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Abstract
Modern computer systems need to execute under strict safety constraints (e.g., power limit),
but doing so often conflicts with their ability to deliver high performance (i.e., minimal la-
tency). To meet these conflicting goals, prior work uses machine learning to automatically
tune hardware resources such that system executions meet safety constraints optimally.
Such solutions monitor past system executions to learn the system’s behavior under dif-
ferent hardware resource allocations before dynamically tuning resources to optimize the
application execution. However, system behavior can change significantly between differ-
ent applications and even different inputs of the same applications. Hence, models learned
using data collected a priori are often suboptimal and violate safety constraints when used
with new applications and/or inputs.

To address this limitation, I introduce the concept of an execution space, which is the
cross product of hardware resources, input features, and applications. Thus, a configuration
is defined as a tuple of hardware resources, input features, and application. To dynamically
and safely allocate hardware resources from the execution space, I present SCOPE 1, a
resource manager that leverages a novel safe exploration framework. SCOPE operates
iteratively, with each iteration (i.e., reallocation) having three phases: monitoring, safe
space construction, and objective optimization. To construct a safe set with high coverage
(i.e., a high number of safe configurations in the predicted safe set), SCOPE introduces
a locality preserving operator so that SCOPE’s exploration will rarely violate the safety
constraint and have small magnitude violations if it does. I evaluate SCOPE’s ability to
deliver improved latency while minimizing power constraint violations by dynamically
configuring hardware while running a variety of Apache Spark applications. Compared to
prior approaches that minimize power constraint violations, SCOPE consumes comparable
power while improving latency by up to 9.5×. Compared to prior approaches that minimize
latency, SCOPE achieves similar latency but reduces power constraint violation rates by up
to 45.88×, achieving almost zero safety constraint violations across all applications.

1Safe Configuration Optimization for Performance and Efficiency
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Chapter 1

Introduction

A modern computer system needs to meet conflicting goals—for example, minimizing

latency while meeting some safety constraint (e.g., power limit)—in the face of dynamic

changes in its application and environment. To do so, hardware architects expose a wide va-

riety of resources for the system to manage [1, 2, 3], where each type of hardware resource

is controlled by a hardware parameter and all possible allocations of hardware resources

constitute a resource space.

When managing these resources, the system needs to meet its safety constraints. Rare

and small magnitude violations can be tolerable if they do not dramatically degrade system

performance [4, 5, 6]. However, frequent and large magnitude violations can cause serious

damage, and even crash the system [7]. For example, power capping systems deployed in

hyperscale datacenters (e.g., Amazon, Google, Microsoft) smooth out spikes from occa-

sional power overloading [8, 9], but cannot tolerate large-scale violations without causing

significant degradation in application performance [10].

To ensure that the system executes optimally while meeting the safety constraint, ex-

isting resource managers use samples from the resource space (i.e., hardware parameters

and their measured system behavior) of past executions to model system behavior (e.g.,

power and performance) as a function of hardware resource usage. The model is then used

to dynamically adjust resources usage such that safety is maintained and application per-

formance is optimized [6, 11, 12, 13, 14]. However, samples collected from the resource

space may not be generalizable across different applications and inputs. This means that
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safe and high-performing hardware resource allocation for one execution can be unsafe and

low-performing in another [15, 16]. Specifically, when a new application or input leads to

significantly different system behavior, models learned using past executions cannot pro-

vide safety guarantees and optimal performance.

Execution space. To address this limitation, I introduce execution space, which is the

cross product of hardware resources, input features, and applications. I define a config-

uration as a tuple of hardware resources, input features (e.g., data size), and application.

To ensure that the system executes optimally while meeting the safety constraint, resource

managers need to explore (i.e., evaluate a configuration that the system has not seen before)

the execution space, rather than the resource space. Exploring the execution space is the

process of evaluating a previously unseen configuration from the execution space and it al-

lows us to learn models of system behavior as a function of both the hardware parameters,

the current application, and input.

1.1 Proposed Approach: SCOPE

To dynamically and safely allocate hardware resources from the execution space, this thesis

presents SCOPE 1, a resource manager that leverages a novel safe exploration framework.

Safe exploration is a family of sequential decision-making techniques that optimize an

objective while minimizing safety constraint violations [17, 18, 19]. Unlike static config-

uration that uses the same hardware resources throughout application execution, SCOPE

dynamically reallocates hardware resources to optimize system performance and minimize

safety constraint violations while responding to dynamic runtime changes. SCOPE oper-

ates iteratively, with each iteration (i.e., reallocation) having three phases: monitoring, safe

space construction, and objective optimization.

• In the monitoring phase, SCOPE samples the execution space; i.e., it measures the sys-

tem behavior for the current application, input, and hardware resource allocation. Specif-

ically, it records both the objective and safety data, and checks whether the safety con-

straint has been violated or not.

1Safe Configuration Optimization for Performance and Efficiency
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• Safe space construction is the process of predicting a safe set (i.e., a set of configurations

that will not violate the safety constraint) with high coverage (i.e., a high number of

safe configurations in the predicted safe set). Furthermore, if an unsafe configuration

is included in the safe set, its violation magnitude should be small. To construct a safe

set with these properties, SCOPE introduces a locality preserving operator based on

the locality preserving criterion [20] (i.e., if two configurations are close in distance,

their system behaviors are likely close as well). This operator constrains SCOPE to

explore only configurations within a certain distance of the most recently executed safe

configuration. Because any new configurations are close to known safe configurations,

exploring these new configurations will rarely violate the safety constraint and have small

magnitude violations if it does.

• In the objective optimization phase, SCOPE reallocates hardware resources with the best

predicted performance from the newly constructed safe set.

1.2 Results and Contributions

This thesis evaluates SCOPE’s ability to minimize latency (the objective) while meeting

a power (the safety) constraint for a variety of Apache Spark applications [21]. For each

input and application, SCOPE dynamically configures hardware resources (e.g., CPU fre-

quency, uncore frequency, number of sockets, number of cores per socket, and whether

hyperthreads are enabled). Compared to prior approaches that minimize power constraint

violations, evaluation results show that on average:

• Compared to Intel’s RAPL [22], SCOPE decreases the violation rate by 54.1× and vio-

lation magnitude by 1.04×. These violation reductions occur because SCOPE can reach

even lower power caps than RAPL. Since RAPL does not optimize latency, SCOPE is

able to decrease latency by 9.5×.

