
Predictive and Prescriptive Analytics in Operations
Management

by

Omar Skali Lami

B.S. and M.S., École Centrale Paris (2017)
M.BAn., Massachusetts Institute of Technology (2017)

Submitted to the Sloan School of Management
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Operations Research

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 2022

© Massachusetts Institute of Technology 2022. All rights reserved.

Author .
Sloan School of Management

April 05, 2022

Certified by. .
Georgia Perakis

William F. Pounds Professor of Management Science
Co-director, Operations Research Center

Thesis Supervisor

Accepted by .
Patrick Jaillet

Dugald C. Jackson Professor
Department of Electrical Engineering and Computer Science

Co-Director, Operations Research Center

2

Predictive and Prescriptive Analytics in Operations

Management

by

Omar Skali Lami

Submitted to the Sloan School of Management
on April 05, 2022, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in Operations Research

Abstract

The recent surge in data availability and advances in hardware and software and the
recent developments and democratization of analytics highlight the critical impor-
tance of prediction and prescription in harnessing the power of data to create value
through optimal, data-driven decision making. This thesis proposes novel Machine
Learning (ML) and optimization methods in (i) predictive analytics, (ii) prescriptive
analytics, and (iii) their high-impact applications in operations management.

On the predictive side, this thesis tackles the problems of interpretability and
predictive power within the context of tree ensembles. The first chapter introduces
the Extended Sampled Trees (XSTrees) method, a novel tree ensemble ML method
for classification and regression. Instead of learning a single decision tree like CART,
or an collection of trees like Random Forests or Gradient Boosting methods, XSTrees
learns the entire probability distribution over the tree space. This approach results in
good theoretical guarantees and has a significant edge over other ensemble methods
in terms of performance. Analytically, we prove that XSTrees converges to the true
underlying tree model with rate 𝒪

(︁
log(𝑛)
𝑛

)︁
, where 𝑛 ∈ N is the number of training

observations. Experimentally, we show on publicly available datasets, synthetic data,
and two real-world case studies that XSTrees is very competitive with the state-of-the-
art models, with an average accuracy between 2.5% and 50% higher than competitors
for classification and an average R2 between 2% and 85% higher for regression.

We further highlight the need and impact of more powerful and interpretable tree-
based methods in the second chapter through the problem of ancillary services in
targeted advertising under an ML lens. This chapter aims to predict the Net Present
Value (NPV) of these services, estimate the probability of a customer subscribing to
each of them depending on what services are offered to them, and ultimately prescribe
the optimal personalized service recommendation that maximizes the expected long-
term revenue. First, we propose a novel method called Cluster-While-Classify (CWC).
This hybrid optimization-ML method performs joint clustering and classification and
subsequently fits a tree-based classifier on the corresponding assignment to predict the

3

sign-up propensity of services based on customer, product, and session-level features.
CWC is competitive with the industry state-of-the-art and can be represented in
a simple decision tree, making it interpretable and easily actionable. We then use
Double Machine Learning (DML) and Causal Forests, another tree-based ML method,
to estimate the NPV for each service and finally propose an iterative optimization
strategy — that is scalable and efficient — to solve the personalized ancillary service
recommendation problem. CWC achieved a competitive 74% out-of-sample accuracy
which, alongside the rest of the personalized holistic optimization framework, resulted
in an estimated 2.5-3.5% uplift in revenue, which in turn translates to $80-100 million
increase in revenue and $15-20 million increase in profits.

On the prescriptive side, this thesis moves away from the predict-then-optimize
paradigm by doing the prediction and the prescription jointly, resulting in a lower pre-
scription error and higher robustness. The third chapter presents a holistic framework
for prescriptive analytics. Given side data 𝑥, decisions 𝑧, and uncertain quantities 𝑦,
that are functions of 𝑥 and 𝑧, we propose a framework that simultaneously predicts
𝑦 and prescribes the “should be" optimal decisions 𝑧. The algorithm can accom-
modate a large number of predictive machine learning models and continuous and
discrete decisions of high cardinality. It also allows for constraints on these decision
variables. We show wide applicability and strong computational performances on
synthetic experiments and two real-world case studies.

Additionally, we illustrate the impact of these predictive and prescriptive analyt-
ics methods in two additional real-world, high-impact applications: healthcare and
industrial operations. The fourth chapter proposes an end-to-end framework to help
mitigate the COVID-19 pandemic and its impact through the case and death predic-
tion, true prevalence, and fair vaccine distribution. We present the methods we devel-
oped for predicting cases and deaths using a novel ML-based aggregation method to
create a single prediction we call MIT-Cassandra. We further incorporate COVID-19
case prediction to determine the true prevalence and incorporate this prevalence into
an optimization model for efficiently and fairly managing the operations of vaccine
allocation. This also allows us to provide insights into how prevalence and exposure
of the disease in different parts of the population can affect vaccine distribution.

In the last chapter, we propose a novel, machine learning-based methodology to
improve the efficiency of maintenance operations, from description to prediction to
intervention. The proposed methodology has three main components, applied sequen-
tially to the maintenance scheduling problem. First, a data-driven failure modes and
effects analysis to fully describe the state of equipment at a given time in a data-driven
way, including probabilities of each failure mode and its respective causes. Second, a
unified predictive model which slightly adjusts its parameters for each specific piece
of equipment to predict the state of some equipment in the future. Third, a holistic
prescriptive model to optimize maintenance interventions.

Thesis Supervisor: Georgia Perakis
Title: William F. Pounds Professor of Management Science
Co-director, Operations Research Center

4

Acknowledgments

First and foremost, I would like to thank my advisor, Prof. Georgia Perakis, for her

guidance throughout all these years and for being always there for me, especially when

I needed her the most. I am forever grateful for her help, but most importantly, her

mentorship and friendship. Beyond her incredible technical expertise, I am thankful

for all the time she gives her students, her eternal positivity and optimism, and her

contagious good mood, not to mention her loyalty, sincerity, and love. My experience

at MIT and beyond would not have been the same without her.

Then I would like to thank Prof. Dimitris Bertsimas, who first reached out to

me six years ago in 2016, offering the opportunity to join the MBAn program and

MIT. Without him, I would probably not be where I am today. His life philosophy

on merit, integrity, having high aspirations for oneself, being master of one’s destiny,

and surrounding oneself with exceptional people to positively impact the world has

inspired me. In addition, his passion for research, teaching, and operations research

is unparalleled and pushed me to delve further into the field that is today a central

component of my career and my life.

After that, I would like to thank my thesis committee members, Prof. Retsef

Levi and Prof. Stephen Graves, for their support and help throughout this journey.

For example, Retsef taught me my final class in Operations Management, and his

teachings aroused my curiosity for the field a notch further, which impacted my

research directions. In addition, they believed in me, and they were always here for

guidance, advice, and recommendations to help me and push me for the better.

I would also like to thank Prof. Alexandre Jacquillat for his friendship and advice,

Prof. Vivek Faris, Prof. Rahul Mazumder, Prof. Nikos Trichakis, and Prof. Thodoris

Lykouris, and Prof. Negin Golrezaei for investing their time to help me with my

research and my various endeavors.

In terms of collaborators, I would like to extend my special thanks to Prof. Divya

Singhvi from New York University, whom I have been working with since Day 1, who

helped me academically, personally, and professionally. I could not have hoped for a

5

better co-author for all these years. Also, I want to thank Prof. Dessi Pachamanova

from Babson College, who was essential to many of my research papers and was a

delight to work with. I would also like to mention Asterios Tsiourvas, Leann Thaya-

paran, Ioannis Spantidakis, Angela Lin, Amine Bennouna, Michael Li, and Vassilis

Digalakis from the Operations Research Center, Joshua Joseph from MIT Quest for

Intelligence, Abdennour Jbili, Omar Amrani, and Ayman Bentourki from OCP, and

Ankit Mangal and Stefan Poninghaus from Wayfair. But also, Hamza Tazi, David

Nze Ndong, Jonah Adler, Shane Weisberg, Maureen Canellas, Allison Borenstein,

Jiong Wei Lua, and many others. I would also like to add Laura Rose, Michelle Li,

and Giada Tridello, the backbones of the ORC and the MBAn program.

I want to express my immense gratitude and love for my family: My mother,

Fatima Zahra Naciri Bennani, and my father, Khalid Skali Lami, for their uncondi-

tional love and support, not only during my Ph.D. but during my entire life; My sister

Kenza Skali Lami and my brother-in-law Lotfi Belmahi, who were always there for

me, as well as my nephews Mamoun and Taoufiq Belmahi and the rest of my family;

And, of course, my partner Sophia Sayah whose love and support were invaluable in

many ways.

I am also very thankful for all my friends at MIT: El Ghali Zerhouni and Driss

Lahlou Kitane, who helped me improve myself as a person and brought me a lot of

laughter and good times; As well as Ivan Paskov, Amal Rar, and Youssef Berrada;

But also many others: Adil Benkiran, Mouad Harbaz, Mehdi Berrada Mnimene,

Hamza Zerhouni, Rim Harris, Kenza Mhaimdat, Zakaria El Hajjouji, Cheikh Fall,

Léonard Boussioux, Luca Mingardi, Alessandro Previero, Francois Caprasse, Louis

Lécluse, Tomas Littrel, Tamar Cohen-Hillel, the MBAn Class of 2017, especially Eric

Green, Afshin Amidi, Matthieu Hummeau, Luc Missoum, Derek Chu, and Lorena

Dominguez; and the ORC community as a whole – the generosity and collegiality of

its people makes the ORC what it is.

6

Contents

1 Introduction 23

1.1 Contributions . 24

1.2 Predictive Analytics: from Data to Predictions 27

1.2.1 XSTrees: Extended Sampled Tree Ensembles for Classification

and Regression . 27

1.2.2 Application to Revenue Management: Ancillary Services in

Targeted Advertising . 28

1.3 Prescriptive Analytics: from Predictions to Decisions 28

1.3.1 Holistic Prescriptive Analytics for Continuous and Constrained

Optimization Problems . 28

1.3.2 Application to Healthcare with MIT Quest for Intelligence:

COVID-19 Predictions, Prevalence, and the Operations of Vac-

cine Allocation . 29

1.3.3 Application to Industrial Operations with OCP: A Machine

Learning Approach to Preventive Maintenance 30

2 Extended Sampled Tree Ensembles for Classification and Regression 31

2.1 Introduction . 31

2.2 Related Literature . 35

2.3 Approach . 38

2.3.1 Preliminaries . 38

2.3.2 Additional Notations . 41

2.3.3 Intuition . 42

7

2.3.4 Algorithm . 43

2.4 Theoretical Guarantees . 47

2.4.1 Assumptions . 47

2.4.2 Asymptotic Convergence . 48

2.4.3 Finite Sample Guarantees on the XSTrees 53

2.5 Computational Experiments . 56

2.5.1 Classification Benchmark . 56

2.5.2 Regression Benchmark . 59

2.6 Synthetic Data . 61

2.6.1 Experimental Set-Up . 61

2.6.2 Results . 61

2.6.3 Visualizing XSTrees . 63

2.7 Real-Life Case Study for an Online Retailer 66

2.7.1 Experimental Set-Up . 66

2.7.2 Results . 67

2.8 Blood Transfusion Case Study . 68

2.9 Conclusions . 70

3 Ancillary Services in Targeted Advertising 73

3.1 Introduction . 73

3.2 Relevant Literature . 79

3.3 Problem Formulation: from Prediction to Prescription 86

3.3.1 The Cluster-While-Classify Method 87

3.3.2 Interpretable Estimation of the Net Present Value of Ancillary

Services . 91

3.3.3 Optimizing Service Displays 96

3.4 Approach effectiveness on a large e-commerce retailer 101

3.4.1 Service Sign-Up Propensity 102

3.4.2 NPV Estimation . 107

3.4.3 Optimal Service Offering Prescription 109

8

3.4.4 Managerial Insights . 111

3.5 Insights from Synthetic Experiments 111

3.5.1 CWC Accuracy Benchmark 112

3.5.2 ASDO Computational Scalability 113

3.5.3 Testing the end-to-end framework on a synthetic example . . . 115

3.6 Conclusions . 117

4 Holistic Prescriptive Analytics for Continuous and Constrained Op-

timization Problems 119

4.1 Introduction . 119

4.2 Relevant Literature . 121

4.2.1 Predict-then-Optimize Methods 122

4.2.2 Direct Methods . 122

4.2.3 Contributions . 123

4.3 Proposed Approach . 125

4.3.1 Solving the General Problem 129

4.4 Quadratic Cost Function . 131

4.5 Examples of Parameterizations . 134

4.5.1 Linear Parametrization . 135

4.5.2 Tree-Based Parametrization 136

4.6 Experimental Results . 137

4.6.1 Linear Parametrization . 138

4.6.2 Tree-based Formulation . 146

4.7 Extensions . 148

4.7.1 Probabilistic Cluster Assignment 148

4.7.2 Retraining of the Model . 148

4.8 Conclusions . 149

5 COVID-19: Prediction, Prevalence, and the Operations of Vaccine

Allocation 151

5.1 Introduction . 151

9

5.2 Relevant Literature . 154

5.2.1 Predictive Models . 154

5.2.2 Aggregation Methods . 155

5.2.3 Prevalence Extrapolation . 156

5.3 Predicting COVID-19 Detected Cases 158

5.3.1 Notations . 158

5.3.2 A Markovian-based learning approach: Minimum Representa-

tion Learning . 159

5.3.3 A Nearest-Neighbor Approach: Similarity-Weighted Time-Series 160

5.3.4 A Deep Learning Approach: Bidirectional LSTM 162

5.3.5 An Epidemiological Approach: Multi-peak SEIRD 163

5.3.6 An Aggregate Predictive Method: MIT-Cassandra 164

5.4 Results with COVID-19 Data . 166

5.4.1 Data Sources and Features . 167

5.4.2 Model Predictions . 167

5.5 From Detected Cases to True Cases 169

5.5.1 Summary . 169

5.5.2 Model Formulation . 169

5.5.3 Evaluating 𝛼 . 170

5.5.4 Model Predictions . 173

5.6 Application to Vaccine Allocation . 173

5.7 Impact . 186

5.7.1 CDC Model Comparison . 187

5.8 Conclusions . 190

6 Preventive Maintenance at OCP Maintenance Solutions: a Machine

Learning Approach 193

6.1 Introduction . 193

6.2 Relevant Literature . 194

6.3 Data & Pipeline . 196

10

6.3.1 Original Data Format . 196

6.3.2 Preliminaries . 198

6.3.3 Data Pipeline . 198

6.4 Descriptive Part: Building a Data-Driven FMEA Tree 200

6.4.1 First layer of the FMEA: Equipment-Components 200

6.4.2 Second layer of the FMEA: Component-Failure Modes 200

6.5 Descriptive Part: Predicting Failure and Failure Causes 203

6.5.1 Model . 204

6.5.2 Interpretation and Results . 205

6.5.3 Benchmark of the Method . 206

6.6 Predictive Part: Sparse and Slowly Varying Regression 208

6.6.1 Model . 209

6.6.2 Benchmark of the Method . 211

6.7 Prescriptive Part: Holistic Prescriptive Analytics 212

6.8 Implementation and Impact . 213

6.8.1 Implementation: the I-sense Platform 213

6.8.2 Deployment and Financial Impact 217

6.9 Conclusion . 219

7 Conclusions 221

A Supplement for Chapter 2 223

A.1 HXTrees and more on the Asymptotic Convergence of the Framework 223

A.2 Hyper-parameters Tuning . 226

A.3 Standard Deviation of Computational Results 228

A.4 Detailed Results for the UCI Regression Benchmark 229

B Supplement for Chapter 3 231

B.1 Proof of Proposition 2 . 231

B.2 Proof of Theorem 1 . 232

B.3 Visualization of the Results . 233

11

B.4 Definition of Performance Metrics . 233

B.5 Details on the Case Study . 234

C Supplement for Chapter 4 239

C.1 Generalization of the Formulation to multiple new observations . . . 239

C.2 Experiment on the Cluster-While-Regress approach 240

C.3 Hyper-parameters Tuning . 241

C.4 Hardware and Computation Time . 242

D Supplement for Chapter 5 243

D.1 Minimum Representation Learning Model 243

D.2 Nearest-Neighbor and Similarity-Weighted Time-Series 247

D.3 Deep Learning Approach . 250

D.4 Epidemiology Approach . 254

D.5 Trade-offs between Models . 255

D.6 Proof of Theorem 1 . 257

D.7 Data Sources and Features . 260

D.8 Results with COVID-19 Data: CDC Benchmark Figures and Tables . 261

D.8.1 Benchmark for Deaths . 262

D.8.2 Benchmark for Cases . 265

D.9 Proof of Proposition 1 . 268

D.10 Dynamic Program for the Vaccine Allocation Problem 268

D.11 Adding Robustness to the Vaccine Allocation Problem 269

D.12 Mortality Rate Table By Age Group 272

D.13 Rate Ratios for Exposure and Mortality for COVID-19 by Age Group 272

D.14 Results on the Estimated Age Breakdown of COVID-19 Cases for MA

Counties . 273

D.15 Flowchart Summary of the end-to-end Approach 274

E Supplement for Chapter 6 275

E.1 Stop-words . 275

12

List of Figures

2-1 2-dimensional example of a decision tree of depth 2. 39

2-2 Linear extension of the tree in Figure 2-1. 39

2-3 2-dimensional visualization of the tree extension procedure. 40

2-4 This is an illustration of the intuition behind the XSTrees algorithm

in a 4-sample, 2-depth example. We train a collection of CARTs from

4 samples of the data to obtain 4 trees (a), then we extend the splits

of (a) to obtain 4 extended trees (b). The blue splits refer to splits on

dimension 1, and the orange splits refer to splits on dimension 2. We

notice that for dimension 1, it appears twice with 1 split, and twice

with 2 splits. Empirically, we set 𝑃 (|sp1| = 0) = 0 and 𝑃 (|sp1| =

1) = 𝑃 (|sp1| = 2) = 0.5, and from the smallest split in each of the 4

trees, we conclude �⃗�1[1] ∼ 𝒩 (4, 1.41) assuming a normal distribution,

and by computing the average and standard deviation of [4, 2, 6, 4].

Similarly, we set �⃗�1[2] ∼ 𝒩 (6, 1), 𝑃 (|sp2| = 0) = 𝑃 (|sp2| = 1) = 0.5,

and �⃗�2[1] ∼ 𝒩 (4, 1) to fully define the distribution of the tree space,

that we can then sample using Monte Carlo sampling to make our final

predictions. 44

2-5 Boxplots for the Out-of-Sample Results (Accuracy and Rank) for the

Classification Benchmark. 58

2-6 Boxplots for the Out-of-Sample Results (R2 and Rank) for the Regres-

sion Benchmark. 60

13

2-7 Out-of-Sample results for the two synthetic experiments. XSTrees out-

performs other benchmarks in the limited data regime and when the

outcome variance is high. 62

2-8 Representation of the XSTrees trained on the synthetic example. There

are at most 4 possible splits, at most 1 per dimension. These splits are

represented by descending order in terms of probability of existence,

e.g. the first split is for dimension 𝑐(𝑑) = 1, in position 𝑐(𝑝) normally

distributed around -0.04 with standard deviation 0.09, and has 98%

probability of existing when sampling the individual extended trees. . 63

2-9 An extended tree sampled from the trained XSTrees in Figure 2-8. It

behaves exactly the same as a regular decision tree, but has the signifi-

cant advantage of being represented in compact form due to its symme-

try (every depth of the tree has the same split, hence the representation

above). In this example, the new point 𝑥 satisfies 𝑥[1] = 0.4 > −0.11,

𝑥[2] = −0.9 ≤ −0.01, 𝑥[3] = 0.1 > −0.09 and 𝑥[4] = 0.5 > 0.16.

Hence, 𝑥 is assigned to the leaf of the sampled tree satisfying the same

constraints. This leaf contains 102 training observations, 88% of them

being labeled 0, so we predict y = 0. 64

2-10 Mode of the XSTrees for the synthetic example, as shown in Figure

2-8. It is obtained by keeping only the splits with a probability of

existing above 50%, and by taking the mean (which is also the mode)

of the corresponding normal distribution as the position of the split. It

is the most probable tree given the XSTrees distribution and behaves

exactly the same as a regular decision tree, but has the advantage of

being represented in compact form due to its symmetry. 65

2-11 2-d Representation of XSTrees splits and their 95% confidence interval. 66

2-12 Compact representation of the trained XSTrees distribution on the

Online Retail Case Study, and mode of this distribution. 68

2-13 Compact representation of the trained XSTrees distribution on the

Blood Transfusion Data, and mode of this distribution. 69

14

2-14 The splits of the XSTrees for Recency and Frequency (a) and Time

and Frenquency (b) . 70

3-1 Action to Customer Response Matrix for Cluster 2 106

3-2 Time Trajectories of Incremental Value for 3 Services 109

3-3 Historical (LEFT) vs Prescribed (RIGHT) breakdown of the service

offering (anonymized) . 110

3-4 Evolution of the total run-time versus the number of ancillary services. 114

3-5 Expected revenue (in $) versus maximum number of services shown.

In this example the number of possible ancillary services is 𝑝 = 100. . 115

3-6 Optimal Assortment of Ancillary Services for each Cluster. Yellow

means the service is shown, Blue means the service is not shown. For

example, service 1 is shown to every type of customer, while service

4 is never shown, and service 8 is shown to everyone except customer

class 3. We also note that not the same number of products is shown

to each class of customers. 117

4-1 (a) True underlying model. (b) Data samples from this model. 128

4-2 Results of Cluster then Predicting. 128

4-3 Results of Clustering and Predicting at the same time. 129

4-4 For top models: in-sample MSE on Synthetic Simulation (on left), and

in-sample Treatment on Synthetic Simulation (Lower is better on right. 141

4-5 For top models: out-of-sample MSE on Synthetic Simulation (on left),

and out-of-sample Treatment on Synthetic Simulation (Lower is better)

on right. Our framework outperforms other benchmarks and recovers

the correct number of clusters. 141

4-6 Run-time of the elastic-hpa-r on the synthetic experiment in linear

scale (a), and logarithmic scale (b). 144

15

5-1 Statewide predictions (black) from the aggregate model alongside true

death and detected case counts (gray) for the month of February in

Massachusetts (left) and California (right). 168

5-2 Possible true values of prevalence in Massachusetts and California on

February 2, 2021. Consensus alpha refers to the estimated alpha from

the CDC serology data in Table 5.2. 172

5-3 Detected (gray) and estimated prevalent cases (black) in Massachusetts

(left) and California (right) during the month of February 2021. Total

prevalence estimated using 𝛼 = 0.11. 173

5-4 Detected cases (left) and estimated total cases (right) in each Mas-

sachusetts county during the month of February 2021. Total prevalence

estimated using 𝛼 = 0.11. 174

5-5 The average and standard deviation of critical parameters 181

5-6 Optimal Vaccine Allocation by Age Group in Experiment 2. 184

5-7 Prediction error (left) and model rankings (right) for all CDC mod-

els making COVID-19 detected case predictions during summer 2021.

All comparisons are for predictions made one week in advance. MIT-

Cassandra is shown in black and other CDC models in gray. 188

5-8 Benchmarking the aggregate and best and worst component models

(black) vs the top performing models of the CDC. The colored models

are the top 5 by average rank to make predictions in September for

cumulative deaths. Comparisons in terms of wMAPE (left) and overall

ranking (right). All projections are out-of-sample predictions made 7

days before the first date displayed on the graphs. 189

5-9 Benchmarking the aggregate versus the best and worst component

models in the ensemble (black) and a selection of CDC models. The

colored models are the top 5 by average rank to make predictions in

September for incident cases. Comparisons in terms of wMAPE (left)

and overall ranking (right). All projections are out-of-sample predic-

tions made 7 days before the first date displayed on the graphs. . . . 190

16

6-1 Failure Modes and Effects Analysis (FMEA) tree. 198

6-2 Flowchart of the Preventive Maintenance Framework. Input are in

green, intermediary outputs are in grey, and final outputs are in blue. 199

6-3 First layer of the FMEA tree. For illustrative purposes, the equipment

is in red, the components are in green. 201

6-4 Two first layers of the FMEA tree. The failures modes are in blue. . . 203

6-5 Complete FMEA tree. The sensors, or potential causes of failure are in

yellow, and each edge represents a probability of occurrence for given

sensor data. 207

6-6 I-sense measurements module: asset management. 214

6-7 I-sense measurements module: monitoring components and the spec-

tral analysis toolbox. 215

6-8 I-sense alarms management module: alarms backlog. 216

6-9 I-sense analytics module: state predictions. 216

6-10 I-sense analytics module: failure probabilities. 217

6-11 I-sense analytics module: measurement predictions. 218

B-1 Visualization of the Cluster Assignment Decision Tree 237

B-2 Single Tree Explainer for the Incremental Revenue of the Assembly

Service . 238

C-1 Average run-time of each iterations of the cart-hpa-r algorithm for

select values of 𝑛, 𝑘 and 𝑝 on the synthetic experiment. Instance with

above the 10,000 seconds threshold are instances above the time-limit

that we have set, and are not solved to optimality. 242

17

D-1 Illustration of the representation MDP construction. The feature space

is partitioned into a finite number of regions (left). A representation

MDP is then constructed and each region is mapped (full arrows) to

a state of the MDP (right). To make a prediction, a region at a given

date is mapped with its features to a region of the feature space, then

mapped to the corresponding state in the representation MDP. 244

D-2 An LSTM unit. 252

D-3 Architecture of the complete system. 253

D-4 Risk ratios of different age groups compared to the 5-17 year old age

group can be used to estimate infection and death probabilities disag-

gregated by age group. 273

D-5 Flowchart of the end-to-end approach presented in this paper. 274

18

List of Tables

2.1 Mean Out-of-Sample Accuracy for the UCI Classification Datasets. In

bold, the top-performing algorithm for each row. Ranks of the XSTrees

are reported in the last column. 57

2.2 Accuracy Rank for the UCI Classification Datasets. In bold, the top-

performing algorithm for each row. For consistency, in case of a draw,

the average rank is taken: for example, if two methods both achieve

the 3rd best accuracy, their rank is 3.5. 58

2.3 Summary of the UCI Classification Benchmarks. Between parentheses,

how each method ranks for the corresponding metric. In bold, the top-

performing algorithm for each metric. 59

2.4 Summary of the UCI Regression Benchmarks. Between parentheses,

how each method ranks for the corresponding metric. In bold, the

top-performing algorithm for each metric. 60

3.1 Out-of-Sample Cluster-While-Classify Performance Using Only Action

Features . 104

3.2 Out-of-Sample Random Forest Baseline Model Performance Using All

Features . 104

3.3 Out-of-Sample Cluster-While-Classify Performance Using All Features 105

3.4 Cluster-While-Classify Performance as a Function of Number of Fea-

tures Used . 105

19

3.5 Results of the benchmark for the two experiments (Experiment 1: 40

customer features and 40 product features, Experiment 2: 60 customer

features and 20 product features). 113

4.1 Results of the Synthetic Data simulation (Minimization) - Training. . 140

4.2 Results of the Synthetic Data simulation (Minimization) - Testing . . 141

4.3 Average run-time of each iterations of the elastic-hpa-r algorithm

for select values of 𝑛, 𝑘 and 𝑝 on the synthetic experiment 143

4.4 Results for the Invetory Dataset (Maximization) 145

4.5 Results for the Diabetes Dataset (Minimization). 147

5.1 wMAPE of the MIT-Cassandra model at various points during the

pandemic in US regions. Regions defined by worldatlas.com. Alaska,

Hawaii excluded. 167

5.2 Estimation of 𝛼 for select states in the US based on the CDC Serology

and Random Testing Data. 170

5.3 Model accuracies for one-week ahead COVID-19 detected case predic-

tions during summer 2021. 188

6.1 An example data point that captures the format of the raw tabular data.197

6.2 Comparison between the baseline and the assign-and-predict method. 207

6.3 Comparison between the baseline and the sparse and slowly varying

(ssv) regression model. 212

A.1 Standard Deviation of the Out-of-Sample Accuracy for the UCI Datasets229

A.2 Mean Out-of-Sample R2 for the UCI Regression Datasets. In bold,

the top-performing algorithm for each row. Ranks of the XSTrees are

reported in the last column. 230

A.3 R2 Rank for the UCI Regression Datasets. In bold, the top-performing

algorithm for each row. 230

B.1 Impact of Optimized Service Display on Revenue under different con-

version impact assumptions . 236

20

C.1 Comparison between Cluster then Regress and Cluster while Regress 240

D.1 Selection of model results for predicting September deaths. 262

D.2 Selection of model results for predicting November deaths. 263

D.3 Selection of model results for predicting February deaths. 264

D.4 Selection of model results for predicting September cases. 265

D.5 Selection of model results for predicting November cases. 266

D.6 Selection of model results for predicting February cases. 267

D.7 Estimated Mortality Rate per Age Group. 272

D.8 Fraction of the Population Infected (and Detected) by COVID-19 by

Age Group for each MA County. 274

21

22

Chapter 1

Introduction

A key objective of Operations Research (OR) and Operations Management (OM) is

to go from data to decisions. This process often involves a predictive component and a

prescriptive component, both critical in harnessing the value of data. The traditional

approach in OR and OM is to build models from which we can derive decisions. By

and large, data in these models has only played a supporting role. In contrast, data

in Machine Learning (ML) models has played a protagonistic role.

Recent years however have seen a tremendous increase in data availability due to

the democratization of analytics and the decline in the cost of sensors and microcon-

troller units. Advances in OR, ML, and computing power have the ability of turning

these large amounts of data into real-world value. For example, [124] shows how

predictive and prescriptive analytics could impact the top-line (optimizing external

growth, e.g., pricing, churn prevention, and promotion optimization), the bottom-line

(optimizing internal processes, e.g., predictive maintenance, supply chain optimiza-

tion, and fraud prevention), as well as developing new business models. [1] shows how

companies like Netflix realized more than $1B annual revenue by deploying individ-

ualized content. At the same time, healthcare organizations like Kaiser Permanente

was able to decrease antibiotic use from its patients by 50% through data-driven

health services. In OM, [150] shows the impact and increasing use of predictive and

prescriptive techniques in various revenue management problems, including pricing,

assortment optimization, and inventory management.

23

Arguably, tree methods such as CART ([39]) and Optimal Trees ([22]) are among

the most prominent methods in predictive analytics, mainly due to their interpretabil-

ity and scalability. Nevertheless, these methods struggle to compete in terms of ac-

curacy with other state-of-the-art methods. On the other hand, ensemble methods

such as Random Forests ([40]) and Gradient Boosting Trees ([49]) have very good

predictive power but lack in terms of probabilistic guarantees and interpretability.

One of the goals of this thesis on the predictive side is to bridge this gap and propose

tree-based ML methods such as Extended Sampled Trees (Chapter 2) and Cluster-

While-Classify (Chapter 3) that (i) have strong theoretical guarantees, (ii) a signifi-

cant edge over other state-of-the-art ensemble methods in terms of performance, and

(iii) intepretability, all equally critical in high-stakes applications.

On the prescriptive side, the standard paradigm in real-world OR problems in-

volving prediction and prescription is predict-then-optimize, where ML tools are used

to predict an uncertain point estimate of an uncertain quantity, that is then plugged

in a nominal optimization problem to solve for the optimal decisions. This thesis tries

to move away from this paradigm by doing the prediction and the prescription jointly

(Chapters 3, 4, and 6) or by reducing the uncertainty in the predictions through

ensemble learning (Chapters 2 and 5).

Last but not least, this thesis demonstrates how these novel predictive and pre-

scriptive methods spanning ML, OR, and OM, can be applied in high-stakes appli-

cations in healthcare and healthcare operations, pricing and revenue management,

and preventive maintenance. Consequently, we propose in this thesis additional in-

sights on how to bridge the gap between theory and application through a focus on

interpretability (Chapters 2, 3, 4), causality (Chapter 3, through the use of Double

Machine Learning and Causal Forests), and subject-matter expertise in the fields of

applications leading to considerable, measurable impact (Chapters 3, 5, and 6).

1.1 Contributions

Our main contributions in this thesis are as follows:

24

1. Novel Tree-based ML Methods that are Interpretable and Powerful:

We propose new general methods for prediction. In Chapter 2, we introduce the

XSTrees, or Extended Sampled Trees, a novel tree-based ensemble ML method

for classification and regression. Instead of learning a single single decision tree

such as CART or a finite collection of trees such as Random Forests or Boosting

Trees, XSTrees learn the entire distribution over a carefully defined tree space.

We also introduce in Chapter 3 the CWC, or a hybrid optimization-ML method

that performs joint clustering and classification and subsequently fits a tree

classifier on the corresponding assignment.

2. Novel Robust Method for Joint Prediction and Prescription: We also

propose new general methods for prescription and data-driven decision-making.

In Chapter 4, we introduce the HPA, or Holistic Prescriptive Analytics, a point-

predictive-prescriptive method that jointly regroups observations into clusters

with similar behaviors, learns a predictive model over each of these clusters and

prescribes the optimal decisions under constraints.

3. Adapt and Combine Analytics Methods for new OM Problems: We

expand ML and Optimization methods to be able to solve OM problems with

novel approaches. In Chapter 3, we propose a framework that combines Double

Machine Learning with Causal Forest to evaluate the Net Present Value of

services in online retail, and we propose a curated optimization approach, the

ASDO, or Ancillary Service Display Optimization for assortment optimization

in this context. In Chapter 5, we adapt and combine four different methods,

including a reinforcement learning method: the MRL for Minimal Represen-

tation Learning and an epidemiological method: the C-SEIRD for Chained

SEIRD, two methods we have developed in different papers and that we have

adapted to the COVID-19 data and problem. We also proposed an ensemble

method for combining these predictions which we adapted to our methods and

to the time-series context, as well as a totally-unimodular formulation of the fair

vaccine allocation problem. Finally, in Chapter 6, we generalize our own SSV

25

method for Sparse and Slowly Varying Regression to the Sensor Prediction and

Preventive Maintenance problems.

4. Provide a Rigorous Framework for our Methods through strong The-

oretical Guarantees: In order to give a rigorous framework for our meth-

ods and applications, we prove guarantees on the methods mentioned above.

In Chapter 2, we prove asymptotic and finite-sample bounds on the XSTrees

methods. In the case of finite samples, we prove a finite-sample bound on the

average distance between the position of the splits of the true underlying tree

model and the learned XSTrees and show that this distance converges to 0 with

rate 𝒪(log(𝑛)
𝑛

), when 𝑛→ ∞, where 𝑛 is the number of training observations. In

Chapter 3, we prove the convergence of both the CWC and the ASDO methods.

In Chapter 4, we prove the convergence of the HPA framework and evaluate

the complexity and scalability of the method under different properties of the

predictive and prescriptive costs. In Chapter 5, we prove robustness and vari-

ance bounds on the aggregation method, as well as total-unimodularity of the

vaccine optimization problem.

5. Prove Wide Applicability of the Methods proposed through Extensive

Computational Experiments: We perform extensive numerical experiments

on (i) synthetic data, (ii) publicly-available datasets, (iii) real-world case studies

across all chapters. This includes 30+ datasets from University of California

Irvine (UCI) Machine Learning repository, 100+ synthetic experiments, and

case studies on real-world data including healthcare data, revenue management

data, and industrial sensor data. We shows that our methods proposed above

are at least competitive with the state-of-the-art with improvements in accuracy

going from 2% to 85% on average.

6. Highlight the Real-World Impact of the Methods: Through our col-

laboration with a leading online retailer on revenue management, described in

Chapter 2 and 3, we have deployed an end-to-end framework for targeted ad-

vertising and assortment optimization, which generated $6M in the A/B testing

26

phase, with an estimated impact of $80-$100M in incremental revenue annually

for our collaborator. In Chapter 5, we highlight the outcome of our collabo-

ration in the MIT COVID-19 Response System (MCRS) with MIT Quest for

Intelligence. Our methods were key in understanding the appropriate degree of

returning to campus and re-opening the institute. They were also used on the

CDC website (under the name of MIT-Cassandra) to help the CDC and govern-

ment entities understand and mitigate the spread of the pandemic. Finally, in

Chapter 6 on preventive maintenance and industrial operations, we show how

our framework was deployed by OCP and generated 2.5M MAD (∼$250,000) in

the testing phase, with 200M MAD (∼$20M) in expected profit after full-scale

deployment.

In what follows, I will provide an outline of what each chapter contains.

1.2 Predictive Analytics: from Data to Predictions

1.2.1 XSTrees: Extended Sampled Tree Ensembles for Classi-

fication and Regression

In this chapter, we propose a new tree-based ensemble method for classification and

regression we refer to as Extended Samples Trees, or XSTrees. Instead of learning a

single decision tree such as CART or a finite collection of trees such as Random Forests

or Boosting Trees, XSTrees learn the entire distribution over a carefully defined tree

space. A key goal for XSTrees has been to be interpretable and with good theoret-

ical guarantees, both asymptotic and for finite samples. XSTrees has a significant

edge over other state-of-the-art machine learning methods in terms of performance

(outperforming them by more than 2% on average). All three of these aspects have

proven to be critical in important revenue management and healthcare applications.

For example, we have used XSTrees in choice modeling and sales forecasting with an

online retailer, as well as in terms of predicting hospital short-term “demand” (length

of stay of a patient) for UMass Memorial Hospital.

27

1.2.2 Application to Revenue Management: Ancillary Ser-

vices in Targeted Advertising

One of our most successful collaboration while developing XSTrees was with the lead-

ing online retailer for home furniture and décor. This chapter introduces an end-to-

end framework for targeted advertising and assortment optimization, which generated

$6M in the A/B testing phase, with an estimated impact of $80-$100M in incremental

revenue annually for our collaborator. The framework has three main components: (i)

a novel Cluster-While-Classify (CWC) method to estimate the probability of service

sign-up given customer and product features and a service assortment, (ii) a causal

inference method consisting of Double Machine Learning (DML) and Causal Forests

to estimate the incremental NPV, or Net Present Value, which captures the short-

and long-term increase in revenue due to subscribing to one or more ancillary service,

and (iii) a scalable, provably-optimal optimization formulation for optimal ancillary

service display in a personalized fashion.

1.3 Prescriptive Analytics: from Predictions to De-

cisions

1.3.1 Holistic Prescriptive Analytics for Continuous and Con-

strained Optimization Problems

One of the many goals of Operations as a field is to go from data to operational deci-

sions that create “value”. Consequently, while the predictive component is important,

there is fundamental need for prescriptive analytics as well. This chapter proposes

a point-predictive-prescriptive framework called HPA, for Holistic Prescriptive Ana-

lytics, that jointly regroups observations into clusters with similar behaviors, learns

a predictive model over each of these clusters and prescribes the optimal decisions

under constraints. The intuition behind this framework is that clustering allows us to

achieve higher accuracy by aggregating data into clusters and to divide the training

28

process into smaller subproblems, while performing all the tasks (clustering, predic-

tion, and prescription) jointly allows us to find the right trade-off between accurate

predictions and optimal decisions, in a tractable way that can account for continuous

and constrained decision spaces. The HPA framework also allows for interpretable

decision making, while maintaining a high-level of performance, as illustrated in a

diabetes treatment case study, where it improves over other methods by up to 14%

in terms of treatment efficacy.

1.3.2 Application to Healthcare with MIT Quest for Intelli-

gence: COVID-19 Predictions, Prevalence, and the Op-

erations of Vaccine Allocation

Given the unique circumstances in the last couple of years on a global scale, a big

area of application was also on combating the COVID-19 pandemic and its effects.

I have been part of two research groups. First, the covidanalytics.io group, where I

helped develop an epidemiological model called DELPHI. In addition, in the MIT-

Cassandra group, I led the efforts in (i) creating a high-performing ensemble model

to predict the COVID-19 cases and deaths throughout the country, with different

levels of granularity ranging from country to state, county, to even ZIP code, but also

(ii) creating a probabilistic prevalence model to estimate not only the detected cases

and deaths, but also the true underlying cases and deaths beyond the limited testing

capabilities. Our predictions were used by the CDC, and were out-performing other

methods, being consistently in the top 10, and very often ranked 1st. MIT-Cassandra

was also ranked 1st on average for the short-term 1-week ahead predictions. Finally,

(iii) we have also developed an optimization framework, with interesting insights

for optimal vaccine allocation and roll-out, which we have applied to the state of

Massachusetts. Our predictions were deployed jointly and used by MIT Quest for

Intelligence in the context of safely and promptly re-opening the institute, which was

in hybrid format in Spring 2021, and has fully re-opened since Summer 2021. We

discuss the latter in this chapter.

29

1.3.3 Application to Industrial Operations with OCP: A Ma-

chine Learning Approach to Preventive Maintenance

Last but not least, in collaboration with OCP, the largest the largest phosphates

mining company in the world, based in Morocco, this chapter proposes a preventive

maintenance pipeline, which consists of a descriptive, a predictive, and a prescriptive

component. The descriptive component builds a dynamic Failure Mode & Effects

Analysis tree based on sensor data and text data only. The predictive component

predicts the evolution of failures and of sensor data with the Slowly Varying Sparse

Regression method we have developed, and the prescriptive component schedules

maintenance interventions based on the output of the two previous components. This

framework has already been partly deployed and generated 2.5M MAD (∼$250,000)

in the testing phase, with 200M MAD (∼$20M) in expected profit after full-scale

deployment.

30

Chapter 2

Extended Sampled Tree Ensembles

for Classification and Regression

2.1 Introduction

Machine Learning (ML) and Artificial Intelligence (AI) have transformed decision

making in diverse fields such as retail, healthcare, military, and policy among others

(see for e.g. [41], [13] and [28]). The rise of big data has led to tremendous growth in

ways in which data can inform decisions. One of the main focuses of ML today is pre-

dictive analytics: given features 𝑥, we want to predict some target variable 𝑦, which

can be categorical (in which case, we talk about classification, e.g., choice modeling)

or continuous (in which case, we talk about regression, e.g., demand prediction), as

accurately as possible with models trained on historical data. Predictive analytics is

at the very core of revenue management and is the key in driving improved decisions.

For example, 𝑦 can represent a customer’s purchase decision when presented an as-

sortment of products. Or, in another application, 𝑦 can represent the overall units

sold of a particular product (with features x, that includes price 𝑝). In each case, pre-

dictive analytics can be used to predict how y relates to the underlying decision, and

in turn optimize it. Recent studies include [50] that develop a decision forest model

that can predict more general consumer choice behavior. [48] focus on Binary Choice

Forests for estimating discrete choices. Similarly, [5] construct a tree based mar-

31

ket segmentation model for personalized response prediction. Since these predictive

models directly aid in decision making, there is a need for high-performing predictive

models, with provable guarantees, as well as simple ways to interpret the outcomes

from these models. Arguably, tree methods such as CART ([39]) and Optimal Trees

([22]) are among the most prominent methods in predictive analytics, mainly due to

their interpretability and scalability. Nevertheless, these methods struggle to com-

pete in terms of accuracy with other state-of-the-art methods. On the other hand,

ensemble methods such as Random Forests ([40]) and Gradient Boosting Trees ([49])

have very good predictive power but lack in terms of probabilistic guarantees and

interpretability.

In this chapter, we propose a new framework that has intuition similar to both

of these families of methods. While tree-based models have a simple decision-rule

structure that helps in interpretability, ensemble methods leverage the power of a

family of tree models to improve accuracy. The proposed Extended Sampled

Trees (XSTrees) framework considers a family of such decision trees but instead

of aggregating predictions like in the Random Forest model, our model estimates a

distribution of trees from this family.

Our proposed approach results in good theoretical guarantees, but most impor-

tantly, in a significant edge over other state-of-the-art ML methods in terms of pre-

dictive performances. To gain more intuition, one can view the learning of the appro-

priate tree for a regression or a classification as an estimation task. CART would then

be a local-minimum point-estimator for this estimation task, Optimal Trees would be

the “best” point-estimator, Random Forests and Boosting Trees would be a collection

of estimators, while XSTrees would, in contrast, learn the entire distribution over

these estimators. To accomplish this, we introduce the notions of tree extensions and

tree distributions but also present in detail the XSTrees approach to learn these distri-

butions and generate predictions from them using Monte-Carlo ([115]) sampling. We

then prove asymptotic and finite-sample guarantees on the XSTrees algorithm and

benchmark it against state-of-the-art methods on publicly available datasets, syn-

thetic data, and two real-world case studies — the first one in a revenue management

32

setting with our industry collaborator, a leading e-commerce retailer that sells home

goods, and the second in a healthcare setting. Finally, we illustrate how to explain

and extract intepretable insights from the XSTrees predictions with a visualization

tool and through several examples.

Contributions

The main contributions of this chapter are the following:

• Novel tree ensemble framework which is scalable, accurate, and widely

applicable. Motivated by the tremendous success of tree ensembles such as

Random Forests and Boosted Trees but also driven by the need to develop more

interpretable ML methods, we introduce a novel tree sampling framework that

is scalable, accurate, and applicable to a wide range of classification and re-

gression tasks. We formalize the notions necessary for understanding and using

the framework, and introduce the mathematical formulation of the XSTrees

algorithm in §2.3.

• Asymptotic and finite-sample guarantees on the learning of the un-

derlying true model. We establish that the XSTrees framework enjoys strong

theoretical performance. In particular, we show that the framework is asymp-

totically consistent: as the number of training samples grows large, the expected

model estimation error goes to zero. In the case of finite samples, we prove a

finite-sample bound on the average distance between the position of the splits

of the true underlying tree model and the learned XSTrees and show that this

distance converges to 0 with rate 𝒪(log(𝑛)
𝑛

), when 𝑛→ ∞, where 𝑛 is the number

of training observations. We detail this analysis in §2.4.

• Strong computational performance to show high predictive power,

wide applicability, and better interpretability. We perform extensive

numerical experiments to test the accuracy, sensitivity, robustness, and inter-

pretability of the XSTrees framework. These experiments are performed on:

33

1. UCI Machine Learning Repository: In §2.5, we perform extensive numer-

ical experiments on publicly available and widely used datasets from the

UCI Machine Learning Repository. We find that out of the 25 randomly

selected datasets, both for classification and regression tasks, the XSTrees

algorithm outperforms other benchmark algorithms (for example, Ran-

dom Forests, XGBoost, and Feed-Forward Neural Networks) in terms of

average out-of-sample accuracy with on average between 2.5% and 50%

higher accuracy for classification, and between 2% and 85% higher R2 for

regression. Furthermore, the proposed algorithm has the least variability

(in terms of out-of-sample accuracy) which provides further proof of its

consistent performance across a wide range of applications.

2. Synthetic Data: In §2.6, we perform a numerical study with synthetically

generated data to compare different methods in terms of out-of-sample

accuracy. We find that XSTrees outperforms other benchmark algorithms,

especially in the case when the number of training samples is small, or

the data is noisy. We also introduce in §2.3.3 a framework to visualize

the XSTrees distribution and extract useful explanations such as, but not

limited to, the importance of the features and the most probable tree, or

mode tree, in this distribution, which is similar to a single CART tree.

3. Real-World Case Studies: We perform two extensive case studies. The

first one on revenue management from real world data from our industry

collaborator (§2.7). This case study focuses on sales forecasting, and how

XSTrees outperforms the state-of-the-art industry standards, while provid-

ing decision-makers with tools to interpret the predictions and act upon

them. We also discuss a second case study on blood transfusion (§2.8) to

illustrate the interpretability of the XSTrees model, as discussed in §2.3.3.

We show through this case study how XSTrees maintain a high level of

accuracy, while providing more explanations on how the predictions are

made than alternative ensemble methods.

34

2.2 Related Literature

The objective of this chapter is to propose a probabilistic tree ensemble that outper-

forms the state-of-the-art ML methods in terms of accuracy, while providing provable

guarantees and better ways to interpret the results. Consequently, we discuss in this

section bodies of literature that relate to (i) high-performance predictive ML methods

that we benchmark the XSTrees against, (ii) probabilistic extensions of tree ensem-

bles and (iii) interpretation of tree-based models; and finally (iv) application on data

driven forecasting techniques to revenue management.

State-of-the-art ML models for classification and regression: The two

best-performing models in Kaggle (1) by number competitions won, based on predic-

tive accuracy only, are XGBoost ([49]) for structured data, and Deep Learning ([107])

for unstructured data (See [15] and [37]). While unarguably powerful methods, both

lack in terms of theoretical guarantees and interpretability, with the later needing a

significant amount of data to achieve good performances. Inspired by the success of

XGBoost, as well as the wide popularity of Random Forests ([40]), there has been

throughout the years a tremendous growth in the development of new tree ensemble

methods, such as AdaBoost ([135]) and LightGBM ([105]). All these methods have

in common that they train single decision trees, often CART ([39]), which are called

“weak learners” and aggregate them together. Random Forest constructs these single

trees by sampling different subsets, both in terms of observations and features, from

the data, then training CART trees on each of these subsets. XGBoost does this

construction in a sequential way, by training a CART tree on the entire data, then

subsequent CART trees on the residuals of the predictions of the ensemble of previ-

ously trained trees. AdaBoost differs from XGBoost by focusing on harder-to-classify

examples through weighting the trees, while LightGBM has the particularity of grow-

ing trees by level (depth)-wise instead of splitting leaf nodes in the training process.

XSTrees also aggregates tree-based weak learners, but does it in a more structured

way, which allows it to train an entire distribution on the tree space, instead of an

1https://www.kaggle.com/competitions

35

independent collection of trees.

Last but not least, a certain number of decision makers prefer to use simpler, but

less powerful methods ([84]) such as Linear Regression ([118] for personalized pricing),

𝑘-Nearest Neighbors ([3])), Support Vector Machines ([148]), or just single CART

Trees ([80] for sales forecasting) because of their interpretability and scalability. [123]

review the applications of these methods in operations management in general, while

[81] focus on retail forecasting in particular. Consequently, we will benchmark the

XSTrees algorithm against all the methods cited above in the experimental section

(§2.5) on (i) publicly available data, (ii) synthetic data, and (iii) real-world case

studies.

Probabilistic extensions of tree ensembles: Bayesian interpretation of deci-

sion trees was first provided by [53] where the authors assumed priors on tree split

probabilities and then used stochastic search to guide improved tree generation. Sim-

ilarly, [90] use a Gaussian process model to generate Bayesian trees. More recently,

[149] generate candidate ensemble trees based on a non-parametric prior distribu-

tion fitted using the training sample, while [14] propose a PAC-Bayesian framework

for decision trees, which weights the majority vote of tree ensembles in order to get

probabilistic guarantees without trying to learn the underlying distribution over the

tree space. Nevertheless, most of the existing Bayesian frameworks rely on Markov

Chain Monte Carlo (MCMC) methods which can be computationally slow and can

suffer from ensemble outcomes ([106]). Our proposed method also generates empirical

distributions on the number of splits and the location of these splits in each feature di-

mension to generate potentially infinite candidate trees. Nevertheless, we extend our

trees in the decision space, which leads to considerably different prior assumptions on

the sampling distribution. Furthermore, we also show theoretical convergence results

for the proposed algorithm, and perform extensive numerical experiments to show

considerable gains over other state-of-the-art algorithms.

Interpretation of tree-based models: Arguably one of the most interpretable

machine learning prediction framework was introduced by [39] in the form of CART.

Since then, many attempts have been made to improve the accuracy of CART using

36

tree-based ensembles, sometimes at the expense of interpretability ([40], [49]). Nev-

ertheless, the importance of interpretable methods has been recognized since many

years. For example, [42] considers a simple tree predictor obtained from synthetic

data generated from the training set to bring accuracy to tree ensembles. Similarly,

[120] generates optimal partitions of the data region in order to generate sparse pre-

diction representations. [93] poses the interpretability problem as a Bayesian model

selection problem with the objective of a simplified tree-based model. Finally, more

recent attempts by [70] and [113] aim to develop a rigorous framework of interpretabil-

ity and define the characteristics of interpretable models. Finally, more recently, [67]

constructs simplified trees by learning frequent feature interactions in a tree ensemble.

Instead, the algorithm proposed in this chapter generates an empirical distribution

on the splits as well as the location of these splits and we use this distributional

information to make the tree ensemble more interpretable. As such the proposed vi-

sualization framework aims at making the underlying method more transparent. We

comment on the interpretation of the XSTrees in §2.6, §2.8, and §2.7.

Data-driven forecasting in revenue management: Data driven forecasting

techniques have played an important role in various revenue management problems,

including pricing, assortment optimization and inventory management. We refer the

interested readers to [150] for a general overview of these topics. In recent years, the

number of papers using data-driven techniques has increased a lot, mainly due to the

wider availability of data. Some examples include, [80] who demonstrate how demand

forecasting can be done for a multi-product price optimization problem. [75] show how

to use forecasting for bundle pricing optimization. Others, including [5, 50, 48], focus

on the problem of assortment optimization. On the problem of forecasting demand,

[4, 160] consider the problem of forecasting demand with censored sales observations.

[10] consider the problem of forecasting demand for new products. The current work

is complementary to these studies since it develops a general purpose, non-parametric

prediction algorithm. We further demonstrate that the method outperforms state of

the art prediction algorithms and how the output can be used to generate insightful

visualizations.

37

2.3 Approach

2.3.1 Preliminaries

Let 𝑥 ∈ R𝑑, 𝑑 ∈ N, a 𝑑−dimensional vector. We denote 𝑥[𝑖] the 𝑖𝑡ℎ component of the

vector and [𝑑] the set {1, . . . , 𝑑}. We discuss some preliminaries that will be used for

the tree sampling framework we introduce next:

Definition 1 (Parallel Split) A parallel split is a constraint of the form {𝑥[𝑖] ≤ 𝑏},

defined by a dimension 𝑖 ∈ [𝑑] and a position 𝑏 ∈ R. If 𝑐 is this parallel split, we note

𝑐(𝑑) its dimension, i.e., 𝑐(𝑑) = 𝑖, and 𝑐(𝑝) its position, i.e., 𝑐(𝑝) = 𝑏. e.g., if 𝑐 is the

split {𝑥[3] ≤ 5}, 𝑐(𝑑) = 3 and 𝑐(𝑝) = 5.

Definition 2 (Parallel Splits Tree) A parallel splits tree is a partitioning of the

space R𝑑 using exclusively a finite number of parallel splits. More formally, let

{𝑐1, . . . , 𝑐𝑟}, 𝑟 ∈ N, be the set of all parallel splits used in this partitioning. Each

region of the space defined by this partitioning is called a leaf node, and is fully char-

acterized by a subset of {𝑐1, . . . , 𝑐𝑟} and whether or not each constraint in this subset

is true or false (satisfied, or its opposite is satisfied). We denote ℒ(𝑥) the leaf node

where 𝑥 belongs.

Definition 3 (Extended Tree) An extended tree is a parallel splits tree for which

each leaf node is defined by the same set of parallel splits {𝑐1, . . . , 𝑐𝑟}, 𝑟 ∈ N and

whether or not each of these constraints is true or false. i.e. the number of leaf nodes

for an extended tree is always 2𝑟.

Definition 4 (Decision Tree) We refer here to a decision tree as a parallel splits

tree for which each leaf node is associated with a prediction. Note that a decision tree

is fully defined by a set of leaf nodes, and a predictive function 𝑦 : R𝑑 → R, such that

∀ 𝑥1, 𝑥2 ∈ R𝑑, ℒ(𝑥1) = ℒ(𝑥2) =⇒ 𝑦(𝑥1) = 𝑦(𝑥2).

Definition 5 (Extended Decision Tree) We finally define an extended decision

tree as a tree that is an extended tree and a decision tree at the same time.

38

Example 1 The tree in Figure 2-1 is a decision tree, where the possible splits are

𝑐1 = {𝑥[1] ≤ 10} and 𝑐2 = {𝑥[2] ≤ 5}, there are three leaf nodes ℒ1, ℒ2, ℒ3 defined

respectively by {𝑐1} (𝑐1 is false), {𝑐1, 𝑐2}, and {𝑐1, 𝑐2}. The predictive function 𝑦 of

this tree is such that 𝑦(𝑥) = “Green" if 𝑥 ∈ ℒ3, “Red" otherwise.

Figure 2-1: 2-dimensional example of a decision tree of depth 2.

Similarly, the tree extension 𝒯 *, of the decision tree in Figure 2-1 is represented

in Figure 2-2. The set of possible constraints is still the same: 𝑐1 = {𝑥[1] ≤ 10} and

𝑐2 = {𝑥[2] ≤ 5} and so is the predictive function, however, there are now four leaf

nodes ℒ*
1, ℒ*

2, ℒ*
3 and ℒ*

4 defined respectively by {𝑐1 𝑐2}, {𝑐1 𝑐2}, {𝑐1 𝑐2} and {𝑐1 𝑐2}.

Figure 2-2: Linear extension of the tree in Figure 2-1.

Proposition 1 For each decision tree, there exists an extended decision tree with the

same predictive function.

Proof of Proposition 1.

Let 𝒯 a decision tree with predictive function 𝑦, and let {𝑐1, . . . , 𝑐𝑟}, 𝑟 ∈ N the

union of all the parallel splits that define its leaf nodes. We define the tree 𝒯 * where

the leaf nodes are defined by the entire set {𝑐1, . . . , 𝑐𝑟} and whether or not each of

these constraints is true or false. 𝒯 * is, by definition, an extended tree. Let 𝑥 ∈ R𝑑.

Let ℒ* a leaf node of 𝒯 * containing 𝑥, and satisfying all constraints in {𝑐1, . . . , 𝑐𝑟},

39

where 𝑐𝑖 = 𝑐𝑖 if 𝑐𝑖 is true in ℒ*, and 𝑐𝑖 = 𝑐𝑖 if 𝑐𝑖 is false, for 𝑖 ∈ [𝑟]. Since the

leaf nodes of 𝒯 form a partition, there exist a leaf node ℒ of 𝒯 , such that 𝑥 ∈ ℒ.

Since {𝑐1, . . . , 𝑐𝑟} is the union of all the parallel splits that define the leaf nodes of

𝒯 , the constraints of ℒ are a subset of the constraints of ℒ*, i.e. ℒ* ⊆ ℒ. We can

consequently define a predictive function 𝑦* for 𝒯 * such that 𝑦*(𝑥) = 𝑦(𝑥), ∀𝑥 ∈ R𝑑,

while ensuring that all points in the same leaf node of 𝒯 * have the same prediction,

and hence maintaining a decision tree structure. 𝒯 * is an extended tree and a decision

tree, and has the same predictive function as 𝒯 . ■

Remark 1 Note that for the leaf nodes to form a partition, and hence have a tree

structure, it is necessary to use a lexicographical order on the constraints to define

these leaf nodes. This makes the splits of the parallel split trees, and by extension,

the decision trees order-dependent. The intuition behind the tree extensions is that it

removes the conditions on the order of the splits, at the cost of increasing the number

of leaf nodes.

Example 2 In R𝑑, this procedure is equivalent to linearly extending the splits that

only cover a part of the space in the partition, as illustrated in Figure 2-3 for the same

example as before.

(a) Tree where the order of the splits matters. (b) Order-independent linear extension.

Figure 2-3: 2-dimensional visualization of the tree extension procedure.

40

2.3.2 Additional Notations

Let 𝒟𝑛 a dataset of size 𝑛 ∈ N, containing observations {𝑥1, . . . , 𝑥𝑛} in R𝑑. Let 𝜃

a random sample of 𝒟𝑛, both in terms of observations and in terms of dimensions.

CART(𝒟𝑛, 𝜃) denotes the decision tree resulting in fitting a Classification and Re-

gression Tree (CART, [39]) on the sample 𝜃 of the dataset 𝒟𝑛. Each leaf node of such

a tree contains training samples from {𝑥1, . . . , 𝑥𝑛}. For any vector 𝑥 ∈ R𝑑, we note

ℒ𝑛(𝑥, 𝜃) the leaf node where 𝑥 belongs for CART(𝒟𝑛, 𝜃), and 𝑁𝑛(𝑥, 𝜃) the number

of training set in the corresponding leaf node, that is

𝑁𝑛(𝑥, 𝜃) =
𝑛∑︁
𝑖=1

1{𝑥𝑖 ∈ ℒ𝑛(𝑥, 𝜃)} .

Additionally, for any tree for which the set of possible constraints that appear in

any of its leaf nodes is {𝑐1, . . . , 𝑐𝑟}, 𝑟 ∈ N, we denote

sp𝑗 =
𝑟⋃︁
𝑖=1

{𝑐𝑖 : 𝑐𝑖(𝑑) = 𝑗}, ∀𝑗 = 1, . . . , 𝑑 ,

the set of all splits that occur on dimension 𝑗 and �⃗� = (|sp1|, . . . , |sp𝑑|) denotes the

compact representation of the number of splits in each dimension. Similarly,

�⃗�𝑗 = {𝑐𝑖(𝑝), ∀𝑐𝑖 ∈ sp𝑗} ,

denotes the location of the |sp𝑗| splits in the 𝑗𝑡ℎ dimension (ordered in increasing order

of the split location). Note that an extended tree is fully defined by (�⃗�, �⃗�1, . . . , �⃗�𝑑).

Moreover, we refer to the size of a leaf node, noted ||.|| as the euclidean volume of the

hyper-cube defined by this leaf node (+∞ if the leaf node is not bounded). Finally,

𝑒𝑖 ∈ R𝑑 denotes the 𝑖𝑡ℎ-dimensional unit vector in the d -dimension, and for any

estimator 𝑟𝑛(X) (where 𝑛 is the size of the training sample) of an unknown function

𝑟(X) : R𝑑 → R, we say that 𝑟 is asymptotically consistent if EX [(𝑟𝑛(X)− r(X))2] → 0

as 𝑛→ ∞.

41

2.3.3 Intuition

In this section, we introduce our sampling-based distributional tree framework. Like

any other ML method, XSTrees uses training data to make out-of-sample predictions.

In particular, let 𝑋𝑡𝑟𝑎𝑖𝑛 ∈ R𝑛×𝑑 denote the training sample with 𝑛 rows and 𝑑 features.

Similarly, let 𝑌𝑡𝑟𝑎𝑖𝑛 denote the outcomes corresponding to the n training samples.

Assume that the n samples are i.i.d. and generated from the joint distribution P𝑋,𝑌 .

Then, the objective is to estimate a regression (classification) function 𝑟𝑛(𝑥
𝑡𝑒𝑠𝑡) :

R𝑑 → R that minimizes the out-of-sample prediction error:

min
𝑟𝑛

E[(𝑌 (X)− 𝑟𝑛(X))2],

where the expectation is taken over the joint distribution of features 𝑋 and outcome

variable 𝑌 (𝑋). CART locally solves this minimization problem over a single decision

tree, while Random Forests (RF, [40]) solves it by generating a family of decisions

trees by fitting CARTs on a random sample (generated through boot-strapping or sub-

sampling) of the training data. Each of these trees is used to generate a prediction

for the test data point, and the final prediction is an ensemble of all the individual

predictions. Our proposed method also generates tree ensembles, but combines them

in a more structured way. More precisely, instead of learning an independent family of

decisions trees like RF does, XSTrees learns the entire distribution of the tree space,

and the samples from this distribution constitute our ensemble.

While it is theoretically possible to learn the distribution over any tree space

within this framework, data complexity issues make this impractical. This is why we

learn tree distributions on extended decision trees only. Proposition 1 ensures that

it can be done without any loss of generality, and the order-independent structure of

extended trees ensures that the approach is tractable. Indeed, for an extended tree,

we only need to learn the distribution of the number of splits on each dimension,

and the distribution of the position of each of these splits. The idea is to generate

a collection of decision trees from the data and extend them. Then, extract and

order the positions of the splits in each dimension separately, and use these samples

42

to either (i) update similarly-ordered priors on the distribution of these splits, for a

Bayesian approach or (ii) compute an empirical distribution on these quantities.

Example 3 We illustrate this in a simplified example in Figure 2-4.

In the Bayesian approach, another way to choose which split to update is simply

by selecting the one that maximizes the likelihood (computed according to the prior

distribution) of observing the sampled split at each iteration. In the following section

we focus exclusively on the first update procedure, but both are tested in the com-

putational experiments, as the second one sometimes achieves better performances.

2.3.4 Algorithm

We present the XSTrees Algorithm (Algorithm 1), the sampling based tree algorithm

that we propose. The algorithm takes as an input the training data 𝒟𝑛, the total

number of CART trees (K) that are generated through a pre-selected randomization

procedure (denoted through 𝜃), the maximum number of splits in any dimension 𝑆𝑚𝑎𝑥,

and the size of the tree ensemble 𝑇𝑚𝑎𝑥, for generating final predictions. Finally, the

objective is to predict the outcome for a new test point x.

We divide the algorithm into three main steps. The model fitting step uses CART

trees generated on random sub-samples to generate distributions of the splits and

their location in each dimension. Each tree is first extended (see §2.3.1). Then, the

tree extensions are used to estimate the average number of splits and the location of

these splits and the variance around each of the splits. The mean and the variance

(𝑠𝑚𝑒𝑎𝑛 and 𝑠𝑣𝑎𝑟) provide moment information to sample and create an ensemble of

trees, which is executed in the prediction sampling step.

In the prediction sampling step, we generate a total of 𝑇𝑚𝑎𝑥 trees by sampling

the number of splits in each dimension as well as the location of the splits based

on the distribution estimated in the model fitting step. The sampled trees are all

extended trees. This ensures ease of sampling since splits in different dimensions can

be sampled independently from one another.

43

(a) Collection of trees trained from the data. (b) Linear extensions of these trees.

Figure 2-4: This is an illustration of the intuition behind the XSTrees algorithm in a
4-sample, 2-depth example. We train a collection of CARTs from 4 samples of the data
to obtain 4 trees (a), then we extend the splits of (a) to obtain 4 extended trees (b).
The blue splits refer to splits on dimension 1, and the orange splits refer to splits on
dimension 2. We notice that for dimension 1, it appears twice with 1 split, and twice
with 2 splits. Empirically, we set 𝑃 (|sp1| = 0) = 0 and 𝑃 (|sp1| = 1) = 𝑃 (|sp1| = 2) =

0.5, and from the smallest split in each of the 4 trees, we conclude �⃗�1[1] ∼ 𝒩 (4, 1.41)
assuming a normal distribution, and by computing the average and standard deviation
of [4, 2, 6, 4]. Similarly, we set �⃗�1[2] ∼ 𝒩 (6, 1), 𝑃 (|sp2| = 0) = 𝑃 (|sp2| = 1) = 0.5,
and �⃗�2[1] ∼ 𝒩 (4, 1) to fully define the distribution of the tree space, that we can then
sample using Monte Carlo sampling to make our final predictions.

44

Nevertheless, it also increases the total number of leaf nodes in the generated

tree. Hence, the prediction of a test point (using ℎ𝑋𝑆𝑇 (Algorithm 2)) is done using

advanced pruning procedures and a nearest neighbor approach in regions of the space

which do not have enough training data. For example, any generated extended tree

defines a partition of the data space. To predict the outcome for a test point, we first

find the partition that contains the test point. The predicted outcome is the average

outcome from all the training samples in the same partition as the test point. In case

there are no training points (or not enough training points 𝑛min ∈ N) in the partition,

we use one of two heuristic methods to make the prediction: the first randomly selects

a dimension and find the closest non empty data partition by following that dimension

and averaging over the training samples in the non-empty partition. This approach

replicates what a regular CART does by merging the empty region of the space with

a neighboring leaf but has the advantage of adding randomization through a large

number of sampled trees to improve the estimation. The second one relies on an

approximate 𝑘-nearest neighbor search algorithm to find the nearest data points that

belong to neighbouring non-empty grid cells. The heuristic to use, as well as 𝑛min and

𝑘 are chosen through hyper-parameter tuning (See Appendix §A.2). It is important to

note that these procedures, in addition to the common tree regularization techniques,

help limit over-fitting.

The final prediction is an average of the predicted outcomes from all sampled trees

and is performed in the final averaging predictions step of the algorithm. This can be

seen as the expected value of the predicted value knowing the tree distribution. Note

that in the case of classification, this step is replaced by a majority vote weighted by

the probability of each tree.

Remark 2 Note that the normality assumption is on the position of the splits only,

not on the underlying data distribution, nor on the predictive function of the tree

and it can be easily replaced by an empirical distribution or other discrete (Dirichlet)

and continuous distributions. The current version of the code supports all numpy

([94]) distributions as well as empirical distribution for the non-bayesian approach.

