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Abstract

What will happen to Y if we do A?

A variety of meaningful social and engineering questions can be formulated this way:
What will happen to a patient’s health if they are given a new therapy? What will happen
to a country’s economy if policy-makers legislate a new tax? What will happen to a data
center’s latency if a new congestion control protocol is used? We explore how to answer
such counterfactual questions using observational data—which is increasingly available
due to digitization and pervasive sensors—and/or very limited experimental data. The two
key challenges are: (i) counterfactual prediction in the presence of latent confounders; (ii)
estimation with modern datasets which are high-dimensional, noisy, and sparse.

The key framework we introduce is connecting causal inference with tensor completion.
In particular, we represent the various potential outcomes (i.e., counterfactuals) of in-
terest through an order-3 tensor. The key theoretical results presented are: (i) Formal
identification results establishing under what missingness patterns, latent confounding,
and structure on the tensor is recovery of unobserved potential outcomes possible. (ii)
Introducing novel estimators to recover these unobserved potential outcomes and proving
they are finite-sample consistent and asymptotically normal.

Finally, we discuss connections between matrix/tensor completion and time series analysis;
we believe this could serve as a basis to do counterfactual forecasting.

Thesis Supervisor: Devavrat Shah
Title: Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

The aim of this thesis is to lay the theoretical foundations for the design of systems that
make automated data-driven decisions via counterfactual reasoning, i.e., what will happen
to Y if we do A? A variety of meaningful socio-economic and engineering questions can
be formulated this way. To name a few: What will happen to a country’s economy if
policy-makers legislate a new tax? What will happen to a patient’s health if they are
given a new therapy? What will happen to a company’s revenue if a new discount is
introduced? What will happen to a data center’s latency if a new congestion control
protocol is used?

Challenge: counterfactual reasoning without building simulators or experimentation.
Traditional approaches to do counterfactual reasoning require either building complex
models/simulators of the system of interest (e.g., “Gazebo” in robotics, “NS-3” in network-
ing, “Spice” in circuits) or doing extensive experimentation (e.g., clinical trials in medicine,
A/B testing in e-commerce). However, as the complexity of such systems and the level of
personalization now required grows, building precise simulators and doing experimentation
are both becoming increasingly infeasible. For example, running a randomized control
trial (RCT) to identify a personalized therapy for a patient sub-population is prohibitively
expensive and time consuming. As a further example, to evaluate the efficacy of new
congestion control policies for modern data centers, both building reliable simulators
and running experiments is very challenging. In other cases, such as evaluating the
effect of a social policy on a geographic region, collecting experimental data might be
entirely infeasible. Thus, our goal is to build counterfactual decision-making systems
using observational data, which is far more readily available (and/or extremely limited ex-
perimental data). The challenge is that building counterfactual models from observational
data requires carefully thinking about confounding, i.e., hidden correlation between which
decisions are chosen and the outcome of interest. See Figure 1.1 below for a classic
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example of how unobserved confounding can derail learning causal relationships.

Figure 1.1: Imagine a dataset of patients who have diabetes and their insulin level after different
drug dosages. A naive regression would lead to the conclusion that the higher the drug dosage,
the higher the insulin level after, which would be absurd. However, after clustering data by
patients who have Type I and II diabetes, we reach the opposite conclusion for both clusters. This
phenomena is classically known as Simpson’s paradox. Here diabetes type is a hidden confounder.

Indeed, addressing confounding is at the heart of learning a causal relationship between
two entities. In addition to confounding, modern datasets are inherently high-dimensional,
noisy, and sparse, which adds to the statistical and engineering challenge of building
reliable models.

Opportunity: we are collecting observational data at an unprecedented scale. Due to
digitization and pervasive sensors, we are collecting observational data at an exponen-
tially increasing pace. Just through a smartphone, companies have detailed data of the
purchasing and engagement behavior of their customers, under a variety of contexts. As
a further example, companies now collect detailed network trace log data across geo-
graphically distributed data centers applying different congestion control protocols. Such
data can be viewed as a large collection of natural experiments concurrently occurring.
Thus, a major opportunity towards counterfactual decision-making is to design methods
that share information across these natural experiments, and carefully deal with the
challenges of confounding, high-dimensionality, noise, and sparsity in the associated
datasets. Proposing novel frameworks and methods to do so is the focus of this thesis.
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■ 1.1 How to Share Information Across (Natural) Experiments?

Potential outcomes viewed through a tensor. Causal inference is the study of recovering
unobserved “potential outcomes”—the counterfactual of what would potentially have
happened if an intervention had occurred—using observational and experimental data.
One way to represent potential outcomes is through a matrix, where rows index different
units (e.g., individuals, sub-populations, geographic regions) and columns index different
interventions (e.g., discounts, health therapies, socio-economic policies). If we collect
multiple measurements of units, say over time, then the various potential outcomes can be
represented through an order-3 tensor across units, interventions and measurements. See
Figure 1.2 for a visualization of this potential outcomes tensor. If we could fully observe this

Figure 1.2: Potential outcomes tensor.

potential outcomes matrix/tensor, we would of course be able to effectively do counterfactual
decision-making. However, without the ability to do extensive experimentation and build
a reliable model of the system of interest, we only observe a sparse, noisy, subset of the
entries of this tensor using observational data. See Figure 1.3 of typical sparsity patterns
that show up in practice.

(a) Panel data setting. (b) Data-efficient RCT.

Figure 1.3: Observations are represented by colored blocks while unobservable counterfactuals
are represented by white blocks.
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Matrix/tensor completion. Matrix/tensor completion is exactly the study of recovering
an underlying matrix/tensor from a sparse subset of noisy observations. Traditionally,
estimators for such problems assume entries of the matrix/tensor are “missing completely
at random” (MCAR), i.e., each entry is revealed at random, independent of everything
else, with uniform probability. This is likely unrealistic due to the presence of latent
confounders, i.e., unobserved factors that determine both the entries of the underlying
matrix and the missingness pattern in the observed matrix. In general, these confounders
yield “missing not at random” (MNAR) data. Thus, in this thesis we focus on designing
methods that do matrix/tensor completion with MNAR data, and study under what sparsity
patterns, latent confounding, and structure on the matrix/tensor (e.g. low-rank) is recovery
of unobserved potential outcomes possible. Indeed, it is both commonly said that

“Causal inference is a missing data problem.”
&

“Matrix/tensor completion is a missing data problem.”

Latent factor model for matrix/tensor completion. Let [Y (d)
tn ] ∈ RT×N×D denote the

collection of potential outcomes for N units, T measurements, and D interventions. The
key assumption made in this thesis is that this collection of potential outcomes admits
the following decomposition:

Y (d)
tn =

r∑

ℓ=1
utℓvnℓλdℓ + ε(d)

tn , (1.1)

where r is the canonical polyadic (CP) rank, ut , vn, λd ∈ Rr are latent factors associated
with the t-th measurement, n-th unit, and d-th intervention, respectively, and ε(d)

tn is
a mean zero residual term. These latent factors are essentially the hidden structure
across units, measurements, and interventions; the CP rank r implicitly captures the level
of diversity across these dimensions. We note that such a factorization always exists,
but the key assumption we make is that the CP rank r is much smaller than N,T ,D.
This latent structure in the data is exactly what will allow us to pool information across
different natural experiments to answer counterfactuals for a given unit under an unseen
intervention. In Chapter 5, when we lay the foundations for how to do counterfactual
forecasting, we make an additional assumption that the time factor utℓ for ℓin[r] is
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explicitly modeled as a time series. That is, for ℓ ∈ [r],

ut,ℓ =
g∑

j=1
αjut−j,ℓ . (1.2)

This autoregressive time series model for u·,ℓ is known as a linear recurrent formula, and
(approximately) admits a wide variety of time series dynamics include any finite sum
and product of harmonics, polynomials, exponentials, and sufficiently smooth periodic
function. The spatio-temporal model captured by (1.1) and (1.2) allows us to (1) effectively
share information across units, time, and interventions, (2) forecast future counterfactual
potential outcomes.

Goal: estimating unobserved potential outcomes. In the various works that comprise this
thesis, the common goal is to recover E[Y (d)

tn ] for various subsets of [N ], [T ], [D]. In Chapter
3, we focus on estimating and doing inference for

θ(d)
n = 1

|Tpost|
∑

t∈Tpost

E[Y (d)
tn ], for n ∈ [N ], d ∈ [D],

where Tpost ⊂ [T ] is some subset of measurements of interest. That is, the expected
potential outcome of unit n under intervention d, averaged over the measurements
t ∈ Tpost. In Chapter 4, we generalize the results in Chapter 3 and estimate

E[Y (d)
tn ], for n ∈ [N ], d ∈ [D], t ∈ [T ],

i.e., for each t, n, d, entry-wise. In Chapter 5, we focus on estimating

E[Y (0)
tn ], for t > T ,

i.e., forecasting potential outcomes under a given intervention for time steps in the future
(here we take T to be “present day”).
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■ 1.2 Thesis Overview

■ 1.2.1 Principal Component Regression (Chapter 2)

Motivation. In Chapter 2, we show how estimating E[Y (d)
tn ] can effectively be reduced to

the problem of high-dimensional error-in-variables (EIV) regression, a challenging setting
where the number of covariates can be much larger than the number of measurements,
and covariates are corrupted by noise. Intuitively, Y (d)

tn can be thought of as a noisy
observation of E[Y (d)

tn ] (due to the presence of ε(d)
tn ). Thus, using the observed Y (d)

tn as
covariates to learn a regression model boils down to EIV regression. In short, in Agarwal
et al. (2019b, 2021e,d), which forms the basis for Chapter 2, we show principal component
regression (PCR) is surprisingly effective for EIV regression. In doing so, we provide
a theoretical justification for PCR, a very popular regression method at least since the
1980’s Jolliffe (1986), but with minimal formal analysis. As we will see, the theoretical
analysis we do for PCR underpins a lot of the algorithmic development and analysis we
do in the subsequent chapters.

Setup. We consider the setup of EIV regression in a high-dimensional fixed design setting.
Formally, we observe a labeled dataset of size n, denoted as {(yi, zi) : i ≤ n}. Here,
yi ∈ R represents the response variable, also known as the label or target. For any i ≥ 1,
we posit that

yi = ⟨xi, β∗⟩+ εi, (1.3)

where β∗ ∈ Rp is the unknown model parameter, xi ∈ Rp is the associated covariate,
and εi ∈ R is the response noise. Unlike traditional regression settings where zi = xi,
the error-in-variables regression setting reveals a corrupted version of the covariate xi.
Precisely, for any i ≥ 1, let zi ∈ Rp be given by

zi = (xi + wi) ◦ πi, (1.4)

where wi ∈ Rp is the covariate measurement noise and πi ∈ {0, 1}p is a binary observation
mask with ◦ denoting component-wise multiplication, i.e., we observe the k-th component
of zi if πik = 1 and 0 otherwise. Further, we consider a high-dimensional setting where
both n and p are growing with n possibly much smaller than p.
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PCR Algorithm. In a nutshell, PCR is a two-stage process: first, PCR “de-noises” the
observed in-sample (training) covariate matrix Z = [zTi ] ∈ Rn×p via principal component
analysis (PCA), i.e., PCR replaces Z by its low-rank approximation. This PCA steps aim
to retain only the part of the spectra that corresponds to signal. Then, PCR regresses
y = [yi] ∈ Rn with respect to this low-rank approximation to produce the model estimate β̂.
We are interested in the following natural questions about the estimation quality of PCR
in a high-dimensional error-in-variables setting: (1) amongst the many observationally
equivalent models in the high-dimensional setting, is there a model that PCR identifies
consistently? (2) given noisy and partially observed out-of-sample (test) covariates, how
can PCR be methodologically extended to accurately predict the expected test response
variables, i.e., under what conditions does PCR generalize?

Geometric intuition. The intuition behind using PCR is that if the expected potential
outcomes have a low-rank structure (i.e., E[Y (d)

tn ] =
∑r

ℓ=1 utℓvnℓλdℓ ) then X = [xi]i∈[n] will
have low-rank structure too—all of the signal is captured in the first few singular values
in the spectral space. The noise matrix W = [wi]i∈[n] on the hand will be spectrally diffuse
due to the independence of wi across measurements. That is,

“signal is spectrally concentrated while noise is spectrally diffuse”.

See Figure 1.4 for a visual depiction of the typical spectrum of signal vs. noise for
low-rank X .

Key Results. We establish three main results for PCR.

(1) Parameter estimation. We establish that PCR consistently estimates the unique
minimum ℓ2-norm model parameter amongst all feasible models as per (1.3), i.e., PCR
implicitly regularizes. Notably, the minimum ℓ2-norm β∗ is of primary interest from the
perspective of prediction. In line with the geometric intuition from Figure 1.4, we define a
“signal-to-noise” ratio of the true covariates X as snr := ρsr/(

√
n+√p), where sr is the

smallest non-zero singular value of X and ρ is the probability of observing each entry of
Z . We establish that PCR consistently estimates the minimum ℓ2-norm β∗, i.e.,

∥∥∥β̂ − β∗
∥∥∥

2

p−→ õ(1),

if snr is growing sufficiently quickly, i.e., snr = ω(
√

log(np)), Further, we establish
minimax optimality of the PCR estimator for the EIV setting—if snr = O(

√
log(np)), then
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Figure 1.4: Simulation displays the spectrum of Z = X + W ∈ R100×100. Here, X = UV T , where
the entries of U ,V ∈ R100×10 are sampled independently from N (0, 1); further, the entries of W are
sampled independently from N (0, σ2) with σ2 ∈ {0, 0.2, . . . , 0.8}. Across varying levels of noise
σ2, there is a steep drop-off in magnitude from the top to remaining singular values—this marks the
“elbow” point. As seen from the figure, the top singular values of Z correspond closely with that of
X (σ2 = 0), and the remaining singular values are induced by W . Thus, rank(Z ) ≈ rank(X ) = 10.

no estimator can consistently estimate β∗. The key theoretical results in Chapter 3 and 4
crucially build upon this parameter estimation result.

(2) Out-of-sample prediction. We establish that PCR achieves vanishing out-of-sample
prediction error, even in the presence of corrupted out-of-sample covariates. To the best
of our knowledge, the standard works in the error-in-variables literature do not provide
prediction error guarantees in the presence of corrupted test covariates. Additionally,
since we consider a fixed design setting, we do not make any distributional assumptions
on the data generating process of the true train and test covariates to arrive at our result.
We hope this provides a novel perspective on learning with covariate shifts, an important
topic in the statistics and econometrics literatures. As with our parameter estimation
result, we establish that our test prediction error is controlled by the signal-to-noise ratio
corresponding to the test covariates, defined as snrtest := ρs′r′/(

√
m+√p), where s′r′ is

the smallest non-zero singular value of the test covariates X ′ and m is the size of the
test set. We establish that PCR’s test prediction error vanishes, i.e.,

∥∥∥X ′β∗ − X̂ ′β̂
∥∥∥

2

p−→ õ(1),

as long as snr, snrtest are growing sufficiently quickly. Note that X̂ ′ is produced by doing
PCA on the noisy test covariates Z ′ = X ′ + W ′. In the special case when the underlying
train and test covariates have a well-balanced spectra and m, p = Θ(n), we show that the
squared ℓ2-norm test prediction error rate is Õ(1/n).
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(3) “Online” variant of PCR. In Chapter 5, we show that a simple variant of the PCR
algorithm provided in Chapter 2 is able to handle “online” data. This is where the noisy
test covariates z′i = x ′i + w ′i for i ∈ [m] arrive one at a time in an online fashion and
we have to make an immediate prediction for ⟨x ′i, β∗⟩. The “online” setting is harder as
there is no way to explicitly de-noise z′i for i ∈ [m]; in contrast, in the “offline” setting
considered above, all of the test covariates Z ′ = [z′i ]i∈[m] are available in batch and
so we can collectively de-noise them via PCA. Surprisingly we show that taking the
inner product of z′i with β̂ (learned using the training covariates Z ) implicitly de-noises
z′i . Hence, our online variant of PCR is simply to multiply each z′i that arrives with β̂.
We establish this algorithm has regret (i.e., ℓ2-norm test prediction error) scaling as
Õ(1/n) when m, p = Θ(n). This online variant of PCR is a crucial step in our time series
forecasting results in Chapter 5.

■ 1.2.2 Synthetic Interventions (Chapter 3)

Motivation. We briefly motivate and describe the synthetic interventions (SI) framework
through a policy application we applied it to: the goal was to estimate the counterfactual
COVID-19 morbidity rate across countries if they had enacted different mobility restricting
interventions (measured using Google’s mobility reports Google (2020)). The challenge
in doing so was that heterogeneous characteristics of a country (e.g., the government
structure, demographics, cultural leanings) are “confounders”, i.e., they impact both the
social distancing policies that were put into place and the observed health outcomes.
The SI estimator implicitly corrects for this confounding by leveraging observational data
across nations. For example, to estimate the U.S.’s health outcomes under a policy it
did not implement, the estimator builds a “synthetic U.S.” by leveraging data of other
countries that did go through that policy. See Figure 1.5 for a depiction of the synthetic
US, Brazil and India produced by the SI estimator under different levels of mobility
restriction (details in Agarwal et al. (2021c)). In doing so, we also extend the synthetic
controls method, a widely used frameworks in econometrics, to the multiple intervention
setting, an important open problem in the literature Abadie (2020). The simplicity and
robustness of the SI estimator is what allows us to use it in a range of applications. These
include: clinical trial design, policy-evaluation, development economics, “synthetic” A/B
testing in e-commerce, and synthetic biology Agarwal et al. (2021c); Squires et al. (2021);
Agarwal et al..
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(a) United States (b) Brazil (c) India

Figure 1.5: Counterfactual predictions of COVID-19 related morbidity counts under different
mobility restriction levels.

Setup. We consider a setting with N ≥ 1 units and D ≥ 1 interventions. For each
unit and intervention pair, there are T ≥ 1 outcomes/measurements of interest. Unless
stated otherwise, we index units with n ∈ [N ] := {1, . . . , N}, outcomes with t ∈ [T ], and
interventions with d ∈ [D]0.1 Recall in Figure 1.2, we encode the potential outcomes into
a order-3 tensor whose dimensions correspond to units, measurements, and interventions.
We describe our observations through Y = [Ytnd] ∈ {R ∪ ⋆}T×N×D , where ⋆ indicates a
missing entry. We assume Y obeys the following sparsity pattern.

Required observation pattern in potential outcomes tensor in SI. We assume we observe
the same T0 ≤ T outcomes for all units under the same intervention. Without loss of
generality, let this intervention be d = 0, and let the indices corresponding to these T0

measurements be Tpre := {1, . . . , T0}. That is, we observe Ytn0 = Y (0)
tn for all n ∈ [N ]

and t ∈ [T0]. Further, for every intervention d, there is a non-empty subset of units,
I (d) ⊂ [N ], for which we observe T1 ≤ T measurements. Let Nd = |I (d)|. Without
loss of generality, we assume the indices corresponding to these T1 measurements are
Tpost := {T − T1 + 1, . . . , T }. That is, we observe Ytnd = Y (d)

tn for d ∈ [D]0, n ∈ I (d), and
t ∈ Tpost. For all other entries of Y , we assume Ytnd = ⋆.

Recall from Figure 1.3 two typical sparsity patterns seen in causal inference settings that
meet the required observation pattern above.

Goal. As stated earlier, the goal in this chapter is to estimate Y (d)
tn for all n ∈ [N ] and

d ∈ [D],

θ(d)
n = 1

T1

∑

t∈Tpost

E[Y (d)
tn ].

1Let [X ]0 = {0, 1, . . . , X − 1} and [X ] = {1, . . . , X} for any positive integer X .
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SI Algorithm. The SI estimator recovers a given θ(d)
n with valid confidence intervals via a

three-step procedure, where each step has a simple closed form expression. Below, we
give an overview of the method. For a given (n, d) pair, the first step is to estimate a
linear model, w (n,d) ∈ RNd such that for all t ∈ Tpre,

Ytn0 ≈
∑

j∈I (d)

w (n,d)
j Ytj0.

Specifically, we use principal component regression (PCR) (analyzed in Chapter 2) to learn
w (n,d) by linearly regressing {Ytn0 : t ∈ Tpre} on {Ytj0 : t ∈ Tpre, j ∈ I (d)}. Subsequently
θ(d)
n is estimated as

Ê[Y (d)
tn ] =

∑

j∈I (d)

w (n,d)
j Ytjd, for t ∈ Tpost,

θ̂(d)
n = 1

T1

∑

t∈Tpost

Ê[Y (d)
tn ].

Key results. We establish an identification result for θ̂(d)
n , i.e., the counterfactual outcome

θ̂(d)
n can be expressed as a function of observed outcomes. Importantly, the SI estimator

allows for latent confounders that determine how interventions are assigned. Further, we
prove finite-sample consistency and asymptotic normality of the estimator. That is,

|θ̂(d)
n − θ(d)

n |
p−→ Õ

( 1
min(T 1/4

0 ,
√
T1,
√
Nd)

)
,

√
T1(θ̂(d)

n − θ(d)
n )

σ̃
d−→ N (0, 1),

where σ̃ can be consistently estimated. In doing so, we establish novel identification,
estimation and inference results for the widely used synthetic controls framework Abadie
(2020) as well.

■ 1.2.3 Causal Matrix Completion (Chapter 4)

Motivation. Recommendations have become an integral part of modern social and
engineering systems, and can strongly alter the purchasing and engagement behavior
of individuals. The goal of recommender systems is to optimally recommend previously
unrated items that an individual is likely to prefer. This problem can be reduced to matrix
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completion, where rows index users and columns index items; each missing user-item
entry corresponds to the potential rating a user would give to that item had they rated
it. To motivate the importance of studying the missingness mechanism, we showcase two
experiments (details in Agarwal et al. (2021b)), one with MCAR and the other with MNAR
data in Figures 1.6a and 1.7a. We use three matrix completion algorithms to recover the
distribution of true ratings given a subset of revealed ratings: (i) Universal singular value
thresholding (USVT) a popular spectral based method; (ii) Softimpute (softImpute), a
popular optimization based method; (iii) “synthetic nearest neighbors” (SNN), our proposed
method. In Figure 1.6, under MCAR, softImpute and SNN both accurately recover the
true distribution, while USVT cannot. In Figure 1.7, under MNAR, SNN continues faithful
recovery, but softImpute is significantly biased. This underscores how MNAR data can
bias recommendations and the need for a rigorous framework to tackle it. That is exactly
what this chapter aims to do.

(a) True, revealed. (b) USVT. (c) softImpute. (d) SNN.

Figure 1.6: MCAR: softImpute and SNN recover true distribution faithfully; note different scale
for USVT.

(a) True, revealed . (b) USVT. (c) softImpute. (d) SNN.

Figure 1.7: MNAR: SNN faithfully recovers true distribution with MNAR data.; note different
scales for USVT & softImpute.

Setup. We consider a signal matrix A = [Aij ] ∈ Rm×n, a noise matrix E = [εij ] ∈ Rm×n,
and a propensity score matrix P = [pij ] ∈ [0, 1]m×n. All three matrices are entirely latent,
i.e., unobserved. Let Y = [Yij ] ∈ Rm×n denote the “noisy” version of A, with E[Y ] = A; we
denote εij = Yij − Aij . We assume Y itself is partially observed. In particular, we denote
D = [Dij ] ∈ {0, 1}m×n with E[D] = P as the missingness mask matrix that indicates
which entries of Y are observed. For convenience, we encode our observations into
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Ỹ = [Ỹij ] ∈ {R ∪ {⋆}}m×n such that for (i, j) ∈ [m]× [n],

Ỹij =





Yij , if Dij = 1

⋆, otherwise.

In words, if Dij = 1 then Aij is noisily observed, and if Dij = 0 then Aij remains unknown.

In terms of the type of MNAR data this work considers, we allow for D and Y to be
dependent, provided D ⊥⊥ Y |A, where A is latent. In fact, we allow D to be any arbitrary
function of A, random or deterministic, subject to suitable observation patterns. Notably,
our framework also allows the entries in D to be dependent with each other across both
rows and columns, and the minimum value of P to be 0, which are important departures
from the current matrix completion literature. Under these conditions, we propose an
algorithm that provably recovers A from Ỹ with entry-wise (i.e., max-norm) guarantees.

For concreteness, let us return to the recommender system example. In line with the
potential outcomes framework, Aij can be interpreted as E[Y (ij)], i.e., the expected potential
rating a user would give to an item if they had rated it. P dictates the probability these
expected ratings are revealed; Y in relation to A then models the inherent randomness in
how users rate items; that is, Y can be interpreted as a “noisy” instance of A.

SNN algorithm. SNN is a simple two-step algorithm which combines the nearest neighbors
(i.e., collaborative filtering) approach for matrix completion with the SI approach in Chapter
3. See Figure 1.8 for a visual depiction of the algorithm. SNN draws inspiration from the
popular K -Nearest Neighbour (KNN) algorithm. However, the key assumption underlying
KNN is that there do exist K rows that are close to identical to the i-th row, with respect to
some pre-defined metric. However, it is not necessary that these K rows exist even for a
rank 1 matrix. As a simple example, consider a matrix M ∈ Rm×n where Mi· = [i, 2i, . . . , ni].
By construction M is rank 1, but for any row, there does not exist any other row that is
close to it in a mean squared sense; hence, it has no nearest neighbours.

SNN overcomes this hurdle Aij by taking an average of the observed outcomes for column j
that are associated with the K “‘synthetic” neighbors of row i. Each of the K “synthetic”
neighbors of row i is constructed from NR(j), where the k-th synthetic neighboring row is
formed by a linear combination, defined by β̂(k), of the rows in AR(k) (which is the k-th)
partition of AR. As in SI, β̂(k) is learned via PCR.

Key results. We prove entry-wise finite-sample consistency and asymptotic normality of
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(a) (b) (c) (d)

Figure 1.8: We visually depict the various quantities needed to define the SNN algorithm. Figure
4.5a depicts a particular sparsity pattern in our matrix Ỹ with entry (i, j) missing. Figure 4.5b
depicts NR(j) and NC(i). Figure 4.5c depicts AR, AC, and S. Figure 4.5d depicts the SNN algorithm
with K = 1; for K > 1, we partition the rows in S into K mutually disjoint sets.

the SNN estimator for matrix completion with MNAR data (and MCAR data as a special
case), an unresolved problem in the literature. That is,

|Âij − Aij |
p−→ Õ

( 1√
K

)
,

√
K (Âij − Aij )

σ̃
d−→ N (0, 1).

How does this generalize SI? The setup in SI (Chapter 3) can be made a special case by
effectively flattening the tensor into a matrix; rows of the induced matrix still correspond
to units, but a column is a double index for a measurement and an intervention, i.e., the
(i, j, d)-th entry of the tensor corresponds to the (i, (j, d))-th entry of the induced matrix.
Given this reduction, we generalize the framework, algorithm, and theoretical results in
SIin the following ways. First, we formally extend the SI framework, to recover matrices
under more general missingness patterns.. Doing so allows us to apply our framework
to a wider variety of applications such as recommender systems, while the SI framework
was introduced in the context of personalized policy evaluation and synthetic A/B testing.
Third, this work establishes point-wise finite-sample consistency and asymptotic normality
of our proposed SNN algorithm, which was absent in Agarwal et al. (2021c) with respect
to the SI algorithm. Indeed, in the context of the panel data literature, establishing
point-wise asymptotic normality for each unit, (intervention, time)-tuple is of independent
interest.

■ 1.2.4 Multivariate Singular Spectrum Analysis (Chapter 5)

Motivation. A large focus of the causal inference literature is estimating the counterfactual
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of what would have happened under an unseen intervention, i.e., causal imputation. Another
meaningful question is estimating what will happen in the future under a collection of
possible different interventions, i.e., causal forecasting. Doing this effectively has a variety
of applications, e.g., forecasting customer demand under different discounting policies to
optimize supply-chain management, forecasting network latency under different congestion
control policies to optimize infrastructure resource planning. To do this, we have to combine
models and algorithms for causal inference with those for time series forecasting. For
example, say we collect data of many units over time under different interventions. The
estimators SI Agarwal et al. (2021c) and SNN Agarwal et al. (2021b), discussed earlier,
are shown to perform accurate causal imputation under a latent low-rank factor model,
i.e., there is a low-dimensional factor for each unit, time period, and intervention—recall
the model in (1.1). To do causal forecasting, a natural extension of such a latent factor
model is to explicitly model the latent time factors as a time series (e.g., an autoregressive
process)—recall the mode in (1.2). That is, a spatio-temporal factor model. Towards
this, in Agarwal et al. (2022, 2019a, 2021a), under a novel spatio-temporal factor model
across units and time, we propose and analyze a variant of Multivariate singular spectrum
analysis (mSSA), which is a very popular method to impute and forecast a multivariate
time series. However, despite its heavy use in practice, the theoretical properties of mSSA
are not well understood. For the variant of mSSA we introduce, we establish a rigorous
finite-sample analysis of its imputation and out-of-sample forecasting properties; such a
finite-sample analysis of mSSA has been missing from the literature.

The hope is to eventually extend this spatio-temporal model and the variant of mSSA we
propose to do counterfactual forecasting by incorporating data collected across different
interventions as well.

Setup. We consider a discrete time setting with time indexed as t ∈ Z. For N ∈ N, let
the collection fn : Z → R, n ∈ [N ] := {1, . . . , N} be the latent time series of interest.
For t ∈ [T ] and n ∈ [N ], we observe Xn(t) where for ρ ∈ (0, 1],

Xn(t) =





fn(t) + ηn(t) with probability ρ

⋆ with probability 1− ρ.
(1.5)

Here ⋆ represents a missing observation and ηn(t) represents the per-step noise, which
we assume to be an independent (across t, n) mean-zero random variable. Though ηn(t) is
independent, we note that the underlying time series, fn(·), is of course strongly dependent
across t, n. Indeed the presence of per-step noise ηn(t) and missing values (denoted by
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⋆) represent an additional challenge of measurement error in our setup. As discussed
earlier, the generic spatio-temporal factor model for fn(·), n ∈ [N ] described in (1.2)
without additional noise ηn(·) or missingness already provides an expressive model for
a time series including any finite sum of products of harmonics and polynomials, any
differentiable periodic function, and any Hölder continuous function.

Goal. Our objective is two-folds, for n ∈ [N ]: (i) imputation – estimating fn(t) for all
t ∈ [T ]; (ii) out-of-sample forecasting – predicting fn(t) for t > T .

mSSA algorithm. See Figure 1.9 for a visual depiction of the key steps of the variant of
mSSA we propose. They key steps are as follows: (1) transform time series Xn(t), t ∈ [T ]

Figure 1.9: Key steps of our proposed variant of the mSSA algorithm.

into an L × T /L matrix where the entry of the matrix in row i ∈ [L] and column j ∈ [T /L]
is Xn(i+ (j − 1) x L). This matrix induced by the time series is called the Page matrix,
and we denote it as P(Xn, T , L). (2) Take P(Xn, T , L) for n ∈ [N ] and concatenate them
column-wise—this induced stacked page matrix is denoted as SP((X1, . . . , XN ), T , L). (3)
Simply do PCR on SP((X1, . . . , XN ), T , L). The first step of PCA (also called hard singular
value thresholding (HSVT)) implicitly de-noises SP((X1, . . . , XN ), T , L) and that is the
only step associated need for imputation. (4) The linear model learned via PCR can then
be used to do out-of-sample forecasting.

Key results. Under the spatio-temporal factor model in (1.2), we show the mean-squared
imputation error (ImpErr(N,T )) and out-of-sample forecasting error TestForErr(N,T )
scale as follows

ImpErr(N,T ),TestForErr(N,T ) = Õ
( 1√

min(N,T )T

)
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Figure 1.10: Relative effectiveness of tSSA, mSSA, ME for varying N,T .

In comparison, the univariate version of mSSA, called SSA, has error scaling as Õ
(

1√
T

)
.

And at least for imputation, if one does matrix completion directly on the time series data
without creating the Page matrix first, the error scales as Õ

(
min(N,T )

)
. Hence our

analysis suggests mSSA exploits both the temporal and spatial structure in the data.

Lastly, in Chapter 5, we we propose a novel tensor variant of SSA, termed tSSA, which
exploits recent developments in the tensor estimation literature. In tSSA, rather than doing
a column-wise stacking of the Page Matrices induced by each of the N time series to form
a larger matrix, we instead view each Page matrix as a slice of a L×T /L×N order-three
tensor. In other words, the entry of the tensor with indices i ∈ [L], j ∈ [T /L] and n ∈ [N ]
equals the entry of P(Xn, L, T ) with indices i, j . With respect to imputation error, we
characterize the relative performance of tSSA, mSSA, and “vanilla” matrix estimation (ME).
We find that when N = o(T 1/3), mSSA outperforms tSSA; when T 1/3 = o(N), N = o(T )
tSSA outperforms mSSA; when T = o(N), standard matrix estimation methods are equally
as effective as mSSA and tSSA. See Figure 1.10 for a graphical depiction of the various
regimes. In addition to being a basis for counterfactual forecasting, we hope this work
motivates future inquiry into the connections between the classical field of time series
analysis and the modern, growing field of matrix/tensor estimation.
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Chapter 2

On Principal Component Regression

■ 2.1 Introduction

We consider the setup of error-in-variables regression in a high-dimensional fixed design
setting. Formally, we observe a labeled dataset of size n, denoted as {(yi, zi) : i ≤ n}.
Here, yi ∈ R represents the response variable, also known as the label or target. For
any i ≥ 1, we posit that

yi = ⟨xi, β∗⟩+ εi, (2.1)

where β∗ ∈ Rp is the unknown model parameter, xi ∈ Rp is the associated covariate,
and εi ∈ R is the response noise. Unlike traditional regression settings where zi = xi,
the error-in-variables regression setting reveals a corrupted version of the covariate xi.
Precisely, for any i ≥ 1, let zi ∈ Rp be given by

zi = (xi + wi) ◦ πi, (2.2)

where wi ∈ Rp is the covariate measurement noise and πi ∈ {0, 1}p is a binary observation
mask with ◦ denoting component-wise multiplication, i.e., we observe the k-th component
of zi if πik = 1 and 0 otherwise. Further, we consider a high-dimensional setting where
both n and p are growing with n possibly much smaller than p.

Our interest is in analyzing the performance of the classical method of principal component
regression (PCR) for this scenario. In a nutshell, PCR is a two-stage process: first, PCR
“de-noises” the observed in-sample (train) covariate matrix Z = [zTi ] ∈ Rn×p via principal
component analysis (PCA), i.e., PCR replaces Z by its low-rank approximation. Then, PCR

47
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regresses y = [yi] ∈ Rn with respect to this low-rank approximation to produce the model
estimate β̂. We are interested in the following natural questions about the estimation
quality of PCR in a high-dimensional error-in-variables setting: (1) amongst the many
feasible models in the high-dimensional setting, is there a model that PCR identifies
consistently? (2) given noisy and partially observed out-of-sample (test) covariates, how
can PCR be methodologically extended to accurately predict the expected test response
variables, i.e., under what conditions does PCR generalize?

■ 2.1.1 Contributions

Model identification. As the main contribution of this work, we establish that PCR
consistently estimates the unique minimum ℓ2-norm model parameter amongst all feasible
models as per (2.1), i.e., PCR implicitly regularizes. Notably, the minimum ℓ2-norm β∗ is
of primary interest from the perspective of prediction (see Section 2.5.1 for a discussion
on this). We define a “signal-to-noise” ratio of the true covariates X = [xTi ] ∈ Rn×p

as snr := ρsr/(
√
n + √p), where sr is the smallest non-zero singular value of X and

ρ is the probability of observing each entry of Z . Theorem 2.5.1 establishes that PCR
consistently estimates the minimum ℓ2-norm β∗ if snr is growing sufficiently quickly, i.e.,
snr = ω(

√
log(np)), ignoring dependencies on β∗ and the rank of X .

Near optimality. We establish a minimax lower bound for parameter estimation in our
setting of interest in Theorem 2.5.2. This result suggests that if snr = O(1), then the
parameter estimation error is lower bounded by a positive, absolute constant. That is,
PCR is near minimax optimal.

Out-of-sample prediction. We establish that PCR achieves vanishing out-of-sample
prediction error, even in the presence of corrupted out-of-sample covariates (Theorem
2.5.3 and Corollary 2.5.2). To the best of our knowledge, the standard works in the
error-in-variables literature do not provide prediction error guarantees in the presence of
corrupted test covariates. Additionally, since we consider a fixed design setting, we do
not make any distributional assumptions on the data generating process of the true train
and test covariates to arrive at our result. Rather, we introduce a natural linear algebraic
condition (Assumption 5) relating the train and test covariates. We hope this provides a
novel perspective on learning with covariate shifts, an important topic in the statistics
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and econometrics literatures. In contrast, popular tools to understand the generalization
properties of estimators, such as Rademacher complexity analyses, commonly operate
under distributional assumptions. As with our parameter estimation result, we establish
that our test prediction error is controlled by the signal-to-noise ratio corresponding to the
test covariates, defined as snrtest := ρs′r′/(

√
m+√p), where s′r′ is the smallest non-zero

singular values of test covariates X ′ and m is the size of the test set. Theorem 2.5.3
then states that PCR’s test prediction error vanishes as long as snr, snrtest are growing
sufficiently quickly. In the special case when the underlying train and test covariates
have a well-balanced spectra and m, p = Θ(n), we show that the squared ℓ2-norm test
prediction error rate is Õ(1/n) (Corollary 2.5.2). This improves upon the best known test
prediction error rate of Õ(1/

√
n) for PCR, as established in Agarwal et al. (2019b, 2021e).

Alas, the results in these prior works consider a transductive learning setting with i.i.d.
covariates. In contrast, our work goes beyond this restrictive setup by allowing for a fixed
design setting. For a detailed comparison, please refer to Section 2.2.

Counterfactual predictions for synthetic controls. An important motivation for this work
is that of synthetic controls, a popular method for counterfactual predictions with ob-
servational data Abadie et al. (2010); Abadie and Gardeazabal (2003); Abadie (2020).
Specifically, counterfactual prediction in synthetic controls corresponds to out-of-sample
prediction in the setting of this work: (a) the factor model structure utilized in the synthetic
controls literature implies the low-rank structure of the underlying covariate matrix; (b) the
per-step idiosyncratic shocks correspond to the error-in-variables; and (c) out-of-sample
prediction corresponds to counterfactual prediction of the outcomes under control. In
light of this, our results add to the synthetic controls literature in the following ways.
We show consistency in recovering the vector of counterfactual outcomes in terms of the
mean-squared error (MSE). In particular, we provide a “fast-rate" analysis, which improves
upon the “slow-rate" analysis in prior works Agarwal et al. (2019b, 2021e). Further, our
analysis considers a fixed design setting, i.e., the latent factors can be deterministic, rather
than being sampled independently as considered in prior works Agarwal et al. (2019b,
2021e). Finally, the near optimality of PCR suggested by our minimax result implies
the near optimality of the robust synthetic controls method of Amjad et al. (2018) and
suggests its attractivness amongst the many variants in the synthetic controls literature
(e.g., Abadie et al. (2010); Abadie and Gardeazabal (2003); Doudchenko and Imbens
(2016a); Athey et al. (2021)).
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■ 2.1.2 Organization

The remainder of this paper is organized as follows. In Section 2.2, we discuss related
works. In Section 2.3, we formally describe our setup and assumptions. We then describe
the PCR algorithm in Section 2.4 followed by its parameter estimation and out-of-sample
prediction error bounds in Section 2.5. In Section 2.6, we discuss applications of this
work to the synthetic controls literature. To reinforce our theoretical findings, we provide
illustrative simulations in Section 2.7. We conclude and discuss important future directions
of research in Section 5.8.

■ 2.1.3 Notation

For any matrix A ∈ Ra×b, we denote its operator (spectral), Frobenius, and max element-
wise norms as A2, AF , and Amax, respectively. By rowspan(A), we denote the subspace
of Rb spanned by the rows of A. For any vector v ∈ Ra, let vp denote its ℓp-norm. If
v is a random variable, we define its sub-gaussian (Orlicz) norm as vψ2 . Let ◦ denote
component-wise multiplication and let ⊗ denote the outer product. For any two numbers
a, b ∈ R, we use a ∧ b to denote min(a, b) and a ∨ b to denote max(a, b). Further, let
[a] = {1, . . . , a} for any integer a. Let f and g be two functions defined on the same
space. We say that f (n) = O(g(n)) if and only if there exists a positive real number M
and a real number n0 such that for all n ≥ n0, |f (n)|≤ M|g(n)|. Analogously we say
f (n) = Θ(g(n)) if and only if there exists positive real numbers m,M such that for all
n ≥ n0, m|g(n)|≤ |f (n)|≤ M|g(n)|; f (n) = o(g(n)) if for any m > 0, there exists n0 such
that for all n ≥ n0, |f (n)|≤ m|g(n)|; f (n) = ω(g(n)) if for any m > 0, there exists n0 such
that for all n ≥ n0, |f (n)|≥ m|g(n)|. Õ(·) is defined analogously to O(·), but ignores log
dependencies.

■ 2.2 Related works

In this section, we discuss related prior works. We also provide a detailed discussion of
our key assumptions and connect them to the assumptions made in these prior works. In
Section 2.2.1, we discuss our work in the context of the PCR literature. In Section 2.2.3,
we present a detailed comparison with the high-dimensional error-in-variables literature.
In Section 2.2.4, we briefly discuss linear regression with hidden confounders, an important



Sec. 2.2. Related works 51

topic in econometrics.

■ 2.2.1 Principal Component Regression (PCR)

PCR, as a method, was introduced in Jolliffe (1982). Despite the ubiquity of PCR in
practice, the formal literature on PCR is surprisingly sparse. Notable works include Bair
et al. (2006); Chao et al. (2019); Agarwal et al. (2019b, 2021e).

Model Identification.

In Agarwal et al. (2019b, 2021e), the authors present finite-sample analyses for the
prediction error of PCR in a high-dimensional error-in-variables setting, but do not
provide any analysis for parameter estimation. In contrast, this work establishes that
PCR identifies the unique model with minimum ℓ2-norm, i.e., PCR implicitly regularizes,
and provide non-asymptotic rates of convergence.

Fixed Design.

In Agarwal et al. (2019b, 2021e), the authors consider a transductive learning setting,
where both in-sample and out-of-sample covariates are accessible upfront. Importantly,
Agarwal et al. (2019b, 2021e) assumes i.i.d. covariates, which allows them to leverage
the techniques of Rademacher complexity analyses to establish their prediction error
bounds. This work, on the other hand, considers the classical supervised learning setup,
where test covariates are not revealed during training. Further, we consider a fixed
design setting where the in-sample and out-of-sample covariates do not need to obey
the same distribution. Rather, we establish that PCR achieves consistent test prediction
in a distribution-free setting as long as a natural linear algebraic constraint is satisfied
between the train and test covariates (Assumption 5).

Rates of Convergence.

In Agarwal et al. (2019b, 2021e), the authors show that when m, p = Θ(n), PCR’s out-of-
sample prediction error decays as Õ(1/

√
n). As noted in Agarwal et al. (2019b, 2021e),

this “slow” rate likely arises from their analysis via Rademacher complexity arguments.
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In contrast, we leverage our model identification result to prove that PCR’s out-of-sample
prediction error decays at the “fast” rate of Õ(1/n).

Minimax Lower Bound.

Unlike prior works, we introduce a minimax lower bound for parameter estimation. This
allows us to establish the near minimax optimality of PCR with respect to parameter
estimation. In the process, we introduce a natural notion of signal-to-noise ratio for this
setting.

■ 2.2.2 Functional Principal Component Analysis (fPCA)

We also take note of a related literature on functional principal component analysis (fPCA),
which is a natural generalization of PCA to infinite-dimensional operators (see Yao et al.
(2005); Hall et al. (2006); Li and Hsing (2010); Descary et al. (2019)). Typically in this
literature, it is assumed that we observe n randomly sampled trajectories at p locations
(carefully chosen from a grid with minor perturbations) forming an n × p data matrix, say
D. The p×p matrix, DTD, is the empirical proxy of the underlying covariance kernel that
corresponds to these random trajectories. Under appropriate structural assumptions on
these trajectories, despite the high-dimensionality, the DTD matrix can be represented
as the additive sum of a low-rank matrix and a noise matrix. This resembles the setting
of low-rank matrix estimation with a key difference being that all entries are observed. In
the work of Descary et al. (2019), the low-rank component is estimated by performing an
explicit rank minimization, which is known to be computationally hard. The functional
(or trajectory) approximation from this low-rank estimation is obtained by smoothing (or
interpolation)—this is where the careful choice of locations in a grid plays an important
role. The estimation error is provided with respect to the normalized Frobenius norm
(i.e., Hilbert-Schmidt norm when discretized). Finally, the fPCA literature considers the
setting where n → ∞ for a given p or at best n ≫ p.

In comparison, PCR, as we argue, utilizes hard singular value thresholding (HSVT), a
popular method in the matrix estimation toolkit, to recover the low-rank matrix; such an
approach is computationally efficient and even yields a closed form solution. Indeed,
PCR, as introduced in the original work Jolliffe (1982), is precisely HSVT followed by
ordinary least squares (OLS). As a result, unlike the standard fPCA setup, PCR allows for
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sparsity in the observed covariate matrix since HSVT is precisely designed to recover the
underlying low-rank matrix in the presence of both noisy and missing entries. As shown in
this work, for OLS to not only recover the minimum ℓ2-norm model parameter faithfully but
also to obtain meaningful prediction error bounds, the matrix estimation error needs to be
bounded with respect to a stronger norm than the normalized Frobenius norm, concretely
·2,∞ (recall that (1/√np)·F≤ (1/

√
n)·2,∞). That is, the typical error bound for (1/√np)·F

is not sufficient to provide guarantees for PCR with error-in-variables. Finally, the setup
of this work, i.e., error-in-variables in high dimension, allows for both n ≪ p and n ≫ p;
the current fPCA literature only allows for n ≫ p. Indeed, for this closely related line of
fPCA literature, our work suggests a few interesting directions for future research: (1)
allow the sampling locations to be different across the n measurements, provided there is
sufficient overlap rather than requiring them to be the same; (2) allow for n trajectories
and p observed locations per trajectory to scale simultaneously rather than a requirement
of n ≫ p; (3) extend fPCA guarantees for computationally efficient methods like HSVT.

There has also been work on functional principal component regression (fPCR), which
extends PCR to allow for β∗ to be an infinite-dimensional parameter as opposed to
a high-dimensional parameter that is considered in this work. In particular, Hall and
Horowitz (2007) and Cai and Hall (2006) consider the problem of parameter estimation
and prediction error for fPCR, respectively. However, they focus on the setting without
error-in-variables. As noted above, parameter estimation and test prediction error at the
fast rate of Õ(1/n) for PCR with error-in-variables, even in the finite-dimensional case,
has remained elusive. Extending our results on parameter estimation and prediction error
for fPCR with error-in-variables remains interesting future work.

■ 2.2.3 Error-in-variables

In what follows, we highlight a few key comparisons between this work and prominent
works in the high-dimensional error-in-variables literature, cf. Loh and Wainwright (2012),
Datta and Zou (2017), Rosenbaum and Tsybakov (2010), Rosenbaum and Tsybakov (2013),
Belloni et al. (2017a), Belloni et al. (2017b), Chen and Caramanis (2012), Chen and
Caramanis (2013), Kaul and Koul (2015).
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Out-of-Sample Predictions.

The focus of the literature has been on parameter estimation. As such, these works do
not provide extensions of their algorithms to produce predictions in the presence of noisy
and partially observed test covariates; hence, even with knowledge of the exact β∗, it
is unclear how these previous results can be extended to establish generalization error
bounds. In contrast, PCR naturally handles this setting, as shown in Section 2.4.

Knowledge of Noise Distribution.

The algorithms furnished in prior works explicitly utilize knowledge of the unknown
covariance of W to recover β∗. In particular, these algorithms typically “correct” the
covariance of Z by subtracting this noise covariance, i.e., ZTZ − E[W TW ]. To carry out
such a correction, one must assume access to either oracle knowledge of E[W TW ] or
a good data-driven estimator for it. As noted by Chen and Caramanis (2013), such an
estimator can be costly or simply infeasible in many practical settings. PCR, on the
other hand, does not require any such knowledge. Formally, the first step in PCR, which
finds a low-rank approximation of Z , implicitly de-noises the covariates without utilizing
knowledge of the noise distribution. The trade-off in PCR is that our results only hold if
the number of retained singular components is chosen to be the rank of X . However, as
we will see in Section 2.4.4, there exists numerous data-driven methods to choose this
hyper-parameter. Indeed, an interesting future direction is to analyze PCR when this
hyper-parameter is misspecified.

Operating Assumptions.

Below, we compare and relate our primary structural assumptions (Assumptions 2 and 6,
7) with those typically made in the literature.

Low-rank vis-á-vis sparsity. Arguably, one of the most popularly endowed structures
in high-dimensional regression is sparsity in the model parameter, β∗. Specifically, it
is commonly posited that β∗ is r-sparse, i.e., β∗ has at most r nonzero entries (Loh and
Wainwright (2012); Datta and Zou (2017); Rosenbaum and Tsybakov (2010) to name a
few). In contrast, this work assumes that the underlying training covariate matrix X is
low-rank (Assumption 2), i.e., the spectral profile of X is described by r nonzero singular
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values. These notions of sparsity are related. In particular, if rank(X ) = r, then there
exists an r-sparse β̃ such that Xβ∗ = X β̃ (see Proposition 3.4 of Agarwal et al. (2021e));
meanwhile, if β∗ is r-sparse, then it is not hard to verify that there exists a X̃ of rank
r that also provides equivalent responses. In other words, one needs sparsity of some
form for consistent estimation in a high-dimensional setting, and the two perspectives
described above can be viewed as complementary to each other. We note that the
low-rank assumption on X can be tested in a data-driven way by simply inspecting the
singular values of Z , as described in Section 2.4.4. Further, it is well-established that
(approximately) low-rank matrices are abundant in real-world data science applications
(see Udell and Townsend (2019); Xu (2017a) and references therein).

Well-balanced spectra vis-á-vis restricted eigenvalue condition. A secondary condition
that is often assumed in the literature captures the amount of “information spread” across
the rows and columns of the covariates X , which leads to a bound on the smallest singular
value of X . Specifically, prior works often assume that a type of restricted eigenvalue
condition (see Definitions 1 and 2 in Loh and Wainwright (2012)) is satisfied for the
empirical estimate of the covariance of X . In comparison, to obtain “fast” rate results, this
work assumes the spectra of X is well-balanced (Assumptions 6 and 7). We emphasize
that the assumption of a well-balanced spectra is not necessary for consistent estimation,
but rather is one example that yields a reasonable signal-to-noise ratio, which guarantees
both vanishing parameter estimation and out-of-sample prediction errors at a “fast” rate
of Õ(1/n). We note that in many previous works in the high-dimensional regression
literature, the restricted eigenvalue condition, or variants of it, are shown to hold with high
probability (w.h.p.) if each row of X is sampled i.i.d. (or at least, independently) from a
mean zero sub-gaussian distribution. Such a data generating process also implies that the
largest and smallest singular values of X are Õ(

√
n+√p). However, if we assume that X

has rank r and each entry of X = Θ(1), then one can easily verify that the largest singular
value of X is Ω(

√
np/r). This difference in the typical magnitude of the largest singular

value reflects the difference in applications in which a restricted eigenvalue assumption
versus a low-rank assumption is likely to hold. The restricted eigenvalue assumption is
particularly suited in engineering applications such as compressed sensing where one
gets to design X . The applications arising in the social or life sciences primarily involve
performing inference with observational data. In such settings, a low-rank assumption on
X is likely more suitable to capture the latent structure amongst the observed covariates.
However, the well-balanced spectra condition is similar to the restricted eigenvalue
condition in that it requires the smallest non-zero singular value of X to be of the same
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order as that of the largest singular value (i.e., s1, sr = Θ(
√
np/r), where s1, sr denotes

the largest and smallest singular values of X , respectively).

Indeed, such assumptions or analogous versions to it are pervasive across many fields. For
instance, within the econometrics factor model literature, it is standard to assume that the
factor structure is separated from the idiosyncratic errors (e.g., Assumption A of Bai and
Ng (2020)); within the robust covariance estimation literature, this assumption is closely
related to the notion of pervasiveness (see Fan et al. (2018)); within the matrix/tensor
estimation literature, it is assumed that the non-zero singular values are of the same order
to achieve minimax optimal rates (e.g., Cai et al. (2019)). The well-balanced spectra has
also been shown to hold w.h.p. for the embedded Gaussians model, which is a canonical
probabilistic generating process used to analyze probabilistic PCA (see Tipping and
Bishop (1999); Bishop (1999) and Proposition 4.2 of Agarwal et al. (2021e)). Ultimately,
the well-balanced spectra and restricted eigenvalue conditions require the signal is
well-spread across the covariates; for a detailed comparison between the two, please see
Section 3.5 in Agarwal et al. (2021e). Finally, a practical benefit of Assumptions 6 and 7
is that, like Assumption 2, they can be empirically verified following the same procedure
described in Section 2.4.4.

■ 2.2.4 Linear Regression with Hidden Confounding

The high-dimensional error-in-variables regression setup is related to linear regression
with hidden confounding, a common model within the causal inference and econometrics
literatures (see Guo et al. (2020); Ćevid et al. (2020) and references therein). As noted
by Guo et al. (2020), a particular class of error-in-variables models can be reformulated
as linear regression with hidden confounding. Using our notation, they consider a high-
dimensional model where the rows of X are sampled i.i.d. As such, X can be full-rank,
but W is assumed to have low-rank structure. Here, the aim is to estimate β∗, which
is assumed to be sparse. In comparison, we place the low-rank assumption on X and
assume the rows of W are sampled independently and can be of full-rank. Notably, for
this setup, Ćevid et al. (2020) “deconfounds” the observed covariates Z by a spectral
transformation of its singular values. Indeed, it is interesting future work to analyze PCR
for this important and closely related setting.
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■ 2.3 Setup

In this section, we provide a precise description of our problem, including our observations
and assumptions.

■ 2.3.1 Observation Model

As described in Section 4.1, we have access to n labeled observations {(yi, zi) : i ≤
n}, which we will refer to as our in-sample (train) data; recall that xi corresponds
to the latent covariate with respect to zi. Collectively, we assume (2.1) and (2.2) are
satisfied. In addition, we observe m ≥ 1 unlabeled out-of-sample (test) covariates; for
i ∈ {n+ 1, . . . , n+m}, we only observe the noisy covariates zi, which again correspond
to the latent covariates xi, but we do not have access to the associated response variables
yi.

Throughout, let X = [xTi : i ≤ n] ∈ Rn×p and X ′ = [xTi : i > n] ∈ Rm×p represent the
underlying train and test covariates, respectively. Similarly, let Z = [zTi : i ≤ n] ∈ Rn×p

and Z ′ = [zTi : i > n] ∈ Rm×p represent their noisy and partially observed counterparts.

■ 2.3.2 Modeling Assumptions

We make the following assumptions.

Assumption 1 (Bounded covariates).
∥∥X
∥∥

max ≤ 1,
∥∥X ′

∥∥
max ≤ 1.

Assumption 2 (Covariate rank). rank(X ) = r, rank(X ′) = r′.

Assumption 3 (Response noise). {εi : i ≤ n} are a sequence of independent mean zero
subgaussian random variables with

∥∥εi
∥∥
ψ2
≤ σ.

Assumption 4 (Covariate noise). {wi : i ≤ n+m} are a sequence of independent mean
zero subgaussian random vectors with

∥∥wi
∥∥
ψ2
≤ K and E[wi ⊗ wi]2≤ γ2. Further, πi is a

vector of independent Bernoulli variables with parameter ρ ∈ (0, 1].
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Assumption 5 (Subspace inclusion). The rowspace of X ′ is contained within that of X ,
i.e., rowspan(X ′) ⊆ rowspan(X ).

We note that εi, wi, πi across i ≥ 1 are not only mutually independent, but also
independent of X .

■ 2.4 Principal Component Regression

We describe PCR, as introduced in Jolliffe (1982), with a variation to handle missing
data. To that end, let ρ̂ denote the fraction of observed entries in Z . We define
Z̃ = (1/ρ̂)Z =

∑n∧p
i=1 ŝiûi⊗v̂i, where ŝi ∈ R are the singular values (arranged in decreasing

order) and ûi ∈ Rn, v̂i ∈ Rp are the left and right singular vectors, respectively.

■ 2.4.1 Parameter Estimation

For a given algorithmic parameter k ∈ [n ∧ p], PCR estimates the model parameter as

β̂ =
( k∑

i=1
(1/ŝi)v̂i ⊗ ûi

)
y. (2.3)

■ 2.4.2 Out-of-sample Prediction

Let ρ̂′ denote the proportion of observed entries in Z ′. As before, let Z̃ ′ = (1/ρ̂′)Z ′ =
∑m∧p

i=1 ŝ′iû′i ⊗ v̂ ′i , where ŝ′i ∈ R are the singular values and û′i ∈ Rm, v̂ ′i ∈ Rp are the left
and right singular vectors, respectively. Given algorithmic parameter ℓ ∈ [m ∧ p], let
Z̃ ′ℓ =

∑ℓ
i=1 ŝ′iû′i ⊗ v̂ ′i , and define the test response estimates as ŷ′ = Z̃ ′ℓ β̂.

If the responses are known to belong to a bounded interval, say [−b, b] for some b > 0,
then the entries of ŷ′ are truncated as follows: for every i > n,

ŷi =






−b if ŷi ≤ −b,

ŷi if − b < ŷi < b,

b if b ≤ ŷi.
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■ 2.4.3 Properties of PCR

We state some useful properties of PCR, which we will use extensively throughout this
work. These are well-known results, discussed at length in Chapter 17 of Roman (2008)
and Chapter 6.3 of Strang (2006).

Property 2.4.1. Let Z̃ k =
∑k

i=1 ŝiûi ⊗ v̂i. Then β̂, as given in (2.3), also satisfies

1. β̂ is the unique solution of the following program:

minimize
∥∥β
∥∥

2 over β ∈ Rp

such that β ∈ arg min
β′∈Rp

y − Z̃ kβ′22.

2. β̂ ∈ rowspan(Z̃ k ).

■ 2.4.4 Choosing k & When to use PCR

In general, the correct number of principal components k to use is not known a priori. This
is a well-studied problem in the low-rank matrix estimation literature and there exists a
suite of principled methods to choose k . These include visual inspections of the plotted
singular values (Cattell (1966)), cross-validation (Wold (1978); Owen and Perry (2009)),
Bayesian methods (Hoff (2007)), and “universal” thresholding schemes that preserve
singular values above a precomputed threshold (Chatterjee (2015); Donoho and Gavish
(2013)). A common argument for these approaches is rooted in the underlying assumption
that the smallest non-zero singular value of X (i.e., signal) is well-separated from the
largest singular value of W (i.e., noise). Specifically, under reasonable signal-to-noise
scenarios, Weyl’s inequality implies that a “sharp” threshold or gap should exist between
the top r singular values and remaining singular values of the observed data Z̃ . This
gives rise to a natural “elbow” point and suggests choosing a threshold within this gap,
which the methods described above are designed to accomplish. For a graphical depiction
of the elbow, please see Figure 3.3.

As such, for a practitioner, a natural data-driven diagnostic of when to use PCR is to
simply plot the singular values of Z̃ . If the spectrum does not exhibit this elbow structure
(i.e., low-rankness), then PCR (as is) may not be the best suited estimation procedure.
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Figure 2.1: Simulation displays the spectrum of Z = X + W ∈ R100×100. Here, X = UV T , where
the entries of U ,V ∈ R100×10 are sampled independently from N (0, 1); further, the entries of W are
sampled independently from N (0, σ2) with σ2 ∈ {0, 0.2, . . . , 0.8}. Across varying levels of noise
σ2, there is a steep drop-off in magnitude from the top to remaining singular values—this marks the
“elbow” point. As seen from the figure, the top singular values of Z correspond closely with that of
X (σ2 = 0), and the remaining singular values are induced by W . Thus, rank(Z ) ≈ rank(X ) = 10.

■ 2.5 Main Results

We state PCR’s parameter estimation and generalization properties in this section. For
the remainder of the paper, C (K, γ, σ ) > 0 will denote any constant that depends only on
K , γ, σ , and C, c > 0 will denote absolute constants. The values of C (K, γ, σ ), C , and c
may change from line to line or even within a line.

■ 2.5.1 Parameter Estimation

In the high-dimensional framework, recall that there are infinitely many feasible models
that can satisfy (2.1). Thus, the question remains whether there is a β∗ that is recovered
by PCR? To the best of our knowledge, despite the popularity of PCR, such a question
has yet to be answered in an error-in-variables setting.

We find that PCR recovers the unique model with minimum ℓ2-norm, i.e., β∗ ∈ rowspan(X ).
We note that this uniqueness follows since every element in the column space of a matrix
is associated with a unique element in its row space coupled with any element in its
null space. Thus, for the purposes of prediction, it suffices to consider this particular β∗

(see Roman (2008), Strang (2006) for details). Further, recall from Property 2.4.1 that
PCR enforces β̂ ∈ rowspan(Z̃ k ). Hence, if k = r and the rowspace of Z̃ r is “close” to
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the rowspace of X , then this suggests β̂ ≈ β∗. We highlight that the “noise” in Z arises
from the missingness pattern induced by πi and the measurement error W ; meanwhile,
the “signal” in Z comes from X , where its strength is captured by the magnitude of its
singular values. This naturally leads to the following “signal-to-noise” ratio definition:

snr := ρsr√
n+√p

. (2.4)

Here, sr is the smallest non-zero singular value of the signal matrix X , ρ determines
the fraction of observed entries, and

√
n + √p is induced by the perturbation in the

singular values due to the noise matrix W . Indeed, as one would expect, the signal
strength sr scales linearly with ρ. Moreover, from standard concentration results for
random sub-gaussian matrices, it follows that W 2= Õ(

√
n + √p) (see Lemma 2.12.8).

With this notation, we state the main result.

Theorem 2.5.1. Suppose Assumptions 1, 2, 3, 4 hold. Consider β∗ ∈ rowspan(X ) and
PCR with k = r. Let ρ ≥ c log2(np)

np , snr ≥ C (K, γ, σ ), β∗2= Ω(1), β∗1= O(√p). Then with
probability at least 1−O(1/(np)10),

β̂ − β∗22 ≤ C (K, γ, σ ) log(np) ·
(
rβ∗22
snr2 + β∗21

snr4

)
. (2.5)

Interpretation. For added interpretability, we suppress dependencies on K, γ, σ for the
following discussion. One can then verify that Theorem 2.5.1 implies that a sufficient
condition for PCR’s parameter estimation error to vanish w.h.p. is

snr√
r log(np)β∗2 ∨ log1/4(np)β∗1/21

→∞.

Conversely, in Theorem 2.5.2 below, we establish that if snr = O(1), then the parameter
estimation error is lower bounded by a positive, absolute constant; in this sense, Theorem
2.5.1 is nearly tight. The key to establishing this result is to show that the Gaussian
location model problem (see Wu (2020)) can be written as an instance of error-in-variables
regression.

Theorem 2.5.2. Suppose n = O(p) and snr = O(1). Then,

inf
β̂

sup
β∗∈B2

Eβ̂ − β∗22= Ω(1),

where B2 = {v ∈ Rp : v2≤ 1}.