• Compared to an existing state-of-the-art safe exploration approach from domains outside

of computer systems, SCOPE decreases latency by 1.11× across all evaluated applica-

tions while decreasing the violation rate and magnitude by 11.93× and 1.40× respec-

tively. SCOPE achieves these results because it accounts for the unique features of com-
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puter systems by continually monitoring the system; prior work assumes that samples

taken early in execution accurately capture behavior over the system lifetime.

• With its locality preserving operator, SCOPE’s predicted safe set has 1.96× higher cover-

age (i.e., a high number of safe configurations in the predicted safe set) and 1.35× lower

violation magnitude than SCOPE-NO, a version of SCOPE that does not use the opera-

tor (section 6.3). This means that even in the rare case where an unsafe configuration is

selected from SCOPE’s predicted safe set, it will likely have lower violation magnitude

than that of SCOPE-NO’s.

The contributions of this thesis are as follows:

• Expanding the exploration space from resource space to execution space, which captures

that system behavior is function of hardware resources, application, and input.

• Presenting SCOPE, a resource manager that leverages the safe exploration framework to

optimize the objective while minimizing the safety constraint violations.

• Introducing the locality preserving operator to construct the safe set with high coverage.

Safe exploration is an important, emerging frontier of machine learning with a wealth of

applications in safety-critical systems. To the best of my knowledge, SCOPE is the first

demonstration of safe exploration in execution space for computer systems optimization.

SCOPE outperforms existing safe exploration techniques from other domains by devel-

oping a locality preserving operator and requiring fewer assumptions about application

behavior than other safe exploration techniques. This thesis offers a foundation on which

the computer systems community can build new optimization tools that aid in exploration

(to improve system performance) while preserving safety.
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Chapter 2

Related Work

The key insight of this thesis is a methodology for using machine learning to perform

optimal resource management while meeting safety constraints in execution space; i.e.,

without accounting for application and input. This section focuses on related work in ma-

chine learning for computer systems optimization (section 2.1, section 2.2). Rather than

learning the relationships between all three components (i.e., hardware resources, input,

and application) from the execution space, prior work learns from the resource space by as-

suming that samples of the past executions from the resource space can accurately predict

the system behaviors of future executions from potentially different applications or inputs.

I also explain the difference between existing safe exploration techniques (from domains

other than computer systems) and SCOPE (section 2.3).

2.1 Machine Learning for Unconstrained Optimization

Machine learning techniques have been increasingly applied to solve computer systems

optimization problems by modeling complex, nonlinear relationships between system re-

source usage and quantifiable behavior [23, 24]. Much prior work focuses on unconstrained

optimization problems with no safety constraint—i.e., optimizing a single objective such as

latency [25], throughput [9], power [26], and energy consumption [4]. These works share

a common methodology of building machine learning models using training data collected

by sampling the system resource space: allocating different system resources and measur-
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ing behaviors. Specifically, there are two types of system sampling, random and intelligent,

and each leads to different types of machine learning approaches. Random sampling typ-

ically needs a large amount of samples to build a highly accurate model, but it is free of

biases that might arise from intelligent sampling [27, 26, 28, 29, 30, 31, 32, 1, 33, 34, 35,

36, 37, 38, 39]. For example, Lee et al. [40] build a regression model on simulated data

to predict multiprocessor performance. Paragon [41] and Quasar [42] apply collaborative

filtering to predict QoS performance of workloads in datacenters. However, the large sam-

pling effort required for random sampling is often prohibitive due to is high computational

cost and inefficiency [16].

Unlike random sampling, intelligent sampling significantly reduces the sampling effort

required to achieve good systems outcomes [11, 43, 44, 45, 46]. A representative family

of intelligent sampling techniques is Bayesian optimization, which iteratively predicts and

samples data points that contribute the most information to the learning model [47]. Cher-

ryPick [48] and CLITE [49] use Bayesian optimization to schedule workloads in datacen-

ters. GIL [15] and Bliss [50] use Bayesian optimization to optimize system performance.

HyperMapper [51] and BOCA [52] use Bayesian optimization to tune compilers. These

works reduce the number of samples required to perform optimization, but do not consider

any safety constraints. This motivates the need for a learning-based resource manager that

both (1) works with reduced number of samples and (2) respects safety constraints.

2.2 Machine Learning for Safe Optimization

Safe optimization problems in computer systems find the optimal point within a tradeoff

space (e.g., performance versus power)—i.e., optimizing a performance objective under

some safety constraint [53, 54, 13, 1, 14]. For example, Li and Martinez [53] collect sam-

ples to optimize power under a performance constraint. Dubach et al. [54] collect sam-

ples to build a dynamic control system that optimizes energy and performance efficiency.

LEO [12] and CALOREE [6] develop hierarchical Bayesian models to meet latency con-

straints and minimize energy.

18



These works provide safety under the assumption that the samples they collect from

the resource space of past executions can accurately capture the system behaviors that

will be seen during future executions. However, this assumption can be violated when

a new application or new input causes significantly different system behaviors than those

in the collected samples. The emergence of such unsampled behavior would render the

whole system unsafe. As such, there is a need for approaches that can explore unseen

configurations in the execution space, rather than the resource space.

2.3 Safe Exploration in Other Problem Domains

Recent years have witnessed safe exploration applied to safety-critical domains such as

autonomous driving [55], healthcare [18], and robotics [56]. Safe exploration is a fam-

ily of sequential decision-making techniques that optimize an objective while minimizing

safety constraint violations [57, 17, 18, 19, 58, 59, 60, 61]. To satisfy some safety prop-

erty with a high probability, these techniques either require extra supervision or knowledge

accumulated before exploration. They achieve probabilistic (i.e., not deterministic) safety

guarantees based on the assumption that the changes of safety measurements are continuous

and bounded (i.e., Lipschitz continuity). In computer systems, however, this assumption

does not hold. A typical example is power, where the power usage can change dramatically

every second [62]. Different from prior work, my proposed approach, SCOPE, is a new

safe exploration framework that introduces a locality preserving operator to eliminate the

need for such assumptions. Evaluation results show that SCOPE outperforms the existing

state-of-the-art safe exploration technique (e.g., StageOPT [18]) in both performance and

safety by tailoring our approach to the unique properties of computer systems.
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Chapter 3

Motivational Examples

I use two examples to demonstrate that to explore new configurations safely, optimization

must operate in execution space rather than resource space because safe samples from the

resource space of past executions do not generalize to new applications and new inputs. To

demonstrate a lack of generalization across applications, I run two different applications

and show that the safe samples from the resource space for one application are no longer

safe for another. To demonstrate a lack of generalization across inputs, I run one application

with two different inputs and show that the safe samples from the resource space for one

are not safe for the other.

