡𝑛).

Following Lodise et al. [2020], we place a Gaussian process prior on 𝐹 to encode

expected spatio-temporal structure while allowing for variation at multiple scales.

Specifically, we model 𝐹 ∼ 𝒢𝒫
(︀
0, 𝑘(·, ·)

)︀
, where

𝑘(𝜃(𝑖)𝑛 , 𝜃
(𝑖)
𝑛′ ) = 𝑘1(𝜃

(𝑖)
𝑛 , 𝜃

(𝑖)
𝑛′ ) + 𝑘2(𝜃

(𝑖)
𝑛 , 𝜃

(𝑖)
𝑛′ ), 𝑖 ∈ {1, 2}. (5.20)
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Here 𝑘1 and 𝑘2 are squared exponential kernels with spatial and temporal length-scales

that reflect mesoscale and submesoscale variations, respectively; see Appendix D.9.3

for details. For simplicity, we model the latitudinal and longitudinal components of 𝐹

independently. We take the posterior mean of 𝜃 under this model as the alternative

estimate, 𝜃*(𝑦).

As a baseline, we consider an analogous estimate with covariance function 𝑘(𝜃
(𝑖)
𝑛 , 𝜃

(𝑖)
𝑛′ ) =

𝑘1(𝜃
(𝑖)
𝑛 , 𝜃

(𝑖)
𝑛′ ) + 𝑘2(𝜃

(𝑖)
𝑛 , 𝜃

(𝑖)
𝑛′ )1[𝑛 = 𝑛′], which maintains the same marginal variance but

excludes submesoscale covariances. We take the posterior mean under this model as

the default estimate 𝜃(𝑦). Both 𝜃*(𝑦) and 𝜃(𝑦) may be written as affine transformations

of 𝑦.

Using Approximate Bound 5.4.1, we compute a c-value of 0.99981. This large c-

value allows us to confidently conclude that modeling both mesoscale and submesocale

variation can yield more accurate estimates of ocean currents than mesocale modeling

alone.

5.7 Discussion

We have provided a simple method for quantifying confidence in improvements provided

by a wide class shrinkage estimates without relying on subjective assumptions about

the parameter of interest. Our approach has compelling theoretical properties, and

we have demonstrated its utility on several data analyses of recent interest. However,

the scope of the current work has several limitations. The present paper has explored

the use of the c-value only for problems of moderate dimensionality (𝑁 between 20

and 700). Loosely speaking, we suspect c-values may be underpowered to robustly

identify substantial improvements provided by estimates in lower dimensional problems.

Further investigation into such dimension dependence is an important direction for

future work. In addition, our approach depends crucially on a high-probability lower

bound that is inherently specific to the underlying model of the data, a loss function,

and the pair of estimators. In the present work, we have shown how to derive and

compute this bound for models with general Gaussian likelihoods, when accuracy
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may be measured in terms of squared error loss, and when both estimates are affine

transformations of the data. We have provided a first step to extending beyond simple

Gaussian models with the application to logistic regression; while we have not yet

explored the efficacy of this extension on real data, we view our work as an important

starting point for generalizing to broader model classes and estimation problems. We

believe that further extensions to the classes of models, estimates, and losses for which

c-values can be computed provide fertile ground for future work.

It may be possible to construct the bound 𝑏(𝑦, 𝛼) in a model and loss agnostic

approach, using, for example, the parametric bootstrap. Constructing an informative

c-value is possible only because in some cases the distribution of the win depends on

the unknown parameter only through some low dimensional projection (or at least

approximately so). We suspect that this may be the case for some more complex models

and estimates too. When this is the case and if these low dimension characteristics

are estimated well enough, a parametric bootstrap may present a powerful solution.

In particular, one would begin by forming an initial estimate of the parameter, and

simulate a collection of bootstrap datasets by sampling data from the likelihood

parameterized by the initial estimate, compute the win for each simulated dataset,

and return for each 𝑏(𝑦, 𝛼) the 1−𝛼 quantile of this distribution. We expect that this

method may work in many important settings – indeed, much of modern statistics and

nonlinear methods are predicated on the assumption that low dimensional structure

(e.g. sparsity) exists and may be inferred. We leave further development of this more

flexible approach, including an investigation of the theoretical properties, to follow-up

work.
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Appendix A

Exchangeability Supplementary

Material

A.1 Additional Related Work

A.1.1 Brown and Zidek details

As discussed in Section 2.1, the papers of Brown and Zidek [1980] and Haitovsky

[1987] carry the only references of which we are aware of the idea of exchangeability

of effects across covariates for sharing strength among multiple groups of data. We

here provide additional discussion on this related prior work. To aid our comparison,

we slightly modify their notation to match ours.

In their paper, “Adaptive Multivariate Ridge Regression”, Brown and Zidek [1980]

consider multiple related regression regression problems with a shared design (i.e.

𝑋 := 𝑋1 = 𝑋2 = · · · = 𝑋𝑄) and seek to extend the univariate ridge regression

estimator of Hoerl and Kennard [1970] to the multivariate setting. Specifically, the

authors propose a class of estimators of the form

^⃗
𝛽 = (𝐼𝑄 ⊗𝑋⊤𝑋 +𝐾 ⊗ 𝐼𝐷)

−1(𝐼𝑄 ⊗𝑋⊤)�⃗� ,

where �⃗� := [𝑌 1⊤, 𝑌 2⊤, · · · , 𝑌 𝑄⊤]⊤, ⊗ denotes the Kronecker product, and 𝐾 is a
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𝑄×𝑄 ridge matrix which they suggest be chosen by some “adaptive rule” (i.e. that

𝐾 be a function of the observed data). Notably, this functional form closely resembles

our expression for E[𝛽|𝒟,Σ] in Proposition 2.3.1, if we take 𝐾 = Σ−1.

The authors do not explicitly discuss the interpretation of 𝐾−1 as the covariance

of a Gaussian prior, nor any interpretation for this quantity as capturing any notion

of a priori similarity of the regression problems. However, they do point to Bayesian

motivations at the outset of the paper. In particular, Brown and Zidek [1980] narrow

their consideration of possible methods for choosing 𝐾 to those which satisfy two

criteria:

1. For any 𝐾, ^⃗
𝛽 correspond to a Bayes estimate.

2. In the case that 𝑋⊤𝑋 = 𝐼𝐷, ^⃗
𝛽 correspond to the Efron and Morris [1972b]

extension of the James and Stein [1961] estimator to vector observations.1

They present four such estimators (derived from existing estimators of a multivariate

normal means that dominate the sample mean) and demonstrate conditions under

which each of these estimators dominates the least squares estimator for 𝛽.

As a further point of connection, the authors claim in the their abstract that their

“result is implicitly in the work of Lindley and Smith [1972] although not actually

developed there.” However, the authors give little support for, or clarification of

this claim. In particular, their analysis is entirely frequentist and they provide no

explanation for how their proposed estimators for 𝐾 might be interpreted as reasonable

empirical Bayes estimates.

In their short follow-up paper, Haitovsky [1987] elaborates on this Bayesian

motivation. The primary focus of Haitovsky [1987] is a matrix normal prior [Dawid,

1981] that captures structure in effects across both groups and covariates. Though

this prior is not exchangeable across covariates in general, they note that the special

case of where effects are uncorrelated across different covariates satisfies the notion of

exchangeability for which we have advocated in this paper.
1See Appendix A.1.4 for further discussion of connections to Efron and Morris [1972b].
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A.1.2 Methods of inference for Γ in existing work assuming

exchangeability of effects across groups.

We here describe several existing approaches for estimating the covariance matrix

Γ in the exchangeability of effects among groups model. These existing methods

do not translate directly to the exchangeability of effects among covariates model

proposed in this paper. However, in principle, one could likely adapt any of them to

our setting. We have chosen to use the EM algorithm described in Section 2.3 for its

simplicity, efficiency, and stability. We leave the investigation of alternative estimation

approaches to future work.

In their initial paper, Lindley and Smith (1972) [Lindley and Smith, 1972] suggest

that a fully Bayesian approach would be ideal. They advocate for placing a subjectively

specified, conjugate Wishart prior on Γ, and remark that one should ideally consider

the posterior of Γ rather than relying on a point estimate. However, in the face

of analytic intractability, they propose returning MAP estimates for Γ and 𝛽 and

provide an iterative optimization scheme that they show is stationary at Γ̂, 𝛽 =

argmax log 𝑝(Γ, 𝛽|𝒟).

Advances in computational methods since 1972 have given rise to other ways of

estimating Γ in this model. Gelfand et al. [1990] describe a Gibbs sampling algorithm

for posterior inference. Gelman et al. [2013, Chapter 15 sections 4-5] describe an

EM algorithm which returns a maximum a posteriori estimate marginalizing over

𝛽, Γ̂ = argmax 𝑝(Γ|𝒟) =
∫︀
𝑝(Γ, 𝛽|𝒟)𝑑𝛽; notably, though the updates in our EM

algorithm for the case of exchangeability in effects across covariates differ from those

in the case of exchangeability among groups, one can see the two algorithms as closely

related through their shared dependence on Gaussian conjugacy. Finally, in the

software package lme4, Bates et al. [2015b] use the maximum marginal likelihood

estimate, Γ̂ = argmax 𝑝(𝒟|Γ), which they compute using gradient based optimization.
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A.1.3 Details on connections to lme4

In the notation of lme4 [Bates et al., 2015b], our paper considers only random effects

and no fixed effects. In that work, each vector of random effects, denoted ℬ, corresponds

to a length 𝐷 (𝑞 in their notation) column of 𝛽 (in our notation). Bates et al. [2015b,

Equation 3] states the prior derived from Lindley and Smith [1972] that reflects the

assumption of exchangeability across groups and captures correlation structure across

covariates. This correlation structure is modeled whenever two or more random effects

are specified and allowed to vary across groups. In the high dimensional setting (when

𝐷 > 𝑄), however, lme4 fails to run because the optimization problem associated with

empirical Bayes step is ill-conditioned.

A.1.4 Related work on estimation of normal means

As we discuss in Appendix A.3.1, under Condition 2.4.1 and when 𝜎2 = 1, we have

that

𝛽𝑞
LS

𝑖𝑛𝑑𝑒𝑝∼ 𝒩 (𝛽𝑞, 𝐼𝐷).

As such, inference reduces to the “normal means problem”, with a matrix valued

parameter. Specifically, we can equivalently write

𝛽LS = 𝛽 + 𝜖,

for a random 𝐷 ×𝑄 matrix 𝜖 with i.i.d. standard normal entries.

This problem has been studied closely outside of the context of regression. Notably,

Efron and Morris [1972a] approach the problem from an empirical Bayesian perspective

and recommend an approach analogous to estimating Σ by

Σ̂Ef := (𝐷 −𝑄− 1)−1𝛽⊤
LS𝛽LS − 𝐼𝑄.

Efron and Morris [1972a] argue for this estimate because it is unbiased for a transfor-

mation of the parameter. In particular, Σ̂Ef satisfies E[(𝐼𝑄+Σ̂Ef)−1] = (𝐼𝑄+Σ)−1 when
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each 𝛽𝑑
𝑖.𝑖.𝑑.∼ 𝒩 (0,Σ). They show that, among all estimates of the form 𝛼𝛽⊤

LS𝛽LS − 𝐼𝑄

with real valued 𝛼, this factor 𝛼 = (𝐷−𝑄− 1)−1 is optimal in terms of squared error

risk. Notably, this includes the moment estimate Σ̂MM we describe in Section 2.4,

which corresponds to 𝛼 = 𝐷−1. However, this optimality result does not translate

to the associated positive part estimators. In fact, in experiments not shown, we

have found that 𝛽ECov reliably outperforms an analogous positive part variant that

estimates Σ by Σ̂Ef .

Remark A.1.1. Efron and Morris [1972a, Theorem 5] prove that an analogous positive

part estimator is superior to their original estimator in term of “relative savings loss”

(RSL). Our domination result in Theorem 2.4.2 is strictly stronger and implies an

improvement in RSL as well. Furthermore our proof technique immediately applies to

their estimator.

Several other works have noted the dependence of the risk of estimators for the

matrix variate normal means problem on the expectations of the eigenvalues of inverse

non-central Wishart matrices [Efron and Morris, 1972a, Zidek, 1978, Van Der Merwe

and Zidek, 1980]. In all of these cases, the authors did not document attempts to

interpret or approximate these difficult expectations.

More recently, Tsukuma [2008] explores a large class of estimators for the matrix

variate normal means problems that shrink 𝛽LS along the directions of its singular

vectors in different ways. For subclass of these estimators, Tsukuma [2008][Corollary

3.1] proves a domination result for associated positive part estimators. In the orthogo-

nal design case, 𝛽ECov can be shown to be a member of this subclass of estimators,

providing an alternative route to proving Theorem 2.4.3.

A.1.5 Additional related work on multiple related regressions

Methods for simultaneously estimating the parameters of multiple related regression

problems have a long history in statistics and machine learning, with different assump-

tions and analysis goals leading to a diversity of inferential approaches. Perhaps the

most famous is Zellner’s landmark paper on seemingly unrelated regressions (SUR)
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[Zellner, 1962]. Zellner [1962] addresses the situation where apparent independence of

regression problems is confounded by covariance in the errors across 𝑄 problems (i.e.

‘groups’ in our language). In the presence of such correlation in residuals, the parame-

ter may be identified with greater asymptotic statistical efficiency by considering all 𝑄

problems together [Zellner, 1962, Zellner and Huang, 1962]. While most work on SUR

has taken a purely frequentist perspective in which 𝛽 is assumed fixed, some more

recent works on SUR have considered Bayesian approaches to inference [Blattberg

and George, 1991, Chib and Greenberg, 1995, Smith and Kohn, 2000, Griffiths, 2003,

Ando and Zellner, 2010]. However these do not address the scenario of interest here,

in which we believe a priori that there may be some covariance structure in the effects

of covariates across the regressions, or that some regression problems are more related

than others. The setting of the present paper further differs from SUR in that we

do not consider correlation in residuals as a possible mechanism for sharing strength

between groups, but instead explicitly assume independence in the noise.

Breiman and Friedman [1997] present a distinct, largely heuristic approach to

multiple related regression problems where all 𝑄 responses are observed for each

group, or equivalently each group has the same design. The authors focus entirely

on prediction and obviate the need share information across regression problems

when forming an initial estimate of 𝛽 by proposing to predict new responses in each

regression with a linear combination of the predictions of linear models defined by the

independently computed least squares estimate of each regression problem. However

this approach does not consider the problem of estimating parameters, which is a

primary concern of the present work.

Reinsel [1985]’s paper, “Mean Squared Error Properties of Empirical Bayes Estima-

tors in a Multivariate Random Effects General Linear Model”, considers a mixed effects

model in which a linear model for regression coefficients is specified 𝛽𝑞 = 𝐵𝑎𝑞 + 𝜆𝑞

where 𝑎 := [𝑎1, 𝑎2, . . . , 𝑎𝑄] is a 𝐾 ×𝑄 known design matrix associated with the regres-

sion problems,2 𝐵 is a 𝐷 ×𝐾 matrix of unknown parameters and [𝜆1, 𝜆2, . . . , 𝜆𝑄] is
2Notably, though Reinsel [1985] refers to 𝑎 as a design matrix, it has little relation of the design

matrices 𝑋𝑞 to which we frequently refer in the present work.

107



a 𝐷 ×𝑄 matrix of error terms. These error terms are assumed exchangeable across

groups. In contrast to the present work, Reinsel [1985] requires the relatedness between

groups to be known a priori through the known design matrix 𝑎.

Laird and Ware [1982] consider a random effects model for longitudinal data in

which different individuals correspond to different regression problems with distinct

parameters. In their construction, covariance structure in the noise is allowed across

the observations for each individual, but not across individuals. Additionally, as in

Lindley and Smith [1972], the authors model the covariance in effects of different

covariates a priori within each regression, but not covariance across regressions.

Brown et al. [1998] propose to use sparse prior for 𝛽 which encourages a shared

sparsity pattern. Conditioned on a binary 𝐷−vector 𝛾 ∈ {0, 1}𝐷, 𝛽 is supposed to

follow a multivariate normal prior as

𝛽
𝑖.𝑖.𝑑.∼ 𝒩 (0,Σ⊗𝐻𝛾)

where 𝐻𝛾 is a 𝐷 ×𝐷 covariance matrix which expresses that for 𝑑 such that 𝛾𝑑 = 0

we expect each 𝛽𝑑,𝑞 to be close to zero. Notably, this is equivalent to the assumption

that 𝛽 follows a matrix-variate multivariate normal distributed as 𝛽 ∼ℳ𝒩 (0, 𝐻𝛾,Σ)

[Dawid, 1981]. Curiously, and without stated justification, the same Σ is also taken

to parameterize the covariance of the residual errors, as well as of an additional bias

term. We suspect this restriction is made for the sake of computational tractability.

Indeed, [Stephens, 2013] makes similar modeling assumptions for tractability in the

context of statistical genetics. In contrast to the present work, the premise of Brown

et al. [1998] is sharing strength through similar sparsity patterns and covariance in

the residuals, rather than learning and leveraging patterns of similarity in effects of

covariates across groups.

Other more recent papers have considered alternative approaches for multiple

regression with sparse priors [Bhadra and Mallick, 2013, Lewin et al., 2015, Deshpande

et al., 2019]. As one example, Obozinski et al. [2006] estimate parameters across

multiple groups with a mixed ℓ1/ℓ2 regularized objective that induces sparsity. Yang

108



et al. [2009], Lee et al. [2010] build on this work by Obozinski et al. [2006] with a focus

on applications in genetics. These latter methods may be understood as returning the

maximum a posteriori estimate under a Bayesian model. However, in contrast to our

approach, the corresponding prior distributions implicit in such perspectives do not

capture a priori correlation of effects across groups. Moreover, these methods are of

course inappropriate when we do not expect sparsity a priori.

Meta-Learning The popular “Model Agnostic Meta-Learning” (MAML) approach

[Finn et al., 2017] can be understood as a hierarchical Bayesian method that treats

tasks / groups exchangeably [Grant et al., 2018]. As such, MAML and its variations

do not allow tasks to be related to different extents (as our approach does). A few

recent works on meta-learning are exceptions; for example, Jerfel et al. [2019] model

tasks as grouped into clusters by using a Dirichlet process prior, and Cai et al. [2020]

consider a weighted variant of MAML that allows, for a given task of interest, the

contribution of data from other tasks to vary. However these works differ from the

present paper in their focus on prediction with flexible black-box models, whereas the

primary concern of the present is parameter estimation in linear models.

Exchangeability of effects across covariates in the single group context. In

the context of regression problems consisting of only a single group (i.e. corresponding

to the special case of 𝑄 = 1) Lindley and Smith [1972] suggest modeling the 𝐷 scalar

covariate effects exchangeable. In particular, they suggest modeling scalar covariate

effects as i.i.d. from a univariate Gaussian prior when this exchangeability assumption

is appropriate. However, because this development is restricted to analyses of data in

a single group, it does not relate to the problem of sharing strength across multiple

groups, which is the subject of the present work.

A.2 Section 2.3 supplementary proofs and discussion
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A.2.1 Proof of Proposition 2.3.1

Proof. First note that the least squares estimate

𝛽LS := [(𝑋1⊤𝑋1)−1𝑋1⊤𝑌 1, . . . , (𝑋𝑄⊤𝑋𝑄)−1𝑋𝑄⊤𝑌 𝑄]

is a sufficient statistic of 𝒟 for 𝛽, and so 𝛽|𝒟,Σ ∼ 𝛽|𝛽LS,Σ. As such, it is sufficient to

consider the likelihood of 𝛽LS. Let ^⃗
𝛽LS := [𝑌 1⊤𝑋1(𝑋1⊤𝑋1)−1, . . . , 𝑌 𝑄⊤𝑋𝑄(𝑋𝑄⊤𝑋𝑄)−1]

be the 𝐷𝑄-vector defined by stacking the least squares estimates for each group.

Since for each 𝑞, we have 𝛽𝑞
LS|𝛽

𝑖𝑛𝑑𝑒𝑝.∼ 𝒩 (𝛽𝑞, 𝜎2
𝑞(𝑋

𝑞⊤𝑋𝑞)−1), we can write ^⃗
𝛽LS|𝛽 ∼

𝒩
[︂
𝛽, diag

(︁
𝜎2
1(𝑋

1⊤𝑋1)−1, . . . , 𝜎2
𝑄(𝑋

𝑄⊤𝑋𝑄)−1
)︁]︂

. Next, that each 𝛽𝑑
𝑖.𝑖.𝑑.∼ 𝒩 (0,Σ) a

priori implies that we may write 𝛽 ∼ 𝒩 (0,Σ⊗ 𝐼𝐷) a priori, where ⊗ is the Kronecker

product. Then, by Gaussian conjugacy (see e.g. Bishop [2006, Chapter 2.3]), we have

that 𝛽|𝒟 ∼ 𝒩 (�⃗�, 𝑉 ), where

�⃗� = 𝑉

[︂
(Σ⊗ 𝐼𝐷)

−10 + diag
(︁
𝜎2
1(𝑋

1⊤𝑋1)−1, . . . , 𝜎2
𝑄(𝑋

𝑄⊤𝑋𝑄)−1
)︁−1 ^⃗

𝛽LS

]︂

for 𝑉 −1 = (Σ⊗ 𝐼𝐷)
−1+diag

(︁
𝜎2
1(𝑋

1⊤𝑋1)−1, . . . , 𝜎2
𝑄(𝑋

𝑄⊤𝑋𝑄)−1
)︁−1

. Due to the block

structure of the matrices above, these simplify to �⃗� = 𝑉

[︂
𝑌 1⊤𝑋1

𝜎2
1

, . . . , 𝑌
𝑄⊤𝑋𝑄

𝜎2
𝑄

]︂
and

𝑉 −1 = Σ−1 ⊗ 𝐼𝐷 + diag(𝑋
1⊤𝑋1

𝜎2
1

, . . . , 𝑋
𝑄⊤𝑋𝑄

𝜎2
𝑄

), as desired.

A.2.2 Efficient computation with the conjugate gradient algo-

rithm

As mentioned in Section 2.3.1, �⃗� = E[𝛽|𝒟,Σ] in Proposition 2.3.1 may be computed

efficiently using the conjugate gradient algorithm (CG) for solving linear systems. We

here describe several properties of CG that make it surprisingly well-suited to this

application.

We first note that Proposition 2.3.1 allows us to frame computation of �⃗� as the

solution to the linear system

𝐴�⃗� = 𝑏
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for 𝑏 =
[︁
𝑌 1⊤𝑋1/𝜎2

1, . . . , 𝑌
𝑄⊤𝑋𝑄/𝜎2

𝑄

]︁⊤
and

𝐴 = Σ−1 ⊗ 𝐼𝐷 + diag
(︁
𝜎−2
1 𝑋1⊤𝑋1, . . . , 𝜎−2

𝑄 𝑋𝑄⊤𝑋𝑄
)︁
.

A naive approach to computing �⃗� could then be to explicitly compute 𝐴−1 and report

the matrix vector product, 𝐴−1𝑏. However, as mentioned in Section 2.3.1, since 𝐴 is a

𝐷𝑄 ×𝐷𝑄 matrix, explicitly computing its inverse would require roughly 𝑂(𝐷3𝑄3)

time. This operation becomes very cumbersome when 𝐷 and 𝑄 are too large; for

instance if 𝐷 and 𝑄 are in the hundreds the, 𝐷𝑄 is is the tens of thousands.

CG provides an exact solution to linear systems in at most 𝐷𝑄 iterations, with

each iteration requiring only a small constant number of matrix vector multiplications

by 𝐴. This characteristic does not provide a complexity improvement for solving

general linear systems because for dense, unstructured 𝐷𝑄×𝐷𝑄 matrices, matrix

vector multiplies require 𝑂(𝐷2𝑄2) time, and CG still demands 𝑂(𝐷3𝑄3) time overall.

However this property provides a substantial benefit in our setting. In particular, the

special form of 𝐴 allows computation of matrix vector multiplications in 𝑂(𝐷2𝑄) rather

than 𝑂(𝐷2𝑄2) time, and storage of this matrix with 𝑂(𝐷2𝑄) rather than 𝑂(𝐷2𝑄2)

memory. Specifically, if 𝑣 = [𝑣1, 𝑣2, . . . , 𝑣𝑄] is a 𝐷 ×𝑄 matrix with 𝐷-vector columns

𝑣𝑞, for the 𝐷𝑄-vector �⃗� = [𝑣⊤1 , 𝑣
⊤
2 , . . . , 𝑣

⊤
𝑄]

⊤ we can compute 𝐴�⃗� as vec
(︀
𝑣Σ−1

)︀
+

[𝜎−2
1 𝑋1⊤𝑋1𝑣1, . . . , 𝜎

−2
𝑄 𝑋𝑄⊤𝑋𝑄𝑣𝑄]

⊤, where vec(·) represents the operation of reshaping

an 𝐷 × 𝑄 matrix into a 𝐷𝑄-vector by stacking its columns. When 𝐷 > 𝑄, this

operation is dominated by the 𝑄 𝑂(𝐷2) matrix-vector multiplications to compute

the second term. As such, CG provides an order 𝑄 improvement in both time and

memory.

Next, CG may be viewed as an iterative optimization method. At each step it

provides an iterate which is the closest to the �⃗� on a Krylov subspace of expanding

dimension. As such, the algorithm may be terminated after fewer than 𝐷𝑄 steps to

provide an approximation of the solution. Moreover, the algorithm may be provided

with an initial estimate, and improves upon that estimate in each successive iteration.

In our case we may readily compute a good initialization. For example, we can
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initialize with the posterior mean of the parameter for each group when conditioning

on that group alone, i.e. �⃗�(0) :=
[︀
E[𝛽1|𝑌 1]⊤, . . . ,E[𝛽𝑄|𝑌 𝑄]⊤

]︀⊤
.

Finally, the convergence properties of the conjugate gradient algorithm are well

understood. Notably the 𝑖th iterate of conjugate gradient �⃗�(𝑖) when initialized at �⃗�(0)

satisfies

‖�⃗�(𝑖+1) − �⃗�‖𝐴 ≤ 2

(︂
𝜅− 1

𝜅+ 1

)︂𝑖

‖�⃗�(0) − �⃗�‖𝐴,

where 𝜅 =
√︁

𝜆max(𝐴)
𝜆min(𝐴)

is the square root of the condition number of 𝐴, and ‖ · ‖𝐴
is the 𝐴−quadratic norm [Nocedal and Wright, 2006, Chapter 5.1], [Luenberger,

1973]. Since 𝐴 will often be reasonably well conditioned (note, for example, that

𝜆min(𝐴) ≥ 𝜆min(Σ)), convergence can be rapid. Notably, in an unpublished application

the authors encountered (not described in this work) involving 𝐷 ≈ 20, 000 covariates

and 𝑄 ≈ 50 groups, the approximately million dimensional estimate �⃗� was computed

in roughly 10 minutes on a 16 core machine.

A.2.3 Expectation maximization algorithm further details

In Sections 2.3.2 and 2.3.3 we introduced EM algorithms for estimating Σ for both

linear and logistic regression models. In this subsection we provide a derivation of the

updates in Algorithm 1 and discuss computational details of our fast implementation.

Derivations of EM updates for linear regression. Our notation inherits directly

from [McLachlan and Krishnan, 2007, Chapter 1.5], to which we refer the reader for

context. In our application of the EM algorithm, we take the collection of all covariate
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effects 𝛽 as the ‘missing data.’ For the expectation (E) step, we therefore require

𝑄(Σ,Σ(𝑖)) : = E[log 𝑝(𝛽|Σ)|𝒟,Σ(𝑖)]

= 𝑐+
𝐷

2
log |Σ−1| − 1

2

𝐷∑︁
𝑑=1

E[𝛽⊤
𝑑 Σ

−1𝛽𝑑|𝒟,Σ(𝑖)]

= 𝑐+
𝐷

2
log |Σ−1| − 1

2

𝐷∑︁
𝑑=1

tr
(︁
Σ−1E[𝛽𝑑𝛽

⊤
𝑑 |𝒟,Σ(𝑖)]

)︁
= 𝑐+

𝐷

2
log |Σ−1| − 1

2

𝐷∑︁
𝑑=1

tr
(︁
Σ−1(𝜇𝑑𝜇

⊤
𝑑 + 𝑉𝑑)

)︁
,

(A.1)

where 𝑐 is a constant that does not depend on Σ, 𝜇 = [𝜇1 . . . , 𝜇𝐷]
⊤ := E[𝛽|𝒟,Σ(𝑖)]

and for each 𝑑 𝑉𝑑 := (𝐼𝑄⊗ 𝑒𝑑)
⊤Var[𝛽|𝒟,Σ(𝑖)](𝐼𝑄⊗ 𝑒𝑑). From the last line of Eq. (A.1)

we may see that 𝜇 and {𝑉𝑑}𝐷𝑑=1, comprise the required posterior expectations.

The solution to the maximization step may then be found by considering a first

order condition for maximizing over Σ−1 rather than Σ. Observe that 𝜕
𝜕Σ−1𝑄(Σ,Σ(𝑖)) =

𝐷
2
Σ− 1

2

∑︀𝐷
𝑑=1(𝜇𝑑𝜇

⊤
𝑑 + 𝑉𝑑). Setting this to zero we obtain Σ(𝑖+1) = 𝐷−1

∑︀
(𝜇𝑑𝜇

⊤
𝑑 + 𝑉𝑑).

This is the desired update for the M-step provided in Algorithm 2.

Logistic regression EM updates. The updates for the approximate EM algorithm

described in Section 2.3 are derived from a Gaussian approximation to the posterior

under which the expectation of log prior is taken. In particular we approximate the

first line of Eq. (A.1) as

𝑄(Σ,Σ(𝑖)) : = E[log 𝑝(𝛽|Σ)|𝒟,Σ(𝑖)]

=

∫︁
𝑝(𝛽|𝒟,Σ(𝑖)) log 𝑝(𝛽|Σ)𝑑𝛽

≈
∫︁

𝑞(𝑖)(𝛽) log 𝑝(𝛽|Σ)𝑑𝛽

(A.2)

where 𝑞(𝑖) denotes the Laplace approximation to 𝑝(𝛽|𝒟,Σ(𝑖)). Specifically, as we

summarized in Algorithm 3, we approximate the posterior mean by the maximum

a posteriori estimate, �⃗�* := argmax𝛽 log 𝑝(𝛽|𝒟,Σ(𝑖)), and the posterior variance by

𝑉 := −[∇2
𝛽 log 𝑝(𝛽|𝒟,Σ(𝑖))

⃒⃒
𝛽=�⃗�* ]

−1. We the let 𝑞(𝑖) be the Gaussian density with these
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moments. This renders the integral in the last line of Eq. (A.2) tractable, and updates

are derived in the same way as in the linear case.

Naively, the approximate EM algorithm for logistic regression could be much more

demanding than its counterpart in the linear case. In particular, at each iteration we

need to solve a convex optimization problem, rather than linear system. However, in

practice the algorithm is only little more demanding because, by using the maximum

a posteriori estimate from the previous iteration to initialize the optimization, we

can solve the optimization problem very easily. In particular, after the first few EM

iterations, only one or two additional Newton steps from this initialization are required.

To simplify our implementation, we used automatic differentiation in Tensorflow

to compute gradients and Hessians when computing the maximum a posteriori values

and Laplace approximations.

Computational efficiency. We have employed several tricks to provide a fast

implementation of our EM algorithms. The M-Steps for both linear and logistic

regression involve a series of expensive matrix operations. To accelerate this, we used

Tensorflow[Abadi et al., 2016] to optimize these steps by way of a computational graph

representation generated using the @tf.function decorator in python. Additionally,

we initialize EM with a moment based estimate (see Appendix A.5.2).

A.3 Frequentist properties of exchangeability among

covariate effects – supplementary proofs and dis-

cussion

A.3.1 Discussion of Condition 2.4.1

The restriction on the design matrices in Condition 2.4.1 places strong limits the

immediate scope of our theoretical results. However, as with many statistical assump-

tions such as Gaussianity of residuals, this condition lends considerable tractability to

the problem that enables us to build insights that we can see hold in more relaxed
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settings in experiments (see Section 2.6).

Under Condition 2.4.1 estimation of the parameter 𝛽 may be reduced to a spe-

cial matrix valued case of the normal means problem with each 𝛽𝑞
LS,𝑑 ∼ 𝒩 (𝛽𝑞

𝑑, 𝜎
2).

Accordingly, we may recognize 𝜎2 as a reflection of both the residual variances 𝜎2
𝑞

and sample sizes 𝑁𝑞. In particular, if within each group 𝑞 the covariates have sample

second moment 𝑁−1
𝑞

∑︀𝑁𝑞

𝑛=1𝑋
𝑞
𝑛𝑋

𝑞⊤
𝑛 = 𝐼𝐷, and the residual variances and sample sizes

are equal (i.e. 𝜎2
1 = 𝜎2

2 = · · · = 𝜎2
𝑄 and 𝑁1 = 𝑁2 = · · · = 𝑁𝑄), then 𝜎2 = 𝜎2

1/𝑁
1.

Additionally, because 𝛽LS is a sufficient statistic of 𝒟 for 𝛽, it suffices to consider 𝛽LS

alone, without needing to consider other aspects of 𝒟. For these reasons, conditions

of this sort are commonly assumed by other authors in related settings (e.g. van

Wieringen [2015, Chapters 1.4 and 6.2] and Fan and Li [2001], Golan and Perloff

[2002]).

That the trends predicted by our theoretical results persist beyond the limits of

Condition 2.4.1 should not be surprising. The likelihood, our estimators and their

risks are all continuous in the 𝑋𝑞, and so domination results may be seen to extends

via continuity to settings with well-conditioned designs. On the other hand, problems

with design matrices that are more poorly conditioned are more challenging for both

theory and estimation in practice (see e.g. Brown and Zidek [1980][Example 4.2]).

A.3.2 A proposition on analytic forms of the risks of moment

estimators

The following proposition characterizes analytic expressions for the moment based

estimators. These expressions provide a starting point for the theory in Section 2.4

Proposition A.3.1. Assume each 𝑌 𝑞
𝑛 |𝑋𝑞

𝑛, 𝛽
𝑞 ∼ 𝒩 (𝑋𝑞⊤

𝑛 𝛽𝑞, 𝜎2
𝑞) and define Σ̂MM :=

𝐷−1𝛽⊤
LS𝛽LS −𝐷−1diag(𝜎2

1‖𝑋1†‖2𝐹 , . . . , 𝜎2
𝑄‖𝑋𝑄†‖2𝐹 ). Then

1. if each 𝛽𝑑
𝑖.𝑖.𝑑.∼ 𝒩 (0,Σ), E[Σ̂MM] = Σ.

Furthermore, under Condition 2.4.1

2. when 𝐷 ≥ 𝑄, 𝛽MM
ECov = 𝛽LS − 𝜎2𝐷𝛽†⊤

LS and
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3. when 𝐷 ≤ 𝑄, 𝛽MM
EGroup = 𝛽LS − 𝜎2𝑄𝛽†⊤

LS ,

where † denotes the Moore-Penrose pseudoinverse of a matrix.

Proof. We begin with statement (1), that under Condition 2.4.1 and correct prior

specification, E[Σ̂MM] = Σ.

Recall that Σ̂MM := 𝐷−1𝛽⊤
LS𝛽LS − 𝐷−1diag(𝜎2

1‖𝑋1†‖2𝐹 , . . . , 𝜎2
𝑄‖𝑋𝑄†‖2𝐹 ). For any

fixed 𝛽, we have E[Σ̂MM|𝛽] = 𝐷−1E[𝛽⊤
LS𝛽LS|𝛽]−𝐷−1diag(𝜎2

1‖𝑋1†‖2𝐹 , . . . , 𝜎2
𝑄‖𝑋𝑄†‖2𝐹 ),

and so seek to characterize E[𝛽⊤
LS𝛽LS|𝛽]. Note that we may write 𝛽LS

𝑑
= 𝛽+ 𝜖 for a ran-

dom 𝐷×𝑄 matrix 𝜖 with each column 𝑞 distributed as 𝜖𝑞 𝑖𝑛𝑑𝑒𝑝.∼ 𝒩
[︁
0, 𝜎2

𝑞 (𝑋
𝑞⊤𝑋𝑞)−1

]︁
.

As such, for each 𝑞 we have E[𝛽𝑞⊤
LS𝛽

𝑞
LS|𝛽] = 𝛽𝑞⊤𝛽𝑞 + E[𝜖𝑞⊤𝜖𝑞]. Next observe that

E[𝜖𝑞⊤𝜖𝑞] = tr[𝜎2
𝑞(𝑋

𝑞⊤𝑋𝑞)−1] = 𝜎2
𝑞‖𝑋𝑞†‖2𝐹 , where † denotes the pseudo-inverse of

a matrix and ‖ · ‖𝐹 is the Frobenius norm. Additionally, for 𝑞 ≠ 𝑞′, we have

E[𝛽𝑞⊤
LS𝛽

𝑞′

LS|𝛽] = 𝛽𝑞⊤𝛽𝑞′ . Putting these together into matrix form, we see E[𝛽⊤
LS𝛽LS|𝛽] =

𝛽⊤𝛽 +diag(𝜎2
1‖𝑋1†‖2𝐹 , . . . , 𝜎2

𝑄‖𝑋𝑄†‖2𝐹 ), and so E[Σ̂MM|𝛽] = 𝐷−1𝛽⊤𝛽. Under the addi-

tional assumption that for each 𝑑, 𝛽𝑑
𝑖.𝑖.𝑑.∼ 𝒩 (0,Σ), we have that E[𝐷−1𝛽⊤𝛽] = Σ, and

(1) obtains from the law of iterated expectation.

We next prove statement (2), that 𝛽MM
ECov := E[𝛽|𝒟, Σ̂MM] = 𝛽LS−𝜎2𝐷𝛽†⊤

LS . Consider

the singular value decomposition (SVD), 𝛽LS = 𝑉 diag(𝜆
1
2 )𝑈⊤. Under Condition 2.4.1

substituting this expression into Σ̂MM provides Σ̂MM = 𝐷−1𝑈diag(𝜆)𝑈⊤ − 𝜎2𝐼𝑄.

Therefore, Lemma A.3.1 provides that we may write

𝛽MM
ECov := E[𝛽|𝒟, Σ̂MM]

= 𝛽LS − 𝛽LS

[︁
𝜎−2Σ̂MM + 𝐼𝑄

]︁−1

= 𝛽LS − 𝑉 diag(𝜆
1
2 )𝑈⊤

[︁
𝜎−2(𝐷−1𝑈diag(𝜆)𝑈⊤ − 𝜎2𝐼𝑄) + 𝐼𝑄

]︁−1

𝑈⊤

= 𝛽LS − 𝑉 diag
[︁
𝜆

1
2 ⊙ (𝜎−2𝐷−1𝜆)−1

]︁
𝑈⊤

= 𝛽LS − 𝜎2𝐷𝑉 diag(𝜆− 1
2 )𝑈⊤

= 𝛽LS − 𝜎2𝐷𝛽†⊤
LS ,

where ⊙ is the Hadamard (i.e. elementwise) product, as desired.

We lastly prove (3), that the analogous moment based estimator constructed under
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the assumption of a priori exchangeability among groups is 𝛽MM
EGroup = 𝛽LS − 𝜎2𝑄𝛽†⊤

LS .

We begin by making explicit the assumed model and estimate. Specifically we assume

each 𝛽𝑞 𝑖.𝑖.𝑑.∼ 𝒩 (0,Γ) a priori, where Γ is a 𝐷 ×𝐷 covariance matrix.

In this case, we obtain an unbiased moment based estimate of Γ as Γ̂MM :=

𝑄−1𝛽LS𝛽
⊤
LS −𝑄−1

∑︀𝑄
𝑞=1 𝜎

2
𝑞 (𝑋

𝑞⊤𝑋𝑞)−1. Following an argument exactly parallel to the

one in the proof of (1), we find that under the prior 𝛽𝑞 𝑖.𝑖.𝑑.∼ 𝒩 (0,Γ), we have E[Γ̂MM] =

Γ. Furthermore, following an argument exactly parallel to the one in the proof of

(2), we find that under Condition 2.4.1 the corresponding empirical Bayes estimate

𝛽MM
EGroup := E[𝛽|Γ̂MM] = 𝛽LS − 𝜎2𝑄𝛽†⊤

LS . We omit full details to spare repetition.

Lemma A.3.1. Under Condition 2.4.1 E[𝛽|𝒟,Σ] = 𝛽LS − 𝛽LS

[︀
𝜎−2Σ + 𝐼𝑄

]︀−1
.

Proof. By Proposition 2.3.1, we have

E[𝛽|𝒟,Σ] = 𝑉

[︃
𝑌 1⊤𝑋1

𝜎2
1

, . . . ,
𝑌 𝑄⊤𝑋𝑄

𝜎2
𝑄

]︃
where

𝑉 −1 = Σ−1 ⊗ 𝐼𝐷 + diag(
𝑋1⊤𝑋1

𝜎2
1

, . . . ,
𝑋𝑄⊤𝑋𝑄

𝜎2
𝑄

).

Under Condition 2.4.1, we can simplify this as

E[𝛽|𝒟,Σ] =

[︃
Σ−1 ⊗ 𝐼𝐷 + diag(

𝑋1⊤𝑋1

𝜎2
1

, . . . ,
𝑋𝑄⊤𝑋𝑄

𝜎2
𝑄

)

]︃−1 [︃
𝑌 1⊤𝑋1

𝜎2
1

, . . . ,
𝑌 𝑄⊤𝑋𝑄

𝜎2
𝑄

]︃
=
[︀
Σ−1 ⊗ 𝐼𝐷 + 𝜎−2𝐼𝐷𝑄

]︀−1
𝜎−2

[︁
𝛽1
LS, . . . , 𝛽

𝑄
LS

]︁
=
[︀
𝜎2Σ−1 ⊗ 𝐼𝐷 + 𝐼𝐷𝑄

]︀−1
[︁
𝛽1
LS, . . . , 𝛽

𝑄
LS

]︁
.

As a result, for each 𝑑, E[𝛽𝑑|𝒟,Σ] =
[︀
𝜎2Σ−1 + 𝐼𝑄

]︀−1
𝛽LS,𝑑 and so, in matrix form, we

may write

E[𝛽|𝒟,Σ] = 𝛽LS

[︀
𝜎2Σ−1 + 𝐼𝑄

]︀−1

= 𝛽LS − 𝛽LS

[︀
𝐼𝑄 + 𝜎−2Σ

]︀−1
.
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A.3.3 Proof of Lemma 2.4.1

Proof. We prove the lemma in two parts; first for the case that 𝐷 > 𝑄+ 1, and then

for the case that 𝑄 ≤ 𝐷 ≤ 𝑄+ 1.

Our proof for the case that 𝐷 > 𝑄+1 relies on an expression for the squared error

risk for estimators of the form 𝛽 = 𝛽LS−𝜎2𝑐𝛽†⊤
LS for real 𝑐. In particular, Lemma A.3.2

provides that when 𝐷 > 𝑄+ 1 and under Condition 2.4.1,

E[‖𝛽 − (𝛽LS − 𝑐𝛽†⊤
LS )‖

2
𝐹 | 𝛽] = 𝐷𝑄+ 𝜎4𝑐(𝑐+ 2 + 2𝑄− 2𝐷)E[‖𝛽†

LS‖
2
𝐹 | 𝛽].

Notably, since under Condition 2.4.1, by Proposition A.3.1 we have that 𝛽MM
ECov =

𝛽LS−𝜎2𝐷𝛽†⊤
LS we obtain E[‖𝛽−𝛽MM

ECov‖2𝐹 | 𝛽] = 𝜎2𝐷𝑄−𝜎4𝐷(𝐷−2𝑄−2)E[‖𝛽†
LS‖2𝐹 | 𝛽],

as desired.

We next consider 𝑄 ≤ 𝐷 ≤ 𝑄 + 1. In this case, both R(𝛽, 𝛽MM
ECov) and 𝜎2𝐷𝑄 −

𝜎4𝐷(𝐷 − 2𝑄 − 2)E[‖𝛽†
LS‖2𝐹 | 𝛽] are positive infinity. In particular, observe that

‖𝛽†
LS‖2𝐹 = tr[(𝛽⊤

LS𝛽LS)
−1] is the trace of the inverse of a non-central Wishart matrix,

which is known to have infinite expectation for 𝑄 ≤ 𝐷 ≤ 𝑄+ 1 (see e.g. Hillier and

Kan [2019]). Likewise, Lemma A.3.5 reveals that R(𝛽, 𝛽MM
ECov) =∞ as well.

The second assertion of Lemma 2.4.1, that when 𝐷 ≤ 𝑄 and under Condition 2.4.1

E[‖𝛽 − 𝛽MM
EGroup‖2𝐹 | 𝛽] = 𝜎2𝐷𝑄 − 𝜎4𝑄(𝑄 − 2𝐷 − 2)E[‖𝛽†

LS‖2𝐹 | 𝛽], obtains simi-

larly. Specifically, under these conditions an identical argument to that provided in

Lemma A.3.2 provides that

E[‖𝛽 − (𝛽LS − 𝜎2𝑐𝛽†⊤
LS )‖

2
𝐹 | 𝛽] = 𝐷𝑄+ 𝜎4𝑐(𝑐+ 2 + 2𝐷 − 2𝑄)E[‖𝛽†

LS‖
2
𝐹 | 𝛽]

when 𝐷 < 𝑄− 1. The desired expression is then obtained by taking 𝑐 = 𝑄 to reflect

𝛽MM
EGroup = 𝛽LS − 𝜎2𝑄𝛽†⊤

LS , again as specified by Proposition A.3.1.