62 CHAPTER 2. ON PRINCIPAL COMPONENT REGRESSION

The minimax bound in Theorem 2.5.2 utilizes ρ = 1 and does not necessarily capture
the refined dependence on ρ. Observe that (2.5) suggests that the error decays as ρ−4.
While this dependency on ρ may not be optimal, similar dependencies have appeared
in the error bound within the error-in-variables literature, e.g., see Loh and Wainwright
(2012) and references therein. Returning to Theorem 2.5.1, if snr = Ω(ρ

√
(n ∧ p)/r), then

(2.5) simplifies as

β̂ − β∗22 ≤
C (K, γ, σ )r2 lognp

ρ4(n ∧ p) β∗22. (2.6)

Next, we describe a natural setup under which the conditions leading to (2.6) hold. To
that end, we introduce Assumption 6 (recall that its interpretation is discussed in detail
in Section 2.2.3).

Assumption 6 (Balanced spectra: training covariates). The r non-zero singular values si
of X satisfy si = Θ(

√
np/r).

Corollary 2.5.1. Let the setup of Theorem 2.5.1 and Assumption 6 hold. Then with
probability at least 1−O(1/(np)10),

β̂ − β∗22 ≤
C (K, γ, σ )r2 log(np)

ρ4(n ∧ p) β∗22,

where C (K, γ, σ ) is a large enough constant dependent on K , γ, σ .

Proof. By Assumption 6, we have sr = Θ(
√

np
r ). This yields

snr = ρsr√
n+√p

≥
cρ√np√
r(n+ p)

≥ cρ
√

(n ∧ p)/r,

i.e., snr = Ω(ρ
√

(n ∧ p)/r). Using this lower bound on snr, the assumptions β∗2= Ω(1)
and β∗1= O(√p), and simplifying (2.5), we complete the proof of Corollary 2.5.1. ■
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■ 2.5.2 Out-of-sample Prediction Error

Next, we bound PCR’s out-of-sample prediction error in the presence of corrupted unseen
data, defined as

MSEtest := 1
m

m∑

i=1
(ŷn+i − ⟨xn+i, β∗⟩)2. (2.7)

We define some more useful quantities. Let sℓ , s′ℓ ∈ R be the ℓ-th singular values of X
and X ′, respectively. Recall from Section 2.4 that ŝℓ , ŝ′ℓ are the ℓ-th singular values of Z̃
and Z̃ ′, respectively. Analogous to (2.4), we define a signal-to-noise ratio for the test
covariates:

snrtest :=
ρs′r′√
m+√p

. (2.8)

In Theorem 2.5.3, we bound MSEtest both in probability and in expectation with respect
to these quantities.

Theorem 2.5.3. Let the setup of Theorem 2.5.1 and Assumption 5 hold. Consider PCR
with ℓ = r′. Let ρ ≥ c log2(mp)

mp . Then, with probability at least 1−O(1/((n ∧ m)p)10),

MSEtest ≤ C (K, γ, σ ) log((n ∨ m)p)
(
r
(
1 ∨ p

m

)
β∗21

ρ2snr2 + r(n ∨ p)β∗21
snr4 + rβ∗21

snr2test ∧ m
+
√
nβ∗1
snr2

)
.

Further, for all i > n, if ⟨xi, β∗⟩ ∈ [−b, b] and ŷ′ is appropriately truncated, then

E[MSEtest] ≤ C (K, γ, σ )r log((n ∨ m)p)
((

1 ∨ p
m

)

ρ2snr2 + (n ∨ p)
snr4 + 1

snr2test ∧ m

)
β∗21+

Cb2

((n ∧ m)p)10 .

Interpretation. For interpretability, we suppress dependencies on σ, K , γ, and assume
p = Θ(m) and m →∞. One can then verify that Theorem 2.5.3 implies that a sufficient
condition for PCR’s expected test prediction error to vanish is

ρsnr ∧ snrtest√
r log((n ∨ m)p)β∗1

→∞, snr
(r log(np))1/4(n ∨ p)1/4β∗1/21

→∞.

As with Theorem 2.5.1, we specialize Theorem 2.5.3 in Corollary 2.5.2 to the setting where
snr = Ω(ρ

√
(n ∧ p)/r) and snrtest = Ω(ρ

√
(m ∧ p)/r). A sufficient condition for these

lower bounds on snr and snrtest to hold is if the non-zero singular values of X and X ′ are
well-balanced, i.e., Assumptions 6 and 7 hold.
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Assumption 7 (Balanced spectra: testing covariates). The r′ non-zero singular values s′i
of X ′ satisfy s′i = Θ(

√
mp/r′).

Corollary 2.5.2. Let the setup of Corollary 2.5.1 and Theorem 2.5.3 hold. Further, let
Assumption 7 hold. Then with probability at least 1−O(1/((n ∧ m)p)10),

MSEtest ≤
C (K, γ, σ )r3 log((n ∨ m)p)

ρ4

((1 ∨ p
m

n ∧ p + n ∨ p
(n ∧ p)2 + 1

m

)
β∗21+

( √
n

n ∧ p

)
β∗1
)
.

Further,

E[MSEtest] ≤
C (K, γ, σ )r3 log((n ∨ m)p)

ρ4

(1 ∨ p
m

n ∧ p + n ∨ p
(n ∧ p)2 + 1

m

)
β∗21+

Cb2

((n ∧ m)p)10 .

Proof. Using identical arguments to those used in the proof of Corollary 2.5.1, we
have that Assumption 6 implies snr ≥ cρ

√
(n ∧ p)/r, and Assumptions 5 and 7 imply

snrtest ≥ cρ
√

(m ∧ p)/r Plugging these lower bounds on snr and snrtest into the bounds
in Theorem 2.5.3 and simplifying completes the proof. ■

Interpretation. For the following discussion, we suppress dependencies on K, γ, σ , r
and log factors, assume ρ = Θ(1) and only consider the scaling with respect to n,m, p.
Hence, Corollary 2.5.2 implies that if p = o(n(n ∧m)), n = o(p2),1 then the out-of-sample
prediction error vanishes to zero both in expectation and w.h.p., as n,m, p → ∞. If
we make the additional assumption that n = Θ(p) and p = Θ(m), then Corollary 2.5.2
implies the error scales as Õ(1/n) in expectation. This improves upon the best known
rate of Õ(1/

√
n), established in Agarwal et al. (2019b, 2021e) (notably, these works

do not provide a high probability bound). We re-emphasize that we consider a fixed
design setting; as such, our generalization error bounds do not make any distributional
assumptions on X and X ′, which Agarwal et al. (2019b, 2021e) require in order to leverage
standard Rademacher tools for their analysis. Finding the optimal relative scalings of
n,m, p to achieve vanishing prediction error is left for future work.

A Complementary Perspective on Generalization

As discussed above, Theorem 2.5.3 and Corollary 2.5.2 do not require any distributional
assumptions on the in- and out-of-sample covariates, but rather rely on a purely linear

1Practically speaking, this condition is not binding, i.e., if n = Ω(p2), then we can sample a subset of the
training data to satisfy it. Therefore, this condition is likely an artefact of our analysis.
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algebraic condition given by Assumption 5. Intuitively, because we consider β∗ ∈
rowspan(X ), it follows that generalization is achievable if the rowspace of the out-of-
sample covariates lies wthin that of the in-sample covariates, i.e., the out-of-sample
covariates are at most as “rich” or “complex” as the in-sample covariates used for learning
in a linear algebraic sense. As we have seen in our test error results and will shortly see
in our simulations in Section 2.7.3, Assumption 5 is the key condition that allows PCR
to generalize, even if the in-sample and out-of-sample data obey different distributions.
Thus, Assumption 5 offers a complementary, distribution-free perspective to generalization,
and has possible implications to transfer learning and learning with covariate shifts.

■ 2.6 Synthetic Controls

In this section, we overview the synthetic controls framework, connect it to the (high-
dimensional) error-in-variables with fixed design, and state our results from Section 2.5
in this context.

■ 2.6.1 Setup

The synthetic controls framework considers the panel data setting, where observations
of units are collected over time. More formally, let there be p + 1 units indexed as
{0, . . . , p}. Without loss of generality, let unit 0 be our target unit of interest; we refer to
the remaining p units as donors. Consider two interventions: control and treatment. For
all p+ 1 units, we observe their outcomes under control for the first n time steps. For
target unit 0, we observe its outcomes under treatment for time steps {n+ 1, . . . , n+m},
but continue to observe outcomes under control for the donor units. As such, we refer to
the first n time steps as the pre-intervention period and the remaining m time steps as
the post-intervention period. Our interest is to estimate the target unit’s counterfactual
(unobserved) outcomes under control during the post-intervention period.

Donor observations under control. Let X ∈ Rn×p and X ′ ∈ Rm×p represent the ground
truth outcomes under control associated with the p donor units during the pre- and
post-intervention periods, respectively, i.e., the jth column of X and X ′ represents the
underlying outcomes under control for the jth unit for the first n and last m time steps,
respectively. Rather than observing X and X ′, however, we only have access to Z ∈ Rn×p



66 CHAPTER 2. ON PRINCIPAL COMPONENT REGRESSION

and Z ′ ∈ Rm×p, which are noisy (and potentially sparse) realizations of X and X ′,
respectively. The distributional characteristics of Z and Z ′ obey the conditions described
in Section 2.3. Thus, using the potential outcomes language of Neyman (1923) and Rubin
(1974), we refer to Z and Z ′ as the matrices of potential outcomes under control, and X
and X ′ as the matrices of expected potential outcomes under control for the donor units.

Target unit observations under control. For target unit 0, let yi ∈ R for i ∈ [n+m] denote
the potential outcome under control at the ith time step. As stated above, since the target
unit is exposed to treatment during time steps n+1, . . . , n+m, we only observe its outcomes
under control during the pre-intervention period, i.e., we observe ypre = [yi : i ≤ n] ∈ Rn.
We summarize the synthetic controls objective as follows: given {ypre,Z ,Z ′}, the interest
is to recover the target unit’s expected counterfactual outcomes under control during the
post-intervention period, E[ypost] ∈ Rm, where ypost = [yi : n+ 1 ≤ i ≤ n+m].

Existence of synthetic controls. The key modeling premise within the synthetic controls
framework is that the target unit’s outcomes under control can be expressed as some linear
combination of outcomes under control of the donor units. In our setup, this translates to
the existence of a linear model β∗ ∈ Rp satisfying

yi = ⟨xi, β∗⟩+ εi,

for all i ∈ [n + m]; here, εi ∈ R models the idiosyncratic randomness in the potential
outcomes. Notably, we remark that the typical factor model structure utilized in the
synthetic controls literature (e.g., Abadie et al. (2010); Abadie and Gardeazabal (2003);
Abadie (2020) and references therein), implies that the concatenated matrix of dimensions
(n+m)× (p+ 1), whose first row is given by (E[ypre],E[ypost]) and remaining rows are
given by (X ,X ′), is low-rank. As such, it follows that X and X ′ are necessarily low-rank,
and β∗ exists with high probability (see Agarwal et al. (2021e) for details on the latter
note). Moreover, because we consider a fixed design setting, we do not enforce the latent
time factors associated with the pre- and post-intervention periods to be sampled i.i.d.,
as is standard in the literature, cf. Agarwal et al. (2021e). This allows us to model
settings with underlying time trends or shifting ideologies. In summary, the objective in
synthetic controls is identical to that of out-of-sample prediction in (high-dimensional)
error-in-variables with fixed design.
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■ 2.6.2 Robust Synthetic Controls (RSC)

The robust synthetic controls (RSC) method of Amjad et al. (2018) uses PCR to estimate β∗.
Specifically, it produces β̂ as per the method described in Section 2.4.1 using {ypre,Z}.
Subsequently, RSC produces [ŷi : n+ 1 ≤ i ≤ n+m] using Z ′ with β̂, as per the method
described in Section 2.4.2. Below, we use our formal results on PCR, as stated in Section
2.5, to establish statistical guarantees of the RSC method in the fixed design setting,
which has been absent.

Theoretical results. Recall that the aim of synthetic controls is to estimate the counter-
factual outcomes under control for the target unit during the post-intervention period. As
such, the primary performance goal is to minimize the post-intervention (out-of-sample)
prediction error, MSEtest, as defined in (2.7). Corollary 2.5.2 implies the following result.

Theorem 2.6.1. Suppose Assumptions 1 to 7 hold. Consider β∗ ∈ rowspan(X ) and let
k = r for PCR within RSC. Let ρ ≥ c log2(np)

np , snr, snrtest ≥ C (K, γ, σ ), β∗2= Ω(1), β∗1=
O(√p). Then with probability at least 1−O(1/((n ∧ m)p)10),

MSEtest ≤
C (K, γ, σ )r3 log((n ∨ m)p)

ρ4

((1 ∨ p
m

n ∧ p + n ∨ p
(n ∧ p)2 + 1

m

)
β∗21+

( √
n

n ∧ p

)
β∗1
)
.

Further,

E[MSEtest] ≤
C (K, γ, σ )r3 log((n ∨ m)p)

ρ4

(1 ∨ p
m

n ∧ p + n ∨ p
(n ∧ p)2 + 1

m

)
β∗21+

Cb2

((n ∧ m)p)10 .

Implications and comparison with literature. For the setting of synthetic controls, it is
reasonable to consider β∗1= O(1). As explained in Section 2.5.2, under the interpretation
of Corollary 2.5.2, if ρ = Θ(1), p = o(n(n ∧ m)), n = o(p2), then the counterfactual
prediction error vanishes to zero both in expectation and w.h.p., as n,m, p → ∞. If
we make the additional assumption that n = Θ(p), ρ = Θ(1) and p = Θ(m), then
E[MSEtest] = Õ(1/n). This improves upon the best known rate of Õ(1/

√
n), established

in Agarwal et al. (2019b, 2021e), which considers a random design setting where the
latent time factors are sampled i.i.d. (notably, they also do not provide a high probability
bound).

In the synthetic controls literature, numerous variants of the original approach Abadie
et al. (2010); Abadie and Gardeazabal (2003) have been proposed, see Abadie (2020).
While it is not obvious which of these methods provides the best performance a priori,
our result suggests that RSC is a natural candidate, especially in the presence of noisy
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observations and low-rank structure (which can be empirically tested).

■ 2.7 Simulations

In this section, we present illustrative simulations to support our theoretical results.

■ 2.7.1 Parameter Estimation

The purpose of this simulation is to demonstrate that PCR does indeed identify the unique
minimum ℓ2-norm β∗.

Generative Model

We construct covariates X ∈ Rn×p via the classical probabilistic PCA model, cf. Tipping
and Bishop (1999). That is, we first generate Xr ∈ Rn×r by independently sampling
each entry from a standard normal distribution. Then, we sample a transformation matrix
Q ∈ Rr×p, where each entry is uniformly and independently sampled from {−1/

√
r, 1/

√
r}.

The final matrix then takes the form X = XrQ. We choose rank(X ) = r = p 1
3 , where

p ∈ {128, 256, 512}.

Next, we generate β ∈ Rp by sampling from a multivariate standard normal vector with
independent entries. The noiseless response vector a ∈ Rn is defined to be a = Xβ.
Finally, as motivated by Property 2.4.1, the minimum ℓ2-norm model of interest, β∗, is
computed as β∗ = X†a, where X† denotes the pseudo-inverse of X .

We consider an additive noise model. Specifically, the entries of ε ∈ Rn are sampled
i.i.d. from a normal distribution with mean 0 and variance σ2 = 0.2. The entries of
W = [wT

i ] ∈ Rn×p are sampled in an identical fashion. We then define our observed
response vector as y = a+ε and observed covariate matrix as Z = X +W . For simplicity,
we do not mask any of the entries.
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(a) ℓ2-norm error of β̂ with respect to the min.
ℓ2-norm solution of (2.1), i.e., β∗.

(b) ℓ2-norm error of β̂ with respect to a random
solution of (2.1).

Figure 2.2: Plots of ℓ2-norm errors, i.e., β̂ −β∗2 in (2.2a) and β̂ −β2 in (2.2b), versus the rescaled
sample size n/(r2 logp) after running PCR with rank r = p 1

3 . As predicted by Theorem 2.5.1, the
curves for different values of p under (2.2a) roughly align and decay to zero as n increases.

Results

Using the observations (y,Z ), we perform PCR to yield β̂. To show that PCR can
accurately recover β∗, we compute the ℓ2-norm parameter estimation error, or root-mean-
squared-error (RMSE), with respect to β∗ and β in Figures 2.2a and 2.2b, respectively. As
suggested by Figure 2.2a, the RMSE with respect to β∗ roughly aligns for different values
of p, after rescaling the sample size as n/(r2 logp), and decays to zero as the sample size
increases; this is predicted by Theorem 2.5.1. On the other hand, Figure 2.2b shows that
the RMSE with respect to β stays roughly constant across different values of p. Therefore,
as established in Agarwal et al. (2019b), PCR performs implicit regularization by not only
de-noising the observed covariates, but also finding the minimum-norm solution.

■ 2.7.2 Out-of-sample Prediction: PCR vs. Ordinary Least Squares

The purpose of this simulation is to demonstrate the benefit of the implicit de-noising
effect of PCR vs. OLS.

Generative Model

For each experiment, we let n = m = p = 1000. We generate training and testing covari-
ates X ,X ′ ∈ R1000×1000, respectively, with rank(X ) = rank(X ′) = 10 and rowspan(X ′) ⊆
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rowspan(X ), i.e., Assumption 5 holds. To do so, we sample U ,U ′,V ∈ R1000×10 by
independently sampling each entry from a standard normal distribution. Then, we define
X = UV T and X ′ = U ′V T .

We then generate β ∈ R1000 as in Section 2.7.1, and use it to produce a = Xβ and
a′ = X ′β. Similarly, we generate the response noise ε ∈ R1000 and covariate noises
W ,W ′ ∈ R1000×1000 by independently sampling each entry from a normal distribution
with mean zero and variance σ2, where σ2 ∈ {0.1, 0.2, . . . 1.0}. Again, for simplicity, we
do not mask any of the entries. We then define our observed response as y = a + ε,
and the observed training and testing covariates as Z = X + W and Z ′ = X ′ + W ′,
respectively.

Results

Using the observations (y,Z ,Z ′), we perform PCR as in Section 2.4.2 to produce ŷ′pcr ∈
R1000. The OLS out-of-sample estimates are produced using the same algorithm as in
Section 2.4.2 without the singular value thresholding step on either Z or Z ′, i.e., we do
not de-noise the training nor testing covariates. The estimates produced from OLS are
defined as ŷ′ols ∈ R1000. In both PCR and OLS, we do not truncate the estimated entries.
For any estimate ŷ′ ∈ R1000, we define the out-of-sample mean squared error (MSE)
as (1/1000)ŷ′ − a′22. In Figure 2.3, as we vary the level of response and covariate noise
σ2, we plot the MSE of ŷ′pcr versus that of ŷ′ols. The MSE of OLS is between three to
four orders of magnitude larger than that of PCR across all noise levels. We remark that
even when σ2 = 0.1, the error of OLS is almost three orders of magnitude larger than
PCR – this indicates the significant level of bias that is introduced even with minimal
measurement error. In essence, this stresses the importance of de-noising the training
and testing covariates via singular value thresholding.

■ 2.7.3 Out-of-sample Prediction: Robustness of PCR to Distri-
bution Shifts

The purpose of this simulation is to demonstrate that PCR can generalize even when the
testing covariates are not only corrupted, but also sampled from a different distribution
than the training covariates.



Sec. 2.7. Simulations 71

Figure 2.3: MSE plot of ŷ′pcr (blue) versus ŷ′ols (orange) as we increase the level of covariate and
response noises. While PCR’s error scales gracefully with the level of noise, OLS suffers large
amounts of bias, even in the presence of small amounts of measurement error.

Generative Model

Throughout, we let n = m = p = 1000. We generate the training covariates as in
Section 2.7.2, i.e., X = UV T , where the entries of U ,V are sampled independently from
a standard normal distribution. Next, we generate four different out-of-sample covariates,
defined as X ′N1

,X ′N2
,X ′U1

,X ′U2
via the following procedure: We independently sample the

entries of U ′N1 from a standard normal distribution, and define X ′N1
= U ′N1V T . We define

X ′N2
= U ′N2V T similarly with the entries of U ′N2 sampled from a normal distribution

with mean zero and variance 5. Next, we independently sample the entries of U ′U1 from
a uniform distribution with support [−

√
3,
√

3], and define X ′U1
= U ′U1V T . We define

X ′U2
= U ′U2V T similarly with the entries of U ′U2 sampled from a uniform distribution with

support [−
√

15,
√

15].

By construction, we note that the mean and variance of the entries in X ′U1
match that of

X ′N1
; an analogous relationship holds between X ′U2

and X ′N2
. Further, while X ′N1

follows
the same distribution as that of X , we note that there is a clear distribution shift from X
to X ′U1

,X ′N2
,X ′U2

.

We proceed to generate β as in Section 2.7.2. We then define a′N1
= X ′N1

β, and define
a′N2

, a′U1
, a′U2

analogously. Further, the response noise ε and covariate noises W ,W ′ are
constructed in the same fashion as described in Section 2.7.2, where the variance again
follows σ2 ∈ {0.1, 0.2, . . . 1.0}. We define the training responses as y = Xβ + ε and
observed training covariates as Z = X + W . The first set of observed testing covariates
is defined as Z ′N1

= X ′N1
+ W ′, with analogous definitions for Z ′N2

,Z ′U1
,Z ′U2

.



72 CHAPTER 2. ON PRINCIPAL COMPONENT REGRESSION

Figure 2.4: MSE plot of multiple PCR estimates – ŷ′N1
, ŷ′U1

, ŷ′N2
, and ŷ′U2

– as we shift the
distribution of the out-of-sample covariates, while ensuring Assumption 5 holds. Pleasingly, the
MSE remains closely matched across all noise levels and distribution shifts.

Results

Using the observations (y,Z ,Z ′N1
), we perform PCR to produce ŷ′N1

. We produce
ŷ′N2

, ŷ′U1
, ŷ′U2

analogously. We define MSE as in Section 2.7.2 with each estimate
compared against its corresponding latent response, e.g., ŷ′N1

against a′N1
. Figure 2.4

shows the MSE of ŷ′N1
, ŷ′U1

, ŷ′N2
, and ŷ′U2

as we vary σ2. Pleasingly, despite the changes
in the data generating process of the out-of-sample responses we evaluate on, the MSE
for all four experiments closely matches across all noise levels. This motivates Assumption
5 as the key requirement for generalization, at least for PCR, rather than distributional
invariance between the training and testing covariates.

■ 2.7.4 Out-of-sample Prediction: Subspace Inclusion vs. Distri-
butional Invariance

The purpose of this simulation is to further illustrate that subspace inclusion (Assumption
5) is the key structure that enables PCR to successfully generalize, and not necessarily
distributional invariance between the training and testing covariates.

Generative Model

As before, we let n = m = p = 1000. We continue to generate the training covariates as
X = UV T following the procedure in Section 2.7.2. We now generate two different testing
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Figure 2.5: Plots of PCR’s MSE under two situations: when Assumption 5 holds but distributional
invariance is violated (blue), and when Assumption 5 is violated but distributional invariance holds
(orange). Across varying levels of noise, the former condition achieves a much lower MSE.

covariates. First, we generate X ′1 = U ′V T , where the entries of U ′ are independently
sampled from a normal distribution with mean zero and variance 5. As such, it follows that
Assumption 5 immediately holds between X ′1 and X , though they do not obey the same
distribution. Next, we generate X ′2 = UV ′T , where the entries of V ′ are independently
sampled from a standard normal (just as in V ). In doing so, we ensure that X ′2 and X
follow the same distribution, though Assumption 5 no longer holds.

We generate β as in Section 2.7.2, and define a′1 = X ′1β and a′2 = X ′2β. We also generate
ε,W ,W ′ as in Section 2.7.2. In turn, we define the training data as y = Xβ + ε and
Z = X + W , and testing data as Z ′1 = X ′1 + W ′ and Z ′2 = X ′2 + W ′.

Results

We apply PCR under two scenarios. First, we apply PCR using (y,Z ,Z ′1) to yield ŷ′1,
and once again using (y,Z ,Z ′2) to yield ŷ′2. We define MSE as in Section 2.7.2 with each
estimate compared against its corresponding latent response, e.g., ŷ′1 against a′1. Figure
2.5 shows the MSE of ŷ′1 and ŷ′2 across varying levels of noise. As we can see, when
Assumption 5 holds yet distributional invariance is violated, the corresponding MSE of
ŷ′1 is almost three orders of magnitude smaller than that of ŷ′2, where Assumption 5 is
violated but distributional invariance holds. This reinforces that the key structure required
for PCR (and possibly other linear estimators) to generalize is Assumption 5, and not
necessarily distributional invariance, as is typically assumed in the statistical learning
literature.
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■ 2.8 Conclusion

In this work, we analyze the standard method of PCR in a high-dimensional error-in-
variables fixed design setting. As our main contributions, we establish that PCR identifies
the unique model parameter with minimum ℓ2-norm, is near minimax optimal, and achieves
vanishing out-of-sample prediction under a natural linear algebraic relationship between
the train and test covariates. Notably, both our parameter estimation and generalization
error results are distribution-free. As an important consequence, our results also provide
guarantees for counterfactual prediction for synthetic controls under fixed design settings.
To the best of our knowledge, our out-of-sample (counterfactual) prediction guarantees in
fixed design settings have been elusive in both the high-dimensional error-in-variables
and synthetic controls literatures.

As an important future direction of research, it remains to establish bounds when the
covariates are only approximately low-rank, i.e., there exists a matrix A such that rank(A) =
r and X ≈ A in some norm. Our analysis of PCR in such a setting suggests an
additional error term of the form Vr,⊥V T

r,⊥β∗2; here, the columns of Vr,⊥ ∈ Rp×(p−r) form
an orthonormal basis that is orthogonal to the top r right singular vectors of X , and β∗ is
again the minimum norm model. To justify our postulation, recall that β∗ ∈ rowspan(X ).
Thus, it follows that Vr,⊥V T

r,⊥β∗2 is precisely the unavoidable parameter estimator error
by taking a rank r approximation of X . Hence, it stands to reason that soft singular value
thresholding (SVT), which appropriately down-weights the singular values of Z̃ , may be
a more appropriate algorithmic approach as opposed to the hard SVT approach in PCR.
Further, as stated earlier, extending our analysis to study the performance of PCR when
the number of singular values retained is misspecified remains interesting future work.

Lastly, we believe another important future line of research is to bridge our out-of-sample
prediction error analysis with recent exciting work on analyzing the generalization of
over-parameterized estimators. Our key enabling assumption is that the rowspace of the
test covariates lies within that of the training covariates, i.e., the test covariates are no
more “complex” than the training covariates in a linear algebraic sense. In comparison,
recent techniques to bound the generalization error of modern statistical estimators focus
on the complexity of the learning algorithm itself, and assume the data generating process
produces i.i.d. samples. Hence, a likely fruitful approach to produce tighter generalization
error bounds for more complex non-linear settings would be to exploit both the complexity
of the learning algorithm and the relative complexity of the test covariates compared to



Sec. 2.9. Proof of Theorem 2.5.1 75

the training covariates—possibly by adapting our subspace inclusion condition with an
appropriate non-linear notion.

■ 2.9 Proof of Theorem 2.5.1

We start with some useful notations. Let y = Xβ∗ + ε be the vector notation of (2.1) with
y = [yi : i ≤ n] ∈ Rn, ε = [εi : i ≤ n] ∈ Rn. Throughout, let X = USV T . Recall that
the SVD of Z̃ = 1/(ρ̂)Z = ÛΣ̂V̂ T . Its truncation using the top k singular components is
denoted as Z̃ k = Ûk Σ̂k V̂ T

k .

Further, we will often use the following bound: for any A ∈ Ra×b, v ∈ Rb,

Av2 =
b∑

j=1
A·jvj2≤ ( max

j≤b
A·j2)(

b∑

j=1
|vj |) = A2,∞v1, (2.9)

where A2,∞= maxjA·j2 with A·j representing the j-th column of A.

As discussed in Section 2.5.1, we shall denote β∗ as the unique minimum ℓ2-norm model
parameter satisfying (2.1); equivalently, this can be formulated as β∗ ∈ rowspan(X ). As
a result, it follows that

V T
⊥ β∗ = 0, (2.10)

where V⊥ represents a matrix of orthornormal basis vectors that span the nullspace of X .

Similarly, let V̂k,⊥ ∈ Rp×(p−k) be a matrix of orthonormal basis vectors that span the
nullspace of Z̃ k ; thus, V̂k,⊥ is orthogonal to V̂k . Then,

β̂ − β∗22 = V̂k V̂ T
k (β̂ − β∗) + V̂k,⊥V̂ T

k,⊥(β̂ − β∗)22
= V̂k V̂ T

k (β̂ − β∗)22+V̂k,⊥V̂ T
k,⊥(β̂ − β∗)22

= V̂k V̂ T
k (β̂ − β∗)22+V̂k,⊥V̂ T

k,⊥β∗22. (2.11)

Note that in the last equality we have used Property 2.4.1, which states that V̂ T
k,⊥β̂ = 0.

Next, we bound the two terms in (2.11).
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Bounding V̂k V̂ T
k (β̂ − β∗)22. To begin, note that

V̂k V̂ T
k (β̂ − β∗)22 = V̂ T

k (β̂ − β∗)22, (2.12)

since V̂k is an isometry. Next, consider

Z̃ k (β̂ − β∗)22 ≤ 2Z̃ k β̂ − Xβ∗22+2Xβ∗ − Z̃ kβ∗22
≤ 2Z̃ k β̂ − Xβ∗22+2X − Z̃ k2

2,∞β∗21,

where we used (3.47). Recall that Z̃ k = Ûk Σ̂k V̂ T
k . Therefore,

Z̃ k (β̂ − β∗)22 = (β̂ − β∗)T V̂k Σ̂2
k V̂ T

k (β̂ − β∗)

= (V̂ T
k (β̂ − β∗))T Σ̂2

k (V̂ T
k (β̂ − β∗))

≥ ŝ2
k V̂ T

k (β̂ − β∗)22.

Therefore using (3.43), we conclude that

V̂k V̂ T
k (β̂ − β∗)22 ≤

2
ŝ2
k

(
Z̃ k β̂ − Xβ∗22+X − Z̃ k2

2,∞β∗21
)
. (2.13)

Next, we bound Z̃ k β̂ − Xβ∗2.

Z̃ k β̂ − y2
2 = Z̃ k β̂ − Xβ∗ − ε2

2

= Z̃ k β̂ − Xβ∗22+ε2
2−2⟨Z̃ k β̂ − Xβ∗, ε⟩. (2.14)

By Property 2.4.1 we have,

Z̃ k β̂ − y2
2 ≤ Z̃ kβ∗ − y2

2 = (Z̃ k − X )β∗ − ε2
2

= (Z̃ k − X )β∗22+ε2
2−2⟨(Z̃ k − X )β∗, ε⟩. (2.15)

From (3.50) and (3.51), we have

Z̃ k β̂ − Xβ∗22 ≤ (Z̃ k − X )β∗22+2⟨Z̃ k (β̂ − β∗), ε⟩

≤ X − Z̃ k2
2,∞β∗21+2⟨Z̃ k (β̂ − β∗), ε⟩, (2.16)
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where we used (3.47). From (3.49) and (3.52), we conclude that

V̂k V̂ T
k (β̂ − β∗)22 ≤

4
ŝ2
k

(
X − Z̃ k2

2,∞β∗21+⟨Z̃ k (β̂ − β∗), ε⟩
)
. (2.17)

Bounding V̂k,⊥V̂ T
k,⊥β∗22. Consider

V̂k,⊥V̂ T
k,⊥β∗2 = (V̂k,⊥V̂ T

k,⊥ − V⊥V T
⊥ )β∗ + V⊥V T

⊥ β∗2
(a)
= (V̂k,⊥V̂ T

k,⊥ − V⊥V T
⊥ )β∗2

≤ V̂k,⊥V̂ T
k,⊥ − V⊥V T

⊥ 2 β∗2, (2.18)

where (a) follows from V T
⊥ β∗ = 0 due to (2.10). Then,

V̂k,⊥V̂ T
k,⊥ − V⊥V T

⊥ = (D − V⊥V T
⊥ )− (D − V̂k,⊥V̂ T

k,⊥)

= V V T − V̂k V̂ T
k . (2.19)

From (2.18) and (2.19), it follows that

V̂k,⊥V̂ T
k,⊥β∗2 ≤ V V T − V̂k V̂ T

k 2 β∗2. (2.20)

Bringing together (2.11), (3.53), and (2.20). Collectively, we obtain

β̂ − β∗22 ≤ V V T − V̂k V̂ T
k

2
2 β∗22

+ 4
ŝ2
k

(
X − Z̃ k2

2,∞ β∗21+⟨Z̃ k (β̂ − β∗), ε⟩
)
. (2.21)

Key lemmas. We state the key lemmas bounding each of the terms on the right hand
side of (2.21). This will help us conclude the proof of Theorem 2.5.1. The proofs of these
lemmas are presented in Sections 2.12.1, 2.12.2, 2.12.3, 2.12.4.

Lemma 2.9.1. Consider the setup of Theorem 2.5.1, and PCR with parameter k = r =
rank(X ). Then, for any t > 0, the following holds with probability at least 1− exp

(
−t2

)
:

UUT − ÛrÛT
r 2 ≤ C (K, γ)

√
n+√p+ t
ρsr

,
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V V T − V̂rV̂ T
r 2 ≤ C (K, γ)

√
n+√p+ t
ρsr

.

Here, sr > 0 represents the r-th singular value of X .

Lemma 2.9.2. Consider PCR with parameter k = r and ρ ≥ c log2 np
np . Then with probability

at least 1−O(1/(np)10),

X − Z̃ r2
2,∞≤ C (K, γ)

((n+ p)(n+
√
n log(np))

ρ4s2
r

+ r +
√
r log(np)
ρ2

)
+ C log(np)

ρ p .

Lemma 2.9.3. If ρ ≥ c log2 np
np , then for any k ∈ [n ∧ p], we have with probability at least

1−O(1/(np)10),

|ŝk − sk | ≤
C (K, γ)(

√
n+√p)

ρ + C
√

log(np)
√ρnp sk .

Lemma 2.9.4. Given Z̃ r , the following holds with probability at least 1 − O(1/(np)10)
with respect to randomness in ε:

⟨Z̃ r(β̂ − β∗), ε⟩ ≤ σ2r + Cσ
√

log(np) (σ
√
r + σ

√
log(np) + β∗1(

√
n+ Z̃ r − X 2,∞)).

Completing the proof of Theorem 2.5.1. Using Lemma 2.9.4, the following holds with
probability at least 1−O(1/(np)10):

X − Z̃ r2
2,∞β∗21+⟨Z̃ r(β̂ − β∗), ε⟩

≤ X − Z̃ r2
2,∞β∗21+Cσ

√
log(np)X − Z̃ r

2,∞β∗1+Cσ2 log(np)

+ Cσ
√

log(np)(
√
nβ∗1+sσ

√
r) + σ2r

≤ C (X − Z̃ k
2,∞β∗1+σ

√
log(np))2 + Cσ

√
log(np)(

√
nβ∗1+σ

√
r) + σ2r

≤ CX − Z̃ k2
2,∞β∗21+Cσ2(log(np) + r) + Cσ

√
n log(np)β∗1. (2.22)

Using (2.21) and (2.22), we have with probability at least 1−O(1/(np)10),

β̂ − β∗22 ≤ V V T − V̂k V̂ T
k

2
2 β∗22

+ C
X − Z̃ k2

2,∞β∗21+σ2(log(np) + r) + σ
√
n log(np)β∗1

ŝ2
r

. (2.23)
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Using Lemma 2.9.1 in (2.23), we have with probability at least 1−O(1/(np)10),

β̂ − β∗22 ≤ C (K, γ)n+ p
ρ2s2

r
β∗22+C

X − Z̃ k2
2,∞β∗21
ŝ2
r

+ C
σ2(log(np) + r) + σ

√
n log(np)β∗1

ŝ2
r

. (2.24)

By Lemma 2.9.3 with k = r, and since ρ ≥ c log2 np
np and snr ≥ C (K, γ, σ ), we have that

|ŝr − sr |
sr

≤
C (K, γ)(

√
n+√p)

ρsr
+ C

√
log(np)
√ρnp

= C (K, γ)
snr + C

√
log(np)
√ρnp ≤ 1

2 .

As a result,

sr/2 ≤ ŝr ≤ 3sr/2. (2.25)

Now, using the definition of snr as per (2.4) and
√
a+ b ≤

√
a +
√
b for a, b ≥ 0, we

have

n+ p
ρ2s2

r
≤ 1

snr2 . (2.26)

Using (2.25), (2.26), the assumption that β∗1= O(√p), and observing that β∗21≤ pβ∗22, we
obtain

σ2(log(np) + r)
ŝ2
r

≤ C σ
2ρ2r log(np)
snr2(n ∨ p) (2.27)

σ
√
n log(np)
ŝ2
r

β∗1 ≤ C
σρ2√np log(np)

snr2(n ∨ p) ≤ C
σ
√

log(np)
snr2 (2.28)

(n+ p)(n+
√
n log(np))

ρ4s2
r ŝ2
r

β∗21 ≤ C
n log(np)

snr4(n ∨ p)β
∗2
1≤ C

log(np)
snr4 β∗21 (2.29)

r +
√
r log(np)
ρ2ŝ2

r
β∗21 ≤ C

rp log(np)
snr2(n ∨ p)β

∗2
2≤ C

r log(np)
snr2 β∗22 (2.30)

log(np)
ρŝ2

rp
β∗21 ≤ C

pρ log(np)
snr2p(n ∨ p)β

∗2
2≤ C

log(np)
snr2(n ∨ p)β

∗2
2. (2.31)

Plugging Lemma 2.9.3, (2.26), (2.27), (2.28), (2.29), (2.30), (2.31) into (2.24), using the
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assumption β∗2= Ω(1), and simplifying, we obtain

β̂ − β∗22 ≤ C (K, γ, σ ) log(np) ·
(
rβ∗22
snr2 + β∗21

snr4

)
.

This completes the proof of Theorem 2.5.1.

■ 2.9.1 Proof of Lemma 2.9.1

Recall that U ,V denote the left and right singular vectors of X (equivalently, ρX ),
respectively; meanwhile, Ûk , V̂k denote the top k left and right singular vectors of Z̃
(equivalently, Z ), respectively. Further, observe that E[Z ] = ρX and let W̃ = Z −ρX . To
arrive at our result, we recall Wedin’s Theorem Wedin (1972).

Theorem 2.9.1 (Wedin’s Theorem). Given A,B ∈ Rn×p, let A = USV T and B = ÛΣ̂V̂ T

be their respective SVDs. Let Uk ,Vk (respectively, Ûk , V̂k ) correspond to the truncation
of U ,V (respectively, Û , V̂ ) that retains the columns corresponding to the top k singular
values of A (respectively, B). Let sk denote the k-th singular value of A. Then,

max
(

UkUT
k − Ûk ÛT

k 2,VkV T
k − V̂k V̂ T

k 2
)
≤

2
∥∥A− B

∥∥
2

sk − sk+1
.

Using Theorem 3.15.1 for k = r, it follows that

max
(

UUT − ÛrÛT
r 2,V V T − V̂rV̂ T

r 2
)
≤ 2W̃ 2

ρsr
, (2.32)

where sr is the smallest nonzero singular value of X . Next, we obtain a high probability
bound on W̃ 2. To that end,

1
nW̃ 2

2 = 1
nW̃ T W̃ 2≤

1
nW̃ T W̃ − E[W̃ T W̃ ]2+

1
nE[W̃ T W̃ ]2. (2.33)

We bound the two terms in (2.71) separately. We recall the following lemma, which is a
direct extension of Theorem 4.6.1 of Vershynin (2018) for the non-isotropic setting, and
we present its proof for completeness in Section 2.12.5.

Lemma 2.9.5 (Independent sub-gaussian rows). Let A be an n × p matrix whose rows Ai
are independent, mean zero, sub-gaussian random vectors in Rp with second moment matrix



Sec. 2.9. Proof of Theorem 2.5.1 81

Σ = (1/n)E[ATA]. Then for any t ≥ 0, the following inequality holds with probability at
least 1− exp

(
−t2

)
:

1
nATA− Σ2 ≤ K 2 max(δ, δ2), where δ = C

√
p
n + t√

n
; (2.34)

here, K = maxi
∥∥Ai
∥∥
ψ2

.

The matrix W̃ = Z − ρX has independent rows by Assumption 4. We state the following
Lemma about the distribution property of the rows of W̃ , the proof of which can be found
in Section 2.12.6.

Lemma 2.9.6. Let Assumption 4 hold. Then, zi − ρxi is a sequence of independent, mean
zero, sub-gaussian random vectors satisfying zi − ρxiψ2≤ C (K + 1).

From Lemmas 2.12.5 and 2.12.6, with probability at least 1− exp
(
−t2

)
,

1
nW̃ T W̃ − E[W̃ T W̃ ]2 ≤ C (K + 1)2(1 + p

n + t2
n

). (2.35)

Finally, we claim the following bound on E[W̃ T W̃ ]2, the proof of which is in Section
2.12.7.

Lemma 2.9.7. Let Assumption 4 hold. Then, we have

E[W̃ T W̃ ]2 ≤ C (K + 1)2n(ρ − ρ2) + nρ2γ2.

From (2.71), (2.73) and Lemma 2.12.7, it follows that with probability at least 1−exp
(
−t2

)

for any t > 0, we have

W̃ 2
2 ≤ C (K + 1)2(n+ p+ t2) + n(ρ(1− ρ)(K + 1)2 + ρ2γ2).

For this, we conclude the following lemma.

Lemma 2.9.8. For any t > 0, the following holds with probability at least 1− exp
(
−t2

)
:

Z − ρX 2 ≤ C (K, γ)(
√
n+√p+ t).

Using the above and (2.70), we conclude the proof of Lemma 2.9.1.
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■ 2.9.2 Proof of Lemma 2.9.2

We want to bound X − Z̃ k2
2,∞. To that end, let ∆j = X·j − Z̃ k

·j for any j ∈ [p]. Our interest
is in bounding ∆j22 for all j ∈ [p]. Consider,

Z̃ k
·j − X·j = (Z̃ k

·j − Ûk ÛT
k X·j ) + (Ûk ÛT

k X·j − X·j ).

Now, note that Z̃ k
·j − Ûk ÛT

k X·j belongs to the subspace spanned by column vectors of
Ûk , while Ûk ÛT

k X·j − X·j belongs to its orthogonal complement with respect to Rn. As a
result,

Z̃ k
·j − X·j22 = Z̃ k

·j − Ûk ÛT
k X·j22+Ûk ÛT

k X·j − X·j22. (2.36)

Bounding Z̃ k
·j − Ûk ÛT

k X·j22. Recall that Z̃ = (1/ρ̂)Z = ÛΣ̂V̂ T , and hence Z = ρ̂ÛΣ̂V̂ T .
Consequently,

1
ρ̂ Ûk ÛT

k Z·j = 1
ρ̂ Ûk ÛT

k Zej = Ûk ÛT
k ÛΣ̂V̂ Tej

= Ûk Σ̂k V̂ T
k ej = Z̃ k

·j .

Therefore, we have

Z̃ k
·j − Ûk ÛT

k X·j = 1
ρ̂ Ûk ÛT

k Z·j − Ûk ÛT
k X·j

= 1
ρ̂ Ûk ÛT

k (Z·j − ρX·j ) +
(ρ − ρ̂

ρ̂

)
Ûk ÛT

k X·j .

Therefore,

Z̃ k
·j − Ûk ÛT

k X·j22 ≤
2
ρ̂2 Ûk ÛT

k (Z·j − ρX·j )22+2
(ρ − ρ̂

ρ̂

)2
Ûk ÛT

k X·j22

≤ 2
ρ̂2 Ûk ÛT

k (Z·j − ρX·j )22+2
(ρ − ρ̂

ρ̂

)2
X·j22,

where we have used the fact that Ûk ÛT
k 2= 1. Recall that U ∈ Rn×r represents the left

singular vectors of X . Thus,

Ûk ÛT
k (Z·j − ρX·j )22 ≤ 2(Ûk ÛT

k − UUT )(Z·j − ρX·j )22+2UUT (Z·j − ρX·j )22
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≤ 2Ûk ÛT
k − UUT 2

2 Z·j − ρX·j22+2UUT (Z·j − ρX·j )22.

By Assumption 1, we have that X·j22≤ n. This yields

Z̃ k
·j − Ûk ÛT

k X·j22 ≤
4
ρ̂2 Ûk ÛT

k − UUT 2
2 Z·j − ρX·j22

+ 4
ρ̂2 UUT (Z·j − ρX·j )22+2n

(ρ − ρ̂
ρ̂

)2
. (2.37)

We now state Lemmas 2.12.9 and 2.12.10. Their proofs are in Sections 2.12.8 and 2.12.9,
respectively.

Lemma 2.9.9. For any α > 1,

P (ρ/α ≤ ρ̂ ≤ αρ) ≥ 1− 2 exp
(
− (α − 1)2npρ

2α2

)
.

Therefore, for ρ ≥ c log2 np
np , we have with probability 1−O(1/(np)10)

ρ
2 ≤ ρ̂ ≤ 2ρ and

(ρ − ρ̂
ρ̂

)2
≤ C log(np)

ρnp .

Lemma 2.9.10. Consider any matrix Q ∈ Rn×ℓ with 1 ≤ ℓ ≤ n such that its columns Q·j
for j ∈ [ℓ ] are orthonormal vectors. Then for any t > 0,

P
(

max
j∈[p]

∥∥∥QQT (Z·j − ρX·j )
∥∥∥

2

2
≥ ℓC (K + 1)2 + t

)

≤ p · exp
(
− cmin

( t2

C (K + 1)4ℓ ,
t

C (K + 1)2
))
.

Subsequently, with probability 1−O(1/(np)10),

max
j∈[p]

∥∥∥QQT (Z·j − ρX·j )
∥∥∥

2

2
≤ C (K + 1)2(ℓ +

√
ℓ log(np)).

Both terms Z·j − ρX·j22 and UUT (Z·j − ρX·j )22 can be bounded by Lemma 2.12.10: for
the first term Q = D , and for the second term Q = U . In summary, with probability
1−O(1/(np)10), we have

max
j∈[p]

∥∥Z·j − ρX·j
∥∥2

2 ≤ C (K + 1)2(n+
√
n log(np)), (2.38)
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and

max
j∈[p]

UUT (Z·j − ρX·j )22 ≤ C (K + 1)2(r +
√
r log(np)). (2.39)

Using (2.75), (2.76), (2.77), and Lemmas 2.9.1 and 2.12.9 with k = r, we conclude that
with probability 1−O(1/(np)10),

max
j∈[p]

Z̃ k
·j − Ûk ÛT

k X·j 22 ≤ C (K, γ)
( (n+ p)(n+

√
n log(np))

ρ4s2
r

+ r +
√
r log(np)
ρ2

)
+ C log(np)

ρ p . (2.40)

Bounding Ûk ÛT
k X·j − X·j22. Recalling X = USV T , we obtain UUTX·j = X·j since UUT

is the projection onto the column space of X . Therefore,

Ûk ÛT
k X·j − X·j22 = Ûk ÛT

k X·j − UUTX·j22
≤ Ûk ÛT

k − UUT 2
2 X·j22.

Using Property 1, note that X·j22≤ n. Thus using Lemma 2.9.1 with k = r, we have that
with probability at least 1−O(1/(np)10), we have

Ûk ÛT
k X·j − X·j22 ≤ C

n(n+ p)
ρ2s2

r
. (2.41)

Concluding. From (2.74), (2.78), and (2.79), we claim with probability at least 1 −
O(1/(np)10)

X − Z̃ k2
2,∞≤ C (K, γ)

((n+ p)(n+
√
n log(np))

ρ4s2
r

+ r +
√
r log(np)
ρ2

)
+ C log(np)

ρ p .

This completes the proof of Lemma 2.9.2.

■ 2.9.3 Proof of Lemma 2.9.3

To bound ŝk , we recall Weyl’s inequality.

Lemma 2.9.11 (Weyl’s inequality). Given A,B ∈ Rm×n, let σi and σ̂i be the i-th singular
values of A and B, respectively, in decreasing order and repeated by multiplicities. Then
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for all i ∈ [m ∧ n],

|σi − σ̂i| ≤
∥∥A− B

∥∥
2 .

Let s̃k be the k-th singular value of Z . Then, ŝk = (1/ρ̂)s̃k since it is the k-th singular
value of Z̃ = (1/ρ̂)Z . By Lemma 5.14.4, we have

|s̃k − ρsk | ≤ Z − ρX 2;

recall that sk is the k-th singular value of X . As a result,

|ŝk − sk | =
1
ρ̂ |s̃k − ρ̂sk |

≤ 1
ρ̂ |s̃k − ρsk |+

|ρ − ρ̂|
ρ̂ sk

≤ Z − ρX 2
ρ̂ + |ρ − ρ̂|ρ̂ sk .

From Lemma 2.12.8 and Lemma 2.12.9, it follows that with probability at least 1 −
O(1/(np)10),

|ŝk − sk | ≤
C (K, γ)(

√
n+√p)

ρ + C
√

log(np)
√ρnp sk .

This completes the proof of Lemma 2.9.3.

■ 2.9.4 Proof of Lemma 2.9.4

We need to bound ⟨Z̃ k (β̂ − β∗), ε⟩. To that end, we recall that β̂ = V̂k Σ̂−1
k ÛT

k y, Z̃ k =
Ûk Σ̂k V̂ T

k , and y = Xβ∗ + ε. Thus,

Z̃ k β̂ = Ûk Σ̂k V̂ T
k V̂k Σ̂−1

k ÛT
k y = Ûk ÛT

k Xβ∗ + Ûk ÛT
k ε.

Therefore,

⟨Z̃ k (β̂ − β∗), ε⟩ = ⟨Ûk ÛT
k Xβ∗, ε⟩+ ⟨Ûk ÛT

k ε, ε⟩ − ⟨Ûk Σ̂k V̂ T
k β∗, ε⟩. (2.42)
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Now, ε is independent of Ûk , Σ̂k , V̂k since Z̃ k is determined by Z , which is independent
of ε. As a result,

E[⟨Ûk ÛT
k ε, ε⟩] = E[εT Ûk ÛT

k ε]

= E[ tr
(
εT Ûk ÛT

k ε
)
] = E[ tr

(
εεT Ûk ÛT

k

)
]

= tr
(

E[εεT ]Ûk ÛT
k

)
≤ C tr

(
σ2Ûk ÛT

k

)

= Cσ2Ûk
2
F= Cσ2k. (2.43)

Therefore, it follows that

E[⟨Z̃ k (β̂ − β∗), ε⟩] ≤ Cσ2k, (2.44)

where we used the fact E[ε] = 0. To obtain a high probability bound, using Lemma 5.14.2
it follows that for any t > 0

P
(
⟨Ûk ÛT

k Xβ∗, ε⟩ ≥ t
)
≤ exp

(
− ct2

nβ∗21σ2

)
(2.45)

due to Assumption 3, and

Ûk ÛT
k Xβ∗2 ≤ Xβ∗2≤ X 2,∞β∗1≤

√
nβ∗1;

note that we have used the fact that Ûk ÛT
k is a projection matrix and X 2,∞≤

√
n due to

Assumption 1. Similarly, for any t > 0

P
(
⟨Ûk Σ̂k V̂ T

k β∗, ε⟩ ≥ t
)
≤ exp

(
− ct2

σ2(n+ Z̃ k − X 2
2,∞)β∗21

)
, (2.46)

due to Assumption 3, and

Ûk Σ̂k V̂ T
k β∗2 = (Z̃ k − X )β∗ + Xβ∗2 ≤ (Z̃ k − X )β∗2+Xβ∗2

≤ (Z̃ k − X 2,∞+X 2,∞)β∗1.

Finally, using Lemma 5.14.3 and (3.61), it follows that for any t > 0

P
(
⟨Ûk ÛT

k ε, ε⟩ ≥ σ2k + t
)
≤ exp

(
− cmin

( t2

kσ4 ,
t
σ2

))
, (2.47)
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since Ûk ÛT
k is a projection matrix and by Assumption 3.

From (3.57), (3.62), (3.64), and (3.66), we conclude that with probability at least 1 −
O(1/(np)10),

⟨Z̃ k (β̂ − β∗), ε⟩ ≤ σ 2k + Cσ
√

log(np)(σ
√
k + σ

√
log(np) + β∗1(

√
n+ Z̃ k − X 2,∞)).

This completes the proof of Lemma 2.9.4.

■ 2.9.5 Proof of Lemma 2.12.5

As mentioned earlier, the proof presented here is a natural extension of that for Theorem
4.6.1 in Vershynin (2018) for the non-isotropic setting. Recall that

∥∥A
∥∥ = max

x∈Sp−1,y∈Sn−1
⟨Ax, y⟩,

where Sp−1, Sn−1 denote the unit spheres in Rp and Rn, respectively. We start by
bounding the quadratic term ⟨Ax, y⟩ for a finite set x, y obtained by placing 1/4-net on
the unit spheres, and then use the bound on them to bound ⟨Ax, y⟩ for all x, y over the
spheres.

Step 1: Approximation. We will use Corollary 4.2.13 of Vershynin (2018) to establish a
1/4-net of N of the unit sphere Sp−1 with cardinality |N | ≤ 9p. Applying Lemma 4.4.1 of
Vershynin (2018), we obtain

1
nATA− Σ2 ≤ 2 max

x∈N

∣∣∣⟨(
1
nATA− Σ)x, x⟩

∣∣∣ = 2 max
x∈N

∣∣∣
1
nAx2

2−xTΣx
∣∣∣.

To achieve our desired result, it remains to show that

max
x∈N

∣∣∣
1
nAx2

2−xTΣx
∣∣∣ ≤

ε
2 ,

where ε = K 2 max(δ, δ2).

Step 2: Concentration. Let us fix a unit vector x ∈ Sp−1 and write

∥∥Ax
∥∥2

2 − x
TΣx =

n∑

i=1

(
⟨Ai, x⟩2 − E[⟨Ai, x⟩2]

)
=:

n∑

i=1

(
Y 2
i − E[Y 2

i ]
)
.
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Since the rows of A are assumed to be independent sub-gaussian random vectors with
Aiψ2≤ K , it follows that Yi = ⟨Ai, x⟩ are independent sub-gaussian random variables with
Yiψ2≤ K . Therefore, Y 2

i − E[Y 2
i ] are independent, mean zero, sub-exponential random

variables with
Y 2
i − E[Y 2

i ]ψ1≤ CY 2
i ψ1≤ CYi2ψ2≤ CK

2.

As a result, we can apply Bernstein’s inequality (see Theorem 5.14.1) to obtain

P
(∣∣∣

1
n
∥∥Ax

∥∥2
2 − x

TΣx
∣∣∣ ≥

ε
2

)
= P

(∣∣∣
1
n

n∑

i=1
(Y 2
i − E[Y 2

i ])
∣∣∣ ≥

ε
2

)

≤ 2 exp
(
−cmin

(
ε2

K 4 ,
ε
K 2

)
n
)

= 2exp
(
−cδ2n

)

≤ 2 exp
(
−cC2(p+ t2)

)
,

where the last inequality follows from the definition of δ in (2.72) and because (a+ b)2 ≥
a2 + b2 for a, b ≥ 0.

Step 3: Union bound. We now apply a union bound over all elements in the net.
Specifically,

P
(

max
x∈N

∣∣∣
1
n
∥∥Ax

∥∥2
2 − x

TΣx
∣∣∣ ≥

ε
2

)
≤ 9p · 2 exp

(
−cC2(p+ t2)

)
≤ 2 exp

(
−t2

)
,

for large enough C . This concludes the proof.

■ 2.9.6 Proof of Lemma 2.12.6

Recall that zi = (xi + wi) ◦ πi, where wi is an independent mean zero subgaussian vector
with wiψ2≤ K and πi is a vector of independent Bernoulli variables with parameter ρ.
Hence, E[zi − ρxi] = 0 and is independent across i ∈ [n]. The only remaining item is a
bound on zi − ρxiψ2 . To that end, note that

zi − ρxiψ2 = xi ◦ πi + wi ◦ πi − ρxiψ2

≤ xi ◦ (ρ1− πi)ψ2+wi ◦ πiψ2 .
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Now, (ρ1−πi) is independent, zero mean random vector whose absolute value is bounded
by 1, and is component-wise multiplied by xi which are bounded in absolute value by 1
as per Assumption 1. That is, xi ◦ (ρ1 − πi) is a zero mean random vector where each
component is independent and bounded in absolute value by 1. That is, ·ψ2≤ C .

For wi ◦ πi, note that wi and πi are independent vectors and the coordinates of πi have
support {0, 1}. Therefore, from Lemma 2.12.12, it follows that wi ◦ πiψ2≤ wiψ2≤ K by
Assumption 4. The proof of Lemma 2.12.6 is complete by choosing a large enough C .

Lemma 2.9.12. Suppose that Y ∈ Rn and P ∈ {0, 1}n are independent random vectors.
Then,

Y ◦ Pψ2≤ Y ψ2 .

Proof. Given a binary vector P ∈ {0, 1}n, let IP = {i ∈ [n] : Pi = 1}. Observe that

Y ◦ P =
∑

i∈IP

ei ⊗ eiY .

Here, ◦ denotes the Hadamard product (entry-wise product) of two matrices. By definition
of the ψ2-norm,

Y ψ2 = sup
u∈Sn−1

uTY ψ2= sup
u∈Sn−1

inf{t > 0 : EY [exp
(
|uTY |2/t2

)
] ≤ 2}.

Let u0 ∈ Sn−1 denote the maximum-achieving unit vector (such a u0 exists because
inf{· · ·} is continuous with respect to u and Sn−1 is compact). Now,

Y ◦ Pψ2 = sup
u∈Sn−1

uTY ◦ Pψ2

= sup
u∈Sn−1

inf{t > 0 : EY ,P [exp
(
|uTY ◦ P|2/t2

)
] ≤ 2}

= sup
u∈Sn−1

inf{t > 0 : EP [EY [exp
(
|uTY ◦ P|2/t2

)
| P ]] ≤ 2}

= sup
u∈Sn−1

inf{t > 0 : EP [EY [exp(|uT
∑

i∈IP

ei ⊗ eiY |2/t2) | P ]] ≤ 2}

= sup
u∈Sn−1

inf{t > 0 : EP [EY [exp(|(
∑

i∈IP

ei ⊗ eiu)TY |2/t2) | P ]] ≤ 2}.
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For any u ∈ Sn−1, observe that

EY [exp(|(
∑

i∈IP

ei ⊗ eiu)TY |2/t2) | P ] ≤ EY [exp
(
|uT0 Y |2/t2

)
].

Therefore, taking supremum over u ∈ Sn−1, we obtain

Y ◦ Pψ2 ≤ Y ψ2 .

■

■ 2.9.7 Proof of Lemma 2.12.7

Consider

E[W̃ T W̃ ] =
n∑

i=1
E[(zi − ρxi)⊗ (zi − ρxi)]

=
n∑

i=1
E[zi ⊗ zi]− ρ2(xi ⊗ xi)

=
n∑

i=1
(ρ − ρ2)diag(xi ⊗ xi) + (ρ − ρ2)diag(E[wi ⊗ wi]) + ρ2E[wi ⊗ wi].

Note that diag(XTX )2≤ n due to Assumption 1. Using Assumption 4, it follows that
diag(E[wi ⊗ wi])2≤ CK 2. By Assumption 4, we have E[wi ⊗ wi]2≤ γ2. Therefore,

E[W̃ T W̃ ]2 ≤ Cn(ρ − ρ2)(K + 1)2 + nρ2γ2.

This completes the proof of Lemma 2.12.7.

■ 2.9.8 Proof of Lemma 2.12.9

By the Binomial Chernoff bound, for α > 1,

P (ρ̂ > αρ) ≤ exp
(
− (α − 1)2

α + 1 npρ
)

and P (ρ̂ < ρ/α) ≤ exp
(
− (α − 1)2

2α2 npρ
)
.
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By the union bound,

P (ρ/α ≤ ρ̂ ≤ αρ) ≥ 1− P (ρ̂ > αρ)− P (ρ̂ < ρ/α) .

Noticing α + 1 < 2α < 2α2 for all α > 1, we obtain the desired bound claimed in Lemma
2.12.9. To complete the remaining claim of Lemma 2.12.9, we consider an α that satisfies

(α − 1)2 ≤ C log(np)
ρnp ,

for a constant C > 0. Thus,

1− C
√

log(np)
√ρnp ≤ α ≤ 1 + C

√
log(np)
√ρnp .

Then, with ρ ≥ c log2 np
np , we have that α ≤ 2. Further by choosing C > 0 large enough,

we have

(ρ − ρ̂)2
ρ̂2 ≤ C log(np)

ρnp .

holds with probability at least 1−O(1/(np)10). This completes the proof of Lemma 2.12.9.

■ 2.9.9 Proof of Lemma 2.12.10

By definition QQT ∈ Rn×n is a rank ℓ matrix. Since Q has orthonormal column vectors,
the projection operator has QQT

2= 1 and QQT 2
F= ℓ . For a given j ∈ [p], the random

vector Z·j − ρX·j is such that it has zero mean, independent components that are sub-
gaussian by Assumption 4. For any i ∈ [n], j ∈ [p], we have by property of ψ2 norm,
zij − ρxij ψ2≤ zi − ρxiψ2 which is bounded by C (K + 1) using Lemma 2.12.6. Recall the
Hanson-Wright inequality (Vershynin (2018)):

Theorem 2.9.2 (Hanson-Wright inequality). Let ζ ∈ Rn be a random vector with inde-
pendent, mean zero, sub-gaussian coordinates. Let A be an n × n matrix. Then for any
t > 0,

P
(∣∣∣ζTAζ − E[ζTAζ ]

∣∣∣ ≥ t
)
≤ 2 exp

(
− cmin

( t2

L4
∥∥A
∥∥2
F

, t
L2
∥∥A
∥∥

2

))
,
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where L = maxi∈[n]
∥∥ζi
∥∥
ψ2

.

Now with ζ = Z·j − ρX·j and the fact that QTQ = D ∈ Rℓ×ℓ , QQT ζ2
2= ζTQQT ζ .

Therefore, by Theorem 2.12.3, for any t > 0,

QQT ζ2
2 ≤ E[ζTQQT ζ ] + t,

with probability at least 1− exp
(
− cmin ( t

C (K+1)2 ,
t2

C (K+1)4ℓ )
)

. Now,

E[ζTQQT ζ ] =
ℓ∑

m=1
E[(QT

·mζ)2]

(a)
=

ℓ∑

m=1
Var(QT

·mζ)

(b)
=

ℓ∑

m=1

n∑

i=1
Q2
imVar(ζi)

(c)
≤ C (K + 1)2ℓ,

where ζ = Z·j − ρX·j , and hence (a) follows from E[ζ ] = E[Z·j − ρX·j ] = 0, (b) follows
from ζ having independent components and (c) follows from each component of ζ having
ψ2-norm bounded by C (K + 1). Therefore, it follows by union bound that for any t > 0,

P
(

max
j∈[p]

∥∥∥QQT (Z·j − ρX·j )
∥∥∥

2

2
≥ ℓC (K + 1)2 + t

)

≤ p · exp
(
− cmin

( t2

C (K + 1)4ℓ ,
t

C (K + 1)2
))
.

This completes the proof of Lemma 2.12.10.

■ 2.10 Proof of Theorem 2.5.2

Broadly, we proceed in three steps: (i) stating the Gaussian location model (GLM) and
an associated minimax result; (ii) reducing GLM to an instance of error-in-variables
regression; (iii) establishing a minimax result on the parameter estimation error of error-
in-variables using the GLM minimax result.
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Gaussian location model. Below, we introduce the GLM setting through a well-known
minimax result.

Lemma 2.10.1 (Theorem 12.4 of Wu (2020)). Let θ ∼ N (θ∗, σ2Ip), where Ip ∈ Rp×p is
the identity matrix and θ, θ∗ ∈ Rp. Given θ, let θ̂ be any estimator of θ. Then,

inf
θ̂

sup
θ∈B2

Eθ̂ − θ∗22= Θ(σ2p ∧ 1).