I consider two Apache Spark applications from HiBench [63] and run them on the

Chameleon configurable cloud computing platform [64] (details in section 5.1). I collect

samples by profiling the application at all possible assignments of hardware parameters

(see Table 5.1) and recording their latency and power data. The goal is to minimize latency

while meeting a power constraint.

Safe samples from the resource space do not generalize across applications. I show

that safe samples from the resource space do not generalize across the applications als

and nweight. I construct a safe set for als by randomly selecting a list of hardware

allocations that do not violate the safety constraint based on all samples collected for als.

Then, I dynamically configure als (at 20s intervals) using this safe set. I then use the same

safe set to dynamically configure nweight (again, at 20s intervals).

21



Figure 3-1: Results of power and latency for executing als and nweight.

Figure 3-1 shows the resulting power as a function of execution time, where the x-axis

is the execution time, and the y-axis is the power. The blue line represents als using its

own safe set, the orange line represents running nweight using als’s safe set, the red

line represents running nweight using safe hardware allocations constructed especially

for nweight (again by profiling all possible assignments of hardware parameters). The

black dotted horizontal line is the power limit which represents the safety constraint in this

example. The results show that als finishes safely in 125s with 0 power violations, while

nweight using als’s safe hardware allocations needs 190s despite 32 power violations.

The high number of violations and the significant difference in latency, demonstrates

that the safe samples from the resource space do not generalize across different applica-

tions. In fact, nweight—with a properly constructed safe set—finishes in 142s with 0

violations, indicating that it is possible to improve nweight’s latency and safety, however,

exploration operating only within the resource space fails to do so.

Safe samples from the resource space do not generalize across different inputs for

the same application. I show that safe samples from the resource space do not generalize

across different inputs for the same application using als. I create two different inputs with

the same sizes (so the execution behavior variations are due to properties of the data rather

than data size): Input A is the input we will sample to build a safe set and Input B is the

target input to be optimized. I construct a safe set for Input A by randomly selecting a list

22



Figure 3-2: Results of power and latency for executing als using two different sets of
inputs with the same size.

of hardware allocations that do not violate constraints based on all samples we collected

for Input A. Then, I dynamically configure for Input A (at 20s intervals) using this safe

set, and then configure using the same safe set for Input B (again, at 20s intervals).

Figure 3-2 shows the the resulting power as a function of execution time, where the

x-axis is the execution time, and y-axis is the power. The blue line represents running

Input A using its own safe set, the orange line represents running Input B using Input

A’s safe set, the red line represents running Input B with its own safe set found by eval-

uating Input B in all possible assignments of hardware parameters. The black dotted

horizontal line is the power threshold, or safety constraint in this example. The results

show that Input A finishes in 147s with 0 violation. Running Input B with Input A’s

safe set, however, finishes in 110s with 20 violations, mainly between 26s and 46s. Input

B is mostly under the power threshold, but its dynamic behavior causes it to violate safety

constraint, while Input A does not.

The high number of violations when running Input B demonstrates that safe samples

from the resource space for Input A are no longer safe with different inputs, even when

the inputs are the same size. In fact, Input B can finish in 91s with 0 violations with

an appropriate safe set, which indicates that the safe samples from the resource space for

Input A do not generalize to Input B.
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These examples illustrate that safe samples from the resource space of past executions

fail to generalize to new applications and new inputs. As an alternative to generalizing safe

samples to new applications or inputs, the next section describes SCOPE, the proposed

solution to optimize objectives and minimize safety constraint violations in the execution

space, rather than resource space.
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Chapter 4

SCOPE Design

SCOPE is a resource manager that dynamically and safely explores in the execution space.

In other words, SCOPE makes no assumptions about how past executions, with different

applications or inputs, affect the current system behavior. SCOPE iteratively reallocates

hardware resources, with each iteration having three phases: monitoring, safe space con-

struction, and objective optimization. Figure 4-1 illustrates SCOPE’s workflow. In the first

phase of each time interval, SCOPE continually measures safety and objective metrics for

the current application, input, and hardware resource allocation ( A ), and checks whether

the safety constraint has been violated or not ( 1 ); if a safety measurement violates the

safety constraint, SCOPE moves to the next phase immediately, otherwise it waits for a

fixed time interval to expire. Then, SCOPE goes to the phase of safe space construction to

predict a safe set with high coverage. Within this phase, SCOPE first builds a safety model

using the measured configurations and safety data ( B ), and then constructs a safe set based

on the safety model ( C ). Then, SCOPE’s objective optimization phase reconfigures the

system. Within this phase, SCOPE first builds an objective model using the measured

configurations and objective data ( D ), and then picks a predicted high-performing config-

uration from the safe set and puts the system into that configuration.

The remainder of this section first sets up the core concepts (section 4.1), and then

describes SCOPE in detail (section 4.2, section 4.3, section 4.4, and section 4.5).
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Figure 4-1: The workflow of SCOPE at each time interval while application is executing.

4.1 Background and Definitions

SCOPE’s input includes an application, objective metric to optimize, safety constraint, a

starting safe configuration, number of measurements for each time interval, and a list of

configurations over which to optimize. A starting safe configuration is needed to prevent

SCOPE from violating the safety constraint during the first iteration; users can conserva-

tively choose this configuration. For example, if the safety metric is power, users could

start in a configuration with minimal hardware resources. If latency is the safety metric,

then users could start with a configuration that makes all resources available. SCOPE’s

exploration will safely move the system out of this conservative configuration to one that

improves the objective metric.

Application. A program that runs on a computer system using hardware resources.

Configuration. A configuration xi ∈ D is a d-dimensional vector that includes d parame-

ters: xi = [xi1, xi2, . . . , xid], where i is the i-th configuration, and xi j is the respective value

for the j-th parameter, j ∈ [d].

Safety constraint. The safety constraint is a threshold for any particular metric that the

system does not want to violate during application execution. Some common metrics that

can be used for safety constraints include energy [65, 13], power [66], and latency [12,

6, 14]. In this thesis, I use P to denote the safety constraint and yi to denote the safety

measurement for the i-th configuration.