In practice, we have benchmarked different distributions, including the exponential

45

distribution and the Cauchy distribution, but the normal distribution was the best

performing one. The theoretical results hold regardless of this choice, as long as the

averages converge at similar rates. Once such distributions are generated, sampling

can be then used to generate candidate trees for prediction.

Algorithm 1 XSTrees(𝒟𝑛, K, 𝑇𝑚𝑎𝑥, 𝑆𝑚𝑎𝑥, x)
Model Fitting
for 𝑖 ∈ [𝐾] do

Let ℎ𝑖 = CART(𝒟𝑛, 𝜃𝑖), [𝜃𝑖 is a randomization] and
(�⃗�, �⃗�1, . . . , �⃗�𝑑)𝑖 = TreeExtension(ℎ𝑖) (see §2.3.1 for details).

end for
for 𝑗 ∈ [𝑑] do

Let 𝑠𝑚𝑒𝑎𝑛𝑗 = 1
𝐾

𝐾∑︀
𝑖=1

�⃗�𝑗 [𝑖], 𝑠𝑣𝑎𝑟𝑗 = 1
𝐾

𝐾∑︀
𝑖=1

(︁
�⃗�𝑗 [𝑖]− 𝑠𝑚𝑒𝑎𝑛𝑗

)︁2
.

for 𝑚 ∈ [𝑆𝑚𝑎𝑥] do
Let 𝜅

(𝑚)
𝑗 = {𝑖 : 𝑠𝑗 [𝑖] ≥ 𝑚}, 𝜇

(𝑚)
𝑗 = 1

|𝜅(𝑚)
𝑗 |

∑︀
𝑖∈𝜅(𝑚)

𝑗

�⃗�𝑖𝑗 [𝑚] & 𝜎
(𝑚)
𝑗 =

1

|𝜅(𝑚)
𝑗 |

∑︀
𝑖∈𝜅(𝑚)

𝑗

(︁
�⃗�𝑖𝑗 [𝑚]− 𝜇

(𝑚)
𝑗

)︁2
.

end for
end for

Prediction Sampling
for 𝑞 ∈ 𝑇𝑚𝑎𝑥 do

for 𝑗 ∈ [𝑑] do
𝜈𝑞𝑗 = 𝒩

(︁
𝑠𝑚𝑒𝑎𝑛𝑗 , 𝑠𝑣𝑎𝑟𝑗

)︁
for 𝑚 ∈ ⌊𝜈𝑞𝑗 ⌋ do

𝑙𝑠
𝑞
𝑗(𝑚) = 𝒩 (𝜇

(𝑚)
𝑗 , 𝜎

(𝑚)
𝑗)

end for
end for
Let 𝑦𝑞(𝑥) = ℎ𝑋𝑆𝑇 (𝑙𝑠

𝑞
1, . . . , 𝑙𝑠

𝑞
𝑑, 𝑥) (see Algorithm 2)

end for

Averaging Predictions

Predict 𝑦(𝑥) = 1
𝑇𝑚𝑎𝑥

𝑇𝑚𝑎𝑥∑︀
𝑟=1

𝑦𝑞(𝑥).

46

Algorithm 2 ℎ𝑋𝑆𝑇 (𝒟𝑛, �̃�1, . . . , �̃�𝑑, 𝑥).

if |ℒ𝑛(𝑥, �̃�1, . . . , �̃�𝑑)| > 0 then
Predict 𝑦(𝑥) =

∑︀𝑛
𝑖=1 𝑦𝑖1{𝑥𝑖 ∈ ℒ𝑛(𝑥, �̃�1, . . . , �̃�𝑑)}

else
Let 𝑖𝑟 be chosen randomly from 1, . . . ,d.
Let 𝜖𝑚𝑖𝑛 = min𝜖{𝜖 : |ℒ𝑛(𝑥+ 𝜖 · 𝑒𝑖𝑟 , �̃�1, . . . , �̃�𝑑)| > 0|}
Predict 𝑦(𝑥) =

∑︀𝑛
𝑖=1 𝑦𝑖1{𝑥𝑖 ∈ ℒ𝑛(𝑥+ 𝜖𝑚𝑖𝑛 · 𝑒𝑖𝑟 , �̃�1, . . . , �̃�𝑑)}

end if

2.4 Theoretical Guarantees

While decision tree based ensemble methods have been widely popular, statistical

properties of such methods are hard to establish because of the non-parametric struc-

ture of the predictor function. However, the distributional nature of XSTrees results

in good theoretical guarantees, both in terms of finite samples and asymptotic conver-

gence. In this section, we provide bounds for the XSTrees algorithm on the estimation

error.

2.4.1 Assumptions

We consider without loss of generality the case of a classification problem with 𝑚 ∈ N

classes {1, . . . ,𝑚}. We have training data 𝑥1, . . . , 𝑥𝑛 ∈ R𝑑, with labels 𝑦1, . . . , 𝑦𝑛 ∈

[𝑚], where the true underlying classification model follows a decision tree structure

𝒯 with predictive function 𝑦 (see §2.3.1). From Proposition 1, we can assume that

𝒯 is an extended tree, again without loss of generality. We impose the following

assumptions (as is often done in this literature):

Assumption 1 (A1) The feature space is bounded. That is, ∀𝑖 ∈ [𝑛], 𝑥𝑖 ∈ [0, 1]𝑑.

Assumption 2 (A2) The observations are stochastic, i.e., for any 𝑖 ∈ [𝑛], the label

𝑦𝑖, for 𝑥𝑖 in the training data, is generated from the predictive function 𝑦 of 𝒯 with

some error 𝜖 ∈ [0, 1
2
]. We write 𝑃 (𝑦𝑖 = 𝑦(𝑥𝑖)) = 1− 𝜖.

Assumption 3 (A3) The training data used for the learning is i.i.d. and uniformly

sampled from [0, 1]𝑑.

47

Assumption (A1) and (A3), of bounded training data, and uniform i.i.d sam-

pling, are standard in the machine learning literature. Assumption (A2) ensures

that the class assignments through the underlying data generation process, 𝒯 , is not

deterministic and there is some probability of observing an incorrect class for the

sampled data. Note that 𝜖 in assumption (A2) does not have to be the same across

different leaves. This part of the assumption is made in order to simplify the notation,

while 𝜖 ≤ 1
2

is necessary to make inference possible (otherwise the data is more often

wrong than not). Our goal is to learn 𝒯 from the training data, using the XSTrees

procedure, and accurately approximate 𝑦.

2.4.2 Asymptotic Convergence

In this section, we focus on the asymptotic convergence of a single extended tree

estimator to the true underlying extended tree. Let 𝒱 be the class of single decision

tree predictors such as CART or Optimal Trees ([22]), with regularization constraints

(such as the minimum number of training observations in each leaf). We write the

following optimization problem, minimizing the prediction error on the training data

over 𝒱 (Equation 2.1):

min
𝑓

𝑛∑︁
𝑖=1

𝑙(𝑦𝑖, 𝑓(𝑥𝑖))

s.t. 𝑓 ∈ 𝒱 ,

(2.1)

where 𝑙(𝑎, 𝑏) = 0 if 𝑎 = 𝑏, and 1 otherwise.

We refer to this problem as ℱ𝑛, and note that what we mean by optimizing over

𝒱 is learning the finite set of parameters of the tree. We refer the reader to [22] for

an explicit mixed-integer formulation. CART is a local-optimum of ℱ𝑛 and Optimal

Trees are theoretically a global-optimum of ℱ𝑛. Finally, we let 𝒮𝑛 the set of all locally

optimal solutions of ℱ𝑛.

Theorem 1 Under assumptions (A1) - (A3), there exists a sequence {𝒯𝑛 ∈ 𝒮𝑛}

which converges asymptotically to the true extended tree 𝒯 when 𝑛→ ∞.

48

Let 𝜌 be the depth of 𝒯 , since 𝒯 is an extended tree, there are 2𝜌 leaf nodes in

𝒯 . For each leaf node, we take the geometrical center (i.e. the point obtained by

averaging the upper bound and the lower bound in each dimension within this leaf

node). This is possible since the feature space is bounded (A1), we denote it 𝑔𝑖 for

each leaf node 𝑖 ∈ [2𝜌]. Let 𝛿 ∈ R+ such that the size of each leaf node (i.e. the

size of a region delimited by the leaf node) is greater than 𝛿. We write ||ℒ𝒯 (𝑥)|| ≥ 𝛿,

∀𝑥 ∈ R𝑑. Let 𝑝𝑚𝑖𝑛, such that 𝛿 > 𝑝𝑚𝑖𝑛 > 0, and let 𝑛𝑚𝑖𝑛 = 𝑛× 𝑝𝑚𝑖𝑛.

Let 𝒯 *
𝑛 denote the extended decision tree defined as follows. For all splits 𝑐𝑗, 𝑗 ∈ [𝜌]

of 𝒯 , we define a split 𝑐𝑗*𝑛 , such that 𝑐𝑗*𝑛 (𝑑) = 𝑐𝑗(𝑑) and

𝑐𝑗*𝑛 (𝑝) =
min𝑖∈[𝑛]{𝑥𝑖[𝑐𝑗(𝑑)] : 𝑥𝑖[𝑐𝑗(𝑑)] ≥ 𝑐𝑗(𝑝)}+max𝑖∈[𝑛]{𝑥𝑖[𝑐𝑗(𝑑)] : 𝑥𝑖[𝑐𝑗(𝑑)] ≤ 𝑐𝑗(𝑝)}

2
.

This provides a mapping between the leaf nodes of 𝒯 and the leaf nodes of 𝒯 *
𝑛 .

We set the predictive functions to be equal according to this mapping. We denote

ℱ𝑛(𝑛𝑚𝑖𝑛) the problem ℱ𝑛 under the regularization constraint that the minimum num-

ber of observations in a leaf node is 𝑛𝑚𝑖𝑛, and 𝒮𝑛(𝑛𝑚𝑖𝑛) the set of locally optimal

solutions of ℱ𝑛(𝑛𝑚𝑖𝑛).

We argue that when 𝒯 *
𝑛 is feasible in ℱ𝑛(𝑛𝑚𝑖𝑛) (Lemma 1), there exists 𝒯𝑛 ∈

𝒮𝑛(𝑛𝑚𝑖𝑛) such that 𝒯 *
𝑛 and 𝒯𝑛 have the same number of splits in each dimension,

i.e., 𝒯𝑛 is obtained by locally moving up (increase the value of the position) or down

(decrease the value of the position) the splits of 𝒯 *
𝑛 (Lemma 2). This will allow us to

prove the convergence of 𝒯𝑛 → 𝒯 when 𝑛→ ∞.

Let Ψ𝑖, for any leaf node 𝑖, be defined as

Ψ𝑖 =

⎧⎪⎨⎪⎩1 if {|{𝑗 ∈ [𝑛], 𝑥𝑗 ∈ ℒ𝒯 (𝑔𝑖)}| ≥ 𝑛𝑚𝑖𝑛}

0, otherwise,

where Ψ𝑖 takes value 1 if the leaf node i contains at least 𝑛𝑚𝑖𝑛 data points and hence

also depends on the size of the data set, 𝑛.

Lemma 1 When Ψ𝑖 is true for all 𝑖 ∈ [2𝜌], then 𝒯 *
𝑛 is feasible for ℱ𝑛(𝑛𝑚𝑖𝑛). Addi-

49

tionally, we have lim
𝑛→∞

𝑃

(︂
2𝜌⋂︀
𝑖=1

Ψ𝑖

)︂
= 1. We note this probability 𝑝𝑛1 .

Proof of Lemma 1. 𝒯 *
𝑛 has by construction a tree structure, so the only other

condition to verify for feasibility is the regularization constraint. By definition, Ψ𝑖

for all 𝑖 ∈ [2𝜌] ensures that each leaf node of 𝒯 has at least 𝑛𝑚𝑖𝑛 observations. The

definition of the splits of 𝒯 *
𝑛 guarantees that there are not observations between 𝑐𝑗*𝑛 and

𝑐𝑗 for all 𝑗 ∈ [𝜌], so 𝒯 *
𝑛 and 𝒯 define the same partitioning of the data. Consequently

the number of observations in each leaf node of 𝒯 *
𝑛 is at least 𝑛𝑚𝑖𝑛, i.e. 𝒯 *

𝑛 is feasible.

Let us bound the probability 𝑃
(︂

2𝜌⋂︀
𝑖=1

Ψ𝑖

)︂
:

𝑃

(︃
2𝜌⋂︁
𝑖=1

Ψ𝑖

)︃
= 1− 𝑃

(︃
2𝜌⋃︁
𝑖=1

Ψ̄𝑖

)︃

≥ 1−
2𝜌∑︁
𝑖=1

𝑃 (Ψ̄𝑖)

≥ 1−
2𝜌∑︁
𝑖=1

⌊𝑛𝑚𝑖𝑛⌋∑︁
𝑘=0

(︂
𝑛

𝑘

)︂
||ℒ𝒯 (𝑔𝑖)||𝑘(1− ||ℒ𝒯 (𝑔𝑖)||)𝑛−𝑘

(2.2)

This terms bounds the probability of having less than 𝑛𝑚𝑖𝑛 observations in a given

leaf node 𝑖, from assumption (A3), we know that the training data is uniformly

distributed, and hence the probability of being in a given leaf node is exactly the

size of the leaf node, divided by the total size of the features space. The size of the

features space is 1 (A1), so this is exactly ||ℒ𝒯 (𝑔𝑖)|| for leaf node 𝑖. The independence

of the observations (A3) gives this binomial structure.

We have, for 𝑖 ∈ [2𝜌], that
⌊𝑛𝑚𝑖𝑛⌋∑︀
𝑘=0

(︀
𝑛
𝑘

)︀
||ℒ𝒯 (𝑔𝑖)||𝑘(1− ||ℒ𝒯 (𝑔𝑖)||)𝑛−𝑘 is the cumulative

density function for a binomial distribution of 𝑛 samples, with individual probability

||ℒ𝒯 (𝑔𝑖)|| evaluated at point ⌊𝑛𝑚𝑖𝑛⌋. Since ⌊𝑛𝑚𝑖𝑛⌋ ≤ 𝑛𝑚𝑖𝑛 = 𝑛 × 𝑝𝑚𝑖𝑛 ≤ 𝑛 × 𝛿 ≤

𝑛× ||ℒ𝒯 (𝑔𝑖)||, we know this probability goes to 0 when 𝑛 → ∞. Since 𝜌 is finite, so

is 2𝜌, so we have a finite sum of terms converging to 0 when 𝑛 → ∞. We conclude

lim
𝑛→∞

𝑝𝑛1 = lim
𝑛→∞

𝑃

(︂
2𝜌⋂︀
𝑖=1

Ψ𝑖

)︂
= 1. We have proven Lemma 1. ■

50

Additionally, for a region 𝐴 (e.g. a leaf node), we define the random variable

Φ(𝐴, 𝑛𝑚𝑖𝑛) =⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1 if {∀𝐼 ⊆ [𝑛] : |{𝑗 ∈ 𝐼 : 𝑥𝑗 ∈ 𝐴}| ≥ 𝑛𝑚𝑖𝑛,

|{𝑗 ∈ 𝐼 : 𝑥𝑗 ∈ 𝐴, 𝑦(𝑥𝑗) ̸= 𝑦𝑗}| ≤ |{𝑗 ∈ 𝐼 : 𝑥𝑗 ∈ 𝐴, 𝑦(𝑥𝑗) = 𝑦𝑗}|}

0 otherwise.

That is, for region 𝐴, there is no subset of the training data that is in 𝐴, of size at

least 𝑛𝑚𝑖𝑛, for which the proportion of misclassified points is greater than the propor-

tion of correctly classified points. We denote Φ𝑖 the random variable Φ(ℒ𝒯 (𝑔𝑖), 𝑛𝑚𝑖𝑛),

for 𝑖 ∈ [2𝜌].

Lemma 2 When Φ𝑖 is true for all 𝑖 ∈ [2𝜌], no further feasible splits on 𝒯 *
𝑛 can

improve the objective function, and lim
𝑛→∞

𝑃

(︂
𝜌⋂︀
𝑖=1

Φ𝑖

)︂
= 1. We note this probability 𝑝𝑛2 .

Proof of Lemma 2.

By contradiction, consider a feasible split 𝑐 on 𝒯 *
𝑛 that improves the objective

function of ℱ𝑛(𝑛𝑚𝑖𝑛). Let ℒ𝒯 (𝑔𝑖), 𝑖 ∈ [𝜌] be a leaf of 𝒯 such that splitting on this

leaf improves the objective function (there exists at least one by assumption). Let

ℒ1, ℒ2 be the two leaves obtained by splitting this leaf with 𝑐. We know that at least

one of these two leaves has a different prediction from 𝑦(𝑔𝑖), otherwise the predictive

function on this leaf is identical to 𝒯 *
𝑛 (and hence there is no improvement on the

objective). This means that the percentage of misclassified points in this leaf is greater

than that of correctly classified points. Since Φ𝑖 is true, this leaf contains less than

𝑛𝑚𝑖𝑛 points, and hence is not feasible, we obtain a contradiction and conclude that no

further feasible splits on 𝒯 *
𝑛 can improve the objective function. Let 𝑛𝑖 the number

of training points in leaf node ℒ𝒯 (𝑔𝑖), 𝑖 ∈ [2𝜌]. We also have:

51

𝑃

(︃
2𝜌⋂︁
𝑖=1

Φ𝑖

)︃
= 1− 𝑃

(︃
2𝜌⋃︁
𝑖=1

Φ̄𝑖

)︃

≥ 1−
2𝜌∑︁
𝑖=1

𝑃 (Φ̄𝑖)

≥ 1−
2𝜌∑︁
𝑖=1

𝑛𝑖∑︁
𝑘=⌈𝑛𝑚𝑖𝑛⌉

𝑘∑︁
𝑘′=⌈ 𝑘

2⌉

(︂
𝑘

𝑘′

)︂
𝜖𝑘

′
(1− 𝜖)𝑘−𝑘

′

(2.3)

Since we have
⌈︀
𝑘
2

⌉︀
≥ 𝑘

2
≥ 𝑘𝜖, we bound the interior sum by exp(−2𝑘(

⌈ 𝑘
2⌉
𝑘

− 𝜖)2),

which can be bounded by exp(−2𝑘(1
2
− 𝜖)2). The sum

𝑛∑︀
𝑘=1

exp(−2𝑘(1
2
− 𝜖)2) is a

convergent series in 𝑛, and lim
𝑛→∞

⌈𝑛𝑚𝑖𝑛⌉ = ∞, so lim
𝑛→∞

𝑛𝑖∑︀
𝑘=⌈𝑛𝑚𝑖𝑛⌉

𝑘∑︀
𝑘′=⌈ 𝑘

2⌉

(︀
𝑘
𝑘′

)︀
𝜖𝑘

′
(1−𝜖)𝑘−𝑘′ =

0. Since 2𝜌 is finite, we can conclude that lim
𝑛→∞

𝑃

(︂
2𝜌⋂︀
𝑖=1

Φ𝑖

)︂
= 1. We have proven

Lemma 2. ■

Proof of Theorem 1.

We do not penalize the number of splits in the objective function and we do not

impose any constraint on the predictive function, besides that it is the same within

each leaf, hence, pruning will not improve the objective function. Consequently,

Lemma 2 allows us to conclude that there exists 𝒯𝑛 ∈ 𝒮𝑛(𝑛𝑚𝑖𝑛) with the same number

of splits as 𝒯 *
𝑛 and 𝒯 . We call these splits 𝑐𝑗𝑛 for 𝑗 ∈ [𝜌], mapped to the splits 𝑐𝑗 of 𝒯

by ordering of the splits similarly to the XSTrees update procedure. Finally, we call

𝑑𝑛𝑗 = |𝑐𝑗𝑛(𝑝)− 𝑐𝑗(𝑝)|, and 𝒰(𝑘,𝑛) the distribution of a 𝑘-order statistic of 𝑛 i.i.d samples

from a uniform distribution in [0, 1] (i.e. the distribution of the 𝑘𝑡ℎ smallest element

of these samples, for 𝑘 ∈ [𝑛].

Let 𝑗 ∈ [𝜌] and 𝑘(𝑛) ∈ [𝑛], and Γ+
𝑗,𝑘(𝑛),𝑛 = Φ({𝑥𝑖, 𝑖 ∈ [𝑛] : 𝑥𝑖[𝑐

𝑗(𝑑)] > 𝑥𝑖[𝑐
𝑗(𝑝)]}, 𝑘(𝑛))

(resp. Γ−
𝑗,𝑘(𝑛),𝑛 = Φ({𝑥𝑖, 𝑖 ∈ [𝑛] : 𝑥𝑖[𝑐

𝑗(𝑑)] < 𝑥𝑖[𝑐
𝑗(𝑝)]}, 𝑘(𝑛))). Recall from the defi-

nition that it is the event that no subset of point that are above (resp. below) split

𝑐𝑗 of size more than 𝑘 has a greater proportion of misclassified points than correctly

classified points. When Γ+
𝑗,𝑘(𝑛),𝑛 and Γ−

𝑗,𝑘(𝑛),𝑛 are true, there exists a random variable

𝑢𝑗+𝑘(𝑛),𝑛 ∼ 𝒰(𝑘(𝑛),𝑛) (capturing the move above) and 𝑢𝑗−𝑘(𝑛),𝑛 ∼ 𝒰(𝑘(𝑛),𝑛) (capturing the

move below) such that 𝑑𝑛𝑗 is bounded by 𝑢𝑗+𝑘(𝑛),𝑛 + 𝑢𝑗−𝑘(𝑛),𝑛. Let 𝑘(𝑛) s.t. 𝑘(𝑛) → ∞

52

and 𝑘(𝑛)
𝑛

→ 0. We have:

𝐸

[︂
max
𝑗∈[𝜌]

𝑑𝑛𝑗

]︂
≤ 𝐸

[︃
𝜌∑︁
𝑗=1

𝑑𝑛𝑗

]︃

≤
𝜌∑︁
𝑗=1

𝐸
[︀
𝑑𝑛𝑗
]︀

≤
𝜌∑︁
𝑗=1

(︁
𝐸
[︁
𝑢𝑗+𝑘(𝑛),𝑛 + 𝑢𝑗−𝑘(𝑛),𝑛

]︁
𝑃 (Γ+

𝑗,𝑘(𝑛),𝑛 ∩ Γ−
𝑗,𝑘(𝑛),𝑛) + 1− 𝑃 (Γ+

𝑗,𝑘(𝑛),𝑛 ∩ Γ−
𝑗,𝑘(𝑛),𝑛)

)︁
(2.4)

We have that lim
𝑛→∞

𝑃 (Γ+
𝑗,𝑘(𝑛),𝑛∩Γ−

𝑗,𝑘(𝑛),𝑛) = 1 since 𝑘(𝑛) → ∞ similarly to the proof

of Lemma 2, and lim
𝑛→∞

𝐸[𝑢𝑗+𝑘(𝑛),𝑛] = lim
𝑛→∞

𝐸[𝑢𝑗−𝑘(𝑛),𝑛] = 0 because 𝒰(𝑘(𝑛),𝑛) follows a Beta

distribution Beta(𝑘(𝑛), 𝑛+1− 𝑘(𝑛)), with an expected value 𝑘(𝑛)
𝑛+1

→ 0 when 𝑛→ ∞.

We conclude that lim
𝑛→∞

𝐸[max𝑗∈[𝜌] 𝑑
𝑛
𝑗] = 0. i.e., we have proven that with probability

at least 𝑝𝑛1𝑝𝑛2 → 1 when 𝑛 → ∞, there exist a sequence of extended trees in 𝒮𝑛 that

converge to the true extended tree 𝒯 . ■

For any function 𝑘(𝑛) satisfying 𝑘(𝑛) → ∞ and 𝑘(𝑛)
𝑛

→ 0, we denote 𝑝𝑛,𝑘(𝑛)3 =

𝑃

(︃
𝜌⋂︀
𝑗=1

(Γ+
𝑗,𝑘(𝑛),𝑛 ∩ Γ−

𝑗,𝑘(𝑛),𝑛)

)︃
for the purpose of proving finite sample guarantees in

the next subsection.

Remark 3 Note that this proof is not constructive, as we do know the parameters of

the true underlying tree.

2.4.3 Finite Sample Guarantees on the XSTrees

This learning procedure also gives us bounds on the error of the estimation for finite

samples with the averaging effect of the XSTrees.

Theorem 2 Let 𝑐𝑗 for 𝑗 ∈ [𝜌] a split of the underlying true decision tree 𝒯 , and

𝑐𝑗𝑛 the estimated split for training data of size 𝑛 ∈ N. Using the same notations as

before, we have:

𝐸
[︀
|𝑐𝑗𝑛(𝑝)− 𝑐𝑗(𝑝)|

]︀
≤ 2𝑘(𝑛)

𝑛+ 1
𝑝𝑛1𝑝

𝑛
2𝑝

𝑛,𝑘(𝑛)
3 + (1− 𝑝𝑛1𝑝

𝑛
2𝑝

𝑛,𝑘(𝑛)
3),

53

For all function 𝑘(𝑛) satisfying 𝑘(𝑛) → ∞ and 𝑘(𝑛)
𝑛

→ 0, and where 𝑝𝑛1 is defined

in Lemma 1, 𝑝𝑛2 is defined in Lemma 2, and 𝑝𝑛,𝑘(𝑛)3 is defined at the end of the proof

of Theorem 1. Additionally, we can write:

𝐸
[︀
|𝑐𝑗𝑛(𝑝)− 𝑐𝑗(𝑝)|

]︀
= 𝒪

(︂
log(𝑛)

𝑛

)︂
.

This theorem ensures that the splits of the XSTrees within this setting converge

with rate 𝒪
(︁

log(𝑛)
𝑛

)︁
to the splits of the true underlying tree. Note that this bound

does not explicitly depend on 𝑑, but it does depend exponentially on the total number

of splits 𝜌 through 𝑝𝑛1𝑝
𝑛
2𝑝

𝑛,𝑘(𝑛)
3 . However, the extended tree structure of the XSTrees

ensures that this dependency appears only in the multiplicative constants. Note that

a similar exponential dependency on 𝑑 can be found in the convergence results of

Random Forests, with rate 𝒪(𝑛−1/(8𝑑+2)) ([86]) against which the XSTrees compare

favorably.

Remark 4 (Remark on the notations) If the estimated solution does not have

the same number of splits as 𝒯 , we set 𝑐𝑗(𝑝) for 𝑗 ∈ [𝜌] to the closest split that is in

the same dimension, or to 1 if such split does not exist. Otherwise, we keep using the

ordering of the XSTrees procedure.

Proof of Theorem 2.

Let Ω the random variable

(︃
𝜌⋂︀
𝑗=1

(Γ+
𝑗,𝑘(𝑛),𝑛 ∩ Γ−

𝑗,𝑘(𝑛),𝑛)

)︃
∩
(︂

2𝜌⋂︀
𝑖=1

(Ψ𝑖 ∩ Φ𝑖)

)︂
. We have

proven in the Proof of Theorem 1, that under Ω, the constructed sequence 𝒯𝑛 is

feasible and in 𝒮𝑛 of the optimization problem ℱ𝑛 under the regularization constraints

discussed in the proof of Theorem 1, and that the distance between each estimated

split and the true split of 𝒯 is bounded by the sum of two beta-distributed random

variables 𝑢+𝑛 and 𝑢−𝑛 with mean 𝑘(𝑛)
𝑛+1

. If Ω is not true, we cannot say anything about

any solutions of ℱ𝑛, however, since the space is [0, 1]𝑝 from assumptions (A1), we

know that the distance between true and estimated split is at most 1. We write:

54

𝐸
[︀
|𝑐𝑗𝑛(𝑝)− 𝑐𝑗(𝑝)|

]︀
= 𝐸

[︀
|𝑐𝑗𝑛(𝑝)− 𝑐𝑗(𝑝)||Ω

]︀
𝑃 (Ω) + 𝐸

[︀
|𝑐𝑗𝑛(𝑝)− 𝑐𝑗(𝑝)||Ω̄

]︀
(1− 𝑃 (Ω))

≤ 2𝑘(𝑛)

𝑛+ 1
𝑝𝑛1𝑝

𝑛
2𝑝

𝑛,𝑘(𝑛)
3 + 1× (1− 𝑝𝑛1𝑝

𝑛
2𝑝

𝑛,𝑘(𝑛)
3).

(2.5)

Additionally, we have seen that through their binomial structure, each of the

𝑝𝑛𝑖 , 𝑖 ∈ {1, 2} can be bounded by (1 − 𝐶𝑖 exp(−𝛼𝑖𝑛)), and by bounding the in-

finite sum by the integral, we also have directly that 𝑝𝑛,𝑘(𝑛)3 can be bounded by

(1 − 𝐶3 exp(−𝛼3𝑘(𝑛))), ∀𝑛 ∈ N for some positive constants 𝐶𝑖 and 𝛼𝑖, 𝑖 ∈ {1, 2, 3}

that depend on 𝜌 and 𝛿.

As a result, ∃ 𝐶, 𝛼 > 0, s.t. ∀𝑛 ∈ N, 𝑝𝑛1𝑝𝑛2𝑝
𝑛,𝑘(𝑛)
3 ≤ (1 − 𝐶 exp(−𝛼𝑘(𝑛))). By

setting 𝑘(𝑛) = log(𝑛)
𝛼

, which satisfies both 𝑘(𝑛) → ∞ and 𝑘(𝑛)
𝑛

→ 0, we get that

𝑝𝑛1𝑝
𝑛
2𝑝

𝑛,𝑘(𝑛)
3 ≤ (1 − 𝐶

𝑛
). From Equation 2.5, we conclude that 𝐸 [|𝑐𝑗𝑛(𝑝)− 𝑐𝑗(𝑝)|] =

𝒪
(︁

log(𝑛)
𝑛

+ 1
𝑛

)︁
= 𝒪

(︁
log(𝑛)
𝑛

)︁
.■

The exact values of 𝑝𝑛1 , 𝑝𝑛2 , 𝑝
𝑛,𝑘
3 can be computed if we know the data generation

process, the true underlying extended tree, and 𝑝𝑚𝑖𝑛. The results and the convergence

hold for any 𝛿 > 𝑝𝑚𝑖𝑛 > 0, but the higher this 𝑝𝑚𝑖𝑛, the faster the convergence. A

good 𝑝𝑚𝑖𝑛 can be easily obtained with cross-validation. With the exact same method,

similar results can be obtained for the variance of the XSTrees estimator and for

how the “closeness" of the estimator to the true tree translates to in-sample and out-

of-sample prediction error. The XSTrees accurately evaluates the number of splits

and their average positions with high probability, while accounting for variability

and uncertainty in the data by introducing a standard deviation on these positions.

Thanks to its distributional nature, it also introduces a continuum in the predictions,

which are purely discrete for single decision trees.

Last but not least, even in the absence of assumptions (A1)-(A3), we propose an

alternative version of XSTrees, HXSTrees (Honest XSTrees, Algorithm 8) where splits

in different dimensions follow a certain structure and the training data is randomized.

We establish that the HXSTrees is asymptotically consistent even outside of (A1)-

(A3). HXSTrees has the property that for any test sample 𝑥, the tree distribution is

55

independent of 𝑥. This is ensured by splitting the data into two independent halfs:

one is used for tree generation, and the other is used for out-of-sample prediction. We

present the corresponding algorithm, the theorem and the proof for the HXSTrees in

§A.1 of the Appendix.

2.5 Computational Experiments

We test the XSTrees algorithm on (i) publicly available data, (ii) synthetic data and

(iii) real-world case studies. We show on both classification and regression tasks that

XSTrees significantly out-performs the state-of-art models in terms of out-of-sample

prediction accuracy, while being more robust to noise and requiring a relatively low

amount of data to train. We also argue that the XSTrees provides more interpretabil-

ity than alternative ensemble methods through several examples.

Remark 5 (Note on implementation) Our code for the XSTrees is open source,

and all the hyper-parameters used for these experiments can be found in §A.2 of the

Appendix. Also note that we have carefully implemented pruning strategies (e.g., by

setting a maximum depth, a minimum number of samples per split, or a minimum

number of samples per leaf for both the learning of the trees and the prediction, see

Appendix §A.2), and regularization heuristics (see §2.3.4) to avoid over-fitting.

First, we test the XSTrees algorithm on the UCI Publicly Available Datasets (see

[71]).

2.5.1 Classification Benchmark

We benchmark the algorithm against a Baseline Model (most frequent label in the

training data), Linear Models (LIN - [118]), Support Vector Machines (SVM - [148]),

K-Nearest Neighbors (KNN - [3]), Classification and Regression Trees (CART - [39]),

AdaBoost (ADA - [135]), Feed-Forward Neural Networks (FNN - [107]), LightGBM

(LGBM - [105]), Random Forest (RF - [40]), and Extreme Gradient Boosting Trees

(XGBoost - [49]) on 20 popular classification datasets from UCI Machine Learning

56

Public Repository. We do not benchmark the algorithm against Optimal Trees ([22])

because of (i) reproducibility, as the Optimal Tree implementation is a proprietary

software, and (ii) because the base learner for all the tree methods above is CART,

and can be itself replaced by an Optimal Tree for an apple-to-apple comparison.

These datasets were randomly chosen with the number of observations going from

100 to 20,000 and with number of features going from 3 to 1,000, including text,

categorical variables, integer variables and continuous variables. Categorical variables

are transformed to binary variables for which the XSTrees algorithm is identical, with

the exception that at most one split can exist on the corresponding dimension, and

it has to be at value 0.5. No data imputation is performed and missing rows are

removed, and all the algorithms are hyper-parameter tuned on each dataset (see §A.2

in the Appendix for all the details). 75% of the data is assigned to the training set.

Each test is repeated 5 times with a different random seed, and the following results

are the average of the out-of-sample accuracy (in terms of correctly classified test set

points) results for these tests (See Table 2.1 and Table 2.2 below for more details).

The standard deviation of these results can be found in §A.3 in the Appendix. We

also report the overall rank ordering of the XSTrees algorithm in comparison to the

other methods.

Dataset Baseline LIN SVM KNN CART ADA FNN LGBM RF XGB XST XST Rank
Abalone 0.166 0.278 0.293 0.271 0.266 0.252 0.289 0.240 0.289 0.288 0.301 1
Adult 0.763 0.802 0.757 0.803 0.807 0.864 0.795 0.874 0.863 0.873 0.865 3
Anneal 0.765 0.989 0.914 0.874 0.994 0.906 0.937 0.984 0.992 0.988 0.988 4.5
Car 0.695 0.935 0.984 0.921 0.942 0.900 0.978 0.977 0.954 0.977 0.969 5
Contraception 0.423 0.517 0.557 0.550 0.519 0.582 0.581 0.556 0.553 0.579 0.556 5.5
Credit Approval 0.548 0.851 0.652 0.741 0.737 0.843 0.854 0.833 0.868 0.859 0.863 2
Banknote Authentification 0.567 0.989 0.949 0.955 0.986 0.998 1.000 0.997 0.993 0.987 0.973 8
Haberman 0.733 0.752 0.717 0.761 0.739 0.734 0.742 0.713 0.752 0.722 0.728 8
Heart Disease 0.600 0.678 0.613 0.667 0.665 0.777 0.805 0.811 0.833 0.827 0.843 1
Congressional Vote 0.632 0.639 0.700 0.636 0.625 0.598 0.610 0.625 0.656 0.652 0.701 1
Iris 0.300 0.898 0.920 0.980 0.980 0.920 0.980 0.980 0.980 1.000 0.989 2
Chess 0.528 0.969 0.979 0.939 0.992 0.960 0.993 0.992 0.987 0.990 0.982 6
King Rook vs. King 0.164 0.328 0.551 0.649 0.718 0.647 0.622 0.713 0.691 0.881 0.886 1
Magic04 0.649 0.789 0.753 0.808 0.820 0.841 0.818 0.878 0.877 0.867 0.871 3
MONK-01 0.415 0.754 0.754 0.816 0.804 0.779 0.757 0.634 0.878 0.902 0.892 2
MONK-02 0.554 0.554 0.725 0.569 0.678 0.619 0.571 0.625 0.660 0.553 0.895 1
MONK-03 0.463 0.829 0.932 0.902 0.951 0.903 0.906 0.923 0.951 0.951 0.959 1
Part Failures 0.899 0.966 0.935 0.922 0.910 0.956 0.932 0.955 0.923 0.940 0.936 5
Sonar 0.551 0.783 0.810 0.826 0.753 0.816 0.840 0.840 0.826 0.811 0.820 5
Transfusion 0.754 0.766 0.733 0.754 0.744 0.755 0.733 0.758 0.758 0.754 0.755 4.5
Average 0.558 0.753 0.761 0.767 0.782 0.783 0.787 0.795 0.814 0.820 0.839 3.475
Median 0.560 0.786 0.754 0.805 0.779 0.829 0.812 0.837 0.866 0.870 0.879 3

Table 2.1: Mean Out-of-Sample Accuracy for the UCI Classification Datasets. In
bold, the top-performing algorithm for each row. Ranks of the XSTrees are reported
in the last column.

57

Dataset Baseline LIN SVM KNN CART ADA FNN LGBM RF XGB XST
Abalone 11 6 2 7 8 9 3.5 10 3.5 5 1
Adult 10 8 11 7 6 4 9 1 5 2 3
Anneal 11 3 8 10 1 9 7 6 2 4.5 4.5
Car 11 8 1 9 7 10 2 3.5 6 3.5 5
Contraception 11 10 4 8 9 1 2 5.5 7 3 5.5
Credit Approval 11 5 10 8 9 6 4 7 1 3 2
Banknote Authentification 11 5 10 9 7 2 1 3 4 6 8
Haberman 7 2 10 1 5 6 4 11 3 9 8
Heart Disease 11 7 10 8 9 6 5 4 2 3 1
Congressional Vote 7 5 2 6 8.5 11 10 8.5 3 4 1
Iris 11 10 8.5 5 5 8.5 5 5 5 1 2
Chess 11 8 7 10 2.5 9 1 2.5 5 4 6
King Rook vs. King 11 10 9 6 3 7 8 4 5 2 1
Magic04 11 9 10 8 6 5 7 1 2 4 3
MONK-01 11 8.5 8.5 4 5 6 7 10 3 1 2
MONK-02 9.5 9.5 2 8 3 6 7 5 4 11 1
MONK-03 11 10 5 9 2 8 7 6 3.5 3.5 1
Part Failures 11 1 6 9 10 2 7 3 8 4 5
Sonar 11 9 8 3 10 6 1.5 1.5 4 7 5
Transfusion 6.5 1 10.5 6.5 9 4.5 10.5 2.5 2.5 8 4.5
Average 10.25 6.75 7.125 7.075 6.25 6.3 5.425 5 3.925 4.425 3.475
Median 11 8 8.25 8 6.5 6 6 4.5 3.75 4 3

Table 2.2: Accuracy Rank for the UCI Classification Datasets. In bold, the top-
performing algorithm for each row. For consistency, in case of a draw, the average
rank is taken: for example, if two methods both achieve the 3rd best accuracy, their
rank is 3.5.

(a) Out-of-Sample Accuracy (b) Out-of-Sample Rank.

Figure 2-5: Boxplots for the Out-of-Sample Results (Accuracy and Rank) for the
Classification Benchmark.

The results can also be summarized in Figure 2-5 (for both accuracy and rank).

We make the following observations: the XSTrees algorithm takes the top spot (i.e. is

the best-performing method) on 30% of the datasets (6 out of 20), more than any other

method. The second best methods for this metric are LGBM and FNN who take the

top spot on 15% of the datasets (3 out of 20). Additionally, XSTrees has an average

of 0.839 out-of-sample accuracy, in front of XGB and RF with respectively 0.820

and 0.814. The 4th best method on average is the LGBM method, further behind

with 0.795 average out-of-sample accuracy. To account for the variability within

58

each dataset, we also look at the average rank across all tasks. XSTrees achieves on

average a rank of 3.475 against the 10 other benchmark methods. The second most

consistent method is the RF method with 3.925 average rank and the XGB method

with 4.425 average rank. Similarly, to account for outliers in the results, we repeat

this comparison for the median out-of-sample accuracy and the median rank, and

obtain very similar conclusions, with the XSTrees ranking first on both metrics, with

a median accuracy of 0.879 and a median rank of 3. Last but not least, XSTrees also

has the lowest standard deviation in terms of out-of-sample accuracy (0.169) and the

smallest interquantile range, i.e. difference between the 75% percentile and the 25%

percentile in the boxplot for the accuracy (0.158), proving the wide applicability of

the method. However, it only ranks 3rd in terms of standard deviation of the rank

(2.342), behind the baseline (1.526) and the RF algorithm (1.771), with a relatively

high interquantile range for the rank (4.0), but it is the only method where rank 1 is

below the 25% percentile. We also highlight one of limitations of the XSTrees method

through the Banknote Authentication dataset, where XSTrees achieves its worst rank

(8th out of 11), suggesting that the distributional component of the XSTrees is not

enough to bridge the gap between tree-based methods and Neural Networks (FNN

ranks 1st for this dataset) for computer vision applications. These findings, as well

as the full summary of the benchmark can be found in Table 2.3.

Metric Baseline LIN SVM KNN CART ADA FNN LGBM RF XGB XST
Number of Top Spots 0 (11) 1 (7.5) 1 (7.5) 1 (7.5) 1 (7.5) 1 (7.5) 3 (2.5) 3 (2.5) 1 (7.5) 2 (4) 6 (1)
Average Accuracy 0.558 (11) 0.753 (10) 0.761 (9) 0.767 (8) 0.782 (7) 0.783 (6) 0.787 (5) 0.795 (4) 0.814 (3) 0.82 (2) 0.839 (1)
Average Rank 10.25 (11) 6.75 (8) 7.125 (10) 7.075 (9) 6.25 (6) 6.3 (7) 5.425 (5) 5.0 (4) 3.925 (2) 4.425 (3) 3.475 (1)
Median Accuracy 0.56 (11) 0.786 (8) 0.754 (10) 0.805 (7) 0.779 (9) 0.829 (5) 0.812 (6) 0.837 (4) 0.866 (3) 0.87 (2) 0.879 (1)
Median Rank 11.0 (11) 8.0 (8) 8.25 (10) 8.0 (8) 6.5 (7) 6.0 (5) 6.0 (5) 4.5 (4) 3.75 (2) 4.0 (3) 3.0 (1)
Standard Deviation of Accuracy 0.196 (10) 0.205 (11) 0.176 (3.5) 0.173 (2) 0.183 (7) 0.176 (3.5) 0.182 (6) 0.193 (9) 0.178 (5) 0.184 (8) 0.169 (1)
Interquantile Range of Accuracy 0.251 (10) 0.239 (8) 0.235 (6) 0.245 (9) 0.236 (7) 0.192 (2) 0.228 (5) 0.267 (11) 0.215 (4) 0.212 (3) 0.158 (1)
Standard Deviation of Ranks 1.526 (1) 3.08 (10) 3.312 (11) 2.364 (4) 2.84 (7) 2.731 (6) 2.966 (8) 3.022 (9) 1.772 (2) 2.617 (5) 2.342 (3)
Interquantile Range of Ranks 0.25 (1) 4.125 (9) 5.25 (11) 3.0 (4) 4.5 (10) 3.75 (6) 3.875 (7) 3.375 (5) 2.125 (2) 2.25 (3) 4.0 (8)

Table 2.3: Summary of the UCI Classification Benchmarks. Between parentheses,
how each method ranks for the corresponding metric. In bold, the top-performing
algorithm for each metric.

2.5.2 Regression Benchmark

We perform a similar benchmark and analysis on regression tasks on 5 popular

datasets from the same UCI Machine Learning Public Repository. We report the

59

results in terms of out-of-sample coefficient of determination (R2), and in terms of

ranks in Table A.2 and Table A.3. Note that we take as a baseline model the average

value of the target variable in the training data, which means the R2 of the baseline

model is approximately 0, so we ignore it in the rank comparison.

(a) Out-of-Sample R2 (b) Out-of-Sample Rank.

Figure 2-6: Boxplots for the Out-of-Sample Results (R2 and Rank) for the Regression
Benchmark.

We further summarize these results in Figure 2-6. We find extremely similar

results to the classification benchmark, with the XSTrees having the highest average

out-of-sample R2 (0.643), the highest median out-of-sample R2 (0.655), the highest

average rank (2.2) and the highest median rank (2, placed equal first with RF). It is

also very consistent, with a standard deviation of 1.303 for ranks, but a relatively high

standard deviation for R2 (0.290), coming mainly from the wide difference between

the considered regression tasks. The full analysis can be found in Table 2.4.

Metric LIN SVM KNN CART ADA FNN LGBM RF XGB XST
Number of Top Spots 0 (8) 1 (3) 0 (8) 0 (8) 0 (8) 0 (8) 1 (3) 0 (8) 1 (3) 2 (1)
Average R2 0.348 (10) 0.408 (8) 0.369 (9) 0.518 (6) 0.542 (5) 0.495 (7) 0.55 (4) 0.63 (2) 0.611 (3) 0.643 (1)
Average Rank 7.0 (8) 6.2 (6.5) 9.4 (10) 7.4 (9) 6.0 (5) 6.2 (6.5) 4.4 (4) 2.4 (2) 3.8 (3) 2.2 (1)
Median R2 0.359 (9) 0.329 (10) 0.445 (8) 0.525 (6) 0.488 (7) 0.53 (5) 0.571 (4) 0.626 (2) 0.583 (3) 0.654 (1)
Median Rank 6.0 (5.5) 8.0 (8.5) 10.0 (10) 8.0 (8.5) 6.0 (5.5) 7.0 (7) 4.0 (3) 2.0 (1.5) 5.0 (4) 2.0 (1.5)
Standard Deviation of R2 0.212 (3) 0.335 (9) 0.249 (4) 0.347 (10) 0.284 (6) 0.196 (1) 0.209 (2) 0.284 (5) 0.323 (8) 0.291 (7)
Interquantile Range of R2 0.271 (3) 0.472 (8) 0.333 (4) 0.573 (10) 0.357 (5) 0.257 (2) 0.211 (1) 0.45 (7) 0.56 (9) 0.421 (6)
Standard Deviation of Ranks 1.871 (5) 3.633 (10) 0.894 (2) 2.302 (8) 2.121 (6) 1.789 (4) 2.702 (9) 0.548 (1) 2.168 (7) 1.304 (3)
Interquantile Range of Ranks 3.0 (6.5) 4.0 (9.5) 1.0 (2.5) 4.0 (9.5) 3.0 (6.5) 0.0 (1) 3.0 (6.5) 1.0 (2.5) 3.0 (6.5) 2.0 (4)

Table 2.4: Summary of the UCI Regression Benchmarks. Between parentheses, how
each method ranks for the corresponding metric. In bold, the top-performing algo-
rithm for each metric.

In conclusion, XSTreees scale to reasonably-sized datasets, can be applied con-

sistently to a very wide set of classification and regression tasks, and significantly

outperform all other tested methods (between 2.5% and 50% higher average accuracy

60

for classification, and between 2% and 85% higher average R2 for regression across

all 25 supervised tasks).

2.6 Synthetic Data

The goal of this experiment is to evaluate how much data is needed to get a good

level of performance for the XSTrees method compared to other tree-based methods,

as well as investigate the method’s sensitivity to noise.

2.6.1 Experimental Set-Up

We consider the following experimental set-up: let 𝑛 ∈ N be a positive integer de-

noting the number of observations, 𝑝 ∈ N, the number of features, and 𝜖0 ∈ R+ a

parameter controlling for the noise. For 𝑖 ∈ [𝑛] denoting one observation, let 𝑋𝑖,𝑗

denote the feature 𝑗 of observation 𝑖, be drawn uniformly from [−1, 1] and 𝜖𝑖,𝑗 the

noise on feature 𝑗 of observation 𝑖, be drawn from 𝒩 (0, 𝜖). This is unobserved in the

data. Additionally, let 𝑦𝑖 = 1

(︃
𝑝∏︀
𝑗=1

(𝑋𝑖,𝑗 + 𝜖𝑖,𝑗) > 0

)︃
denote the binary outcome for

observation 𝑖. This is the target variable for the considered classification task.

We want to learn for any given vector 𝑥 ∈ [−1, 1]𝑝 the probability that 𝑥 is

labeled 0 or 1 from this data. We compare XSTrees to the other two best tree-

based methods from the benchmark: XGB and RF, which are arguably the most

popular tree ensemble methods, as well as CART, which is the base learner for all

three methods. We vary the size of the training data (𝑛) and the magnitude of the

unobserved noise (𝜖). Simulations are repeated 30 times for each set of parameters.

2.6.2 Results

We get the results for 𝑝 = 4 in Figure 2-7. We notice that XSTrees and XGB signifi-

cantly outperform the other methods in the asymptotic regime. For small 𝑛, XSTrees

has an edge versus its competitors, achieving 4% more out-of-sample accuracy for

the smallest 𝑛 (𝑛 = 100) than the second best method in the low-data regime, RF.

61

In Figure 2-7(b), we also notice that XSTrees outperforms all other methods when 𝜖

increases. It has similar performances to XGB and RF for 𝜖 = 0, but it outperforms

them by a significant margin for 𝜖 ≥ 0.4.

(a) Out-of-Sample accuracy vs n. (b) Out-of-Sample accuracy vs 𝜖.

Figure 2-7: Out-of-Sample results for the two synthetic experiments. XSTrees outper-
forms other benchmarks in the limited data regime and when the outcome variance
is high.

In conclusion, this simulation study shows that XSTrees needs overall less data to

perform well and are less sensitive to noise than alternative tree-based methods.

Remark 6 Despite having in this case exponentially (in the number of dimensions)

many leaves, the aggregation procedure of the XSTrees allows the algorithm to perform

very well, since the number of splits that are being learned are in the same order

of magnitude as 𝑝, and we have with the results of §2.4 that the fast convergence

to the true position of these splits is ensured. It also confirms the results of §2.5,

where the XSTrees outperformed its competitors in high-dimensional examples (more

than 1,000 features). This is partly due to the fact that XSTrees focus on learning

splits (for which the procedure scales linearly) rather than learning the leaves directly

(for which the procedure scales exponentially). When it comes to correlation between

features, the XSTrees are also particularly well-suited, because (i) the base learner,

here CART, already does feature selection, and (ii) if splits happen on highly-correlated

features, this will create redundant regions, but the predictions are ultimately likely to

be correct in each of these regions separately, only impacting computational complexity

and interpretability, but not predictive power.

62

2.6.3 Visualizing XSTrees

The resulting XSTrees is fully characterized by the distribution on the number of

splits in each dimension, and for each of these splits, the distribution of the position

of the split. If 𝑚𝑗, 𝑗 ∈ [𝑝] is the maximum number of splits in dimension 𝑗, then we

can fully represent the distribution on the tree space by
𝑝∑︀
𝑗=1

𝑚𝑗 splits 𝑐 characterized

by (i) the dimension of the split 𝑐(𝑑), (ii) the normal distribution of its position 𝑐(𝑝),

and (iii) the probability of the split existing 𝑝 directly given by the distribution on

the number of splits in 𝑐(𝑑), resulting in (iv) a prediction for each point 𝑃 (𝑦 = 1).

We illustrate the trained XSTree on the synthetic example with 𝑝 = 4 in Figure 2-8.

Figure 2-8: Representation of the XSTrees trained on the synthetic example. There
are at most 4 possible splits, at most 1 per dimension. These splits are represented
by descending order in terms of probability of existence, e.g. the first split is for
dimension 𝑐(𝑑) = 1, in position 𝑐(𝑝) normally distributed around -0.04 with standard
deviation 0.09, and has 98% probability of existing when sampling the individual
extended trees.

Example 4 An example of sample from this tree distribution, and how a new ob-

servation 𝑥 ∈ R4 is treated within this sample, is shown in Figure 2-9. Remember

that these samples are what allow us to compute 𝑃 (𝑦 = 1) for 𝑥 with Monte-Carlo

simulation.

63

Figure 2-9: An extended tree sampled from the trained XSTrees in Figure 2-8. It
behaves exactly the same as a regular decision tree, but has the significant advantage
of being represented in compact form due to its symmetry (every depth of the tree
has the same split, hence the representation above). In this example, the new point
𝑥 satisfies 𝑥[1] = 0.4 > −0.11, 𝑥[2] = −0.9 ≤ −0.01, 𝑥[3] = 0.1 > −0.09 and
𝑥[4] = 0.5 > 0.16. Hence, 𝑥 is assigned to the leaf of the sampled tree satisfying the
same constraints. This leaf contains 102 training observations, 88% of them being
labeled 0, so we predict y = 0.

This XSTrees framework is one of the most useful interpretations of tree ensembles

which allows one to generate interpretations similar to a single decision tree, while

maintaining predictive performance levels of gradient boosted and bagged ensembles.

We provide a visualization tool with our open-source code.

Remark 7 Note in the case of very deep XSTrees, we can also “trim" the tree distri-

bution by removing the possible splits that have a probability of existing smaller than

some threshold. It allows us to get a low-depth approximation of the XSTrees. We

can even compute, thanks to the distributional nature of the XSTrees, probabilistic

metrics to quantify how good this approximation is, resulting in a high-quality trade-

off between interpretability and performance. For example, given numbers of splits on

each dimension, and given ranges for the positions of these splits, we can compute

the probability that an extended tree within these ranges is sampled from a particular

XSTrees distribution.

Also note that we can compute the mode of this distribution, i.e. the most prob-

64

able tree in the XSTrees distribution. This is done by keeping the splits that have

a probability of existing above 50%, and setting their positions to the mean of the

corresponding normal distribution. For example, the mode tree of the XSTrees in

Figure 2-8 is represented in Figure 2-10.

Figure 2-10: Mode of the XSTrees for the synthetic example, as shown in Figure 2-8.
It is obtained by keeping only the splits with a probability of existing above 50%, and
by taking the mean (which is also the mode) of the corresponding normal distribution
as the position of the split. It is the most probable tree given the XSTrees distribution
and behaves exactly the same as a regular decision tree, but has the advantage of
being represented in compact form due to its symmetry.

2-dimension example: we can further visualize the trained XSTrees on 2 or

3 dimensions at the time. Even if the problem is higher dimension, that allows us

to capture the interactions between two dimensions in particular and extract more

insight from the XSTrees distribution.

Example 5 In the previous example for 𝑝 = 2, we obtain Figure 2-11. We can see

that XSTrees captures both the true positions of the splits around 0, and two sets

of uncertainties: (i) the uncertainty from the lack of data as observed in the split

on dimension 1 in Figure 2-11(a) with high standard deviation (and large confidence

interval), and (ii) the uncertainty from the error 𝜖 in the data itself as the width of the

65

confidence intervals covers some of the misclassified points in Figure 2-11(b). This

is one of the reasons the XSTrees performs so well, as it introduces continuity and

robustness in a fundamentally discrete tree structure.

(a) Representation of the entire XSTrees. (b) Representation of a leaf node.

Figure 2-11: 2-d Representation of XSTrees splits and their 95% confidence interval.

2.7 Real-Life Case Study for an Online Retailer

In addition to testing the method on synthetic as well as publicly available data, we

also investigate the performance of our method with an industry partner (a leading

American e-commerce company that sells home goods) on sales forecasting, which is

key to their day-to-day operations. We periodically (in this case, bi-weekly) predict

the sales of each SKU based on time-series data and product features. The goal is to

approximate the currently used forecasting algorithm — a proprietary concatenation

of several XGBoost models — with an XSTree.

2.7.1 Experimental Set-Up

Forecasting sales is critical in managing cash flow and purchasing, but also in planning

the best way to take advantages of future changes and monitoring the performances

of both the SKUs individually and the company as a whole. This dataset consists of

1 million observations and 200 features, including:

66

• Product Features: e.g. price, category, color, material, quality, and user

ratings.

• Seasonality Features: e.g. day of the month, month, big weekends, and

events.

• Time-Series Features: e.g. past sales and past changes in price.

Our target variable 𝑦, is the 2-week ahead forecast used by our industry partner.

The goal is to accurately approximate this forecast with our model that is both more

stable and more interpretable. By splitting the dataset into training (75% of the

data) and testing (the remaining 25%) in chronological order and not at random, and

using the same hyper-parameter tuning and training procedure described in Section

§A.2.

2.7.2 Results

We obtain an in-sample and an out-of-sample accuracy both equal to 99.6%, with

an out-of-sample MAPE (Mean Absolute Percentage Error) of 0.2%. We create a

visualization of the trained XSTrees distribution. For confidentiality purposes, the

displayed values are normalized. We obtain the compact representation of the trained

XSTrees and of its mode in Figure 2-12.

Remark 8 Note that for binary features, the position of a potential split is always

0.5, and the uncertainty is only on whether the split occurs or not.

By evaluating 𝑦 for each of the 16 leaf nodes of the mode tree, we can draw the

following observations: low-price popular items will sell well regardless of the season,

contrary to high-cost popular items which sell more in big weekends and promotional

events. We also observe that price is not as important of an indicator of future sales

for unpopular items as it is for popular ones. Finally, low-price medium-popularity

items benefits more than their more popular counterparts from big weekends and

promotional events.

67

(a) XSTrees trained on the Choice Modeling Data. (b) Mode tree.

Figure 2-12: Compact representation of the trained XSTrees distribution on the On-
line Retail Case Study, and mode of this distribution.

In conclusion, our XSTrees can nearly perfectly replicate the industry standards in

terms of forecasting accuracy, while giving important business insights to our partner.

2.8 Blood Transfusion Case Study

We take the last dataset from the computational experiment (Blood Transfusion

Service Center Dataset ([71]) in §2.5. The dataset contains 748 observations, each

one corresponding to a particular blood donor, with data on: Recency (months since

last donation), Frequency (total number of donations), Monetary (total blood donated

in c.c.) and Time (months since first donation). The objective is to predict whether

he/she is going to donate blood on a particular visit. Our model achieves an out-of-

sample accuracy of (75.5%) (See Table 2.1 and Table 2.2).

We claim in this section that in addition to the main purpose of XSTrees — its

state-of-the-art accuracy —, we can also extract useful takeaways from the inter-

pretability of the model. The other two top-performing ensemble methods overall

68

(XGB and RF) provide little insight on why predictions are made and on the impor-

tant features that capture the desired behavior, with the exception of some general

black-box interpreters such as LIME ([136]). We plot the XSTrees trained for the

Blood Transfusion Case Study problem in Figure 2-13(a). Figure 2-13(a) shows that

the two most important features are Recency and Frequency, with the two main splits

on these two dimensions occurring on average at Recency of 11.680 (did the patient

donate blood or not during the last 11.680 months, i.e. in the last year approxi-

mately), and Frequency of 5.71 (did the patient donate less or more than 6 times

in total). These splits have both a probability of occurring in sampled trees above

80%. We see that there are two other possible splits of occurring in this XSTrees

distribution, both on Monetary, but both with a very low probability of occurring

(10.4% and 3.1% respectively), and a high standard deviation. These characteristics

are indicative of a feature of low importance, and a high degree of uncertainty on

these splits. This can be explained by the fact that Monetary is highly correlated

with Frequency, so these are more about second-order correction terms than critical

splits in the problem. This results in the simple mode tree in Figure 2-13(b).

(a) XSTrees trained on the Blood Transfusion Data. (b) Mode tree.

Figure 2-13: Compact representation of the trained XSTrees distribution on the Blood
Transfusion Data, and mode of this distribution.

We plot these 2 main splits in a 2 dimensional graph in Figure 2-14(a) and observe

69

that according to our trained XSTrees, people who did not give blood in the last 12

months are unlikely to give blood in the next visit regardless of the frequency. While

if they have donated blood in the last 12 months, then if their Frequency is above

6 times, we will predict that they will give blood again with high probability. This

probability decreases to about 1
3

if their frequency is below the given threshold. The

XSTrees method also captures the fact that there is a higher error rate (uncertainty)

close to the position of the splits, within the confidence intervals, and adjusts the

predicted probabilities accordingly. Figure 2-14(b) on the other hand, further shows

that the information from Time and Frequency only is not enough to understand

the prediction of the XSTrees, although a trend on the importance of Frequency is

already appearing.

Figure 2-14: The splits of the XSTrees for Recency and Frequency (a) and Time and
Frenquency (b)

Purple points denote people who donated blood and yellow points denote people
who did not.

This example illustrates how we can achieve high accuracy, with a powerful en-

semble model, while still being able to get some explainability on how the predictions

are made.

2.9 Conclusions

The theoretical results — both asymptotic and on finite samples — and the com-

putational experiments — on publicly available datasets, on synthetic data, and on

real-world case studies —, provide strong evidence that XSTrees is extremely general,

70

scalable, and competitive in terms of accuracy with state-of-the-art predictive model

(between 2.5% and 50% higher average accuracy for classification, and between 2%

and 85% higher average R2 for regression). It also provides a framework to explain

these predictions in an interpretable way. Finally, its intrinsic distributional structure

allows it to perform well when only limited training data is available as well as in a

noisy environment.

71

72

Chapter 3

Ancillary Services in Targeted

Advertising

3.1 Introduction

The retail industry has experienced a huge growth in terms of its online presence in the

last decade. The online sector alone impacts over $1.5 trillion of total retail sales just

in the United States. In fact, according to Forrester Research (2019) eCommerce will

drive two thirds of retail growth by 2023. Not only have many retailers shifted to have

a larger presence in the online space but new ones keep emerging as fully online retail-

ers. This growth has further speeded-up recently due to COVID-19. This surge has

allowed retailers to have access to a lot of data about their customers. This increase in

availability of data has also in fact led to new business ideas in the last decade, to pro-

vide personalized recommendations and services to consumers. Apart from Amazon,

other examples of online retailers who offer personalized recommendations include

Stichfix (a personalized clothing styling service), Rent the Runway (a personalized

rental service of designer clothing) and Wayfair (an online furniture retailer) among

many others. As demonstrated by these companies, most businesses with an online

presence nowadays utilize recommendation systems. In fact, these industry trends

in the online sector have led to more sophisticated product recommendation systems

which have been developed in order to provide the necessary competitive edge to on-

73

line sellers, increasing profits on the order of millions.Similarly to the retail practice,

academics have also been addressing the problem of targeted product offerings in the

recent years both in the marketing literature and the operations literature.

The next step to personalized product offerings that has emerged in the recent

years, has been for online retailers to provide additional recommendations of ancillary

services at the time of purchase. Pioneers in this idea have been businesses in the

travel and hospitality industries. They provide recommendations to the traveler by

offering ancillary services at the time of purchase. For example, airlines offer supple-

mentary products to improve the traveler’s experience before, during and after their

ticketed trip such as VIP lounge access, priority boarding, seat upgrades, in-flight wifi.

These services are offered to the traveler throughout the online purchase process. Our

industry partner also offers to the consumer at the time of purchase the option to pur-

chase an additional service. Examples of such a service include subscribing to a credit

card and/or ordering assembly services for the product the customer is buying. These

ancillary services are also personalized for each individual consumer. As a result, a

key question to address is which ancillary service(s) to provide to which customer at

the time of purchase with the goal to get the customer to sign up for this ancillary

service. This is the question we aim to answer in this chapter and demonstrate its

value in collaboration with our industry partner.

To answer this question there are two important associated issues to address: (i)

determine what personalized services to offer so that they have the highest propensity

for the customer to buy these additional services offered, (ii) understand what is the

long term incremental revenue that will be associated with these services if offered to

the customer at the time of purchase. This chapter addresses these two issues.

Industry Collaborator

In this work we collaborated with one of the largest online furniture and home goods

retailers in the world. Their net revenue was over $9 billion solely in 2019. The

problem we discussed above is one of the central problems faced by retailers be-

cause apart from providing their customers with millions of products to choose from,

74

our collaborator also offers many accompanying services aimed at alleviating home-

shopping-experience anxieties. Our collaborator’s service offerings span the areas

of home services, professional services, design, and financing. Examples of individ-

ual services include Assembly, Warranty, Private Label Credit Card (PLCC), and

Business-to-Business (B2B).

Our collaborator’s services are displayed to customers on product display pages

(PDPs), add-to-cart pages (ATCs), and checkout pages, as well as through intermedi-

ary pop-up screens or sidebars. This is in fact the case with many retailers. Presenting

irrelevant services leads to increased cognitive burden on the customer navigating the

page and increased overhead on page load times, harming the customer experience

and possibly leading to lower conversion rates. However, if a retailer does not display

the right services which customers are likely to sign-up for, then the retailer stands

to lose a lot of revenue. Therefore, showing the right services to the right customers

is an important question to answer that applies to most retailers beyond just our

collaborator. In fact, we estimated that an average retailer leaves close to 4 % of

additional revenue on the table if they do not address these issues. This in fact can

translate to about $650-800 million in increased revenue.

When customers purchase or sign-up for these services, our collaborator generates

immediate profit through revenue or cost savings. For example, in the case of the

Warranty service, our collaborator collects additional revenue from the direct cost of

the protection service the customer chooses, whereas in the case of the PLCC service,

our collaborator benefits from cost savings on merchant fees. Beyond the immediate

term, if customer experiences with these services foster customer loyalty and increase

customers’ likelihood of repeat purchases, the services can generate further revenue

uplift for our collaborator. This longer term uplift is referred to as the “halo-effect,”

or incremental value, of a service. The sum of the immediate revenue generated and

the incremental value of a service experience, minus the cost of service fulfilment,

equals the net present value (NPV) of a service. The NPV of a service, combined

with the individual customer’s propensity to purchase that service should drive our

collaborator’s decision on what ancillary services to offer to the customer.

75

Contributions

This chapter aims to answer the following questions: For each customer session, which

service(s) should be presented during the online shopping experience in order to maxi-

mize the customer’s propensity to buy this service? In addition, how can we maximize

the net present value (NPV) of the service for this customer? It is important to note

that our collaborator is not the only retailer who has a similar business setting and

for which this question is central to answer. In fact, one would argue that this is the

central question to address for every retailer who has a presence in the online space.

In order to address this question, we (i) predict a customer’s probability (propensity)

of signing up for a service, (ii) estimate the NPV of the service(s) the retailer offers

at the individual customer level, (iii) determine the optimal combination of services

to present to a customer, based on the customer’s estimated NPV of engaging with a

service, as well as his/her likelihood of signing up for a service at the product page.

Our solution strategies are built with the aim of providing interpretable insights to

managers and stakeholders so that they can directly aid the decision making process.

In doing so, we have developed methods that yield good estimation accuracy while

providing insights into questions such as: why the method may suggest that a particular

customer segment has an especially high propensity of signing up for a service and

what are the key factors that drive this fact?

The chapter brings together several methods from statistics, machine learning

and optimization in a holistic way but also develops a new methodology. We not

only show how existing literature regarding the estimation of heterogeneous treat-

ment effects can play an important role in this setting but also develop a new method

for personalized response modeling, to devise a scalable, holistic framework that can

have a considerable impact in the retail space (well beyond the question we are asking

and well beyond our industry collaborator). Finally, we propose a holistic prescrip-

tive framework that combines these estimates to recommend ancillary services to

customers.

In what follows we discuss what we consider to be the main contributions of this

76

chapter.

1. Predictive Cluster-While-Classify method: One of the key goals of this

work has been to determine customer sign-up propensities as a function of

what services a retailer decides to show to its customers at a personalized level.

A possible approach to accomplish this could be to apply a Cluster-Then-

Predict method, that is, first apply a clustering method (e.g., K-means) for

customer segmentation, and then apply a machine learning method (e.g., Ran-

dom Forests) for the response modeling within each of the customer segments

obtained. Unfortunately, this approach has one main drawback: while the cus-

tomers in different segments may differ in terms of attributes (for example, age,

income, and historical spending), there is no guarantee that the customers also

differ in their sign-up behavior and propensities. Motivated by this limitation,

we introduce a novel Cluster-While-Classify (CWC) method that performs joint

clustering and classification. In fact, the Cluster-While-Classify method applies

to general settings (well beyond retail) involving classification problems where

there are subgroups in the data that exhibit different underlying behaviors. An

important consideration when designing this method has been interpretability.

As a result, we utilize a decision tree approach that allows a post-hoc inter-

pretability. This interpretability allowed us to obtain stakeholder buy in so

that service owners can understand the personalized recommendations for their

customers. It is important to note that this method is general and applies to

far more general settings than retail.