Reducing GLM to error-in-variables. We will now show how an instance of GLM can
be reduced to an instance of error-in-variables. Towards this, we follow the setup of
Lemma 2.10.1 and define β∗ = θ∗, β = θ, and s = 1/σ . For convenience, we write
β = β∗ + η, where the entries of η are independent Gaussian r.v.s with mean zero and
variance 1/s2; hence β ∼ N (β∗, (1/s2)Ip). Now, recall that the error-in-variables setting
reveals a response vector y = Xβ∗ + ε and covariate Z = X + W , where the parameter
estimation objective is to recover β∗ from (y,Z ). Below, we construct instances of these
quantities using β, β∗ as follows:

(i) Let the SVD of X be defined as X = su ⊗ v , where u = (1, 0, . . . , 0)T ∈ Rn and
v = β∗. Note by construction, rank(X ) = 1 and β∗ ∈ rowspan(X ).

(ii) To construct y, we first sample ε ∈ Rn whose entries are independent standard
normal r.v.s. Next, we define y = su+ ε. From (i), we note that Xβ∗ = su such that
y can be equivalently expressed as y = Xβ∗ + ε.

(iii) Let Z = su ⊗ β. By construction, it follows that Z = X + su ⊗ η. Note that
W = su ⊗ η is an n × p matrix whose entries in the first row are independent
standard normal r.v.s and the remaining entries are zero.

Establishing minimax parameter estimation result. As stated above, the error-in-variables
parameter estimation task is to construct β̂ from (y,Z ) such that β̂ − β∗2 vanishes as n, p
grow. Using the above reduction combined with Lemma 2.10.1, it follows that

inf
β̂

sup
β∗∈B2

Eβ̂ − β∗22= Θ(p/s2 ∧ 1).

To attain our desired result, it suffices to establish that p/s2 = Ω(1). By (2.4) and under
the assumption n = O(p), we have that s2 ≤ 2snr2(n + p) ≤ csnr2p for some c > 0.
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As such, if snr = O(1), then the minimax error is bounded below by a constant. This
completes the proof.

■ 2.11 Proof of Theorem 2.5.3

Recall that X ′ and Z ′ denote the latent and observed testing covariates, respectively. We
denote the SVD of the former as X ′ = U ′S′(V ′)T . Let s′ℓ be the ℓ-th singular value of
X ′. Further, recall that Z̃ ′ = (1/ρ̂′)Z ′, and its rank ℓ truncation is denoted as Z̃ ′ℓ . Our
interest is in bounding Z̃ ′ℓ β̂ − X ′β∗2. Towards this, consider

Z̃ ′ℓ β̂ − X ′β∗22 = Z̃ ′ℓ β̂ − Z̃ ′ℓβ∗ + Z̃ ′ℓβ∗ − X ′β∗22
≤ 2Z̃ ′ℓ (β̂ − β∗)22+2(Z̃ ′ℓ − X ′)β∗22. (2.48)

We shall bound the two terms on the right hand side of (2.48) next.

Bounding Z̃ ′ℓ (β̂ − β∗)22. Since Z̃ ′ℓ = (1/ρ̂′)Z ′ℓ , we have

Z̃ ′ℓ (β̂ − β∗)22 = 1
(ρ̂′)2 Z ′ℓ (β̂ − β∗)22

= 1
(ρ̂′)2

(Z ′ℓ − ρX ′ + ρX ′)(β̂ − β∗)22

≤ 2
(ρ̂′)2

(Z ′ℓ − ρX ′)(β̂ − β∗)22+2
( ρ
ρ̂′
)2

X ′(β̂ − β∗)22. (2.49)

Now, note that Z ′ − Z ′ℓ2 is the (ℓ + 1)-st largest singular value of Z ′. Therefore, by
Weyl’s inequality (Lemma 5.14.4), we have for any ℓ ≥ r′,

Z ′ − Z ′ℓ2 ≤ Z ′ − ρX ′2.

In turn, this gives

Z ′ℓ − ρX ′2 ≤ Z ′ℓ − Z ′2+Z ′ − ρX ′2≤ 2Z ′ − ρX ′2.

Thus, we have

(Z ′ℓ − ρX ′)(β̂ − β∗)22 ≤ 4Z ′ − ρX ′22 β̂ − β∗22. (2.50)
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Recall that V and V⊥ span the rowspace and nullspace of X , respectively. By Assumption
5, it follows that V ′TV⊥ = 0 and hence X ′V⊥V T

⊥ = 0. As a result,

X ′(β̂ − β∗)22 = X ′(V V T + V⊥V T
⊥ )(β̂ − β∗)22

= X ′V V T (β̂ − β∗)22
≤ X ′22 V V T (β̂ − β∗)22.

Recalling that V̂r denotes the top r right singular vectors of Z̃ r , consider

V V T (β̂ − β∗)22 = (V V T − V̂rV̂r
T + V̂rV̂r

T )(β̂ − β∗)22
≤ 2V V T − V̂rV̂r

T 2
2 β̂ − β∗22+2V̂rV̂r

T (β̂ − β∗)22.

From (3.53) and above, we obtain

V V T (β̂ − β∗)22 ≤ CV V T − V̂rV̂r
T 2

2 β̂ − β∗22

+ C
ŝ2
r

(
X − Z̃ r2

2,∞β∗21+⟨Z̃ r(β̂ − β∗), ε⟩
)
.

Thus,

X ′(β̂ − β∗)22 ≤ CX ′22 V V T − V̂rV̂r
T 2

2 β̂ − β∗22

+ CX ′22
ŝ2
r

(
X − Z̃ r2

2,∞β∗21+⟨Z̃ r(β̂ − β∗), ε⟩
)
. (2.51)

In summary, plugging (2.50) and (2.51) into (2.49), we have

Z̃ ′,ℓ (β̂ − β∗)22 ≤
C

(ρ̂′)2 Z ′ − ρX ′22 β̂ − β∗22

+ C
( ρ
ρ̂′
)2

X ′22 V V T − V̂rV̂r
T 2

2 β̂ − β∗22

+ Cρ2X ′22
(ρ̂′)2ŝ2

r

(
X − Z̃ r2

2,∞β∗21+⟨Z̃ r(β̂ − β∗), ε⟩
)
. (2.52)

Bounding (Z̃ ′ℓ − X ′)β∗22. Using inequality (3.47),

(Z̃ ′ℓ − X ′)β∗22 ≤ Z̃ ′ℓ − X ′22,∞β∗21. (2.53)
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Combining. Incorporating (2.52) and (2.53) into (2.48) with ℓ = r′ yields

Z̃ ′r′ β̂ − X ′β∗22 ≤ ∆1 + ∆2, (2.54)

where

∆1 = C
(ρ̂′)2 Z ′ − ρX ′22 β̂ − β∗22+C

(ρs′1
ρ̂′
)2

V V T − V̂rV̂r
T 2

2 β̂ − β∗22

+ 2X ′ − Z̃ ′r′22,∞β∗21,

∆2 = C
( ρs′1
ρ̂′ŝr

)2(
X − Z̃ r2

2,∞β∗21+⟨Z̃ r(β̂ − β∗), ε⟩
)
.

Note that (2.54) is a deterministic bound. We will now proceed to bound ∆1 and ∆2, first
in high probability then in expectation.

Bound in high-probability. We first bound ∆1. First we note that by adapting Lemma
2.12.9 with ρ̂′ in place of ρ̂, we obtain with probability at least 1−O(1/(mp)10),

ρ/2 ≤ ρ̂′ ≤ ρ. (2.55)

By adapting Lemma 2.12.8 for Z ′,X ′ in place of Z ,X , we have with probability at least
1−O(1/(mp)10),

Z ′ − ρX ′2 ≤ C (K, γ)(
√
m+√p).

Hence, using Theorem 2.5.1 and (2.55), we have that with probability at least 1−O(1/((n∧
m)p)10)

1
(ρ̂′)2mZ ′ − ρX ′22β̂ − β∗22 ≤

C (K, γ, σ ) lognp
ρ2 · (1 + p

m )
(
rβ∗22
snr2 + β∗21

snr4

)
(2.56)

Note, s′1 = O(√mp) which follows by Assumption 1. Using this bound on s′1 and
recalling Lemma 2.9.1, (2.26), and Theorem 2.5.1, it follows that with probability at least
1−O(1/(np)10)

(ρs′1
ρ̂′
)2 1
mV V T − V̂rV̂ T

r
2
2β̂ − β∗22 (2.57)

≤ C (K, γ)mpm
n+ p
ρ2s2

r
β̂ − β∗22≤ C (K, γ, σ ) lognp ·

(
rpβ∗22
snr4 + pβ∗21

snr6

)
.
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Next, we adapt Lemma 2.9.2 for Z̃ ′,X ′ in place of Z̃ ,X with ℓ = r′. If ρ ≥ c log2 mp
mp , then

with probability at least 1−O(1/(mp)10)

1
mX ′ − Z̃ ′r′22,∞β∗21

≤ C (K, γ)
m

((m+ p)(m+
√
m log(mp))

ρ4(s′r)2
+ r′ +

√
r′ log(mp)
ρ2

)
+ C log(mp)

ρ p β∗21

≤ C (K, γ) log(mp)
ρ2

( 1
snr2test

+ r′
m

)
β∗21. (2.58)

Note that the above uses the inequality m+p
ρ2(s′r′ )

2 ≤ 1
snr2test

, which follows from the definition

of snr2test in (2.8). Hence, by using (2.56), (2.57), (2.58), we conclude that with probability
at least 1−O(1/((n ∧ m)p)10),

∆1
m ≤ C (K, γ, σ ) log((n ∨ m)p)

[
r(1 + p

m )β∗22
(ρ2snr2) + 1

snr4

(
(1 + p

m )β
∗2
1

ρ2 + rpβ∗22
)

+ pβ∗21
snr6 +

(
1

snr2test
+ r′
m

)
β∗21
ρ2

]
. (2.59)

We will now bound ∆2. As per (2.22), with probability at least 1−O(1/(np)10),

X − Z̃ r2
2,∞β∗21+⟨Z̃ r(β̂ − β∗), ε⟩

≤ CX − Z̃ r2
2,∞β∗21+Cσ2(r + log(np)) + Cσ

√
n log(np)β∗1. (2.60)

Recalling Lemma 2.9.2 and the definition of snr, we have that with probability at least
1−O(1/(np)10),

X − Z̃ r2
2,∞ ≤

C (K, γ) log(np)
ρ2

( n
snr2 + r

)
. (2.61)

Using (2.25), (2.26), (2.55), we have

( ρs′1
ρ̂′ŝr

)2
≤

C (s′1)2ρ2

snr2(n+ p) . (2.62)

Therefore, (2.55), (2.60), (2.61), and (2.62), the bound s′1 = O(√mp), and the assumption
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β∗2= Ω(1) imply that with probability at least 1−O(1/((n ∧ m)p)10),

∆2
m ≤

C (K, γ)(s′1)2 log(np)ρ2

m(n+ p)snr2

(
β∗21
ρ2 ( n

snr2 + r) + σ2r + σ
√
nβ∗1

)

≤ C (K, γ, σ ) log(np)
snr2

(
nβ∗21
snr2 + rβ∗21+

√
nβ∗1

)
. (2.63)

Incorporating (2.59) and (2.63) into (2.54),

∆1 + ∆2
m ≤ C (K, γ, σ ) log((n ∨ m)p)

[
1

snr2

(
r(1 + p

m )β∗22
ρ2 + rβ∗21+

√
nβ∗1

)
(2.64)

+ 1
snr4

((
1
ρ2 (1 + p

m ) + n
)
β∗21+rpβ∗22

)

+ pβ∗21
snr6 +

(
1

snr2test
+ r′
m

)
β∗21

]
.

Observing that β∗2≤ β∗1 and using the assumption that snr ≥ C (K, γ, σ ), we have

1
snr2

(
r(1 + p

m )β∗22
ρ2 + rβ∗21

)
, 1

snr4

((
1
ρ2 (1 + p

m )
)
β∗21
)
≤ 1

snr2

(
r(1 + p

m )β∗21
ρ2

)
(2.65)

1
snr4

(
nβ∗21+rpβ∗22

)
,
pβ∗21
snr6 ≤

1
snr4

(
r(n ∨ p)β∗21

)
(2.66)

(
1

snr2test
+ r′
m

)
β∗21≤

rβ∗21
snr2test ∧ m

, (2.67)

where in the last equality, we used Assumption 5. Using (2.65), (2.66), (2.67) in (2.64)
and simplifying concludes the high-probability bound.

Bound in expectation. Here, we assume that {⟨xi, β∗⟩ ∈ [−b, b] : i > n}. As such, we
enforce {ŷi ∈ [−b, b] : i > n}. With (2.54), this yields

MSEtest ≤
1
m Z̃ ′r′ β̂ − X ′β∗22≤

1
m (∆1 + ∆2).

We define E as the event such that the bounds in (2.56), (2.57), (2.58), (2.55), (2.61), and
Lemma 2.9.3 hold. Thus, if E occurs, then (2.59) implies that

1
mE[∆1|E ] ≤ C (K, γ, σ ) log((n ∨ m)p)

[
r(1 + p

m )β∗22
(ρ2snr2) + 1

snr4

(
(1 + p

m )β
∗2
1

ρ2 + rpβ∗22
)

(2.68)
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+ pβ∗21
snr6 +

(
1

snr2test
+ r′
m

)
β∗21
ρ2

]
.

Next, we bound E[∆2|E ]. To do so, observe that ε is independent of the event E . Thus, by
(3.60), we have

E[⟨Z̃ r(β̂ − β∗), ε⟩|E ] = E[⟨ÛrÛT
r Xβ∗, ε⟩+ ⟨ÛrÛT

r ε, ε⟩ − ⟨ÛrΣ̂rV̂ T
r β∗, ε⟩|E ]

= E[⟨ÛrÛT
r ε, ε⟩|E ] ≤ Cσ2r.

Combining the above inequality with (2.61),

1
mE[∆2|E ] ≤ C (K, γ, σ ) log(np)

(
rβ∗21
snr2 + nβ∗21

snr4

)
. (2.69)

Due to truncation, observe that MSEtest is always bounded above by 4b2. Thus,

E[MSEtest] ≤ E[MSEtest|E ] + E[MSEtest|E c ] P(E c)

≤ 1
mE[∆1 + ∆2|E ] + Cb2

(
1/(np)10 + 1/(mp)10

)
.

Plugging (2.65), (2.66), (2.67) into (2.68); then using that bound along with (2.69) in the
inequality above completes the proof.

■ 2.12 Helpful Concentration Inequalities

In this section, we state and prove a number of helpful concentration inequalities used to
establish our primary results.

Lemma 2.12.1. Let X be a mean zero, sub-gaussian random variable. Then for any λ ∈ R,

E exp (λX ) ≤ exp
(
Cλ2 ∥∥X

∥∥2
ψ2

)
.

Lemma 2.12.2. Let X1, . . . , Xn be independent, mean zero, sub-gaussian random variables.
Then,

n∑

i=1
Xi2ψ2≤ C

n∑

i=1

∥∥Xi
∥∥2
ψ2
.

Theorem 2.12.1 (Bernstein’s inequality). Let X1, . . . , Xn be independent, mean zero,
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sub-exponential random variables. Then, for every t ≥ 0, we have

P
(∣∣∣

n∑

i=1
Xi
∣∣∣ ≥ t

)
≤ 2 exp

(
− cmin

( t2
∑n

i=1
∥∥Xi
∥∥2
ψ1

, t
maxi

∥∥Xi
∥∥
ψ1

))
,

where c > 0 is an absolute constant.

Lemma 2.12.3 (Modified Hoeffding Inequality). Let X ∈ Rn be random vector with
independent mean-zero sub-Gaussian random coordinates with Xiψ2≤ K. Let a ∈ Rn be
another random vector that satisfies a2≤ b almost surely for some constant b ≥ 0. Then
for all t ≥ 0,

P
(∣∣∣

n∑

i=1
aiXi

∣∣∣ ≥ t
)
≤ 2 exp

(
− ct2

K 2b2

)
,

where c > 0 is a universal constant.

Proof. Let Sn =
∑n

i=1 aiXi. Then applying Markov’s inequality for any λ > 0, we obtain

P (Sn ≥ t) = P (exp(λSn) ≥ exp(λt))

≤ E [exp(λSn)] · exp(−λt)

= Ea [E [exp(λSn) | a]] · exp(−λt).

Now, conditioned on the random vector a, observe that

E [exp(λSn)] =
n∏

i=1
E [exp(λaiXi)] ≤ exp

(
CK 2λ2a2

2

)
≤ exp

(
CK 2λ2b2

)
,

where the equality follows from conditional independence, the first inequality by Lemma
2.13.1, and the final inequality by assumption. Therefore,

P (Sn ≥ t) ≤ exp
(
CK 2λ2b2 − λt

)
.

Optimizing over λ yields the desired result:

P (Sn ≥ t) ≤ exp
(
− ct2

K 2b2

)
.

Applying the same arguments for −⟨X, a⟩ gives a tail bound in the other direction. ■
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Lemma 2.12.4 (Modified Hanson-Wright Inequality). Let X ∈ Rn be a random vector
with independent mean-zero sub-Gaussian coordinates with Xiψ2≤ K. Let A ∈ Rn×n be
a random matrix satisfying A2≤ a and A2

F ≤ b almost surely for some a, b ≥ 0. Then for
any t ≥ 0,

P
(∣∣∣XTAX − E[XTAX ]

∣∣∣ ≥ t
)
≤ 2 · exp

(
− cmin

( t2

K 4b,
t

K 2a

))
.

Proof. The proof follows similarly to that of Theorem 6.2.1 of Vershynin (2018). Using
the independence of the coordinates of X , we have the following useful diagonal and
off-diagonal decomposition:

XTAX − E[XTAX ] =
n∑

i=1

(
AiiX2

i − E[AiiX2
i ]
)

+
∑

i̸=j
AijXiXj .

Therefore, letting
p = P

(
XTAX − E[XTAX ] ≥ t

)
,

we can express

p ≤ P
( n∑

i=1

(
AiiX2

i − E[AiiX2
i ]
)
≥ t/2

)
+ P

(∑

i̸=j
AijXiXj ≥ t/2

)
=: p1 + p2.

We will now proceed to bound each term independently.

Step 1: diagonal sum. Let Sn =
∑n

i=1(AiiX2
i − E[AiiX2

i ]). Applying Markov’s inequality
for any λ > 0, we have

p1 = P (exp(λSn) ≥ exp(λt/2))

≤ EAE [[exp(λSn) | A]] · exp(−λt/2).

Since the Xi are independent, sub-Gaussian random variables, X2
i −E[X2

i ] are independent
mean-zero sub-exponential random variables, satisfying

∥∥∥X2
i − E[X2

i ]
∥∥∥
ψ1
≤ C

∥∥∥X2
i

∥∥∥
ψ1
≤ C

∥∥Xi
∥∥2
ψ2
≤ CK 2.
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Conditioned on A and optimizing over λ using standard arguments, yields

p1 ≤ exp
(
− cmin

( t2

K 4b,
t

K 2a

))
.

Step 2: off-diagonals. Let S =
∑

i̸=j AijXiXj . Again, applying Markov’s inequality for
any λ > 0, we have

p2 = P (exp(λS) ≥ exp(λt/2)) ≤ EA [E [exp(λS) | A]] · exp(−λt/2).

Let g be a standard multivariate gaussian random vector. Further, let X ′ and g′ be
independent copies of X and g, respectively. Conditioning on A yields

E [exp(λS)] ≤ E
[
exp
(
4λXTAX ′

)]
(by Decoupling Remark 6.1.3 of Vershynin (2018))

≤ E
[
exp
(
C1λgTAg′

)]
(by Lemma 6.2.3 of Vershynin (2018))

≤ exp
(
C2λ2 ∥∥A

∥∥2
F

)
(by Lemma 6.2.2 of Vershynin (2018))

≤ exp
(
C2λ2b

)
,

where |λ| ≤ c/a. Optimizing over λ then gives

p2 ≤ exp
(
− cmin

( t2

K 4b,
t

K 2a

))
.

Step 3: combining. Putting everything together completes the proof. ■

■ 2.12.1 Proof of Lemma 2.9.1

Recall that U ,V denote the left and right singular vectors of X (equivalently, ρX ),
respectively; meanwhile, Ûk , V̂k denote the top k left and right singular vectors of Z̃
(equivalently, Z ), respectively. Further, observe that E[Z ] = ρX and let W̃ = Z −ρX . To
arrive at our result, we recall Wedin’s Theorem Wedin (1972).

Theorem 2.12.2 (Wedin’s Theorem). Given A,B ∈ Rn×p, let A = USV T and B = ÛΣ̂V̂ T

be their respective SVDs. Let Uk ,Vk (respectively, Ûk , V̂k ) correspond to the truncation
of U ,V (respectively, Û , V̂ ) that retains the columns corresponding to the top k singular



Sec. 2.12. Helpful Concentration Inequalities 103

values of A (respectively, B). Let sk denote the k-th singular value of A. Then,

max
(

UkUT
k − Ûk ÛT

k 2,VkV T
k − V̂k V̂ T

k 2
)
≤

2
∥∥A− B

∥∥
2

sk − sk+1
.

Using Theorem 3.15.1 for k = r, it follows that

max
(

UUT − ÛrÛT
r 2,V V T − V̂rV̂ T

r 2
)
≤ 2W̃ 2

ρsr
, (2.70)

where sr is the smallest nonzero singular value of X . Next, we obtain a high probability
bound on W̃ 2. To that end,

1
nW̃ 2

2 = 1
nW̃ T W̃ 2≤

1
nW̃ T W̃ − E[W̃ T W̃ ]2+

1
nE[W̃ T W̃ ]2. (2.71)

We bound the two terms in (2.71) separately. We recall the following lemma, which is a
direct extension of Theorem 4.6.1 of Vershynin (2018) for the non-isotropic setting, and
we present its proof for completeness in Section 2.12.5.

Lemma 2.12.5 (Independent sub-gaussian rows). Let A be an n×p matrix whose rows Ai
are independent, mean zero, sub-gaussian random vectors in Rp with second moment matrix
Σ = (1/n)E[ATA]. Then for any t ≥ 0, the following inequality holds with probability at
least 1− exp

(
−t2

)
:

1
nATA− Σ2 ≤ K 2 max(δ, δ2), where δ = C

√
p
n + t√

n
; (2.72)

here, K = maxi
∥∥Ai
∥∥
ψ2

.

The matrix W̃ = Z − ρX has independent rows by Assumption 4. We state the following
Lemma about the distribution property of the rows of W̃ , the proof of which can be found
in Section 2.12.6.

Lemma 2.12.6. Let Assumption 4 hold. Then, zi−ρxi is a sequence of independent, mean
zero, sub-gaussian random vectors satisfying zi − ρxiψ2≤ C (K + 1).

From Lemmas 2.12.5 and 2.12.6, with probability at least 1− exp
(
−t2

)
,

1
nW̃ T W̃ − E[W̃ T W̃ ]2 ≤ C (K + 1)2(1 + p

n + t2
n

). (2.73)
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Finally, we claim the following bound on E[W̃ T W̃ ]2, the proof of which is in Section
2.12.7.

Lemma 2.12.7. Let Assumption 4 hold. Then, we have

E[W̃ T W̃ ]2 ≤ C (K + 1)2n(ρ − ρ2) + nρ2γ2.

From (2.71), (2.73) and Lemma 2.12.7, it follows that with probability at least 1−exp
(
−t2

)

for any t > 0, we have

W̃ 2
2 ≤ C (K + 1)2(n+ p+ t2) + n(ρ(1− ρ)(K + 1)2 + ρ2γ2).

For this, we conclude the following lemma.

Lemma 2.12.8. For any t > 0, the following holds with probability at least 1− exp
(
−t2

)
:

Z − ρX 2 ≤ C (K, γ)(
√
n+√p+ t).

Using the above and (2.70), we conclude the proof of Lemma 2.9.1.

■ 2.12.2 Proof of Lemma 2.9.2

We want to bound X − Z̃ k2
2,∞. To that end, let ∆j = X·j − Z̃ k

·j for any j ∈ [p]. Our interest
is in bounding ∆j22 for all j ∈ [p]. Consider,

Z̃ k
·j − X·j = (Z̃ k

·j − Ûk ÛT
k X·j ) + (Ûk ÛT

k X·j − X·j ).

Now, note that Z̃ k
·j − Ûk ÛT

k X·j belongs to the subspace spanned by column vectors of
Ûk , while Ûk ÛT

k X·j − X·j belongs to its orthogonal complement with respect to Rn. As a
result,

Z̃ k
·j − X·j22 = Z̃ k

·j − Ûk ÛT
k X·j22+Ûk ÛT

k X·j − X·j22. (2.74)

Bounding Z̃ k
·j − Ûk ÛT

k X·j22. Recall that Z̃ = (1/ρ̂)Z = ÛΣ̂V̂ T , and hence Z = ρ̂ÛΣ̂V̂ T .
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Consequently,

1
ρ̂ Ûk ÛT

k Z·j = 1
ρ̂ Ûk ÛT

k Zej = Ûk ÛT
k ÛΣ̂V̂ Tej

= Ûk Σ̂k V̂ T
k ej = Z̃ k

·j .

Therefore, we have

Z̃ k
·j − Ûk ÛT

k X·j = 1
ρ̂ Ûk ÛT

k Z·j − Ûk ÛT
k X·j

= 1
ρ̂ Ûk ÛT

k (Z·j − ρX·j ) +
(ρ − ρ̂

ρ̂

)
Ûk ÛT

k X·j .

Therefore,

Z̃ k
·j − Ûk ÛT

k X·j22 ≤
2
ρ̂2 Ûk ÛT

k (Z·j − ρX·j )22+2
(ρ − ρ̂

ρ̂

)2
Ûk ÛT

k X·j22

≤ 2
ρ̂2 Ûk ÛT

k (Z·j − ρX·j )22+2
(ρ − ρ̂

ρ̂

)2
X·j22,

where we have used the fact that Ûk ÛT
k 2= 1. Recall that U ∈ Rn×r represents the left

singular vectors of X . Thus,

Ûk ÛT
k (Z·j − ρX·j )22 ≤ 2(Ûk ÛT

k − UUT )(Z·j − ρX·j )22+2UUT (Z·j − ρX·j )22
≤ 2Ûk ÛT

k − UUT 2
2 Z·j − ρX·j22+2UUT (Z·j − ρX·j )22.

By Assumption 1, we have that X·j22≤ n. This yields

Z̃ k
·j − Ûk ÛT

k X·j22 ≤
4
ρ̂2 Ûk ÛT

k − UUT 2
2 Z·j − ρX·j22

+ 4
ρ̂2 UUT (Z·j − ρX·j )22+2n

(ρ − ρ̂
ρ̂

)2
. (2.75)

We now state Lemmas 2.12.9 and 2.12.10. Their proofs are in Sections 2.12.8 and 2.12.9,
respectively.

Lemma 2.12.9. For any α > 1,

P (ρ/α ≤ ρ̂ ≤ αρ) ≥ 1− 2 exp
(
− (α − 1)2npρ

2α2

)
.
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Therefore, for ρ ≥ c log2 np
np , we have with probability 1−O(1/(np)10)

ρ
2 ≤ ρ̂ ≤ 2ρ and

(ρ − ρ̂
ρ̂

)2
≤ C log(np)

ρnp .

Lemma 2.12.10. Consider any matrix Q ∈ Rn×ℓ with 1 ≤ ℓ ≤ n such that its columns
Q·j for j ∈ [ℓ ] are orthonormal vectors. Then for any t > 0,

P
(

max
j∈[p]

∥∥∥QQT (Z·j − ρX·j )
∥∥∥

2

2
≥ ℓC (K + 1)2 + t

)

≤ p · exp
(
− cmin

( t2

C (K + 1)4ℓ ,
t

C (K + 1)2
))
.

Subsequently, with probability 1−O(1/(np)10),

max
j∈[p]

∥∥∥QQT (Z·j − ρX·j )
∥∥∥

2

2
≤ C (K + 1)2(ℓ +

√
ℓ log(np)).

Both terms Z·j − ρX·j22 and UUT (Z·j − ρX·j )22 can be bounded by Lemma 2.12.10: for
the first term Q = D , and for the second term Q = U . In summary, with probability
1−O(1/(np)10), we have

max
j∈[p]

∥∥Z·j − ρX·j
∥∥2

2 ≤ C (K + 1)2(n+
√
n log(np)), (2.76)

and

max
j∈[p]

UUT (Z·j − ρX·j )22 ≤ C (K + 1)2(r +
√
r log(np)). (2.77)

Using (2.75), (2.76), (2.77), and Lemmas 2.9.1 and 2.12.9 with k = r, we conclude that
with probability 1−O(1/(np)10),

max
j∈[p]

Z̃ k
·j − Ûk ÛT

k X·j 22 ≤ C (K, γ)
( (n+ p)(n+

√
n log(np))

ρ4s2
r

+ r +
√
r log(np)
ρ2

)
+ C log(np)

ρ p . (2.78)

Bounding Ûk ÛT
k X·j − X·j22. Recalling X = USV T , we obtain UUTX·j = X·j since UUT

is the projection onto the column space of X . Therefore,

Ûk ÛT
k X·j − X·j22 = Ûk ÛT

k X·j − UUTX·j22
≤ Ûk ÛT

k − UUT 2
2 X·j22.



Sec. 2.12. Helpful Concentration Inequalities 107

Using Property 1, note that X·j22≤ n. Thus using Lemma 2.9.1 with k = r, we have that
with probability at least 1−O(1/(np)10), we have

Ûk ÛT
k X·j − X·j22 ≤ C

n(n+ p)
ρ2s2

r
. (2.79)

Concluding. From (2.74), (2.78), and (2.79), we claim with probability at least 1 −
O(1/(np)10)

X − Z̃ k2
2,∞≤ C (K, γ)

((n+ p)(n+
√
n log(np))

ρ4s2
r

+ r +
√
r log(np)
ρ2

)
+ C log(np)

ρ p .

This completes the proof of Lemma 2.9.2.

■ 2.12.3 Proof of Lemma 2.9.3

To bound ŝk , we recall Weyl’s inequality.

Lemma 2.12.11 (Weyl’s inequality). Given A,B ∈ Rm×n, let σi and σ̂i be the i-th singular
values of A and B, respectively, in decreasing order and repeated by multiplicities. Then
for all i ∈ [m ∧ n],

|σi − σ̂i| ≤
∥∥A− B

∥∥
2 .

Let s̃k be the k-th singular value of Z . Then, ŝk = (1/ρ̂)s̃k since it is the k-th singular
value of Z̃ = (1/ρ̂)Z . By Lemma 5.14.4, we have

|s̃k − ρsk | ≤ Z − ρX 2;

recall that sk is the k-th singular value of X . As a result,

|ŝk − sk | =
1
ρ̂ |s̃k − ρ̂sk |

≤ 1
ρ̂ |s̃k − ρsk |+

|ρ − ρ̂|
ρ̂ sk

≤ Z − ρX 2
ρ̂ + |ρ − ρ̂|ρ̂ sk .
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From Lemma 2.12.8 and Lemma 2.12.9, it follows that with probability at least 1 −
O(1/(np)10),

|ŝk − sk | ≤
C (K, γ)(

√
n+√p)

ρ + C
√

log(np)
√ρnp sk .

This completes the proof of Lemma 2.9.3.

■ 2.12.4 Proof of Lemma 2.9.4

We need to bound ⟨Z̃ k (β̂ − β∗), ε⟩. To that end, we recall that β̂ = V̂k Σ̂−1
k ÛT

k y, Z̃ k =
Ûk Σ̂k V̂ T

k , and y = Xβ∗ + ε. Thus,

Z̃ k β̂ = Ûk Σ̂k V̂ T
k V̂k Σ̂−1

k ÛT
k y = Ûk ÛT

k Xβ∗ + Ûk ÛT
k ε.

Therefore,

⟨Z̃ k (β̂ − β∗), ε⟩ = ⟨Ûk ÛT
k Xβ∗, ε⟩+ ⟨Ûk ÛT

k ε, ε⟩ − ⟨Ûk Σ̂k V̂ T
k β∗, ε⟩. (2.80)

Now, ε is independent of Ûk , Σ̂k , V̂k since Z̃ k is determined by Z , which is independent
of ε. As a result,

E[⟨Ûk ÛT
k ε, ε⟩] = E[εT Ûk ÛT

k ε]

= E[ tr
(
εT Ûk ÛT

k ε
)
] = E[ tr

(
εεT Ûk ÛT

k

)
]

= tr
(

E[εεT ]Ûk ÛT
k

)
≤ C tr

(
σ2Ûk ÛT

k

)

= Cσ2Ûk
2
F= Cσ2k. (2.81)

Therefore, it follows that

E[⟨Z̃ k (β̂ − β∗), ε⟩] ≤ Cσ2k, (2.82)

where we used the fact E[ε] = 0. To obtain a high probability bound, using Lemma 5.14.2
it follows that for any t > 0

P
(
⟨Ûk ÛT

k Xβ∗, ε⟩ ≥ t
)
≤ exp

(
− ct2

nβ∗21σ2

)
(2.83)
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due to Assumption 3, and

Ûk ÛT
k Xβ∗2 ≤ Xβ∗2≤ X 2,∞β∗1≤

√
nβ∗1;

note that we have used the fact that Ûk ÛT
k is a projection matrix and X 2,∞≤

√
n due to

Assumption 1. Similarly, for any t > 0

P
(
⟨Ûk Σ̂k V̂ T

k β∗, ε⟩ ≥ t
)
≤ exp

(
− ct2

σ2(n+ Z̃ k − X 2
2,∞)β∗21

)
, (2.84)

due to Assumption 3, and

Ûk Σ̂k V̂ T
k β∗2 = (Z̃ k − X )β∗ + Xβ∗2 ≤ (Z̃ k − X )β∗2+Xβ∗2

≤ (Z̃ k − X 2,∞+X 2,∞)β∗1.

Finally, using Lemma 5.14.3 and (3.61), it follows that for any t > 0

P
(
⟨Ûk ÛT

k ε, ε⟩ ≥ σ2k + t
)
≤ exp

(
− cmin

( t2

kσ4 ,
t
σ2

))
, (2.85)

since Ûk ÛT
k is a projection matrix and by Assumption 3.

From (3.57), (3.62), (3.64), and (3.66), we conclude that with probability at least 1 −
O(1/(np)10),

⟨Z̃ k (β̂ − β∗), ε⟩ ≤ σ 2k + Cσ
√

log(np)(σ
√
k + σ

√
log(np) + β∗1(

√
n+ Z̃ k − X 2,∞)).

This completes the proof of Lemma 2.9.4.

■ 2.12.5 Proof of Lemma 2.12.5

As mentioned earlier, the proof presented here is a natural extension of that for Theorem
4.6.1 in Vershynin (2018) for the non-isotropic setting. Recall that

∥∥A
∥∥ = max

x∈Sp−1,y∈Sn−1
⟨Ax, y⟩,

where Sp−1, Sn−1 denote the unit spheres in Rp and Rn, respectively. We start by
bounding the quadratic term ⟨Ax, y⟩ for a finite set x, y obtained by placing 1/4-net on
the unit spheres, and then use the bound on them to bound ⟨Ax, y⟩ for all x, y over the
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spheres.

Step 1: Approximation. We will use Corollary 4.2.13 of Vershynin (2018) to establish a
1/4-net of N of the unit sphere Sp−1 with cardinality |N | ≤ 9p. Applying Lemma 4.4.1 of
Vershynin (2018), we obtain

1
nATA− Σ2 ≤ 2 max

x∈N

∣∣∣⟨(
1
nATA− Σ)x, x⟩

∣∣∣ = 2 max
x∈N

∣∣∣
1
nAx2

2−xTΣx
∣∣∣.

To achieve our desired result, it remains to show that

max
x∈N

∣∣∣
1
nAx2

2−xTΣx
∣∣∣ ≤

ε
2 ,

where ε = K 2 max(δ, δ2).

Step 2: Concentration. Let us fix a unit vector x ∈ Sp−1 and write

∥∥Ax
∥∥2

2 − x
TΣx =

n∑

i=1

(
⟨Ai, x⟩2 − E[⟨Ai, x⟩2]

)
=:

n∑

i=1

(
Y 2
i − E[Y 2

i ]
)
.

Since the rows of A are assumed to be independent sub-gaussian random vectors with
Aiψ2≤ K , it follows that Yi = ⟨Ai, x⟩ are independent sub-gaussian random variables with
Yiψ2≤ K . Therefore, Y 2

i − E[Y 2
i ] are independent, mean zero, sub-exponential random

variables with
Y 2
i − E[Y 2

i ]ψ1≤ CY 2
i ψ1≤ CYi2ψ2≤ CK

2.

As a result, we can apply Bernstein’s inequality (see Theorem 5.14.1) to obtain

P
(∣∣∣

1
n
∥∥Ax

∥∥2
2 − x

TΣx
∣∣∣ ≥

ε
2

)
= P

(∣∣∣
1
n

n∑

i=1
(Y 2
i − E[Y 2

i ])
∣∣∣ ≥

ε
2

)

≤ 2 exp
(
−cmin

(
ε2

K 4 ,
ε
K 2

)
n
)

= 2exp
(
−cδ2n

)

≤ 2 exp
(
−cC2(p+ t2)

)
,

where the last inequality follows from the definition of δ in (2.72) and because (a+ b)2 ≥
a2 + b2 for a, b ≥ 0.



Sec. 2.12. Helpful Concentration Inequalities 111

Step 3: Union bound. We now apply a union bound over all elements in the net.
Specifically,

P
(

max
x∈N

∣∣∣
1
n
∥∥Ax

∥∥2
2 − x

TΣx
∣∣∣ ≥

ε
2

)
≤ 9p · 2 exp

(
−cC2(p+ t2)

)
≤ 2 exp

(
−t2

)
,

for large enough C . This concludes the proof.

■ 2.12.6 Proof of Lemma 2.12.6

Recall that zi = (xi + wi) ◦ πi, where wi is an independent mean zero subgaussian vector
with wiψ2≤ K and πi is a vector of independent Bernoulli variables with parameter ρ.
Hence, E[zi − ρxi] = 0 and is independent across i ∈ [n]. The only remaining item is a
bound on zi − ρxiψ2 . To that end, note that

zi − ρxiψ2 = xi ◦ πi + wi ◦ πi − ρxiψ2

≤ xi ◦ (ρ1− πi)ψ2+wi ◦ πiψ2 .

Now, (ρ1−πi) is independent, zero mean random vector whose absolute value is bounded
by 1, and is component-wise multiplied by xi which are bounded in absolute value by 1
as per Assumption 1. That is, xi ◦ (ρ1 − πi) is a zero mean random vector where each
component is independent and bounded in absolute value by 1. That is, ·ψ2≤ C .

For wi ◦ πi, note that wi and πi are independent vectors and the coordinates of πi have
support {0, 1}. Therefore, from Lemma 2.12.12, it follows that wi ◦ πiψ2≤ wiψ2≤ K by
Assumption 4. The proof of Lemma 2.12.6 is complete by choosing a large enough C .

Lemma 2.12.12. Suppose that Y ∈ Rn and P ∈ {0, 1}n are independent random vectors.
Then,

Y ◦ Pψ2≤ Y ψ2 .

Proof. Given a binary vector P ∈ {0, 1}n, let IP = {i ∈ [n] : Pi = 1}. Observe that

Y ◦ P =
∑

i∈IP

ei ⊗ eiY .

Here, ◦ denotes the Hadamard product (entry-wise product) of two matrices. By definition
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of the ψ2-norm,

Y ψ2 = sup
u∈Sn−1

uTY ψ2= sup
u∈Sn−1

inf{t > 0 : EY [exp
(
|uTY |2/t2

)
] ≤ 2}.

Let u0 ∈ Sn−1 denote the maximum-achieving unit vector (such a u0 exists because
inf{· · ·} is continuous with respect to u and Sn−1 is compact). Now,

Y ◦ Pψ2 = sup
u∈Sn−1

uTY ◦ Pψ2

= sup
u∈Sn−1

inf{t > 0 : EY ,P [exp
(
|uTY ◦ P|2/t2

)
] ≤ 2}

= sup
u∈Sn−1

inf{t > 0 : EP [EY [exp
(
|uTY ◦ P|2/t2

)
| P ]] ≤ 2}

= sup
u∈Sn−1

inf{t > 0 : EP [EY [exp(|uT
∑

i∈IP

ei ⊗ eiY |2/t2) | P ]] ≤ 2}

= sup
u∈Sn−1

inf{t > 0 : EP [EY [exp(|(
∑

i∈IP

ei ⊗ eiu)TY |2/t2) | P ]] ≤ 2}.

For any u ∈ Sn−1, observe that

EY [exp(|(
∑

i∈IP

ei ⊗ eiu)TY |2/t2) | P ] ≤ EY [exp
(
|uT0 Y |2/t2

)
].

Therefore, taking supremum over u ∈ Sn−1, we obtain

Y ◦ Pψ2 ≤ Y ψ2 .

■

■ 2.12.7 Proof of Lemma 2.12.7

Consider

E[W̃ T W̃ ] =
n∑

i=1
E[(zi − ρxi)⊗ (zi − ρxi)]

=
n∑

i=1
E[zi ⊗ zi]− ρ2(xi ⊗ xi)
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=
n∑

i=1
(ρ − ρ2)diag(xi ⊗ xi) + (ρ − ρ2)diag(E[wi ⊗ wi]) + ρ2E[wi ⊗ wi].

Note that diag(XTX )2≤ n due to Assumption 1. Using Assumption 4, it follows that
diag(E[wi ⊗ wi])2≤ CK 2. By Assumption 4, we have E[wi ⊗ wi]2≤ γ2. Therefore,

E[W̃ T W̃ ]2 ≤ Cn(ρ − ρ2)(K + 1)2 + nρ2γ2.

This completes the proof of Lemma 2.12.7.

■ 2.12.8 Proof of Lemma 2.12.9

By the Binomial Chernoff bound, for α > 1,

P (ρ̂ > αρ) ≤ exp
(
− (α − 1)2

α + 1 npρ
)

and P (ρ̂ < ρ/α) ≤ exp
(
− (α − 1)2

2α2 npρ
)
.

By the union bound,

P (ρ/α ≤ ρ̂ ≤ αρ) ≥ 1− P (ρ̂ > αρ)− P (ρ̂ < ρ/α) .

Noticing α + 1 < 2α < 2α2 for all α > 1, we obtain the desired bound claimed in Lemma
2.12.9. To complete the remaining claim of Lemma 2.12.9, we consider an α that satisfies

(α − 1)2 ≤ C log(np)
ρnp ,

for a constant C > 0. Thus,

1− C
√

log(np)
√ρnp ≤ α ≤ 1 + C

√
log(np)
√ρnp .

Then, with ρ ≥ c log2 np
np , we have that α ≤ 2. Further by choosing C > 0 large enough,

we have

(ρ − ρ̂)2
ρ̂2 ≤ C log(np)

ρnp .

holds with probability at least 1−O(1/(np)10). This completes the proof of Lemma 2.12.9.
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■ 2.12.9 Proof of Lemma 2.12.10

By definition QQT ∈ Rn×n is a rank ℓ matrix. Since Q has orthonormal column vectors,
the projection operator has QQT

2= 1 and QQT 2
F= ℓ . For a given j ∈ [p], the random

vector Z·j − ρX·j is such that it has zero mean, independent components that are sub-
gaussian by Assumption 4. For any i ∈ [n], j ∈ [p], we have by property of ψ2 norm,
zij − ρxij ψ2≤ zi − ρxiψ2 which is bounded by C (K + 1) using Lemma 2.12.6. Recall the
Hanson-Wright inequality (Vershynin (2018)):

Theorem 2.12.3 (Hanson-Wright inequality). Let ζ ∈ Rn be a random vector with
independent, mean zero, sub-gaussian coordinates. Let A be an n × n matrix. Then for
any t > 0,

P
(∣∣∣ζTAζ − E[ζTAζ ]

∣∣∣ ≥ t
)
≤ 2 exp

(
− cmin

( t2

L4
∥∥A
∥∥2
F

, t
L2
∥∥A
∥∥

2

))
,

where L = maxi∈[n]
∥∥ζi
∥∥
ψ2

.

Now with ζ = Z·j − ρX·j and the fact that QTQ = D ∈ Rℓ×ℓ , QQT ζ2
2= ζTQQT ζ .

Therefore, by Theorem 2.12.3, for any t > 0,

QQT ζ2
2 ≤ E[ζTQQT ζ ] + t,

with probability at least 1− exp
(
− cmin ( t

C (K+1)2 ,
t2

C (K+1)4ℓ )
)

. Now,

E[ζTQQT ζ ] =
ℓ∑

m=1
E[(QT

·mζ)2]

(a)
=

ℓ∑

m=1
Var(QT

·mζ)

(b)
=

ℓ∑

m=1

n∑

i=1
Q2
imVar(ζi)

(c)
≤ C (K + 1)2ℓ,

where ζ = Z·j − ρX·j , and hence (a) follows from E[ζ ] = E[Z·j − ρX·j ] = 0, (b) follows
from ζ having independent components and (c) follows from each component of ζ having
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ψ2-norm bounded by C (K + 1). Therefore, it follows by union bound that for any t > 0,

P
(

max
j∈[p]

∥∥∥QQT (Z·j − ρX·j )
∥∥∥

2

2
≥ ℓC (K + 1)2 + t

)

≤ p · exp
(
− cmin

( t2

C (K + 1)4ℓ ,
t

C (K + 1)2
))
.

This completes the proof of Lemma 2.12.10.

■ 2.13 Helpful Concentration Inequalities

In this section, we state and prove a number of helpful concentration inequalities used to
establish our primary results.

Lemma 2.13.1. Let X be a mean zero, sub-gaussian random variable. Then for any λ ∈ R,

E exp (λX ) ≤ exp
(
Cλ2 ∥∥X

∥∥2
ψ2

)
.

Lemma 2.13.2. Let X1, . . . , Xn be independent, mean zero, sub-gaussian random variables.
Then,

n∑

i=1
Xi2ψ2≤ C

n∑

i=1

∥∥Xi
∥∥2
ψ2
.

Theorem 2.13.1 (Bernstein’s inequality). Let X1, . . . , Xn be independent, mean zero,
sub-exponential random variables. Then, for every t ≥ 0, we have

P
(∣∣∣

n∑

i=1
Xi
∣∣∣ ≥ t

)
≤ 2 exp

(
− cmin

( t2
∑n

i=1
∥∥Xi
∥∥2
ψ1

, t
maxi

∥∥Xi
∥∥
ψ1

))
,

where c > 0 is an absolute constant.

Lemma 2.13.3 (Modified Hoeffding Inequality). Let X ∈ Rn be random vector with
independent mean-zero sub-Gaussian random coordinates with Xiψ2≤ K. Let a ∈ Rn be
another random vector that satisfies a2≤ b almost surely for some constant b ≥ 0. Then
for all t ≥ 0,

P
(∣∣∣

n∑

i=1
aiXi

∣∣∣ ≥ t
)
≤ 2 exp

(
− ct2

K 2b2

)
,
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where c > 0 is a universal constant.

Proof. Let Sn =
∑n

i=1 aiXi. Then applying Markov’s inequality for any λ > 0, we obtain

P (Sn ≥ t) = P (exp(λSn) ≥ exp(λt))

≤ E [exp(λSn)] · exp(−λt)

= Ea [E [exp(λSn) | a]] · exp(−λt).

Now, conditioned on the random vector a, observe that

E [exp(λSn)] =
n∏

i=1
E [exp(λaiXi)] ≤ exp

(
CK 2λ2a2

2

)
≤ exp

(
CK 2λ2b2

)
,

where the equality follows from conditional independence, the first inequality by Lemma
2.13.1, and the final inequality by assumption. Therefore,

P (Sn ≥ t) ≤ exp
(
CK 2λ2b2 − λt

)
.

Optimizing over λ yields the desired result:

P (Sn ≥ t) ≤ exp
(
− ct2

K 2b2

)
.

Applying the same arguments for −⟨X, a⟩ gives a tail bound in the other direction. ■

Lemma 2.13.4 (Modified Hanson-Wright Inequality). Let X ∈ Rn be a random vector
with independent mean-zero sub-Gaussian coordinates with Xiψ2≤ K. Let A ∈ Rn×n be
a random matrix satisfying A2≤ a and A2

F ≤ b almost surely for some a, b ≥ 0. Then for
any t ≥ 0,

P
(∣∣∣XTAX − E[XTAX ]

∣∣∣ ≥ t
)
≤ 2 · exp

(
− cmin

( t2

K 4b,
t

K 2a

))
.

Proof. The proof follows similarly to that of Theorem 6.2.1 of Vershynin (2018). Using
the independence of the coordinates of X , we have the following useful diagonal and
off-diagonal decomposition:

XTAX − E[XTAX ] =
n∑

i=1

(
AiiX2

i − E[AiiX2
i ]
)

+
∑

i̸=j
AijXiXj .
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Therefore, letting
p = P

(
XTAX − E[XTAX ] ≥ t

)
,

we can express

p ≤ P
( n∑

i=1

(
AiiX2

i − E[AiiX2
i ]
)
≥ t/2

)
+ P

(∑

i̸=j
AijXiXj ≥ t/2

)
=: p1 + p2.

We will now proceed to bound each term independently.

Step 1: diagonal sum. Let Sn =
∑n

i=1(AiiX2
i − E[AiiX2

i ]). Applying Markov’s inequality
for any λ > 0, we have

p1 = P (exp(λSn) ≥ exp(λt/2))

≤ EAE [[exp(λSn) | A]] · exp(−λt/2).

Since the Xi are independent, sub-Gaussian random variables, X2
i −E[X2

i ] are independent
mean-zero sub-exponential random variables, satisfying

∥∥∥X2
i − E[X2

i ]
∥∥∥
ψ1
≤ C

∥∥∥X2
i

∥∥∥
ψ1
≤ C

∥∥Xi
∥∥2
ψ2
≤ CK 2.

Conditioned on A and optimizing over λ using standard arguments, yields

p1 ≤ exp
(
− cmin

( t2

K 4b,
t

K 2a

))
.

Step 2: off-diagonals. Let S =
∑

i̸=j AijXiXj . Again, applying Markov’s inequality for
any λ > 0, we have

p2 = P (exp(λS) ≥ exp(λt/2)) ≤ EA [E [exp(λS) | A]] · exp(−λt/2).

Let g be a standard multivariate gaussian random vector. Further, let X ′ and g′ be
independent copies of X and g, respectively. Conditioning on A yields

E [exp(λS)] ≤ E
[
exp
(
4λXTAX ′

)]
(by Decoupling Remark 6.1.3 of Vershynin (2018))

≤ E
[
exp
(
C1λgTAg′

)]
(by Lemma 6.2.3 of Vershynin (2018))

≤ exp
(
C2λ2 ∥∥A

∥∥2
F

)
(by Lemma 6.2.2 of Vershynin (2018))
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≤ exp
(
C2λ2b

)
,

where |λ| ≤ c/a. Optimizing over λ then gives

p2 ≤ exp
(
− cmin

( t2

K 4b,
t

K 2a

))
.

Step 3: combining. Putting everything together completes the proof. ■



Chapter 3

Synthetic Interventions

■ 3.1 Introduction

There is a growing interest in personalized decision-making, where the goal is to select
an optimal intervention for each unit from a collection of interventions. For example in
e-commerce, a common goal of an online platform is to determine which discount level is
best suited (e.g., to increase engagement levels) for each customer sub-population. Such
customer sub-populations are usually created based on customer demographics and their
prior interactions with the platform, and the clustering is done to ensure that customers
within a sub-population behave similarly, while allowing for significant heterogeneity
across sub-populations. At its core, estimating the best “personalized” intervention
requires evaluating the impact of each of the D ≥ 1 discount levels on each of the N ≥ 1
customer sub-populations. One way to estimate the best personalized intervention is to
conduct N ×D randomized experiments corresponding to each combination. In particular,
for each sub-population and discount level, some number of randomly chosen customers
from that sub-population are assigned that discount level and their corresponding outcomes
are measured. Conducting these N × D personalized experiments would allow one to
estimate all N ×D causal parameters. However, this can become very expensive, if not
infeasible, as D and N grow. This motivates the need for “data-efficient” experiment
design where N ×D causal parameters can be inferred from far fewer experiments.

Similar questions arise in program evaluation, where one may want to design a govern-
mental policy that is particularly suited to the socio-economic realities of a geographic
location. For example, in the context of COVID-19, policy-makers from N countries might
be interested in evaluating which of D mobility restricting policies is best suited for
their country. There is an additional challenge in program evaluation compared to the

119
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experimental setting as only observational data is readily available. In particular, each
country can only undergo at most one of the D policies. Further, the policy implemented
in any given country will likely be confounded with the characteristics of that country (e.g.,
the government structure, population density and demographics, cultural leanings), which
itself may impact the outcomes observed under the policy. Further, these confounding
variables might not be fully known or observed.

In summary, our interest is in evaluating the N ×D causal parameters associated with N
units and D interventions based on potentially confounded, limited observations that do
not scale with N ×D.

Special instances of this question have a rich literature within econometrics and beyond.
In particular, the sub-problem of estimating what would have happened to a “treated” unit
(i.e., undergoes an intervention) under “control” (i.e., absence on an intervention) has been
studied through the prominent frameworks of differences-in-differences (DID) Ashenfelter
and Card (1984); Bertrand et al. (2004); Angrist and Pischke (2009) and synthetic controls
(SC) Abadie et al. (2010); Abadie and Gardeazabal (2003). These frameworks live within
the framework of panel data settings, where one gets repeated measurements of units.
By considering “control” as one of the D interventions, we see that DID and SC both
allow recovery of at most N causal parameters, namely the counterfactual of what would
have been to a treated unit had it remained under control. However, towards the broader
goal of personalized decision-making, one needs to answer counterfactual questions
beyond just what would have happened under control, as discussed in the e-commerce and
COVID-19 examples above. Indeed, extending the SC framework to estimate all N ×D
causal parameters has been posed as an important open question in Abadie (2020). A
goal of this work is to address this open question.

■ 3.1.1 Overview of Synthetic Interventions Framework

Consider a setting with N ≥ 1 units and D ≥ 1 interventions. For each unit and
intervention pair, there are T ≥ 1 outcomes/measurements of interest. Unless stated
otherwise, we index units with n ∈ [N ] := {1, . . . , N}, outcomes with t ∈ [T ], and
interventions with d ∈ [D]0.1 Following the causal framework of Neyman (1923) and
Rubin (1974), we denote Y (d)

tn ∈ R as the potential outcome for unit n and measurement t
under intervention d. We encode the set of all potential outcomes {Y (d)

tn } into an order-3
1Let [X ]0 = {0, 1, . . . , X − 1} and [X ] = {1, . . . , X} for any positive integer X .
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Figure 3.1: Potential outcomes tensor.

tensor whose dimensions correspond to units, measurements, and interventions. See
Figure 3.1 for a visualization of this potential outcomes tensor.

We describe our observations through Y = [Ytnd] ∈ {R ∪ ⋆}T×N×D , where ⋆ indicates a
missing entry. We assume Y obeys the following sparsity pattern.

Assumption 8 (Observation pattern, SUTVA). We observe the same T0 ≤ T outcomes for
all units under the same intervention. Without loss of generality, let this intervention be
d = 0, and let the indices corresponding to these T0 measurements be Tpre := {1, . . . , T0}.
That is, we observe Ytn0 = Y (0)

tn for all n ∈ [N ] and t ∈ [T0]. Further, for every intervention
d, there is a non-empty subset of units, I (d) ⊂ [N ], for which we observe T1 ≤ T
measurements. Without loss of generality, we assume the indices corresponding to these
T1 measurements are Tpost := {T − T1 + 1, . . . , T }. That is, we observe Ytnd = Y (d)

tn for
d ∈ [D]0, n ∈ I (d), and t ∈ Tpost. For all other entries of Y , we assume Ytnd = ⋆.

Observation pattern. As per Assumption 8, we observe all N units under d = 0 for
t ∈ Tpre. For d > 0 and t ∈ Tpost, however, it is sufficient to only observe outcomes for
Nd = |I (d)|≥ 1 units, provided Nd is sufficiently large. Below, we connect our observation
pattern with what is typically assumed in the SC literature. In particular, as with our
setting, SC assumes that all N units are observed under d = 0 for t ∈ Tpre. Since d = 0
often represents control and t typically indexes the tth time step, this time frame is often
referred to as the “pre-intervention” period. During the “post-intervention” period, i.e.,
t ∈ {T0 + 1, . . . , T } with T1 = T − T0, each unit is then observed under one of the D
interventions. See Figure 3.2a for a visual depiction of the typical observation pattern in
the SC literature. Indeed, we use Tpre and Tpost to be in line with the SC literature.

However, our setup allows for more general observation patterns compared to SC as we
do not strictly need a separate pre- and post-intervention period. This is particularly
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(a) Panel data setting. (b) Proposed data-efficient RCT.

Figure 3.2: Observations are represented by colored blocks while unobservable counterfactuals
are represented by white blocks. We remark that the tensors in 3.2a and 3.2b have been transposed
to better align with the standard panel data setups.

relevant in multi-arm randomized control trials (RCTs), like in the e-commerce setting
described earlier, where there may not be a pre-intervention period. Further, in many
such RCTs setting, units can be simultaneously observed under multiple interventions; for
example, e-commerce platforms can randomly choose different individuals from the same
customer sub-populations to undergo different discount levels (here, a unit is defined as
a customer sub-population). Hence, the sets I (d1) and I (d2) do not have to be mutually
exclusive. However, despite being able to simultaneously observe units under multiple
interventions, recall our goal is to learn all N × D causal parameters using far fewer
number of experiments. We show this is possible if we observe all units under the same
intervention for some number of measurements, as formalized in Assumption 8. See Figure
3.2b for a visual depiction of the observation pattern in our proposed data-efficient RCT.

Target causal parameter. The goal is to estimate Y (d)
tn for all n ∈ [N ] and t ∈ Tpost for all

d ∈ [D]. Specifically, we are interested in the estimation of the causal parameter

θ(d)
n = 1

T1

∑

t∈Tpost

E[Y (d)
tn ].

That is, the expected potential outcome of unit n under intervention d, averaged over the
measurements t ∈ Tpost. In the setting of SC, this would correspond to estimating the
average potential outcome of each unit under each intervention during the post-intervention
period. We emphasize that in observational settings, the potential outcomes Y (d)

tn might
be correlated with which entries of Y are observed, i.e., there is confounding. This serves
as an additional challenge in defining the appropriate causal framework to estimate θ(d)

n .
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Synthetic interventions (SI) estimator: an overview. The SI estimator recovers a given θ(d)
n

with valid confidence intervals via a three-step procedure, where each step has a simple
closed form expression. Below, we give an overview of the method. For a given (n, d) pair,
the first step is to estimate a linear model, w (n,d) ∈ RNd such that for all t ∈ Tpre,

Ytn0 ≈
∑

j∈I (d)

w (n,d)
j Ytj0.

Specifically, we use principal component regression (PCR) to learn w (n,d) by linearly
regressing {Ytn0 : t ∈ Tpre} on {Ytj0 : t ∈ Tpre, j ∈ I (d)}. Subsequently θ(d)

n is estimated
as

Ê[Y (d)
tn ] =

∑

j∈I (d)

w (n,d)
j Ytjd, for t ∈ Tpost, (3.1)

θ̂(d)
n = 1

T1

∑

t∈Tpost

Ê[Y (d)
tn ]. (3.2)

The precise details of the SI estimator are in Section 3.3. Though the SI method produces
an estimate of the entire trajectory Ê[Y (d)

tn ] for t ∈ Tpost as defined in (3.1), our theoretical
results are focused on proving consistency and asymptotic normality for θ̂(d)

n . Further, the
SI estimator comes with a data-driven hypothesis test to verify when one can accurately
learn a model w (n,d) using outcomes under d = 0 and t ∈ Tpre, and then transfer it to
estimate counterfactual outcomes for measurements Tpost and d ∈ [D]0.

Challenge in estimating beyond control: causal transportability with panel data. For
ease of discussion, we restrict our attention here to the setting of SC where we have a
pre- and post-intervention period. Identification and estimation of θ(d)

n across all (n, d)
complements the existing SC literature, which focuses on estimating {θ(0)

n : n /∈ I (0)}, i.e.,
the counterfactual average potential outcome under control for a treated unit, otherwise
referred to as the “treatment effect on a treated unit”. However, the SI framework allows
one to estimate causal parameters of the form θ(d)

n for d ̸= 0 and n ∈ I (0), this corresponds
to the “treatment effect for an untreated unit”; estimating the best personalized treatment
for a unit that is thus far untreated is clearly of interest, but is not identifiable nor
estimable in the SC framework. We discuss the fundamental challenge in estimating θ(d)

n

for d ̸= 0 next.

Indeed, if we restrict ourselves to the task of estimating {θ(0)
n : n /∈ I (0)}, we see that the
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SI estimator in essence reduces to the standard SC estimator.2 A reasonable question
that may arise is whether θ(d)

n across (n, d) can be estimated by simply fitting N × D
separate SC estimators, one for each pair. This is not possible. In SC, w (n,0) is learned
using outcomes data under control and then is only applied on outcomes under control.
However, to estimate θ(d)

n for d ̸= 0, this requires learning a model using outcomes under
control, but then applying it to outcomes under intervention d ̸= 0—recall (3.2). This
begs the pivotal question: “when does the structure between units under control continue
to hold in other intervention regimes”? The SC framework does not have an answer for
this question thus far and it has indeed been posed as an important open question in
Abadie (2020). As we will see, a tensor factor model across time, units, and interventions
provides one natural answer to this question.

We highlight that the problem of when one can learn a model under one interventional
regime and transfer it to another has gained interest across many fields and has been
known by terms including: “causal transportability”, “transfer learning”, “learning with
distribution shift”. We believe the SI framework provides one answer to this problem for
the panel data setting, and more broadly as well.

■ 3.1.2 Related Works

There are two key conceptual frameworks that are foundational to this work: SC and
latent factor models. Given the sizeable literature, we provide a brief overview of closely
related works from each topic.

As noted earlier, when restricted to d = 0, i.e., estimating θ(0)
n for a subset of units

n /∈ I (0), the SI method is effectively SC as introduced in the seminal works of Abadie
et al. (2010); Abadie and Gardeazabal (2003), but with a different form of regularization.
Precisely, for this restricted setting, SI is identical to the “robust synthetic controls”
(RSC) method of Amjad et al. (2018) and further analyzed in Agarwal et al. (2021e). RSC
is a variant of SC, which de-noises observations and imputes missing values via matrix
completion, e.g., by using singular value thresholding. Other variants of SC have been
considered, including in Hsiao et al. (2012); Doudchenko and Imbens (2016b); Athey et al.
(2021); Li and Bell (2017); Xu (2017b); Amjad et al. (2018, 2019); Li (2018); Arkhangelsky
et al. (2020); Bai and Ng (2020); Ben-Michael et al. (2020); Chan and Kwok (2020);

2The key difference being that rather than restricting w (n,0) to be convex as is classically done, we learn
this linear model using PCR. We motivate the suitability of PCR in Section 3.3.
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Chernozhukov et al. (2020b); Fernández-Val et al. (2020). In Section 3.8, we provide
a detailed comparison with closely related works; in particular, we focus on the recent
works of Arkhangelsky et al. (2020); Bai and Ng (2020); Chernozhukov et al. (2020b);
Agarwal et al. (2021e) as they highlight some of the primary points of comparison of our
work with the SC literature.