Safe configuration. The safe configuration is a configuration that does not violate the

safety constraint, i.e., yi < P. Similarly, an unsafe configuration is a configuration that

violates the safety constraint, i.e., yi ≥ P.
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Optimization objective. The optimization objective is the metric that SCOPE minimizes

or maximizes. Some common optimization objectives include energy [12, 6, 14], power [66],

and latency [65, 13]. In this thesis, I use zi to denote the optimization objective measure-

ment for the i-th configuration.

Time interval. The time interval is a short period of time during application execution. In

this thesis, I use Ti to denote i-th time interval when the application runs configuration xi.

During each time interval, SCOPE will execute all three of its phases: monitoring, safe set

construction, and objective optimization.

Measurement interval. The measurement interval is the amount of time over which SCOPE

gets a pair of safety and objective measurements.

4.2 Monitoring

At i-th time interval when the application runs at configuration xi, SCOPE continuously

gets safety yi and objective zi at each measurement interval for a maximum of N times,

where N is an input parameter of SCOPE ( A ). To react to violations as quickly as possible,

if a safety measurement violates the safety constraint, SCOPE stops monitoring and moves

to the next phase immediately instead of finishing N measurements ( 1 ). The measurement

data collected over the time intervals are the training data for the next phases of SCOPE;

i.e., until the i-th time interval, Xtrain = (x j)i
j=0, Ytrain = (y j)i

j=0, Ztrain = (z j)i
j=0.

4.3 Safe Space Construction

After getting the training data from measurement, SCOPE goes to safe space construction,

the process of predicting a safe set with high coverage—i.e., a high number of safe config-

urations in the predicted safe set—and if an unsafe configuration is included, its violation

magnitude should be small. To construct a safe set with these properties, SCOPE intro-

duces a locality preserving operator based on the locality preserving criterion [20] (i.e., if

two configurations are close in distance, their system behavior is also likely to be close).

27



The translation of this criterion to safe space construction is as follows:

• If two configurations are close in distance, their corresponding safety and objective mea-

surements are likely close too.

• If configuration A is safe and configuration B is unsafe but close to configuration A in

distance, the safety violation of configuration B is very likely to be small.

This criterion matches my empirical observation that a smaller magnitude configuration

change (e.g., changing 2 cores to 4 cores) leads to smaller system behavior changes than

a larger change (e.g., changing 2 cores to 12 cores). The locality preserving operator con-

strains SCOPE to explore a subset of configurations in the safe set that are within a neigh-

borhood (i.e., close area within some distance) of the most recently used safe configuration

so that SCOPE’s exploration will rarely violate the safety constraint and have small mag-

nitude violations if it does. Formally, Xc is the candidate set that is constructed with the

locality preserving operator:

Xc = {x ∈ D ∖ Xtrain| ‖x − xs‖ ≤ γ}, (4.1)

where xs is the most recent safe configuration that SCOPE has been used, and γ ≥ 0 is the

operator parameter. The operator parameter γ controls the distance that SCOPE explores.

If γ = 0, the only configuration that SCOPE can explore is the starting safe configuration.

If γ > 0, SCOPE can explore configurations that are within distance γ from xs. The higher

γ is, the larger configuration space SCOPE can explore, and thus the more likely the unsafe

configurations can be included in the safe set. When γ is large enough, it is equivalent to

exploring without constraints.

Upon obtaining the candidate set Xc, SCOPE constructs the safe set as follows. At i-th

time interval Ti, SCOPE trains the safety model fy using the configurations and safety mea-

surements collected so far (Xtrain,Ytrain) = (x j, y j)i
j=0 ( B ). SCOPE uses this model to predict

the safety values of the configurations in the candidate set Xc, and include configurations

that are predicted to meet the safety constraint in the safe set ( C ):

Xs = {x ∈ Xc| fy(x) < P}, (4.2)
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where Xs is the safe set, and P is the safety constraint. The design of safe space construction

is compatible with any type of learning models such as Gaussian process regression [48],

random forest [51], linear model [15], and neural networks [11]. SCOPE uses Gaussian

process regression since it performs the best in practice (section 6.6).

4.4 Objective Optimization

The objective optimization phase reallocates hardware resources with a high-performing

safe configuration. At i-th time interval, SCOPE trains the objective model fz using the

configurations and objective measurements collected so far (Xtrain,Ztrain) = (x j, z j)i
j=0 ( D ).

SCOPE uses this model to predict the objective values of the configurations from the safe

set. Empirically, we find that the safe set could be empty when the operator parameter γ

is too small, since there is not much neighborhood for SCOPE to explore. To address the

possible situation like this, SCOPE does the following.

• If the safe set is empty, SCOPE chooses the configuration in the candidate set Xc that has

the best predicted safety. In this way, SCOPE is able to explore the configuration space

while avoiding safety violations.

• If the safe set is not empty, SCOPE picks the configuration in the safe set Xs = {x ∈

Xr| fy(x) < P} that has the best predicted objective.

After SCOPE picks the new configuration and reallocates hardware sources based on this

configuration ( E ), it goes to the next time interval until the execution ends.

4.5 SCOPE Algorithm Summary

SCOPE is a general system design compatible with any type of learning models, safety

constraints, and optimization objectives. To demonstrate its effectiveness in solving sys-

tems problems, this thesis uses SCOPE to minimize latency while constraining the power

usage to be below a fixed threshold, where the safety metric is power, and the optimization

objective is work done so far (e.g., total instruction count). The input includes a starting

safe configuration x0, safety constraint P, number of measurements N, and operator param-
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Algorithm 1 The SCOPE Resource Manager
Require: x0 ▷ Starting safe configuration.
Require: P ▷ Safety constraint threshold.
Require: γ ▷ Operator parameter.
Require: N ▷ Number of measurements.

1: Xtrain = {} ▷ Set of sampled configurations.
2: Ytrain = {} ▷ Set for safety measurements.
3: Ztrain = {} ▷ Set for objective measurements.
4: i = 0
5: xs ← x0 ▷ Assign current safe configuration.
6: Run application at x0.
7: while application running do
8: for t = 1,...N do
9: Get safety yi and objective zi.

10: if yi > P then
11: Stop monitoring.
12: Update training set (Xtrain,Ytrain,Ztrain) with (xi, yi, zi).
13: Train safety model fy using Xtrain and Ytrain.
14: if yi < P then
15: xs ← xi ▷ Update current safe configuration.
16: Xc = {x ∈ D ∖ Xtrain| ‖x − xs‖ ≤ γ} ▷ Update candidate configuration set.
17: Xs = {x ∈ Xc| fy(x) < P} ▷ Construct safe set.
18: Train objective model fz using Xtrain and Ztrain.
19: if |Xs| == 0 then
20: xi+1 ← arg minx∈Xc

fy(x) ▷ If safe set is empty, pick configuration with best predicted
safety.