Lemma A.3.2. Let 𝐷 > 𝑄+1 and let 𝛽 = 𝛽LS−𝜎2𝑐𝛽†⊤
LS . Then under Condition 2.4.1

E[‖𝛽 − 𝛽‖2𝐹 | 𝛽] = 𝜎2𝐷𝑄+ 𝜎4𝑐(𝑐+ 2 + 2𝑄− 2𝐷)E[‖𝛽†
LS‖2𝐹 | 𝛽].

Proof. The results follows by considering Stein’s unbiased risk estimate (SURE)

[Lehmann and Casella, 2006, Chapter 4, Corollary 7.2] (restated as Lemma A.3.3)
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and making several algebraic simplifications. In order to apply the lemma, we note

that under Condition 2.4.1 ^⃗
𝛽LS ∼ 𝒩 (𝛽, 𝜎2𝐼𝐷𝑄) and ^⃗

𝛽 =
^⃗
𝛽LS − 𝑔(

^⃗
𝛽LS) for 𝑔(

^⃗
𝛽LS) =

−𝜎2𝑐 · vec(𝛽†⊤
LS ), where vec(·) represents the operation of reshaping an 𝐷 ×𝑄 matrix

into a 𝐷𝑄-vector by stacking its columns.

We first simplify the sum of partial derivatives in Eq. (A.3) of Lemma A.3.3.

Observe that
𝐷𝑄∑︁
𝑛=1

𝜕𝑔𝑛(
^⃗
𝛽LS)

𝜕
^⃗
𝛽LS,𝑛

= −𝜎2𝑐

𝐷∑︁
𝑑=1

𝑄∑︁
𝑞=1

𝜕𝛽†,𝑞
LS,𝑑

𝜕𝛽𝑞
LS,𝑑

,

where 𝛽†,𝑞
LS,𝑑 denotes the entry in the 𝑞th row and 𝑑th column of 𝛽†

LS.

Next, letting 𝑒𝑞 be the 𝑞th basis vector in R𝑄, for each 𝑞 and 𝑑 we may write

𝜕𝛽†,𝑞
LS,𝑑

𝜕𝛽𝑞
LS,𝑑

=
𝜕

𝜕𝛽𝑞
LS,𝑑

𝛽LS,𝑑(𝛽
⊤
LS𝛽LS)

−1𝑒𝑞

= 𝑒⊤𝑞 (𝛽
⊤
LS𝛽LS)

−1𝑒𝑞 + 𝛽LS,𝑑
𝜕

𝜕𝛽𝑞
LS,𝑑

(𝛽⊤
LS𝛽LS)

−1𝑒𝑞

= 𝑒⊤𝑞 (𝛽
⊤
LS𝛽LS)

−1𝑒𝑞 − 𝛽⊤
LS,𝑑(𝛽

⊤
LS𝛽LS)

−1

⎡⎣ 𝜕

𝜕𝛽𝑞
LS,𝑑

(𝛽⊤
LS𝛽LS)

⎤⎦ (𝛽⊤
LS𝛽LS)

−1𝑒𝑞

= ‖𝛽†,𝑞
LS‖

2 − 𝛽†⊤
LS,𝑑

[︁
𝑒𝑞𝛽

⊤
LS,𝑑 + 𝛽LS,𝑑𝑒

⊤
𝑞

]︁
(𝛽⊤

LS𝛽LS)
−1𝑒𝑞

= ‖𝛽†,𝑞
LS‖

2 −
[︁
𝛽†⊤
LS,𝑑𝑒𝑞𝛽

⊤
LS,𝑑(𝛽

⊤
LS𝛽LS)

−1𝑒𝑞 + 𝛽†⊤
LS,𝑑𝛽LS,𝑑𝑒

⊤
𝑞 (𝛽

⊤
LS𝛽LS)

−1𝑒𝑞

]︁
= ‖𝛽†,𝑞

LS‖
2 − (𝛽†,𝑞

LS,𝑑)
2 − 𝛽†⊤

LS,𝑑𝛽LS,𝑑‖𝛽†,𝑞
LS‖

2,

where in the fourth and last lines we have used that 𝑒⊤𝑞 (𝛽⊤
LS𝛽LS)

−1𝑒𝑞 = ‖𝛽†,𝑞
LS‖2, as can

be seen by observing that (𝛽⊤
LS𝛽LS)

−1 = 𝛽†
LS𝛽

†⊤
LS .

Adding these terms together we find

𝐷∑︁
𝑑=1

𝑄∑︁
𝑞=1

𝜕𝛽†,𝑞
LS,𝑑

𝜕𝛽𝑞
LS,𝑑

=
𝐷∑︁

𝑑=1

𝑄∑︁
𝑞=1

{︁
‖𝛽†,𝑞

LS‖
2 − (𝛽†,𝑞

LS,𝑑)
2 − 𝛽†⊤

LS,𝑑𝛽LS,𝑑‖𝛽†,𝑞
LS‖

2
}︁

= 𝐷‖𝛽†
LS‖

2
𝐹 − ‖𝛽

†
LS‖

2
𝐹 − ‖𝛽

†
LS‖

2
𝐹

𝐷∑︁
𝑑=1

𝛽†⊤
LS,𝑑𝛽LS,𝑑

= 𝐷‖𝛽†
LS‖

2
𝐹 − ‖𝛽

†
LS‖

2
𝐹 − ‖𝛽

†
LS‖

2
𝐹 tr(𝛽

†
LS𝛽LS)

= (𝐷 −𝑄− 1)‖𝛽†
LS‖

2
𝐹 .
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We next note that the regularity condition required by Lemma A.3.3 is satisfied,

as demonstrated in Lemma A.3.4, and so we may write

E[‖𝛽 − 𝛽‖2𝐹 | 𝛽] = 𝜎2𝐷𝑄+ E[‖𝑔( ^⃗𝛽LS)‖2 | 𝛽]− 2𝜎2

𝐷∑︁
𝑑=1

𝑄∑︁
𝑞=1

E[
𝜕𝛽†,𝑞

LS,𝑑

𝜕𝛽𝑞
LS,𝑑

| 𝛽]

= 𝜎2𝐷𝑄+ 𝜎4𝑐2E[‖𝛽†
LS‖

2 | 𝛽]− 2𝜎4𝑐(𝐷 −𝑄− 1)E[‖𝛽†
LS‖

2
𝐹 | 𝛽]

= 𝜎2𝐷𝑄+ 𝜎4𝑐(𝑐+ 2 + 2𝑄− 2𝐷)E[‖𝛽†
LS‖

2 | 𝛽].

as desired.

Lemma A.3.3 (Stein’s Unbiased Risk Estimate – Lehmann and Casella Corollary

7.2). Let 𝑋 ∼ 𝒩 (𝜃, 𝜎2𝐼𝑁 ), and let the estimator 𝜃 be of the form 𝜃 = 𝑋 − 𝑔(𝑋) where

𝑔(𝑋) = [𝑔1(𝑋), 𝑔2(𝑋), . . . , 𝑔𝑁(𝑋)] is differentiable. If E[| 𝜕
𝜕𝑋𝑛

𝑔𝑛(𝑋)|] < ∞ for each

𝑛 = 1, . . . , 𝑁, then

R(𝜃, 𝜃) = 𝜎2𝑁 + E[‖𝑔(𝑋)‖2]− 2𝜎2

𝑁∑︁
𝑛=1

𝜕

𝜕𝑋𝑛

𝑔𝑛(𝑋). (A.3)

Lemma A.3.4. Let 𝐷 > 𝑄 + 1. Then under Condition 2.4.1 E

[︃⃒⃒⃒⃒
𝜕𝛽†,𝑞

LS,𝑑

𝜕𝛽𝑞
LS,𝑑

⃒⃒⃒⃒
| 𝛽

]︃
≤ ∞

for each 𝑑 and 𝑞.

Proof. From our derivation of
𝜕𝛽†,𝑞

LS,𝑑

𝜕𝛽𝑞
LS,𝑑

in Lemma A.3.2 we have that

𝜕𝛽†,𝑞
LS,𝑑

𝜕𝛽𝑞
LS,𝑑

= ‖𝛽†,𝑞
LS‖

2 − (𝛽†,𝑞
LS,𝑑)

2 − 𝛽†⊤
LS,𝑑𝛽LS,𝑑‖𝛽†,𝑞

LS‖
2

= ‖𝛽†,𝑞
LS‖

2 − (𝛽†,𝑞
LS,𝑑)

2 − ‖𝛽†,𝑞
LS‖

2tr[(𝛽⊤
LS𝛽LS)

−1𝛽LS,𝑑𝛽
⊤
LS,𝑑].

As such we have that⃒⃒⃒⃒
⃒⃒𝜕𝛽†,𝑞

LS,𝑑

𝜕𝛽𝑞
LS,𝑑

⃒⃒⃒⃒
⃒⃒ ≤ ‖𝛽†,𝑞

LS‖
2 + |(𝛽†,𝑞

LS,𝑑)
2|+ ‖𝛽†,𝑞

LS‖
2|tr[(𝛽⊤

LS𝛽LS)
−1𝛽LS,𝑑𝛽

⊤
LS,𝑑]|

≤ ‖𝛽†,𝑞
LS‖

2 +

⃒⃒⃒⃒
⃒⃒ 𝐷∑︁
𝑑′=1

(𝛽†,𝑞
LS,𝑑′)

2

⃒⃒⃒⃒
⃒⃒+ ‖𝛽†,𝑞

LS‖
2

⃒⃒⃒⃒
⃒⃒tr[(𝛽⊤

LS𝛽LS)
−1

𝐷∑︁
𝑑′=1

𝛽LS,𝑑′𝛽
⊤
LS,𝑑′ ]

⃒⃒⃒⃒
⃒⃒
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= ‖𝛽†,𝑞
LS‖

2 + ‖𝛽†,𝑞
LS‖

2 + ‖𝛽†,𝑞
LS‖

2tr[(𝛽⊤
LS𝛽LS)

−1𝛽⊤
LS𝛽LS]

≤ (2 +𝑄)‖𝛽†,𝑞
LS‖

2

≤ (2 +𝑄)‖𝛽†
LS‖

2
𝐹

= (2 +𝑄)tr[(𝛽⊤
LS𝛽LS)

−1].

We next recognize that under Condition 2.4.1, (𝛽⊤
LS𝛽LS)

−1 is the inverse of a non-

central Wishart matrix with non-centrality parameter 𝛽. Therefore, from Hillier and

Kan [2019, Theorem 1], we have that for 𝐷 > 𝑄+ 1, E
[︂
tr
(︁
(𝛽⊤

LS𝛽LS)
−1
)︁
| 𝛽
]︂
<∞.

Accordingly, we may conclude that E

[︃⃒⃒⃒⃒
𝜕𝛽†,𝑞

LS,𝑑

𝜕𝛽𝑞
LS,𝑑

⃒⃒⃒⃒
| 𝛽

]︃
≤ ∞ as desired.

Lemma A.3.5. Assume 𝑄 ≤ 𝐷 ≤ 𝑄+ 1. For any 𝛽, R(𝛽, 𝛽MM
ECov) =∞.

Proof. First observe that we may lower bound 𝐿(𝛽, 𝛽MM
ECov) as

𝐿(𝛽, 𝛽MM
ECov) = ‖𝛽MM

ECov − 𝛽‖2𝐹

= ‖𝜎2𝐷𝛽†⊤
LS + 𝛽 − 𝛽LS‖2𝐹

= 𝜎4𝐷2‖𝛽†
LS‖

2
𝐹 + ‖𝛽 − 𝛽LS‖2𝐹 − 2𝜎2𝐷tr

[︁
−𝛽†

LS(𝛽 − 𝛽LS)
]︁

≥ 𝜎4𝐷2‖𝛽†
LS‖

2
𝐹 + ‖𝛽 − 𝛽LS‖2𝐹 − 2𝜎2𝐷‖𝛽†

LS‖𝐹‖𝛽 − 𝛽LS‖𝐹

= (𝜎2𝐷‖𝛽†
LS‖𝐹 − ‖𝛽 − 𝛽LS‖𝐹 )2

where the inequality follows from Cauchy-Schwarz. We next consider any constant

𝑐 < 𝜎2𝐷 and write

R(𝛽, 𝛽MM
ECov) = E[𝐿(𝛽, 𝛽MM

ECov)|𝛽]

= P(𝑐‖𝛽†
LS‖𝐹 ≥ ‖𝛽LS − 𝛽‖𝐹 )E[𝐿(𝛽, 𝛽MM

EGroup) | 𝛽, 𝑐‖𝛽
†
LS‖𝐹 ≥ ‖𝛽LS − 𝛽‖𝐹 ]

+ P(𝑐‖𝛽†
LS‖𝐹 < ‖𝛽LS − 𝛽‖𝐹 )E[𝐿(𝛽, 𝛽MM

EGroup) | 𝛽, 𝑐‖𝛽
†
LS‖𝐹 < ‖𝛽LS − 𝛽‖𝐹 ]

≥ P(𝑐‖𝛽†
LS‖𝐹 ≥ ‖𝛽LS − 𝛽‖𝐹 )E[𝐿(𝛽, 𝛽MM

EGroup) | 𝛽, 𝑐‖𝛽
†
LS‖𝐹 ≥ ‖𝛽LS − 𝛽‖𝐹 ]

≥ P(𝑐‖𝛽†
LS‖𝐹 ≥ ‖𝛽LS − 𝛽‖𝐹 )

· E[(𝜎2𝐷‖𝛽†
LS‖𝐹 − ‖𝛽 − 𝛽LS‖𝐹 )2 | 𝛽, 𝑐‖𝛽†

LS‖𝐹 ≥ ‖𝛽LS − 𝛽‖𝐹 ]
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≥ P(𝑐‖𝛽†
LS‖𝐹 ≥ ‖𝛽LS − 𝛽‖𝐹 )(𝜎2𝐷 − 𝑐)2E[‖𝛽†

LS‖
2
𝐹 | 𝛽, 𝑐‖𝛽

†
LS‖𝐹 ≥ ‖𝛽LS − 𝛽‖𝐹 ]

≥ (𝜎2𝐷 − 𝑐)2P(𝑐‖𝛽†
LS‖𝐹 ≥ ‖𝛽LS − 𝛽‖𝐹 )E[tr[(𝛽⊤

LS𝛽LS)
−1 | 𝛽] =∞

where the last line comes from recognizing (𝛽⊤
LS𝛽LS)

−1 as the inverse of a non-central

Wishart matrix, the trace of which has infinite expectation for 𝑄 ≤ 𝐷 ≤ 𝑄+ 1.

A.3.4 Proof of Theorem 2.4.2 and additional details

Proof. The first domination result of Theorem 2.4.2 follows closely from Lemma 2.4.1.

Under Condition 2.4.1, 𝛽LS
𝑑
= 𝛽 + 𝜎𝜖 for a random matrix 𝜖 with i.i.d. standard

normal entries, and so we can see R(𝛽, 𝛽LS) =
∑︀𝐷

𝑑=1

∑︀𝑄
𝑞=1 E[(𝜎𝜖

𝑞
𝑑)

2] = 𝐷𝑄𝜎2. Next,

𝐷 > 2𝑄+ 2 implies that 𝐷 − 2− 2𝑄 > 0 so that 𝐷(𝐷 − 2− 2𝑄)𝜎2‖𝛽†
LS‖2𝐹 is almost

surely positive, and therefore positive in expectation. We therefore obtain the result

from Lemma 2.4.1.

We next consider the second domination result. The performance of 𝛽MM
EGroup may

be seen to degrade in stages as we transition from a few covariates and many groups

regime to a many covariates and few groups regime. When 𝐷 < 𝑄/2 − 1, we can

see that 𝛽MM
EGroup has good performance. In fact, by an argument analogous to our

proof of the first part of Theorem 2.4.2 above, we can see that 𝛽MM
EGroup dominates

𝛽LS; Specifically, from Lemma 2.4.1 we can recognize R(𝛽, 𝛽LS)− R(𝛽, 𝛽EGroup) as the

expectation of an almost surely positive quantity.

When 𝐷 = 𝑄/2 − 1 we have 𝑄(𝑄 − 2 − 2𝐷) = 0, and so regardless of 𝛽, the

estimators 𝛽MM
EGroup and 𝛽LS have equal risk, and neither dominates.

Relative performance degrades further in the intermediate regime of 𝑄/2− 1 <

𝐷 < 𝑄− 1. In this regime, R(𝛽, 𝛽LS)−R(𝛽, 𝛽MM
EGroup) = 𝜎4𝑄(𝑄− 2− 2𝐷)E[‖𝛽†

LS‖2𝐹 | 𝛽]

may be written as the expectation of an almost surely negative quantity, and so

𝛽MM
EGroup is dominated by 𝛽LS.

The situation is even worse when 𝑄 − 1 ≤ 𝐷 ≤ 𝑄; appealing again the they

symmetry between 𝛽MM
EGroup and 𝛽MM

ECov, we can see that by Lemma A.3.5 R(𝛽, 𝛽MM
EGroup) =

∞.
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Finally, when 𝐷 > 𝑄 the expression 𝛽MM
EGroup = 𝛽LS−

[︁
𝜎−2Γ̂MM − 𝐼𝐷

]︁−1

𝛽LS involves

the inverse of a low rank matrix since under Condition 2.4.1, Γ̂MM = 𝑄−1𝛽LS𝛽
⊤
LS−𝜎2𝐼𝐷.

Accordingly we take as our convention ‖𝛽MM
EGroup‖ =∞, analogously to defining 1

0
=∞;

as a result 𝛽MM
EGroup has infinite risk in this second regime as well, and we see that this

estimator is dominated by 𝛽LS whenever 𝐷 < 𝑄/2− 1.

With the strong parallels established by Proposition A.3.1 and Lemma 2.4.1 under

Condition 2.4.1, we can see that this is not a result of 𝛽MM
EGroup being singularly bad.

Indeed, if we consider the many groups regime with 𝑄 > 𝐷, we can obtain analogous

results to demonstrate the superiority of an exchangeability among groups approach.

A.3.5 Proof of Lemma 2.4.2

Proof. We first show that under Condition 2.4.1, Σ̂ = 𝑈diag
[︀
(𝐷−1𝜆− 𝜎21𝑄)+

]︀
𝑈⊤ is

the maximum marginal likelihood estimate of Σ in Eq. (2.1). Our approach is to first

derive a lower bound on the negative log likelihood, and then show that this bound is

met with equality by the proposed expression.

For convenience, we consider a scaling of the negative log likelihood,

−2𝐷−1 ln 𝑝(𝛽LS|Σ) = ln |Σ + 𝜎2𝐼𝑄|+𝐷−1tr
[︁
(Σ + 𝜎2𝐼𝑄)

−1𝛽⊤
LS𝛽LS

]︁
,

and are interested in deriving a lower bound on

min
Σ⪰0

ln |Σ + 𝜎2𝐼𝑄|+𝐷−1tr
[︁
(Σ + 𝜎2𝐼𝑄)

−1𝛽⊤
LS𝛽LS

]︁
,

where the notation Σ ⪰ 0 reflects that the minimum is taken over the space of positive

semidefinite matrices.

The problem simplifies if we parameterize the minimization with the eigende-

composition Σ = 𝑉 ⊤diag(𝜈)𝑉, where 𝑉 is a 𝑄 × 𝑄 matrix satisfying 𝑉 ⊤𝑉 = 𝐼𝑄

and 𝜈 is a 𝑄-vector of non-negative reals. In particular, if we define ℒ(𝑉, 𝜈) :=

−2𝐷−1 ln 𝑝(𝛽LS|Σ = 𝑉 ⊤diag(𝜈)𝑉 ) then, leaving the constraints on 𝑉 and 𝜈 implicit,
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we have

min
𝑉,𝜈
ℒ(𝑉, 𝜈) = min

𝑉,𝜈
ln |𝑉 ⊤diag(𝜈)𝑉 + 𝜎2𝐼𝑄|+𝐷−1tr

[︁
(𝑉 ⊤diag(𝜈)𝑉 + 𝜎2𝐼𝑄)

−1𝛽⊤
LS𝛽LS

]︁
= min

𝑉,𝜈
ln |𝑉 ⊤diag(𝜈)𝑉 + 𝜎2𝐼𝑄|+𝐷−1tr

[︁
(diag(𝜈) + 𝜎2𝐼𝑄)

−1𝑉 𝛽⊤
LS𝛽LS𝑉

⊤
]︁

= min
𝑉,𝜈

𝑄∑︁
𝑞=1

ln(𝜈𝑞 + 𝜎2) +𝐷−1

𝑄∑︁
𝑞=1

1

𝜈𝑞 + 𝜎2
𝑉 ⊤
𝑞 𝛽⊤

LS𝛽LS𝑉𝑞

= min
𝑉

𝑄∑︁
𝑞=1

min
𝜈𝑞≥0

ln(𝜈𝑞 + 𝜎2) +
𝐷−1𝑉 ⊤

𝑞 𝛽⊤
LS𝛽LS𝑉𝑞

𝜈𝑞 + 𝜎2
.

Next, Lemma A.3.6 provides that we may solve the inner optimization problems

over 𝜈 in the line above analytically to get 𝜈* := argmin𝜈 ℒ(𝑉, 𝜈) with entries 𝜈*
𝑞 =

max(𝜎2, 𝐷−1𝑉 ⊤
𝑞 𝛽⊤

LS𝛽LS𝑉𝑞)− 𝜎2. Substituting these values in, we obtain

min
𝑉,𝜈
ℒ(𝑉, 𝜈) = min

𝑉

𝑄∑︁
𝑞=1

ln
[︁
max(𝜎2, 𝐷−1𝑉 ⊤

𝑞 𝛽⊤
LS𝛽LS𝑉𝑞)

]︁
+

𝐷−1𝑉 ⊤
𝑞 𝛽⊤

LS𝛽LS𝑉𝑞

max(𝜎2, 𝐷−1𝑉 ⊤
𝑞 𝛽⊤

LS𝛽LS𝑉𝑞)

= min
𝑉

𝑄∑︁
𝑞=1

ln
[︁
max(𝜎2, 𝐷−1𝑉 ⊤

𝑞 𝛽⊤
LS𝛽LS𝑉𝑞)

]︁
+ 𝜎−2min(𝜎2, 𝐷−1𝑉 ⊤

𝑞 𝛽⊤
LS𝛽LS𝑉𝑞).

We can now further simplify the problem by considering the eigendecomposition of

𝛽⊤
LS𝛽LS = 𝑈diag(𝜆)𝑈⊤, and recognizing that because 𝑉 𝑈 satisfies (𝑉 𝑈)⊤𝑉 𝑈 = 𝐼𝑄 we

may write

min
𝑉,𝜈
ℒ(𝑉, 𝜈) = min

𝑉

𝑄∑︁
𝑞=1

ln
[︁
max(𝜎2, 𝐷−1𝑉 ⊤

𝑞 𝛽⊤
LS𝛽LS𝑉𝑞)

]︁
+ 𝜎−2min(𝜎2, 𝐷−1𝑉 ⊤

𝑞 𝛽⊤
LS𝛽LS𝑉𝑞)

= min
𝑉

𝑄∑︁
𝑞=1

ln

[︂
max

(︁
𝜎2, 𝑉 ⊤

𝑞 diag(𝐷−1𝜆)𝑉𝑞

)︁]︂
+ 𝜎−2min

[︁
𝜎2, 𝑉 ⊤

𝑞 diag(𝐷−1𝜆)𝑉𝑞

]︁
.

Finally, we obtain a lower bound by recognizing {𝑉 ⊤
𝑞 diag(𝐷−1𝜆)𝑉𝑞}𝑄𝑞=1 as the diagonals

of 𝐷−1𝑉 diag(𝜆)𝑉 ⊤ and applying Lemma A.3.7 to obtain that

−2𝐷−1 ln 𝑝(𝛽LS|Σ) ≥
𝑄∑︁

𝑞=1

ln
[︀
max(𝜎2, 𝐷−1𝜆𝑞)

]︀
+ 𝜎−2min(𝜎2, 𝐷−1𝜆𝑞)
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for every Σ ⪰ 0.

We next show that this bound is met with equality by Σ̂ = 𝑈diag
[︀
(𝐷−1𝜆− 𝜎21𝑄)+

]︀
𝑈⊤,

the form given in the statement of Lemma 2.4.2. Recognize first that Σ̂ + 𝜎2𝐼𝑄 =

𝑈diag
[︀
max(𝜎21𝑄, 𝐷

−1𝜆)
]︀
𝑈⊤. Substituting this expression in, we find

−2𝐷−1 ln 𝑝(𝛽LS|Σ̂) = ln |Σ̂ + 𝜎2𝐼𝑄|+𝐷−1tr
[︁
(Σ̂ + 𝜎2𝐼𝑄)

−1𝛽⊤
LS𝛽LS

]︁
= ln

⃒⃒⃒
diag

[︀
max(𝜎21𝑄, 𝐷

−1𝜆)
]︀⃒⃒⃒

+𝐷−1tr
[︁
diag

[︀
max(𝜎21𝑄, 𝐷

−1𝜆)
]︀−1

𝑈⊤𝛽⊤
LS𝛽LS𝑈

]︁
=

𝑄∑︁
𝑞=1

ln
[︀
max(𝜎2, 𝐷−1𝜆𝑞)

]︀
+𝐷−1𝜆𝑞/max(𝜎2, 𝐷−1𝜆𝑞)

=

𝑄∑︁
𝑞=1

ln
[︀
max(𝜎2, 𝐷−1𝜆𝑞)

]︀
+ 𝜎−2min(𝜎2, 𝐷−1𝜆𝑞),

which meets our lower bound. This establishes that the maximum marginal likelihood

estimate is Σ̂ = 𝑈
[︀
(𝐷−1𝜆− 𝜎21𝑄)+

]︀
𝑈⊤, as desired.

It now remains to show that, under Condition 2.4.1,

𝛽ECov = 𝑉 diag
[︁
𝜆

1
2 ⊙ (1𝑄 − 𝜎2𝐷𝜆−1)+

]︁
𝑈⊤.

By Lemma A.3.1, we have that 𝛽ECov = 𝛽LS− 𝛽LS

[︁
𝐼𝑄 + 𝜎−2Σ̂

]︁−1

. Substituting in the

analytic expression for Σ̂, recalling the SVD 𝛽LS = 𝑉 diag(𝜆
1
2 )𝑈⊤, and rearranging,

we obtain

𝛽ECov = 𝑉 diag(𝜆
1
2 )𝑈⊤ − 𝑉 diag(𝜆

1
2 )𝑈⊤

{︁
𝐼𝑄 + 𝜎−2𝑈

[︀
(𝐷−1𝜆− 𝜎21𝑄)+

]︀
𝑈⊤
}︁−1

= 𝑉 diag
{︁
𝜆

1
2 − 𝜆

1
2

[︀
1𝑄 + 𝜎−2(𝐷−1𝜆− 𝜎21𝑄)+

]︀−1
}︁
𝑈⊤

= 𝑉 diag

{︂
𝜆

1
2 ⊙

[︁
1𝑄 −

(︀
1𝑄 + (𝜎−2𝐷−1𝜆− 1𝑄)+

)︀−1
]︁}︂

𝑈⊤

= 𝑉 diag
[︁
𝜆

1
2 ⊙

(︀
1𝑄 − 𝜎2𝐷𝜆−1

)︀
+

]︁
𝑈⊤,

as desired.
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Lemma A.3.6. For any 𝑐 > 0,

𝜈* : = argmin
𝜈≥0

ln(𝜈 + 𝜎2) +
𝑐

𝜈 + 𝜎2

= max(𝜎2, 𝑐)− 𝜎2

Proof. Define 𝑔(𝑥) := ln(𝑥+𝜎2)+𝑐/(𝑥+𝜎2) and 𝑓(𝑥) := 𝑔(𝜎2𝑥) = ln(𝑥+1)+𝜎−2𝑐
𝑥+1

+ln𝜎2

to lighten notation. Now 𝜈* = argmax𝑥≥0 𝑔(𝑥) = 𝜎2 argmax𝑥≥0 𝑓(𝑥). Denote by 𝑓 ′

and 𝑓 ′′ the first two derivatives of 𝑓. Notably, 𝑓 ′(𝑥) = (𝑥 + 1)−1
[︀
1− 𝜎−2𝑐/(𝑥+ 1)

]︀
and 𝑓 ′′(𝑥) = (𝑥 + 1)−2

[︀
2𝜎−2𝑐/(𝑥+ 1)− 1

]︀
. The result may be seen by separately

considering the cases of 𝜎−2𝑐 < 1 and 𝜎−2𝑐 ≥ 1.

If 𝜎−2𝑐 < 1, then 𝑓 ′ is positive on R+, and so argmin𝑥∈R+
𝑓(𝑥) = 0. On the

other hand, if 𝜎−2𝑐 ≥ 1, then 𝑓 has a local minimum at 𝑥 = 𝜎−2𝑐 − 1 (note that

𝑓 ′(𝜎−2𝑐− 1) = 0, and 𝑓 ′′(𝜎−2𝑐− 1) > 0)). Since this is the only local minimum on R+,

and with the positive second derivative at the this minimum, we can conclude that in

this case argmin𝑥∈R+
𝑓(𝑥) = 𝜎−2𝑐−1. In either case, we can write argmin𝑥∈R+

𝑓(𝑥) =

max(1, 𝜎−2𝑐)− 1. Therefore, as desired, we see that argmin𝑥∈R+
𝑔(𝑥) = max(𝜎2, 𝑐)−

𝜎2.

Lemma A.3.7. Let 𝐴 be a 𝑄×𝑄 Hermitian matrix with eigenvalues 𝜆1, 𝜆2, . . . , 𝜆𝑄.

Then

𝑄∑︁
𝑞=1

ln
[︀
max(𝜎2, 𝐴𝑞,𝑞)

]︀
+ 𝜎−2min(𝜎2, 𝐴𝑞,𝑞) ≥

𝑄∑︁
𝑞=1

ln
[︀
max(𝜎2, 𝜆𝑞)

]︀
+ 𝜎−2min(𝜎2, 𝜆𝑞).

Proof. First note that 𝑓(𝑥) = lnmax(𝜎2, 𝑥) + min(𝜎2, 𝑥) is concave on R+, and so

the vector valued function, 𝑔(𝑥1, 𝑥2, . . . , 𝑥𝑁) =
∑︀𝑁

𝑛=1 𝑓(𝑥𝑛) is Schur concave. By

the Schur-Horn theorem (Theorem A.4.1) the diagonals of 𝐴 are majorized by its

eigenvalues, when each are sorted in descending order. As such 𝑔
(︀
diag(𝐴)

)︀
≥ 𝑔 (𝜆),

as desired.
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A.3.6 Proof of Theorem 2.4.3

Our approach to showing dominance of 𝛽ECov over 𝛽MM
ECov parallels the classical approach

of Baranchik [1964], to showing that the positive part James-Stein estimator dominates

the original James-Stein estimator. In this case, however, our parameter and estimates

are matrix-valued, rather than vector-valued. Additionally, we contend with the added

complication that the directions along which we apply shrinkage are random.

Proof. To begin, consider again the SVD of the matrix of least squares estimates,

𝛽LS = 𝑉 diag(𝜆
1
2 )𝑈⊤. Recall from Proposition A.3.1 that 𝛽MM

ECov = 𝛽LS − 𝜎2𝐷𝛽†⊤
LS

under Condition 2.4.1. Because the pseudo-inverse of 𝛽LS may be written as 𝛽†
LS =

𝑈diag(𝜆− 1
2 )𝑉 ⊤, we rewrite 𝛽MM

ECov = 𝑉 diag(𝜆
1
2 −𝜎2𝐷𝜆− 1

2 )𝑈⊤. Comparing this estimate

to the expression for 𝛽ECov in Lemma 2.4.2, 𝛽ECov = 𝑉 diag
[︁
𝜆

1
2 ⊙ (1− 𝜎2𝐷𝜆−1)+

]︁
𝑈⊤,

we see that the two estimates differ only when 𝛽MM
ECov “flips the direction” of one or

more of the singular values of 𝛽LS. Our strategy to proving the theorem is to show

that analogously to the “over-shrinking” of the James-Stein estimator relative to the

positive part James-Stein estimator, this “over-shrinking” of singular values increases

the loss of 𝛽MM
ECov in expectation.

For convenience, we define 𝜌 := 𝜆
1
2 ⊙ (1− 𝜎2𝐷𝜆−1) and 𝜌+ := 𝜆

1
2 ⊙ (1− 𝜎2𝐷𝜆−1)+

so that 𝛽MM
ECov = 𝑉 diag(𝜌)𝑈⊤ and 𝛽ECov = 𝑉 diag(𝜌+)𝑈

⊤.

To show the desired uniform risk improvement we must show that for any 𝛽,

E
[︁
L(𝛽, 𝛽MM

ECov)− L(𝛽, 𝛽ECov)
]︁
> 0, (A.4)

where L(𝛽, 𝛽) = ‖𝛽 − 𝛽‖2𝐹 is squared error loss. We can rewrite this difference in loss

as

L(𝛽, 𝛽MM
ECov)− L(𝛽, 𝛽ECov) = ‖𝛽MM

ECov − 𝛽‖2𝐹 − ‖𝛽ECov − 𝛽‖2𝐹

= ‖diag(𝜌)− 𝑉 ⊤𝛽𝑈‖2𝐹 − ‖diag(𝜌+)− 𝑉 ⊤𝛽𝑈‖2𝐹

=

𝑄∑︁
𝑞=1

(𝜌𝑞 − 𝑉 ⊤
𝑞 𝛽𝑈𝑞)

2 − (𝜌+𝑞 − 𝑉 ⊤
𝑞 𝛽𝑈𝑞)

2
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=

𝑄∑︁
𝑞=1

𝜌2𝑞 − 𝜌2+𝑞 − 2(𝑉 ⊤
𝑞 𝛽𝑈𝑞)(𝜌𝑞 − 𝜌+𝑞),

where we here (and in the proof of this theorem only) write 𝑉𝑞 and 𝑈𝑞 to denotes

columns of 𝑉 and 𝑈, rather than rows. Since 𝜌2𝑞
𝑎.𝑠.

≥ 𝜌2+𝑞, it suffices to show that for

any 𝛽 and each 𝑞,

E
[︁
(𝑉 ⊤

𝑞 𝛽𝑈𝑞)(𝜌𝑞 − 𝜌+𝑞)
]︁
< 0.

To show this, we again find an even narrower but easier to prove condition will

imply the one above; since 𝜌𝑞 and 𝜌+𝑞 differ only when 𝜆𝑞 < 𝜎2𝐷, it is enough to show

that for each 0 < 𝑐 < 𝜎2𝐷

E
[︁
(𝑉 ⊤

𝑞 𝛽𝑈𝑞)𝜌𝑞|𝜆𝑞 = 𝑐
]︁
< 0. (A.5)

If we establish Eq. (A.5), then Eq. (A.4) obtains from the law of iterated expectation.

Next, observe that since 𝜌𝑞 fixed and negative when 𝜆𝑞 = 𝑐 < 𝜎2𝐷, Eq. (A.4) is

equivalent to

E
[︁
𝑉 ⊤
𝑞 𝛽𝑈𝑞|𝜆𝑞 = 𝑐

]︁
> 0.

Letting 𝑈−𝑞 and 𝑉−𝑞 denote the remaining columns of 𝑈 and 𝑉 , respectively, we

may write

E
[︁
𝑉 ⊤
𝑞 𝛽𝑈𝑞|𝜆𝑞 = 𝑐

]︁
= E

[︂
E
[︁
𝑉 ⊤
𝑞 𝛽𝑈𝑞|𝜆𝑞 = 𝑐, 𝑈−𝑞, 𝑉−𝑞

]︁]︂

and, again through the law of iterated expectation, see that it will be sufficient to

show for every 𝑈−𝑞 and 𝑉−𝑞 that E
[︁
𝑉 ⊤
𝑞 𝛽𝑈𝑞|𝜆𝑞 = 𝑐, 𝑈−𝑞, 𝑉−𝑞

]︁
> 0.

With all but one column of each of 𝑈 and 𝑉 fixed, 𝑈𝑞 and 𝑉𝑞 are determined up

to signs, as unit vectors in the one dimensional subspaces orthogonal to [{𝑈 𝑞′}𝑞′ ̸=𝑞]

and [{𝑉 𝑑}𝑑 ̸=𝑞]. As such, we need only to show

P
[︁
𝑉 ⊤
𝑞 𝛽𝑈𝑞 > 0|𝑈−𝑞, 𝑉−𝑞, 𝜆𝑞 = 𝑐

]︁
> P

[︁
𝑉 ⊤
𝑞 𝛽𝑈𝑞 < 0|𝑈−𝑞, 𝑉−𝑞, 𝜆𝑞 = 𝑐

]︁
, (A.6)
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since

E
[︁
𝑉 ⊤
𝑞 𝛽𝑈𝑞|𝜆𝑞, 𝑈−𝑞, 𝑉−𝑞

]︁
= |𝑉 ⊤

𝑞 𝛽𝑈𝑞|
{︂
P
[︁
𝑉 ⊤
𝑞 𝛽𝑈𝑞 > 0|𝜆𝑞, 𝑈−𝑞, 𝑉−𝑞

]︁
− P

[︁
𝑉 ⊤
𝑞 𝛽𝑈𝑞 < 0|𝜆𝑞, 𝑈−𝑞, 𝑉−𝑞

]︁}︂
,

where, in an abuse of notation, we have moved |𝑉 ⊤
𝑞 𝛽𝑈𝑞| outside the expectation since

it is deterministic once we have observed 𝑉−𝑞 and 𝑈−𝑞.

That Eq. (A.6) holds may be seen from considering the conditional probability

densities for 𝑈𝑞 and 𝑉𝑞, and noting that the density is larger for 𝑉𝑞 and 𝑈𝑞 such that

𝑉 ⊤
𝑞 𝛽𝑈𝑞 is positive. In particular, we have that

ln 𝑝(𝛽LS|𝛽, 𝑈−𝑞, 𝑉−𝑞, 𝜆) = −
1

2
‖𝛽 − 𝛽‖2𝐹 + ℎ

= −1

2
‖𝑉 ⊤𝛽𝑈 − diag(𝜆

1
2 )‖2𝐹 + ℎ

= −1

2
(𝜆

1
2
𝑞 − 𝑉 ⊤

𝑞 𝛽𝑈𝑞)
2 + ℎ′

where ℎ and ℎ′ are constants that do not depend on the signs of 𝑈𝑞 and 𝑉𝑞. Since 𝜆
1
2
𝑞

is positive with probability one, the conditional probability that 𝑉 ⊤
𝑞 𝛽𝑈𝑞 is positive is

greater than that it is negative. Accordingly, we see that Eq. (A.5) does in fact hold,

and the result obtains.

A.4 Gains from ECov in the high-dimensional limit –

supplementary proofs

A.4.1 Proof of Lemma 2.5.1

From the sequence of datasets, {𝒟𝐷}∞𝐷=1, we obtain sequences of estimates. To make

explicit the dimension dependence, we denote these as explicit functions of the data,

e.g. {𝛽ECov(𝒟𝐷)}∞𝐷=1 where 𝛽ECov(𝒟𝐷) denotes 𝛽ECov in Eq. (2.1) applied to 𝒟𝐷.

Furthermore, we consider the entire sequence of datasets and estimates as existing in

a single probability space.
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We note that Lemma A.4.1 establishes that 𝛽ECov(𝒟𝐷) and 𝛽MM
ECov(𝒟𝐷) coincide

almost surely in the high-dimensional limit. As such, the squared error loss of these

two estimates coincide almost surely in the limit, and we may write

lim
𝐷→∞

𝐷−1R𝐷
𝜋 (𝛽ECov(𝒟𝐷))

= lim
𝐷→∞

𝐷−1E
[︁
E[‖𝛽ECov(𝒟𝐷)− 𝛽‖2𝐹 | 𝛽]

]︁
= lim

𝐷→∞
𝐷−1E

[︀
E[‖𝛽MM

ECov(𝒟𝐷)− 𝛽‖2𝐹 + ‖𝛽ECov(𝒟𝐷)− 𝛽MM
ECov(𝒟𝐷)‖2𝐹+

2tr((𝛽ECov(𝒟𝐷)− 𝛽MM
ECov(𝒟𝐷))

⊤(𝛽MM
ECov(𝒟𝐷)− 𝛽)) | 𝛽]

]︀
= lim

𝐷→∞
E
[︁
𝐷−1E[‖𝛽MM

ECov(𝒟𝐷)− 𝛽‖2𝐹 | 𝛽]
]︁

= lim
𝐷→∞

E
[︁
𝜎2𝑄− 𝜎4(𝐷 − 2𝑄− 2)E[‖𝛽LS(𝒟𝐷)

†‖2𝐹 |𝛽]
]︁

= 𝜎2𝑄− 𝜎4 lim
𝐷→∞

E[(𝐷 − 2𝑄− 2)‖𝛽LS(𝒟𝐷)
†‖2𝐹 ]

= 𝜎2𝑄− 𝜎4 lim
𝐷→∞

E[tr[(Σ̃ + 𝜎2𝐼𝑄)
−1] + 𝑜(1)]

= 𝜎2𝑄− 𝜎4tr[(Σ̃ + 𝜎2𝐼𝑄)
−1].

The third line comes from linearity of expectation and that ‖𝛽ECov− 𝛽MM
ECov‖

𝑎.𝑠.→ 0. The

fourth line comes from Lemma 2.4.1. The second to last line comes from Lemma A.4.2.

We next recognize that tr[(Σ̃ + 𝜎2𝐼𝑄)
−1] =

∑︀𝑄
𝑞=1(𝜆𝑞 + 𝜎2)−1, where 𝜆1, . . . , 𝜆𝑄 are

the eigenvalues of Σ̃. Accordingly we may write,

lim
𝐷→∞

𝐷−1R𝐷
𝜋 (𝛽ECov(𝒟𝐷)) = 𝜎2𝑄− 𝜎4

𝑄∑︁
𝑞=1

(𝜆𝑞 + 𝜎2)−1.

Furthermore since we obtain 𝛽ID(𝒟𝐷) by applying 𝛽ECov(𝒟𝐷) independently to

the data in each group, we analogously obtain

lim
𝐷→∞

𝐷−1R𝐷
𝜋 (𝛽ID(𝒟𝐷)) = 𝜎2𝑄− 𝜎4

𝑄∑︁
𝑞=1

(Σ̃𝑞,𝑞 + 𝜎2)−1.
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Putting these expressions together, we obtain

lim
𝐷→∞

𝐷−1
[︁
R𝐷

𝜋 (𝛽ID(𝒟𝐷))− R𝐷
𝜋 (𝛽ECov(𝒟𝐷))

]︁
= 𝜎4

⎡⎣ 𝑄∑︁
𝑞=1

(𝜆𝑞 + 𝜎2)−1 −
𝑄∑︁

𝑞=1

(Σ̃𝑞,𝑞 + 𝜎2)−1

⎤⎦ .

Finally, including the additional scaling by 𝜎−2𝑄−1 we obtain

Gain(𝜋, 𝜎2) = 𝜎2𝑄−1

⎡⎣ 𝑄∑︁
𝑞=1

(𝜆𝑞 + 𝜎2)−1 −
𝑄∑︁

𝑞=1

(Σ̃𝑞,𝑞 + 𝜎2)−1

⎤⎦
as desired.

Lemma A.4.1. Under the conditions of Lemma 2.5.1,

lim
𝐷→∞

‖𝛽ECov(𝒟𝐷)− 𝛽MM
ECov(𝒟𝐷)‖𝐹 = 0

almost surely.

Proof. Note that under the conditions of Lemma 2.5.1, Lemma 2.4.2 provides that

𝛽ECov(𝒟𝐷) and 𝛽MM
ECov(𝒟𝐷) differ only when Σ̂MM is not positive definite; otherwise

Σ̂MM = Σ̂. Since Σ̂MM = 𝐷−1𝛽LS(𝒟𝐷)
⊤𝛽LS(𝒟𝐷) − 𝜎2𝐼𝑄, by Lemma A.4.3 Σ̂MM will

be positive definite for all 𝐷 above some 𝐷′ almost surely, and so 𝛽ECov(𝒟𝐷) and

𝛽MM
ECov(𝒟𝐷) become equal for all 𝐷 large enough, implying strong convergence.

Lemma A.4.2. Under the conditions of Lemma 2.5.1, lim𝐷→∞𝐷‖𝛽LS(𝒟𝐷)
†‖2𝐹 =

tr[(Σ̃ + 𝜎2𝐼𝑄)
−1] almost surely.

Proof. Recall that ‖𝛽LS(𝒟𝐷)
†‖2𝐹 = tr[(𝛽LS(𝒟𝐷)

⊤𝛽LS(𝒟𝐷))
−1]. As such, we may write

𝐷‖𝛽LS(𝒟𝐷)
†‖2𝐹 = tr[(𝐷−1𝛽LS(𝒟𝐷)

⊤𝛽LS(𝒟𝐷))
−1]. By Lemma A.4.3

𝐷−1𝛽LS(𝒟𝐷)
⊤𝛽LS(𝒟𝐷)

𝑎.𝑠.→ Σ̃ + 𝜎2𝐼𝑄,

and so we can see that 𝐷‖𝛽LS(𝒟𝐷)
†‖2𝐹

𝑎.𝑠.→ tr[(Σ̃ + 𝜎2𝐼𝑄)
−1] as desired.