A critical aspect that enables SC is the structure between units and time under control
(d = 0). One elegant encoding of this structure is through a (matrix) factor model (also
known as an interactive fixed effect model), Chamberlain (1984); Liang and Zeger (1986);
Arellano and Honore (2000); Bai (2003, 2009); Pesaran (2006); Moon and Weidner
(2015, 2017). Recent works have connected factor models with low-rank matrices, which
are prevalent within the matrix completion (MC) literature, cf. Candès and Tao (2010);
Recht (2011); Chatterjee (2015). As such, several works of late, including Athey et al.
(2021); Amjad et al. (2018, 2019); Agarwal et al. (2021e); Fernández-Val et al. (2020);
Arkhangelsky et al. (2020), have developed estimators that are guided by MC principles
to estimate and analyze causal parameters related to θ(0)

n , by directly learning from the
observed outcomes rather than relying on additional covariates.

■ 3.1.3 Contributions & Organization of Paper

Section 3.3: Methodological. We propose the SI estimator, which recovers all N × D
causal parameters θ(d)

n , with valid confidence intervals, under the observation pattern
described in Assumption 8. For the special case where Nd = N/D, SI estimates the
N × D parameters using T0 × N + T1 × N observations, which is at most 2 × T × N ,
independent of D.

Section 4.6.3: Empirical. We empirically assess the efficacy of the SI framework through
two real-world case studies: (i) Experimental—evaluating the feasibility of running data-
efficient A/B tests using data from a large e-commerce platform. We call our proposed
experimental design “synthetic A/B testing”. (ii) Observational—evaluating the impact of
mobility restrictions on COVID-19 related morbidity outcomes.

Section 3.5: Theoretical. We introduce a novel tensor factor model over potential outcomes,
which is a natural generalization of the matrix factor model. Under this setting, we prove
the identification of all N ×D causal parameters, and establish finite-sample consistency
and asymptotic normality of the SI estimator. Collectively, our results provide an answer
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to the open question of extending SC to multiple interventions, Abadie (2020).

Section 3.6: Robustness check for SI (and SC). We propose a data-driven hypothesis test
to check for the feasibility of when a model learned can be transferred across interventional
regimes and measurements. We provide guarantees for both its Type I and Type II errors.
We use the test in the canonical SC case studies of (i) terrorism in Basque Country and
(ii) California’s Proposition 99 Abadie et al. (2010); Abadie and Gardeazabal (2003).

Section 3.7: Simulations. We run simulations which support our theoretical consistency
and asymptotic normality results.

Section 3.8: Comparison with SC literature. By restricting our attention to estimating
θ(0)
n for n /∈ I (0), our identification and inference results immediately give new results for

the SC literature. To better contextualize our work, we present a detailed comparison
with some representative works in the SC literature.

Section 3.9: Causal inference & tensor completion. Our proposed tensor factor model over
potential outcomes serves as a connection between causal inference and the growing field
of tensor completion. Traditionally, the goal in tensor completion is to recover a tensor
from its partial, noisy observations, where its entries are missing completely at random.
In contrast, our work suggests that the SI method can be viewed as solving a “causal”
variant of the tensor completion problem where there is confounding, i.e., the missingness
pattern is correlated with the entries of the potential outcomes tensor. Indeed, we hope
this provides a framework for future inquiry towards obtaining a clearer understanding of
the trade-offs between sample complexity, statistical accuracy, experiment design, and
the role of computation in estimating various causal parameters.

Notations. See Section 3.2 for formal definitions of the standard notations we use.

■ 3.2 Standard Notation

For a matrix A ∈ Ra×b, we denote its transpose as A′ ∈ Rb×a. We denote the operator
(spectral) and Frobenius norms of A as Aop and AF , respectively. The columnspace (or
range) of A is the span of its columns, which we denote as R(A) = {v ∈ Ra : v = Ax, x ∈
Rb}. The rowspace of A, given by R(A′), is the span of its rows. Recall that the nullspace
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of A is the set of vectors that are mapped to zero under A. For any vector v ∈ Ra, let vp
denote its ℓp-norm. Further, we define the inner product between vectors v, x ∈ Ra as
⟨v, x⟩ =

∑a
ℓ=1 vℓxℓ . If v is a random variable, we define its sub-Gaussian (Orlicz) norm

as vψ2 . Let [a] = {1, . . . , a} for any integer a.

Let f and g be two functions defined on the same space. We say that f (n) = O(g(n))
if and only if there exists a positive real number M and a real number n0 such that for
all n ≥ n0, |f (n)|≤ M|g(n)|. Analogously we say: f (n) = Θ(g(n)) if and only if there
exists positive real numbers m,M such that for all n ≥ n0, m|g(n)|≤ |f (n)|≤ M|g(n)|;
f (n) = o(g(n)) if for any m > 0, there exists n0 such that for all n ≥ n0, |f (n)|≤ m|g(n)|.

We adopt the standard notations and definitions for stochastic convergences. As such,
we denote d−→ and p−→ as convergences in distribution and probability, respectively. We
will also make use of Op and op, which are probabilistic versions of the commonly used
deterministic O and o notations. More formally, for any sequence of random vectors
Xn, we say Xn = Op(an) if for every ε > 0, there exists constants Cε and nε such that
P(Xn2> Cεan) < ε for every n ≥ nε; equivalently, we say (1/an)Xn is “uniformly tight”
or “bounded in probability”. Similarly, Xn = op(an) if for all ε, ε′ > 0, there exists nε
such that P(Xn2> ε′an) < ε for every n ≥ nε. Therefore, Xn = op(1) ⇐⇒ Xn

p−→ 0.
Additionally, we use the “plim” probability limit operator: plim Xn = a ⇐⇒ Xn

p−→ a.
We say a sequence of events En, indexed by n, holds “with high probability” (w.h.p.) if
P(En) → 1 as n → ∞, i.e., for any ε > 0, there exists a nε such that for all n > nε,
P(En) > 1− ε. More generally, a multi-indexed sequence of events En1,...,nd , with indices
n1, . . . , nd with d ≥ 1, is said to hold w.h.p. if P(En1,...,nd )→ 1 as min{n1, . . . , nd} → ∞.
We also use N (µ, σ2) to denote a normal or Gaussian distribution with mean µ and
variance σ2—we call it standard normal or Gaussian if µ = 0 and σ2 = 1.

■ 3.3 Synthetic Interventions: Estimator

In Section 3.3.1, we formally introduce the SI estimator. In Section 3.3.2, we discuss
some practical heuristics for its implementation and supplement it with a more technical
discussion to motivate and justify its various steps. Without loss of generality, we will
focus on estimating θ(d)

n for a given (n, d) pair.

Additional notation. Here, we introduce necessary notation required to formally state



128 CHAPTER 3. SYNTHETIC INTERVENTIONS

the estimator. Formally, let

Ypre,n = [Ytn0 : t ∈ Tpre] ∈ RT0

represent the vector of observed outcomes for unit n under d = 0 for t ∈ Tpre. Let

Ypre,I (d) = [Ytj0 : t ∈ Tpre, j ∈ I (d)] ∈ RT0×Nd ,

Ypost,I (d) = [Ytjd : t ∈ Tpost, j ∈ I (d)] ∈ RT1×Nd ,

represent the observed outcomes for units within I (d) for the pre and post measure-
ments. Note Ypre,I (d) is constructed using observed outcomes under intervention 0, while
Ypost,I (d) is constructed using outcomes under intervention d. We define the singular
value decomposition (SVD) of Ypre,I (d) as

Ypre,I (d) =
M∑

ℓ=1
ŝℓ ûℓ v̂ ′ℓ ,

where M = min{T0, Nd}, ŝℓ ∈ R are the singular values (arranged in decreasing order),
and ûℓ ∈ RT0 , v̂ℓ ∈ RNd are the left and right singular vectors, respectively. Note ŝℓ , ûℓ , v̂ ′ℓ
are actually indexed by the measurements in Tpre and units in I (d), but we suppress this
dependence to increase readability.

■ 3.3.1 Estimator

The SI estimator is a simple three-step procedure, each with a closed-form expression. It
has one hyper-parameter k ∈ [M ] that quantifies the number of singular components of
Ypre,I (d) to retain. The third step shows how to estimate the confidence interval for θ̂(d)

n ;
for simplicity, we pick the 95% confidence interval.

1. Learn a linear model w (n,d) between unit n and I (d).

ŵ (n,d) =
( k∑

ℓ=1
(1/ŝℓ )v̂ℓ û′ℓ

)
Ypre,n. (3.3)
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2. Estimate θ(d)
n :

Ê[Y (d)
tn ] =

∑

j∈I (d)

ŵ (n,d)
j Ytjd, for t ∈ Tpost (3.4)

θ̂(d)
n = 1

T1

∑

t∈Tpost

Ê[Y (d)
tn ]. (3.5)

3. Produce the 95% confidence interval:

θ(d)
n ∈

[
θ̂(d)
n ±

1.96 · σ̂ ŵ (n,d)
2√

T1

]
, (3.6)

where

σ̂2 = 1
T0

∥∥∥Ypre,n − Ypre,I (d)ŵ (n,d)
∥∥∥

2

2
. (3.7)

■ 3.3.2 Discussion of the SI Estimator

Below, we discuss the three steps of the SI estimator. Our goal here is to provide (i)
practical heuristics of when and how to implement the SI estimator in practice and (ii) a
more technical justification for each step.

Step 1: Estimating ŵ (n,d)

The first step of the SI estimator, given in (3.3), estimates a linear relationship ŵ (n,d)

between the observed outcomes Ypre,n and Ypre,I (d) by doing singular value thresholding
(SVT) on the matrix Ypre,I (d) and subsequently running ordinary least squares (OLS)
on the resulting matrix and Ypre,n. This is also known in the literature as principal
component regression (PCR) Agarwal et al. (2021e,d). The number of singular values
retained is a hyper-parameter k ∈ min{T0, Nd}. Below we justify when and why PCR is
appropriate in the setting of latent factor models and how to choose k .

Why PCR and how to choose k? The SI estimator, like various other methods such as
SC, DID and its variants, learn a linear model, i.e., ŵ (n,d) between the target unit n and
the “donor” units in I (d). However to ensure the linear model is not “overfit”, the different
variants of these methods suggest different ways to regularize the linear fit. In particular,



130 CHAPTER 3. SYNTHETIC INTERVENTIONS

Figure 3.3: Simulation displays the spectrum of Y = E[Y ] + E ∈ R100×100. Here, E[Y ] = UV ′,
where the entries of U ,V ∈ R100×10 are sampled independently from N (0, 1); further, the entries
of E are sampled independently from N (0, σ2) with σ2 ∈ {0, 0.2, . . . , 0.8}. Across varying levels
of noise σ2, there is a steep drop-off in magnitude from the top to remaining singular values—
this marks the “elbow” point. As seen from the figure, the top singular values of Y correspond
closely with that of E[Y ] (σ2 = 0), and the remaining singular values are induced by E . Thus,
rank(Y ) ≈ rank(E[Y ]) = 10.

in SC, it is standard to impose that the linear fit is convex, i.e., the coefficients of ŵ (n,d) are
non-negative and sum to 1. More recent works impose an ℓ1-penalty term to the linear
fit, e.g., Chernozhukov et al. (2020b), which is known as LASSO in the literature, and it
promotes sparsity in the learned ŵ (n,d), i.e., forces most of the coefficients of ŵ (n,d) to be
0. PCR can be seen as another form of regularization, where rather than regularizing
ŵ (n,d) directly, it imposes “spectral sparsity”, i.e., sets most of the singular values of
Ypre,I (d) to be 0, before learning a linear model. Indeed, PCR is particularly effective as
a regularization technique if Ypre,I (d) is (approximately) low-rank—for further discussion
on this point, please refer to the technical discussion below and Agarwal et al. (2021e,d).

With regards to selecting the hyper-parameter k , there exist a number of principled
heuristics to choose it and we name a few here. Perhaps the most popular data-driven
approach is simply to use cross-validation, where the pre-intervention data is our training
set and the post-intervention data is our validation set. Another standard approach is
to use a “universal” thresholding scheme that preserves the singular values above a
precomputed threshold (see Chatterjee (2015) and Donoho and Gavish (2013)). Finally, a
“human-in-the-loop” approach is to inspect the spectral characteristics of Ypre,I (d) , and
choose k to be the natural “elbow” point that partitions the singular values into those of
large and small magnitudes. For a graphical depiction of such an elbow point, see Figure
3.3. We observe this clear elbow point in both case studies in Section 4.6.3. As such, if
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this approximate low-rank spectral profile is not in the data, then using PCR is likely not
appropriate.

Technical discussion. Here, we give a more technical justification of when we expect an
elbow point in the spectrum of Ypre,I (d) . The key assumption we make in Section 3.5.1 is
that E[Ypre,I (d) ] is a low-rank matrix. If Epre,I (d) = Ypre,I (d) − E[Ypre,I (d) ] has independent
sub-Gaussian rows, then random matrix theory informs us that the singular values of
Epre,I (d) are much smaller in magnitude compared to those of the signal matrix E[Ypre,I (d) ].
Hence, it is likely that a “sharp” threshold or “large" gap exists between the top singular
values associated with Ypre,I (d) . Specifically, the largest singular value of Epre,I (d) scales
as Op(

√
T0 +

√
Nd), cf. Vershynin (2018). In comparison, if the entries of E[Ypre,I (d) ] are

Θ(1) and its nonzero singular values are of the same magnitude, then they will scale as
Θ(
√
T0Nd)/rpre), where rpre is the rank of E[Ypre,I (d) ], which is ≫

√
T0 +

√
Nd when both

T0 and Nd are growing.

This low-rank structure is also what motivates the existence of a a linear model w (n,d).
Consider Ypre,[N ] = [Ytj0 : t ∈ Tpre, j ∈ [N ]] ∈ RT0×N . If E[Ypre,[N ]] is low rank, it suggests
that E[Ypre,n], the column in E[Ypre,[N ]] corresponding to unit n, can be well-approximated
as a linear combination of a few other columns of the matrix E[Ypre,[N ]]; in particular,
it can be well-approximated by the columns in the sub-matrix E[Ypre,I (d) ]. This linear
combination of E[Ypre,I (d) ] that represents E[Ypre,n] is precisely w (n,d). Given the model,
we do not get to observe E[Ypre,n] and E[Ypre,I (d) ], rather only their “noisy” versions given
by Ypre,n and Ypre,I (d) . This setting is also known in the literature as “error-in-variables”
regression. As discussed above, by running PCR on Ypre,I (d) , we effectively “de-noise” it to
approximately recover E[Ypre,I (d) ], and subsequently we show ŵ (n,d) is close to w (n,d)—see
Lemma 4.9.1.

Step 2: Estimating θ̂(d)
n

When can we “transfer” w (n,d) across interventional regimes and measurements? Step 2 of
the SI estimator, defined in (3.4) and (3.5), applies the learned model ŵ (n,d) on Ypost,I (d)

to produce the counterfactual estimate θ̂(d)
n . This should lead to some pause as we are

learning ŵ (n,d) using Ypre,n,Ypre,I (d) , which correspond to outcomes for d = 0 and for
t ∈ Tpre. However, we are applying ŵ (n,d) on Ypost,I (d) which correspond to outcomes
for any d ∈ [D]0 and for t ∈ Tpost. Thus, Step 2 of the estimation procedure implicitly
assumes E[Y (d)

post,n] = E[Ypost,I (d) ]w (n,d)!
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In effect, Step 2 of SI estimator is a form of causal transportation. We find a neces-
sary condition for such causal transportation to be feasible is that the “complexity” of
E[Ypost,I (d) ] is less than that of E[Ypre,I (d) ]. To build intuition, consider the setting where
E[Ypre,I (d) ] is a matrix of 0’s, i.e., it has a degenerate rowspace. Then, it is easy to see
that we cannot effectively learn w (n,d) using any regression procedure. Hence, we require
a natural condition that the span of the right singular vectors of E[Ypost,I (d) ] (i.e., its
rowspace) lies within that of E[Ypre,I (d) ]—see Assumption 15. Of course, E[Ypost,I (d) ] and
E[Ypre,I (d) ] are not observed, but we can estimate their respective rowspaces via Ypost,I (d)

and Ypre,I (d) . The data-driven hypothesis test we propose in Section 3.6.1 uses Ypost,I (d)

and Ypre,I (d) to check whether this subspace inclusion property holds. The discussion
above suggests that before running Step 2 of the SI estimator, one should first run this
hypothesis test as a robustness check to verify if it feasible to transfer the learned model
ŵ (n,d) between Ypre,I (d) and Ypost,I (d) . If it fails, then causal transportation across is
likely infeasible.

Technical discussion. We now motivate and formally introduce the test statistic that
underpins our proposed hypothesis test. Let rpre = rank(E[Ypre,I (d) ]), and let rpost =
rank(E[Ypost,I (d) ]). Let Vpre ∈ RNd×rpre denote the right singular vectors of E[Ypre,I (d) ];
analogously, define Vpost ∈ RNd×rpost with respect to E[Ypost,I (d) ]. Let V̂pre ∈ RNd×rpre and
V̂post ∈ RNd×rpost denote their respective estimates, which are constructed from the top rpre

and rpost right singular vectors of Ypre,I (d) and Ypost,I (d) , respectively. As discussed above,
note if causal transportation as required by Step 2 of the SI estimator is to hold, then we
require that the span of Vpost is contained within that of Vpre. Since do not observe Vpre

and Vpost, a a natural test statistic, τ̂ , is the distance between the V̂pre and V̂post:

τ̂ = (I − V̂preV̂ ′pre)V̂post
2
F . (3.8)

Indeed, if V̂pre = Vpre, V̂post = Vpost, and the span of V̂post is within that of V̂pre, then
τ̂ = 0. To account for noise, for a given significance level α ∈ (0, 1), we reject the validity
of Step 2 of the SI method to estimate θ̂(d)

n , if τ̂ > τ(α) ≥ 0 for τ(α) as defined in (3.20).
See Section 3.6 for details and formal results.

Step 3: Uncertainty Quantification of θ̂(d)
n

The confidence interval we produce in (3.6) is a direct implication of our asymptotic
normality result given in Theorem 4.5.2. The variance scales with two quantities ŵ (n,d)

2
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and σ̂ . Both quantities are standard. In particular, ŵ (n,d)
2 is the ℓ2-norm our estimate of

the linear model and σ̂ as defined in (3.7) is essentially our in-sample “training” error.
This suggest that if our in-sample training error as produced by PCR is large, then
naturally our uncertainty of the estimated θ̂(d)

n grows accordingly.

■ 3.4 Empirics

We present two real-world case-studies to assess the efficacy of the SI framework and
explore possible applications both in experimental and observational settings.

■ 3.4.1 Synthetic A/B Testing via SI

Background

We use data collected from a large e-commerce company that segmented its users into
N = 25 customer sub-populations/groups (i.e., units), with approximately 10, 000 individual
users per group, based on the historical engagement of a user, as measured by time and
money spent on the platform. The aim of the company was to learn how different discount
levels (i.e., interventions) affected the engagement levels of each of the 25 customer groups.
The levels were 10%, 30%, and 50% discounts over the regular subscription cost (control or
0% discount.). Thus, there are total of D = 4 interventions. The A/B test was performed
by randomly partitioning users in each of the N = 25 customer groups into 4 subgroups;
these subgroups corresponded to either one of the 3 discounts strategies or control. User
engagement in each of these N×D = 25×4 = 100 experiments was measured daily over
T = 8 days. We only had access to the average engagement level of all the customers in
each of the 100 experiments. That is, we had access to 100 trajectories each of length 8.

This e-commerce A/B test is particularly suited to validate the SI framework as we observe
the engagement levels of each customer group under each of the three discounts and
control, i.e., for each customer group, we observe all possible “counterfactual” outcomes.
Further, it is an experimental setting and thus there is no latent confounding in how
interventions were assigned. Given that we have access to all possible potential outcomes
of interest, we can test the efficacy of the SI framework by exposing data from a limited
number of experiments to the SI estimator, and see how well it can recreate the customer
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(a) Actual experimental setup. (b) SI experimental setup.

Figure 3.4: Experimental setups for the e-commerce A/B testing case study. Observations
are represented by colored blocks while unobservable counterfactuals (held-out test sets) are
represented by white blocks.

engagement outcomes in the hidden experiments.

Experimental Setup

To simulate how a data-efficient synthetic A/B test (i.e., RCT) can be run, we randomly
partition the 25 customer groups into three clusters, denoted as customer groups 1-8,
9-16, and 17-25. For all 25 customer groups, we give the SI estimator access to the
outcomes under 0% discount (i.e., control). For the 10% discount level, we give the SI
estimator access to data from customer groups 1-8, but hold out the corresponding data
for groups 9-25. In other words, the SI estimator does not get to observe the trajectories
of groups 9-25 under a 10% discount. Using the observed trajectories of customer groups
1-8, we separately apply the SI estimator to create synthetic user engagement trajectories
for each of the 9-25 customer groups under a 10% discount. Analogously, we only give
the SI estimator data for the 30% and 50% discount, for customer groups 9-16 and 17-25,
respectively. Note here T0 = T1 = T .

See Figure 3.4a and 3.4b for a visual depiction of the full A/B test carried out, and our
proposed synthetic A/B test, respectively. Given this setup, out interest is in recovering
the following causal parameters: θ(30%)

n , θ(50%)
n for groups 1-8; θ(10%)

n , θ(50%)
n for groups 9-16;

θ(10%)
n , θ(30%)

n for groups 17-25.

Applying the SI Estimator

Feasibility checks. As discussed in Section 3.3.2, we run two feasibility checks: (i) inspect
that the appropriately defined Ypre,I (d) is approximately low-rank; (ii) run the hypothesis
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Figure 3.5: Spectral profile of control data for groups 1-25.

test to check for subspace inclusion, a necessary condition for causal transportablity for
the SI estimator. Let d = {0, . . . , 3} correspond to discount levels {0%, 10%, 30%, 50%},
respectively. We plot the spectrum of Ypre,[N ] = [Ypre,I (d) : d ∈ {0, . . . , 3}] in Figure
3.5 and observe that it is approximately low-rank. In Table 3.1, we show the hypothesis
test results for the three discounts. The hypothesis test passes for each discount at a
significance level of α = 0.05. Thus, this dataset passes both feasibility checks.

Further, since we have access to the customer engagement outcomes from all 100 experi-
ments, we can inspect the spectral profile of the induced tensor of potential outcomes.
This allows to check whether the latent factor model across units, measurements, and
interventions holds—see Assumption 9 for a formal description of the tensor factor model.
Specifically, let Y = [Ytnd : t ∈ [8], n ∈ [25], d ∈ [4]0] be a order-3 tensor, where Ytnd
represents the observed engagement level for customer group n, on day t under discount
policy d. Consider the mode-1 and mode-2 unfolding of Y , which result into 8× (25× 4)
and 25× (8× 4) matrices, respectively. We plot the spectra of the mode-1 and mode-2
unfoldings of Y as shown in Figure 3.6. For both mode-1 and mode-2 unfoldings of the
tensor Y , over 99% of the spectral energy is captured by the top two singular values.
This suggests that Y has a low canonical polyadic tensor rank, (Farias and Li, 2019,
Proposition 1).

Empirical results. To quantify the accuracy of counterfactual predictions, we need a
meaningful baseline to compare against. To that end, we use the following squared error
metric for any (n, d) pair:

SE(d)
n = 1− (θ(d)

n − θ̂(d)
n )2

(θ(d)
n − (1/T1Nd)

∑
t∈Tpost

∑
j∈I (d) Ytjd)2

. (3.9)
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(a) Spectra of mode-1 unfolding. (b) Spectra of mode-2 unfolding.

Figure 3.6: In both 4.5b and 4.5c, the top two singular values of the mode-1 and mode-2 unfoldings
of the tensor capture more than 99% of the spectral energy.

Intervention Hypo. Test (α = 0.05) SE(d)

10% discount Pass 0.98
30% discount Pass 0.99
50% discount Pass 0.99

Table 3.1: A/B test case study: hypothesis test and prediction accuracy results.

In words, the numerator in the right most term on the right-hand side of (3.9) repre-
sents the squared error associated with the SI estimate θ̂(d)

n . We coin the denominator,
(1/Nd)

∑
j∈I (d) Ytjd, as the “RCT estimator”; this is the average outcome across all units

within subgroup I (d). If the units are indeed homogeneous (i.e., they react similarly
to intervention d), then the RCT estimator will be a good predictor of θ(d)

n . Therefore,
SE(d)

n > 0 indicates the success of the SI estimator over the RCT baseline and (3.9) can
be interpreted as a modified R2 statistic with respect to this baseline. In effect, the SE(d)

n

captures the gain by “personalizing” the prediction to the target unit using SI over the
natural baseline of taking the average outcome over I (d).

Across the three discounts, SI achieves a median SE(d) of at least 0.98 as denoted in
Table 3.1. SE(d) is calculated as the median of SE(d)

n over all n /∈ I (d). We see that the
SI estimator far outperforms the RCT estimator. This indicates significant heterogeneity
amongst the customer groups in how they respond to discounts, and thus reinforces the
need for personalization.



Sec. 3.4. Empirics 137

Takeaways: Towards Data-efficient Synthetic A/B Testing

In this A/B testing framework, the e-commerce company implemented a total of 100
distinct experiments—one experiment for each of the 25 customer groups under each
of the 4 interventions. In contrast, SI only required observations from 50 experiments
to produce counterfactual estimates for the remaining 50 experiments accurately. More
generally, as discussed in Section 3.1, an RCT requires N×D experiments to estimate the
optimal “personalized” intervention for every unit. Meanwhile, the synthetic A/B testing
setup as described here, requires access to data for only 2N experiments: in the first
N experiments, all units are under the same interventional regime, say control (d = 0);
next, divide all N units into D partitions each of size N/D, and assign intervention d
to units in the d-th partition, which leads to another N experiments. Using these 2N
experiments, we can recover the causal parameters associated with each of the N units
for the remaining D − 2 interventions. Thus, the number of required experiments does not
scale with D, which can become significant as the number of interventions, i.e, level of
personalization, grows. This efficiency can be significant especially when experimentation
is costly and/or unethical (e.g., clinical trials for personalized medicine). Lastly, we
emphasize the SI estimator did not use additional covariates about the customer groups
or discounts. Rather, it only required a unique identifier (UID) for each customer group
and discount.

■ 3.4.2 Mobility Restriction Policies and COVID-19 Morbidity
Outcomes

Background

At the onset of the COVID-19 pandemic across the globe, the policies that different
nations enacted were primarily targeted at restricting mobility to curb the spread of the
virus. A question of interest to policy-makers is how effective was mobility restriction, as
it can help understand the trade-offs between health outcomes and economic impact of
these policies. Although it is infeasible to run experiments in this setting, we explore how
the SI framework can leverage readily available observational data from across the globe
to help answer these questions. Below, we list and justify our key modeling decisions.

Outcome metric: daily death counts. Due to its relative reliability and availability, we use
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(a) (b)

Figure 3.7: Figure 3.7a displays the average reduction in mobility and assigned intervention
groups. Figure 3.7b shows the observation pattern according to these assignments.

daily COVID-19 related morbidity outcomes as our outcome variable of interest, taken
from Dong et al. (2020). The other standard metric, number of daily infections, is much
less reliable due to the inconsistencies in testing and reporting across regions.

Intervention: change in mobility rate. At the start of the pandemic, each country imple-
mented numerous policies to combat the spread of COVID-19. This makes it difficult to
analyze any particular policy (e.g., stay-at-home orders vs. schools shutting down) in
isolation. Thus a key assumption we make is that at the start of the pandemic, almost all
such policies had been directed towards restricting how individuals move and interact.
That is, we assume the effect of these various policies on COVID-19 related morbidity
outcomes is solely mediated via the level of mobility restriction. To that end, we use
Google’s mobility reports Google (2020) to study the change in a country’s mobility
compared to their respective national baseline from January 2020. Thus, we adopt mobility
as our notion of intervention, and investigate how a country’s change in mobility level
potentially affects COVID-19 related morbidity outcomes. The additional challenge here
compared to the A/B testing case study is that we only have access to observational
data. That is, there may be observed and/or latent characteristics associated with the
country that might both influence the mobility restriction policy enacted (e.g., population
demographics, cultural trends, governmental structure) as well as the health outcomes
observed.
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Experimental Setup

Pre- and post-intervention periods. Recall from Assumption 8 that to apply SI, we
require a set of outcome measurements for all units that are under a common intervention.
Towards that, using Google’s mobility reports, we verify that 20 days prior to cumulative
80 COVID-19 related deaths in a country (and any time before), none of the N = 27
countries we select in this case study restricted mobility. Thus, rather than using a
particular calendar date, we choose the day a country has cumulative 80 COVID-19
deaths as “Day 0”. Henceforth, we refer to the pre- and post-intervention periods as
the days before and after Day 0, respectively. In particular, T0 = 20, and we measure
post-intervention outcomes for the first 15 days from the onset of the pandemic in a
country, i.e., T1 = 15.

Categorizing countries by intervention received: average (lagged) mobility score. Studies
have shown that there is a median lag of 20 days from the onset of infection to the day of
death (e.g., see Wilson et al. (2020)). Thus, a country’s death count on a particular day is
a result of the infection levels from approximately 20 days prior. In order to analyze the
effect of a mobility restricting intervention from “Day 0” onwards, we consider a country’s
mobility score from Day -20 to Day -1. Given that Google’s mobility score changes every
day, we take its average in a given country from Day -20 to Day -1, and then bucket
it into the D = 3 intervention groups defined as follows; see Figure 3.7a for a visual
depiction of this clustering. For a given country, we define: (a) “low mobility restriction”
as a reduction in mobility that is less than 5% compared to the national baseline from
January 2020; (b) “moderate mobility restriction” as a reduction in mobility between
5% to 35% compared to the national baseline from January 2020; (c) “severe mobility
restriction” as a reduction in mobility greater than 35% compared to the national baseline
from January 2020. We remark that by discretizing mobility from a numerical trajectory
over 20 days into these three categorical buckets is a significant modeling choice and it
coarsens the possible causal parameters of interest. See Figure 3.7b for a visual depiction
of the observation pattern.

Applying the SI Estimator

Feasibility checks. We run the same two feasibility checks as in the A/B testing
case study. In particular, we (i) inspect the spectrum of Ypre,[N ] = [Ypre,I (d) : d ∈
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Figure 3.8: Spectral profile of control data across all countries.

{low, moderate, severe}]; (ii) run the hypothesis test for subspace inclusion. Let
d = {0, 1, 2} correspond to the mobility restrictions {“low”, “moderate”, “severe”} as
described above, respectively. We plot the spectrum of Ypre,[N ] in Figure 3.8, which
clearly exhibits low-rank structure. In Table 3.2, we show that our dataset passes the
hypothesis test for all mobility restriction levels at a significance level of α = 0.05. Thus,
both feasibility checks pass.

Empirical results. We apply SI using the setup above to produce counterfactual predictions
of the daily COVID-19 morbidity outcomes for the 15 days following Day 0 under the
three mobility restriction levels for each country. In this case study, since we do not have
access to the counterfactual trajectory of a country for a mobility restricting intervention
it did not actually go through, the best we can do is leave-one-out cross validation. For
a country n that undergoes mobility restricting intervention d in the post-intervention
period (i.e., n ∈ I (d)), we hide the post-intervention data for that country, and we see
how well SI is able to recreate that trajectory using only that country’s pre-intervention
data. We then use the estimated trajectory from SI to produce SE(d)

n , as defined in (3.9).
Subsequently, we define SE(d) as the median SE(d)

n over n ∈ I (d). In Table 3.2, we
see that the median SE(d) is 0.46, 0.80, 0.08 for the low, moderate, and severe mobility
restriction, respectively. This indicates that there is indeed significant heterogeneity
amongst the countries in how mobility affects the COVID-19 related morbidity outcomes
at least with respect to the low and moderate restriction. For severe mobility restriction,
the SI estimator only slightly outperforms the RCT estimate; this is likely due to the fact
that countries that underwent a severe mobility restriction all had very few COVID-19
related deaths in the post-intervention period, and thus there was not much heterogeneity
in their trajectories.
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Intervention Hypo. Test (α = 0.05) SE(d)

low mobility restriction Pass 0.46
moderate mobility restriction Pass 0.80

severe mobility restriction Pass 0.08

Table 3.2: COVID-19 case study: hypothesis test and prediction accuracy results.

(a) United States (b) Brazil (c) India

Figure 3.9: Counterfactual predictions of COVID-19 related morbidity counts under different
mobility restriction levels.

For every mobility restriction level, we display the three synthetic trajectories produced
by SI for one representative country, using only the pre-intervention outcomes for each
given country. This corresponds to producing two counterfactual trajectories per country,
for the two mobility interventions it did not actually go through, and one trajectory for
the intervention it did actually go through, which serves as cross-validation. Hence, in
this case study, we produce 2× 27 = 54 counterfactual trajectories. For the low mobility
restricting regime, we show results for USA in Figure 3.9a. The dashed lines on Days
0-15 are the predicted values under all possible mobility restriction levels and the solid
line represents the true national death trajectory. Pleasingly, the SI predictions closely
match the observed morbidity outcomes in the post-intervention period. Similarly, for
the moderate and severe mobility restricting interventions, we display results for Brazil
and India in Figures 3.9b and 3.9c, respectively. Again, the cross-validation trajectory
produced from SI closely matches the observed morbidity outcomes under all different
interventions. We note similar results hold generally across all countries we use in this
study. We display the results for USA, Brazil, and India as they are the largest countries
within each intervention group.

Further, we emphasize that we produce these trajectories using only their COVID-19
related death outcomes and the Google mobility report to categorize which intervention
bucket they belong to in the post-intervention period. That is, we do not use any additional
covariates about the countries or the various interventions.



142 CHAPTER 3. SYNTHETIC INTERVENTIONS

Takeaways: Towards Personalized Program Evaluation

Importantly, the SI model of each country is fit in the pre-intervention period, when no
intervention has yet occurred. Still, the learned model transfers to an interventional
setting, i.e., when the interventions take effect within the donor countries. This helps
validate the SI framework. An “optimistic” conclusion one can draw from the figures
above is that, uniformly across all countries, there is a significant drop in the number of
deaths with even a “moderate” drop in mobility (i.e, a 5-35% drop in mobility compared
to the national baseline). After this point, gains by further restricting mobility seem to
be diminishing. Of course, with any such conclusions, it needs to be rigorously cross-
validated with other studies of a similar nature; further these estimated counterfactual
trajectories are only valid up to the modeling decisions made and under appropriate
causal assumptions. In Section 3.5, we provide a formal causal framework for SI and our
associated consistency and normality results for the SI estimator.

■ 3.5 Formal Results

In this section, we present formal results. In Section 3.5.1, we introduce our causal
framework. In Section 3.5.2, we establish identification of the causal parameter of
interest, θ(d)

n under this framework. In Sections 3.5.3 and 3.5.4, we establish finite-sample
consistency and asymptotic normality of the SI estimator, respectively. Finally, in Section
3.5.5, we interpret and discuss our key assumptions and formal results.

■ 3.5.1 Causal Framework

Tensor Factor Model

Below we introduce a novel tensor factor model for potential outcomes across units,
measurements, and interventions.

Definition 3.5.1 (Tensor factor model). For any unit n ∈ [N ], intervention d ∈ [D]0 and
outcome t ∈ [T ], the expectation of potential outcome Y (d)

tn satisfies the factor structure

E[Y (d)
tn ] =

r∑

ℓ=1
utℓvnℓwdℓ ,
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where r ≥ 1 represents the ‘rank’ or the dimension of the latent factors, and ut , vn, wd ∈ Rr

represent the latent factors associated with the t-th measurement, n-th unit, and d-th
intervention, respectively.

The tensor factor model is a natural generalization of the matrix factor model traditionally
considered in the literature. Specifically, when restricted to any specific intervention d,
we can re-write

E[Y (d)
tn ] = ⟨u(d)

t , vn⟩ (3.10)

where u(d)
t = [utℓwdℓ : ℓ ∈ [r]] ∈ Rr and vn = [vnℓ : ℓ ∈ [r]] ∈ Rr . Indeed, (3.10) states

that the expected potential outcomes for each intervention should satisfy the traditional
matrix factor model. However, the critical additional assumption is that the unit n specific
factor vn remains invariant across interventions. In this work, we shall require this weaker
condition, which is implied by the tensor factor model.

Assumption 9 (Invariant unit factors). For any given (t, n, d),

Y (d)
tn = ⟨u(d)

t , vn⟩+ ε(d)
tn , (3.11)

where u(d)
t ∈ Rr is the latent factor specific to (t, d); vn ∈ Rr is the latent factor specific

to n; and ε(d)
tn ∈ R is a mean zero residual term specific to (t, n, d).

Assumption 9 essentially states that the collection of latent factors

LF :=
{
u(d)
t , vn : (t, n, d)

}

determine the expected potential outcomes {E[Y (d)
tn ] : (t, n, d)}. Thus, the distribution of

the potential outcomes is captured through the residual term {ε(d)
tn : (t, n, d)}.

Latent Factors can be Latent Confounders

Collectively, let the intervention assignments be denoted as

D = {(t, n, d) : Ytnd ̸= ⋆, i.e., Y (d)
tn is observed}.

In an ideal setting, we wish to have D and Y (d)
tn be independent, as is the case in a

RCT. However, in observational studies, the interventions and potential outcomes can be
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dependent, which is known as confounding. We consider a setting where the confounders
can be latent, but their impact on interventions and potential outcomes is mediated
through the latent factors. That is, we assume conditioned on the latent factors, LF , the
potential outcomes and interventions are conditionally independent.

Assumption 10 (Selection on latent factors). Conditioned on the unobserved latent factors
LF, the interventions D and {ε(d)

tn : t ∈ [T ], n ∈ [N ], d ∈ [D]0} are independent. That is,
for all (t, n, d),

E[ε(d)
tn |LF ] = 0, ε(d)

tn ⊥⊥ D | LF.

Strictly speaking, our identification results only require E[ε(d)
tn |LF, D ] = 0, which is known

as conditional mean independence. However, we state it as ε(d)
tn ⊥⊥ D | LF to increase

the interpretability of the conditional exogeneity assumption we make. Assumptions 9 and
10 collectively imply that Y (d)

tn ⊥⊥ D | LF. Hence, this conditional independence condition
can be thought of as “selection on latent factors”, which is analogous to “selection on
observables”. Similar conditional independence assumptions have been considered in
Athey et al. (2021); Kallus et al. (2018).

In the context of the COVID-19 case study described in Section 3.4.2, it suggests that the
mobility restriction each country went through can be dependent on latent factors (e.g.
national politics, cultural trends, population demographics), which might also influence
the COVID-19 morbidity outcomes under different interventions. However, Assumption
10 requires that the collection of latent factors is rich enough that conditional on it,
the potential health outcomes of a country and the mobility restriction interventions are
independent.

■ 3.5.2 Causal Parameter & Identification

Target causal parameter. We can now formally define our target causal parameter. For
any given (n, d), we aim to estimate

θ(d)
n = 1

T1

∑

t∈Tpost

E
[
Y (d)
tn

∣∣∣ {u(d)
t , vn : t ∈ Tpost}

]
. (3.12)

That is, for each unit n and intervention d, our interest is in the average expected potential
outcomes over Tpost.
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Identification. Next, we argue that our target causal parameter can be written as a
function of observed outcomes, i.e., we establish identification of our causal parameter.
Let E = {LF, D } refer to the collection of latent factors and intervention assignments. To
that end, we make an additional mild assumption.

Assumption 11 (Linear span inclusion). Given (n, d) and conditioned on E , vn ∈ span({vj :
j ∈ I (d)}), i.e., there exists w (n,d) ∈ RNd such that vn =

∑
j∈I (d) w (n,d)

j vj .

Given Assumption 9, the linear span inclusion requirement as stated in Assumption 11
is rather weak. For example, consider the case that span({vj : j ∈ I (d)}) = Rr . Since
vn ∈ Rr , Assumption 11 would immediately hold. Note Theorem 4.6.1 of Vershynin (2018)
implies that if {vn}n∈[N ] are sampled as independent, mean zero, sub-Gaussian vectors,
then span({vj : j ∈ I (d)}) = Rr holds with high probability as N (d) grows. More intuitively,
Assumption 11 requires that the intervention assignment D is such that sufficiently many
units undergo intervention d, and their unit factors are collectively “diverse” enough so
that their span includes the latent factor associated with any other unit. Now we state
the formal identification result.

Theorem 3.5.1. Given (n, d), let Assumptions 8 to 11 hold. Then, given w (n,d),

E[Y (d)
tn |u

(d)
t , vn] =

∑

j∈I (d)

w (n,d)
j E

[
Ytjd|E

]
for t ∈ [T ], (3.13)

θ(d)
n = 1

T1

∑

t∈Tpost

∑

j∈I (d)

w (n,d)
j E

[
Ytjd|E

]
. (3.14)

■ 3.5.3 Finite-sample Consistency

Additional Assumptions. We state additional assumptions required to establish statistical
guarantees for our estimation procedure.

Assumption 12 (Sub-Gaussian noise). Conditioned on E , for any (t, n, d), ε(d)
tn are zero-

mean independent sub-Gaussian random variables with Var[ε(d)
tn |E ] = σ2 and ε(d)

tn |Eψ2≤ Cσ
for some constant C > 0.

Assumption 13 (Boundededness). For any (t, n, d), E[Y (d)
tn |E ] ∈ [−1, 1].3

3The precise bound [−1, 1] is without loss of generality, i.e., it can be extended to [a, b] for a, b ∈ R with
a ≤ b.
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Assumption 14 (Well-balanced spectra). For any d, let 1 ≤ rpre ≤ r be the rank of
E[Ypre,I (d) |E ] and s1 ≥ . . . srpre > 0 be its nonzero singular values. We assume the
singular values are well-balanced, i.e., for universal constants c, c′ > 0, srpre/s1 ≥ c with
E[Ypre,I (d) |E ]2F≥ c′NdT0.

Assumption 15 (Subspace inclusion). For any d, the rowspace of E[Ypost,I (d) |E ] lies within
that of E[Ypre,I (d) |E ].

Finite-sample consistency. Now we state the finite-sample guarantee which establishes
that the estimator described in Section 3.3.1 yields a consistent estimate of the causal
parameter for any given unit-intervention pair. To simplify notation, we will henceforth
absorb dependencies on σ into the constant within Op(·), defined in Section 3.2.

Theorem 3.5.2. Given (n, d), let Assumptions 8 to 15 hold. Further, suppose k = rpre =
rank(E[Ypre,I (d) |E ]), where k is defined as in (3.3). Then conditioned on E ,

θ̂(d)
n − θ(d)

n = Op

(√rpre

T 1/4
0

+ w̃ (n,d)
2√

T1
+
w̃ (n,d)

1r3/2pre
√

log(T0Nd)
min{

√
T0,
√
Nd}

)
.

Here,

w̃ (n,d) = VpreV ′prew (n,d), (3.15)

where Vpre ∈ RNd×rpre represents right singular vectors of E[Ypre,I (d) |E ] and w (n,d) is
defined as in Theorem 4.3.1. We assume w̃ (n,d)

2≥ c, where c > 0 is a universal constant.4

■ 3.5.4 Asymptotic Normality

We establish that the estimate is asymptotically normal around the true causal parameter.
This will justify the confidence interval defined in (3.6) of Section 3.3.

Theorem 3.5.3. Given (n, d), let the setup of Theorem 4.5.1 hold. Let w̃ (n,d) be defined as
in (3.15). Suppose (i) T0, T1, Nd →∞; (ii) r2pre log(T0Nd) = o(min{T0, Nd}); and (iii)

T1 = o
(
w̃ (n,d)2

2·min
{√

T0
rpre

, min {T0, Nd}
w̃ (n,d)2

1r3pre log(T0Nd)

})
. (3.16)

4We believe that the log factors within our results could be removed with careful analysis.



Sec. 3.5. Formal Results 147

Then conditioned on E ,
√
T1

σw̃ (n,d)2

(
θ̂(d)
n − θ(d)

n
)

d−→ N (0, 1) . (3.17)

Further, for ŵ (n,d) and σ̂2 defined in (3.3) and (3.7), respectively, we have

ŵ (n,d) − w̃ (n,d) = Op

(
w̃ (n,d)

2rpre
√

log(T0Nd)
min{

√
T0,
√
Nd}

)
, (3.18)

σ̂2 − σ2 = Op

(√rpre√
T0

+
rpre
√

log(T0Nd)w̃ (n,d)
1

min{
√
T0,
√
Nd}

)
. (3.19)

■ 3.5.5 Discussion

On Assumptions 14 and 15

Assumption 14 requires that the nonzero singular values of E[Ypre,I (d) |E ] are well-balanced.
Within the econometrics factor model analyses and matrix completion literature, Assumption
14 is analogous to incoherence-style conditions, e.g., Assumption A of Bai and Ng (2020).
It is also closely related to the notion of pervasiveness (see Fan et al. (2018)). Additionally,
Assumption 14 has been shown to hold with high probability for the canonical probabilistic
generating process used to analyze probabilistic principal component analysis in Bishop
(1999) and Tipping and Bishop (1999); here, the observations are assumed to be a
high-dimensional embedding of a low-rank matrix with independent sub-Gaussian entries
(see Proposition 4.2 of Agarwal et al. (2021e)). Lastly, we highlight that the assumption
of a gap between the top few singular values of observed matrix of interest and the
remaining singular values has been widely adopted in the econometrics literature of large
dimensional factor analysis dating back to Chamberlain and Rothschild (1983).

Next, we discuss Assumption 15. The goal of the SI framework is to “causally transport”
a model learned under one intervention and a set of outcome measurements to other
interventions and measurements. This requires analyzing the “generalization” properties
of the SI estimator, a term commonly used in the statistical learning literature. However,
the potential outcomes under different interventions are likely to arise from different
distributions, which makes analyzing when it generalizes much more challenging; tradi-
tional generalization analyses require making stringent distributional assumptions, e.g.,
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all measurements are sampled i.i.d. Thus, to understand when such causal transportation
is feasible, we need a different framework of generalization. Assumption 15 precisely
provides such a framework; it is a purely linear algebraic requirement, and makes no
distributional assumptions about the latent factors. Indeed, learning with distribution
shifts is an active area of research in causal inference, machine learning, and statistics
(e.g., learning with covariate shift, transfer learning). Our hope is that the SI framework,
and Assumption 15 more specifically, might provide a meaningful way to think about
generalization in such settings.

Learning N ×D causal parameters with O(N) observations

In this work, our interest is in estimating N ×D causal parameters: θ(d)
n for all (n, d). If

all Y (d)
tn for t ∈ Tpost were observed, their empirical mean would concentrate around θ(d)

n

with error scaling as O(1/
√
T1). That is, to obtain an additive error of O(δ) for any δ > 0,

such an estimation procedure would require T1 = Ω(δ−2). Therefore, for all N ×D pairs,
it would require N ×D ×O(δ−2) observations.

Theorem 4.5.1 establishes that by observing N × T0 + (
∑D

d=1Nd)× T1 observations in
total, we can estimate θ(d)

n for any n within error O( max(T−1/4
0 , T−1/2

1 , N−1/2
d )). As a

special case, consider Nd = N/D. Then, for any δ > 0, with T0 = Ω(δ−4), T1 = Ω(δ−2)
and Nd = Ω(δ−2), θ(d)

n can be estimated within additive error O(δ) with observations
N ×O(δ−4), independent of D. Thus, SI enables learning all N ×D causal parameters
using O(N) observations, independent of D.

Relative scaling of N, T and D. Theorems 4.5.1 and 4.5.2 suggests that for SI to do
meaningful estimation only two of the three dimensions, N,T need to be scaling relatively
quickly compared to D; e.g. in the case where Nd → ∞. However, depending on the
relative scalings of N,T and D, variants of the SI algorithm might be more suitable. For
example, it might be more apt to regress on interventions rather than units if N = o(D).
We explore this further in Section 3.9.

■ 3.6 A Hypothesis Test for Subspace Inclusion

In Section 3.6.1, we formally define the subspace inclusion hypothesis test; this serves as
a robustness check of Assumption 15, which enables our learned model to be transferred
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across interventions and measurements. In Section 3.6.2, we apply this test to two seminal
case studies from the SC literature and discuss our findings.

■ 3.6.1 Hypothesis Test & Formal Results

Notation. Recall rpre = rank(E[Ypre,I (d) ]) and rpost = rank(E[Ypost,I (d) ]). Further, recall
Vpre ∈ RNd×rpre denotes the right singular vectors of E[Ypre,I (d) ]. Define Vpost ∈ RNd×rpost

with respect to E[Ypost,I (d) ] analogously. Finally, let V̂pre ∈ RNd×rpre and V̂post ∈ RNd×rpost

denote their respective estimates, which are constructed from the top rpre and rpost right
singular vectors of Ypre,I (d) and Ypost,I (d) , respectively.

Hypothesis Test

Consider hypotheses

H0 : span(Vpost) ⊆ span(Vpre) and H1 : span(Vpost) ⊈ span(Vpre).

Recall the test statistic τ̂ as defined in (3.8) in Section 3.3.2, and the motivation for its
usage. More formally, we define the test as follows: for any significance level α ∈ (0, 1),

Retain H0 if τ̂ ≤ τ(α) and Reject H0 if τ̂ > τ(α).

Here, τ(α) is the critical value, which we define for some absolute constant C ≥ 0:

τ(α) =
Cσ2rpostφ2

pre(α/2)
s2
rpre

+
Cσ2rpostφ2

post(α/2)
ς2
rpost

+
Cσrpostφpre(α/2)

srpre
, (3.20)

where φpre(a) =
√
T0 +

√
Nd +

√
log(1/a); φpost(a) =

√
T1 +

√
Nd +

√
log(1/a); and

sℓ , ςℓ are the ℓ-th singular values of E[Ypre,I (d) |E ] and E[Ypost,I (d) |E ], respectively.

Type I and Type II Error Guarantees

Given our choice of τ̂ and τ(α), we control both Type I and Type II errors of our test.

Theorem 3.6.1. Let Assumptions 8, 9, 10, 12 hold. Fix any α ∈ (0, 1). Then conditioned
on E , there exists an absolute constant C ≥ 0, defined in (3.20), such that the Type I error
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is bounded as P(τ̂ > τ(α)|H0) ≤ α. To bound the Type II error, suppose the following
additional condition holds:

rpost > VpreV ′preVpost
2
F+2τ(α) +

Cσrpostφpost(α/2)
ςrpost

. (3.21)

Then, the Type II error is bounded as P(τ̂ ≤ τ(α)|H1) ≤ α.

The particular C for which Theorem 3.6.1 holds depends on the underlying distribution of
ε(d)
tn , which determines the distribution of the potential outcomes Y (d)

tn . C can be made
explicit for certain classes of distributions; as an example, Corollary 3.6.1 specializes
Theorem 3.6.1 to when ε(d)

tn are normally distributed.

Corollary 3.6.1. Consider the setup of Theorem 3.6.1 with C = 4. Let ε(d)
tn be normally

distributed for all (t, n, d). Then, P(τ̂ > τ(α)|H0) ≤ α and P(τ̂ ≤ τ(α)|H1) ≤ α.

We now argue (3.21) is not a restrictive condition. Conditioned on H1, observe that
rpost > VpreV ′preVpost

2
F always holds. If Assumption 14 holds and the nonzero singular

values of E[Ypost,I (d) ] are well-balanced, then one can easily verify that the latter two
terms on the right-hand side of (3.21) decay to zero as T0, T1, Nd grow.

Computing τ(α)

Computing τ(α) requires estimating (i) σ2; (ii) rpre, rpost; (iii) srpre , ςrpost . We provide an
estimator for σ in (3.7) and establish its consistency in Theorem 4.5.2. Further, recall
that Lemma 3.13.1 establishes that the singular values of Ypre,I (d) and E[Ypre,I (d) ] must
be close. Thus, we can use the spectra of Ypre,I (d) as a good proxy to estimate rpre and
srpre . Analogous arguments hold for Ypost,I (d) with respect to E[Ypost,I (d) ]. Further, note that
Corollary 3.6.2 specializes τ(α) under Assumption 14.

Corollary 3.6.2. Let the setup of Theorem 3.6.1 hold. Suppose Assumption 14 holds.
Further, suppose that conditioned on E , the rpost nonzero singular values ςi of E[Ypost,I (d) ]

are well-balanced, i.e., ς2
i = Θ(T1Nd/rpost). Then, τ(α) = O

( √
log(1/α)

min{
√
T0,
√
T1,
√
Nd}

)
.

If we consider the noiseless case, ε(d)
tn = 0, we note that τ(α) = 0. More generally, if the

spectra of E[Ypre,I (d) ] and E[Ypost,I (d) ] are well-balanced, then Corollary 3.6.2 establishes
that τ(α) = o(1), even in the presence of noise. We remark that Corollary 3.6.1 allows for
exact constants in the definition of τ(α) under the Gaussian noise model.
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A Practical Heuristic

Here, we provide a complementary approach to computing τ(α), used in Squires et al.
(2021). To build intuition, observe that τ̂ represents the remaining spectral energy of
V̂post not contained within span(V̂pre). Further, we note τ̂ is trivially bounded by rpost

since the columns of V̂post are orthonormal. Thus, one can fix some fraction α ∈ (0, 1)
and reject H0 if τ̂ > τ(α), where τ(α) = α · rpost. In words, if more than α fraction of the
spectral energy of V̂post lies outside the span of V̂pre, then the alternative test rejects
H0. We remark that this variant is likely more robust compared to its exact computation
counterpart, which requires estimating several “nuisance” quantities described above in
order to estimate (3.20) and varies with the underlying modeling assumptions we make
about ε(d)

tn and the singular values, srpre , ςrpost . As such, we employ the heuristic variant in
our case studies presented in Section 4.6.3.

■ 3.6.2 Subspace Inclusion Test Applied to Synthetic Controls

We revisit two seminal case studies within the SC literature: (i) an evaluation on the
impact of terrorism in Basque Country Abadie and Gardeazabal (2003); (ii) an evaluation
on the impact of California’s Proposition 99 on tobacco consumption Abadie et al. (2010).
In particular, we apply our subspace inclusion hypothesis test to study the potential
feasibility of counterfactual inference in both studies. Indeed, these studies have been
used extensively to explain the utility of the SC method and have subsequently served as
benchmarks in following works, cf. Amjad et al. (2018); Athey et al. (2021); Arkhangelsky
et al. (2020); Agarwal et al. (2021e), and more broadly as well. As such, we hope our
findings not only motivate the usage of this test, but also spark the development of
additional robustness tests to stress test the causal conclusions drawn from these studies
and beyond.

Terrorism in Basque Country

Background & setup. In 1968, the first Basque Country victim of terrorism was claimed;
however, it was not until the mid-1970s did the terrorist activity become more rampant
Abadie and Gardeazabal (2003). To study the economic ramifications of terrorism on
Basque Country, we use the per-capita GDP of N = 18 Spanish regions from 1955-1997,
i.e., T = 43. Among these regions, there is one treated region, Basque Country, which
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experienced terrorism; the other 17 regions are considered control regions as they were
relatively unaffected by terrorism. Translating to our notation, we have D = 2 with d = 0
representing control and d = 1 representing treatment (i.e., terrorism); in turn, we have
T0 = 14 and T1 = 29. Without loss of generality, we index Basque Country as unit n = 1.
Our interest is to estimate θ(0)

1 .

We note that the original work of Abadie and Gardeazabal (2003) uses 13 additional
predictor variables for each region, including demographic information pertaining to one’s
educational status, and average shares for six industrial sectors. We do not utilize this
additional information here, i.e., we only use information related the outcome of interest,
i.e., per-capita GDP.

Hypothesis test results. We apply our heuristic variant of the hypothesis test, introduced
in Section 3.6.1, with α = 0.05. We find that our test statistic τ̂ = 0.01 and τ(α) = 0.05.
Since τ̂ < τ(α), our tests suggest that the SI method is suitable for this study, and also
supports the suitability of and conclusions drawn from previous works utilizing SC-like
methods for this case study.

California Proposition 99

Background & setup. In 1988, California introduced the first modern-time large-scale
anti-tobacco legislation in the United States Abadie et al. (2010). To analyze the effect of
California’s anti-tobacco legislation, we use the annual per-capita cigarette consumption
at the state level for N = 39 states from 1970-2000, i.e., T = 31. With the exception
of California, the other 38 states included in this study neither adopted an anti-tobacco
program or raised cigarette sales taxes by 50 cents or more. As such, these states are
considered the control states and California is considered the treated state. Translating
to our notations, we have D = 2 with d = 0 representing control and d = 1 representing
treatment (i.e., Proposition 99); in turn, we have T0 = 29 and T1 = 12. Without loss of
generality, we index California as unit n = 1. Our interest is to estimate θ(0)

1 .

It is worth noting that the original work in Abadie et al. (2010) uses six additional
covariates per state, e.g., retail price, beer consumption per capita, and percentage of
individuals between ages of 15-24. We do not include these variables in our study.

Hypothesis test results. We apply our heuristic variant of the hypothesis test with
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α = 0.05. We find that our test statistic τ̂ = 1.64 and τ(α) = 0.15. Since τ̂ > τ(α), our
test suggests that the SI estimator is likely ill-suited to produce a reliable estimate of θ(0)

1 ;
in fact, our test only passes for α ≥ 0.48. Since the robust synthetic controls estimator of
Amjad et al. (2018); Agarwal et al. (2021e) is a special case of the SI estimator, this puts
into question the conclusions drawn in Amjad et al. (2018); Agarwal et al. (2021e). More
generally, this may shed some doubt on the suitability of any linear predictor, including
the original SC estimator and many of its variants (e.g. Athey et al. (2021); Arkhangelsky
et al. (2020)), used to investigate the impact of Proposition 99. Thus, we believe this
result may be of independent interest to the SC literature to revisit the conclusions drawn
from these prior works and to further extend the toolkit of robustness/sensitivity analysis
tests of when one can transfer a model across time periods (and interventional regimes).

■ 3.7 Simulations

In this section, we present illustrative simulations to reinforce our theoretical results. In
particular, these simulations suggest that the finite-sample estimation error bounds are
tight, asymptotic Gaussian approximation is accurate, and the assumptions behind our
theoretical results are necessary. Below, we present a brief overview of the setup for each
simulation as well as the primary takeaway, and relegate the details to Section 3.11.

■ 3.7.1 Consistency

The purpose of this section is to study the finite-sample properties of the SI estimator.

Setup. We generate E[Ypre,I (d) ], E[Ypost,I (d) ], w (n,d), E[Ypre,n] = E[Ypre,I (d) ]w (n,d), and
θ(d)
n = (1/T1)

∑
t∈Tpost

E[Y (d)
tj ]w (n,d)

j in such a way that our operating assumptions hold;
namely, Assumptions 9, 11, 13, 14, 15. Further, we sample Ypre,I (d) , Ypost,I (d) , and
Ypre,n while respecting Assumptions 8, 10, 12. Our objective is to estimate θ(d)

n from
(Ypre,I (d) ,Ypost,I (d) , Ypre,n). In order to showcase the error rate of the SI estimator, we vary
the length of Tpost while keeping T0 = Nd fixed. That is, we choose T1 = 200 and vary
the number of post-intervention samples as ρT1, where ρ ∈ {0.1, 0.2, . . . , 1.0}. As such,
we index our causal parameter as θ(d)

n (ρ) and estimates as θ̂(d)
n (ρ).

Results. We perform 100 iterations for each ρ and plot the mean absolute errors (MAEs),



154 CHAPTER 3. SYNTHETIC INTERVENTIONS

Figure 3.10: Plot of mean absolute errors across 100 iterations for every ρ, which corresponds to
different post-intervention lengths. As implied by Theorem 4.5.1, the error decays as Op(1/

√
ρT1).

|θ̂(d)
n (ρ) − θ(d)

n (ρ)|, in Figure 3.10. As the figure shows, the MAE of θ̂(d)
n (ρ) decays as

the post-intervention period ρT1 increases. Moreover, given the choice of T0 = Nd,
the error effectively scales as Op(1/

√
ρT1), which matches the implication of Theorem

4.5.1. Therefore, this simulation demonstrates that the estimator described in Section 3.3
produces a consistent estimate of the underlying causal parameter if Assumptions 8 to 15
hold.

■ 3.7.2 Asymptotic Normality

In this section, we study the asymptotic normality properties of the SI estimator, as well
as the importance of subspace inclusion (Assumption 15).

Subspace Inclusion Holds

In the following simulation, we will enforce Assumption 15 to hold between the pre- and
post-intervention data. However, we will allow the pre- and post-intervention data to be
sampled from different distributions.

Setup. We consider a binary intervention model D = 2, where the pre-intervention data
will be observed under control d = 0, while the post-intervention data will be observed
under treatment d = 1. In order to separate treatment from control, we will sample
{Y (0)

tj } and {Y (1)
tj } from different distributions. Next, we generate E[Ypre,I (1) ] = [Y (0)

tj : t ∈
Tpre, j ∈ I (1)], E[Ypost,I (1) ] = [Y (1)

tj : t ∈ Tpost, j ∈ I (1)], w (n,1), E[Ypre,n] = E[Ypre,I (1) ]w (n,1),
and θ(1)

n = (1/T1)
∑

t∈Tpost
E[Y (1)

tj ]w (n,1)
j in such a way that our operating assumptions
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(a) Assumption 15 holds. (b) Assumption 15 fails.

Figure 3.11: In 3.11a, the histogram of estimates follows the theoretical asymptotic normal
distribution. In 3.11b, the histogram of estimates does not follow the theoretical asymptotic normal
distribution.

hold; namely, Assumptions 9, 11, 13, 14, 15. Further, we sample Ypre,I (1) , Ypost,I (1) ,
and Ypre,n while respecting Assumptions 8, 10, 12. Our objective is to estimate θ(1)

n

from (Ypre,I (1) ,Ypost,I (1) , Ypre,n). We re-emphasize that (Ypre,I (1) , Ypre,n) used to learn the
model follow a different distribution from Ypost,I (1) used for predictions; however, subspace
inclusion between the pre- and post-intervention is upheld.

Results. We run 5000 iterations and display the histogram of estimates θ̂(1)
n in Figure

3.11a. As implied by Theorem 4.5.2, the histogram is very well-approximated by a normal
distribution with mean θ(1)

n and variance (1/
√
T1)σ2w̃ (n,1)2

2. This figure demonstrates that
even if the pre- and post-intervention potential outcomes follow different distributions,
our estimates remain normally distributed around the true causal parameter. That is, it is
feasible to learn ŵ (n,d) under one intervention setting (e.g., control), and then transfer the
learned model to a different intervention regime, which may obey a different distribution,
provided subspace inclusion holds.

Subspace Inclusion Fails

Next, we show θ̂(d)
n is non-trivially biased when Assumption 15 fails.

Setup. We again consider a binary intervention model D = 2, where the pre-intervention
data will be observed under control d = 0, while the post-intervention data will be observed
under treatment d = 1. In order to separate treatment from control, we will sample {Y (0)

tj }
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and {Y (1)
tj } from different distributions. Next, we generate E[Ypre,I (1) ] = [Y (0)

tj : t ∈ Tpre, j ∈
I (1)], E[Ypost,I (1) ] = [Y (1)

tj : t ∈ Tpost, j ∈ I (1)], w (n,1), E[Ypre,n] = E[Ypre,I (1) ]w (n,1), and
θ(1)
n = (1/T1)

∑
t∈Tpost

E[Y (1)
tj ]w (n,1)

j in such a way that Assumptions 9, 11, 13, 14 hold.
Crucially, however, we will violate Assumption 15. Further, we sample Ypre,I (1) , Ypost,I (1) ,
and Ypre,n while respecting Assumptions 8, 10, 12. Our objective is to estimate θ(1)

n from
(Ypre,I (1) ,Ypost,I (1) , Ypre,n).