2. Illustrate how this new method allows a retailer to estimate the

propensity of a customer to buy a product or service offered by the

retailer: Although as discussed the method introduced in this chapter is gen-

eral, we illustrate how it can help a retailer understand the probability of a

customer to buy a service(s) and determine the key factors that can influence

this decision. In our computations on our collaborator’s data we find that CWC

achieves 74% out-of-sample accuracy over 4 possible outcomes and 7 different

77

combinations of services for the propensity prediction. This result outperforms

other popular machine learning such as random forests.

3. Interpretable causal modeling of the long term valuation of an an-

cillary service: A key objective of a retailer when showing a service to a

customer, is to determine the long-term incremental value (NPV) of the ser-

vice. We accomplish this through an interpretable causal model. To accomplish

this goal, we leverage ideas from machine learning namely, causal forests and

double machine learning. We are perhaps the first to address this NPV value

estimation.

4. Service Offering Optimization to a Customer: Using the causal modeling

and the Cluster-While-Classify method, we subsequently introduce an efficient

optimization formulation that allows a retailer to personalize its service offerings

to its customers and improve customer experience. We discuss the optimization

formulation that maximizes not only the propensity to buy a service but also the

NPV of the service as well as balances out the associated costs. Furthermore,

we introduce a Linear Programming based iterative algorithm for solving this

formulation. We show this algorithm determines the “right" service for the

“right" customer efficiently.

5. Approach effectiveness on a large e-commerce retailer: We perform

a study using our collaborator’s data in order to establish the efficiency and

interpretability of the ideas and methods introduced in this chapter. This allows

us to show how the approach introduced in this chapter, gives our collaborator

the capability to personalize their service offerings and improve the customer

experience with a 2.5-3.5% revenue uplift. This uplift in turn translates to

$80-100 million increase in revenue and $15-20 million increase in profits.

The results of this chapter will not only help retailers determine what services

to display to which customer(s), it will also provide an understanding of how the

NPV of a service varies across different customers, and help retailers make better-

informed strategic business decisions about which services to prioritize, and as a result,

78

improve their service-specific marketing efforts. Furthermore, answering this question

will help the retailer streamline the customer shopping experience through reduced

page load times, fewer distractions, and increased personalization. By improving the

shopping experience, the retailer can reap additional benefits with respect to customer

retention, loyalty, and lifetime value.

3.2 Relevant Literature

This chapter explores a number of key questions facing online retailers seeking to

harness the power of their clickstream data. In particular, we investigate the inter-

section of personalized recommendations and long-term incrementality, with a focus

on interpretability. In this section, we discuss bodies of literature that relate to our

work and we highlight how our contributions differ from, or build upon, these prior

efforts.

To begin, we point out that aspects of our work relate to the study of targeted

advertisement and personalization in ecommerce, both of which have been studied

extensively in the operations management and marketing literature. With respect to

targeted advertisement, areas of exploration with similarities to this chapter include

how to best use clickstream data to meaningfully segment customers and how to

efficiently personalize ad-serving decisions. A key component of successful targeted

advertisements is having an understanding of how different types of customers re-

spond to advertisement display decisions. [45] define a customer’s utility function for

soliciting information from a website and introduce a model to predict advertising

click response using clickstream data gathered at the individual customer level, not-

ing that segmenting customers improves the predictive ability of click response and

identifies differences in response coefficients. Their segmentation is predetermined

based on information regarding frequency of visits to the website being studied and,

even with this simplistic approach, they find that multiple segment analysis predicts

better than single segment analysis. In aiming to discover differentiated response to

display decisions, our work also utilizes multiple segment analysis; however, we aim

79

to discover customer segments through a data-driven process, and we introduce the

Cluster-While-Classify (CWC) algorithm for this purpose.

Another method with the same aim as CWC is the renowned Latent Class Anal-

ysis (LCA, [104]), which tries to discover underlying latent clusters in the data, and

fit different response functions inside each of these clusters. The LCA often uses the

Expectation-Maximization algorithm to find a solution, and while both the CWC and

LCA based methods in principle use an iterative scheme to estimate model parame-

ters, there are several core differences: (i) in the standard LCA (see [104] and [159]),

the response function that is fitted within each latent class is a logistic regression.

The CWC method instead supports any classification method, from logistic models

to decision trees to neural networks. The iterative approach in CWC ensures that

these methods remain tractable. In fact, contrary to LCA, the fitting process of the

response function in CWC remains in the same complexity class as one-shot fitting

the method on the entire data. (ii) assumptions made by these two methods on the

input data are different. While neither LCA nor CWC assume any assumptions re-

lated to linearity or homogeneity, LCA often requires the observed class-related data

to be categorical or ordinal ([127]), which CWC does not. The most popular LCA

implementations (see for example [112]) enforce this assumption, breaking even fur-

ther from the CWC approach. (iii) Last but not least, even on the same type of data

(discrete), with the same class of response functions (logistic), the two approaches

lead to different results. The CWC approach starts from a specific class assignment,

which can be random or a warm start, driven by data or subject matter expertise,

and converges towards a local minimum of the corresponding optimization problem.

This optimization problem may have a different objective function from that of the

EM approach, a different set of constraints on the classes, which LCA does not sup-

port, and depends on the starting class assignment. This leads to a different optimal

solution from that of LCA. This is illustrated in both the real-world experiment and

the synthetic benchmark (See §3.5), which shows that CWC, not only is different,

but significantly outperforms the LCA approach.

Given the need to personalize offerings in real-time, another question being ad-

80

dressed in targeted advertisement literature is efficiency. Efficiency and scalability

are key considerations in the display advertising framework presented by [44], which

utilizes a simple machine learning framework, namely logistic regression, for model-

ing response predictions in display advertising and demonstrates that simple meth-

ods could outperform the then state-of-the-art models used in display advertising

[2]. [63] present an algorithm to make personalized ad-serving decisions within mil-

liseconds, using regularized logistic regression models to predict the probability of a

revenue-generating user action and subsequently calculating the expected profit from

displaying each ad to make an allocation decision. More recently, [10] propose a joint

clustering and estimation framework for predicting future sales of new products and

[5] use a tree-based approach to jointly estimate distinct market segments along with

customer response modeling. Nevertheless, as is the case in this chapter, most tar-

geted advertisement studies do not place emphasis on long-term incremental revenue

in the decision making process. Our work aims to address problems of efficiency that

arise in the face of decision making in an online setting, but also to incorporate not

only immediate but also long-term revenue generation in the display decision. In [54],

the authors note that improving personalization and reducing the intrusiveness of ad-

vertising messages can maximize marketing efficiencies, improve customer retention,

and increase a firm’s return on investment. [100] consider how to optimally choose the

composition of the set of items offered to a customer by maximizing total sales over

a given planning horizon. Although this work, like ours, aims to add to the body of

research on net present value of long-term cash flows from a customer, [100] are more

interested in learning a customer’s preferences from several website sessions, whereas

we are focused on making single session decisions based on estimates of long-term

revenue that can be obtained from previous session data.

Causal relationships between online targeting decisions and revenue have seldom

been explored in the literature. Recently, [9] used transactional data to estimate

causal customer-to-customer trend effects in developing a personalized promotion

tool. Through regularized least squares regression and instrumental variable methods

they determine customer trend probability estimates, and then formulate a non-linear

81

mixed-integer optimization model for dynamic promotion target to maximize total

expected revenue. While [9] focuses on the causal effect that one customer’s purchase

decision has on another, our goal in this chapter is not to investigate customer-to-

customer interactions but rather instead we concentrate on the causal effect of a

customer’s engagement with a product or service on long-term revenue. Addition-

ally, since in this chapter we model the long term causal impact of a service on

the customer’s purchase behavior through the estimation of the Net Present Value

(NPV), we compare our methods to the Customer Lifetime Value (CLV) methods,

which are widely used in the marketing literature. The simplest heuristic method

to estimate CLV is to estimate three quantities - the average customer lifetime, the

average customer revenue and the average customer interpurchase time - and predict

future value based on these quantities alone. While simple, this approach requires

fully observing the customer lifetime, and suffers from the limitation of not being

able to capture customer heterogeneity. Another well-established method in the CLV

literature is the NBD-Pareto method, initially developed in [139]. In this original

model, a Pareto distribution timing model is used for modelling customer lifetime

(time to customer dropout / defection is exponentially distributed with heterogeneity

determined by a gamma distribution), while a negative binomial model is imposed

on the number of transactions (number of transactions is Poisson distributed with

heterogeneity determined by a gamma distribution). [140] extend the initial model

to incorporate the dollar value of transactions rather than just modeling the number

of transactions, and apply it to an industrial purchase use case. [78] propose an alter-

native NBD-BG model, which differs from the NBD-Pareto model in how they model

customer lifetime. Instead of imposing an exponentially distribution on time to cus-

tomer defection, the probability of customer defection is assumed to be geometrically

distributed, with heterogeneity determined by a beta distribution. Both models are

applied in a non-contractual settings, and require only two summary statistics for

the purpose of estimating these parameters - the cutomer’s “recency” (when the last

transaction occurred) and “frequency” (how many transactions the customer made in

a specified time period). However, compared to the NBD-Pareto model, the NBD-BG

82

model is less computationally challenging. While similar in many ways to CLV, the

NPV estimation is a different problem. In the current chapter, our objective is not

to estimate CLV, but instead to estimate the treatment effect of a service sign-up

on the customer’s spending on the platform over the next “T" months. To answer

the estimation question we use a Double Machine Learning (DML) approach which

lets use estimate heterogeneous treatment effects, with a large set of control variables

and non-parametric model specifications. This modeling choice lets us control for

not only important features that the CLV literature proposes (frequency, recency and

monetary value of purchase) but many other customer-platform related features.

Another body of literature that is important to our work is the study of ancil-

lary services. In the context of our industry partner, ancillary display services are

additional services that may be offered to customers either to enhance a product (as

in the case of assembly and warranty services) or may be offered independent of a

particular product (as in the case of private label credit card service). The former

type of ancillary display service may be considered as an “add-on” product. [98] pro-

vides a comprehensive list of add-on products that exist across multiple industries,

such as: (1) Airports offering gyms to travelers during layovers; (2) Fitness centers

offering amenities which are separate from basic membership, such as locker rentals,

towels, and group fitness classes; (3) Hotels offering packages that combine lodging

and meals or special activities; and (4) Car dealers offering accessory packages and

extended warranties with the purchase of a vehicle. A large portion of add-on prod-

uct or ancillary service literature focuses on pricing decisions. For example, [162]

investigate heterogeneous customer choice behavior in the presence of main products

and ancillary services with options of pay-per-use and subscription, with an aim to

determine whether firms should sell subscriptions for ancillary services. [46] study the

effect of free services on pricing and customer retention strategies for online retail by

characterizing an online vendor’s selection of augmenting services as a knapsack prob-

lem, and recommend that the online vendor should not only periodically reevaluate

the set of services offered to satisfy the expected product requirements, but also assess

the customer retention ability of the augmented product. Similar to these works, we

83

study the impact of add-on products and ancillary services on customer behavior. In

contrast, however, we aim to develop optimal display decision strategies rather than

to develop optimal pricing strategies.

Strategies developed for ancillary services share commonalities to those developed

for cross-selling and product bundling. A trend of the stream of literature dedicated to

cross-selling and bundling which relates, in part, to our work is the study of dynamic

decision making and revenue optimization. [126] investigate the problem of dynamic

cross-selling in the context of firms that can choose to offer each customer a choice be-

tween the requested product and a package containing the requested product as well

as another product, referred to as a “packaging complement.” The authors formulate

the cross-selling problem as a stochastic dynamic program blended with combinato-

rial optimization, and propose heuristics to determine the packaging complement, as

well as the pricing strategies. Similar to this study, we also present a solution for

dynamic, as opposed to static, decisions in online retail. However, [126] focus on

bundling and pricing strategies, whereas we focus on combinations of service add-ons

to consider presenting to a customer. Thus, our problem may be considered as a ques-

tion regarding “product framing,” whereby a customer’s choice is influenced by the

way that products are displayed, or framed. One of the first framing-dependent mod-

els was proposed by [85], which introduces approximation algorithms for the problem

of framing, assuming that consumers consider only products in the top pages, with

heterogeneity across customers in terms of the number of pages they are willing to

see, and that consumers select a product, if any, from these pages according to a

general choice model. They prove that the problem is NP-hard and develop approxi-

mation algorithms to determine an assortment and a distribution of the products in

the assortment into the different pages in order to maximize expected revenue. We

also study how consumer choice is affected by the way products are framed, but we

specifically aim to understand how different customer segments respond to display

decisions from a company, whereas they concentrate more on the effects of where on

a page a product is displayed.

Other cross-selling and product bundling studies concentrate on a different set

84

of constraints. [76] study the trade-off between profit maximization and inventory

management, and present a personalized, discounted bundle recommendation model.

In developing their model, they investigate consumers’ buying propensity as well as

inventory management for long-term profitability through consideration of a finite

selling horizon with a fixed number of periods. They formulate the problem as a

dynamic program where primary source of complexity can be attributed to the cal-

culation of expected future revenue as a function of inventory levels and address

this complexity and the need for real-time output with multiplicative and additive

approximation algorithms.[60] show an efficient LP based reformulation of the assort-

ment optimization problem with totally unimodular constraints. Similarly, [89] aim

to solve the problem of personalizing an assortment of products for customers arriving

at an online retailer while accounting for back-end supply chain constraints. They

consider multiple products with limited inventories and consider a set of customer

types, where a customer type makes a choice on which products to buy according

to a general choice model and find that differentiating customer types, even just by

location, can lead to significant increase in revenue. In this chapter, we also con-

sider heterogeneous consumers with different choice models, but where the objective

accounts for the negative effects of showing large assortments of ancillary services

on customer conversion. We develop an efficient algorithm for the service display

problem, accounting for such negative effects of displaying assortment of ancillary

services.

We conclude this section by noting that an important aspect of our purchase

probability and net present value estimation models is interpretability. Model trans-

parency and understanding are critical components of the willingness of online retail-

ers to adopt algorithm-driven decision making processes. With respect to purchase

probability estimation, the algorithm we develop is adaptable in the sense that any

applicable machine learning methods can be for the clustering and classification, how-

ever in this chapter we utilize highly interpretable models for each component and

demonstrate their superior performance abilities. The output of the net present value

estimation model in this chapter utilizes complex causal and machine learning models

85

and can be explained in an interpretable manner using machine learning approaches.

To support our use of decision trees to approximate the incremental value estimates

obtained through double machine learning and causal forests, we draw on papers that

study post-hoc interpretability in machine learning. [92] provide a classification of

the main problems addressed in the literature with respect to the notion of explana-

tion and the type of black-box system. Their paper includes a comprehensive survey

of methods that can be used to solve the outcome explanation problem, where an

interpretable model is applied to explain the prediction of the black-box. One of the

methods discussed is the “single-tree approximation,” which uses a decision tree as the

explanator. [68] applies this single-tree approximation method on several datasets,

using a decision tree to explain the output of black-box models which were used for

the original model-fitting process, such as KNN, Linear Discriminant Analysis, Multi-

Layer Perceptron, AdaBoost, and Support Vector Machine. They find that maximum

fidelity (accuracy with which the tree can simulate the original black-box model) can

be reached with reasonable complexity and time requirements.

3.3 Problem Formulation: from Prediction to Pre-

scription

In this section, we start by first describing the estimation of personalized customer

purchase propensity for different services using the CWC method we propose. We then

discuss the estimation of NPV of different ancillary services using machine learning.

Finally, we discuss how to convert these predictions to prescribe optimal personalized

ancillary services to customers through an iterative Linear Programming method we

introduce.

We start by introducing some notation that will be used throughout the chapter.

Let 𝐾 ∈ N the total number of ancillary services. We consider a customer-platform

session with features 𝑋 ∈ R𝑑, when 𝒮 ⊂ {1, .., 𝐾} ancillary services are offered, which

led to the sign-up of ancillary service 𝑦 ∈ 𝒮∪𝜑, note that 𝜑 implicitly denotes that the

86

customer left without selecting any service. The platform has access to data from n

sessions that are compactly denoted as 𝒟 = (Y,X,𝒮), where X ∈ R𝑛×𝑑 is the matrix

of session features, Y ∈ R𝑛 of outcomes and 𝒮𝑖 is the set of services offered in the 𝑖𝑡ℎ

service session. Let 𝑓𝑆𝑆𝑃 (𝑌 |𝑋,𝒮) denote the expected service sign-up function that

predicts the sign-up outcome (𝑌) of a session with features 𝑋 when a set of 𝒮 services

is offered. Also let 𝑁𝑃𝑉𝑖 denote the Net Present Value of service i, ∀𝑖 = 1, .., 𝐾. The

platform’s objective is to use the available data set 𝒟 to estimate 𝑓𝑆𝑆𝑃 and the NPV

values of each service in order to optimize future service offerings for each session.

We discuss both these estimations next.

3.3.1 The Cluster-While-Classify Method

In this section we introduce a new method for joint clustering and classification. In

the retail setting this method allows us to determine the probability a customer will

buy a service if presented to them. This is a fundamental problem to address in the

retail space. A key step is to determine customers with similar features but who

also exhibit similar buying behavior. To accomplish this, we first present a nonlinear

mixed integer optimization formulation for joint clustering and classification. As the

problem is not tractable, we present an iterative algorithm for solving it. Finally, we

discuss a post-hoc interpretability technique using decision trees.

We start by discussing the estimation of the service sign up probability function

(𝑓𝑆𝑆𝑃). Consider the classical multinomial logistic framework which posits that for

any feature vector 𝑋 and any service 𝑖 ∈ 𝒮

𝑓𝑆𝑆𝑃 (𝑌 = 𝑖|𝛽,𝑋,𝒮) = exp(−𝛽⊤
𝑖 𝑋)

1 +
∑︀

𝑗∈𝒮 exp(−𝛽⊤
𝑗 𝑋)

, (3.1)

where 𝛽 = [𝛽1, .., 𝛽𝑘] ∈ R𝐾×𝑑 are class specific parameters that are estimated with

data. In particular, let 𝛽(𝒟) denote the Maximum Likelihood Estimator of the prob-

lem parameters and 𝑓𝑆𝑆𝑃 denote the corresponding probability estimate obtained by

replacing 𝛽 with 𝛽 in the definition of 𝑓𝑆𝑆𝑃 . Then, given 𝒟, we can use 𝛽 to in-

deed predict the purchase behavior of any customer. Unfortunately, this modeling

87

approach assumes that the response function is homogeneous across different sessions.

Nevertheless, for ancillary services, customers can have distinct purchase behaviors.

To incorporate more complex models, we can consider a clustering approach that es-

timates L ∈ N distinct customer response functions. A popular strategy to estimate

such heterogeneous responses is to first cluster the data into different segments (based

on session features) and then estimate individual models for each of these clusters.

In this chapter, we take this approach one step further by jointly clustering and esti-

mating 𝐿 different response functions. In particular, we solve the following nonlinear

mixed integer optimization problem:

min
𝑧,𝑝,𝛽

− 1

𝑁

𝐿∑︁
𝑙=1

𝑁∑︁
𝑖=1

𝐾∑︁
𝑘=1

𝑧𝑖𝑙𝛿𝑖𝑘 log 𝑝𝑖𝑘,𝑙 (3.2a)

s.t.
ℓ∑︁

𝑘=1

𝑧𝑖𝑘 = 1, 𝑖 = 1, . . . , 𝑛 (3.2b)

𝑝𝑖𝑘,𝑙 = 𝑓𝑆𝑆𝑃 (𝑌 = 𝑘 | 𝛽(�̂�𝑙), 𝑋𝑖,𝒮𝑖) ∀𝑖 = 1, . . . , 𝑛; 𝑘 ∈ 𝒮𝑖; 𝑙 = 1, . . . , 𝐿 (3.2c)

𝑧𝑖𝑘 ∈ {0, 1}, 𝑖 = 1, . . . , 𝑛; 𝑘 = 1, . . . , ℓ. (3.2d)

In the formulation above, 𝑧𝑖𝑙 ∈ {0, 1} is a binary decision variable indicating whether

observation 𝑖 belongs to cluster 𝑙, 𝛿𝑖𝑘 is a binary variable indicating whether obser-

vation 𝑖 belongs to class 𝑘, and 𝑝𝑖𝑘,𝑙 is the probability estimate that observation 𝑖

belongs to class 𝑘 based on the model in cluster 𝑙. Finally, �̂�𝑙 = {𝑖 : 𝑧𝑖𝑙 = 1} denotes

the set of observations assigned to cluster l. Notice that by construction, ∪𝐿𝑖=1�̂�𝑖 = 𝒟.

For simplicity we denote the objective of the optimization problem in (2) as ℒ(𝑧, 𝑝).

We ignore the coefficient 𝛽 in this notation as 𝛽 is determined by 𝑝. Note that 𝛿 is

data directly obtained from 𝑌 and is not a decision variable.

Solving this problem to optimality is computationally hard, hence, we propose

an iterative, approximate algorithm to solve this problem. The proposed iterative

method described below is based on a simple idea: fixing cluster assignments 𝑧 to some

warm start 𝑧, the problem of minimizing ℒ(𝑧, 𝑝) can be accomplished by estimating

𝐿 distinct multinomial logit functions from data points assigned to the 𝐿 clusters.

88

Vice versa, for a fixed 𝑝, we can optimize for 𝑧 by assigning every observation to a

cluster that leads to the minimum negative log likelihood for that observation. We

present the Cluster While Classify (CWC) algorithm next.

CWC Iterative Algorithm: Given 𝐿 clusters as input, 𝑇 iterations,

1. Initialize the cluster assignment 𝑧(0)𝑖𝑙 either randomly or through an appropriate

warm-start (possibly derived from a previous clustering process).

2. For iteration 𝑡 = 1, . . . 𝑇 :

(a) For each cluster 𝑙 = 1, . . . 𝐿, fit a multinomial logistic regression model to

estimate 𝛽(�̂�𝑡−1
𝑙), which minimizes the cluster-wise logistic loss based on

the existing cluster assignment, 𝑧(𝑡−1)
𝑖𝑙 . The cluster-wise logistic loss for

cluster 𝑙 is defined as:

ℒ𝑙(𝑧, 𝑝) = − 1∑︀𝑁
𝑖=1 𝑧

(𝑡−1)
𝑖𝑙

𝑁∑︁
𝑖=1

𝐾∑︁
𝑘=1

𝑧
(𝑡−1)
𝑖𝑙 𝛿𝑖𝑘 log 𝑝𝑖𝑘,𝑙 ,

and 𝑝𝑖𝑘,𝑙 is a function of the estimate parameters 𝛽(�̂�𝑡−1
𝑙) that needs to be

optimized (see eq. (3.1)).

(b) For each data point 𝑖 = 1, . . . 𝑁 , update the cluster assignment 𝑧𝑡𝑖𝑙 by

assigning the data point to the cluster where the model’s predictions yields

the lowest logistic loss. Mathematically, update the assignment by solving

min−
𝐿∑︁
𝑙=1

𝐾∑︁
𝑘=1

𝑧
(𝑡)
𝑖𝑙 𝛿𝑖𝑘 log 𝑝𝑖𝑘,𝑙 subject to

𝐿∑︁
𝑙=1

𝑧
(𝑡)
𝑖𝑙 = 1

where 𝑝𝑖𝑘,𝑙 is the probability estimate that observation 𝑖 belongs to class 𝑘

from the fitted model for cluster 𝑙 within the current iteration 𝑡 and has

been estimated in step (a).

(c) Terminate with 𝑧
(𝑡)
𝑖𝑙 , 𝛽(�̂�𝑡−1

𝑙) when 𝑡 = 𝑇 , or when the number of data

points in the most infrequent class in any of the 𝐿 clusters fall below

a predetermined threshold. This alternative termination criterion is to

89

prevent overfitting with each cluster becoming a “pure” cluster with only

one class.

We note that the number of clusters 𝐿 and number of iterations 𝑇 are hyper-

parameters which require tuning when training the CWC model. Furthermore, we

can replace the multinomial logistic loss when estimating the probability functions

with other classification functions and regularize the objective with ℒ − 1 or ℒ − 2

regularization to avoid overfitting. In fact, in our numerical section we use ℒ − 1

regularized objective function.

In Proposition 2, we show that the run time complexity of the algorithm is pri-

marily driven by the complexity of estimating multinomial logistic regression. Fur-

thermore, the algorithm is also guaranteed to converge to a cluster assignment of

different observations.

Proposition 2 The CWC algorithm has the following two properties:

(1) If the estimation method for the multinomial logistic model runs in 𝑂(𝑝(𝑛, 𝑑, 𝐿))

polynomial time, where 𝑝(𝑛, 𝑑, 𝐿) is any polynomial of 𝑛, 𝑑, and 𝐿, then the

CWC algorithm runs in 𝑂(𝑇𝑝(𝑛, 𝑑, 𝐿) + 𝑇𝑛𝑑𝐿) polynomial time.

(2) The CWC algorithm converges, which happens when 𝑧(𝑡)𝑖𝑘 = 𝑧
(𝑡−1)
𝑖𝑘 ,∀𝑖 = 1, ..., 𝑛; 𝑘 =

1, ..., ℓ.

Proof: See §B.1 of the Appendix.

Finally, while the CWC procedure lets us estimate sign-up propensities of exist-

ing observations, to enable out-of-sample predictions, we can fit a secondary cluster-

assignment model using the obtained cluster assignments 𝑧𝑡𝑖𝑘 as the dependent variable

and features 𝑋 as predictors. This model can then be used to determine the cluster

membership for out-of-sample data points, and pick the right cluster-wise models for

predictions. The model for estimating these clusters can be any multi-class classifica-

tion function (for e.g. another multinomial logistic regression model). Nevertheless,

to add interpretability to the CWC framework, we propose using a decision tree to

estimate out-of-sample cluster assignment. In particular, let 𝒯 (𝒟) denote a decision

90

tree model that uses data set 𝒟 to estimate the outcome of interest (either contin-

uous or multi-class outcome). Then, we use 𝒟 = [𝑧,𝑋] to estimate an interpretable

model of cluster assignment based on the estimate cluster assignments of the CWC

algorithm on the training data. The use of a tree-based method to estimate cluster

assignments provides decision rules that are easy to understand for managers.

The CWC framework is flexible because for both the cluster-wise classification

models and the secondary cluster-assignment model, the modeler can choose any ar-

bitrary machine learning model that is deemed appropriate for the task. Furthermore,

the modeler can also exercise discretion over what features to use for each of the two

tasks—for example, the modeler might want to use a small subset of features for the

cluster-wise models for parsimony, and another customer-segmentation related subset

of features for the secondary cluster-assignment model. In §3.4, we further elaborate

on this flexibility as well as the interpretability of the tree-based model.

3.3.2 Interpretable Estimation of the Net Present Value of

Ancillary Services

Having described the procedure for estimating purchase probabilities, we next inves-

tigate to the problem of estimating the NPV of different ancillary services. It is useful

to first illustrate why the NPV estimation is a causal question and not a predictive

one. To do so, we come back to the problem of our industry collaborator. Let us

use the PLCC service as an example, the question we are seeking to answer is: For a

given customer who signed up for the PLCC service, how much more is she spending

with our collaborator compared to how much she would have spent with our collab-

orator otherwise? In other words, the objective in this case is to estimate the long

term causal effect of a customer engaging with the PLCC service (intervention) on

this customer’s spending? Notice that the estimation becomes challenging since we

never observe customer’s spending in the alternate situation where she did not get a

PLCC service – her counterfactual spending is not observed. This is the fundamental

challenge in causal inference.

91

Causal inference is straightforward in situations where the intervention is ran-

domly assigned. However, for ancillary services, customers choose to sign-up for a

service, rather than being randomly assigned to services, thus introducing selection

bias. In particular, there might be variables which affect both a customer’s decision

to sign-up for a service (the intervention) and their future spending (the outcome).

With respect to these variables confounders, customers who sign-up for a service

might be systematically different from customers who do not. For example, PLCC

customers might be more credit-constrained or rebate-sensitive than non-PLCC cus-

tomers, and simultaneously have lower spending capacity than non-PLCC customers.

It might also be the case that customers who purchased assembly service are less

price-sensitive and, consequently, more willing to spend than those who were not

assembly-purchasers. Therefore, we need to control for such differences, which could

otherwise confound our estimates of incremental value generated by the services.

It is a non-trivial task, however, to identify which variables should be considered

confounders and to specify exactly how these variables interact with one another.

This process, known as model selection, is typically a “time-consuming, tenuous and

somewhat arbitrary process that can make a significant difference in the final result”

of the estimated intervention effect [88]. Model selection is even harder in a high-

dimensional environment (i.e., when there are many observed variables which could

affect both the intervention and outcome), which is precisely the setting that we were

operating in. The Double Machine Learning (DML) framework [51], which we briefly

discuss below, integrates machine learning within a carefully constructed econometric

framework to make model selection more principled and automated.

With respect to the NPV estimation task, another noteworthy consideration is

that the incremental value generated from a given service might exhibit variability

across different customer segments (heterogeneous treatment effects). For example,

there might be one-off customers who sign-up for the retailer’s credit card for the sake

of the initial $40 off (that is offered in conjunction with sign-up) yet never intend to

return, but also customers who sign-up for the card because they expect to be a

recurrent customer in the longer term. The incremental value for the former type of

92

customer will likely be significantly less than that of the latter customer. Estimating

heterogeneous treatment effects is challenging for two broad reasons. First, there is

a risk that investigators will search for narrow subgroups that exhibit more extreme

treatment effects, when these effects may be entirely spurious [55]. Second, classical

approaches such as matching and kernel-based methods suffer from the curse of di-

mensionality and are negatively affected when irrelevant covariates are used in the

matching process [161]. Without having expert knowledge about what the relevant

variables are in the matching process, relying on these methods could lead to model

misspecification and inaccurate estimation results.

With all of these considerations in mind, we propose using Double Machine Learn-

ing [51] and Causal Forests [161] (a modified decision-forest algorithm for causal infer-

ence) for NPV estimation. We demonstrate how these methods can be utilized to have

a more principled and data-driven approach for model selection and for discovering

the structure of treatment heterogeneity, should heterogeneity exist in NPV estima-

tion. Additionally, in what follows, we will also demonstrate how these methods can

be used to obtain valid asymptotic confidence intervals on the estimated average and

heterogeneous treatment effects. We start by briefly introducing some more notation.

We let 𝑌 ∈ R denote the outcome variable, 𝑇 denote the treatment and 𝑋 ∈ R𝑑

denote the associated features. For example, in our problem, since we are interested

in the NPV of various ancillary services, 𝑌 𝑡
𝑖 for a customer 𝑖 is the total spending

of the customer from a total of 𝑡-days after the treatment. Similarly, 𝑇 𝑗𝑖 denotes

whether customer 𝑖 purchased ancillary service 𝑗 (conditional on being offered that

service). Finally, 𝑋𝑖 ∈ R𝑑 denote the features associated with the customer as well

as potentially the session in which the purchase of the service was made. As before,

we will assume that the platform has access to data set of 𝑛 observations per service

𝑗: �̃�𝑗 = (Ỹ,Tj,X).

93

Double Machine Learning (DML)

Consider the regression specification given by

𝑌 = Θ(𝑋) · 𝑇 + 𝑔(𝑋) + 𝜖 , (3.3)

which relates the outcome 𝑌 with explanatory control variables X and treatment T.

Here, 𝜖 denotes the idiosyncratic noise term with conditional mean 0 (E[𝜖|𝑇,𝑋] = 0).

We are interested in Θ(𝑋) : R𝑑 → R, the heterogeneous effect of treatment T on

outcome 𝑌 . If T is randomly assigned, conditioned on explanatory features 𝑋, then

the treatment effect Θ(𝑋) can be directly estimated. But treatment T can itself be

a function of explanatory features X, which can be specified as

𝑇 = 𝑓(𝑋) + 𝜈 , (3.4)

where 𝑓(𝑋) : R𝑑 → R models the dependence of the treatment on the explanatory

features. Equation (3.4) tracks the confounding due to the selection of treatment

based on explanatory controls instead of random assignment. The main advantage

of Double Machine Learning is that it does not make parametric assumptions on

functions f, g and Θ. Furthermore, a wide variety of nonparametric machine learning

methods can be used instead of linear models to estimate the regression model. The

framework has strong analytical guarantees and has also been widely used due to its

ease of implementation ([6]).

To estimate the treatment effect, DML uses a two step procedure. In the first

stage, two sets of residuals

𝑌 = 𝑌 − 𝐸[𝑌 |𝑋] & 𝑇 = 𝑇 − 𝐸[𝑇 |𝑋]

are estimated. These are called the first stage regressions. Notice that 𝑌 represents

the variation in outcome 𝑌 that cannot be explained by the variation in 𝑋. Similarly,

𝑇 represents the variation in outcome 𝑇 that cannot be explained by the variation in

94

𝑋. Then, heterogeneous treatment effects Θ(𝑋) can be calculated by solving

Θ̂(𝑋) = argmin
Θ
𝐸(𝑌 −Θ(𝑋) · 𝑇)2 .

This is called the second stage regression. Under the unconfoundedness assumption

(i.e., that there are no other unobserved confounders and all confounders have been

captured under the 𝑋 matrix), all the residual variation in 𝑌 must be explained by

the residual variation in 𝑇 ; which is accomplished by the final-stage regression.

Since this method makes no parametric assumptions on the functional form of

𝐸[𝑌 |𝑋], 𝐸[𝑇 |𝑋], it overcomes the problem of model selection. Similar generality

for model selection also exists for the final stage regression where we use a “cross-

fitting” [51] routine to prevent overfitting and to ensure that we get asymptotically

unbiased estimates of the treatment effect. While this modification is model-agnostic

in general, we explain an equivalent process utilized in Causal Forests known as

“honest subsampling” (as Causal Forests is our model of choice for the final-stage

regression estimator) in the section below.

Causal Forests

The DML framework accommodates a large family of parametric and non-parametric

model specification to estimate treatment effects. We use the causal forest model

for our final stage regression. Whereas decision-forest algorithms typically aim to

achieve high predictive accuracy, the ultimate objective of Causal Forests is to accu-

rately estimate conditional average treatment effects. Therefore, additional criteria

are imposed on the forest-growing procedure. For each constituent causal tree in the

Causal Forest, two additional criteria are imposed on the tree-growing procedure [7].

First, “honest" subsampling on the training dataset is required: the training dataset

has to be further split into two sets, with one set used for growing the tree (the grow-

ing set) and the second set used for within-leaf estimation of treatment effects (the

estimation set). Each observation can only be in either the growing set or the esti-

mation set, but not both. Second, within each leaf node, there must be a minimum

95

number of examples belonging to both the treatment and control groups.

[161] prove that the estimates obtained from this approach have asymptotic nor-

mality properties which implies that, with a sufficient number of data points, the

estimated conditional average treatment effects have a Gaussian sampling distribu-

tion and it is possible to construct confidence intervals around the obtained point

estimates. The tightness of confidence intervals increases with the number of trees

within the causal forest, as it addresses the Monte Carlo variability that arises due

to the subsampling routine involved in the Causal Forests procedure.

Our selection of causal forests for estimating heterogeneous treatment effects is

driven by three main considerations: (i) causal forests do not impose parametric as-

sumptions on the structure of the heterogeneous treatment effect; (ii) causal forests

can estimate highly accurate treatment effects even in the high dimensional setting

when the number of features are very large; (iii) causal forests provide asymptoti-

cally valid confidence intervals for heterogeneous treatment effects, estimated at an

individual customer level.

Adding Interpretability to NPV Estimation : While the causal forest model

is inherently non-interpretable, we again use the paradigm of post-hoc interpretabil-

ity and fit a decision tree over the forest to interpret the heterogeneous treatment

effects estimated by the causal forest procedure. This approach is similar to the

one adopted to add interpretability to the service sign-up propensity estimation. We

discuss further details in §3.4.

3.3.3 Optimizing Service Displays

Having discussed the estimation of service sign-up propensities and net present value

of different services, we now discuss how to combine these two predictive tasks in a

holistic prescriptive framework for recommending personalized ancillary services to

customers on the product display page.

Personalized offerings are very important for the platform but at the same time

complex. On one hand, we would like to avoid displaying too many services because

96

this leads to message saturation and increased cognitive load for the customer, po-

tentially harming conversion. On the other, we do not want to omit the display of

relevant services to the customer because this leads to lost revenue if the customer

would have signed up for the service.

Let S denote the set of all feasible service combinations that can be offered to the

customer and 𝒮𝑗 denote the 𝑗𝑡ℎ set in S. For example, if the platform has 𝐾 distinct

ancillary services, then |S| =
∑︀𝐾

𝑗=1

(︀
𝐾
𝑗

)︀
. Also recall that 𝑓𝑆𝑆𝑃 (𝑌 = 𝑖|𝛽,𝑋,𝒮𝑗),∀𝑖 ∈

𝒮𝑗 denotes the estimated service sign up propensity of service 𝑖 when a set of 𝑆𝑗

ancillary services are offered to the customer with session features 𝑋 and 𝑁𝑃𝑉𝑖

denotes the Net Present Value of any service i. Finally, to model the tradeoff between

conversion rate and cost of displaying ancillary services we let 𝐵 ∈ R denote the total

revenue (or profit) generated from the purchase of product on display and 𝑐𝑗 be the

impact (negative) of displaying set 𝑆𝑗 of ancillary services on the conversion of the

product. This is on account of marketing fatigue that customers experience due to

extra recommendations.

The platform’s objective is to maximize overall revenue by choosing a particular

set of ancillary services to display. For any 𝒮𝑗 ∈ S, the total expected revenue is

𝑟(𝒮𝑗) =
∑︁
𝑖∈𝒮𝑗

𝑓𝑆𝑆𝑃 (𝑌 = 𝑖|𝛽,𝑋,𝒮𝑗)𝑁𝑃𝑉𝑖 − 𝑐𝑗𝐵 ,

where the first part denotes the expected revenue from purchasing the ancillary ser-

vices in the offered set and the second part denotes the expected loss due to reduction

in the conversion rate of the product purchase. The platform solves the following An-

cillary Service Display Optimization (ASDO) problem:

max
𝑤1,..,𝑤|S|

|S|∑︁
𝑗=1

𝑤𝑗𝑟(𝒮𝑗)

s.t.
|S|∑︁
𝑗=1

𝑤𝑗 = 1

𝑤𝑗 = {0, 1} ∀𝑗 = 1, .., |S| .

(3.5)

97

The optimization problem formulated above seeks to determine the set of services

to show to a customer at a given product display page so that it yields the highest

expected revenue. The decision variable 𝑤𝑗 is a binary variable which is 1 if the

platform offers the 𝑗𝑡ℎ set of ancillary services and 0 otherwise.

Notice that for any given set of ancillary services, 𝑟(𝒮𝑗) can be estimated using

the estimated values of NPV for each service in the set 𝒮𝑗 and the estimates of the

propensity of purchase. It also accounts for cross service effects, by modeling the

purchase propensity as a function of other ancillary services being offered to the

customers. Furthermore, the sign-up propensity for services can also be a function

of the product’s price (by including it as a feature in 𝑋). We can also enforce

business level constraints such as restricting the display of certain ancillary services

with specific products by adding additional constraints to the ASDO problem.

The ASDO problem is a combinatorial problem with exponential number of de-

cision variables (in the total number of ancillary services) and the worst case com-

putational complexity of directly solving the ASDO problem can be exponential in

the number of ancillary services. Hence it can be computationally hard to solve. In

what follows, we discuss a Linear Programming (LP) based algorithm that reduces

the complexity of the problem substantially. The algorithm that we propose is based

on the following intuition: the ASDO problem is closely related to the revenue max-

imizing assortment optimization problem except for cost of 𝑐𝑖 that captures the cost

of showing larger assortments. Hence, instead of solving the ASDO problem directly,

we can solve the capacity constrained assortment optimization problem with varying

capacities using an LP reformulation. Finally, the optimal set of ancillary products

can be found by simply comparing the optimal revenue maximizing assortments of

different sizes.

In what follows, we will assume that 𝑐𝑗 = 𝑐|𝒮𝑗| ∀𝑗, where 𝑐 is the per unit decrease

in conversion rate due to showing a single ancillary service. That is, the negative

impact of displaying ancillary services on conversion is only related to the size of

the set of ancillary services. This assumption simplifies the more general ASDO

problem since instead of estimating |S| total cost parameters (one for every feasible

98

assortment), we now only have to estimate a single per unit cost parameter, 𝑐.

Before we formally present the algorithm, we introduce some more notation. In

particular, let 𝑞𝑖 = {0, 1} be a binary decision variable that is 1 if we offer service i

to the customer and 0 otherwise. Then, given a vector of decisions 𝑄 = {0, 1}𝐾 , the

probability that the customer chooses ancillary service i is given by

𝑓𝑆𝑆𝑃 (𝑌 = 𝑖|𝛽,𝑋,𝑄) = 𝑣𝑖𝑞𝑖

1 +
∑︀𝐾

𝑗=1 𝑣𝑗𝑞𝑗
,

where 𝑣𝑖 = exp(−𝛽⊤
𝑖 𝑋), ∀𝑖 = 1, , 𝐾, denotes the preference weights of service i

estimated from data (see §3.3). Notice that every Q directly maps to a set of services

𝒮𝑗 ∈ S.

Using the notation above, and ignoring the expected cost due to reduction in

the conversion rate for showing a set of ancillary services, we consider the following

cardinality constrained assortment optimization problem:

max
𝑞1,..,𝑞𝐾

𝐾∑︁
𝑗=1

𝑓𝑆𝑆𝑃 (𝑌 = 𝑗|𝛽,𝑋,𝑄) ·𝑁𝑃𝑉𝑗 · 𝑞𝑗

s.t.
𝐾∑︁
𝑗=1

𝑞𝑗 ≤ 𝑚

𝑞𝑗 = {0, 1} ∀𝑗 = 1, .., 𝐾 .

(3.6)

Notice that in comparison to the ASDO problem, we have reduced the number of

decision variables exponentially (from exponential to linear, in the number of ancillary

services). Nevertheless, the objective becomes non-linear in the decision variables and

we have now added a constraint on the size of the assortment. Hence, it is not yet

clear how this reformulation can result in an optimal solution to the ASDO problem

and if it is at all faster.

To motivate our approach, we first focus on the ASDO-Relaxed Linear Program-

ming (ASD-RLP) reformulation of the assortment optimization problem, which is

99

given by

𝐴𝑆𝐷𝑂𝑅𝐿𝑃 (𝑚) =

max
𝑠0,𝑠1,..,𝑠𝐾

𝐾∑︁
𝑗=1

𝑠𝑗 ·𝑁𝑃𝑉𝑗

s.t.
𝐾∑︁
𝑗=1

𝑠𝑗 + 𝑠0 = 1

𝐾∑︁
𝑗=1

𝑠𝑗
𝑣𝑗

≤ 𝑚𝑠0

0 ≤ 𝑠𝑗
𝑣𝑗

≤ 𝑠0 ∀𝑗 = 1, .., 𝐾 .

(3.7)

Notice that instead of considering binary decision variables, the ASD-RLP problem

considers continuous variables, 𝑠0, .., 𝑠𝐾 . A solution to the LP problem above directly

yields a feasible solution to the assortment optimization problem with cardinality

constraints, as shown by [60]. Using this reformulation, we propose the Iterative

Ancillary Service Optimization algorithm (Algorithm 3). The algorithm iteratively

finds optimal assortments of maximum size 1, .., 𝐾. Then, for any given assortment

size, the cost of reduction in conversation rate is accounted for by simply subtracting

the associated cost from the optimal revenue. Since the algorithm loops through all

potential assortments of different sizes, it guarantees that the identified assortment

will be an optimal solution to the ASDO problem. We formalize this intuition in

Theorem 3.

Algorithm 3 Iterative Ancillary Service Optimization (K)
for 𝑚 ∈ [𝐾] do

Solve 𝐴𝑆𝐷𝑂𝑅𝐿𝑃 (𝑚) to get the optimal assortment of maximum m services.
Let 𝒜(𝑚) and 𝑟*(𝑚) denote the optimal assortment and the optimal expected revenue

from the optimal assortment.
end for
Let 𝐴𝑆𝐷𝑂𝑟𝑒𝑣(𝑚) = 𝑟*(𝑚)− 𝑐|𝒜(𝑚)|𝐵 and let 𝑚* = argmax𝑖=1,,𝐾 𝐴𝑆𝐷𝑂𝑟𝑒𝑣(𝑖).
Offer 𝒜(𝑚*) to the customer.

Theorem 3 Consider the ASDO problem with 𝑐𝑖 = 𝑐|𝒮|, for any feasible assortment

𝒮 ∈ S. Then, the Iterative Ancillary Service Optimization Algorithm (Algorithm 3)

computes correctly an optimal solution to the ASDO problem.

100

Proof: See §B.2 of the Appendix.

Hence, under the linearly increasing cost structure, we devise a linear programming

based algorithm to solve the ASDO problem. In the more general setting when the

cost associated with an assortment can be arbitrary, we use an off-the-shelf Integer

Programming solver to solve the ASDO problem. While the ASDO problem can have

a exponential number of decision variables (in the total number of ancillary services),

in general the number of ancillary services are considerably smaller than the total

products. For example, our industry collaborator sells millions of products but only a

handful of ancillary services (three that we considered in the current study). Hence,

even the general ASDO problem is practically tractable. We will further discuss the

details of the problem and the implementation strategy in §3.4.

3.4 Approach effectiveness on a large e-commerce re-

tailer

In this section, we test our framework with our collaborator as described in §3.3.

We first estimate the propensity of each service offered by our collaborator, i.e. the

probability of purchasing this service given a displayed assortment, using the CWC

algorithm. We then estimate the NPV of each of these services with DML and Causal

Forests. This allows us to prescribe the optimal service offering for each product,

personalized for each customer. In order to accomplish these prediction tasks, we

have used a wide range of data sources, including historical customer data (that we

do not discuss in detail for confidentiality purposes) and static and dynamic session

information. More specifically, we use the following features:

• Past Website Interactions: Number of Distinct Devices Used, Number of

Distinct Channels leading to the Website, Number of Add-to-Carts, Number

and Frequency of Visits, etc.

• Past Purchase Behavior: Number and Price of Purchased Products, Average

Order Value, etc.

101

• Static Session Information: Marketing Visitor Type, Days Since Last Visit,

Days Since Acquisition, Same Day Total Order Value, etc.

• Dynamic Session Information: Current Page Display, Price of SKU, Num-

ber of PDPs, etc.

3.4.1 Service Sign-Up Propensity

In the subsection, we estimate the service sign-up propensity given each possible as-

sortment of displayed services. Before we discuss more details of the experiments

based on our collaborator’s data, we first note that we also benchmark the perfor-

mance of the CWC method against state of the art machine learning methods in a

synthetic data setting as described in Appendix B. We find that the proposed method

outperforms other methods with improvements ranging between 4.4% to 8.3% in terms

of out-of-sample accuracy. Following the results from the synthetic experiments, we

use random forests and CWC for the study, the two best performing methods. We

provide more details on the experimental section in Appendix B.5. For our collabora-

tor’s estimation problem, the target variable for this problem is the mutually exclusive

outcomes of whether the customer purchases Nothing, Assembly Service, Warranty

Service or PLCC Service.

While CWC is a general purpose algorithm, we adapt it to our collaborator’s

requirements for interpretability purposes. We used a decision tree as the cluster

assignment model to have interpretable groupings of the customers based on their

features and provide insight into which variables determine cluster membership. Fur-

thermore, the CWC used for this case study deterministically assigns them with the

trained decision tree. This enables a more straightforward interpretation of the clus-

ters and of the assignment mechanism.

For the classification task within each cluster, a key consideration is being able

to provide a simple way to understand how customers respond to different “Retailer’s

Actions", which here refer to the choice of service assortment to show to the customer.

For example, for a group of customers within the same cluster, with similar response

102

behavior, we want to know their probability of signing up for a particular service

if this is the only service offered, versus if it shown alongside several other specific

services. To accomplish this, we use a multinomial logistic regression for the cluster-

wise models where the only features used for classification are the seven possible

Retailer’s Actions. This allows our collaborator to make direct comparisons of the

response behavior of different clusters. Additionally, the use of a limited number

of features makes the model more easily operational and hence also more easy to

commercialize for our industry partner. We highlight the trade-off between accuracy

and number of features used in Table 3.3.

Another benefit of the use of multinomial logistic regression is that, should our

collaborator wish to increase the complexity of the model by incorporating addi-

tional features, the linearity of the model structure will allow it to remain highly

interpretable. In addition, future enhancements through incorporation of additional

features would enable increased personalization at the individual customer level and

will provide information on the marginal effect of customer features (e.g., age, in-

come) on the likelihood of signing up for various services. Furthermore, to prevent

over-fitting, ℒ1 and ℒ2 regularization are imposed to regularize the coefficients asso-

ciated with the multinomial logistic regression, adding robustness to the model and

reducing the number of features required for prediction.

Table 3.1 and Table 3.2 show respectively the service propensity modeling out-of-

sample results for CWC and Random Forests (RF). We detail the meaning of these

metrics in §B.4 of the Appendix. We find that the CWC method achieves extremely

comparable performance to the RF model while being much more interpretable. Fur-

thermore, we note that while our algorithm utilizes all features for the purposes

of cluster assignment, the cluster-wise classification models use only seven features

which correspond to which services our collaborator chooses to show. In contrast, the

Random Forest model utilizes all customer features, making it much more complex.

103

Precision Recall F1-Score Support

None Purchased 0.809 0.651 0.722 2922

Assembly 0.671 0.888 0.764 2863

Warranty 0.757 0.691 0.722 2861

PLCC 0.651 0.605 0.627 1468

Accuracy 0.723 10114

Macro-Average 0.722 0.709 0.709 10114

Weighted Average 0.732 0.723 0.720 10114

Table 3.1: Out-of-Sample Cluster-While-Classify Performance Using Only Action Fea-
tures

Precision Recall F1-Score Support

None Purchased 0.836 0.663 0.739 2922

Assembly 0.637 0.971 0.770 2863

Warranty 0.801 0.614 0.695 2861

PLCC 0.687 0.582 0.630 1468

Accuracy 0.724 10114

Macro-Average 0.740 0.707 0.709 10114

Weighted Average 0.748 0.724 0.720 10114

Table 3.2: Out-of-Sample Random Forest Baseline Model Performance Using All
Features

Table 3.3 shows respectively the CWC performance obtained using all features for

classification, with ℒ1-regularization applied for sparsity, while Table 3.4 shows that

the incorporation of additional features can lead to an approximate 3% increase in

performance, as measured by the Macro-Average F1-Score. We conclude that we can

attain a high level of performance with CWC using only seven features, striking the

right trade-off between accuracy and interpretability, while allowing our collaborator

104

to incorporate additional features into the cluster-wise classification models in order

to increase the level of personalization that can be achieved.

Precision Recall F1-Score Support

None Purchased 0.780 0.705 0.741 2922

Assembly 0.710 0.900 0.788 2863

Warranty 0.799 0.659 0.714 2861

PLCC 0.669 0.705 0.686 1468

Accuracy 0.739 10114

Macro-Average 0.737 0.734 0.731 10114

Weighted Average 0.747 0.739 0.737 10114

Table 3.3: Out-of-Sample Cluster-While-Classify Performance Using All Features

Features Used # Features F1 Macro-Avg % Improvement

Retailer’s Actions Only 7 0.709 -

All, ℒ1-regularized 101 0.731 3.10%

Table 3.4: Cluster-While-Classify Performance as a Function of Number of Features
Used

In addition to these aggregate performance metrics, we found that the CWC

approach was able to provide extremely granular customer segmentation based on

the decision tree structure we use for cluster assignment, and we were able to identify

the most likely responses to our collaborator’s actions for each cluster. To illustrate

this, consider the path highlighted in red in Figure B-1 of the Appendix.

By tracing the splits leading to the leaf node boxed in red, which corresponds

to assignment to cluster 2, we can discern that customers falling into this leaf node

(a) were acquired by our collaborator (i.e., shared their email with our collaborator)

within the past ≈ 9 years, (b) have visited at least one assembly-eligible product

display page during their current session, (c) were email acquired more than 1 year

ago, but have never purchased (corresponding to a marketing visitor type of “Lapsed

105

Non-Past-Purchaser," (d) have not yet clicked on any PLCC call-to-actions during

their current session, (e) have no service add-ons in their cart currently, and (e) are

currently viewing a product whose display price is greater than $446.23.

After using rules such as those exemplified above to segment customers into clus-

ters, for each cluster, we can also identify the most likely response to Wour collab-

orator’s decisions to show them different combinations of services. Figure 3-1 below

shows the probabilities of various service sign-up response outcomes associated with

the actions that our collaborator chooses. For example, if only the PLCC service

was shown to customers in this cluster, the associated cluster-wise multinomial logit

model predicts that these customers have an 88.5% probability of signing up for the

PLCC service. On the other hand, if all three services (Assembly, Warranty, and

PLCC) were shown to these customers, the probability of choosing the PLCC service

falls to 52.8%. The interactions between our collaborator’s actions and response prob-

abilities for this cluster signify that certain customer segments can be highly sensitive

to our collaborator’s service display decisions. We highlight this particular cluster

as an example, and note that other clusters displayed greater stability with respect

to their response probabilities. For example, for any of our collaborator’s display

decision that includes the Assembly service, customers in cluster 3 have over a 90%

probability of selecting the Assembly service, according to the cluster-wise multino-

mial logit model. As demonstrated by the example above, there is significant value

Figure 3-1: Action to Customer Response Matrix for Cluster 2

from employing a segment-based classification approach for service display response

modeling. In addition to discovering groups of customers with similar response be-

106

havior, we also found that different customer segments have different sensitivities to

competing service call-to-actions. These findings serve as key inputs to the optimal

service presentation component of the study.

3.4.2 NPV Estimation

The goal of this section is to estimate the NPV of each service independently, using

similar features as for the propensity estimation as described at the beginning of the

section. The target variable for this problem becomes the 𝑡-day Post-Intervention

Gross Revenue Stable (GRS) from a given customer, where 𝑡 ∈ {30, 90, 180, 365}. We

refer to the subset of customers that were offered a particular service as the cohorts.

Customers that signed up for this service fall into the treatment group, and those

who did not fall into the control group.

Each cohort contains between 2800 and 5000 customers in the treatment group,

depending on the service. The per-cohort control groups contain anywhere from

80,000 to 300,000 observations, depending on the service and covering the year 2019.

We use the the Double Machine Learning and Causal Forests methodology as

presented in §3.3 to obtain estimates for the 6-month incremental revenue generated

for the PLCC, Warranty, and Assembly services. We emphasize that the following

incremental revenue estimates are the “halo-effect" component of the NPV, and do

not include the immediate profit generated when a customer purchases a service. For

the PLCC service, we estimated the 6-month incremental revenue to be around $200

with a 95% confidence interval of approximately [$150, $250]. For the Warranty

service, we estimated the 6-month incremental revenue to be less than $50 with a

95% confidence interval of approximately [$5, $80]. For the Assembly service, we

estimated the 6-month incremental revenue to be above $130 with a 95% confidence

interval of approximately [$100, $200]. The exact number are not given for confiden-

tiality purposes. In addition to obtaining aggregated point estimates for each service,

we also utilized interpretable surrogate explainers to provide clarity surrounding the

individual treatment effect estimates that were obtained. Figure B-2 is a visualisation

of a single-tree that approximates the full causal forest utilized to estimate heteroge-

107

neous NPV. Customers are partitioned into different subgroups, represented by the

various nodes. The darker the shade of green, the higher average NPV associated with

customers belonging to that corresponding nodes.. It can be observed that approxi-

mately half of the customers (10,325 of 21,895) fall into the white-colored leaf node

and have an average incremental value above $130. However, the customers who fall

into the green colored leaf nodes—customers who exhibit higher engagement with our

collaborator’s website prior to sign-up—have slightly higher incremental values, with

customers in the rightmost leaf node having an average incremental value above $150.

Our collaborator analysts and service owners can use the surrogate explainers we have

created for each service to inform their customer targeting efforts. For example, for

the Assembly service, targeting strategy should be concentrated towards higher en-

gagement customers, as they have the potential to provide 15% greater incremental

value as compared to lower engagement customers.

We also give insight on two wider questions that are of interest to our industry

partner:

1. What does the time trajectory of incremental value for the services look like?

2. How far into the future can we be confident in estimating incremental value?

Regarding the time trajectory, we created multiple models to estimate the rev-

enue at specified time periods from the day of intervention—30, 90, 180, and 365

days. From each of these models, we could obtain a point estimate for the average

incremental value up to the corresponding time period, associated standard errors,

and hence confidence intervals around the estimates. As shown in Figure 3-2 below,

we can see that the PLCC service has a linear trajectory over time, while the As-

sembly and Warranty services have an asymptotic (increase-then-plateau) trajectory

over time.

Comparison of incremental value trajectories across the different services reveals

a number of key insights. To begin, we found that PLCC has the highest average

incremental value of the three services, with an increase in incremental value of close

to $1/day. The linear trend associated with the PLCC service, as compared to the

108

Figure 3-2: Time Trajectories of Incremental Value for 3 Services

asymptotic trends of the Assembly and Warranty services, suggests that differences in

incremental value might arise from long-term engagement services versus short-term

engagement services. This insight could be especially useful for our collaborator as

they continue to expand their offerings by introducing new services in the future.

With respect to prospective services it is important to note, of course, that profit

margins must be considered in addition to incremental revenue dollar values and

trends compared to lower engagement customers.

3.4.3 Optimal Service Offering Prescription

Finally, we are now in a position to transform the estimates from our NPV models

and predictions from our service sign-up propensity model into prescriptions for what

services to showcase to customers on the product display page.

We use the formulation described in the optimization section of §3.3. The decision

variable 𝒮 corresponds here to the display of a particular combination of services (e.g.,

one action could be displaying PLCC and Assembly; another could be displaying

PLCC and Warranty). The set of seven possible options that our collaborator has

in terms of actions are (i) Display Assembly, (ii) Warranty, Display Assembly &

Warranty, (iii) Display Assembly & PLCC, (iv) Display Warranty & PLCC, (v)

Display (vi) Assembly Only, Display Warranty Only, and (vii) Display PLCC Only.

Recall that 𝑓𝑆𝑆𝑃 (𝑌 = 𝑖|𝒮𝑗) for product 𝑖 given assortment 𝒮𝑗 is the probability of

sign-up estimated by our propensity model, while 𝑁𝑃𝑉𝑖 is the estimated Net Present

Value for this product 𝑖. The other parameters are given. We implement this for-

109

mulation and run a simulation on historical customer session while tracking the 3

key metrics: the estimated increase in profits and incremental 6-month revenue, the

estimated percentage of session-PDPs in which we could have reduced the number of

services shown and the Distribution of the new set of actions compared against the

distribution of the historical set of actions. We summarize the detailed breakdown

for the prescribed service offering, in comparison with the historical breakdown in

Figure 3-3. We anonymize the name of the services for confidentiality purposes. The

numbering in the pie chart does not correspond to the numbering of the services pre-

sented above. We observe that our optimization formulation prescribed a shift away

from displaying all the services that the customer could sign-up for towards displaying

individual services which our service sign-up model indicates the customer is highly

likely to sign-up for. Our simulations also indicate that our collaborator can reduce

the number of services displayed in 60-70% of eligible customer sessions, resulting in a

significant opportunity for our collaborator to curate their service messaging efforts.

Figure 3-3: Historical (LEFT) vs Prescribed (RIGHT) breakdown of the service of-
fering (anonymized)

Based on a simulation involving over 21,000 historical eligible customer sessions,

we estimated that our collaborator would have been able to generate about 2.5-

3.5% uplift in revenue, which translates to about $650-800 in increased revenue in

dollar terms for these sessions. Scaling this to all eligible customers based on our

collaborator’s 2019 website traffic data, we would expect that we would be able to

generate about $80-100 million in revenue uplift for our collaborator when this model

will be fully deployed. Assuming a 20% gross profit margin, this translates to around

110

$15-20 million in profits.

3.4.4 Managerial Insights

The framework introduced in this chapter can be used to inform both macro and

micro level business decisions. We discuss how different components of the frame-

work (NPV estimation, customer segmentation and service optimization) can be used

independently and in-tandem to inform business decisions.

• Ancillary service management: the NPV estimation discussed in the chapter

provides a framework of leveraging platform data to estimate long term bene-

fits of ancillary services on customer purchase behavior. Ancillary services are

popular, not only in retail but also in other industries (notably, the airline indus-

try). With the size of ancillary offerings growing in recent years, understanding

which services would lead to the most bottom line benefit for the platform

becomes crucial.

• Heterogeneous customer behavior: customers have highly heterogeneous tastes.

To meet these heterogeneous needs, platforms must estimate personalized mod-

els that can guide decision making. We find that grouping customers into seg-

ments, and understanding “personalized" tastes leads to substantial improve-

ment in customer ancillary service purchase behavior.

• Incorporating long term effects in service display optimization: Long term ef-

fects of service purchases can be considerable, Hence, simply optimizing for im-

mediate reward can lead to long-term sub-optimal decisions. We propose that

platforms should account for both long term revenue potential from a service,

along with immediate revenue generation while optimizing for service displays.

3.5 Insights from Synthetic Experiments

While in the previous section we showed the effect of the proposed framework for

our industry collaborators, in this section we discuss the performance of the proposed

111

framework against other benchmark methods. We first compare the CWC algorithm

against other benchmark algorithms and then discuss the sensitivity of the ASDO

algorithm with respect to different problem parameters. In this section, we test the

accuracy of the CWC method through synthetic experiments, and extract insights on

the scalability of the ASDO algorithm and its sensitivity to the maximum number of

displayed ancillary services and to the sensory overload.

3.5.1 CWC Accuracy Benchmark

We perform synthetic experiments to compare the performance of CWC with other

state-of-the-art benchmark methods.

Benchmark algorithms: We benchmark the CWC method against state-of-the-

art predictive methods. These methods include Decision Trees ([39], CART), Latent

Class Analysis ([104], LCA, with the EM algorithm) and Random Forest ([40], RF),

although the later does not provide the same interpretability as the CWC method.

Data generation process: We create a dataset with 𝑛 ∈ N observations, each

observation represents a customer at a certain time, with particular features, as well as

the features of the product shown to this customer. There are 𝑝 ∈ N possible services

that can be offered alongside this product, and hence the target variable is which of

these services, if any, did this customer buy, making it a 𝑝+1-class classification task.

We generate each observation as follows: (i) We draw the customer features as

binary variables that are sampled uniformly at random; (ii) service features are drawn

as continuous variables drawn from a uniforms distribution [0, 1]; (iii) these observa-

tions are then clustered according to a clustering algorithm (for e.g. using the 𝑘-means

clustering algorithm, 𝑘 ∈ R) based on customer features only to create customers seg-

ments; (iv) the response class is generated from a multinomial logit response function

for each cluster, using only the product features from normal distributions. This

allows us to create the labels for each observation. We split the final data set into

a training set (75% of the observations) and a testing set (the remaining 25%). We

112

then train the CWC, LCA, CART and RF on the training set and evaluate the out-of-

sample accuracy, i.e. the percentage of time the predictions are correct on the testing

set. All hyper-parameters of the models are decided using 10-fold cross validation.

We set the number of observations to be 𝑛 = 10, 000 and the number of ancillary

products to be 𝑝 = 3. The number of clusters are selected to be 𝑘 = 4 and we split

the total features into 40 customer features and 40 product features. we obtain the

following results (Table 3.5 (Experiment 1)). Similarly, in Table 3.5 (Experiment 2),

we present results from changing the proportion of customer features and increasing

it to 60 versus 20 product features.

Out-of-Sample Accuracy Experiment 1 Experiment 2

LCA 0.152 0.2372

CART 0.4408 0.3852

RF 0.5172 0.4408

CWC 0.605 0.506

Table 3.5: Results of the benchmark for the two experiments (Experiment 1: 40
customer features and 40 product features, Experiment 2: 60 customer features and
20 product features).

We notice that in both cases, CWC outperforms the other benchmark algorithms,

with more than 7% improvement in terms of out-of-sample accuracy on average com-

pared to RF, despite being more interpretable. We also obtain more than 12% im-

provement on average compared to CART. The LCA method does not perform well

in these experiments due to the lack of latent variables.

3.5.2 ASDO Computational Scalability

While the number of ancillary services for our collaborator were only three, in this

section we show that the proposed ASDO algorithm scales well for optimization prob-

lems with a much larger set of services. Recall that the ASDO framework solves a

Linear Program 𝑝 times, where 𝑝 is the total number of ancillary services. Its com-

plexity is consequently polynomial in 𝑝. We test its scalability by varying 𝑝 in a

113

synthetic simulation similar to the previous subsection. For different values of 𝑝, we

randomly sample the product utilities, revenue from the underlying product (B) is

assigned value $10 and c is fixed to be 0.1. In Figure 3-4 we present the computational

time of the ASDO algorithm as we change the number of ancillary services. We find

that the ASDO algorithm is able to find the optimal assortment of ancillary services

in minutes, even when the number of services scale to 1000 showing the practical

applicability of the model.

Figure 3-4: Evolution of the total run-time versus the number of ancillary services.

Both the NPV estimation, the CWC predictions and the ASDO optimization scale

well for reasonably sized datasets. Our computational testing leads us to believe that

our end-to-end framework is scalable.

Sensitivity to the cost parameter 𝑐: In this section, we show how our frame-

work depends on the cost parameter parameter 𝑐, that penalizes the number of dis-

played products. Recall that 𝑐 models the reduction in the probability of purchasing

the original product as a function of the number of ancillary services. As one might

expect, the expected revenue goes down for a given size assortment we increase the

cost parameter 𝑐. Nevertheless, even in the case when c=0, it is not optimal to

show all ancillary services. This is because adding more ancillary services reduces the

probability of purchasing existing services in the assortment (follows from the MNL

model). In fact, the optimal assortment in this case is of size 40 out of a potential

set of 100 products.

Figure 3-5 confirms that despite having 𝑐 = 0 and total number of ancillary

114

Figure 3-5: Expected revenue (in $) versus maximum number of services shown. In
this example the number of possible ancillary services is 𝑝 = 100.

services 𝑝 = 100, the optimal number of services to show is 40. It also illustrates

that the optimal number of product shown decreases with 𝑐, and that their is a linear

dependency. We conclude that the solution to the ASDO algorithm is non trivial,

and that the framework can properly account for sensory overload as it was designed

to do.

3.5.3 Testing the end-to-end framework on a synthetic exam-

ple

The framework that we propose is not restricted to a retail setting. In order to

showcase this, we discuss a synthetic case study inspired from the airline industry and

show the usefullness of the framework in this setting. We note that the case study

is purely for illustrative purposes and because of lack of data, we sample different

problem parameters for the experiments.

We start by discussing the ancillary service optimization problem in the context

of the airline industry first.

• The ancillary services are the auxiliary products provided by the airline com-

pany: seat choice, premium meal, priority privileges, excess baggage, etc. Note

that the synthetic nature of the experiment allows us to artificially increase the

number of such ancillary services as much as desired.

• The customer-related features are booking date, number of flights booked in

115

the past, average price of these flights, number of miles and status with the

airline. We generate the booking date as the number of days in advance the

flight is being booked, through an exponential distribution. The number of

flights booked in the past as well as the status with the airline are generated

as categorical variables (0 for first-time users, 1 for infrequent users or 2 for

frequent users) from a uniform distribution. The average price is drawn from

normal distribution. We vary the parameters of these distribution throughout

the case study for more robust results.

• The features related to the product itself here include time of the flight (drawn

from a normal distribution), whether it is connecting flight or not, the size

of the aircraft, the popularity of the destination (all three drawn from uniform

distributions), and finally the price of the product, which is drawn using a linear

response to the previous features, as well as unobserved, latent features such as

whether there is an event at the destination.

• Additionally, we add the price of the ancillary products as a feature, and we

draw it from different normal distributions.

• Finally, the response function is which ancillary product(s) did the customer

buy, if any. The underlying assumption here is that there exist different types of

travelers (classes) and each one of these types have a different response function

to features of the product and the services, which we take as a multinomial logit

for the purpose of the case study.

We generate 40, 000 observations, with 40 customer features and 40 product fea-

tures, grouped into 4 clusters. We consider 𝑝 = 20 ancillary services. We also generate

the Net Present Values of the services at random. We first test the CWC method on

this case study, and compare it to RF, the only clear competitor from the synthetic

experiments. We obtain an out-of-sample accuracy for CWC of 0.594 (vs. 0.5288 for

RF). We then apply the ASDO algorithm to get the optimal service display(Figure

3-6). Importantly, we find that segmentation plays an important role and not all

116

services are displayed to customers of all segments. Furthermore, both the optimal

assortment size, as well as the services shown, vary from cluster to cluster.