Lemma A.4.3. Under the conditions of Lemma 2.5.1 lim𝐷→∞𝐷−1𝛽LS(𝒟𝐷)
⊤𝛽LS(𝒟𝐷) =

Σ̃ + 𝜎2𝐼𝑄 almost surely.
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Proof. It suffices to show strong convergence element wise, as this implies strong conver-

gence in all other relevant norms. For convenience, let 𝐶(𝐷) := 𝐷−1𝛽LS(𝒟𝐷)
⊤𝛽LS(𝒟𝐷).

Note that we may write each entry 𝐶
(𝐷)
𝑞,𝑞′ =

∑︀𝐷
𝑑=1𝐷

−1𝛽LS(𝒟𝐷)
𝑞
𝑑𝛽LS(𝒟𝐷)

𝑞′

𝑑 as a sum of

𝐷 i.i.d. terms. Notably, each term 𝛽LS(𝒟𝐷)
𝑞
𝑑 · 𝛽LS(𝒟𝐷)

𝑞′

𝑑 is a product of two Gaussian

random variables and is therefore sub-exponential with some non-negative parameters

(𝜈, 𝛼) (see e.g. Wainwright [2019, Definition 2.7]). As a result, 𝐶(𝐷) is then sub-

exponential with parameters (𝐷− 1
2𝜈,𝐷−1𝛼). Therefore, for any constant 𝑏 satisfying

0 < 𝑏 < 𝜈2/𝛼, by Wainwright [2019, Proposition 2.9] we have that

P
[︂⃒⃒⃒
𝐶

(𝐷)
𝑞,𝑞′ − E[𝐶(𝐷)

𝑞,𝑞′ ]
⃒⃒⃒
≥ 𝑏

]︂
≤ 2 exp{−𝐷

2
𝑏2/𝜈2}.

This rapid, exponential decay in tail probability with 𝐷 implies that for small 𝑏,

∞∑︁
𝐷=1

P
[︂⃒⃒⃒
𝐶

(𝐷)
𝑞,𝑞′ − E[𝐶(𝐷)

𝑞,𝑞′ ]
⃒⃒⃒
≥ 𝑏

]︂
≤ ∞.

Therefore, by the Borel-Cantelli lemma we see that |𝐶(𝐷)
𝑞,𝑞′ − E[𝐶(𝐷)

𝑞,𝑞′ ]|
𝑎.𝑠.→ 0. Since

E[𝐶(𝐷)] = Σ̃ + 𝜎2𝐼𝑄 for each 𝐷, this implies that lim𝐷→∞𝐷−1𝛽LS(𝒟𝐷)
⊤𝛽LS(𝒟𝐷) =

Σ̃ + 𝜎2𝐼𝑄 almost surely.

A.4.2 Further discussion of Theorem 2.5.2

We here give further detail related to the proof of Theorem 2.5.2 and introduce

additional notation used in the remainder of the section. Recall from Lemma 2.5.1

that Gain(𝜋, 𝜎2) = 𝜎2𝑄−1[
∑︀𝑄

𝑞=1(𝜆𝑞 + 𝜎2)−1 −
∑︀𝑄

𝑞=1(Σ̃𝑞,𝑞 + 𝜎2)−1]. For convenience,

we will use ℓ := diag(Σ̃)↓ to denote the 𝑄-vector of diagonal entries of Σ̃ sorted in

descending order. Similarly, we take 𝜆 to be the 𝑄-vector of eigenvalues of Σ̃, again

sorted in descending order. Next, it is useful to rewrite

Gain(𝜋, 𝜎2) = 𝜎2𝑄−1
[︁
𝑓(𝜆)− 𝑓(ℓ)

]︁
where 𝑓(𝑥) :=

∑︀𝑄
𝑞=1 𝑓(𝑥𝑞) =

∑︀𝑄
𝑞=1(𝜎

2 + 𝑥𝑞)
−1 (where 𝑓(𝑥) := (𝜎2 + 𝑥)−1).
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The key theoretical tool used in establishing Theorem 2.5.2 is the Schur-Horn

theorem. We state this result below, adapted from Horn [1954, Theorem 5]. The

Schur-Horn theorem guarantees that 𝜆 majorizes ℓ. In particular, an 𝑁 -vector 𝑎 is

said to majorize a second 𝑁 -vector 𝑏 if
∑︀𝑁

𝑛=1 𝑎𝑛 =
∑︀𝑁

𝑛=1 𝑏𝑛 and for all 𝑁 ′ ≤ 𝑁,

𝑁 ′∑︁
𝑛=1

𝑎↓𝑛 ≥
𝑁 ′∑︁
𝑛=1

𝑏↓𝑛,

where for a vector 𝑣, we use 𝑣↓ to denote the vector with the same components as 𝑣,

sorted in descending order. As captured by Theorem 2.5.2, we can therefore see that

Gain(𝜋, 𝜎2) is non-negative for any Σ̃ by observing that 𝑓 is Schur-convex (since 𝑓 is

convex).

Theorem A.4.1 (Schur-Horn). A vector ℓ can be the diagonal of a Hermitian matrix

with (repeated) eigenvalues 𝜆 if and only if 𝜆 majorizes ℓ.

A.4.3 Proof of Theorem 2.5.3

We here show that Gain(𝜋, 𝜎2) is upper bounded as

Gain(𝜋, 𝜎2) ≤ 𝜎2𝑄−1𝑓 ′′(𝜆min)‖𝜆‖2‖𝜆− ℓ‖2

= 2𝜎2𝑄−1‖𝜆‖2‖𝜆− ℓ‖2/(𝜎2 + 𝜆min)
3,

and lower bounded as

Gain(𝜋, 𝜎2) ≥ 1

2
𝜎2𝑄−1𝑓 ′′(𝜆max)‖𝜆− ℓ‖2

= 𝜎2𝑄−1‖𝜆− ℓ‖2/(𝜎2 + 𝜆max)
3,

where 𝑓 ′′(𝑥) := 𝑑2

𝑑𝑥2𝑓(𝑥) where 𝑓 is as defined in Appendix A.4.2.

We obtain both bounds with quadratic approximations to 𝑓 . In particular, we

define 𝑔𝛼 as the 2nd order Taylor approximation of 𝑓 expanded at 𝛼,

𝑔𝛼(𝑥) := 𝑓(𝛼) + 𝑓 ′(𝛼)(𝑥− 𝛼) +
1

2
𝑓 ′′(𝛼)(𝑥− 𝛼)2,
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and note that by Lemma A.4.4

�⃗�𝜆max(𝜆)− �⃗�𝜆max(ℓ) ≤ 𝑓(𝜆)− 𝑓(ℓ) ≤ �⃗�𝜆min
(𝜆)− �⃗�𝜆min

(ℓ), (A.7)

where �⃗�𝛼(𝑥) :=
∑︀𝑄

𝑞=1 𝑔𝛼(𝑥𝑞).

Proof of upper bound. We obtain the desired upper bound as follows.

Eq. (A.7) and Lemma A.4.5 allow us to see

Gain(𝜋, 𝜎2) ≤ 𝜎2𝑄−1
[︀
�⃗�𝜆min

(𝜆)− �⃗�𝜆min
(ℓ)
]︀

=
1

2
𝜎2𝑄−1𝑓 ′′(𝜆min)(‖𝜆‖2 − ‖ℓ‖2).

(A.8)

Since 𝑓 ′′ is positive on R+, the problem reduces to upper bounding ‖𝜆‖2 − ‖ℓ‖2.

In particular, we find

‖𝜆‖2 − ‖ℓ‖2 = ⟨𝜆+ ℓ, 𝜆− ℓ⟩ (A.9)

≤ ‖𝜆+ ℓ‖‖𝜆− ℓ‖ // by Cauchy-Schwarz (A.10)

=
√︀
‖𝜆‖2 + 2⟨𝜆, ℓ⟩+ ‖ℓ‖2 ‖𝜆− ℓ‖ (A.11)

≤
√︀
‖𝜆‖2 + 2‖𝜆‖‖ℓ‖+ ‖ℓ‖2 ‖𝜆− ℓ‖ // by Cauchy-Schwarz (A.12)

≤ 2‖𝜆‖‖𝜆− ℓ‖ // Since ‖𝜆‖ ≥ ‖ℓ‖, (A.13)

where we can see that ‖𝜆‖ ≥ ‖ℓ‖ by noting that ‖ · ‖2 is Schur convex, and again

appealing to the Schur-Horn Theorem. The desired upper bound obtains by combining

Eqs. (A.8) and (A.9).

Proof of lower bound. We begin as we did for the upper bound. Eq. (A.7) and

Lemma A.4.5 allow us to see

Gain(𝜋, 𝜎2) ≥ 𝜎2𝑄−1
[︀
�⃗�𝜆max(𝜆)− �⃗�𝜆max(ℓ)

]︀
=

1

2
𝜎2𝑄−1𝑓 ′′(𝜆max)(‖𝜆‖2 − ‖ℓ‖2).

(A.14)
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Since, again, 𝑓 ′′ is positive on R+, the problem reduces to lower bounding ‖𝜆‖2−‖ℓ‖2.

In particular, we would like to show ‖𝜆‖2−‖ℓ‖2 ≥ ‖𝜆− ℓ‖2. We can arrive at this

bound with a particular expansion of ‖𝜆− ℓ‖2 and using Lemma A.4.6, which again

leverages the fact that 𝜆 majorizes ℓ. Specifically, we write

‖𝜆− ℓ‖2 = ⟨𝜆− ℓ, 𝜆⟩ − ⟨𝜆− ℓ, ℓ⟩

= ‖𝜆‖2 −
[︀
⟨𝜆, ℓ⟩+ ⟨𝜆− ℓ, ℓ⟩

]︀
= ‖𝜆‖2 − ‖ℓ‖2 −

[︀
⟨𝜆, ℓ⟩ − ⟨ℓ, ℓ⟩+ ⟨𝜆− ℓ, ℓ⟩

]︀
= ‖𝜆‖2 − ‖ℓ‖2 − 2⟨𝜆− ℓ, ℓ⟩

≤ ‖𝜆‖2 − ‖ℓ‖2

(A.15)

where the last line follows from Lemma A.4.6, which provides that ⟨𝜆 − ℓ, ℓ⟩ ≥ 0

since, from the Schur-Horn theorem for any 𝑄′ ≤ 𝑄
∑︀𝑄′

𝑞=1 𝜆𝑞 − ℓ𝑞 ≥ 0, and ℓ has

non-negative, non-increasing entries. We obtain the desired lower bound by combining

Eqs. (A.14) and (A.15).

Lemma A.4.4. Let 𝜆 and ℓ be 𝑄-vectors of non-negative reals with non-increasing

entries, and let 𝜆 majorize ℓ. Consider 𝑓 : R𝑄 → R, 𝑥 ↦→
∑︀𝑄

𝑞=1 𝑓(𝑥𝑞) =
∑︀𝑄

𝑞=1(𝜎
2 +

𝑥𝑞)
−1 (where 𝑓(𝑣) := (𝜎2 + 𝑣)−1) for any 𝜎2 > 0, and define 𝑔𝛼 to be the 2nd order

Taylor approximation of 𝑓 expanded at 𝛼,

𝑔𝛼(𝑥) := 𝑓(𝛼) + 𝑓 ′(𝛼)(𝑥− 𝛼) +
1

2
𝑓 ′′(𝛼)(𝑥− 𝛼)2.

Then

�⃗�𝜆max(𝜆)− �⃗�𝜆max(ℓ) ≤ 𝑓(𝜆)− 𝑓(ℓ) ≤ �⃗�𝜆min
(𝜆)− �⃗�𝜆min

(ℓ),

where �⃗�𝛼(𝑥) :=
∑︀𝑄

𝑞=1 𝑔𝛼(𝑥𝑞) and 𝜆max = 𝜆1 and 𝜆min = 𝜆𝑄 are the largest and smallest

entries of 𝜆, respectively.

Proof. If there are indices 𝑞 for which 𝜆𝑞 = ℓ𝑞, remove them (they do not affect

𝑓(ℓ) − 𝑓(𝜆)). If all are equal, 𝜆 = 𝑑 and so the result is trivial, otherwise we have

𝑄 ≥ 2 entries with 𝜆𝑞 ̸= ℓ𝑞.
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We begin with the lower bound; the upper bound follows similarly. For this, it

suffices to show 𝑓(𝜆)− 𝑓(ℓ)−
(︀
�⃗�𝜆max(𝜆)− �⃗�𝜆max(ℓ)

)︀
≥ 0.

We first express this difference as an inner product

𝑓(𝜆)− 𝑓(ℓ)−
(︀
�⃗�𝜆max(𝜆)− �⃗�𝜆max(ℓ)

)︀
=

𝑄∑︁
𝑞=1

[︀
(𝑓 − 𝑔𝜆max)(𝜆𝑞)− (𝑓 − 𝑔𝜆max)(ℓ𝑞)

]︀
=

𝑄∑︁
𝑞=1

(𝜆𝑞 − ℓ𝑞)

[︃
(𝑓 − 𝑔𝜆max)(𝜆𝑞)− (𝑓 − 𝑔𝜆max)(ℓ𝑞)

𝜆𝑞 − ℓ𝑞

]︃

// defining each ℎ𝑞 :=
(𝑓 − 𝑔𝜆max)(𝜆𝑞)− (𝑓 − 𝑔𝜆max)(ℓ𝑞)

𝜆𝑞 − ℓ𝑞

=

𝑄∑︁
𝑞=1

(𝜆𝑞 − ℓ𝑞)ℎ𝑞

= ⟨𝜆− ℓ, ℎ⟩

where ℎ = [ℎ1, ℎ2, . . . , ℎ𝑄]
⊤.

We will complete our proof by leveraging Lemma A.4.6, which provides that

⟨𝑎, 𝑏⟩ ≥ 0 for any 𝑄-vector 𝑎 satisfying
∑︀𝑄

𝑞=1 𝑎𝑞 = 0 and
∑︀𝑄′

𝑞=1 𝑎𝑞 ≥ 0 for every

𝑄′ ≤ 𝑄, and 𝑄-vector 𝑏 with non-increasing entries.

It therefore remains only to show that 𝜆 − ℓ and ℎ satisfy the conditions of

Lemma A.4.6. Since the entries of 𝜆 and ℓ are taken to be in descending order,

the condition that
∑︀𝑄′

𝑞=1(𝜆 − ℓ)𝑞 ≥ 0 for any 𝑄′ ≤ 𝑄, follows from the Schur-Horn

theorem. Likewise, this theorem provides that
∑︀𝑄

𝑞=1 𝜆𝑞 =
∑︀𝑄

𝑞=1 ℓ𝑞, and therefore that∑︀𝑄
𝑞=1(𝜆− ℓ)𝑞 = 0, so that 𝜆− ℓ meets condition (2) of the lemma.

We next confirm that ℎ has non-increasing entries by considering an expansion of

the expressions for each ℎ𝑞. In particular, observe that

ℎ𝑞 =
(𝑓 − 𝑔𝜆max)(𝜆𝑞)− (𝑓 − 𝑔𝜆max)(ℓ𝑞)

𝜆𝑞 − ℓ𝑞

= (𝜆𝑞 − ℓ𝑞)
−1
{︁
𝑓(𝜆𝑞)− 𝑓(ℓ𝑞)−

[︀
𝑔𝜆max(𝜆𝑞)− 𝑔𝜆max(ℓ𝑞)

]︀}︁
= (𝜆𝑞 − ℓ𝑞)

−1
{︀(𝜎2 + ℓ𝑞)− (𝜎2 + 𝜆𝑞)

(𝜎2 + ℓ𝑞)(𝜎2 + 𝜆𝑞)
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−
[︂
(𝜆𝑞 − ℓ𝑞)𝑓

′(𝜆max) +
1

2
((𝜆𝑞 − 𝜆max)

2 − (ℓ𝑞 − 𝜆max)
2)𝑓 ′′(𝜆max)

]︂}︀
= (𝜎2 + 𝜆max)

−2 − (𝜎2 + ℓ𝑞)
−1(𝜎2 + 𝜆𝑞)

−1

− 1

2
(𝜆𝑞 − ℓ𝑞)

−1(𝜎2 + 𝜆max)
−3
[︁
𝜆2
𝑞 − ℓ2𝑞 − 2𝜆max(𝜆𝑞 − ℓ𝑞)

]︁
= (𝜎2 + 𝜆max)

−2 − (𝜎2 + ℓ𝑞)
−1(𝜎2 + 𝜆𝑞)

−1 − 1

2
(𝜎2 + 𝜆max)

−3
[︀
𝜆𝑞 + ℓ𝑞 − 2𝜆max

]︀
.

Next define 𝜑(𝑎, 𝑏) = (𝜎2+𝜆max)
−2−(𝜎2+𝑎)−1(𝜎2+𝑏)−1−1

2
(𝜎2+𝜆max)

−3 [𝑏+ 𝑎− 2𝜆max] ,

so that for each 𝑞, ℎ𝑞 = 𝜑(ℓ𝑞, 𝜆𝑞). Now, for 𝑞′ > 𝑞, we may write

ℎ𝑞′ − ℎ𝑞 = 𝜑(ℓ𝑞′ , 𝜆𝑞′)− 𝜑(ℓ𝑞, 𝜆𝑞)

=

∫︁ ℓ𝑞′

ℓ𝑞

𝜕

𝜕𝑎
𝜑(𝑎, 𝜆𝑞)𝑑𝑎+

∫︁ 𝜆𝑞′

𝜆𝑞

𝜕

𝜕𝑏
𝜑(ℓ𝑞′ , 𝑏)𝑑𝑏.

(A.16)

Next note that

𝜕

𝜕𝑎
𝜑(𝑎, 𝑏) = (𝜎2 + 𝑎)−2(𝜎2 + 𝑏)−1 − 1

2
(𝜎2 + 𝜆max)

−3

and
𝜕

𝜕𝑏
𝜑(𝑎, 𝑏) = (𝜎2 + 𝑎)−1(𝜎2 + 𝑏)−2 − 1

2
(𝜎2 + 𝜆max)

−3

from which we can see that 𝜕
𝜕𝑎
𝜑(𝑎, 𝑏) and 𝜕

𝜕𝑏
𝜑(𝑎, 𝑏) are positive for 𝑎, 𝑏 ∈ [𝜆min, 𝜆max].

Accordingly, Eq. (A.16) provides that ℎ𝑞′ − ℎ𝑞 ≤ 0, since ℓ𝑞′ ≤ ℓ𝑞 and 𝜆𝑞′ ≤ 𝜆𝑞

for 𝑞′ > 𝑞, because the entries of ℓ and 𝜆 are non-increasing. Therefore ℎ𝑞′ ≤ ℎ𝑞,

completing the proof.

Lemma A.4.5. Consider the quadratic function ℎ⃗(𝑥) =
∑︀𝑄

𝑞=1(𝑎𝑥
2
𝑞 + 𝑏𝑥𝑞 + 𝑐). Let

𝜆, ℓ ∈ R𝑄 satisfy
∑︀𝑄

𝑞=1 𝜆𝑞 =
∑︀𝑄

𝑞=1 ℓ𝑞. Then

ℎ⃗(ℓ)− ℎ⃗(𝜆) = 𝑎(‖ℓ‖2 − ‖𝜆‖2).

Proof. The result follows from the simple algebraic rearrangement below,

ℎ⃗(ℓ)− ℎ⃗(𝜆) =

𝑄∑︁
𝑞=1

(𝑎ℓ2𝑞 + 𝑏ℓ𝑞 + 𝑐)− (𝑎𝜆2
𝑞 + 𝑏𝜆𝑞 + 𝑐)
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=

𝑄∑︁
𝑞=1

𝑎ℓ2𝑞 − 𝑎𝜆2
𝑞

= 𝑎(‖ℓ‖2 − ‖𝜆‖2).

Lemma A.4.6. Let 𝑥 be a 𝑄-vector satisfying for each 𝑄′ ≤ 𝑄,
∑︀𝑄′

𝑞=1 𝑥𝑞 ≥ 0, and let 𝑦

be a 𝑄-vector with non-increasing entries. If additionally either (1) 𝑦 has non-negative

entries or (2)
∑︀𝑄

𝑞=1 𝑥𝑞 = 0 then ⟨𝑥, 𝑦⟩ ≥ 𝑦𝑄
∑︀𝑄

𝑞=1 𝑥𝑞 ≥ 0.

Proof. We first prove the lemma under condition (1) by induction. The base case of

𝑄 = 1 is trivial; ⟨𝑥, 𝑦⟩ = 𝑥1𝑦1 and under (1) 𝑥1 and 𝑦1 are non-negative and under (2)

𝑥1 = 0.

Assume the result holds for 𝑄− 1. Then

⟨𝑥, 𝑦⟩ = 𝑦𝑄𝑥𝑄 + ⟨𝑥1:𝑄−1, 𝑦1:𝑄−1⟩ (A.17)

≥ 𝑦𝑄𝑥𝑄 + 𝑦𝑄−1

𝑄−1∑︁
𝑞=1

𝑥𝑞 // by the inductive hypothesis (A.18)

≥ 𝑦𝑄𝑥𝑄 + 𝑦𝑄

𝑄−1∑︁
𝑞=1

𝑥𝑞 // since 𝑦𝑄−1 ≥ 𝑦𝑄 and
𝑄−1∑︁
𝑞=1

𝑥𝑞 ≥ 0 (A.19)

= 𝑦𝑄

𝑄∑︁
𝑞=1

𝑥𝑞 ≥ 0 // since 𝑦𝑄 and
𝑄∑︁

𝑞=1

𝑥𝑞 are non-negative. (A.20)

This provides the desired inductive step, completing the proof under condition (1).

Under condition (2), consider 𝑦′ = 𝑦 −min𝑞 𝑦𝑞1𝑄. Then

⟨𝑥, 𝑦⟩ = ⟨𝑥, 𝑦′⟩+min
𝑞

𝑦𝑞⟨𝑥,1𝑄⟩

= ⟨𝑥, 𝑦′⟩.

Since 𝑦′ now has non-negative entries, condition (1) is satisfied and the result follows.
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A.4.4 Proof of Corollary 2.5.4

We establish the corollary with a brief sequence of upper bounds following from our

initial upper bound in Theorem 2.5.2. In particular, the theorem provides

Gain(𝜋, 𝜎2) ≤ 2𝜎2𝑄−1‖𝜆↓‖‖ℓ↓ − 𝜆↓‖/(𝜎2 + 𝜆min)
3.

We begin by simplifying this upper bound. As a first step, note that

‖ℓ↓ − 𝜆↓‖2 = ‖ℓ‖2 + ‖𝜆‖2 − 2⟨ℓ↓, 𝜆↓⟩

≤ 2‖𝜆‖2.

As such, we can simplify our upper bound as

Gain(𝜋, 𝜎2) ≤ 2𝜎2𝑄−1‖𝜆‖‖ℓ↓ − 𝜆↓‖/(𝜎2 + 𝜆min)
3

≤ 4𝜎2𝑄−1‖𝜆‖2/(𝜎2 + 𝜆min)
3

≤ 4𝜅2𝜆2
min𝜎

2/(𝜎2 + 𝜆min)
3

(A.21)

where 𝜅 := 𝜆max/𝜆min is the condition number of Σ̃.

We then obtain the first bound by noting that

𝜆2
min𝜎

2/(𝜎2 + 𝜆min)
3 ≤ 𝜆2

min𝜎
2/(𝜎2)2/𝜆min

≤ 𝜆min/𝜎
2

and the second by noting that

𝜆2
min𝜎

2/(𝜎2 + 𝜆min)
3 ≤ 𝜆2

min𝜎
2/(𝜆min)

3

≤ 𝜎2/𝜆min.

Substituting these expressions into Eq. (A.21) provides the desired expressions in

Corollary 2.5.4.
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A.4.5 Extensions to random design matrices

The asymptotic formulation in Section 2.5 may allow us to relax Condition 2.4.1. In

particular, Theorem 2.5.2 and Theorem 2.5.3 depend on this condition only through

Lemma 2.5.1, which provides an analytic expression for the asymptotic gain. We

conjecture that this condition may be satisfied for certain sequences of datasets with

random design matrices of increasing dimension. For example if for each group

𝑞, the number of data points 𝑁 𝑞
𝐷 grows as 𝜔(𝐷2) and if each of the covariates

are each distributed as 𝑋𝑞
𝑛,𝑑

𝑖.𝑖.𝑑.∼ 𝒩 (0, 𝜎2
𝑞/(𝜎

2𝐼2𝐷)), then an asymptotic analogue of

Condition 2.4.1 will be satisfied in the sense that ‖𝜎−2
𝑞 𝑋𝑞⊤𝑋𝑞−𝜎2𝐼𝐷‖2 will be 𝑜(1/

√
𝐷)

(see e.g. Wainwright [2019, Theorem 6.5]). As a result, we can expect the sequence of

estimates 𝛽ECov to converge to estimates with the simplified form utilized in the proof

of Lemma 2.5.1 fast enough that the asymptotic gains are equal in these two cases.

Making this argument rigorous, however, requires contending with convergence of

sequences of random variables of changing dimension (recall that we consider 𝐷 →∞).

This technical aspect complicates the required theoretical analysis because common

tools (e.g. continuous mapping theorems) do not apply in this setting. We leave further

analysis of 𝛽ECov with random design matrices to future work.

A.5 Experiments Supplementary Results and Details

A.5.1 Simulations additional details

We here describe the details of the simulated datasets discussed in Section 2.6. For each

of the dimensions 𝐷 and each of the 20 replicates we first generated covariate effects for

all 𝑄 = 10 groups. To do this, we began by setting Σ; for the correlated covariate effects

experiments (Figure 2-1 Left) we generating a random 𝑄×𝑄 matrix of orthonormal

vectors 𝑈 and set Σ = 𝑈diag([20, 2−1, . . . , 2𝑄−1]⊤)𝑈⊤, and for independent effects

(Figure 2-1 Right) we set Σ = 𝐼𝑄. We then simulated covariate effects as 𝛽𝑑
𝑖.𝑖.𝑑.∼ 𝒩 (0,Σ).

We next simulated the design matrices. For each group 𝑞, we chose a random

number of data points 𝑁 𝑞 ∼ Pois(𝜆 = 1000), and for each data point 𝑛 = 1, . . . , 𝑁 𝑞
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sampled 𝑋𝑞
𝑛 ∼ 𝒩 (0, (1/1000)𝐼𝐷) so that for each group E[𝑋𝑞⊤𝑋𝑞] = 𝐼𝐷. Finally, we

generated each response as 𝑌 𝑞
𝑛

𝑖𝑛𝑑𝑒𝑝∼ 𝒩 (𝑋𝑞⊤
𝑛 𝛽𝑞, 1).

For 𝛽EGroup, we estimated the 𝐷×𝐷 covariance Γ by maximum marginal likelihood.

We did this with an EM algorithm closely related to Algorithm 1. See e.g. Gelman

et al. [2013, Chapter 15 sections 4-5] for an explanation of the relevant conjugacy

calculations in a more general case that includes a hyper-prior on Γ.

A.5.2 Practical moment estimation for poorly conditioned

problems

The moment based estimator (using Σ̂MM in Section 2.4) is unstable in the two real

data applications discussed in Section 2.6 due to poor conditioning of the design

matrices leading 𝛽LS to have high variance. To overcome this limitation, we instead

used an adapted moment estimation procedure which is less sensitive to this poor

conditioning. While, in agreement with Theorem 2.4.3, this approach performs worse

than 𝛽ECov (see Figure A-1) we report it nonetheless because it has lower computational

cost and may be appealing for larger scale applications. We describe this approach

here. We note however that moment based estimates of the sort we consider here do

not naturally extend to logistic regression and so are not reported for our application

to CIFAR10.

We first introduce some additional notation. For each group 𝑞 consider the reduced

singular value decomposition 𝑋𝑞 = 𝑆𝑞diag(𝜔𝑞)𝑅𝑞⊤, where 𝑆𝑞 and 𝑅𝑞 are 𝑁 𝑞 × 𝐷

and 𝐷 ×𝐷 matrices with orthonormal columns and 𝜔𝑞 is a 𝐷-vector of non-negative

singular values. Next define for each group 𝑊 𝑞 := 𝑆𝑞⊤𝑋𝑞 and 𝑍𝑞 := 𝑆𝑞⊤𝑌 𝑞, which we

may interpret as a 𝐷×𝐷 matrix of pseudo-covariates and 𝐷-vector of pseudo-responses,

respectively. Next define Ω to be the 𝑄×𝑄 matrix with entries Ω𝑞,𝑞′ := tr(𝑊 𝑞⊤𝑊 𝑞′)−1

and �⃗�2 := [𝜎2
1, 𝜎

2
2, . . . , 𝜎

2
𝑄]

⊤. Lastly, let 𝑍 = [𝑍1, 𝑍2, . . . , 𝑍𝑄] be the 𝐷 ×𝑄 matrix of

all pseudo-responses. Our new moment estimator is

Σ̂MM := [𝑍⊤𝑍 −𝐷diag(�⃗�2)]⊙ Ω.
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We next show hat E[Σ̂MM] = Σ under correct prior and likelihood specification.

Note first that if 𝛿 is a 𝐷×𝑄 matrix with i.i.d. standard normal entries we may write

𝑍
𝑑
= [𝑊 1𝛽1,𝑊 2𝛽2, . . . ,𝑊𝑄𝛽𝑄] + 𝛿diag(�⃗�2).

As such, for each 𝑞 and 𝑞′, we have that

E[(𝑍⊤𝑍)𝑞,𝑞′ ] = E[𝑍𝑞⊤𝑍𝑞]

= E[𝛽𝑞⊤𝑊 𝑞⊤𝑊 𝑞′𝛽𝑞′ ] + I[𝑞 = 𝑞′]𝜎2
𝑞𝐷

= tr(𝑊 𝑞⊤𝑊 𝑞′E[𝛽𝑞′𝛽𝑞⊤]) + I[𝑞 = 𝑞′]𝜎2
𝑞𝐷

= Ω−1
𝑞,𝑞′Σ𝑞,𝑞′ + I[𝑞 = 𝑞′]𝜎2

𝑞𝐷.

Accordingly, we can see that each entry of Σ̂MM has expectation E[Σ̂MM
𝑞,𝑞′ ] = Σ𝑞,𝑞′ , which

establishes unbiasedness.

However, this moment estimate still has the limitation that it evaluates to a non

positive semidefinite matrix with positive probability. Under the expectation that,

in line with Theorem 2.4.2 the very small and negative eigenvalues of Σ̂MM might

lead to over-shrinking, we performed an additional step of clipping these eigenvalues

to force the resulting estimate to be reasonably well conditioned. In particular, if

our initial estimate had eigendecomposition Σ̂MM = 𝑈diag(𝜆)𝑈⊤, we instead used

Σ̂MM = 𝑈diag(�̃�)𝑈⊤, where for each 𝑞, we have �̃�𝑞 = max(𝜆𝑞, 𝜆max/100) so that the

condition number of the modified estimate was at most 100. Though we did not find

the performance of the resulting estimates to be very sensitive to this cutoff, we view

requirement for these partly subjective implementation choices required to make the

𝛽MM
ECov effective in practice to be a downside of the approach as compared to 𝛽ECov,

which avoids such choices by estimating Σ by maximum marginal likelihood.

Compared to the iterative EM algorithms, which rely on matrix inversions at each

iteration, computation of Σ̂MM is much faster. In each of our experiments, computing

it requires less than one second.
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Figure A-1: Performances of additional methods on the law enforcement and blog
datasets. Uncertainty intervals are ±1SEM.

A.5.3 Allowing for non-zero means a priori in hierarchical

Bayesian estimates

In the development of our approach in Section 2.2 we imposed the restriction that

E[𝛽𝑑] = 0 a priori. Though in general one might prefer to let 𝛽 have some nontrivial

mean (as Lindley and Smith [1972] do in the context of exchangeability of effects across

groups) this assumption simplifies the resulting estimators, theory, and notation. When

𝛽 is permitted to have a non-zero mean, conjugacy maintains and the methodology

presented in Section 2.3 may be updated to accommodate the change. While we omit

a full explanation of the tedious details of this variation, we include its implementation

in our code and the performance of the resulting empirical Bayesian estimators in

Figures A-1 to A-3. From these empirical results we see that removing this restriction

has little impact on the performance of the resulting estimators. Notably, our results

in these figures reveal that the same is true for choosing to include or exclude a prior

mean for the exchangeability of effects across groups prior.

A.5.4 Additional details on datasets

In each of the two regression applications, for each component dataset, we mean

centered and variance-normalized the responses. Additionally, we Winsorized the

responses by group; in particular, we clipped values more than 2 standard deviations

from the mean.
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Figure A-2: Performances of methods on the blog dataset, segmented by post type.
Uncertainty intervals are ±1SEM.

Figure A-3: Performances of methods on the law enforcement dataset, segmented by
region and recorded offense categorization. Uncertainty intervals are ±1SEM.
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BlogFeedback Data Set details Given the nature of the features included in the

blog dataset used in the main text (which are summarizing characteristics rather than

readable text), we believe it may be possible to find the blog post that corresponds

to a particular data point. But we believe it is unlikely that the dataset directly

contains any personally identifiable information. The blog information was obtained

by web-crawling on publicly posted pages, so it is unlikely that consent for inclusion

of the content into this dataset was obtained.

Communities and Crime Dataset details All data in this dataset was obtained

through official channels. This dataset is composed of statistics aggregated at the

community level, so it is less likely (though not impossible) to contain personally

identifiable information. Since it contains demographic, census, and crime data, it is

unlikely to contain offensive content.

CIFAR10 details. For the tasks car vs. cat, car vs. dog, truck vs. cat, and

truck vs. dog we used 𝑁 𝑞 = 100 data points. For the tasks car vs. deer, car vs.

horse, truck vs. deer, and truck vs. horse we used 𝑁 𝑞 = 1000 data points.

We generated the pre-trained neural network embeddings using a variational auto-

encoder (VAE) [Kingma and Welling, 2013]. We adapted our VAE implementation from

ALIBI DETECT [Van Looveren et al., 2019], here. See also

notebooks/2021_05_12_CIFAR10_VAE_embeddings.ipynb for details.

CIFAR10 is composed from a subset of the 80 million tiny images dataset. As

is currently acknowledged on the 80 million tiny images website, this larger dataset

is known to contain offensive images and images obtained without consent (https:

//groups.csail.mit.edu/vision/TinyImages/). However, given the benign nature

of the 10 image classes in CIFAR10, we expect it does not contain offensive or

personally identifiable content. These data were also obtained by web-crawling, so it

is unlikely that consent for inclusion of the content into this dataset was obtained.
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Figure A-4: Performances of methods on CIFAR10 segmented by binary classification
task. Uncertainty intervals are ±1SEM.
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A.5.5 Software Licenses

We here report the software used to generate our results and their associated licenses.

All of our experiments were implemented in python, which is licensed under the

PSF license. For ease of reproducibility, ran our experiments and generated our plots

IPython in Jupyter notebooks; this software is covered by a modified BSD license.

For our application to transfer learning using CIFAR10, we used a variational

auto-encoder implementation adapted from ALIBI DETECT [Van Looveren et al., 2019],

which uses the Apache licence. Our implementation of our EM algorithm uses

TensorFlow [Abadi et al., 2016], which is licensed under the MIT license.

We made frequent use of python packages numpy and scipy and matplotlib. These

are large libraries with components covered different licenses. See

github.com/scipy/scipy/blob/master/LICENSES_bundled.txt for scipy, github.com/numpy/numpy/blob/main/LICENSES_bundled.txt

for numpy, and github.com/matplotlib/matplotlib/tree/master/LICENSE for matplotlib.
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Appendix B

LR-GLM Supplementary Material

B.1 Additional Experimental Details and Empirical

Results

B.1.1 Experimental Details

For all experiments we sampled 𝛽 from an isotropic Gaussian prior with unit variance.

For all synthetic data results we first generated a design matrix by sampling from

a zero-mean Gaussian with diagonal covariance Σ with each Σ𝑖,𝑖 = 5 * 1.05−𝑖. We

then used a scikit-learn [Pedregosa et al., 2011] implementation of a randomized SVD

algorithm due to Halko et al. [2011], computed from two iterations (i.e., passes through

𝑋).

To assess robustness, in all experiments we used three or more replicate experiments,

defined by independently generated synthetic datasets or train/test splits as well as

re-rerunning the randomized truncated SVD.

The performance of the Diagonal Laplace approximation is dependent upon the

shape the exact posterior at 𝛽MAP. In particular, using a dataset with axis aligned

covariance structure gives Diagonal Laplace an unrealistic advantage given that in

most real applications we do not believe that low-rank structure will be axis aligned.

As such, for all synthetic data experiments presented, we randomly generated a basis
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of orthonormal vectors and used this basis to rotate our the design matrix. This

rotation preserves the spectral decay of the data but eliminates the axis alignment of

the synthetic data.

In all experiments we consider 𝑁 = 2,500 training examples. We obtained results on

“Out of Sample Data” (in Figures B.1.1 and B.1.5) by sampling 𝑋 from an alternative

distribution over covariates. Specifically, we generated these out-of-sample covariates

in the manner described above, but with a different random rotation matrix.

We found MAP estimation using L-BFBS-B to be the most efficient of several

available options in the scipy optimize library, and used this method in all MAP

estimation and Laplace approximation experiments.

For all Bayesian predictions, we use the probit approximation to the logistic

function to enable fast approximation [Bishop, 2006, Chap. 4.5].

B.1.2 Additional Figures

In Figure B.1.1 we present results on prediction performance, in term of classification

error, as well as negative log likelihood, reported for “Training”, “Test”, and “Out

of Sample Data”. In Figure B.1.2 we report the error of LR-Laplace and Random-

Laplace relative to NUTS for estimation of posterior means and variances. We see

here that the estimates exhibit behavior increasingly similar to that of the prior as

the rank of the approximation, 𝑀 , decreases. Next, Figure B.1.3 depicts the same

error trends for LR-MCMC using NUTS in Stan. We report calibration performance

of the approximations of interest for credible sets of parameters (Figure B.1.4) as well

as for prediction (Figure B.1.5).

We additionally include results analogous to those in the main text for Laplace

approximations using low-rank data approximations to perform faster MCMC using

NUTS with Stan [Carpenter et al., 2017], in Figure B.1.6. Finally, we also here provide

the relative error of posterior mean and standard deviation estimation for logistic

regression with a regularized horseshoe prior using the LR-MCMC approximation in

Figure B.1.7. This experiment uses Stan for inference as well.
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Figure B.1.1: Predictive performance of posterior approximations in Bayesian logistic
regression in terms of (Top) classification error and (Bottom) average negative log
likelihood (NLL) of responses under approximate posterior predictive distributions on
(Left) train, (Center) test and (Right) out of sample datasets. Lower is better.

Figure B.1.2: Approximate posterior mean and standard deviation across a parameter
subset as 𝑀 varies. Horizontal axis represents ground truth from running NUTS using
Stan without the LR-GLM approximation. 𝐷 = 250.

Horseshoe logistic regression experiment

For the logistic regression experiment using a regularized horseshoe prior we used

𝑁 = 1,000 data points of dimension 𝐷 = 200. We used ten non-zero effects, each

of size 10. Our implementation of the regularized horseshoe and inference in Stan

closely followed M. Betancourt’s “Bayes Sparse Regression” case study.1 We generated

covariates as described in the previous section.
1https://betanalpha.github.io/assets/case_studies/bayes_sparse_regression.html
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Figure B.1.3: This figure is analogous to Figure B.1.2 but examines the trade-off
between computation and accuracy of LR-MCMC using NUTS in Stan. 𝐷 = 250.

Figure B.1.4: Credible set calibration. The fraction of parameters in the credible sets
defined by different lower tail intervals as a function of the approximate posterior
probability of parameters taking values in that interval. The black dotted line (on the
diagonal) reflects perfect calibration.

B.1.3 Stan Model Code

First we show Stan code for Bayesian logistic regression.

data {

int<lower=1> N; // # of data

int<lower=1> D; // # of covariates

matrix[N, D] X; // Design matrix

int<lower=0> y[N]; // labels

real<lower=0> sigma;
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Figure B.1.5: Prediction calibration.

}

parameters {

vector[D] beta;

}

model {

beta ~ normal(0, sigma);

y ~ bernoulli_logit(X * beta);

}

Second, we show Stan code for logistic regression with our low-rank approximation.

data {

int<lower=1> N; // # of data
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Figure B.1.6: This figure is analogous to Figure 3-2A but assesses LR-MCMC using
NUTS in Stan rather than LR-Laplace. 𝐷 = 250.

Figure B.1.7: Bayesian logistic regression with a regularized Horseshoe prior using
NUTS in Stan. The red vertical line indicates the runtime of inference with Stan
using the exact likelihood.

int<lower=1> D; // # of covariates

int<lower=1> M; // Projected dimension

matrix[D, M] U; // Projection matrix

matrix[N, M] barX; // Projected design matrix

int<lower=0> y[N]; // labels

real<lower=0> sigma;

}

parameters {

vector[D] beta;

}
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transformed parameters {

vector[M] bar_beta = U’ * beta;

}

model {

beta ~ normal(0, sigma);

y ~ bernoulli_logit(barX * bar_beta);

}

B.2 Related Work on Scalable Bayesian Inference

Developing scalable approximate Bayesian inference for models with many parameters

(large 𝐷) and many data points (large 𝑁) has been active area of research for

decades, and researchers have developed a large variety of methods applicable to

GLMs. Historically, Markov chain Monte Carlo (MCMC) methods based on the

Metropolis-Hastings algorithm Metropolis et al. [1953], Hastings [1970] have been

dominant. However MCMC is computationally expensive on large-scale problems in

which both 𝐷 and 𝑁 are very large. In particular, each likelihood evaluation requires

𝑂(𝐷𝑁) time, due to the matrix vector product 𝑋𝛽. Further, estimating posterior

covariances uniformly well requires 𝑂(log𝐷) samples [Cai et al., 2010]. Therefore,

the total cost of collecting those samples is 𝑂(𝑁𝐷 log𝐷) time in the case of perfect,

independent Monte Carlo samples. In practice, though, mixing times may also have

unfavorable scaling with dimensionality and sample size; these issues can lead to

even worse scaling in 𝑁 and 𝐷. Several lines of research have explored the use of

subsampling methods to reduce the dependence on 𝑁 . But these methods either

lose the asymptotic guarantees of exact MCMC or fail to provide faster inference in

practice due to poor mixing behavior [Bardenet et al., 2017].

Other work has pursued deterministic approximations to the Bayesian posterior.

Some of the most widely used of these approximations include (1) the Laplace approx-

imation, which is a Gaussian approximation of the posterior defined locally at the

posterior mode, (2) extensions of the Laplace approximation such as the integrated
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nested Laplace approximation (INLA) [Rue et al., 2009], and (3) variational Bayes; see,

e.g., [Bishop, 2006, Chap. 10] and [Blei et al., 2017]. However, these approaches also

scale poorly with dimension in general. The Laplace approximation requires computing

and inverting the Hessian of the log posterior which demand 𝑂(𝑁𝐷2) and 𝑂(𝐷3) time

respectively, in order to compute approximate posterior means and variances. In the

𝑁 ≪ 𝐷 setting, this cost can be reduced to 𝑂(𝑁2𝐷) time (Appendix B.3). However,

in large-𝑁 settings of interest, the 𝑂(𝑁2𝐷) cost can be prohibitive as well. The cost

of inference is further compounded when we give a fully Bayesian treatment to model

hyperparameters as well as parameters; e.g., INLA requires this heavy computation

for each nested approximation. In the face of difficulties posed by high dimensionality,

practitioners frequently turn to factorized (or “mean-field”) approximations. In the case

of VB, the mean-field approach can yield biased approximations that underestimate

uncertainty MacKay [2003], Turner and Sahani [2011]. Likewise, factorized Laplace

approximations, which approximate the Hessian with only its diagonal elements,

similarly underestimate uncertainty (Appendix B.6.8).

Some more recent work has approached scalable approximate inference in gen-

eralized linear models with theoretical guarantees on quality in the large-𝑁 regime

by using likelihood approximations that are cheap to evaluate Huggins et al. [2017],

Campbell and Broderick [2019, 2018], Huggins et al. [2016]. But these methods fail to

scale well to the large-𝐷 case.

More closely related to the present work, Geppert et al. [2017] and Lee and Oh

[2013] focus on conjugate Bayesian regression, respectively using random projections

and principle component analysis to define low-rank descriptions of the design. Lee

and Oh [2013] restrict their consideration to the exactly low-rank case and primarily

discuss the asymptotic consistency of the resulting posterior mean without discussing

computational considerations. Spantini et al. [2015] use conjugate Bayesian regres-

sion as stepping-off point to derive a point estimator for Bayesian inverse problems.

Guhaniyogi and Dunson [2015] use random projections for Bayesian GLMs but focus

on predictive performance rather than parameter estimation. Outside the Bayesian

context, Zhang et al. [2014], Wang et al. [2017], and many others have analyzed ran-
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dom projections for regression and classification using, for example, an M-estimation

framework.

B.3 Fast matrix inversions in the 𝑁 ≪ 𝐷 setting

In this section we focus on Gaussian conjugate linear regression with 𝑁 ≪ 𝐷. In this

case, we can detail formulas for more efficient computation of the posterior mean and

covariance. We start from the standard expressions for the posterior mean 𝜇𝑁 and

covariance Σ𝑁 when the prior is mean zero with covariance Σ𝛽; see Section 3.3 and

Section 3.4.1 for further notation and setup of the model. These expressions are:

Σ−1
𝑁 = Σ−1

𝛽 + 𝜏𝑋⊤𝑋 (B.3.1)

𝜇𝑁 = 𝜏Σ𝑁𝑋
⊤𝑌. (B.3.2)

Using these formulas naively in the 𝐷 ≫ 𝑁 setting is computationally expensive due

to the 𝑂(𝐷3) time cost of matrix inversion and 𝑂(𝐷2) storage cost.