Results. We perform 5000 iterations and plot the histogram of estimates in Figure 3.11b.
Unlike Figure 3.11a, the histogram is not well-approximated by the normal distribution
with mean θ(1)

n but instead has non-trivial bias. The juxtaposition of these two figures
reinforces the importance of Assumption 15 for successful counterfactual inference (i.e.,
generalization).

■ 3.8 Comparison with Synthetic Controls Literature

The goal of this section is to better contextualize our assumptions and results within the
SC literature, by doing a detailed comparison with some representative works.

Causal parameter in SC: treatment effect on the treated. For any (n, d) pair, let
Ȳ (d)
n = 1

T1

∑
t∈Tpost

Y (d)
tn . In addition, let τ (d1,d2)

n = Ȳ (d1)
n − Ȳ (d2)

n denote the (relative)
treatment effect between interventions d1 and d2 for unit n, averaged over the post-
intervention period. The most closely related causal parameter in the SC literature to our
work is τ (d,0)

n for n ∈ I (d) and d ̸= 0. This is referred to as the unit specific treatment
effect on the treated, averaged over the post-intervention period. Recall Ȳ (d)

n is observed
for n ∈ I (d). As such, the goal in these works is to estimate the counterfactual potential
outcomes Ȳ (0)

n for n /∈ I (0), i.e., what would have happened to a “treated” unit n had it
remained under control. The quantity Ȳ (0)

n is closely related to θ(0)
n ; the slight difference is

that θ(0)
n = E[Ȳ (0)

n |{u(0)
t , vn : t ∈ Tpost}], where the expectation is taken with respect to the

mean zero residual term and conditioned on the latent factors. Many of the works listed
below implicitly condition on either the latent factors or directly on the observations Ytn,
if a factor model is not assumed.

We re-emphasize the SI framework allows for identification and inference of θ(d)
n for d ̸= 0

and all n ∈ [N ], which these previous works do not consider. This enables some of the
key applications we study, such as synthetic A/B testing described in Section 4.6.3.
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Representative works. Arguably, τ (d,0)
n is the most common casual parameter considered

in the SC literature, e.g., see Hsiao et al. (2012); Doudchenko and Imbens (2016b); Athey
et al. (2021); Li and Bell (2017); Xu (2017b); Li (2018); Bai and Ng (2020); Chan and
Kwok (2020); Chernozhukov et al. (2020b); Fernández-Val et al. (2020). We restrict
our attention to four recent works, Bai and Ng (2020), Chernozhukov et al. (2020b),
Arkhangelsky et al. (2020), and Agarwal et al. (2021e) as they highlight some of the
primary points of comparison of SI with the SC literature. Again, given the vastness of
the literature, we underscore that these comparisons are by no means exhaustive.5

■ 3.8.1 Comparison with Chernozhukov et al.

Overview of assumptions. There are two key assumptions made in Chernozhukov et al.
(2020b). First, the authors assume the existence of w (n,0) ∈ RN0 such that for all time t
and conditioned6 on any sampling of {Y (0)

tj : j ∈ I (0)},

Y (0)
tn =

∑

j∈I (0)

w (n,0)
j Y (0)

tj + εtn, (3.22)

where E[εtn] = 0 and E[εtnY (0)
tj ] = 0. Second, they assume the existence of an oracle

estimator for w (n,0), denoted as ŵ (n,0), such that w (n,0) − ŵ (n,0)
2= o(1).

The two most common restrictions placed on w (n,0), for which there exist estimators with
formal performance guarantees, include (i) w (n,0) is convex, i.e.,

∑
j∈I (0) w (n,0)

j = 1 and
w (n,0)
j ≥ 0, cf. Abadie et al. (2010); Abadie and Gardeazabal (2003); Doudchenko and

Imbens (2016b); (ii) w (n,0) is approximately sparse, i.e., w (n,0)
1= O(1), which is a relatively

weaker assumption, cf. Raskutti et al. (2011); Chernozhukov et al. (2020a). Under these
assumptions, the authors provide a flexible and practical t-test based inference procedure
to estimate Ȳ (0)

n , which utilizes the oracle estimator ŵ (n,0). We compare these assumptions
with the SI framework.

Functional form in (3.22). Note that under Assumption 9, we can equivalently write
5A related causal parameter considered in many of these works is the time specific treatment effect on

the treated, averaged over all treated units. This reduces to estimating Ȳ (0)
t = (N −N0)−1∑

n /∈I (0) Y (0)
tn for a

particular t > T0. Estimating this quantity is quite similar to estimating Ȳ (0)
n . In particular, we can estimate

Ȳ (0)
t by simply transposing the observations and then running the same estimator used to estimate Ȳ (0)

n .
6The conditioning on {Y (0)

tj : j ∈ I (0)} is implicit in Chernozhukov et al. (2020b).
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Assumption 11 as follows:

E[Y (d)
tn ] =

∑

j∈I (d)

w (n,d)
j E[Y (d)

tj ] for all d. (3.23)

Compared to (3.22) and for d = 0, we operate under a weaker functional form assumption
as given in (3.23). To see this, simply take expectations on both sides of (3.22) with
respect to εtn, which implies (3.23). That is, we do not require the linear relationship
w (n,0)
j to hold between the noisy potential outcomes Y (0)

tn and {Y (0)
tj : j ∈ I (0)}. Rather,

we make the weaker assumption that the relationship only holds between the expected
potential outcomes.

Restrictions on w (n,0). As discussed, theoretical guarantees in previous works require
w (n,0) to be approximately sparse, or even more stringently, convex. Further, the estimators
used to learn w (n,0) require explicit knowledge of the restriction placed on w (n,0). For
example, if w (n,0) is assumed to be convex, then convex regression is used; if w (n,0) is
assumed to be approximately sparse, then a ℓ1-norm regularizer is used. In comparison,
the estimator we propose to learn w (n,0) in (3.3) does not impose any such restriction on
w (n,0), even in the high-dimensional setting where N0 > max{T0, T1}. Indeed, Lemma
4.9.1 establishes that our estimator consistently learns the unique minimum ℓ2-norm w (n,d),
denoted as w̃ (n,d). Further, our consistency and asymptotic normality results implicitly
scale with the ℓ1- and ℓ2-norm of w̃ (n,d). In particular, the error in our consistency result of
Theorem 4.5.1 implicitly scales with w̃ (n,d)

1 and the variance in our asymptotic normality
result of Theorem 4.5.2 implicitly scales with w̃ (n,d)

2.

We do, however, assume that there exists a latent factor model between the potential
outcomes (Assumption 9); such an assumption is not made in Chernozhukov et al. (2020b).
To overcome high-dimensionality, where w (n,d) is not uniquely specified, the estimator in
(3.3) directly exploits the low-rank structure induced by this factor model in Assumption 9.

■ 3.8.2 Comparison with Bai et al.

Overview of assumptions. In Bai and Ng (2020), they consider the following factor model:

Y (0)
tn = ⟨xtn, β⟩+ ⟨Ft ,Λn⟩+ εtn (3.24)

Y (d)
tn = α (d)

tn + Y (0)
tn , for d ̸= 0.
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Here, Λn ∈ Rr1 is a unit n specific latent factor and Ft ∈ Rr1 is a time t specific latent
factor associated with intervention d = 0 (control); xtn ∈ Rk is a vector of observed
covariates; and β ∈ Rk is a latent factor acting on xtn, which crucially is invariant across
(t, n). The authors make appropriate assumptions on the factor loadings Λ = [Λn] ∈ Rr1×N

and F = [Ft ] ∈ Rr1×T , and on the residual term εtn. See Assumptions A to D in Bai
and Ng (2020) for details. In essence, these assumptions require (i) Λ,F to satisfy an
incoherence-like condition, which implies a bounded operator norm (e.g., E[F 4

op],Λop≤ M ,
where M does not scale with N0, T ); (ii) each of the r singular vectors of Λ,F are
identifiable (e.g., the non-zero singular values of Λ,F are distinct); (iii) εtn across (t, n)
have sufficiently light tails (e.g., E[|εtn|8] < M) and are weakly correlated.

Further, the authors propose an estimator composed of the following main steps: (i)
estimate β̂ using the observations {Ytn, xtn} across (t, n); (ii) estimate Λ̂, F̂ using the
residuals of {Ytn−xtnβ̂}; (iii) estimate Ȳ (0)

n using {xtn, β̂, Λ̂, F̂}. Below, we compare their
primary assumptions with that of the SI framework.

Factor model in (3.24). First, we compare the factor model assumed in (3.24) with that
in (3.11) of Assumption 9. Under (3.24), if we further assume that ⟨xtn, β⟩ admits a latent
factorization given by ⟨xtn, β⟩ = ⟨x̃t , x̃n⟩ with x̃t , x̃n ∈ Rk1 , then we can write (3.24) as a
special case of (3.11). To see this, let d = 0 and define u(0)

t , vn ∈ Rr in (3.11) as

u(0)
t = (Ft , x̃t), vn = (Λn, x̃n), (3.25)

where r = r1 + k1. We stress that we do not require access to x̃t or x̃n to express the
model in Bai and Ng (2020) as an instance of (3.11); instead, we require that such a
factorization of ⟨xtn, β⟩ implicitly exists. However, if one does not assume such a latent
factorization, then first learning β using observed covariates and then estimating Λ,F via
the residuals, is likely necessary. In Section 3.10, we show how to incorporate covariates
in SI.

In addition, if one wants to estimate {θ(d)
n : d ̸= 0} in the SI framework (which we

underscore is not considered in the SC literature), we require the added assumption that
α (d)
n factorizes into a (time, intervention) specific and unit specific latent factor, i.e.,

α (d)
tn = ⟨α̃ (d)

t , α̃n⟩, (3.26)
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where α̃ (d)
t , α̃n ∈ Rr2 . Then, for d ̸= 0, we can define u(d)

t , vn ∈ Rr in (3.11) as

u(d)
t = (Ft , x̃t , α̃ (d)

t ), vn = (Λn, x̃n, α̃n), (3.27)

where r = r1 + r2 + k1.7

Assumption on Λ,F . Since our ultimate goal is to estimate θ(d)
n , it is not necessary to ac-

curately estimate either of the latent factor loadings (Λ,F ). In fact, our proposed estimator
in Section 3.3 explicitly circumvents estimating these two quantities. In comparison, Bai
and Ng (2020) establish their theoretical guarantees by requiring explicit bounds on the
estimation qualities of (Λ,F ), which naturally require making more stringent assumptions
on the latent factor loadings; for example, they require each singular vector of (Λ,F ) to
be identifiable, which itself requires all of the non-zero singular values to be distinct.

■ 3.8.3 Comparison with Arkhangelsky et al. and Agarwal et al.

We compare with these recent works together as they both consider approximately low-
rank factor models for the expected potential outcomes, a generalization of what we
do.

Comparison with Arkhangelsky et al. (2020). They consider a binary intervention model:

Y (0) = L + E ,

Y (1) = Y (0) + A,

where Y (0) = [Y (0)
tn ] ∈ RT×N is the matrix of potential outcomes under control; L =

[Ltn] ∈ RT×N encodes the latent factor model under control (in our notation, Ltn =
⟨u(0)

t , vn⟩); E = [εtn] ∈ RT×N encodes the mean zero residuals; Y (1) = [Y (1)
tn ] ∈ RT×N

is the matrix of potential outcomes under d = 1; and A = [αtn] ∈ RT×N encodes the
treatment effect. The authors propose the “synthetic difference-in-differences” estimator
for 1

T1(N−N0)
∑

t∈Tpost

∑
n /∈I (0) αtn|L, and establish rigorous asymptotic normality results.

7In the SC literature, a closely related factor model is Y (0)
tn = ⟨βt , xn⟩+ ⟨Ft ,Λn⟩+εtn and Y (d)

tn = α (d)
tn +Y (0)

tn
for d ̸= 0, cf. Abadie et al. (2010); Abadie and Gardeazabal (2003). Here, βt ∈ Rk is a latent factor, xn ∈ Rk

is an observed unit specific covariate, and Ft ,Λn ∈ Rr1 and α (d)
tn ∈ R are defined as in (3.25). As such, similar

to (3.25), we can write this factor model as a special case of (3.11), where u(0)
t = (βt , Ft) and vn = (xn,Λn).

Again, if one wants to estimate θ(d)
tn , then we need to assume an additional factorization of α (d)

tn , just as in
(3.26) and (3.27).
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If we continue to restrict our attention to the estimation of counterfactuals under control,
then the two primary differences between this work and Arkhangelsky et al. (2020) are
the assumptions made on the (i) spectral profile of the factor models and (ii) relationship
between the target and donors. In particular, we consider a low-rank L (Assumption 9)
with a well-balanced spectra (Assumption 14); the latter effectively assumes a lower bound
on the smallest non-zero singular value of L. In comparison, Arkhangelsky et al. (2020)
makes a weaker assumption that L is approximately low-rank, i.e., its

√
min{T0, N0}-th

singular value is sufficiently small (see Assumption 3 of their work). However, as in Abadie
et al. (2010), they require a convex relationship to hold between the target and donors,
while we make the weaker assumption that a linear relationship holds (see the discussion
under Assumption 11 for why a linear relationship is directly implied by a low-rank factor
model).

Comparison with Agarwal et al. (2021e). They analyze the recently proposed “robust
SC” (RSC) estimator of Amjad et al. (2018), which is closely related to our proposed
estimator in Section 3.3 if restricted to estimating θ(0)

n for n /∈ I (0). The also consider an
approximately low-rank L; specifically, they consider two natural generating processes
that induce an approximately low-rank L = [Ltn]: (i) the spectra of L is geometrically
decaying (i.e., the k-th singular value of L, denoted as sk , obeys sk = s1ck−1, where
c ∈ (0, 1); (ii) L follows a generalized factor model, i.e., Ltn = g(ρt , ωn), where g(·, ·) is a
latent, Hölder continuous function, and ρt , ωn ∈ [0, 1]ℓ are latent variables associated with
time t and unit n (an exact low-rank model is a special case of this where g is bi-linear).
Agarwal et al. (2021e) establish finite-sample consistency for the RSC estimator with
respect to a similar causal parameter as that of θ(0)

n (see Section 4 of Agarwal et al.
(2021e) for details). However, they do not provide asymptotic normality results for their
target causal parameter.

Future directions. An interesting future research direction is to build upon these works
to study the trade-offs between the assumptions placed on the latent factor model (e.g.,
spectral profile), relationship between the target and donors, and subsequent inference
guarantees one can establish for various target causal parameters (e.g., extending the
model and estimator of Arkhangelsky et al. (2020) to estimate θ(d)

n for any n /∈ I (d) and
d ̸= 0). Further, another direction that would be of interest is staggered adoption, where
the duration of the pre-intervention period can vary amongst the units, i.e., T0 is specific
to each unit. This setup for example was considered in Athey et al. (2021).
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■ 3.8.4 Statistical Guarantees

As stated earlier, the works listed at the beginning of Section 3.8 use some combination
(and/or variation) of the assumptions discussed in Sections 3.8.1 to 3.8.3 to prove formal
statistical guarantees. To prove asymptotic normality, the works of Chernozhukov et al.
(2020b); Bai and Ng (2020); Arkhangelsky et al. (2020), make additional assumptions
on the relative scalings between T0, T1, N0. We also make similar assumptions but with
respect to Nd, rather than N0, to estimate θ̂(d)

n for d ̸= 0. In particular, Chernozhukov et al.
(2020b) requires (i) T0, T1 →∞; (ii) T0/T1 → c0, where co ∈ [0,∞]. Bai and Ng (2020)
requires (i) T0, T1, N → ∞; (ii)

√
N/min{N0, T0} → 0; and (iii)

√
T0 + T1/min{N0, T0}

→ 0. To estimate θ(d)
n , we require (i) T0, T1, Nd →∞; (ii) T1/min{Nd,

√
T0} → 0.

Arkhangelsky et al. (2020) allows for the additional flexibility that they only require the
product (N −N0)T1 →∞. As an implication, N −N0 can be a constant as long as T1

grows; hence, if N −N0 = 1, then this is equivalent to θ(0)
n . On the other extreme, they

allow for T1 to be fixed as long as N−N0 grows; one can verify that our results hold under
this setting by using the estimate 1

N−N0

∑
n /∈I (0)

∑
j∈I (0) ŵ (n,0)

j Ytj . To establish their results,
Arkhangelsky et al. (2020) assume certain relative scalings between T0, T1, N0, (N −N0)
(see Assumption 2 of Arkhangelsky et al. (2020)), which require that T1(N −N0) do not
grow “too quickly” compared to T0 and N0. We note that finding the optimal relative
scalings between T0, T1, N0 (or Nd) remains interesting future work.

■ 3.9 Causal Inference & Tensor Completion

In this section, we re-interpret the classical potential outcomes framework through the
lens of tensors. Specifically, consider an order-3 tensor with axes that correspond to
measurements, units, and interventions. Each entry of this tensor is associated with
the potential outcome for a specific measurements, unit, and intervention. Recall Figure
3.1 for a graphical depiction of this tensor. Therefore, estimating unobserved potential
outcomes, the fundamental task in causal inference, is equivalent to estimating various
missing entries of this order-3 potential outcomes tensor. Recall from Figure 3.2 how
different observational and experimental studies that are prevalent in causal inference
can be equivalently posed as tensor completion with different sparsity patterns. Indeed,
imputing entries of a tensor that are noisy and/or missing is the goal of tensor completion
(TC).
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In Section 3.9.1, we discuss how important concepts in causal inference have a related
notion in tensor completion. In Section 3.9.2, we show how low-rank tensor factor models,
prevalent in the TC literature can guide future algorithmic design for causal inference.
In Section 3.9.3, we pose what algorithmic advances are required in the TC literature to
allow it to more directly connect with causal inference.

■ 3.9.1 Encoding Causal Inference as Tensor Completion

Causal parameters and TC error metrics. Here, we discuss the relationship between
causal inference with different target causal parameters and TC under different error
metrics. The first step in causal inference is to define a target causal parameter, while
the first step in tensor completion is to define an error metric between the underlying
and estimated tensors. Below, we discuss a few important connections between these two
concepts.

To begin, consider as the causal parameter the average potential outcome under inter-
vention d across all T measurements and N units.8 Then, estimating this parameter can
equivalently be posed as requiring a tensor completion method with a Frobenius-norm
error guarantee for the d-th slice of the potential outcomes tensor with dimension T ×N ,
normalized by 1/

√
TN . As such, a uniform bound for this causal parameter over all D

interventions would in turn require a guarantee over the max (normalized) Frobenius-norm
error for each of the D slices. Another causal parameter is unit n’s potential outcome
under intervention d averaged over all T measurements (recall, this is θ(d)

n ). Analogously,
this translates to the ℓ2-norm error guarantee of the n-th column of the d-th tensor slice,
normalized by 1/

√
T . A uniform bound over all N units for the d-th intervention would

then correspond to a ℓ2,∞-norm error (defined in (3.47)) for the d-th tensor slice. As a final
example, let the target causal parameter be unit n’s potential outcome under intervention
d and measurement t. This would require a TC method with a max-norm (entry-wise)
error of the d-th matrix slice. Similar as above, a uniform bound over all measurements,
units, and interventions corresponds to a max-norm error over the entire tensor.

8If there is a pre- and post-intervention period, then the target causal parameter is typically restricted to
the T1 post-intervention measurements.
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■ 3.9.2 Learning Across Interventions via Tensor Factor Models

Tensor factor model. We start by recalling Definition 3.5.1 for a low-rank tensor factor
model. Let [Y (d)

tn ] ∈ RT×N×D denote an order-3 tensor of potential outcomes, which we
assume admits the following decomposition:

Y (d)
tn =

r∑

ℓ=1
utℓvnℓλdℓ + ε(d)

tn , (3.28)

where r is the canonical polyadic (CP) rank, ut , vn, λd ∈ Rr are latent factors associated
with the t-th measurement, n-th unit, and d-th intervention, respectively, and ε(d)

tn is a
mean zero residual term. We note that such a factorization always exists, but the key
assumption is that the CP rank r is much smaller than N,T ,D.

Algorith design guided by tensor factor models. The factorization in Assumption 9 is
implied by the factorization assumed by a low-rank tensor as given in (3.28). In particular,
Assumption 9 does not require the additional factorization of the (time, intervention) factor
u(d)
t as ⟨ut , λd⟩, where ut is a time specific factor and λd is an intervention specific factor.

An important question we pose is whether it is feasible to design estimators that exploit
an implicit factorization of u(d)

t = ⟨ut , λd⟩. Indeed, a recent follow-up work, Squires et al.
(2021) finds that rather than regressing on units, using a variant of SI which regresses
across interventions leads to better empirical results in the setting of single cell therapies.
Further, for example Shah and Yu (2019) directly exploit the tensor factor structure in
(3.28) to provide max-norm error bounds for TC under a uniformly missing at random
sparsity pattern. We leave as an open question whether one can exploit the further latent
factor structure in (3.28) over that in Assumption 9 to operate under less stringent causal
assumptions or data requirements, and/or identify and estimate more involved causal
parameters.

■ 3.9.3 Need for a New Tensor Completion Toolkit for Causal
Inference

The TC literature has grown tremendously because it provides an expressive formal
framework for a large number of emerging applications. In particular, this literature
quantifies the number of samples required and the computational complexity of different
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estimators to achieve theoretical guarantees for a given error metric (e.g., Frobenius-norm
error over the entire tensor)—indeed, this trade-off is of central importance in the emerging
sub-discipline at the interface of computer science, statistics, and machine learning. Given
our preceding discussions connecting causal inference and TC, a natural question is
whether we can apply the current toolkit of tensor completion to understand statistical
and computational trade-offs in causal inference.

We believe a direct transfer of the techniques and analyses used in TC is not immediately
possible for the following reasons. First, most results in the TC literature assume uniformly
randomly missing entries over all T × N × D elements of the tensor. In comparison,
as seen in Figure 3.2, causal inference settings frequently induce a “missing not at
random” sparsity pattern. Further, this literature typically studies the Frobenius-norm
error across the entire tensor. However, as discussed in Section 3.9.1, most meaningful
causal parameters require more refined error metrics over the tensor.

Hence, we pose two important and related open questions: (i) what block sparsity patterns
and structural assumptions on the potential outcomes tensor allow for faithful recovery with
respect to a meaningful error metric for causal inference, and (ii) if recovery is possible,
what are the fundamental statistical and computational trade-offs that are achievable?
An answer to these questions will formally bridge causal inference with TC, as well as
computer science and machine learning more broadly.

■ 3.10 Covariates

In this section, we discuss how access to meaningful covariate information about each
unit can help improve learning of the model. To this end, let X = [Xkn] ∈ RK×N denote
the matrix of covariates across units, i.e., Xkn denotes the k-th descriptor (or feature) of
unit n. One approach towards incorporating covariates into the Synthetic Interventions
estimation procedure described in Section 3.3.1, is to impose the following structure on X .

Assumption 16 (Covariate structure). For any k ∈ [K ] and n ∈ [N ], let Xkn = ⟨φk , vn⟩+ζkn.
Here, φk ∈ Rr represents a latent factor specific to descriptor k, vn ∈ Rr is the unit
latent factor as defined in (3.11), and ζkn ∈ R is a mean zero measurement noise specific
to descriptor k and unit n.

Interpretation. The key structure we impose in Assumption 16 is that the covariates
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Xkn have the same latent unit factors vn as the potential outcomes Y (d)
tn . Thus, given a

target unit n and subgroup I (d), this allows us to express unit n’s covariates as a linear
combination of the covariates associated with units within I (d) via the same linear model
that describes the relationship between their respective potential outcomes (formalized
in Proposition 3.10.1 below). One notable flexibility of our covariate model is that the
observations of covariates can be noisy due to the presence of measurement noise ζkn.

Proposition 3.10.1. Given n ∈ [N ], d ∈ [D]0, let Assumptions 11 and 16 hold. Then,
conditioned on Eφ = E ∪ {φk : k ∈ [K ]}, we have for all k,

E[Xkn | Eφ ] =
∑

j∈I (d)

w (n,d)
j E[Xkj | Eφ ],

where recall w (n,d) as defined in Assumptions 11.

Proof. Proof is immediate by plugging Assumption 11 into Assumption 16. ■

Adapting the Synthetic Interventions estimator. Proposition 3.10.1 suggests a natural
modification to the model learning stage of the Synthetic Interventions estimator presented
in Section 3.3.1. In particular, similar to the estimation procedure of Abadie et al. (2010),
we propose appending the covariates to the pre-intervention outcomes. Formally, we
define Xn = [Xkn] ∈ RK as the vector of covariates associated with the unit n ∈ [N ];
analogously, we define XI (d) = [Xkj : j ∈ I (d)] ∈ RK×Nd as the matrix of covariates
associated with units within I (d). We further define Zn = [Ypre,n, Xn] ∈ RT0+K and
ZI (d) = [Ypre,I (d) ,XI (d) ] ∈ R(T0+K )×Nd as the concatenation of pre-intervention outcomes
and features associated with the target unit n and subgroup I (d), respectively. We denote
the SVD of ZI (d) as

ZI (d) =
M∑

ℓ=1
λ̂ℓ µ̂ℓ ν̂′ℓ ,

where M = min{(T0 + K ), Nd}, λ̂ℓ ∈ R are the singular values (arranged in decreasing
order), and µ̂ℓ ∈ RT0+K , ν̂ℓ ∈ RNd are the left and right singular vectors, respectively.
Then, we define the modified model parameter estimator as

ŵ (n,d) =
( k∑

ℓ=1
(1/λ̂ℓ )ν̂ℓ µ̂′ℓ

)
Zn.
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The remainder of the algorithm, as described in Section 3.3.1, proceeds as is with the
new estimate ŵ (n,d).

Theoretical implications. Let in addition to setup of Theorem 4.5.1 and Assumption 16
hold. Then, it can be verified that the statistical guarantees in Sections 3.5.3, 3.5.4 and
3.6.1 continue to hold with T0 being replaced by T0 + K . In essence, adding covariates
into the model-learning stage augments the data size, which can improve the estimation
rates. For example, in Theorem 4.5.1, the term T−

1
4

0 in the bound on error is replaced by
(T0 + K )− 1

4 .

■ 3.11 Simulation Details

In this section, we present the details of our simulations in Section 3.7.

■ 3.11.1 Consistency

Below, we provide details for our consistency simulation in Section 3.7.1.

Generative Model for Synthetic Data

We let Nd = |I (d)|= 200 and r = 15, where r is defined in Assumption 9. We define the
latent unit factors associated with I (d) as VI (d) ∈ RNd×r (refer to (3.11)), where its entries
are independently sampled from a standard normal distribution.

Pre-intervention data. We choose T0 = 200 and rpre = 10. We define the latent pre-
intervention time factors under control (d = 0) as Upre ∈ RT0×r , which is sampled as
follows: (i) let A ∈ RT0×rpre , where its entries are independently sampled from a standard
normal; (ii) let Q ∈ Rrpre×(r−rpre), where its entries are first independently sampled from a
uniform distribution over [0, 1], and then its columns are normalized to sum to one; (iii)
define Upre = [A,AQ] as the concatenation of A and AQ. By construction, Upre has rank
rpre w.h.p., which we empirically verify. Next, we define E[Ypre,I (d) ] = UpreV ′I (d) ∈ RT0×Nd .
Again by construction, we note that rank(E[Ypre,I (d) ]) = rpre w.h.p., which we empirically
verify. We then generate the model w (n,d) ∈ RNd from a multivariate standard normal
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distribution, and define E[Ypre,n] = E[Ypre,I (d) ]w (n,d) ∈ RT0 .

Post-intervention data. We choose T1 = 200. We sample the post-intervention time
factors as follows: (i) let P ∈ RT1×T0 , where its entries are first independently sampled
from a uniform distribution over [0, 1], and then its rows are normalized to sum to one;
(ii) define Upost = PUpre ∈ RT1×r . We then define E[Ypost,I (d) ] = UpostV ′I (d) ∈ RT1×Nd .
To study the effect of the post-intervention period length, we will treat it as a variable.
As such, we define E[Ypost,I (d)(ρ)] ∈ RρT1×Nd as the first ρT1 rows of E[Ypost,I (d) ], where
ρ ∈ {0.1, 0.2, . . . , 1.0}. For every ρ, we define θ(d)

n (ρ) using E[Ypost,I (d)(ρ)] and w (n,d).

Interpretation of data generating process. We now motivate the construction of E[Ypre,I (d) ]
and E[Ypost,I (d) ]. Recall that the SI framework allows potential outcomes from different
interventions to be sampled from different distributions. As such, we construct E[Ypost,I (d) ]
such that they follow a different distribution to that of E[Ypre,I (d) ]. This allows us to study
when the model learnt using pre-intervention data “generalizes” to a post-intervention
regime generated from a different distribution. However, we note that by construction,
Assumption 15 holds w.h.p. between E[Ypost,I (d)(ρ)] and E[Ypre,I (d) ] for every ρ. We
empirically verify all three conditions.

Observations. We generate Ypre,n and Ypre,I (d) by adding independent noise entries from
a normal distribution with mean zero and variance σ2 = 0.3 to E[Ypre,n] and E[Ypre,I (d) ],
respectively. For every ρ, we generate Ypost,I (d)(ρ) by applying the same additive noise
model to E[Ypost,I (d)(ρ)].

Verifying assumptions. We note that our data generating process ensures that Assumptions
8, 10, 12 hold. In addition, we empirically verify Assumptions 13 and 14. Further, for
Assumption 9, we note that our pre- and post-intervention (expected) potential outcomes
associated with I (d) were all generated using VI (d) ; thus, their variations only arise due
to the sampling procedure for their respective latent time-intervention factors. Given that
E[Ypre,n] and θ(d)

n (ρ) were both defined using w (n,d), Assumption 11 holds.

Simulation Setup

We perform 100 iterations for each ρ. The potential outcomes, E[Ypre,n], E[Ypre,I (d) ],
E[Ypost,I (d)(ρ)] are fixed, but the idiosyncratic shocks are re-sampled every iteration to
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yield new (random) outcomes. For each iteration, we use (Ypre,n,Ypre,I (d)) to learn ŵ (n,d),
as given by (3.3). Then, we use Ypost,I (d)(ρ) and ŵ (n,d) to yield θ̂(d)

n (ρ), as given by (3.5).
The mean absolute errors (MAEs), |θ̂(d)

n (ρ)− θ(d)
n (ρ)| are plotted in Figure 3.10.

■ 3.11.2 Asymptotic Normality: Subspace Inclusion Holds

In this section, we describe the setup for Section 3.7.2.

Generative Model for Synthetic Data

We consider the binary D = 2 intervention model. Our interest is in estimating θ(1)
n . Our

data generating process will be such that the pre- and post-intervention data will obey
different distributions. Towards this, we choose N1 = |I (1)|= 400 and r = 15. We define
V ∈ RN1×r , where its entries are independently sampled from a standard normal.

Pre-intervention data. We choose T0 = 400, and define the latent pre-intervention time
factors under control as Upre ∈ RT0×r , where its entries are sampled independently from
a standard normal. Next, we define E[Ypre,I (1) ] = UpreV ′ ∈ RT0×N1 . By construction,
rank(E[Ypre,I (1) ]) = r w.h.p., which we empirically verify. We then generate the model
w (n,1) ∈ RN1 from a standard normal, and define E[Ypre,n] = E[Ypre,I (1) ]w (n,1) ∈ RT0 . We
define w̃ (n,1) = E[Ypre,I (1) ]†E[Ypre,n], where † is the pseudo-inverse.

Post-intervention data. We choose T1 = 20, and generate post-intervention time factors
under d = 1 as follows: We define Upost ∈ RT1×r , where its entries are independently
sampled uniformly over [−

√
3,
√

3]. We then define E[Ypost,I (1) ] = UpostV ′ ∈ RT1×N1 .
Finally, we define θ(1)

n using E[Ypost,I (1) ] and w (n,1).

Interpretation of data generating process. We note E[Ypre,I (1) ] and E[Ypost,I (1) ] follow
different distributions to reflect that the pre- and post-intervention potential outcomes are
associated with different interventions; the former with d = 0 and the latter with d = 1.
However, by construction, E[Ypost,I (1) ] satisfies Assumption 15 with respect to E[Ypre,I (1) ]
w.h.p., which we empirically verify.

Observations. We generate Ypre,n and Ypre,I (1) by adding independent noise from a normal
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distribution with mean zero and variance σ2 = 0.5 to E[Ypre,n] and E[Ypre,I (1) ], respectively.
We generate Ypost,I (1) by applying the same additive noise model to E[Ypost,I (1) ].

Verifying assumptions. As before, Assumptions 8 to 14 hold by construction.

Simulation Setup

We perform 5000 iterations, where E[Ypre,n],E[Ypre,I (0) ], E[Ypost,I (1) ] are fixed throughout,
but the idiosyncratic shocks are re-sampled to generate new (random) outcomes. Within
each iteration, we first use (Ypre,n,Ypre,I (1)) to fit ŵ (n,1), as in (3.3). Next, we use Ypost,I (1)

and ŵ (n,1) to yield θ̂(1)
n , as in (3.5). The resulting histogram is displayed in Figure 3.11a.

■ 3.11.3 Asymptotic Normality: Subspace Inclusion Fails

Next, we describe the setup for Section 3.7.2.

Generative Model for Synthetic Data

We continue analyzing the binary D = 2 intervention model. We let N1 = 400, r = 15,
and generate VI (1) ∈ RN1×r by independently sampling its entries from a standard normal.

Pre-intervention data. We choose T0 = 400 and rpre = 12. We construct E[Ypre,I (1) ] using
VI (1) identically to that in Section 3.11.1, such that rank(E[Ypre,I (1) ]) = rpre w.h.p., which
we empirically verify. As before, we generate w (n,1) ∈ RN1 from a standard normal and
define E[Ypre,n] = E[Ypre,I (1) ]w (n,1) ∈ RT0 , as well as w̃ (n,1) = E[Ypre,I (1) ]†E[Ypre,n].

Post-intervention data. We choose T1 = 20, and define the post-intervention time factors
under d = 1 as Upost ∈ RT1×r , where its entries are sampled independently from a
standard normal. Next, we define E[Ypost,I (1) ] = UpostV ′I (1) ∈ RT1×N1 . By construction,
rank(E[Ypost,I (1) ]) = r w.h.p., which we empirically verify. Since rpre < r, Assumption 15
fails between E[Ypre,I (1) ] and E[Ypost,I (1) ]. We define θ(1)

n using E[Ypost,I (1) ] and w (n,1).

Observations. We generate Ypre,n and Ypre,I (1) by adding independent noise from a normal
distribution with mean zero and variance σ2 = 0.5 to E[Ypre,n] and E[Ypre,I (1) ], respectively.
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We generate Ypost,I (1) by applying the same noise model to E[Ypost,I (1) ].

Verifying assumptions. As before, Assumptions 8 to 14 hold by construction.

■ 3.11.4 Simulation Setup

We perform 5000 iterations, where E[Ypre,n],E[Ypre,I (1) ], E[Ypost,I (1) ] are fixed, but the
idiosyncratic shocks are re-sampled. In each iteration, we use (Ypre,n,Ypre,I (1) ) to fit ŵ (n,1),
and then use Ypost,I (1) and ŵ (n,1) to yield θ̂(1)

n . The resulting histogram is displayed in
Figure 3.11b.

■ 3.12 Proof of Theorem 4.3.1

In what follows, the descriptors above the equalities will denote the assumption used, e.g.,
A1 represents Assumption 1:

E[Y (d)
tn |u

(d)
t , vn]

A2
= E[⟨u(d)

t , vn⟩+ ε(d)
tn | u

(d)
t , vn]

A3
= ⟨u(d)

t , vn⟩ | {u
(d)
t , vn}

= ⟨u(d)
t , vn⟩ | E

A4
= ⟨u(d)

t ,
∑

j∈I (d)

w (n,d)
j vj⟩ | E

A3
=
∑

j∈I (d)

w (n,d)
j E

[
(⟨u(d)

t , vj⟩+ ε(d)
tj ) | E

]

A2
=
∑

j∈I (d)

w (n,d)
j E[Y (d)

tj |E ]

A1
=
∑

j∈I (d)

w (n,d)
j E

[
Ytjd|E

]
.

The third equality follows since ⟨u(d)
t , vn⟩ is deterministic conditioned on {u(d)

t , vn}. Re-
calling (3.12), one can verify (3.14) using the same the argument used to prove (3.13), but
where we begin by conditioning on the set of latent factors {u(d)

t , vn : t ∈ Tpost} rather
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than just {u(d)
t , vn}.

■ 3.13 Perturbation of Singular Values

In Lemma 3.13.1, we argue that the singular values of Ypre,I (d) and E[Ypre,I (d) |E ] are close.

Lemma 3.13.1. Let Assumptions 8, 9, 10, 12, 13 and 14 hold. Then for any given d ∈ [D]0,
conditioned on E , for any ζ > 0 and i ≤ min{T0, Nd}, |si − ŝi| ≤ Cσ (

√
T0 +

√
Nd + ζ)

with probability at least 1 − 2 exp
(
−ζ2), C > 0 is an absolute constant. Here, for

i ≤ min{T0, Nd}, si, ŝi are singular values in non-increasing order of E[Ypre,I (d) |E ] and
Ypre,I (d) respectively.

For ease of notation, we suppress the conditioning on E for the remainder of the proof. To
bound the gap between si and ŝi, we recall the following well-known results.

Lemma 3.13.2 (Weyl’s inequality). Given A,B ∈ Rm×n, let σi and σ̂i be the i-th singular
values of A and B, respectively, in decreasing order and repeated by multiplicities. Then
for all i ≤ min{m, n}, |σi − σ̂i| ≤ A− Bop.

Lemma 3.13.3 (Sub-Gaussian Matrices: Theorem 4.4.5 of Vershynin (2018)). Let A = [Aij ]
be an m×n random matrix where the entries Aij are independent, mean zero, sub-Gaussian
random variables. Then for any t > 0, we have Aop≤ CK (

√
m+

√
n+ t) w.p. at least

1− 2 exp
(
−t2

)
. Here, K = maxi,jAij ψ2 , and C > 0 is an absolute constant.

By Lemma 5.14.4, we have for any i ≤ min{T0, Nd}, |si − ŝi| ≤ Ypre,I (d) − E[Ypre,I (d) ]op.
Recalling Assumption 12 and applying Lemma 3.13.3, we conclude for any t > 0 and some
absolute constant C > 0, |si − ŝi| ≤ Cσ (

√
T0 +

√
Nd + t) w.p. at least 1− 2 exp

(
−t2

)
.

This completes the proof.

■ 3.14 Helper Lemmas

We state two helper Lemmas needed for establishing Theorem 4.5.1.
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Lemma 3.14.1. Given n ∈ [N ] and d ∈ [D]0, let the setup of Theorem 4.3.1 and Assumption
15 hold. Then,

θ(d)
n = 1

T1

∑

t∈Tpost

∑

j∈I (d)

w̃ (n,d)
j E[Ytjd|E ],

where Tpost = {T − T1 + 1, . . . , T } and w̃ (n,d) is defined as in (3.15).

Proof. Recall that Vpre ∈ RNd×rpre represents right singular vectors of E[Ypre,I (d) ]. We
also recall w̃ (n,d) = VpreV ′prew (n,d), where w (n,d) is defined as in Theorem 4.3.1. Let
Vpost ∈ RNd×rpost denote the right singular vectors of E[Ypost,I (d) ]. Assumption 15 implies

Vpost = VpreV ′preVpost. (3.29)

Therefore, we have

E[Ypost,I (d) ]w̃ (n,d) = E[Ypost,I (d) ]VpreV ′prew (n,d)

= E[Ypost,I (d) ]w (n,d), (3.30)

where we use (3.29) in the last equality. Hence, we conclude

θ(d)
n = 1

T1

∑

t∈Tpost

∑

j∈I (d)

w (n,d)
j E[Ytjd] =

1
T1

∑

t∈Tpost

∑

j∈I (d)

w̃ (n,d)
j E[Ytjd].

The first equality follows from (3.14) in Theorem 4.3.1. The second equality follows from
(3.30). This completes the proof. ■

Lemma 3.14.2 (Corollary 5.1 of Agarwal et al. (2021d)). Given unit n ∈ [N ] and
intervention d ∈ [D]0, let Assumptions 8 to 15 hold. Further, suppose k = rpre =
rank(E[Ypre,I (d) | E ]), where k is defined as in (3.3). Then, conditioned on E ,

ŵ (n,d) − w̃ (n,d) = Op

(
w̃ (n,d)

2rpre
√

log(T0Nd)
min{

√
T0,
√
Nd}

)
.

Proof. We first re-state Corollary 5.1 of Agarwal et al. (2021d).

Lemma (Corollary 5.1 of Agarwal et al. (2021d)). Let the setup of Lemma 4.9.1 hold. Then
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with probability at least 1−O(1/(T0Nd)10)

ŵ (n,d) − w̃ (n,d)2
2≤ C (σ )

r2pre log(T0Nd)
min{T0, Nd}

w̃ (n,d)2
2, (3.31)

where C (σ ) is a constant that only depends on σ .

This is seen by adapting the notation in Agarwal et al. (2021d) to that used in this paper.
In particular, y = Ypre,n,X = E[Ypre,I (d) ], Z̃ = Ypre,I (d) , β̂ = ŵ (n,d), β∗ = w̃ (n,d), where
y,X , Z̃ , β̂, β∗ are the notations used in Agarwal et al. (2021d).9 Further, we also use
the fact that Xβ∗ in the notation of Agarwal et al. (2021d) (i.e., E[Ypre,I (d) ]w̃ (n,d)) in our
notation) equals E[Ypre,n]. This follows from

E[Ypre,n] = E[Ypre,I (d) ]w̃ (n,d), (3.32)

which follows from (3.13) in Theorem 4.3.1 and (3.30). We conclude by noting (3.31)
implies

ŵ (n,d) − w̃ (n,d) = Op

(
w̃ (n,d)

2rpre
√

log(T0Nd)
min{

√
T0,
√
Nd}

)
.

■

■ 3.15 Proof of Theorem 4.5.1

For ease of notation, we suppress the conditioning on E for the remainder of the proof. Let
C (vp) = max{1, vp} for any v ∈ Ra, and let Tpost = {T −T1+1, . . . , T }. For any t ∈ Tpost,
let Yt,I (d) = [Ytjd : j ∈ I (d)] ∈ RNd and εt,I (d) = [ε(d)

tj : j ∈ I (d)] ∈ RNd . Note that the rows
of Ypost,I (d) are formed by {Yt,I (d) : t ∈ Tpost}. Additionally, let ∆(n,d) = ŵ (n,d) − w̃ (n,d).
Finally, for any matrix A with orthonormal columns, let PA = AA′ denote the projection
matrix onto the subspace spanned by the columns of A.

9Since we do not consider missing values in this work, Z̃ = Z , where Z is the notation used in Agarwal
et al. (2021d).
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By (3.5) and Lemma 3.14.1 (implied by Theorem 4.3.1), we have

θ̂(d)
n − θ(d)

n = 1
T1

∑

t∈Tpost

(⟨Yt,I (d) , ŵ (n,d)⟩ − ⟨E[Yt,I (d) ], w̃ (n,d)⟩)

= 1
T1

∑

t∈Tpost

(⟨E[Yt,I (d) ],∆(n,d)⟩+ ⟨εt,I (d) , w̃ (n,d)⟩+ ⟨εt,I (d) ,∆(n,d)⟩), (3.33)

where we have used Yt,I (d) = E[Yt,I (d) ]+εt,I (d) . From Assumption 15, it follows that Vpost =
PVpreVpost, where Vpre,Vpost are the right singular vectors of E[Ypre,I (d) ], E[Ypost,I (d) ].
Hence, E[Ypost,I (d) ] = E[Ypost,I (d) ]PVpre . As such, for any t ∈ Tpost,

⟨E[Yt,I (d) ],∆(n,d)⟩ = ⟨E[Yt,I (d) ], PVpre∆(n,d)⟩. (3.34)

Plugging (3.34) into (3.33) yields

θ̂(d)
n − θ(d)

n = 1
T1

∑

t∈Tpost

(⟨E[Yt,I (d) ], PVpre∆(n,d)⟩

+ ⟨εt,I (d) , w̃ (n,d)⟩+ ⟨εt,I (d) ,∆(n,d)⟩). (3.35)

Below, we bound the three terms on the right-hand side (RHS) of (3.35) separately.

Bounding term 1. By Cauchy-Schwartz inequality, observe that

⟨E[Yt,I (d) ], PVpre∆(n,d)⟩ ≤ E[Yt,I (d) ]2 PVpre∆(n,d)
2.

Under Assumption 13, we have E[Yt,I (d) ]2≤
√
Nd. As such,

1
T1

∑

t∈Tpost

⟨E[Yt,I (d) ], PVpre∆(n,d)⟩ ≤
√
NdPVpre∆(n,d)

2.

Hence, it remains to bound PVpre∆(n,d)
2. Towards this, we state the following lemma. Its

proof can be found in Section 3.15.1.

Lemma 3.15.1. Consider the setup of Theorem 4.5.1. Then,

PVpre∆(n,d) = Op

(
r1/2pre
√
NdT

1
4

0

+
w̃ (n,d)

1r3/2pre
√

log(T0Nd)√
Nd · min{

√
T0,
√
Nd}

)
.
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Using Lemma 3.15.1, we obtain

1
T1

∑

t∈Tpost

⟨E[Yt,I (d) ], PVpre∆(n,d)⟩ = Op

(
r1/2pre

T
1
4

0

+
w̃ (n,d)

1r3/2pre
√

log(T0Nd)
min{

√
T0,
√
Nd}

)
. (3.36)

This concludes the analysis for the first term.

Bounding term 2. We begin with a simple lemma.

Lemma 3.15.2. Let γt be a sequence of independent mean zero sub-Gaussian random
variables with variance σ2. Then, 1

T
∑T

t=1 γt = Op
(
σ2
√
T

)
.

Proof. Immediately holds by Hoeffding’s lemma (Lemma 5.14.2). ■

By Assumptions 9 and 12, we have for any t ∈ Tpost,

E[⟨εt,I (d) , w̃ (n,d)⟩] = 0, Var(⟨εt,I (d) , w̃ (n,d)⟩) = σ2w̃ (n,d)2
2.

Since ⟨εt,I (d) , w̃ (n,d)⟩ are independent across t, Lemma 3.15.2 yields

1
T1

∑

t∈Tpost

⟨εt,I (d) , w̃ (n,d)⟩ = Op
(
w̃ (n,d)

2√
T1

)
. (3.37)

Bounding term 3. First, we define the event E1 as

E1 =
{

∆(n,d)
2= O

(
w̃ (n,d)

2rpre
√

log(T0Nd)
min{

√
T0,
√
Nd}

)}
.

By Lemma 4.9.1, E1 occurs w.h.p. (defined in Section 3.2). Next, we define E2 as

E2 =
{

1
T1

∑

t∈Tpost

⟨εt,I (d) ,∆(n,d)⟩ = O
(
w̃ (n,d)

2rpre
√

log(T0Nd)√
T1 min{

√
T0,
√
Nd}

)}
.

Now, condition on E1. By Assumptions 9 and 12, we have for any t ∈ Tpost,

E[⟨εt,I (d) ,∆(n,d)⟩] = 0

Var(⟨εt,I (d) ,∆(n,d)⟩) = σ2∆(n,d)2
2.
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The above uses the fact that ŵ (n,d) depends on Ypre,I (d) and Ypre,n and hence are inde-
pendent of εt,I (d) for all t ∈ Tpost. Given that ⟨εt,I (d) ,∆(n,d)⟩ are independent across t,
Lemmas 4.9.1 and 3.15.2 imply E2|E1 occurs w.h.p. Further, we note

P(E2) = P(E2|E1)P(E1) + P(E2|E c1 )P(E c1 ) ≥ P(E2|E1)P(E1). (3.38)

Since E1 and E2|E1 occur w.h.p, it follows from (3.38) that E2 occurs w.h.p. As a result,

1
T1

∑

t∈Tpost

⟨εt,I (d) ,∆(n,d)⟩ = Op

(
w̃ (n,d)

2rpre
√

log(T0Nd)√
T1 min{

√
T0,
√
Nd}

)
. (3.39)

Collecting terms. Incorporating (3.36), (3.37), (3.39) into (3.35), and simplifying yields

θ̂(d)
n − θ(d)

n = Op




√rpre

T
1
4

0

+ w̃ (n,d)
2√

T1
+
w̃ (n,d)

1r3/2pre
√

log(T0Nd)
min{

√
T0,
√
Nd}



 .

This concludes the proof of Theorem 4.5.1.

■ 3.15.1 Proof of Lemma 3.15.1

We begin by introducing some helpful notations: let Y
rpre
pre,I (d) =

∑rpre
ℓ=1 ŝℓ ûℓ v̂ ′ℓ be the rank

rpre-approximation of Ypre,I (d) . More compactly, Y
rpre
pre,I (d) = ÛpreΣ̂preV̂ ′pre. To establish

Lemma 3.15.1, consider the following decomposition:

PVpre∆(n,d) = (PVpre − PV̂pre
)∆(n,d) + PV̂pre

∆(n,d).

We proceed to bound each term separately.

Bounding term 1. Recall Av2≤ Aopv2 for any A ∈ Ra×b and v ∈ Rb. Thus,

(PVpre − PV̂pre
)∆(n,d)

2≤ PVpre − PV̂pre op∆(n,d)
2. (3.40)

To control the above term, we state a helper lemma that bounds the distance between the
subspaces spanned by the columns of Vpre and V̂pre. Its proof is given in Section 3.15.2.

Lemma 3.15.3. Consider the setup of Theorem 4.5.1. Then for any ζ > 0, the following
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holds w.p. at least 1 − 2 exp
(
−ζ2): PV̂pre

− PVpre op≤ Cσ (
√
T0+
√
Nd+ζ)

srpre
, where srpre is the

rpre-th singular value of E[Ypre,I (d) ] with rpre = rank(E[Ypre,I (d) ]), and C > 0 is an absolute
constant.

Applying Lemma 3.15.3 with Assumption 14, we have

PV̂pre
− PVpre op= Op

( √rpre

min{
√
T0,
√
Nd}

)
. (3.41)

Substituting (3.41) and the bound in Lemma 4.9.1 into (3.40), we obtain

(PVpre − PV̂pre
)∆(n,d) = Op

(
w̃ (n,d)

2r3/2pre
√

log(T0Nd)
min{T0, Nd}

)
. (3.42)

Bounding term 2. To begin, since V̂pre is an isometry, it follows that

PV̂pre
∆(n,d)2

2 = V̂ ′pre∆(n,d)2
2. (3.43)

We upper bound V̂ ′pre∆(n,d)2
2 as follows: consider

Y
rpre
pre,I (d)∆(n,d)2

2= (V̂ ′pre∆(n,d))′Σ̂2
rpre

(V̂ ′pre∆(n,d)) ≥ ŝ2
rpre

V̂ ′pre∆(n,d)2
2. (3.44)

Using (3.44) and (3.43) together implies

PV̂pre
∆(n,d)2

2≤
Y
rpre
pre,I (d)∆(n,d)2

2

ŝ2
rpre

. (3.45)

To bound the numerator in (3.45), note

Y
rpre
pre,I (d)∆(n,d)2

2

≤ 2Y
rpre
pre,I (d)ŵ (n,d) − E[Ypre,n]22+2E[Ypre,n]− Y

rpre
pre,I (d)w̃ (n,d)2

2

= 2Y
rpre
pre,I (d)ŵ (n,d) − E[Ypre,n]22+2(E[Ypre,I (d) ]− Y

rpre
pre,I (d))w̃ (n,d)2

2, (3.46)

where we have used (3.32). To further upper bound the the second term on the RHS



Sec. 3.15. Proof of Theorem 4.5.1 179

above, we use the following inequality: for any A ∈ Ra×b, v ∈ Rb,

Av2 =
b∑

j=1
A·jvj2≤ ( max

j≤b
A·j2)(

b∑

j=1
|vj |) = A2,∞v1, (3.47)

where A2,∞= maxjA·j2 and A·j represents the j-th column of A. Thus,

(E[Ypre,I (d) ]− Y
rpre
pre,I (d))w̃ (n,d)2

2≤ E[Ypre,I (d) ]− Y
rpre
pre,I (d)

2
2,∞w̃ (n,d)2

1. (3.48)

Substituting (3.46) into (3.45) and subsequently using (3.48) implies

PV̂pre
∆(n,d)2

2 (3.49)

≤ 2
ŝ2
rpre

(
Y
rpre
pre,I (d)ŵ (n,d) − E[Ypre,n]22+E[Ypre,I (d) ]− Y

rpre
pre,I (d)

2
2,∞w̃ (n,d)2

1

)
.

Next, we bound Y
rpre
pre,I (d)ŵ (n,d) − E[Ypre,n]22. To this end, observe that

Y
rpre
pre,I (d)ŵ (n,d) − Ypre,n

2
2= Y

rpre
pre,I (d)ŵ (n,d) − E[Ypre,n]− εpre,n

2
2

= Y
rpre
pre,I (d)ŵ (n,d) − E[Ypre,n]22+εpre,n

2
2−2⟨Y

rpre
pre,I (d)ŵ (n,d) − E[Ypre,n], εpre,n⟩. (3.50)

We call upon Property 4.1 of Agarwal et al. (2021d), which states that ŵ (n,d), as given
by (3.3), is the unique solution to the following program:

minimize ∥w∥2 over w ∈ RNd

such that w ∈ arg min
ω∈RNd

Ypre,n − Y
rpre
pre,I (d)ω2

2.

This, along with (3.32), implies that

Y
rpre
pre,I (d)ŵ (n,d) − Ypre,n

2
2≤ Y

rpre
pre,I (d)w̃ (n,d) − Ypre,n

2
2

= Y
rpre
pre,I (d)w̃ (n,d) − E[Ypre,n]− εpre,n

2
2

= Y
rpre
pre,I (d)w̃ (n,d) − E[Ypre,I (d) ]w̃ (n,d) − εpre,n

2
2

= (Y
rpre
pre,I (d) − E[Ypre,I (d) ])w̃ (n,d)2

2+εpre,n
2
2−2⟨Y

rpre
pre,I (d)w̃ (n,d) − E[Ypre,n], εpre,n⟩. (3.51)

From (3.50) and (3.51), we have

Y
rpre
pre,I (d)ŵ (n,d) − E[Ypre,n]22

≤ (Y
rpre
pre,I (d) − E[Ypre,I (d) ])w̃ (n,d)2

2+2⟨Y
rpre
pre,I (d)∆(n,d), εpre,n⟩
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≤ Y
rpre
pre,I (d) − E[Ypre,I (d) ]22,∞w̃ (n,d)2

1+2⟨Y
rpre
pre,I (d)∆(n,d), εpre,n⟩, (3.52)

where we used (3.47) in the second inequality above. Using (3.49) and (3.52), we obtain

PV̂pre
∆(n,d)2

2 (3.53)

≤ 4
ŝ2
rpre

(
Y
rpre
pre,I (d) − E[Ypre,I (d) ]22,∞w̃ (n,d)2

1+⟨Y
rpre
pre,I (d)∆(n,d), εpre,n⟩

)
.

We now state two helper lemmas that will help us conclude the proof. The proof of Lemmas
3.15.4 and 3.15.5 are given in Appendices 3.15.3 and 3.15.4, respectively.

Lemma 3.15.4 (Lemma 7.2 of Agarwal et al. (2021d)). Let Assumptions 8, 9, 10, 12, 13, 14
hold. Suppose k = rpre, where k is defined as in (3.3). Then, Y

rpre
pre,I (d) − E[Ypre,I (d) ]2,∞=

Op
(√

rpreT0 log(T0Nd)
min{

√
T0,
√
Nd}

)
.

Lemma 3.15.5. Let Assumptions 8 to 14 hold. Then, given Y
rpre
pre,I (d) , the following holds

with respect to the randomness in εpre,n:

⟨Y
rpre
pre,I (d)∆(n,d), εpre,n⟩ = Op

(
rpre +

√
T0 + Y

rpre
pre,I (d) − E[Ypre,I (d) ]2,∞w̃ (n,d)

1
)
.

Incorporating Lemmas 3.13.1, 3.15.4, 3.15.5, and Assumption 14 into (3.53), we conclude

PV̂pre
∆(n,d) = Op




√rpre
√
NdT

1
4

0

+
rprew̃ (n,d)

1
√

log(T0Nd)√
Nd · min{

√
T0,
√
Nd}



 . (3.54)

Collecting terms. Combining (3.42) and (3.54), and noting v2≤ v1 for any v , we conclude

PVpre∆(n,d) = Op




√rpre
√
NdT

1
4

0

+
w̃ (n,d)

1r3/2pre
√

log(T0Nd)√
Nd · min{

√
T0,
√
Nd}



 .

■ 3.15.2 Proof of Lemma 3.15.3

We recall the well-known singular subspace perturbation result by Wedin.

Theorem 3.15.1 (Wedin’s Theorem Wedin (1972)). Given A,B ∈ Rm×n, let V , V̂ ∈ Rn×n

denote their respective right singular vectors. Further, let Vk ∈ Rn×k (respectively,
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V̂k ∈ Rn×k ) correspond to the truncation of V (respectively, V̂ ), respectively, that retains
the columns corresponding to the top k singular values of A (respectively, B). Let si
represent the i-th singular value of A. Then, PVk − PV̂k op≤

2A−Bop
sk−sk+1

.

Recall that V̂pre is formed by the top rpre right singular vectors of Ypre,I (d) and Vpre

is formed by the top rpre signular vectors of E[Ypre,I (d) ]. Therefore, Theorem 3.15.1

gives PV̂pre
− PVpre op≤

2Ypre,I(d)−E[Ypre,I(d) ]op
srpre

, where we used rank(E[Ypre,I (d) ]) = rpre, and
hence srpre+1 = 0. By Assumption 12 and Lemma 3.13.3, we can further bound the
inequality above. In particular, for any ζ > 0, we have w.p. at least 1 − 2 exp

(
−ζ2),

PV̂pre
− PVpre op≤ Cσ (

√
T0+
√
Nd+ζ)

srpre
, where C > 0 is an absolute constant.

■ 3.15.3 Proof of Lemma 3.15.4

We first re-state Lemma 7.2 of Agarwal et al. (2021d).

Lemma. Let the setup of Lemma 3.15.4 hold. Then w.p. at least 1−O(1/(T0Nd)10),

E[Ypre,I (d) ]− Y
rpre
pre,I (d)

2
2,∞

≤ C (σ )
(

(T0 +Nd)(T0 +
√
T0 log(T0Nd))

s2
rpre

+ rpre +√rpre log(T0Nd)
)

+ log(T0Nd)
Nd

, (3.55)

where C (σ ) is a constant that only depends on σ .

This is seen by adapting the notation in Agarwal et al. (2021d) to that used in this
paper. In particular, X = E[Ypre,I (d) ], Z̃ r = Y

rpre
pre,I (d) , where X , Z̃ r are the notations used

in Agarwal et al. (2021d) with r = rpre.

Next, we simplify (3.55) using Assumption 14. As such, w.p. at least 1−O(1/(T0Nd)10),

E[Ypre,I (d) ]− Y
rpre
pre,I (d)

2
2,∞≤ C (σ )

(
rpreT0 log(T0Nd)

min{T0, Nd}

)
.

This concludes the proof of Lemma 3.15.4.

■ 3.15.4 Proof of Lemma 3.15.5

Throughout this proof, C, c > 0 will denote absolute constants, which can change from line
to line or even within a line. Recall ŵ (n,d) = V̂preΣ̂−1

preÛ ′preYpre,n and Ypre,n = E[Ypre,n]+εpre,n.
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Thus,

Y
rpre
pre,I (d)ŵ (n,d) = ÛpreΣ̂preV̂ ′preV̂preΣ̂−1

preÛ ′preYpre,n = PÛpre
E[Ypre,n] + PÛpre

εpre,n. (3.56)

Therefore,

⟨Y
rpre
pre,I (d) (ŵ (n,d) − w̃ (n,d)), εpre,n⟩ (3.57)

= ⟨PÛpre
E[Ypre,n], εpre,n⟩+ ⟨PÛpre

εpre,n, εpre,n⟩ − ⟨ÛpreΣ̂preV̂ ′prew̃ (n,d), εpre,n⟩.

Note that εpre,n is independent of Ypre,I (d) , and thus also independent of Ûpre,Y
rpre
pre,I (d) .

Therefore,

E
[
⟨PÛpre

E[Ypre,n], εpre,n
]

= 0, (3.58)

E
[
⟨ÛpreΣ̂preV̂ ′prew̃ (n,d), εpre,n⟩

]
= 0 (3.59)

Moreover, using the cyclic property of the trace operator, we obtain

E[⟨PÛpre
εpre,n, εpre,n⟩] = E[ε′pre,nPÛpre

εpre,n] = E[ tr
(
ε′pre,nPÛpre

εpre,n

)
]

= E[ tr
(
εpre,nε′pre,nPÛpre

)
] = tr

(
E[εpre,nε′pre,n]PÛpre

)
= tr

(
σ2PÛpre

)
= σ2Ûpre

2
F= σ2rpre. (3.60)

Note that the above also uses (i) the mean zero and coordinate-wise independence of
εpre,n; (ii) orthonormality of Ûpre ∈ Rn×rpre . Therefore, it follows that

E[⟨Y
rpre
pre,I (d)∆(n,d), εpre,n⟩] = σ2rpre. (3.61)

Next, to obtain high probability bounds for the inner product term, we use the following
lemmas, the proofs of which can be found in Appendix A of Agarwal et al. (2021d).

Lemma 3.15.6 (Modified Hoeffding’s Lemma). Let X ∈ Rn be r.v. with independent
mean-zero sub-Gaussian random coordinates with Xiψ2≤ K. Let a ∈ Rn be another
random vector that satisfies a2≤ b for some constant b ≥ 0. Then for any ζ ≥ 0,
P
(∣∣∣
∑n

i=1 aiXi
∣∣∣ ≥ ζ

)
≤ 2 exp

(
− cζ2

K 2b2

)
, where c > 0 is a universal constant.

Lemma 3.15.7 (Modified Hanson-Wright Inequality). Let X ∈ Rn be a r.v. with indepen-
dent mean-zero sub-Gaussian coordinates with Xiψ2≤ K. Let A ∈ Rn×n be a random
matrix satisfying Aop≤ a and A2

F ≤ b for some a, b ≥ 0. Then for any ζ ≥ 0,

P
(∣∣∣XTAX − E[XTAX ]

∣∣∣ ≥ ζ
)
≤ 2 exp

(
− cmin

( ζ2

K 4b,
ζ
K 2a

))
.
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Using Lemma 5.14.2 and (3.58), and Assumptions 9 and 12, it follows that for any ζ > 0

P
(
⟨PÛpre

E[Ypre,n], εpre,n⟩ ≥ ζ
)
≤ exp

(
− cζ2

T0σ2

)
. (3.62)

Note that the above also uses PÛpre
E[Ypre,n]2≤ E[Ypre,n]2≤

√
T0, which follows from the

fact that PÛpre op≤ 1 and Assumption 13. Further, (3.62) implies

⟨PÛpre
E[Ypre,n], εpre,n⟩ = Op(

√
T0). (3.63)

Similarly, using (3.59), we have for any ζ > 0

P
(
⟨ÛpreΣ̂preV̂ ′prew̃ (n,d), εpre,n⟩ ≥ ζ

)
≤ exp



− cζ2

σ2(T0 + Y
rpre
pre,I (d) − E[Ypre,I (d) ]22,∞w̃ (n,d)2

1)



 ,(3.64)

where we use the fact that

ÛpreΣ̂preV̂ ′prew̃ (n,d)
2= Y

rpre
pre,I (d)w̃ (n,d) ± E[Ypre,n]2

= (Y
rpre
pre,I (d) − E[Ypre,I (d) ])w̃ (n,d) + E[Ypre,n]2

≤ (Y
rpre
pre,I (d) − E[Ypre,I (d) ])w̃ (n,d)

2+E[Ypre,n]2

≤ Y
rpre
pre,I (d) − E[Ypre,I (d) ]2,∞w̃ (n,d)

1+
√
T0.