21: else
22: xi+1 ← arg maxx∈Xs

fz(x) ▷ If safe set is not empty, pick configuration with best
predicted objective.

23: Reallocate hardware resources with xi+1.
24: i← i + 1

eter γ. The starting safe configuration can be set by the user since it is not desirable that the

application violates the safety constraint in the beginning. The safety constraint depends

on the optimization goal and is set by the user. The operator parameter γ is set by the user

to control the exploration space, where more insights can be found in section 6.4.

Algorithm 1 summarizes the procedure. In line 6, SCOPE starts executing the appli-

cation, and records the current time T0. While the application is executing, SCOPE does

the following steps iteratively. For each measurement interval, SCOPE gets the safety

and objective (line 9). If the safety measurement violates the safety constraint (line 10),

SCOPE stops measuring and moves to the next phase (line 11). Otherwise, SCOPE con-
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tinues measuring. In line 12, SCOPE updates the training set by adding the new measured

data. In line 13, SCOPE trains the safety model using training configurations and safety

data. In line 15, SCOPE updates the safe configuration that has been most recently ex-

ecuted. In line 16, SCOPE updates the candidate set by applying the locality preserving

operator. In line 17, SCOPE constructs the safe set from the candidate set based on the

predictions using the safety model. In line 18, SCOPE trains the objective model using

training configurations and objective data. Then, SCOPE will conduct different steps based

on the cardinality of the safe set. In lines 19 and 20, if the safe set is empty, SCOPE

will pick the configuration with the best predicted safety in the candidate set. Otherwise,

in line 22, SCOPE will pick the configuration with the best predicted objective in the safe

set. In line 23, SCOPE reallocates hardware resources based on the newly pickled config-

uration. I implement SCOPE in Python with libraries including numpy [67], pandas [68],

and scikit-learn [69]. The code is released in https://github.com/kim1031/scope.
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Chapter 5

Experimental Setup

5.1 Hardware System

This thesis experiments on the Chameleon configurable cloud computing platforms [64],

where each experiment runs on a master node and four worker nodes. Each node is a dual-

socket system running Ubuntu 18.04 (GNU/Linux 5.4) with 2 Intel(R) Xeon(R) Gold 6126

processors, 192 GB of RAM, hyperthreads and TurboBoost. Each socket has 12 cores/24

hyperthreads and a 20 MB last-level cache. I tune the hardware parameters in Table 5.1,

as they have been shown to influence both latency and power tradeoffs and are important

to tune to optimally meet a power cap [70]. In total, there are 1920 possible allocations of

hardware resources to be explored dynamically while minimizing power cap violations.

Table 5.1: Hardware parameters.
Parameter Range

CPU frequency (GHz) 1.0–3.7
Uncore frequency (GHz) 1.0–2.4
Hyperthreading on, off
Number of sockets 1, 2
Number of cores per socket 1–12
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5.2 Software System

For the experiments, I use Apache Spark [21] with the default Spark configuration settings

as the software system. I test 12 applications from HiBench’s benchmark suite [63], which

has been widely applied to configuration optimization evaluations [16, 71, 15, 72]. The

applications cover various domains including microbenchmarks, machine learning, web-

search, and graph analytics (Table 5.2).

Table 5.2: HiBench applications.
Application Data size Application Data size

als 0.7 GB bayes 1 GB
gbt 0.1 GB kmeans 2.1 GB
linear 36 GB lr 2 GB
nweight 0.1 GB pagerank 0.2 GB
pca 0.1 GB rf 1.6 GB
terasort 3.2 GB wordcount 26 GB

5.3 Points of Comparison

This thesis compares various approaches including static configuration, approaches with

extensive collected samples (Offline), approaches without collected samples (RAPL, BO,

StageOPT, SCOPE-NO), and an approach with perfect knowledge (Oracle, which I create

with brute force search and is, of course, unrealizable in practice).

• Static: run application at the starting safe configuration throughout the execution.

• Offline: before running the target application, randomly sample half of all possible hard-

ware resource allocations using the target application and input and build safety and ob-

jective models using Gaussian process regression. These models are not updated during

application execution. Offline reconfigures using the predictions from these models at

each time interval [12, 6].

• RAPL: Intel’s Running Average Power Limit system that allows users to set a power

limit and tunes processor behavior to respect that limit using dynamic voltage and fre-

quency scaling technique [22]; RAPL only configures CPU and uncore frequency.
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• BO: use Bayesian optimization to reconfigure at each time interval, with Bayesian Gaus-

sian process regression being the learning model and expected improvement being the

acquisition function [48, 51, 49, 52].

• StageOPT: use the StageOPT algorithm [18], a representative of safe exploration ap-

proaches from other domains that assume continuous and bounded changes in safety

measurements to achieve probabilistic safety guarantee. StageOPT separates safe set

construction and objective optimization into two stages: in the first few iterations, it

focuses on constructing the safe set only; then, it switches to optimizing the objective

within the safe space without updating its predicted safe set. The lack of update to the

safe set can be very problematic in computer systems. As shown in the motivational

example, the discrete nature of computer systems means that applications that look safe

might quickly change to unsafe with no prior warning (see Figure 3-2). In contrast,

SCOPE continually updates its safe set.

• SCOPE-NO: use the introduced safe exploration framework without the locality pre-

serving operator to reconfigure at each time interval.

• SCOPE: use the introduced safe exploration framework with the locality preserving

operator to reconfigure at each time interval. Both SCOPE and SCOPE-NO use Gaussian

process regression as the learning model since it performs the best (section 6.6).

• Oracle: profile all latency and power data for the entire configuration space, and pick

the fastest configuration that meets the power constraint.

5.4 Evaluation Methodology

I start executing the application at the same safe configuration for each approach in sec-

tion 5.3, and then reconfigure it dynamically at each time interval. For all approaches that

reconfigure dynamically, I run the sweep over different time intervals and pick the best time

interval for each approach (section 6.5). For Offline, I also sweep over different amounts of

samples and choose the best amount for sampling (section 6.8). During each time interval,

I use the maximum power for the safety and average of the work done (i.e., total instruction

counts) for the objective.
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This thesis evaluates on a wide range of power constraints that are set as [40, 50, 60, 70,

80]-th percentiles of the power distributions that are achievable across all configurations.