Using the Woodbury matrix identity, (𝐴−1+𝑈𝐶𝑉 )−1 = 𝐴−𝐴𝑈(𝐶−1+𝑉 𝐴𝑈)−1𝑉 𝐴,

allows us to write Σ𝑁 = (Σ−1
𝛽 +𝑋⊤(𝜏𝐼𝑁)𝑋)−1 as

Σ𝑁 = Σ𝛽 − Σ𝛽𝑋
⊤(𝜏−1𝐼𝑁 +𝑋Σ𝛽𝑋

⊤)−1𝑋Σ𝛽. (B.3.3)

Computing Σ𝑁 via Eq. (B.3.3) requires only 𝑂(𝐷𝑁2) cost for the matrix multiplications

and an 𝑂(𝑁3) cost for the matrix inversion. The posterior mean 𝜇𝑁 may then be

computed in 𝑂(𝑁𝐷) time by multiplying through by 𝑋⊤𝑌 . These time costs can be

significant reductions over the naive 𝑂(𝐷3) cost when 𝑁 ≪ 𝐷.

Fast inversions for the Laplace approximation to the GLM posterior

We here show that the same approach described above may be used for the Laplace

approximation in the context of Bayesian GLMs. We say that we have a GLM
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likelihood if we can write

𝑝(𝑌 | 𝛽,𝑋) =
𝑁∑︁

𝑛=1

𝜑(𝑦𝑛, 𝑥
⊤
𝑛𝛽)

for some mapping function 𝜑 : R× R→ R. The Bayesian posterior then becomes

log 𝑝(𝛽 | 𝑋, 𝑌 ) = log 𝑝(𝛽) +
𝑁∑︁

𝑛=1

𝜑(𝑦𝑛, 𝑥
⊤
𝑛𝛽) + 𝑍, (B.3.4)

where 𝑍 is a typically-intractable log normalizing constant.

Due to the analytic intractability of posterior inference in many common GLMs,

approximations are necessary; the Laplace approximation is a particularly widely used

approximation and takes the form

𝑝(𝛽) = 𝒩 (𝛽 | �̄�, Σ̄), (B.3.5)

where �̄� := argmax𝛽 log 𝑝(𝛽 | 𝑋, 𝑌 ) and Σ̄ :=
(︁
−∇2

𝛽 log 𝑝(𝛽|𝑋, 𝑌 )|𝛽=�̄�

)︁−1

. However,

as in the conjugate case, computing this matrix inverse naively can be expensive in

the high-dimensional setting, and we are motivated to consider more computationally

efficient routes to evaluate it. In settings when 𝑁 ≪ 𝐷 and when we have a Gaussian

prior 𝑝(𝛽) = 𝒩 (𝛽 | 𝜇𝛽,Σ𝛽), we may take an approach similar to our approach in the

conjugate case. We first note

∇2
𝛽 log 𝑝(𝛽 | 𝑋, 𝑌 )|𝛽=�̄� = −Σ−1

𝛽 +𝑋⊤diag(�⃗�′′(𝑌,𝑋�̄�))𝑋, (B.3.6)

where �⃗�′′(𝑌,𝐴) is a vector in R𝑁 defined such that for any 𝑛 in 1, 2, . . . , 𝑁 , �⃗�′′(𝑌,𝐴)𝑛 :=

𝑑2

𝑑𝑎2
𝜑(𝑦𝑖, 𝑎)|𝑎=𝐴𝑛 . Applying the same trick to this expression as before, we obtain

Σ̄𝑁 =
(︁
−∇2

𝛽 log 𝑝(𝛽 | 𝑋, 𝑌 )|𝛽=�̄�

)︁−1

(B.3.7)

= Σ𝛽 − Σ𝛽𝑋
⊤(︀diag[−�⃗�′′(𝑌,𝑋�̄�)]−1 +𝑋Σ𝛽𝑋

⊤)︀−1
𝑋Σ𝛽, (B.3.8)

which again can yield computational gains.
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It is worth noting however that this route is more computationally efficient only

when the prior covariance matrix is structured in some way that allows for fast matrix-

vector and matrix-matrix multiplications. This will be the case, for example, if Σ𝛽 is

diagonal, block-diagonal, banded diagonal, or diagonal plus a low-rank matrix.

B.4 Conjugate Gaussian regression with exactly low

rank design

B.4.1 Derivation of Eq. (3.2)

Here we consider the setting of conjugate Bayesian linear regression, with 𝑋 exactly

low rank and Σ𝛽 = 𝜎2
𝛽𝐼𝐷, as detailed in Section 3.4.1. We now derive the expressions

(Eq. (3.2)) for the mean and covariance of the Gaussian posterior for 𝛽 in this case.

We suppose 𝑋 = 𝑉 diag(𝜆)𝑈⊤ for 𝑈, 𝑉 matrices of orthonormal rows and 𝜆 a vector.

The preceding equation for 𝑋 will capture low rank structure when 𝑈 ∈ R𝐷×𝑀 for

some 𝑀 with 𝑀 ≪ min(𝐷,𝑁).

For the covariance, we start from Eq. (B.3.1). Then we can rewrite Σ𝑁 as follows.

Σ𝑁 =
(︀
𝜎−2
𝛽 𝐼𝐷 + 𝜏𝑋⊤𝑋

)︀−1

=
(︀
𝜎−2
𝛽 𝐼𝐷 + 𝜏𝑈diag(𝜆)𝑉 ⊤𝑉 diag(𝜆)𝑈⊤)︀−1

=
(︀
𝜎−2
𝛽 𝐼𝐷 + 𝑈diag(𝜏𝜆⊙ 𝜆)𝑈⊤)︀−1

where ⊙ denotes component-wise multiplication across a vector

= 𝜎2
𝛽𝐼 − 𝜎2

𝛽𝑈(diag(𝜏𝜆⊙ 𝜆)−1 + 𝜎2
𝛽𝐼𝑀)−1𝑈⊤𝜎2

𝛽

by the Woodbury matrix identity and 𝑈⊤𝑈 = 𝐼𝑀

= 𝜎2
𝛽𝐼 − 𝜎2

𝛽𝑈diag

{︃(︂
1

𝜏𝜆⊙ 𝜆
+ 𝜎2

𝛽1𝑀

)︂−1

𝜎2
𝛽

}︃
𝑈⊤

where division within ‘diag’ is component-wise and 1𝑀 is the 𝑀−vector of ones

= 𝜎2
𝛽

⎛⎝𝐼𝐷 − 𝑈diag

{︃
𝜏𝜆⊙ 𝜆

𝜎−2
𝛽 1𝑀 + 𝜏𝜆⊙ 𝜆

}︃
𝑈⊤

⎞⎠ .

158



Starting from Eq. (B.3.2), we can rewrite the posterior mean as follows.

𝜇𝑁 = 𝜏Σ𝑁𝑋
⊤𝑌

= 𝜏𝜎2
𝛽

⎛⎝𝐼𝐷 − 𝑈diag

{︃
𝜏𝜆⊙ 𝜆

𝜎−2
𝛽 1𝑀 + 𝜏𝜆⊙ 𝜆

}︃
𝑈⊤

⎞⎠𝑈diag(𝜆)𝑉 ⊤𝑌

from the derivation above and substituting for 𝑋

= 𝜏𝜎2
𝛽

⎛⎝𝑈 − 𝑈diag

{︃
𝜏𝜆⊙ 𝜆

𝜎−2
𝛽 1𝑀 + 𝜏𝜆⊙ 𝜆

}︃⎞⎠ diag(𝜆)𝑉 ⊤𝑌

since 𝑈⊤𝑈 = 𝐼𝑀

= 𝜏𝜎2
𝛽𝑈

⎛⎝𝐼𝑀 − diag

{︃
𝜏𝜆⊙ 𝜆

𝜎−2
𝛽 1𝑀 + 𝜏𝜆⊙ 𝜆

}︃⎞⎠ diag(𝜆)𝑉 ⊤𝑌

= 𝑈diag

{︃
𝜏𝜆

𝜎−2
𝛽 1𝑀 + 𝜏𝜆⊙ 𝜆

}︃
𝑉 ⊤𝑌.

B.5 Proofs and further results for conjugate Bayesian

linear regression with low-rank data approxima-

tions

B.5.1 Proof of Theorem 3.4.1

Recall that for conjugate Gaussian Bayesian linear regression, the exact posterior is

𝑝(𝛽 | 𝑋, 𝑌 ) = 𝒩 (𝛽 | 𝜇𝑁 ,Σ𝑁 ), where 𝜇𝑁 and Σ𝑁 are given in Eqs. (B.3.1) and (B.3.2).

Using an orthonormal projection 𝑈 yields a Gaussian approximate posterior

𝑝(𝛽 | 𝑋, 𝑌 ) = 𝒩 (𝛽 | �̃�𝑁 , Σ̃𝑁 ). Recall from Section 3.3 that we obtain this approximate

posterior by replacing 𝑋 with 𝑋𝑈𝑈⊤. Thus, we can find �̃�𝑁 and Σ̃𝑁 by consulting

Eqs. (B.3.1) and (B.3.2):

Σ̃−1
𝑁 = Σ−1

𝛽 + 𝜏𝑈𝑈⊤𝑋⊤𝑋𝑈𝑈⊤ (B.5.1)

�̃�𝑁 = 𝜏Σ𝑁𝑈𝑈⊤𝑋⊤𝑌. (B.5.2)
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Upper bound on the posterior mean approximation error

We will obtain our upper bound on the error of the approximate posterior mean

relative to the exact posterior mean by upper bounding the norm of the difference

between the gradient of the log posterior with respect to 𝛽 at the approximate posterior

mean, �̃�𝑁 , and the exact posterior mean, 𝜇𝑁 . Together with the strong convexity

of the negative log posterior, this bound will allow us to arrive at the desired upper

bound on ‖𝜇𝑁 − �̃�𝑁‖2.

First, we bound the norm of the gradient difference. To that end, the gradients of

the exact log likelihood and the approximate log likelihood are given by

∇𝛽 log 𝑝(𝑌 | 𝑋, 𝛽) = ∇𝛽

[︂
−𝜏

2
(𝑋𝛽 − 𝑌 )⊤(𝑋𝛽 − 𝑌 )

]︂
= −𝜏(𝑋⊤𝑋𝛽 −𝑋⊤𝑌 )

and

∇𝛽 log 𝑝(𝑌 | 𝑋, 𝛽) = ∇𝛽

[︂
−𝜏

2
(𝑋𝑈𝑈⊤𝛽 − 𝑌 )⊤(𝑋𝑈𝑈⊤𝛽 − 𝑌 )

]︂
= −𝜏(𝑈𝑈⊤𝑋⊤𝑋𝑈𝑈⊤𝛽 − 𝑈𝑈⊤𝑋⊤𝑌 ).

We can thus upper bound the norm of the difference between the two log posteriors

as follows.

⃦⃦
∇𝛽 log 𝑝(𝛽 | 𝑋, 𝑌 )−∇𝛽 log 𝑝(𝛽 | 𝑋, 𝑌 )

⃦⃦
2

=
⃦⃦
∇𝛽 log 𝑝(𝑌 | 𝑋, 𝛽)−∇𝛽 log 𝑝(𝑌 | 𝑋, 𝛽)

⃦⃦
2

since the prior is the same in both the exact and approximate model

and since the normalizing constant has no 𝛽 dependence

=

⃦⃦⃦⃦
−𝜏
(︁
𝑈𝑈⊤𝑋⊤𝑋𝑈𝑈⊤𝛽 − 𝑈𝑈⊤𝑋⊤𝑌

)︁
+ 𝜏

(︁
𝑋⊤𝑋𝛽 −𝑋⊤𝑌

)︁⃦⃦⃦⃦
2

= 𝜏

⃦⃦⃦⃦(︁
𝑋⊤𝑋 − 𝑈𝑈⊤𝑋⊤𝑋𝑈𝑈⊤

)︁
𝛽 + 𝑈𝑈⊤𝑋⊤𝑌 −𝑋⊤𝑌

⃦⃦⃦⃦
2

= 𝜏
⃦⃦⃦
�̄� �̄�⊤𝑋⊤𝑋�̄��̄�⊤𝛽 − �̄� �̄�⊤𝑋⊤𝑌

⃦⃦⃦
2
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where �̄� (above) as well as �̄� and 𝑉 (below) are defined in Section 3.3

= 𝜏
⃦⃦⃦
�̄�diag(�̄�⊙ �̄�)�̄�⊤𝛽 − �̄�diag(�̄�)𝑉 ⊤𝑌

⃦⃦⃦
2

≤ 𝜏

(︂⃦⃦⃦
�̄�diag(�̄�⊙ �̄�)�̄�⊤𝛽‖2 + ‖�̄�diag(�̄�)𝑉 ⊤𝑌

⃦⃦⃦
2

)︂
by the triangle inequality

= 𝜏

(︂⃦⃦⃦
diag(�̄�⊙ �̄�)�̄�⊤𝛽‖2 + ‖diag(�̄�)𝑉 ⊤𝑌

⃦⃦⃦
2

)︂
since ‖𝑣‖22 = 𝑣⊤𝑣 for a vector 𝑣 and 𝑈⊤𝑈 = 𝐼𝑀

≤ 𝜏

(︂⃦⃦
diag(�̄�⊙ �̄�)

⃦⃦
op

⃦⃦⃦
�̄�⊤𝛽‖2 + ‖diag(�̄�)‖op‖𝑉 ⊤𝑌

⃦⃦⃦
2

)︂
by definition of the operator norm in this space

= 𝜏
(︁
�̄�2
1‖�̄�⊤𝛽‖2 + �̄�1‖𝑉 ⊤𝑌 ‖2

)︁
(B.5.3)

Second, we need a result that will let us use the strong convexity of the negative

log posterior. We prove the following result in Appendix B.5.2.

Lemma B.5.1. Let 𝑓, 𝑔 be twice differentiable functions mapping R𝐷 → R and attain-

ing minima at 𝛽𝑓 = argmin𝛽 𝑓(𝛽) and 𝛽𝑔 = argmin𝛽 𝑔(𝛽), respectively. Additionally,

assume that 𝑓 is 𝛼–strongly convex for some 𝛼 > 0 on the set {𝑡𝛽𝑓+(1−𝑡)𝛽𝑔|𝑡 ∈ [0, 1]}

and that ‖∇𝛽𝑓(𝛽𝑔)−∇𝛽𝑔(𝛽𝑔)‖2 = ‖∇𝛽𝑓(𝛽𝑔)‖2 ≤ 𝑐. Then

‖𝛽𝑓 − 𝛽𝑔‖2 ≤
𝑐

𝛼
. (B.5.4)

To use the preceding result, we need a lower bound on the strong convexity

constant of the negative log posterior; we now calculate such a bound. We have

that 𝜇𝑁 and �̃�𝑁 are the maximum a posteriori values of 𝛽 under 𝑝(𝛽|𝑋, 𝑌, 𝛼) and

𝑝(𝛽|𝑋, 𝑌, 𝛼), respectively; equivalently they minimize the respective negative log of

these distributions. For a matrix 𝐴, let 𝜆min(𝐴) denote its minimum eigenvalue. The

Hessian of the negative log posterior with respect to 𝛽 is precisely Σ−1
𝛽 + 𝜏𝑋⊤𝑋
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everywhere. So the negative log posterior is 𝛼–strongly convex, where

𝛼 = 𝜆min(Σ
−1
𝛽 + 𝜏𝑋⊤𝑋) ≥ 𝜆min(Σ

−1
𝛽 ) + 𝜏𝜆min(𝑋

⊤𝑋) = ‖Σ𝛽‖−1
2 + 𝜏 �̄�2

𝐷−𝑀 . (B.5.5)

In the first part of the final equality above, we use that the spectral norm of a matrix

inverse is equal to the reciprocal of the minimum eigenvalue of the matrix.

Now we have an upper bound on the norm of the difference in gradients of the

negative log posteriors (the same as for the log posteriors, in Eq. (B.5.3)) and a lower

bound on the strong convexity constant from Eq. (B.5.5). So we can apply these

together with Lemma B.5.1 to find

‖𝜇𝑁 − �̃�𝑁‖2 ≤
𝜏
(︀
�̄�2
1‖�̄�⊤�̃�𝑁‖2 + �̄�1‖𝑉 ⊤𝑌 ‖2

)︀
𝛼

by Lemma B.5.1 taking log 𝑝(𝛽|𝑋, 𝑌 ) and log 𝑝(𝛽|𝑋, 𝑌 )

as 𝑓 and 𝑔 respectively, with 𝑐 given by Eq. (B.5.3)

≤
𝜏
(︀
�̄�2
1‖�̄�⊤�̃�𝑁‖2 + �̄�1‖𝑉 ⊤𝑌 ‖2

)︀
‖Σ𝛽‖−1

2 + 𝜏 �̄�2
𝐷−𝑀

by Eq. (B.5.5)

=
�̄�1

(︀
�̄�1‖�̄�⊤�̃�𝑁‖2 + ‖𝑉 ⊤𝑌 ‖2

)︀
‖𝜏Σ𝛽‖−1

2 + �̄�2
𝐷−𝑀

.

Notably, in the common special case that Σ𝛽 is diagonal, as we saw in Section 3.4.1,

�̃�𝑁 will be in the span of 𝑈 , and we will have that ‖�̄�⊤�̃�𝑁‖2 = 0.

Error in Posterior Precision

The error in the precision matrices for the approximate and exact posteriors in

linear regression are particularly straightforward since they do not depend on the

responses, 𝑌 . In particular, we have

Σ−1
𝑁 − Σ̃−1

𝑁 = (Σ−1
𝛽 + 𝜏𝑋⊤𝑋)− (Σ−1

𝛽 + 𝜏𝑈𝑈⊤𝑋⊤𝑋𝑈𝑈⊤) (B.5.6)

= 𝜏𝑋⊤𝑋 − 𝜏𝑈𝑈⊤𝑋⊤𝑋𝑈𝑈⊤ (B.5.7)

= 𝜏�̄��̄�⊤𝑋⊤𝑋�̄��̄�⊤ (B.5.8)

= 𝜏�̄�diag(�̄�⊙ �̄�)�̄�⊤. (B.5.9)
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Figure B.5.1: Example of posterior approximations with different projections (char-
acterized by 𝑈) for increasing sample sizes. Each plot shows the contours of three
densities: the prior, likelihood, and posterior (or approximations thereof). The top
row shows the exact posterior. The middle row shows the approximations found by
using the best rank-1 approximation to 𝑋. The bottom row shows the approximations
found using the orthogonal rank-1 approximation. The star is at the parameter value
used to generate simulated data for these plots.

Thus, since it is equal to the maximum eigenvalue, the spectral norm of the error in

the precisions is precisely ‖Σ−1
𝑁 − Σ̃−1

𝑁 ‖2 = 𝜏 �̄�2
1.

B.5.2 Proof of Lemma B.5.1

By the fundamental theorem of calculus, we may write

∇𝛽𝑓(𝛽) = ∇𝛽𝑓(𝛽𝑔) +

∫︁ 1

𝑡=0

(𝛽 − 𝛽𝑔)
⊤∇2

𝛽𝑓(𝑡𝛽 + (1− 𝑡)𝛽𝑔)𝑑𝑡.
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Considering the norm of ∇𝛽𝑓(𝛽) and applying the triangle inequality provides

that for any 𝛽 in {𝑡𝛽𝑓 + (1− 𝑡)𝛽𝑔 | 𝑡 ∈ [0, 1]},

‖∇𝛽𝑓(𝛽)‖2 ≥

⃦⃦⃦⃦
⃦
∫︁ 1

𝑡=0

(𝛽 − 𝛽𝑔)
⊤∇2

𝛽𝑓(𝑡𝛽 + (1− 𝑡)𝛽𝑔)𝑑𝑡

⃦⃦⃦⃦
⃦
2

− ‖∇𝛽𝑓(𝛽𝑔)‖2 (B.5.10)

≥ ‖𝛽 − 𝛽𝑔‖2

⃦⃦⃦⃦
⃦
∫︁ 1

𝑡=0

∇2
𝛽𝑓(𝑡𝛽 + (1− 𝑡)𝛽𝑔)𝑑𝑡

⃦⃦⃦⃦
⃦
2

− ‖∇𝛽𝑓(𝛽𝑔)‖2 (B.5.11)

≥ ‖𝛽 − 𝛽𝑔‖2𝛼− ‖∇𝛽𝑓(𝛽𝑔)‖2. (B.5.12)

We consider this bound at 𝛽𝑓 . Recall we assume that ‖∇𝛽𝑓(𝛽𝑔)‖2 ≤ 𝑐. And

‖∇𝛽𝑓(𝛽𝑓)‖2 = 0 since 𝑓 is twice differentiable. Therefore, we have that 0 ≥ ‖𝛽𝑓 −

𝛽𝑔‖2𝛼− 𝑐, and the result follows.

B.5.3 Proof of Corollary 3.4.2

Our approach is to show that

�̃�𝑁
𝑝→ Σ𝛽𝑈*(𝑈

⊤
* Σ𝛽𝑈*)

−1𝑈⊤
* 𝛽. (B.5.13)

We then appeal to the following result, which we prove in Appendix B.5.4:

Lemma B.5.2. �̃� := Σ𝛽𝑈(𝑈⊤Σ𝛽𝑈)−1𝑈⊤𝛽 is the vector of minimum Σ−1
𝛽 -norm

satisfying 𝑈⊤�̃� = 𝑈⊤𝛽.

Finally, for any closed 𝑆 ⊂ R𝐷, �̃� = argmin𝑣∈𝑆 ‖𝑣‖Σ−1
𝛽

= argmax𝑣∈𝑆 −1
2
𝑣⊤Σ−1

𝛽 𝑣 =

argmax𝑣∈𝑆𝒩 (0,Σ𝛽). Therefore, the �̃� in Lemma B.5.2 is the maximum a priori vector

satisfying the constraint in Lemma B.5.2.

We first turn to proving Eq. (B.5.13). Let 𝑈𝑁diag(𝜆
(𝑁))𝑉 ⊤

𝑁 denote the 𝑀 -truncated

SVD of the design matrix consisting of 𝑁 samples 𝑋 = (𝑥1, 𝑥2, . . . , 𝑥𝑁 ) where 𝑥𝑖
i.i.d.∼ 𝑝*.

When the low rank approximation is defined by this SVD, from Eq. (B.5.1) we have

that �̃�𝑁 = 𝜏 Σ̃𝑁𝑈𝑁𝑈
⊤
𝑁𝑋

⊤𝑌 . Noting that 𝑌 = 𝑋𝛽 + 1
𝜏
𝜖 for some 𝜖 ∈ R𝑁 with
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𝜖𝑖
i.i.d.∼ 𝒩 (0, 1), we may expand this out and write:

�̃�𝑁 = 𝜏(Σ−1
𝛽 + 𝑈𝑁𝑈

⊤
𝑁𝑋

⊤𝜏𝑋𝑈𝑁𝑈
⊤
𝑁 )

−1𝑈𝑁𝑈
⊤
𝑁𝑋

⊤(𝑋𝛽 +
1

𝜏
𝜖)

= 𝜏

{︂
Σ−1

𝛽 + 𝑈𝑁

[︁
𝜏diag(𝜆(𝑁) ⊙ 𝜆(𝑁))

]︁
𝑈⊤
𝑁

}︂−1

𝑈𝑁diag(𝜆
(𝑁))𝑉 ⊤

𝑁[︂
𝑉𝑁diag(𝜆

(𝑁))𝑈⊤
𝑁𝛽 +

1

𝜏
𝜖

]︂
(B.5.14)

=

{︂
Σ−1

𝛽 + 𝑈𝑁

[︁
𝜏diag(𝜆(𝑁) ⊙ 𝜆(𝑁))

]︁
𝑈⊤
𝑁

}︂−1

𝑈𝑁

[︁
𝜏diag(𝜆(𝑁) ⊙ 𝜆(𝑁))

]︁
[︂
𝑈⊤
𝑁𝛽 + diag(𝜆(𝑁))−1𝑉 ⊤

𝑁

1

𝜏
𝜖

]︂
(B.5.15)

= Σ𝛽𝑈𝑁

[︁
𝑈⊤
𝑁Σ𝛽𝑈𝑁 + 𝜏−1diag(𝜆(𝑁))−2

]︁−1
[︂
𝑈⊤
𝑁𝛽 + diag(𝜆(𝑁))−1𝑉 ⊤

𝑁

1

𝜏
𝜖

]︂
𝑃→ Σ𝛽𝑈*(𝑈

⊤
* Σ𝛽𝑈*)

−1𝑈⊤
* 𝛽,

where in the fourth line we use the matrix identity, (𝑅−1 + 𝑊⊤𝑄𝑊 )−1𝑊⊤𝑄 =

𝑅𝑊⊤(𝑊𝑅𝑊⊤ +𝑄−1)−1 [Petersen and Pedersen, 2008]. Convergence in probability

in the last line follows since diag(𝜆(𝑁)−2
)

𝑃→ 0 [Vershynin, 2012] and 𝑈𝑁
𝑃→ 𝑈 .

B.5.4 Proof of Lemma B.5.2

We show that 𝛽* = Σ𝛽𝑈(𝑈⊤Σ𝛽𝑈)−1𝑈⊤𝛽 is the vector of minimum norm satisfying

the above constraints in the Hilbert space R𝐷 with inner product ⟨𝑣1, 𝑣2⟩ = 𝑣⊤1 Σ
−1
𝛽 𝑣2

for vectors 𝑣1, 𝑣2 ∈ R𝐷.

Define 𝛽* as

𝛽* = argmin
𝑣∈R𝐷

‖𝑣‖Σ−1
𝛽

subject to 𝑈⊤𝑣 = 𝑈⊤𝛽 (B.5.16)

First note that the condition 𝑈⊤𝛽* = 𝑈⊤𝛽 may be expressed as a set the 𝑀 linear

constraints

⟨Σ𝛽𝑈 [:, 𝑖], 𝛽*⟩ = 𝑈 [:, 𝑖]⊤𝛽 (B.5.17)
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for 𝑖 = 1, 2, . . . ,𝑀 . We thereby see that the constraint restricts 𝛽* to the linear variety

𝛽+
[︀{︀

Σ𝛽𝑈 [:, 𝑖]
}︀𝑀
𝑖=1

]︀⊥, where
[︀
𝐴
]︀

denotes the subspace generated by the vectors of the

set 𝐴 and
[︀
𝐴
]︀⊥ denotes the set of all vectors orthogonal to

[︀
𝐴
]︀

(i.e. the orthogonal

complement of
[︀
𝐴
]︀
). By the projection theorem [Luenberger, 1969], 𝛽* is orthogonal

to
[︀{︀

Σ𝛽𝑈 [:, 𝑖]
}︀𝑀
𝑖=1

]︀⊥, or 𝛽* ∈
[︀{︀

Σ𝛽𝑈 [:, 𝑖]
}︀𝑀
𝑖=1

]︀⊥⊥
=
[︀{︀

Σ𝛽𝑈 [:, 𝑖]
}︀𝑀
𝑖=1

]︀
. We can therefore

write 𝛽* as a linear combination of the vectors
{︀
Σ𝛽𝑈 [:, 𝑖]

}︀𝑀
𝑖=1

; that is, for some 𝑐 in

R𝑀

𝛽* = Σ𝛽𝑈𝑐. (B.5.18)

Our constraints in Eq. (B.5.17) then demand that ⟨Σ𝛽𝑈 [:, 𝑖],Σ𝛽𝑈𝑐⟩ = 𝑈 [:, 𝑖]⊤𝛽 for each

𝑖, or equivalently that 𝑈⊤Σ𝛽Σ
−1
𝛽 Σ𝛽𝑈𝑐 = 𝑈⊤𝛽. This implies that 𝑐 = (𝑈⊤Σ𝛽𝑈)−1𝑈⊤𝛽.

Plugging this into Eq. (B.5.18) yields 𝛽* = Σ𝛽𝑈(𝑈⊤Σ𝛽𝑈)−1𝑈⊤𝛽, as desired.

B.5.5 Proof of Corollary 3.4.3

Recall that we wish to show that, for conjugate Bayesian regression, under 𝑝 the uncer-

tainty (i.e., posterior variance) for any linear combination of parameters, Var𝑝[𝑣⊤𝛽], is

no smaller than the exact posterior variance. First, we note that this statement is for-

mally equivalent to stating that 𝑣⊤Σ̃𝑁𝑣 ≥ 𝑣⊤Σ𝑁𝑣, or that 𝐸 := Σ̃𝑁 − Σ𝑁 ⪰ 0 (where

⪰ denotes positive definiteness). By Theorem 3.4.1, Σ−1
𝑁 − Σ̃−1

𝑁 = �̄�diag(�̄�2)�̄�⊤ ⪰ 0.

Since this implies that the inverse of the difference of these matrices is positive

definite, we can then see that (Σ−1
𝑁 − Σ̃−1

𝑁 )−1 = Σ̃𝑁(Σ̃𝑁 − Σ𝑁)
−1Σ𝑁 ⪰ 0. Because,

as valid covariance matrices, Σ𝑁 and Σ̃𝑁 are both positive definite, and because

inverses and product of positive definite matrices are positive definite, this implies

that Σ̃−1
𝑁 Σ̃𝑁(Σ̃𝑁 − Σ𝑁)

−1Σ𝑁Σ
−1
𝑁 = (Σ̃𝑁 − Σ𝑁)

−1 ⪰ 0. Finally, this implies that

Σ̃𝑁 − Σ𝑁 ⪰ 0 as desired.

B.5.6 Information loss due the LR-GLM approximation

We see similar behavior to that demonstrated in Corollary 3.4.3 in the following

corollary, which shows that our approximate posterior never has lower entropy than
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the exact posterior. Concretely, we look at the reduction of entropy in the approximate

posterior relative to the exact posterior [MacKay, 2003], where entropy is defined as:

𝐻
[︀
𝑝(𝛽)

]︀
:= E𝑝[− log2 𝑝(𝛽)]

Corollary B.5.1. The entropy 𝐻
[︀
𝑝(𝛽|𝑋, 𝑌 )

]︀
is no less than 𝐻

[︀
𝑝(𝛽|𝑋, 𝑌 )

]︀
. Further-

more, when using an isotropic Gaussian prior Σ𝛽 = 𝜎2
𝛽𝐼, the information loss relative

to the exact posterior (in nats) is upper bounded as 𝐻
[︀
𝑝(𝛽|𝑋, 𝑌 )

]︀
−𝐻

[︀
𝑝(𝛽|𝑋, 𝑌 )

]︀
≤

𝜏𝜎2
𝛽

2

∑︀𝐷−𝑀
𝑖=1 �̄�2

𝑖 .

This result formalizes the intuition that the LR-GLM approximation reduces

the information about the parameter that we are able to extract from the data.

Additionally, the upper bound tells us that when 𝑈 is obtained via an 𝑀 truncated

SVD, at most 𝜏𝜎2
𝛽�̄�

2
1/2 additional nats of information would have been provided by

using the 𝑀 + 1-truncated SVD.

Proof. The entropy of the exact and approximate posteriors are given as:

𝐻(𝑝) = −1

2
log |2𝜋𝑒Σ−1

𝑁 | = −
1

2

[︀
𝐷 log 2𝜋𝑒+

𝐷∑︁
𝑖=1

log(𝜎−2
𝛽 + 𝜏𝜆2

𝑖 )
]︀

and

𝐻(𝑝) = −1

2
log |2𝜋𝑒Σ̃−1

𝑁 | = −
1

2

[︀
𝐷 log 2𝜋𝑒+

𝑀∑︁
𝑖=1

log(𝜎−2
𝛽 + 𝜏𝜆2

𝑖 )−
𝐷∑︁

𝑖=𝑀+1

log 𝜎−2
𝛽

]︀
.

Therefore, we conclude that

𝐻
[︀
𝑝(𝛽|𝑋)

]︀
−𝐻

[︀
𝑝(𝛽|𝑋)

]︀
= −1

2

𝐷−𝑀∑︁
𝑖=1

log 𝜎−2
𝛽 +

1

2

𝐷−𝑀∑︁
𝑖=1

log(𝜎−2
𝛽 + 𝜏 �̄�2

𝑖 )

=
1

2

𝐷−𝑀∑︁
𝑖=1

log
𝜎−2
𝛽 + 𝜏 �̄�2

𝑖

𝜎−2
𝛽

=
1

2

𝐷−𝑀∑︁
𝑖=1

log(1 +
𝜏

𝜎−2
𝛽

�̄�2
𝑖 )
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≤ 1

2

𝐷−𝑀∑︁
𝑖=1

𝜏

𝜎−2
𝛽

�̄�2
𝑖 =

𝜏𝜎2
𝛽

2

𝐷−𝑀∑︁
𝑖=1

�̄�2
𝑖 .

That 𝐻
[︀
𝑝(𝛽|𝑋)

]︀
−𝐻

[︀
𝑝(𝛽|𝑋)

]︀
> 0 follows from the monotonicity of log, that log(1) = 0,

and that 𝜏𝜎2
𝛽�̄�

2
𝑖 > 0 for 𝑖 = 1, . . . , 𝐷 −𝑀 .

B.6 Proofs and further results for LR-Laplace in non-

conjugate models

In the main text we introduced LR-Laplace as a method which takes advantage of

low-rank approximations to provide computational gains when computing a Laplace

approximation to the Bayesian posterior. In what follows we verify the theoretical jus-

tifications for this approach. Appendix B.6.1 provides a derivation of Algorithm 4 and

demonstrates the time complexities of each step, serving as a proof of Theorem 3.5.1.

The remainder of the section is devoted to the proofs and discussion of the theoretical

properties of LR-Laplace.

B.6.1 Proof of Theorem 3.5.1

Proof of Theorem 3.5.1. The LR-Laplace approximation is defined by mean and covari-

ance parameters, �̂� and Σ̂. We prove Theorem 3.5.1 in two parts. First, we show that �̂�

and Σ̂ do in fact define the Laplace approximation of 𝑝(𝛽|𝑋, 𝑌 ), i.e. the construction of

�̂� in Line 9 satisfies �̂� = argmax𝛽 𝑝(𝛽|𝑋, 𝑌 ) and that Σ̂ =
(︀
−∇2

𝛽 log 𝑝(𝛽|𝑋, 𝑌 )|𝛽=�̂�

)︀−1.

Second, we show that each step of Algorithm 4 may be computed in 𝑂(𝑁𝐷𝑀) time

with 𝑂(𝐷𝑀 +𝑁𝑀) storage.

Correctness of �̂� and Σ̂

In Line 8, the definition of 𝛾* implies that 𝛾* = argmax𝛾∈R𝑀 𝑝𝑈⊤𝛽|𝑋,𝑌 (𝛾|𝑋, 𝑌 )

since

log 𝑝𝑈⊤𝛽|𝑋,𝑌 (𝛾|𝑋, 𝑌 ) = log 𝑝𝑈⊤𝛽(𝛾) + log 𝑝𝑌 |𝑋,𝑈⊤𝛽(𝑌 |𝑋, 𝛾) + 𝐶

= log 𝑝𝑈⊤𝛽(𝛾) + log 𝑝𝑌 |𝑋,𝛽(𝑌 |𝑋,𝑈𝛾) + 𝐶
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= log𝒩 (𝛾|𝑈⊤𝜇𝛽, 𝑈
⊤Σ𝛽𝑈) +

𝑁∑︁
𝑖=1

log 𝑝𝑦|𝑥,𝛽(𝑦𝑖|𝑥𝑖, 𝑈𝛾) + 𝐶

= −1

2
𝛾⊤𝑈⊤Σ𝛽𝑈𝛾 +

𝑁∑︁
𝑖=1

𝜑(𝑦𝑖, 𝑥
⊤
𝑖 𝑈𝛾) + 𝐶 ′,

where line 1 uses Bayes’ rule, line 2 uses the definition of 𝑝 in Eq. (3.1), line 3 uses the

normality the prior, and the assumed conditional independence of the responses given

𝛽, and line 4 follows from the definition of 𝜑(·, ·) and the assumption that 𝜇𝛽 = 0. 𝐶

and 𝐶 ′ are constants which do not depend on 𝛾. This together with the following

result (proved in Appendix B.6.2) implies that as defined in Line 9 of Algorithm 4,

�̂� = argmax𝛽 𝑝(𝛽|𝑋, 𝑌 ).

Lemma B.6.1. Suppose a Gaussian prior 𝑝(𝛽) = 𝒩 (𝜇𝛽,Σ𝛽), and let

𝛾* := argmax
𝛾∈R𝑀

log 𝑝𝑈⊤𝛽|𝑋,𝑌 (𝛾|𝑋, 𝑌 )

. Then �̂� := argmax𝛽∈R𝐷 log 𝑝(𝛽|𝑋, 𝑌 ) may be written as �̂� = 𝑈𝛾*+�̄� �̄�⊤Σ𝛽𝑈(𝑈⊤Σ𝛽𝑈)−1𝛾*.

We now show that as defined in Line 12 of Algorithm 4, Σ̂ is inverse of the Hessian

of the negative log posterior, 𝐻. We see this by writing

𝐻 : = ∇2
𝛽 − log 𝑝(𝛽|𝑋, 𝑌 )|𝛽=�̂�

= ∇2
𝛽 − log𝒩 (𝛽|𝜇𝛽,Σ𝛽)|𝛽=�̂� +∇2

𝛽

𝑁∑︁
𝑖=1

−𝜑(𝑦𝑖, 𝑥⊤
𝑖 𝑈𝑈⊤𝛽)|𝛽=�̂�

= Σ−1
𝛽 +

𝑁∑︁
𝑖=1

−𝜑′′(𝑦𝑖, 𝑥
⊤
𝑖 𝑈𝑈⊤�̂�)𝑥𝑖𝑈𝑈⊤𝑥⊤

𝑖

= Σ−1
𝛽 + 𝑈𝑈⊤𝑋⊤diag

(︀
− �⃗�′′(𝑌,𝑋𝑈𝑈⊤�̂�)

)︀
𝑋𝑈𝑈⊤,

where �⃗�′′ is the second derivative of 𝜑. The Woodbury matrix lemma then provides

that we may compute Σ̂𝑁 := 𝐻−1 as

Σ̂𝑁 = Σ𝛽 − Σ𝛽𝑈

(︃
𝑈⊤Σ𝛽𝑈 −

{︂
𝑈⊤𝑋⊤diag

[︁
�⃗�′′(𝑌,𝑋𝑈𝑈⊤�̂�)

]︁
𝑋𝑈

}︂−1
)︃−1

𝑈⊤Σ𝛽,
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which we have written as Σ̂ := Σ𝛽 − Σ𝛽𝑈𝑊𝑈⊤Σ𝛽 in Line 12 with 𝑊−1 = 𝑈⊤Σ𝛽𝑈 −{︂
𝑈⊤𝑋⊤diag

[︁
�⃗�′′(𝑌,𝑋𝑈𝑈⊤�̂�)

]︁
𝑋𝑈

}︂−1

.

Time complexity of Algorithm 4

We now prove the asserted time and memory complexities for each line of Algo-

rithm 4.

Algorithm 4 begins with the computation of the 𝑀 -truncated SVD of 𝑋⊤ ≈

𝑈diag(𝜆)𝑉 . As discussed in Section 3.4.1, 𝑈 may be found in 𝑂(𝑁𝐷 log𝑀) time.

At the end of this step we must store the projected data 𝑋𝑈 ∈ R𝑁,𝑀 and the left

singular vectors, 𝑈 ∈ R𝐷,𝑀 . Which demands 𝑂(𝑁𝑀 +𝐷𝑀) memory, and the matrix

multiply for 𝑋𝑈 requires 𝑂(𝑁𝐷𝑀) time and is the bottleneck step of the algorithm.

The matrix 𝑉 need not be explicitly computed or stored.

The next stage of the algorithm is solving for �̂� = argmax𝛽 log 𝑝(𝛽|𝑋, 𝑌 ). This

is done in two stages: in Line 8 find 𝛾* = argmax𝛾∈R𝑀 log 𝑝𝑈⊤𝛽|𝑋,𝑌 (𝛾|𝑋, 𝑌 ) as the

solution to a convex optimization problem, and in Line 9 find �̂� as �̂� = 𝑈𝛾* +

�̄� �̄�⊤Σ𝛽𝑈(𝑈⊤Σ𝛽𝑈)−1𝛾*. Beginning with Line 8, we note that the function

log 𝑝(𝑈⊤𝛽|𝑋, 𝑌 ) = log 𝑝(𝛽)+log 𝑝(𝑌 |𝑋, 𝛽)+𝑐
𝑐
= log𝒩 (𝑈⊤𝛽|𝑈⊤𝜇𝛽, 𝑈

⊤Σ𝛽𝑈)+
𝑁∑︁
𝑖=1

log 𝑝(𝑦𝑖|𝑥⊤
𝑖 𝑈𝑈⊤𝛽)

is a finite sum of functions concave in 𝛽 and therefore also in 𝑈⊤𝛽. 𝛾* may therefore

be solved to a fixed precision in 𝑂(𝑁𝑀) time under the assumptions of our theorem

using stochastic optimization algorithms such as stochastic average gradient Schmidt

et al. [2017]. In our experiments we use more standard batch convex optimization

algorithm (L-BFGS-B Zhu et al. [1997]) which takes at most 𝑂(𝑁2𝑀) time. This

latter upper bound on complexity may be seen from observing each gradient evaluation

takes 𝑂(𝑁𝑀) time (the cost for the likelihood evaluation, since computing the log

prior and its gradient is 𝑂(𝑀2) after computing 𝑈⊤Σ𝛽𝑈 once, which takes 𝑂(𝐷𝑀2)

time by assumption) and the number of iterations required can grow up to linearly

in the maximum eigenvalue of Hessian, which in turn grows linearly in 𝑁 Boyd and

Vandenberghe [2004].

The second step is computing �̂� = 𝑈𝛾* + �̄� �̄�⊤Σ𝛽𝑈(𝑈⊤Σ𝛽𝑈)−1𝛾*. Given 𝛾*, this
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may be computed in 𝑂(𝐷𝑀) time, which one may see by noting that �̄� �̄�⊤ (which

we never explicitly compute) may be written as �̄� �̄�⊤ = (𝐼 − 𝑈𝑈⊤), and finding �̂� as

�̂� = 𝑈𝛾*+Σ𝛽𝑈(𝑈⊤Σ𝛽𝑈)−1𝛾*−𝑈𝑈⊤Σ𝛽𝑈(𝑈⊤Σ𝛽𝑈)−1𝛾*. By assumption, the structure

of Σ𝛽 allows us to compute 𝑈⊤Σ𝛽𝑈 in 𝑂(𝐷𝑀2) time and matrix vector products with

Σ𝛽 in 𝑂(𝐷) time.

We now turn to the third stage of the algorithm, solving for the posterior covariance

Σ̂, which is represented as an expression of 𝑈 , Σ𝛽 and 𝑊 , defined in Line 11. Computing

𝑊 requires 𝑂(𝐷𝑀) and 𝑂(𝑁𝑀2) matrix multiplications (since we have precomputed

𝑋𝑈), and two 𝑂(𝑀3) matrix inversions which comes to 𝑂(𝑁𝑀2 +𝐷𝑀) time. The

memory complexity of this step is 𝑂(𝑁𝑀) since it involves handling 𝑋𝑈 . Once 𝑊 has

been computed we may use the representation Σ̂ = Σ𝛽 −Σ𝛽𝑈𝑊𝑈⊤Σ𝛽 as presented in

Line 12. This representation does not entail performing any additional computation

(which is why we have written 𝑂(0)), but as this expression includes 𝑈 , storing Σ̂

requires 𝑂(𝐷𝑀) memory.

Lastly, we may immediately see that computing posterior variances and covariances

takes only 𝑂(𝑀2) time as it involves only indexing into Σ𝛽 and 𝑈 and 𝑂(𝑀2) matrix-

vector multiplies.

B.6.2 Proof of Lemma B.6.1

We prove the lemma by constructing a rotation of the parameter space by the matrix

of singular vectors [𝑈, �̄� ], in which we have the prior

𝑝

(︂⎡⎢⎣𝑈⊤𝛽

�̄�⊤𝛽

⎤⎥⎦)︂ = 𝒩
(︁⎡⎢⎣𝑈⊤𝛽

�̄�⊤𝛽

⎤⎥⎦ ⃒⃒⃒
⎡⎢⎣𝑈⊤𝜇𝛽

�̄�⊤𝜇𝛽

⎤⎥⎦ ,

⎡⎢⎣𝑈⊤Σ𝛽𝑈, 𝑈⊤Σ𝛽�̄�

�̄�⊤Σ𝛽𝑈, �̄�⊤Σ𝛽�̄�

⎤⎥⎦)︁.
We have that

�̂� : = argmax
𝛽∈R𝐷

log 𝑝(𝛽|𝑋, 𝑌 )
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= [𝑈 �̄� ] argmax
𝑈⊤𝛽∈R𝑀 ,�̄�⊤𝛽∈R𝐷−𝑀

log 𝑝
(︀⎡⎢⎣𝑈⊤𝛽

�̄�⊤𝛽

⎤⎥⎦ |𝑋, 𝑌 )

= 𝑈 argmax
𝑈⊤𝛽∈R𝑀

(︀
log 𝑝(𝑈⊤𝛽|𝑋, 𝑌 ) + �̄� argmax

�̄�⊤𝛽∈R𝐷−𝑀

log 𝑝(�̄�⊤𝛽|𝑈⊤𝛽,𝑋, 𝑌 )
)︀

= 𝑈 argmax
𝑈⊤𝛽∈R𝑀

log 𝑝(𝑈⊤𝛽|𝑋, 𝑌 )+

�̄� argmax
�̄�⊤𝛽∈R𝐷−𝑀

log𝒩
(︀
�̄�⊤𝛽|�̄�⊤Σ𝛽𝑈(𝑈⊤Σ𝛽𝑈)−1𝑈⊤𝛽, �̄�Σ𝛽�̄� − �̄�Σ𝛽𝑈(𝑈⊤Σ𝛽𝑈)𝑈⊤Σ𝛽�̄�

)︀
= 𝑈𝛾* + �̄� �̄�⊤Σ𝛽𝑈(𝑈⊤Σ𝛽𝑈)−1𝛾*.