Figure 3-6: Optimal Assortment of Ancillary Services for each Cluster. Yellow means
the service is shown, Blue means the service is not shown. For example, service 1
is shown to every type of customer, while service 4 is never shown, and service 8 is
shown to everyone except customer class 3. We also note that not the same number
of products is shown to each class of customers.

In conclusion, our end-to-end framework is general, flexible, interpretable, and

competitive in terms of accuracy with alternative methods.

3.6 Conclusions

In this chapter, we have tackled the problem of personalized ancillary service adver-

tising in a holistic way: from prediction and causal estimation to prescription. We

developed a novel method to estimate the propensity of each service, called Cluster-

While-Classify (CWC), that jointly creates clusters of customers based on their fea-

tures and historic behavior, and trains classification predictive models within each of

these clusters to model their unique responses. This method is accurate, with more

than 74 % out-of-sample accuracy across 7 different combination of services, and

is interpretable —and directly actionable— for decision makers. We also leveraged

Double Machine Learning (DML) and Causal Forests (CF) to estimate the NPV, or

Net Present Value of these services. Finally, we formulated the corresponding op-

timization problem for personalized prescription of service offering that maximizes

the long-term revenue and proposed an algorithm to solve it efficiently. This holistic

117

framework offers a transformative and sustainable impact for our industry partner,

that is actively testing it and deploying it, with an estimate 2.5-3.5% uplift in revenue,

with translates to roughly $80-100 million.

118

Chapter 4

Holistic Prescriptive Analytics for

Continuous and Constrained

Optimization Problems

4.1 Introduction

A key objective in Operations Research (OR) is to obtain decisions based on data.

The traditional approach in OR is to build models from which we can derive decisions.

By and large, data in OR models has only played a supporting role. In contrast, data

in Machine Learning (ML) models has played a protagonistic role.

We are given training data {𝑥𝑖, 𝑦𝑖, 𝑧𝑖} and a cost function 𝑐(𝑦𝑖, 𝑧𝑖) for 𝑖 ∈

{1, . . . , 𝑛} = [𝑛], 𝑛 ∈ N, where 𝑥𝑖 ∈ R𝑚 is the vector of covariates for observa-

tion 𝑖, 𝑦𝑖 ∈ R is the outcome, and 𝑧𝑖 ∈ 𝒵 the decision set. Our goal is to prescribe

an optimal treatment that minimizes the cost function 𝑐 for a new observation 𝑥0.

We introduce the decision variable 𝑧𝑖 ∈ 𝒵 for 𝑖 ∈ {0, . . . , 𝑛} which is the treatment

that we prescribe for observation 𝑖, in contrast with 𝑧𝑖 ∈ 𝒵 which is the observed

treatment, and which is available only for 𝑖 ∈ [𝑛], i.e., training data.

Since the outcome of the new observation 𝑥0 is unknown, we need to predict it in

order to be able to compute its cost, and ultimately prescribe an optimal 𝑧0. If we

119

are given the function 𝑓(𝑥0, 𝑧0), ∀𝑧0 ∈ 𝒵, to predict the outcome for 𝑥0 under any

treatment 𝑧0, the problem we are trying to solve can be written as in Problem (4.1).

min
𝑧0

𝑐(𝑓(𝑥0, 𝑧0), 𝑧0)

s.t. 𝑧0 ∈ 𝒵.
(4.1)

The standard paradigm for this type of prescriptive problems has been to learn 𝑓

separately within a class of ML functions ℱ such that it minimizes the mean-squared

error on the predictions over the training data as described in Problem (4.2), then to

use it in order to solve Problem (4.1) in a predict-then-optimize fashion.

min
𝑓

𝑛∑︁
𝑖=1

(𝑦𝑖 − 𝑓(𝑥𝑖, 𝑧𝑖))
2

s.t. 𝑓 ∈ ℱ .

(4.2)

Note that what we mean by minimizing over 𝑓 in Problem (4.2) is minimizing

over a finite number of parameters that fully define the function 𝑓 , for example the

weights 𝑊 of the neurons if 𝑓 is a neural network, the design 𝑇 of the tree if 𝑓 is

a decision tree, or the coefficients 𝛽 of the regression if 𝑓 is a linear, polynomial or

convex regression.

However, going beyond the standard predict-then-optimize paradigm, recent ef-

forts have tried to go directly from data to decisions using ML methods. [27] propose

a framework that can accommodate a large number of ML algorithms, works for

both continuous and discrete variables, and can also accommodate constraints, but

still utilizes the two-stage framework of first training a predictive model, and then

prescribing in a sequential fashion, despite not using the predictions themselves in

the second stage. [24] propose an extension of Optimal Classification and Regression

Trees ([22]) called Optimal Prescriptive Trees (OPTs), that simultaneously predicts

and prescribes. While the method is powerful and interpretable, it is limited by that

120

the decisions need to be discrete and small in cardinality, and cannot be constrained.

In this chapter, we propose a generalization of OPTs to a larger class of ML

methods than trees, that simultaneously predicts and prescribes, can accommodate

continuous decisions as well as discrete decisions of high cardinality, and also allow

constraints on the decision variables.

To prescribe an optimal treatment 𝑧0, we propose a framework for prescriptive an-

alytics that jointly regroups observations into clusters with similar behaviors, learns

a predictive model over each of these clusters and prescribes the optimal decisions

under constraints. The intuition behind this framework is that clustering allows to

achieve higher accuracy by aggregating data into clusters and to divide the training

process into smaller subproblems, while performing all the tasks (clustering, predic-

tion and prescription) jointly allows us to find the right trade-off between accurate

predictions and optimal decisions, in a tractable way that can account for continu-

ous and constrained decision spaces. This framework can be used with a wide range

of predictive ML methods and cost functions for the prescriptions, with both con-

strained and unconstrained problems, as well as with a decision space that can be

infinite or even continuous. We show that the proposed method, which we will refer

to as Holistic Prescriptive Analytics method or HPA, is scalable, and that it

significantly improves state-of-the-art performance.

Like OPTs, our framework also provides interpretability when the ML methods

used are interpretable, which can be vital in some applications (See Section 4.6 for a

Case Study).

4.2 Relevant Literature

The standard paradigm in real-world analytics problems involving prediction and

optimization is predict-then-optimize, where ML tools are used to predict a point

estimate of an uncertain quantity, that is then plugged in a nominal optimization

problem to solve for the optimal decisions.

121

4.2.1 Predict-then-Optimize Methods

Due to the poor performances of this paradigm, researchers have tried to account

for the variability of the prediction by solving the optimization problem over the

expected value of the prescription cost, and by approximating this expected value by

the empirical sample average (Sample Average Approximation SAA), see for example

[35]. On the other hand, researchers proposed to use Robust Optimization instead

of Stochastic Optimization to solve for the optimal decisions once the prediction is

made, see for example [16] and [25]. In this case, the uncertainty of the prediction is

accounted for by considering the worst-case scenario within an uncertainty set.

[103] combines both approaches by proposing a more robust estimation of SAA us-

ing propensity scoring. [73] extends the predict-then-optimize framework into a Smart

Predict-then-Optimize (SPO) by introducing an SPO loss function which measures

the decision error induced by a prediction as the new objective function for the predic-

tion phase. This prediction is then used as a point estimate in the optimization phase

in the same way as the standard predict-then-optimize. A similar idea is explored in

[164], which, while remaining a two-stage sequential approach, specifically trains the

predictive model to perform well on the prescriptive problem by incorporating the

latter in the gradient-based training of the former.

[65] also proposes a way to make ML and combinatorial optimization interact in

the predict-then-optimize framework, first by proposing an algorithm with ranking

objectives in the case of learning linear functions ([65]), and then by extending it to

the case of optimization problems solvable by dynamic programming ([144]) with the

same linearity constraints.

4.2.2 Direct Methods

The difference between direct methods and the predict-then-optimize framework is

that the prescriptions are made at the same time as the predictions, or there is a

feedback-loop between the prediction process and the prescription process instead of

having a sequential structure.

122

[157] introduces the idea of integrating operational cost into the training of ML

models by adding it directly into the objective function for the prediction with either

an optimistic or a pessimistic bias and shows that the simultaneous optimization is

more effective than the sequential one. However, the proposed formulation can be

computationally very difficult.

[27] also moves away from the predict-then-optimize paradigm and uses a frame-

work that leverages previously trained ML models in a prescriptive optimization

problem without actually using the point estimate by optimizing over a weighted

combination of training samples instead with the weights computed based on the ML

methods trained for the prediction. [24] introduces OPTs, which change the objective

function of the Optimal Classification and Regression Trees [22, 23] to account for

the prescription cost, and hence making the prediction and the optimal decisions at

the same time instead of sequentially. However, the decisions need to be discrete

and small in cardinality and cannot be constrained, due to the complexity of the

formulation of the prescriptive tree model.

[64] draws a similar conclusion by benchmarking a wide range of predict-then-

optimize method and direct methods on the Knapsack problem: direct methods out-

perform alternative indirect methods; however, their tractability seems limited. [64]

highlights the need for better direct methods and more automatic ways to create

semi-direct approaches to a new optimization problem, which is exactly what we do

in this chapter. We propose a tractable, holistic approach with clustering and an al-

ternative iterative search algorithm to keep the framework tractable even when other

methods fail, while still leveraging the benefits of simultaneous optimization.

4.2.3 Contributions

Motivated by these recent efforts in advancing the field of prescriptive analytics and

the limitations of some of the existing algorithms, we develop a prescriptive framework

that

1. Can accommodate a wide range of ML methods for prediction: for

123

example, Linear Regression, Elastic Net, Support Vector Machines, Convex

Regression ([29]), and Convex Neural Networks ([17]) in the case of a convex

prescriptive cost function, and any ML method (e.g., Decision Trees) in specific

cases where the predictive loss and the prescriptive cost have the same structure

(e.g., any ML method minimizing the squared loss if the cost function is of the

form 𝑐(𝑦, 𝑧) = 𝑦2).

2. Simultaneously predicts and prescribes, moving away from the predict-

then-optimize paradigm.

3. Allows continuous and constrained decisions.

4. Allows the uncertain outcome 𝑦 to be also a function of the decisions

𝑧.

5. Regroups the observations into clusters of similar behavior which en-

ables us to achieve higher accuracy by aggregating data into clusters and to

divide the training process into smaller subproblems for tractability purposes.

6. Has strong computational performance and wide applicability for both

synthetic and real world datasets.

We test different versions of this framework and perform extensive numerical ex-

periments to benchmark the predictive accuracy, prescriptive cost, scalability and

interpretability of the framework (see Section 4.6). We perform these experiments

on synthetic data, i.e., generated data where the underlying behavior, and hence

the counterfactuals, are known, and on two real-world case studies: a diabetes case

study where we prescribe an optimal treatment in order to minimize the expected

average blood sugar levels of patients, and an assortment optimization case study

where we optimize display for a food retailer in order to maximize revenue. In the

former case study we use an interpretable approach due to the medical nature of the

application. In these experiments, we show that the HPA framework is scalable and

provides a performance edge over alternative methods. Across the 3 computational

124

experiments that we detail in this chapter, with datasets up to 100,000 observations

and about 100 features, we observe between 14% and 30% improvement in terms

of out-of-sample prescriptive cost compared to the predict-then-optimize baseline,

and between 5% and 17% improvement compared to the state-of-the-art predictive-

prescriptive method ([27]).

4.3 Proposed Approach

The first idea of our approach combines Problem (4.1) and Problem (4.2) by jointly

learning the predictive function and prescribing an optimal treatment. This is done by

minimizing over 𝑓 and 𝑧 the weighted average of the prediction error on the training

data and the prescriptive cost on both the training data and the new data point 𝑥0.

We denote 𝜆 ∈ [0, 1] the weight of the prediction error and (1− 𝜆) the weight of the

prescriptive cost. We obtain Problem (4.3):

min
𝑓,𝑧

𝜆
𝑛∑︁
𝑖=1

(𝑦𝑖 − 𝑓(𝑥𝑖, 𝑧𝑖))
2 + (1− 𝜆)

𝑛∑︁
𝑖=0

𝑐(𝑓(𝑥𝑖, 𝑧𝑖), 𝑧𝑖)

s.t 𝑧0, . . . ,𝑧𝑛 ∈ 𝒵.

(4.3)

Note that the first part of the objective function of Problem (4.3) is exactly the

objective function of Problem (4.2), weighted by 𝜆. The second part of the objective

function of Problem (4.3) is just the cost function used in Problem (4.1), weighted by

1− 𝜆, and applied to both the new data point 𝑖 = 0 and the training data 𝑖 ∈ [𝑛] in

order to account for the entire prescriptive cost, even though the final objective is just

to get an optimal treatment 𝑧0 only. The weights given to the prescriptive cost and

the predictive cost are controlled by 𝜆. For 𝜆 = 1 the problem is purely predictive,

and for 𝜆 = 0, the problem is purely prescriptive. Both extreme values will result

in poor performances out-of-sample on the final cost function. That is why this 𝜆

is chosen through cross-validation to properly calibrate the weight given to each of

these two costs in the optimization problem.

125

Our overall approach extends Problem (4.3) by clustering each observation 𝑖 ∈

{0, . . . , 𝑛} into a cluster 𝑗 ∈ [𝑘], where 𝑘 is a predefined number of clusters. Then,

within each cluster 𝑗, we train a different predictive model 𝑓𝑗 to predict outcomes

based on covariates and treatments. Since we do not have any outcome for observation

𝑥0, we assign it to the cluster that minimizes the average distance in terms of features

of its points to 𝑥0. Here, we take the ℓ2-norm, but any other tractable distance can

be considered. The key of our approach is that all three steps (clustering, prediction

and prescription) are done jointly.

We also define the following additional notation:

(a) 𝑢𝑖,𝑗: the binary outcome of whether observation 𝑖 is assigned to cluster 𝑗.

(b) 𝑓𝑗: a function that learns the prediction of the outcome 𝑦 based on the covariates

𝑥 and the observed prescriptions 𝑧.

(c) 𝑁𝑚𝑖𝑛: hyper-parameter defining the minimum number of training observations

in each cluster.

Problem (4.3), with the additional layer of clustering becomes Problem (4.4).

min
𝑢,𝑓 ,𝑧

𝜆
𝑛∑︁
𝑖=1

𝑘∑︁
𝑗=1

𝑢𝑖,𝑗(𝑦𝑖 − 𝑓𝑗(𝑥𝑖, 𝑧𝑖))
2 + (1− 𝜆)

𝑛∑︁
𝑖=0

𝑘∑︁
𝑗=1

𝑢𝑖,𝑗𝑐(𝑓𝑗(𝑥𝑖, 𝑧𝑖), 𝑧𝑖)

s.t 𝑧0, . . . ,𝑧𝑛 ∈ 𝒵 (constraints on decisions),
𝑛∑︁
𝑖=1

𝑢𝑖,𝑗 ≥ 𝑁𝑚𝑖𝑛, ∀𝑗 ∈ [𝑘] (minimum number of training observations per cluster),

𝑘∑︁
𝑗=1

𝑢𝑖,𝑗 = 1, ∀𝑖 ∈ {0, . . . , 𝑛} (one observation is assigned to exactly one cluster),

𝑢0,𝑗 ≤ 1

⎛⎜⎜⎝𝑗 = argmin
𝑗′∈[𝑘]

𝑛∑︀
𝑖=1

𝑢𝑖,𝑗′‖𝑥0 − 𝑥𝑖‖22
𝑛∑︀
𝑖=1

𝑢𝑖,𝑗′

⎞⎟⎟⎠ ,∀𝑗 ∈ [𝑘] (𝑥0 is assigned to the closest cluster).

(4.4)

Note that the last constraint of Problem (4.4) enforcing that 𝑥0 is assigned to

the closest cluster is an inequality instead of an equality to ensure that the problem

126

remains feasible if several clusters satisfy the closeness condition.

To highlight the fact that 𝒵 can be constrained, we replace, without loss of gen-

erality, 𝒵 by {(𝑧0, . . . ,𝑧𝑛) | ℎ𝑟(𝑧0, . . . ,𝑧𝑛) ≤ 𝑏𝑟, 𝑟 ∈ [𝑠]} for some 𝑠 ∈ N. These

constraints on the decisions can for example be budget constraints. Our proposed

approach can then be summarized in Problem (4.5).

min
𝑢,𝑓 ,𝑧

𝜆

𝑛∑︁
𝑖=1

𝑘∑︁
𝑗=1

𝑢𝑖,𝑗(𝑦𝑖 − 𝑓𝑗(𝑥𝑖, 𝑧𝑖))
2 + (1− 𝜆)

𝑛∑︁
𝑖=0

𝑘∑︁
𝑗=1

𝑢𝑖,𝑗𝑐(𝑓𝑗(𝑥𝑖, 𝑧𝑖), 𝑧𝑖)

s.t ℎ𝑟(𝑧0, . . . ,𝑧𝑛) ≤ 𝑏𝑟, ∀𝑟 ∈ [𝑠] (constraints on decisions),
𝑛∑︁
𝑖=1

𝑢𝑖,𝑗 ≥ 𝑁𝑚𝑖𝑛, ∀𝑗 ∈ [𝑘] (minimum number of training observations per cluster),

𝑘∑︁
𝑗=1

𝑢𝑖,𝑗 = 1, ∀𝑖 ∈ {0, . . . , 𝑛} (one observation is assigned to exactly one cluster),

𝑢0,𝑗 ≤ 1

⎛⎜⎜⎝𝑗 = argmin
𝑗′∈[𝑘]

𝑛∑︀
𝑖=1

𝑢𝑖,𝑗′‖𝑥0 − 𝑥𝑖‖22
𝑛∑︀
𝑖=1

𝑢𝑖,𝑗′

⎞⎟⎟⎠ ,∀𝑗 ∈ [𝑘] (𝑥0 is assigned to the closest cluster).

(4.5)

Note that the use of one single 𝑥0 is for illustrative purposes, the framework

remains identical when we have 𝑛𝑡𝑒𝑠𝑡 ∈ N new observations we want to prescribe an

optimal decision for. See Appendix §C.1.

Importance of the Clustering in the HPA approach.

The clustering has two main advantages: increasing the predictive accuracy of

simpler tractable models (for example training a Linear Regression model on the

entire dataset yields worse results than training a different Linear Regression model

on each subgroup with similar underlying behaviors), and reducing the size of the

training set for the different models by training them into smaller batches.

It is also important to note that clustering and predicting at the same time adds a

value in comparison to clustering then prediction, especially when the right distance

127

metric to use is unknown. To illustrate that, consider the following example (Figure

4-1(a)) where we get labeled data points from two types of clusters (yellow and blue).

In addition to this cluster assignment, we consider that each data point is further

characterized by a single one-dimensional feature 𝑥 ∈ R. We are interested in a

continuous target variable 𝑦 ∈ R. A point in the blue region behaves according to the

true target function 𝑦 = 𝑓1(𝑥) = −50𝑥, while a point in the yellow region behaves

according to the true target 𝑦 = 𝑓2(𝑥) = 100𝑥. The goal is to use clustering and

supervised learning, here linear regression, to learn the true underlying model and

make a prediction for a new data point (the point in grey, for which we consider for

simplicity of the example that 𝑥 = 1). See Figure 4-1(b).

Figure 4-1: (a) True underlying model. (b) Data samples from this model.

By running the 𝑘-Means clustering first, and then training a linear regression

within each cluster, we obtain the results in Figure 4-2. The function 𝑓1(𝑥) = −50𝑥

is learned correctly, however the function 𝑓2(𝑥) is estimated to be 14𝑥 instead of 100𝑥,

and the new point is assigned to the wrong cluster, with a prediction 𝑦 = −50 instead

of 𝑦 = 100, i.e., with an absolute error of 150.

Figure 4-2: Results of Cluster then Predicting.

However, by clustering and predicting at the same time similarly as we do in

128

the HPA framework, we obtain the results in Figure 4-3, where the model perfectly

learns the true underlying model, and assigns the new point to the correct clusters,

predicting 𝑦 = 100, i.e., with 0 absolute error.

Figure 4-3: Results of Clustering and Predicting at the same time.

We show more experiments in Appendix §C.2, and point the reader to related

literature that shows the advantages of clustering and predicting simultaneously in-

stead of doing in sequentially: e.g, [10] proposes exhaustive benchmarks showing

that a Cluster-While-Regress (CWR) approach outperforms a Cluster-then-Regress

approach in many cases, and [130] similarly shows on synthetic data and real-world

experiments that a Cluster-While-Classify (CWC) approach outperforms a sequential

Cluster-then-Classify one.

4.3.1 Solving the General Problem

In this section, we outline Algorithm 4 for HPA. We assume that optimizing over the

predictive function 𝑓 involves a collection of parameters. We cover in Algorithm 1

the case of learning models that are fully defined by a set of parameters of fixed size

which can be globally optimized over a custom loss function. This definition includes,

but is not limited to neural networks, where the parameters are the weights of the

neurons 𝑊 𝑗, optimal trees, where the parameters are the design of the tree 𝑇𝑗 and

linear, polynomial, and convex regression, where the parameters are the coefficients

𝛽𝑗 of the regression for each cluster 𝑗. When we say optimize over the function 𝑓𝑗,

we mean optimize over the finite parameters that define 𝑓𝑗.

We propose an alternative algorithm for non-parametric and black-box models

that minimize the mean-squared error loss in Section 4.4 and expand extensively on

129

the cases of decision trees and linear regression in Section 4.5.1 and Section 4.5.2,

respectively.

We describe the Algorithm in Algorithm 4. We use a local search iterative ap-

proach with multiple restarts to solve Problem (4.5). We start with a warm start

𝑢(1) and 𝑧(1) for 𝑢 and 𝑧. Then, for 𝑡 ∈ [𝑇𝑚𝑎𝑥 − 1], we fix 𝑢(𝑡) and 𝑧(𝑡) to find 𝑓 (𝑡+1)

as in Equation (4.6) in Algorithm 4, then we fix 𝑢(𝑡) and 𝑓 (𝑡+1) to find 𝑧(𝑡+1) as in

Equation (4.7) in Algorithm 4, and finally we fix 𝑧(𝑡+1) and 𝑓 (𝑡+1) to find 𝑢(𝑡+1) as in

Equation (4.8) in Algorithm 4.

Algorithm 4 IterativeSolve(𝑋,𝑦, 𝑧, 𝑢(1),𝑧(1), 𝑁𝑚𝑖𝑛, 𝑇𝑚𝑎𝑥, 𝑘)
for 𝑡 ∈ [𝑇𝑚𝑎𝑥 − 1] do

for 𝑗 ∈ [𝑘] do

𝑓
(𝑡+1)
𝑗 = argmin

𝑓𝑗

𝜆
𝑛∑︀
𝑖=1

𝑢
(𝑡)
𝑖,𝑗 (𝑦𝑖− 𝑓𝑗(𝑥𝑖, 𝑧𝑖))

2+(1−𝜆)
𝑛∑︀
𝑖=0

𝑢
(𝑡)
𝑖,𝑗 𝑐(𝑓𝑗(𝑥𝑖, 𝑧

(𝑡)
𝑖), 𝑧

(𝑡)
𝑖), (4.6)

end for

𝑧(𝑡+1) = argmin
𝑧

𝑛∑︀
𝑖=0

𝑘∑︀
𝑗=1

𝑢
(𝑡)
𝑖,𝑗 𝑐(𝑓

(𝑡+1)
𝑗 (𝑥𝑖, 𝑧𝑖), 𝑧𝑖) s.t ℎ𝑟(𝑧0, . . . ,𝑧𝑛) ≤ 𝑏𝑟,∀𝑟 ∈ [𝑠], (4.7)

𝑢(𝑡+1) = argmin
𝑢

𝜆
𝑛∑︀
𝑖=1

𝑘∑︀
𝑗=1

𝑢𝑖,𝑗(𝑦𝑖 − 𝑓
(𝑡+1)
𝑗 (𝑥𝑖, 𝑧𝑖))

2 (4.8)

+ (1− 𝜆)
𝑛∑︀
𝑖=0

𝑘∑︀
𝑗=1

𝑢𝑖,𝑗𝑐
(︁
𝑓
(𝑡+1)
𝑗 (𝑥𝑖, 𝑧

(𝑡+1)
𝑖), 𝑧

(𝑡+1)
𝑖

)︁
s.t

𝑛∑︀
𝑖=1

𝑢𝑖,𝑗 ≥ 𝑁𝑚𝑖𝑛 ∀𝑗 ∈ [𝑘]

𝑘∑︀
𝑗=1

𝑢𝑖,𝑗 = 1, ∀𝑖 ∈ {0, . . . , 𝑛}

𝑢0,𝑗 ≤ 1

⎛⎝𝑗 = argmin𝑗′∈[𝑘]

𝑛∑︀
𝑖=1

𝑢𝑖,𝑗′‖𝑥0−𝑥𝑖‖22
𝑛∑︀

𝑖=1
𝑢𝑖,𝑗′

⎞⎠ , ∀𝑗 ∈ [𝑘],

end for

Return 𝑓
(𝑇𝑚𝑎𝑥)
1 , 𝑓

(𝑇𝑚𝑎𝑥)
2 , . . . , 𝑓

(𝑇𝑚𝑎𝑥)
𝑘 , 𝑧(𝑇𝑚𝑎𝑥), 𝑢(𝑇𝑚𝑎𝑥).

Algorithm 4 converges to a local minimum of Problem (4.5), which is why we use

multiple restarts. We can get warm starts 𝑧(1) and 𝑢(1) by setting 𝑧
(1)
𝑖 to 𝑧𝑖 for 𝑖 ∈ [𝑛]

and 𝑧
(1)
0 at random, and getting 𝑢(1) from a clustering method such as 𝑘-means on

the 𝑥𝑖’s. Note that Problem (4.8) in Algorithm 4 can be solved optimally similarly

to [30], or solved greedily by first optimizing over the values of 𝑢(𝑡+1)
𝑖,𝑗 for 𝑖 ∈ [𝑛] and

130

𝑗 ∈ [𝑘] then assigning 𝑥0 to the closest cluster in average.

The tractability of Problem (4.6) in Algorithm 4 for each 𝑗 ∈ [𝑘] depends on the

complexity of 𝑓𝑗 and that of the cost function 𝑐. It does remain tractable for a large

class of functions, for example, if 𝑓𝑗 is convex, and 𝑐 is convex, the optimization is a

convex optimization problem as a composition and sum of convex functions, which

makes this HPA approach very general, contrary to [157] which requires restrictive

properties on 𝑐 or [65] which requires 𝑓𝑗 to be linear. This applies for example for

Naive Bayes, Linear Regression, Ridge Regression, Lasso Regression, Elastic Net,

Logistic Regression, Support Vector Machines, and even Convex Regression ([29])

and Convex Neural Networks ([17]).

Furthermore, even if 𝑓𝑗 has a much more complex structure like Neural Networks,

it can still be solved in our setting in some special cases of 𝑐. We explore one of these

special cases where 𝑐 is quadratic in the next section.

4.4 Quadratic Cost Function

When the cost function can be written 𝑐(𝑦, 𝑧) = 𝑦2, we can solve Problem (4.6) in

Algorithm 4 more efficiently. In this case, we outline Algorithm 5 for HPA, which

generalizes to any ML method that minimizes the mean-squared error loss, regardless

of whether or not it can formulated as an explicit optimization problem. This in-

cludes for example greedy, non-parametric models such as CART (Section 4.5.2) and

Random Forests, and black-box models, in addition to the class of models covered by

Algorithm 4. In this section, optimizing over function 𝑓𝑗 means selecting the “best" 𝑓𝑗

with regards to the mean-squared error on a dataset that we define, within a selected

class of functions. We further discuss conditions for tractability in the complexity

analysis.

In Algorithm 5, instead of changing the objective function of the ML method 𝑓𝑗 for

each cluster 𝑗 to get Problem (4.6) in Algorithm 4, which is hard to do for some ML

131

methods such as CART ([39]) or even some complex neural network structures ([107]),

we change the dataset over which we minimize regular mean-squared error loss. If

we assume 𝜆 is rational, i.e. can be written 𝑝
𝑝+𝑞

, 𝑝, 𝑞 ∈ Z+, with 𝑝 and 𝑞 preferably

small, we create 𝑝 copies of every training observation 𝑖 in cluster 𝑗 to account for

the predictive part of the objective function as in Problem (4.9) in Algorithm 5.

Then we create 𝑞 modified copies of every observation 𝑖 in cluster 𝑗 where we set the

target variable to 0 to get exactly the prescriptive part of the objective function as

in Problem (4.10) in Algorithm 5.

Algorithm 5 PredictiveFit(𝑋,𝑦, 𝑧, 𝑙, 𝑧, 𝑘, 𝑝, 𝑞)
Let 𝜆 = 𝑝

𝑝+𝑞 , 𝑝, 𝑞 ∈ Z+.

for 𝑗 ∈ [𝑘] do

Create 𝑝 copies of every training observation 𝑖 in cluster 𝑗: 𝑥𝑖, 𝑧𝑖, 𝑦𝑖, (4.9)

Create 𝑞 modified copies of every observation 𝑖 in cluster 𝑗: 𝑥𝑖, 𝑧𝑖, 0, (4.10)

Solve the regular mean-squared error model fitting for 𝑓𝑗 on this new dataset,

i.e. 𝑓𝑗 = argmin
𝑓

𝑝�̄�𝑗+𝑞𝑛𝑗∑︀
𝑖′=1

(𝑦′𝑖 − 𝑓(𝑥′
𝑖, 𝑧

′
𝑖))

2 with the notations that variables with a “ ′ "

superscript indicate variables in the new created dataset, 𝑛𝑗 the number of observations

in cluster 𝑗 and �̄�𝑗 the number of training observations in cluster 𝑗.

end for

Return 𝑓1, 𝑓2, . . . , 𝑓𝑘.

Proposition: If there exist 𝑝 and 𝑞 ∈ Z+ such that 𝜆 = 𝑝
𝑝+𝑞

, then the output of

Algorithm 5, and that of Problem (4.6) in Algorithm 4 are equal.

Proof: Let 𝑗 ∈ [𝑘] a cluster with 𝑛𝑗 observations and �̄�𝑗 training observations.

The minimization problem in Algorithm 5 is equivalent to Equation (4.11).

132

min
𝑓𝑗

𝑝�̄�𝑗+𝑞𝑛𝑗∑︁
𝑖′=1

(𝑦′𝑖 − 𝑓𝑗(𝑥
′
𝑖, 𝑧

′
𝑖))

2

⇐⇒ min
𝑓𝑗

�̄�𝑗∑︁
𝑖=1

𝑝(𝑦𝑖 − 𝑓𝑗(𝑥𝑖, 𝑧𝑖))
2 +

𝑛𝑗∑︁
𝑖=1

𝑞(0− 𝑓𝑗(𝑥𝑖, 𝑧𝑖))
2

⇐⇒ min
𝑓𝑗

�̄�𝑗∑︁
𝑖=1

𝑝

𝑝+ 𝑞
(𝑦𝑖 − 𝑓𝑗(𝑥𝑖, 𝑧𝑖))

2 +

𝑛𝑗∑︁
𝑖=1

𝑞

𝑝+ 𝑞
(0− 𝑓𝑗(𝑥𝑖, 𝑧𝑖))

2

⇐⇒ min
𝑓𝑗

�̄�𝑗∑︁
𝑖=1

𝜆(𝑦𝑖 − 𝑓𝑗(𝑥𝑖, 𝑧𝑖))
2 +

𝑛𝑗∑︁
𝑖=1

(1− 𝜆)(𝑓𝑗(𝑥𝑖, 𝑧𝑖))
2

⇐⇒ min
𝑓𝑗

�̄�𝑗∑︁
𝑖=1

𝜆(𝑦𝑖 − 𝑓𝑗(𝑥𝑖, 𝑧𝑖))
2 +

𝑛𝑗∑︁
𝑖=1

(1− 𝜆)𝑐(𝑓𝑗(𝑥𝑖, 𝑧𝑖), 𝑧𝑖)

⇐⇒ min
𝑓𝑗

𝜆
𝑛∑︁
𝑖=1

𝑢𝑖,𝑗(𝑦𝑖 − 𝑓𝑗(𝑥𝑖, 𝑧𝑖))
2 + (1− 𝜆)

𝑛∑︁
𝑖=0

𝑢𝑖,𝑗𝑐(𝑓𝑗(𝑥𝑖, 𝑧𝑖), 𝑧𝑖)

(4.11)

Which proves the equivalence. ■

Note that if we consider different loss functions for the ML method (e.g., the ab-

solute error), Algorithm 2, and subsequent proposition still applies for cost functions

with the same structure (e.g., 𝑐(𝑦, 𝑧) = |𝑦|).

Complexity of the algorithm

In order to bound the complexity of Algorithm 4 in the quadratic case, we assume that

Problem (4.12), which minimizes the mean-squared error loss for each ML method 𝑓𝑗

over a dataset of size 𝑛 can be solved with complexity 𝒪(𝜌1(𝑛)).

min
𝑓𝑗

𝑛∑︁
𝑖=1

(𝑦𝑖 − 𝑓𝑗(𝑥𝑖, 𝑧𝑖))
2, (4.12)

We also assume that Problem (4.13) which minimizes, given 𝑓𝑗 and 𝑥, the pre-

scriptive cost for decisions 𝑧 over a dataset of size 𝑛+1 can be solved with complexity

𝒪(𝜌2(𝑛)).

133

min
𝑧

𝑛∑︁
𝑖=0

𝑐(𝑓𝑗(𝑥𝑖, 𝑧𝑖), 𝑧𝑖)

s.t. ℎ𝑟(𝑧0, . . . ,𝑧𝑛) ≤ 𝑏𝑟, ∀𝑟 ∈ [𝑠],

(4.13)

We have that complexity of solving Problem (4.6) in Algorithm 4 at each time

𝑡 which consists of fitting 𝑓1, . . . , 𝑓𝑘 using Algorithm 5 is 𝒪(
𝑘∑︀
𝑗=1

𝜌1((𝑝 + 𝑞) × 𝑛𝑗)) ,

where 𝑛𝑗 is the number of observations in cluster 𝑗. Complexity of solving Problem

(4.7) at each time 𝑡 is 𝒪(𝜌2(𝑛)), while Problem (4.8) in Algorithm 4 is an assignment

problem, completely independent of the complexity of the ML model or that of the

constraints on the decisions, its complexity is negligible compared to the 2 previous

steps.

So we have a total complexity of 𝑞𝑇 bounded by 𝑂(𝑇𝑚𝑎𝑥(𝑘𝜌1((𝑝 + 𝑞) × 𝑛) +

𝜌2(𝑛))). On average, for evenly-distributed clusters, this complexity becomes 𝑞𝑇 =

𝑂(𝑇𝑚𝑎𝑥(𝑘𝜌1((𝑝+ 𝑞)× 𝑛
𝑘
) + 𝜌2(𝑛))), which is tractable for reasonably small 𝑝 and 𝑞.

Note that if 𝑇𝑚𝑎𝑥 = 2 (1 iteration), then the algorithm becomes a predict-then-

optimize framework, using the information of the prescription cost to train a pre-

dictive function, and then using this predictive function to decide on a treatment,

similarly to the idea of Smart PTO ([73]) and [157], but with a clustering component.

However, for 𝑇𝑚𝑎𝑥 > 2, 𝑓𝑗 and 𝑧 are evaluated jointly since one is iteratively used to

solve for the other in a repeated fashion until convergence to a local minimum of the

joint predictive-prescriptive problem.

4.5 Examples of Parameterizations

We can further improve the efficiency of solving Problem (4.5) for particular ML

methods. We discuss the cases of Linear Regression and Classification and Regression

Trees.

134

4.5.1 Linear Parametrization

In this subsection, we discuss the case where 𝑓𝑗 is linear for each cluster 𝑗 ∈ [𝑘], i.e.

there exist coefficients 𝛽𝑗 and 𝛾𝑗 such that 𝑓𝑗(𝑥𝑖, 𝑧𝑖) = 𝛽𝑇𝑗 𝑥𝑖−𝛾𝑗𝑧𝑖 ∀𝑖 ∈ [𝑛]. Problem

(4.5) can be then rewritten to get Problem (4.14).

min
𝑢,𝛽,𝛾,𝑧

𝜆
𝑛∑︁
𝑖=1

𝑘∑︁
𝑗=1

𝑢𝑖,𝑗(𝑦𝑖 − 𝛽𝑇𝑗 𝑥𝑖 − 𝛾𝑗𝑧𝑖)
2 + (1− 𝜆)

𝑛∑︁
𝑖=0

𝑘∑︁
𝑗=1

𝑢𝑖,𝑗(𝛽
𝑇
𝑗 𝑥𝑖 + 𝛾𝑗𝑧𝑖)

2

s.t ℎ𝑟(𝑧0, . . . ,𝑧𝑛) ≤ 𝑏𝑟,∀𝑟 ∈ [𝑠],

𝑛∑︁
𝑖=1

𝑢𝑖,𝑗 ≥ 𝑁𝑚𝑖𝑛 ∀𝑗 ∈ [𝑘],

𝑘∑︁
𝑗=1

𝑢𝑖,𝑗 = 1, ∀𝑖 ∈ {0, . . . , 𝑛} ,

𝑢0,𝑗 ≤ 1

⎛⎜⎜⎝𝑗 = argmin
𝑗′∈[𝑘]

𝑛∑︀
𝑖=1

𝑢𝑖,𝑗′‖𝑥0 − 𝑥𝑖‖22
𝑛∑︀
𝑖=1

𝑢𝑖,𝑗′

⎞⎟⎟⎠ ,∀𝑗 ∈ [𝑘]

(4.14)

For the linear parametrization, Problem (4.6) in Algorithm 4 can easily be for-

mulated as a tractable optimization problem, to obtain Problem (4.15) in Algorithm

6, which can be solved directly. The full corresponding iterative procedure to solve

Problem (4.14) is described in Algorithm 6, which is similar, but more efficient than

Algorithm 4.

135

Algorithm 6 IterativeSolveLinear(𝑋,𝑦, 𝑧, 𝑢(1),𝑧(1), 𝑁𝑚𝑖𝑛, 𝑇𝑚𝑎𝑥, k)
for 𝑡 ∈ [𝑇𝑚𝑎𝑥 − 1] do

for 𝑗 ∈ [𝑘] do

𝛽
(𝑡+1)
𝑗 , 𝛾

(𝑡+1)
𝑗 = argmin

𝛽𝑗 ,𝛾𝑗

𝜆
𝑛∑︀

𝑖=1

𝑢
(𝑡)
𝑖,𝑗 (𝑦𝑖−𝛽𝑇

𝑗 𝑥𝑖−𝛾𝑗𝑧𝑖)
2+(1−𝜆)

𝑛∑︀
𝑖=0

𝑢
(𝑡)
𝑖,𝑗 (𝛽

𝑇
𝑗 𝑥𝑖+𝛾𝑗𝑧

(𝑡)
𝑖)2, (4.15)

end for

𝑧(𝑡+1) = argmin
𝑧

𝑛∑︀
𝑖=0

𝑘∑︀
𝑗=1

𝑢
(𝑡)
𝑖,𝑗 ((𝛽

(𝑡+1)
𝑗)𝑇𝑥𝑖 + 𝛾

(𝑡+1)
𝑗 𝑧𝑖)

2 s.t ℎ𝑟(𝑧0, . . . ,𝑧𝑛) ≤ 𝑏𝑟,∀𝑟 ∈ [𝑠],

𝑢(𝑡+1) = argmin
𝑢

𝑘∑︀
𝑗=1

[︂
𝑛∑︀

𝑖=1

𝑢𝑖,𝑗𝜆(𝑦𝑖 − (𝛽
(𝑡+1)
𝑗)𝑇𝑥𝑖 − 𝛾

(𝑡+1)
𝑗 𝑧𝑖)

2 +
𝑛∑︀

𝑖=0

𝑢𝑖,𝑗(1− 𝜆)((𝛽
(𝑡+1)
𝑗)𝑇𝑥𝑖 + 𝛾

(𝑡+1)
𝑗 𝑧

(𝑡+1)
𝑖)2

]︂
s.t

𝑛∑︀
𝑖=1

𝑢𝑖,𝑗 ≥ 𝑁𝑚𝑖𝑛 ∀𝑗 ∈ [𝑘]

𝑘∑︀
𝑗=1

𝑢𝑖,𝑗 = 1, ∀𝑖 ∈ {0, . . . , 𝑛}

𝑢0,𝑗 ≤ 1

⎛⎝𝑗 = argmin𝑗′∈[𝑘]

𝑛∑︀
𝑖=1

𝑢𝑖,𝑗′‖𝑥0−𝑥𝑖‖2
2

𝑛∑︀
𝑖=1

𝑢𝑖,𝑗′

⎞⎠ ,∀𝑗 ∈ [𝑘],

end for

Return 𝛽
(𝑇𝑚𝑎𝑥)
1 ,𝛽

(𝑇𝑚𝑎𝑥)
2 , . . . ,𝛽

(𝑇𝑚𝑎𝑥)
𝑘 , 𝛾(𝑇𝑚𝑎𝑥)

1 , 𝛾
(𝑇𝑚𝑎𝑥)
2 , . . . , 𝛾

(𝑇𝑚𝑎𝑥)
𝑘 , 𝑧(𝑇𝑚𝑎𝑥), 𝑢(𝑇𝑚𝑎𝑥).

Note that this approach can also be applied to regularized linear regression, such

as Ridge Regression or Elastic Net.

4.5.2 Tree-Based Parametrization

In this subsection we set 𝑓𝑗 for 𝑗 ∈ [𝑘] to be equal to a tree ML method, such as

CART ([39]) or Optimal Trees ([22]). We apply Algorithm 4 and Algorithm 5 to this

parametrization.

In order to solve Problem (4.6) in Algorithm 4, i.e. learning the predictive function

𝑓 𝑡+1
𝑗 = argmin

𝑓𝑗

𝜆
𝑛∑︀
𝑖=1

𝑢
(𝑡)
𝑖,𝑗 (𝑦𝑖−𝑓𝑗(𝑥𝑖, 𝑧𝑖))2+(1−𝜆)

𝑛∑︀
𝑖=0

𝑢
(𝑡)
𝑖,𝑗𝑐(𝑓𝑗(𝑥𝑖, 𝑧

(𝑡)
𝑖), 𝑧

(𝑡)
𝑖) for each clus-

ter 𝑗 at iteration 𝑡, we use Algorithm 5 as described in Section 4.4. Since Algorithm

5 only requires to minimize the mean-squared error loss over a new dataset, it can be

used with both the globally optimal trees, or with the iterative CART algorithm.

For Problem (4.7) in Algorithm 4, there are two approaches, depending on whether

the problem is constrained or not:

1. If the problem is unconstrained, then we can find an optimum just by iterating

over each observation 𝑖 ∈ [1, 𝑛] independently. For each 𝑖, we find all the possible

136

leaves of the trained tree to which this observation can belong, and pick one

treatment that minimizes the corresponding cost. We note that even though

this number of leaves is theoretically bounded by 2𝑑 where 𝑑 is the depth of

the tree, it is usually extremely small, as it corresponds to the number of splits

on the treatment 𝑧𝑖 for the region of space where 𝑋𝑖, i.e. the covariates of

observations 𝑖, belongs. Even in the case where the treatment space is large or

continuous, the fact that the cost function is a function of the outcome 𝑦𝑖 only,

which is itself a tree-based function of 𝑋𝑖 and 𝑧𝑖, the structure of the tree makes

the minimization computationally tractable: any 𝑧𝑖 that verifies the constraints

that would lead to the optimal leaf can be chosen as the optimal solution.

2. If the problem is constrained, then it is necessary to use heuristics, or formulate

Problem (4.7) in Algorithm 4 as an Mixed-Integer Program. The exact formu-

lation is given by [24]. In our case however, the problem is simpler because it

does not require to retrain the tree, hence reducing the number of variables of

the problem by several orders of magnitude.

Problem (4.8) in Algorithm 4 is again an assignment problem that does not depend

on the chosen ML method.

We also note that once this model is trained, the decision-making process that

outputs an optimal decision 𝑧 given covariates 𝑥, can be described with a simple deci-

sion tree, which makes it interpretable. In Section 4.6, we show computational results

for the tree-based formulation applied in a medical setting where interpretability is

particularly relevant.

4.6 Experimental Results

We perform extensive experiments for both the linear and the tree-based parametriza-

tions (applied with Classification and Regression Trees - [39]). In the following tests,

we use multiple restarts for the local-search algorithm.

For the real-world data, since the counterfactuals are unknown, we evaluate the

137

results by learning the true function with an XGBoost ([49]) and a Feed-Forward

Neural Network ([107]), with the hyper-parameters described in §C.3, we then pick the

best-performing model out-of-sample and consider it ground-truth for the underlying

behavior.

4.6.1 Linear Parametrization

We test the linear parametrization on synthetic data and on an assortment problem

in a real-world case study, against:

1. predict-then-optimize: the predict-then-optimize framework with linear re-

gression, i.e., we train a linear regression on the output 𝑦, then separately

optimize for the 𝑧 given the parameters of this regression for each new data

point.

2. saa: Sample Average Approximation ([35]), similarly to predict-then-optimize,

we first train a linear regression, but instead of optimizing on the prediction,

we simulate data points from the linear regression, accounting for the trained

error 𝜖, and then we optimize 𝑧 over the sample average.

3. pred-presc: Linear Predictive-Prescriptive, where we train a linear regression

on 𝑦 separately, then we use this regression to compute weights which are used

directly in the optimization problem over 𝑧 instead of using the predictions

themselves. See [27] for more details. No hyper-parameter tuning is necessary

for these first three approaches.

4. lin-sim: Simultaneous Optimization with Optimistic Bias ([157]), where we

optimize over the same objective as Equation (4.14) but without any clustering

component nor iteration. The values tested for the hyper-parameter tuning of

𝜆 can be found in Appendix §C.3 and are identical to the ones tested for the

HPA approach.

5. lin-sim: Simultaneous Optimization with Optimistic Bias ([157]), where we

optimize over the same objective as Equation (4.14) but without any clustering

138

component nor iteration. The values tested for the hyper-parameter tuning of

𝜆 can be found in Appendix §C.3.

6. elastic-sim): Identical to lin-sim but with a penalized linear regression, i.e.,

we add an elastic net regularization to the objective ([167]). The values tested

for the hyper-parameter tuning of this penalization can be found in Appendix

§C.3.

Synthetic Data

We simulate a group of 𝑛 ∈ N patients. Each patient 𝑖 ∈ [𝑛] is characterized by

𝑝 ∈ N features and reacts differently to a binary treatment 𝑧𝑖 ∈ {0, 1} that affects a

target variable 𝑦𝑖 ∈ R that we need to predict and that we want to minimize. We

note 𝑥𝑖 ∈ [0, 1]𝑝 the vector of features for patient 𝑖.

We have 𝑟 ∈ N different reactions to the treatment, for each type of reaction 𝑗

∈ [𝑟], we set 𝑦𝑖 = 𝛽𝑗
𝑇𝑥𝑖+ 𝛾𝑗𝑧𝑖 if and only if 𝑖 belongs to group 𝑗, where 𝛽𝑗 ∈ R𝑝 and

𝛾𝑗 = 10 · ((−1)𝑗) · (𝑗 + 1). Note that the direction and the magnitude of the effect of

𝑧𝑖 on 𝑦𝑖 differs in each group.

We set 𝑛 = 10, 000, 𝑟 = 5, and 𝑝 = 4. Then, we create the groups from the

following tree structure:

• 𝑖 belongs to group 1 ⇐⇒ 𝑥𝑖,1 ≤ 0.5 and 𝑥𝑖,2 ≤ 0.5.

• 𝑖 belongs to group 2 ⇐⇒ 𝑥𝑖,1 ≤ 0.5 and 𝑥𝑖,2 > 0.5

• 𝑖 belongs to group 3 ⇐⇒ 𝑥𝑖,1 > 0.5 and 𝑥𝑖,3 ≤ 0.33

• 𝑖 belongs to group 4 ⇐⇒ 𝑥𝑖,1 > 0.5, 𝑥𝑖,3 > 0.33 and 𝑥𝑖,4 ≤ 0.66

• 𝑖 belongs to group 5 ⇐⇒ 𝑥𝑖,1 > 0.5, 𝑥𝑖,3 > 0.33 and 𝑥𝑖,4 > 0.66

We draw patients uniformly from 1 to 5 groups, and then we draw the features of

the patient uniformly and independently within the bounds that define each group.

We minimize Mean Squared Error (MSE) for the predictive cost, and 𝑐(𝑦, 𝑧) = 𝑦2 for

139

the prescriptive cost, similarly to Section 4.4. We separate the dataset into training

set (60% of the data), validation set (20%), and test set (20%).

We take the predict-then-optimize approach as a baseline, and test it against our

HPA approach, while varying the number of clusters 𝑘 from 1 to 10, as well as the

weight 𝜆 (see §C.3) and selecting the best ones in the validation set.

We refer in the experiments to the linear HPA with and without restarts by

respectively lin-hpa-r and lin-hpa. Similarly, we refer to the HPA with an Elas-

tic Net penalization with and without restarts by respectively elastic-hpa-r and

elastic-hpa. In this experiment, restarts are random, i.e., the data points are ini-

tially randomly assigned to clusters, then we run the iterative HPA algorithm until

convergence, and we select the best local minimum as our global HPA solution.

We obtain the results in Table 4.1 for training data and Table 4.2 for unseen,

testing data, for the best values for 𝑘 and 𝜆.

Model Training MSE In-Sample 𝑅2 Prescriptive Cost Difference vs Baseline
predict-then-optimize 172546 78.4% 12490 0%
saa 172546 78.4% 12146 -3%
lin-sim 268174 66.4% 12006 -4%
elastic-sim 276846 65.3% 12332 -2%
pred-presc 177045 77.9% 11912 -5%
lin-hpa 190831 76.1% 9315 -25%
elastic-hpa 196943 75.4% 9306 -25%
lin-hpa-r 171094 78.6% 8706 -30%
elastic-hpa-r 180244 77.5% 8166 -35%

Table 4.1: Results of the Synthetic Data simulation (Minimization) - Training.

We notice that the HPA method substantially outperforms the other linear pre-

scriptive methods both in terms of prediction accuracy and most importantly in terms

of prescription cost with over 30% improvement compared to baseline in both training

and testing data.

In addition to that, Figure 4-4 (train) and Figure 4-5 (test) summarize the results

for all tested number of clusters 𝑘 ∈ [1, 10].

Figure 4-4 and Figure 4-5 outline that our framework was able to recover the

correct number of clusters 𝑘 = 5 from the data samples. By looking at the clusters

with the majority of observations from the initial groups and matching them accord-

ingly, we also observe that more than 91% of the observations a classified correctly

140

Figure 4-4: For top models: in-sample MSE on Synthetic Simulation (on left), and
in-sample Treatment on Synthetic Simulation (Lower is better on right.

Model Testing MSE Out-of-Sample 𝑅2 Prescriptive Cost Difference vs Baseline
predict-then-optimize 184771 76.9% 11896 0%
saa 184771 76.9% 11189 -6%
lin-sim 285815 64.3% 10876 -9%
elastic-sim 274931 65.6% 10541 -11%
pred-presc 208937 73.9% 10350 -13%
lin-hpa 200743 74.9% 9380 -21%
elastic-hpa 195601 75.5% 9250 -22%
lin-hpa-r 183144 77.1% 8622 -28%
elastic-hpa-r 178244 77.7% 8351 -30%

Table 4.2: Results of the Synthetic Data simulation (Minimization) - Testing

Figure 4-5: For top models: out-of-sample MSE on Synthetic Simulation (on left),
and out-of-sample Treatment on Synthetic Simulation (Lower is better) on right. Our
framework outperforms other benchmarks and recovers the correct number of clusters.

(i.e. in the correct group) with the HPA method, and that without imposing any tree

structure.

141

Tractability

The average run-time of each iterations of the elastic-hpa-r algorithm for select

values of 𝑛, 𝑘 and 𝑝 on this problem is as follows:

142

𝑛 𝑘 𝑝 𝑞 Run-time (seconds)

1,000.00 5 1 100 0.2218398

1,000.00 5 1 1 0.0000867

1,000.00 5 100 1 0.2204847

1,000.00 10 1 100 0.0550053

1,000.00 10 1 1 0.0000214

1,000.00 10 100 1 0.0550880

1,000.00 100 1 100 0.0005463

1,000.00 100 1 1 0.0000002

1,000.00 100 100 1 0.0005596

10,000.00 5 1 100 21.6410225

10,000.00 5 1 1 0.0084438

10,000.00 5 100 1 21.7576244

10,000.00 10 1 100 5.5379600

10,000.00 10 1 1 0.0021578

10,000.00 10 100 1 5.5038581

10,000.00 100 1 100 0.0549852

10,000.00 100 1 1 0.0000218

10,000.00 100 100 1 0.0553235

100,000.00 5 1 100 2,223.2307948

100,000.00 5 1 1 0.8653242

100,000.00 5 100 1 2,241.9927715

100,000.00 10 1 100 539.9380922

100,000.00 10 1 1 0.2155644

100,000.00 10 100 1 541.8205072

100,000.00 100 1 100 5.5351108

100,000.00 100 1 1 0.0021908

100,000.00 100 100 1 5.5895802

Table 4.3: Average run-time of each iterations of the elastic-hpa-r algorithm for
select values of 𝑛, 𝑘 and 𝑝 on the synthetic experiment

143

We further visualize these results in 4-6 in both linear and logarithmic scale.

Because the dependency of the run-time in 𝑝 and 𝑞 only appears through 𝑝 + 𝑞, we

only plot the results for different values of 𝑘 and different values of 𝑝+ 𝑞.

Figure 4-6: Run-time of the elastic-hpa-r on the synthetic experiment in linear
scale (a), and logarithmic scale (b).

The details on the hardware used can be found in Appendix §C.4.

Typically, the algorithm converges for 𝑇𝑚𝑎𝑥 ≈ 10 iterations. For comparison, the

smallest training and prescription run-time is for predict-then-optimize , with

respectively 5.3𝑒−4 seconds for 𝑛 = 1, 000, 6.4𝑒−2 seconds for 𝑛 = 10, 000 and 4.8

seconds for 𝑛 = 100, 000.

This reinforces the conclusion of §4.4 on the theoretical tractability of the HPA

framework.

Assortment Case Study

The dataset consists of 25,000 observations, each one corresponding to a product sales

at a particular date with:

• Products Features: ex. type of product, brand, whether it is perishable or

not.

• Pricing Decisions: price, whether it is promotion or not.

• Time-series Data: historical sales for the product.

• External Indicators: market features, competitors’ prices.

144

• Decision Variable: whether to display the product or not.

• Target Variable: number of units sold for this product SKU at this time 𝑡.

The goal is to select products for the display of the retailer to maximize revenue.

We assume that the target variable is representative of the demand as long as the

product is displayed (no inventory limitation) and we ignore the cannibalisation effect

of the products (i.e. the product demand only depends on the features and not

on the selected portfolio). We consider here the case of a linear cost function, i.e.

𝑐(𝑦, 𝑧) = −𝑦 (since it is a maximization problem), which makes Steps (4.6) and (4.7)

of Algorithm 4 highly tractable. Specifically, Equation (4.6) has the same complexity

as a simple linear regression, and (4.7) is a linear program. Note that this is a

constrained optimization problem, since the shelf space is limited. Again, we split

the dataset into training (60%), validation (20%), and test (20%). No additional

data-processing or data imputation is performed and all other methods and hyper-

parameters are the same as the previous experiment.

We summarize the results in Table 4.4.

Model Out-of-Sample R2 Prescriptive Cost Improvement From Baseline
predict-then-optimize 74 % 1404.93 0%
saa 74 % 1545.79 10%
lin-sim 70% 1560.04 11%
elastic-sim 69% 1576.66 12%
pred-presc 73 % 1580.13 12%
lin-hpa 71 % 1508.7 7%
elastic-hpa 75 % 1597.22 14%
lin-hpa-r 79 % 1641.99 17%
elastic-hpa-r 83 % 1643.42 17%

Table 4.4: Results for the Invetory Dataset (Maximization)

On this real-world experiment, the linear HPA outperforms its competitors in both

out-of-sample accuracy and prescriptive cost. We might reasonably assume that the

improvement in predictive accuracy comes mainly from the fact that the clustering

allows the model to capture non-linear relationships (that are linear within each

cluster but not linear over all the dataset), but that the improvement in the predictive

cost comes from performing the clustering, the prediction and the prescription jointly

instead of sequentially.

145

4.6.2 Tree-based Formulation

In this section, we move beyond linear models and use Classification and Regression

Trees within the HPA method, using Algorithm 5.

We benchmark the tree-based HPA (which we refer to as cart-hpa-r and cart-hpa

respectively depending on whether we use multiple restarts or not) on a diabetes case-

study, against predict-then-optimize based on point estimate with CART

(predict-then-optimize). sample average approximation (saa), tree-based predictive-

prescriptive (pred-presc), and prescriptive trees (presc-trees, [24]). These meth-

ods are the same as in §7.1, but using a CART Tree instead of a Linear Regression. For

the Prescriptive Trees, we use the Interpretable AI (https://www.interpretable.ai/)

implementation. All used hyper-parameters can be found in §C.3.

Diabetes Case Study

The dataset is proprietary and consists of 100,000 observations, with patient-level

data with:

• Patient Characteristics: age, sex, medical history, BMI, vitals.

• Previous Treatments: drugs previously taken, number of visits to care cen-

ters, treatment history.

• Decision Variable: treatment given at this time 𝑡 (11 possible treatments).

• Target Variable: average blood sugar levels.

The goal is to prescribe an optimal treatment at time 𝑡 given patient’s character-

istics and the previous sequence of treatments in order to minimize his average blood

sugar levels. Note that interpretability is key is this experiment since doctors need to

understand the decision-making process to prescribe the treatment to real patients.

We summarize the results in Table 4.5. We also report run-time of our algorithm in

Appendix §C.4.

The cart-hpa-r Framework significantly outperforms all other prescriptive meth-

ods in terms of prescriptive cost, with a 14% improvement from the standard paradigm

146

Method Out-of-Sample R2 Prescriptive Cost Improvement From Baseline
predict-then-optimize 75% 13510.1 0%
saa 75% 12980.95 4%
pred-presc 73% 12624.8 7%
presc-trees 85% 11682.5 14%
cart-hpa 71% 13058.97 3%
cart-hpa-r 82% 11623.18 14%

Table 4.5: Results for the Diabetes Dataset (Minimization).

predict-then-optimize and 7% improvement from the state-of-the-art predictive-prescriptive

approach. Only Prescriptive Trees (presc-trees)) are on par with HPA in terms of

prescriptive cost, and outperform it in terms of out-of-sample accuracy. However, the

HPA Framework can accommodate constraints and continuous treatments, which is

not the case for Prescriptive Trees.

In this example, the prediction and the prescription can both be represented with

a simple decision tree, explaining how the patients are clustered into groups, and

how decisions are made based on their characteristics. This ensures the model is

interpretable and easily explainable to the medical doctors, which are in fact the

decision makers in this case study.

By delving into these clusters, we observe that the grouping happens mainly over

4 features: patient’s age, sexe, BMI and number of previous visits. The splits sepa-

rates the BMI into 3 categories: Low, Average, High, the age groups into less than

30 years old, between 30 and 69 years old, and above 69 years old. The split on age

only happens for patients in one of the two first age groups (≤ 69 years old), while

the cutoff for the previous visits is 5 visits. Which results in a total of 30 intepretable

groups. Within each cluster, a different predictive tree model is trained, which splits

on drug count and previous treatments to predict sugar level and prescribe an opti-

mal next treatment. This example illustrates the claim that the HPA framework is

interpretable when used with interpretable ML methods.

147

4.7 Extensions

We discuss in this section two potential extensions of the HPA framework. The first

one regarding the probabilistic assignment of observations to clusters, and the second

about the retraining of the model when new training data is available or when we

want to prescribe a treatment for a new data point.

4.7.1 Probabilistic Cluster Assignment

Our framework summarized in Equation (4.5) assumes that each observation is de-

terministically assigned to one and exactly one cluster. One possible extension is

to relax the integer condition on the assignment 𝑢 similarly to [10], thus making

the assignment probabilistic. 𝑢 would then represent the probability of assignment

instead of the assignment itself, resulting in potentially more robust, tractable solu-

tions. Some additional modeling is however needed to decide on the assignment of

unseen data and to control the averaging effect for problems where the predictions

are widely different across clusters that are close given a chosen distance metric, for

example the ℓ2-norm which is independent of the HPA objective function.

4.7.2 Retraining of the Model

When new training data is available or when we want to prescribe a treatment for a

new data point, it is not always necessary to re-solve Problem (4.5) from scratch. Two

observations can be made in that regard: the first one is that the iterative approach

described in Algorithm 4 can be used with the new objective function with the new

training data and/or the new data points for which we want to make a prescription.

By setting the starting parameters 𝑢(1) and 𝑧(1) to the previously trained value, and

depending on how much new data is added, the algorithm would converge in very few

iterations, i.e. for 𝑇𝑚𝑎𝑥 small. The second option is to make prescriptions without

retraining the model, by directly assigning the new observations to a cluster based

on some distance metric or classification algorithm, and only solve the prescriptive

problem with the resulting prediction. This option would however be considered

148

a predict-then-prescribe approach, limiting the positive effect of joint optimization,

which is the premise of this chapter. Other extensions might include using gradient-

based method in the case where the HPA objective is convex and the prescriptive

problem unconstrained.

4.8 Conclusions

In this chapter, we introduced a novel method for prescription we refer to as Holistic

Prescriptive Analytics (HPA) framework. This framework allows for the use for a large

variety of predictive ML methods and prescriptive cost functions. Moreover, it ac-

commodates constrained and continuous problems, while being scalable and providing

a performance edge over the state-of-the-art prescriptive methods. It also preserves

interpretability of the ML models that are being used within the framework.

The complexity analysis of the algorithm as well as the computation experiments,

on synthetic data and on two real-world case studies provide strong evidence to these

claims. Its fundamental holistic structure allows us to combine strong predictive

accuracy within a powerful prescriptive framework thanks to the clustering and the

fact the three tasks (clustering, prediction and prescription) are optimized jointly

instead of sequentially.

149

150

Chapter 5

COVID-19: Prediction, Prevalence,

and the Operations of Vaccine

Allocation

5.1 Introduction

The COVID-19 pandemic has quickly changed the nature of society and resulted in

massive loss of life, dramatically different societal interactions, and significant eco-

nomic problems. All levels of government, institutions, and private organizations

have rushed to respond to this pandemic. Nevertheless, the changing nature of the

pandemic has made short- and long-term planning of activities difficult. Organiza-

tions are using trends in infection levels to make decisions, plan the use of resources,

and craft policies. However, high levels of travel due to society’s globalization, fluc-

tuating government policies in different parts of the world, and social restlessness due

to isolation have all contributed to highly unpredictable infection rates. So far the

United States has experienced at least three waves of the pandemic due to potential

new strains of the virus and changes in behavior of the population. Another challenge

that has impacted organizations’ ability to respond to the pandemic is the high num-

ber of asymptomatic carriers. Asymptomatic individuals are considered responsible

151

for over half of all COVID-19 spread ([99]), yet with limited testing capabilities it

is hard to quantify how many asymptomatic cases exist. Ideally, population-wide

testing would lead to the identification and isolation of asymptomatic carriers, but

this is not a feasible solution with current testing capabilities.

This leaves governments and institutions unable to assess the true risk they face

when making decisions. Understanding true infection levels has become particularly

important as the United States has begun the roll out of different vaccines. As of

June 2021, the United States Food and Drug Administration (FDA) has approved

three COVID-19 vaccines, two of which require two doses to be fully effective ([158]).

Especially during the initial roll-out, the supply of these vaccines has been limited.

State-level governments need to decide how to allocate these vaccines within their

state, including whether to prioritize first or second doses. If the state (or national

government) prioritizes first doses, then it can achieve wide-ranging (but not com-

plete) immunity. If it prioritizes second doses, then a small part of the population

will obtain highly effective immunity, but the rest of the population will be fully sus-

ceptible to the disease. In order to make such decisions, local governments need to

have an understanding of (i) how positivity rates might grow in the short and long

term in their regions and (ii) what positive tests say about the true level of infection

in the different regions of a state.

In this chapter, we tackle these issues by proposing a novel, end-to-end framework

for case and death prediction. We then propose a model for determining through the

detected cases what are the true cases, that is, the true prevalence of the disease.

Finally, we optimize vaccine allocation among different regions in a fair way under

operational constraints, based on the predicted prevalence of our model.

Contributions

1. We introduce an ensemble method that accounts for different aspects

of the COVID-19 case and death evolution: We first develop four indi-

vidual predictive models, each of which captures different aspects of the disease

spread. These four models are then aggregated through Machine Learning (ML)

152

to create more accurate predictions that account for additional factors that drive

changes in the pandemic. We demonstrate that the aggregate model’s predic-

tions are more accurate and robust to changes in the pandemic. We prove that

the aggregate model’s prediction error is lower than each individual model’s

in-sample and lower than at least one of the four models out-of-sample and that

the aggregate model has lower variability than its individual components.

2. We demonstrate accurate short- and long-term predictions for both

cases and deaths: We compare our model to the other models used by the

Center for Disease Control (CDC), which are considered to be the top models

in the country. We show that our models consistently perform among the best

both in the short-term and long-term future. The model we propose in this

paper has ranked 1𝑠𝑡 for several months (in predicting both deaths and cases)

and is consistently among the top 10 models out of more than 50 state-of-the-art

models.

3. We propose a prevalence method to estimate true disease spread:

We propose a method for determining the “true” case counts of COVID-19 in

different regions (that is, states and counties across the United States). We test

our method using data from the CDC’s randomized serology testing.

4. We introduce and study an optimization model for determining the

distribution of different vaccines and discuss interesting insights: The

optimization model we propose captures first and second dose vaccine distri-

bution while accounting for differences between counties (regions), population

groups (e.g. age) and different vaccines (e.g. efficacy, time between doses).

Using this model, we create recommendations for state-level governments and

the corresponding counties and show insights into the structure of optimal vac-

cine allocation. We quantify the importance of fast vaccination, introduce a

condition on when to prioritize first versus second dose vaccines and tackle the

trade-off between area prevalence, exposure, vaccine efficacy and mortality rate

when allocating vaccines to particular sub-populations. Interestingly, we find

153

that the US government’s strategy of completely vaccinating one age group be-

fore moving to another is not necessarily optimal, especially when the level of

exposure differs from one age group to another.

5. We discuss the impact of this work through our collaboration with

MIT and the CDC: This work has been the outcome of a collaboration on

the MIT COVID-19 Response System (MCRS). MCRS is a joint effort between

the MIT Quest for Intelligence and Lincoln Labs in order to model the effects of

returning to campus. The prediction and prevalence models in this paper were

developed as part of the MCRS effort as accurate forecasts of local prevalence

rates are crucial for understanding the appropriate degree of returning to cam-

pus. Furthermore, the models in this paper are used on the CDC website (under

the name of MIT-Cassandra) to help the CDC and government entities under-

stand and mitigate the spread of the pandemic. This end-to-end framework is

summarized in Figure D-5.

5.2 Relevant Literature

There has been a renewed interest in the operations community in modeling epidemics

and analyzing their impact on society. The literature on each of these topics is growing

rapidly. In this section, we briefly discuss some of the most relevant literature related

to each topic we touch upon in this chapter.

5.2.1 Predictive Models

In this chapter we introduce different predictive models that we then aggregate. The

first model is a feature-based Markovian representation approach and is related to

offline Reinforcement Learning (RL). While RL [147, 20] deals with learning in a

dynamic environment when exploration is feasible, offline RL [108] tackles situations

where experimentation is not feasible and learning is performed only from a fixed

batch of transition data. The second model is a Nearest Neighbor Approach inspired

154

by the KNN algorithm [57, 58]. To the best of our knowledge, despite some early

work by [166], there have not been as many applications of KNN to time series

prediction problems until recently. The third model is a Deep Learning approach

based on Recurrent Neural Networks (RNNs), specifically Bidirectional Long Short-

Term Memory (LSTM) Networks. LSTMs were first introduced in the seminal work

of [96] with a modification in [87] that led to their final form. The final prediction

method we use is a generalized SEIRD (Susceptible, Exposed, Infectious, Recovered,

and Deceased) model that can account for multiple waves of the pandemic, introduced

in [131]. We refer the interested readers to [38] and the references therein, for a

discussion on compartmental models and their extensions.