This is a reasonable range in that a small constraint value (e.g., [10, 20, 30]-th percentiles)

leaves little room for tuning and a large constraint value (e.g., [90]-th percentile) is often

too relaxed to constrain the power.

To make a comprehensive comparison, I identify 5 starting configurations as fast and 5

as slow. For fast configurations, the latency is below p35 of the latency distribution over all

configurations that meet the power constraint. For slow ones, the latency is above p65 of

the latency distribution that meet the power constraint. The reported results are averaged

over different constraints and 10 different starting safe configurations.

For SCOPE, I choose the operator parameter γ = 1 for all applications based on the best

tradeoffs between the violation rates and speedups from sensitivity analysis in section 6.4.

I use 1 second as the measurement interval.

It should be noted that SCOPE runs on the same hardware whose power it is control-

ling. Thus, SCOPE must account and compensate for its own power overhead. All results

include the power and latency overhead of running SCOPE.

5.5 Evaluation Metrics

For latency evaluation, I measure the latency lconfg obtained by each approach, and compute

its speedup compared to the latency lstatic of Static:

speedup =
lstatic

lconfg
. (5.1)

For power evaluation, I record the power over 1 second interval. To measure how much the

system violates a power constraint, I note the times that power exceeds the power threshold

nviolate, and then divide it by the total number of measurements ntotal:

violation rate =
nviolate

ntotal
× 100%. (5.2)
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I also record the average of power usage that exceeds the power threshold p throughout

application execution, and then divide it by the power threshold P:

violation magnitude =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0 if p ≤ P

p
P if p > P

(5.3)

For safe set, the coverage of the safe set is defined as follows:

coverage =
msafe

mtotal
× 100%, (5.4)

where msafe is the number of true safe configurations in the predicted safe set, and mtotal is

the number of all configurations in the predicted safe set.
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Chapter 6

Experimental Evaluation

This thesis evaluates the following research questions (RQs):

• RQ1: Does SCOPE reduce power violations? SCOPE reduces violation rates by 3.62–

54.1× (Figure 6-1) and violation magnitudes by 1.04–1.49× (Figure 6-2) on average,

compared to other baselines.

• RQ2: Does SCOPE improve application latency? SCOPE improves application latency

by 1.07–9.5× compared to other baselines (Figure 6-6).

• RQ3: Does locality preservation produce better safe sets? With the locality preserving

operator, SCOPE’s safe set has 1.96× higher coverage and 1.35× lower violation magni-

tude than SCOPE-NO that does not use the operator (Table 6.1), which means that even

in the rare case where an unsafe configuration is selected from SCOPE’s safe set, it will

likely have lower violation magnitude than that of SCOPE-NO.

• RQ4: How sensitive is SCOPE to γ? The operator parameter γ affects both speedup

and violation rate, and all applications share a common trend of the tradeoffs between

speedup and violation rate (Figure 6-8).

• RQ5: How sensitive is SCOPE to time intervals? SCOPE is the most robust to the time

interval between reallocations compared to other baselines due to its ability to update

models at all iterations and locality preserving operator (Figure 6-9).

• RQ6: How do different types of models perform? SCOPE can be used with any types

of learning models, and I chose Gaussian process regression for all evaluations due to its

lowest violation rates and comparably low latency (Figure 6-10).
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• RQ7: What are the overheads? SCOPE achieves low overhead of 0.05s per sample on

average, which is negligible given the fact that I include the overheads in all experiments

and SCOPE has the best latency improvement (Figure 6-11).

6.1 RQ1: Does SCOPE reduce power violations?

I use violation rate and magnitude to evaluate how well SCOPE reduces power violations.

Figures 6-1 and 6-2 summarize average violation rates and magnitudes for different ap-

proaches, where the x-axis is the application, the y-axis is the violation rate or magnitude,

the last column Mean is the arithmetic mean over all applications for Figure 6-1 and arith-

metic mean over all applications with non-zero violation magnitude for Figure 6-2, where

I put the number on each bar to quantify the mean results. To visualize better, I cap the

violation rate at 5% in Figure 6-1 and put numbers on the bars that are capped. Detailed re-

sults of violation rates and magnitudes for each approach under different power constraints

(p40-80) are shown in Figures 6-3 and 6-4. Static and Oracle were omitted since they do

not violate at all; Static runs the same starting safe configuration throughout the execution,

and Oracle runs the fastest configuration that is safe based on the exhaustive search. Fig-

ure 6-5 shows power results at every time point for different approaches, where x-axis is

the running time, and y-axis is the power. Overall, SCOPE has the lowest violation rate

and magnitude at almost all power constraints, showing that SCOPE not only makes rare

and small disruptions that disturb the system the least but also has a dominating advantage

over other approaches no matter what safety constraint is used.

Violation rate. SCOPE is 3.62× better than Offline, 54.1× better than RAPL, 45.88× bet-

ter than BO, and 11.93× better than StageOPT on average.

Violation magnitude. SCOPE is 1.05× better than Offline, 1.04× better than RAPL, 1.49×

better than BO, 1.40× better than StageOPT on average.
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Figure 6-1: Violation rates of each approach averaged over all power constraints for each
application. Lower is better.
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Figure 6-3: Violation rates averaged over all random starting configurations for each power
constraint and application. Lower is better.
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Figure 6-4: Violation magnitudes averaged over all random starting configurations for each
power constraint and application. Lower is better.
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Figure 6-5: Power results at different time points during execution for each application.
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More specifically, the results demonstrate the following:

• Offline underperforms SCOPE in all but 2 applications. Despite utilizing a large amount

of samples collected a priori, the models Offline builds a priori do not generalize to the

environment changes that occur during execution, while SCOPE dynamically updates its

models to reconfigure. As a result, Offline has higher violation rate, which also demon-

strates the difficulty of generalization of collected samples.

• RAPL has the highest violation rate despite the fact that it only optimizes for power.

RAPL achieves low violation rate with higher power constraints (e.g. nweight and

terasort in Figure 6-5), but the lower power constraints (i.e. [40,50]-th percentiles of

the power distribution) are below the minimum power threshold that RAPL can meet and

cause RAPL to violate constantly. This suggests that SCOPE performs much better than

RAPL with a wider range of constraints.

• BO has the second highest violation rate and largest violation magnitudes since it opti-

mizes for latency only and does not consider power constraints.

• StageOPT underperforms SCOPE because StageOPT achieves probabilistic safety guar-

antees by assuming continuity and boundedness of power measurements, which are not

guaranteed to hold in computer systems. Thus StageOPT makes inaccurate predictions,

which leads it to have higher violation rates and magnitudes.