In the second line we simply move to the rotated parameter space. In the third

line, we use the chain rule of probability to separate out two terms. To produce

the fourth line, we note that since 𝑝(𝑌 |𝑋, 𝛽) = 𝑝(𝑌 |𝑋𝑈𝑈⊤𝛽) = 𝑝(𝑌 |𝑋,𝑈⊤𝛽), that

𝑌 and �̄�⊤𝛽 are conditionally independent given 𝑈⊤𝛽. We next note that though

argmax�̄�⊤𝛽∈R𝐷−𝑀 log 𝑝(�̄�⊤𝛽|𝑈⊤𝛽) depends on 𝑈⊤𝛽, max�̄�⊤𝛽∈R𝐷−𝑀 log 𝑝(�̄�⊤𝛽|𝑈⊤𝛽)

does not depend 𝑈⊤𝛽. This allows us to use the definition of 𝛾* to arrive at the fifth

line, as desired.

In the special case that Σ𝛽 is diagonal, this expression reduces to 𝑈𝛾*. This can

be seen by recognizing that �̄�⊤Σ𝛽𝑈 is then diag(0).

B.6.3 Proof of Theorem 3.5.2

Our approach to proving Theorem 3.5.2 follows a similar approach to that taken to

prove Theorem 3.4.1. In particular, we begin by upper bounding the norm of the error

of the gradients at the approximate MAP. Noting that the strong log concavity of the

exact posterior, which having been assumed to hold globally, must then also hold on

{𝑡�̂�+ (1− 𝑡)�̄�|𝑡 ∈ [0, 1]}, we obtain an upper-bound on ‖�̂�− �̄�‖2 by again applying

Lemma B.5.1.

To begin, we first recall that the exact and LR-GLM posteriors may be written as

log 𝑝(𝛽|𝑋, 𝑌 ) = log 𝑝(𝛽) +
𝑁∑︁

𝑛=1

𝜑(𝑦𝑛|𝑥⊤
𝑛𝛽)− log𝑍
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and

log 𝑝(𝛽|𝑋, 𝑌 ) = log 𝑝(𝛽) +
𝑁∑︁

𝑛=1

𝜑(𝑦𝑛, 𝑥
⊤
𝑛𝑈𝑈⊤𝛽)− log𝑍

where 𝜑(·, ·) is such that 𝜑(𝑦, 𝑎) = log 𝑝(𝑦|𝑥⊤𝛽 = 𝑎), and 𝑍 and 𝑍 are the normalizing

constants of the exact and approximate posteriors. As a result, the gradients of these

log densities are given as

∇𝛽 log 𝑝(𝛽|𝑋, 𝑌 ) = ∇𝛽 log 𝑝(𝛽) +𝑋⊤�⃗�′(𝑌,𝑋𝛽)

and

∇𝛽 log 𝑝(𝛽|𝑋, 𝑌 ) = ∇𝛽 log 𝑝(𝛽) + 𝑈𝑈⊤𝑋⊤�⃗�′(𝑌,𝑋𝑈𝑈⊤𝛽),

where �⃗�′(𝑌,𝑋𝛽) ∈ R𝑁 is such that for each 𝑛 ∈ [𝑁 ], �⃗�′(𝑌,𝑋𝛽)𝑛 = 𝑑
𝑑𝑎
𝜑(𝑦𝑛, 𝑎)|𝑎=𝑥⊤

𝑛 𝛽.

And the difference in the gradients is

∇𝛽 log 𝑝(𝛽|𝑋, 𝑌 )−∇𝛽 log 𝑝(𝛽|𝑋, 𝑌 ) = 𝑋⊤�⃗�′(𝑌,𝑋𝛽)− 𝑈𝑈⊤𝑋⊤�⃗�′(𝑌,𝑋𝑈𝑈⊤𝛽).

(B.6.1)

Appealing to Taylor’s theorem, we may write for any 𝛽 that

𝜑′(𝑦𝑛, 𝑥
⊤
𝑛𝑈𝑈⊤𝛽) = 𝜑′(𝑦𝑛, 𝑥

⊤
𝑛𝛽) + (𝑥⊤

𝑛𝑈𝑈⊤𝛽 − 𝑥⊤
𝑛𝛽)𝜑

′′(𝑦𝑛, 𝑎𝑛)

for some 𝑎𝑛 ∈ [𝑥⊤
𝑛𝑈𝑈⊤𝛽, 𝑥⊤

𝑛𝛽], where 𝜑′′(𝑦, 𝑎) := 𝑑2

𝑑𝑎2
𝜑(𝑦, 𝑎).

Using this and introducing vectorized notation for 𝜑′′ to match that used for �⃗�′,

we may rewrite the difference in the gradients as

∇𝛽 log 𝑝(𝛽|𝑋, 𝑌 )−∇𝛽 log 𝑝(𝛽|𝑋, 𝑌 )

= 𝑋⊤�⃗�′(𝑌,𝑋𝛽)− 𝑈𝑈⊤𝑋⊤�⃗�′(𝑌,𝑋𝛽)− 𝑈𝑈⊤𝑋⊤[︀(𝑋𝑈𝑈⊤𝛽 −𝑋⊤𝛽) ∘ �⃗�′′(𝑌,𝐴)
]︀

= �̄� �̄�⊤𝑋⊤�⃗�′(𝑌,𝑋𝛽) + 𝑈𝑈⊤𝑋⊤[︀(𝑋�̄��̄�⊤𝛽) ∘ �⃗�′′(𝑌,𝐴)
]︀
,

where 𝐴 ∈ R𝑁 is such that for each 𝑛 ∈ [𝑁 ], 𝐴𝑛 ∈ [𝑥⊤
𝑛𝑈𝑈⊤𝛽, 𝑥⊤

𝑛𝛽], and ∘ denotes

element-wise scalar multiplication.
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We can use this to derive an upper bound on the norm of the difference of the

gradients as

‖∇𝛽 log 𝑝(𝛽|𝑋, 𝑌 )−∇𝛽 log 𝑝(𝛽|𝑋, 𝑌 )‖2 = ‖�̄� �̄�⊤𝑋⊤�⃗�′ + 𝑈𝑈⊤𝑋⊤[︀(𝑋�̄��̄�⊤𝛽) ∘ �⃗�′′]︀‖2
≤ ‖�̄� �̄�⊤𝑋⊤�⃗�′‖2 + ‖𝑈𝑈⊤𝑋⊤[︀(𝑋�̄��̄�⊤𝛽) ∘ �⃗�′′]︀‖2
≤ �̄�1‖�⃗�′‖2 + 𝜆1‖(𝑋�̄��̄�⊤𝛽) ∘ �⃗�′′‖2

≤ �̄�1‖�⃗�′‖2 + 𝜆1�̄�1‖�̄�⊤𝛽‖2‖�⃗�′′‖∞

= �̄�1

(︀
‖�⃗�′‖2 + 𝜆1‖�̄�⊤𝛽‖2‖�⃗�′′‖∞

)︀
,

where we have written �⃗�′ and �⃗�′′ in place of �⃗�′(𝑌,𝑋𝛽) and �⃗�′′(𝑌,𝐴), respectively, for

brevity despite their dependence on 𝛽.

Next, let 𝛼 be the strong log-concavity parameter of 𝑝(𝛽|𝑋, 𝑌 ). Lemma B.5.1 then

implies that

‖�̂�− �̄�‖2 ≤
�̄�1

(︀
‖�⃗�′(𝑌,𝑋�̂�)‖2 + 𝜆1‖�̄�⊤�̂�‖2‖�⃗�′′(𝑌,𝐴)‖∞

)︀
𝛼

as desired, where for each 𝑛 ∈ [𝑁 ], 𝐴𝑛 ∈ [𝑥⊤
𝑛𝑈𝑈⊤�̂�, 𝑥⊤

𝑛 �̂�].

B.6.4 Bounds on derivatives of higher order for the log-likelihood

in logistic regression and other GLMs

We here provide some additional support for the claim that in Remark 3.5.3 that

the higher order derivatives of the log-likelihood function, 𝜑, are well-behaved. For

logistic regression (which we explore in detail below), for any 𝑦 in {−1, 1} and 𝑎 in

R, it holds that | 𝜕
𝜕𝑎
𝜑(𝑦, 𝑎)| ≤ 1 and | 𝜕2

𝜕2𝑎
𝜑(𝑦, 𝑎)| ≤ 1

4
. For Poisson regression with

𝜑(𝑦, 𝑎) = log Pois
(︀
𝑦|𝜆 = log(1+exp{𝑎})

)︀
, both | 𝜕

𝜕𝑎
(𝑦, 𝑎)| and | 𝜕2

𝜕2𝑎
𝜑(𝑦, 𝑎)| are bounded

by a small constant factor of 𝑦. Additionally, in these cases | 𝜕3

𝜕𝑎3
𝜑(𝑦, 𝑎)| is also well

behaved, a fact relevant to Corollary 3.5.6. However, for alternative mapping functions

for Poisson regression, e.g. defining E[𝑦𝑖|𝑥𝑖, 𝛽] = exp{𝑥⊤
𝑖 𝛽}, these derivatives will

grow exponentially quickly with 𝑥⊤
𝑖 𝛽, which illustrates that our provided bounds are
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sensitive to the particular form chosen for the GLM likelihood.

We now move to compute explicit upper bounds on the derivatives of the log

likelihood in logistic regression. This produces the constants mentioned above, and

permits easy computation of upper bounds on the bounds on the approximation error

of LR-Laplace provided in Theorem 3.5.2 and Corollary 3.5.6. In particular the logistic

regression mapping function [Huggins et al., 2017] is given as

𝜑(𝑦𝑛, 𝑥
⊤
𝑛𝛽) = − log

(︀
1 + exp{−𝑦𝑛𝑥⊤

𝑛𝛽}
)︀
, (B.6.2)

where each 𝑦𝑛 ∈ {−1, 1}.

The first three derivatives of this mapping function and bounds on their absolute

values are as follows:

𝜑′(𝑦𝑛, 𝑥
⊤
𝑛𝛽) :=

𝑑

𝑑𝑎
𝜑(𝑦𝑛, 𝑎)

⃒⃒
𝑎=𝑥⊤

𝑛 𝛽
= 𝑦𝑛

exp{−𝑦𝑥⊤
𝑛𝛽}

1 + exp{−𝑦𝑛𝑥⊤
𝑛𝛽}

(B.6.3)

Notably, ∀𝑎 ∈ R, 𝑦 ∈ {−1, 1}, |𝜑′(𝑦, 𝑎)| < 1 and

𝜑′′(𝑦𝑛, 𝑥
⊤
𝑛𝛽) : =

𝑑2

𝑑𝑎2
𝜑(𝑦, 𝑎)

⃒⃒
𝑎=𝑥⊤

𝑛 𝛽
= −(1 + exp{𝑥⊤

𝑛𝛽})−1(1 + exp{−𝑥⊤
𝑛𝛽})−1.

(B.6.4)

Furthermore, for any 𝑎 in R and 𝑦 in {−1, 1}, −1
4
≤ 𝜑′′(𝑦, 𝑎) < 0. This implies

that the Hessian of the negative log likelihood will be positive semi-definite everywhere.

We additionally have

𝑑3

𝑑𝑎3
𝜑(𝑦, 𝑎) = 𝜑′′′(𝑎) =

(︀
exp{𝑎}(exp(−𝑎)− 1)

)︀
(1 + exp{𝑎})3

(B.6.5)

which for any 𝑎 in R satisfies, − 1
6
√
3
≤ 𝜑′′′(𝑎) ≤ 1

6
√
3
.
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B.6.5 Asymptotic inconsistency of the approximate posterior

mean within the span of the projections

Consider a Bayesian logistic regression, in which

𝑥𝑖 ∼ 𝒩
(︁⎡⎢⎣0

0

⎤⎥⎦ ,

⎡⎢⎣1 0

0 0.99

⎤⎥⎦)︁, 𝛽 =

⎡⎢⎣ 10

1000

⎤⎥⎦ , 𝑦𝑖 ∼ Bern
(︀
(1 + exp{𝑥⊤

𝑖 𝛽})−1
)︀
.

In this setting, a rank 1 approximation of the design will capture only the first

dimension of data (i.e. 𝑈𝑁 → 𝑈* = [1, 0]). However the second dimension explains

almost all of the variance in the responses. As such 𝑦𝑖|𝑈⊤
* 𝑥𝑖, 𝛽

𝑑
≈ Bern(1/2) and we

will get 𝑈⊤
* 𝛽|𝑋, 𝑌 = 𝛽1|𝑋, 𝑌 ≈ 0.0 under 𝑝.

B.6.6 Proof of Corollary 3.5.6

Our proof proceeds via an upper bound on the (2, 𝑝)-Fisher distance between 𝑝 and 𝑝

[Huggins et al., 2018]. Specifically, the (2, 𝑝)-Fisher distance given by

𝑑2,𝑝(𝑝, 𝑝) =

(︂∫︁
‖∇𝛽 log 𝑝(𝛽)−∇𝛽 log 𝑝(𝛽)‖22𝑑𝑝(𝛽)

)︂ 1
2

. (B.6.6)

Given the strong log-concavity of 𝑝, our upper bound on this Fisher distance

immediately provides an upper-bound on the 2-Wasserstein distance [Huggins et al.,

2018].

We first recall that 𝑝 and 𝑝 are defined by Laplace approximations of 𝑝(𝛽|𝑋, 𝑌 )

and 𝑝(𝛽|𝑋, 𝑌 ) respectively. As such we have that

log 𝑝(𝛽)
𝑐
= −1

2
(𝛽 − �̂�)⊤

(︀
Σ−1

𝛽 − 𝑈𝑈⊤𝑋⊤diag(�⃗�′′(𝑌,𝑋𝑈𝑈⊤�̂�))𝑋𝑈𝑈⊤)︀(𝛽 − �̂�)

where �⃗�′′(𝑌,𝑋𝑈𝑈⊤�̂�) is defined as in Algorithm 1 such that

�⃗�′′(𝑌,𝑋𝛽)𝑖 =
𝑑2

𝑑𝑎2
log 𝑝(𝑦𝑖|𝑥⊤𝛽 = 𝑎)|𝑎=𝑥⊤

𝑖 𝛽
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, and

log 𝑝(𝛽)
𝑐
= −1

2
(𝛽 − �̄�)⊤

(︀
Σ−1

𝛽 −𝑋⊤diag(�⃗�′′(𝑌,𝑋�̄�))𝑋
)︀
(𝛽 − �̄�).

Accordingly,

∇𝛽 log 𝑝(𝛽) = −(𝛽 − �̂�)⊤
(︀
Σ−1

𝛽 − 𝑈𝑈⊤𝑋⊤diag(�⃗�′′(𝑌,𝑋𝑈𝑈⊤�̂�))𝑋𝑈𝑈⊤)︀
and

∇𝛽 log 𝑝(𝛽) = −(𝛽 − �̄�)⊤
[︀
Σ−1

𝛽 −𝑋⊤diag(�⃗�′′(𝑌,𝑋�̄�))𝑋
]︀

To define an upper bound on 𝑑2,𝑝(𝑝, 𝑝), we must consider the difference between

the gradients,

∇𝛽 log 𝑝(𝛽)−∇𝛽 log 𝑝(𝛽) =− (𝛽 − �̂�)⊤
{︀
Σ−1

𝛽 − 𝑈𝑈⊤𝑋⊤diag[�⃗�′′(𝑌,𝑋𝑈𝑈⊤�̂�)]𝑋𝑈𝑈⊤}︀
+ (𝛽 − �̄�)⊤

{︀
Σ−1

𝛽 −𝑋⊤diag[�⃗�′′(𝑌,𝑋�̄�)]𝑋
}︀

= (�̂�− �̄�)Σ−1
𝛽 + (𝛽 − �̂�)⊤𝑈𝑈⊤𝑋⊤diag[�⃗�′′(𝑌,𝑋𝑈𝑈⊤�̂�)]𝑋𝑈𝑈⊤

− (𝛽 − �̄�)⊤𝑋⊤diag[�⃗�′′(𝑌,𝑋�̄�)]𝑋.

Appealing to Taylor’s theorem, we can rewrite �⃗�′′(𝑌,𝑋𝑈𝑈⊤�̂�) as

�⃗�′′(𝑌,𝑋𝑈𝑈⊤�̂�) = �⃗�′′(𝑌,𝑋�̄�) + (𝑋𝑈𝑈⊤�̂�−𝑋�̄�) ∘ �⃗�′′′(𝑌,𝐴)

= �⃗�′′(𝑌,𝑋�̄�) + (𝑋𝑈𝑈⊤�̂�−𝑋�̂�+𝑋(�̂�− �̄�)) ∘ �⃗�′′′(𝑌,𝐴)

= �⃗�′′(𝑌,𝑋�̄�)−𝑋�̄��̄�⊤ ∘ �⃗�′′′(𝑌,𝐴) +𝑋(�̂�− �̄�) ∘ �⃗�′′′(𝑌,𝐴)

= �⃗�′′(𝑌,𝑋�̄�) +𝑅,

where the first line follows from Taylor’s theorem by appropriately choosing each

𝐴𝑖 ∈ [𝑥⊤
𝑖 𝑈𝑈⊤�̂�, 𝑥⊤

𝑖 �̄�], and in the fourth line we substitute in 𝑅 := −𝑋�̄��̄�⊤∘�⃗�′′′(𝑌,𝐴)+

𝑋(�̂�− �̄�) ∘ �⃗�′′′(𝑌,𝐴).
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We now can rewrite the difference in the gradients as

∇𝛽 log 𝑝(𝛽)−∇𝛽 log 𝑝(𝛽) = (�̂�− �̄�)Σ−1
𝛽

+ (𝛽 − �̂�)⊤𝑈𝑈⊤𝑋⊤diag[�⃗�′′(𝑌,𝑋�̄�)]𝑋𝑈𝑈⊤

+ (𝛽 − �̂�)⊤𝑈𝑈⊤𝑋⊤diag(𝑅)𝑋𝑈𝑈⊤

− (𝛽 − �̄�)⊤𝑋⊤diag(�⃗�′′(𝑌,𝑋�̄�))𝑋

= (�̂�− �̄�)⊤(Σ−1
𝛽 − 𝑈𝑈⊤𝑋⊤diag[�⃗�′′(𝑌,𝑋�̄�)]𝑋𝑈𝑈⊤)

+ (𝛽 − �̂�)⊤𝑈𝑈⊤𝑋⊤diag(𝑅)𝑋𝑈𝑈⊤

− (𝛽 − �̄�)⊤𝑈𝑈⊤𝑋⊤diag(�⃗�′′(𝑌,𝑋�̄�))𝑋�̄��̄�⊤

− (𝛽 − �̄�)⊤�̄� �̄�⊤𝑋⊤diag(�⃗�′′(𝑌,𝑋�̄�))𝑋𝑈𝑈⊤

− (𝛽 − �̄�)⊤�̄� �̄�⊤𝑋⊤diag(�⃗�′′(𝑌,𝑋�̄�))𝑋�̄��̄�⊤.

Which is obtained by first writing 𝑋⊤diag[�⃗�′′(𝑌,𝑋�̄�)]𝑋 in the fourth line as

(𝑈𝑈⊤𝑋⊤ + �̄� �̄�⊤𝑋⊤)diag[�⃗�′′(𝑌,𝑋�̄�)](𝑋𝑈𝑈⊤ +𝑋�̄��̄�⊤), multiplying through and re-

arranging the resulting terms.

Given this form of the difference in the gradients, we may upper bound its norm as

‖∇𝛽 log 𝑝(𝛽)−∇𝛽 log 𝑝(𝛽)‖2

≤ ‖�̂�− �̄�‖2‖Σ−1
𝛽 − 𝑈𝑈⊤𝑋⊤diag[�⃗�′′(𝑌,𝑋�̄�)]𝑋𝑈𝑈⊤‖2 (B.6.7)

+ ‖𝛽 − �̂�‖2‖𝑈𝑈⊤𝑋⊤diag(𝑅)𝑋𝑈𝑈⊤‖2

+ ‖𝛽 − �̄�‖2‖𝑈𝑈⊤𝑋⊤diag[�⃗�′′(𝑌,𝑋�̄�)]𝑋�̄��̄�⊤+

�̄� �̄�⊤𝑋⊤diag[�⃗�′′(𝑌,𝑋�̄�)]𝑋𝑈𝑈⊤ + �̄� �̄�⊤𝑋⊤diag[�⃗�′′(𝑌,𝑋�̄�)]𝑋�̄��̄�⊤‖2

≤ ‖�̂�− �̄�‖2‖Σ−1
𝛽 − 𝑈𝑈⊤𝑋⊤diag[�⃗�′′(𝑌,𝑋�̄�)]𝑋𝑈𝑈⊤‖2

+ ‖𝛽 − �̂�‖2‖𝑈𝑈⊤𝑋⊤diag(𝑅)𝑋𝑈𝑈⊤‖2

+ ‖𝛽 − �̄�‖2
{︀
‖�̄� �̄�⊤𝑋⊤diag[�⃗�′′(𝑌,𝑋�̄�)]𝑋�̄��̄�⊤‖2+

2‖�̄� �̄�⊤𝑋⊤diag[�⃗�′′(𝑌,𝑋�̄�)]𝑋𝑈𝑈⊤‖2
}︀

by the triangle inequality.

≤ ‖�̂�− �̄�‖2
{︁
‖Σ−1

𝛽 ‖2 + ‖𝑈diag(𝜆)𝑉 ⊤‖2‖diag[�⃗�′′(𝑌,𝑋�̄�)]‖2‖𝑉 diag(𝜆)𝑈⊤‖2
}︁
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+ ‖𝛽 − �̂�‖2‖𝑈diag(𝜆)𝑉 ⊤‖2‖diag(𝑅)‖2‖𝑉 diag(𝜆)𝑈⊤‖2

+ ‖𝛽 − �̄�‖2
{︀
‖�̄�diag(�̄�)𝑉 ⊤‖2‖diag[�⃗�′′(𝑌,𝑋�̄�)]‖2‖𝑉 diag(�̄�)�̄�⊤‖2+

2‖�̄�⊤diag(�̄�)𝑉 ⊤‖2‖diag[�⃗�′′(𝑌,𝑋�̄�)]‖2‖𝑉 diag(𝜆)𝑈⊤‖2
}︀

by again using the triangle inequality, and decomposing 𝑋⊤ into 𝑈diag(𝜆)𝑉 ⊤ + �̄�diag(�̄�)𝑉 ⊤.

≤ ‖�̂�− �̄�‖2
(︀
‖Σ−1

𝛽 ‖2 + 𝜆2
1‖�⃗�′′‖∞

)︀
+ 𝜆2

1‖𝛽 − �̂�‖2‖𝑅‖∞ + (�̄�2
1 + 2𝜆1�̄�1)‖𝛽 − �̄�‖2‖�⃗�′′‖2,

where in the last line we have shortened �⃗�′′(𝑌,𝑋�̄�) to �⃗�′′ for convenience.

Next noting that ‖�̄�− �̂�‖2 ≤ �̄�1𝑐 for 𝑐 := ‖�⃗�′(𝑌,𝑋�̂�)‖2+𝜆1‖�̄�⊤�̂�‖2‖�⃗�′′(𝑌,𝐴)‖∞
𝛼

, where 𝛼 is

the strong log concavity parameter of 𝑝(𝛽|𝑋, 𝑌 ) (which follows from Theorem 3.5.2),

we can see that ‖𝑅‖∞ ≤ �̄�1𝑟 where 𝑟 := (‖𝑈⊤�̂�‖∞‖�⃗�′′′(𝑌,𝐴)‖∞ + 𝜆1𝑐‖�⃗�′′′(𝑌,𝐴)‖∞).

That 𝑟 is bounded follows from the assumption that log 𝑝(𝑦|𝑥, 𝛽) has bounded third

derivatives, an equivalent to a Lipschitz condition on 𝜑′′. We can next simplify this

upper bound to

‖∇𝛽 log 𝑝(𝛽)−∇𝛽 log 𝑝(𝛽)‖2

≤ �̄�1𝑐[‖Σ−1
𝛽 ‖2 + 𝜆2

1‖�⃗�′′‖∞] + 𝜆2
1�̄�1𝑟‖𝛽 − �̂�‖2 + �̄�1(�̄�1 + 2𝜆1)‖𝛽 − �̄�‖2‖�⃗�′′‖∞ (B.6.8)

= �̄�1

[︀
𝑐(‖Σ−1

𝛽 ‖2 + 𝜆2
1‖�⃗�′′‖∞) + 𝜆2

1𝑟‖𝛽 − �̂�‖2 + (�̄�1 + 2𝜆1)‖𝛽 − �̄�‖2‖�⃗�′′‖∞
]︀

≤ �̄�1

[︀
𝑐(‖Σ−1

𝛽 ‖2 + 𝜆2
1‖�⃗�′′‖∞) + 𝜆2

1𝑟‖𝛽 − �̂�‖2 + (�̄�1 + 2𝜆1)(‖�̂�− �̄�‖2 + ‖𝛽 − �̂�‖2)‖�⃗�′′‖∞
]︀

by the triangle inequality.

≤ �̄�1

[︀
𝑐(‖Σ−1

𝛽 ‖2 + 𝜆2
1‖�⃗�′′‖∞) + 𝜆2

1𝑟‖𝛽 − �̂�‖2 + (�̄�1 + 2𝜆1)(�̄�1𝑐+ ‖𝛽 − �̂�‖2)‖�⃗�′′‖∞
]︀

= �̄�1

[︀
𝑐(‖Σ−1

𝛽 ‖2 + 𝜆2
1‖�⃗�′′‖∞) + 𝑐(�̄�2

1 + 2𝜆1�̄�1)‖�⃗�′′‖∞ + (𝜆2
1𝑟 + (�̄�1 + 2𝜆1)‖�⃗�′′‖∞)‖𝛽 − �̂�‖2

]︀
= �̄�1

[︀
𝑐(‖Σ−1

𝛽 ‖2 + (𝜆1 + �̄�1)
2‖�⃗�′′‖∞) + (𝜆2

1𝑟 + (�̄�1 + 2𝜆1)‖�⃗�′′‖∞)‖𝛽 − �̂�‖2
]︀
.

Thus, taking the expectation of this upper bound on the norm squared over 𝛽

with respect to 𝑝 we get

𝑑22,𝑝(𝑝, 𝑝)
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≤ E𝑝(𝛽)

(︃
�̄�2
1

{︂
𝑐
[︁
‖Σ−1

𝛽 ‖2 + (𝜆1 + �̄�1)
2‖�⃗�′′‖∞

]︁
+
[︁
𝜆2
1𝑟 + (�̄�1 + 2𝜆1)‖�⃗�′′‖∞

]︁
‖𝛽 − �̂�‖2

}︂2
)︃

(B.6.9)

≤ 2�̄�2
1E𝑝(𝛽)

{︂
𝑐2
[︁
‖Σ−1

𝛽 ‖2 + (𝜆1 + �̄�1)
2‖�⃗�′′‖∞

]︁2
+
[︁
𝜆2
1𝑟 + (�̄�1 + 2𝜆1)‖�⃗�′′‖∞

]︁2
‖𝛽 − �̂�‖22

}︂
since ∀𝑎, 𝑏 ∈ R, (𝑎+ 𝑏)2 ≤ 2(𝑎2 + 𝑏2)

= 2�̄�2
1

{︂
𝑐2
[︁
‖Σ−1

𝛽 ‖2 + (𝜆1 + �̄�1)
2‖�⃗�′′‖∞

]︁2
+
[︁
𝜆2
1𝑟 + (�̄�1 + 2𝜆1)‖�⃗�′′‖∞

]︁2
E𝑝(𝛽)[‖𝛽 − �̂�‖22]

}︂
= 2�̄�2

1

{︂
𝑐2
[︁
‖Σ−1

𝛽 ‖2 + (𝜆1 + �̄�1)
2‖�⃗�′′‖∞

]︁2
+
[︁
𝜆2
1𝑟 + (�̄�1 + 2𝜆1)‖�⃗�′′‖∞

]︁2
tr(Σ̂)

}︂
.

Next noting that 𝑝 is strongly ‖Σ̄‖−1
2 log-concave, we may apply Theorem B.6.1,

stated below, to obtain that

𝑊2(𝑝, 𝑝) ≤ ‖Σ̄‖2

√︃
2�̄�2

1

{︂
𝑐2
[︁
‖Σ−1

𝛽 ‖2 + (𝜆1 + �̄�1)2‖�⃗�′′‖∞
]︁2

+
[︁
𝜆2
1𝑟 + (�̄�1 + 2𝜆1)‖�⃗�′′‖∞

]︁2
tr(Σ̂)

}︂
≤
√
2�̄�1‖Σ̄‖2

{︂
𝑐
[︁
‖Σ−1

𝛽 ‖2 + (𝜆1 + �̄�1)
2‖�⃗�′′‖∞

]︁
+
[︁
𝜆2
1𝑟 + (�̄�1 + 2𝜆1)‖�⃗�′′‖∞

]︁√︁
tr(Σ̂)

}︂
,

which is our desired upper bound.

Theorem B.6.1. Suppose that 𝑝(𝛽) and 𝑞(𝛽) are twice continuously differentiable

and that 𝑞 is 𝛼-strongly log concave. Then

𝑊2(𝑝, 𝑞) ≤ 𝛼−1𝑑2,𝑝(𝑝, 𝑞),

where 𝑊2 denotes the 2-Wasserstein distance between 𝑝 and 𝑞.

Proof. This follows from Huggins et al. [2018] Theorem 5.2, or similarly from Bolley

et al. [2012] Lemma 3.3 and Proposition 3.10.

B.6.7 Proof of bounded asymptotic error

We here provide a formal statement and proof of Theorem 3.5.7, detailing the required

regularity conditions.
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Theorem B.6.2 (Asymptotic). Assume 𝑥𝑖
i.i.d.∼ 𝑝* for some distribution 𝑝* such that

E𝑝* [𝑥𝑖𝑥
⊤
𝑖 ] exists and is non-singular with diagonalization E𝑝* [𝑥𝑖𝑥

⊤
𝑖 ] = 𝑈⊤

* diag(𝜆)𝑈* +

�̄�⊤
* diag(�̄�)�̄�* such that min(𝜆) > max(�̄�). Additionally, for a strictly concave (in its

second argument), twice differentiable log-likelihood function 𝜑 with bounded second

derivatives (in both arguments) and some 𝛽 ∈ R𝐷, let 𝑦𝑖|𝑥𝑖 ∼ exp{𝜑(𝑦𝑖, 𝑥𝑇
𝑖 𝛽)}. Also,

suppose that E‖𝑦𝑖‖22 < ∞. Then if 𝑝(𝛽) is log-concave and positive on R𝐷, the

asymptotic error (in 𝑁) of the exact relative to approximate maximum a posteriori

parameters, �̂� = lim𝑁→∞ �̂�𝑁 and �̄� = lim𝑁→∞ �̄�𝑁 is finite (where �̂�𝑁 and �̄�𝑁 are

the approximate and exact MAP estimates, respectively, after 𝑁 data-points), i.e.,

lim𝑛→∞ ‖�̂�𝑁 − �̄�𝑁‖ exists and is finite.

Proof. Before beginning, let P denote a Borel probability measure on the sample space

on which our random variables, {𝑥𝑖} and {𝑦𝑖}, are defined such that these random

variables are distributed as assumed according to P. In what follows we demonstrate

the asymptotic error is finite P-almost surely. To this end, it suffices to show that

�̂�𝑁
𝑎.𝑠.→ �̂� and �̄�𝑁

𝑎.𝑠.→ �̄� for some �̂�, �̄� in R𝐷.

Strong convergence of the exact MAP (�̄�𝑁
𝑎.𝑠.→ �̄�)

This follows from Doob’s consistency theorem [Van der Vaart, 2000, Theorem 10.10].

The only nuance required in the application of this theorem here is that we must

accommodate the regression setting. However by constructing a single measure P

governing both the covariates and responses, this simply becomes a special case of the

usual theorem for unconditional models.

Strong convergence of the approximate MAP (�̂�𝑁
𝑎.𝑠.→ �̂�)

In contrast to the strong consistency of �̄�𝑁 , showing convergence of �̂�𝑁 requires more

work. This is because we cannot rely on standard results such as Bernstein–Von Mises

or Doob’s consistency theorem, which require correct model specification. Since we

have introduced the likelihood approximation 𝑝(𝑦|𝑥, 𝛽) ̸= 𝑝(𝑦|𝑥, 𝛽), the vector �̂�𝑁 is

the MAP estimate under a misspecified model.
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We demonstrate almost sure convergence in two steps; first we show that 𝑈⊤
* �̂�𝑁

converges almost surely to some 𝛾* ∈ R𝑀 ; then we show that �̂�𝑁 = 𝑈*𝑈
⊤
* �̂�𝑁+�̄�𝑁 �̄�

⊤
𝑁 �̂�𝑁

must converge as a result. Since 𝑈𝑁𝑈
⊤
𝑁

𝑎.𝑠.→ 𝑈*𝑈
⊤
* (as follows from entry-wise almost

sure convergence of 1
𝑁
𝑋⊤𝑋 → E𝑝* [𝑥𝑖𝑥

⊤
𝑖 ] and the Davis–Kahan Theorem [Davis and

Kahan, 1970]), this guarantees strong convergence of �̂�𝑁 = 𝑈𝑁𝑈
⊤
𝑁 �̂�𝑁 + �̄�𝑁 �̄�

⊤
𝑁 �̂�𝑁 .

Part I: strong convergence of the projected approximate MAP, 𝑈*�̂�𝑁
𝑎.𝑠.→

𝛾*

Let 𝑈* ∈ R𝐷,𝑀 be the top 𝑀 eigenvectors of E𝑝* [𝑥𝑖𝑥
⊤
𝑖 ], and recall that by as-

sumption for any 𝑦, 𝜑(𝑦, 𝑥𝑇
𝑖 𝛽) is a strictly concave function of 𝑥⊤

𝑖 𝛽, in the sense

that for any 𝑦 and any 𝑏, 𝑏′ in R and 𝑡 in (0, 1) with 𝑏 ̸= 𝑏′, 𝜑(𝑦, 𝑡𝑏 + (1 − 𝑡)𝑏′) >

𝑡𝜑(𝑦, 𝑏) + (1 − 𝑡)𝜑(𝑦, 𝑏′). Then by Lemma B.6.2 we have that there is a unique

maximizer 𝛾* = argmax𝛾∈𝑅𝑀 E[𝜑(𝑦, 𝑥⊤𝑈*𝛾)]

We next note that the Hessian of the expected approximate negative log likelihood

with respect to 𝛾 is positive definite everywhere,

∇2
𝛾−E𝑦∼𝑝(𝑦|𝑥,𝛽),𝑥∼𝑝* [𝜑(𝑦, 𝑥

⊤𝑈*𝛾)]

= −E[
(︀
∇𝛾𝜑

′(𝑦, 𝑥⊤𝑈*𝛾)
)︀
𝑥⊤𝑈*] = −𝑈⊤

* E[𝑥𝜑′′(𝑦, 𝑥⊤𝑈*𝛾)𝑥
⊤]𝑈* ≻ 0

since the strict log concavity and twice differentiability of 𝜑 ensure that

−E[𝑥𝜑′′(𝑦, 𝑥⊤𝑈*𝛾)𝑥
⊤] ≻ 0

.

Now consider any compact neighborhood 𝐾 ⊂ R𝑀 containing 𝛾* as an interior point.

Then, by Lemma B.6.3 the set ℱ = {𝑓𝛾 : 𝑋 ×𝑌 → R, (𝑥, 𝑦) ↦→ 𝜑(𝑦, 𝑥⊤𝑈*𝛾)|𝛾 ∈ 𝐾} is

P-Glivenko–Cantelli. As such sup𝑓𝛾∈ℱ |
1
𝑁

∑︀𝑁
𝑖=1 𝑓𝛾(𝑥𝑖, 𝑦𝑖)−E[𝑓𝛾(𝑥𝑖, 𝑦𝑖)]|

𝑎.𝑠.→ 0, that is to

say, the empirical average log-likelihood converges uniformly to its expectation across

all 𝛾 ∈ 𝐾. As a result, we have that for 𝛾𝑁 := argmax𝛾∈𝐾 log 𝑝(𝑈*𝛽 = 𝛾|𝑋, 𝑌 ) =

argmax𝛾∈𝐾
1
𝑁

[︀
log 𝑝(𝑈𝑇

* 𝛽 = 𝛾) +
∑︀𝑁

𝑖=1 𝜑(𝑦𝑖, 𝑥
⊤
𝑖 𝑈*𝛾)

]︀
, 𝛾𝑁

𝑎.𝑠.→ 𝛾*.

It remains in this part only to show that convergence of the approximate MAP
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parameter within this subset 𝐾 implies convergence of 𝑈⊤
* �̂�, the approximate MAP

parameter (across all of R𝑀). However, this follows immediately from the strict log

concavity of the posterior; because 𝛾* ∈ 𝐾∘, for 𝑁 large enough each 𝛾𝑁 ∈ 𝐾∘ and we

may construct a sub-level set such that 𝛾𝑁 ∈ 𝐶𝑁 ⊂ 𝐾 such that ∀𝛾 /∈ 𝐶𝑁 , log 𝑝(𝑈
⊤
* 𝛽 =

𝛾) +
∑︀𝑁

𝑖=1 𝜑(𝑦𝑖, 𝑥
⊤
𝑖 𝑈*𝛾) < log 𝑝(𝑈⊤

* 𝛽 = 𝛾𝑁) +
∑︀𝑁

𝑖=1 𝜑(𝑦𝑖, 𝑥
⊤
𝑖 𝑈*𝛾𝑁).

Part II: convergence of �̄�*�̄�
⊤
* �̂�𝑁 + 𝑈*𝛾

Using the result of Part I, we can write that �̂�𝑁 = 𝑈*𝑈
⊤
* �̂�𝑁 + �̄�*�̄�

⊤
* �̂�𝑁 →

𝑈*𝛾
* + �̄�*�̄�

⊤
* �̂�𝑁 . However, since �̄�*�̄�

⊤
* 𝛽 ⊥ 𝑋, 𝑌 |𝑈⊤

* 𝛽 under P, convergence of

𝑈⊤
* �̂�𝑁 → 𝛾* implies convergence of argmax�̄�⊤

* 𝛽 𝑝(�̄�
⊤
* 𝛽|𝑈⊤

* 𝛽 = 𝑈⊤
* �̂�𝑁 , 𝑋, 𝑌 ) =

argmax�̄�⊤
* 𝛽 𝑝(�̄�

⊤
* 𝛽|𝑈⊤

* 𝛽 = 𝑈⊤
* ) to some �̄�⊤

* �̂�𝑁 since continuity of 𝑝(𝛽) and 𝑝(𝑌 |𝑋, 𝛽)

imply continuity of the arg-max. Thus both �̂�𝑁 and �̄�𝑁 converge, guaranteeing

convergence of the asymptotic error.

Lemma B.6.2. For any 𝜑(·, ·) which is strictly concave in its second argument, if

there is a global maximizer 𝛽* = argmax𝛽∈R𝐷 𝑉 (𝛽) = E𝑥∼𝑝*,𝑦∼𝑝(𝑦|𝑥,𝛽)[𝜑(𝑦, 𝑥
⊤𝛽)], then

there is a unique global maximizer,

𝛾* = argmax
𝛾∈R𝑀

𝑉 (𝑈*𝛾)

Proof. We first note that 𝑉 (·) must have bounded sub-level sets. Thus 𝑊 (·) := 𝑉 (𝑈*·)

must also have bounded sub-level sets since 𝑉 −1([𝑎,∞]) = {𝛽|𝑉 (𝛽) ≥ 𝑎} ⊃ {𝛽|∃𝛾 ∈

R𝑀 𝑠.𝑡. 𝛽 = 𝑈*𝛾 𝑎𝑛𝑑 𝑉 (𝑈*𝛾) ≥ 𝑎} = 𝑈*𝑊
−1([𝑎,∞]). Thus, since 𝑊 is strictly

concave and has bounded sub-level sets, it has a unique maximizer.

Lemma B.6.3. Let 𝐾 ⊂ R𝑀 be compact and denote by 𝑋 and 𝑌 the domains of the

covariates and responses, respectively. Then under the assumptions of Theorem B.6.2,

the set ℱ = {𝑓𝛾 : 𝑋 × 𝑌 → R, (𝑥, 𝑦) ↦→ 𝜑(𝑦, 𝑥⊤𝑈𝛾)|𝛾 ∈ 𝐾} is P-Glivenko–Cantelli.

Proof. This result follows from Theorem 19.4 in Van der Vaart [2000], and builds

from example 19.7 of the same reference; in particular, the condition of bounded

second derivatives of 𝜑 implies that for any 𝑓𝛾, 𝑓𝛾′ in ℱ and 𝑥 in 𝑋, 𝑦 in 𝑌 , we have

|𝑓𝛾(𝑥, 𝑦) − 𝑓𝛾′(𝑥, 𝑦)| ≤ 𝐶‖𝑥‖22. The previous condition is sufficient to ensure finite
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bracketing numbers, and the result follows. Notably, in keeping with example 19.7 we

have that for all 𝑥, 𝑦 and for all 𝛾 and 𝛾′ in 𝐾,

‖𝑓𝛾(𝑥, 𝑦)− 𝑓𝛾′(𝑥, 𝑦)| = |
∫︁ 𝑥⊤𝑈𝛾

𝑥⊤𝑈𝛾′
𝜑′(𝑦, 𝑎)𝑑𝑎‖

= ‖
∫︁ 𝑥⊤𝑈𝛾

𝑥⊤𝑈𝛾′
𝜑′(𝑦, 𝑥⊤𝑈𝛾′) +

∫︁ 𝑎

𝑥⊤𝑈𝛾′
𝜑′′(𝑦, 𝑏)𝑑𝑏 𝑑𝑎‖

≤ ‖𝑥⊤𝑈(𝛾 − 𝛾′)𝜑′(𝑦, 𝑥⊤𝑈𝛾′)‖2 +
1

2
‖𝑥⊤𝑈(𝛾 − 𝛾′)‖22 sup

𝑎∈R
𝜑′′(𝑦, 𝑎)

≤ ‖𝑥⊤𝑈‖2(‖𝑦‖2 + ‖𝑥⊤𝑈‖2‖𝛾′‖2)𝜑′′
max‖𝛾 − 𝛾′‖2

+
1

2
‖𝑥⊤𝑈‖22‖𝛾 − 𝛾′‖22𝜑′′

max

≤
[︀3
2
‖𝑥⊤𝑈‖22diam(𝐾)𝜑′′

max + ‖𝑥⊤𝑈‖2‖𝑦‖2𝜑′′
max

]︀
‖𝛾 − 𝛾′‖2

≤ 𝐶(‖𝑥⊤𝑈‖22 + ‖𝑥⊤𝑈‖2‖𝑦‖2)‖𝛾 − 𝛾′‖2,

(B.6.10)

where in the first and second lines we use the fundamental theorem of calculus, and in

the fourth and fifth lines we rely on the boundedness of the second derivatives of 𝜑

and that the compactness subsets of R𝑀 implies boundedness. In the final line 𝐶 is

an absolute constant.

Finally, we note that EP‖𝑥⊤𝑈‖22 <∞ since EP‖𝑥⊤𝑈‖22 = EP𝑥
⊤𝑈𝑈⊤𝑥 < EP𝑥

⊤𝑥 =

Tr(E𝑝*𝑥𝑥
⊤) <∞, and by Cauchy Schwartz, EP‖𝑥⊤𝑈‖2‖𝑦‖2 ≤

√︀
EP‖𝑥⊤𝑈‖22EP‖𝑦‖22 ≤

∞. This confirms (as in example 19.7 Van der Vaart [2000]) that for all 𝜖 > 0, the

𝜖-bracketing number of ℱ is finite. By Theorem 19.4 of Van der Vaart [2000], this

proves that ℱ is P-Glivenko-Cantelli.
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B.6.8 Factorized Laplace approximations underestimate marginal

variances

We here illustrate that the factorized Laplace approximation underestimates marginal

variances. Consider for simplicity the case of a bivariate Gaussian with

Σ =

⎡⎢⎣𝑎 𝑏

𝑏 𝑐

⎤⎥⎦ ,

for which the Hessian evaluated anywhere is

Σ−1 =
1

𝑎𝑐− 𝑏2

⎡⎢⎣ 𝑐 −𝑏

−𝑏 𝑎

⎤⎥⎦ .

Ignoring off diagonal terms and inverting to approximate Σ𝑁 , as is done by a diagonal

Laplace approximation, yields:

Σ̃ =

⎡⎢⎣𝑎− 𝑏2

𝑐
0

0 𝑐− 𝑏2

𝑎

⎤⎥⎦ .

This approximation reports marginal variances which are lower than the exact marginal

variances.