In the inequalities above, we use E[Ypre,I (d) ]w̃ (n,d) = E[Ypre,I (d) ]w (n,d) = E[Ypre,n], which
follows from (3.30) and (3.47). Then, (3.64) implies

⟨ÛpreΣ̂preV̂ ′prew̃ (n,d), εpre,n⟩ = Op

(
Y
rpre
pre,I (d) − E[Ypre,I (d) ]2,∞w̃ (n,d)

1+
√
T0

)
(3.65)

Finally, using Lemma 5.14.3, (3.61), Assumptions 9 and 12, we have for any ζ > 0

P
(
⟨PÛpre

εpre,n, εpre,n⟩ ≥ σ2rpre + ζ
)
≤ exp

(
− cmin

( ζ2

σ4rpre
, ζσ2

))
, (3.66)

where we have used PÛpre op≤ 1 and PÛpre
2
F= rpre. Then, (3.66) implies

⟨PÛpre
εpre,n, εpre,n⟩ = Op

(
rpre
)
. (3.67)

From (3.57), (3.63), (3.65), and (3.67), we conclude that

⟨Y
rpre
pre,I (d)∆(n,d), εpre,n⟩ = Op

(
rpre +

√
T0 + Y

rpre
pre,I (d) − E[Ypre,I (d) ]2,∞w̃ (n,d)

1
)
.
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■ 3.16 Proof of Theorem 4.5.2

For ease of notation, we suppress the conditioning on E for the remainder of the proof.
Additionally, let Tpost = {T − T1 + 1, . . . , T } and ∆(n,d) = ŵ (n,d) − w̃ (n,d). We start by
establishing (3.17). To begin, we scale the left-hand side (LHS) of (3.35) by

√
T1 and

analyze each of the three terms on the right-hand side (RHS) of (3.35) separately. To
address the first term on the RHS of (3.35), we scale (3.36) by

√
T1/(σw̃ (n,d)

2) and recall
our assumption on T1 given by (3.16). We then obtain

1√
T1σw̃ (n,d)2

∑

t∈Tpost

⟨E[Yt,I (d) ], PVpre∆(n,d)⟩ = op(1). (3.68)

To address the second term on the RHS of (3.35), we scale (3.37) by
√
T1σw̃ (n,d)

2. Since
⟨εt,I (d) , w̃ (n,d)⟩ are independent across t, the Lindeberg–Lévy Central Limit Theorem (see
Billingsley (1986)) yields

1√
T1σw̃ (n,d)2

∑

t∈Tpost

⟨εt,I (d) , w̃ (n,d)⟩ d−→ N (0, 1). (3.69)

To address the third term on the RHS of (3.35), we scale (3.39) by
√
T1σw̃ (n,d)

2 and recall
the assumption log(T0Nd) = o

(
min{T0, Nd}/(C2(w̃ (n,d)

2)r2pre)
)
. This yields

1√
T1σw̃ (n,d)2

∑

t∈Tpost

⟨εt,I (d) ,∆(n,d)⟩ = op(1). (3.70)

Finally, scaling (3.35) by
√
T1 and collecting (4.19), (4.20), (4.21), we conclude
√
T1

σw̃ (n,d)2
(θ̂(d)
n − θ(d)

n ) d−→ N (0, 1).

This establishes (3.17).

(3.18) is immediate from Lemma 4.9.1.

Next, we establish (3.19). Using the definition of ŵ (n,d) in (3.3), Ypre,I (d)ŵ (n,d) =
Y
rpre
pre,I (d)ŵ (n,d), where recall that Y

rpre
pre,I (d) is obtained by truncating SVD of Ypre,I (d)

by retaining top rpre components. Substituting this equality into our definition of the
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variance estimator in (3.7), we get σ̂2 = 1
T0
Ypre,n − Y

rpre
pre,I (d)ŵ (n,d)2

2. Next, consider

Ypre,n − Y
rpre
pre,I (d)ŵ (n,d)2

2 (3.71)

= E[Ypre,n]− Y
rpre
pre,I (d)ŵ (n,d)2

2+εpre,n
2
2+2⟨εpre,n, (E[Ypre,n]− Y

rpre
pre,I (d)ŵ (n,d))⟩.

Below, we analyze each term on the RHS of (3.71) separately.

Bounding E[Ypre,n]−Y
rpre
pre,I (d)ŵ (n,d)

2. In order to control this term, we incorporate Lemmas
3.15.4 and 3.15.5 into the bound in (3.52) to obtain

1√
T0

(E[Ypre,n]− Y
rpre
pre,I (d)ŵ (n,d)) = Op

(√rpre√
T0

+
rpre
√

log(T0Nd)w̃ (n,d)
1

min{
√
T0,
√
Nd}

)
. (3.72)

Bounding εpre,n2. Since the entries of εpre,n are independent mean zero sub-Gaussian
random variables, it follows from Lemma 3.15.2 that

1
T0
εpre,n

2
2−σ2 = Op

(
1√
T0

)
. (3.73)

Bounding ⟨εpre,n, (E[Ypre,n] − Y
rpre
pre,I (d)ŵ (n,d))⟩. From (3.56), we have Y

rpre
pre,I (d)ŵ (n,d) =

PÛpre
(E[Ypre,n] + εpre,n). Hence,

⟨εpre,n, (E[Ypre,n]− Y
rpre
pre,I (d)ŵ (n,d))⟩

= ⟨εpre,n,E[Ypre,n]⟩ − ⟨εpre,n, PÛpre
E[Ypre,n]⟩ − ⟨εpre,n, PÛpre

εpre,n⟩. (3.74)

By Lemma 5.14.2 and Assumption 12, it follows that for any ζ > 0

P
(
⟨εpre,n,E[Ypre,n]⟩ ≥ ζ

)
≤ exp

(
− cζ2

T0σ2

)
, (3.75)

P
(
⟨εpre,n, PÛpre

E[Ypre,n]⟩ ≥ ζ
)
≤ exp

(
− cζ2

T0σ2

)
. (3.76)

Note that we have used PÛpre op≤ 1 and Assumption 13 to obtain PÛpre
E[Ypre,n]2≤

E[Ypre,n]2≤
√
T0. Together, (3.75) and (3.76) then imply that

⟨εpre,n,E[Ypre,n]⟩ = Op(
√
T0), ⟨εpre,n, PÛpre

E[Ypre,n]⟩ = Op(
√
T0). (3.77)
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From (3.66), we have for any ζ > 0,

P
(
⟨εpre,n, PÛpre

εpre,n⟩ ≥ σ2rpre + ζ
)
≤ exp

(
− cmin

( ζ2

σ4rpre
, ζσ2

))
,

which implies that

⟨εpre,n, PÛpre
εpre,n⟩ = Op(rpre). (3.78)

Plugging (3.77) and (3.78) into (3.74), we obtain

1
T0
⟨εpre,n, (E[Ypre,n]− Y

rpre
pre,I (d)ŵ (n,d))⟩ = Op

(
rpre
T0

+ 1√
T0

)
. (3.79)

Collecting terms. Normalizing (3.71) by T0 and subsequently incorporating the bounds
in (3.72), (3.73), and (3.79), we conclude

σ̂2 − σ2 = Op

(√rpre√
T0

+
rpre
√

log(T0Nd)w̃ (n,d)
1

min{
√
T0,
√
Nd}

)
.

■ 3.17 Proof of Theorem 3.6.1

For ease of notation, we suppress the conditioning on E for the remainder of the proof.
We make use of the following notation: for any matrix A with orthonormal columns, let
PA = AA′ denote the projection matrix onto the subspace spanned by the columns of
A. Additionally, we follow the notation established in Section 3.6.1. In particular, we
recall φpre(a) =

√
T0 +

√
Nd+

√
log(1/a); φpost(a) =

√
T1 +

√
Nd+

√
log(1/a); and sℓ , ςℓ

are the ℓ-th singular values of E[Ypre,I (d) ] and E[Ypost,I (d) ], respectively. Finally, we let
C ≥ 0 denote an absolute constant, whose value can change from line to line or even
within a line.

Type I error. We first bound the Type I error, which anchors on Lemma 3.17.1, stated
below. The proof of Lemma 3.17.1 can be found in Section 3.17.2.

Lemma 3.17.1. Suppose H0 is true. Then,
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τ̂ = (PVpre − PV̂pre
)V̂post

2
F+(I − PVpre)(PV̂post

− PVpost)2F (3.80)

+ 2⟨(PVpre − PV̂pre
)V̂post, (I − PVpre)V̂post⟩F .

We proceed to bound each term on the right-hand side of (3.80) independently.

Bounding (PVpre − PV̂pre
)V̂post

2
F . By Lemma 3.15.3, we have w.p. at least 1− α1,

(PV̂pre
− PVpre )V̂post

2
F ≤ PV̂pre

− PVpre
2
op V̂post

2
F≤

Cσ2rpostφ2
pre(α1)

s2
rpre

. (3.81)

Note that we have used the fact that V̂post
2
F= rpost.

Bounding (I −PVpre )(PV̂post
−PVpost )2F . Observe that (I −PVpre ) is a projection matrix, and

hence I − PVpre op≤ 1. By adapting Lemma 3.15.3 for V̂post,Vpost in place of V̂pre,Vpre, we
have w.p. at least 1− α2

PV̂post
− PVpost

2
F ≤ rpostPV̂post

− PVpost
2
op≤

Cσ2rpostφ2
post(α2)

ς2
rpost

. (3.82)

Note that we have used the following: (i) PV̂post
−PVpostF= sin ΘF , where sin Θ ∈ Rrpost×rpost

is a matrix of principal angles between the two projectors (see Absil et al. (2006)), which
implies rank(PV̂post

− PVpost) ≤ rpost; (ii) the standard norm inequality AF≤
√

rank(A)Aop
for any matrix A. Using the result above, we have

(I − PVpre )(PV̂post
− PVpost )2F ≤ I − PVpre

2
op PV̂post

− PVpost
2
F≤

Cσ2rpostφ2
post(α2)

ς2
rpost

. (3.83)

Bounding ⟨(PVpre − PV̂pre
)V̂post, (I − PVpre )V̂post⟩F . Using the cyclic property of the trace

operator, we have that

⟨(PV̂pre
− PVpre )V̂post, (I − PVpre )V̂post⟩F = tr (V̂ ′post(PV̂pre

− PVpre )(I − PVpre )V̂post)

= tr ((PV̂pre
− PVpre )(I − PVpre )PV̂post

). (3.84)

Note that PV̂pre
−PVpre is symmetric, and I −PVpre and PV̂post

are both symmetric positive
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semidefinite (PSD). As a result, Lemmas 3.15.3 and 3.17.6 yield w.p. at least 1− α1

tr ((PV̂pre
− PVpre)(I − PVpre)PV̂post

) ≤ PV̂pre
− PVpre optr ((I − PVpre)PV̂post

)

≤ PV̂pre
− PVpre opI − PVpre optr (PV̂post

) ≤
Cσrpostφpre(α1)

srpre
. (3.85)

Again, to arrive at the above inequality, we use I − PVpre op≤ 1 and tr(PV̂post
) = rpost.

Collecting terms. Collecting (3.81), (3.83), and (3.85) with α1 = α2 = α/2, w.p. at least
1− α ,

τ̂ ≤
Cσ2rpostφ2

pre(α/2)
s2
rpre

+
Cσ2rpostφ2

post(α/2)
ς2
rpost

+
Cσrpostφpre(α/2)

srpre
.

Defining the upper bound as τ(α) completes the bound on the Type I error.

Type II error. Next, we bound the Type II error. We will leverage Lemma 3.17.2, the
proof of which can be found in Section 3.17.3.

Lemma 3.17.2. The following equality holds: τ̂ = rpost − c1 − c2, where

c1 = VpreV ′preVpost
2
F

c2 = (PV̂pre
− PVpre )V̂post

2
F+PVpre (PV̂post

− PVpost )2F
+ 2⟨(PV̂pre

− PVpre )V̂post, PVpreV̂post⟩F + 2⟨PVpre (PV̂post
− PVpost ), PVprePVpost⟩F . (3.86)

We proceed to bound each term on the right hand side of (3.86) separately.

Bounding (PV̂pre
− PVpre)V̂post

2
F . From (3.81), we have that w.p. at least 1− α1,

(PV̂pre
− PVpre)V̂post

2
F ≤

Cσ2rpostφ2
pre(α1)

s2
rpre

. (3.87)

Bounding PVpre (PV̂post
−PVpost )2F . Using the inequality ABF≤ AopBF for any two matrices

A and B, as well as the bound in (3.82), we have w.p. at least 1− α2,

PVpre(PV̂post
− PVpost)2F ≤

Cσ2rpostφ2
post(α2)

ς2
rpost

. (3.88)
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Bounding ⟨(PV̂pre
−PVpre)V̂post, PVpreV̂post⟩F . Using an identical argument used to create

the bounds in (3.84) and (3.85), but replacing I −PVpre with PVpre , we obtain w.p. at least
1− α1

⟨(PV̂pre
− PVpre)V̂post, PVpreV̂post⟩F ≤

Cσrpostφpre(α1)
srpre

. (3.89)

Bounding ⟨PVpre (PV̂post
−PVpost ), PVprePVpost⟩F . Like in the argument to produce the bound

in (3.85), we use Lemmas 3.15.3 and 3.17.6 to get that w.p. at least 1− α2,

⟨PVpre (PV̂post
− PVpost ), PVprePVpost⟩F = tr ((PV̂post

− PVpost )PVprePVprePVpost )

= tr ((PV̂post
− PVpost )PVprePVpost ) ≤ PV̂post

− PVpost op PVpre optr (PVpost ) ≤
Cσrpostφpost(α2)

ςrpost

. (3.90)

Collecting terms. Combining (3.87), (3.88), (3.89), (3.90) with α1 = α2 = α/2, and using
the definition of τ(α), we have that w.p. at least 1− α ,

c2 ≤ τ(α) +
Cσrpostφpost(α/2)

ςrpost
.

Hence, along with using Lemma 3.17.2, it follows that w.p. at least 1− α ,

τ̂ ≥ rpost − c1 − τ(α)−
Cσrpostφpost(α/2)

ςrpost
. (3.91)

Now, suppose rpost satisfies (3.21), which implies that H1 must hold. Then, (3.91) and
(3.21) together imply P(τ̂ > τ(α)|H1) ≥ 1− α . This completes the proof.

■ 3.17.1 Proof of Corollary 3.6.1

We utilize Lemmas 3.17.3 and 3.17.4, which are sharp versions of Lemmas 3.13.3 and
3.15.3.

Lemma 3.17.3 (Gaussian Matrices: Theorem 7.3.1 of Vershynin (2018)). Let the setup of
Lemma 3.13.3 hold. Assume Aij are Gaussian r.v.s with variance σ2. Then for any t > 0,
Aop≤ σ (

√
m+
√
n+ t) w.p. at least 1− 2 exp

(
−t2

)
.

Lemma 3.17.4. Let the setup of Lemma 3.15.3 hold. Further, assume εtn are Gaussian
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r.v.s with variance σ2. Then for any α ∈ (0, 1), we have w.p. at least 1− α,

PV̂pre
− PVpre op≤

2σφpre(α)
srpre

, PV̂post
− PVpost op≤

2σφpost(α)
ςrpost

.

Proof. The proof is identical to that of Lemma 3.15.3 except Ypre,I (d) − E[Ypre,I (d) ]op is now
bounded above using Lemma 3.17.3. ■

The remainder of the proof of Corollary 3.6.1 is identical to that of Theorem 3.6.1.

■ 3.17.2 Proof of Lemma 3.17.1

τ̂ = (I − PV̂pre
)V̂post

2
F= (I − PV̂pre

)V̂post − (I − PVpre )V̂post + (I − PVpre )V̂post
2
F= (PVpre − PV̂pre

)V̂post +
(I − PVpre )V̂post

2
F= (PVpre − PV̂pre

)V̂post
2
F+(I − PVpre )V̂post

2
F+2⟨(PVpre − PV̂pre

)V̂post, (I − PVpre )V̂post⟩F .

Under H0, it follows that (I − PVpre)Vpost = 0. As a result, (I − PVpre)V̂post
2
F= (I −

PVpre)PV̂post
2
F= (I − PVpre)PV̂post

− (I − PVpre)PVpost
2
F= (I − PVpre)(PV̂post

− PVpost)2F .

Applying these two sets of equalities above together completes the proof.

■ 3.17.3 Proof of Lemma 3.17.2

Because the columns of V̂post are orthonormal, rpost = V̂post
2
F= PV̂pre

V̂post
2
F+(I−PV̂pre

)V̂post
2
F .

Therefore, it follows that

τ̂ = (I − PV̂pre
)V̂post

2
F= rpost − PV̂pre

V̂post
2
F . (3.92)

Now, consider the second term of the equality above.

PV̂pre
V̂post

2
F= PV̂pre

V̂post − PVpreV̂post + PVpreV̂post
2
F

= (PV̂pre
− PVpre )V̂post

2
F+PVpreV̂post

2
F+2⟨(PV̂pre

− PVpre )V̂post, PVpreV̂post⟩F . (3.93)

Further, analyzing the second term of (3.93), we note that

PVpreV̂post
2
F= PVprePV̂post

2
F= PVprePV̂post

− PVprePVpost + PVprePVpost
2
F

= PVpre (PV̂post
− PVpost )2F+PVprePVpost

2
F+2⟨PVpre (PV̂post

− PVpost ), PVprePVpost⟩F . (3.94)
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Incorporating (3.93) and (3.94) into (3.92), and recalling c1 = PVprePVpost
2
F= VpreV ′preVpost

2
F

completes the proof.

■ 3.17.4 Helper Lemmas

Lemma 3.17.5. Let A,B ∈ Rn×n be symmetric PSD matrices. Then, tr(AB) ≥ 0.

Proof. Let B1/2 denote the square root of B. Since A ⪰ 0, we have tr(AB) = tr
(
AB1/2B1/2) =

tr
(
B1/2AB1/2) =

∑n
i=1(B1/2ei)′A(B1/2ei) ≥ 0, ■

Lemma 3.17.6. If A ∈ Rn×n is a symmetric matrix and B ∈ Rn×n is a symmetric PSD
matrix, then tr(AB) ≤ λmax(A) · tr(B), where λmax(A) is the top eigenvalue of A.

Proof. Since A is symmetric, it follows that λmax(A)I−A ⪰ 0. As a result, applying Lemma
3.17.5 yields tr((λmax(A)I − A)B) = λmax(A) · tr(B)− tr(AB) ≥ 0. ■



192 CHAPTER 3. SYNTHETIC INTERVENTIONS



Chapter 4

Causal Matrix Completion

■ 4.1 Introduction

Matrix completion is the study of recovering an underlying matrix from its noisy and
partial observations. Given its widespread applicability, the field of matrix completion has
grown tremendously in recent years. To establish statistical guarantees for the various
algorithms that exist for matrix completion, it is typically assumed that: (i) the underlying
noiseless matrix has latent structure, e.g., it is low-rank, and (ii) the entries of this
matrix are missing completely at random (MCAR), i.e., an entry is missing independent of
everything else and with uniform probability. However, numerous modern applications of
interest violate the latter assumption. Below, we consider two motivating examples.

First, arguably the most well-known application of matrix completion is recommender
systems, which are ubiquitous in modern online platforms. Typically, data is collected in
the form of a matrix, where the rows index users and columns index items; the (i, j)-th
entry, therefore, corresponds to the rating supplied by user i for item j . In such scenarios,
observations are often subject to selection-biases. For instance, in movie recommendations,
a fan of fantasy fiction will almost certainly watch and highly rate the Harry Potter series.
Similarly, in restaurant recommendations, a vegetarian is unlikely to enjoy nor rate a
steakhouse restaurant. While these examples demonstrate self-selection biases from the
end of the users, systems also exhibit targeted suggestions. For example, when a user
searches for trails at the Grand Canyon, an ad placement system is more likely to display
an ad for hiking boots than wedding shoes; in turn, this can increase the user’s likelihood
to purchase and rate hiking boots. In all of these cases, the user’s preferences and/or the
system’s beliefs in its users’ preferences, influence the sparsity pattern of the observation
matrix.

193
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A second example is panel data settings in econometrics. Here, observations of units
(e.g., individuals, geographic locations) are collected over time as they undergo different
interventions (e.g., promotions, socio-economic policies). The induced matrix has rows index
units and columns index time-intervention pairs; the (i, (a, t))-th entry then corresponds
to the potential outcome of unit i under the a-th intervention at time step t; here (a, t)
represents the j-th column, i.e., columns are double indexed by both intervention and
time. As with recommender systems, observations in panel data settings are unlikely
to occur completely at random. For instance, policy-makers strategically recommend
programs that are designed to achieve certain desirable outcomes based on numerous
socio-economic factors surrounding the geographic region under their purview. Further,
competing programs with disagreeing agendas cannot be simultaneously adopted for a
specific region during the same time period, i.e., if the (i, (a, t))-th entry is observed,
then the (i, (a′, t))-th entry must be missing. Notably, similar matrices and observation
patterns can arise in sequential decision-making paradigms within machine learning such
as online learning, contextual bandits, and reinforcement learning with time-intervention
pairs being replaced by state-action pairs.

In both examples, the missingness pattern of the matrix is dependent on the underlying
values in that matrix, and observing the outcome of one entry can alter the probability of
observing another. That is, the entries are missing not at random (MNAR). To address
the above challenges, there has been exciting recent progress on matrix completion with
MNAR data, including Schnabel et al. (2016); Ma and Chen (2019); Zhu et al. (2019);
Sportisse et al. (2020a,b); Wang et al. (2020); Yang et al. (2021); Bhattacharya and
Chatterjee (2021). Through numerous empirical studies, these works have shown that
algorithms that account for MNAR data outperform conventional algorithms that are
designed for MCAR data. With respect to theoretical analysis, however, critical aspects
of matrix completion with MNAR data remain to be explored. In particular, as highlighted
in Ma and Chen (2019), there are two common limiting assumptions in the literature: (i)
the revelation of each entry in the matrix is independent of all other entries, and (ii) each
entry has a nonzero probability of being observed.

Another recent exciting line of work that we build upon is that of panel data and matrix
completion, see Amjad et al. (2018, 2019); Arkhangelsky et al. (2019); Bai and Ng (2020);
Fernández-Val et al. (2020); Athey et al. (2021); Agarwal et al. (2019b, 2021e,d,c); Agarwal
and Singh (2021). Some of these works allow for MNAR data and entries of a matrix to
be deterministically missing. However, they consider very restricted sparsity patterns that
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are not particularly suitable for important applications of matrix completion. For example,
the most common sparsity pattern considered in the panel data literature is where for
a given row i, if a column j is missing, then entries for all columns j ′ > j in row i are
also missing; such a pattern is unlikely to arise in recommendation systems or sequential
decision-making. Further, to the best of our knowledge, none of these works within the
panel data literature provide meaningful results for matrix completion with MCAR data.
The statistical parameters these works aim to estimate are also less meaningful for these
other applications of matrix completion. The most common statistical parameter these
works consider is the average outcome for all missing entries in a given row i; in say
recommendation systems, this would correspond to the average rating a user i would have
given for all movies they did not rate. This is not particularly meaningful for an online
platform—ideally, a platform would like to do accurate inference for each (i, j) pair.

The focus of this work is to propose a formal causal framework and an algorithm with
provable guarantees to analyze matrix completion with MNAR data where the probability
that an entry of the matrix is missing can: (i) depend on the underlying values in the matrix
itself; (ii) depend on which other entries are missing; (iii) potentially be deterministically
zero. Further, we want to allow for more general missingness patterns and estimate more
refined statistical parameters than considered in the panel data literature thus far.

■ 4.1.1 How the Missingness Mechanism can Bias Inference: A
Teaser

As further motivation for why it is important to carefully think about the underlying
mechanism for why data is missing, we now provide illustrative empirical simulations.
In particular we run three experiments, each with a different mechanism for how data
is missing. In Experiment 1, data is missing via a MCAR mechanism i.e., each entry is
missing independently at random with probability 0.35; the induced sparsity pattern
is depicted in Figure 4.1a. In Experiment 2, data is missing in a MNAR fashion, i.e.,
each entry has a different probability of being missing; the induced sparsity pattern is
depicted in Figure 4.1b. However, we ensure key assumptions made thus far in the matrix
completion literature with MNAR data are maintained; in particular, (i) the revelation
of entries are entry-wise independent and (ii) each entry has a nonzero probability of
being observed. In Experiment 3, data is missing in a MNAR fashion, but we violate
conditions (i) and (ii) above; the induced sparsity pattern is depicted in Figure 4.1c. For
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exact details on the missingness mechanism in Experiment 2 and 3, refer to Section 4.6.2
and 4.6.2, respectively.

(a) MCAR. (b) Limited MNAR. (c) General MNAR.

Figure 4.1: Empirical sparsity pattern under different missingess mechanisms.

In all experiments, we first create a sample of true “ratings”, which are invariant across
all three experiments. We enforce these ratings to go from 1 to 5, as is standard in many
online platforms. The distribution of true/revealed ratings are plotted in light/dark blue
in Figures 4.2a, 4.3a, and 4.4a, respectively. As expected, the distribution of the revealed
ratings in the MCAR setup matches that of the true ratings. However, the set of ratings
that are revealed in both MNAR settings are severely biased, i.e., their distribution does
not match that of the true underlying ratings.

(a) True, revealed. (b) (Modified) USVT. (c) (Modified) softImpute. (d) SNN.

Figure 4.2: MCAR: recovered ratings distributions under (modified) USVT, (modified) softImpute, and SNN.

(a) True, revealed. (b) (Modified) USVT. (c) (Modified) softImpute. (d) SNN.

Figure 4.3: Limited MNAR: recovered ratings distributions under (modified) USVT, (modified) softImpute, and SNN.

We use three matrix completion algorithms and see whether they can recover the distribu-
tion of true ratings given the revelead entries in all three experiments. The algorithms
are: Universal singular value thresholding (USVT) Chatterjee (2015), which is a popular



Sec. 4.1. Introduction 197

(a) True, revealed. (b) (Modified) USVT. (c) (Modified) softImpute. (d) SNN.

Figure 4.4: More general MNAR: recovered ratings distributions under (modified) USVT, (modified) softImpute, and
SNN.

spectral based method;1 Softimpute (softImpute) Hastie et al. (2015), which is a popular
optimization based method; Synthetic nearest neighbours (SNN), which is our proposed
method for matrix completion with MNAR data, and is a combination of the approach
taken in nearest neighbour style and panel data methods in econometrics. USVT and
softImpute are not designed for MNAR data, as is, but we de-bias them for MNAR data
as is done in Bhattacharya and Chatterjee (2021) and Ma and Chen (2019), respectively.
See details in Section 4.6.3.

We see that in Figure 4.2, under the MCAR setting, softImpute and SNN both recover
the distribution of true ratings very well, while USVT cannot. Once we go to the limited
MNAR setting, depicted in Figure 4.3, where conditions (i) and (ii) are upheld, SNN is still
able to recover the underlying distribution of true ratings, but now both softImpute and
USVT have non-negligible bias. In the general MNAR setting, depicted in Figure 4.4,
SNN continues to accurately recover the distribution, but the bias of softImpute is
significantly worsened.

This empirical illustration highlights the sensitivity of these traditional matrix completion
methods to the missingness mechanism and strongly motivates the need for a rigorous
framework for tackling the general MNAR setting where conditions (i) and (ii) above are
violated. Providing such a framework is what we set out to do in this work.

■ 4.1.2 Problem Statement

We now formally introduce our setup. Consider a signal matrix A = [Aij ] ∈ Rm×n, a
noise matrix E = [εij ] ∈ Rm×n, and a propensity score matrix P = [pij ] ∈ [0, 1]m×n. All
three matrices are entirely latent, i.e., unobserved. Let Y = [Yij ] ∈ Rm×n denote the

1Surprisingly, we find that the original USVT algorithm performs better in all three experiments. See
Section 4.7.
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“noisy” version of A, with E[Y ] = A; we denote εij = Yij − Aij . We assume Y itself is
partially observed. In particular, we denote D = [Dij ] ∈ {0, 1}m×n with E[D] = P as the
missingness mask matrix that indicates which entries of Y are observed. For convenience,
we encode our observations into Ỹ = [Ỹij ] ∈ {R ∪ {⋆}}m×n such that for (i, j) ∈ [m]× [n],

Ỹij =





Yij , if Dij = 1

⋆, otherwise.
(4.1)

In words, if Dij = 1 then Aij is noisily observed, and if Dij = 0 then Aij remains unknown.
For concreteness, let us return to the recommender system example. Here, A represents
the expected rating for every user-item pair and P dictates the probability these expected
ratings are revealed, both of which are unknown. Y in relation to A then models the
inherent randomness in how users rate items; that is, Y can be interpreted as a “noisy”
instance of A. Another interpretation of what εij represents is that many online platform
only allow users to input integer valued ratings (e.g. integer between 1 to 5 or a
binary 0/1). Hence, Yij can be interpreted as a “noisy” discretized observation of Aij ,
which may actually be continuous (i.e., lie within the continuous interval [1, 5] or [0, 1]).
Observationally, we have access to D and Ỹ ; the former refers to the collection of ratings
users have supplied to the system while the latter refers to the corresponding realized
“noisy” ratings. Finally, we remark that (4.1) also agrees with standard panel data setups
in econometrics, where each observation is assumed to be corrupted by an idiosyncratic
shock, which is represented by εij .

In terms of the type of MNAR data this work considers, we allow for D and Y to be
dependent, provided D ⊥⊥ Y |A, where A is latent. In fact, we allow D to be any arbitrary
function of A, random or deterministic, subject to suitable observation patterns which we
discuss in the forthcoming sections. Notably, our framework also allows the entries in D
to be dependent with each other across both rows and columns, and the minimum value of
P to be 0, which are important departures from the current matrix completion literature.
Under these conditions, we propose an algorithm that provably recovers A from Ỹ with
entry-wise (i.e., max-norm) guarantees.

■ 4.1.3 Contributions & Paper Organization

Section 4.2: Related works. We provide an overview of the current literature on matrix
completion under the different models of missingness proposed by Rubin (1976); Little and
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Rubin (2019): (i) missing completely at random (MCAR); (ii) missing at random (MAR);
(iii) missing not at random (MNAR). We note the usage of the terms MCAR, MAR, and
MNAR is inconsistent across the previous works on matrix completion, and so we hope
that our literature survey helps give a more comprehensive and unified overview of the
different regimes of missingness considered in these works.

Section 4.3: Causal framework for matrix completion. We propose a formal causal
framework for matrix completion using the language of potential outcomes, see Neyman
(1923); Rubin (1974). We interpret Y as the matrix of potential outcomes and P as
the matrix of intervention assignments. Building upon the recent work of Agarwal et al.
(2021c), we propose a framework that allows (i) correlation between D and Y , i.e.,
hidden confounding; (ii) correlation between the entries of D; (iii) the minimum value
of P to be 0, i.e., entries of Ỹ can be deterministically missing; (iv) P to not exhibit
low-dimensional structure as is required in the panel data literature, i.e., we consider
significantly more general missingness patterns. To the best of our knowledge, our
framework, and associated algorithm, is the first within the MNAR matrix completion
literature that allows for conditions (i)-(iv) to simultaneously hold. Additionally, we do not
make any parametric or distributional assumptions on P , as is common in previous works
on matrix completion. Nevertheless, we establish an identification result in Theorem 4.3.1,
which effectively states that A can be learned from Ỹ in an entry-wise sense. We believe
our proposed framework provides a unified causal view for a variety of applications that
can be posed as matrix completion problems with MNAR data.

Section 4.4: An algorithmic solution. We combine the nearest neighbours approach for
matrix completion —popularly known as collaborative filtering—with the synthetic controls
approach for panel data, to design a novel two-step algorithm, which we call “synthetic
nearest neighbors” (SNN), to estimate A from Ỹ . Pleasingly, each step of SNN enjoys a
simple closed-form solution. In order to efficiently execute SNN in practice, we provide an
algorithm to automatically find the “neighbors” for any (i, j) pair in a data-driven manner.
To do so, we relate this task to the well-known problem of finding the “maximum” biclique
in a bipartite graph. Since SNN is a generalization of the recently proposed synthetic
interventions (SI) estimator of Agarwal et al. (2021c), which itself is a generalization of
the popular synthetic controls algorithm of Abadie et al. (2010); Abadie and Gardeazabal
(2003), this subroutine may be of independent interest to the synthetic controls and panel
data literatures.

Section 4.5: Theoretical results. We establish entry-wise finite-sample consistency and
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asymptotic normality of SNN, i.e., we provide theoretical guarantees for Aij for each (i, j)
pair. Hence, our analysis implies new theoretical results, in a max-norm sense, for the
literature on matrix completion with MNAR data. As a special case, this also provides novel
entry-wise finite-sample consistency and asymptotic normality results for the traditional
matrix completion with MCAR data literature. Collectively, our identification, consistency,
and asymptotic normality results, coupled with SNN, can be seen as a generalization of
the SI framework proposed in Agarwal et al. (2021c).

Section 5.6: Experimental validation. We run comprehensive experiments, both with
simulated and real-world data, to test the empirical efficacy of SNN against a collection of
state-of-the-art matrix completion algorithms for MNAR data. Some key takeaways are
as follows: (i) SNN is robust to the various forms of missingness across all experiments,
while the previous methods are relatively sensitive to it. (ii) we find the approaches to
de-bias estimators for MNAR data are not particularly effective, i.e., their performance is
similar to their MCAR analogues; this is in line with the empirical findings of Ma and
Chen (2019).

■ 4.1.4 Notations

For a matrix X ∈ Rm×n, we denote its operator (spectral), nuclear, Frobenius, and
max element-wise norms as X 2, X ∗, XF , and Xmax, respectively. For a matrix X with
orthonormal columns, let PX = XXT denote the projection matrix onto the subspace
spanned by the columns of X . For a vector v ∈ Rm, let vp denote its ℓp-norm. For
a random variable v , we define its sub-gaussian (Orlicz) norm as vψ2 . Let ◦ denote
component-wise multiplication and let ⊗ denote the outer product. For a positive integer
a, let [a] = {1, . . . , a}. For index sets I1 ⊆ [m] and I2 ⊆ [n], let XI1,I2 denote the
|I1|×|I2| sub-matrix of X whose rows and columns are indexed by I1 and I2, respectively.
As a shorthand, let XI1,· denote the |I1|×n sub-matrix of X that retains the columns of X
but only considers those rows indexed by I1; we define X·,I2 analogously. Unless stated
otherwise, we index rows with i ∈ [m] and columns with j ∈ [n].

Let f and g be two functions defined on the same space. We say f (n) = O(g(n)) if
and only if there exists a positive real number M and a real number n0 such that for
all n ≥ n0, |f (n)|≤ M|g(n)|. Analogously we say: f (n) = Θ(g(n)) if and only if there
exists positive real numbers m,M such that for all n ≥ n0, m|g(n)|≤ |f (n)|≤ M|g(n)|;
f (n) = o(g(n)) if for any m > 0, there exists n0 such that for all n ≥ n0, |f (n)|≤ m|g(n)|.



Sec. 4.2. Related Works 201

We adopt the standard notations and definitions for stochastic convergences. As such,
we denote d−→ and p−→ as convergences in distribution and probability, respectively. We
will also make use of Op and op, which are probabilistic versions of the commonly used
deterministic O and o notations. More formally, for any sequence of random vectors
Xn, we say Xn = Op(an) if for every ε > 0, there exists constants Cε and nε such that
P(Xn2> Cεan) < ε for every n ≥ nε; equivalently, we say (1/an)Xn is “uniformly tight”
or “bounded in probability”. Similarly, Xn = op(an) if for all ε, ε′ > 0, there exists nε
such that P(Xn2> ε′an) < ε for every n ≥ nε. Therefore, Xn = op(1) ⇐⇒ Xn

p−→ 0.
Additionally, we denote: plim Xn = a ⇐⇒ Xn

p−→ a. We say a sequence of events
En, indexed by n, holds “with high probability” (w.h.p.) if P(En)→ 1 as n → ∞, i.e., for
any ε > 0, there exists a nε such that for all n > nε, P(En) > 1− ε. More generally, a
multi-indexed sequence of events En1,...,nd , with indices n1, . . . , nd with d ≥ 1, is said to
hold w.h.p. if P(En1,...,nd )→ 1 as min{n1, . . . , nd} → ∞. We also use N (µ, σ2) to denote
a normal or Gaussian distribution with mean µ and variance σ2—we call it standard
normal if µ = 0 and σ2 = 1.

■ 4.2 Related Works

Given the vastness of the matrix completion literature, we do not strive to do an exhaustive
review of it. Instead, we focus on a few representative works that propose and analyze
algorithms designed for the three different models of missingness: MCAR, MAR, and
MNAR. In Section 4.2.1, we give an overview of the type of algorithms for matrix completion
studied thus far in existing works. In Section 4.2.2, we discuss the different models of
missingness considered in the matrix completion literature, and representative algorithms
for these various models. Finally, in Section 4.2.3, we discuss the growing literature
exploring the intersection of matrix completion and causal inference; in particular, the
panel data literature in econometrics.

■ 4.2.1 Overview of Matrix Completion Algorithms

Algorithms for matrix completion broadly fall into two classes: empirical risk minimization
(ERM) methods and matching (i.e., collaborative filtering) methods, with ERM methods
being relatively more popular. We give an overview of both class of methods below.
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Empirical Risk Minimization (ERM) Methods. Empirical risk minimization (ERM) is
arguably the de facto approach to recover the underlying signal matrix A given Ỹ .
Specifically, ERM approaches aim to solve the following program:

minimize
1
|Ω|

∑

(i,j)∈Ω
d(Tij , Qij ) + λ regularize(Q). (4.2)

Here, Ω ⊆ [m]× [n], d(·, ·) is an appropriate distance measure (e.g., squared loss), Tij is a
“simple” transformation of Ỹij (e.g. 1(Dij = 1) · Ỹij ), regularize(·) is a regularization term
and λ > 0 is the regularization hyper-parameter. For certain algorithms, they replace the
regularizer (i.e., set λ = 0) with a constraint, constraint(·).

In order to prove statistical guarantees about these various estimators, structure is placed
on A. The assumptions made guide the specific choices of the above parameters, which
then define the algorithm. For instance, if the singular values of A are assumed to be
moderately sparse (i.e., only few are non-zero), then a natural convex regularizer would
penalize solutions with large nuclear norm, i.e., regularize(Q) = Q∗ Candès and Tao
(2010); Recht (2011). Indeed, choosing Ω = {(i, j) : Dij = 1} as the collection of observed
entries, Tij = Ỹij , and d(·, ·) as the squared loss yields the popular softImpute algorithm
of Mazumder et al. (2010); Hastie et al. (2015). As another example, if A is assumed to be
exactly low-rank, then a natural constraint would be the rank of the output matrix. More
specifically, contraint(Q) can be defined as rank(Q) ≤ µ for some pre-specified integer
µ > 0. Then, choosing Ω = [m]× [n], Tij = 1(Dij = 1) · Ỹij , and d(·, ·) as the squared loss
yields a suite of spectral based methods Keshavan et al. (2010a,b); Gavish and Donoho
(2014); Chatterjee (2015). Other notable algorithms within the broader ERM class include
maximum-margin matrix factorization (MMMF) Srebro et al. (2004), probabilistic matrix
factorization (PMF) Mnih and Salakhutdinov (2008), and SVD++ Koren (2008) to name a
few.

Broadly speaking, it is commonly assumed that A follows some form of a latent variable
model; in particular, Aij = f (ui, vj ), where f is a sufficiently “smooth” latent function (e.g.,
Hölder continuous), and ui, vj are low-dimensional latent variables associated with row i
and column j , respectively. Such latent variable models imply that A is (approximately)
low-rank, i.e., Aij ≈ ⟨ui, vj⟩, where ui, vj ∈ Rr and r ≪ min{m, n}, e.g., Xu (2017a); Udell
and Townsend (2019); Agarwal et al. (2021e). For an excellent overview on standard
assumptions made on A and the subsequent guarantees proven for the estimation error,
please refer to Davenport and Romberg (2016).
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When every entry is revealed with uniform probability (i.e., pij = p), (4.2) is an unbiased
estimate of the full loss function with all entries revealed (i.e., D is an all ones matrix).
When pij are nonuniform, however, recent works have provably and empirically shown that
(4.2) is biased Schnabel et al. (2016); Ma and Chen (2019). As such, these works advocate
to de-bias the standard ERM objective by re-weighting each observation inversely by its
propensity score pij . This technique is often known in the causal inference literature as
inverse propensity scoring (IPS) or weighting (IPW), see Imbens and Rubin (2015); Little
and Rubin (2019). This yields the following adapted program:

minimize
∑

(i,j)∈Ω
(1/p̂ij ) d(Tij , Qij ) + λ regularize(Q), (4.3)

where p̂ij is an estimate of pij . In words, (4.3) requires learning P prior to carrying out
the standard ERM of (4.2). Faithful matrix recovery under more general missingness
patterns thus requires structure on not only A, but also P and D. We overview standard
assumptions on these quantities in Section 4.2.2.

Matching methods. For traditional applications of matrix completion, such as recommen-
dation systems, K nearest neighbour (KNN) methods have been popular (e.g., Goldberg
et al. (1992); Linden et al. (2003); Kleinberg and Sandler (2008); Koren and Bell (2015);
Lee et al. (2016); Chen et al. (2018)). In KNN, to impute a missing entry (i, j), the first
step is to select K rows for which the entry in the j-th column is not missing. Of all
the rows for which the j-th column is not missing, the K rows are selected such that
they are the “closest” to row i. In particular, a hyper-parameter of KNN is the metric
that is chosen to define “closeness” between any two given rows; the most commonly
used metric is the mean squared distance between the commonly revealed entries for
a given two rows. Once these K “neighbour rows” are chosen, the estimate for the
missing entry (i, j) is the average 1

K
∑

k∈neighbour rows Ỹkj . An attractive quality of these
KNN methods is that they do not require imputing missing values by 0. A related literature
that shares similarities with KNN is that of synthetic controls Abadie et al. (2010); Abadie
and Gardeazabal (2003). A key difference is that to impute (i, j), uniform weights (i.e., 1/K )
are not used for the neighbouring rows; classically in synthetic controls, these weights
are constrained to lie within the simplex, i.e., the weights are non-negative and sum to
1 (if the weights are restricted to be 1/K , this is known in the panel data literature as
“difference-in-differences”). However, as discussed earlier, synthetic controls methods have
been designed to handle restricted sparsity patterns naturally arising in the panel data
setting. Given the growing literature on synthetic controls, we do a detailed literature
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review of it in Section 4.2.3.

■ 4.2.2 Three Models of Missingness

Below, we utilize the useful taxonomy set in Rubin (1976); Little and Rubin (2019) to
discuss the three primary mechanisms that lead to missing data and how previous works
fit within these regimes.

Missing completely at random (MCAR). MCAR is the most standard model of missingness
assumed in the matrix completion literature and is characterized by the following properties:
(i) D ⊥⊥ Y ; (ii) Dij ⊥⊥ Dab for all (i, j) ̸= (a, b); (iii) pij = p > 0 for all (i, j). In words,
MCAR assumes each element of D is an independent and identically distributed (i.i.d.)
Bernoulli random variable (r.v.) with parameter p ∈ (0, 1]. This implies that the missingness
pattern is independent of the values in Y . We note that this condition pij > 0 is known in
the causal inference literature as “positivity”, see Imbens and Rubin (2015). It follows that
the maximum likelihood estimator p̂ij = p̂ for all (i, j), where p̂ is the fraction of observed
entries in Ỹ . As previously mentioned, given MCAR data, (4.2) is an unbiased estimator
of the ideal loss function where all entries observed. Though MCAR is likely unrealistic
outside experimental settings, the MCAR regime remains a popular abstraction in machine
learning and statistics to study the inherent trade-offs between the observation probability
p, properties of the noise E , and the structure imposed on the signal A, in terms of the
estimation error between Â and A. Methods such as singular value thresholding explicitly
impute missing values in Y (denoted as ⋆) by 0 and re-weight all non-missing values in
Y by 1/p̂, where p̂ is the fraction of observed entries. This can be interpreted as a form of
uniform IPW. Other methods such as nuclear norm minimization, alternating least squares,
and nearest neighbour methods do not require imputing missing values by 0. However,
existing theoretical analysis of these algorithms do still require that E[Dij ] = p, and that
Dij is independent of the all other randomness in the model.

Missing at random (MAR). 2 MAR is a more challenging setting than MCAR. The three
key assumptions of MAR are as follows. (i) D ⊥⊥ Y | O, where O represents observed
covariates about the rows and columns of the matrix (e.g., covariates about users and
movies in the context of recommender systems)—concretely, these observed variables, O,

2Many works in the matrix completion literature do not differentiate between MAR and MNAR, and call
both regimes MNAR. We differentiate between them to be more in line with models of missingness proposed
by Rubin (1976); Little and Rubin (2019).
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often include features or covariates (Xi, X̃j ), which are associated with row i and column j ,
respectively, and observed outcomes Ỹij . (ii) Dij ⊥⊥ Dab for all (i, j) ̸= (a, b). (iii) pij > 0
for all (i, j). Here, the entries of D continue to obey positivity and remain independent
Bernoulli r.v.’s.

Below, we overview two popular propensity estimation techniques of Schnabel et al.
(2016). To aid the following discussion, let X = {(Xi, X̃j ) : (i, j) ∈ [m]× [n]} denote the
set of observed features, and H denote the set of hidden features. The first approach
is via Naive Bayes, which assumes that pij = E[Dij |X ,H,Y ] = E[Dij |Ỹij ]. Under this
assumption, the maximum likelihood estimator p̂ij can be solved using Bayes formula;
however, such an approach requires a small sample of MCAR data, see Schnabel et al.
(2016). The second estimation strategy is based on logistic regression. Here, it is assumed
that there exists model parameters φ such that pij = E[Dij |X ,H,Y ] = E[Dij |Xi, X̃j , φ];
within the causal inference literature, this is often known as “selection on observables”,
see Imbens and Rubin (2015). Typically, it is posited that φ = (ω1, ω2, α, γ) and
E[Dij |Xi, X̃j , φ] = σ (⟨ω1, Xi⟩+ ⟨ω2, X̃j⟩+ αi + γj ), where σ (·) takes a simple parametric
form such as the sigmoid function. Some notable works in the MAR literature include
Liang et al. (2016); Wang et al. (2018a,b, 2019).

Missing not at random (MNAR). MNAR is the most challenging missingness model in
matrix completion with a comparatively sparser literature. In its fullest generality, in
MNAR the following conditions are allowed: (i) D can depend on Y and other unobserved
variables; (ii) Dij can be correlated with Dab for all (i, j) ̸= (a, b); (iii) minpij = 0. The first
condition implies that D and Y remain dependent even conditional on observed covariates.
The second condition allows the revelation of one outcome to alter the probability of
another outcome being revealed. Finally, the third condition can restrict certain outcomes
from ever being revealed. Hence, the literature has thus far only considered a limited
version of MNAR with conditions cf. Ma and Chen (2019); Bhattacharya and Chatterjee
(2021); Yang et al. (2021). In particular, they continue to make the following assumptions:
pij is a (nice) function solely of latent factors associated with entry (i, j); each entry
of D is an independent (not necessarily identically distributed) Bernoulli r.v. with a
strictly positive probability of being revealed, which are the assumptions as in MAR.
These assumption are what allow the weighted ERM framework of (4.3) to continue being
valid. The methods proposed in Ma and Chen (2019); Bhattacharya and Chatterjee
(2021); Yang et al. (2021) work for this limited MNAR setting by positing that P is
(approximately) low-rank, and recovers P from D via matrix completion algorithms. This
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is a generalization of the MAR setting as such an approach circumvents the requirement
of meaningful auxiliary features X to conduct propensity score estimation. Additional
works within the MNAR literature include Zhu et al. (2019); Sportisse et al. (2020a,b);
Wang et al. (2020).

As previously mentioned, our work operates under greater generality than the limited
MNAR regime thus far considered in the literature. More specifically, our framework
allows D and Y to be dependent, provided D ⊥⊥ Y |A, and for D to be any arbitrary
function of A, subject to suitable observation patterns. We also allow for conditions (ii)
and (iii) described above to hold, i.e., the entries in D can be highly correlated and the
minimum probability of observation can be deterministically set to 0. In Section 4.3, we
will formally introduce our causal framework to rigorously discuss these properties.

Summary of matrix completion results. Across the various models of missingness, the key
theoretical results for low-rank matrix completion typically have error bounds that scale
in the following form (see Davenport and Romberg (2016)):

1
mn Â− A2

F= O
(

1
poly(pmin)

· poly(r)
min(m,n)1−δ

)

for δ ≥ 0 and where poly(·) denotes polynomial dependence. Here, pmin = minpij and
r refers to the (approximate) rank of A. The most studied metric in the literature is the
average error across all entries, (1/mn)Â−A2

F , though recent works have begun to analyze
stronger metrics such as the maximum average error across all columns, (1/m)Â− A2

2,∞
(e.g., Agarwal et al. (2019b, 2021e,d); Agarwal and Singh (2021)), and the maximum
entry-wise error, Â − Amax (e.g., Lee et al. (2016)). Crucially, all of these error bounds
scale with the inverse of poly(pmin). As discussed above, this immediately rules out
settings where pmin = 0, i.e., condition (iii) of MNAR above. Finally, we remark that the
literature studying the asymptotic properties of Â− A (e.g., proving asymptotic normality)
is relatively small. Some notable works on the asymptotic analyses of matrix completion
estimators under MCAR include Chen et al. (2019); Cai et al. (2020); Bhattacharya and
Chatterjee (2021).

■ 4.2.3 Panel Data and Matrix Completion

In Section 4.3, we propose a causal framework for matrix completion that draws inspiration
from the rich and growing literature in econometrics on panel data and matrix completion;
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some relevant works include Amjad et al. (2018, 2019); Arkhangelsky et al. (2019); Bai
and Ng (2020); Fernández-Val et al. (2020); Athey et al. (2021); Agarwal et al. (2019b,
2021e,d,c); Agarwal and Singh (2021). As is common in matrix completion, these works
impose a (approximate) low-rank factor model on the signal matrix (i.e., A), also known as
an interactive fixed effects model, to capture structure across units and time (i.e., the rows
and columns of the matrix, respectively).

Panel data & matrix completion: an overview. As described in Section 4.1, the sparsity
structure considered in these works is one where for each row i, there is a column ji ∈ [n]
such that Dij = 1 for all j < ji and Dij = 0 for j ≥ ji. That is, all entries for a given row i
are observed till some column ji, after which they are all missing. The motivation for such
a sparsity pattern comes from socio-economic policy making where Yij represents unit i’s
potential outcome at time step j under “control”, i.e., if no socio-economic intervention
has yet been applied on unit i. The time steps [1, ji − 1] represent the period when unit i
is under control, and time steps [ji, n] represent the period when unit i has undergone an
intervention. Hence, Yij for j > ji is missing and the goal is to estimate the counterfactual
of what would have happened to unit i had it remained under control during [ji, n]. This
particular setting is also known in the econometrics literature as “synthetic contorls”
Abadie et al. (2010); Abadie and Gardeazabal (2003). The statistical/causal parameter
that is most commonly studied is for a “treated” unit i, to estimate 1

n−ji
∑n

j=ji Yij . That
is, the average potential outcome of unit i under control during the “post-intervention”
period. Most of these works make the additional assumption that each unit either remains
under control for the entire time period under consideration, or undergoes an intervention
at a time step that is common across all units. Athey et al. (2021) is one notable work
that allows for different post-intervention periods for each unit.

Connections to matrix completion with MNAR data. An attractive quality of this literature
is that in some ways it allows for more relaxed conditions on D and P than those considered
in the matrix completion with MNAR data literature discussed earlier, see Ma and Chen
(2019); Yang et al. (2021); Sportisse et al. (2020b,a); Wang et al. (2019). In particular,
the panel data literature allows the entries of D to be correlated, e.g., if Dij = 0, then
Dij ′ = 0 for j ′ > j . Further, minpij is allowed to be 0 and ji is allowed to depend on A.
On the other hand, the sparsity pattern considered in the panel data literature is far more
restrictive compared to the works on matrix completion with MNAR data—as discussed
above, in panel data settings, all columns for a given row are observed till a specific
point, after which they are all missing (i.e., Dij = 1 for all j < ji and Dij = 0 for j ≥ ji).



208 CHAPTER 4. CAUSAL MATRIX COMPLETION

Note that this also implies that P is low-rank. Such a sparsity pattern is unrealistic for
many important applications for matrix completion, including recommendation systems
and sequential decision-making. Further, it is not straightforward to see how the target
statistical/causal parameter 1

n−ji
∑n

j=ji Yij is particularly meaningful outside the synthetic
controls literature. Hence, our aim with this work is to combine the best of both worlds,
where we: (i) allow entries of D to be correlated; (ii) allow minpij = 0; (iii) make no
parametric assumptions about P; (iv) allow P to not be low-rank; (v) allow for general
missingness patterns in the matrix that includes MCAR data as a special case. Further the
target parameter we aim to estimate (in expectation) is each entry Yij for every (i, j) pair.
Also, by formally bridging the panel data literature to more classical applications of matrix
completion such as recommendation systems, we hope this spurs further investigation into
the unexplored connections between these two fields.

Comparison with synthetic interventions. Our proposed framework framework builds upon
the recent work of Agarwal et al. (2021c), called synthetic interventions (SI). SI is a causal
inference method to do tensor completion with MNAR data, where the dimensions of the
order-3 tensor of interest are units, measurements, and interventions. That is, an entry
Yijd of the tensor considered in SI refers to the potential outcome of the i-th unit, its
j-th measurement, under the d-th intervention. Their setup can be made a special case
of ours by effectively flattening the tensor into a matrix, where the rows of the induced
matrix still correspond to units, but a column is a double index for a measurement and an
intervention, i.e., the (i, j, d)-th entry of the tensor corresponds to the (i, (j, d))-th entry of
the induced matrix. Given this simple reduction, we generalize the framework, algorithm,
and theoretical results in Agarwal et al. (2021c) in the following ways. First, we formally
extend the SI framework, to recover matrices under more general missingness patterns
than that considered in Agarwal et al. (2021c). Doing so allows us to apply our framework
to a wider variety of applications such as recommender systems, while the SI framework
was introduced in the context of personalized policy evaluation and synthetic A/B testing.
Third, this work establishes point-wise finite-sample consistency and asymptotic normality
of our proposed SNN algorithm, which was absent in Agarwal et al. (2021c) with respect
to the SI algorithm. Indeed, in the context of the panel data literature, establishing
point-wise asymptotic normality for each unit, (intervention, time)-tuple is of independent
interest.
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■ 4.3 A Causal Framework for Matrix Completion

In this section, we develop a formal causal framework for matrix completion with MNAR
data. In Section 4.3.1, we show how to causally interpret matrix completion with MNAR
data using the language of potential outcomes in Section 4.3.1. We then state and justify
our assumptions in Section 4.3.2, define our causal estimand in Section 4.3.3, and present
our identification result in Section 4.3.4.

■ 4.3.1 Potential Outcomes

We follow the potential outcomes framework of Neyman (1923); Rubin (1974). In particular,
we let the r.v. Yij ∈ R, as defined in Section 4.1.2, denote the potential outcome associated
with each pair (i, j) if it is revealed. For instance, in the case of recommender systems,
Yij can be interpreted as the rating user i would have given to item j had they rated it.
In the context of healthcare for example, Yij could represent patient i’s health metric of
interest (e.g. heart rate) had they been given treatment j . Finally, in the case of panel
data setting, as discussed in Section 4.2.3, Yi,(a,t) can denote the metric of interest for
unit i (e.g. revenue generated, socio-economic indicator), if they would have received the
a-th socio-economic policy at time step t; here, (a, t) represents the j-th column.

If Dij = 1, then by (4.1) we see that we actually do observe the (i, j)-th potential outcome,
i.e. Ỹij = Yij . That is, in the language of potential outcomes, we can interpret D as
the matrix of intervention assignments. Through this perspective, we remark that (4.1) is
an implicit assumption that is known in the causal inference literature as “consistency”
or “stable-unit-treatment-value assumption” (SUTVA). As discussed earlier, the fact that
Y ̸⊥⊥ D (e.g. a user’s preference for a movie can determine whether they rate it) means
that the potential outcomes are not independent of the intervention assignments. This
dependence is known in the causal inference literature as “confounding”. Lastly, as alluded
to earlier, we generalize the standard potential outcomes framework in that a given unit
can receive multiple interventions. Traditionally, it is assumed that a unit receives exactly
one intervention. However, in applications like movie recommendation systems, a user
can “intervene” and rate multiple movies. Lastly, this framework also generalizes panel
data settings, as we allow each unit to receive different interventions at different time
steps; as discussed earlier, it is typically assumed that units are in control for a period of
time, and then some subset of units receive one intervention for the remaining time steps.



210 CHAPTER 4. CAUSAL MATRIX COMPLETION

■ 4.3.2 Assumptions

Below, we state our causal assumptions and then provide their corresponding interpreta-
tions.

Assumption 17 (Low-rank factor model). For every pair (i, j), let

Yij = ⟨ui, vj⟩+ εij ,

where ui, vj ∈ Rr are latent vectors. Equivalently, we say Y = UV T + E , where ui refers
to the i-th row of U ∈ Rm×r , and vj refers to the j-th row of V ∈ Rn×r .

Assumption 18 (Selection on latent factors). We have that for any intervention assignment
D,

E[E |U ,V ,D] = 0

Neighbourhood rows and columns. For the remainder of this work, for a given column j ,
we refer to NR(j) = {a ∈ [m] : Daj = 1} as “neighborhood rows”, i.e., rows where entries
in column j are not missing. Similarly, for a given row i, we refer to NC(i) = {b ∈ [n] :
Dib = 1} as “neighborhood columns”, i.e., columns where entries in row i are not missing.
See Figure 4.5b for a visual depiction of NR(j) and NC(i).

Assumption 19 (Linear span inclusion). Conditioned on D, for a given pair (i, j) and any
I ⊆ NR(j), if |I|≥ µ, then ui lies in the linear row span of UI , i.e., there exists a β ∈ R|I|

such that

ui =
∑

ℓ∈I
βℓuℓ

Interpretation of Assumptions 17 to 19 By the tower law, Assumption 18 implies that
E[E |U ,V ] = 0. This together with Assumption 17 posits that E[Y |U ,V ] is a low-rank
matrix with rank r. As discussed in Section 4.2, this is a standard assumption within
the matrix completion literature. Next, we remark that Assumption 18, coupled with
Assumption 17, implies that

E[Y | U ,V ] = E[Y | U ,V ,D].

That is, the potential outcomes are mean independent of the intervention assignments,
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conditioned on the latent row and column factors. This has been termed as “selection on
latent factors”, see Agarwal et al. (2021c). Similar conditional independence conditions
have been explored in Athey et al. (2021); Kallus et al. (2018). Lastly, given Assumption 17,
it follows that Assumption 19 is rather mild. To see this, suppose span({uℓ : ℓ ∈ I}) = Rr ,
i.e., rank(UI,·) = r. Then, Assumption 19 immediately holds as ui ∈ Rr . More generally, if
the rows of U are randomly sampled sub-gaussian vectors, then span({uℓ : ℓ ∈ I}) = Rr

for any set I holds w.h.p., provided µ ≥ r is chosen to be sufficiently large; see Vershynin
(2018) for details.

■ 4.3.3 Target Causal Estimand

Define

A := E[Y |U ,V ]. (4.4)

Note that given Assumptions 17 and 18, the definition of A in (4.4) is consistent with the
definition of A used in Section 4.1.2. We are now equipped to define our target causal
estimand, which is Aij ; for the remainder, of the paper we focus on a particular pair (i, j),
without loss of generality. Note given Assumptions 17 and 18, we can write

Aij := E[Yij |ui, vj ].

In words, Aij translates as the expected potential outcome for the (i, j)-th pair, conditioned
on its row and column latent vectors (ui, vj ). For instance, returning to recommender
systems, Aij represents the expected rating user i would supply for item j , conditioned
on the latent features that characterize user i and item j . In panel data settings, letting
j = (a, t), Aij represents the potential outcome of unit i had it received the a-th intervention
at time step t.

■ 4.3.4 Identification

The following identification results establishes that each entry of A can be learned from
observable quantities, i.e., from Ỹ . Practically speaking, this means that matrix completion
with MNAR data for any pair (i, j) is possible.

Theorem 4.3.1. Let Assumptions 17 to 19 hold. For a given pair (i, j) and I ⊆ NR(j) with
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|I|≥ µ, suppose β defined with respect to I as in Assumption 19, is known. Then,

Aij =
∑

ℓ∈I
βℓE[Ỹℓj | U ,V ,D].

Interpretation. Theorem 4.3.1 states that despite the missingness pattern being MNAR,
if Assumptions 17 to 19 hold, and given knowledge of the linear model parameter β,
the causal estimand Aij can be expressed in terms of quantities that can be estimated
from observed data, namely E[ỸI,j ]; this is known in the causal inference literature as
“identification”. Note, I is deterministic given D. The key requirement of the missingness
pattern D is that I ⊆ NR(j) is sufficiently large, which is parameterized by µ, i.e., we
require µ ≫ r where r is the rank of A. That is, the number of rows for which column j is
observed is sufficiently large. Thus, Theorem 4.3.1 suggests that the key quantity that
enables the recovery of Aij is β. In Section 4.4, we provide an algorithm to estimate β,
which in turn, allows us to estimate Aij .

■ 4.4 SNN: Matrix Completion with MNAR Data

In this section, we introduce an algorithm, synthetic nearest neighbors (SNN), for matrix
completion with MNAR data. Towards this, we introduce helpful notation that will be used
for the remainder of this work. Again, without loss of generality, we consider imputing
the (i, j)-th entry of the matrix .

Notation. Let AR ⊆ NR(j) and : ⊆ NC(i) denote a subset of rows and columns,
respectively, of Ỹ that satisfy Dab = 1 for all (a, b) ∈ AR× :. We refer to AR and : as
the “anchor rows” and “anchor columns” of pair (i, j), respectively. Collectively, AR and :

form a fully observed sub-matrix of Ỹ ; for ease of notation. We refer to this |AR|×|:|
sub-matrix as S := [Ỹab : (a, b) ∈ AR × :]. See Figure 4.5c for a visual depiction of
AR, :, and S. Note, by construction S is such that if entries from row a are present
in S, then Daj = 1; similarly, if entries from column b are present in S, then Dib = 1
Additionally, let q := [Ỹib : b ∈ :] and x := [Ỹaj : a ∈ AR]. q ∈ R|:| refers to the
columns in row i which correspond to :; similarly, x ∈ R|AR| refers to the rows in column
j which correspond to AR. By construction, all the elements in q and x are not missing.
See Figure 4.5d for a visual depiction of q and x .
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(a) (b) (c) (d)

Figure 4.5: We visually depict the various quantities needed to define the SNN algorithm. Figure
4.5a depicts a particular sparsity pattern in our matrix Ỹ with entry (i, j) missing. Figure 4.5b
depicts NR(j) and NC(i). Figure 4.5c depicts AR, :, and S. Figure 4.5d depicts the SNN algorithm
with K = 1; for K > 1, we partition the rows in S into K mutually disjoint sets.

■ 4.4.1 Algorithm

We now present SNN in Algorithm 1 to impute the (i, j)-th entry. It has K ∈ N and
λ(k) ∈ R for k ∈ [K ] as hyper-parameters.