• SCOPE has 1.38× lower violation rate and 1.04× lower violation magnitude than SCOPE-

NO. The results suggest that the introduced operator is beneficial for reducing violations

(more details in section 6.3).

6.2 RQ2: Does SCOPE improve application latency?

Figure 6-6 summarizes the speedups over Static for different approaches and Figure 6-7

details the speedups over Static for different approaches under different power constraints

(p40-80), where the x-axis is the application, the y-axis is the speedup, and the last column

Mean is the arithmetic mean over all applications, where I put the number on each bar to

quantify the summarized results. I have omitted BO as it optimizes for latency only and

thus has a very high violation rate and magnitude, which makes it an unfair comparison.
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Oracle has the highest latency speedup since it has perfect prior knowledge to choose

the fastest safe configuration. Overall, SCOPE is second to Oracle: 1.07× higher speedup

than Offline, 1.11× higher speedup than StageOPT, and 9.5× higher speedup than the slow-

est baseline, RAPL. In particular, the results show the following:

• All approaches outperform Static except RAPL, which demonstrates the effectiveness of

dynamic reconfiguration during execution for optimizing latency. RAPL is the exception

because it manages power only and disregards latency. In addition, because RAPL only

configures core frequency, it is unable to take advantage of more complex tradeoffs that

can reduce power without harming latency as much (for example, reducing core usage

for applications with low parallel speedup) [70].

• Offline, despite training on a large amount of samples collected prior to running the target

application, has lower speedup than SCOPE. This is because Offline uses fixed models

trained over early collected data that fail to adapt to changes in execution.

• StageOPT, despite achieving good results in other problem domains, underperforms

SCOPE for computer systems optimization. It is because StageOPT only constructs

the safe set in the first stage and does not optimize latency until the second stage, while

SCOPE constructs the safe set and optimizes latency throughout application execution.

• SCOPE achieves 1.05× higher speedup than SCOPE-NO. This suggests that the locality

preserving operator not only reduces safety violations, but improves latency. Detailed

analyses can be found in section 6.3 and section 6.4.

• SCOPE is second to Oracle in all but the p50 power constraint, where Offline has slightly

higher speedup. This suggests that SCOPE’s dominating advantage is robust to the value

of the safety constraint.
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Figure 6-7: Speedup averaged over all random starting configurations for each power con-
straint and application. Higher is better.

6.3 RQ3: Does locality preservation produce better safe

sets?

To better understand how the locality preserving operator improves the safe set for SCOPE

over SCOPE-NO (the one without the operator), this section shows the percentage of con-

figurations (POC) selected in the total configuration space, coverage, and the average viola-

tion magnitudes (AVM) of unsafe configurations in the safe set for SCOPE-NO and SCOPE

in Table 6.1, where the numbers are averaged over different power thresholds and starting

configurations. SCOPE’s results are obtained when the operator parameter γ = 1 for all

applications based on the best tradeoffs between violation rate and speedup (section 6.4).

The results show the following:

• SCOPE has 4.9× POC smaller than SCOPE-NO, which indicates that the operator sig-

nificantly reduces the number of configurations included in the safe set.

• Although SCOPE’s safe set has significantly fewer configurations, its coverage is 1.96×

higher than that of SCOPE-NO, showing that the operator greatly improves the accuracy
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of safe set prediction. The higher accuracy that SCOPE has in predicting safe configura-

tions leads SCOPE to achieve 1.38× lower violation rate than SCOPE-NO (Figure 6-1).

• SCOPE has 1.35× lower violation magnitude than SCOPE-NO for all unsafe configura-

tions in the safe set. This suggests that even when an unsafe configuration from SCOPE

is chosen for reconfiguration, it will be likely to generate lower magnitude violation

than that from SCOPE-NO. This is reflected in Figure 6-2 where SCOPE has the lowest

overall violation magnitudes.

Table 6.1: Summarized results of the percentage of configurations (POC) selected in the
total configuration space, coverage, and the average violation magnitudes (AVM) of unsafe
configurations in the safe set for SCOPE-NO and SCOPE when the application runs at the
last time interval. Higher coverage is better. Lower AVM is better.

SCOPE-NO SCOPE

POC (%) Coverage (%) AVM POC (%) Coverage (%) AVM
als 95.78 38.48 1.47 19.13 71.08 1.16
bayes 95.71 39.77 1.45 19.52 76.73 1.09
gbt 95.66 27.97 1.61 20.81 55.88 1.16
kmeans 94.28 24.85 1.66 18.31 56.04 1.19
linear 95.30 43.24 1.42 20.08 76.32 1.12
lr 95.74 31.73 1.52 18.60 65.47 1.10
nweight 95.30 31.63 1.55 19.87 60.14 1.16
pagerank 95.83 39.92 1.47 20.56 71.41 1.11
pca 93.06 30.19 1.58 18.63 65.60 1.11
rf 92.21 19.13 1.75 17.86 40.69 1.19
terasort 95.55 34.87 1.51 19.04 74.32 1.12
wordcount 95.66 39.83 1.47 18.74 73.61 1.19

Mean 95.01 33.47 1.54 19.26 65.61 1.14

6.4 RQ4: How sensitive is SCOPE to γ?

The operator parameter γ controls the size of neighborhood space that SCOPE explores

(Eq. 4.1). To understand the effects of γ on SCOPE, I conduct sensitivity analysis of γ on

violation rate and speedup. For better visualization, I normalize each hardware parameter

by mean normalization such that each parameter is within range [−0.5, 0.5] [73]. Figure 6-8

shows violation rate and speedup as a function of γ, where the x-axis is the different values
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of γ and the y-axis is violation rate and speedup. Note that when γ = 0, this is equivalent

to the Static approach since SCOPE must always choose the initial safe configuration. In

particular, we observe the following:

• There is a tradeoff between violation rate and speedup; lower violation rate is likely to

have lower speedup and higher violation rate is likely to have higher speedup, where

ideally, SCOPE would have low violation rate and high speedup. For example, the aver-

age violation rate over all applications decreases from 3.04% (when γ = 0.5) to 0.93%

(when γ = 1), while average speedup of 1.75 (when γ = 0.5) also decreases to 1.60

(when γ = 1). The tradeoff occurs because usually when a violation occurs, higher

power is consumed, and more work is performed, allowing applications to finish earlier.