That this approximation underestimates marginal variances in the more general

𝐷 > 2 dimensional case may be easily seen from considering the block matrix inversion

of Σ, with blocks of dimension 1× 1, (𝐷− 1)× 1, 1× (𝐷− 1) and (𝐷− 1)× (𝐷− 1),

and noting that the Schur complement of a positive definite covariance matrix will

always be positive definite.

B.7 LR-MCMC

We provide the LR-MCMC algorithm for performing fast MCMC in generalized linear

models with low-rank data approximations.
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Algorithm 6 LR-MCMC for Bayesian inference in GLMs with low-rank data approx-
imations.
1: Input: prior 𝑝(𝛽), data 𝑋 ∈ R𝑁,𝐷, rank 𝑀 ≪ 𝐷, GLM mapping 𝜑, MCMC transition kernel

𝑞(·, ·), number of MCMC iterations 𝑇 . Time and memory complexities that are not included
depend on the specific choice of MCMC transition kernel.

2: Pseudo-Code 3: Time Complexity 4: Memory Com-
plexity

5: Data preprocessing — 𝑀 -Truncated SVD
6: 𝑈,diag(𝜆), 𝑉 := truncated-SVD(𝑋⊤,𝑀) 𝑂(𝑁𝐷𝑀) 𝑂(𝑁𝑀 +

𝐷𝑀)
7: 𝑋𝑈 = 𝑋𝑈 𝑂(𝑁𝑀) 𝑂(𝑁𝐷𝑀)

8: Propose 𝛽(𝑡) ∈ R𝐷, compute likelihood
9: 𝛽(𝑡) ∼ 𝑞(𝛽(𝑡), 𝛽(𝑡−1)) — —

10: ℒ𝑡 :=
∑︀𝑁

𝑖=1 𝜑(𝑦𝑖, 𝑥
⊤
𝑖 𝑈𝑈⊤𝛽(𝑡)) + log 𝑝(𝛽(𝑡)) 𝑂(1) 𝑂(𝑁𝑀 +

𝑀𝐷)

11: Accept or Reject

12: Acceptance probability 𝑝𝐴 := min
(︁
1, ℒ𝑡

ℒ𝑡−1

)︁
𝑂(1) 𝑂(1)

13: Accept 𝛽(𝑡) with probability 𝑝𝐴 𝑂(1) 𝑂(1)

14: Repeat steps 3-6 for 𝑇 iterations

The transition in Line 9 may additionally benefit from the LR-GLM approximation.

In particular, widely used algorithms such as Hamiltonian Monte Carlo and the No-U-

Turn Sampler rely on many 𝑂(𝑁𝐷)-time likelihood and gradient evaluations, the cost

of which can be reduced to 𝑂(𝑁𝑀 +𝐷𝑀) with LR-GLM. An implementation of this

approximation is given in the Stan model in Appendix B.1.3 with performance results

in Figures B.1.3 and B.1.6.

B.8 LR-Laplace with non-Gaussian priors

As discussed in the main text, we can maintain computational advantages of LR-GLM

even when we have non-Gaussian priors. This admits the procedure provided in

Algorithm 7.

In order for this more general LR-Laplace algorithm to be computationally efficient,

we still require that the prior have some properties which can accommodate efficiency.

In particular Line 11 demands that the Hessian of the prior is computed and inverted,

2To keep notation concise we use �⃗�′′
�̂� to denote �⃗�′′(𝑌,𝑋𝑈𝑈⊤�̂�)
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Algorithm 7 LR-Laplace for Bayesian inference in GLMs with low-rank data ap-
proximations and twice differentiable prior. Time and memory complexities which are
not included depend on the choice of prior and optimisation method, which can be
problem specific.
1: Input: twice differentiable prior 𝑝(𝛽), data 𝑋 ∈ R𝑁,𝐷, rank 𝑀 ≪ 𝐷, GLM mapping 𝜑 with 𝜑′′

(see Eq. (3.5) and Section 3.5.1)
2: Pseudo-Code 3: Time Complexity 4: Memory Com-

plexity
5: Data preprocessing — 𝑀 -Truncated SVD
6: 𝑈,diag(𝜆), 𝑉 := truncated-SVD(𝑋𝑇 ,𝑀) 𝑂(𝑁𝐷𝑀) 𝑂(𝑁𝑀 +

𝐷𝑀)

7: Optimize to find approximate MAP estimate (in 𝐷-dimensional space)
8: �̂� := argmax𝜇∈R𝐷

∑︀𝑁
𝑖=1 𝜑(𝑦𝑖, 𝑥𝑖𝑈𝑈⊤𝜇)+log 𝑝(𝛽 =

𝜇) — —

9: Compute approximate posterior covariance2

10: Σ̂−1 := −∇2
𝛽 log 𝑝𝛽(�̂�)− 𝑈𝑈⊤𝑋⊤diag(�⃗�′′

�̂�)𝑋𝑈𝑈⊤ — —
11: 𝐾 := [∇2

𝛽 log 𝑝(𝛽)|𝛽=�̂�]
−1 — —

12: Σ̂ := −𝐾 + 𝐾𝑈
(︀
[𝑈⊤𝑋⊤diag(�⃗�′′

�̂�)𝑋𝑈 ]−1 +

𝑈⊤𝐾𝑈
)︀−1

𝑈⊤𝐾 — —

13: Compute variances and covariances of parameters
14: Var𝑝(𝛽𝑖) = 𝑒⊤𝑖 Σ̂𝑒𝑖 — —
15: Cov𝑝(𝛽𝑖, 𝛽𝑗) = 𝑒⊤𝑖 Σ̂𝑒𝑗 — —

as will true even in the high-dimensional setting when, for example, the prior factorizes

across dimensions. Additionally, properties of the prior such as log concavity will

facilitate efficient optimisation in Line 8.

187



Appendix C

Coupling Supplementary Materials

C.1 Proof of Gibbs Sweep Time Complexity

We here detail our 𝑂(𝑁 ̃︀𝐾3 log ̃︀𝐾) implementation of Algorithm 5. This serves as

proof of Theorem 4.2.1.

Note that work in Algorithm 5 may be separated into 2 computationally demanding

stages for each of the 𝑁 data-points, 𝑛 ∈ [𝑁 ]; computing the distances between each

pair of partitions in the Cartesian product of supports of the Gibbs conditionals

𝑝Π|Π−𝑛(·|𝜋−𝑛) and 𝑝Π|Π−𝑛(·|𝜈−𝑛) and solving the optimal transport problem in line

7. As discussed in Remark 4.2.2, the optimal transport problem may be solved in

𝑂(𝐾3 log𝐾) time, and is the bottleneck step. As such it remains only to show that

for each 𝑛 ∈ [𝑁 ], the pairwise distances may also be computed in 𝑂(𝐾3 log𝐾) time.

Recall that for two partitions 𝜋, 𝜈 ∈ 𝒫𝑁 the metric of interest is

d(𝜋, 𝜈) =
∑︁
𝐴∈𝜋

|𝐴|2 +
∑︁
𝐵∈𝜈

|𝐵|2 − 2
∑︁

(𝐴,𝐵)∈𝜋×𝜈

|𝐴 ∩𝐵|2. (C.1.1)

However, it is not obvious from this expression alone that fast computation of

pairwise distances should be possible. We make this explicit in the following remark.

Remark C.1.1. Given constant 𝑂(1) time for querying set membership (e.g. as provided

by a standard hash-table set implementation), for 𝜋, 𝜈 ∈ 𝒫𝑁 , 𝑑(𝜋, 𝜈) in Eq. (4.2) may

be computed in 𝑂
(︀
𝑁 min(|𝜋|, |𝜈|)

)︀
time. If we let ̃︀𝐾 be the number of groups, so
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that ̃︀𝐾 ≈ min(|𝜋|, |𝜈|), this gives 𝑂(𝑁 ̃︀𝐾) time.

While this is certainly faster than a naive approach relying on the formulation

of this metric based on adjacency matrices, it is still not sufficient, as it is a factor

of 𝑁 ̃︀𝐾2 slower than the original (recall that we will need to do this for ̃︀𝐾2 pairs of

clusters assignments).

However we can do better for the Gibbs update by making two observations. First,

if we use 𝐴𝑛 and 𝐵𝑛 to denote the elements of 𝜋 and 𝜈, respectively, containing

data-point 𝑛, then for any 𝑛 we may write

𝑑(𝜋, 𝜈) = 𝑑(𝜋−𝑛, 𝜈−𝑛) +
[︀
|𝐴𝑛|2 − (|𝐴𝑛| − 𝑛)2

]︀
+
[︀
|𝐵𝑛|2 − (|𝐵𝑛| − 𝑛)2

]︀
(C.1.2)

−2
[︀
|𝐴𝑛 ∩𝐵𝑛|2 − (|𝐴𝑛 ∩𝐵𝑛| − 1)2

]︀
(C.1.3)

= 𝑑(𝜋−𝑛, 𝜈−𝑛) + 2
[︀
|𝐴𝑛|+ |𝐵𝑛| − 2|𝐴𝑛 ∩𝐵𝑛|

]︀
. (C.1.4)

Second, the solution to the optimisation problem in Eq. (4.3) is unchanged when we

add a constant value to every distance: Using again the notation of Algorithm 5 we let

𝑞 := 𝑝Π|Π−𝑛(·|𝜋−𝑛) and 𝑟 := 𝑝Π|Π−𝑛(·|𝜈−𝑛) with supports (𝜋1, 𝜋2, . . . , 𝜋𝐾) = support(𝑞)

and (𝜈1, 𝜈2, . . . , 𝜈𝐾′) = support(𝑟). and rewrite

𝛾* := arg min
𝛾∈Γ(𝑞,𝑟)

∑︁
∈𝒫𝑁

∑︁
𝑦∈𝒫𝑁

𝑑(𝑥, 𝑦)𝛾(𝑥, 𝑦) (C.1.5)

= arg min
𝛾∈Γ(𝑞,𝑟)

∑︁
𝑥∈𝒫𝑁

∑︁
𝑦∈𝒫𝑁

(𝑑(𝑥, 𝑦)− 𝑐)𝛾(𝑥, 𝑦) (C.1.6)

for any constant 𝑐; taking 𝑐 = 𝑑(𝜋−𝑛, 𝜈−𝑛) reveals that we need only compute the

second term in Eq. (C.1.2).

At first it may seem that this still does not solve the problem, as directly computing

the size of the set intersections is 𝑂(𝑁) (if cluster sizes scale as 𝑂(𝑁)). However,

Eq. (C.1.5) is just our final stepping stone. If we additionally keep track of sizes of

intersections at every step, updating them as we adapt the partitions will take constant

time for each update. As such, we are able to form the matrix of pairwise distances

in 𝑂( ̃︀𝐾2) time. Regardless of 𝑁 , this moves the bottleneck step to solving the OT
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problem which, as discussed in Remark 4.2.2, may be computed in 𝑂( ̃︀𝐾3 log ̃︀𝐾) time

with Orlin’s algorithm [Orlin, 1993]. We provide a practical implementation of this

approach in our code; see pairwise_dists() in modules/utils.py.

C.2 Additional Experimental Details

C.2.1 Meeting time distributions

DP mixtures. For each replicate, we simulated 𝑁 = 150 data-points from a 𝐾 = 4

component, 2 dimensional Gaussian mixture model. The target distribution was the

posterior of the probabilistic model Eq. (4.4), with Σ0 = 2.5𝐼2, Σ1 = 2𝐼2 and 𝛼 = 0.2.

For each replicate true means for the finite mixture were sampled as 𝜇𝑘 ∼ 𝒩 (0,Σ0),

mixing proportions as 𝜃 ∼ Dir(𝛼1𝐾), and each of the 𝑛 ∈ [𝑁 ] observations as

𝑧𝑛 ∼ Cat(𝜃), 𝒟𝑛 ∼ 𝒩 (𝜇𝑧𝑛 ,Σ1). See notebooks/Coupled_CRP_sampler.ipynb for

complete implementation and details. This code is adapted from

github.com/tbroderick/mlss2015_bnp_tutorial/blob/master/ex5_dpmm.R

Graph coloring Let 𝐺 be an undirected graph with vertices 𝑉 = [𝑁 ] and edges

𝐸 ⊂ 𝑉 ⊗ 𝑉, and let 𝑄 = [𝑞] be set of 𝑞 colors. A graph coloring is an assignment of

a color in 𝑄 to each vertex satisfying that the endpoints of each edge have different

colors. We here demonstrate an application of our method to a Gibbs sampler which

explores the uniform distribution over valid 𝑞−colorings of 𝐺, i.e. the distribution

which places equal mass on ever proper coloring of 𝐺.

To employ Algorithm 5, for this problem we need only to characterise the PMF on

partitions of the vertices implied by the uniform distribution on its colorings.

A partition corresponds to a proper coloring only if no two adjacent vertices are in

the element of the partition. As such, we can write

𝑝Π𝑁
(𝜋) ∝ 1{|𝜋| ≤ 𝑞 and 𝐴(𝜋)𝑖,𝑗 = 1→ (𝑖, 𝑗) ̸∈ 𝐸, ∀𝑖 ̸= 𝑗}

(︂
𝑞

|𝜋|

)︂
|𝜋|!,

where the indicator term checks that 𝜋 can correspond to a proper coloring and the
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second term accounts for the number of unique colorings which induce the partition 𝜋.

In particular it is the product of the number of ways to choose |𝜋| unique colors from

𝑄 (
(︀

𝑞
|𝜋|

)︀
:= 𝑞!

|𝜋|!(𝑞−|𝜋|)!) and the number of ways to assign those colors to the groups of

vertices in 𝜋.

For the experiments in Figure 4-1, we simulated Erdős-Rényi random graphs with

𝑁 = 25 vertices, and including each possible edge with probability 0.2. We chose a

maximum number of colors 𝑄 by first initializing a coloring greedily and setting 𝑄 as the

number of colors used in this initial coloring plus two. See notebooks/coloring_OT.ipynb

for complete implementation and results. This code is adapted from:

github.com/pierrejacob/couplingsmontecarlo/inst/chapter3/3graphcolourings.R

C.2.2 Unbiased estimation

Predictive density in Gaussian mixture data. The true density is a 10-

component Gaussian mixture model with known observational noise variance 𝜎 = 2.0.

The cluster proportions were generated from a symmetric Dirichlet distribution with

mass 1 for all 10-coordinates. The cluster means were randomly generated from

𝒩 (0, 102). The target DP mixture model had 𝛼 = 1, standard deviation over cluster

means 3.0 and standard deviation over observations 2.0. The function of interest is

the posterior predictive density

Pr(𝒟𝑁+1 ∈ 𝑑𝑥 | 𝒟1:𝑁) =
∑︁
Π𝑁+1

Pr(𝒟𝑁+1 ∈ 𝑑𝑥 |Π𝑁+1,𝒟1:𝑁) Pr(Π𝑁+1 | 𝒟1:𝑁). (C.2.1)

In Eq. (C.2.1), Π𝑁+1 denotes the partition of the data 𝒟1:(𝑁+1). To translate Eq. (C.2.1)

into an integral over just the posterior over Π𝑁 , the partition of 𝒟1:𝑁 , we break up

Π𝑁+1 into (Π𝑁 , 𝑍) where 𝑍 is the cluster indicator specifying the cluster of Π𝑁 (or a

new cluster) to which 𝒟𝑁+1 belongs. Then

Pr(𝒟𝑁+1 ∈ 𝑑𝑥 | 𝒟1:𝑁) =
∑︁
Π𝑁

⎡⎣∑︁
𝑍

Pr(𝒟𝑁+1 ∈ 𝑑𝑥, 𝑍 |Π𝑁 ,𝒟1:𝑁)

⎤⎦Pr(Π𝑁 | 𝒟1:𝑁)
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Each Pr(𝒟𝑁+1 ∈ 𝑑𝑥, 𝑍 |Π𝑁 ,𝒟1:𝑁 ) is computed using the prediction rule for the CRP

and Gaussian conditioning. Namely

Pr(𝒟𝑁+1 ∈ 𝑑𝑥, 𝑍 |Π𝑁 ,𝒟1:𝑁) = Pr(𝒟𝑁+1 ∈ 𝑑𝑥 |𝑍,Π𝑁 ,𝒟1:𝑁)⏟  ⏞  
Posterior predictive of Gaussian

× Pr(𝑍 |Π𝑁)⏟  ⏞  
CRP prediction rule

.

The first term is computed with the function used during Gibbs sampling to reassign

data points to clusters. In the second term, we ignore the conditioning on 𝒟1:𝑁 , since

𝑍 and 𝒟1:𝑁 are conditionally independent given Π𝑁 .

We ran 10,000 replicates of the time-budgeted estimator using coupled chains, each

replicate given a sufficient time budget so that all 10,000 replicates had at least one

successful meeting in the allotted time.

Top component proportion in single-cell RNAseq. We extracted 𝐷 = 50 genes

with the most variation of 𝑁 = 200 cells. We then take the log of the features, and

normalize so that each feature has mean 0 and variance 1. We as our target the posterior

of the probabilistic model in Eq. (4.4) with 𝛼 = 1.0, 𝜇0 = 0, Σ0 = 0.5, Σ1 = 1.3𝐼𝐷.

Notably, this is a simplification of the set-up considered by Prabhakaran et al. [2016],

who work with a larger dataset and additionally perform fully Bayesian inference over

these hyper-parameters. In our experiments, the function of interest is the posterior

expected of the proportion of cells in the largest cluster i.e. E[max|𝐴|∈𝜋 |𝐴|/𝑁 | 𝒟].

C.3 More plots of predictive density

C.3.1 Posterior concentration implies convergence in total vari-

ation of predictive density

Some references on posterior concentration are Ghosal et al. [1999], Lijoi et al. [2005].

The true data generating process is that there exists some density 𝑓0 w.r.t. Lebesgue

measure that generates the data in an iid manner 𝑋1, 𝑋2, . . . , 𝑋𝑛. We use the notation

𝑃𝑓0 to denote the probability measure with density 𝑓0. The probabilistic model is that
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we have a prior Π over densities 𝑓 , and observations 𝑋𝑖 are conditionally iid given 𝑓 .

Let ℱ be the set of all densities on R. For any measurable subset 𝐴 of ℱ , the posterior

of 𝐴 given the observations 𝑋𝑖 is denoted Π(𝐴|𝑋1:𝑁 ). A strong neighborhood around

𝑓0 is any subset of ℱ containing a set of the form 𝑉 = {𝑓 ∈ ℱ :
∫︀
|𝑓 − 𝑓0| < 𝜖}

according to Ghosal et al. [1999]. The prior Π is strongly consistent at 𝑓0 if for any

strong neighborhood 𝑈 ,

lim
𝑛→∞

Π(𝑈 |𝑋1:𝑛) = 1, (C.3.1)

holds almost surely for 𝑋1:∞ distributed according to 𝑃∞
𝑓0

.

Theorem C.3.1 (Ghosh and Ramamoorthi [2003, Proposition 4.2.1]). If a prior Π is

strongly consistent at 𝑓0 then the predictive distribution, defined as

̂︀𝑃𝑛(𝐴 | 𝑋1:𝑛) :=

∫︁
𝑓

𝑃𝑓 (𝐴)Π(𝑓 | 𝑋1:𝑛) (C.3.2)

also converges to 𝑓0 in total variation in a.s. 𝑃∞
𝑓0

𝑑𝑇𝑉

(︁ ̂︀𝑃𝑛, 𝑃𝑓0

)︁
−→ 0.

The definition of posterior predictive density in Eq. (C.3.2) can equivalently be

rewritten as ̂︀𝑃𝑛(𝐴 | 𝑋1:𝑛) = Pr(𝑋𝑛+1 ∈ 𝐴 |𝑋1:𝑛),

since 𝑃𝑓 (𝐴) = 𝑃𝑓 (𝑋𝑛+1 ∈ 𝐴) and all the 𝑋’s are conditionally iid given 𝑓 .

Theorem C.3.2 (DP mixtures prior is consistent for finite mixture models). Let

the true density be a finite mixture model 𝑓0(𝑥) :=
∑︀𝑚

𝑖=1 𝑝𝑖𝒩 (𝑥|𝜃𝑖, 𝜎2
1). Consider the

following probabilistic model

̂︀𝑃 ∼ DP(𝛼,𝒩 (0, 𝜎2
0))

𝜃𝑖 | ̂︀𝑃 𝑖𝑖𝑑∼ ̂︀𝑃 𝑖 = 1, 2, . . . , 𝑛

𝑋𝑖 | 𝜃𝑖
𝑖𝑛𝑑𝑒𝑝∼ 𝒩 (𝜃𝑖, 𝜎

2
1) 𝑖 = 1, 2, . . . , 𝑛
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Let ̂︀𝑃𝑛 be the posterior predictive distribution of this generative process. Then with

a.s. 𝑃𝑓0

𝑑𝑇𝑉

(︁ ̂︀𝑃𝑛, 𝑃𝑓0

)︁
𝑛→∞−−−→ 0.

Proof of Theorem C.3.2. First, we can rewrite the DP mixture model as a generative

model over continuous densities 𝑓

̂︀𝑃 ∼ DP(𝛼,𝒩 (0, 𝜎2
0))

𝑓 = 𝒩 (0, 𝜎2
1) * ̂︀𝑃

𝑋𝑖 | 𝑓
𝑖𝑖𝑑∼ 𝑓 𝑖 = 1, 2, . . . , 𝑛

(C.3.3)

where 𝒩 (0, 𝜎2
1) * ̂︀𝑃 is a convolution, with density 𝑓(𝑥) :=

∫︀
𝜃
𝒩 (𝑥− 𝜃|0, 𝜎2

1)𝑑 ̂︀𝑃 (𝜃).

The main idea is showing that the posterior Π(𝑓 |𝑋1:𝑛) is strongly consistent and

then leveraging Theorem C.3.1. For the former, we verify the conditions of Lijoi et al.

[2005, Theorem 1].

The first condition of Lijoi et al. [2005, Theorem 1] is that 𝑓0 is in the K-L support

of the prior over 𝑓 in Eq. (C.3.3). We use Ghosal et al. [1999, Theorem 3]. Clearly 𝑓0 is

the convolution of the normal density 𝒩 (0, 𝜎2
1) with the distribution 𝑃 (.) =

∑︀𝑚
𝑖=1 𝑝𝑖𝛿𝜃𝑖 .

𝑃 (.) is compactly supported since 𝑚 is finite. Since the support of 𝑃 (.) is the set

{𝜃𝑖}𝑚𝑖=1 which belongs in R, the support of 𝒩 (0, 𝜎2
0), by Ghosh and Ramamoorthi

[2003, Theorem 3.2.4], the conditions on 𝑃 are satisfied. The condition that the

prior over bandwidths cover the true bandwidth is trivially satisfied since we perfectly

specified 𝜎1.

The second condition of Lijoi et al. [2005, Theorem 1] is simple: because the prior

over ̂︀𝑃 is a DP, it reduces to checking that

∫︁
R
|𝜃|𝒩 (𝜃 | 0, 𝜎2

0) <∞

which is true.

The final condition trivial holds because we have perfectly specified 𝜎1: there is

actually zero probability that 𝜎1 becomes too small, and we never need to worry about
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(a) 𝑁 = 100. (b) 𝑁 = 200. (c) 𝑁 = 300.

Figure C.3.1: Posterior predictive density for different 𝑁 . The time budget for each
replicate when 𝑁 = 100, 200, 300 is respectively 100, 300, 800 seconds. We average the
results from 400 replicates.

setting 𝛾 or the sequence 𝜎𝑘.

C.3.2 Predictive density plots for varying N

In Figure C.3.1, the distance between the posterior predictive density and the under-

lying density decreases as 𝑁 increases. We sampled a grid {𝑢𝑗} of 150 evenly-spaced

points in the domain [−20, 30], and evaluated both the true density and the posterior

predictive density on this grid. The distance in question sums over the absolute

differences between the evaluations over the grid

dist :=
∑︁
𝑗

|𝑓𝑁(𝑢𝑗)− 𝑓0(𝑢𝑗)|.

where 𝑓𝑁(𝑢𝑗) is the posterior predictive density of the 𝑁 observations under the

DPMM at 𝑢𝑗. The distance is meant to illustrate pointwise rather than total variation

convergence. Although the predictive density converges in total variation to the

underlying density, it is only guaranteed that a subsequence of the predictive density

converges pointwise to the underlying density.

In Figure C.3.1, each 𝑁 has a different time budget because for larger 𝑁 , in

general per-sweep time increases and number of sweeps until coupled chains meet also

increase.
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Appendix D

C-value Supplementary Material

D.1 Appendix

Proof of Theorem 5.2.2

Proof. The result follows directly from the definition of 𝑐(𝑦) and the conditions on

𝑏(·, ·). More explicitly,

P𝜃

[︀
𝑊 (𝜃, 𝑦) ≤ 0 and 𝑐(𝑦) > 𝛼

]︀
≤ P𝜃

[︀
𝑊 (𝜃, 𝑦) ≤ 0 and 𝑏(𝑦, 𝛼) > 0

]︀
≤ P𝜃

[︀
𝑊 (𝜃, 𝑦) < 𝑏(𝑦, 𝛼)

]︀
≤ 1− 𝛼,

where the first line follows from the definition of the c-value and the final line follows

from Eq. (5.1).

Proof of Theorem 5.2.3

Proof. The condition 𝐿(𝜃, 𝜃†(𝑦, 𝛼)) > 𝐿(𝜃, 𝜃(𝑦)) can occur only when both (A) 0 >

𝑊 (𝜃, 𝑦) and (B) 𝜃†(·, 𝛼) evaluates to 𝜃*(·) rather than 𝜃(·). Event (B) implies 𝑐(𝑦) > 𝛼

and therefore 𝑏(𝑦, 𝛼) > 0. By transitivity, 𝑏(𝑦, 𝛼) > 0 and 0 > 𝑊 (𝜃, 𝑦) =⇒ 𝑏(𝑦, 𝛼) >

𝑊 (𝜃, 𝑦). By assumption, the event 𝑏(𝑦, 𝛼) > 𝑊 (𝜃, 𝑦) occurs with probability at most

1− 𝛼.
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D.2 Pitfalls of risk when choosing between estimators

Before proceeding, we require some additional notation and definitions. We denote

the risk of an arbitrary estimator 𝜃′(·) by 𝑅(𝜃, 𝜃′) = E𝜃

[︁
𝐿
(︀
𝜃, 𝜃′(𝑦)

)︀]︁
. Given two

estimators 𝜃′(·) and 𝜃†(·) we say that 𝜃′(·) dominates 𝜃†(·) if, for all values of 𝜃,

𝑅(𝜃, 𝜃′) ≤ 𝑅(𝜃, 𝜃†) and 𝑅(𝜃, 𝜃′) < 𝑅(𝜃, 𝜃†) for at least one value of 𝜃.

If we were able to show that one of 𝜃(·) or 𝜃*(·) dominates the other, it would be

tempting to always select the dominating estimator. Unfortunately, it is very often

the case that neither estimator dominates the other. In other words, it may be the

case that 𝑅(𝜃, 𝜃*) < 𝑅(𝜃, 𝜃) for all values of 𝜃 in some non-trivial subset of the space

Θ0 but 𝑅(𝜃, 𝜃*) > 𝑅(𝜃, 𝜃) for some 𝜃 /∈ Θ0. Lindley and Smith [1972] provide a simple

illustration of this dilemma in the following normal means problem: suppose that we

observe an 𝑁 -vector normally distributed about its mean and with identity covariance,

𝐼𝑁 , as 𝑦 ∼ 𝒩 (𝜃, 𝐼𝑁), and wish to compare the default estimate 𝜃(𝑦) = 𝑦 of 𝜃 and the

alternative estimate

𝜃*(𝑦) =
𝑦 + 𝑦1𝑁/𝜏

2

1 + 1/𝜏 2

for a fixed value of 𝜏 > 0, where 𝑦 := 𝑁−1
∑︀𝑁

𝑛=1 𝑦𝑛 and 1𝑁 is the 𝑁 -vector of ones.

Lindley and Smith [1972] showed that 𝑅(𝜃, 𝜃*) < 𝑅(𝜃, 𝜃) if and only if

‖𝜃 − 𝜃1𝑁‖2 <
√︀
(𝑁 − 1)(2 + 𝜏 2), (D.2.1)

where 𝜃 := 𝑁−1
∑︀𝑁

𝑛=1 𝜃𝑛. Without strong assumptions about the value of 𝜃, which we

may be unable or unwilling to make, a simple comparison of risk functions can prove

inconclusive. Interestingly, in the setting considered by Lindley and Smith [1972],

it is possible to construct 𝜃 so that (A) 𝑅(𝜃, 𝜃*) < 𝑅(𝜃, 𝜃) but (B) P𝜃[𝐿(𝜃, 𝜃
*(𝑦)) >

𝐿(𝜃, 𝜃(𝑦))] > 0.5. In particular, for 𝑁 = 2, 𝜏 = 1, and ‖𝜃 − 𝜃1𝑁‖2 = 2.999, 𝜃*(·) has

slightly smaller risk than the MLE, but the MLE has smaller loss in 3397 out of

5000 simulated datasets, or about 68% of the time. In other words, even if we were

to assume that 𝜃 satisfied Eq. (D.2.1), for the majority of datasets 𝑦 that we might

observe, the alternative estimator incurs higher loss than the default. The situation
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above highlights an important, but in our mind under-discussed, limitation of risk:

the loss averaged over all possible unrealized datasets may not be close to the loss

incurred on an observed dataset.

This disagreement between risk and the probability of having smaller loss can be

especially pronounced when the distribution of the loss of one of the estimators is

heavy-tailed. For example, consider a scalar parameter 𝜃 = 0, a deterministic default

estimate 𝜃 = 1, and an alternative estimate distributed as 𝜃* ∼ 1
𝛼
𝛿√

𝛼(1+𝜖)
+ (1− 1

𝛼
)𝛿0,

where 𝛿𝑥 denotes a Dirac mass on 𝑥 and 𝜖 > 0. Then 𝜃*(·) has larger risk than 𝜃(·)

(1 + 𝜖 rather than 1), but has smaller loss with probability 1− 1
𝛼
. By taking 𝛼→∞,

we see that 𝜃*(·) may have smaller loss than 𝜃(·) with arbitrarily high probability.

This example is particularly extreme; our intent is merely to illustrate that large

disagreements could, at least in principal, arise in practical settings.

D.3 Defining c-values as a supremum vs. infimum

In this section we describe a pathological model and construction of a lower bound

function for which the two possible definitions of the c-value described in Remark 5.2.1

lead to notably different behaviours.

Consider a variant of the normal means problem. Let 𝜃 ∈ R be an unknown mean

and observe

𝑦 :=

⎡⎢⎣𝜃 + 𝜖

𝑢

⎤⎥⎦ ,

where 𝜖 ∼ 𝒩 (0, 1) and 𝑢 ∼ 𝒰([0, 1]) is a uniform random variable on [0, 1]. Note that

𝑢 is ancillary to 𝜃 (i.e. its distribution does not depend on 𝜃). We will construct a

pathological 𝑏(𝑦, 𝛼) that depends on 𝑦 only through 𝑢 and will therefore be ancillary

to 𝜃 as well. We begin by constructing a countably infinite collection of independent

uniform random variables from 𝑢, indexed by the rationals Q, 𝑆(𝑢) := {𝑢𝑟}𝑟∈Q. Such

a countably infinite collection may be obtained by segmenting the decimal expansion

of 𝑢; for example, if we let 𝑑𝑖 denote the 𝑖𝑡ℎ digit of 𝑢, we could obtain this sequence
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by defining uniform random variables with decimal expansions

𝑢1 : = [𝑑1, 𝑑2, 𝑑4, 𝑑7, 𝑑11 . . . ],

𝑢2 : = [𝑑3, 𝑑5, 𝑑8, 𝑑12 . . . ],

𝑢3 : = [𝑑6, 𝑑9, 𝑑13 . . . ],

𝑢4 : = [𝑑10, 𝑑14, . . . ],

𝑢5 : = [𝑑15, . . . ],

and so on, and then mapping from {𝑢𝑖}𝑖∈N to 𝑆(𝑢).

Next, define

𝑏(𝑦, 𝛼) :=

⎧⎪⎪⎨⎪⎪⎩
(−1)1[𝑢𝛼<𝛼]∞ if 𝛼 ∈ Q

−∞ otherwise.

For any bounded default and alternative estimators, the win will be finite and the

bound 𝑏(𝑦, 𝛼) holds if an only if it evaluates to −∞. Because 𝑏(𝑦, 𝛼) = −∞ with

probability at least 𝛼, even though 𝑏(𝑦, 𝛼) is ancillary to 𝜃, it still satisfies the condition

in Eq. (5.1) for every 𝜃 and 𝛼 ∈ [0, 1]. However, consider two possible definitions of

the c-value,

𝑐+(𝑦) := sup
𝛼∈[0,1]

{𝛼|𝑏(𝑦, 𝛼) ≥ 0} vs. 𝑐−(𝑦) := inf
𝛼∈[0,1]

{𝛼|𝑏(𝑦, 𝛼) ≤ 0},

where 𝑐−(𝑦) = 𝑐(𝑦) is the definition we have chosen in Section 5.2. Note that

𝑐−(𝑦) ≤ 𝑐+(𝑦), and that if 𝑏(𝑦, 𝛼) is continuous and strictly decreasing in 𝛼 for every

𝑦, then 𝑐−(𝑦) = 𝑐+(𝑦). In this almost surely discontinuous case, however, we have that

𝑐+(𝑦)
𝑎.𝑠.
= 1. and 𝑐−(𝑦)

𝑎.𝑠.
= 0. Since estimators exist for which 𝑊 (𝜃, 𝑦) < 0 with positive

probability, the guarantees of Theorems 5.2.2 and 5.2.3 are not met by 𝑐+(𝑦).

In the present paper, 𝑐−(𝑦) = 𝑐+(𝑦) for all bounds considered. Our preference for

defining the c-value as 𝑐−(𝑦) derives from simplicity; we may disregard edge cases like

the one above, which would complicate our proofs. However for the reason described
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in this section, we emphasize that using 𝑐−(𝑦) rather than 𝑐+(𝑦) may have practical

implications when these quantities differ.

D.4 Additional related work

Bayesian model checking. Working in a Bayesian context, Box and Hunter [1962]

and Box [1980] advocate a dynamic, iterative approach to modeling and inference

(“Box’s loop” [Blei, 2014]), in which models for an observed dataset are successively

proposed, evaluated, and refined. Specifically, one first assesses the suitability of a

given Bayesian model with the prior predictive probability of an observed statistic.

A sufficiently small prior predictive p-value indicates that the observed data is an

atypical realization from the proposed model; in this case, one then refines and re-

assesses the model. Through this lens, our proposed estimation procedure resembles a

single iteration through Box’s loop: we discard the default estimator in favor of an

alternative if the c-value is sufficiently extreme. However, prior predictive p-values

are limited by the requirement for a “good” choice of prior — namely a prior that

provides an adequate description of the data. Indeed, one might lack such a prior,

but the associated Bayes estimate could still be superior to a given alternative. For

example, our approach can choose a Bayes rule with an improper prior over a default

estimator, while the prior predictive p-value is undefined. Or our approach can also

be used to choose an estimator that is not Bayesian in origin. We emphasize as well

that our contribution in the present work is a direct quantification of confidence in

the relative performance of estimates that is absent from earlier work.

Non-asymptotic frequentist guarantees for “Bayesian” procedures. As we

will demonstrate, our procedure allows a practitioner to benefit from a Bayesian

model while still providing frequentist guarantees that do not depend on validity of a

Bayesian prior. This flavor is not unique to our proposal.

Most notably, empirical Bayesian methods [Morris, 1983] avoid dependence on

certain subjective choices in the specification of the prior by selecting a prior from
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the same data used to estimate the parameter. While many frequentist properties of

these estimators are typically unavailable due to the difficulty of analysis, in some

cases authors have established favorable properties. For example, Efron and Morris

[1973] famously show that an empirical Bayesian estimator dominates the maximum

likelihood estimate.

Outside of decision theory, Bayesian models have played a role in the construction

of smaller confidence intervals with exact frequentist coverage, initially by Pratt [1963]

and more recently in the context of empirical Bayes inference by Hoff and Yu [2019]

and post-selection inference by Woody et al. [2020]. In the context of hypothesis

testing, Hoff [2021] leveraged a similar approach to increase power across multiple

hypotheses while maintaining exact coverage. The objectives of these papers are

distinct from our own; we do not consider hypothesis testing or forming confidence

intervals. But these works are thematically related nonetheless; in particular, their

methods can utilize a Bayesian model to provide improved statistical procedures that

maintain frequentist guarantees, and they do not rely on subjective assumptions about

unknown parameters.

D.5 Additional details related to Section 5.3

D.5.1 Distribution of win term

We here provide a derivation of the distributional form of 2𝜖⊤𝐺𝑦 given in Section 5.3.2.

In Section 5.3.2 we found that

2𝜖⊤𝐺𝑦 ∼ 2

1 + 𝜏 2

[︂
𝜒2
𝑁−1(

1

4
‖𝑃⊥

1 𝜃‖2)− 1

4
‖𝑃⊥

1 𝜃‖2
]︂
,

where 𝜒2
𝑁−1(𝜆) denotes the non-central chi-squared distribution with 𝑁 − 1 degrees of

freedom and non-centrality parameter 𝜆.

Recall that 𝐺𝑦 = (1 + 𝜏 2)−1𝑃⊥
1 (𝜃 + 𝜖). As such we can rewrite

2𝜖⊤𝐺𝑦 =
2

1 + 𝜏 2

[︁
𝜖⊤𝑃⊥

1 𝜖+ 𝜖⊤𝑃⊥
1 𝜃
]︁
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=
2

1 + 𝜏 2

[︁
(𝑃⊥

1 𝜖)⊤(𝑃⊥
1 𝜖) + (𝑃⊥

1 𝜖)⊤(𝑃⊥
1 𝜃)

]︁
// since 𝑃⊥

1 = 𝑃⊥
1 𝑃⊥

1

=
2

1 + 𝜏 2

[︂
‖𝑃⊥

1 𝜖+
1

2
𝑃⊥
1 𝜃‖2 − 1

4
‖𝑃⊥

1 𝜃‖2
]︂

// by completing the square

=
2

1 + 𝜏 2

[︂
𝜒2
𝑁−1(

1

4
‖𝑃⊥

1 𝜃‖2)− 1

4
‖𝑃⊥

1 𝜃‖2
]︂
,

as desired, where in the last line the degrees of freedom parameter is 𝑁 − 1 because

𝑃⊥
1 projects into an 𝑁 − 1 dimensional subspace of R𝑁 .

D.5.2 Proof of Theorem 5.3.1

We here provide a proof of Theorem 5.3.1.

Proof. The proof amounts to showing that 𝑏(·, ·) achieves at least nominal coverage,

i.e. for any 𝜃 and 𝛼 ∈ [0, 1], P
[︀
𝑊 (𝑦, 𝜃) ≥ 𝑏(𝑦, 𝛼)

]︀
≥ 𝛼. By construction, 𝑊 (𝜃, 𝑦) ≥

𝑏(𝑦, 𝛼) may be violated only if either (A) ‖𝑃⊥
1 𝜃‖2 ̸∈ [0, 𝑈(𝑦, 1−𝛼

2
)] or (B) 𝑊 (𝜃, 𝑦) <

2
1+𝜏2

𝐹−1
𝑁−1(

1−𝛼
2
;
‖𝑃⊥

1 𝜃‖2
4

)− ‖𝑃⊥
1 𝜃‖2

2(1+𝜏2)
− ‖𝑃⊥

1 𝑦‖2
(1+𝜏2)2

. Noticing that ‖𝑃⊥
1 𝑦‖2 ∼ 𝜒2

𝑁−1(‖𝑃⊥
1 𝜃‖2), we

can recognize [0, 𝑈(1−𝛼
2
)] as valid confidence interval for ‖𝑃⊥

1 𝜃‖2 and see that (A)

occurs with probability at most 1−𝛼
2
. Next, comparing to Eq. (5.7), we see that (B)

represents 2𝜖⊤𝐺𝑦 falling below its 1−𝛼
2

quantile and thus occurs with probability at

most 1−𝛼
2

. Therefore the union bound guarantees that 𝑏(𝑦, 𝛼) obtains at least nominal

coverage.

D.5.3 Why an upper bound on ‖𝑃⊥1 𝜃‖2?

We here provide justification for the use of a high-confidence upper bound on ‖𝑃⊥
1 𝜃‖2

in Bound 5.3.1. Recall that Eq. (5.7) provides a lower bound on 𝑊 (𝜃, 𝑦) if we can

control ‖𝑃⊥
1 𝜃‖2. However, it is not immediately obvious what sort of control on

‖𝑃⊥
1 𝜃‖2 will yield the tightest bound; should we have derived a two-sided interval or a

lower bound instead of an upper bound? We answer this question by appealing to a

normal approximation of the non-central 𝜒2 for intuition. This approximation will be
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close when the degrees of freedom parameter is large. Specifically, by replacing the

non-central 𝜒2 quantile with that of a normal with matched first and second moments

we may approximate the lower bound as

𝑊 (𝜃, 𝑦)
∼
≥ 2

1 + 𝜏 2

[︁
𝑁 − 1− (‖𝑃⊥

1 𝜃‖2 + 2𝑁 − 2)
1
2 𝑧𝛼

]︁
− ‖𝑃

⊥
1 𝑦‖2

(1 + 𝜏 2)2
, (D.5.1)

where 𝑧𝛼 is the 𝛼 quantile of the standard normal.

Eq. (D.5.1) is monotone decreasing in ‖𝑃⊥
1 𝜃‖2 for any 𝛼 > 1

2
. As such, we can

expect this quantile to be smallest for large values of ‖𝑃⊥
1 𝜃‖2, and for this reason

seek to find a high-confidence upper bound on ‖𝑃⊥
1 𝜃‖2. Indeed, in agreement with

Eq. (D.5.1) we have found empirically that the infimum in Eq. (5.8) is always achieved

at this upper bound, and conjecture that this is true in general.

D.5.4 Shrinking towards an arbitrary subspace

We now show how the approach developed in Section 5.3 immediately extends to a

broader class of models in the spirit of those considered by Morris [1983]. In particular,

let 𝜃 again be an unknown 𝑁 -vector and 𝑋 ∈ R𝑁×𝐷 be a design matrix where for each

𝑛, 𝑋𝑛 is a 𝐷-vector of covariates associated with 𝜃𝑛. If we believe that the parameters

can be roughly described as scattered around a linear function of these covariates

with variance 𝜏 2, we might consider trying to improve our estimates by estimating the

linear dependence and interpolating between the sample estimate and the associated

linear approximation. Following Morris [1983], we obtain this type of shrinkage with

the estimate

𝜃*(𝑦) :=
𝑦 + 𝜏−2𝑋(𝑋⊤𝑋)−1𝑋⊤𝑦

1 + 𝜏−2
,

which is the posterior mean of the Bayesian model that assumes for each 𝑛, 𝜃𝑛 ∼

𝒩 (𝑋⊤
𝑛 𝛽, 𝜏

2) a priori. Here 𝛽 is an unknown 𝐷-vector of coefficients that is given an

improper uniform prior.

For this setting, we propose the following bound.

Bound D.5.1 (Normal Means: Flexible shrinkage estimate vs. MLE). Observe 𝑦 = 𝜃+𝜖
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with 𝜖 ∼ 𝒩 (0, 𝐼𝑁) and consider estimates

𝜃(𝑦) = 𝑦 and 𝜃*(𝑦) :=
𝑦 + 𝜏−2𝑋(𝑋⊤𝑋)−1𝑋⊤𝑦

1 + 𝜏−2
,

where 𝜏 is a scalar and 𝑋 is an 𝑁 by 𝐷 matrix of covariates. We propose

𝑏(𝑦, 𝛼) = inf
𝜆∈[0,𝑈(𝑦, 1−𝛼

2
)]

2

1 + 𝜏 2
𝐹−1
𝑁−𝐷

(︂
1− 𝛼

2
,
𝜆

4

)︂
− 𝜆

2(1 + 𝜏 2)
− ‖𝑃

⊥
𝑋 𝑦‖2

(1 + 𝜏 2)2
(D.5.2)

as a high-probability lower bound on the win. In this expression, 𝐹−1
𝑁−𝐷(1−𝛼, 𝜆) denotes

the inverse cumulative distribution function of the non-central 𝜒2 with 𝑁−𝐷 degrees of

freedom and non-centrality parameter 𝜆 evaluated at 1−𝛼. 𝑃⊥
𝑋 := 𝐼𝑁−𝑋(𝑋⊤𝑋)−1𝑋⊤

is the projection onto the subspace orthogonal to the column-space of 𝑋.

𝑈(𝑦, 1− 𝛼) := inf
𝛿>0

{︂
𝛿
⃒⃒⃒
‖𝑃⊥

𝑋 𝑦‖2 ≤ 𝐹−1
𝑁−𝐷(1− 𝛼, 𝛿)

}︂
(D.5.3)

is a high-confidence upper bound on ‖𝑃⊥
𝑋 𝜃‖2.

This bound is identical to Bound 5.3.1 except that it projects to a different subspace,

and loses 𝐷 degrees of freedom in the 𝜒2 random variables, rather than 1. Indeed,

this is a strict generalization, as we obtain our earlier example when we take 𝑋 = 1𝑁 .

Bound D.5.1 is also computable (for the same reasons discussed in Remark 5.3.2) and

valid, as we see in the next proposition.

Proposition D.5.1. Eq. (D.5.2) in Bound D.5.1 satisfies the conditions of Theo-

rem 5.2.2. In particular, for any 𝜃 and 𝛼 ∈ [0, 1], P𝜃

[︀
𝑊 (𝑦, 𝜃) ≥ 𝑏(𝑦, 𝛼)

]︀
≥ 𝛼.