5.2.2 Aggregation Methods

In addition to constructing four different models for COVID-19 case and death pre-

diction, we also aggregate these outputs into final combined predictions for cases and

deaths. We refer the interested reader to [69] and [138] and the references therein for

an in-depth discussion of ensemble methods for aggregation. [165] introduced stacked

generalization, which can be seen as a more sophisticated version of cross-validation.

[154] study the method of stacked generalization by combining models from different

subsets of a training dataset and merging their predictions in a majority vote manner.

[155] address two issues; the type of regularizer that is suitable to derive the higher-

level model and the kind of attributes that should be used as its input. [143] study

an ensemble of linear networks trained on different but overlapping training sets. The

authors consider ensemble error and average error of individual predictors before ob-

taining the generalization error and they study convergence to the optimum under

assumptions. [72] empirically evaluate several state-of-the-art methods for construct-

ing ensembles of heterogeneous classifiers with stacking and they show experimentally

that they perform comparably to selecting the best classifier from the ensemble by

cross validation. [142] present a linear method that incorporates meta-features for

improved accuracy in the aggregation process [137] studies why ensembling methods

work well in terms of MSE. Our method departs from the existing literature since

155

it is the only method that at the same time (1) combines machine learning models

with different structure to obtain the best of all worlds, (2) uses general machine

learning models (instead of linear, voting e.t.c. models) to combine the predictions

of the initial (base-0) models in a smart way and (3) is applied to a time-series prob-

lem. Moreover, our work provides novel provable guarantees on the robustness and

the variance of the predictions. Compared to previous works our guarantees are for

general distance functions and therefore can be applied to many well-known metrics

such as the MSE, the MAE and more.

5.2.3 Prevalence Extrapolation

Apart from the methods we discussed above, a key contribution of this chapter is esti-

mating the true prevalence of the disease using detected cases and deaths. Testing to

identify detected cases is extremely useful; [12] provide a method they devised in de-

signing a system to manage border crossings that they tested in Greece. [134] argues

that even if the accuracy of available tests is low, testing a lot with less accurate tests

can be useful. Due to these limited testing capabilities and disproportionately high

levels of asymptomatic cases, extrapolating these numbers to true prevalence of the

disease is a challenge. Most studies, including [132], [83], and [125], use infection fa-

tality rate (IFR) to back-cast true infection from the recorded COVID-19 deaths. For

a more thorough review of the IFR approach, we refer the interested reader to [122].

[110] propose a different method for modeling true infection by assuming that unde-

tected individuals will have a different transmission rate than detected individuals.

We differentiate ourselves from this literature by modelling the relationship between

positive detection rates and testing rates rather than considering the difference in

transmission rate. Furthermore the difference between the proportion of positive

tests for an epidemic and true prevalence has been a known issue in the epidemiology

community for a while. However much of the Bayesian estimates have focused on

solving for misclassification error in the tests themselves, either false positives or false

negatives [101, 19, 66, 74]. [121] consider the problem of how small sample size will

affect the quality of prevalence estimate, but they evaluate sample size and disease

156

prevalence within the sample in order to determine what distribution to assume on

the number of new cases (binomial or hypergeometric). [61] use a Bayesian network to

detect whether an epidemic has started in a population based on surveillance medical

data, by calculating a probability density function on the true prevalence. However

none of these works address the filtering that happens with non-random testing and

small samples, specifically the relationship between the prevalence of testing, likeli-

ness to be tested and probability of actually having the disease. Our work quantifies

this relationship and allows us to predict true prevalence for a variety of areas with

different testing capabilities.

Vaccine Allocation

Finally, this chapter also studies the problem of optimal vaccine allocation to different

regions and a heterogeneous population in a fair way. There has been a recent increase

in the operations management literature on COVID-19 related work. [34] use a spatial

epidemiology model to optimize targeted lockdown policies in different neighborhoods

of a city. [59] propose a dynamic program for optimal hospital care scheduling to

reduce the strain on the health system by prescribing optimal care for individual

COVID-19 patients. [32] use system dynamics and time series modelling to model

short and long term bed capacity demand. Similarly, [77] use epidemiology and ML to

target lockdowns based on clinical severity risk. Nevertheless, very few papers have

explored vaccine allocation for COVID-19. [133] frames a generic epidemic where

both preventative (vaccines) and corrective (antidotes) interventions are available.

[119], [117], [145] and [156], focus on the influenza vaccine allocation problem. [116]

take a modeling approach to analyze how quickly the population is vaccinated under

different allocation policies for two dose vaccines in the presence of limited supply.

Similarly, [114] use an epidemiological model to first forecast disease evolution and

then analyze the performance of different resource allocation policies to minimize the

number of new infections. [26] tackles the problem of COVID-19 vaccine allocation

at country-level for the US using a system of differential equations named DELPHI

([109]) as the underlying truth for the progression of the pandemic under different

157

scenarios. These differential equations are then used in an optimization problem that

is solved locally using an iterative algorithm. Our chapter considers the challenge of

one- and two-dose vaccines and their allocation under fairness and other operational

constraints.

5.3 Predicting COVID-19 Detected Cases

In this section we present a novel method that aggregates different predictive methods.

Aggregation (ensembling) methods typically combine models that are structurally

similar. Our method instead combines different models that each bring a different

type of representation to the table. For each method there are different situations in

which it will perform accurately or be prone to error. By strategically combining these

methods that at times some overestimate and other underestimate the errors, we are

able to create an aggregate model that has a strong performance in the majority of

situations. We mainly focus on presenting our approach for predicting COVID-19

detected cases and deaths.

5.3.1 Notations

𝑁 ∈ N represents the number of regions we want to make a prediction for. 𝑃 ∈ N

represents the number of features used for the predictions, (e.g. lagged variables,

temperature or mobility levels) and 𝑇 ∈ N the number of time periods used in the

data to train the models. In this work, time periods refer to number of days. 𝐻 ∈ N

represents the time horizon for the predictions, (i.e., we make predictions for time

𝑡 ∈ [𝑇 + 1, 𝑇 + 𝐻]), 𝑆 ∈ N is the number of outcomes to predict at each time

step for each region, (e.g. if we are predicting deaths and cases jointly, 𝑆 = 2).

𝑋 ∈ R𝑁×𝑇×𝑃 represents the vector of features, where 𝑋 𝑖,𝑡 is the feature vector for

region 𝑖 at time 𝑡 and 𝑌 ∈ R𝑁×𝑇×𝑆 the outcome vector, and 𝑌 𝑖,𝑡 represents the

vector of outcomes for region 𝑖 at time 𝑡. For example, 𝑌 𝑖,𝑡,1 is the predicted number

of cases for region 𝑖, at time 𝑡. Other outcome variables may include deaths and

active cases. For simplification we use a lower case 𝑦 ∈ R𝑁×𝑇 for a uni-dimensional

158

outcome, (e.g., 𝑦𝑖,𝑡 = 𝑌 𝑖,𝑡,1). The goal is to learn 𝑓 , the set of functions 𝑓𝑖,𝑡 so that

𝑌 𝑖,𝑡 = 𝑓𝑖,𝑡(𝑌 𝑗,𝛾,𝑋𝑗,𝛾,∀𝑗, 𝛾 ∈ [𝑁]× [𝑡− 1]).

5.3.2 A Markovian-based learning approach: Minimum Rep-

resentation Learning

Summary

COVID-19 evolution in different regions can be seen as the evolution of a dynamic

continuous state space system. At each step 𝑡 and for each region 𝑖, the system has

features X𝑖,𝑡 ∈ R𝑁 that can include growth rates, cases, mobility, healthcare quality,

and weather, among others. These features correspond to the states of the dynamic

system. At each step, a region is at state X𝑖,𝑡, takes an action 𝐴𝑖,𝑡 ∈ 𝒜 (e.g., a

restrictive mobility measure), observes a cost 𝑅𝑖,𝑡 ∈ R (e.g., growth rates, number of

cases, number of deaths), and then transitions to a new feature X𝑖,𝑡+Δ𝑡 = 𝐹 (X𝑖,𝑡, 𝑎) ∈

R𝑁 , with ∆𝑡 a chosen time step (e.g. number of days). Each region at a given date

corresponds to a set of features and, therefore, to a state of the dynamic system.

Model Formulation

We seek to construct from observed data (X𝑖,𝑡, 𝐴𝑖,𝑡, 𝑅𝑖,𝑡)𝑖≤𝑁,𝑡≤𝑇 a reduced represen-

tation of this dynamic system by learning a finite state space deterministic Markov

Decision Process (MDP) representing the system accurately. Our approach is based

on the Minimal Representation Learning algorithm (MRL) introduced in [18]. MRL

aggregates the features into groups (regions of the feature space) that have similar

cost and dynamics. It then maps each region of the feature space into a state of the

reduced finite MDP representation. Figure D-1 illustrates this process. This aggre-

gation allows the construction of a concise MDP model of the system that is easier

to learn from data.

Actions as a reflection of changes in mobility MRL allows to effectively ac-

count for restrictive measures in the prediction by introducing actions on the COVID-

19 dynamic system. To define this set of actions, we consider a mobility index that

159

quantifies the flux of people within a state across time. The underlying assumption is

that a significant change in the value of that index corresponds to a generalized change

in the behavior of the population, which is the consequence of a state-level govern-

ment decision. We discretize the change in mobility index into a finite increasing set

of level 𝒜 of thresholds �̄�1 < . . . < �̄�|𝒜|.

Variance reduction using randomization — Randomized-MRL model

In this chapter, we introduce an extension of the MRL method that follows closely

the spirit of the Random Forests algorithm introduced by [40]. We refer to this new

version of the MRL as the Randomized-MRL model or r-MRL. r-MRL uses random batch-

sampling from the set of paths as well as bootstrapping from the set of features in

order to learn different representations of the MDP. Each MDP provides an estimate

of the target and the final prediction consists of the aggregation of the individual

predictions (e.g, the empirical mean and the median among others). Similarly to the

Random Forests, r-MRL presents strong robustness properties. It is also more flexible,

more accurate, and more scalable with respect to the dimension of the feature space.

The second method we describe next is a generalization of the traditional kNN

algorithm modified to handle time series data.

5.3.3 A Nearest-Neighbor Approach: Similarity-Weighted Time-

Series

Summary

The KNN method takes advantage of the similarity of conditions and trajectories across

regions and time in order to predict the disease’s evolution in the future. Our method

generalizes the 𝑘-nearest neighbors approach ([56]) for time-series prediction. Instead

of imposing any underlying structure, it explores the similarity between the observed

time-series and its relation to the time-series we want to predict. To model this rela-

tionship, we applied an inverse distance metric along with a neighbor cutoff threshold

as weights in order to determine relevant time series neighbors and demonstrate that

the method performs very well on real data.

160

In particular, for a given region and time period, this method uses as features

the recent trajectory of the growth rates of the disease, as well as other information

describing the states’ conditions at the given time (e.g. population density, average

temperature, percentage of people vaccinated, etc). Assuming that at time 𝑡, 𝑐𝑡 is

the number of cases (or deaths), we define the growth rate 𝐺𝑅𝑡 as the ratio between

two consecutive days, that is, 𝐺𝑅𝑡 =
𝑐𝑡
𝑐𝑡−1

. Our goal is to predict 𝑌𝜏 = 𝐺𝑅𝜏 , where

𝜏 ∈ [𝑇+1, 𝑇+𝐻] using the previous 𝐺𝑅𝑡 as well as other features. Next, we formalize

the method by characterizing the weight function and the neighbor selection method.

Model Formulation

Let (𝑋, 𝑌)𝑖,𝑡 be the feature and target variable pair of a particular neighbor where

𝑖, 𝑡 ∈ [𝑁], [𝑇]. We define a potential neighbor as the combination of a region 𝑖 ∈ [𝑁]

at a time 𝑡 ∈ [𝑇], thus the total number of neighbors in our training space are 𝑁 · 𝑇 .

Given a region-time pair 𝑗, 𝜏 ∈ [𝑁], [𝑇 + 1, 𝑇 + 𝐻] for which we want to make a

prediction, a given distance function, 𝑑(·, ·) and a threshold 𝐶 ≥ 1, we define the set

of neighbors 𝐼𝐶(𝑗, 𝜏) such that:

𝐼𝐶(𝑗, 𝜏) =
{︀
(𝑖, 𝑡) ∈ [𝑁], [𝜏 − 1] : 𝑑(𝑋𝑗,𝜏 , 𝑋𝑖,𝑡) ≤ 𝐶min

𝑖,𝑡
𝑑(𝑋𝑗,𝜏 , 𝑋𝑖,𝑡)

}︀
. (5.1)

Using the above set, we predict the target variable 𝑌𝑗,𝜏 using the following equa-

tion:

𝑌𝑗,𝜏 =
∑︁

𝑖,𝑡∈𝐼𝐶(𝑗,𝜏)

𝑌𝑖,𝑡
𝑑(𝑋𝑗,𝜏 ,𝑋𝑖,𝑡)∑︀

𝑖,𝑡∈𝐼𝐶(𝑗,𝜏)
1

𝑑(𝑋𝑗,𝜏 ,𝑋𝑖,𝑡)

. (5.2)

Note that the threshold 𝐶 makes the method more robust by excluding skewed

data and the denominator normalizes the selected weights. Finally, the threshold

parameter and the distance function 𝑑(·, ·) are tuned based on their prediction per-

formance in a validation set that consists of the final days of the training data. We

discuss the mathematical formulation of the KNN model in more details in the Ap-

pendix, including a discussion of Theorem 7 that establishes uniform almost complete

convergence of the estimator. Next, we consider a Deep Learning method involving

161

RNNs that allows us to capture more complex structures.

5.3.4 A Deep Learning Approach: Bidirectional LSTM

Summary

In this approach, we employ a Deep Learning architecture based on the Dynamic

Time Warping (DTW) Clustering Algorithm and a Bidirectional LSTM Network,

that discovers hidden patterns related to the growth of COVID-19 deaths and cases.

As a result, this method allows us to accurately predict future cases and deaths.

Model Formulation

The proposed architecture consists of two distinct components. The first component

is the Dynamic Time Warping (DTW) clustering algorithm that creates clusters of

states with similar growth rates. As different states may be in different phases of

the pandemic, it is more effective to train separate models for each different cluster

of states. More specifically, we use the DTW clustering algorithm with cases and

death growth rates as features, in order to cluster regions with similar growth rates

together. The second component is a Bidirectional LSTM Network. The final output

of this model is the weighted average of the two individual networks. By using the

Bidirectional LSTM network we increase the amount of information available to the

network and improve the quality of predictions. We refer the reader to Appendix D

for more details about RNNs, LSTMs, and the DTW distance.

The strength of the Bidirectional LSTM model lies in its ability to analyze and

discover previously unobserved patterns in large amounts of sequentially dependent

data. This makes it ideal for predicting COVID-19 cases and deaths. We trained and

validated on four differently-sized architectures in order to find one that is appropriate.

The architectures differ in terms of the number of layers and units. The complete

block architecture of the system can be seen in Figure D-3.

Inspired from [47], we establish in Appendix §D.3 a generalization bound for the

LSTM network. This bound holds asymptotically for the Bidirectional LSTM.

162

The last data-driven method we consider in the next subsection is an epidemio-

logical model specifically designed to capture multiple waves of COVID-19, which we

refer to as the C-SEIRD.

5.3.5 An Epidemiological Approach: Multi-peak SEIRD

Summary

The Multi-peak SEIRD (or Chained SEIRD (C-SEIRD)) is an epidemiology model that

leverages existing knowledge about the progression of an epidemic. Most ML models

are dependent on historical data in order to understand how the cases of COVID-19

will progress. The C-SEIRD model instead brings a structural understanding of the

epidemic. The model we propose identifies when new waves are occurring and the

timing of peaks. Our approach is based on the C-SEIRD model proposed in [131].

Model Formulation

The traditional SEIRD (Susceptible, Exposed, Infectious, Recovered, and Deceased)

model is a compartmental epidemiology model and assumes parameters are static.

Unfortunately, this means that it can only predict one peak. For a full description

of the SEIRD model, we refer the reader to Appendix D. In order to account for

multiple waves, we use a multi-peak C-SEIRD model. In the 𝑛-peak C-SEIRD model,

the model considers 𝑛-waves of the disease, with each wave, 𝑤, starting at 𝑇𝑤 and

ending at 𝑇𝑤+1. The differential equations for the model are described by differential

equations:

𝑑𝑆

𝑑𝑡
=

−𝛽𝑤𝑆𝐼
𝑁

,
𝑑𝐸

𝑑𝑡
=
𝛽𝑤𝑆𝐼

𝑁
− 𝐸

𝛼𝑤
for 𝑡 ∈ [𝑇𝑤, 𝑇𝑤+1] (5.3)

𝑑𝐼

𝑑𝑡
=

𝐸

𝛼𝑤
− (𝛾𝑤 + 𝜇𝑤)𝐼,

𝑑𝑅

𝑑𝑡
= 𝛾𝑤𝐼,

𝑑𝐷

𝑑𝑡
= 𝜇𝑤𝐼 for 𝑡 ∈ [𝑇𝑤, 𝑇𝑤+1] (5.4)

This structure allows the multi-peak C-SEIRD to model changing infection, recov-

ery, and mortality rates while still using the fundamental structure of the SEIRD

model.

163

Given the differential equations we described, the question becomes how to learn

the change points 𝑇𝑤 and the corresponding parameters for each wave. The multi-

peak model provides a dynamic process of first learning the parameters of a given

wave and then using those parameters to identify the wave changes. The key idea

behind the change-point is that as long as all the data comes from the same wave,

the prediction error of the model should be exchangeable. However, when a new wave

starts, this no longer holds and we can leverage this change to quickly identify new

waves using a martingale for detection. [131] provide bounds on how fast new waves

are detected for the complex parametric structure of the C-SEIRD.

5.3.6 An Aggregate Predictive Method: MIT-Cassandra

Summary

So far we have discussed four different predictive methods that apply for each re-

gion 𝑖 ∈ [𝑛], at each time period 𝑡 ∈ [𝑇 + 1, 𝑇 + 𝐻]. This section will discuss how

to aggregate these predictions in order to obtain one single “best" prediction. The

American Centers for Disease Control and Prevention (CDC) uses a simple aggre-

gation algorithm for its forecasts for both COVID-19 cases and deaths. This is an

average of select models that are submitted to the CDC with an accuracy above a

certain threshold that is chosen by the CDC. We will extend this idea of aggregating

different models based on historical performances, but we will go one step further

by using ML on an appropriate validation set in order to create the final prediction

through an ensemble of the four proposed methods in this chapter.

Model Formulation

Let 𝑦𝑖,𝑡,𝑚 denote the predicted outcome value (for simplicity, assume this represents

the cumulative number of cases) for region 𝑖 at time 𝑡 made by model 𝑚 ∈ ℳ. ℳ is

the set of all individual models that we want to aggregate. 𝑦𝑖,𝑡 represents the outcome

value for 𝑖 at time 𝑡. We assume all models were trained up to a time 𝑇𝑣𝑎𝑙 < 𝑇 . We

choose a class of ML functions ℱ . Our goal is to find for each region 𝑖, the best

164

aggregator 𝑓𝑖 within this class that takes predictions {𝑦𝑖,𝑡,𝑚, ∀𝑚 ∈ ℳ} and outputs

a single prediction 𝑦𝑖,𝑡, i.e., 𝑦𝑖,𝑡 = 𝑦𝑎𝑔𝑔𝑖,𝑡 = 𝑓𝑖(𝑦𝑖,𝑡,𝑚,𝑚 ∈ ℳ). We assume that for each

individual model 𝑚0 ∈ ℳ, the function 𝑓𝑖(𝑦𝑖,𝑡,𝑚,𝑚 ∈ ℳ) = 𝑦𝑖,𝑡,𝑚0 ,∀𝑖, 𝑡 belongs to

the set ℱ .

We formulate the training problem, for 𝑖 ∈ [𝑁], in terms of cases as the problem

of minimizing the sum of absolute errors in problem (5.5).

min
𝑓𝑖

𝑇∑︁
𝑡=𝑇𝑣𝑎𝑙

|𝑦𝑖,𝑡 − 𝑓𝑖(𝑦𝑖,𝑡,𝑚,𝑚 ∈ ℳ)|

s.t. 𝑓𝑖 ∈ ℱ ,

(5.5)

When ℱ is the class of linear functions, for example, we obtain problem (5.6).

min
𝛽𝑖

𝑇∑︁
𝑡=𝑇𝑣𝑎𝑙

|𝑦𝑖,𝑡 −
∑︁
𝑚∈ℳ

𝛽𝑖,𝑚𝑦𝑖,𝑡,𝑚|. (5.6)

Notice that the simple average used by the CDC is a special case of this framework.

Indeed if we denote as𝑀 the number of models selected by the CDC in their ensemble,

then by setting 𝛽𝑖,𝑚 = 1
𝑀
, ∀𝑖 ∈ [𝑁] if model 𝑚 has been selected by the CDC,

𝛽𝑖,𝑚 = 0,∀𝑖 ∈ [𝑁] otherwise, then we get a feasible solution to problem (5.6).

In the final model built for MIT and posted on the CDC website, we set ℱ

to be within several ML function forms: Regularized Linear Models, Support Vector

Machines (SVM), Classification and Regression Trees (CART), Random Forests (RF),

and XGBoost.

Analytical Results

In this subsection we show that the proposed aggregation yields more accurate and

more robust results than the individual models do separately.

Theorem 4

1. (In-Sample Predictions) The trained aggregate model in problem (5.5) has

lower in-sample mean absolute error than each of its individual models. i.e.

165

∑︀𝑇
𝑡=𝑇𝑣𝑎𝑙

|𝑦𝑖,𝑡 − 𝑓𝑖(𝑦𝑖,𝑡,𝑚,𝑚 ∈ ℳ)| ≤ min
𝑚∈ℳ

∑︀𝑇
𝑡=𝑇𝑣𝑎𝑙

|𝑦𝑖,𝑡 − 𝑦𝑖,𝑡,𝑚| ≤
∑︀𝑇

𝑡=𝑇𝑣𝑎𝑙
|𝑦𝑖,𝑡 −

𝑦𝑖,𝑡,𝑚0| ∀𝑚0 ∈ ℳ, ∀𝑖 ∈ [𝑁]. This result can also be generalized to general

distance functions.

2. (Out-of-Sample Predictions)

(i) Robustness: The trained aggregate model in problem (5.5) has a lower

out-of-sample mean absolute percentage error than at least one of its indi-

vidual models: that is, 𝐸[|𝑦𝑖 − 𝑦𝑖|] ≤ max
𝑚∈ℳ

𝐸[|𝑦𝑖 − 𝑦𝑖,𝑚|] when ℱ is the set

of convex combinations.

(ii) Variance: The trained aggregate model in problem (5.5) has a lower out-

of-sample variance than at least one of its individual models: that is,

𝑣𝑎𝑟(𝑦𝑖) ≤ max
𝑚∈ℳ

𝑣𝑎𝑟(𝑦𝑖,𝑚). This result can be generalized to absolutely ho-

mogeneous distance functions.

The proofs can be found in Appendix §D.6. Theorem 4.1 guarantees that the

aggregate model always has a better in-sample fit in terms of predictive error. Theo-

rem 4.2.(i) and 4.2.(ii) show that the aggregation method reduces variability and also

adds robustness to the final prediction. While these results compare the aggregate

model to the worst performing model, note that these results are for out-of-sample

predictions. As such, the worst-performing model is not known in advance and may

be different for the worst expected value and the worst variability. The aggregate

model ensures a minimum level of performance out-of-sample while being the best

in-sample.

5.4 Results with COVID-19 Data

To evaluate the success of our models, we benchmark them against models selected

by the CDC and made publicly available on the COVID-19 Forecast Hub. This

comparison is discussed extensively in §5.7. In this section, we discuss the regional

predictions we use to inform the prevalence and vaccination models that we introduce.

166

5.4.1 Data Sources and Features

We utilized multiple data sources in order to construct the final dataset that was then

used to train the models we presented above. We collected cases and deaths related

data, state-level social distancing policies data, global population mobility reports

and weather data. More details on the data sources and on how the features are used

can be found be in the Appendix D.7.

5.4.2 Model Predictions

The component and aggregate models predict the cumulative number of deaths and

cases for each state or county in the US. To measure prediction accuracy, we use the

mean absolute percent error weighted by the true number of deaths or cases in each

state (wMAPE, i.e. weighted Mean Absolute Percentage Error). Table 5.1 shows

prediction accuracy for the aggregate model across different US regions, as defined

by worldatlas.com, as well as across the country as a whole. We test the model on

four months at different points during the pandemic. For each of these months, the

models were trained and validated up to the last date of the previous month, and all

predictions beyond that date were out-of-sample. Due to data issues, the states of

Alaska and Hawaii (as well as the District of Columbia and other US territories) are

excluded from the averages shown here.

Month Metric Midwest Northeast South West USA

June, 2020 Deaths 0.118 0.029 0.062 0.026 0.051
Cases 0.427 0.716 0.462 0.305 0.440

September, 2020 Deaths 0.015 0.004 0.024 0.009 0.013
Cases 0.210 0.087 0.159 0.367 0.205

November, 2020 Deaths 0.056 0.009 0.038 0.030 0.031
Cases 0.111 0.267 0.387 0.356 0.262

February, 2021 Deaths 0.022 0.020 0.027 0.016 0.022
Cases 0.499 0.525 0.477 0.219 0.438

Table 5.1: wMAPE of the MIT-Cassandra model at various points during the pan-
demic in US regions. Regions defined by worldatlas.com. Alaska, Hawaii excluded.

For the purpose of estimating prevalence and optimally allocating vaccine doses,

167

it is important to demonstrate that the aggregate model makes accurate predictions

on the level of individual states as well. In Figure 5-1 we show cumulative deaths

and cases alongside aggregate model predictions for Massachusetts and California for

the month of February. The model is able to closely approximate the true evolution

of cases and deaths in these states at this time: average percentage errors for these

predictions over this month are also shown on the plots in Figure 5-1 below. It

is worth acknowledging that the death predictions are more accurate than the case

predictions. This is largely due to the way case counts are significantly more volatile,

able to dramatically change their trajectory with little warning. Despite the errors,

there is value in the case predictions to decision makers as they still generally trace the

evolution of the disease. Understanding the broad evolution is crucial to long-term

planning when there is uncertainty about the exact number of cases.

(a) February Deaths: MA (b) February Deaths: CA

(c) February Cases: MA (d) February Cases: CA

Figure 5-1: Statewide predictions (black) from the aggregate model alongside true
death and detected case counts (gray) for the month of February in Massachusetts
(left) and California (right).

The next section will discuss estimating the true prevalence of the disease, as

opposed to the number of detected cases, which is essential for optimizing vaccine

168

allocation. This will require making predictions on individual counties, which will be

discussed in the next section.

5.5 From Detected Cases to True Cases

Most COVID-19 predictive methods are trained on confirmed cases; however, decision

makers care about determining the true number of cases. In this section, we propose a

model that allows us to determine the true cases, also referred to as prevalence, from

the detected cases. To determine this information, we use random testing serology

data from the CDC.

5.5.1 Summary

COVID-19 testing is limited and is not done uniformly at random. Instead, it is

biased towards the population that is more likely to test positive. We do not assume

that the ratio between true cases and detected cases is constant; rather we assume a

linear relationship between the probability of a person being infected knowing that

she has not been tested and the probability of a person being infected knowing that

she has been tested.

5.5.2 Model Formulation

For a random person in the population of interest, we denote ℐ the random variable

of being infected, 𝒯 the random variable of being tested, 𝒩 the random variable of

not being tested (𝒩 = 𝒯). In what follows we assume that tests for COVID-19 are

100% accurate, i.e., the probability of being positive if an infected person takes a test

is 1 and the probability of being negative if a person who is not infected takes the

test is 1 as well. Note that this assumption can easily be relaxed without any major

changes to the model but is imposed for ease of exposition.

The linearity assumption can then be written as follows 𝑃 (ℐ|𝒩) = 𝛼𝑃 (ℐ|𝒯),

where 𝛼 is a constant capturing how likely it is for someone to be infected knowing

169

that one is not tested vs one is tested. This gives rise to Equation (5.7).

𝑃 (ℐ) = 𝑃 (ℐ|𝒯)𝑃 (𝑇) + 𝑃 (ℐ|𝒩)𝑃 (𝑁) = 𝑃 (ℐ|𝒯)𝑃 (𝒯) + 𝑃 (ℐ|𝑁)
(︀
1− 𝑃 (𝒯)

)︀
= 𝑃 (ℐ|𝒯)𝑃 (𝒯) + 𝛼𝑃 (ℐ|𝒯)

(︀
1− 𝑃 (𝒯)

)︀
= 𝑃 (ℐ|𝒯)

(︀
𝛼 + (1− 𝛼)𝑃 (𝒯)

)︀
.

(5.7)

We notice that 𝑃 (𝒯) can be evaluated empirically by # Tests
Population and 𝑃 (ℐ|𝒯) can be

evaluated by # Cases
Tests . Hence, we obtain equation (5.8), which we can compute from

the data and the predictions as long as we know the value of constant 𝛼.

Infected =
Cases
Tests

× Population ×
(︂
𝛼 + (1− 𝛼)

Tests
Population

)︂
. (5.8)

5.5.3 Evaluating 𝛼

In order to evaluate 𝛼, we use serology and random testing data from the CDC.

This data assumes uniform random testing across a specific region at a particular

time. Consequently we know the overall prevalence of this region at that time 𝑃 (ℐ).

By inserting this value into (5.8), we obtain an estimate of 𝛼 for this region. The

advantage of this method is that while the different probabilities are time-dependent,

𝛼 is not. This implies that we can use this 𝛼 for back-testing and future predictions.

In Table 5.2, we show the estimation of 𝛼 for some select states in the US. Note that

some of these numbers may vary from the overall estimates, as they were performed

on sub-sets of the state, e.g. the experiment for California was performed only on

the Bay Area. Seroprevalence here is the estimate of the CDC of the percentage of

the population that has been infected with COVID-19. Using this framework, we can

State Date Seroprevalence Detected Population % Detected % Tested 𝛼
California 4/27/2020 1 45000 39510000 0.113 1.400 0.110

Connecticut 5/3/2020 4.9 29000 3562000 0.814 2.874 0.148
Massachusetts 5/15/2020 9.9 85400 6893000 1.238 6.528 0.111

Minnesota 5/12/2020 2.7 12500 5640000 0.221 2.142 0.244
Missouri 4/26/2020 2.7 6800 6110000 0.111 1.052 0.247

Pennsylvania 4/25/2020 3.2 41200 12800000 0.321 1.507 0.136
Utah 5/3/2020 2.2 4800 3206000 0.149 3.808 0.542

Table 5.2: Estimation of 𝛼 for select states in the US based on the CDC Serology
and Random Testing Data.

170

predict the true number of cases across regions instead of the detected ones. As is

evident from equation (5.8), there is a linear relationship between 𝛼 and the predicted

prevalence ratio, # Infected
Population , where the slope of this relationship is determined by 𝑃 (𝒯)

and 𝑃 (ℐ|𝒯).

It is worth noting that while the CDC serology dataset is one of most reliable

in the United States, it also brings with it a set of assumptions and biases. First,

while the study attempted to get a sample of seroprevalence tests nationwide, biases

introduced based on the sampling process (who donated/submitted blood for labra-

tory testing) might skew the results. Second, the seroprevalence survey doesn’t not

account for changing levels of antibodies over time. A complicating factor is that

the serology tests only determine the presence of antibodies, thus patients who get

Covid-19 multipletimes will not be accounted for. However we have since learned that

antibodies last at least 3 months after the infection and these studies were conducted

within the first four months of the pandemic. Third there is always the possibility

in the tests themselves, introduced error through false negatives and false positives.

Despite these factors, the CDC serology dataset is the closest to the ground truth of

COVID-19 prevalence and is far less censored than the Covid-19 tests.

We show examples of true prevalence predicted by our method for different values

of 𝛼 for the states of Massachusetts and California on February 2, 2021. The value

of 𝛼 for both these regions was estimated to be 0.11. It is worth observing that the

prevalence percentage varies by less than 2%, for a fairly wide range of 𝛼. Because

the prevalence estimation is robust with respect to 𝛼, using the estimate of 𝛼 from

the serology data from the CDC, the subsequent estimate of true prevalence can be

relied upon to be accurate. Note that the relationship between 𝑃 (ℐ) and 𝛼 while

linear on a particular time, is not linear over time, as 𝑃 (ℐ|𝒯) and 𝑃 (𝒯) both vary

over time.

By comparing Massachusetts and California, on February 2, 2021 a few interesting

dynamics arise. First, it is worth noting that even though both states have similar

𝛼 and true prevalence, the characteristics of each state are very different at this

time. Specifically, the probability of being tested, 𝑃 (𝒯), in Massachusetts (19.3%) is

171

approximately double the probability of being tested in California (9.7%). However

the positivity rate, 𝑃 (ℐ|𝒯), in Massachusetts (4.2%) is a little more than half that

of California (7.5%). This counterbalancing effect explains why prevalence for the

two states is so close. That being said, while the point prediction for the states is

similar, because testing is more common in Massachusetts, the prevalence result is

more robust. This is reflected in Figure 5-2 by the lower slope for Massachusetts

compared to California. ‘

Figure 5-2: Possible true values of prevalence in Massachusetts and California on
February 2, 2021. Consensus alpha refers to the estimated alpha from the CDC
serology data in Table 5.2.

It is true that if the testing policies change, the 𝛼 does change, so we have no

guarantee that the previously evaluated 𝛼 still holds. However, with new data, we

can accurately re-evaluate this 𝛼, and could also assume a functional form for a time-

varying 𝛼, which allows us to extrapolate for future changes in 𝛼. Note that one

of the assumptions of this approach is that this 𝛼 is constant between the time of

evaluation and the time of prediction. However, if the testing policies change, the 𝛼

does change, and we have no guarantee that the previously evaluated 𝛼 still holds.

However, with new data, we can easily and accurately re-evaluate this 𝛼, and could

also assume a functional form for a time-varying 𝛼, which allows us to extrapolate

for future changes in 𝛼.

172

5.5.4 Model Predictions

Using the value of 𝛼 determined above, we can compare detected cases and estimated

prevalent cases in these two states during the month of February 2021. This com-

parison is shown in Figure 5-3 with Massachusetts on the left and California on the

right. As shown in Figure 5-2, at this time and 𝛼, the prevalence ratio is higher for

California than for Massachusetts, and this relationship is reflected in this plot. Cal-

ifornia is much larger in population, but it is clear that the ratio between prevalent

and detected cases is higher in California during this time.

(a) Cases in Massachusetts in February (b) Cases in California in February

Figure 5-3: Detected (gray) and estimated prevalent cases (black) in Massachusetts
(left) and California (right) during the month of February 2021. Total prevalence
estimated using 𝛼 = 0.11.

For the purpose of allocating vaccines optimally to make the most impact, we need

to estimate this true prevalence for each county. As an example, Figure 5-4 shows

detected cases (left) and estimated prevalent cases during this span (right) for each

county in Massachusetts, as our case study focuses on county-level allocation for this

state. The next section discusses the formulation of this optimization problem and

examines the prescribed vaccine allocations.

5.6 Application to Vaccine Allocation

Summary

In this section, we use the prevalence estimation and case and death predictions

determined in §5.5.1 and §5.5.4, in particular Figure 5-4, to optimize the vaccine

173

(a) Detected Cases (b) Estimated Total Cases

Figure 5-4: Detected cases (left) and estimated total cases (right) in each Mas-
sachusetts county during the month of February 2021. Total prevalence estimated
using 𝛼 = 0.11.

allocations across counties for different population types, vaccine types, and across

first and second doses. The goal is to minimize the expected number of deaths or

cases under capacity and fairness constraints.

Model Formulation

We consider the problem of a centralized planner who needs to allocate a finite number

of 1-dose (𝐾1) and 2-dose (𝐾2) vaccines across 𝐽 counties over 𝑇 time periods. Each

county is heterogeneous and is resided by 𝐼 different population types. Population

types differ from one another based on characteristics that drive the spread of the

virus and the efficacy of the vaccine. The objective of the centralized planner is to

minimize the expected number of deaths over 𝑇 . To model this objective, we first

define other population level parameters.

For an individual in population 𝑖 ∈ [𝐼] and vaccine 𝑘 ∈ [𝐾1+𝐾2], let 𝑝1,𝑖,𝑘 denote

the probability of being immune to the virus after receiving only one dose of the

vaccine and 𝑝2,𝑖,𝑘 denote the probability of being immune to the virus after receiving

two doses. We assume that this probability is independent of the population type

and simplify this notation to 𝑝1,𝑘 and 𝑝2,𝑘. Also, let 𝑝𝑡,𝑖,𝑗 denote the probability

of being infected by the virus without any immunity at time 𝑡, in county 𝑗. This

probability is given by our predicted prevalence (by using our prevalence model from

§5.5.1 on our predictions from §5.3.6 to obtain the results shown on Figure 5-4 broken

174

down by age group). Once an individual from a population is infected, we let the

mortality of the individual be given by 𝑚𝑡,𝑖,𝑗 . Finally, since we are solving a multi-

period problem, we must model the evolution of the pandemic over the population.

To accomplish this, we let 𝑛0
𝑡,𝑖,𝑗 ,𝑛

1,𝑘
𝑡,𝑖,𝑗 ,𝑛

2,𝑘
𝑡,𝑖,𝑗 and 𝑐0𝑡,𝑖,𝑗 , 𝑐

1,𝑘
𝑡,𝑖,𝑗 , 𝑐

2,𝑘
𝑡,𝑖,𝑗 denote the number

of susceptible people and the number of cases that received 0, 1 and 2 doses of vaccine

𝑘, respectively, at time 𝑡, in county 𝑗, from population 𝑖. (We only define 𝑛2,𝑘
𝑡,𝑖,𝑗 for

𝑘 ∈ [𝐾1 + 1, 𝐾1 +𝐾2], as these represent the 2-dose vaccines.) Finally, we let 𝑣1,𝑘
𝑡,𝑖,𝑗

and 𝑣2,𝑘
𝑡,𝑗 denote the integer decision variable of the central planner which denotes the

number of allocated vaccines for the first and the second dose to different counties,

population types, and time. Note that the susceptible population evolves based on

the allocated vaccine according to the following equations:

𝑛0
𝑡,𝑖,𝑗 = 𝑛0

𝑡−1,𝑖,𝑗 −
𝐾1+𝐾2∑︁
𝑘=1

𝑣1,𝑘𝑡,𝑖,𝑗 − 𝑐0𝑡−1,𝑖,𝑗, ∀𝑡 ∈ [𝑇],∀𝑖 ∈ [𝐼],∀𝑗 ∈ [𝐽], (5.9a)

𝑛1,𝑘
𝑡,𝑖,𝑗 = 𝑛1,𝑘

𝑡−1,𝑖,𝑗 + 𝑣1,𝑘𝑡,𝑖,𝑗 − 𝑐1,𝑘𝑡−1,𝑖,𝑗, ∀𝑡 ∈ [𝑇],∀𝑖 ∈ [𝐼], ∀𝑗 ∈ [𝐽],∀𝑘 ∈ [𝐾1], (5.9b)

𝑛1,𝑘
𝑡,𝑖,𝑗 = 𝑛1,𝑘

𝑡−1,𝑖,𝑗 − 𝑣2,𝑘𝑡,𝑖,𝑗 + 𝑣1,𝑘𝑡,𝑖,𝑗 − 𝑐1,𝑘𝑡−1,𝑖,𝑗, ∀𝑡 ∈ [𝑇],∀𝑖 ∈ [𝐼], ∀𝑗 ∈ [𝐽],∀𝑘 ∈ [𝐾1 + 1, 𝐾2],

(5.9c)

𝑛2,𝑘
𝑡,𝑖,𝑗 = 𝑛2,𝑘

𝑡−1,𝑖,𝑗 + 𝑣2,𝑘𝑡,𝑖,𝑗 − 𝑐2,𝑘𝑡,𝑖,𝑗, ∀𝑡 ∈ [𝑇], 𝑖 ∈ [𝐼],∀𝑗 ∈ [𝐽],∀𝑘 ∈ [𝐾1 + 1, 𝐾1 +𝐾2],

(5.9d)

Equations (5.9a) to (5.9d) represent the constraints describing the population

dynamics when people of particular subgroups get infected and get vaccinated with

one dose and two doses, respectively. For example, if an individual in the 1-dose

population 𝑛1,𝑘
𝑡−1,𝑖,𝑗 for population 𝑖 in county 𝑗 receives the second dose of vaccine 𝑘

at time 𝑡, they are moved to the 2-dose population 𝑛2,𝑘
𝑡,𝑖,𝑗 for the next time period. The

constant vectors 𝑐0, 𝑐1 and 𝑐2 account for the estimated new infections and deaths

that are removed from the pool of eligible candidates for vaccination.

The centralized planner’s objective is to minimize the expected number of deaths

175

given by

min
𝑣

𝑇∑︁
𝑡=1

𝐼∑︁
𝑖=1

𝐽∑︁
𝑗=1

(𝑛0
𝑡,𝑖,𝑗𝑝𝑡,𝑖,𝑗𝑚𝑡,𝑖,𝑗 +

𝐾1+𝐾2∑︁
𝑘=1

𝑛1,𝑘
𝑡,𝑖,𝑗𝑝𝑡,𝑖,𝑗𝑚𝑡,𝑖,𝑗(1− 𝑝1,𝑘)+ (5.10)

𝐾1+𝐾2∑︁
𝑘=𝐾1+1

𝑛2,𝑘
𝑡,𝑖,𝑗𝑝𝑡,𝑖,𝑗𝑚𝑡,𝑖,𝑗(1− 𝑝2,𝑘)), (5.11)

The expected number of deaths in this objective from the vaccine allocation is

divided into three components: (i) the expected number of deaths for populations

that have received no vaccine doses (number of susceptible people 𝑛0
𝑡,𝑖,𝑗, times the

probability of getting infected 𝑝𝑡,𝑖,𝑗, times the mortality rate, or probability of dying

knowing that one is infected𝑚𝑡,𝑖,𝑗) plus (ii) the populations that received one dose and

finally, (iii) those who received two doses. For these last two cases, we additionally

account for the probability of not being immune, i.e. 1−𝑝1,𝑘 and 1−𝑝2,𝑘 respectively.

Our model formulation also allows us to account for fairness and other operational

constraints. For example, centralized planners need to ensure that the allocation

across regions is equitable. Furthermore, there might be capacity constraints across

time for different regions. This can be done by ensuring that not too many vaccines

of any type are allocated to a region or allocated in a given time period. Let 𝑉𝑚𝑎𝑥,𝑘,𝑡

denote the maximum number of vaccines 𝑘 available for the whole state at time 𝑡

and 𝑉𝑚𝑖𝑛,𝑡,𝑗 denote the minimum number of vaccines that need to be allocated to

county 𝑗, at time 𝑡. Then we can ensure a fair allocation by enforcing the following

constraints

𝐼∑︁
𝑖=1

𝐽∑︁
𝑗=1

𝑣1,𝑘𝑡,𝑖,𝑗 ≤ 𝑉𝑚𝑎𝑥,𝑘,𝑡, ∀𝑡 ∈ [𝑇],∀𝑘 ∈ [𝐾1] (5.12a)

𝐼∑︁
𝑖=1

𝐽∑︁
𝑗=1

(𝑣1,𝑘𝑡,𝑖,𝑗 + 𝑣2,𝑘𝑡,𝑖,𝑗) ≤ 𝑉𝑚𝑎𝑥,𝑘,𝑡, ∀𝑡 ∈ [𝑇],∀𝑘 ∈ [𝐾1 + 1, 𝐾1 +𝐾2] (5.12b)

𝐼∑︁
𝑖=1

(

𝐾1+𝐾2∑︁
𝑘=1

𝑣1,𝑘𝑡,𝑖,𝑗 +

𝐾1+𝐾2∑︁
𝑘=𝐾1+1

𝑣2,𝑘𝑡,𝑖,𝑗) ≥ 𝑉𝑚𝑖𝑛,𝑡,𝑗, ∀𝑡 ∈ [𝑇], ∀𝑗 ∈ [𝐽], (5.12c)

Equations (5.12a) and (5.12b) represent the capacity constraints for the 1-dose and

176

the 2-dose vaccines, respectively. Equation (5.12c) represents the fairness constraint,

i.e., a minimum number of vaccines allocated to each county, at each time period.

Additionally, we set 𝐾 = 𝐾1 +𝐾2 and 𝑛2,𝑘
𝑡,𝑖,𝑗 = 𝑣2,𝑘𝑡,𝑖,𝑗 = 0,∀𝑖, 𝑗, 𝑡, for all 1-dose vaccines

(for 𝑘 ∈ [𝐾1]) (note this is without loss of generality). Furthermore, 𝑐2,𝑘𝑡,𝑖,𝑗 = 0 from

the definition of the 1-dose vaccines.

Putting this together gives us Formulation (5.13):

min
𝑣

𝑇∑︁
𝑡=1

𝐼∑︁
𝑖=1

𝐽∑︁
𝑗=1

(𝑛0
𝑡,𝑖,𝑗𝑝𝑡,𝑖,𝑗𝑚𝑡,𝑖,𝑗 +

𝐾∑︁
𝑘=1

(𝑛1,𝑘
𝑡,𝑖,𝑗𝑝𝑡,𝑖,𝑗𝑚𝑡,𝑖,𝑗(1− 𝑝1,𝑘) + 𝑛2,𝑘

𝑡,𝑖,𝑗𝑝𝑡,𝑖,𝑗𝑚𝑡,𝑖,𝑗(1− 𝑝2,𝑘))),

s.t.
𝐼∑︁
𝑖=1

𝐽∑︁
𝑗=1

(𝑣1,𝑘𝑡,𝑖,𝑗 + 𝑣2,𝑘𝑡,𝑖,𝑗) ≤ 𝑉𝑚𝑎𝑥,𝑘,𝑡, ∀𝑡 ∈ [𝑇],∀𝑘 ∈ [𝐾],

𝐼∑︁
𝑖=1

𝐾∑︁
𝑘=1

(𝑣1,𝑘𝑡,𝑖,𝑗 + 𝑣2,𝑘𝑡,𝑖,𝑗) ≥ 𝑉𝑚𝑖𝑛,𝑡,𝑗, ∀𝑡 ∈ [𝑇],∀𝑗 ∈ [𝐽],

𝑛0
𝑡,𝑖,𝑗 = 𝑛0

𝑡−1,𝑖,𝑗 −
𝐾∑︁
𝑘=1

𝑣1,𝑘𝑡,𝑖,𝑗 − 𝑐0𝑡−1,𝑖,𝑗, ∀𝑡 ∈ [𝑇],∀𝑖 ∈ [𝐼],∀𝑗 ∈ [𝐽],

𝑛1,𝑘
𝑡,𝑖,𝑗 = 𝑛1,𝑘

𝑡−1,𝑖,𝑗 − 𝑣2,𝑘𝑡,𝑖,𝑗 + 𝑣1,𝑘𝑡,𝑖,𝑗 − 𝑐1,𝑘𝑡−1,𝑖,𝑗, ∀𝑡 ∈ [𝑇],∀𝑖 ∈ [𝐼],∀𝑗 ∈ [𝐽],∀𝑘 ∈ [𝐾],

𝑛2,𝑘
𝑡,𝑖,𝑗 = 𝑛2,𝑘

𝑡−1,𝑖,𝑗 + 𝑣2,𝑘𝑡,𝑖,𝑗 − 𝑐2,𝑘𝑡−1,𝑖,𝑗, ∀𝑡 ∈ [𝑇], 𝑖 ∈ [𝐼], ∀𝑗 ∈ [𝐽],∀𝑘 ∈ [𝐾],

𝑛0
𝑡,𝑖,𝑗, 𝑛

1,𝑘
𝑡,𝑖,𝑗, 𝑛

2,𝑘
𝑡,𝑖,𝑗, 𝑣

1,𝑘
𝑡,𝑖,𝑗, 𝑣

2,𝑘
𝑡,𝑖,𝑗 ≥ 0, ∀𝑡 ∈ [𝑇], 𝑖 ∈ [𝐼],∀𝑗 ∈ [𝐽],∀𝑘 ∈ [𝐾].

𝑛2,𝑘
𝑡,𝑖,𝑗 = 𝑣2,𝑘𝑡,𝑖,𝑗 = 0, ∀𝑡 ∈ [𝑇], ∀𝑖 ∈ [𝐼],∀𝑗 ∈ [𝐽], ∀𝑘 ∈ [𝐾1].

𝑣1,𝑘𝑡,𝑖,𝑗, 𝑣
2,𝑘
𝑡,𝑖,𝑗 ≥ 0, integer, ∀𝑡 ∈ [𝑇],∀𝑖 ∈ [𝐼],∀𝑗 ∈ [𝐽],∀𝑘 ∈ [𝐾].

(5.13)

It is important to note that in this formulation, the prevalence and the number of

cases 𝑐 are exogenous variables. This assumption can be relaxed by considering a dy-

namic program version of the formulation, as presented in Appendix D.10. However,

in practice, this optimization formulation is frequently resolved, only implementing

the here-and-now allocation decision, i.e., the allocation decision at time 𝑡 = 0, or

within a certain time interval with lag 𝛿, from time 𝑡 = 0 to time 𝑡 = 𝛿. Then we use

the output to update the prevalence and the expected cases, which allows us to resolve

for the wait-and-see allocation decision (𝑡 > 0, or 𝑡 > 𝛿). This framework provides a

good, scalable approximation because high priority patients will remain high priority

177

regardless of the evolution of the overall prevalence, and the optimization is trying

to vaccinate as much as possible as early as possible under the capacity constraints,

which makes the update less impactful on the wait-and-see decisions. Moreover, the

vaccination decisions made now do not impact prevalence until 14-days at least after

vaccination, which makes the problem stable in terms of short-term input, allowing

us to re-optimize over multiple time horizons.

To condense the formulation further and make it easier to solve, we use the follow-

ing new notations: 𝛽1,𝑘
𝑡,𝑖,𝑗 =

𝑇∑︀
𝑠=𝑡

𝑝𝑠,𝑖,𝑗𝑚𝑠,𝑖,𝑗𝑝1,𝑘 and 𝛽2,𝑘
𝑡,𝑖,𝑗 =

𝑇∑︀
𝑠=𝑡

𝑝𝑠,𝑖,𝑗𝑚𝑠,𝑖,𝑗(𝑝2,𝑘 − 𝑝1,𝑘) and

𝑉 1
𝑡,𝑖,𝑗,𝑚𝑎𝑥 = 𝑛0

0,𝑖,𝑗 −
𝑡−1∑︀
𝑠=0

𝑐0𝑠,𝑖,𝑗 and 𝑉 2,𝑘
𝑡,𝑖,𝑗,𝑚𝑎𝑥 = 𝑛1,𝑘

0,𝑖,𝑗 −
𝑡−1∑︀
𝑠=0

𝑐1,𝑘𝑠,𝑖,𝑗 (note that these quantities

are known and can be pre-computed). This re-formulation transforms the problem

from minimizing the expected number of deaths to maximizing the expected reduction

in deaths through vaccination. We argue that Formulation (5.13) can be rewritten

into Formulation (5.14):

max
𝑣

𝑇∑︁
𝑡=1

𝐼∑︁
𝑖=1

𝐽∑︁
𝑗=1

𝐾∑︁
𝑘=1

(𝛽1,𝑘
𝑡,𝑖,𝑗𝑣

1,𝑘
𝑡,𝑖,𝑗 + 𝛽2,𝑘

𝑡,𝑖,𝑗𝑣
2,𝑘
𝑡,𝑖,𝑗),

s.t.
𝐼∑︁
𝑖=1

𝐽∑︁
𝑗=1

(𝑣1,𝑘𝑡,𝑖,𝑗 + 𝑣2,𝑘𝑡,𝑖,𝑗) ≤ 𝑉𝑚𝑎𝑥,𝑘,𝑡, ∀𝑡 ∈ [𝑇], ∀𝑘 ∈ [𝐾],

𝐼∑︁
𝑖=1

𝐾∑︁
𝑘=1

(𝑣1,𝑘𝑡,𝑖,𝑗 + 𝑣2,𝑘𝑡,𝑖,𝑗) ≥ 𝑉𝑚𝑖𝑛,𝑡,𝑗, ∀𝑡 ∈ [𝑇],∀𝑗 ∈ [𝐽],

0 ≤
𝐾∑︁
𝑘=1

𝑡∑︁
𝑠=1

𝑣1,𝑘𝑠,𝑖,𝑗 ≤ 𝑉 1
𝑡,𝑖,𝑗,𝑚𝑎𝑥, ∀𝑡 ∈ [𝑇],∀𝑖 ∈ [𝐼],∀𝑗 ∈ [𝐽],

0 ≤
𝑡∑︁

𝑠=1

𝑣2,𝑘𝑡,𝑖,𝑗 ≤ 𝑉 2,𝑘
𝑡,𝑖,𝑗,𝑚𝑎𝑥 +

𝑡∑︁
𝑠=1

𝑣1,𝑘𝑠,𝑖,𝑗, ∀𝑡 ∈ [𝑇],∀𝑖 ∈ [𝐼], ∀𝑗 ∈ [𝐽],∀𝑘 ∈ [𝐾],

𝑣2,𝑘𝑡,𝑖,𝑗 = 0, ∀𝑡 ∈ [𝑇],∀𝑖 ∈ [𝐼], ∀𝑗 ∈ [𝐽],∀𝑘 ∈ [𝐾1].

𝑣1,𝑘𝑡,𝑖,𝑗, 𝑣
2,𝑘
𝑡,𝑖,𝑗 ≥ 0, integer, ∀𝑡 ∈ [𝑇], ∀𝑖 ∈ [𝐼],∀𝑗 ∈ [𝐽], ∀𝑘 ∈ [𝐾].

(5.14)

Proposition 3 Formulation (5.13) and Formulation (5.14) are equivalent.

The proof can be found in Appendix §D.9. Formulation (5.14) is exactly our

initial vaccine allocation problem, but notice that it does not include the evolution

178

constraints ((5.9a) to (5.9d)); these are replaced by upper bounds on the number of

people eligible for vaccination in each sub-population. This results in a linear integer

program with a totally uni-modular matrix defining its feasible region. As a

result, (5.14) can be solved fast and efficiently with a simple linear relaxation.

Additionally, note that there are three main sources of uncertainty in this for-

mulation: (i) the predicted prevalence 𝑝: from both the prediction of the number

of detected cases itself and from the choice of 𝛼, (ii) the mortality rate 𝑚, and (iii)

the vaccine efficacy 𝑝1 and 𝑝2. While in this chapter, we focus on the nominal ver-

sion, mainly because of the demonstrated high accuracy of our models, a robust

re-formulation for Formulation (5.14) and Formulation (5.13) can easily be written

and solved. See Appendix §D.11 for more details.

Intuition on the vaccine allocation policy

We notice, however, that the vaccination priority (between the different populations

and due to the fairness constraints) across counties, populations, time, vaccine type,

and first versus second-dose is determined depending on the values of the coefficients

𝛽 (these are computed in advance, and depend on the prevalence, the mortality rate,

and the vaccine dose efficacy).

Given these observations, we obtain the following takeaways: (i) 𝛽1,𝑘
𝑡,𝑖,𝑗 > 𝛽1,𝑘

𝑡+1,𝑖,𝑗∀𝑡, 𝑗

and 𝛽2,𝑘
𝑡,𝑖,𝑗 > 𝛽2,𝑘

𝑡+1,𝑖,𝑗,∀𝑡, 𝑗. This confirms mathematically that we should vaccinate any

given population as soon as possible. That is, if the capacity constraint in Problem

(5.14) is replaced by
𝐼∑︀
𝑖=1

𝐽∑︀
𝑗=1

(𝑣1,𝑘𝑡,𝑖,𝑗 + 𝑣2,𝑘𝑡,𝑖,𝑗) ≤ 𝑉𝑚𝑎𝑥,𝑘, then the available capacity would

be allocated to the earliest time regardless of how the disease prevalence and number

of cases evolve. (ii) Note that 𝛽1,𝑘
𝑡,𝑖,𝑗 − 𝛽2,𝑘

𝑡,𝑖,𝑗 =
𝑇∑︀
𝑠=𝑡

𝑝𝑠,𝑖,𝑗𝑚𝑠,𝑖,𝑗(2𝑝1,𝑘 − 𝑝2,𝑘). For the same

time 𝑡, population 𝑖, and county 𝑗, priority between vaccinating first and second doses

(for 2-dose vaccines) is entirely determined by the sign of 2𝑝1,𝑘 − 𝑝2,𝑘. If 2𝑝1,𝑘 > 𝑝2,𝑘,

then priority is given to vaccinating the entire population with the first-dose of the

vaccines and only after that administering second doses. The opposite holds for

2𝑝1,𝑘 < 𝑝2,𝑘. For example, for a vaccine with 𝑝1,𝑘 = 40% and 𝑝2,𝑘 = 90% efficacy (i.e.

the first dose of vaccine 𝑘 gives a 40% immunity to the virus, and the second dose

179

a 90% immunity), administering first and second doses of vaccines should be given

the priority, contrary to some government policies. Note that different efficiencies, or

level of immunity of the vaccine doses per population type, can be incorporated into

the model by replacing 𝑝1,𝑘 by 𝑝1,𝑖,𝑘 and 𝑝2,𝑘 by 𝑝2,𝑖,𝑘 (representing different vaccine

efficiencies for different population types 𝑖). This might change the order of priority

for administering the first versus the second dose. However, there is not enough

data on the breakdown of the efficiency by population type. (iii) We also observe

several trade-offs between population 𝑖, county 𝑗, and vaccine type 𝑘. The proposed

formulation allows us to answer questions such as whether to prioritize highly-effective

vaccines in low-prevalence areas or less-effective vaccines in high-prevalence areas,

or vaccinating the high-susceptible population in low prevalence areas or the low-

susceptible population in high-prevalence areas. (iv) Finally, note that (5.14) does

not assume a lag between first and second dose vaccines. Nevertheless, it can be

directly incorporated by replacing the second population limit constraint by 0 ≤
𝑡∑︀

𝑠=1

𝑣2,𝑘𝑡,𝑖,𝑗 ≤ 𝑉 2,𝑘
𝑡,𝑖,𝑗,𝑚𝑎𝑥 +

𝑚𝑎𝑥(𝑡−𝑡𝑙𝑎𝑔 ,0)∑︀
𝑠=1

𝑣1,𝑘𝑠,𝑖,𝑗, ∀𝑡 ∈ [𝑇],∀𝑖 ∈ [𝐼],∀𝑗 ∈ [𝐽],∀𝑘 ∈ [𝐾], where

𝑡𝑙𝑎𝑔 denotes the lag, which typically equals 21 days, but can vary across vaccines.

Results with COVID-19 Data

We test this approach on the different Massachusetts (MA) Counties, with three

vaccines that we call vaccine MD, vaccine PF and vaccine AZ, with respectively immunity

rates for 1 dose of 𝑝1,1 = 40%, 𝑝1,2 = 50% and 𝑝1,3 = 75%, and immunity rates for 2

doses of respectively 𝑝2,1 = 90%, 𝑝2,2 = 95% and 𝑝2,3 = 85%. We utilize the prevalence

in each of the 14 MA Counties on February 1𝑠𝑡 and predict the prevalence and the

number of cases in the following 100 days regardless of vaccination. In particular,

we split the population into nine age groups: 0-4, 5-17, 18-29, 30-39, 40-49, 50-

64, 65-74, 75-84, and 85+, similar to the process of the CDC. These parameters,

including the time-horizon are for illustrative purposes only. Note that for our 100-

days ahead forecast at the beginning of the vaccination (January 2021), our aggregate

model has a wMAPE of 29% only for cases. In this first experiment, we use as

prevalence the output of the aggregate model, without using any age breakdown, i.e.,

we consider that for the same county, the prevalence across different age groups is

180

(a) Cumulative Optimal Vaccine Alloca-
tion by Age Group (% of Age Group Pop-
ulation).

(b) Optimal Vaccine Allocation by Vaccine
Type.

(c) Optimal Vaccine Allocation by County
(Represented in % of Population) (d) Optimal Vaccine Allocation by County

Figure 5-5: Output of the Vaccine Optimization in MA Counties. The graph in (a) should
be read top to bottom, and the bar for each age group becomes white when 100% of the
population of this age group received at least one shot of any vaccine.

the same: 𝑝𝑡,𝑖,𝑗 = 𝑝𝑠,𝑗 ∀𝑡, 𝑖, 𝑗. We also assume that the mortality is time and county-

independent, i.e., 𝑚𝑡,𝑖,𝑗 = 𝑚𝑖 ∀𝑠, 𝑖, 𝑗. We use the values presented in Table D.7 in

the Appendix, which has been estimated at the state-level. Additionally, we set the

fairness constraint to be equal to half of what the population-proportional allocation

would have given. i.e. 𝑉𝑚𝑖𝑛,𝑡,𝑗 =
𝐾∑︀
𝑘=1

𝑉𝑚𝑎𝑥,𝑘,𝑡 × population of county j
2×total population of MA ∀𝑡 ∈ [𝑇]𝑗 ∈ [𝐽]

(for illustrative purposes, but centralized planner can set this fairness constraint to

any value). We impose a minimum of 28 days-lag between a first and second dose

vaccination for the MD vaccine, 21 for the PF vaccine, and 30 days for the AZ vaccine.

181

We show our results in Figures 5-5a to 5-5b. Figure 5-5a shows that the most

at-risk population should be vaccinated first, while some people that are less at risk

but are in high-prevalence areas should also be vaccinated in parallel but sparingly.

Figures 5-5d and 5-5c show that high-prevalence areas should be prioritized, while

maintaining a certain level of vaccination in other counties for fairness considera-

tions. Figure 5-5c also shows that the areas that are heavily vaccinated first are not

necessarily those that will reach 100% vaccination first.

Finally, Figure 5-5b shows interesting insights on the vaccine distribution, both

among vaccines, but also between first and second doses. For vaccine MD, we see that

the property 2𝑝1,1 ≤ 𝑝2,1 applies, which means second dose vaccines should be always

prioritized (everything else being equal). The figure also shows clearly in the first two

columns that as the population is vaccinated with a second dose as soon as they are

eligible (28 days after first vaccination for MD, and 21 for PF), first doses are given only

in an alternate fashion when the same population cannot receive a second dose yet.

For the PF vaccine, 2𝑝1,1 > 𝑝2,1, however these two values are very close, so although

the prioritization should go to first doses, when a subgroup (age group 𝑖, in county

𝑗) is entirely vaccinated with a first dose, it is sometimes more effective to start a

second dose vaccination for this subgroup instead of moving to another subgroup.

This is why the alternation between first and second dose vaccines is less dominant

than what we see for vaccine MD.

For AZ, where the second dose is a booster, we have 2𝑝1,1 >> 𝑝2,1; we observe that

the optimization model prioritizes the first dose vaccination over the second dose.

This translates to few or no second doses of AZ being administered until the end of

the experiment (𝑡 > 60).

Prevalence Breakdown by Age Groups

In this part, we perform a second experiment where we relax the assumption that

prevalence is the same across age groups: 𝑝𝑡,𝑖,𝑗 = 𝑝𝑠,𝑗 ∀𝑡, 𝑖, 𝑗. Since few reliable data

on the number of cases and deaths per age groups can be found ([26]), we estimate

it using CDC exposure rates. The ratios of cases and deaths for different age groups

182

compared to the 5-17 year old age group according to the CDC are shown in Figure

D-4 in the Appendix. The CDC computed these numbers from reputable sources

such as NCHS and COVID-NET, and our findings are robust to changes on the order

of 10%. These ratios can be interpreted as follows: all else equal, a person within the

75-84 year old age group, for example, is twice as likely to be detected positive for

COVID-19 and 2800 times more likely to die from COVID-19. We normalize these

results by population to extract the breakdowns on cases and deaths of COVID-19

by age group both in absolute value (number of cases per age group) and in terms of

probability of being infected given membership in a particular age group. Below we

show more details on this.

Denote ℐ and 𝒯 the events of being infected by COVID-19 and being tested

for COVID-19, respectively. Also denote ℬ𝑗 as the event of belonging to age group

𝑗 ∈ [𝐽].

Given the reference age group 5-17 and by replacing 𝑃 (ℐ ∩𝒯 |ℬ𝑗)/𝑃 (ℐ ∩𝒯 |ℬ5−17)

with the ratios for cases from Figure D-4, denoted by 𝛾(𝑗), for 𝑗 ∈ [𝐽], we obtain

Equation (5.15):

𝑃 (ℐ ∩ 𝒯) =
∑︁
𝑗∈[𝐽]

𝑃 (ℐ ∩ 𝒯 |ℬ𝑗)𝑃 (ℬ𝑗) =

∑︁
𝑗∈[𝐽]

𝛾(𝑗)𝑃 (ℐ ∩ 𝒯 |𝐵5−17)𝑃 (ℬ𝑗) = 𝑃 (ℐ ∩ 𝒯 |𝐵5−17)
∑︁
𝑗∈[𝐽]

𝛾(𝑗)𝑃 (ℬ𝑗).
(5.15)

We observe that 𝑃 (ℐ ∩ 𝒯)× (population) at a given time 𝑡 is exactly the number

of cases, and that 𝑃 (ℬ𝑗) can be evaluated empirically by the ratio of the population

in age group 𝑗 divided by total population ∀𝑗 ∈ [𝐽]. From this we can conclude that

∀𝑗 ∈ [𝐽]:

cases in age group 𝑗
total number of cases

=
𝑃 (ℐ ∩ 𝒯 ∩ ℬ𝑗)
𝑃 (ℐ ∩ 𝒯)

=
𝛾(𝑗)𝑃 (ℬ𝑗)∑︀

𝑙∈[𝐽]
(𝛾(𝑙)𝑃 (ℬ𝑙))

=
𝛾(𝑗)× population of 𝑗∑︀

𝑙∈[𝐽]
(𝛾(𝑙)× population of 𝑙)

.

(5.16)

183

Using census data for the population age breakdown by state, we compute these

ratios in Equation (5.16) as displayed in Table D.8 of the Appendix. These ratios

are far from uniform across age groups, and they vary from county to county. For

example, in Barnstable County, our model indicates that the most exposed group is

the 50-64 year old population with 24.9%, whereas in Middlesex County, it is the

18-29 year old with 27.4%. This allows us to have different levels of prevalence for

each age group in Equation (5.14). The resulting vaccination strategy is very similar

to the first approach in terms of time, county and vaccine type. However, it highlights

an important difference from an age group perspective (see Figure 5-6).

Figure 5-6: Optimal Vaccine Allocation by Age Group in Experiment 2.

Figure 5-6 shows, for example, that it is better to vaccinate some 75-84 years

old, and even some 50-64 and 65-74 before completing the 85+ population. This

distinction arises from two main factors: (i) Even though the mortality rate of 85+

years old is higher, if we account for the exposure in the disease prevalence per age

group, the overall probability of dying from COVID-19 might still be lower than other

age groups in some counties. (ii) Once we vaccinate the older population with the

first dose in the high-prevalence areas, it is unclear without the optimization whether

we should vaccinate the older population in low-prevalence areas with a first shot or

with a second shot instead of a younger population in high-prevalence areas with a

first shot. This is where the trade-offs discussed in the previous section play a role.

In conclusion, the optimization approach we discuss in this chapter, allows us

to understand optimal vaccine allocation in a data-driven way. The broad strokes

of the allocation policy align with widely held expectations of how vaccines should

184

be distributed. Namely, high risk age groups and high prevalence areas should be

prioritized. But our proposed optimization approach more explicitly captures the

tension between these two rules. For example, Figure 5-5a suggests that we need

to begin to vaccinate lower risk groups if they are in high prevalence areas before

finishing with the higher risk groups in low prevalence areas. The figure also shows

how the two dose allocation policy should play out for different vaccines given their

respective first and second dose protection. Figure 5-5b is particularly interesting in

the context of [116]. In their comparison of second-dose hold back (i.e., at each time

reserving half of the supply of vaccines for the second dose) versus second-dose release

(i.e., not holding back second doses but switching between almost fully allocating first

doses to fully allocating in second doses) under linearly increasing supply, the second-

dose release policy dominates. While we do not explicitly model the policies as [116]

does, our optimal policy has a similar structure to the second-dose release policy. For

MD and PF vaccines, especially early on, we alternate between fully allocating the

first dose and fully allocating the second dose, which reflects the second-dose release

policy that [116] models and finds to be more optimal than trying to distribute both

at the same time. However, our approach differs in that we consider prevalence of

age groups and counties as well. This creates more intricacies in the allocation policy

as the approach in this chapter balances trade-offs between prevalence and risk.