Algorithm 1 SNN(i, j)

Input: {λ(k) : k ∈ [K ]}, {(:(k),AR(k)) : k ∈ [K ]} with mutually disjoint sets {AR(k) : k ∈
[K ]}.
for k ∈ [K ] do

1. Define S(k) = [Ỹab : (a, b) ∈ AR(k) × :(k)]
2. Compute S(k) ←

∑
ℓ≥1 τ̂

(k)
ℓ û(k)

ℓ ⊗ v̂
(k)
ℓ

3. Compute β̂(k) ←
(∑

ℓ≤λ(k)(1/τ̂ (k)
ℓ )û(k)

ℓ ⊗ v̂
(k)
ℓ

)
q(k)

4. Compute Â(k)
ij ← ⟨x (k), β̂(k)⟩

end for
4. Output Âij ← 1

K
∑K

k=1 Â
(k)
ij

Note, for ease of notation, in Algorithm 1 we suppress the dependence on i and j in the
definitions of {(:(k),AR(k)) : k ∈ [K ]}, S(k), β̂(k), q(k), and x (k). That is, these quantities
will change depending on which (i, j)-th entry of the matrix we aim to impute. We continue
to suppress this dependence for the remainder of the paper. For a visual depiction of
the SNN algorithm for K = 1, refer to Figure 4.5d. For K > 1, we simply re-run the
SNN algorithm seperately for the K disjoint subsets {AR(k) : k ∈ [K ]}, and take the
average of the estimates Â(k)

ij for k ∈ [K ], produced by each iteration.

Interpretation. SNN draws inspiration from the popular K Nearest Neighbour (KNN)
algorithm, described in Section 4.2. However, the key assumption underlying KNN is that
there do exist K rows that are close to identical to the i-th row, with respect to some
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pre-defined metric. However, it is not necessary that these K rows exist even for a rank 1
matrix. As a simple example, consider a matrix M ∈ Rm×n where Mi· = [i, 2i, . . . , ni]. By
construction M is rank 1, but for any row, there does not exist any other row that is close
to it in a mean squared sense; hence, it has no nearest neighbours.

The SNN algorithm overcomes this hurdle by first constructing K “synthetic” neighbors
of row i from NR(j), where the k-th synthetic neighboring row is formed by a linear
combination, defined by β̂(k), of the rows in AR(k). Then, similar to KNN, SNN estimates
Aij by taking an average of the observed outcomes for column j that are associated with
the K synthetic neighbors of row i. In words, β̂(k) is precisely the set of estimated linear
weights that best recreates the observed outcomes of row i from the rows in AR(k), using
observations from the columns in :(k). This idea of matching rows via a linear re-weighting
takes inspiration from the synthetic controls literature—see Section 4.2.3 for details. To
ensure the linear fit is appropriately regularized, a spectral sparsity constraint is imposed
on S(k), which is parameterized by λ(k). This constrained regression is known in the
literature as principal component regression (PCR) (see Agarwal et al. (2019b, 2021e,d,c);
Agarwal and Singh (2021)). We note that in lieu of requiring that there exist K close
neighbouring rows as in KNN, SNN requires that the i-th row lies in the linear span of the
rows in AR(k); that is, given Assumption 19 holds, we require |AR(k)|≥ µ. Note that for
the matrix M described above, for any particular row, all other rows satisfy this linear
span inclusion condition, i.e., µ = 1 since M is rank 1.

Choosing λ(k) There exist a number of principled heuristics to select the hyper-parameter
λ(k), and we name a few here. As is standard within the statistics and ML literatures, the
most popular data-driven approach is to use cross-validation. Another common approach
is to use a universal thresholding scheme that preserves the singular values above a
precomputed threshold (see Gavish and Donoho (2014); Chatterjee (2015)). Finally, a
human-in-the-loop approach is to inspect the spectral characteristics of S(k) and choose
λ(k) to be the natural “elbow” point that partitions the singular values into those of large
and small magnitudes; in such a setting, the large magnitude singular values, which
typically correspond to signal, are retained while the small magnitude singular values,
which are often induced by noise, are filtered out. See the exposition on choosing the
hyper-parameter for PCR in Agarwal et al. (2019b, 2021e,d,c).

Another Perspective on SNN. SNN imputes Aij by building synthetic neighbors of row i
from NR(j). In Proposition 1, we demonstrate that Aij can be equivalently estimated by
building synthetic neighbors of column j from NC(i) through a simple “transposition” of
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Algorithm 1.

Proposition 1. Consider any k ∈ [K ] and let β̂(k) be defined as in Algorithm 1. Further,
let

α̂ (k) = (
∑

ℓ≤λ(k)

(1/τ̂ (k)
ℓ )v̂ (k)

ℓ ⊗ û
(k)
ℓ )x (k).

Then,

⟨x (k), β̂(k)⟩ = ⟨q(k), α̂ (k)⟩.

■ 4.4.2 Finding Anchor Rows and Columns

Note the SNN algorithm takes as input {(:(k),AR(k)) : k ∈ [K ]}. However, the question
remains that given the matrix D, how to find these anchor rows and columns, with the
additional constraint that the K set of anchor rows {AR(k) : k ∈ [K ]} are mutually joint.
In Section 4.4.2, we provide a practical algorithm AnchorSubMatrix in Algorithm 2 to
find {(:(k),AR(k)) : k ∈ [K ]} for a given pair (i, j). In Section 4.4.2, we discuss some
motivating applications where anchor rows and columns are naturally induced.

Algorithmically Finding Anchor Rows and Columns via Maximum Biclique Search

In particular, we reduce our task of finding anchor rows and columns to a well-known
problem in the graph theory literature known as finding “maximum bicliques”. We briefly
explain how to do this simple reduction. We first introduce some standard notation from
graph theory. Let G = (V1, V2, E ) denote a bipartite graph, where (V1, V2) are the disjoint
vertex sets and E ∈ V1 × V2 is the edge set, i.e., (v1, v2) ∈ E if there an edge between v1
and v2. Another way of representing G is via a bipartite incidence matrix B ∈ {0, 1}|V1|×|V2|

(or adjacency matrix). In particular, Bij = 1 if (vi, vj ) ∈ E . If a sub-graph of G is complete,
also called a biclique, then we denote it as BC ⊂ G, i.e., there is an edge between any
pair of nodes (v1, v2) ∈ BC. Now to see how to do the reduction between finding anchor
rows and columns to the maximum biclique problem, recall D ∈ {0, 1}m×n is our matrix of
intervention assignments. Note, D immediately induces a bipartite graph with |V1|= m
and |V2|= n, i.e., the vertex sets V1 and V2 correspond to the rows and columns of D,
respectively. We define E as follows, (vi, vj ) ∈ E if Dij = 1. In other words, the incidence
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matrix B ∈ {0, 1}m×n induced by this graph is exactly equal to D, i.e., Bij = 1 if and
only if Dij = 1.

Given this reduction, we now describe how to practically implement the AnchorSubMatrix al-
gorithm. We assume access to two algorithms: createGraph and maxBiclique. The
former, createGraph : B → G, takes as input a bipartite incidence matrix B (or adjacency
matrix) and returns a bipartite graph G; we note that the Python package NetworkX is an
excellent resource to generate such graphs. The latter, maxBiclique : G → {BC(ℓ)}ℓ∈[L],
takes as input a bipartite graph G and returns a set of L maximal bicliques {BC(ℓ)}ℓ∈[L];
we refer the interested reader to Alexe et al. (2003); Zhang et al. (2014); Lyu et al. (2020);
Lu et al. (2020) and references therein for example algorithms.

Algorithm 2 AnchorSubMatrix(i, j)
Input: createGraph, maxBiclique
1. Find NR(j) and NR(i)
2. Assign B ← [Dab : (a, b) ∈ NR(j)× NR(i)]
3. Generate G ← createGraph(B)
4. Compute {BC(ℓ) = (V(ℓ)

1 , V(ℓ)
2 , E (ℓ))}ℓ∈[L] ← maxBiclique(G)

5. Assign BC∗ = (V∗1, V∗2, E ∗)← arg max min{|V(ℓ)
1 |, |V

(ℓ)
2 |} over ℓ ∈ [L]

6. Output AR← V∗1 and : ← V∗2

Given (:,AR) from Algorithm 2, we can construct {(:(k),AR(k)) : k ∈ [K ]} as follows:
First, we assign :(k) ← : for every k , i.e., the anchor columns for each subgroup k are all
identically equal to :. Second, we (randomly) partition AR into K subgroups of equal size
and then assign AR(k) as the k-th subgroup of AR such that |AR(k)|∼ |AR|/K ; in doing
so, we ensure that {AR(k) : k ∈ [K ]} are mutually disjoint sets. Note, for the purposes of
theoretical analysis, we do not necessarily need to have :(k) be identical across all K . In
Section 4.5, we show how the estimation error of SNN scales with |AR(k)| and |:(k)|. In
short, our theoretical results suggest that we want {(:(k),AR(k)) : k ∈ [K ]} to be large on
average; It is sufficient that we choose |:(k)|, |AR(k)| such that mink∈[K ]{|:(k)|, |AR(k)|} is
as large as possible; this is essence what Step 5 of Algorithm 2 is doing.

Applications where Anchor Rows and Columns are Naturally Induced

In this section, we discuss the typical sparsity pattern in recommender systems and
sequential decision-making paradigms, which include panel data settings, reinforcement
learning, and sequential A/B testing. We argue why these applications have a sparsity
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(a) Recommender systems. (b) Panel data. (c) Sequential decision-making.

Figure 4.6: In both 4.6a, 4.6b, and 4.6c, observed entries are shown in yellow while unobserved entries are shown in
white. Further, in 4.6c, the columns are indexed by (time, policy) tuples; here, tℓ and pℓ denote the ℓ-th time period and
policy, respectively.

pattern where anchor rows and columns are naturally induced.

Recommender systems. As stated earlier, one of the key motivating applications for
matrix completion is recommender systems. It has been noted in Ma and Chen (2019)
that real-world recommender systems exhibit block-sparse structure; further the sparsity
pattern is such that there is dependent missingness (i.e., Dij ̸⊥⊥ Dab and zero probability
of observing certain entries (i.e., pmin = 0). An extreme version of this selection-bias
would induce a sparsity structure as shown in Figure 4.6a. Within the context of movie
recommender systems, a narrative for this missingness pattern is one where users only
watch films that belong to genre(s) that they like and nothing else. However, in many
recommender system applications, there exists a dense sub-matrix which corresponds
to items that all users commonly rate—this corresponds to the rightmost columns of
Figure 4.6a. This could occur if say a platform ask new users to indicate a subset of
films that they enjoy. Indeed, this is a common practice for online platforms such as
Hulu, Netflix, StitchFix to quickly learn a new user’s preferences in order to provide
a “warm-start” to their recommendation engine. Alternatively, many a time there are
a small subset of iconic films (e.g., Titanic or Star Wars) that a large majority of users
have watched. In this example in Figure 4.6a, all users can be used as anchor rows,
and the set of items that are commonly rated across all users can be used as anchor
columns. Further, we remark that in this example P is not low-rank, thus violating the key
assumption required to learn pij in Ma and Chen (2019); Cai et al. (2020); Bhattacharya
and Chatterjee (2021).

Sequential decision-making. As described earlier, in sequential decision-making, data is
collected across units (e.g., individuals, customer types, geographic locations) over time in
a sequential manner, where each unit is likely to be observed under a single or small
set of interventions out of many at any time period. Many sequential decision-making
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problems can be phrased this way, including (i) panel data settings in econometrics; (ii)
reinforcement learning and its variants (e.g., online learning, contextual bandits); (iii)
sequential A/B testing. In (ii), an intervention denotes both the action picked and the
observed state for that given time period; meanwhile in (iii), platforms run experiments on
different customer types in a sequential and/or adaptive manner over time. The induced
matrix in these settings has rows index units and columns index time-intervention pairs. It
is common in many of these sequential decision-making settings that there is a time period
when all units are under the same intervention. This is usually done to collect “control”
data about each unit to establish its baseline. For example, in an e-commerce setting,
companies commonly estimate the baseline engagement level of a customer to understand
the treatment effect of a discount policy; similarly, in clinical trials, pharmaceutical
companies collect health metrics of patients to establish the treatment effect a particular
therapy has. Further, the assumption that such a control period exists is standard in the
synthetic controls literature. For an illustration of the sparsity pattern in the induced
matrix with a control period, see Figure 4.6b. Hence, this “control” period in sequential
decision-making can serve as our anchor columns, and all units can serve as anchor rows.

■ 4.5 Theoretical Results

Below, we establish the statistical properties of the SNN algorithm. Without loss of
generality, we consider a specific pair (i, j). Recall from our discussion earlier, we
suppress dependencies on (i, j), e.g., all anchor rows and columns AR(k), :(k) are defined
with respect to (i, j). In Section 4.5.1, we state additional assumptions required to establish
the theoretical results. In Sections 4.5.2 and 4.5.3, we establish finite-sample consistency
and asymptotic normality of the SNN algorithm for a given entry (i, j). In Sections 4.5.4
and 4.5.5, we discuss our assumptions and theoretical results, respectively.

Notation. For every vector v ∈ Ra, let vp denotes its ℓp-norm. For the remainder of this
work, let E = {U ,V ,D}, i.e., the collection of latent factors and the observed missingness
pattern. Recall the definition of S(k), AR(k) and :(k) from Section 4.4.1. Moreover, for
every k ∈ [K ], we denote the SVD of E[S(k) | E ] as

E[S(k) | E ] =
r(k)∑

ℓ=1
τ (k)
ℓ u(k)

ℓ ⊗ v
(k)
ℓ ;
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here, r(k) = rank(E[S(k) | E ]). We denote U (k) ∈ R|AR(k)|×r(k) and V (k) ∈ R|:
(k)|×r(k) as the

matrices of left and right singular vectors, respectively, i.e., u(k)
ℓ ∈ R|AR(k)| and v (k)

ℓ ∈ R|:
(k)|

form the ℓ-th columns of U (k) and V (k), respectively.

■ 4.5.1 Additional Assumptions

We state additional assumptions required to establish guarantees for the SNN algorithm.
In Section 4.5.4 we provide interpretations for Assumptions 22 and 23; Assumptions 20
and 21 are relatively standard and self-explanatory. Below, k is indexed over [K ], where
recall K is a hyper-parameter of the SNN algorithm.

Assumption 20 (Sub-gaussian noise). Conditioned on E , εij are independent sub-gaussian
mean-zero r.v.s with E[ε2

ij ] = σ2
ij ≤ σ2 and εij ψ2≤ Cσij for some constants C > 0 and

σ > 0.

Assumption 21 (Bounded expected potential outcomes). Conditioned on E , Aij ∈ [−1, 1].3

Assumption 22 (Well-balanced spectra). Conditioned on E and given a pair (i, j) as well
as subgroup k, the r(k) nonzero singular values τ (k)

ℓ of E[S(k) | E ] are well-balanced, i.e.,
there exist universal constants c, c′ > 0 that satisfy

τ (k)
r(k)/τ

(k)
1 ≥ c, E[S(k) | E ]2F ≥ c′|AC(k)|·|AR(k)|.

Assumption 23 (Subspace inclusion). Conditioned on E and given a pair (i, j) as well as
subgroup k,

E[x (k) | E ] ∈ colspan(E[S(k) | E ]),

where we recall x (k) is defined in Section 4.4.1.

■ 4.5.2 Finite-sample Consistency

The following result establishes that the SNN algorithm outputs entry-wise consistent
estimates of A, i.e., we establish consistency in ·max-norm. To simplify notation, we will
henceforth absorb dependencies on σ into the constant within Op(·). That is, we assume
there exists an absolute constant C ≥ 0 such that σ ≤ C .

3The precise bound [−1, 1] is without loss of generality, i.e., it can be extended to [a, b] for any a, b ∈ R
with a ≤ b.
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Theorem 4.5.1. Conditioned on E , for a given pair (i, j) and subgroup k ∈ [K ], suppose
|AR(k)|≥ µ and let Assumptions 17 to 23 hold. Further, let K = o(mink |AC(k)|10|AR(k)|10).
Finally, for each k, let λ(k) = rank(E[S(k)]), where λ(k) is defined as in Algorithm 1. Then,

Âij − Aij = Op



 1
K






K∑

k=1

(r(k))1/2

|AC(k)|1/4
+

K∑

k=1

(r(k))3/2β̃(k)
1log1/2(|AC(k)||AR(k)|)

min{|AC(k)|1/2, |AR(k)|1/2}
+
[ K∑

k=1
β̃(k)2

2

]1/2





 .

where β̃(k) = PU (k)β(k) is the projection of β(k) onto the subspace spanned by the columns
of U (k). We assume β̃(k)

2≥ c, for some absolute constant c ≥ 0.

Corollary 4.5.1. Suppose |:(k)|, |AR(k)|= N for all k ∈ [K ]. Let βmax,2 = maxk β̃(k)
2,

βmax,1 = maxk β̃(k)
1, and rmax = maxk r(k). Let the setup of Theorem 4.5.1 hold. Then,

Âij − Aij = Op

(
r1/2max
N1/4 + r3/2max · βmax,1 · log1/2(N)

N1/2 + βmax,2√
K

)

Note, Theorem 4.5.1 does not require N →∞ to establish consistency of the SNN estima-
tor. Rather, that |AR(k)|, |:(k)| is growing on average (ignoring logarithmic factors and
dependence on β(k), r(k), σ ). However, we state Corollary 4.5.1 to help further interpret
our results in Section 4.5.5.

Implication for matrix completion with MCAR data. Proposition 2 below shows that
SNN provides uniform entry-wise consistency for matrix completion with MCAR data as a
special case if p, the probability of observing an entry, is sufficiently large.

Proposition 2 (SNN for matrix completion with MCAR data). Let the setup of Theorem
4.5.1 hold. Further, let m = n = L. Assume each entry (i, j) is revealed with uniform
probability p ∈ (0, 1], independent of everything else. Fix any δ > 0. Let

p ≥
(
Q
L

) 1
Q2

with Q = C ∗δ−6, where C ∗ is a function only of β(k), r(k) for k ∈ [K ], σ , and log(L).

Then with probability at least 1− C
L8 , where C > 0 is an absolute constant, there exists

sufficient anchor rows and columns, AR(k), :(k), such that uniformly for all (i, j) ∈ [m]× [n],

Âij − Aij = Op(δ).
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Hence, for any fixed p > 0, we have that Âij −Aij = o(1) uniformly for all (i, j) ∈ [m]× [n]
as L → ∞.

■ 4.5.3 Asymptotic Normality

The following establishes that the entry-wise estimate Âij of the SNN algorithm is asymp-
totically normal around the target causal parameter Aij .

Theorem 4.5.2. For a given pair (i, j) and subgroup k, let the setup of Theorem 4.5.1
hold. Define

(σ̃ (k))2 :=
∑

ℓ∈AR(k)

(β̃(k)
ℓ σℓj )2

Further, let the following conditions holds

(i) K → ∞;

(ii) |AC(k)|, |AR(k)|→ ∞ for each k;

(iii) r(k)β̃(k)2
1log

(
|AC(k)||AR(k)|

)
= o(min{|AC(k)|, |AR(k)|}) for each k;

(iv)

K∑

k=1

(
(r(k))1/2

|AC(k)|1/4
+ (r(k))3/2β̃(k)

1log1/2(|AC(k)||AR(k)|)
min{|AC(k)|1/2, |AR(k)|1/2}

)
= o




[ K∑

k=1
(σ̃ (k))2

]1/2

(4.5)

Then conditioned on E ,

K (Âij − Aij )
[∑K

k=1(σ̃ (k))2
]1/2

d−→ N (0, 1) .

Remark 4.5.1. Recall the notation in Corollary 4.5.1. Then one can easily verify a
sufficient property for condition (iii) in Theorem 4.5.2 is

rmax · β2
max,1 · log(N) = o(N)



222 CHAPTER 4. CAUSAL MATRIX COMPLETION

Further, let σ̃min = mink σ̃ (k). Then one can easily verify a sufficient property for condition
(iv) in Theorem 4.5.2 is

K = o
(
σ̃min · min

{
N1/2

rmax
, N
r3max · β2

max,1 · log(N)

})
(4.6)

If we ignore dependence on logarithmic factors and on βmax,1, rmax, σ̃min, (4.6) essentially
requires that

K = o(N1/2).

Practically, this can be interpreted as saying that to ensure valid confidence intervals,
the number of synthetic nearest neighbours, i.e., K , we construct in SNN cannot scale too
quickly relative to the number of anchor rows and columns, i.e., |AR(k)|, |AC(k)|.

■ 4.5.4 Discussion of Assumptions

Interpretation of Assumption 22. Assumption 22 requires that the nonzero singular
values of E[S(k) | E ] are well-balanced. Such an assumption is quite standard with the
econometrics factor model and matrix completion literature. For example, it is analogous to
incoherence-style conditions; see Assumption A of Bai and Ng (2020) and the discussion
of theoretical results in Agarwal et al. (2021e). It is also closely related to the notion of
pervasiveness, see Proposition 3.2 of Fan et al. (2018). Indeed, the assumption that there
is a gap between the top few singular values of a matrix of interest, and the remaining
singular values has been widely adopted in the econometrics literature of large dimensional
factor analysis dating back to Chamberlain and Rothschild (1983). Crucially though, these
works within econometrics (e.g. Bai and Ng (2020), Fan et al. (2018), Chamberlain and
Rothschild (1983)) aim to accurately estimate the factors themselves, which require making
additional assumptions about the spectra of the matrix of interest to ensure these factors
are uniquely identifiable. Instead we simply require that these low-rank factors exist, but
do not explicitly require accurately estimating them. Assumption 22 has also been shown
to hold with high-probability for the canonical probabilistic generating process used to
analyze probabilistic principal component analysis in Bishop (1999) and Tipping and
Bishop (1999); here, the observations are assumed to be a high-dimensional embedding of
a low-rank matrix with independent sub-Gaussian entries (see Proposition 4.2 of Agarwal
et al. (2021e)). Within the matrix/tensor completion literature, for an overview of where
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the well-balanced spectra assumption is utilized, see Cai et al. (2021) and references
therein. Practically speaking, Assumption 22 can be empirically validated by plotting
the spectrum of S(k), defined in Algorithm 1; if there is a natural “elbow” point in the
singular spectrum of S(k), i.e., there are a relatively small number of singular values that
have a large and approximately equal magnitude, and the remaining singular values
are significantly smaller, then Assumption 22 is likely to hold. For further discussion of
this empirical robustness check, please refer to the related discussion in Agarwal et al.
(2021c).

Interpretation of Assumption 23. Recall from Algorithm 1 that we learn the model
β̂(k) by regressing q(k) on S(k). Â(k)

ij is then estimated by applying the model β̂(k) on
the outcomes in x (k) (i.e., the entries in the j-th column of the rows AR(k)). The key
question that remains is why would a model learned between q(k) and S(k), generalize
well to accurately estimate A(k)

ij using ⟨x (k), β̂(k)⟩. Normally, in statistical learning, such
generalization requires making distributional assumptions about the training data (i.e.,
S(k)) and the testing data (i.e., x (k)). For example, each column of S(k) and x (k) are sampled
i.i.d. However, we do not want to make such an assumption as it is unrealistic in setting
such as recommendation systems, e.g., the ratings users give different movies is likely
to be neither identically nor independently distributed. Indeed, by conditioning on E ,
we are implicitly conditioning on U and V , which requires our analysis to be instance
dependent, i.e., has to hold for the specific sampling of the latent factors U and V . To
circumvent making any distribution assumptions, we make the natural assumption that
in expectation, x (k) lies within the linear span of S(k). Such a condition is necessary as
well for generalization, e.g., if every entry of E[S(k) | E ] is equal to 0, then no meaningful
model β̂(k) can learned. Such an assumption has also been explored in Agarwal et al.
(2021d,c); Agarwal and Singh (2021). In particular, in Agarwal et al. (2021c) the authors
provide a data-driven hypothesis test to verify when such a condition holds.

■ 4.5.5 Discussion of Results

To ease the discussion of the interpretation of the results, we will ignore dependence on
logarithmic factors, and β(k), r(k), σ .

Sample complexity. Note that even if Dij = 1, estimating Aij is not straightforward; we
never get to observe Aij , rather we only observe Yij , where Yij = Aij + εij . That is, even if
Dij = 1, our observation of Aij is corrupted by noise and we only get a single sample of it.
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Remarkably, despite having access to (at most) a single noisy sample of Aij , the estimate
Âij produced by the SNN algorithm is consistent and asymptotically normal around Aij .
Of course, this is assuming a low-rank factor model and a suitable observation pattern.
Hypothetically, if we get K independent noisy samples of Aij , denoted by Y (1)

ij , . . . , Y
(K )
ij ,

the maximum likelihood estimator would be the empirical mean, 1
K
∑K

k=1 Y
(k)
ij . In this

hypothetical scenario, this empirical mean would concentrate around Aij with error scaling
as O(K−1/2), i.e., with this estimation procedure to obtain an additive error of O(δ), we
would need K = Ω(δ−2) independent copies.

Now in comparison to the hypothetical scenario above where we have access to K
independent samples, Corollary 4.5.1 effectively establishes that with access to at most
N2 ×K observations, the error of the SNN estimator scales as O(max(N−1/4, K−1/2)); this
is assuming |:(k)|, |AR(k)|= N for all k ∈ [K ], as in Corollary 4.5.1. This implies for any
δ > 0, Aij can be estimated to within an additive error of O(δ), if N = Ω(δ−1/4) and
K = Ω(δ−2). Hence, compared to if we had K independent noisy samples of each Aij , we
pay an additional cost of N2 in terms of the number of samples needed, and N−1/4 in
terms of the estimation error rate even though we either do not observe a sample of Aij
(i.e., it is missing), or only observe a single, noisy instantiation of it in Ỹij . That is, to
obtain estimation error of O(δ), it requires O(δ−2 × δ−4) observations (across different
entries).

Further, in the hypothetical scenario where we get K independent noisy copies for each
(i, j), if we wanted to estimate Aij to within error O(δ) for all (i, j), this would require
m× n × K observations, with K = Ω(δ−2). In contrast, for SNN, if we assume that for all
(i, j), we can use the same set of anchor rows and columns, i.e., {|:(k)|, |AR(k)|}k∈[K ] can be
chosen to be the same for all (i, j), then one can easily verify that the number of observations
we need to recover each Aij to within error O(δ) is at most N2×K +m×N+n× (N×K ),4

with N = Ω(δ−1/4) and K = Ω(δ−2). See Figure 4.7 for a visual depiction of the
observation pattern for which this holds. Thus, for any fixed δ > 0, we can recover every
entry Aij to within additive error O(δ), with access to only O(m+ n) observations, rather
than O(m× n) observations as would be naively required.

Connections to causal transportability, transfer learning, learning with distribution
shift. We note that this problem of generalizing well without making an i.i.d assumption
is known by a variety of terms across many fields of study; these include “causal
transportability”, “transfer learning”, “learning with distribution shift”. Given that subspace

4Technically, we only need N2 × K + (m−N − K )×N + (n − N)× (N × K ).
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Figure 4.7: Sparsity pattern for which minimum number of observations required for entry-wise
recovery.

inclusion, i.e., Assumption 23 holds, we show that generalization is possible without
making any distributional assumptions about the underlying signal matrix A. Indeed, our
theoretical results in Theorem 4.5.1 and 4.5.2 can be interpreted as point-wise out-of-
sample generalization error bounds, which are distribution free (i.e., instance dependent).
This might be of independent interest.

■ 4.6 Experiments

The objective of this section is to compare the imputation accuracy of SNN against the state-
of-the-art matrix completion algorithms for MNAR data. We describe these algorithms
in Section 4.6.1. We do two case studies. In Section 4.6.2, we apply these various
algorithms in the setting of recommender systems with different missingness patterns. In
Section 4.6.3, we do the same but using data from a classic panel data case study in the
econometrics literature called “California Prop 99” Abadie et al. (2010).

■ 4.6.1 Benchmark Matrix Completion Algorithms

In particular, we compare two types of algorithms for matrix completion against SNN; we
choose these benchmarks to be in line with those considered in Ma and Chen (2019). The
first group of algorithms does not account for entries being MNAR; these include PMF (Mnih
and Salakhutdinov (2008)), SVD (Funk (2006)), SVD++ (Koren (2008)), softImpute (Hastie
et al. (2015)), and KNN (Lee et al. (2016)); we remark that the algorithm proposed in Athey
et al. (2021) is similar to softImpute with the addition of separate fixed effects terms. In
particular, both the algorithm design and associated analysis of these algorithms is for
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MCAR data. In contrast, the second group does account for the limited MNAR setting as
described in Section 4.2.2; these include MaxNorm (Cai and Zhou (2016)), ExpoMF (Liang
et al. (2016)), and WTN (Srebro and Salakhutdinov (2010)).

With the exception of ExpoMF, we further consider IPW-variants of the other benchmark
algorithms, i.e., for each algorithm, we first de-bias the loss function given in (4.3) via
propensity scores. We do not do so with ExpoMF as their algorithm does not lend itself
to be de-based via propensity scores in a straightforward manner (also see Ma and
Chen (2019)).The propensity scores are estimated in two ways, which are in line with
the MAR and limited MNAR setting described in Section 4.2.2. (i) MAR setting: We
provide meaningful additional covariates (Xi, X̃j ) for row i and column j and use logistic
regression to learn p̂ij ; if a matrix completion algorithm is de-biased in this way, we add
LR in front of it, e.g., LR-PMF means the PMF algorithm is used to estimate Â and the loss
function is de-biased using logistic regression. (ii) Limited MNAR setting: We do not
provide additional covariates and directly estimate p̂ij using the observed mask matrix
D; this is done using the 1bitMC algorithm in Davenport et al. (2014) and algorithms
de-biased in this manner has a prefix of 1bitMC added to them.; this approach to de-bias
MNAR data is in line with what is proposed in Ma and Chen (2019); Yang et al. (2021);
Bhattacharya and Chatterjee (2021).

We consider two error metrics, root mean-squared-error (RMSE) and mean-absolute-error
(MAE). For all benchmark algorithms, we use 5-fold cross validation to tune their hyper-
parameters through grid search for every error metric, i.e., for each benchmark algorithm,
we find its best performing hyper-parameters with respect to RMSE and MAE on the
validation set and report the error metric-specific hyper-parameters on the test set for
each error metric. For SNN, we choose K = 1 and λ(1) as per Gavish and Donoho (2014),
i.e., we do not tune the hyper-parameters of SNN nor do we optimize it for each error
metric. We emphasize that only the algorithms with the LR prefix use the additional row
and column covariates Xi, X̃j .

■ 4.6.2 Recommendation Systems

We begin with recommendation systems, which is arguably the canonical matrix completion
application. Through the recommendation systems setting, we present two MNAR
missingness patterns—one obeys the standard assumptions on MNAR in the literature
(which we often refer to as limited MNAR) while the other considers a more general
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MNAR setting. To better understand the effect of the underlying mechanism which leads to
missingness on each algorithm’s ability to perform imputation, we consider the “noiseless”
case, i.e., Ỹij = Aij if Dij = 1 and Ỹij = ⋆ otherwise. We study the effect of additional
noise εij in the panel data setting in Section 4.6.3.

Limited MNAR Setting: Positivity & Independent Missingness

In our first illustration, our observation pattern reflects the self-selection bias phenomena
where most users tend to provide ratings if they particularly liked or disliked an item.
However, they are much less inclined to provide a rating for an item that they are lukewarm
about. Our simulated setup also consists of “core users” and “core movies”. We use core
users to represent movie fanatics or critics, for instance, who provide explicit feedback
for a significant number of films. In the setting of movie recommendations, we use core
items to represent iconic movies such as Star Wars or Titanic that have influenced future
films and popular culture, and are largely viewed by the general audience. These can
also represent the subset of items that online platforms such as Hulu, Netflix, Stichfix
display to new users when prompting for their preferences.

Experimental setup. We consider m = 80 users and n = 80 movies. We choose the
dimension of the latent space as r = 5. We generate the latent user matrix U ∈ Rm×r

as follows: (i) we first choose mcore = 20 core users and construct U0 ∈ Rmcore×r

by sampling entries i.i.d. from a standard normal distribution; (ii) next, we construct
U1 = BU0 ∈ R(m−mcore)×r , where the entries in B ∈ R(m−mcore)×mcore are sampled i.i.d. from
a Dirichlet distribution, which ensures that the new factors lie in the same intervals as the
factors in U0. In doing so, every row of U1, representing the latent factors corresponding
to the “standard” users, is a linear combination of that of core users U0, i.e., every
standard user can be expressed as a weighted combination of core users. We then define
U = [U0,U1] such that the first mcore rows of U correspond to the core users. We construct
V = [V0,V1] ∈ Rn×r similarly, where V0 ∈ Rncore×r and V1 ∈ R(n−ncore)×r represent the
matrix of latent factors associated with core movies and standard movies, respectively;
here, we choose ncore = 20. We form A = UV T ∈ Rm×n and scale the values to lie within
the interval [1, 5]; by construction, A is a low-rank matrix.

Finally, we generate user and movie covariates matrices X = UQ1 ∈ Rm×3 and X̃ =
V Q2 ∈ Rn×3, where the entries in Q1 ∈ Rr×3 and Q2 ∈ Rr×3 sampled i.i.d. from a
standard normal N (0, 1); additionally, we normalize the columns in Q1 and Q2 to have
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unit ℓ2-norm.

Next, we describe our generative model for the propensity matrix P ∈ Rm×n. Without
loss of generality, we denote Ccore := {(i, j) : i ≤ mcore, j ≤ ncore} as the subset of core
users and core movies, Cuser := {(i, j) : i ≤ mcore, j > ncore} as the subset of core users
and standard movies, Citem := {(i, j) : i > mcore, j ≤ ncore} as the subset of standard users
and core movies, and Cstandard := {(i, j) : i > mcore, j > ncore} as the subset of standard
users and standard movies. These will represent our four cohorts of interest. Next, for
some t ∈ (1, 5), κij > 0, and αij ∈ (0, 1],

pij =





κij · α

Aij−1
ij , if Aij ∈ [1, t]

κij · α
5−Aij
ij , if Aij ∈ (t, 5].

In our setting, we choose our threshold t = 2.3. Here, αij is a parameter that controls
the MNAR effect: αij = 1 is MCAR while αij → 0 only reveals 1 and 5 rated movies.
We choose αij = 0.7 for (i, j) ∈ Ccore, αij = 0.35 for (i, j) ∈ Cuser, Citem, and αij = 0.1 for
(i, j) ∈ Cstandard. For every (i, j) pair, κij is set so that the expected number of revealed
ratings within the cohort is equal to some value. We choose the expected number of
observations within Ccore as 90%, within Cuser as 70%, within Citem as 70%, and within
Cstandard as 5%. This sampling process ensures the two key assumptions in the limited
MNAR setting of the entries of D being independent and pmin > 0 are satisfied. See
Figure 4.1b for a visual depiction of empirical sparsity pattern under this missingness
mechanism.

Results. In the following simulations, we obey the generative process above. In particular,
we sample A and P once, as well as X and X̃ , and perform 10 experimental repeats
where the only randomization lies in the sparsity pattern, i.e., we observe 10 independent
realizations of D. We report the average RMSEs and MAEs, as well as their respective
standard deviations, over the 10 experimental runs in Table 4.1. We find that with respect
to MAE, SNN achieves the best result along with MaxNorm (and its variants); with respect
to RMSE, SNN is a close second with SVD++ (and its variants), after MaxNorm (and its
variants). Although positivity and independence between entries in D are upheld, we
remark that debiasing via 1bitMC and LR- do not always yield stronger results, e.g., see
PMF and softImpute.
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A More General MNAR Setting: Violating Positivity & Independence Assumptions

In this simulation, we violate two key assumptions in the current literature on MNAR data:
(i) positivity and (ii) independence between the entries in D. Towards this, we continue
the notion of core movies, for which all users provide ratings. For the remaining movies,
users only provide ratings if a movie belong to their favorite genre. This deterministically
sets every entry in P (and thus D) to either 0 or 1, and correlates the entries in D, which
yields a sparsity pattern similar to that shown in Figure 4.6a. See Figure 4.1c for a
visual depiction of empirical sparsity pattern under this missingness mechanism.

Experimental setup. In particular, we consider m = 80 users and n = 80 items. We
choose the dimension of the latent space as r = 5. We generate the latent user matrix
U ∈ Rm×r by sampling entries i.i.d. from a standard normal distribution. To generate the
latent item matrix V ∈ Rn×r , we first choose ncore = 30 core items (to be defined in greater
detail below) and construct V0 ∈ Rncore×r by sampling entries i.i.d. from a standard normal.
Next, we construct V1 = BV0 ∈ R(n−ncore)×r , where the entries in B ∈ R(n−ncore)×ncore

are sampled i.i.d. from a Dirichlet distribution. In doing so, every row of V1 is a linear
combination of rows in V0, i.e., every item can be expressed as a weighted combination of
core items. We then define V = [V0,V1] such that the first ncore rows of V correspond
to the core items. We form A = UV T ∈ Rm×n and scale the values to lie within the
interval [1, 5]. Finally, we generate user and item feature matrices X = UQ1 ∈ Rm×10

and X̃ = V Q2 ∈ Rn×10, where the entries in Q1 ∈ Rr×10 and Q2 ∈ Rr×10 sampled i.i.d.
from a standard normal N (0, 1); additionally, we normalize the columns in Q1 and Q2 to
have unit ℓ2-norm. We generate higher dimensional covariates X and X̃ to see if improves
the relative performance of the MAR algorithms, denoted by the prefix LR, which use this
additional information to estimate the propensities.

To describe the generating process for the observation pattern D, we begin by providing
an interpretation of the above quantities. First, we interpret r as the number of latent
genres. In turn, the (i, k)-th entry in U can be interpreted as user i’s preference for genre
k ; similarly, the (j, k)-th entry in V can be interpreted as the level to which item j is
composed of genre k . We consider the setting where all users provide ratings for all core
items, i.e., Dij = 1 for every user i ∈ [m] and core item j ∈ [ncore]. For the remaining
entries in D, we posit that every user will only rate items from their favorite genre. More
specifically, given the above interpretation, we define user i’s favorite genre k∗(i) as
k∗(i) = arg maxk∈[r] Uik ; similarly, we classify an item j as belonging to genre k♯(j) if



230 CHAPTER 4. CAUSAL MATRIX COMPLETION

k♯(j) = arg maxk∈[r] Vjk . Hence, for every user i ∈ [m] and non-core item j > ncore, we
have Dij = 1 if k∗(i) = k♯(j) and 0 otherwise. We underscore that this model violates the
standard operating assumptions within the current MNAR literature as entries in D are
deterministically set to 0 (i.e., the minimum element in P is 0), and are dependent on one
another.

Results. In the following simulations, we obey the generative process above. In particular,
we sample V and X once, and perform 10 experimental repeats where the only random-
ization lies in the re-sampling of U ; this is done to model new users coming into the
system with the movies fixed. We report the average RMSEs and MAEs, as well as their
respective standard deviations, over the 10 experimental runs in Table 4.1. We find that
SNN achieves the best RMSE and MAE, with 1bitMC-MaxNorm as a close second with
respect to RMSE and MAE. As with the limited MNAR setting experiment, we find that
de-biasing does not always improve results. This is reasonable given that our generative
process violates the typical assumptions underlying propensity estimation methods. The
relative improvement of SNN shows its robustness to the general MNAR setting, where
entry-wise positivity and independence of D are violated. The fact that KNN performs
relatively poorly indicates that matching via linear weights is indeed more expressive
than matching with uniforms weights as done in KNN. WE also note that the various
state-of-the-art algorithms are still relatively robust to the general MNAR setting. This
may warrant further investigation into the potential gap between theory and practice on
the robustness of these methods to different missingness patterns.

■ 4.6.3 Panel Data

We now compare SNN against the same benchmark matrix completion algorithms using
a classic case study of California smoking data of Abadie et al. (2010), which has been
widely utilized within the econometrics literature. We do so as this setting has a MNAR
sparsity pattern which is quite distinct from what is seen in recommendation systems.
We now give a brief overview of the case study. In 1988, California introduced the
first modern-time large-scale anti-tobacco legislation in the United States (Proposition
99). There was interest in estimating the effect of this legislation on tobacco sales in
California. Towards this, per-capita cigarette sales data was collected across 39 U.S.
states from 1970 to 2000. Among the 39 states, there was one “treated” state, California,
which implemented the legislation; the remaining 38 states were chosen as “control”
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Algorithm Rec Sys (limited MNAR) Rec Sys (general MNAR) Panel Data

RMSE MAE RMSE MAE RMSE MAE

PMF 0.30± 0.02 0.25± 0.02 0.64± 0.14 0.56± 0.11 89.4± 92 105± 94
1bitMC-PMF 0.42± 0.02 0.36± 0.02 0.69± 0.12 0.61± 0.11 69.2± 85 84.6± 91

LR-PMF 0.28± 0.02 0.28± 0.02 0.66± 0.15 0.57± 0.13 32.1± 56 47.5± 76

SVD 0.14± 0.01 0.11± 0.00 0.49± 0.03 0.39± 0.03 14.9± 2.3 10.9± 1.6
1bitMC-SVD 0.15± 0.01 0.12± 0.01 0.49± 0.03 0.39± 0.03 15.0± 2.3 10.9± 1.6

LR-SVD 0.14± 0.01 0.11± 0.00 0.49± 0.03 0.39± 0.03 15.0± 2.3 10.9± 1.6

SVD++ 0.07± 0.02 0.06± 0.01 0.44± 0.03 0.34± 0.03 161± 76 160± 76
1bitMC-SVD++ 0.08± 0.02 0.08± 0.01 0.45± 0.03 0.35± 0.03 143± 86 141± 87

LR-SVD++ 0.08± 0.02 0.08± 0.01 0.44± 0.03 0.35± 0.03 180± 57 178± 57

softImpute 1.03± 0.05 0.89± 0.04 1.50± 0.06 1.44± 0.05 101± 4.1 99.1± 4.1
1bitMC-softImpute 1.21± 0.04 1.06± 0.03 1.52± 0.09 1.46± 0.09 100± 4.1 97.7± 4.1

LR-softImpute 1.03± 0.05 0.89± 0.04 1.50± 0.06 1.44± 0.05 103± 3.8 101± 3.9

WTN 0.13± 0.01 0.10± 0.01 0.52± 0.13 0.44± 0.11 99.9± 4.1 97.7± 4.1
1bitMC-WTN 0.10± 0.01 0.08± 0.00 0.55± 0.15 0.47± 0.14 100± 4.1 97.8± 4.1

LR-WTN 0.12± 0.01 0.10± 0.00 0.52± 0.16 0.43± 0.15 99.9± 4.1 97.8± 4.1

MaxNorm 0.05± 0.01 0.03± 0.01 0.29± 0.08 0.20± 0.06 99.9± 4.1 97.7± 4.1
1bitMC-MaxNorm 0.05± 0.01 0.03± 0.01 0.23± 0.06 0.17± 0.05 100± 4.1 97.8± 4.1

LR-MaxNorm 0.05± 0.01 0.03± 0.01 0.31± 0.09 0.20± 0.06 100± 4.1 97.8± 4.1

ExpoMF 2.08± 0.01 2.00± 0.01 1.99± 0.05 1.90± 0.05 75.0± 5.5 64.8± 19

KNN 0.51± 0.02 0.40± 0.02 0.40± 0.06 0.30± 0.05 15.4± 2.5 12.0± 1.7

SNN 0.08± 0.01 0.03± 0.01 0.20± 0.07 0.11± 0.06 10.3± 1.0 8.00± 0.7

Table 4.1: RMSEs and MAEs of matrix completion methods on a recommender system experiment and a panel data
experiment. The first two columns correspond to Section 4.6.2, the middle two columns correspond to Section 4.6.2, and the
final two columns correspond to Section 4.6.3. The results are the averages ± standard deviations across 10 experimental
repeats.

states as they neither instituted a tobacco control program nor raised cigarette sales
taxes by 50 cents or more. These other 38 control states were then used to build a
“synthetic California”, i.e., a synthetic trajectory of cigarette sales in California if it had
not introduced any tobacco legislation.

Experimental setup. We consider the time horizon of n = 31 years and restrict our focus
to the m = 38 control units in the original dataset. This data is encoded into a 38× 31
matrix, Y , where the entry Yij represents the potential outcome of per-capita cigarette
sales (in packs) for state i in year j under control, i.e., without any intervention in place.
To generate MNAR data, we artificially introduce interventions to a subset of states in
1989, where the probability a state adopts an intervention (e.g., tobacco control program)
depends on their change in cigarette sales pre- and post-1989. More specifically, we
consider the following treatment adoption protocol: First, we cluster states into three
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(a) Mild state: Utah. (b) Moderate state: New Mexico. (c) Severe state: Colorado.

Figure 4.8: True observations are represented in black, SNN estimates shown in blue, KNN estimates shown in orange,
SVD estimates shown in green, softImpute estimates shown in red.

categories—mild, moderate, or severe—based on their change in average cigarette sales
during 1989-2000 compared to that during 1970-1988; we note that in this context, a
negative change means that the cigarette sales in the post-intervention period are lower
than that in the pre-intervention period. As such, we define (i) mild states as those whose
change is at least one standard deviation above the average change across all states; (ii)
severe states as those whose change is at least one standard deviation below the average
change across all states; (iii) and moderate states as the remaining states whose change
is within one standard deviation.

We then designate the probability of intervention for mild, moderate, and severe states
as 10%, 30%, and 50%, respectively. In words, this setup reflects the scenario in which a
state is more likely to adopt an intervention if their average sales in the post-intervention
period is relatively closer to their pre-intervention sales compared to that of their peer
states. In the language of causal inference, this is exactly confounding, i.e., there is a
correlation between the treatment assignment and the eventual outcome.

For an example of a mild, moderate, and severe state, please see Figure 4.8. Additionally,
we remark that once an intervention is adopted, all sales under control during the post-
intervention period are, by definition, unobserved, i.e., Ỹij = ⋆ for any intervened on state
i and for all j ≥ 19 (after 1988); this yields the observation pattern shown in Figure 4.6b.
Finally, to employ logistic regression, i.e., LR to de-bias the estimates, we use state
covariate data from Abadie et al. (2010), which include average retail price of cigarettes,
per capita state personal income (logged), the percentage of the population age 15-24,
and per capita beer consumption. We note that SNN does not use this auxiliary data.

Results. Using the above setup, we apply the various matrix completion methods to impute
the missing counterfactual cigarette sales associated with the artificial intervention states
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during the post-intervention period. We report the average root mean-squared-errors
(RMSEs) and mean absolute errors (MAEs), as well as their respective standard deviations,
over 10 experimental runs in Table 4.1. As the table shows, SNN significantly outperforms
all baseline algorithms under both error metrics. The only exception is KNN, which performs
similarly to SNN; this is interesting as KNN is in essence, the difference-in-differences
estimator, a standard method within the panel data econometrics literature. Further,
SVD++ and MaxNorm (and its variants), which performed strongly in the recommendation
systems example, now incur a significant error. We display a few representative results in
Figure 4.8. Collectively across all three studies, we find that SNN is robust under varying
missingness mechanisms.

■ 4.7 Original USVT Algorithm Experiments

We run the same experiments in Section 4.1.1 using the original USVT estimator of
Chatterjee (2015) rather than the modified version as proposed in Bhattacharya and
Chatterjee (2021) for MNAR data. See Figure 4.9 below. Interestingly, we find the
original USVT estimator performs better. Compare Figures 4.9a, 4.9b, 4.9c with Figures
4.2b, 4.3b 4.4b, respectively.

(a) MCAR. (b) Limited MNAR.

(c) General MNAR.

Figure 4.9: Original USVT algorithm under the three different experiments.
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■ 4.8 Proof of Theorem 4.3.1

In what follows, the descriptors above the equalities represent the assumption used, e.g.,
A1 represents Assumption 1:

Aij = E[Yij |ui, vj ]
A1
= E[⟨ui, vj⟩+ εij | ui, vj ]
A2
= ⟨ui, vj⟩ | {ui, vj}

= ⟨ui, vj⟩ | U ,V ,D
A3
=
∑

ℓ∈I
βℓ · ⟨uℓ , vj⟩ | U ,V ,D

A2
=
∑

ℓ∈I
βℓ · E

[
⟨uℓ , vj⟩+ εℓj | U ,V ,D

]

A1
=
∑

ℓ∈I
βℓ · E

[
Yℓj |U ,V ,D

]

=
∑

ℓ∈I
βℓ · E

[
Ỹℓj |U ,V ,D

]
.

■ 4.9 Proof of Theorem 4.5.1

For ease of notation, we suppress the conditioning on E for the remainder of the proof.
Further, for every k , let ε(k) = [εℓj : ℓ ∈ AR(k)] ∈ R|AR(k)| and ∆(k) = β̂(k) − β̃(k). We also
recall the definitions provided in Section 4.4.

To begin, recall that |AR(k)|≥ µ for each k by assumption. Thus, by Theorem 4.3.1, there
exists a β(k) ∈ R|AR(k)| such that Aij = ⟨E[x (k)], β(k)⟩ for every k , i.e.,

Aij = 1
K

K∑

k=1
⟨E[x (k)], β(k)⟩. (4.7)

Additionally, under Assumption 23, we have E[x (k)] = PU (k)E[x (k)]. In turn, this implies

⟨E[x (k)], β(k)⟩ = ⟨E[x (k)], β̃(k)⟩ (4.8)

⟨E[x (k)],∆(k)⟩ = ⟨E[x (k)], PU (k)∆(k)⟩, (4.9)
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where β̃(k) = PU (k)β(k). Together, (4.7), (4.8), and (4.9) yield the following:

Âij − Aij = 1
K

K∑

k=1

(
Â(k)
ij − Aij

)

= 1
K

K∑

k=1

(
⟨x (k), β̂(k)⟩ − ⟨E[x (k)], β(k)⟩

)

= 1
K

K∑

k=1

(
⟨x (k), β̂(k)⟩ − ⟨E[x (k)], β̃(k)⟩

)

= 1
K

K∑

k=1

(
⟨E[x (k)],∆(k)⟩+ ⟨ε(k), β̃(k)⟩+ ⟨ε(k),∆(k)⟩

)

= 1
K

K∑

k=1

(
⟨E[x (k)], PU (k)∆(k)⟩+ ⟨ε(k), β̃(k)⟩+ ⟨ε(k),∆(k)⟩

)
. (4.10)

Below, we bound the three terms on the right-hand side (RHS) of (4.10) separately.

Bounding term 1. By Cauchy-Schwartz inequality, we obtain for every k

⟨E[x (k)], PU (k)∆(k)⟩ ≤ E[x (k)]2·PU (k)∆(k)
2.

Under Assumption 21, we have E[x (k)]2≤ |AR(k)|1/2. As such,

1
K

K∑

k=1
⟨E[x (k)], PU (k)∆(k)⟩ ≤ 1

K

K∑

k=1
|AR(k)|1/2·PU (k)∆(k)

2. (4.11)

To bound the expression above, we use the following lemma; its proof is found in Ap-
pendix 4.9.1.

Lemma 4.9.1 (Lemma G.1 of Agarwal et al. (2021c)). Consider the setup of Theorem 4.5.1.
Then for any k,

PU (k)∆(k) = Op

(
(r(k))1/2

|AR(k)|1/2|:(k)|1/4
+ (r(k))3/2β̃(k)

1log1/2(|:(k)||AR(k)|)
|AR(k)|1/2 min{|:(k)|1/2, |AR(k)|1/2}

)
.

Plugging Lemma 4.9.1 into (4.11), we conclude

1
K

K∑

k=1
⟨E[x (k)], PU (k)∆(k)⟩ = Op

(
1
K

K∑

k=1

(r(k))1/2
|:(k)|1/4 + (r(k))3/2β̃(k)

1log1/2(|:(k)||AR(k)|)
min{|:(k)|1/2, |AR(k)|1/2}

)
.(4.12)
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Bounding term 2. We begin with a lemma that is an immediate consequence of Hoeffding’s
Lemma.

Lemma 4.9.2. Let γk be a sequence of mean zero sub-gaussian r.v.s with E[γ2
k ] = σ2

k .
Then,

1
K

K∑

k=1
γk = Op



 1
K

[ K∑

k=1
σ2
k

]1/2

 .

By Assumption 20, we have for any k ,

E[⟨ε(k), β̃(k)⟩] = 0

Var(⟨ε(k), β̃(k)⟩) =
∑

ℓ∈AR(k)

(β̃(k)
ℓ σℓj )2. (4.13)

Since ⟨ε(k), β̃(k)⟩ are independent across k , noting that
∑

ℓ∈AR(k) (β̃(k)
ℓ σℓj )2 ≤ σ2β̃(k)2

2, and
applying Lemma 4.9.2 yields

1
K

K∑

k=1
⟨ε(k), β̃(k)⟩ = Op



 σ
K

[ K∑

k=1
β̃(k)2

2

]1/2

 . (4.14)

Bounding term 3. We begin by stating a helpful lemma below, the proof of which can be
found in Section 4.9.2.

Lemma 4.9.3 (Lemma F.2 of Agarwal et al. (2021c)). Let the setup of Theorem 4.5.1 hold.
Then for every k, the following holds with probability at least 1−O((|:(k)||AR(k)|)−10):

∆(k)2
2 ≤ C (σ )

r(k)β̃(k)2
2log

(
|:(k)||AR(k)|

)

min{|:(k)|, |AR(k)|}
,

where C (σ ) is a constant that only depends only σ .

By Lemma 4.9.3, it immediately follows that

∆(k) = Op

(
(r(k))1/2β̃(k)

2log1/2(|:(k)||AR(k)|)
min{|:(k)|1/2, |AR(k)|1/2}

)
.
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For every k , we define the event Ek as

Ek =




∆(k)2
2 ≤

r(k)β̃(k)2
2log

(
|:(k)||AR(k)|

)

min{|:(k)|, |AR(k)|}




 .

For ease of notation, let E♯ = ∩Kk=1Ek . Next, we define the event

E♭ =





1
K

K∑

k=1
⟨ε(k),∆(k)⟩ = O




σ
K




K∑

k=1

r(k)β̃(k)2
2log

(
|:(k)||AR(k)|

)

min{|:(k)|, |AR(k)|}




1/2







.

Now, condition on E♯. By Assumption 20, we have for every k ,

E[⟨ε(k),∆(k)⟩] = 0

Var(⟨ε(k),∆(k)⟩) =
∑

ℓ∈AR(k)

σ2
ℓj (β̂(k)

ℓ − β̃
(k)
ℓ )2 ≤ σ2∆(k)2

2. (4.15)

Given that ⟨ε(k),∆(k)⟩ are independent across k , Lemmas 4.9.2, 4.9.3, and (4.15) imply
E♭|E♯ occurs w.h.p. Further,

P(E♭) = P(E♭|E♯)P(E♯) + P(E♭|E c♯ )P(E c♯ ) ≥ P(E♭|E♯)P(E♯). (4.16)

Applying the union bound and DeMorgan’s Law, we obtain

P(E c♯ ) = P(∪Kk=1E ck ) ≤
K∑

k=1
P(E ck ) ≤ K max

k
P(E ck ) = O

(
K

mink |:(k)|10|AR(k)|10

)
,

where the final equality follows from Lemma 4.9.3. From our condition on K = o(mink |:(k)|10|AR(k)|10),
we have that E♯ occurs w.h.p. Since both E♯ and E♭|E♯ occur w.h.p., it follows from (4.16)
that E♭ then occurs w.h.p. Therefore,

1
K

K∑

k=1
⟨ε(k),∆(k)⟩ = Op




σ
K




K∑

k=1

r(k)β̃(k)2
2log

(
|:(k)||AR(k)|

)

min{|:(k)|, |AR(k)|}




1/2

 ,

= Op

(
σ
K

K∑

k=1

(r(k))1/2β̃(k)
2log1/2(|:(k)||AR(k)|)

min{|:(k)|1/2, |AR(k)|1/2}

)
. (4.17)
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Collecting terms. Incorporating (4.12), (4.14), (4.17) into (4.10), and simplifying yields

Âij − Aij = Op



 1
K






K∑

k=1

(r(k))1/2
|:(k)|1/4 +

K∑

k=1

(r(k))3/2β̃(k)
1log1/2(|:(k)||AR(k)|)

min{|:(k)|1/2, |AR(k)|1/2}
+
[ K∑

k=1
β̃(k)2

2

]1/2





 .

This concludes the proof.

■ 4.9.1 Proof of Lemma 4.9.1

The result is immediate from Lemma G.1 of Agarwal et al. (2021c) after adapting the
notation used in Agarwal et al. (2021c) to that used in this paper. For every k , let
Ypre,n = q, E[Ypre,I (d) ] = E[S(k)], Ypre,I (d) = S(k), Vpre = U (k), ŵ (n,d) = β̂(k), w̃ (n,d) = β̃(k),
where (Ypre,n,E[Ypre,I (d) ],Ypre,I (d) ,Vpre, ŵ (n,d), w̃ (n,d)) are the notations used in Agarwal
et al. (2021c).

■ 4.9.2 Proof of Lemma 4.9.3

The result is immediate from Lemma F.2 of Agarwal et al. (2021c) after adapting the
notation used in Agarwal et al. (2021c) to that used in this paper. For every k , let
Ypre,n = q, E[Ypre,I (d) ] = E[S(k)], Ypre,I (d) = S(k), Vpre = U (k), ŵ (n,d) = β̂(k), w̃ (n,d) = β̃(k),
where (Ypre,n,E[Ypre,I (d) ],Ypre,I (d) ,Vpre, ŵ (n,d), w̃ (n,d)) are the notations used in Agarwal
et al. (2021c).

■ 4.10 Proof of Proposition 2

First, let us consider recovery of entry (i, j) = (1, 1). We let C > 0 denote an absolute
constant. Define parameter Q ≥ 1. Excluding row 1 and column 1, partition the remaining
(L − 1) rows and (L − 1) columns into (L − 1)/Q mutually exclusive blocks each of
size Q + 1. In particular, M (1,1)

ℓ ∈ RQ+1×Q+1 for ℓ ∈ [(L − 1)/Q] corresponds to the
sub-matrix induced by selecting only rows {1, (ℓ − 1)Q + 2, . . . , ℓQ + 1} and columns
{1, (ℓ − 1)Q + 2, . . . , ℓQ + 1}. Let 1(1,1)

ℓ be a binary r.v. which is equal to 1 if all entries
in the sub-matrix M (1,1)

ℓ not including (1, 1) are revealed (i.e., we do not condition on
whether (1, 1) is revealed or missing).
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Define the event E(1,1) := {1(1,1)
ℓ = 0 : ∀ ℓ ∈ [(L − 1)/Q]}, i.e., E(1,1) is the event that none

of the (L − 1)/Q sub-matrices M (1,1)
ℓ are fully revealed. Note 1

(1,1)
ℓ is equal to 1 with

probability pQ2+2Q ≥ p2Q2 =: q. Observe that 1(1,1)
ℓ and 1

(1,1)
ℓ ′ for ℓ ̸= ℓ ′ are independent

r.v.s. Then the probability E(1,1) occurs is at most (1− q)(L−1)/Q ≤ exp−
q(L−1)
Q . Note,

exp−
q(L−1)
Q ≤ (L − 1)−10 ⇐⇒ q ≥ 10 log((L − 1))Q

(L − 1) ⇐⇒ p ≥ C
(

log(L)Q
L

) 1
Q2

To get an additive error of at most Op(δ) for A1,1, we require Q = C ∗δ−6 by Corollary
4.5.1—this can be seen by noting that Q needs to equal the total number of anchor rows
which is N × K , where N and K are defined in Corollary 4.5.1. In summary, we have
that Ai,j − Âi,j = Op(δ) if Q = C ∗δ−6 and E c(1,1) holds, where E c(1,1) occurs with probability

at least 1− (L − 1)−10 if p ≥ C
(

log(L)Q
L

) 1
Q2 .

Now we generalize to any (i, j) pair. Define E(i,j) analogously to E(1,1) The difference being
that we replace the fixed row and column from (1, 1) to (i, j), and partition the remaining
(L − 1) rows and (L − 1) columns to create the matrices M (i,j)

ℓ for ℓ ∈ [(L − 1)/Q]. 1(i,j)
ℓ is

then defined with respect to M (i,j)
ℓ , analogous to the way 1

(1,1)
ℓ is defined with respect to

M (1,1)
ℓ . To ensure that Ai,j − Âi,j = O(δ) uniformly for all (i, j), we then require the event

⋂
(i,j)∈[L]×[L] E c(i,j) to hold with Q = C ∗δ−6 as before. Appealing to the definition of p in

statement of Proposition 2, this occurs with probability,

P(
⋂

(i,j)∈[L]×[L]
E c(i,j)) = 1− P(

⋃

(i,j)∈[L]×[L]
E(i,j))

≥ 1−
∑

(i,j)∈[L]×[L]
P(E(i,j))

≥ 1− C
L8 .

This completes the proof.



240 CHAPTER 4. CAUSAL MATRIX COMPLETION

■ 4.11 Proof of Theorem 4.5.2

For ease of notation, we suppress the conditioning on E for the remainder of the proof. To
begin, we scale the left-hand side (LHS) of (4.10) by

K√∑K
k=1

(
σ̃ (k)
)2 (4.18)

and analyze each of the three resulting terms on the right-hand side (RHS) separately.

Bounding term 1. To address the first term, we scale (4.12) by (4.18) and recall our
assumption on K given by (4.5). We then obtain

1√∑K
k=1

(
σ̃ (k)
)2

K∑

k=1
⟨E[x (k)], PU (k)∆(k)⟩ = op(1). (4.19)

Bounding term 2. Since ⟨ε(k), β̃(k)⟩ are independent across k , the Lindeberg-Lévy Central
Limit Theorem and (4.13) yields

∑K
k=1⟨ε(k), β̃(k)⟩√∑K

k=1
(
σ̃ (k)
)2

d−→ N (0, 1). (4.20)

Bounding term 3. Next, we scale (4.17) by (4.18) and recall our assumption on K . This
yields

1√∑K
k=1

(
σ̃ (k)
)2

K∑

k=1
⟨ε(k),∆(k)⟩ = op(1). (4.21)

Collecting terms. From (4.19), (4.20), and (4.21), we conclude

K (Âij − Aij )√∑K
k=1

(
σ̃ (k)
)2

d−→ N (0, 1).



Chapter 5

On Multivariate Singular Spectrum Analysis

■ 5.1 Introduction

Multivariate time series data is of great interest across many application areas, including
cyber-physical systems, finance, retail, healthcare to name a few. An important goal
across these domains can be summarized as accurate imputation and forecasting of a
multivariate time series in the presence of noisy and/or missing data.

Setup. We consider a discrete time setting with time indexed as t ∈ Z. For N ∈ N, let
the collection fn : Z → R, n ∈ [N ] := {1, . . . , N} be the latent time series of interest.
For t ∈ [T ] and n ∈ [N ], we observe Xn(t) where for ρ ∈ (0, 1],

Xn(t) =





fn(t) + ηn(t) with probability ρ

⋆ with probability 1− ρ.
(5.1)

Here ⋆ represents a missing observation and ηn(t) represents the per-step noise, which
we assume to be an independent (across t, n) mean-zero random variable. Though ηn(t) is
independent, we note that the underlying time series, fn(·), is of course strongly dependent
across t, n. Indeed the presence of per-step noise ηn(t) and missing values (denoted by
⋆) represent an additional challenge of measurement error in our setup. The generic
spatio-temporal factor model for fn(·), n ∈ [N ] described in Section 5.3 without additional
noise ηn(·) or missingness already provides an expressive model for a time series including
any finite sum of products of harmonics and polynomials, any differentiable periodic
function, and any Hölder continuous function.

Goal. Our objective is two-folds, for n ∈ [N ]: (i) imputation – estimating fn(t) for all

241
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t ∈ [T ]; (ii) out-of-sample forecasting – predicting fn(t) for t > T .