Proof. Proposition D.5.1 follows from an argument very closely analogous to the proof

of Theorem 5.3.1. We first rewrite 𝜃*(𝑦) as 𝜃*(𝑦) = 𝑦 − 𝐺𝑦 for 𝐺 := (1 + 𝜏 2)−1𝑃⊥
𝑋 .

Eq. (5.6) then holds exactly as before (i.e. 𝑊 (𝜃, 𝑦) = 2𝜖⊤𝐺𝑦 − ‖𝐺𝑦‖2). The two

terms are treated as in Theorem 5.3.1; the only differences are that the norm under

consideration is ‖𝑃⊥
𝑋 𝜃‖ rather than ‖𝑃⊥

1 𝜃‖, and the change in degrees of freedom from

𝑁 − 1 to 𝑁 −𝐷.
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Figure D.5.1: The estimate shrinking towards a quadratic fit provides a significant
improvement (𝑐 = 0.953). The noise and prior standard deviations were set as
𝜎 = 0.025 and 𝜏 = 0.025, respectively.

Figure D.5.1 demonstrates an application to Ty Cobb’s season batting averages,

an example adapted from Morris [1983]. In this analysis, our approach indicates that

we should be highly confident (𝑐 = 0.953) that the alternative estimate, which shrinks

the observations towards a quadratic fit of the data, outperforms the MLE . While

Morris [1983] provides an argument for estimators of this style based on risk, the

present analysis goes a step further by providing a measure of confidence that the

estimator improves on this particular dataset. Even though the risk of the estimator

𝜃*(·) may be greater than that of 𝜃(·) for many possible 𝜃, this analysis supports the

conclusion that for the true unknown 𝜃 and observed 𝑦, 𝜃*(𝑦) is superior.

D.5.5 Distribution of c-values

As mentioned in Section 5.3.3, we do not in general expect to see a uniform distribution

of c-values. Figure D.5.2 illustrates the dependence of the distribution of c-values on

the parameter, in the same simulations detailed in Figures 5-1a, 5-1c and 5-1d.

205



Figure D.5.2: Distribution of c-values across several choices of 𝑁− 1
2‖𝑃⊥

1 𝜃‖.

D.6 Affine estimators supplementary information

D.6.1 Step by step derivation of Eq. (5.12)

The win of using 𝜃*(𝑦) in place of 𝜃(𝑦) may be expressed as

𝑊 (𝜃, 𝑦) = ‖𝜃(𝑦)− 𝜃‖2 − ‖𝜃*(𝑦)− 𝜃‖2

=
(︁
‖𝜃(𝑦)‖2 + ‖𝜃‖2 − 2𝜃⊤𝜃(𝑦)

)︁
−
(︁
‖𝜃*(𝑦)‖2 + ‖𝜃‖2 − 2𝜃⊤𝜃*(𝑦)

)︁
= −2𝜃⊤𝐺(𝑦) +

(︁
‖𝜃(𝑦)‖2 − ‖𝜃*(𝑦)‖2

)︁
// where 𝐺(𝑦) := 𝜃(𝑦)− 𝜃*(𝑦)

= 2𝜖⊤𝐺(𝑦)− 2𝑦⊤𝐺(𝑦) +
(︁
‖𝜃(𝑦)‖2 − ‖𝜃*(𝑦)‖2

)︁
= 2𝜖⊤𝐺(𝑦) +

(︁
‖𝜃(𝑦)− 𝑦‖2 − ‖𝜃*(𝑦)− 𝑦‖2

)︁
.

(D.6.1)

D.6.2 Derivation of Eq. (5.13)

Observe that

E[𝜖⊤𝐺(𝑦)] = E[𝜖⊤𝐺(𝜃) + 𝜖⊤(𝐴− 𝐶)𝜖]

= E[𝜖]⊤𝐺(𝜃) + E[tr[(𝐴− 𝐶)𝜖𝜖⊤]]

= tr[(𝐴− 𝐶)Σ]
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and

Var[𝜖⊤𝐺(𝑦)] = Var[𝜖⊤𝐺(𝜃)] + Var[𝜖⊤(𝐴− 𝐶)𝜖]

// since 𝜖⊤𝐺(𝜃) and 𝜖⊤(𝐴− 𝐶)𝜖 are uncorrelated

= (𝐺(𝜃))⊤Σ(𝐺(𝜃)) + 2tr[
𝐴+ 𝐴⊤ − 𝐶 − 𝐶⊤

2
Σ
𝐴+ 𝐴⊤ − 𝐶 − 𝐶⊤

2
Σ]

= ‖𝐺(𝜃)‖2Σ +
1

2
tr[((𝐴+ 𝐴⊤ − 𝐶 − 𝐶⊤)Σ)2]

= ‖𝐺(𝜃)‖2Σ +
1

2
‖Σ

1
2 (𝐴+ 𝐴⊤ − 𝐶 − 𝐶⊤)Σ

1
2‖2𝐹 ,

where ‖ · ‖Σ and ‖ · ‖𝐹 denote the Σ quadratic norm and Frobenius norm, respectively.

The third line of the derivation above obtains from recognizing Var[𝜖⊤(𝐴− 𝐶)𝜖] as a

quadratic form [Mathai and Provost, 1992, Chapter 2].

D.6.3 Derivations of Eqs. (5.15) and (5.16)

Eqs. (5.15) and (5.16) characterize the dependence of the distribution of ‖𝐺(𝑦)‖2Σ on

‖𝐺(𝜃)‖2Σ through its mean and variance. Recognizing ‖𝐺(𝑦)‖2Σ as a quadratic form

[Mathai and Provost, 1992, Chapter 2], with 𝐺(𝑦) ∼ 𝒩
(︀
𝐺(𝜃), (𝐴− 𝐶)Σ(𝐴− 𝐶)⊤

)︀
,

we find its mean as

E[‖𝐺(𝑦)‖2Σ] = 𝐺(𝜃)⊤Σ𝐺(𝜃) + tr[Σ((𝐴− 𝐶)Σ(𝐴− 𝐶)⊤)]

= ‖𝐺(𝜃)‖2Σ + tr[Σ
1
2 (𝐴− 𝐶)Σ(𝐴− 𝐶)⊤Σ

1
2 ]

= ‖𝐺(𝜃)‖2Σ + ‖Σ
1
2 (𝐴− 𝐶)Σ

1
2‖2𝐹 .
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For the variance, we similarly rely on the known variance of a quadratic form. Starting

from that expression, we upper bound the variance as

Var[‖𝐺(𝑦)‖2Σ] = 2tr

[︂
Σ
(︁
(𝐴− 𝐶)Σ(𝐴− 𝐶)⊤

)︁
Σ
(︁
(𝐴− 𝐶)Σ(𝐴− 𝐶)⊤

)︁]︂
+

4𝐺(𝜃)⊤Σ
(︁
(𝐴− 𝐶)Σ(𝐴− 𝐶)⊤

)︁
Σ𝐺(𝜃)

= 2‖Σ
1
2 (𝐴− 𝐶)Σ(𝐴− 𝐶)⊤Σ

1
2‖2𝐹 + 4‖

(︁
Σ

1
2 (𝐴− 𝐶)⊤Σ

1
2

)︁
Σ

1
2𝐺(𝜃)‖22

≤ 2‖Σ
1
2 (𝐴− 𝐶)Σ(𝐴− 𝐶)⊤Σ

1
2‖2𝐹 + 4‖Σ

1
2 (𝐴− 𝐶)Σ

1
2‖2OP‖𝐺(𝜃)‖2Σ,

(D.6.2)

where ‖ · ‖OP denotes the 𝐿2 operator norm.

D.6.4 The Berry–Esseen bound: Theorem 5.4.1

We here prove Theorem 5.4.1, a non-asymptotic upper bound on the error introduced

by the two Gaussian approximations in Approximate Bound 5.4.1. We begin by

restating key notation for convenience. We then state a more general variant of the

bound that removes the restriction that the operators 𝐴 and 𝐶 be symmetric, and

we show how it reduces to the simpler quantity stated in Theorem 5.4.1. Finally, we

present a proof of the theorem as well as several supporting lemmas.

Notation and statement of the theorem its more general form. Recall that

we are concerned with the coverage of Approximate Bound 5.4.1

𝑏(𝑦, 𝛼) = ‖𝜃 − 𝑦‖2 − ‖𝜃* − 𝑦‖2 + 2tr[(𝐴− 𝐶)Σ] +

2𝑧 1−𝛼
2

√︂
𝑈(‖𝐺(𝑦)‖2Σ,

1− 𝛼

2
) +

1

2
‖Σ 1

2 (𝐴+ 𝐴⊤ − 𝐶 − 𝐶⊤)Σ
1
2‖2𝐹 .

In this equation, 𝐺(𝑦) := (𝐴−𝐶)𝑦+(𝑘− ℓ), 𝑧𝛼 denotes the 𝛼-quantile of the standard

normal, and

𝑈
(︀
‖𝐺(𝑦)‖2Σ,

1− 𝛼

2

)︀
= inf

𝛿>0

{︂
𝛿

⃒⃒⃒⃒
‖𝐺(𝑦)‖2Σ ≤ (𝛿 + ‖Σ

1
2 (𝐴− 𝐶)Σ

1
2‖2𝐹 ) +
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𝑧 1−𝛼
2

√︁
2‖Σ 1

2 (𝐴− 𝐶)Σ(𝐴− 𝐶)⊤Σ
1
2‖2𝐹 + 4‖Σ 1

2 (𝐴− 𝐶)Σ
1
2‖2OP𝛿

}︂

is a high-confidence upper bound on ‖𝐺(𝜃)‖2Σ.

For convenience, we introduce

𝐹−1(‖𝐺(𝜃)‖2Σ, 𝛼) := 2tr[(𝐴− 𝐶)Σ] + 2𝑧𝛼

√︂
‖𝐺(𝜃)‖2Σ +

1

2
‖Σ 1

2 (𝐴+ 𝐴⊤ − 𝐶 − 𝐶⊤)Σ
1
2‖2𝐹 ,

(D.6.3)

to denote the inverse CDF of our normal approximation to the distribution of 2𝜖⊤𝐺(𝑦)

evaluated at 𝛼. As such, we may write

𝑏(𝑦, 𝛼) = ‖𝜃 − 𝑦‖2 − ‖𝜃* − 𝑦‖2 + 𝐹−1

(︂
𝑈(‖𝐺(𝑦)‖2Σ,

1− 𝛼

2
),
1− 𝛼

2

)︂
.

Finally, recall that to prove the theorem we desire to show

P𝜃

[︀
𝑊 (𝜃, 𝑦) ≥ 𝑏(𝑦, 𝛼)

]︀
≥ 𝛼− 10

√
2√

𝑁
𝐶1 · 𝜅(Σ

1
2 (𝐴− 𝐶)Σ

1
2 )2

for any 𝜃 and 𝛼 ∈ [0, 1], where 𝐶1 < 1.88 is a universal constant, in the case when

both 𝐴 and 𝐶 are symmetric. We accomplish this by first proving a more general

bound holds even in the non-symmetric case,

P𝜃

[︀
𝑊 (𝜃, 𝑦) ≥ 𝑏(𝑦, 𝛼)

]︀
≥ 𝛼− 5

√
2√
𝑁

𝐶1

[︁
𝜅(Σ

1
2 (𝐴− 𝐶)Σ

1
2 )2 + 𝜅(Σ

1
2 (𝐴+ 𝐴⊤ − 𝐶 − 𝐶⊤)Σ

1
2 )
]︁
.

(D.6.4)

The special case obtains by replacing 𝐴⊤ and 𝐶⊤ with 𝐴 and 𝐶, respectively, and

noting that 𝜅(𝑀)2 ≥ 𝜅(𝑀) for any matrix, 𝑀.

A key tool in this proof is the classic result of Berry [1941], which we restate below.

Theorem D.6.1 (Berry, 1941, Theorem 1). Let 𝑋1, 𝑋2, . . . , 𝑋𝑁 be random variables.

For each 𝑛 ∈ {1, 2, . . . , 𝑁}, let 𝜎2
𝑛 and 𝜌𝑛 denote the variance and third central

moment of 𝑋𝑛, respectively. Define 𝜆𝑛 := 𝜌𝑛
𝜎2
𝑛

if 𝜎2
𝑛 > 0 and 𝜆𝑛 = 0 otherwise. Define

209



𝜎2 :=
∑︀𝑁

𝑛=1 𝜎
2
𝑛 and 𝑋 := 𝑁−1

∑︀𝑁
𝑛=1𝑋𝑛. Then

sup
𝑥

⃒⃒⃒⃒
⃒𝐹𝑋(𝑥)− Φ

(︂
𝑥− E[𝑋]

𝜎

)︂⃒⃒⃒⃒
⃒ < 𝐶1

max𝑛 𝜆𝑛

𝜎
,

where 𝐶1 ≤ 1.88 is a universal constant and 𝐹𝑋(·) is the cumulative distribution

function of 𝑋.

Proof of Theorem 5.4.1 The desired bound may be stated equivalently as, for

any 𝛼 ∈ [0, 1],

P𝜃

[︀
𝑊 (𝜃, 𝑦) < 𝑏(𝑦, 𝛼)

]︀
< (1− 𝛼) +

5
√
2√
𝑁

𝐶1

[︁
𝜅(Σ

1
2 (𝐴− 𝐶)Σ

1
2 )2 + 𝜅(Σ

1
2 (𝐴+ 𝐴⊤ − 𝐶 − 𝐶⊤)Σ

1
2 )
]︁
.

(D.6.5)

We first rewrite the condition 𝑊 (𝜃, 𝑦) < 𝑏(𝑦, 𝛼) as 2𝜖⊤𝐺(𝑦) < 𝐹−1
(︀
𝑈(‖𝐺(𝑦)‖2Σ, 1−𝛼

2
), 1−𝛼

2

)︀
(recall Eq. (D.6.1)). Since 𝐹−1 is monotonically decreasing in its first argument, this

condition may occur only if either 2𝜖⊤𝐺(𝑦) < 𝐹−1
(︀
‖𝐺(𝜃)‖2Σ, 1−𝛼

2

)︀
or ‖𝐺(𝜃)‖2Σ >

𝑈(‖𝐺(𝑦)‖2Σ, 1−𝛼
2
).

Therefore, by the union bound, we have that

P𝜃

[︀
𝑊 (𝜃, 𝑦) < 𝑏(𝑦, 𝛼)

]︀
< P𝜃

[︃
2𝜖⊤𝐺(𝑦) < 𝐹−1

(︂
‖𝐺(𝜃)‖2Σ,

1− 𝛼

2

)︂]︃

+ P𝜃

[︂
‖𝐺(𝜃)‖2Σ > 𝑈(‖𝐺(𝑦)‖2Σ,

1− 𝛼

2
)

]︂
.

(D.6.6)

Lemmas D.6.1 and D.6.2 provide that P𝜃

[︁
2𝜖⊤𝐺(𝑦) < 𝐹−1

(︀
‖𝐺(𝜃)‖2Σ, 1−𝛼

2

)︀]︁
< 1−𝛼

2
+

5
√
2√
𝑁
𝐶1𝜅(Σ

1
2 (𝐴 + 𝐴⊤ − 𝐶 − 𝐶⊤)Σ

1
2 ) and P𝜃

[︀
‖𝐺(𝜃)‖2Σ > 𝑈(‖𝐺(𝑦)‖2Σ, 1−𝛼

2
)
]︀
< 1−𝛼

2
+

5
√
2√
𝑁
𝐶1𝜅(Σ

1
2 (𝐴− 𝐶)Σ

1
2 )2, respectively. Substituting these two bounds into Eq. (D.6.6)

we obtain Eq. (D.6.5) as desired.

Lemma D.6.1. Let 𝑦 = 𝜃 + 𝜖 be a random 𝑁-vector with 𝜖 ∼ 𝒩 (0,Σ). Let 𝐹−1 be

the normal approximation to the inverse CDF of 2𝜖⊤𝐺(𝑦) in Eq. (D.6.3). Then for
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any 𝛼 ∈ [0, 1],

P𝜃

[︁
2𝜖⊤𝐺(𝑦) < 𝐹−1

(︀
‖𝐺(𝜃)‖2Σ, 𝛼

)︀]︁
< 𝛼+

5
√
2√
𝑁

𝐶1𝜅(Σ
1
2 (𝐴+ 𝐴⊤ − 𝐶 − 𝐶⊤)Σ

1
2 ).

Proof. Note first that for any 𝛼 we may rewrite

P𝜃

[︁
2𝜖⊤𝐺(𝑦) < 𝐹−1

(︀
‖𝐺(𝜃)‖2Σ, 𝛼

)︀]︁
= 𝐹

[︁
𝐹−1

(︀
‖𝐺(𝜃)‖2Σ, 𝛼

)︀]︁
= 𝛼 +

{︂
𝐹
[︁
𝐹−1

(︀
‖𝐺(𝜃)‖2Σ, 𝛼

)︀]︁
− 𝐹

[︁
𝐹−1

(︀
‖𝐺(𝜃)‖2Σ, 𝛼

)︀]︁}︂
,

where 𝐹 and 𝐹 are the exact and approximate CDFs of 2𝜖⊤𝐺(𝑦), respectively. Recalling

that the normal approximation comes from matching moments to 2𝜖⊤𝐺(𝑦), we have

that for any 𝑣, 𝐹 (𝑣) = Φ( 𝑣−E[2𝜖⊤𝐺(𝑦)]√
Var[2𝜖⊤𝐺(𝑦)]

). Therefore, it will suffice to obtain that for

every 𝑣,

⃒⃒⃒
𝐹 (𝑣)− 𝐹 (𝑣)

⃒⃒⃒
=

⃒⃒⃒⃒
⃒⃒𝐹 (𝑣)− Φ

(︃
𝑣 − E[2𝜖⊤𝐺(𝑦)]√︀
Var[2𝜖⊤𝐺(𝑦)]

)︃⃒⃒⃒⃒
⃒⃒ ≤ 5

√
2√
𝑁

𝐶1𝜅(Σ
1
2 (𝐴+𝐴⊤−𝐶−𝐶⊤)Σ

1
2 ).

We will obtain this result by writing 2𝜖⊤𝐺(𝑦) a sum of independent random

variables and using a Berry–Esseen Theorem (Theorem D.6.1) to bound the error of

this normal approximation.

Lemma D.6.3 allows us to write 2𝜖⊤𝐺(𝑦) = 2𝜖⊤(𝐴−𝐶)𝜖+2
[︀
(𝐴− 𝐶)𝜃 + (𝑘 − ℓ)

]︀⊤
𝜖

as a shifted sum of 𝑁 differently-scaled, independent non-central 𝜒2 random variables.

We denote these 𝑁 random variables by 𝑋1, 𝑋2, . . . , 𝑋𝑁 . Lemma D.6.3 additionally

tells us that the scaling parameters of these non-central 𝜒2 random variables will be the

eigenvalues of Σ
1
2 (𝐴+𝐴⊤−𝐶⊤−𝐶)Σ

1
2 , which we denote by 𝜆1 ≥ 𝜆2 ≥ · · · ≥ 𝜆𝑁 ≥ 0.

To use Theorem D.6.1 we require the ratios of the third to second central moments

of these random variables, as well as the variance of the sum. Specifically,

sup
𝑣∈R

⃒⃒⃒⃒
⃒Φ( 𝑣 − E[2𝜖⊤𝐺(𝑦)]√︀

Var[2𝜖⊤𝐺(𝑦)]
)− 𝐹 (𝑣))

⃒⃒⃒⃒
⃒ < 𝐶1

max𝑛
𝜌(𝑋𝑛)
Var[𝑋𝑛]√︀

Var[2𝜖⊤𝐺(𝑦)]
,

where for each index 𝑛, 𝜌(𝑋𝑛) := E[(𝑋𝑛−E[𝑋𝑛])
3] is the third central moment of 𝑋𝑛,
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and 𝐶1 < 1.88 is a universal constant.

Conveniently, as we show in Lemma D.6.4, for each 𝑛, 𝜌(𝑋𝑛)
Var[𝑋𝑛]

≤ 10𝜆𝑛. Further,

since
√︀

Var[2𝜖⊤𝐺(𝑦)] >
√︁

2
∑︀𝑁

𝑛=1 𝜆
2
𝑛 >
√
2𝑁𝜆𝑁 (recall that Eq. (5.13) provides that

Var[2𝜖⊤𝐺(𝑦)] = 4‖𝐺(𝜃)‖2Σ + 2‖Σ 1
2 (𝐴+ 𝐴⊤ − 𝐶 − 𝐶⊤)Σ

1
2‖2𝐹 ) we may additionally see

that

sup
𝑣∈R

⃒⃒⃒⃒
⃒⃒Φ
(︃
𝑣 − E[2𝜖⊤𝐺(𝑦)]√︀
Var[2𝜖⊤𝐺(𝑦)]

)︃
− 𝐹 (𝑣))

⃒⃒⃒⃒
⃒⃒ < 𝐶1

10√
2𝑁

max𝑛 𝜆𝑛

min𝑛 𝜆𝑛

= 𝐶1
5
√
2√
𝑁

𝜅
(︁
Σ

1
2 (𝐴+ 𝐴⊤ − 𝐶 − 𝐶⊤)Σ

1
2

)︁
where 𝜅(·) denotes the condition number of its matrix argument, as desired.

Lemma D.6.2. Let 𝑦 = 𝜃 + 𝜖 be a random 𝑁-vector with 𝜖 ∼ 𝒩 (0,Σ). Let

𝑈(‖𝐺(𝑦)‖2Σ, 𝛼) be the approximate high-confidence upper bound on ‖𝐺(𝜃)‖2Σ. Then for

any 𝛼 ∈ [1
2
, 1], P𝜃

[︀
‖𝐺(𝜃)‖2Σ > 𝑈(‖𝐺(𝑦)‖2Σ, 1− 𝛼)

]︀
< 1−𝛼+ 5

√
2√
𝑁
𝐶1𝜅(Σ

1
2 (𝐴−𝐶)Σ

1
2 )2.

Proof. Our proof of the lemma follows roughly the same approach taken to prove

Lemma D.6.1. First note that the condition that ‖𝐺(𝜃)‖2Σ > 𝑈(‖𝐺(𝑦)‖2Σ, 1−𝛼) implies

that

‖𝐺(𝑦)‖2Σ ≤ (‖𝐺(𝜃)‖2Σ + ‖Σ
1
2 (𝐴− 𝐶)Σ

1
2‖2𝐹 ) +

𝑧1−𝛼

√︁
2‖Σ 1

2 (𝐴− 𝐶)Σ(𝐴− 𝐶)⊤Σ
1
2‖2𝐹 + 4‖Σ 1

2 (𝐴− 𝐶)Σ
1
2‖2OP‖𝐺(𝜃)‖2Σ

≤ E[𝐺(𝑦)‖2Σ] + 𝑧1−𝛼

√︀
Var[𝐺(𝑦)]

for any 𝛼 ∈ [1
2
, 1], where the first line follows from the definition of 𝑈(‖𝐺(𝑦)‖2Σ, 1−𝛼).

The second line follows from the observations that (A) 𝑧1−𝛼 < 0 and (B) the second

term in the first line uses an upper bound on the variance of ‖𝐺(𝑦)‖2Σ (Eq. (5.16)).

We now proceed to upper bound the probability of the event in the display equation

above. First consider a normal approximation to the distribution of ‖𝐺(𝑦)‖Σ with

matched moments, and denote its inverse CDF by 𝐹 †−1(𝜃, 𝛼). We may then write the
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probability of the event above as

P
[︁
‖𝐺(𝑦)‖2Σ ≤ E[𝐺(𝑦)‖2Σ] + 𝑧𝛼

√︀
Var[𝐺(𝑦)]

]︁
= 𝐹

[︁
𝐹 †−1(𝜃, 𝛼)

]︁
= 𝛼 +

{︂
𝐹
[︀
𝐹−1(𝜃, 𝛼)

]︀
− 𝐹 †

[︁
𝐹 †−1(𝜃, 𝛼)

]︁}︂
,

where 𝐹 (·) and 𝐹 †(·) denote the exact and approximate CDFs of ‖𝐺(𝑦)‖2Σ. It will

suffice to show that for any 𝑣,

|𝐹 (𝑣)− 𝐹 †(𝑣)| ≤ 5
√
2√
𝑁

𝜅(Σ
1
2 (𝐴− 𝐶)Σ

1
2 )2.

As in Lemma D.6.1 we obtain this result through the Berry–Esseen theorem. In this

case, the variable of interest is ‖𝐺(𝑦)‖2Σ = 𝜖⊤(𝐴−𝐶)⊤Σ(𝐴−𝐶)𝜖+2𝜖⊤
[︀
(𝐴− 𝐶)𝜃 + (𝑘 − ℓ)

]︀
.

As in this previous lemma, we use Lemma D.6.3 to write this variable as a shifted

sum of independent, scaled non-central 𝜒2 random variables, this time with scaling

parameters equal to the eigenvalues Σ
1
2 (𝐴− 𝐶)⊤Σ(𝐴− 𝐶)Σ

1
2 . Recognizing that the

eigenvalues of the matrix 𝑀⊤𝑀 are the squares of the singular values of 𝑀 for any

matrix 𝑀, we obtain the desired result.

Lemma D.6.3. Let 𝑋 be a random 𝑁-vector distributed as 𝑋 ∼ 2𝜖⊤𝐴𝜖+ 𝑏⊤𝜖 where

𝐴 ∈ R𝑁×𝑁 , 𝑏 ∈ R𝑁 , and 𝜖 ∼ 𝒩 (0,Σ). Then 𝑋 is distributed as a shifted sum of

differently scaled, independent non-central 𝜒2 random variables. In particular, if

we let 𝑈diag(𝜆)𝑈⊤ be the eigen-decomposition of Σ
1
2 (𝐴+ 𝐴⊤)Σ

1
2 , then we can write

𝑋
𝑑
=
∑︀𝑁

𝑛=1 𝑌𝑛− 1
4
‖diag(𝜆)−1𝑈⊤Σ

1
2 𝑏‖2, where each 𝑌𝑛

𝑖𝑛𝑑𝑒𝑝∼ 𝜆𝑛𝜒
2
1(

1
2
𝜆−1
𝑛 𝑒⊤𝑛𝑈

⊤Σ
1
2 𝑏), where

𝑒𝑛 is the 𝑛𝑡ℎ basis vector.

Proof. The proof of the lemma proceeds through a long algebraic rearrangement. In

particular we rewrite 𝑋 as

𝑋 = 2𝜖⊤𝐴𝜖+ 𝑏⊤𝜖

= 𝛿⊤Σ
1
2 (𝐴+ 𝐴⊤)Σ

1
2 𝛿 + 𝑏⊤Σ

1
2 𝛿

// defining 𝛿 := Σ− 1
2 𝜖 so that 𝛿 ∼ 𝒩 (0, 𝐼𝑁).

= 𝛿⊤𝑈diag(𝜆)𝑈⊤𝛿 + 𝑏⊤Σ
1
2𝑈diag(𝜆)−

1
2diag(𝜆)

1
2𝑈⊤𝛿
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// Letting 𝑈diag(𝜆)𝑈⊤ := Σ
1
2 (𝐴+ 𝐴⊤)Σ

1
2 be an eigen-decomposition,

// with 𝑈⊤𝑈 = 𝐼𝑁 and 𝜆 ∈ R𝑁
+

𝑑
= 𝛿⊤diag(𝜆)𝛿 + 𝑏⊤Σ

1
2𝑈diag(𝜆)−

1
2diag(𝜆)

1
2 𝛿

=
𝑁∑︁

𝑛=1

(𝜆
1
2
𝑛𝛿𝑛 +

1

2
𝜆
− 1

2
𝑛 𝑒⊤𝑛𝑈

⊤Σ
1
2 𝑏)2 − 1

4
𝑏⊤Σ

1
2𝑈diag(𝜆)−1𝑈⊤Σ

1
2 𝑏

𝑑
=
−𝑏⊤(𝐴+ 𝐴⊤)−1𝑏

4
+

𝑁∑︁
𝑛=1

𝜆𝑛𝜒
2
1(
1

2
𝜆−1
𝑛 𝑒⊤𝑛𝑈

⊤Σ
1
2 𝑏),

where each 𝑒𝑛 denotes the 𝑛𝑡ℎ basis vector and each of the scaled non-central 𝜒2

random variables in the last line are independent.

Lemma D.6.4. Consider a scaled non-central chi-squared random variable, 𝑋 ∼

𝑠𝜒2
1(𝜆), where 𝑠 and 𝜆 are scaling and non-centrality parameters, respectively. Denote

the second and third central moments of 𝑋 by 𝜎2 = Var[𝑋] and 𝜌 = E
[︀
(𝑋 − E[𝑋])3

]︀
.

Then 𝜌
𝜎2 ≤ 10𝑠.

Proof. Recall that the second and third central moments of the scaled non-central 𝜒2

have known forms, 𝜎2 = 2𝑠2(1 + 2𝜆) and 𝜌 = 8𝑠3(1 + 3𝜆). Therefore we may write

𝜌

𝜎2
=

8𝑠3(1 + 3𝜆)

2𝑠2(1 + 2𝜆)

≤ 4𝑠

(︂
1

1
+

3𝜆

2𝜆

)︂
=

4 · 5
2

𝑠

= 10𝑠,

as desired.

D.7 Empirical Bayes supplementary details
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D.7.1 Additional figure

Figure D.7.1 shows the calibration in the simulation experiment described in Sec-

tion 5.5.1.

Figure D.7.1: Calibration of approximate high-confidence bounds on the win of an
empirical Bayes estimate over the MLE in simulation. Each series depicts calibration
for a different choice of the parameter 𝜃 (𝑁 = 50).

D.7.2 Asymptotic coverage of the empirical Bayes estimate

Theorem 5.5.1 shows that we can apply the machinery developed for Bayes rules with

fixed priors to lower bound the win with at least the desired coverage asymptotically.

We here consider a scaling of win,

𝑊𝑁(Θ𝑁 , 𝑌𝑁) :=
1√
𝑁

[︀
‖𝑌𝑁 −Θ𝑁‖2 − ‖Θ*

𝑁(𝑌𝑁)−Θ𝑁‖2
]︀
.

We use a special case of Bound D.5.1 in Appendix D.5.4 with no covariates (i.e. 𝐷 = 0),

and we treat the estimate 𝜏 2𝑁(𝑌𝑁) as if it were fixed rather than estimated from the

data. For each 𝑁 , this bound is

𝑏𝑁(𝑌𝑁 , 𝛼) :=
1√
𝑁

inf
𝜆∈[0,𝑈(𝑌𝑁 , 1−𝛼

2
)]

2

1 + 𝜏 2𝑁
𝐹−1

[︂
𝜒2
𝑁(

𝜆

4
),
1− 𝛼

2

]︂
− 𝜆

2(1 + 𝜏 2𝑁)
− ‖𝑌𝑁‖2

(1 + 𝜏 2𝑁)
2
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where 𝐹−1
[︀
𝜒2
𝑁(𝜆), 1− 𝛼

]︀
denotes the inverse cumulative distribution function of the

non-central 𝜒2 with 𝑁 degrees of freedom and non-centrality parameter 𝜆, evaluated at

1−𝛼 and 𝑈(𝑌𝑁 , 1−𝛼) := inf𝛿≥0

{︂
𝛿
⃒⃒⃒
‖𝑌𝑁‖2 ≤ 𝐹−1

[︀
𝜒2
𝑁(𝛿), 1− 𝛼

]︀}︂
is a high-confidence

upper bound on ‖𝜃‖2.

For our theorem and its proof, a key quantity is, for each 𝑁 , the sample second

moment for the first 𝑁 parameters, which we denote by 𝜏 2𝑁 := 𝑁−1
∑︀𝑁

𝑛=1 𝜃
2
𝑛. We

emphasize, however, that while it may be convenient to describe 𝜏 2𝑁 as a sample

moment, 𝜃 is fixed in Theorem 5.5.1 and throughout this analysis.

Proof of Theorem 5.5.1. We prove the theorem by showing that for any 𝛼, the gap

between the win 𝑊𝑁(Θ𝑁 , 𝑌𝑁) and the bound 𝑏𝑁(𝑌𝑁 , 𝛼) computed for the empirical

Bayes estimate converges in distribution to the gap between the analogous win and

bound computed for the same estimates but with prior variance fixed as 𝜏 2 = 𝜏 2𝑁 . We

denote these latter quantities by 𝑊 *
𝑁(Θ𝑁 , 𝑌𝑁) and 𝑏*𝑁(𝑌𝑁 , 𝛼), and note that since 𝜏 2𝑁

is fixed P[𝑊 *
𝑁(Θ𝑁 , 𝑌𝑁) ≥ 𝑏*(𝑌𝑁 , 𝛼)] ≥ 𝛼 by construction (Proposition D.5.1). For

convenience, we denote 𝑊𝑁(Θ𝑁 , 𝑌𝑁) by 𝑊𝑁 , 𝑏𝑁(𝑌𝑁 , 𝛼) by 𝑏𝑁 , 𝑊
*
𝑁(Θ𝑁 , 𝑌𝑁) by 𝑊 *

𝑁 ,

and 𝑏*𝑁(𝑌𝑁 , 𝛼) by 𝑏*𝑁 .

Observe that we can write

𝑊𝑁 − 𝑏𝑁 =
𝑊𝑁 − 𝑏𝑁
𝑊 *

𝑁 − 𝑏*𝑁
(𝑊 *

𝑁 − 𝑏*𝑁).

By Lemma D.7.4, 𝑊 *
𝑁−𝑏*𝑁 is asymptotically Gaussian, and by Lemma D.7.2 𝑊𝑁−𝑏𝑁

𝑊 *
𝑁−𝑏*𝑁

𝑝→

1. As a result, the distribution of 𝑊𝑁 − 𝑏𝑁 approaches the distribution of 𝑊 *
𝑁 − 𝑏*𝑁 in

supremum norm. Since 𝑏*𝑁 obtains the desired coverage by construction, the result

follows.

Supporting lemmas.

Lemma D.7.1. If the sequence 𝜏 2𝑁 is bounded, then 𝜏 2𝑁 − 𝜏 2𝑁 is 𝑂𝑝(𝑁
− 1

2 ), where 𝑂𝑝(·)

denotes stochastic convergence in probability.

Proof. Note that for each 𝑁 , ‖𝑌𝑁‖2 ∼ 𝜒2
𝑁 (𝑁𝜏 2𝑁 ). Therefore we have that E[‖𝑌𝑁‖2] =
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𝑁 + 𝑁𝜏 2𝑁 and Var[‖𝑌𝑁‖2] = 2(𝑁 + 2𝑁𝜏 2𝑁). So, recalling that 𝜏 2𝑁 := ‖𝑌𝑁‖2
𝑁−2

− 1 =

‖𝑌𝑁‖2−(𝑁−2)
𝑁−2

we may write

𝜏 2𝑁 =
‖𝑌𝑁‖2 − E[‖𝑌𝑁‖2]

𝑁 − 2
+

(𝑁 +𝑁𝜏 2𝑁)− (𝑁 − 2)

𝑁 − 2

=
‖𝑌𝑁‖2 − E[‖𝑌𝑁‖2]

𝑁
+ 𝜏 2𝑁 +𝑂(

1

𝑁
).

And so

|𝜏 2𝑁 − 𝜏 2𝑁 | ≤
⃒⃒⃒‖𝑌𝑁‖2 − E[‖𝑌𝑁‖2]

𝑁

⃒⃒⃒
+𝑂(

1

𝑁
)

=

(︃√︀
2 + 4𝜏 2𝑁√

𝑁

)︃ ⃒⃒⃒‖𝑌𝑁‖2 − E[‖𝑌𝑁‖2]√︀
Var[‖𝑌𝑁‖2]

⃒⃒⃒
+𝑂(

1

𝑁
).

By Chebyshev’s inequality, ‖𝑌𝑁‖2−E[‖𝑌𝑁‖2]√
Var[‖𝑌𝑁‖2]

is bounded in probability and we can see

that |𝜏 2𝑁 − 𝜏 2𝑁 | is 𝑂𝑝(𝑁
− 1

2 ).

Lemma D.7.2. Let 𝑊 *
𝑁 and 𝑏*𝑁 denote the win and its bound evaluated for 𝜏 2 = 𝜏 2𝑁 ,

rather than the empirical Bayes estimate. Then

𝑊𝑁 − 𝑏𝑁
𝑊 *

𝑁 − 𝑏*𝑁
= 1 +

𝜏 2𝑁 − 𝜏 2𝑁
1 + 𝜏 2𝑁

= 1 +𝑂𝑝(
1√
𝑁
).

Proof. Recall that we may decompose 𝑊𝑁 as

𝑊𝑁(Θ𝑁 , 𝑌𝑁) =
1√
𝑁

[︃
2

1 + 𝜏 2𝑁
𝜖⊤𝑁𝑌𝑁 −

1

(1 + 𝜏 2𝑁)
2
‖𝑌𝑁‖2

]︃

and that our bound is

𝑏𝑁(𝑌𝑁 , 𝛼) =
1√
𝑁

{︃
inf

𝜆∈[0,𝑈(𝑌𝑁 , 1−𝛼
2

)]

2

1 + 𝜏 2𝑁
𝐹−1

[︂
𝜒2
𝑁(

𝜆

4
),
1− 𝛼

2

]︂
− 𝜆

2(1 + 𝜏 2𝑁)
− ‖𝑌𝑁‖2

(1 + 𝜏 2𝑁)
2

}︃
,

where 𝑈(𝑌𝑁 , 𝛼) does not depend on 𝜏 2𝑁 .
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As such,

𝑊𝑁 − 𝑏𝑁 =
2√

𝑁(1 + 𝜏 2𝑁)

{︃
𝜖⊤𝑁𝑌𝑁 − inf

𝜆∈[0,𝑈(𝑌𝑁 , 1−𝛼
2

)]
𝐹−1

[︂
𝜒2
𝑁(

𝜆

4
),
1− 𝛼

2

]︂
+

𝜆

4

}︃
,

and we can see that

𝑊𝑁 − 𝑏𝑁
𝑊 *

𝑁 − 𝑏*𝑁
=

1 + 𝜏 2𝑁
1 + 𝜏 2𝑁

= 1 +
𝜏 2𝑁 − 𝜏 2𝑁
1 + 𝜏 2𝑁

.

By Lemma D.7.1 the second term is 𝑂𝑝(𝑁
− 1

2 ), as desired.

Lemma D.7.3. Let 𝜆1, 𝜆2, . . . be a sequence of reals satisfying, for each 𝑁 , 𝑁−1𝜆𝑁 < 𝜅

for some constant 𝜅. Let 𝐹−1
𝜒2
𝑁
(𝜆𝑁 , 𝛼) denote the inverse CDF of a non-central 𝜒2 with

𝑁 degrees of freedom and non-centrality parameter 𝜆𝑁 . Then for any 𝛼 ∈ (0, 1),

1√
𝑁

[︁
𝐹−1
𝜒2
𝑁
(𝜆𝑁 , 𝛼)− (𝑁 + 𝜆𝑁)

]︁
=

√︂
2 + 4

𝜆𝑁

𝑁
𝑧𝛼 +𝑂(

1√
𝑁
),

where 𝑧𝛼 is the 𝛼-quantile of the standard normal.

Proof. Note that a 𝜒2
𝑁(𝜆𝑁) random variable is equal in distribution to a sum of 𝑁

i.i.d. 𝜒2
1(𝑁

−1𝜆𝑁) random variables. Let 𝜎2
𝑁 := Var[𝜒2

1(𝑁
−1𝜆𝑁)] = 2 + 4𝑁−1𝜆𝑁 and

note that each 𝜎2
𝑁 ≥ 2. Let 𝜌𝑁 := 8 + 24𝑁−1𝜆𝑁 be third central moment of these

variates and note that each 𝜌𝑁 ≤ 8 + 24𝜅.

Let 𝐹𝜒2
𝑁 (𝜆𝑁 )(𝑥) denote the CDF of a non-central 𝜒2 random variable with 𝑁 degrees

of freedom and non-centrality parameter 𝜆𝑁 evaluated at 𝑥. By the Berry–Esseen

theorem [Berry, 1941, Theorem 1], for all 𝑥⃒⃒⃒⃒
⃒𝐹𝜒2

𝑁 (𝜆𝑁 )(𝑥)− Φ

[︂
𝑥− (𝑁 + 𝜆𝑁)√

2𝑁 + 4𝜆𝑁

]︂⃒⃒⃒⃒
⃒ ≤ 𝐶1𝜌

𝜎3
√
𝑁

≤ 𝐶1(8 + 24𝜅)

2
3
2

√
𝑁

= 𝑂(
1√
𝑁
),
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where 𝐶1 ≤ 1.88 is a universal constant. Since Φ(·) is continuously differentiable and

invertible, we obtain the same convergence rate for the inverse CDFs. That is, for any

𝛼 ∈ (0, 1),
𝐹−1
𝜒2
𝑁
(𝜆𝑁 , 𝛼)− (𝑁 + 𝜆𝑁)
√
2𝑁 + 4𝜆𝑁

− 𝑧𝛼 = 𝑂(
1√
𝑁
).

Rescaling these terms by 𝑁− 1
2

√
2𝑁 + 4𝜆𝑁 and rearranging, we find

1√
𝑁

[︁
𝐹−1
𝜒2
𝑁
(𝜆𝑁 , 𝛼)− (𝑁 + 𝜆𝑁)

]︁
=

√︂
2 + 4

𝜆𝑁

𝑁
𝑧𝛼 +𝑂(

1√
𝑁
)

as desired.

Lemma D.7.4. Let 𝑏*𝑁 and 𝑊 *
𝑁 again denote the win and bounds evaluated for the

variance 𝜏 2 = 𝜏 2𝑁 rather than the empirical Bayes estimate. If the sequence 𝜏 2𝑁 is

bounded, then
(𝑊 *

𝑁 − 𝑏*𝑁)− 𝑐𝑁
𝑑𝑁

→ 𝒩 (0, 1)

for some sequences of constants 𝑐1, 𝑐2, . . . and 𝑑1, 𝑑2, . . . .

Proof. Let 𝜅 be such that for all 𝑁 , 𝜏 2𝑁 < 𝜅.

Recall that we may write

𝑊 *
𝑁 − 𝑏*𝑁 =

2√
𝑁(1 + 𝜏 2𝑁)

{︃
𝜖⊤𝑁𝑌𝑁 − inf

𝜆∈[0,𝑈(𝑌𝑁 , 1−𝛼
2

)]
𝐹−1

[︂
𝜒2
𝑁(

𝜆

4
),
1− 𝛼

2

]︂
+

𝜆

4

}︃
.

(D.7.1)

To prove the lemma, we build off of the normal approximation described in

Appendix D.5.1. Note first that an application of Chebyshev’s inequality provides

that 𝑁−1𝑈(𝑌𝑁 ,
1−𝛼
2
)− 𝜏 2𝑁 is 𝑂𝑝(𝑁

− 1
2 ), so that 𝑁−1𝑈(𝑌𝑁 ,

1−𝛼
2
) < 𝜅 with probability

approaching 1. Next, by Lemma D.7.3,

1√
𝑁

{︃
𝐹−1

[︂
𝜒2
𝑁(

𝜆𝑁

4
),
1− 𝛼

2

]︂
−
[︂
𝜆𝑁

4
+𝑁

]︂}︃
=

√︂
2 +

𝜆𝑁

𝑁
𝑧 1−𝛼

2
+𝑂(

1√
𝑁
),

for any sequence 𝜆1, 𝜆2, . . . that satisfies, for each 𝑁 , 𝑁−1𝜆𝑁 < 𝜅.
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Notably, since any sequence of 𝜆𝑁 ’s achieving the infima in Eq. (D.7.1) will satisfy

this condition, we may substitute this expression in and rewrite 𝑊 *
𝑁 − 𝑏*𝑁 as

𝑊 *
𝑁 − 𝑏*𝑁 =

2

1 + 𝜏𝑁

⎡⎣𝜖⊤𝑁𝑌𝑁√
𝑁
−
√
𝑁

{︃
inf

𝜆𝑁∈[0,𝑈(𝑌𝑁 , 1−𝛼
2

)]
𝐹−1

[︂
𝜒2
𝑁(

𝜆𝑁

4
),
1− 𝛼

2

]︂
−
[︂
𝜆𝑁

4
+𝑁

]︂}︃
−
√
𝑁

⎤⎦
=

2

1 + 𝜏𝑁

[︃
𝜖⊤𝑁𝑌𝑁 −𝑁√

𝑁
− inf

𝜆𝑁∈[0,𝑈(𝑌𝑁 , 1−𝛼
2

)]
𝑧 1−𝛼

2

√︂
2 +

𝜆𝑁

𝑁
+𝑂𝑝(

1√
𝑁
)

]︃

=
2

1 + 𝜏𝑁

⎡⎢⎣𝜖⊤𝑁𝑌𝑁 −𝑁√
𝑁

− 𝑧 1−𝛼
2

√︃
2 +

𝑈(𝑌𝑁 ,
1−𝛼
2
)

𝑁
+𝑂𝑝(

1√
𝑁
)

⎤⎥⎦
=

2

1 + 𝜏𝑁

[︃
𝜖⊤𝑁𝑌𝑁 −𝑁√

𝑁
− 𝑧 1−𝛼

2

√︁
2 + 𝜏 2𝑁 +𝑂𝑝(

1√
𝑁
)

]︃

// Since 𝜏 2𝑁 −
𝑈(𝑌𝑁 ,

1−𝛼
2
)

𝑁
is 𝑂𝑝(

1√
𝑁
).