Most regions in the United States followed a phased roll-out of vaccines, starting

first with essential and healthcare workers and then working through the population

is decreasing order of risk (as evaluated by age and co-morbidity). These phases had

clearly delineated starts, when subsections of the population all became eligible to

receive the vaccine, and people were automatically assigned to receive their second

dose (if their vaccine was two-dose) as soon as medically recommended. The policies

were created at state level and applied throughout the counties within the state and

without requirements for individuals to be vaccinated within their own state. While

these policies had the benefit of simplicity and clarity, both in terms of the recom-

mendation itself and the logic behind it, they are not represented in the outcomes of

the optimal vaccine allocation policy. We can see the cost of the simplicity when we

185

evaluate how different the objective function of such a discrete policy is from optimal.

There is a price to simplicity in terms of human lives and deaths when we prioritize

interpretable, straightforward, enforceable allocations and this vaccine allocation op-

timization helps quantify that. In this regard the vaccine allocation optimization can

be used as a crucial tool when determining vaccine policy. It allows decision makes

to understand what is optimal and what are the costs of various relaxations, such as

how many more deaths are expected when we maintain a strict hierarchy in terms of

age regardless of prevalence in different counties or when we enforce the same policy

across counties within a state to discourage people from travelling to be vaccinated

sooner.

Limitations: Note that this vaccine allocation model assumes we control which

counties and age groups receive vaccine doses, while in practice in the US, local gov-

ernments can only assign vaccine stocks to distributors. There has been a far less

granular control on age groups being vaccinated, and a significant fraction of the

population got vaccinated in a different county they live in. This however has been

implemented in different countries with more stringent vaccination roll-outs. The

second limitation of the vaccination model in its current form is that it assumes an

eligible individual who is offered the vaccine at time 𝑡 will take it at this same time

𝑡, while experience has shown that some delay their vaccination, and other refuse it

altogether, contradicting the 100% vaccine uptake. This can fixed by adding a prob-

abilistic component to the formulation and through heavy incentives to vaccinate for

the hesitant populations. Finally. our model does not currently account for reinfection

directly. Although this can be done by further subdividing the vaccinated population

and updating the estimated prevalence for these different subdivision accordingly.

5.7 Impact

This work has been the outcome of a collaboration on the MIT Covid-19 Response

System (MCRS). MCRS is a joint effort between the MIT Quest for Intelligence and

Lincoln Lab to model the effects of returning to campus. MCRS estimates these ef-

186

fects using de-identified data of campus mobility, with data access and usage overseen

by MIT’s Legal, Ethical, and Equity Committee and the IT Governance Committee.

This work was funded and developed as part of the MCRS effort, as accurate fore-

casts of local prevalence rates are crucial to understanding the appropriate degree of

returning to campus. The prevalence predictions have been important for reopening

the institute by providing MIT senior administration with the forecasts they need to

consider as they make policy decisions on the degree of allowing access to the campus

for different groups (students, faculty, staff and visitors among others).

In addition, MIT-Cassandra, the predictive method discussed in this chapter is

also part of the group of models that are used by the CDC to predict the cases

and deaths of COVID-19 in different parts of the US. Of these models, our group’s

model performance consistently ranks among the top 10 models (out of more than 50

models) at different stages of the pandemic and is ranked 1𝑠𝑡 overall in several months

for both detected cases and detected deaths. These results are explored further in

the following subsection. Also note that the proposed optimization formulation for

vaccination is general, and it can easily be applied to different vaccination centers

throughout the world.

5.7.1 CDC Model Comparison

We now evaluate the success of our models by benchmarking them against the rest of

the models submitted to the CDC at several points during the pandemic. Our predic-

tions, along with those from the other CDC models, are made publicly available on

the COVID-19 Forecast Hub. Predictions from all models are uploaded weekly and

forecast weekly deaths and cases up to 4 weeks out. We show that MIT-Cassandra

consistently performs among the most accurate CDC models in terms of predicting

cases one week in advance and is the most accurate model on average after excluding

submissions that are purely ensembles of other CDC forecasts. Figure 5-7 shows accu-

racy (specifically wMAPE) and rankings for each model actively making predictions

at this time. These accuracies are calculated for all predictions made for COVID-19

cases one week in advance. We see that MIT-Cassandra is consistently among the

187

five most accurate models by this metric. In fact, on average, the MIT-Cassandra

model is the second-most accurate active CDC model by average wMAPE during

this time span, and the most accurate by this metric excluding CDC models that are

just ensembles of other CDC models. Additionally, we see in the left plot of Figure

5-7 that as the summer 2021 infection wave began in late summer 2021, the range

of accuracies by these models widens as the predictive task became more difficult.

MIT-Cassandra was able to continue making accurate case predictions throughout

the entire period shown here.

(a) Prediction Error (wMAPE) (b) Model Rankings

Figure 5-7: Prediction error (left) and model rankings (right) for all CDC models
making COVID-19 detected case predictions during summer 2021. All comparisons
are for predictions made one week in advance. MIT-Cassandra is shown in black and
other CDC models in gray.

Model Average wMAPE Rank: Overall Rank: Excluding Ensembles of CDC Models
MIT-Cassandra 0.196 2 1
UChicagoCHATTOPADHYAY-UnIT 0.200 3 2
Microsoft-DeepSTIA 0.215 4 3
USC-SI_kJalpha 0.226 5 4
IEM_MED-CovidProject 0.230 6 5
Geneva-DetGrowth 0.235 7 6
Karlen-pypm 0.250 8 7
JHU_CSSE-DECOM 0.259 9 8
COVIDhub-baseline 0.288 10 9
JHUAPL-Bucky 0.296 13 10

Table 5.3: Model accuracies for one-week ahead COVID-19 detected case predictions
during summer 2021.

Performances Earlier in the Pandemic

Prior to publishing our results to the CDC, we were also able to extensively test

our model performance against CDC models that were live earlier in the pandemic.

We did this at several points during the pandemic to capture the model’s ability to

188

make accurate forecasts during earlier stages of the pandemic. In Appendix §D.8.1

and D.8.2, we show the results for both cases and deaths predictions for the months

of September 2020, November 2020, and February 2021.

Due to space limitations, we only show in this section the plots for September 2020

in Figures 5-8 and 5-9. For For the purpose of back-testing congruently, our methods

are trained and validated on data up until the day the CDC predictions were posted.

Predictions beyond that date are purely out-of-sample.

(a) September Deaths wMAPE (b) September Deaths Ranks

Figure 5-8: Benchmarking the aggregate and best and worst component models
(black) vs the top performing models of the CDC. The colored models are the top
5 by average rank to make predictions in September for cumulative deaths. Com-
parisons in terms of wMAPE (left) and overall ranking (right). All projections are
out-of-sample predictions made 7 days before the first date displayed on the graphs.

First, we notice that our aggregate method performs very well. The aggregate

model precisely identifies the most accurate component model and weights those

predictions heavily. Figure 5-8 shows that the aggregate model is always much closer

to the accuracy of the best component model than the worst component model. This

clearly illustrates the benefits of our ensemble approach. It is also worth noticing the

extremely small margins separating the top models for this month. In the first week

of September, we observe that all of the models, including our aggregate model, are

highly accurate and that 0.5% separates the majority of the models predicting deaths.

Furthermore, in the month of September all models perform very well and the average

error of our aggregate model is less than 15 deaths per state. We notice that only a

few predicted deaths per state separate the best from the worst models in this month

189

because the number of deaths during that month were smaller relatively to others and

more stable throughout the month. For February 2021 however, Appendix D shows

the our model is ranked first for both the 1-week ahead and the 2-weeks ahead death

predictions.

(a) September Cases wMAPE (b) September Cases Ranks

Figure 5-9: Benchmarking the aggregate versus the best and worst component models
in the ensemble (black) and a selection of CDC models. The colored models are the
top 5 by average rank to make predictions in September for incident cases. Com-
parisons in terms of wMAPE (left) and overall ranking (right). All projections are
out-of-sample predictions made 7 days before the first date displayed on the graphs.

As for the benchmark on cases predictions, When it comes to predicting cases, we

see in Figure 5-9, showing the results both in terms of wMAPE (left) and rank (right)

on September 2020, that the aggregate model is competitive with the best models

used by the CDC at the time. In these months, the aggregate model is among the

top-10 most accurate models for each time span except one (September 1-week ahead

predictions) and is the most accurate model predicting cases two and three weeks out

in November 2020 (See Appendix D). In general, it is clear that the ensemble method

proposed in this chapter adds significant value and enables results in-line with or

better than current top-performing models.

5.8 Conclusions

In this chapter, we proposed a holistic framework for predicting COVID-19 deaths,

detected cases, and true disease prevalence. Among other applications, we use these

predictions to optimize vaccine distribution. We presented four individual models

190

of different structure and showed how aggregation leads to greater accuracy and

robustness. We applied the aggregate model to COVID-19 data to show strong per-

formance in predicting short and long term case growth, which in turn has helped

MIT and the CDC respond to the pandemic. The predictions were also used to create

a probabilistic estimate for true prevalence, which was utilized in a vaccine allocation

optimization. By varying prevalence in different sub-populations, we were able to

present insights into the optimal allocation strategy and different trade-offs between

groups. This holistic framework tackles the COVID-19 pandemic end-to-end from

prediction to prevalence to prescription through vaccine allocation.

191

192

Chapter 6

Preventive Maintenance at OCP

Maintenance Solutions: a Machine

Learning Approach

6.1 Introduction

With modern advancements in hardware and software in industrial machines, and the

availability of sensor data, machine learning (ML) has become increasingly important

to reduce the cost of maintenance and ensure the reliability and the reactiveness of

industrial systems. The use of ML in the context of failure detection is not recent.

For example, in the context of electricity distribution, [91] predict failures using sim-

ple ML models such as linear regression and support vector machines, while more

recent studies such as [97] use deep learning to predict the states of production lines,

sacrificing intepretability and simplicity for higher accuracy. [43] show that, com-

bined with the right intervention, predictive maintenance can save up between 18%

and 25% in maintenance expenditures alone, with additional cost savings through

reduced downtime.

In this chapter, we propose an end-to-end framework that leverages novel ML

models to create data-driven tools for preventive maintenance from a descriptive, a

193

predictive, and a prescriptive perspective. We first start by proposing a natural lan-

guage processing (NLP) model to create a dynamic failure modes and effects analysis

(FMEA) from available text data. Then, we expand the FMEA using a probabilistic

model to evaluate the likelihood of each failure mode and its causes, depending on the

state of the system and based solely on sensor data. These two steps constitute the

descriptive part of the analysis, allowing us to fully describe the current state of an

industrial machine based on past observations. We then use a novel sparse and slowly

varying regression model, first introduced in [21], to project this analysis to the future

and predict the state of the system days and weeks in advance, and in an interpretable

way. We empirically show that our methods substantially improve upon baselines in

terms of accuracy, while remaining explainable to end-users and maintenance agents.

Further, we discuss how these predictions are being used to schedule maintenance

interventions, greedily or by applying the optimization framework proposed by [31].

Finally, we illustrate how the proposed framework was been successfully imple-

mented and deployed by OCP Maintenance Solutions, subsidiary of OCP, the largest

phosphates mining company in the world. This application led to significant perfor-

mance improvement for a large number of internal and external clients, on a wide

range of industrial machines, and to a measurably high business impact.

6.2 Relevant Literature

Recent years have seen a tremendous growth in the predictive maintenance field as

one of the hot topics which come with an industry that relies heavily on data and

models, referred to as industry 4.0, as well as the industrial Internet of Things (IoT).

Since our work relates to both topics, we review recent work related to these areas.

FMEA is typically used as a method for identifying failure modes, thus improving

the reliability of assets or components. In the state of the art, multiple studies and

research work have been published to address the applications of the FMEA. For

instance, [62] apply the FMEA approach to evaluate the impact of reliability-centered

maintenance on a power generating system on hydraulic turbines. [11] present a

194

probabilistic modification of the FMEA model and establish its superiority over the

conventional FMEA. [79] propose applying the FMEA approach for risk analysis of

geothermal power plants. Recently, [82] develop a data-driven way to build an FMEA.

[79] rely on both historical and operational data from the use stage of industrial

machines and build the FMEA using deep learning methods. Our work differs from

[79] in that it requires much less data and in that the FMEA is built in an interpretable

way. Furthermore, we extend our dynamic FMEA to also account for probabilities of

occurrence.

Vibration Analysis is a technique employed for rotating machines and man-

ufacturing systems. Several studies have used vibration analysis for product data

management (PdM). [36] suggest sensors positioning rules for PdM. [128] and [152]

present experimental cases of studies on bearing failures. [52] propose indicators to

describe the overall state of operation of a machine. We use vibration analysis as part

of the feature engineering process.

Developing ML models for PdM is one of the key expansions of maintenance

that comes with the rise of industry 4.0. PdM is technically intensive, engaging differ-

ent technologies for maintenance, instrumentation, and information technology (IT).

The practical implementation of a PdM policy faces two major problems: first, ab-

sence of any concrete statistical model for PdM [151] besides the general purpose ma-

chine learning regression models, e.g., LASSO Regression [153] and XGBoost ([49]),

which are becoming increasingly popular in the industry but are yet to fully succeed;

and second, requirements for sophisticated data acquisition and monitoring systems

([163]). [146] suggest a multiple classifier approach based on different horizons with

two classes: faulty and not faulty. [102] use IoT vibration sensors with analysis capa-

bilities to predict the remaining useful life of a product. The aforementioned solutions

are industry-specific and require enormous investment for installation; therefore, their

applicability to large organizations is limited. Moreover, the models developed using

these approaches need modification when implemented on different companies within

the same industry. In this chapter, we propose a general, low-cost machine learning

framework for PdM.

195

6.3 Data & Pipeline

In this section, we describe the structure of the original (raw) data which we use, as

well as the pipeline that the proposed framework applies to them.

6.3.1 Original Data Format

We collect tabular data X with the following structure:

• Equipment type: Equipment category, e.g., “ventilator.” Let ℳ be the dis-

tinct equipment types in the data with |ℳ| = 𝑀 . We assume that all pieces

of equipment of one particular type are identical in terms of their components,

sensors, etc. We refer to this column in the data as XM.

• Equipment ID: Equipment unique identifier. Let 𝒩𝑚 be the set of pieces of

equipment of type 𝑚 ∈ ℳ with |𝒩𝑚| = 𝑁𝑚. Then, we assume, without loss of

generality, that the equipment ID takes values in the set 𝒩𝑚 = {1, . . . , 𝑁𝑚} :=

[𝑁𝑚]. We refer to this column in the data as XN.

• Component: Component of the equipment. Let 𝒞𝑚 be the set of components

of equipment of type 𝑚 ∈ ℳ with |𝒞𝑚| = 𝐶𝑚. We refer to this column in the

data as XC.

• Sensor: Sensor of the component from which measurements are taken. Let

𝒮𝑚,𝑐 be the sensors for component 𝑐 ∈ 𝒞𝑚 of equipment of type 𝑚 ∈ ℳ with

|𝒮𝑚,𝑐| = 𝑆𝑚,𝑐. We refer to this column in the data as XS.

• Sensor data: Data obtained from the sensor. This includes both direct mea-

surements, such as temperature, acceleration, and vibration, as well as spectral

data, e.g., vibration spectrum. Any other sensor data can be used for the pur-

pose of this analysis. We will refer to the sensor data as the features of the

component. Let 𝒟𝑚,𝑐,𝑠 be the set of features for sensor 𝑠 ∈ 𝒮𝑚,𝑐 of component

𝑐 ∈ 𝒞𝑚 of equipment of type 𝑚 ∈ ℳ. We refer to this column in the data as

196

XD. We assume that XD ∈ R|𝒟𝑚,𝑐,𝑠| and let X𝑟,D[𝑑] extract feature 𝑑 ∈ 𝒟𝑚,𝑐,𝑠 from

the sensor data of sensor 𝑠, component 𝑐, equipment type 𝑚.

• Symptoms: Free text of the description of the effects of the failure from subject

matter experts after a maintenance intervention. We refer to this column in the

data as XF.

• Timestamp: Time measurements (sensor data and, if exist, symptoms) were

taken. We assume that the measurements for all sensors and all components of

each piece of equipment 𝑛 ∈ 𝒩𝑚 of type 𝑚 ∈ ℳ are taken at a fixed rate (e.g.,

one measurement per hour) and there is the same number of them. Then, we

let, without loss of generality, 𝑇𝑚 ∈ Z+ be the number of measurements taken

for equipment of type 𝑚 ∈ ℳ. We refer to this column in the data as XT.

Denoting by 𝑅 be the number of rows in X, i.e., |X| = 𝑅, then we refer to a specific

row 𝑟 ∈ [𝑅] as X𝑟 and to a specific entry, e.g., row 𝑟 in the “Component” column, as

X𝑟,C. An example data point, corresponding to row 𝑟 ∈ [𝑅] in the data table X, is

given in Table 6.1.

Data Field Notation Example

Equipment Type X𝑟,M Ventilator

Equipment ID X𝑟,N 3

Component X𝑟,C Turbine

Sensor X𝑟,S 2

Sensor Data (Temperature, Acceleration, Vibration) X𝑟,D (143.2, 2.4, 0.98)

Symptoms X𝑟,F Friction during turbine rotation

Time X𝑟,T 12:23 08/12/2020

Table 6.1: An example data point that captures the format of the raw tabular data.

For simplicity in presentation, throughout the chapter, we work with simplified

versions of the data, e.g., we focus on specific equipment types and only look at certain

components or sensors. We explicitly state any simplifications when describing the

corresponding part of the proposed framework.

197

6.3.2 Preliminaries

As discussed in the introduction, failure modes and effects analysis (FMEA) is a

methodology to identity potential failure modes for an equipment and to assess the

causes associated with each of these modes. The FMEA has a tree structure, first

breaking down the equipment into its vulnerable components, and then identifying

the observed failure modes for each of these components. Finally, the FMEA tries to

identify the causes of each of these failure modes.

The FMEA tree is built based on some observed variables, e.g. temperature,

vibration, etc. associated with the components. The general schema for the FMEA is

represented in Figure 6-1. In some applications, the equipment can be further broken

into asset and sub-assets.

Figure 6-1: Failure Modes and Effects Analysis (FMEA) tree.

6.3.3 Data Pipeline

The proposed framework consists of three parts: a descriptive part, which, in turn,

consists of a module that builds an FMEA tree in a data-driven fashion (Module 1a)

and a module that predicts failure modes and their causes (Module 1b); a predictive

part, which predicts future failures (Module 2); a prescriptive part, which, given

predictions, performs maintenance scheduling (Module 3). We illustrate the pipeline

in Figure 6-2.

198

Figure 6-2: Flowchart of the Preventive Maintenance Framework. Input are in green,
intermediary outputs are in grey, and final outputs are in blue.

Module 1a operates on a component level. For any given equipment 𝑚 ∈ ℳ and

component 𝑐 ∈ 𝒞𝑚, Module 1a takes as input all corresponding symptoms that appear

in the data, i.e.,

𝒮𝑚,𝑐 = {[𝑟, X𝑟,F] | 𝑟 ∈ [𝑅], X𝑟,M = 𝑚, X𝑟,C = 𝑐}.

The output of Module 1a is the set ℱ𝑚,𝑐 of possible failures for component 𝑐 of

equipment 𝑚 and a function 𝑓𝑚,𝑐 : 𝒮𝑚,𝑐 ↦→ ℱ𝑚,𝑐 which maps symptoms (i.e., free

text) to failure modes, as well as the corresponding FMEA tree.

Module 1b also operates on a component level. For any given equipment 𝑚 ∈ ℳ

and component 𝑐 ∈ 𝒞𝑚, Module 1b takes as input the corresponding sensor, sensor

data, and failure modes from the corresponding set of failures ℱ𝑚,𝑐, i.e.,

{[𝑟, X𝑟,T, X𝑟,S, X𝑟,D, 𝑓𝑚,𝑐(X𝑟,F)] | 𝑟 ∈ [𝑅], X𝑟,M = 𝑚, X𝑟,C = 𝑐}.

The output is a function which, given sensor data, estimates, the probability that a

particular failure mode for component 𝑐 of equipment 𝑚 is happening, and for each

sensor 𝑠 ∈ 𝒮𝑚,𝑐, the probability that this failure is due to sensor 𝑠.

Module 2 operates on a sensor level. For any given equipment 𝑚 ∈ ℳ, component

𝑐 ∈ 𝒞𝑚, and sensor 𝑠 ∈ 𝒮𝑚,𝑐, Module 2 takes as input the corresponding sensor data

199

from all pieces of equipment and all timestamps, i.e.,

{[𝑟, X𝑟,T, X𝑟,N, X𝑟,D] | 𝑟 ∈ [𝑅], X𝑟,M = 𝑚, X𝑟,C = 𝑐, X𝑟,S = 𝑠}.

The output is a set of models, each of which is tailored for a specific piece of equipment

of type 𝑚, which predict future values of the sensor data of sensor 𝑠 of component 𝑐.

Finally, Module 3 operates on a unified level, that is, it combines the outputs of all

the aforementioned modules with maintenance data (available resources, constraints,

etc.) to perform preventive maintenance scheduling.

6.4 Descriptive Part: Building a Data-Driven FMEA

Tree

In this section, we describe Module 1a to build the two first layers of the FMEA tree.

6.4.1 First layer of the FMEA: Equipment-Components

Module 1a constructs the first layer of the FMEA tree, that is, the Equipment-

Component layer. This can be fully obtained by listing all the observed combinations

of an equipment (given by XM) and its components (given by XC) in the data-sets.

For example, for an OCP “Ventilator" equipment, we extract two components, the

“Pulley" and the “Turbine," as “susceptible components,” i.e., components which are

potentially subject to failure. We obtain Figure 6-3.

6.4.2 Second layer of the FMEA: Component-Failure Modes

For a given equipment 𝑚, the second layer of the FMEA tree links each component

𝑐 with its possible failure modes ℱ𝑚,𝑐 (see Figure 6-1). The failure modes are not

directly provided in the data and are not standardized; instead, they are indirectly

200

Figure 6-3: First layer of the FMEA tree. For illustrative purposes, the equipment is
in red, the components are in green.

described through the observed symptoms in XF:

𝒮𝑚,𝑐 = {[𝑟, X𝑟,F] | 𝑟 ∈ [𝑅], X𝑟,M = 𝑚, X𝑟,C = 𝑐}.

Module 1a uses natural language processing (NLP) and clustering to map these symp-

toms to properly defined failures modes, using a function 𝑓𝑚,𝑐 : 𝒮𝑚,𝑐 ↦→ ℱ𝑚,𝑐. We

describe the algorithm used in Module 1a in Algorithm 7.

Algorithm 7 Module 1a.
Input: Free-text symptoms column XF, list of stop-words ℒ, minimum number of

observations 𝑁min ∈ Z+, number of clusters 𝑘 ∈ Z+.

Output: Mapping 𝑓𝑚,𝑐 : 𝒮𝑚,𝑐 ↦→ ℱ𝑚,𝑐.

1. Stop-words: we remove all stop-words from XF. i.e., X𝑟,F = X𝑟,F ∖ ℒ, ∀𝑟 ∈ [𝑅].

(The full list of stop-words can be found in Appendix E.1.)

2. Stemming: we stem the remaining words, i.e., we transform the words to their

base root, for example if the word ends in “ed", we remove the “ed", if the word

ends in “ing", we remove the “ing", if the word ends in “ly", remove the “ly". We

also remove the prefixes and the plural forms. The words “rotation", “rotations",

“rotated", “rotate" for example all become the same word: “rotat". i.e., X𝑟,F =

stem(X𝑟,F), ∀𝑟 ∈ [𝑅].

3. N-grams: we compute 2-grams. 2-grams are combinations of words that appear

frequently next to each other and that should be considered as one term. For

201

example “New York" should be considered as one term, or in our case, “Failure

Mode" refers to one single instance. This is done by computing the occurences of

the terms appearing one next to another.

4. Document-Term Matrix (DTM): we then create a matrix where the rows are

the observations 𝑟 ∈ [𝑅] and the columns are the terms resulting from the pre-

processing steps 𝑤 ∈ {[𝑟, X𝑟,F] | 𝑟 ∈ [𝑅]} s.t. the number of occurences of this term

𝑤 is at least 𝑁min. Let 𝑊 the number of such terms. Each entry of this matrix

corresponding to row 𝑟 ∈ [𝑅] and column 𝑤 ∈ [𝑊] is equal to 1 if observation 𝑖

contains the word 𝑤, and 0 otherwise.

5. Term Frequency (TF) - Inverse Document Frequency (IDF) Weighting:

we weigh the entries of the matrix depending of the frequency of the word 𝑤

in observation 𝑟 noted 𝑛𝑟,𝑤, as well as the frequency of the word 𝑤 across all

documents. We define the functions TF: TF(𝑟, 𝑤) = 𝑛𝑟,𝑤∑︀
𝑤′∈[𝑊]

𝑛𝑟,𝑤′
and IDF: IDF(𝑤) =

log 𝑅
|{𝑟∈[𝑅]:𝑛𝑟,𝑤>0| . We then multiply each entry 𝑟, 𝑤 in the Document-Term Matrix

by TFIDF(𝑟, 𝑤) = TF(𝑟, 𝑤)× IDF(𝑤). The goal of this step is to weight more

the words that appear multiple times in the same text, and to weight less the

words that appear too frequently across all the text, as they are less specific to the

observation of interest.

6. Clustering: we then cluster the previous observations using 𝑘-means clustering

with the cosine similarity distance. Similar observations, i.e., observations with

similar text, get grouped together. Each group of “symptoms" 𝒮𝑚,𝑐 will represents

a different failure model ℱ𝑚,𝑐, resulting in the mapping 𝑓𝑚,𝑐 : 𝒮𝑚,𝑐 ↦→ ℱ𝑚,𝑐.

7. Topic Extraction: lastly, we give names to the failure modes for interpretability

purposes. We compute for each word 𝑤 ∈ [𝑊] the mean 𝜇𝑤 and the standard

deviation 𝜎𝑤 across all the documents. Then, we computed the mean 𝜇𝑤,𝑗 of each

word within each cluster 𝑗 ∈ [𝑘]. We automatically name the detected failure mode

𝑗, i.e., the cluster, with the term that is most unique to it: argmax𝑤
𝜇𝑤,𝑗−𝜇𝑤

𝜎𝑤 .

8. Return 𝑓𝑚,𝑐 and the names of the failures modes.

We assume, without loss of generality, that the rows XF are for the same equip-

ment type 𝑚 and the same component 𝑐; for the general case, we subset the data

202

(as shown in Section 6.3.3) and apply Algorithm 7 to all equipment type-component

pairs separately. Concerning the inputs to Algorithm 7, we note that 𝑁min and 𝑘

are obtained by hyper-parameter tuning. After applying Algorithm 7, we only need

to enumerate the combinations Equipment-Component-Failure Mode that appear in

the (extended) data-set (whereby the failure modes have been added), i.e., all unique

entries of {(𝑚, 𝑐, 𝑓𝑚,𝑐(𝑠)), ∀(𝑚, 𝑐, 𝑠) ∈ XM × XC × XF}. We consequently get the

second layer of the FMEA tree.

For our example of an OCP “Ventilator" equipment, we extract three possible

modes: “Friction,” “Misalignment,” and “No Anomaly”. These failure modes are the

same for both the “Pulley" and the “Turbine" components. We obtain Figure 6-4.

Figure 6-4: Two first layers of the FMEA tree. The failures modes are in blue.

6.5 Descriptive Part: Predicting Failure and Failure

Causes

In this section, we present Module 1b, which is used to build the third layer of the

FMEA tree (Failure Modes-Sensors) and extend it to account for probabilities of

occurrence.

203

6.5.1 Model

As is often the case in practice, data to directly identify the exact cause of a failure is

unavailable. The framework we develop for Module 1b detects the failure modes from

the sensor data XD and assigns each failure mode to a particular sensor in XS. We split

the data-set such that we train a different model per component, because the failure

modes interact differently depending on the type of equipment and the nature of the

component, and the structure of the sensors is not the same either. Consequently,

we again assume, without loss of generality, that there is one machine 𝑚 and one

component 𝑐 in the dataset. We denote by 𝑖 ∈ [𝐼] the set of all observations for the

same component of the same equipment at the same time (aggregating the sensors),

which we obtain by properly selecting a subset of the rows 𝑟 ∈ [𝑅] in the data.

From Module 1a, we have a label 𝑦𝑖 ∈ ℱ𝑚,𝑐 in our data-set for the failure mode

for each observation 𝑖. We denote by X̄𝑖,Δ the matrix of the sensor data (temperature,

pressure, velocity, spectrum) of all sensors for a given observation 𝑖 at a given times-

tamp; notice that X̄𝑖,Δ can be obtained by aggregating the data X̄𝑖,D from all sensors

𝑠 ∈ 𝒮𝑚,𝑐 that correspond a specific component 𝑐 of the same equipment 𝑚 at the

same time 𝑡. Then, X̄𝑖,𝑠,Δ gives the vector of covariates for sensor 𝑠 ∈ {X𝑖,S, 𝑖 ∈ [𝐼]}

for the corresponding observation 𝑖 at the same timestamp. We also note 𝑋 the

corresponding random variable, 𝑆 := 𝑆𝑚,𝑐 ∈ Z+ the total number of sensors for this

component, and 𝑃 ∈ Z+ the total number of failure modes for this component.

For Module 1b, we develop the assign-and-predict method, a weighted logistic

regression model with probabilistic cause assignment. We introduce the following

parameters:

• 𝛼𝑠: The probability that the cause of the failure is sensor 𝑠, ∀𝑠 ∈ [𝑆].

• 𝛽𝑠𝑝: The regression vector corresponding to sensor (cause) 𝑠, ∀𝑠 ∈ [𝑆], and

failure 𝑝, ∀𝑝 ∈ [𝑃].

• 𝛾𝑖: The position or cause, where a sensor is, causing the failure for observation

204

𝑖 ∈ [𝐼].

Using the parameters defined above, we write the optimization problem shown

in Equation (6.1), with the additional notation that failure 𝑝 = 0 corresponds to

no failure, and each 𝑝 > 0 corresponds to a particular failure mode. For instance,

in our ventilator example, 𝑝 = 1 corresponds to 𝑝 = “friction” and 𝑝 = 2 to 𝑝 =

“misalignment”.

min
𝛼,𝛽

−
𝐼∑︁
𝑖=1

𝑃∑︁
𝑝=0

1(𝑦𝑖 = 𝑝) log

⎛⎜⎜⎜⎝
𝑆∑︁
𝑠=1

𝛼𝑠
exp (−𝛽𝑠𝑝X̄𝑖,𝑠,Δ)
𝑃∑︀
𝑙=0

exp (−𝛽𝑠𝑙 X̄𝑖,𝑠,Δ)

⎞⎟⎟⎟⎠ ,

s.t.
𝑆∑︁
𝑠=1

𝛼𝑠 = 1,

𝛼 ≥ 0.

(6.1)

The optimization in Problem (6.1) is the maximization of the likelihood of ob-

serving the data that we have, given the parametrization.

6.5.2 Interpretation and Results

Problem (6.1) directly gives the probability that the cause of the failure (if there

exists a failure) is cause 𝑠, ∀𝑠 ∈ [𝑆], through the coefficient 𝛼𝑠. Furthermore, from

the optimal solution to Problem (6.1), we can extract additional useful information,

as explained next. For a given observation 𝑖, the probability that the failure mode is

𝑝, given that the cause of failure is sensor 𝑠, can be estimated as:

P(𝑦𝑖 = 𝑝| 𝛾𝑖 = 𝑠,𝑋 = X̄𝑖,Δ) =
exp (−𝛽𝑠𝑝X̄𝑖,𝑠,Δ)
𝑃∑︀
𝑙=0

exp (−𝛽𝑠𝑙 X̄𝑖,𝑠,Δ)
.

The overall probability that failure mode is 𝑝 can be estimated as:

P(𝑦𝑖 = 𝑝|𝑋 = X̄𝑖,Δ) =
𝑆∑︁
𝑠=1

P(𝛾𝑖 = 𝑠|𝑋 = X̄𝑖,Δ)P(𝑦𝑖 = 𝑝| 𝛾𝑖 = 𝑠,𝑋 = X̄𝑖,Δ)

205

=
𝑆∑︁
𝑠=1

𝛼𝑠
exp (−𝛽𝑠𝑝X̄𝑖,𝑠,Δ)
𝑃∑︀
𝑙=0

exp (−𝛽𝑠𝑙 X̄𝑖,𝑠,Δ)
.

The total probability of failure for observation 𝑖 is given by:

P(𝑦𝑖 = 𝑝|𝑋 = X̄𝑖,Δ) =
𝑆∑︁
𝑠=1

P(𝛾𝑖 = 𝑠|𝑋 = X̄𝑖,Δ)P(𝑦𝑖 = 𝑝| 𝛾𝑖 = 𝑠,𝑋 = X̄𝑖,Δ)

=
𝑃∑︁
𝑝=1

𝑆∑︁
𝑠=1

𝛼𝑠
exp (−𝛽𝑠𝑝X̄𝑖,𝑠,Δ)
𝑃∑︀
𝑙=0

exp (−𝛽𝑠𝑙 X̄𝑖,𝑠,Δ)
.

Finally, the probability that the cause is 𝑠, knowing that the identified failure

mode is 𝑝, can be estimated (using Bayes rule) as:

P(𝛾𝑖 = 𝑠|𝑦𝑖 = 𝑝,𝑋 = X̄𝑖,Δ) =
𝛼𝑠

P(𝑦𝑖 = 𝑝|𝑋 = X̄𝑖,Δ)
exp (−𝛽𝑠𝑝X̄𝑖,𝑠,Δ)
𝑃∑︀
𝑙=0

exp (−𝛽𝑠𝑝X̄𝑖,𝑠,Δ)

=
𝛼𝑠

𝑆∑︀
𝑢=1

𝛼𝑢
exp (−𝛽𝑢

𝑝 X̄𝑖,𝑢,Δ)
𝑃∑︀

𝑙=0

exp (−𝛽𝑢
𝑙 X̄𝑖,𝑢,Δ)

exp (−𝛽𝑠𝑝X̄𝑖,𝑠,Δ)
𝑃∑︀
𝑙=0

exp (−𝛽𝑠𝑝X̄𝑖,𝑠,Δ)
.

Module 1b, through the assign-and-predict method, allows to fully describe

the state of the system given the sensor data XΔ. We hence complete the data-driven

FMEA tree and extend it to account for probabilities of occurrence at each of its

levels. For the OCP “Ventilator", we obtain Figure 6-5, which is the final FMEA

output from Module 1.

6.5.3 Benchmark of the Method

For comparison purposes, we use OCP data to benchmark the assign-and-predict

method of Module 1b against a baseline, which consists of (i) running a logistic

regression on the entire sensor data to predict the failure mode, and then (ii) randomly

assigning the cause to one of the candidate sensors. We obtain the results shown in

Table 6.2. The first column “Failure Mode" shows the out-of-sample accuracy in

206

Figure 6-5: Complete FMEA tree. The sensors, or potential causes of failure are in
yellow, and each edge represents a probability of occurrence for given sensor data.

predicting the failure mode for both methods; the second column “Cause of Failure"

shows the out-of-sample accuracy in predicting the true cause (sensor) of this failure,

if any; the last column “Cause of Failure, knowing the Failure Mode" is the same

thing as the second column, but when the failure mode is actually known and not

predicted.

Out-of-Sample Accuracy Failure Mode Cause of Failure Cause of Failure, knowing the Failure Mode

baseline 19.9% 32.7% 63.3%

assign-and-predict 82.0% 58.1% 89.7%

Table 6.2: Comparison between the baseline and the assign-and-predict method.

Table 6.2 shows that the assign-and-predict method significantly outperforms

the baseline in all three prediction tasks, going from under 20% in failure mode

detection to 82%, and almost doubling the rate of identification of the correct cause

of failure.

207

6.6 Predictive Part: Sparse and Slowly Varying Re-

gression

As far as the predictive part is concerned, our goal is to use the available sensor data

and train predictive models. Since the structure of the sensor data at different sensors

of different components of different equipment types can be very different from each

other, we need different models for each of them. Nevertheless, we can expect same

sensors of the same component of pieces of equipment of the same type to produce

data of the same structure; further, we can expect them to behave relatively similarly.

Therefore, for each equipment type 𝑚 ∈ ℳ, component 𝑐 ∈ 𝒞𝑚, and sensor 𝑠 ∈ 𝒮𝑚,𝑐
we fit a single model across all such pieces of equipment 𝑛 ∈ 𝒩𝑚, which, at the same

time, allows for small variations between the “submodels” that correspond to distinct

pieces of equipment. For example, in the context of regression, we would estimate

a different regressor 𝛽𝑛 for each piece of equipment 𝑛 ∈ 𝒩𝑚 of one particular type

𝑚 ∈ ℳ (instead of estimating a single regressor 𝛽 for the entire equipment type),

while requiring that all such regressors are “similar.”

The alternatives to the proposed approach would be, on the one extreme, to

fit a single model for the entire equipment type and, on the other extreme, to fit

completely independent models at the piece of equipment level. By training models

at the equipment type level, we benefit in several ways:

- We train a single model using data from multiple sources hence increasing the

dataset size. This exploits the structure of the problem and, specifically, the

fact that pieces of equipment of the same type are expected to behave similarly.

- We can directly make predictions for new equipment of the same type without

having to collect data and train a new model. In particular, we can utilize the

submodel that corresponds to the most similar piece of equipment (of the same

category) in the training data.

Additionally, we would want our model to be sparse and interpretable: we care

about explaining our predictions to subject matter experts and hence need to use a

208

model with a small number of variables and with explainable interactions. To this

end, we utilize the sparse and slowly varying regression framework, first introduced

by [21], which satisfies the above requirements. We next give a description of the

proposed framework, applied to the setting that we consider.

6.6.1 Model

We focus on equipment type 𝑚 ∈ ℳ, component 𝑐 ∈ 𝒞𝑚, and sensor 𝑠 ∈ 𝒮𝑚,𝑐.

Our goal is to fit 𝑁𝑚 = |𝒩𝑚| regressions (𝛽𝑛)𝑛∈𝒩𝑚 over a graph 𝐺 with vertices

𝒩𝑚; each vertex in the graph corresponds to one of the 𝑁𝑚 pieces of equipment.

For (𝑛1, 𝑛2) ∈ 𝒩𝑚 × 𝒩𝑚, the edge (𝑛1, 𝑛2) is in the set of edges ℰ if and only if

pieces of equipment 𝑛1 and 𝑛2 are considered to be similar; for example, two pieces of

equipment could be considered similar depending on their age. The similarity data,

which is used to construct the similarity graph, has to be inputted to the system by

subject matter experts.

Recall that the input to the predictive part is data of the form

𝒳predictive = {[𝑟, X𝑟,T, X𝑟,N, X𝑟,D] | 𝑟 ∈ [𝑅], X𝑟,M = 𝑚, X𝑟,C = 𝑐, X𝑟,S = 𝑠}.

That is, our data for this part consists of triplets of the form (Timestamp, Equipment

ID, Sensor Data) for the specific equipment type 𝑚 ∈ ℳ, component 𝑐 ∈ 𝒞𝑚, and

sensor 𝑠 ∈ 𝒮𝑚,𝑐 that we study. We are willing to make predictions for one feature

𝑑 ∈ 𝒟𝑚,𝑐,𝑠 in the future, given all features in 𝒟𝑚,𝑐,𝑠 in the present. (Our approach

directly generalizes to predicting the future values of all features in 𝒟𝑚,𝑐,𝑠 through a

multiple regression model.) Therefore, for 𝑡 ∈ [𝑇𝑚− 1] and 𝑛 ∈ 𝒩𝑚, we introduce the

following notations:

𝑋𝑛
𝑡 = [X𝑟,D | 𝑟 ∈ 𝒳predictive, X𝑟,T = 𝑡, X𝑟,N = 𝑛] ∈ R|𝒟𝑚,𝑐,𝑠|,

𝑦𝑛𝑡 = [X𝑟,D[𝑑] | 𝑟 ∈ 𝒳predictive, X𝑟,T = 𝑡+ 1, X𝑟,N = 𝑛] ∈ R,

where recall that X𝑟,D[𝑑] extracts feature 𝑑 ∈ 𝒟𝑚,𝑐,𝑠 from the sensor data in row 𝑟

of the full dataset. In other words, 𝑋𝑛
𝑡 corresponds to the vector of features for

209

observation 𝑡 of the 𝑛-th piece of equipment and 𝑦𝑛𝑡 corresponds the response (target)

value of observation 𝑡, i.e., the feature we are willing to predict at the next time step.

Note that, for simplicity, we make the assumption that we have the same number of

observations for all pieces of equipment; it is straightforward to drop this assumption

and model the more general scenario of an unequal number of observations.

Then, the slowly varying regression problem with sparsity constraints can be for-

mulated as below:

min
𝛽1,··· ,𝛽𝑁𝑚

∑︁
𝑛∈𝑁𝑚

∑︁
𝑡∈[𝑇𝑚−1]

(︀
𝑦𝑛𝑡 − (𝑋𝑛

𝑡)
⊤𝛽𝑛

)︀2
+ 𝜆𝛽

∑︁
𝑛∈𝒩𝑚

‖𝛽𝑛‖22 + 𝜆𝛿
∑︁

(𝑛1,𝑛2)∈ℰ

‖𝛽𝑛2 − 𝛽𝑛1‖22

(6.2)

s.t. |Supp(𝛽𝑛)| ≤ 𝐾L, ∀𝑛 ∈ 𝒩𝑚, (6.3)⃒⃒⃒⃒
⃒ ⋃︁
𝑛∈𝒩𝑚

Supp(𝛽𝑛)

⃒⃒⃒⃒
⃒ ≤ 𝐾G, (6.4)

∑︁
(𝑛1,𝑛2)∈ℰ

|Supp(𝛽𝑛1)△Supp(𝛽𝑛2)| ≤ 𝐾C, (6.5)

where Supp(𝛽) denotes the set that corresponds to the support of vector 𝛽 and 𝑆1△𝑆2

denotes the symmetric difference of sets 𝑆1, 𝑆2. The objective function (6.2) penalizes

both the least-squares loss of the𝑁𝑚 regressions and the 𝑙2 coefficient distance between

regressions that are similar with magnitude 𝜆𝛿. We also introduce an 𝑙2 regularization

term of magnitude 𝜆𝛽 for robustness purposes. There are three types of constraints

on the regression coefficients 𝛽𝑛:

• Local Sparsity: Each regression can have at most 𝐾L relevant features (con-

straint (6.3)).

• Global Sparsity: There can be at most 𝐾G relevant features across all 𝑀

regressions (constraint (6.4)).

• Sparsely Varying Support: There can be a difference of at most 𝐾C relevant

features among similar regressions 𝑛1, 𝑛2 across all pairs of similar regressions

(constraint (6.5)).

210

The parameters 𝐾L, 𝐾G, 𝐾C have to be consistent, i.e., they need to satisfy 𝐾L ≤

𝐾G ≤ |𝒟𝑚,𝑐,𝑠| and 𝐾C ≤ 2𝐾L𝑁𝑚.

As explained in [21], Problem (6.2)-(6.5) can be reformulated exactly as a binary

convex optimization problem and, leveraging the convexity of the reformulated prob-

lem, it can be solved to optimality and at scale using a cutting plane-type algorithm.

In particular, in combination with a heuristic stepwise method, which is used to find

high-quality warm-start solutions, [21] develop a highly optimized implementation of

such algorithm, which solves, in minutes, problems with 𝑇𝑚 ≈ 10, 000 observations,

𝑁𝑚 ≈ 50 machines, and |𝒟𝑚,𝑐,𝑠| ≈ 600 features.

6.6.2 Benchmark of the Method

We apply our proposed to the equipment type “Ventilator” (i.e., 𝑚 = Ventilator).

We use real-world data obtained from the same component 𝑐 ∈ 𝒞𝑚 and same sensor

𝑠 ∈ 𝒮𝑚,𝑐 from 𝑁𝑚 = 6 ventilators that OCP performs maintenance on. The col-

lected features 𝒟𝑚,𝑐,𝑠 include the temperature and 15 spectral features, for a total of

|𝒟𝑚,𝑐,𝑠| = 16 features. Our goal is to predict the temperature at time 𝑡 + 𝐻, where

𝐻 denotes the prediction horizon (i.e., how much time ahead we are willing to pre-

dict) given all features at time 𝑡. We explore various values for 𝐻 in our experiments

(varying from four hours to one week). We use the same number 𝑇𝑚 ≈ 1, 000 of

observations for each distinct ventilator (piece of equipment); we use the first 70% of

the observations as our training set and keep the remaining 30% as our test set.

As a baseline, we fit a single sparse regression model (with ridge regularization)

applied to all ventilators, referred to as baseline. We use ssv-regression to refer

to the proposed sparse and slowly varying regression model, solved using the exact

cutting plane algorithm of [21]. We tune both methods’ hyperparameters using cross

validation. We report results for different sparsity levels. Note that, when the sparsity

level for baseline is set to 1 and the temperature is the only feature selected, the

resulting model coincides with a simple AR(1) model.

The results are presented in Table 6.3. The key takeaway is that ssv-regression

is able to compute solutions that improve upon baseline in minutes. We note that

211

the performance of less sparse models, with more than 2 features, quickly deteriorates;

this can be attributed to the high correlations among the features in the data (namely,

the mean correlation between all pairs of features is ≈ 0.5). We also remark that, all

models consistently select the temperature at time 𝑡 as a relevant feature to predict

that temperature at time 𝑡 + 𝐻; when more features are allowed to be included in

the model, ssv-regression uses all its degrees of freedom, alternating between the

remaining features and estimating coefficients of slowly varying magnitudes.
Parameters Out-of-sample R2 Computational Time (in sec)
𝐾𝐿 𝐾𝐺 𝐾𝐶 𝐻 = 4 hours 𝐻 = 12 hours 𝐻 = 3 days 𝐻 = 7 days 𝐻 = 4 hours 𝐻 = 12 hours 𝐻 = 3 days 𝐻 = 7 days

baseline
1 1 - 0.690 0.541 0.336 0.186 7.5 8.4 8.3 7.8
2 2 - 0.684 0.537 0.317 0.123 8.0 8.8 8.7 8.3

ssv-regression
1 3 2 0.692 0.541 0.341 0.183 33.2 69.7 227.8 213.5
2 4 4 0.695 0.557 0.325 0.189 2172.9 2455.9 2467.3 4422.1

Table 6.3: Comparison between the baseline and the sparse and slowly varying (ssv)
regression model.

6.7 Prescriptive Part: Holistic Prescriptive Analyt-

ics

In this section, we briefly reference one way of using the predictions from Modules 1

and 2 to schedule maintenance interventions and act before the failures occur, in an

optimal way. We remark that, currently, OCP Maintenance Solutions uses a greedy

approach, whereby the maintenance scheduling is performed based on the nominal

values of the predictions made by combining Modules 1 and 2. In what follows, we

propose an extension to the current system, Module 3, which would allow to do the

predictions and the prescription jointly.

The proposed framework, dubbed HPA for holistic prescriptive analytics for con-

tinuous and constrained optimization problems, optimizes over a weighted average of

the prediction loss, i.e., the error made by the predictive model that we train, and the

prescriptive loss, i.e., the final objective we care about in the maintenance interven-

tion (e.g., downtime or total intervention cost). The key intuition behind HPA is that

it regroups observations, or machines at a particular time step, into groups of similar

behavior, trains a sparse and slowly varying linear regression for each one of these

212

groups separately, and optimizes the maintenance interventions globally using the

resulting predictions. All the above is optimized jointly, at the same time, instead

of sequentially. We refer to [31] for the mathematical details of the formulation. The

important thing to note is that HPA is particularly suitable for this application as (i)

HPA can be easily solved in combination with the sparse and slowly varying regression

method for prediction, (ii) the mixed-integer linear optimization problem for schedul-

ing interventions is scalable, (iii) HPA eliminates a layer of errors in a framework that

has multiple sequential modules, and consequently is subject to a more compounding

effect from the prediction errors.

The aforementioned approach allows to bring together the predictive part (sparse

and slowly varying regression) and the prescriptive part (maintenance operations

scheduling), and drastically reduce the error by being more robust to prediction

uncertainty in the final interventions. Ultimately, this end-to-end framework from

description to prediction to prescription allows to have an exhaustive and detailed

analysis of an industrial system and to take optimal, data-driven maintenance mea-

sures, resulting in significant and sustainable performance improvements. We outline

such improvements in the next section.

6.8 Implementation and Impact

In this section, we discuss the status of implementation of the proposed preventive

maintenance framework at OCP Maintenance Solutions and highlight its impact.

6.8.1 Implementation: the I-sense Platform

OCP Maintenance Solutions implements the proposed framework as part of its indus-

trial internet of things (IIoT) platform named I-sense. The I-sense platform includes

device management and integrated analysis tools that allow users to connect and

manage devices, collect and analyze data to improve decision-making practices, all

within a secure interconnected environment. The following modules of the I-sense

platform are directly related to the proposed framework:

213

• Measurements Module: The measurements module provides all relevant in-

formation for a selected asset (i.e., piece of equipment), e.g., equipment type,

equipment ID, components, etc. (see Figure 6-6). In addition, this module

includes the “spectral analysis toolbox,” which allows the user to select a com-

ponent and monitor its sensors, measurement trends, and vibratory signals (see

Figure 6-7); the system provides all the necessary functionalities and config-

urations for an effective vibration analysis process. The aforementioned tools

can help vibration analysts (i.e., subject matter experts) diagnose the vibration

signals and provide their recommendations for any failure and its cause (using

the interface shown in Figure 6-6). We collect the provided data to label the

signals that we have in the platform and retrain/improve our models.

Figure 6-6: I-sense measurements module: asset management.

• Alarms Management Module: The alarms management module keeps track

of incidents, automatically creates tickets for each alarm (or, in less urgent cases,

alert) to be analysed, and monitors other key performance indicators, such as the

tickets backlog trend, the alarms’ age, and the time to intervention. Figure 6-8

214

Figure 6-7: I-sense measurements module: monitoring components and the spectral
analysis toolbox.

presents the alarms backlog, which is part of the alarms management module.

The alarms backlog contains information about each alarm or alert, i.e., what

is the failing equipment type, ID, and component.

• Analytics Module: The analytics module provides visualizations of predic-

tions. The state prediction dashboard (Figure 6-9) provides state predictions

for a given component of a piece of equipment.

For a given timestamp in the state prediction dashboard, the failure and causes

215

Figure 6-8: I-sense alarms management module: alarms backlog.

Figure 6-9: I-sense analytics module: state predictions.

prediction dashboard (Figure 6-10) depicts the probability of every failure class

as estimated by the FMEA tree and the assign-and-predict model, along with

the generated FMEA tree. For each pair (failure, cause), we assign an operation

216

that needs to be done to solve the issue.

Figure 6-10: I-sense analytics module: failure probabilities.

In addition, the measurement predictions dashboard (Figure 6-11) presents ac-

tual and predicted values for each feature (temperature, vibration, etc.) and

evaluates the sparse and slowly varying regression model’s historic performance.

6.8.2 Deployment and Financial Impact

To illustrate measurable impacts of the proposed framework and the I-sense platform

on OCP Maintenance Solutions customers, we present three examples:

• The first use case is about an alarm triggered by the exceeding vibration thresh-

old on a sanitation fan on the south line at Maroc Chimie plant. The vibration

levels at the bearing side on the fan reached 13.4 mm/s. The prescription was

to control the misalignment and the fouling. An urgent intervention was made

following these prescriptions, in addition to fan cleaning, and realignment and

control of the bearing on the fan side. The vibration decreased considerably

217

Figure 6-11: I-sense analytics module: measurement predictions.

to 0.9 mm/s. The damages that were prevented include damage to the bear-

ings and couplings, premature degradation of the motor, and a possible sudden

interruption of the production line. On the business level, the fact that this in-

tervention was carried out in time prevented an expected 14 hours of downtime,

which corresponds to 826 tons of fertilizer produced and 2.5M MAD (around

290k USD) gained by the customer.

• The second use case concerns a reaction fan located on the north line of Maroc

Chimie plant. The fan rose a vibration of 24.2 mm/s at the bearing fan side

reached a global level, which was caused by a rotational imbalance, as well as

a high acceleration of 4.2g on the same bearing, which was due to the friction

caused by a lack of lubrication and by slack. Thanks to the timely predictions,

we were able to clean the fouling of the fan, adjust the slack of bearing-roller

on the fan side, and lubricate the bearings. As a result, the vibration decreased

to 4.1 mm/s and we were able to avoid premature degradation of the bearings

and a possible interruption of the production line. In this case, the intervention

8 hours of downtime, which corresponds to 472 tons of fertilizer produced and

218

1.4M MAD (around 160k USD) gained by the customer.

• The last example concerns an analysis performed on historical data from a

grinder in Benguerir’s site. We ran the model in a critical time slot where the

machine had a failure. The asset was broken down for 18 days because of a

rotating looseness. The model was able to predict the failure mode at its early

stages, twelve days before the incident with a probability of 0.27 and one day

before the incident with a probability of 0.71. We emphasize that this specific

type of equipment has special mechanical structure and consists of custom parts

that are extremely difficult to be replaced in case of failure. Therefore, having

insights about which part is in danger is crucial and would minimize downtime.

6.9 Conclusion

In this chapter, we introduced a general framework for preventive maintenance from

description to prediction to prescription. The proposed framework fully describes the

state of an equipment at a given time in a data-driven way, predicts future failures

and their causes, and recommends optimal maintenance intervention. We showed

that the proposed framework significantly outperforms baselines for the same tasks.

The proposed framework has been fully implemented and deployed by our industry

collaborators, OCP Maintenance Solutions, resulting in a full-fledged platform for

preventive maintenance, which we described in this chapter, as well as an important

increase in performance. Specifically, the maintenance cost for the clients of OCP

Maintenance Solutions decreased by more than 2.5 MAD over the course of a single

year.

219

220

Chapter 7

Conclusions

This thesis was motivated by the fact that the current state-of-the-art in terms of

predictive and prescriptive analytics in OR and OM can be improved upon with more

powerful and interpretable machine learning methods for prediction, and a unified

optimization framework for prescription, ultimately making the transition from data

to prediction, and from prediction to prescription more data-based than model-based,

and more streamlined. Additionally, it is crucial to bridge the gap between theory and

application in OM, from revenue management to healthcare and healthcare operations

to industrial operations.

This thesis considers such problems from broad perspectives, considering the Ma-

chine Learning approach under a modern Optimization lens while keeping in mind

the end-users in the various fields of applications in Operations and beyond.

Chapter 2 looks purely at the predictive part of things by developing the XSTrees

method, bringing the best of both worlds in terms of high computational perfor-

mances and high interpretability for ease of use while keeping a rigorous theoretical

framework. Chapter 4 combines the prediction with clustering and prescription to

eliminate as many layers of error as possible and obtain a holistic framework to go

directly from data to decisions. In Chapters 3, 5, and 6, we develop new methods

and apply them to achieve high impact in revenue management through the collab-

oration with the leading online retailer for home furniture and decor, in healthcare

through the work with MIT Quest for Intelligence and the CDC, and in industrial

221

operations through the collaboration with OCP. We show how machine learning and

optimization methods can be expended and fine-tuned to tackle critical problems in

operations and create value.

In conclusion, these areas of operations research and data-driven decision-making

lie at the intersection of applied mathematics, optimization, learning, operations man-

agement, and subject-matter expertise. These thesis chapters shed light on how pre-

dictive and prescriptive analytics, particularly the discussed novel methods in the

appropriate fields of application, can yield a significant edge over current practice,

both in theoretical research and real-world applications.

222

Appendix A

Supplement for Chapter 2

A.1 HXTrees and more on the Asymptotic Conver-

gence of the Framework

Similarly to what the literature does to prove convergence properties on tree ensem-

bles (see [33] and [8]), we consider a version of the XSTrees algorithm where splits

in different dimensions follow a certain structure and the training data is random-

ized. We establish that the HXSTrees algorithm (Honest XSTrees (Algorithm 8),

is asymptotically consistent. HXSTrees have the property that for any test sample

𝑥, the tree distribution is independent of 𝑥. This is ensured by splitting the data

into two independent halfs: one is used for tree generation, and the other is used for

out-of-sample prediction.

Theorem 5 Let RF model (𝑇 *) of the HXSTrees algorithm be such that

1. Each candidate tree is a fully grown tree of depth 𝜌𝑛.

2. The split dimension (i.e. the dimension over which the split in a particular node

occurs) is selected uniformly at random from any of the 1, . . . ,d dimensions.

Also, assume that the distribution of X has support on [0, 1]𝑑. Then, the HXSTree

estimate 𝑦𝐻𝑋𝑆𝑇𝑛 is consistent whenever 2𝜌𝑛 → ∞ and 2𝜌𝑛/𝑛→ 0 as 𝑛→ ∞.

223

Algorithm 8 HXSTrees(𝒟𝑛, K, 𝑇𝑚𝑎𝑥, 𝑆𝑚𝑎𝑥 , 𝑇 *, x)
Randomly split 𝒟𝑛 in two equal halves: 𝒟1

𝑛/2 and 𝒟2
𝑛/2.

Model Fitting
Randomly split 𝒟1

𝑛/2 in two equal halves: 𝒟1
𝑛/4 and 𝒟2

𝑛/4.
for 𝑖 ∈ [𝐾/2] do

Let ℎ𝑖 = CART(𝒟1
𝑛/4, 𝜃𝑖), and

(�⃗�, �⃗�1, . . . , ‘⃗𝑙𝑑)𝑖 = TreeExtension(ℎ𝑖).
end for
for 𝑖 ∈ [𝐾/2 + 1, 𝐾] do

Let ℎ𝑖 = 𝑇 *(𝒟2
𝑛/4, 𝜃𝑖), and

(�⃗�, �⃗�1, . . . , �⃗�𝑑)𝑖 = TreeExtension(ℎ𝑖).
end for
for 𝑗 ∈ [𝑑] do

Let 𝑠𝑚𝑒𝑎𝑛𝑗 = 1
𝐾

∑︀𝐾
𝑖=1 �⃗�𝑗 [𝑖], 𝑠𝑣𝑎𝑟𝑗 = 1

𝐾

∑︀𝐾
𝑖=1

(︁
�⃗�𝑗 [𝑖]− 𝑠𝑚𝑒𝑎𝑛𝑗

)︁2
.

end for

Prediction Sampling
for 𝑞 ∈ [𝑇𝑚𝑎𝑥] do

for 𝑗 ∈ [𝑑] do
𝜈𝑞𝑗 = 𝒩

(︁
𝑠𝑚𝑒𝑎𝑛𝑗 , 𝑠𝑣𝑎𝑟𝑗

)︁
.

if 𝜈𝑞𝑗 ≥ 2𝜌𝑛 then
for 𝑚 ∈ ⌊𝜈𝑞𝑗 ⌋ do

𝑙𝑠
𝑞
𝑗(𝑚) = 𝑚

2
⌊𝜈𝑞

𝑗
⌋

end for
end if

end for
Let 𝑦𝑞(𝑥) = ℎ𝑋𝑆𝑇 (𝒟2

𝑛/2, 𝑙𝑠
𝑞
1, . . . , 𝑙𝑠

𝑞
𝑑, 𝑥).

end for

Averaging Predictions
Predict 𝑦𝐻𝑋𝑆𝑇 (𝑥) = 1

𝑇𝑚𝑎𝑥

∑︀𝑇𝑚𝑎𝑥

𝑟=1 𝑦𝑞(𝑥).

Proof of Theorem 5. We have that 𝑦𝐻𝑋𝑆𝑇 (X) is a function of training data 𝒟𝑛

and randomization parameter, 𝜃 (with a slight abuse of notation, representing the

random number of splits and the location of these splits in each dimension). The

randomization parameter 𝜃 is estimated from two tree construction methods. First,

on the 𝒟1
𝑛/4 samples, we use CART trees, and then, on the second random split of the

data 𝒟1
𝑛/4 we use fully grown trees with the structure as specified in the statement.

224

First note that by Jensen’s inequality that

EX
[︀
𝑦(X)− 𝑦𝐻𝑋𝑆𝑇𝑛 (X)

]︀2
= EX

[︁
E𝜃
[︁(︀
𝑦(X)− 𝑦𝐻𝑋𝑆𝑇𝑛 (X, 𝜃)

)︀2]︁]︁
≤ EX

[︁(︀
𝑦(X)− 𝑦𝐻𝑋𝑆𝑇𝑛 (X, 𝜃)

)︀2]︁
.

Next, we will show that all extended trees constructed using 𝜃, have the following

two properties:

1. Let diam(ℒ𝑛(𝑥, 𝜃)) define the maximum length of the rectangular region diam(ℒ𝑛(𝑥, 𝜃))

in any dimension. Then, diam(ℒ𝑛(𝑥, 𝜃)) → 0.

2. lim𝑛→∞𝑁𝑛(𝑥, 𝜃) → ∞.

Recall that 𝜃 = (𝑙1, . . . , 𝑙𝑑) is defined by the distribution of the location of splits,

given the number of splits in each dimension. Now for any dimension 𝑖, we have that

𝑠𝑖 = lim𝐾→∞
1
𝐾

∑︀𝐾
𝑗=1 �⃗�𝑗[𝑖] = lim𝐾→∞

1
𝐾

(︁∑︀𝐾/2
𝑗=1 �⃗�𝑗[𝑖] +

∑︀𝐾
𝑗=𝐾

2
+1 �⃗�𝑗[𝑖]

)︁
≥ lim𝐾→∞

∑︀𝐾
𝑗=𝐾

2
+1 �⃗�𝑗[𝑖] .

By construction, we have that all the trees numbered (K/2 +1) to K are fully grown

with depth 𝜌𝑛. Furthermore, the split dimension is also random and selected uni-

formly over the 𝑑 dimensions. For all trees constructed with the above two restrictions

we have that, 𝑆𝑖 ∼ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(2𝜌𝑛 , 1/𝑑). Hence, for any 𝑛 and ∀𝑖 = 1, . . . , 𝑑

lim𝐾→∞
∑︀𝐾

𝑗=𝐾
2
+1 �⃗�𝑗[𝑖] =

2𝜌𝑛

𝑑
.

To show (1), first note that by definition, ∀𝑥

diam(ℒ𝑛(𝑥, 𝜃)) = max𝑗=1,...,𝑑𝑉𝑛𝑗(𝑥, 𝜃) ,

where 𝑉𝑛𝑗(X, 𝜃) is the size of the rectangle in the 𝑗𝑡ℎ dimension which contains X.

By construction, we have that for any given 𝑥, 𝑉𝑛𝑗(𝑥, 𝜃) ∼ 2−𝑆𝑗 . Hence, for any

𝑗 = 1, . . . , 𝑑

E [𝑉𝑛𝑗(X, 𝜃)] ≤ EX
[︀
E
[︀
2−𝑆𝑗 |𝑋

]︀]︀
≤ 2−

𝜌𝑛
𝑑 .

Hence, EX [𝑉𝑛𝑗(X, 𝜃)] goes to 0 in probability, as 𝜌𝑛 goes to infinity with 𝑛. Next,

consider statement (2) above. By definition, 𝑁𝑛(𝑥) =
∑︀𝑛

2
𝑖=1 1{𝑥𝑖 ∈ ℒ𝑛(𝑥, 𝜃)} . Fi-

nally, notice that the tree sampling step is constrained to have at least 2𝜌𝑛 cuts in

each dimension. Hence, after extending the splits, there are (𝑑 − 1)2𝜌𝑛 rectangular

225

regions. Therefore,

P (𝑁𝑛(𝑥) < 𝑀) = E [P (𝑁𝑛(𝑥) < 𝑀) |𝑥] =
2𝑑+𝜌𝑛−1∑︁
𝑖=1

𝑁𝑖
𝑛
4
+ 1

1{𝑁𝑛(𝑥) < 𝑀}

≤ 2𝑑+𝜌𝑛+1𝑀

𝑛
,

which converges to zero, by assumption. After having established that properties

(1), (2) described above hold, the consistency result holds similarly to ([33]). ■

A.2 Hyper-parameters Tuning

For our computational tests in §2.5, we consider the following range of hyper-parameters:

1. Linear Models (Elastic Net)

• 𝐿1 Penalization Ratio: [0, 0.1, 0.2, 0.3, . . . , 1]

• Weight for 𝐿1 and 𝐿2 Penalization (𝛼): [1𝑒−5, 1𝑒−4, 1𝑒−3, 1𝑒−2, 1𝑒−1, 1,

10, 100]

2. Support Vector Machines

• Soft Margin Parameter (C): [.1, 1, 10, 100, 1000]

3. K-Nearest Neighbors

• Number of Nearest Neighbors (K): [1, 5, 10, 20, 40]

4. Classification and Regression Trees

• Maximum Depth: [3, 4, 5, 6, 10, None]

• Minimum Samples per Leaf (%): [0.04, 0.06, 0.08]

• Maximum Features to consider per split (%): [0.2, 0.4, 0.6, 0.8]

5. AdaBoost

226

• Number of Estimators: [50, 100, 300]

• Learning Rate: [0.0001, 0.001, 0.01, 0.1, 0.2, 0.3, 1]

6. Feed-Forward Neural Networks

• Number of Hidden Layers: [1, 2, 3, 4, 5]

• Number of Neurons per Layer: [2, 3, 5, 10, 20]

• Activation Function: tanh and reLU

• Solver: SGD and Adam

• Alpha: [0.0001, 0.05]

• Learning Rate: Constant and Adaptive

7. LightGBM

• Maximum Depth: [5, 10, 30, 40, None]

• Number of Estimators: [50, 100, 300]

• Learning Rate: [0.0001, 0.001, 0.01, 0.1, 0.2, 0.3, 1]

8. Random Forests

• Bootstrap: w/ and w/o

• Maximum Depth: [5, 10, 30, 40, None]

• Maximum Features to consider per split: None and square root of total

number of features

• Minimum Samples per Leaf: [1, 2, 4]

• Minimum Samples per Split: [2, 5, 10]

• Number of Estimators: [50, 100, 300]

9. XGBoost

• Minimum Child Weight: [1, 2, 3, . . . , 20]

227

• Gamma: [1, 2, 3, . . . , 6]

• SubSample: [0.8, 1.0]

• Alpha: [0.5, 1, 2, 5]

• ColSample ByTree: [0.6, 0.8, 1.0]

• Maximum Depth: [3, 4, 5, 6, 10]

• Learning Rate: [0.0001, 0.001, 0.01, 0.1, 0.2, 0.3, 1]

10. XSTrees

• Bootstrap: w/

• Maximum Depth: [4, 5, 6]

• Minimum Samples per Leaf: [1, 2, 4, 14]

• Minimum Samples per Split: [2, 5, 10]

• Number of Estimators: [50, 100, 300]

• Number of Sampled Trees: [100, 150, 300]

• Number of K-Nearest Leaves (Heuristic): [4, 10, 20, 30]

• Update Procedure: [“ordering", “bayesian"]

Hyper parameter tuning is done using 𝐾-fold cross validation with 𝐾 = 10, ex-

clusively on the training data. Experiments are performed in a Python 3.6.1 envi-

ronment. We use our own implementation for the XSTrees, which is open source, the

xgboost 0.90 [49] library for XGBoost, and sklearn 0.21.1 [129] for the rest.

A.3 Standard Deviation of Computational Results

In this section, we detail the standard deviation of the out-of-sample accuracy over

the 20 UCI classification datasets presented in §2.5 of the chapter. See Table A.1.