• The violation rate is generally higher when 0 < γ < 1, compared to when γ ≥ 1. This

is because I normalize all hardware parameters to range from -0.5 to 0.5. Given binary

parameters such as hyperthreading (on, off) and number of sockets (1, 2), SCOPE needs

γ to be at least 1 to consider updating those parameters. When 0 < γ < 1, SCOPE is not

enabled to change hyperthreading or number of sockets at all, which limits the search

space for SCOPE to explore safely.
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Figure 6-8: Violation rate and speedup as a function of γ averaged over all power con-
straints for each application. Lower is better for violation rate. Higher is better for speedup.
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6.5 RQ5: How sensitive is SCOPE to time intervals?

For all approaches that reconfigure dynamically, I evaluate how they are affected by differ-

ent time intervals (i.e., the time period between reallocations). I sweep over different time

intervals [5, 10, 20, 30] seconds and choose the best time interval (i.e. the interval with the

lowest violation rates across all power constraints) for each method and each application.

Figure 6-9 summarizes the violation rate over all power constraints and applications as

a function of time interval for each approach, where the x-axis is the different time intervals,

and the y-axis is the violation rate.

Compared to Offline, BO, and StageOPT, SCOPE has both the lowest violation rate

and the smallest variance at all intervals (SCOPE-NO is the second best and very close

to SCOPE). It is because SCOPE and SCOPE-NO construct safe set and optimize latency

together for each iteration, while BO optimizes for latency only, and StageOPT separates

expanding safe set and optimizing latency into two separate stages. Critically, StageOPT

only constructs the safe set at the beginning of execution, so if a previously safe config-

uration becomes unsafe, then StageOPT has no way to react. SCOPE is even better than

SCOPE-NO because it utilizes the locality preserving operator to reconfigure more safely,

which helps reduce the overall violation rate. These results show that the novel safe explo-

ration framework of SCOPE is robust to the reconfiguring time intervals.

5 10 20 30
Time Interval (s)

0

10

20

30

40

50

Vi
ol

at
io

ns
 R

at
e 

(%
)

Offline BO StageOPT SCOPE-NO SCOPE

Figure 6-9: Violation rate as a function of time interval averaged over all power constraints
and applications for each approach.
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6.6 RQ6: How do different types of models perform?

SCOPE is a general framework compatible with any type of learning model. Although

Gaussian process regression is chosen as the learning models in all evaluations, I test

the framework’s generality by using 4 common models: multi-layer perceptron [11, 74]

(SCOPE-MLP), linear regression [15] (SCOPE-LINEAR), random forest [51, 52, 50] (SCOPE-

RF), and Gaussian process regression [48, 49] (SCOPE). Note that for this experiment,

SCOPE uses the same type of models for training both the safety and objective models.

Figure 6-10 summarizes the average violation rate and speedup, where the x-axis is the ap-

plication and the y-axis is either the average violation rate or speedup, with the last column

Mean being the arithmetic mean over all applications. We find that:

• SCOPE has the lowest violation rate compared to other learning models. On average,

SCOPE has 4.54× lower violation rate than SCOPE-MLP, 10.82× lower violation rate

than SCOPE-LINEAR and 12.0× lower violation rate than SCOPE-RF.

• The speedup from using different learning models is relatively similar. SCOPE achieves

1.43× speedup over SCOPE-MLP. SCOPE-LINEAR and SCOPE-RF are faster than

SCOPE by 1% and 7% respectively. However, they are not good for being safe since both

SCOPE-LINEAR and SCOPE-RF have significantly higher violations than SCOPE.
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Figure 6-10: Violation rate and speedup of SCOPE using different types of learning models,
averaged over all power constraints for each application. Lower is better for violation rate.
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6.7 RQ7: What are the overheads?

This section evaluates the overhead of processing each sample, which includes updating

the learning models to predict future system behavior and choosing a new configuration.

Figure 6-11 shows the average overhead of processing each sample for each application by

different approaches, and the last column Mean is the arithmetic mean over all applications.

Static, Oracle and RAPL approaches were omitted; Static and Oracle do not process sam-

ples or reconfigure and RAPL uses Intel’s power control system to tune parameters in the

background and thus the overhead is not measurable. In particular, the results show that:

• BO has the lowest overhead of 0.03s. This is because it only trains one objective model

without considering safety.

• SCOPE has the second lowest average overhead and is better than SCOPE-NO because

of the locality preserving operator that reduces the number of configurations for infer-

ence in predicting safe set.

• The overhead of SCOPE, which is 0.05s on average, is negligible given the total execu-

tion time. This is validated by SCOPE achieving lowest latency even though all exper-

iments include overheads. These overheads could be further reduced in future work by

porting the resource manager to a lower-level language.
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power constraints for each application. Lower is better.
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6.8 Sensitivity Analysis for Offline Approach

The Offline approach that is compared against SCOPE in section 5.3 samples 50% of all

possible hardware resource allocations from the target application and input for training.

This section details how Offline is affected by the number of samples used. I sweep over

different amount of samples, [25, 50, 75, 100]-% of all possible hardware resource alloca-

tions using the target application and input and choose the best amount of samples (i.e., the

amount that has the lowest violation rate across all power constraints).

Figure 6-12 summarizes the average violation rate and speedup, where the x-axis is

the application, the y-axis is the violation rate or speedup, the last column Mean is the

arithmetic mean over all applications, and I put the number on each bar to quantify the mean

results. I observe that using higher amount of samples has increased speedup for Offline.

However, using higher amount of samples does not necessarily lead to lower violation rate,

further demonstrating the difficulty of generalization of the a priori collected samples.
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Chapter 7

Limitations

I note the following limitations for this work:

• SCOPE, despite achieving the lowest violation rates and magnitudes, does not predict

the complete safe set or provide any formal guarantees. Future work can explore formal

guarantee for constructing the safe set.

• Although Gaussian process regression provides confidence interval for prediction, such

information was not used in SCOPE. Future work can explore techniques for incorporat-

ing uncertainty for safe exploration.

• SCOPE currently uses fixed values for parameters such as time interval and the operator

parameter γ throughout execution. Future work can explore adaptively changing these

parameters during execution to further reducing safety violations.
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Chapter 8

Conclusion

This thesis presents SCOPE, a resource manager that leverages a novel safe exploration

framework that dynamically allocate hardware resources in the execution space. SCOPE

introduces a locality preserving operator that reduces the violation rate and magnitudes

compared to prior work. I hope this work can inspire the computer systems community to

build new optimization tools that aid in exploration while preserving safety.
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