Finally, note that 𝜖⊤𝑌𝑁 is approximately normal with mean 𝑁 and variance

𝑁(2+ 𝜏 2𝑁 ). Furthermore, the distribution of this quantity approaches that of a normal

at the same 𝑂(𝑁− 1
2 ) rate in the supremum norm (one may make this precise with a

Berry–Esseen bound). This allows us to write

𝑊 *
𝑁 − 𝑏*𝑁 ∼

2

1 + 𝜏 2𝑁

[︂√︁
2 + 𝜏 2𝑁𝑥−

√︁
2 + 𝜏 2𝑁𝑧 1−𝛼

2

]︂
+𝑂𝑝(

1√
𝑁
)

∼
2
√︀

2 + 𝜏 2𝑁
1 + 𝜏 2𝑁

(𝑥− 𝑧 1−𝛼
2
) +𝑂𝑝(

1√
𝑁
)

for 𝑥 ∼ 𝒩 (0, 1). The result obtains by taking 𝑑𝑁 := (2
√︀

2 + 𝜏 2𝑁)/(1 + 𝜏 2𝑁) and

𝑐𝑁 := −𝑑𝑁𝑧 1−𝛼
2
, and noting that the lower order term does not influence the limiting

distribution of 𝑑−1
𝑁

[︀
(𝑊 *

𝑁 − 𝑏*𝑁)− 𝑐𝑁
]︀
.

D.8 Logistic regression supplementary material

This section provides supplementary information related to Section 5.5.2. We begin

by reviewing notation for convenience in Appendix D.8.1. In Appendix D.8.2 we

then provide a proposition demonstrating the asymptotic rate of convergence of the
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approximation of the MAP estimate to the exact MAP estimate, as well a proof

and supporting lemmas. Appendix D.8.3 then provides a proof of Theorem 5.5.3.

Appendix D.8.4 gives additional details on the simulation experiments.

D.8.1 Preliminaries and notation

Consider logistic regression with random 𝑁 -vector covariates 𝑥1, 𝑥2, . . . and responses

𝑦1, 𝑦2, . . . , where for each data point 𝑚, 𝑦𝑚 | 𝑥𝑚, 𝜃 ∼ (1 + exp{−𝑥⊤
𝑚𝜃})−1𝛿1 + (1 +

exp{𝑥⊤
𝑚𝜃})−1𝛿−1 for some unknown parameter 𝜃 ∈ R𝑁 . We use 𝑋𝑀 = [𝑥1, 𝑥2, . . . , 𝑥𝑀 ]⊤

and 𝑌𝑀 = [𝑦1, 𝑦2, . . . , 𝑦𝑀 ]⊤ to denote the first 𝑀 data points.

One choice of an estimate for 𝜃 after observing 𝑀 observations is the MLE,

𝜃𝑀 := argmax
𝜃

log 𝑝(𝑌𝑀 | 𝑋𝑀 , 𝜃).

Another possibility is the MAP estimate under a standard normal prior

𝜃*𝑀 := argmax
𝜃

log 𝑝(𝑌𝑀 | 𝑋𝑀 , 𝜃)− 1

2
‖𝜃‖2.

The approach in Section 5.5.2 involves an approximation to this estimate involving a

Gaussian approximation to the likelihood, defined by a 2nd order Taylor approximation

of the log posterior formed at 𝜃𝑀 . In particular, by Bayes’ rule, the log posterior is,

up to an additive constant,

log 𝑝𝑀(𝜃) := log 𝑝(𝑌𝑀 | 𝑋𝑀 , 𝜃)− 1

2
‖𝜃‖2

and we use the approximation

log 𝑝𝑀(𝜃) := log 𝑝(𝑌𝑀 | 𝑋𝑀 , 𝜃𝑀)− 1

2
‖𝜃‖2 − 1

2
(𝜃 − 𝜃𝑀)⊤𝐻𝑀(𝜃𝑀)(𝜃 − 𝜃𝑀), (D.8.1)

where 𝐻𝑀(𝜃𝑀) = ∇2
𝜃 − log 𝑝(𝑌𝑀 | 𝑋𝑀 , 𝜃)

⃒⃒
𝜃=𝜃𝑀

is the Hessian of the negative log

likelihood, computed at the MLE.

The approximation we use for computing our proposed bound is then the maximizer
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of this approximation

𝜃*𝑀 := argmax
𝜃

log 𝑝𝑀(𝜃).

In Section 5.5.2 we found that we could express 𝜃*𝑀 as

𝜃*𝑀 =
[︁
𝐼𝑁 + Σ̃𝑀

]︁−1

𝜃𝑀 ,

where Σ̃𝑀 := 𝐻𝑀(𝜃𝑀)−1 is an approximation to the covariance of 𝜃𝑀 . This solution

may be seen by considering the first order optimality condition (i.e. setting the

gradient of log 𝑝𝑀(𝜃) to zero).

D.8.2 Asymptotic approximation quality

We here show that, in the large sample limit, 𝜃* provides a very close approximation

of the MAP estimate, 𝜃*.

Proposition D.8.1 (Asymptotic approximation quality). Consider Bayesian logistic

regression with a Gaussian prior 𝜃 ∼ 𝒩 (0, 𝐼𝑁 ). Let 𝑥1, 𝑥2, . . . be a sequence of random

i.i.d. covariates satisfying E[𝑥𝑚𝑥
⊤
𝑚] ≻ 0 and with bounded third moment, and let

𝑦1, 𝑦2, . . . be responses distributed as in Eq. (5.18). Denote by 𝑋𝑀 := [𝑥1, 𝑥2, . . . , 𝑥𝑀 ]⊤

and 𝑌𝑀 := [𝑦1, 𝑦2, . . . , 𝑦𝑀 ]⊤ the covariates and labels of the first 𝑀 data points.

Consider the MAP estimate of 𝜃 after observing 𝑀 data points,

𝜃*𝑀 := argmax
𝜃

𝑝(𝜃|𝑌𝑀 , 𝑋𝑀) and the approximation 𝜃*𝑀 :=
[︁
𝐼𝑁 + Σ̃𝑀

]︁−1

𝜃𝑀 ,

(D.8.2)

where 𝜃𝑀 := argmax𝜃 𝑝(𝑌𝑀 |𝑋𝑀 ; 𝜃) and Σ̃𝑀 :=
[︁
−∇2

𝜃 log 𝑝(𝑌𝑀 |𝑋𝑀 ; 𝜃)
⃒⃒
𝜃=𝜃𝑀

]︁−1

. Then

‖𝜃*𝑀 − 𝜃*𝑀‖ ∈ 𝑂𝑝(𝑀
−2), where 𝑂𝑝 denotes stochastic convergence in probability.

The 𝑂𝑝(𝑀
−2) convergence rate established in Proposition D.8.1 is very fast in

comparison to the 𝑂𝑝(𝑀
− 1

2 ) convergence rate of the MLE, as well as to the 𝑂𝑝(𝑀
−1)

rate of convergence of the MAP to the posterior mean. Notably, this asymptotic rate

is consistent with rates observed in simulation (Figure D.8.1a).
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Proof. We here show that ‖𝜃*𝑀 − 𝜃*𝑀‖ is 𝑂𝑝(𝑀
−2). Our route to proving this relies

on Lemma D.8.1 [Trippe et al., 2019, Lemma E.1], which will provide a sequence

of bounds on ‖𝜃*𝑀 − 𝜃*𝑀‖ that depend on the norms of the gradients of log 𝑝𝑀(·) at

𝜃*𝑀 , 𝑐𝑀 := ‖∇𝜃 log 𝑝𝑀(𝜃*𝑀)‖, and a sequence of strong log-concavity constants 𝛼𝑀

for log 𝑝𝑀(·) which hold on the interval {𝑡𝜃*𝑀 + (1 − 𝑡)𝜃*𝑀 |𝑡 ∈ [0, 1]}. In particular,

Lemma D.8.1 provides that ‖𝜃*𝑀 − 𝜃*𝑀‖ ≤ 𝑐𝑀
𝛼𝑀

and we obtain the result by showing

that 𝛼𝑀 grows as Ω𝑝(𝑀) and 𝑐𝑀 drops as 𝑂𝑝(𝑀
−1).

We first use Lemma D.8.3 to show that the strong log-concavity constants of

log 𝑝𝑀 in a neighborhood of radius 𝜖 of 𝜃, 𝐵𝜖(𝜃) grow as Ω𝑝(𝑀). This allows us to

establish that ‖𝜃*𝑀 −𝜃𝑀‖ is 𝑂𝑝(𝑀
−1) (Lemma D.8.4). Since both 𝜃𝑀 and 𝜃*𝑀 converge

strongly to 𝜃 under these conditions (see e.g. Van der Vaart [2000, Theorem 10.10]),

the interval {𝑡𝜃*𝑀 +(1− 𝑡)𝜃*𝑀 |𝑡 ∈ [0, 1]} is then contained within 𝐵𝜖(𝜃) with probability

approaching 1. Consequently, the constants of strong log concavity of log 𝑝𝑀 on this

interval, which we take as 𝛼1, 𝛼2, . . . , must grow as Ω𝑝(𝑀) as well.

Now all that remains is to show that 𝑐𝑀 drops as 𝑂𝑝(𝑀
−1). Recall from above

that ‖𝜃*𝑀 − 𝜃𝑀‖ is 𝑂(𝑀−1). This fact and the boundedness of the higher derivatives

of ∇ log 𝑝𝑀 will allow us to use Taylor’s theorem to obtain the desired rate.

However, before proceeding to a more detailed derivation of this rate, we introduce

some additional notation. Let 𝜑(𝑦, 𝑎) denote the GLM mapping function, such that

𝜑(𝑦, 𝑎 = 𝑥⊤𝜃) = log 𝑝(𝑦|𝑥, 𝜃)

= − log(1 + exp{−𝑦𝑥⊤𝜃})

and note that all higher derivatives with respect to 𝑎 are bounded. In particular, third

derivative satisfies

𝜑′′′(𝑎) :=
𝑑3

𝑑𝑎3
𝜑(𝑦, 𝑎) ≤ 1

6
√
3
,

where we have dropped 𝑦 as an argument, because these higher derivatives do not

depend on 𝑦.

We now proceed to derive a stochastic rate of convergence of ‖∇𝜃 log 𝑝𝑀(𝜃*𝑀)‖.
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We obtain this through a long derivation involving a series of upper bounds.

‖∇𝜃 log 𝑝𝑀(𝜃*𝑀)‖ = ‖∇𝜃(log 𝑝𝑀 − log 𝑝𝑀)(𝜃*𝑀)‖

= ‖∇𝜃(log 𝑝𝑀 − log 𝑝𝑀)(𝜃𝑀) + (𝜃*𝑀 − 𝜃𝑀)⊤∇2
𝜃(log 𝑝𝑀 − log 𝑝𝑀)(𝜃′𝑀)‖

// By Taylor’s theorem, for some 𝜃′𝑀 ∈ {𝑡𝜃𝑀 + (1− 𝑡)𝜃*𝑀 |𝑡 ∈ [0, 1]}

= ‖(𝜃*𝑀 − 𝜃𝑀)⊤∇2
𝜃(log 𝑝𝑀(𝜃′𝑀)− log 𝑝𝑀(𝜃′𝑀))‖

// Since ∇𝜃 log 𝑝𝑀(𝜃) = ∇𝜃 log 𝑝𝑀(𝜃)

= ‖(𝜃*𝑀 − 𝜃𝑀)⊤
[︁
∇2

𝜃 log 𝑝(𝑌𝑀 |𝑋𝑀 , 𝜃′𝑀)−∇2
𝜃 log 𝑝(𝑌𝑀 |𝑋𝑀 , 𝜃𝑀)

]︁
‖

// Since log 𝑝𝑀 is a second degree approximation defined at 𝜃𝑀

≤ ‖𝜃*𝑀 − 𝜃𝑀‖

⎡⎣ 𝑀∑︁
𝑚=1

‖∇2
𝜃 log 𝑝(𝑦𝑚|𝑥𝑚, 𝜃

′
𝑀)−∇2

𝜃 log 𝑝(𝑦𝑚|𝑥𝑚, 𝜃𝑀)‖OP

⎤⎦
= ‖𝜃*𝑀 − 𝜃𝑀‖

⎡⎣ 𝑀∑︁
𝑚=1

‖𝜃′𝑀 − 𝜃𝑀‖ · ‖
∫︁ 1

𝑡=0

𝜕

𝜕𝑡
∇2

𝜃 log 𝑝(𝑦𝑚|𝑥𝑚, 𝜃)
⃒⃒
𝜃=𝑡𝜃𝑀+(1−𝑡)𝜃′𝑀

‖OP

⎤⎦
// By the fundamental theorem of calculus

≤ ‖𝜃*𝑀 − 𝜃𝑀‖2
⎡⎣ 𝑀∑︁

𝑚=1

‖
∫︁ 1

𝑡=0

𝜕

𝜕𝑡
∇2

𝜃 log 𝑝(𝑦𝑚|𝑥𝑚, 𝜃)
⃒⃒
𝜃=𝑡𝜃𝑀+(1−𝑡)𝜃′𝑀

‖OP

⎤⎦
≤ ‖𝜃*𝑀 − 𝜃𝑀‖

⎡⎣ 𝑀∑︁
𝑚=1

‖𝑥𝑚‖3(max𝑎𝜑
′′′(𝑎))

⎤⎦
=

1

6
√
3
‖𝜃*𝑀 − 𝜃𝑀‖2

⎡⎣ 𝑀∑︁
𝑚=1

‖𝑥𝑚‖3
⎤⎦

≤ 𝑂𝑝(
1

𝑀2
)𝑂𝑝(𝑀) = 𝑂𝑝(

1

𝑀
),

where the final line requires that the covariates have bounded third moment.

Supporting Lemmas

Lemma D.8.1 (Trippe et al., 2019, Lemma E.1). Let 𝑓, 𝑔 be twice differentiable

functions mapping R𝑁 → R and attaining minima at 𝜃𝑓 = argmin𝜃 𝑓(𝜃) and 𝜃𝑔 =

argmin𝜃 𝑔(𝜃), respectively. Additionally, assume that 𝑓 is 𝛼–strongly convex for
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some 𝛼 > 0 on the set {𝑡𝜃𝑓 + (1 − 𝑡)𝜃𝑔|𝑡 ∈ [0, 1]} and that ‖∇𝜃𝑓(𝜃𝑔) −∇𝜃𝑔(𝜃𝑔)‖2 =

‖∇𝜃𝑓(𝜃𝑔)‖2 ≤ 𝑐. Then

‖𝜃𝑓 − 𝜃𝑔‖2 ≤
𝑐

𝛼
. (D.8.3)

Lemma D.8.2 (uniform law of large numbers). Let 𝐻𝑀 (𝜃) be as defined in Eq. (D.8.1)

and define 𝐻(𝜃) := E[∇2
𝜃 log 𝑝(𝑦1|𝑥1; 𝜃)], where the expectation is taken under the true

𝜃. If E[𝑥1𝑥
⊤
1 ] exists and is positive definite then

sup
𝜃′∈𝐵𝜖(𝜃)

‖ 1

𝑀
𝐻𝑀(𝜃′)−𝐻(𝜃′)‖2

𝑎.𝑠.→ 0.

according to 𝑝, where 𝐵𝜖(𝜃) is a closed neighborhood of 𝜃 of radius 𝜖, for any 𝜖 > 0.

Proof. Since the each of the 𝑀 data points {(𝑥𝑚, 𝑦𝑚)}∞𝑚=1 are i.i.d. by assumption,

𝑀−1𝐻𝑀 converges point-wise by the law of large numbers. However, we are addition-

ally interested in uniform convergence; a number of different uniform laws of large

numbers suffice for this. Because 𝐻 is continuously differentiable in 𝜃 (recall that

for any 𝑥𝑚, 𝑑3

𝑑𝜃3
log 𝑝(𝑦𝑚|𝑥𝑚, 𝜃) is bounded) it is therefore Lipschitz continuous on the

bounded set 𝐵𝜖(𝜃). As such one can construct a bounded envelope for 𝐻 on this set,

which amounts to a sufficient condition for uniform convergence on 𝐵𝜖, see Van der

Vaart [2000, Theorem 19.4 - Glivenko-Cantelli]. We refer the reader to Van der Vaart

[2000, Chapter 19] for technical background, and in particular to Van der Vaart [2000,

Example 19.8] which walks through an example closely related to the present case.

Lemma D.8.3. Consider logistic regression with random covariates, 𝑥1, 𝑥2, . . . . Let

𝐵𝜖(𝜃) be a closed neighborhood of radius 𝜖 > 0 around 𝜃 and for each 𝑀 define

𝛼𝑀 := inf
𝜃′∈𝐵𝜖(𝜃)

𝜆𝑚𝑖𝑛

[︀
∇2

𝜃 log 𝑝𝑀(𝜃′)
]︀

to be the constant of strong log-concavity constant of log 𝑝𝑀 (·) on 𝐵𝜖(𝜃), where 𝜆𝑚𝑖𝑛(·)

denotes the smallest eigenvalue of its matrix argument. If the covariates are i.i.d. and

satisfy E[𝑥1𝑥
⊤
1 ] ≻ 0, then 𝛼𝑀 is Ω𝑝(𝑀).
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Proof. Consider the scaled Hessians of log 𝑝𝑀(·), 𝑀−1𝐻𝑀(·). By Lemma D.8.2,

𝑀−1𝐻𝑀(·) converges uniformly to its expectation, 𝐻(𝜃) := E[∇2
𝜃 log 𝑝(𝑦1|𝑥1, 𝜃)] on

𝐵𝜖(𝜃). Since 𝐻(𝜃) ≻ 0 on 𝐵𝜖(𝜃), we have that

inf
𝜃′∈𝐵𝜖(𝜃)

𝜆𝑚𝑖𝑛(
1

𝑀
𝐻𝑀(𝜃))

𝑎.𝑠.→ inf
𝜃′∈𝐵𝜖(𝜃)

𝜆𝑚𝑖𝑛(𝐻𝑀(𝜃)) > 0.

Therefore 𝛼𝑀 := inf𝜃′∈𝐵𝜖(𝜃) 𝜆𝑚𝑖𝑛

[︀
∇2

𝜃 log 𝑝𝑀(𝜃′)
]︀

is Ω𝑝(𝑀).

Lemma D.8.4. Let 𝜃 and 𝜃* be the MLE and the approximation to the MAP defined in

Eq. (5.19), respectively. If the covariates, 𝑥1, 𝑥2, . . . are i.i.d. and satisfy E[𝑥1𝑥
⊤
1 ] ≻ 0,

then ‖𝜃𝑀 − 𝜃*𝑀‖ is 𝑂𝑝(𝑀
−1).

Proof. Recall that

𝜃*𝑀 =
[︁
𝐼𝑁 + Σ̃𝑀

]︁−1

𝜃𝑀 ,

where Σ̃𝑀 := 𝐻𝑀(𝜃𝑀)−1. Lemma D.8.3 provides that the constants of strong log-

concavity for log 𝑝𝑀 grow as Ω𝑝(𝑀) in a neighborhood of 𝜃. Therefore, since 𝜃𝑀

converges strongly to 𝜃, we can see that 𝜆𝑚𝑖𝑛(𝐻𝑀(𝜃𝑀)) is Ω𝑝(𝑀). Next, we rewrite

‖𝜃*𝑀 − 𝜃𝑀‖ = ‖
[︁
𝐼𝑁 + Σ̃𝑀

]︁−1

𝜃𝑀 − 𝜃𝑀‖

= ‖
[︁
𝐼𝑁 +𝐻𝑀(𝜃𝑀)

]︁−1

𝜃𝑀‖

≤ ‖
[︁
𝐼𝑁 +𝐻𝑀(𝜃𝑀)

]︁−1

‖OP‖𝜃𝑀‖

≤ ‖𝜃𝑀‖

𝜆𝑚𝑖𝑛

(︁
𝐻𝑀(𝜃𝑀)

)︁ .
which one can see is 𝑂𝑝(𝑀

−1) since ‖𝜃𝑀‖ is bounded in probability.

D.8.3 Proof of Theorem 5.5.3

Before proving the theorem we begin by explicitly writing out the win and our proposed

bound defined in Section 5.5.2. For clarity, we introduce a subscript 𝑀 to index the

size of the dataset on which these quantities are computed. Specifically, recalling

that in this case we have 𝐴 = 𝐼𝑁 and 𝐶 = (𝐼𝑁 + Σ̃𝑀)−1, and noting that therefore
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𝐴− 𝐶 = (𝐼𝑁 + Σ̃−1
𝑀 )−1, we have

𝑏𝑀(𝛼) = 2tr[(𝐼𝑁 + Σ̃−1
𝑀 )−1Σ̃𝑀 ] +

2𝑧 1−𝛼
2

√︂
𝑈𝑀(‖𝐺𝑀(𝜃𝑀)‖2

Σ̃𝑀
,
1− 𝛼

2
) + 2‖Σ̃

1
2
𝑀(𝐼𝑁 + Σ̃−1

𝑀 )−1Σ̃
1
2
𝑀‖2𝐹 − ‖𝜃

*
𝑀 − 𝜃𝑀‖2

where 𝐺𝑀(𝜃𝑀) := (𝐼𝑁 + Σ̃−1
𝑀 )−1𝜃𝑀 and

𝑈𝑀(‖𝐺𝑀(𝜃𝑀)‖2
Σ̃𝑀

, 1− 𝛼) := inf
𝛿>0

{︂
𝛿

⃒⃒⃒⃒
‖𝐺𝑀(𝜃𝑀)‖2

Σ̃𝑀
≤ (𝛿 + ‖Σ̃

1
2
𝑀(𝐼𝑁 + Σ̃−1

𝑀 )−1Σ̃
1
2
𝑀‖

2
𝐹 ) +

(D.8.4)

𝑧1−𝛼

√︁
2‖Σ̃

1
2
𝑀(𝐼𝑁 + Σ̃−1

𝑀 )−1Σ̃𝑀(𝐼𝑁 + Σ̃−1
𝑀 )−1Σ̃

1
2
𝑀‖2𝐹 + 4‖Σ̃

1
2
𝑀(𝐼𝑁 + Σ̃−1

𝑀 )−1Σ̃
1
2
𝑀‖2OP𝛿

}︂
(D.8.5)

is an approximate high-confidence upper bound on ‖𝐺𝑀(𝜃𝑀)‖2
Σ̃𝑀

. For convenience,

we abbreviate 𝑈𝑀(‖𝐺𝑀(𝜃𝑀)‖2
Σ̃𝑀

, 1− 𝛼) by 𝑈𝑀 .

Next, we recall that we may decompose the win in squared error loss for using 𝜃*𝑀

in place of 𝜃𝑀 as

𝑊𝑀(𝜃) = 2𝜖⊤𝑀(𝐼𝑁 + Σ̃−1
𝑀 )−1𝜃 − ‖𝜃*𝑀 − 𝜃𝑀‖2,

where 𝜖𝑀 := 𝜃𝑀 − 𝜃.

Proof. Proving the theorem amounts to showing that for any 𝜃 and 𝛼 ∈ (0, 1),

lim
𝑀→∞

P𝜃

[︀
𝑊𝑀(𝜃) ≥ 𝑏𝑀(𝛼)

]︀
≥ 𝛼.

Lemma D.8.6 provides that 𝑀1.5(𝑊𝑀 (𝜃)−𝑏𝑀 (𝛼)) converges in distribution to 2
√︀
𝜃⊤𝐻(𝜃)−3𝜃(𝛿−

𝑧 1−𝛼
2
), for 𝛿 ∼ 𝒩 (0, 1). Thus for any 𝜃, P𝜃

[︀
𝑊𝑀(𝜃)− 𝑏𝑀(𝛼) > 0

]︀
→ (1− Φ(𝑧 1−𝛼

1
)) =

1− 1−𝛼
2

> 𝛼. This establishes that 𝑏𝑀(·) has above nominal coverage asymptotically,

as desired.

Lemma D.8.5. |𝑈𝑀 − ‖Σ̃𝑀𝜃‖2
Σ̃𝑀
| is 𝑂𝑝(𝑀

−3.5).
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Proof. Recall that we can rearrange Eq. (D.8.4) to see that 𝑈𝑀 satisfies

‖(𝐼 + Σ̃−1
𝑀 )−1𝜃𝑀‖2Σ̃𝑀

= 𝑈𝑀 + 2‖Σ̃2
𝑀(𝐼𝑁 + Σ̃𝑀)−1‖2𝐹 +√︁

‖Σ̃4
𝑀(𝐼𝑁 + Σ̃𝑀)2‖2𝐹 + 4‖Σ̃2

𝑀(𝐼𝑁 + Σ̃𝑀)−1‖2OP𝑈𝑀

where we have simplified Σ̃
1
2
𝑀(𝐼𝑁 + Σ̃−1

𝑀 )−1Σ̃
1
2
𝑀 to Σ̃2

𝑀(𝐼𝑁 + Σ̃𝑀)−1.

We next further simplify the condition above by replacing two quantities with

simplifying approximations plus lower order terms. First note that we may write

‖(𝐼 + Σ̃−1
𝑀 )−1𝜃𝑀‖2Σ̃𝑀

= ‖Σ̃𝑀𝜃𝑀 − Σ̃2
𝑀(𝐼𝑁 + Σ̃𝑀)−1𝜃𝑀‖2Σ̃𝑀

= ‖Σ̃𝑀𝜃𝑀‖2Σ̃𝑀
+ ‖Σ̃2

𝑀(𝐼𝑁 + Σ̃𝑀)−1𝜃𝑀‖2Σ̃𝑀
− 2𝜃⊤𝑀 Σ̃4

𝑀(𝐼𝑁 + Σ̃𝑀)−1𝜃𝑀

= ‖Σ̃𝑀(𝜃 + 𝜖𝑀)‖2
Σ̃𝑀

+𝑂𝑝(𝑀
−4)

= ‖Σ̃𝑀𝜃‖2
Σ̃𝑀

+ ‖Σ̃𝑀𝜖𝑀‖2Σ̃𝑀
+ 2𝜖⊤𝑀 Σ̃3

𝑀𝜃 +𝑂𝑝(𝑀
−4)

= ‖Σ̃𝑀𝜃‖2
Σ̃𝑀

+𝑂𝑝(𝑀
−3.5).

Second, we write

√︁
‖Σ̃4

𝑀(𝐼𝑁 + Σ̃𝑀)2‖2𝐹 + 4‖Σ̃2
𝑀(𝐼𝑁 + Σ̃𝑀)−1‖2OP𝑈𝑀 =

√︁
𝑂𝑝(𝑀−8) + 4‖Σ̃2

𝑀(𝐼𝑁 + Σ̃𝑀)−1‖2OP𝑈𝑀

= 2‖Σ̃2
𝑀(𝐼𝑁 + Σ̃𝑀)−1‖OP

√︀
𝑈𝑀 +𝑂𝑝(𝑀

−4).

As such, we may see that 𝑈𝑀 satisfies

‖Σ̃𝑀𝜃𝑀‖2Σ̃𝑀
− 𝑈𝑀 = 2‖Σ̃2

𝑀(𝐼𝑁 + Σ̃𝑀)−1‖2𝐹 + 2‖Σ̃2
𝑀(𝐼𝑁 + Σ̃𝑀)−1‖OP

√︀
𝑈𝑀 +𝑂𝑝(𝑀

−3.5)

= 2‖Σ̃2
𝑀(𝐼𝑁 + Σ̃𝑀)−1‖OP

√︀
𝑈𝑀 +𝑂𝑝(𝑀

−3.5)

(D.8.6)

where we have dropped 2‖Σ̃2
𝑀(𝐼𝑁 + Σ̃𝑀)−1‖2𝐹 since it is 𝑂𝑝(𝑀

−4).

We next observe that 𝑈𝑀 must be 𝑂𝑝(𝑀
−3). Otherwise, the event that ‖Σ̃𝑀𝜃𝑀‖2Σ̃𝑀

−

𝑈𝑀 < 0 must occur infinitely often (since ‖Σ̃𝑀𝜃‖2
Σ̃𝑀

is 𝑂𝑝(𝑀
−3)); in turn, this condi-

tion would imply that ‖Σ̃2
𝑀(𝐼𝑁 + Σ̃𝑀)−1‖OP

√
𝑈𝑀 < 0 occurs infinitely often, which
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provides a contradiction.

Finally, in tangent with Eq. (D.8.6), that 𝑈𝑀 is 𝑂𝑝(𝑀
−3) allows us to see that⃒⃒⃒

𝑈𝑀 − ‖Σ𝜃‖2Σ̃𝑀

⃒⃒⃒
is 𝑂𝑝(𝑀

−3.5), as desired.

Lemma D.8.6. Let 𝛼 ∈ (0, 1) and 𝜃 ∈ R𝑁 . Consider the sequence of wins, 𝑊𝑀(𝜃),

and bounds, 𝑏𝑀(𝛼), computed for logistic regression. Then

𝑀1.5(𝑊𝑀(𝜃)− 𝑏𝑀(𝛼))
𝑑→ 2
√︀
𝜃⊤𝐻(𝜃)−3𝜃(𝛿 − 𝑧 1−𝛼

2
),

where 𝛿 ∼ 𝒩 (0, 1).

Proof. We prove the lemma by first writing 𝑊𝑀 and 𝑏𝑀 using simplifying approxima-

tions and lower order terms. The result is obtained by manipulating a scaling of the

difference between the two expressions and considering the limit in 𝑀.

Note first that we may write

𝑊𝑀(𝜃) : = 2𝜖⊤(𝜃*𝑀 − 𝜃𝑀)− ‖𝜃*𝑀 − 𝜃𝑀‖2

= 2𝜖⊤(𝜃*𝑀 − 𝜃𝑀)− ‖𝜃*𝑀 − 𝜃𝑀‖2 +𝑂𝑝(𝑀
−2)

= 2𝜖⊤(𝐼𝑁 + Σ̃−1
𝑀 )−1𝜃𝑀 − ‖𝜃*𝑀 − 𝜃𝑀‖2 +𝑂𝑝(𝑀

−2)

= 2𝜖⊤Σ̃𝑀𝜃𝑀 − ‖𝜃*𝑀 − 𝜃𝑀‖2 +𝑂𝑝(𝑀
−2)

= 2𝜖⊤Σ̃𝑀𝜃 − ‖𝜃*𝑀 − 𝜃𝑀‖2 +𝑂𝑝(𝑀
−2).

Next we write

𝑏𝑀(𝛼) = 2tr
[︁
(𝐼𝑁 + Σ̃−1

𝑀 )−1Σ̃𝑀

]︁
+ 2𝑧 1−𝛼

2

√︁
𝑈𝑀 + 2‖Σ̃2

𝑀(𝐼𝑁 + Σ̃𝑀)−1‖2𝐹 − ‖𝜃
*
𝑀 − 𝜃𝑀‖2

= 2𝑧 1−𝛼
2

√︁
‖Σ̃𝑀𝜃‖2

Σ̃𝑀
+𝑂𝑝(𝑀−3.5)− ‖𝜃*𝑀 − 𝜃𝑀‖2 +𝑂𝑝(𝑀

−2)

= 2𝑧 1−𝛼
2
‖Σ̃𝑀𝜃‖Σ̃𝑀

− ‖𝜃*𝑀 − 𝜃𝑀‖2 +𝑂𝑝(𝑀
−2).

where the second line uses Lemma D.8.5.

By considering a scaled difference between these two terms we find,

𝑀1.5(𝑊𝑀(𝜃)− 𝑏𝑀(𝛼)) = 2𝑀1.5𝜖⊤Σ̃𝑀𝜃 − 2𝑀1.5𝑧 1−𝛼
2
‖Σ̃𝑀𝜃‖Σ̃𝑀

+𝑂𝑝(𝑀
− 1

2 )
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𝑑→ 2𝑀1.5‖Σ̃𝑀𝜃‖Σ̃𝑀
(𝛿 − 𝑧 1−𝛼

2
)

for 𝛿 ∼ 𝒩 (0, 1), by recognizing that 𝜖𝑀 is asymptotically normal with mean zero and

covariance Σ𝑀 , and therefore that 2𝜖⊤Σ̃𝑀𝜃 is asymptotically normal with variance

‖Σ̃𝑀𝜃‖2
Σ̃𝑀

.

Finally, the result obtains by noting that Lemma D.8.2 implies that

𝑀1.5‖Σ̃𝑀𝜃‖Σ̃𝑀
=

√︁
𝜃⊤(𝐻𝑀(𝜃)/𝑀)−3𝜃

𝑎.𝑠.→
√︀
𝜃⊤𝐻(𝜃)−3𝜃.

D.8.4 Empirical validation of logistic regression bound in sim-

ulation

(a) (b) (c)

Figure D.8.1: c-values for logistic regression in simulation. (a) Empirical rates of
convergence of distances amongst various estimates and the true parameter with
𝑁 = 2. In simulation with 𝑁 = 25 and 𝑀 = 1000 (b) c-values are able to detect
improvements, sometimes with high confidence (c) the approximate bound has greater
than nominal coverage. See Appendix D.8.4 for details.

We here explore the behaviour of our proposed approximation, bound and the associ-

ated c-values empirically on simulated data. Figure D.8.1a shows the distance between

various estimates and the true parameter for a range of sample sizes in simulation.

Due to the log-log scale, the slopes of the series in this plot reflect the polynomial
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rates of convergence. Notably we see the fast 𝑂𝑝(𝑀
−2) rate of convergence of our

approximation to the MAP estimate, 𝜃*𝑀 , to the exact MAP estimate, 𝜃*𝑀 .

Figure D.8.1b demonstrates that our approach is able to detect improvements

(i.e. we can obtain high c-values). Furthermore, our proposed bound has similar

coverage properties as in the Gaussian case (Figure D.8.1c). In the experiments for

Figures D.8.1b and D.8.1c, we simulated the parameter as 𝜃 ∼ 𝒩 (0, 1
2
𝐼𝑁 ) and, in each

replicate, simulated the covariates for each data point, 𝑚, as 𝑥𝑚
𝑖.𝑖.𝑑.∼ 𝒩 (0, 𝑁−2𝐼𝑁).

Two of the series in Figure D.8.1a are distances between the posterior mean of 𝜃

and other estimates, E[𝜃|𝑋, 𝑌 ] =
∫︀
𝑝(𝜃|𝑋, 𝑌 )𝜃𝑑𝜃. Because this model is non-conjugate,

the estimate does not have an analytic form. As such approximated these quantities

with Gauss-Hermite quadrature. For each sample size 𝑀, we performed 25 replicate

simulations.

In the experiments that went into Figures D.8.1b and D.8.1c, we used 𝑁 = 25 and

𝑀 = 1000. See logistic_regression_approximations.ipynb and

logistic_regression_c_values_and_operating_characteristics.ipynb for de-

tails.

D.9 Additional details on applications

In this section, we provide additional details associated with the applications in ??.

D.9.1 Estimation from educational testing data

Conservatism of c-values with the empirical Bayes step. The application

in Section 5.6.1 diverges from the scenarios covered by our theory in Sections 5.3

and 5.4 in its use of the empirical Bayes step to estimate 𝛽, 𝜏, and 𝜎. As a result, our

theory does provide that 𝑐(𝑦) satisfies the guarantee of Theorem 5.2.2. However, given

the favorable asymptotic and empirical properties of the empirical Bayes procedure

established in Section 5.5.1, we conjectured that the looseness in the lower bound

𝑏(𝑦, 𝛼) would be sufficiently large to compensate for any error introduced by these

departures from the assumptions of our theory. To investigate this, we performed
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Figure D.9.1: Calibration of the lower bounds 𝑏(𝑦, 𝛼) in small area inference with an
empirical Bayes step (5000 replicates). The coverage on the y-axis is a Monte Carlo
estimate of P𝜃

[︀
𝑊 (𝜃, 𝑦) ≥ 𝑏(𝑦, 𝛼)

]︀
. Each series corresponds to a set of simulations

within which we excluded a different subset of schools based on a minimum number
of students tested.

a simulation study in which we used this empirical Bayes step and confirmed that

the c-values retained at least nominal coverage (Figure D.9.1). To ensure that the

simulated data had similar characteristics to the real data, we simulated 5000 datasets

by drawing hypothetical school level means according the assumed generative model

with the parameters (𝛽, 𝜏 and 𝜎) fit on the real dataset. In each simulation, we

re-estimated the fixed effects and variances (again using lme4), and computed the

associated MLE, Bayes estimates, and bounds across a range of confidence levels.

We then computed the empirical coverage of these bounds and found them to be

conservative across all tested levels.

Additional preprocessing and calibration details. Hoff [2021] considered only

schools at which 2 or more students took the reading test. We excluded an additional

8 schools with fewer than 5 students tested because we expected that the high variance

in these observations could introduce too much slack into our bound as result of the

poor conditioning of Σ
1
2 (𝐴 − 𝐶)Σ

1
2 (recall the operator norm bound in Eq. (5.11),

derived in Eq. (D.6.2)). Consistent with this hypothesis we computed a c-value of

0.88 when we included these additional schools, and when we further restricted to
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the 657 schools with at least 10 students tested we computed a c-value 0.999992. To

further validate this hypothesis of increased conservatism we simulated additional

datasets with these different thresholds on school size and evaluated the calibration of

computed bounds (Figure D.9.1). We observed the coverage for the simulations with

smallest threshold was noticeably higher at large 𝛼, in agreement with this hypothesis.

D.9.2 Estimation of violent crime rates in Philadelphia

Dependence on the order in which estimates are compared. In Section 5.6.2

we chose to report one among three estimates as described in Remark 5.6.1. We note

however that this paradigm is sensitive to the order in which the different estimates

are considered. For this set of three models, if we had first compared 𝜃∘(𝑦) as the

alternative to 𝜃(𝑦) as the default we would have rejected 𝜃(𝑦) (with 𝑐 = 0.99942),

and then again sided against updating our estimate a second time with a low c-value

(𝑐 = 0.0) for comparing 𝜃*(𝑦) as the alternative against 𝜃∘(𝑦) as the default. The

potential cost of ending up with a worse estimate as a result of considering these

estimates in sequence may be understood as a cost of looking at the data an additional

time.

Selection of prior parameters from historical data. The parameters 𝜎2
𝛿 , 𝜎

2
𝑧 , 𝜎

2
𝑦

were selected based on historical data. Specifically, we estimated 𝜎2
𝑦 and 𝜎2

𝑧 as the

averages of the sample variances of the violent and non-violent report rates, respectively,

computed within each census block in the preceding years. For the first model described

in Section 5.6.2, we then estimated 𝜎2
𝛿 using these same historical data to reflect the

prior belief that half of the variability across the unknown rates is common across the

two response types.

For the second model considered, we selected the signal variance and length scale

of this covariance function by drawing hypothetical datasets of crime levels from the

prior predictive distributions and selecting those which produced the most reasonable

looking patterns. In particular, we chose the length scale to be one sixth of the

maximum distance between the centroids of census blocks, and the signal variance
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to reflect the prior belief that one third of the variability in the unknown rates was

explained by the spatial component. In addition, we choose a smaller value for 𝜎2
𝛿

in this second model, so that the total implied variance would be the same. See

supplementary code in Philly_reported_crime_estimation.ipynb for additional

details.

Derivation of 𝜃* (posterior mean in the first model). As mentioned in the

main text, since the prior and likelihoods for this model are independent across each

census block we can compute the posterior mean for each block independently.

Let 𝜋(·) denote the joint density of all variables. Then, since 𝑧𝑛 |= 𝑦𝑛
⃒⃒
𝜃𝑛, we have

that

𝜋(𝜃𝑛|𝑦𝑛, 𝑧𝑛) ∝ 𝜋(𝜃𝑛|𝑧𝑛)𝜋(𝑦𝑛|𝜃𝑛, 𝑧𝑛)

= 𝜋(𝜃𝑛|𝑧𝑛)𝜋(𝑦𝑛|𝜃𝑛).

Next observe that by construction, 𝑧𝑛− 𝜃𝑛 = 𝜖𝑧𝑛 + 𝛿𝑧𝑛− 𝛿𝑦𝑛 ∼ 𝒩 (0, 2𝜎2
𝛿 + 𝜎2

𝑧) and so

𝜃𝑛|𝑧𝑛 ∼ 𝒩 (𝑧𝑛, 2𝜎
2
𝛿 + 𝜎2

𝑧). Since again by construction we have that 𝑦𝑛|𝜃𝑛 ∼ 𝒩 (𝜃𝑛, 𝜎
2
𝑦),

Gaussian conjugacy provides that

𝜃𝑛|𝑦𝑛, 𝑧𝑛 ∼ 𝒩 (E[𝜃𝑛|𝑦𝑛, 𝑧𝑛],Var[𝜃𝑛|𝑦𝑛, 𝑧𝑛]),

where

Var[𝜃𝑛|𝑦𝑛, 𝑧𝑛] =
1

𝜎−2
𝑦 + (2𝜎2

𝛿 + 𝜎2
𝑧)

−1

=
𝜎2
𝑦(2𝜎

2
𝛿 + 𝜎2

𝑧)

𝜎2
𝑦 + 2𝜎2

𝛿 + 𝜎2
𝑧

and

E[𝜃𝑛|𝑦𝑛, 𝑧𝑛] = Var[𝜃𝑛|𝑦𝑛, 𝑧𝑛](Var[𝜃𝑛|𝑧𝑛]−1E[𝜃𝑛|𝑧𝑛] + Var[𝑦𝑛|𝜃𝑛]−1𝑦𝑛)

=
𝜎2
𝑦(2𝜎

2
𝛿 + 𝜎2

𝑧)

𝜎2
𝑦 + 2𝜎2

𝛿 + 𝜎2
𝑧

[︀
(2𝜎2

𝛿 + 𝜎2
𝑧)

−1𝑧𝑛 + 𝜎−2𝑦𝑛
]︀
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=
2𝜎2

𝛿 + 𝜎2
𝑧

2𝜎2
𝛿 + 𝜎2

𝑦 + 𝜎2
𝑧

𝑦𝑛 +
𝜎2
𝑦

2𝜎2
𝛿 + 𝜎2

𝑦 + 𝜎2
𝑧

𝑧𝑛

as desired.

Analogously, for the second model considered in Section 5.6.2 we find the posterior

mean as

𝜃∘(𝑦) =
[︁
𝐼𝑁 + 𝜎2

𝑦(2𝐾 + 2𝜎2
𝛿𝐼𝑁 + 𝜎2

𝑧𝐼𝑁)
−1
]︁−1

𝑦+
[︁
𝐼𝑁 + 𝜎−2

𝑦 (2𝐾 + 2𝜎2
𝛿𝐼𝑁 + 𝜎2

𝑧𝐼𝑁)
]︁−1

𝑧.

Additional dataset details. The data considered in this application are counts

of police responses categorized as associated with violent crimes and violent crimes

in October 2018. These were obtained from opendataphilly.org. The observed data

we model are the inverse hyperbolic sine transform of the number of recorded police

responses per square mile. For all practical purposes, these values can be interpreted

as log densities (see, e.g., Burbidge et al. [1988]).

D.9.3 Gaussian process kernel selection for estimation of ocean

currents

We here provide additional details of the Gaussian process covariance functions used in

Section 5.6.3. The first covariance function described, which incorporated covariation

at two scale is defined, for both the longitudinal and latitudinal components (𝑖 in

{1, 2}) and for each pair of buoys 𝑛 and 𝑛′, as

𝑘(𝜃(𝑖)𝑛 , 𝜃
(𝑖)
𝑛′ ) =𝜎2

1 exp

⎧⎨⎩−1

2

[︃
(lat𝑛 − lat𝑛′)2

𝑟21,lat
+

(lon𝑛 − lon𝑛′)2

𝑟21,lon
+

(𝑡𝑛 − 𝑡𝑛′)2

𝑟21,𝑡

]︃⎫⎬⎭
+𝜎2

2 exp

⎧⎨⎩−1

2

[︃
(lat𝑛 − lat𝑛′)2

𝑟22,lat
+

(lon𝑛 − lon𝑛′)2

𝑟22,lon
+

(𝑡𝑛 − 𝑡𝑛′)2

𝑟22,𝑡

]︃⎫⎬⎭ ,

where 𝜎2
1, 𝑟1,lat, 𝑟1,lon and 𝑟1,𝑡 parameterize the mesoscale variation in currents whereas

𝜎2
2, 𝑟2,lat, 𝑟2,lon and 𝑟2,𝑡 parameterize the submesoscale variation. As in Lodise et al.

[2020], the latitudinal and longitudinal components of 𝐹 are modeled as a priori
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independent. We choose these parameters by maximal marginal likelihood [Rasmussen

and Williams, 2006, Chapter 5] on an independent subset of the GLAD dataset.

Estimates of the underlying currents are obtained as the posterior mean of 𝐹 under

this model, which we take as the alternative, 𝜃*(𝑦).

The second covariance function captures covariation among observations only at

the mesoscale. In this case, the Gaussian process prior has covariance function

𝑘(𝜃(𝑖)𝑛 , 𝜃
(𝑖)
𝑛′ ) = 𝜎2

1 exp

⎧⎨⎩−1

2

[︃
(lat𝑛 − lat𝑛′)2

𝑟21,lat
+

(lon𝑛 − lon𝑛′)2

𝑟21,lon
+

(𝑡𝑛 − 𝑡𝑛′)2

𝑟21,𝑡

]︃⎫⎬⎭+𝜎2
21[𝑛 = 𝑛′],

which maintains the same marginal variance but excludes submesoscale covariances.

We take the posterior mean under this model as the default estimate 𝜃(𝑦). See

submesoscale_GP_c_value.ipynb for further implementation details.
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