We notice that on average, XSTrees is much more stable (in terms of variability

in out-of-sample accuracy for the same problems with different random seeds) than

228

Dataset Baseline LIN SVM KNN CART ADA FNN LGBM RF XGB XST
Abalone 0.0060 0.0068 0.0119 0.0084 0.0241 0.0246 0.0718 0.0187 0.0185 0.0103 0.0144
Adult 0.0091 0.0079 0.0000 0.0052 0.0415 0.0095 0.0375 0.0186 0.0138 0.0106 0.0130
Anneal 0.0062 0.0077 0.0060 0.0121 0.0298 0.0238 0.0320 0.0119 0.0195 0.0183 0.0112
Car 0.0093 0.0090 0.0125 0.0083 0.0479 0.0175 0.0351 0.0197 0.0195 0.0120 0.0136
Contraception 0.0139 0.0083 0.0166 0.0131 0.0395 0.0140 0.0399 0.0144 0.0299 0.0120 0.0073
Credit Approval 0.0081 0.0054 0.0147 0.0162 0.0570 0.0233 0.0534 0.0089 0.0137 0.0138 0.0130
Banknote Authentification 0.0000 0.0000 0.0000 0.0056 0.0242 0.0089 0.0000 0.0102 0.0186 0.0142 0.0000
Haberman 0.0107 0.0089 0.0000 0.0110 0.0510 0.0158 0.0464 0.0210 0.0066 0.0000 0.0121
Heart Disease 0.0110 0.0073 0.0112 0.0063 0.0221 0.0177 0.0377 0.0194 0.0174 0.0136 0.0114
Congressional Vote 0.0047 0.0093 0.0092 0.0177 0.0556 0.0137 0.0330 0.0172 0.0121 0.0182 0.0137
Iris 0.0064 0.0072 0.0197 0.0085 0.0360 0.0107 0.0668 0.0100 0.0181 0.0183 0.0104
Chess 0.0105 0.0083 0.0098 0.0072 0.0517 0.0189 0.0513 0.0197 0.0190 0.0000 0.0175
King Rook vs. King 0.0075 0.0067 0.0138 0.0076 0.0199 0.0190 0.0731 0.0148 0.0120 0.0131 0.0077
Magic04 0.0146 0.0126 0.0171 0.0132 0.0414 0.0182 0.0443 0.0192 0.0163 0.0248 0.0084
MONK-01 0.0123 0.0064 0.0132 0.0123 0.0220 0.0176 0.0790 0.0155 0.0148 0.0177 0.0068
MONK-02 0.0084 0.0068 0.0133 0.0190 0.0176 0.0214 0.0586 0.0138 0.0207 0.0000 0.0081
MONK-03 0.0040 0.0122 0.0128 0.0119 0.0525 0.0218 0.0316 0.0163 0.0153 0.0132 0.0124
Part Failures 0.0044 0.0069 0.0147 0.0079 0.0362 0.0253 0.0375 0.0153 0.0187 0.0146 0.0000
Sonar 0.0143 0.0074 0.0000 0.0125 0.0469 0.0203 0.0407 0.0190 0.0136 0.0058 0.0081
Transfusion 0.0132 0.0081 0.0136 0.0130 0.0400 0.0086 0.0530 0.0079 0.0119 0.0142 0.0197
Average 0.0087 0.0077 0.0105 0.0108 0.0379 0.0175 0.0478 0.0156 0.0165 0.0133 0.0104

Table A.1: Standard Deviation of the Out-of-Sample Accuracy for the UCI Datasets

their single tree counterpart (0.0104 average standard deviation versus 0.0379 for

CART), as well as RF (0.0165). However, it has slightly more variability than XGB

(0.0133). Unsurprisingly, FNN, ADA and LGBM suffer from a higher variability.

Table A.1 indicates that the results and conclusions discussed in §2.5 of the chapter

are significant.

A.4 Detailed Results for the UCI Regression Bench-

mark

.

We report the results in terms of out-of-sample coefficient of determination (R2),

and in terms of ranks for the UCI Regression Benchmark in Table A.2 and Table A.3.

Note that we take as a baseline model the average value of the target variable in the

training data, which means the R2 of the baseline model is always equal to 0, so we

ignore it in the rank comparison.

229

Dataset LIN SVM KNN CART ADA FNN LGBM RF XGB XST XST Rank
Automobile 0.076 0.027 0.700 0.908 0.916 0.748 0.848 0.920 0.943 0.961 1
Communities 0.611 0.658 0.459 0.525 0.488 0.530 0.620 0.626 0.583 0.655 2
Servo 0.482 0.839 0.445 0.809 0.731 0.596 0.571 0.894 0.931 0.881 3
Students 0.211 0.186 0.113 0.112 0.203 0.263 0.303 0.265 0.227 0.260 4
Wine 0.359 0.329 0.126 0.236 0.374 0.339 0.409 0.444 0.371 0.460 1
Average 0.348 0.408 0.369 0.518 0.542 0.495 0.550 0.630 0.611 0.643 1
Median 0.359 0.329 0.445 0.525 0.488 0.530 0.571 0.626 0.583 0.655 1

Table A.2: Mean Out-of-Sample R2 for the UCI Regression Datasets. In bold, the
top-performing algorithm for each row. Ranks of the XSTrees are reported in the last
column.

Dataset LIN SVM KNN CART ADA FNN LGBM RF XGB XST
Automobile 9 10 8 5 4 7 6 3 2 1
Communities 5 1 10 8 9 7 4 3 6 2
Servo 9 4 10 5 6 7 8 2 1 3
Students 6 8 9 10 7 3 1 2 5 4
Wine 6 8 10 9 4 7 3 2 5 1
Average 7 6.2 9.4 7.4 6 6.2 4.4 2.4 3.8 2.2
Median 6 8 10 8 6 7 4 2 5 2

Table A.3: R2 Rank for the UCI Regression Datasets. In bold, the top-performing
algorithm for each row.

230

Appendix B

Supplement for Chapter 3

B.1 Proof of Proposition 2

Proof: We prove the two properties of Proposition 2 separately:

(1) The CWC algorithm has two main steps in each iteration. In step 2(a) we

estimate multinomial logistic regression models of individual clusters based on

the cluster assignments from the previous iteration. By assumption, this step

takes 𝑂(𝑝(𝑛, 𝑑, 𝐿)) time where recall that n is the total number of observations,

d is the dimension of each observation and L is the total number of clusters.

Then, in Step 2(b) we iterate over each observation to check if the cluster

assignment can be improved. This is accomplished by first estimating the log

likelihood of each observation across all clusters and then assigning the point

to the cluster with the maximum log-likelihood. Hence, this step takes 𝑂(𝑛𝑑𝐿)

time. Now since there are T total rounds, the time complexity of the algorithm

is 𝑂(𝑇𝑝(𝑛, 𝑑, 𝐿) + 𝑇𝑛𝑑𝐿).

(2) During the algorithm, step 2(a) fixes ̂︀𝑧(𝑡−1)
𝑖𝑘 and minimizes ℒ to estimate multi-

nomial logistic models. Let the fitted logistic models be 𝑝(𝑡). Then, step 2b fixes

𝑝(𝑡) and minimizes ℒ by re-clustering products to find ̂︀𝑧(𝑡)𝑖𝑘 , which means

ℒ(̂︀𝑧(𝑡), 𝑝(𝑡)) ≤ ℒ(̂︀𝑧(𝑡−1), 𝑝(𝑡)) ≤ ℒ(̂︀𝑧(𝑡−1), 𝑝(𝑡−1)),

231

Thus, the objective decreases in every iteration of step 2. Since ℒ is lower

bounded (since we do not allow for pure clusters), the algorithm must converge

to a solution. Furthermore, if convergence happens at time 𝑡 − 1, this can be

checked from time 𝑡 onwards if the solution remains unchanged, i.e., ̂︀𝑝(𝜏) = ̂︀𝑝(𝑡−1)

and ̂︀𝑧(𝜏) = ̂︀𝑧(𝑡−1) for 𝜏 ≥ 𝑡. For this to happen, we only need that ̂︀𝑧(𝑡) = ̂︀𝑧(𝑡−1),

because the deterministic algorithms of steps 2a and 2b will find the same

solutions at every iteration onwards.

■

B.2 Proof of Theorem 1

Proof: We will prove the result of Theorem 3 by contradiction. Assume that ∃𝒮𝑗 ∈ S:

𝒮𝑗 ̸= 𝒜(𝑚*) & 𝑟(𝒮𝑗) > 𝑟(𝒜(𝑚*)). Let �̃� = |𝒮𝑗|. We have two cases to analyze. Either

𝑚* = �̃� or otherwise 𝑚* ̸= �̃�. First consider the case when 𝑚* = �̃�. Since 𝒮𝑗 is

optimal, we have that that

𝑟(𝑍*) > 𝑟(𝒜(𝑚*))

=⇒
∑︁
𝑖∈𝒮𝑗

𝑓𝑆𝑆𝑃 (𝑌 = 𝑗|𝒮𝑗)𝑁𝑃𝑉𝑖 − 𝑐𝑗𝐵 >
∑︁

𝑖∈𝒜(𝑚*)

𝑓𝑆𝑆𝑃 (𝑌 = 𝑖|𝒜(𝑚*))𝑁𝑃𝑉𝑖 − 𝑐𝑗𝐵

=⇒
∑︁
𝑖∈𝒮𝑗

𝑓𝑆𝑆𝑃 (𝑌 = 𝑖|𝒮𝑗)𝑁𝑃𝑉𝑖 − 𝑐�̃�𝐵 >
∑︁

𝑖∈𝒜(𝑚*)

𝑓𝑆𝑆𝑃 (𝑌 = 𝑖|𝒜(𝑚*))𝑁𝑃𝑉𝑖 − 𝑐𝑚*𝐵

=⇒
∑︁
𝑖∈𝒮𝑗

𝑓𝑆𝑆𝑃 (𝑌 = 𝑖|𝒮𝑗)𝑁𝑃𝑉𝑖 − 𝑐𝑚*𝐵 >
∑︁

𝑖∈𝒜(𝑚*)

𝑓𝑆𝑆𝑃 (𝑌 = 𝑖|𝒜(𝑚*))𝑁𝑃𝑉𝑖 − 𝑐𝑚*𝐵

=⇒
∑︁
𝑖∈𝒮𝑗

𝑓𝑆𝑆𝑃 (𝑌 = 𝑖|𝒮𝑗)𝑁𝑃𝑉𝑖 >
∑︁

𝑖∈𝒜(𝑚*)

𝑓𝑆𝑆𝑃 (𝑌 = 𝑖|𝒜(𝑚*))𝑁𝑃𝑉𝑖 ,

(B.1)

where we have suppressed the dependence of 𝑓𝑆𝑆𝑃 on X and 𝛽 for ease of exposition.

Also note by construction that 𝒜(𝑚*) is the optimal assortment of size at most

232

𝑚*. Since, 𝑚* = �̃�, we have that

∑︁
𝑖∈𝒜(𝑚*)

𝑓𝑆𝑆𝑃 (𝑌 = 𝑖|𝒜(𝑚*))𝑁𝑃𝑉𝑖 ≥
∑︁
𝑖∈𝒮𝑗

𝑓𝑆𝑆𝑃 (𝑌 = 𝑖|𝒮𝑗)𝑁𝑃𝑉𝑖 .

Hence, we have reached a contradiction.

Next consider the case when �̃� > 𝑚*. To prove a contradiction, first consider all

the assortments of at most size �̃�. Then, by construction, we have that 𝒜(�̃�) = 𝒮𝑗,

which follows using the same argument as above. Furthermore, by the optimality of

𝒜(𝑚*), we also have that

𝑟*(𝑚*)− 𝑐|𝒜(𝑚*)|𝐵 ≥ 𝑟*(𝑘)− 𝑐|𝒜(𝑘)|𝐵, ∀𝑘 = 1, .., 𝐾.

=⇒ 𝑟*(𝑚*)− 𝑐|𝒜(𝑚*)|𝐵 ≥ 𝑟*(�̃�)− 𝑐|𝒜(�̃�)|𝐵,

=⇒ 𝑟*(𝑚*)− 𝑐|𝒜(𝑚*)|𝐵 ≥ 𝑟*(𝒮𝑗)− 𝑐|𝒮𝑗|𝐵.

(B.2)

Hence, we have reached a contradiction again since 𝒮𝑗 was assumed to be the optimal

solution ot the ASDO problem. Finally, the case when �̃� < 𝑚* follows identically

and we skip the details for the sake of brevity. ■

B.3 Visualization of the Results

In this section, we present the visualization (Figure B-1) of the cluster assignment

tree in §3.4, as well as the single tree explainer ((Figure B-2)) for the incremental

revenue of the assembly service from the same section. Both of these figures were

placed in this appendix because of space constraints.

B.4 Definition of Performance Metrics

In this section we detail the definition of the Precision, Recall, F1-Score and Support

metrics used in §3.4:

• Precision: or positive predictive value (PPV) is defined as the ratio between

233

true positives TP and predicted positive (true positives TP + false positives FP

). We write PPV = TP
TP+FP .

• Recall: or true positive rate (TPR) is defined as the ratio between true positives

TP and actual positives (true positives TP + false negatives FN). We write

TPR = TP
FN+FP .

• F1-Score: the harmonic mean of precision and recall. We write F1-Score =

2× PPV×TPR
PPV+TPR .

• Support: the total number of observations in the corresponding class.

B.5 Details on the Case Study

In this section, we discuss in detail how we calculate the estimated uplift based on

implementing the proposed ancillary service optimization framework.

1. We consider 21144 unique customer sessions, where during the session the cus-

tomer arrives at the product page.

2. For each customer in these sessions, we utilize our NPV models to estimate the

NPV of the customer purchasing each of the 3 services. We obtain 3 values:

Assembly NPV, Warranty NPV, and PLCC NPV.

3. For each customer at the product page, we utilize our CWC model to predict

a vector of probabilities that the customer will purchase each of the services

(including not purchasing any service) under the 7 different actions by our

industry collaborator. We obtain a 7 x 4 matrix of probabilities, where entry

(i,j) captures the probability that customer will sign up for service j under action

i.

4. Using the NPV values from (2) above, we create a 4 dimensional “revenue” vector

which captures the immediate and incremental revenue that the customer will

generate for our collaborator if he buys a service

234

• Value from no service purchased: 0

• Value from assembly purchased: Assembly NPV + Assembly Margin *

Assembly Price

• Value from warranty purchased: Warranty NPV + Warranty Margin *

Warranty Price

• Value from PLCC purchased: PLCC NPV - PLCC Cost

Assembly Margin = 0.17, Warranty Margin = 0.15, and PLCC Cost = $40.

This $40 cost for PLCC is associated with the store credit that our collaborator

gives to new customers on the platform.

5. We take a dot product between the probability matrix from (3) and the value

vector from (4), which yields a 7-dimensional vector which basically captures

the “expected revenue” under each of the 7 actions.

6. To capture our assumption that more services impose a cognitive burden on

customers, we impose higher “costs” for showing more services. Due to busi-

ness considerations, we express this cost as a form of reduced conversion rates

multiplied by the product price.

For example, we assume that showing 3 services leads to a 0.3% reduction in

conversion, while showing 2 services leads to a 0.2% reduction in conversion,

while showing 1 service is the baseline (0% on conversion). These numbers were

informed by other business units of our industry collaborator. We also evaluate

the sensitivity of the estimated improvement, as we change the cost parameters.

The results of the sensitivity analysis are provided in Table B.1.

7. The cost of showing 3 services is then 0.3% * Product price. We then use this

to create a 7-dimensional cost vector which captures the “cost” of the 7 possible

actions.

8. The “expected value” of each of the 7 actions is then given by:

Expected Value = Expected Revenue (from (5)) - Cost (from (6))

235

We then prescribe the action with the highest expected value amongst the set

of feasible actions. If the product in question was not assembly-eligible, then

any combination involving the Assembly service would be deemed an infeasible

action, and cannot be prescribed.

9. Our baseline for comparison is that our collaborator shows all services that the

customer / product is eligible for. We find that by converting to the prescribed

display actions we gain about 2.5% - 3.5% in incremental revenue which is about

$600-850 for 21000 sessions (i.e. about $0.03 cents per customer session).

In particular, (8)-(9) show that the optimization framework only assigns feasi-

ble services to a sampled session. Hence, the estimated improvements are made by

“ ‘personalizing" eligible ancillary services for different customers.

Assumption Number of Services Impact on Conversion(c) Improvement
A 1 0.1% 2.7%

2 0.3%
3 0.2%

B 1 0% 2.9%
2 0.2%
3 0.3%

C 1 0% 3.2%
2 0.3%
3 0.4%

Table B.1: Impact of Optimized Service Display on Revenue under different conver-
sion impact assumptions

236

Figure B-1: Visualization of the Cluster Assignment Decision Tree
237

Figure B-2: Single Tree Explainer for the Incremental Revenue of the Assembly Ser-
vice

238

Appendix C

Supplement for Chapter 4

C.1 Generalization of the Formulation to multiple

new observations

The use of one single 𝑥0 is for illustrative purposes, the framework remains identical

when we have 𝑛𝑡𝑒𝑠𝑡 ∈ N new observations we want to prescribe an optimal decision

for. Equation (5) becomes:

min
𝑢,𝑓 ,𝑧

𝜆
𝑛∑︁

𝑖=𝑛𝑡𝑒𝑠𝑡

𝑘∑︁
𝑗=1

𝑢𝑖,𝑗(𝑦𝑖 − 𝑓𝑗(𝑥𝑖, 𝑧𝑖))
2 + (1− 𝜆)

𝑛∑︁
𝑖=0

𝑘∑︁
𝑗=1

𝑢𝑖,𝑗𝑐(𝑓𝑗(𝑥𝑖, 𝑧𝑖), 𝑧𝑖)

s.t ℎ𝑟(𝑧0, . . . ,𝑧𝑛) ≤ 𝑏𝑟, ∀𝑟 ∈ [𝑠] (constraints on decisions),
𝑛∑︁

𝑖=𝑛𝑡𝑒𝑠𝑡

𝑢𝑖,𝑗 ≥ 𝑁𝑚𝑖𝑛, ∀𝑗 ∈ [𝑘] (minimum number of training observations per cluster),

𝑘∑︁
𝑗=1

𝑢𝑖,𝑗 = 1, ∀𝑖 ∈ {0, . . . , 𝑛} (one observation is assigned to exactly one cluster),

𝑢𝑡,𝑗 ≤ 1

⎛⎜⎜⎝𝑗 = argmin
𝑗′∈[𝑘]

𝑛∑︀
𝑖=𝑛𝑡𝑒𝑠𝑡

𝑢𝑖,𝑗′‖𝑥𝑡 − 𝑥𝑖‖22
𝑛∑︀

𝑖=𝑛𝑡𝑒𝑠𝑡

𝑢𝑖,𝑗′

⎞⎟⎟⎠ ,∀𝑗 ∈ [𝑘], ∀𝑡 ∈ [𝑛𝑡𝑒𝑠𝑡 − 1]

(test point 𝑥𝑡 is assigned to the closest cluster).

(C.1)

239

Which is exactly the formulation that is used in the experimental section. The

contribution of test points to the prescriptive part of the objective is in 𝑂(𝑛𝑡𝑒𝑠𝑡

𝑛
). This

can be further adjusted by weighting the two types of observations with a parameter

𝜆′ that will then by hyper-parameter tuned on validation set similarly to 𝜆. The

prescriptive part of the objective function would become:

(1−𝜆)

[︃
𝜆′

(︃
𝑛∑︁

𝑖=𝑛𝑡𝑒𝑠𝑡

𝑘∑︁
𝑗=1

𝑢𝑖,𝑗𝑐(𝑓𝑗(𝑥𝑖, 𝑧𝑖), 𝑧𝑖)

)︃
+ (1− 𝜆′)

(︃
𝑛𝑡𝑒𝑠𝑡−1∑︁
𝑖=0

𝑘∑︁
𝑗=1

𝑢𝑖,𝑗𝑐(𝑓𝑗(𝑥𝑖, 𝑧𝑖), 𝑧𝑖)

)︃]︃

Making the contribution of new points 𝑂((1−𝜆
′)𝑛𝑡𝑒𝑠𝑡

𝜆′𝑛
).

C.2 Experiment on the Cluster-While-Regress ap-

proach

We note for a vector 𝑥, 𝑥[𝑖], the 𝑖𝑡ℎ dimension of this vector.

In this simulation, we draw 𝑛 = 100 3-dimensional data points uniformly at

random in [0, 1]3, and we set for each data point 𝑥, 𝑦 = 100𝑥[3] if 𝑥[1]2 + 𝑥[2]2 ≤ 0.5

and 𝑦 = −50𝑥[3] otherwise. Then, we run a 𝑘-means clustering with 𝑘 = 2, and

then train within each resulting cluster a linear regression, and then we compare that

with the Cluster-While-Regress that we highlight in the HPA approach. We get the

following results (Table C.1):

Method Estimated Coefficient in Cluster 1 Estimated Coefficient in Cluster 2 R2
Cluster then Regress 0.5 -1.3 -2.82
Cluster while Regress 100 -50 1

Table C.1: Comparison between Cluster then Regress and Cluster while Regress

This confirms computationally that there exists some advantage to clustering and

regressing at the same time.

240

C.3 Hyper-parameters Tuning

For our computational tests in §4.6, we consider the following range of hyper-parameters:

1. Linear Models (Elastic Net)

• 𝐿1 Penalization Ratio: [0, 0.1, 0.2, 0.3, . . . , 1]

• Weight for 𝐿1 and 𝐿2 Penalization (𝛼): [1𝑒−5, 1𝑒−4, 1𝑒−3, 1𝑒−2, 1𝑒−1, 1,

10, 100]

2. Weight of the Predictive vs. Prescriptive Cost 𝜆: [1𝑒−5, 1𝑒−4, 1𝑒−3, 1𝑒−2,

1𝑒−1, 1, 10, 100, 1𝑒3]

3. Number of Clusters 𝑘: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

4. Classification and Regression Trees

• Maximum Depth: [3, 4, 5, 6, 10, None]

• Minimum Samples per Leaf (%): [0.04, 0.06, 0.08]

• Maximum Features to consider per split (%): [0.2, 0.4, 0.6, 0.8]

5. XGBoost

• Minimum Child Weight: [1, 2, 3, . . . , 20]

• Gamma: [1, 2, 3, . . . , 6]

• SubSample: [0.8, 1.0]

• Alpha: [0.5, 1, 2, 5]

• ColSample ByTree: [0.6, 0.8, 1.0]

• Maximum Depth: [3, 4, 5, 6, 10]

• Learning Rate: [0.0001, 0.001, 0.01, 0.1, 0.2, 0.3, 1]

6. Feed-Forward Neural Networks

• Number of Hidden Layers: [1, 2, 3, 4, 5]

241

• Number of Neurons per Layer: [2, 3, 5, 10, 20]

• Activation Function: tanh and reLU

• Solver: SGD and Adam

• Alpha: [0.0001, 0.05]

• Learning Rate: Constant and Adaptive

C.4 Hardware and Computation Time

For these computations and for the reported run-times, we have used 2.3 GHz Quad-

Core Intel Core i7 Processor, with 16 GB of RAM and an Intel Iris Plus Graphics

1536 Graphic Card.

We also report the run-time of the tree-based HPA in Figure C-1.

Figure C-1: Average run-time of each iterations of the cart-hpa-r algorithm for
select values of 𝑛, 𝑘 and 𝑝 on the synthetic experiment. Instance with above the
10,000 seconds threshold are instances above the time-limit that we have set, and are
not solved to optimality.

242

Appendix D

Supplement for Chapter 5

D.1 Minimum Representation Learning Model

In this section we describe further the Minimal Representation Learning algorithm

(MRL). We refer the reader to [18] for a detailed description of the general approach

and theoretical analysis.

MRL uses the observed data from the dynamic system to partition the feature space

into states of a finite deterministic MDP (𝒮,𝒜, 𝑓, 𝑟), where 𝒮 is the state space, 𝒜

is the action space, 𝑓 : 𝒮 × 𝒜 → 𝒮 and 𝑟 : 𝒮 → R are the transition and outcome

functions. Each feature 𝑥 ∈ R𝑁 is mapped to a unique MDP’s state 𝜑(𝑥) = 𝑠 ∈ 𝒮

with a mapping 𝜑 : R𝑁 −→ 𝒮. Figure D-1 illustrates this process. The constructed

MDP constitutes a concise reduced representation of the system that approximates

accurately the system’s values, and therefore models COVID-19’s evolution in our

case.

Once the model is constructed, we can predict values of the dynamic system at

features 𝑥 and taking a sequence of actions 𝑎1, . . . , 𝑎ℎ ∈ 𝒜 (e.g., restrictive mobility

measures), by mapping the feature vector 𝑥 to its corresponding state 𝑠 := 𝜑(𝑥) in

the MDP representation and then extracting the value of the representation MDP

243

starting at 𝑠 and taking actions 𝑎1, . . . , 𝑎𝐻 , i.e.,

𝑉 (𝑥) = 𝑟(𝑓(𝑠)) +
ℎ∑︁
𝑡=1

𝑟(𝑓(𝑠, 𝑎1 . . . 𝑎𝑡)), (D.1)

where 𝑉 (𝑥) is the predicted value and 𝑓(𝑠, 𝑎1 . . . 𝑎𝑡) = 𝑓(. . . 𝑓(𝑓(𝑠, 𝑎1), 𝑎2) . . . , 𝑎𝑡).

Figure D-1: Illustration of the representation MDP construction. The feature space
is partitioned into a finite number of regions (left). A representation MDP is then
constructed and each region is mapped (full arrows) to a state of the MDP (right).
To make a prediction, a region at a given date is mapped with its features to a region
of the feature space, then mapped to the corresponding state in the representation
MDP.

To learn this concise MDP representation using transition data, the MRL algorithm

iteratively splits the feature space to approximate an MDP representation that is

consistent with the transition data. Such a representation is called coherent (see

Definition 4.1 in [18]). More precisely, a mapping of the feature space 𝜑 into states of

an MDP is defined to be coherent if any two data points (feature vectors) are mapped

to the same state and share the same outcome, i.e.,

𝜑(𝑋𝑖1,𝑡1) = 𝜑(𝑋𝑖2,ℎ2) =⇒ 𝑅𝑖1,𝑡1 = 𝑅𝑖2,𝑡2 , ∀𝑖1, 𝑖2, ∀𝑡1, 𝑡2.

and every two data points mapped to the same state and having observed the same

action transition to data points mapped to the same state, i.e.,

𝜑(𝑋𝑖1,𝑡1) = 𝜑(𝑋𝑖2,𝑡2) and 𝐴𝑖1,𝑡1 = 𝐴𝑖2,𝑡2 =⇒ 𝜑(𝑋𝑖1,𝑡1+1) = 𝜑(𝑋𝑖2,𝑡2+1), ∀𝑖1, 𝑖2, ∀𝑡1, 𝑡2.

[18] show that any coherent representation of the system converges to the most

244

concise (with smallest number of states) representation of the system. Hence, the

MRL method learns the most concise MDP representation of the COVID-19 evolution.

The MRL approach also provides provable guarantees as we summarize in Theorem 6

below.

Theorem 6 (see [18]) Let 𝑁 be the number of sample paths and 𝑇 be the length of

each path in the training data. Let 𝑉 be the true value function of the system and

𝑉 be the value estimated as in (D.1) for a prediction horizon ℎ ∈ N with a coherent

MDP representation. For all 𝛿 > 0, with probability 1− 𝛿,

|𝑉 − 𝑉 | = 𝑂

(︃√︃
ℎ

𝑁𝑇

[︂
log(𝑁𝑇) + log

(︂
1

𝛿

)︂]︂)︃
.

We note that the same bound holds when the prediction is of the form 𝑒𝑉 , which is

the case in COVID-19. That is, asymptotically |𝑒𝑉 −𝑒𝑉 | = 𝑂(𝑒|𝑉−𝑉 |−1) = 𝑂(𝑉 −𝑉).

Model Formulation

In this section, we detail how we model COVID-19 evolution as a dynamic system.

The prediction target 𝑌𝑖,𝑡 for a given region 𝑖, at day 𝑡 can be either the cumulative

number of cases or the cumulative number of deaths.

Introducing a time discretization. The day-to-day growth rate, cases and

deaths are volatile due to fluctuations of testing numbers and seasonality among

others. As a result, aiming to make accurate daily predictions is a complex problem.

Furthermore, such a precise number is not necessary for the purpose of policy making.

Instead of learning a day-to-day outcome, we introduce a number of days 𝑑 onto which

we aggregate the observations. Hence, for some arbitrary starting time 𝑡0, we consider

the aggregated outcomes on the set of times 𝑡 ∈ {𝑡0, 𝑡0 + 𝑑, 𝑡0 + 2𝑑, . . .} defined as

𝑌
(𝑑)
𝑖,ℎ =

1

𝑑

𝑑∑︁
𝜏=0

𝑌𝑖,𝑡0+ℎ𝑡−𝜏 , ∀ℎ ≤ 𝑇/𝑑

245

where 𝑑 is chosen as a trade-off between learnability and precision. Moreover, we

observe some seasonal behavior on a short-term in the target time series. Averaging

the curve allows us to recover the trend in a more stable and easier way that translates

into an MDP.

From growth rate to outcomes. We define the MDP costs 𝑅 as the logarithm

of the aggregated growth rate:

𝑅𝑖,ℎ = log
(︁
𝑌

(𝑑)
𝑖,ℎ+1/𝑌

(𝑑)
𝑖,ℎ

)︁
.

Suppose the goal is to predict the outcome in region 𝑖 for a horizon ℎ0+𝐻, where the

available data stops at time ℎ0. We use the constructed finite MDP representation

by MRL to predict sequences of costs of the MDP | i.e., log aggregated growth rates

| {�̂�𝑖,ℎ0+ℎ, ℎ ∈ [1, 𝐻]}, deduce an estimate 𝑉𝑖,ℎ0+𝐻 of the value function 𝑉𝑖,ℎ0+𝐻 =∑︀𝐻
ℎ=0𝑅𝑖,ℎ0+ℎ = log

(︁
𝑌

(𝑑)
𝑖,ℎ0+𝐻

/𝑌
(𝑑)
𝑖,ℎ0

)︁
, and recover an estimate of the target :

𝑌
(𝑑)
𝑖,ℎ0+𝐻

= 𝑌
(𝑑)
𝑖,ℎ0

exp(𝑉𝑖,ℎ0+𝐻) ≈ 𝑌
(𝑑)
𝑖,ℎ0

exp(𝑉𝑖,ℎ0+𝐻) = 𝑌
(𝑑)
𝑖,ℎ0+𝐻

Finally, for days 𝑡 within two time steps, we assume that the growth rate is constant

between two time steps, equal to the next step growth rate and predict the outcome

as

𝑌𝑖,𝑡0+ℎ0𝑑+𝑡 = 𝑌
(𝑑)
𝑖,ℎ0+⌊𝑡/𝑑⌋ · exp

(︂
𝑡− 𝑑⌊𝑡/𝑑⌋

𝑑
· �̂�ℎ0+⌊𝑡/𝑑⌋

)︂
≈ 𝑌

(𝑑)
𝑖,ℎ0+⌊𝑡/𝑑⌋ · exp

(︂
𝑡− 𝑑⌊𝑡/𝑑⌋

𝑑
·𝑅ℎ0+⌊𝑡/𝑑⌋

)︂
= 𝑌𝑖,𝑡1+𝑑⌊𝑡/𝑑⌋

(︂
𝑌𝑖,𝑡1+𝑑⌊𝑡/𝑑⌋+𝑑
𝑌𝑖,𝑡1+𝑑⌊𝑡/𝑑⌋

)︂ 𝑡−𝑑⌊𝑡/𝑑⌋
𝑑

where 𝑡1 = 𝑡0 + ℎ0𝑑.

Clustering of the outcomes. While the set of outcomes is populated by log

growth rates observed over time across regions, the MRL method requires this set

to be finite. As suggested in [18], this additional characteristic could be achieved

by defining a distance threshold 𝜖, that will be used as a proxy for clustering the

observed outcomes beforehand. This clustering creates batches of outcomes of the

246

form [𝑅 − 𝜖, 𝑅 + 𝜖] that we consider to be similar outcomes. In other words, the

algorithm does not distinguish between two outcomes in the same batch and identifies

outcomes within 𝜖. Hence, this introduces an additional error in the prediction of

order 𝐻𝜖, where 𝐻 is the horizon of the prediction. Naturally, there is a trade-off

captured. Taking 𝜖 too small increases the number of states of the constructed MDP

(as a high precision in the prediction is required), creating a more complex structure

to learn and generalize, while 𝜖 too large tends to oversimplify the learnt MDP and

increases the discretization error, in which case the algorithm’s prediction, within an

error 𝐻𝜖, would be of low accuracy.

D.2 Nearest-Neighbor and Similarity-Weighted Time-

Series

In this section, we discuss the convergence of the KNN model:

Let us define 𝑚(𝑥𝑗𝜏) = 𝐸[𝑌𝑗𝜏 |𝑋𝑗𝜏 = 𝑥𝑗𝜏] the unknown regression function that

we want to estimate from a compact subset 𝑆𝐹 ⊂ 𝐹 to R where 𝐹 is an infinite

dimensional functional space.

The k-nearest neighbor estimator is defined as:

�̂�𝑁,𝑇 (𝑥𝑗𝜏) =

∑︀𝑁
𝑖=1

∑︀𝑇
𝑡=1𝑊𝑖𝑡(𝑥𝑗𝜏 ;𝑋𝑖𝑡)𝑌𝑙𝜏∑︀𝑁

𝑖=1

∑︀𝑇
𝑡=1𝑊𝑖𝑡(𝑥𝑗𝜏 ;𝑋𝑖𝑡)

(D.2)

where 𝑁 * 𝑇 is the total number of observations, 𝑘 is the number of nearest

neighbors and 𝑊𝑖𝑡(𝑥𝑗𝜏 ;𝑋𝑖𝑡) is the weight function usually taking the form of a kernel:

𝐾
(︀𝑑(𝑥,𝑋𝑖𝑡)

ℎ(𝑥)

)︀
for a distance metric 𝑑 and a bandwidth ℎ.

Let 𝑆𝐹 be a compact subset of 𝐹 , and 𝑁𝛿(𝑆𝐹) be the minimal number of open

balls with radius 𝛿 in 𝐹 which is necessary to cover 𝑆𝐹 with centers 𝜒1, ..., 𝜒𝑁𝛿(𝑆𝐹)

respectively. In addition, let 𝜓𝑆𝐹
(𝛿) be the Kolmogrov’s 𝛿-entropy of 𝑆𝐹 . For all

247

𝜒 ∈ 𝑆𝐹 , denote 𝑘(𝜒) = argmin𝑘∈{1,2,...,𝑁𝛿(𝑆𝐹)} 𝑑(𝜒, 𝜒𝑘),

𝑠2𝑁*𝑇,1 =
𝑁∑︁
𝑖=1

𝑇∑︁
𝑡=1

𝑁∑︁
𝑗=1

𝑇∑︁
𝑚=1

|𝐶𝑜𝑣(𝑌𝑖,𝑡𝑢𝑖,𝑡, 𝑌𝑗,𝑚𝑢𝑗,𝑚)|, 𝑠2𝑁*𝑇,2 =
𝑁∑︁
𝑖=1

𝑇∑︁
𝑡=1

𝑁∑︁
𝑗=1

𝑇∑︁
𝑚=1

|𝐶𝑜𝑣(𝑢′𝑖,𝑡, 𝑢′𝑗,𝑚)|

𝑠2𝑁*𝑇,3 =
𝑁∑︁
𝑖=1

𝑇∑︁
𝑡=1

𝑁∑︁
𝑗=1

𝑇∑︁
𝑚=1

|𝐶𝑜𝑣(𝑢𝑖,𝑡, 𝑢𝑗,𝑚)|, 𝑠2𝑁*𝑇,4 =
𝑁∑︁
𝑖=1

𝑇∑︁
𝑡=1

𝑁∑︁
𝑗=1

𝑇∑︁
𝑚=1

|𝐶𝑜𝑣(𝑢′′𝑖,𝑡, 𝑢′′𝑗,𝑚)|

(D.3)

where

𝑢𝑖,𝑡 = 𝐼𝐵(𝜒𝑘(𝜒),𝐶ℎ𝑁*𝑇+𝛿)(𝜒𝑖,𝑡) for some 𝐶 > 0 and 0 < ℎ𝑁*𝐾 → 0

𝑢′𝑖,𝑡 =
𝑌𝑖,𝑡𝐾

(︀ 𝑑(𝜒𝑘,𝜒𝑖,𝑡)

ℎ𝑁*𝑇 (𝜒𝑘)

)︀
𝐸𝐾

(︀
𝑑(𝜒𝑘,𝜒1)
ℎ𝑁*𝑇 (𝜒𝑘)

)︀ −
𝐸
(︀
𝑌𝑖,𝑡𝐾

(︀ 𝑑(𝜒𝑘,𝜒𝑖,𝑡)

ℎ𝑁*𝑇 (𝜒𝑘)

)︀)︀
𝐸𝐾

(︀
𝑑(𝜒𝑘,𝜒1)
ℎ𝑁*𝑇 (𝜒𝑘)

)︀
𝑢′′𝑖,𝑡 =

𝐾
(︀ 𝑑(𝜒𝑘,𝜒𝑖,𝑡)

ℎ𝑁*𝑇 (𝜒𝑘)

)︀
𝐸𝐾

(︀
𝑑(𝜒𝑘,𝜒1)
ℎ𝑁*𝑇 (𝜒𝑘)

)︀ − 𝐸𝐾
(︀ 𝑑(𝜒𝑘,𝜒𝑖,𝑡)

ℎ𝑁*𝑇 (𝜒𝑘)

)︀
𝐸𝐾

(︀
𝑑(𝜒𝑘,𝜒1)
ℎ𝑁*𝑇 (𝜒𝑘)

)︀
(D.4)

We define

𝑠2𝑁*𝑇 = max(𝑠2𝑁*𝑇,1, 𝑠
2
𝑁*𝑇,2, 𝑠

2
𝑁*𝑇,3, 𝑠

2
𝑁*𝑇,4) (D.5)

Let 𝐶,𝐶 ′, 𝐶1, 𝐶2 be some strictly positive generic constants. The assumptions

under which the theorem holds are the following:

248

(𝐴1) ∀𝛿 > 0, 𝑃 (𝜒 ∈ 𝐵(𝜒, 𝛿)) =: 𝜙𝜒(𝛿) > 0

and 𝜙𝜒(·) is continuous and strictly increasing around 0 with 𝜙𝜒(0) = 0.

(𝐴2) ∃ function 𝜑(·) ≥ 0, a bounded function 𝑓(·) > 0, 𝛼 > 0 and 𝜏 > 0 such that

(𝑖) 𝜑(0) = 0 and lim
𝛿→0

𝜑(𝛿) = 0.

(𝑖𝑖) lim
𝛿→0

(𝜑(𝑢𝛿)/𝜑(𝛿)) = 𝑢𝛼 for 𝑢 > 0

(𝑖𝑖𝑖) sup
𝜒∈𝑆𝐹

|𝜙𝜒(𝛿)/𝜑(𝛿)− 𝑓(𝜒)| = 𝒪(𝛿𝜏), as 𝛿 → 0.

(𝐴3) The kernel function 𝐾(.) is a nonnegative function over its support [0, 1], and its

derivative 𝐾 ′(.) exists on [0, 1]

with −∞ < 𝐶1 < 𝐾 ′(𝑡) < 𝐶2 < 0 and 𝐾(1) > 0 ∀𝑡 ∈ [0, 1].

(𝐴4) (𝑖) 𝑚(.) is a bounded Lipschitz operator of order 𝛽 on 𝑆𝐹 , that is,

∃𝛽 > 0 such that ∀𝜒1, 𝜒2 ∈ 𝑆𝐹 , |𝑚(𝜒1)−𝑚(𝜒2)| ≤ 𝐶𝑑𝛽(𝜒1, 𝜒2).

(𝑖𝑖) ∀𝑚 ≥ 2, 𝐸(|𝑌 |𝑚|𝑋 = 𝜒) = 𝛿𝑚(𝜒) < 𝐶 with 𝛿𝑚(·) being continuous on 𝑆𝐹 .

(𝐴5) The Kolmogorov’s 𝛿 − entropy of 𝑆𝐹 satisfies
∞∑︁
𝑛=1

𝑒(1−𝜔)𝜓𝑆𝐹
(log𝑛

𝑛
) <∞

for some large enough 𝜔.

(𝐴6) ∃𝛼 > 1 and 𝑝 > 2 such that 𝑠−((𝛼+1)𝑝/(𝛼+𝑝))
𝑁*𝑇 = 𝑜((𝑁 * 𝑇)−𝜃) for some large enough 𝜃.

(D.6)

For the convergence of the �̂�𝑁,𝑇 (𝑥𝑗𝜏) in strong mixing time series data with a

kernel as a weight function we will cite the following theorem.

Theorem 7 (see [111]) Under the assumptions (A1)-(A6), if lim
𝑁*𝑇→∞

𝑘
𝑁*𝑇 = 0 ,

log2 𝑁*𝑇
𝑘

< 𝜓𝑆𝐹
(log𝑁*𝑇

𝑁*𝑇) < 𝑘
log𝑁*𝑇 and 0 < 𝐶1 < 𝑘

log2𝑁*𝑇 < 𝐶2 < ∞ for 𝑁 * 𝑇

large enough and 𝐶1,𝐶2 some constants then

sup
𝑥∈𝑆𝐹

|�̂�𝑁,𝑇 (𝑥)−𝑚(𝑥)| = 𝒪a.co

(︂
𝜑−1
(︀ 𝑘

𝑁 * 𝑇
)︀𝛽

+

√︃
𝑠2𝑁*𝑇𝜓𝑆𝐹

(log𝑁*𝑇
𝑁*𝑇)

(𝑁 * 𝑇)2

)︂
249

Theorem 7 establishes uniform almost complete convergence of the estimator. The

assumption stated in the theorem are quite usual for time series data. For those

interested in this topic we recommend reading [111] and the references within.

D.3 Deep Learning Approach

In the time-series variation of 𝑘-means, the similarity between two time series is

measured by the DTW distance metric, and the cluster centroids are computed with

respect to it. More specifically, given two time series 𝐴 = (𝑎0, ..., 𝑎𝑛) and 𝐵 =

(𝑏0, ..., 𝑏𝑚) the DTW distance from 𝐴 to 𝐵 is formulated as the following optimization

problem.

𝐷𝑇𝑊 (𝐴,𝐵) = minimize𝜋
(︀∑︀

(𝑖,𝑗)∈𝜋 𝑑(𝑎𝑖, 𝑏𝑗)
2
)︀1/2

, (D.7)

with 𝜋 = [𝑝0, ..., 𝜋𝐾] being a path which is a list of index pairs such that for each

𝑘 ∈ {0, 1, ..., 𝐾}, 𝜋𝑘 = (𝑖𝑘, 𝑗𝑘), 𝑖𝑘 ∈ {0, 1, ..., 𝑛−1} and 𝑗𝑘 ∈ {0, 1, ...,𝑚−1}. Moreover,

𝜋0 = (0, 0), 𝜋𝐾 = (𝑛−1,𝑚−1), 𝑖𝑘−1 ≤ 𝑖𝑘 ≤ 𝑖𝑘−1+1 and 𝑗𝑘−1 ≤ 𝑗𝑘 ≤ 𝑗𝑘−1+1 where the

distance function 𝑑(·, ·) in this case is the Euclidean distance. This method calculates

an optimal match between the two sequences that has the minimal cost according to

the used distance function.

Regarding Recurrent Neural Networks or RNNs, they are a category of neural

networks that processes sequential data. RNNs model sequences of data so that

each sample is assumed to be dependent on the previous one. Even though RNNs

theoretically can process long sequences (also referred to as long term dependencies),

in practice they do not perform well (see [141]). Moreover, they suffer from what is

referred to as the gradient vanishing and exploding problem. LSTMs are designed to

be a solution to those problems ([95]). Additionally, their special architecture helps

them remember and learn long term dependencies. LSTM models use special types

of units that help them remember previous data and while simultaneously addressing

gradient problems. Furthermore, they are capable of processing and predicting large

time series.

In our system, each LSTM Network consists of two distinct layers. Each LSTM

250

layer consists of multiple LSTM units connected sequentially. Each LSTM unit con-

sists of a cell, an input gate, an output gate and a forget gate. The cell is the key

component of the LSTM unit as it stores all the useful previous information. The

LSTM can add and/or remove information to/from the cell via regulators called gates.

By using specific activation functions, gates determine how much of each component

of the unit goes through to the cell state. In order to formally describe the LSTM unit

we introduce the following notation. Let 𝑥𝑡 ∈ R𝑑 be the input vector in the LSTM

unit, 𝑓𝑡 ∈ Rℎ the forget gate’s activation vector, 𝑖𝑡 ∈ Rℎ the input gate’s activation

vector, 𝑜𝑡 ∈ Rℎ the output gate’s activation vector, ℎ𝑡 ∈ Rℎ the output vector of the

unit, 𝑐𝑡 ∈ Rℎ the cell input activation vector, and 𝑐𝑡 ∈ Rℎ the cell state vector.

The forget gate’s activation vector is given by the following equation 𝑓𝑡 = 𝜎(𝑈𝑓ℎ𝑡−1+

𝑊𝑓𝑥𝑡+𝑏𝑓), where 𝜎 is the sigmoid activation function and 𝑈𝑓 ∈ Rℎ×ℎ,𝑊𝑓 ∈ Rℎ×𝑑 and

𝑏𝑓 ∈ Rℎ. This gate controls the self-loop weight (between 0 and 1) of the RNN. Intu-

itively, a value equal to 0 means that the LSTM decides to forget the previous unit’s

output, while a value equal to 1 means that the LSTM decided to keep completely

the information from the previous unit.

At the same time, we calculate the input gate activation vector using the equation

𝑖𝑡 = 𝜎(𝑈𝑖ℎ𝑡−1+𝑊𝑖𝑥𝑡+𝑏𝑖), where 𝜎 is the sigmoid activation function, 𝑈𝑖 ∈ Rℎ×ℎ,𝑊𝑖 ∈

Rℎ×𝑑, and 𝑏𝑖 ∈ Rℎ. The input gate activation vector is element-wise multiplied

(Hadamard product) with the cell input activation vector, which is given through

equation 𝑐𝑡 = 𝜎(𝑈𝑐ℎ𝑡−1 +𝑊𝑐𝑥𝑡 + 𝑏𝑐), where 𝜎 is the hyperbolic tangent activation

function, 𝑈𝑐 ∈ Rℎ×ℎ,𝑊𝑐 ∈ Rℎ×𝑑, and 𝑏𝑐 ∈ Rℎ. The cell input activation function

denotes the new candidate value for the cell and the input gate activation denotes

the quantity of the new candidate value that will eventually be stored in the cell.

Similar to what we described above, a value equal to 0 means that the LSTM decides

to not take into consideration the new cell candidate value, while a value equal to 1

represents that the LSTM forwards completely the new candidate value to the cell.

The cell state vector is calculated using equation 𝑐𝑡 = 𝑓𝑡 ∘ 𝑐𝑡−1 + 𝑖𝑡 ∘ 𝑐𝑡, where ∘

denotes the Hadamard product. The new cell state is given by summing the remain-

ing, multiplied by 𝑓𝑡, information from the previous cell, with the new candidate cell

251

value multiplied by 𝑖𝑡. As before, this shows how much consideration we put into the

candidate cell value.

Finally, the output value ℎ𝑡 is given by a filtered state of the cell state. As before,

by computing the output’s gate activation vector 𝑜𝑡 = 𝜎(𝑈𝑜ℎ𝑡−1 +𝑊𝑜𝑥𝑡 + 𝑏𝑜), where

𝜎 is the sigmoid activation function, 𝑈𝑓 ∈ Rℎ×ℎ,𝑊𝑓 ∈ Rℎ×𝑑, and 𝑏𝑓 ∈ Rℎ, we decide

which part of the cell state will remain. Then, the cell state 𝑐𝑡 passes through a

hyperbolic tangent activation function, that scales the values between −1 and 1, and

is element-wise multiplied with 𝑜𝑡, resulting in the output ℎ𝑡 = 𝑜𝑡 ∘ 𝜎(𝑐𝑡), where 𝜎 is

the hyperbolic tangent activation function. In Figure D-2, a complete LSTM unit is

depicted.

𝜎 𝜎 Tanh 𝜎

× +

× ×

Tanh

𝑐𝑡−1

Cell at 𝑡− 1

ℎ𝑡−1

Output at 𝑡− 1

𝑥𝑡Input at 𝑡

𝑐𝑡

Cell at 𝑡

ℎ𝑡

Output at 𝑡

ℎ𝑡Output at 𝑡

Figure D-2: An LSTM unit.

The complete architecture of our system is depicted in the following figure.

Bounds on Prediction Accuracy

In this subsection, we establish a theoretical bound on the predictive accuracy of the

Bi-LSTM network. To accomplish this we impose the following reasonable assump-

tions:

Assumption 1: The input data are bounded.

Assumption 2: The spectral norms of weight matrices are bounded. More specif-

252

Figure D-3: Architecture of the complete system.

ically, ||𝑊𝑓 ||2 ≤ 𝐵𝑊𝑓
, ||𝑊𝑖||2 ≤ 𝐵𝑊𝑖

, ||𝑊𝑐||2 ≤ 𝐵𝑊𝑐 , ||𝑊𝑜||2 ≤ 𝐵𝑊𝑜 , ||𝑈𝑓 ||2 ≤ 𝐵𝑈𝑓
,

||𝑈𝑖||2 ≤ 𝐵𝑈𝑖
, ||𝑈𝑐||2 ≤ 𝐵𝑈𝑐 , ||𝑈𝑜||2 ≤ 𝐵𝑈𝑜 .

Assumption 3: The activation function of the output 𝜎 is Lipschitz continuous with

parameter 𝜌 and 𝜎(0) = 0.

Theorem 8 (see [47]) If Assumptions 1-3 hold, then for (𝑥𝑡, 𝑧𝑡)
𝑇
𝑡=1 and

𝑆 =
{︀
(𝑥𝑖,𝑡, 𝑧𝑖,𝑡)

𝑇
𝑡=1, 𝑖 = 1, ...,𝑚

}︀
i.i.d. samples drawn from any underlying distribution

over R𝑑𝑥×𝑇 × {1, .., 𝐾}, with probability at least 1− 𝛿 over 𝑆, for every margin value

𝛾 > 0 and every 𝑓𝑡 ∈ ℱ𝑔,𝑡 for integer 𝑡 ≤ 𝑇 we have that:

P[𝑧 ̸= 𝑧] ≤ ℛ̂𝛾(𝑓𝑡) + 3

√︃
log 2

𝛿

2𝑚
+𝒪

(︃
𝑑𝜌𝐵𝑉 min{

√
𝑑,𝐵𝑊𝑐𝐵𝑥

𝛽𝑡−1
𝛽−1

}
√︁
log(𝜃

𝑡−1
𝜃−1

𝑑
√
𝑚)

√
𝑚𝛾

)︃
,

(D.8)

where 𝑧 is the estimation of the LSTM, ℛ̂𝛾(𝑓𝑡) is the empirical risk, ℱ𝑔,𝑡 = {(𝑋𝑡, 𝑧𝑡) ↦→

𝑔(𝑓𝑡(𝑋𝑡), 𝑧𝑡) : 𝑓𝑡 ∈ ℱ𝑡}, where ℱ𝑡 is the class of mappings from the first 𝑡 inputs to

the 𝑡−th output and 𝑔 the loss function, 𝑑𝑥 = 𝑚 is the number of features, 𝐾 is the

total number of labels, 𝑑 is the maximum dimension of the matrices, 𝐵𝑉 is the bound

on the spectral norm of the matrix applied to the output ℎ𝑡, and finally, 𝐵𝑥 is the

bound of the second norm of each data point, 𝛽 = max{||𝑓𝑗||∞ + 𝐵𝑈𝑐||𝑖𝑗||∞||𝑜𝑗||∞}

and 𝜃 = 𝛽 +𝐵𝑈𝑓
+𝐵𝑈𝑖

+𝐵𝑈𝑜.

This result follows from [47]. The bound it establishes holds asymptotically for

253

regression and is of the order of 𝒪(

√
log 1

𝛿
𝛾+𝑑min{

√
𝑑,𝛽𝑡}

√
log(𝜃𝑡𝑑

√
𝑚)

√
𝑚𝛾

). Since, the bidi-

rectional LSTM consists of two independent LSTMs the generalization bounds hold

asymptotically also for the Bi-directional LSTM.

D.4 Epidemiology Approach

We begin by briefly describing the original SEIRD model and then build on it to

formulate the multi-peak C-SEIRD model. The SEIRD model is a compartmental epi-

demiology model. It assumes that the total population is of size 𝑁 and can be broken

into five sub-populations: susceptible (S), exposed (E), infected (I), recovered (R) and

deceased (D). Individuals move through these sub-populations, and the aggregate of

this movement is described by the following set of differential equations:

𝑑𝑆

𝑑𝑡
= −𝛽𝑆𝐼

𝑁
,
𝑑𝐸

𝑑𝑡
=
𝛽𝑆𝐼

𝑁
− 𝐸

𝛼
,
𝑑𝐼

𝑑𝑡
=
𝐸

𝛼
− (𝛾 + 𝜇)𝐼,

𝑑𝑅

𝑑𝑡
= 𝛾𝐼,

𝑑𝐷

𝑑𝑡
= 𝜇𝐼

(D.9)

In these equations 𝛽 represents the infection rate of the disease, 𝛼 represents the

average incubation time (i.e., how long it takes for an individual to move from getting

the disease to being contagious), 𝛾 denotes the recovery rate of infected individuals,

and 𝜇 denotes the mortality rate.

Nevertheless, this formulation assumes that the parameters are static. If this were

the case, then any area with COVID-19 would have only experienced a single wave

(peak) of the disease before the virus had time to mutate or people had enough time to

lose their immunity. However the multiple waves of COVID-19 seen across the United

States demonstrate that the parameters are not static. Instead, population behavior

and environmental conditions have driven multiple waves, leading to time-dependent

parameters.

254

D.5 Trade-offs between Models

When choosing a prediction model for the evolution of the disease, there are several

trade-offs to consider. Some models, such as epidemiological models, impose a lot

of structure on the problem based on prior knowledge, while others, such as ML

methods, learn general classes of functions from the data, with little to no problem-

specific structure. There is a trade-off between leveraging subject-matter expertise,

and being able to learn complex patterns from historical data and additional features

such as weather or mobility. Additionally, some models perform better than others in

terms of predictive accuracy but are less interpretable or need significantly more data

to train. Based on these trade-offs, it is often unclear which model to choose; this

results in a wide variety (more than 50) of state-of-the-art models used by the CDC

for this prediction task. We consider four classes of models: reinforcement learning

models, machine learning models, deep learning methods, and epidemiological models.

Instead of choosing one of these classes for the prediction task, we combine all of these

to bring together the best of all worlds. More specifically:

(i) Feature-based Markovian representation approach: This approach is

designed to exploit the fact that the time series of growth rates present some

similarities across time and region, conditioned on what has been observed in

the recent history. Formalized under the Markovian assumption, the MRL

method constructs a discrete Markov Decision Process from data. While the

discretization we perform allows us to summarize information more efficiently,

it induces a systematic lower bound in the error, resulting from the fact that

the system is continuous. This limiting factor can be mitigated by increasing

the granularity of the state space, but this might impact the stability of the

constructed MDP. An alternative solution that we have developed in this paper

consists in constructing an MRL-ensemble model.

(ii) Nearest-neighbor weighted time series approach: The main benefit of

the Nearest Neighbor method is that is can make very accurate predictions with

only a few data points as training. It captures behaviors that were observed in

255

the past and uses them in order to make predictions for the future. In addition,

contrary to other methods that are often black box, one can identify from which

neighbors the predicting patterns come from. This is a very desirable trait; it

can be used to cluster many regions using the degree of similarity among them,

as well as to interpret and explain the origin of the predictions. On the other

hand, the fact that it uses only the observed patterns to make predictions can

be a drawback if there is very little data available. If a new pattern arises, a

nearest neighbor might not be able to accurately predict its evolution. However,

after observing the first few time periods, the method can use those to make

estimates about the future.

(iii) Deep Learning approach: The goal of the Bi-LSTM model is to analyze and

discover previously unobserved patterns in large amounts of sequentially de-

pendent data. By introducing a time-series clustering layer that groups states

based on their individual characteristics, we create distinct Bi-LSTM networks

to produce more accurate predictions for states in each cluster. The Bi-LSTM

method has the advantage that it can also incorporate external features beyond

historical death/cases growth rates including weather data and demographics.

Nevertheless, there are two limitations in this method. First, the Bi-LSTM re-

quires a substantial amount of data in order to be trained properly and produce

accurate predictions. Additionally, the architecture we consider uses random

initialization of the cluster centroids, (e.g. the DTW clustering algorithm ran-

domly initializes the initial centroids). As a consequence, the final clusters are

not always the same, and therefore, the predictions of the model may not always

be consistent.

(iv) Epidemiological approach: The goal of the C-SEIRD model is to understand

the progression of diseases through a population. The C-SEIRD brings with

it a structure that includes information about epidemiology beyond what is

contained in the data. Even if cases have had an upward trajectory through the

entirety of the dataset, and all the other models predict that cases will continue

256

to grow, the C-SEIRD will identify that there is a point where the cases will

peak. This means that the epidemiology model will perform the best when there

is little data. This model is able to compensate for the lack of information with

its structure. However the structure is also the main limitation of the model. It

will not be able to hyper-fit to specific variations in the data, as the structure

forces the model to average between fluctuations. This means that the model,

when trained well, will often produce small errors, wMAPES often under the

10% mark, but it will rarely get as close to less than 1% errors as our aggregate

model often produces. The C-SEIRD model is also very interpretable as it is

easy to see how and why the model is making its predictions by taking a look

at the estimated infection/recovery rates as well as the population size.

D.6 Proof of Theorem 1

Useful Definitions

Definition 1: A metric on a set 𝑋 is a function (called distance function) 𝑑 :

𝑋 ×𝑋 → [0,∞). For any 𝑥, 𝑦, 𝑧 ∈ 𝑋, the following three axioms are satisfied:

1. 𝑑(𝑥, 𝑦) = 0 ⇐⇒ 𝑥 = 𝑦

2. 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥)

3. 𝑑(𝑥, 𝑦) ≤ 𝑑(𝑥, 𝑧) + 𝑑(𝑧, 𝑦)

Definition 2: A distance function is called absolutely homogeneous if for 𝑥, 𝑦 ∈ 𝑋

and 𝛼 ∈ R the following holds: 𝑑(𝛼𝑥, 𝛼𝑦) = |𝛼|𝑑(𝑥, 𝑦).

Proof:

1. (In-Sample Predictions)

The result follows by contradiction. Let 𝑚0 ∈ ℳ, we assume that the func-

tion defined by 𝑓 0(𝑦𝑖,𝑡,𝑚,𝑚 ∈ ℳ) = 𝑦𝑖,𝑡,𝑚0 ,∀𝑖, 𝑡 belongs to the set ℱ . That

257

is, 𝑓 0 is feasible in Problem (5.5). We can deduce directly by optimality of 𝑓𝑖

that the objective function is lower, that is,
∑︀𝑇

𝑡=𝑇𝑣𝑎𝑙
|𝑦𝑖,𝑡 − 𝑓𝑖(𝑦𝑖,𝑡,𝑚,𝑚 ∈ ℳ)| ≤∑︀𝑇

𝑡=𝑇𝑣𝑎𝑙
|𝑦𝑖,𝑡 − 𝑓 0(𝑦𝑖,𝑡,𝑚,𝑚 ∈ ℳ)| =

∑︀𝑇
𝑡=𝑇𝑣𝑎𝑙

|𝑦𝑖,𝑡 − 𝑦𝑖,𝑡,𝑚0|.

General Distance Functions : Again, the result follows by contradiction. Let

𝑚0 ∈ ℳ, we assume that the function defined by 𝑓 0(𝑦𝑖,𝑡,𝑚,𝑚 ∈ ℳ) = 𝑦𝑖,𝑡,𝑚0 ,∀𝑖, 𝑡

belongs to the set ℱ . That is, 𝑓 0 is feasible in Problem (5.5). We can de-

duce directly by optimality of 𝑓𝑖 that the objective function is lower, that

is,
∑︀𝑇

𝑡=𝑇𝑣𝑎𝑙
𝑑(𝑦𝑖,𝑡, 𝑓𝑖(𝑦𝑖,𝑡,𝑚,𝑚 ∈ ℳ)) ≤

∑︀𝑇
𝑡=𝑇𝑣𝑎𝑙

𝑑(𝑦𝑖,𝑡, 𝑓
0(𝑦𝑖,𝑡,𝑚,𝑚 ∈ ℳ)) =∑︀𝑇

𝑡=𝑇𝑣𝑎𝑙
𝑑(𝑦𝑖,𝑡, 𝑦𝑖,𝑡,𝑚0).

■

2. (Out-of-Sample Predictions)

For simplicity of notations, we denote 𝑦𝑖, for 𝑖 ∈ [𝑁 ×𝐻] the random variable

of the true target value (for example cases and deaths) out-of-sample for a

particular region at a particular time, 𝑦𝑖 the corresponding predicted value by

the aggregate model and 𝑦𝑖,𝑚 the predicted value for individual model 𝑚 ∈ ℳ.

(i) Robustness: Using the same notations, let 𝜆 > 0 s.t.
∑︀
𝑚∈ℳ

𝜆𝑚 = 1. We

have that:

𝐸[|𝑦𝑖 − 𝑦𝑖|] = 𝐸[|𝑦𝑖 −
∑︁
𝑚∈ℳ

𝜆𝑚𝑦𝑖,𝑚|] = 𝐸[|
∑︁
𝑚∈ℳ

𝜆𝑚(𝑦𝑖 − 𝑦𝑖,𝑚)|]

≤ 𝐸[
∑︁
𝑚∈ℳ

|𝜆𝑚(𝑦𝑖 − 𝑦𝑖,𝑚)|]

= 𝐸[
∑︁
𝑚∈ℳ

𝜆𝑚|(𝑦𝑖 − 𝑦𝑖,𝑚)|] =
∑︁
𝑚∈ℳ

𝜆𝑚𝐸[|(𝑦𝑖 − 𝑦𝑖,𝑚)|]

≤
∑︁
𝑚∈ℳ

𝜆𝑚max
𝑘∈ℳ

𝐸[|(𝑦𝑖 − 𝑦𝑖,𝑘)|]

= max
𝑘∈ℳ

𝐸[|(𝑦𝑖 − 𝑦𝑖,𝑘)|](
∑︁
𝑚∈ℳ

𝜆𝑚) = max
𝑘∈ℳ

𝐸[|(𝑦𝑖 − 𝑦𝑖,𝑘)|] ■

(D.10)

258

Absolutely Homogeneous Distance Functions :

𝐸[𝑑(𝑦𝑖, 𝑦𝑖)] = 𝐸[𝑑(𝑦𝑖,
∑︁
𝑚∈ℳ

𝜆𝑚𝑦𝑖,𝑚)] = 𝐸[𝑑(
∑︁
𝑚∈ℳ

𝜆𝑚𝑦𝑖,
∑︁
𝑚∈ℳ

𝜆𝑚𝑦𝑖,𝑚)] ≤

≤ 𝐸[𝑑(
∑︁
𝑚∈ℳ

𝜆𝑚𝑦𝑖,
∑︁
𝑚∈ℳ

𝜆𝑚𝑦𝑖,𝑚*)] = 𝐸[
∑︁
𝑚∈ℳ

𝜆𝑚𝑑(𝑦𝑖, 𝑦𝑖,𝑚*)] =

=
∑︁
𝑚∈ℳ

𝜆𝑚𝐸[𝑑(𝑦𝑖, 𝑦𝑖,𝑚*)] = 𝐸[𝑑(𝑦𝑖, 𝑦𝑖,𝑚*)] ■

(D.11)

where 𝑚* = argmax𝑚∈ℳ 𝑑(
∑︀
𝑚∈ℳ

𝜆𝑚𝑦𝑖,
∑︀
𝑚∈ℳ

𝜆𝑚𝑦𝑖,𝑚).

(ii) Variance: Using the same notations, let 𝜆 > 0 s.t.
∑︀
𝑚∈ℳ

𝜆𝑚 = 1.

We have that:

𝑣𝑎𝑟(𝑦𝑖) = 𝑣𝑎𝑟(
∑︁
𝑚∈ℳ

𝜆𝑚𝑦𝑖,𝑚) = E[
(︀ ∑︁
𝑚∈ℳ

𝜆𝑚𝑦𝑖,𝑚
)︀2
]−
(︀
E[
∑︁
𝑚∈ℳ

𝜆𝑚𝑦𝑖,𝑚]
)︀2

= E[
∑︁
𝑚∈ℳ

∑︁
𝑛∈ℳ

𝜆𝑚𝜆𝑛𝑦𝑖,𝑚𝑦𝑖,𝑛]−
(︀
E[
∑︁
𝑚∈ℳ

𝜆𝑚𝑦𝑖,𝑚]
)︀2

=
∑︁
𝑚∈ℳ

∑︁
𝑛∈ℳ

𝜆𝑚𝜆𝑛E[𝑦𝑖,𝑚𝑦𝑖,𝑛]−
(︀ ∑︁
𝑚∈ℳ

𝜆𝑚E[𝑦𝑖,𝑚]
)︀2

=
∑︁
𝑚∈ℳ

∑︁
𝑛∈ℳ

𝜆𝑚𝜆𝑛E[𝑦𝑖,𝑚𝑦𝑖,𝑛]−
∑︁
𝑚∈ℳ

∑︁
𝑛∈ℳ

𝜆𝑚𝜆𝑛E[𝑦𝑖,𝑚]E[𝑦𝑖,𝑛]

=
∑︁
𝑚∈ℳ

∑︁
𝑛∈ℳ

𝜆𝑚𝜆𝑛
(︀
E[𝑦𝑖,𝑚𝑦𝑖,𝑛]− E[𝑦𝑖,𝑚]E[𝑦𝑖,𝑛]

)︀
=
∑︁
𝑚∈ℳ

∑︁
𝑛∈ℳ

𝜆𝑚𝜆𝑛𝐶𝑜𝑣(𝑦𝑖,𝑚, 𝑦𝑖,𝑛)

=
∑︁
𝑚∈ℳ

𝜆2𝑚𝑣𝑎𝑟(𝑦𝑖,𝑚) + 2
∑︁
𝑚∈ℳ

∑︁
𝑛∈ℳ,𝑛>𝑚

𝜆𝑚𝜆𝑛𝐶𝑜𝑣(𝑦𝑖,𝑚, 𝑦𝑖,𝑛).

(D.12)

Now, let 𝑉 * = max
𝑚∈ℳ

𝑣𝑎𝑟(𝑦𝑖,𝑚). The equation (D.12) becomes:

∑︁
𝑚∈ℳ

𝜆2𝑚𝑣𝑎𝑟(𝑦𝑖,𝑚) + 2
∑︁
𝑚∈ℳ

∑︁
𝑛>𝑚

𝜆𝑚𝜆𝑛𝐶𝑜𝑣(𝑦𝑖,𝑚, 𝑦𝑖,𝑛)

≤ 𝑉 *(︀ ∑︁
𝑚∈ℳ

𝜆2𝑚 + 2
∑︁
𝑚∈ℳ

∑︁
𝑛>𝑚

𝜆𝑚𝜆𝑛
)︀ (D.13)

259

We need to maximize
∑︀

𝑚∈ℳ 𝜆2𝑚 + 2
∑︀

𝑚∈ℳ
∑︀

𝑛∈ℳ,𝑛>𝑚 𝜆𝑚𝜆𝑛 subject to

the constraint that
∑︀
𝑚∈ℳ

𝜆𝑚 = 1 and 𝜆 > 0. Since, 𝜆 belongs to a convex

subset of R|ℳ|, we can use Lagrange multipliers. Let 𝑝 the corresponding

Lagrange multiplier, 𝑓(𝜆) =
∑︀

𝑚∈ℳ 𝜆2𝑚 + 2
∑︀

𝑚∈ℳ
∑︀

𝑛∈ℳ,𝑛>𝑚 𝜆𝑚𝜆𝑛 and

𝑔(𝜆) =
∑︀
𝑚∈ℳ

𝜆𝑚 − 1. We have that:

∇𝑓(𝜆)− 𝑝∇𝑔(𝜆) = 0 =⇒⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2𝜆1

2𝜆2

.

.

2𝜆|ℳ|

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+ 2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝜆2 + ...+ 𝜆|ℳ|

𝜆1 + 𝜆3 + ...+ 𝜆|ℳ|

.

.

𝜆1 + 𝜆2 + ...+ 𝜆|ℳ|−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
− 𝑝

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

1

.

.

1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= 0

(D.14)

From the relation above, we observe that for every 𝑖 = 1, ..., |ℳ|, we have

that 𝜆𝑖 = 𝑝/2− 1𝑇𝜆−𝑖, where 𝜆−𝑖 is the |ℳ| − 1 dimensional vector that

contains every 𝜆𝑗 for 𝑗 ̸= 𝑖 and 1 is the |ℳ| − 1 dimensional vector that

contains 1’s at every coordinate. By symmetry, we obtain that 𝜆1 = 𝜆2 =

... = 𝜆|ℳ|. Since,
∑︀
𝑚∈ℳ

𝜆𝑚 = 1, we obtain that 𝜆1 = 𝜆2 = ... = 𝜆|ℳ| =
1

|ℳ| .

Therefore, returning to equation (D.13), we obtain that:

𝑉 *(︀ ∑︁
𝑚∈ℳ

𝜆2𝑚 + 2
∑︁
𝑚∈ℳ

∑︁
𝑛∈ℳ,𝑛>𝑚

𝜆𝑚𝜆𝑛
)︀
≤

𝑉 *
(︁ ∑︁
𝑚∈ℳ

1

|ℳ|2
+ 2

∑︁
𝑚∈ℳ

∑︁
𝑛∈ℳ,𝑛>𝑚

1

|ℳ|2
)︁

⏟ ⏞
=1

= 𝑉 *

■

(D.15)

D.7 Data Sources and Features

We collected cases and deaths related data from the Center for Systems Science and

Engineering of John Hopkins. State-level social distancing policies data were retrieved

from the related COVID19StatePolicy Github repository, while global population

260

mobility reports were collected from Google. Moreover, we used weather historical

data provided by the National Climatic Data Center (NCDC) of National Oceanic

and Atmospheric Administration (NOAA) and Demographics data provided by the

U.S Census Bureau.

Our proposed models use this data as features in different ways. The MRL (and by

extension r-MRL) feature space was constructed based on the historical growth rates,

on both cases and deaths, including multiple lags to capture short-term and long-term

effects. Ratios on differences between cases and deaths helped as well in refining the

MDP state space. Regarding the Bi-LSTM and the KNN models, experimental results

showed that in addition to deaths- and cases-related features, for case prediction, past

mobility and temperature significantly improved (by more than 20%) the accuracy of

the models. For death prediction, past case growth rates also improved the predictive

power of the models. Finally, in the predictions starting on January 2021, we have

also included vaccination rates as a feature in all our models, except the C-SEIRD,

which is not feature-based.

D.8 Results with COVID-19 Data: CDC Benchmark

Figures and Tables

We present here the figures and tables corresponding to the graphs in §5.4, for the

CDC Benchmark on both deaths and cases.

261

D.8.1 Benchmark for Deaths

9/5/2020 9/12/2020 9/19/2020 9/26/2020

Model wMAPE Rank wMAPE Rank wMAPE Rank wMAPE Rank

COVIDhub-ensemble 0.007 3 0.008 1 0.011 1 0.016 1

LNQ-ens1 0.008 11 0.009 3 0.013 3 0.019 2

JCB-PRM 0.006 1 0.009 2 0.013 2 0.019 3

YYG-ParamSearch 0.008 8 0.010 4 0.014 4 0.020 4

UCLA-SuEIR 0.007 6 0.010 5 0.014 5 0.021 5

Covid19Sim-Simulator 0.007 5 0.010 6 0.015 6 0.021 6

MIT-Cassandra 0.012 30 0.015 23 0.019 11 0.022 7

Karlen-pypm 0.008 13 0.011 7 0.018 8 0.025 8

USC-SI_kJalpha 0.008 9 0.011 8 0.017 7 0.025 9

OliverWyman-Navigator 0.009 15 0.014 15 0.019 10 0.026 10

SteveMcConnell-CovidComplete 0.006 2 0.012 9 0.018 9 0.027 11

IowaStateLW-STEM 0.010 23 0.015 21 0.021 17 0.028 12

NotreDame-mobility 0.011 24 0.016 24 0.023 19 0.029 13

CEID-Walk 0.007 4 0.012 10 0.020 12 0.030 14

COVIDhub-baseline 0.008 7 0.012 12 0.020 13 0.030 15
...

RPI_UW-Mob_Collision 0.012 31 0.029 33 0.053 35 0.086 35

Table D.1: Selection of model results for predicting September deaths.

262

11/07/2020 11/14/2020 11/21/2020 11/28/2020

Model wMAPE Rank wMAPE Rank wMAPE Rank wMAPE Rank

MIT-Cassandra 0.013 23 0.024 39 0.043 39 0.06 38

MSRA-DeepST 0.01 1 0.016 5 0.027 7 0.038 13

GT-DeepCOVID 0.01 2 0.015 1 0.025 4 0.034 4

LNQ-ens1 0.01 3 0.016 3 0.025 5 0.036 5

OliverWyman-Navigator 0.011 4 0.017 8 0.028 14 0.04 16

LANL-GrowthRate 0.011 5 0.019 11 0.03 17 0.043 19

COVIDhub-ensemble 0.011 6 0.018 10 0.029 16 0.039 15

USC-SI_kJalpha 0.011 7 0.017 7 0.027 6 0.036 9

Karlen-pypm 0.012 8 0.016 4 0.023 1 0.029 1

UMass-MechBayes 0.012 9 0.016 6 0.025 3 0.032 3

Google_Harvard-CPF 0.012 10 0.016 2 0.023 2 0.03 2

SteveMcConnell-CovidComplete 0.012 11 0.018 9 0.027 8 0.037 11

UCSD_NEU-DeepGLEAM 0.012 12 0.019 12 0.032 19 0.045 20

MOBS-GLEAM_COVID 0.012 13 0.019 13 0.032 21 0.046 21

CEID-Walk 0.012 14 0.021 25 0.037 31 0.053 31

COVIDhub-baseline 0.012 15 0.021 26 0.037 30 0.052 30
...

TTU-squider 0.054 50 0.068 49 0.088 49 0.11 49

Table D.2: Selection of model results for predicting November deaths.

263

2/6/2021 2/13/2021 2/20/2021 2/27/2021

Model wMAPE Rank wMAPE Rank wMAPE Rank wMAPE Rank

MIT-Cassandra 0.011 1 0.019 1 0.028 5 0.041 14

OliverWyman-Navigator 0.020 2 0.023 2 0.031 11 0.039 10

LNQ-ens1 0.020 3 0.023 4 0.030 10 0.037 9

UCLA-SuEIR 0.021 4 0.027 15 0.034 17 0.042 16

Microsoft-DeepSTIA 0.021 5 0.026 8 0.034 16 0.051 22

COVIDhub-ensemble 0.021 6 0.023 3 0.028 6 0.033 4

USC-SI_kJalpha 0.021 7 0.023 5 0.028 7 0.035 8

COVIDhub-baseline 0.021 8 0.028 20 0.044 32 0.059 33

CEID-Walk 0.022 9 0.029 22 0.045 33 0.061 35

MOBS-GLEAM_COVID 0.022 10 0.026 9 0.034 15 0.041 12

UCSD_NEU-DeepGLEAM 0.022 11 0.027 13 0.035 19 0.043 18

Karlen-pypm 0.022 12 0.027 14 0.032 12 0.039 11

COVIDhub-trained_ensemble 0.023 13 0.025 7 0.026 1 0.031 1

SteveMcConnell-CovidComplete 0.023 14 0.026 11 0.029 9 0.033 5

BPagano-RtDriven 0.023 15 0.028 19 0.039 21 0.048 21
...

JHUAPL-Bucky 0.071 42 0.086 41 0.099 41 0.107 41

Table D.3: Selection of model results for predicting February deaths.

264

D.8.2 Benchmark for Cases

9/5/2020 9/12/2020 9/19/2020 9/26/2020

Model wMAPE Rank wMAPE Rank wMAPE Rank wMAPE Rank

LNQ-ens1 0.124 2 0.136 1 0.154 1 0.175 1

COVIDhub-ensemble 0.120 1 0.148 2 0.164 2 0.185 2

Covid19Sim-Simulator 0.128 3 0.159 3 0.171 3 0.191 3

CEID-Walk 0.170 15 0.206 10 0.207 5 0.194 4

COVIDhub-baseline 0.155 10 0.195 8 0.205 4 0.195 5

UMich-RidgeTfReg 0.225 22 0.214 12 0.222 9 0.218 6

MIT-Cassandra 0.168 14 0.189 7 0.211 7 0.224 7

IowaStateLW-STEM 0.205 21 0.263 18 0.262 15 0.252 8

Karlen-pypm 0.172 16 0.216 13 0.245 11 0.253 9

JHU_IDD-CovidSP 0.175 18 0.175 4 0.215 8 0.256 10

USC-SI_kJalpha 0.156 11 0.179 6 0.209 6 0.266 11

UCLA-SuEIR 0.135 4 0.208 11 0.238 10 0.266 12

JHUAPL-Bucky 0.176 19 0.218 14 0.248 12 0.274 13

CU-scenario_low 0.153 5 0.234 16 0.292 17 0.317 14

LANL-GrowthRate 0.189 20 0.179 5 0.249 13 0.318 15
...

CU-scenario_high 0.153 8 0.273 19 0.393 22 0.513 22

Table D.4: Selection of model results for predicting September cases.

265

11/7/2020 11/14/2020 11/21/2020 11/28/2020

Model wMAPE Rank wMAPE Rank wMAPE Rank wMAPE Rank

Karlen-pypm 0.235 3 0.258 2 0.264 2 0.273 1

MIT-Cassandra 0.260 6 0.254 1 0.254 1 0.278 2

LANL-GrowthRate 0.234 2 0.275 3 0.304 3 0.310 3

CU-scenario_high 0.284 11 0.328 5 0.341 5 0.326 4

LNQ-ens1 0.218 1 0.276 4 0.321 4 0.340 5

CU-scenario_mid 0.283 9 0.331 7 0.361 6 0.363 6

CU-select 0.283 10 0.331 8 0.361 7 0.363 7

CU-nochange 0.286 12 0.340 10 0.370 9 0.366 8

UCSB-ACTS 0.331 21 0.375 14 0.406 11 0.404 9

JHU_UNC_GAS-StatMechPool 0.337 22 0.387 17 0.414 13 0.405 10

UMich-RidgeTfReg 0.283 8 0.342 11 0.380 10 0.406 11

JHU_CSSE-DECOM 0.313 16 0.364 13 0.406 12 0.414 12

JCB-PRM 0.313 15 0.377 15 0.430 15 0.451 13

COVIDhub-ensemble 0.319 18 0.393 19 0.443 18 0.455 14

JHUAPL-Bucky 0.345 26 0.391 18 0.432 16 0.457 15
...

CovidAnalytics-DELPHI 0.589 30 0.636 29 0.675 29 0.712 29

Table D.5: Selection of model results for predicting November cases.

266

02/06/2021 02/13/2021 02/20/2021 02/27/2021

Model wMAPE Rank wMAPE Rank wMAPE Rank wMAPE Rank

MIT-Cassandra 0.652 39 0.45 26 0.39 19 0.352 15

Geneva-DetGrowth 0.107 1 0.213 7 0.188 10 0.292 11

LNQ-ens1 0.12 2 0.107 1 0.168 8 0.195 5

Microsoft-DeepSTIA 0.139 3 0.231 8 0.393 21 0.489 27

JHU_IDD-CovidSP 0.163 4 0.164 2 0.273 15 0.312 12

UChicagoCHATTOPADHYAY-UnIT 0.163 5 0.187 3 0.156 3 0.154 3

UVA-Ensemble 0.166 6 0.278 12 0.39 20 0.424 21

LANL-GrowthRate 0.173 7 0.205 5 0.174 9 0.201 7

CU-select 0.196 8 0.356 17 0.586 36 0.714 36

Karlen-pypm 0.2 9 0.194 4 0.146 1 0.139 1

RobertWalraven-ESG 0.207 10 0.212 6 0.158 4 0.14 2

IEM_MED-CovidProject 0.21 11 0.268 10 0.16 5 0.184 4

USC-SI_kJalpha 0.218 12 0.247 9 0.346 17 0.361 18

BPagano-RtDriven 0.242 13 0.338 14 0.481 28 0.525 28

JHU_CSSE-DECOM 0.242 14 0.4 21 0.618 39 0.756 39

IowaStateLW-STEM 0.245 15 0.356 16 0.514 32 0.587 29
...

CU-scenario_mid 0.691 41 0.919 41 0.238 13 0.395 19

Table D.6: Selection of model results for predicting February cases.

267

D.9 Proof of Proposition 1

Proof: We have under the constraints of (5.13) the following:

min
𝑣

𝑇∑︁
𝑡=1

𝐼∑︁
𝑖=1

𝐽∑︁
𝑗=1

(𝑛0
𝑡,𝑖,𝑗𝑝𝑡,𝑖,𝑗𝑚𝑡,𝑖,𝑗+

𝐾∑︁
𝑘=1

(𝑛1,𝑘
𝑡,𝑖,𝑗𝑝𝑡,𝑖,𝑗𝑚𝑡,𝑖,𝑗(1− 𝑝1,𝑘) + 𝑛2,𝑘

𝑡,𝑖,𝑗𝑝𝑡,𝑖,𝑗𝑚𝑡,𝑖,𝑗(1− 𝑝2,𝑘))) ⇐⇒

min
𝑣

𝑇∑︁
𝑡=1

𝐼∑︁
𝑖=1

𝐽∑︁
𝑗=1

((𝑛0
𝑡−1,𝑖,𝑗 −

𝐾∑︁
𝑘=1

𝑣1,𝑘𝑡,𝑖,𝑗 − 𝑐0𝑡−1,𝑖,𝑗)𝑝𝑡,𝑖,𝑗𝑚𝑡,𝑖,𝑗+

𝐾∑︁
𝑘=1

((𝑛1,𝑘
𝑡−1,𝑖,𝑗 − 𝑣2,𝑘𝑡,𝑖,𝑗 + 𝑣1,𝑘𝑡,𝑖,𝑗 − 𝑐1,𝑘𝑡−1,𝑖,𝑗)𝑝𝑡,𝑖,𝑗𝑚𝑡,𝑖,𝑗(1− 𝑝1,𝑘)+

(𝑛2,𝑘
𝑡−1,𝑖,𝑗 + 𝑣2,𝑘𝑡,𝑖,𝑗 − 𝑐2,𝑘𝑡,𝑖,𝑗)𝑝𝑡,𝑖,𝑗𝑚𝑡,𝑖,𝑗(1− 𝑝2,𝑘))) ⇐⇒

min
𝑣

𝑇∑︁
𝑡=1

𝐼∑︁
𝑖=1

𝐽∑︁
𝑗=1

((𝑛0
0,𝑖,𝑗 −

𝑡∑︁
𝑠=1

(
𝐾∑︁
𝑘=1

𝑣1,𝑘𝑠,𝑖,𝑗 + 𝑐0𝑠−1,𝑖,𝑗))𝑝𝑡,𝑖,𝑗𝑚𝑡,𝑖,𝑗+

𝐾∑︁
𝑘=1

((𝑛1,𝑘
0,𝑖,𝑗 −

𝑡∑︁
𝑠=1

(𝑣2,𝑘𝑠,𝑖,𝑗 − 𝑣1,𝑘𝑠,𝑖,𝑗 + 𝑐1,𝑘𝑠−1,𝑖,𝑗))𝑝𝑡,𝑖,𝑗𝑚𝑡,𝑖,𝑗(1− 𝑝1,𝑘)+

(𝑛2,𝑘
0,𝑖,𝑗 +

𝑡∑︁
𝑠=1

(𝑣2,𝑘𝑠,𝑖,𝑗 − 𝑐2,𝑘𝑠−1,𝑖,𝑗))𝑝𝑡,𝑖,𝑗𝑚𝑡,𝑖,𝑗(1− 𝑝2,𝑘))) ⇐⇒

min
𝑣

𝑇∑︁
𝑡=1

𝐼∑︁
𝑖=1

𝐽∑︁
𝑗=1

𝐾∑︁
𝑘=1

𝑝𝑡,𝑖,𝑗𝑚𝑡,𝑖,𝑗[−𝑝1,𝑘
𝑡∑︁

𝑠=1

𝑣1,𝑘𝑠,𝑖,𝑗 + (𝑝1,𝑘 − 𝑝2,𝑘)
𝑡∑︁

𝑠=1

𝑣2,𝑘𝑠,𝑖,𝑗] ⇐⇒

max
𝑣

𝑇∑︁
𝑡=1

𝐼∑︁
𝑖=1

𝐽∑︁
𝑗=1

𝐾∑︁
𝑘=1

((
𝑇∑︁
𝑠=𝑡

𝑝𝑠,𝑖,𝑗𝑚𝑠,𝑖,𝑗𝑝1,𝑘)𝑣
1,𝑘
𝑡,𝑖,𝑗 + ((

𝑇∑︁
𝑠=𝑡

𝑝𝑠,𝑖,𝑗𝑚𝑠,𝑖,𝑗(𝑝2,𝑘 − 𝑝1,𝑘))𝑣
2,𝑘
𝑡,𝑖,𝑗)) ■

D.10 Dynamic Program for the Vaccine Allocation

Problem

Alternatively to the Mixed-Integer Program proposed in §5.6, we can use a Dynamic

Program that accounts for the feedback mechanism. We formulate the problem as

follows:

• State: 𝑆𝑡 = (𝑛0
𝑡,𝑖,𝑗, 𝑛

1,𝑘
𝑡,𝑖,𝑗, 𝑛

2,𝑘
𝑡,𝑖,𝑗, 𝑝𝑡,𝑖,𝑗).

268

• Decision Variable: 𝑣𝑡+1 = (𝑣1,𝑘𝑡+1,𝑖,𝑗, 𝑣
2,𝑘
𝑡+1,𝑖,𝑗).

• Update: 𝑆𝑡+1 = (𝑛0
𝑡+1,𝑖,𝑗, 𝑛

1,𝑘
𝑡+1,𝑖,𝑗, 𝑛

2,𝑘
𝑡+1,𝑖,𝑗, 𝑝𝑡+1,𝑖,𝑗) with:

1. 𝑛0
𝑡+1,𝑖,𝑗 = 𝑛0

𝑡,𝑖,𝑗 −
𝐾∑︀
𝑘=1

𝑣1,𝑘𝑡+1,𝑖,𝑗 − 𝑝𝑡,𝑖,𝑗𝑛
0
𝑡,𝑖,𝑗,

2. 𝑛1,𝑘
𝑡+1,𝑖,𝑗 = 𝑛1,𝑘

𝑡,𝑖,𝑗 − 𝑣2,𝑘𝑡+1,𝑖,𝑗 + 𝑣1,𝑘𝑡+1,𝑖,𝑗 − 𝑝𝑡,𝑖,𝑗(1− 𝑝1,𝑘)𝑛
1,𝑘
𝑡,𝑖,𝑗,

3. 𝑛2,𝑘
𝑡+1,𝑖,𝑗 = 𝑛2,𝑘

𝑡,𝑖,𝑗 + 𝑣2,𝑘𝑡+1,𝑖,𝑗 − 𝑝𝑡,𝑖,𝑗(1− 𝑝2,𝑘)𝑛
2,𝑘
𝑡,𝑖,𝑗,

4. 𝑝𝑡+1,𝑖,𝑗 = 𝑓𝑎𝑔𝑔(𝑝𝑡,𝑖,𝑗, 𝑛
0
𝑡+1,𝑖,𝑗, 𝑛

1,𝑘
𝑡+1,𝑖,𝑗, 𝑛

2,𝑘
𝑡+1,𝑖,𝑗).

• Initial Conditions: at time t=0, 𝑆𝑡 is fully known (population in each sub group

in each county, how any people are already vaccinated, with which vaccine, as

well as the initial prevalence estimation today).

• Value Function: ℱ𝑡(𝑆𝑡−1) = min𝑣𝑡

𝐼∑︀
𝑖=1

𝐽∑︀
𝑗=1

(𝑛0
𝑡,𝑖,𝑗(𝑆𝑡−1, 𝑣𝑡)𝑝𝑡,𝑖,𝑗(𝑆𝑡−1, 𝑣𝑡)𝑚𝑡,𝑖,𝑗 +

𝐾∑︀
𝑘=1

(𝑛1,𝑘
𝑡,𝑖,𝑗(𝑆𝑡−1, 𝑣𝑡)𝑝𝑡,𝑖,𝑗(𝑆𝑡−1, 𝑣𝑡)𝑚𝑡,𝑖,𝑗(1−𝑝1,𝑘)+𝑛2,𝑘

𝑡,𝑖,𝑗(𝑆𝑡−1, 𝑣𝑡)𝑝𝑡,𝑖,𝑗(𝑆𝑡−1, 𝑣𝑡)𝑚𝑡,𝑖,𝑗(1−

𝑝2,𝑘))) + ℱ𝑡−1(𝑆𝑡−2)

s.t. 𝑛0
𝑡,𝑖,𝑗, 𝑛

1,𝑘
𝑡,𝑖,𝑗, 𝑛

2,𝑘
𝑡,𝑖,𝑗, 𝑣

1,𝑘
𝑡,𝑖,𝑗, 𝑣

2,𝑘
𝑡,𝑖,𝑗 ≥ 0.

• Objective: Compute ℱ𝑇 and get 𝑣0, . . . ,𝑣𝑇 .

While this problem can be solved theoretically thanks to its Dynamic Program-

ming structure, the size of the feature space (𝐼×𝐽×(3𝐾+1)) as well as the complexity

of the function 𝑓𝑎𝑔𝑔 to estimate the prevalence with both past data and vaccination

makes the problem very hard to solve.

D.11 Adding Robustness to the Vaccine Allocation

Problem

We discuss three main sources of uncertainty in Formulation (5.14):

• The predicted prevalence 𝑝: from both the prediction of the number of detected

cases itself and from the choice of 𝛼.

269

• The mortality rate 𝑚.

• The vaccine efficacy 𝑝1 and 𝑝2.

While uncertainty can be taken into account for all of these three inputs, both

mortality rate and vaccine efficacy are easier to evaluate accurately at any given time.

Consequently, the predicted prevalence, which is an output of MIT-Cassandra is the

uncertain variable that we want to account for. It can easily be done by introducing an

uncertainty set 𝒰 and a placeholder decision variable 𝜃 to put the objective constant

in the constraint.

min
𝑣,𝜃

𝜃

s.t.
𝐼∑︁
𝑖=1

𝐽∑︁
𝑗=1

(𝑣1,𝑘𝑡,𝑖,𝑗 + 𝑣2,𝑘𝑡,𝑖,𝑗) ≤ 𝑉𝑚𝑎𝑥,𝑘,𝑡, ∀𝑡 ∈ [𝑇],∀𝑘 ∈ [𝐾],

𝐼∑︁
𝑖=1

𝐾∑︁
𝑘=1

(𝑣1,𝑘𝑡,𝑖,𝑗 + 𝑣2,𝑘𝑡,𝑖,𝑗) ≥ 𝑉𝑚𝑖𝑛,𝑡,𝑗, ∀𝑡 ∈ [𝑇],∀𝑗 ∈ [𝐽],

𝑛0
𝑡,𝑖,𝑗 = 𝑛0

𝑡−1,𝑖,𝑗 −
𝐾∑︁
𝑘=1

𝑣1,𝑘𝑡,𝑖,𝑗 − 𝑐0𝑡−1,𝑖,𝑗, ∀𝑡 ∈ [𝑇],∀𝑖 ∈ [𝐼],∀𝑗 ∈ [𝐽],

𝑛1,𝑘
𝑡,𝑖,𝑗 = 𝑛1,𝑘

𝑡−1,𝑖,𝑗 − 𝑣2,𝑘𝑡,𝑖,𝑗 + 𝑣1,𝑘𝑡,𝑖,𝑗 − 𝑐1,𝑘𝑡−1,𝑖,𝑗, ∀𝑡 ∈ [𝑇],∀𝑖 ∈ [𝐼],∀𝑗 ∈ [𝐽], ∀𝑘 ∈ [𝐾],

𝑛2,𝑘
𝑡,𝑖,𝑗 = 𝑛2,𝑘

𝑡−1,𝑖,𝑗 + 𝑣2,𝑘𝑡,𝑖,𝑗 − 𝑐2,𝑘𝑡−1,𝑖,𝑗, ∀𝑡 ∈ [𝑇], 𝑖 ∈ [𝐼],∀𝑗 ∈ [𝐽],∀𝑘 ∈ [𝐾],

𝑛0
𝑡,𝑖,𝑗, 𝑛

1,𝑘
𝑡,𝑖,𝑗, 𝑛

2,𝑘
𝑡,𝑖,𝑗, 𝑣

1,𝑘
𝑡,𝑖,𝑗, 𝑣

2,𝑘
𝑡,𝑖,𝑗 ≥ 0, ∀𝑡 ∈ [𝑇], 𝑖 ∈ [𝐼],∀𝑗 ∈ [𝐽],∀𝑘 ∈ [𝐾].

𝑛2,𝑘
𝑡,𝑖,𝑗 = 𝑣2,𝑘𝑡,𝑖,𝑗 = 0, ∀𝑡 ∈ [𝑇], 𝑖 ∈ [𝐼],∀𝑗 ∈ [𝐽], ∀𝑘 ∈ [𝐾1],

𝑇∑︁
𝑡=1

𝐼∑︁
𝑖=1

𝐽∑︁
𝑗=1

(𝑛0
𝑡,𝑖,𝑗𝑝𝑡,𝑖,𝑗𝑚𝑡,𝑖,𝑗 +

𝐾∑︁
𝑘=1

(𝑛1,𝑘
𝑡,𝑖,𝑗𝑝𝑡,𝑖,𝑗𝑚𝑡,𝑖,𝑗(1− 𝑝1,𝑘) + 𝑛2,𝑘

𝑡,𝑖,𝑗𝑝𝑡,𝑖,𝑗𝑚𝑡,𝑖,𝑗(1− 𝑝2,𝑘)))

≤ 𝜃, ∀𝑝 ∈ 𝒰 .
(D.16)

Note that an uncertainty set on 𝛼 only can be translated without loss of generality

on an uncertainty set 𝒰 on 𝑝.

Additionally, if 𝒰 is a box uncertainty set, i.e. each of the 𝑝𝑡,𝑖,𝑗 has its own

270

uncertainty set 𝒰𝑡,𝑖,𝑗, uncorrelated from the rest. Then by noting 𝑝0𝑡,𝑖,𝑗 = max 𝒰𝑡,𝑖,𝑗,

we have that the robust formulation is exactly the same as the nominal formulation, by

replacing the prevalence by the worst-case scenario within the considered uncertainty

set.

min
𝑣

𝑇∑︁
𝑡=1

𝐼∑︁
𝑖=1

𝐽∑︁
𝑗=1

(𝑛0
𝑡,𝑖,𝑗𝑝

0
𝑡,𝑖,𝑗𝑚𝑡,𝑖,𝑗 +

𝐾∑︁
𝑘=1

(𝑛1,𝑘
𝑡,𝑖,𝑗𝑝

0
𝑡,𝑖,𝑗𝑚𝑡,𝑖,𝑗(1− 𝑝1,𝑘) + 𝑛2,𝑘

𝑡,𝑖,𝑗𝑝
0
𝑡,𝑖,𝑗𝑚𝑡,𝑖,𝑗(1− 𝑝2,𝑘)))

s.t.
𝐼∑︁
𝑖=1

𝐽∑︁
𝑗=1

(𝑣1,𝑘𝑡,𝑖,𝑗 + 𝑣2,𝑘𝑡,𝑖,𝑗) ≤ 𝑉𝑚𝑎𝑥,𝑘,𝑡, ∀𝑡 ∈ [𝑇],∀𝑘 ∈ [𝐾],

𝐼∑︁
𝑖=1

𝐾∑︁
𝑘=1

(𝑣1,𝑘𝑡,𝑖,𝑗 + 𝑣2,𝑘𝑡,𝑖,𝑗) ≥ 𝑉𝑚𝑖𝑛,𝑡,𝑗, ∀𝑡 ∈ [𝑇], ∀𝑗 ∈ [𝐽],

𝑛0
𝑡,𝑖,𝑗 = 𝑛0

𝑡−1,𝑖,𝑗 −
𝐾∑︁
𝑘=1

𝑣1,𝑘𝑡,𝑖,𝑗 − 𝑐0𝑡−1,𝑖,𝑗, ∀𝑡 ∈ [𝑇],∀𝑖 ∈ [𝐼],∀𝑗 ∈ [𝐽],

𝑛1,𝑘
𝑡,𝑖,𝑗 = 𝑛1,𝑘

𝑡−1,𝑖,𝑗 − 𝑣2,𝑘𝑡,𝑖,𝑗 + 𝑣1,𝑘𝑡,𝑖,𝑗 − 𝑐1,𝑘𝑡−1,𝑖,𝑗, ∀𝑡 ∈ [𝑇],∀𝑖 ∈ [𝐼],∀𝑗 ∈ [𝐽],∀𝑘 ∈ [𝐾],

𝑛2,𝑘
𝑡,𝑖,𝑗 = 𝑛2,𝑘

𝑡−1,𝑖,𝑗 + 𝑣2,𝑘𝑡,𝑖,𝑗 − 𝑐2,𝑘𝑡−1,𝑖,𝑗, ∀𝑡 ∈ [𝑇], 𝑖 ∈ [𝐼], ∀𝑗 ∈ [𝐽],∀𝑘 ∈ [𝐾],

𝑛0
𝑡,𝑖,𝑗, 𝑛

1,𝑘
𝑡,𝑖,𝑗, 𝑛

2,𝑘
𝑡,𝑖,𝑗, 𝑣

1,𝑘
𝑡,𝑖,𝑗, 𝑣

2,𝑘
𝑡,𝑖,𝑗 ≥ 0, ∀𝑡 ∈ [𝑇], 𝑖 ∈ [𝐼], ∀𝑗 ∈ [𝐽],∀𝑘 ∈ [𝐾].

𝑛2,𝑘
𝑡,𝑖,𝑗 = 𝑣2,𝑘𝑡,𝑖,𝑗 = 0, ∀𝑡 ∈ [𝑇], 𝑖 ∈ [𝐼],∀𝑗 ∈ [𝐽],∀𝑘 ∈ [𝐾1],

(D.17)

Which can be solved exactly as described in §5.6.

Identical observations can be drawn for robustness of the model in Formulation

(5.13), which we have proven to be equivalent to Formulation (5.14). One of the

advantages of this (5.13) is that we can construct uncertainty on 𝛽 directly, to account

for the error on the three sources mentioned earlier at once: prevalence 𝑝, mortality

𝑚, and vaccine efficacy 𝑝1 and 𝑝2, instead of just 𝑝. Two examples of how to construct

these uncertainty sets are:

• To use box uncertainty sets, calibrated in a data-driven fashion by using the

confidence intervals outputted by the model.

• To use a Central Limit Theorem uncertainty set on 𝑝𝑡’s separately. Correlating

271

the regions and populations groups, but limiting the repeated extreme variations

over multiple time periods.

D.12 Mortality Rate Table By Age Group

By using the age breakdown approach described, in §5.6, we estimate the mortality

rates by age group at state-level, which we use for the vaccine allocation experiment.

These estimations can be found in Table D.7 below.

Age Group Mortality Rate
85+ years old 43.4%
75-84 years old 25.2%
65-74 years old 9.9%
50-64 years old 3.5%
40-49 years old 1.0%
30-39 years old 0.3%
18-29 years old 0.1%
5-17 years old 0.03%
0-4 years old 0.01%

Table D.7: Estimated Mortality Rate per Age Group.

D.13 Rate Ratios for Exposure and Mortality for

COVID-19 by Age Group

The CDC computed the rate ratios of cases and deaths for different age groups com-

pared to the 5-17 year old group. The full table is shown in Figure D-4 and can be

interpreted as follows: everything else being equal, a person within the 75-84 years old

age group, for example, is 2 times more likely to be detected positive for COVID-19

and 2800 times more likely to die from COVID-19.

272

Figure D-4: Risk ratios of different age groups compared to the 5-17 year old age
group can be used to estimate infection and death probabilities disaggregated by age
group.

D.14 Results on the Estimated Age Breakdown of

COVID-19 Cases for MA Counties

We evaluate the breakdown of detected COVID-19 cases in each MA county using

census data and the approach described in Equation (5.16) and obtain Table D.8:

County 0-4 5-17 18-29 30-39 40-49 50-64 65-74 75-84 85+

Barnstable County 0.0 0.058 0.179 0.092 0.096 0.249 0.186 0.099 0.041

Berkshire County 0.0 0.065 0.228 0.111 0.111 0.238 0.14 0.072 0.035

Bristol County 0.0 0.08 0.244 0.134 0.133 0.226 0.104 0.053 0.025

Dukes County 0.0 0.069 0.181 0.119 0.122 0.243 0.169 0.071 0.025

Essex County 0.0 0.082 0.243 0.132 0.129 0.227 0.108 0.053 0.026

Franklin County 0.0 0.068 0.195 0.129 0.123 0.243 0.154 0.06 0.027

Hampden County 0.0 0.084 0.268 0.134 0.121 0.212 0.104 0.052 0.026

Hampshire County 0.0 0.053 0.408 0.097 0.093 0.18 0.104 0.045 0.021

Middlesex County 0.0 0.074 0.274 0.153 0.131 0.205 0.092 0.047 0.023

Nantucket County 0.0 0.076 0.218 0.163 0.161 0.222 0.097 0.042 0.021

Norfolk County 0.0 0.082 0.239 0.139 0.135 0.223 0.102 0.053 0.028

Plymouth County 0.0 0.085 0.224 0.123 0.131 0.24 0.117 0.058 0.023

Suffolk County 0.0 0.055 0.383 0.178 0.108 0.156 0.069 0.035 0.016

273

Worcester County 0.0 0.082 0.254 0.136 0.132 0.227 0.099 0.048 0.022

Table D.8: Fraction of the Population Infected (and Detected) by COVID-19 by Age
Group for each MA County.

D.15 Flowchart Summary of the end-to-end Approach

The flowchart summarizing the entire end-to-end framework used in this paper can

be found in Figure D-5.

Figure D-5: Flowchart of the end-to-end approach presented in this paper.

274

Appendix E

Supplement for Chapter 6

E.1 Stop-words

The full list of stop-words removed in §?? is:

{“ourselves", “hers", “between", “yourself", “but", “again", “there", “about", “once",

“during", “out", “very", “having", “with", “they", “own", “an", “be", “some", “for",

“do", “its", “yours", “such", “into", “of", “most", “itself", “other", “off", “is", “s", “am",

“or", “who", “as", “from", “him", “each", “the", “themselves", “until", “below", “are",

“we", “these", “your", “his", “through", “don", “nor", “me", “were", “her", “more",

“himself", “this", “down", “should", “our", “their", “while", “above", “both", “up",

“to", “ours", “had", “she", “all", “no", “when", “at", “any", “before", “them", “same",

“and", “been", “have", “in", “will", “on", “does", “yourselves", “then", “that", “be-

cause", “what", “over", “why", “so", “can", “did", “not", “now", “under", “he", “you",

“herself", “has", “just", “where", “too", “only", “myself", “which", “those", “i", “after",

“few", “whom", “t", “being", “if", “theirs", “my", “against", “a", “by", “doing", “it",

“how", “further", “was", “here", “than"}

275

276

Bibliography

[1] Mark Abraham, Steve Mitchelmore, Sean Collins, Jeff Maness, Mark Kistu-
linec, Shervin Khodabandeh, Daniel Hoenig, and Jody Visser. Profiting from
personalization. Boston Consulting Group, 2017.

[2] Deepak Agarwal, Rahul Agrawal, Rajiv Khanna, and Nagaraj Kota. Estimating
rates of rare events with multiple hierarchies through scalable log-linear models.
07 2010.

[3] Naomi S Altman. An introduction to kernel and nearest-neighbor nonparamet-
ric regression. The American Statistician, 46(3):175–185, 1992.

[4] Ravi Anupindi, Maqbool Dada, and Sachin Gupta. Estimation of consumer
demand with stock-out based substitution: An application to vending machine
products. Marketing Science, 17(4):406–423, 1998.

[5] Ali Aouad, Adam N Elmachtoub, Kris J Ferreira, and Ryan McNellis. Market
segmentation trees. arXiv preprint arXiv:1906.01174, 2019.

[6] Susan Athey. 21. the impact of machine learning on economics. In The eco-
nomics of artificial intelligence, pages 507–552. University of Chicago Press,
2019.

[7] Susan Athey and Guido Imbens. Recursive partitioning for heterogeneous causal
effects. Proceedings of the National Academy of Sciences, 113(27):7353–7360,
2016.

[8] Susan Athey and Guido W Imbens. The state of applied econometrics: Causal-
ity and policy evaluation. Journal of Economic Perspectives, 31(2):3–32, 2017.

[9] Lennart Baardman, Setareh Borjian Boroujeni, Tamar Cohen-Hillel, Kiran Pan-
chamgam, and Georgia Perakis. Detecting customer trends for optimal promo-
tion targeting. Available at SSRN: https://ssrn.com/abstract=3242529, 2018.

[10] Lennart Baardman, Igor Levin, Georgia Perakis, and Divya Singhvi. Leveraging
comparables for new product sales forecasting. Available at SSRN 3086237,
2017.

277

[11] Dirk M Barends, Margryt Teatske Oldenhof, Marjo J Vredenbregt, and
Maarten J Nauta. Risk analysis of analytical validations by probabilistic mod-
ification of fmea. Journal of pharmaceutical and biomedical analysis, 64:82–86,
2012.

[12] Hamsa Bastani, Kimon Drakopoulos, Vishal Gupta, Jon Vlachogiannis, Cristos
Hadjicristodoulou, Pagona Lagiou, Gkikas Magiorkinis, Dimitris Paraskevis,
and Sotirious Tsiodras. Deploying an artificial intelligence system for covid-19
testing at the greek border. SSRN, 2021.

[13] Osbert Bastani, Carolyn Kim, and Hamsa Bastani. Interpreting blackbox mod-
els via model extraction. arXiv preprint arXiv:1705.08504, 2017.

[14] Luc Bégin, Pascal Germain, François Laviolette, and Jean-Francis Roy. Pac-
bayesian bounds based on the rényi divergence. In Artificial Intelligence and
Statistics, pages 435–444, 2016.

[15] Souhaib Ben Taieb and Rob J. Hyndman. A gradient boosting approach to
the kaggle load forecasting competition. International Journal of Forecasting,
30(2):382–394, 2014.

[16] Aharon Ben-Tal, Laurent El Ghaoui, and Arkadi Nemirovski. Robust optimiza-
tion, volume 28. Princeton University Press, 2009.

[17] Yoshua Bengio, Nicolas Le Roux, Pascal Vincent, Olivier Delalleau, and Patrice
Marcotte. Convex neural networks. Advances in neural information processing
systems, 18:123, 2006.

[18] Amine Bennouna, Dessislava Pachamanova, Georgia Perakis, and Omar
Skali Lami. Learning the minimal representation of a dynamic system from tran-
sition data. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3785547,
2021.

[19] Dirk Berkvens, Niko Speybroeck, Nicolas Praet, Amel Adel, and Emmanuel
Lesaffre. Estimating disease prevalence in a bayesian framework using proba-
bilistic constraints. Epidemiology, pages 145–153, 2006.

[20] Dimitri P Bertsekas et al. Dynamic programming and optimal control: Vol. 1.
Athena scientific Belmont, 2000.

[21] Dimitris Bertsimas, Vassilis Digalakis Jr, Michael Linghzi Li, and Omar
Skali Lami. Slowly varying regression under sparsity. arXiv preprint
arXiv:2102.10773, 2021.

[22] Dimitris Bertsimas and Jack Dunn. Optimal classification trees. Machine Learn-
ing, 106(7):1039–1082, 2017.

[23] Dimitris Bertsimas and Jack Dunn. Machine Learning under a Modern Opti-
mization Lens. Dynamic Ideas, 2019.

278

[24] Dimitris Bertsimas, Jack Dunn, and Nishanth Mundru. Optimal prescriptive
trees. INFORMS Journal on Optimization, 1(2):164–183, 2019.

[25] Dimitris Bertsimas, Vishal Gupta, and Nathan Kallus. Data-driven robust
optimization. Mathematical Programming, 167(2):235–292, 2018.

[26] Dimitris Bertsimas, Joshua Ivanhoe, Alexandre Jacquillat, Michael Li, Alessan-
dro Previero, Omar Skali Lami, and Hamza Tazi Bouardi. Optimizing vaccine
allocation to combat the covid-19 pandemic. medRxiv, 2020.

[27] Dimitris Bertsimas and Nathan Kallus. From predictive to prescriptive analyt-
ics. Management Science, 66(3):1025–1044, 2020.

[28] Dimitris Bertsimas, Nathan Kallus, Alexander M Weinstein, and Ying Daisy
Zhuo. Personalized diabetes management using electronic medical records. Di-
abetes care, 40(2):210–217, 2017.

[29] Dimitris Bertsimas and Nishanth Mundru. Sparse convex regression. INFORMS
Journal on Computing, 33(1):262–279, 2021.

[30] Dimitris Bertsimas, Agni Orfanoudaki, and Holly Wiberg. Interpretable clus-
tering: An optimization approach. Machine Learning, (to appear), 2020.

[31] Dimitris Bertsimas and Omar Skali Lami. Holistic prescriptive analytics for
continuous and constrained optimization problems. 2021.

[32] Lidia Betcheva, Feryal Erhun, Antoine Feylessoufi, Peter Fryers, Paulo
Gonçalves, Houyuan Jiang, Paul A. Kattuman, Tom Pape, Anees
Pari, Stefan Scholtes, and Carina Tyrrell. An adaptive research ap-
proach to covid-19 forecasting for regional health systems in england.
https://ssrn.com/abstract=3695258, 2021.

[33] GÃŠrard Biau. Analysis of a random forests model. Journal of Machine Learn-
ing Research, 13(Apr):1063–1095, 2012.

[34] John R Birge, Ozan Candogan, and Yiding Feng. Controlling epidemic spread:
reducing economic losses with targeted closures. University of Chicago, Becker
Friedman Institute for Economics Working Paper, (2020-57), 2020.

[35] John R Birge and Francois Louveaux. Introduction to stochastic programming.
Springer Science & Business Media, 2011.

[36] F Bogard, K Debray, and YQ Guo. Determination of sensor positions for
predictive maintenance of revolving machines. International Journal of Solids
and Structures, 39(12):3159–3173, 2002.

[37] Casper Solheim Bojer and Jens Peder Meldgaard. Kaggle forecasting competi-
tions: An overlooked learning opportunity. International Journal of Forecasting,
37(2):587–603, 2021.

279

[38] Fred Brauer. Compartmental models in epidemiology. In Mathematical epi-
demiology, pages 19–79. Springer, 2008.

[39] L. Breiman, J. Friedman, C.J. Stone, and R.A. Olshen. Classification and Re-
gression Trees. The Wadsworth and Brooks-Cole Statistics-Probability Series.
Taylor & Francis, 1984.

[40] Leo Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.

[41] Leo Breiman et al. Statistical modeling: The two cultures (with comments and
a rejoinder by the author). Statistical science, 16(3):199–231, 2001.

[42] Leo Breiman and Nong Shang. Born again trees. 1996.

[43] C Richard Cassady and Erhan Kutanoglu. Integrating preventive maintenance
planning and production scheduling for a single machine. IEEE Transactions
on reliability, 54(2):304–309, 2005.

[44] O. Chapelle, Eren Manavoglu, and Rómer Rosales. Simple and scalable response
prediction for display advertising. ACM Trans. Intell. Syst. Technol., 5:61:1–
61:34, 2014.

[45] Patrali Chatterjee, Donna L. Hoffman, and Thomas P. Novak. Modeling the
clickstream: Implications for web-based advertising efforts. Marketing Science,
22(4):520–541, 2003.

[46] Ramnath K. Chellappa and K. Ravi Kumar. Examining the role of "free"
product-augmenting online services in pricing and customer retention strategies.
Journal of Management Information Systems, 22(1):355–377, 2005.

[47] Minshuo Chen, Xingguo Li, and Tuo Zhao. On generalization bounds of a
family of recurrent neural networks. CoRR, abs/1910.12947, 2019.

[48] Ningyuan Chen, Guillermo Gallego, and Zhuodong Tang. The use of binary
choice forests to model and estimate discrete choices. Available at SSRN
3430886, 2019.

[49] Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system.
In Proceedings of the 22nd acm sigkdd international conference on knowledge
discovery and data mining, pages 785–794. ACM, 2016.

[50] Yi-Chun Chen and Velibor Mišić. Decision forest: A nonparametric approach
to modeling irrational choice. Available at SSRN 3376273, 2020.

[51] Victor Chernozhukov, Denis Chetverikov, Mert Demirer, Esther Duflo, Chris-
tian Hansen, Whitney Newey, and James Robins. Double/debiased machine
learning for treatment and causal parameters, 2016.

280

[52] X Chiementin, F Bolaers, L Rasolofondraibe, and J-P Dron. Restoration of a
temporal indicator specific to each vibratory sources for a predictive mainte-
nance. Mechanical systems and signal processing, 23(6):1909–1919, 2009.

[53] Hugh A Chipman, Edward I George, and Robert E McCulloch. Bayesian cart
model search. Journal of the American Statistical Association, 93(443):935–948,
1998.

[54] Jin-A Choi and Kiho Lim. Identifying machine learning techniques for classifi-
cation of target advertising. ICT Express, 6(3):175 – 180, 2020.

[55] David I Cook, Val J Gebski, and Anthony C Keech. Subgroup analysis in
clinical trials. Medical Journal of Australia, 180(6):289, 2004.

[56] T. Cover and P. Hart. Nearest neighbor pattern classification. IEEE Transac-
tions on Information Theory, 13(1):21–27, 1967.

[57] Thomas Cover and Peter Hart. Nearest neighbor pattern classification. IEEE
transactions on information theory, 13(1):21–27, 1967.

[58] Thomas M Cover. Rates of convergence for nearest neighbor procedures. In Pro-
ceedings of the Hawaii International Conference on Systems Sciences, volume
415, 1968.

[59] J D’Aeth, Shubhechyya Ghosal, Fiona Grimm, David Haw, Esma Koca, Krystal
Lau, Huikang Liu, Stefano Moret, Dheeya Rizmie, P Smith, et al. Optimal
hospital care scheduling during the sars-cov-2 pandemic. Optimization Online,
2021.

[60] James Davis, Guillermo Gallego, and Huseyin Topaloglu. Assortment planning
under the multinomial logit model with totally unimodular constraint struc-
tures. 2013.

[61] Peter Dawson, Ralph Gailis, and Alaster Meehan. Detecting disease outbreaks
using a combined bayesian network and particle filter approach. Journal of
theoretical biology, 370:171–183, 2015.

[62] Rodrigo de Queiroz Souza and Alberto José Álvares. Fmea and fta analysis for
application of the reliability centered maintenance methodology: case study on
hydraulic turbines. In ABCM Symposium Series in Mechatronics, volume 3,
pages 803–812, 2008.

[63] Bert De Reyck, Ioannis Fragkos, Yael Grushka-Cockayne, Casey Lichtendahl,
Hammond Guerin, and Andrew Kritzer. Vungle inc. improves monetization
using big data analytics. INFORMS Journal on Applied Analytics, 47(5):454–
466, 2017.

281

[64] Emir Demirović, Peter J Stuckey, James Bailey, Jeffrey Chan, Chris Leckie, Ko-
tagiri Ramamohanarao, and Tias Guns. An investigation into prediction+ opti-
misation for the knapsack problem. In International Conference on Integration
of Constraint Programming, Artificial Intelligence, and Operations Research,
pages 241–257. Springer, 2019.

[65] Emir Demirovic, Peter J Stuckey, James Bailey, Jeffrey Chan, Christopher
Leckie, Kotagiri Ramamohanarao, and Tias Guns. Predict+ optimise with
ranking objectives: Exhaustively learning linear functions. In International
Joint Conference on Artificial Intelligence, pages 1078–1085, 2019.

[66] Nandini Dendukuri, Elham Rahme, Patrick Bélisle, and Lawrence Joseph.
Bayesian sample size determination for prevalence and diagnostic test studies
in the absence of a gold standard test. Biometrics, 60(2):388–397, 2004.

[67] Houtao Deng. Interpreting tree ensembles with intrees. International Journal
of Data Science and Analytics, pages 1–11, 2018.

[68] Federica Di Castro and Enrico Bertini. Surrogate decision tree visualization
interpreting and visualizing black-box classification models with surrogate de-
cision tree. CEUR Workshop Proceedings, 2327, 2019. 2019 Joint ACM IUI
Workshops, ACMIUI-WS 2019 ; Conference date: 20-03-2019.

[69] Thomas G Dietterich. Ensemble methods in machine learning. In International
workshop on multiple classifier systems, pages 1–15. Springer, 2000.

[70] Finale Doshi-Velez and Been Kim. Towards a rigorous science of interpretable
machine learning. arXiv preprint arXiv:1702.08608, 2017.

[71] Dheeru Dua and Casey Graff. UCI machine learning repository, 2017.

[72] Saso Džeroski and Bernard Ženko. Is combining classifiers with stacking better
than selecting the best one? Mach. Learn., 54(3):255–273, March 2004.

[73] Adam N. Elmachtoub and Paul Grigas. Smart “predict, then optimize". ArXiv,
1710.08005, 2017.

[74] Claes Enøe, Marios P Georgiadis, and Wesley O Johnson. Estimation of sen-
sitivity and specificity of diagnostic tests and disease prevalence when the true
disease state is unknown. Preventive veterinary medicine, 45(1-2):61–81, 2000.

[75] Markus Ettl, Pavithra Harsha, Anna Papush, and Georgia Perakis. A data-
driven approach to personalized bundle pricing and recommendation. Manu-
facturing & Service Operations Management, 22(3):461–480, 2020.

[76] Markus Ettl, Pavithra Harsha, Anna Papush, and Georgia Perakis. A data-
driven approach to personalized bundle pricing and recommendation. Manu-
facturing & Service Operations Management, 22(3):461–480, 2020.

282

[77] T Evgeniou, M Fekom, A Ovchinnikov, R Porcher, C Pouchol, and N Vayatis.
Pandemic lock-down, isolation, and exit policies based on machine learning
predictions. 2020.

[78] Peter S Fader, Bruce GS Hardie, and Ka Lok Lee. “counting your customers”
the easy way: An alternative to the pareto/nbd model. Marketing science,
24(2):275–284, 2005.

[79] Hamid Reza Feili, Navid Akar, Hossein Lotfizadeh, Mohammad Bairampour,
and Sina Nasiri. Risk analysis of geothermal power plants using failure modes
and effects analysis (fmea) technique. Energy Conversion and Management,
72:69–76, 2013.

[80] Kris Johnson Ferreira, Bin Hong Alex Lee, and David Simchi-Levi. Analytics for
an online retailer: Demand forecasting and price optimization. Manufacturing
& Service Operations Management, 18(1):69–88, 2016.

[81] Robert Fildes, Shaohui Ma, and Stephan Kolassa. Retail forecasting: Research
and practice. International Journal of Forecasting, 2019.

[82] Marc-André Filz, Jonas Ernst Bernhard Langner, Christoph Herrmann, and Se-
bastian Thiede. Data-driven failure mode and effect analysis (fmea) to enhance
maintenance planning. Computers in Industry, 129:103451, 2021.

[83] Seth Flaxman, Swapnil Mishra, Axel Gandy, H Juliette T Unwin, Thomas A
Mellan, Helen Coupland, Charles Whittaker, Harrison Zhu, Tresnia Berah, Jef-
frey W Eaton, et al. Estimating the effects of non-pharmaceutical interventions
on covid-19 in europe. Nature, 584(7820):257–261, 2020.

[84] L. Fridley. Improving online demand forecast using novel features in website
data : a case study at zara. 2018.

[85] Guillermo Gallego, Anran Li, Van-Anh Truong, and Xinshang Wang. Ap-
proximation algorithms for product framing and pricing. Operations Research,
68(1):134–160, 2020.

[86] Wei Gao and Zhi-Hua Zhou. Towards convergence rate analysis of random
forests for classification. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Bal-
can, and H. Lin, editors, Advances in Neural Information Processing Systems,
volume 33, pages 9300–9311. Curran Associates, Inc., 2020.

[87] F. A. Gers, J. Schmidhuber, and F. Cummins. Learning to forget: continual
prediction with lstm. In 1999 Ninth International Conference on Artificial
Neural Networks ICANN 99. (Conf. Publ. No. 470), volume 2, pages 850–855
vol.2, 1999.

[88] Matt Goldman and Brian Quistorff. Pricing engine: Estimating causal impacts
in real world business settings, 2018.

283

[89] Negin Golrezaei, Hamid Nazerzadeh, and Paat Rusmevichientong. Real-time
optimization of personalized assortments. Management Science, 60(6):1532–
1551, 2014.

[90] Robert B Gramacy and Herbert K H Lee. Bayesian treed gaussian process
models with an application to computer modeling. Journal of the American
Statistical Association, 103(483):1119–1130, 2008.

[91] Philip Gross, Albert Boulanger, Marta Arias, David L Waltz, Philip M
Long, Charles Lawson, Roger Anderson, Matthew Koenig, Mark Mastrocinque,
William Fairechio, et al. Predicting electricity distribution feeder failures using
machine learning susceptibility analysis. In AAAI, pages 1705–1711, 2006.

[92] Riccardo Guidotti, Anna Monreale, Franco Turini, Dino Pedreschi, and Fosca
Giannotti. A survey of methods for explaining black box models. ACM Com-
puting Surveys, 51, 02 2018.

[93] Satoshi Hara and Kohei Hayashi. Making tree ensembles interpretable: A
bayesian model selection approach. arXiv preprint arXiv:1606.09066, 2016.

[94] Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gom-
mers, Pauli Virtanen, David Cournapeau, Eric Wieser, Julian Taylor, Sebastian
Berg, Nathaniel J. Smith, Robert Kern, Matti Picus, Stephan Hoyer, Marten H.
van Kerkwijk, Matthew Brett, Allan Haldane, Jaime Fernández del Río, Mark
Wiebe, Pearu Peterson, Pierre Gérard-Marchant, Kevin Sheppard, Tyler Reddy,
Warren Weckesser, Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant.
Array programming with NumPy. Nature, 585(7825):357–362, September 2020.

[95] S. Hochreiter. The vanishing gradient problem during learning recurrent neural
nets and problem solutions. Int. J. Uncertain. Fuzziness Knowl. Based Syst.,
6:107–116, 1998.

[96] Sepp Hochreiter and Jürgen Schmidhuber. Long Short-Term Memory. Neural
Computation, 9(8):1735–1780, 11 1997.

[97] Jing Huang, Qing Chang, and Jorge Arinez. Deep reinforcement learning based
preventive maintenance policy for serial production lines. Expert Systems with
Applications, 160:113701, 2020.

[98] Teng Huang, David Bergman, and Ram Gopal. Predictive and prescriptive ana-
lytics for location selection of add-on retail products. Production and Operations
Management, 28(7):1858–1877, 2019.

[99] Michael A Johansson, Talia M Quandelacy, Sarah Kada, Pragati Venkata
Prasad, Molly Steele, John T Brooks, Rachel B Slayton, Matthew Biggerstaff,
and Jay C Butler. Sars-cov-2 transmission from people without covid-19 symp-
toms. JAMA network open, 4(1):e2035057–e2035057, 2021.

284

[100] Monica Johar, Vijay Mookerjee, and Sumit Sarkar. Selling vs. profiling: Op-
timizing the offer set in web-based personalization. Information Systems Re-
search, 25(2):285–306, 2014.

[101] Lawrence Joseph, Theresa W Gyorkos, and Louis Coupal. Bayesian estimation
of disease prevalence and the parameters of diagnostic tests in the absence of a
gold standard. American journal of epidemiology, 141(3):263–272, 1995.

[102] Deokwoo Jung, Zhenjie Zhang, and Marianne Winslett. Vibration analysis for
iot enabled predictive maintenance. In 2017 IEEE 33rd International Confer-
ence on Data Engineering (ICDE), pages 1271–1282. IEEE, 2017.

[103] Nathan Kallus, Brenton Pennicooke, and Michele Santacatterina. More robust
estimation of sample average treatment effects using kernel optimal matching
in an observational study of spine surgical interventions. ArXiv, 1811.04274,
2018.

[104] Wagner A Kamakura and Gary J Russell. A probabilistic choice model for
market segmentation and elasticity structure. Journal of marketing research,
26(4):379–390, 1989.

[105] Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma,
Qiwei Ye, and Tie-Yan Liu. Lightgbm: A highly efficient gradient boosting
decision tree. Advances in neural information processing systems, 30:3146–3154,
2017.

[106] Balaji Lakshminarayanan, Daniel Roy, and Yee Whye Teh. Top-down particle
filtering for bayesian decision trees. In International Conference on Machine
Learning, pages 280–288, 2013.

[107] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature,
521(7553):436, 2015.

[108] Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforce-
ment learning: Tutorial, review, and perspectives on open problems, 2020.

[109] Michael Lingzhi Li, Hamza Tazi Bouardi, Omar Skali Lami, Thomas A. Trikali-
nos, Nikolaos K. Trichakis, and Dimitris Bertsimas. Forecasting covid-19 and
analyzing the effect of government interventions. medRxiv, 2020.

[110] Ruiyun Li, Sen Pei, Bin Chen, Yimeng Song, Tao Zhang, Wan Yang, and Jeffrey
Shaman. Substantial undocumented infection facilitates the rapid dissemination
of novel coronavirus (sars-cov-2). Science, 368(6490):489–493, 2020.

[111] Nengxiang Ling, Shuyu Meng, and Philippe Vieu. Uniform consistency rate of
k nn regression estimation for functional time series data. Journal of Nonpara-
metric Statistics, 31(2):451–468, 2019.

285

[112] Drew A Linzer, Jeffrey B Lewis, et al. polca: An r package for polytomous
variable latent class analysis. Journal of statistical software, 42(10):1–29, 2011.

[113] Zachary C Lipton. The mythos of model interpretability: In machine learning,
the concept of interpretability is both important and slippery. Queue, 16(3):31–
57, 2018.

[114] Elisa F Long, Eike Nohdurft, and Stefan Spinler. Spatial resource allocation
for emerging epidemics: A comparison of greedy, myopic, and dynamic policies.
Manufacturing & Service Operations Management, 20(2):181–198, 2018.

[115] D. J. C. Mackay. Introduction to Monte Carlo Methods, pages 175–204. Springer
Netherlands, Dordrecht, 1998.

[116] Ho-Yin Mak, Tinglong Dai, and Christopher S Tang. Managing two-dose covid-
19 vaccine rollouts with limited supply. Available at SSRN 3790836, 2021.

[117] Laura Matrajt and Ira M Longini Jr. Optimizing vaccine allocation at different
points in time during an epidemic. PloS one, 5(11):e13767, 2010.

[118] Peter McCullagh. Generalized linear models. Routledge, 2018.

[119] Jan Medlock and Alison P Galvani. Optimizing influenza vaccine distribution.
Science, 325(5948):1705–1708, 2009.

[120] Nicolai Meinshausen et al. Node harvest. The Annals of Applied Statistics,
4(4):2049–2072, 2010.

[121] Locksley L McV Messam, Adam J Branscum, Michael T Collins, and Ian A
Gardner. Frequentist and bayesian approaches to prevalence estimation using
examples from johne’s disease. Animal Health Research Reviews, 9(1):1–23,
2008.

[122] Gideon Meyerowitz-Katz and Lea Merone. A systematic review and meta-
analysis of published research data on covid-19 infection-fatality rates. Inter-
national Journal of Infectious Diseases, 2020.

[123] Velibor V Mišić and Georgia Perakis. Data analytics in operations management:
A review. Manufacturing & Service Operations Management, 22(1):158–169,
2020.

[124] Niko Mohr and Holger Hürtgen. Achieving business impact with data. Digital
McKinsey, 2018.

[125] Siuli Mukhopadhyay and Debraj Chakraborty. Estimation of undetected covid-
19 infections in india. medRxiv, 2020.

[126] Serguei Netessine, Sergei Savin, and Wenqiang Xiao. Revenue management
through dynamic cross selling in e-commerce retailing. Operations Research,
54(5):893–913, 2006.

286

[127] Daniel Oberski. Mixture models: Latent profile and latent class analysis. In
Modern statistical methods for HCI, pages 275–287. Springer, 2016.

[128] Sadettin Orhan, Nizami Aktürk, and Veli Celik. Vibration monitoring for defect
diagnosis of rolling element bearings as a predictive maintenance tool: Com-
prehensive case studies. Ndt & E International, 39(4):293–298, 2006.

[129] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Ma-
chine learning in Python. Journal of Machine Learning Research, 12:2825–2830,
2011.

[130] Georgia Perakis, Divya Singhvi, Omar Skali Lami, Ankit Mangal, Stephan Pon-
inghaus, Alison Borenstein, and Jiong Wei Lua. Ancillary services in targeted
advertising: from prediction to prescription. Manufacturing & Service Opera-
tions Management, 2021.

[131] Georgia Perakis, Divya Singhvi, Omar Skali Lami, and Leann Thayaparan.
Fighting covid-19: A multipeak sir based model for learning waves and opti-
mizing testing. 2021.

[132] Steven J Phipps, R Quentin Grafton, and Tom Kompas. Robust estimates of
the true (population) infection rate for covid-19: a backcasting approach. Royal
Society open science, 7(11):200909, 2020.

[133] Victor M Preciado, Michael Zargham, Chinwendu Enyioha, Ali Jadbabaie, and
George Pappas. Optimal vaccine allocation to control epidemic outbreaks in
arbitrary networks. In 52nd IEEE conference on decision and control, pages
7486–7491. IEEE, 2013.

[134] Kamalini Ramdas, Ara Darzi, and Sanjay Jain. ‘test, re-test, re-test’: using
inaccurate tests to greatly increase the accuracy of covid-19 testing. Nature
medicine, 26(6):810–811, 2020.

[135] Gunnar Rätsch, Takashi Onoda, and K-R Müller. Soft margins for adaboost.
Machine learning, 42(3):287–320, 2001.

[136] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. " why should i trust
you?" explaining the predictions of any classifier. In Proceedings of the 22nd
ACM SIGKDD international conference on knowledge discovery and data min-
ing, pages 1135–1144, 2016.

[137] Jonathan Rougier. Ensemble averaging and mean squared error. Journal of
Climate, 29(24):8865 – 8870, 2016.

[138] Omer Sagi and Lior Rokach. Ensemble learning: A survey. Wiley Interdisci-
plinary Reviews: Data Mining and Knowledge Discovery, 8(4):e1249, 2018.

287

[139] David C Schmittlein, Donald G Morrison, and Richard Colombo. Counting your
customers: Who-are they and what will they do next? Management science,
33(1):1–24, 1987.

[140] David C Schmittlein and Robert A Peterson. Customer base analysis: An
industrial purchase process application. Marketing Science, 13(1):41–67, 1994.

[141] Alex Sherstinsky. Fundamentals of recurrent neural network (rnn) and
long short-term memory (lstm) network. Physica D: Nonlinear Phenomena,
404:132306, 2020.

[142] Joseph Sill, Gábor Takács, Lester W. Mackey, and David Lin. Feature-weighted
linear stacking. CoRR, abs/0911.0460, 2009.

[143] Peter Sollich and Anders Krogh. Learning with ensembles: How overfitting can
be useful. In D. Touretzky, M. C. Mozer, and M. Hasselmo, editors, Advances
in Neural Information Processing Systems, volume 8. MIT Press, 1996.

[144] Peter J Stuckey, Tias Guns, James Bailey, Christopher Leckie, Kotagiri Ra-
mamohanarao, Jeffrey Chan, et al. Dynamic programming for predict+ op-
timise. In Proceedings of the AAAI Conference on Artificial Intelligence, vol-
ume 34, pages 1444–1451, 2020.

[145] Peng Sun, Liu Yang, and Francis De Véricourt. Selfish drug allocation for con-
taining an international influenza pandemic at the onset. Operations Research,
57(6):1320–1332, 2009.

[146] Gian Antonio Susto, Andrea Schirru, Simone Pampuri, Seán McLoone, and
Alessandro Beghi. Machine learning for predictive maintenance: A multiple
classifier approach. IEEE Transactions on Industrial Informatics, 11(3):812–
820, 2014.

[147] Richard S Sutton, Andrew G Barto, et al. Introduction to reinforcement learn-
ing, volume 135. MIT press Cambridge, 1998.

[148] Johan AK Suykens and Joos Vandewalle. Least squares support vector machine
classifiers. Neural processing letters, 9(3):293–300, 1999.

[149] Matt Taddy, Chun-Sheng Chen, Jun Yu, and Mitch Wyle. Bayesian and em-
pirical bayesian forests. arXiv preprint arXiv:1502.02312, 2015.

[150] Kalyan T Talluri, Garrett Van Ryzin, and Garrett Van Ryzin. The theory and
practice of revenue management, volume 1. Springer, 2004.

[151] Cher Ming Tan and Nagarajan Raghavan. Imperfect predictive maintenance
model for multi-state systems with multiple failure modes and element failure
dependency. In 2010 Prognostics and System Health Management Conference,
pages 1–12. IEEE, 2010.

288

[152] Hamdi Taplak, Selçuk Erkaya, and Ibrahim Uzmay. Experimental analysis
on fault detection for a direct coupled rotor-bearing system. Measurement,
46(1):336–344, 2013.

[153] Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of
the Royal Statistical Society: Series B (Methodological), 58(1):267–288, 1996.

[154] Kai Ming Ting and Ian H. Witten. Stacking bagged and dagged models. In
Proceedings of the Fourteenth International Conference on Machine Learning,
ICML ’97, page 367–375, San Francisco, CA, USA, 1997. Morgan Kaufmann
Publishers Inc.

[155] Kai Ming Ting and Ian H. Witten. Issues in stacked generalization. CoRR,
abs/1105.5466, 1999.

[156] Ashleigh R Tuite, David N Fisman, Jeffrey C Kwong, and Amy L Greer. Op-
timal pandemic influenza vaccine allocation strategies for the canadian popula-
tion. PloS one, 5(5):e10520, 2010.

[157] Theja Tulabandhula and Cynthia Rudin. Machine learning with operational
costs. The Journal of Machine Learning Research, 14(1):1989–2028, 2013.

[158] US Food and Drug Administration. Fda statement on following the authorized
dosing schedules for covid-19 vaccines, 2021.

[159] Jeroen K Vermunt and Jay Magidson. Latent class models for classification.
Computational Statistics & Data Analysis, 41(3-4):531–537, 2003.

[160] Gustavo Vulcano, Garrett Van Ryzin, and Richard Ratliff. Estimating primary
demand for substitutable products from sales transaction data. Operations
Research, 60(2):313–334, 2012.

[161] Stefan Wager and Susan Athey. Estimation and inference of heterogeneous
treatment effects using random forests. Journal of the American Statistical
Association, 113(523):1228–1242, 2018.

[162] Ruxian Wang, Maqbool Dada, and Ozge Sahin. Pricing ancillary service sub-
scriptions. Management Science, 65(10):4712–4732, 2019.

[163] Wendai Wang and Dan Dragomir-Daescu. Reliability quantification of induction
motors-accelerated degradation testing approach. In Annual Reliability and
Maintainability Symposium. 2002 Proceedings (Cat. No. 02CH37318), pages
325–331. IEEE, 2002.

[164] Bryan Wilder, Bistra Dilkina, and Milind Tambe. Melding the data-decisions
pipeline: Decision-focused learning for combinatorial optimization. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence, volume 33, pages
1658–1665, 2019.

289

[165] David H. Wolpert. Stacked generalization. Neural Networks, 5:241–259, 1992.

[166] S Yakowitz. Nearest-neighbour methods for time series analysis. Journal of
time series analysis, 8(2):235–247, 1987.

[167] Hui Zou and Trevor Hastie. Regularization and variable selection via the elastic
net. Journal of the Royal Statistical Society Series B (Statistical Methodology),
67(2):301–320, 2005.

290