■ 5.1.1 Multivariate Singular Spectrum Analysis

Multivariate singular spectrum analysis (mSSA) is a known method to impute and forecast
a multivariate time series (see Broomhead and King (1986); Plaut and Vautard (1994);
Ghil et al. (2002); Oropeza and Sacchi (2011); Hassani and Mahmoudvand (2013);
Hassani et al. (2013); Bógalo et al. (2020)). mSSA has been used for both imputation
and forecasting, and signal extraction—decomposing a time series into a small number of
simpler time series (e.g., periodic, trend, autoregressive component). However, despite its
heavy use in practice, the theoretical properties of mSSA are not well understood. Hence,
we introduce a variant of mSSA for which we provide a rigorous finite-sample analysis of
its imputation and out-of-sample forecasting properties; such a finite-sample analysis of
mSSA has been missing from the literature. We note that we do not focus on the task
of signal extraction which we leave as important future work. The variant of mSSA we
introduce is arguably much simpler to implement than the original mSSA method and we
begin by describing it in detail below. In Section 5.2, we compare the original mSSA
method with this variant and discuss key differences. See Figure 5.1 for a visual depiction
of the key steps in this variant of mSSA.

Figure 5.1: Key steps of our proposed variant of the mSSA algorithm.

Singular spectrum analysis (SSA). For ease of exposition and to build intuition, we
start with N = 1, i.e. a univariate time series. There are two algorithmic parameters:
1 ≤ L ≤ T and k ≥ 1. For simplicity and without loss of generality assume that T
is an integer multiple of L, i.e. T /L ∈ N and k ≤ min(L, T /L). When T /L /∈ N, by
applying both the imputation and forecasting algorithms for two ranges, 1, . . . , ⌊T /L⌋ x L
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and (T mod L) + 1, . . . , T , this condition will be satisfied in each range and will provide
imputation and forecasting for all T . Here ⌊T /L⌋ refers to the floor of T /L. We give
guidance on how to pick L and k when we discuss our theoretical results.

First, transform the time series X1(t), t ∈ [T ] into an L × T /L matrix where the entry of
the matrix in row i ∈ [L] and column j ∈ [T /L] is X1(i+ (j − 1) x L). This matrix induced
by the time series is called the Page matrix, and we denote it as P(X1, T , L).

Imputation. After replacing missing values (i.e. ⋆) in the matrix P(X1, T , L) by 0, we
compute its singular value decomposition, which we denote as

P(X1, T , L) =
min(L,T /L)∑

ℓ=1
sℓuℓvTℓ ,

where s1 ≥ s2 . . . ≥ smin(L,T /L) ≥ 0 denote its ordered singular values, and uℓ ∈ RL, vℓ ∈
RT /L denote its left and right singular vectors, respectively, for ℓ ∈ [min(L, T /L)]. Let ρ̂1 be
the fraction of observed entries of X1, precisely defined as (max(1,

∑T
t=1 1(X1(t) ̸= ⋆)))/T .

Let the normalized, truncated version of P(X1, T , L) be

P̂(X1, T , L; k) = 1
ρ̂1

k∑

ℓ=1
sℓuℓvTℓ , (5.2)

i.e., we perform Hard Singular Value Thresholding (HSVT) on P(X1, T , L) to obtain
P̂(X1, T , L; k). We then define the de-noised and imputed estimate of the original time
series, denoted by f̂1, as follows: for t ∈ [T ], f̂1(t) equals the entry of P̂(X1, T , L; k) in
row (t − 1 mod L) + 1 and column ⌈t/L⌉. Here ⌈t/L⌉ refers to the ceiling of t/L.

Forecasting. To forecast, we learn a linear model β̂(X1, T , L; k) ∈ RL−1, which is the
solution to

minimize
T /L∑

m=1
(ym − βT xm)2 over β ∈ RL−1,

where ym = (1/ρ̂1)X1(L xm), xm = [̂f1(L x (m−1)+1) . . . f̂1(L x (m−1)+L−1)] for m ∈ [T /L].
1 Note to define ym we impute missing values in X1 by 0. We now describe how to use

1To establish theoretical results for the forecasting algorithm, we produce estimates (̂f1(L x (m − 1) +
1) . . . f̂1(L x (m−1)+L−1)) for m ∈ [T /L] by applying the imputation algorithm on P(X1, T , L) after setting its
Lth row equal to 0. Also, ρ̂1 in the definition of ym is computed using only the first L − 1 rows of P(X1, T , L).
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β̂(X1, T , L; k) to produce both in-sample and out-of-sample forecasts. (i) In-sample forecast:
for time t = L xm and m ∈ [T /L], the forecast is given by f̄1(L xm) = β̂(X1, T , L; k)T xm
. (ii) Out-of-sample forecast: for m > T/L, i.e., for time t > T , the forecast is given by
f̄1(L xm) = β̂(X1, T , L; k)T x ′m where x ′m = 1

ρ̂1
[X1(L x (m− 1) + 1) . . . X1(L x (m− 1) + L − 1)]

after imputing missing values in X1 by 0.

Multivariate singular spectrum analysis (mSSA). Below we describe the variant of
mSSA we propose, which is an extension of the SSA algorithm described above, to
when we have a multivariate time series, i.e., N > 1. The key change is in the first
step where we construct the Page matrix—instead of considering the Page matrix of
a single time series, we now consider a ‘stacked’ Page matrix, which is obtained by a
column-wise concatenation of the Page matrices induced by each time series separately.
Specifically, like SSA, it has two algorithmic parameters, L ≥ 1 and k ≥ 1. For each
time series, n ∈ [N ], create its L × T /L Page matrix P(Xn, T , L), where the entry in row
i ∈ [L] and column j ∈ [T /L] is Xn(i+ (j − 1) x L). We then create a stacked Page matrix
from these N time series by performing a column wise concatenation of the N matrices,
P(Xn, T , L), n ∈ [N ]. We denote this matrix as SP((X1, . . . , XN ), T , L), and note that it
has L rows and N xT /L columns.

Imputation. We replace missing values (i.e. ⋆s) in SP((X1, . . . , XN ), T , L) by 0. Sim-
ilar to (5.2), we perform HSVT on SP((X1, . . . , XN ), T , L) and denote its normalized,
truncated version as ŜP((X1, . . . , XN ), T , L; k) (instead of ρ̂1, we now normalize by
ρ̂ := (max(1,

∑N
n=1

∑T
t=1 1(Xn(t) ̸= ⋆)))/NT ). From ŜP((X1, . . . , XN ), T , L; k), like in

SSA, we can read off f̂n(t) for n ∈ [N ], t ∈ [T ], the de-noised and imputed estimate of
the N time series over T time steps. In particular, let P̂(Xn, T , L; k) refer to sub-matrix
of ŜP((X1, . . . , XN ), T , L; k) induced by selecting only its [(n − 1) x (T /L) + 1, . . . , n xT /L]
columns. Then for t ∈ [T ], f̂n(t) equals the entry of P̂(Xn, T , L; k) in row (t −1 mod L)+1
and column ⌈t/L⌉.

Forecasting. Similar to SSA, to forecast, we learn a linear model β̂((X1, . . . , XN ), T , L; k) ∈
RL−1, which is the solution to

minimize
N xT /L∑

m=1
(ym − βT xm)2 over β ∈ RL−1, (5.3)

This avoids dependencies in the noise between ym and xm for m ∈ [T /L].
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where ym is the mth component of (1/ρ̂)[X1(L), X1(2 x L), . . . , X1(T ), X2(L), . . . , X2(T ), . . . ,
XN (T )] ∈ RN xT /L, and xm ∈ RL−1 corresponds to the vector formed by the entries of the
first L − 1 rows in the mth column of ŜP((X1, . . . , XN ), T , L; k)2 for m ∈ [N xT /L]. Note,
to define ym, we impute missing values in X1, . . . , Xn by 0. (i) In-sample forecast: for
time step t = L xm′ for m′ ∈ [T /L] and for time series n ∈ [N ], the forecast is given
by f̄n(L xm′) = β̂((X1, . . . , XN ), T , L; k)T xm where m = m′ + (n − 1) xT /L. (ii) Out-of-
sample forecast: for m′ > T/L, i.e., for time t > T , and for time series n ∈ [N ], the
forecast is given by f̄n(L xm′) = β̂((X1, . . . , XN ), T , L; k)T x ′m′ , where x ′m′ =

1
ρ̂ [Xn(L xm′ −

(L − 1)) . . . Xn(L xm′ − 1)] after imputing missing values in Xn by 0. See Figure 5.1 for a
visual depiction of the key steps above.

Page vs. Hankel mSSA. See Appendix 5.9 for a detailed discussion of the various benefits
and drawbacks of the using the Page matrix representation as we propose in our variant,
instead of the Hankel representation used in the original mSSA.

Empirical performance of mSSA. This variant of mSSA we propose is fully described
above, with its two major steps consisting of simply singular value thresholding and
ordinary least squares. A key question is how well does it perform empirically? In
Table 5.1, we provide a summary comparison of mSSA’s performance for imputation and
forecasting on benchmark datasets with respect to state-of-the-art time series algorithms.
We find that by using the stacked Page matrix in mSSA, it greatly improves performance
over SSA; indicating that mSSA is effectively utilizing information across multiple time
series. Surprisingly, our variant of mSSA performs competitively or outperforms popular
neural network based methods, such as LSTM and DeepAR—we note that these state-of-
the-art neural network based methods have no associated theoretical analysis. Indeed,
apart from its use in practice, the empirical performance of (our variant of) mSSA strongly
motivates a theoretical analysis of when and why mSSA works.

■ 5.1.2 Our Contributions

As our primary contribution, we provide an answer to the question posed above—under
a spatio-temporal factor model that we introduce, the finite-sample analysis we carry

2Similar to the SSA forecasting algorithm, when creating a forecasting model in mSSA, we produce
ŜP((X1, . . . , XN ), T , L; k) by first setting the Lth row of SP((X1, . . . , XN ), T , L; k) equal to zero before per-
forming the SVD and the subsequent truncation. Also, ρ̂ in the definition of ym is computed only using the
first L − 1 rows of SP((X1, . . . , XN ), T , L; k).
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Table 5.1: mSSA statistically outperforms SSA, other state-of-the-art algorithms, including
LSTMs and DeepAR across many datasets. We use the average normalized root mean squared
error (NRMSE) as our metric. Details of experiments run to produce results can are in Section
5.6.

Mean Imputation
(NRMSE)

Mean Forecasting
(NRMSE)

Electricity Traffic Synthetic Financial M5 Electricity Traffic Synthetic Financial M5
mSSA 0.398 0.508 0.416 0.238 0.883 0.485 0.536 0.281 0.251 1.021
SSA 0.514 0.713 0.675 0.467 0.958 0.632 0.696 0.665 0.303 1.068

LSTM NA NA NA NA NA 0.558 0.478 0.559 1.205 1.034
DeepAR NA NA NA NA NA 0.479 0.464 0.415 0.316 1.050
TRMF 0.641 0.460 0.564 0.430 0.916 0.495 0.508 0.422 0.291 1.032

Prophet NA NA NA NA NA 0.569 0.614 1.010 1.286 1.100

out of mSSA’s estimation error for imputation and out-of-sample forecasting establishes
consistency, as well as its ability to effectively utilize both the spatial and temporal
structure in a multivariate time series. Below, we detail the various aspects of our
contribution with respect to the: (a) spatio-temporal factor model; (b) finite sample
analysis of mSSA; (c) algorithmic extensions (and associated theoretical analysis) of
mSSA to do time-varying variance estimation, and a tensor variant of mSSA which we
show has a better imputation error convergence rate compared to mSSA for certain relative
scalings of N and T .

Spatio-temporal factor model. Note that the collection of latent multivariate time series
fn(t), for n ∈ [N ], t ∈ [T ] can be collectively viewed as a N × T matrix. To capture
the spatial structure, i.e. the relationship across rows, we model this matrix to be low-
rank—there exists a low-dimensional latent factor (or feature) associated with each of
N time series; analogously, there exists a low-dimensional latent factor associated with
each of the T time steps. To capture the temporal structure, we further assume that
each component of the latent temporal factor has an approximately low-rank Hankel
matrix representation (see Definition 5.3.1 for the Hankel matrix induced by a time series),
i.e., the Hankel—and therefore Page—matrix induced by each component of the latent
temporal factor is approximately low-rank. This additional structure imposed on the
temporal factors is what motivates using the stacked Page matrix representation in mSSA,
which is of dimension L × (N xT /L), where L is a hyper-parameter. We note that for
N = 1 this subsumes the model considered to explain the success of SSA in Agarwal
et al. (2018) as a special case.

As stated earlier, our model is expressive in that it includes any finite sum of products
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of harmonics and polynomials, any differentiable periodic function, and any Hölder
continuous function. Further, we establish that the set of time series that have an
approximately low-rank Hankel representation is closed under component-wise addition
and multiplication. Such a model calculus helps characterize the representational strength
of the spatio-temporal factor model we introduce.

Finite sample analysis of mSSA. Under the spatio-temporal factor model, we establish
that mean squared imputation error scales as 1/

√
min(N,T )T (see Theorem 5.4.1) and

the out-of-sample forecasting error scales as max(1/
√
NT , N/T 2) (see Theorem 5.4.3,

and Corollary 5.4.1). When N < T , the error rate is 1/
√
NT . When N > T , one can

simply divide the various time series into sets of size O(T ); this will result in a mean
squared error rate of 1/T . Hence, effectively the error is of order 1/

√
min(N,T )T . For

exact details on the relative scaling of N and T , please refer to Theorem 5.4.3. For N = 1,
it implies that the SSA algorithm described above has imputation and forecasting error
scaling as 1/

√
T . That is, mSSA improves performance by a

√
N factor over SSA by

utilizing information across the N time series. This also improves upon the prior work of
Agarwal et al. (2018) which established the weaker result that SSA has imputation error
scaling as 1/T 1

4 (i.e., when N = 1). Further Agarwal et al. (2018) does not establish a
result for the out-of-sample forecasting error of SSA. We note that the asymmetry in our
finite-sample analysis between N and T is to be expected as we impose further structure
on the latent temporal factors; they satisfy a low-rank Hankel representation, which is
not assumed of the spatial factors.

Further, existing matrix estimation based methods applied to the N × T matrix of time
series observations (i.e, without first performing the Page matrix transformation as done in
mSSA) establish that the imputation prediction error scales as 1/min(N,T ). This is indeed
the primary result of the works Yu et al. (2016); Rao et al. (2015), as seen in Theorem 2
of Rao et al. (2015). 3 That is, while the algorithm stated in Yu et al. (2016); Rao et al.
(2015) utilizes the temporal structure in addition to the spatial structure, the theoretical
guarantees do not reflect it—the guarantees provided by such methods are weaker (since
1/min(N,T ) ≥ 1/

√
min(N,T )T ) than that obtained by mSSA. Again, we emphasize that

the existing analysis of SSA and matrix estimation based methods (for example Agarwal
et al. (2018); Yu et al. (2016); Rao et al. (2015)) do not establish (finite-sample) bounds
for out-of-sample forecasting error.

3There seems to be a typo in Corollary 2 of Yu et al. (2016) in applying Theorem 2: square in Frobenius-
norm error is missing.



248 CHAPTER 5. ON MULTIVARIATE SINGULAR SPECTRUM ANALYSIS

N
=
T

N = T
1
3

T

N

tSSA =
mSSA =

ME

tSSA ≫
mSSA ≫

ME

mSSA ≫ tSSA ≫ ME

Figure 5.2: Relative effectiveness of tSSA, mSSA, ME for varying N,T .

Algorithmic extensions: variance and tensor SSA (tSSA). First, we extend mSSA to
estimate the latent time-varying variance, i.e. E[η2

n(t)], n ∈ [N ], t ∈ [T ]. We establish
the efficacy of such an extension when the time-varying variance is also modeled through
a spatio-temporal factor model. To the best of our knowledge, this is the first result that
provides provable finite-sample performance guarantees for estimating the time-varying
variance of a time series. Second, we propose a novel tensor variant of SSA, termed tSSA,
which exploits recent developments in the tensor estimation literature. In tSSA, rather
than doing a column-wise stacking of the Page Matrices induced by each of the N time
series to form a larger matrix, we instead view each Page matrix as a slice of a L×T /L×N
order-three tensor. In other words, the entry of the tensor with indices i ∈ [L], j ∈ [T /L]
and n ∈ [N ] equals the entry of P(Xn, L, T ) with indices i, j . In Proposition 13, with
respect to imputation error, we characterize the relative performance of tSSA, mSSA,
and “vanilla” matrix estimation (ME). We find that when N = o(T 1/3), mSSA outperforms
tSSA; when T 1/3 = o(N), N = o(T ) tSSA outperforms mSSA; when T = o(N), standard
matrix estimation methods are equally as effective as mSSA and tSSA. See Figure 5.2 for
a graphical depiction;

Summary of contributions. We now briefly summarize our contributions:

(1) A novel spatio-temporal factor model to analyze mSSA. We show that a large family
of time series dynamics fall within our factor model.

(2) Finite-sample analysis for imputation and out-of-sample forecasting. The tools we
use for imputation borrow from the existing literature on matrix estimation. However, our
out-of-sample forecasting requires making novel technical contributions. We believe these
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tools might be of interest for online learning with a spatio-temporal factor model.

(3) A novel time-varying variance estimation algorithm with theoretical guarantees. To the
best of our knowledge, neither such an algorithm nor an associated theoretical analysis
exists.

(4) A novel tensor variant of the mSSA algorithm called tSSA, which exploits recent
developments in the tensor estimation literature. We find that when N is large compared
to T , tSSA has better sample complexity compared to mSSA. We believe this tensor
variant opens a direction to future work to understand the appropriate statistical and
computational trade offs for time series analysis.

■ 5.2 Literature Review

Given the ubiquity of multivariate time series analysis, it will not be possible to do justice
to the entire literature. We focus on a few techniques most relevant to compare against,
either theoretically or empirically.

SSA and mSSA. A good overview of the literature on SSA can be found in Golyandina
et al. (2001). As alluded to earlier, the original SSA method differs from the variant
discussed in Agarwal et al. (2018) and in this work. The key steps of the original SSA
method are: Step 1–create a Hankel matrix from the time series data; Step 2–do a
Singular Value Decomposition (SVD) of it; Step 3–group the singular values based on
user belief of the model that generated the process; Step 4–perform diagonal averaging to
“Hankelize" the grouped rank-1 matrices outputted from the SVD to create a set of time
series; and Step 5–learn a linear model for each “Hankelized" time series for the purpose
of forecasting. The theoretical analysis of this original SSA method has been focused
on proving that many univariate time series have a low-rank Hankel representation, and
secondly on defining sufficient asymptotic conditions for when the singular values of the
various time series components are separable, thereby justifying Step 3 of the method.
Step 3 of the original SSA method requires user input and Steps 4 and 5 are not robust
to noise and missing values due to the strong dependence across entries of the Hankel
representation of the time series. To overcome these limitations, in Agarwal et al. (2018)
a simpler and practically useful version as described in Section 5.1.1 was introduced.
As discussed earlier, this work improves upon the analysis of Agarwal et al. (2018) by
providing stronger bounds for imputation prediction error, and gives new bounds for
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forecasting prediction error, which were missing in Agarwal et al. (2018). The original
mSSA method, like the original SSA method, involves the five steps described above, but
first the Hankel matrices induced by each of the N time series are stacked either column-
wise (horizontal mSSA) or row-wise (vertical mSSA); see Hassani and Mahmoudvand
(2018).

We note given the popularity of mSSA, there are many algorithmic variants of it proposed
in the literature motivated by different applications: see Broomhead and King (1986);
Plaut and Vautard (1994); Ghil et al. (2002); Oropeza and Sacchi (2011); Hassani and
Mahmoudvand (2013); Hassani et al. (2013); Bógalo et al. (2020). A significant focus
of these works is signal extraction, i.e., decomposing the observed time series into a
small number of simpler time series (e.g., periodic, trend, autoregressive component);
these extracted signals are then subsequently utilized for imputation and forecasting as
described in the preceding paragraph. As stated earlier, despite the popularity of the
mSSA framework, a rigorous finite-sample analysis of its imputation and out-of-sample
forecasting properties are missing in the literature; the challenge in such an analysis
is exacerbated with missing data and measurement error. In this work, as described in
Section 5.1.1, we introduce a simpler variant of mSSA that uses the Page instead of the
Hankel matrix representation. This variant is simpler as it focuses only on the task of
imputation and forecasting, and not signal extraction. We do a finite-sample analysis
of our variant of mSSA and establish its consistency with respect to imputation and
forecasting, which so far has been missing from the mSSA literature. In Appendix 5.9, we
compare our variant to the original version of mSSA which use the Hankel matrix, both
with respect to their theoretical and practical properties.

Matrix factorization based methods for multivariate time series. There is a rich line of
work in econometrics and statistics on viewing multiple time series as a matrix, and where
some form of matrix factorization is performed to learn the spatial and temporal factors
induced by the matrix; such models have also been called dynamic factor models. Some
representative papers (and by no means exhaustive) include Stock and Watson (2002);
Forni et al. (2000); Hallin and Liška (2007); Doz et al. (2012); Banbura and Modugno
(2014); Barigozzi and Luciani (2019). Stock and Watson (2002) consider the estimation by
principal components of this N × T matrix. They use the model for signal extraction and
forecasting. Also, they proposed an expectation-maximization (EM) algorithm to handle
missing data and imputation. Forni et al. (2000); Hallin and Liška (2007) also estimate
principal components and restrict the singular vectors to be related to the Fourier basis.
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Doz et al. (2012); Barigozzi and Luciani (2019) consider maximum likelihood estimation
based on Kalman filtering and also consider forecasting and signal extraction. Banbura
and Modugno (2014) show how to handle missing data and imputation. Similar to the
mSSA literature, the general focus of these works is first signal extraction, which can
then be subsequently used for imputation and forecasting. The theoretical analysis of
these methods has generally been asymptotic in nature, and has focused on recovery
of the spatial and temporal factors, i.e., signal extraction. Our work complements this
literature as we focus directly on finite-sample analysis for imputation and out-of-sample
forecasting (without first needing to signal extraction), and establish consistency for the
variant of mSSA we propose. To the best of our knowledge, finite-sample consistency
results such as ours are limited in the literature.

Additionally, there is a recent line of work from the machine learning literature which also
employs matrix factorization based methods (see Wilson et al. (2008); Yu et al. (2016)).
Most such methods make strong prior model assumptions on the underlying time series and
the algorithm changes based on the assumptions made on the time series dynamics that
generated the data. Further, finite sample analysis, especially with respect to forecasting
error, of such methods is usually lacking. We highlight one method, Temporal Regularized
Matrix Factorization (TRMF) (see Yu et al. (2016)), which we directly compare against due
to its popularity, and as it achieves state-of-the-art empirical imputation and forecasting
performance. The authors in Yu et al. (2016) provide finite sample imputation analysis
for an instance of the model considered in this work, but forecasting analysis is absent.
As discussed earlier, they establish that imputation error scales as 1/min(N,T ). This
is a direct consequence of the low-rank structure of the original N × T matrix. But
they fail to utilize, at least in the theoretical analysis, the temporal structure. Indeed,
our analysis captures such temporal structure and hence our imputation error scales as
1/
√

min(N,T )T which is a stronger guarantee. For example, for N = Θ(1), their error
bound remains Θ(1) for any T , suggesting that TRMF Yu et al. (2016) fails to utilize
the temporal structure for better estimation, while the error for mSSA would vanish as T
grows.

Other relevant literature. We take a brief note of some popular time series methods in
the recent literature. In particular, recently neural network (NN) based approaches have
been popular and empirically effective. Some industry standard neural network methods
include LSTMs, from the Keras library (a standard NN library, see Chollet (2015)) and
DeepAR (an industry leading NN library for time series analysis, see Salinas et al.
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(2019)). Though they have no theoretical guarantees, which is the focus of our work, we
compare with them empirically.

■ 5.3 Model

■ 5.3.1 Spatio-Temporal Factor Model

Below, we introduce the spatio-temporal factor model we use to explain the success of
mSSA. In short, the model requires that the underlying latent multivariate time series
satisfies Properties 5.3.1 and 5.3.2, which capture the “spatial” and “temporal” structure
within it, respectively.

Spatial structure in data. Consider the matrix M ∈ RN×T , where its entry in row n and
column t, Mnt is equal to fn(t), the value of the latent time series n at time t. We posit
that the matrix M is low-rank. Precisely,

Property 5.3.1. Let rank(M) = R. That is, for any n ∈ [N ], t ∈ [T ], Mnt =
∑R

r=1 Unr Wrt ,
where |Unr |≤ Γ1, |Wrt |≤ Γ2 for constants Γ1,Γ2 > 0.

Property 5.3.1 effectively captures the “spatial” structure amongst the N time series.
Similar to the dynamic factor model literature, we can interpret this model as there existing
R latent time series Wr· for r ∈ [R ], and each time series fn(·) is a linear combination of
these R time series, where the weights are given by Un·.

Temporal structure in data. To explicitly capture the temporal structure in the data, we
impose additional structure on Wr·. To that end, we introduce the notion of the Hankel
matrix induced by a time series.

Definition 5.3.1 (Hankel Matrix). Given a time series g : Z → R, its Hankel matrix
associated with observations over T time steps, {1, . . . , T }, is given by the matrix
H ∈ R⌊T /2⌋×⌊T /2⌋ with Hij = g(i+ j − 1) for i, j ∈ [⌊T /2⌋].

Now, for a given r ∈ [R ], consider the time series Wrt for t ∈ [T ]. Let H(r) ∈ R⌊T /2⌋×⌊T /2⌋

denote its Hankel matrix restricted to [T ], i.e. H(r)ij = Wr(i+j−1) for i, j ∈ [⌊T /2⌋].

Property 5.3.2. For each r ∈ [R ] and for any T ≥ 1, the Hankel Matrix H(r) ∈ R⌊T /2⌋×⌊T /2⌋

associated with time series Wrt , t ∈ [T ] has rank at most G.
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Property 5.3.2 captures the temporal structure within the latent factors associated with
time; indeed, such a low-rank Hankel representation includes a rich family of time series
dynamics as noted in Proposition 3 below.

Proposition 3 (Proposition 5.2, Agarwal et al. (2018)). Consider a time series f : Z→ R

with its element at time t denoted as

f (t) =
A∑

a=1
exp(αat) · cos(2πωat + φa) · Pma(t), (5.4)

where αa, ωa, φa ∈ R are parameters, Pma is a degree ma ∈ N polynomial in t. Then f (·)
satisfies Property 5.3.2. In particular, consider the Hankel matrix of f over [T ], denoted
as H(f ) ∈ R⌊T /2⌋×⌊T /2⌋ with H(f )ij = f (i+ j − 1) for i, j ∈ [⌊T /2⌋]. For any T , the rank of
H(f ) is at most G = A(mmax + 1)(mmax + 2), where mmax = maxa∈Ama.

Proposition 3 states any finite sum of (products of) harmonics, polynomials, and exponen-
tials has a low-rank Hankel representation. Each of these functions are popular to model
various aspects of a time series such as periodicity and trend. Further, we note that the
spectral representation of generic stationary processes, which includes autoregressive
processes, implies that any sample-path of a stationary process can be decomposed into
a weighted sum (precisely an integral) of harmonics, where the weights in the sum are
sample path dependent—see Property 4.1, Chapter 4 of Robert H. Shumway (2015).
That is, a finite (weighted) sum of harmonics provides a good model representation for
stationary processes with the model becoming more expressive as the number of harmonics
grows. In Section 5.5, we extend this model when Property 5.3.2 is only approximately
satisfied. In particular, we quantify the approximation error based on the smoothness
of the underlying time series and the number of harmonics used in the summation to
approximate it.

Spatio-temporal model implies stacked Page matrix is low-rank. Recall that the primary
representation utilized by mSSA is the stacked Page matrix (with parameter L). Observe
that the Page matrix of a univariate time series for any L ≤ ⌊T /2⌋ is simply the sub-matrix
of the associated Hankel matrix: precisely, the Page matrix can be obtained by restricting
to the top L rows and columns 1, L+ 1, . . . of the Hankel matrix. Therefore, the rank of
the Hankel matrix is a bound on the rank of the Page matrix. Under the spatio-temporal
factor model satisfying Properties 5.3.1 and 5.3.2, we establish the following low-rank
property of the Page matrix of any particular time series as well as that of the stacked
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Page matrix.

Proposition 4. Let Properties 5.3.1 and 5.3.2 hold. Then for any L ≤ ⌊T /2⌋ with any
T ≥ 1, the rank of the Page matrix induced by the univariate time series fn(·) for n ∈ [N ]
is at most R xG. Further, the rank of the stacked Page matrix induced by all N time
series f1(·), . . . , fN (·) is also at most R xG.

The proof is in Appendix 5.12 where a more general result is established in Proposition 6.

■ 5.3.2 A Diagnostic Test for the Spatio-Temporal Model

In Sections 5.4 and 5.5, under the model described above, we theoretically establish the
efficacy of mSSA. Beyond this model though, our work does not provide any guarantees
for mSSA. Therefore, to utilize the guarantees of this work, it would be useful to have a
data-driven diagnostic test that can help identify scenarios when the model of Section
5.3 may or may not hold. We discuss one such test in this section.

In particular, Proposition 4 suggests a “data driven diagnosis test” to verify whether
mSSA is likely to succeed as per the results of this work. Specifically, if the (effective)
rank—defined as the minimum number of singular values capturing > 90% of its spectral
energy—of the Page matrix associated with any of the univariate components fn(·) and
the (effective) rank of stacked Page matrix associated with the multivariate time series
with N component are very different, then mSSA may not be effective compared to SSA,
but if they are very similar then mSSA is likely to be more effective compared to SSA.
Our finite-sample results in Sections 5.4 and 5.5 indicate that the optimal value for L is√

min(N,T )T . Thus as a further test, if the effective rank of the stacked Page matrix does
not scale much slower than L for L ∼

√
min(N,T )T , then SSA (and mSSA) are unlikely

to be effective methods.

Table 5.2 compares the (effective) rank of the stacked Page matrices for different benchmark
time series data sets. The value of T equals 3993, 26304, and 10560 for the Financial,
Electricity, and Traffic datasets respectively (see Appendix 5.10 for details on the datasets).
We set L = ⌊

√
min(N,T )T⌋ for all datasets. When N = 1, this corresponds to L equals

63, 162, and 102 for the Financial, Electricity, and Traffic datasets respectively. Table 5.2
shows the effective rank in each dataset as we vary N . As can be seen, for N = 1, the
effective rank is much smaller than L (or T ) suggesting that SSA is likely to be effective.
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For Electricity and Financial datasets, the rank does not change by much as we increase
N . However, relatively the rank does increase substantially for the Traffic dataset. This
might explain why mSSA is relatively less effective for the Traffic dataset in contrast to
the Financial and Electricity datasets as noted in Table 5.1.

Table 5.2: Effective rank of stacked Page matrix across benchmarks as we vary N .

Dataset N = 1 N =10 N = 100 N = 350

Electricity 19 37 44 31
Financial 1 3 3 6
Traffic 14 32 69 116

■ 5.4 Main Results

We now provide bounds on the imputation and forecasting prediction error for mSSA under
the spatio-temporal model introduced in Section 5.3. We start by defining the metric by
which we measure prediction error. For imputation, we define prediction error as

ImpErr(N,T ) = 1
NT

N∑

n=1

T∑

t=1
E[(fn(t)− f̂n(t))2]. (5.5)

Here, the imputed estimate f̂n(·), n ∈ [N ] are produced by the imputation algorithm of
Section 5.1.1. For forecasting, we define the in-sample prediction error as

ForErr(N,T , L) = L
NT

N∑

n=1

T /L∑

m′=1
E[(fn(L xm′)− f̄n(L xm′))2]. (5.6)

Further, let T1 ∈ Z such that T1 ≥ L. Then, we define the out-of-sample prediction error
as

TestForErr(N,T , T1, L) = L
NT1

N∑

n=1

T1/L∑

m′=1
E[(fn(T + L xm′)− f̄n(T + L xm′))2]. (5.7)

Again, the forecasted estimate f̄n(·), n ∈ [N ] are produced by the forecasting algorithm of
Section 5.1.1. In (5.5), (5.6), and (5.7), the expectation is with respect to the randomness
in observations due to noise and missingness.
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■ 5.4.1 Assumptions

To state the main results, we make the following assumptions. Recall from (5.1) that for
each n ∈ [N ] and t ∈ [T ], we observe fn(t)+ηn(t) with probability ρ ∈ (0, 1] independently.
We shall assume that noise ηn(·), n ∈ [N ] satisfy the following property.

Property 5.4.1. For n ∈ [N ], t ∈ [T ], ηn(t) are independent sub-gaussian random variables,
with E[ηn(t)] = 0 and ηn(t)ψ2≤ γ.

For definition of ·ψα -norm, see Vershynin (2010), for example.

Property 5.4.2. (Balanced spectra). Denote the L × (NT/L) stacked Page matrix associ-
ated with all N time series f1(·), . . . , fN (·) as SP(f ) := SP((f1, . . . , fN ), T , L). Under the
setup of Proposition 4, rank(SP(f )) = ℓ ≥ 1 and ℓ ≤ R xG. Then, for L =

√
min(N,T )T ,

SP(f ) is such that σℓ (SP(f )) ≥ c
√
NT/
√
ℓ for some absolute constant c > 0, where σℓ is

the ℓ-th largest singular value of SP(f ).

Note that if σℓ (SP(f )) = Θ(σ1(SP(f ))), then one can verify that Property 5.4.2 holds.
Indeed, assuming that the non-zero singular values are ‘well-balanced’ is standard in the
matrix/tensor estimation literature. To state our results for out-of-sample forecasting error,
let SP1(f ) be the L × (NT1/L) stacked Page matrix associated with all N time series
f1(t), . . . , fN (t) entries for t ∈ [T + 1, T + T1]. We assume an analogous condition on
SP1(f ) as we do for SP(f ).

Property 5.4.3. (Balanced spectra (out-of-sample)). Under the setup of Proposition 4,
we have that rank(SP1(f )) = ℓ ≥ 1 and ℓ ≤ R xG. Then, for L =

√
min(N,T )T , SP1(f )

is such that σℓ (SP1(f )) ≥ c
√
NT1/

√
ℓ for some absolute constant c > 0, where σℓ is the

ℓ-th largest singular value of SP1(f ).

Again, note that if σℓ (SP1(f )) = Θ(σ1(SP1(f ))), then one can verify that Property 5.4.3
holds.

Lastly, we shall first impose some restrictions on the complexity of the N time series
f1(t), . . . , fN (t) for t > T . Let SP′(f ) denote the (L − 1) × (NT1/L) matrix formed using
the top L − 1 rows of SP(f ). Define SP′1(f ) analogously with respect to SP1(f ). Let
colspan(SP′(f )) and colspan(SP′1(f )) denote the subspace of RL−1 spanned by the columns
of SP′(f ) and SP′1(f ), respectively. We assume the following property.
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Property 5.4.4. (Subspace inclusion). colspan(SP′1(f )) ⊆ colspan(SP′(f )).

Intuitively, this requires that to effectively forecast, the associated stacked Page matrix of
the out-of-sample time series colspan(SP′1(f )) is only as “rich” as that of SP′(f ).

Picking hyper-parameter L. The proof of Theorems 5.4.1, 5.4.2, and 5.4.3 imply the optimal
choice of L is to set it to

√
min(N,T )T . Intuitively, this choice of L leads to the stacked

Page matrix SP(f ) to be as square as possible, and our analysis implies that the error
rate is inversely proportional to the minimum of the number of the rows and columns of
SP(f ). Hence, for the remainder of the paper, we state our results for L =

√
min(N,T )T .

Picking hyper-parameter k. For our theoretical result, we assume that we pick k = ℓ ,
where ℓ is the rank of SP(f ). Empirically, we pick k to equal the “effective rank” of the
observed Page matrix as defined in Section 5.3.2.

■ 5.4.2 Finite-sample Analysis for Imputation and Forecasting

Now we state the main results. In what follows, we let C (c,Γ1,Γ2, γ) denote a constant
thats depends only (polynomially) on model parameters c,Γ1,Γ2, γ. We also remind the
reader that R,Γ1,Γ2 are defined in Property 5.3.1, G in 5.3.2, γ in Property 5.4.1 and c
in Property 5.4.2.

Imputation. We begin with our imputation result.

Theorem 5.4.1 (Imputation). Let Properties 5.3.1, 5.3.2, 5.4.1 and 5.4.2 hold. For a
large enough absolute constant C > 0, let ρ ≥ C logNT√

NT . Then with hyper-parameters
L =

√
min(N,T )T and k = ℓ,

ImpErr(N,T ) ≤ C (c,Γ1,Γ2, γ)
(

R3G logNT
ρ4
√

min(N,T )T

)
.

In-sample forecasting. Recall from (5.3) that in mSSA, we learn a linear model between
the last row of SP((X1, . . . , XN ), T , L) and the L − 1 rows above it (after de-noising the
sub-matrix induced these L − 1 rows via HSVT). Hence, we first establish that in the
idealized scenario (no noise, no missing values), there does indeed exist a linear model
between the last row and the L − 1 rows above of SP(f ). Let SP(f )L· denote the L-th
row of SP(f ) and recall SP′(f ) ∈ R(L−1)×(NT/L) denotes the sub-matrix of SP(f ) formed
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by selecting top L − 1 rows. In the proposition below, we show there exists a linear
relationship between SP(f )L· and SP′(f ).

Proposition 5. Let Properties 5.3.1 and 5.3.2 hold. Then there exists β∗ ∈ RL−1 such
that SP(f )TL· = SP′(f )Tβ∗. Further, β∗0≤ RG.

Theorem 5.4.2 (In-sample forecasting). Let the conditions of Theorem 5.4.1 hold. Then,
with β∗ defined in Proposition 5, we have

ForErr(N,T , L) ≤ C (c, γ,Γ1,Γ2) max(1, β∗21)
( R3G logNT
ρ4
√

min(N,T )T

)
.

Out-of-sample forecasting.

Theorem 5.4.3 (Out-of-sample Forecasting). Let Properties 5.3.1, 5.3.2, 5.4.1, 5.4.2, 5.4.3,
and 5.4.4 hold. Let the hyper-parameters L =

√
min(N,T )T and k = ℓ. Then for a large

enough absolute constant C > 0, let ρ ≥ C max
(

logNT√
NT , (γ + RΓ1Γ2)

√
RG
L

)
. Then, with

β∗ defined in Proposition 5, we have

TestForErr(N,T , T1, L) ≤ C (γ,Γ1,Γ2, c) max(1, β∗21)
(
R9G3 log(N max(T , T1))

ρ4
√

min(N,T )T

(
max

(
1, NT

)
+ T
T1

))
.

Corollary 5.4.1. Let the conditions of Theorem 5.4.3 hold. Then, with T1 = Θ(T ), we have

TestForErr(N,T , T1, L) ≤ C (γ,Γ1,Γ2, c) max(1, β∗21)
(
R9G3 log(NT ) max

(
1, NT

)

ρ4
√

min(N,T )T

)
.

Corollary 5.4.1 implies that when N = o(T ), then the error scales as ∼ 1/
√
NT . When

T = o(N), then one can simply divide the N time series up into sets of size T . Corollary
5.4.1 implies that this will result in error scaling as ∼ 1/T . Thus effectively, the error
rate scales as ∼ 1/

√
min(N,T )T .

We note that Theorems 5.4.1, 5.4.2 and Proposition 5 are special cases of Theorems 5.5.1,
5.5.2 and Proposition 11 stated in the next section, respectively. Their proofs are in
Appendices 5.16, 5.17, and 5.17.1, respectively. The proof of Theorem 5.4.3 is in Appendix
5.18.
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■ 5.5 Approximate Low-Rank Hankel Representation

In this section, we extend the model presented in Section 5.3 by relaxing Property 5.3.2
to only hold approximately. We establish a ‘calculus’ for this extended model – the set
of time series functions which have this approximate low-rank Hankel representation is
closed under component-wise addition and multiplication. We show important examples
of time series dynamics studied in the literature have an approximate low-rank Hankel
representation. Lastly, we present generalizations of Theorems 5.4.1 and 5.4.2 for this
extended model.

■ 5.5.1 Approximate Low-rank Hankel Representation and Hankel
Calculus

We first introduce the definition of the approximate rank of a matrix.

Definition 5.5.1 (ε-approximate rank). Given ε > 0, a matrix M ∈ Ra×b is said to have
ε-approximate rank at most s ≥ 1 if there exists a rank s matrix Ms ∈ Ra×b such that
M −Ms∞< ε.

Definition 5.5.2 ((G, ε)-Hankel Time Series). For a given ε ≥ 0 and G ≥ 1, a time series
f : Z→ R is called a (G, ε)-Hankel time series if for any T ≥ 1, its Hankel matrix has
ε-approximate rank G.

We extend the model of Section 5.3 by replacing Property 5.3.2 by the following.

Property 5.5.1. For each r ∈ [R ] and for any T ≥ 1, the Hankel Matrix H(r) ∈ R⌊T /2⌋×⌊T /2⌋

associated with time series Wrt , t ∈ [T ] has ε-approximate rank at most G for ε > 0.
That is, for each r ∈ [R ], Wr· is a (G, ε)-Hankel time series.

We state an implication of the above stated properties on the stacked Page matrix.

Proposition 6. Let Properties 5.3.1 and 5.5.1 hold. For any L ≤ ⌊T /2⌋ with any T ≥ 1,
the stacked Page matrix induced by the N time series f1(·), . . . , fN (·) has ε′-rank at most
R xG for ε′ = RΓ1ε.

Hankel calculus. We present a key property of the model class satisfying Property 5.5.1,
i.e. time series that have an approximate low-rank Hankel matrix representation. To
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that end, we define ‘addition’ and ‘multiplication’ for time series. Given two time series
f1, f2 : Z→ R, define their addition, denoted f1 + f2 : Z→ R as (f1 + f2)(t) = f1(t)+ f2(t),
for all t ∈ Z. Similarly, their multiplication, denoted f1 ◦ f2 : Z → R as (f1 ◦ f2)(t) =
f1(t) x f2(t), for all t ∈ Z. Now, we state a key property for the model class satisfying
Property 5.5.1 (proof in Appendix 5.13).

Proposition 7. For i ∈ {1, 2}, let fi be a (Gi, εi)-Hankel time series for Gi ≥ 1, εi ≥ 0.
Then, f1+f2 is a (G1+G2, ε1+ε2)-Hankel time series and f1◦f2 is a

(
G1G2, 3 max(ε1, ε2) ·

max(
∥∥f1
∥∥
∞ ,
∥∥f2
∥∥
∞)
)

-Hankel time series.

■ 5.5.2 Examples of (G, ε)-Hankel Time Series

We establish that many important classes of time series dynamics studied in the literature
are instances of (G, ε)-Hankel time series, i.e. they satisfy Property 5.5.1. In particular,
any differentiable periodic function (Proposition 9), and any time series with a Hölder
continuous latent variable representation (Proposition 10). Proofs of Propositions 8, 9,
and 10 can be found in Appendix 5.13.

Example 1. (G, ε)-LRF time series. We start by defining a linear recurrent formula
(LRF), which is a standard model for linear time-invariant systems.

Definition 5.5.3 ((G, ε)-LRF). For G ∈ N and ε ≥ 0, a time series f is said to be a
(G, ε)-Linear Recurrent Formula (LRF) if for all T ∈ Z and t ∈ [T ], there exists g : Z→ R

such that
f (t) = g(t) + h(t),

where for all t ∈ Z, (i) g(t) =
∑G

l=1 αlg(t − l) with constants α1, . . . , αG , and (ii) |h(t)|≤ ε.

Now we establish a time series f that is a (G, ε)-LRF is also (G, ε)-Hankel.

Proposition 8. If f is (G, ε)-LRF representable, then it is (G, ε)-Hankel representable.

LRF’s cover a broad class of time series functions, including any finite sum of products
of harmonics, polynomials and exponentials. In particular, it can be easily verified that
a time series described by (5.4) is a (G, 0)-LRF, where G ≤ A(mmax + 1)(mmax + 2) with
mmax = maxa∈Ama.
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Example 2. “smooth” and periodic time series. We establish that any differentiable
periodic function is (G, ε)-LRF and hence (G, ε)-Hankel for appropriate choices of G and
ε.

Definition 5.5.4 (C k (R,PER)). For k ≥ 1 and R > 0, we use C k (R,PER) to denote the
class of all time series f : R → R such that it is R periodic, i.e. f (t + R) = f (t) for all
t ∈ R and the k-th derivative of f , denoted f (k), exists and is continuous.

Proposition 9. Any f ∈ C k (R,PER) is

(
4G,C (k, R )

∥∥f (k)
∥∥

Gk−0.5

)
−Hankel representable,

for any G ≥ 1. Here C (k, R) is a term that depends only on k, R and
∥∥f (k)

∥∥2 =
1
R
∫ R
0 (f (k)(t))2dt.

Example 3. time series with latent variable model (LVM) structure. We now show that
if a time series has a LVM representation, and the latent function is Hölder continuous,
then it has a (G, ε)-Hankel representation for appropriate choice of G ≥ 1 and ε ≥ 0. We
first define the Hölder class of functions; this class of functions is widely adopted in the
non-parametric regression literature Wasserman (2006). Given a function g : [0, 1)K → R,
and a multi-index κ ∈ NK , let the partial derivate of g at x ∈ [0, 1)K , if it exists, be
denoted as ▽κg(x) = ∂|κ|g(x)

(∂x)κ where |κ|=
∑K

j=1 κj and (∂x)κ = ∂κ1x1 · · · ∂κK xK .

Definition 5.5.5 ((α, L)-Hölder Class). Given α, L > 0, the Hölder class H(α, L) on
[0, 1)K is defined as the set of functions g : [0, 1)K → R whose partial derivatives satisfy
for all x, x ′ ∈ [0, 1)K ,

∑
κ:|κ|=⌊α⌋

1
κ! |▽κg(x)− ▽κg(x ′)|≤ L

∥∥x − x ′
∥∥α−⌊α⌋
∞ . Here ⌊α⌋ refers

to the greatest integer strictly smaller than α and κ! =
∏K
j=1 κj !.

Note that if α ∈ (0, 1], then the definition above is equivalent to the (α, L)-Lipschitz
condition, i.e., |g(x) − g(x ′)|≤ L

∥∥x − x ′
∥∥α
∞ , for x, x ′ ∈ [0, 1)K . Given a time series

f : Z → R, for any T ≥ 1, recall the Hankel matrix H ∈ R⌊T /2⌋×⌊T /2⌋ is defined such
that its entry in row i ∈ [⌊T /2⌋] and column j ∈ [⌊T /2⌋] is given by Hij = f (i+ j − 1).
We call a time series f to have (α, L)-Hölder smooth LVM representation for α, L > 0
if for any given T ≥ 1, the corresponding Hankel matrix H satisfies: for i, j ∈ [⌊T /2⌋],
Hij = g(θi, ωj ), where θi, ωj ∈ [0, 1)K are latent parameters and g(·, ω) ∈ H(α, L) for
any ω ∈ [0, 1)K . It can be verified that a (G, 0)-Hankel time series is an instance of such
a LVM representation with corresponding g(x, y) = xTy. Thus in a sense, this model
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is a natural generalization of the (G, 0)-Hankel matrix representation. The following
proposition connects this LVM representation to the (G, ε)-Hankel representation for
appropriately defined G ≥ 1, ε > 0.

Proposition 10. Given α, L > 0, let f have (α, L)-Hölder smooth LVM representation.
Then for all ε > 0, f is

(C (α,K )
(1
ε

)K
, Lεα )−Hankel representable.

Here C (α,K ) is a term that depends only on α and K .

■ 5.5.3 Extending Main Results

Below, we provide generalizations of the imputation and in-sample forecasting results
stated in Section 5.4. To do so, we utilize Property 5.5.2 which is analogous to Property
5.4.2 but for the approximate low-rank setting.

Property 5.5.2. (Approximately balanced spectra). Under the setup of Proposition 6, we
can represent the L × (NT/L) stacked Page matrix associated with all N time series
f1(·), . . . , fN (·) as SP(f ) = M̃ + E with rank(M̃) = ℓ ≥ 1 and ℓ ≤ R xG and E∞≤ RΓ1ε.
Then, for L =

√
min(N,T )T , M̃ is such that σℓ (M̃) ≥ c

√
NT/
√
ℓ for some absolute

constant c > 0, where σℓ is the ℓ-th largest singular value of M̃ .

Theorem 5.5.1 (Imputation). Let Properties 5.3.1, 5.5.1, 5.4.1 and 5.5.2 hold. For a
large enough absolute constant C > 0, let ρ ≥ C logNT√

NT . Then, with hyper-parameters
L =

√
min(N,T )T and k = ℓ,

ImpErr(N,T ) ≤ C (c,Γ1,Γ2, γ)
(

R3G logNT
ρ4
√

min(N,T )T
+ R4G(ε + ε3)

ρ2

)

where C (c,Γ1,Γ2, γ) is a positive constant dependent on model parameters including
Γ1,Γ2, γ.

We remind the reader that R,Γ1,Γ2 are defined in Property 5.3.1, G in 5.3.2, γ in Property
5.4.1 and c in Property 5.5.2.

Existence of Linear Model. We now state Proposition 11, which is analogous to
Proposition 5, but for the approximate low-rank setting.
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Proposition 11. Let Properties 5.3.1 and 5.5.1 hold. Then, there exists β∗ ∈ RL−1, such
that SP(f )TL· − SP′(f )Tβ∗∞≤ RΓ1(1 + β∗1)ε., Further β∗0≤ RG.

Theorem 5.5.2 (In-sample forecasting). Let the conditions of Theorem 5.5.1 hold. Then
with β∗ defined in Proposition 11, we have

ForErr(N,T , L) ≤ C (c, γ,Γ1,Γ2) max(1, β∗21)
( R3G logNT
ρ4
√

min(N,T )T
+ R4G(ε + ε3)

ρ2

)
.

■ 5.6 Experiments

We describe experiments supporting our theoretical results for mSSA. In particular, we
provide details of the experiments run to create the summary results described earlier in
Table 5.1. In Appendix 5.10, we describe the datasets utilized and the various algorithms
we compare with as well as the procedure for selecting the hyper-parameters in each
algorithm. In Section 5.6.1 and 5.6.2, we report the imputation and forecasting results.
Note that in all experiments, we use the Normalized Root Mean Squared Error (NRMSE)
as out accuracy metric. That is, we normalize all the underlying time series to have zero
mean and unit variance before calculating the root mean squared error. We use this metric
as it weighs the error on each time series equally.

■ 5.6.1 Imputation

Setup. We test the robustness of the imputation performance by adding two sources
of corruption to the data - varying the percentage of observed values and varying the
amount of noise we perturb the observations by. We test imputation performance by how
accurately we recover missing values. We compare the performance of mSSA with TRMF,
a method which achieves state-of-the-art imputation performance. Further, to analyze the
added benefit of exploiting the spatial structure in a multivariate time series using mSSA,
we compare with the SSA variant introduced in Agarwal et al. (2018) .

Results. Figures 5.3a, 5.3c, 5.3e, 5.4a, and 5.4c show the imputation error in the
aforementioned datasets as we vary the fraction of missing values, while Figures 5.3b,
5.3d, 5.3f, 5.4b, and 5.4d show the imputation error as we vary σ , the standard deviation of
the gaussian noise. We see that as we vary the fraction of missing values and noise levels,
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mSSA outperforms both TRMF and SSA in ∼ 75% of experiments run. It is noteworthy
the large empirical gain in mSSA over SSA, giving credence to the spatio-temporal model
we introduce. The average NRMSE across all experiments for each dataset is reported in
Table 5.1, where mSSA outperforms every other method across all datasets except for the
Traffic dataset.

(a) (b)

(c) (d)

(e) (f)

Figure 5.3: mSSA vs. TRMF vs. SSA - imputation performance on the Electricity, Traffic and
Synthetic datasets. Figures 5.3a, 5.3c, and 5.3e, show imputation accuracy of mSSA, TRMF
and SSA as we vary the fraction of missing values; Figures 5.3b, 5.3d, and 5.3f show imputation
accuracy as we vary the noise level (and with 50% of values missing).
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(a) (b)

(c) (d)

Figure 5.4: mSSA vs. TRMF vs. SSA - imputation performance on the Financial and M5 datasets.
Figures 5.4a, and 5.4c show imputation accuracy of mSSA, TRMF and SSA as we vary the fraction
of missing values; Figures 5.4b, and 5.4d show imputation accuracy as we vary the noise level
(and with 50% of values missing).

■ 5.6.2 Forecasting

Setup. We test the forecasting accuracy of the proposed mSSA against several state-of-
the-art algorithms. For each dataset, we split the data into training, validation, and testing
datasets as outlined in Appendix 5.10.1. As was done in the imputation experiments, we
vary how much each dataset is corrupted by varying the percentage of observed values
and the noise levels.

Results. Figures 5.5a, 5.5c, 5.5e, 5.6a, and 5.6c show the forecasting accuracy of mSSA
and other methods in the aforementioned datasets as we vary the fraction of missing
values, while Figures 5.5b, 5.5d, 5.5f, 5.6b, and 5.6d show the forecasting accuracy as
we vary the standard deviation of the added gaussian noise. We see that as we vary the
fraction of missing values and noise level, mSSA is the best or comparable to the best



266 CHAPTER 5. ON MULTIVARIATE SINGULAR SPECTRUM ANALYSIS

performing method in ∼ 80% of experiments. In terms of the average NRMSE across all
experiments, we find that mSSA performs similar to or better than every other method
across all datasets except for the traffic dataset as was reported in Table 5.1.

(a) (b)

(c) (d)

(e) (f)

Figure 5.5: mSSA forecasting performance on standard multivariate time series benchmark is
competitive with/outperforming industry standard methods as we vary the number of missing data
and noise level. Figures 5.5a, 5.5c, and 5.5e show the forecasting accuracy of all methods on the
Electricity, Traffic and Synthetic datasets with varying fraction of missing values; Figures 5.5b,
5.5d, and 5.5f showsthe forecasting accuracy on the same datasets with varying noise level.
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(a) (b)

(c) (d)

Figure 5.6: Figures 5.6a, and 5.6c show the forecasting accuracy of all methods on the financial and
M5 datasets with varying fraction of missing values; Figures 5.6b, and 5.6d show the forecasting
accuracy on the same datasets with varying noise levels.

■ 5.7 Algorithmic Extensions of mSSA

■ 5.7.1 Variance Estimation

We extend the mSSA algorithm to estimate the time-varying variance of a time series by
making the following simple observation. If we apply mSSA to the squared observations,
X2
n (t), we will recover an estimate of E[X2

n (t)] (for ρ = 1). However, observe that
Var[Xn(t)] = E[X2

n (t)]− E[Xn(t)]2. Therefore, by applying mSSA twice, once on Xn(t) and
once on X2

n (t) for n ∈ [N ] and t ∈ [T ], and subsequently taking the component-wise
difference of the two estimates will lead to an estimate of the variance. This suggests a
simple algorithm which we describe next. We note this observation suggests any mean
estimation algorithm (or imputation) in time series analysis can be converted to estimate
the time varying variance – this ought to be of interest in its own right.
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Algorithm. As described in Section 5.1.1, let L ≥ 1 and k, k ′ ≥ 1 be algorithm parameters.
First, apply mSSA on observations Xn(t), n ∈ [N ], t ∈ [T ] to produce imputed estimates
f̂n(t) using the hyper-parameters L and k . Next, apply mSSA on observations X2

n (t), n ∈
[N ], t ∈ [T ] to produce imputed estimates ĝn(t) using the hyper-parameters L and k ′.
Lastly, we denote σ̂2

n (t) = max(0, ĝn(t)− f̂n(t)2), n ∈ [N ], t ∈ [T ] as our estimate of the
time-varying variance.

Model. For n ∈ [N ], t ∈ [T ], let σ2
n (t) = E[η2

n(t)] be the time-varying variance of the
time series observations, i.e., if ρ = 1 then σ2

n (t) = Var[Xn(t)] = E[X2
n (t)] − f2n (t). Let

Σ ∈ RN×T be the matrix induced by the latent time-varying variances of the N time
series of interest, i.e., the entry in row n at time t in Σ is Σnt = σ2

n (t). To capture the
“spatial” and “temporal” structure across the N latent time-varying variances, we assume
the latent variance matrix Σ satisfies Properties 5.7.1 and 5.7.2. These properties are
analogous to those assumed about the latent mean matrix M (defined in Section 5.3); in
particular, Properties 5.3.1 and 5.3.2. We state them next.

Property 5.7.1. Let R ′ = rank(Σ), i.e, for any n ∈ [N ], t ∈ [T ], Σnt =
∑R ′

r=1 U ′nr W ′rt ,
where the factorization is such that |U ′nr |≤ Γ′1, |W ′rt |≤ Γ′2 for Γ′1,Γ′2 > 0.

Like Property 5.3.1, the above property captures the “spatial” structure within N time
series of variances. To capture the “temporal” structure, next we introduce an analogue of
Property 5.3.2. To that end, for each r ∈ [R ′], define the ⌊T /2⌋ × ⌊T /2⌋ Hankel matrix
of each time series W ′rt , t ∈ [T ] as H ′(r) ∈ R⌊T /2⌋×⌊T /2⌋, where H ′(r)ij = W ′r(i+j−1) for
i, j ∈ [⌊T /2⌋].

Property 5.7.2. For each r ∈ [R ′], the Hankel Matrix H ′(r) ∈ R⌊T /2⌋×⌊T /2⌋ associated
with time series W ′rt , t ∈ [T ] has rank at most G′.

Result. To establish the estimation error for the variance estimation algorithm under the
spatio-temporal model above, we need the following additional property (analogous to
Property 5.4.2).

Property 5.7.3 (Balanced spectra). Denote the L×(NT/L) stacked Page matrix associated
with all N time series σ2

1 (·), . . . , σ2
N (·) as SP(σ2) := SP((σ2

1 , . . . , σ2
N ), T , L). Due to

Properties 5.7.1 and 5.7.2, and a simple variant of Proposition 4, we have rank(SP(σ2)) =
ℓ ′ ≥ 1 and ℓ ′ ≤ R ′ xG′. Then, for L =

√
min(N,T )T , SP(σ2) is such that σ ′ℓ (M) ≥

c
√
NT/
√
ℓ ′ for some absolute constant c > 0, where σ ′ℓ is the ℓ-th singular value, order

by magnitude, of SP(σ2).
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Theorem 5.7.1 (Variance Estimation). Let Properties 5.3.1, 5.3.2, 5.4.1, 5.4.2, 5.7.1, 5.7.2,
and 5.7.3 hold. Additionally let |f̂n(t)|≤ Γ3 for all n ∈ [N ], t ∈ [T ]. Lastly, let hyper-
parameters L =

√
min(N,T )T , k = ℓ, k ′ = ℓ ′. Let ρ = 1. Then the variance prediction

error is bounded above as

1
NT

N∑

n=1

T∑

t=1
E[(σn(t)2 − σ̂2

n (t))2] ≤ C̃
(

(G2 + G′) log2NT√
min(N,T )T

.
)
.

where C̃ is a constant dependent (polynomially) on model parameters Γ1, Γ2, Γ3, Γ′1, Γ′2,
γ, R, R ′.

Proof of Theorem 5.7.1 can be found in Appendix 5.19.

■ 5.7.2 Tensor SSA

Page tensor. We introduce an order-three tensor representation of a multivariate time
series which we term the ‘Page tensor’. Given N time series, with observations over T
time steps and hyper-parameter L ≥ 1, define T ∈ RN×T/L×L such that

Tnℓs = fn((s − 1)× L+ ℓ), n ∈ [N ], ℓ ∈ [L], s ∈ [T /L].

The corresponding observation tensor, T ∈ (R ∪ {⋆})N×T/L×L, is

Tnℓs = Xn((s − 1)× L+ ℓ), n ∈ [N ], ℓ ∈ [L], s ∈ [T /L]. (5.8)

See Figure 5.7 for a visual depiction of T.

Figure 5.7: The observations Page tensor.

Let the CP-rank of an order-d tensor T ∈ Rn1×n2×...×nd be the smallest value of r ∈ N
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such that Ti1,...,id =
∑r

k=1 ui1,k . . . uid,k , where uiℓ ,· are latent factors for ℓ ∈ [d]. Under
the model described in Section 5.3, we have the following properties.

Proposition 12. Let Properties 5.3.1, 5.3.2, and 5.4.1 hold. Then, for any 1 ≤ L ≤
√
T , T

has canonical polyadic (CP)-rank at most R xG. Further, all entries of T are independent
random variables with each entry observed with probability ρ ∈ (0, 1], and E[T] = ρT.

tSSA: time series imputation using the Page tensor representation. The Page tensor
representation and Proposition 12 collectively suggest that time series imputation can
be reduced to low-rank tensor estimation, i.e., recovering a tensor of low CP-rank from
its noisy, partial observations. Over the past decade, the field of low-rank tensor (and
matrix) estimation has received great empirical and theoretical interest, leading to a large
variety of algorithms including spectral, convex optimization, and nearest neighbor based
approaches. We list a few works which have explicit finite-sample rates for noisy low-rank
tensor completion Barak and Moitra (2016); Xia et al. (2018); Cai et al. (2021); Yu (2020);
Shah and Yu (2019)). As a result, we “blackbox” the tensor estimation algorithm used
in tSSA as a pivotal subroutine. Doing so allows one the flexibility to use the tensor
estimation algorithm of their choosing within tSSA. Consequently, as the tensor estimation
literature continues to advance, the “meta-algorithm” of tSSA will continue to improve in
parallel. To that end, we give a definition of a tensor estimation algorithm for a generic
order-d tensor. Note that when d = 2, this reduces to standard matrix estimation (ME).

Definition 5.7.1 (Matrix/Tensor Estimation). For d ≥ 2, denote TEd : {⋆,R}n1×n2×...nd →
Rn1×n2×...nd as an order-d tensor estimation algorithm. It takes as input an order-d tensor
G with noisy, missing entries, where E[G] = ρG and ρ ∈ (0, 1] is the probability of each
entry in G being observed. TEd then outputs an estimate of G denoted as Ĝ = TEd(G).

We assume the following ‘oracle’ error convergence rate for TEd; for ease of exposition,
we restrict our attention to the setting where ρ = 1.

Property 5.7.4. For d ≥ 2, assume TEd satisfies the following: the estimate Ĝ ∈
Rn1×n2×...nd , which is the output of TEd(G) with E[G] = G , satisfies

1
n1 . . . nd

Ĝ −G2
F= Θ̃

(
1/min(n1, . . . , nd)⌈d/2⌉

)
.

Here, Θ̃(·) suppresses dependence on noise, i.e., E = G−E[G], log(·) factors, and CP-rank
of G .
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Property 5.7.4 holds for a variety of matrix/tensor estimation algorithms. For d = 2, it holds
for HSVT as we establish in the proof of Theorem 5.4.1 for mSSA of Õ(1/

√
min(N,T ), T ).

It is straightforward to show that this is the best rate achievable for TE2. For d ≥ 3,
it has recently been shown that Property 5.7.4 provably holds for a spectral gradient
descent based algorithm Cai et al. (2021), conditioned on certain standard “incoherence”
conditions imposed on the latent factors of G; another spectral algorithm that achieved
the same rate was furnished in Xia et al. (2018), which the authors also establish is
minimax optimal.

tSSA algorithm. We now define the “meta” tSSA algorithm; the two algorithmic hyper-
parameters are L ≥ 1 (defined in (5.8)) and TE3 (the order-three tensor estimation
algorithm one chooses). First, using Xn(t) for n ∈ [N ], t ∈ [T ], construct Page tensor
T as in (5.8). Second, obtain T̂ as the output of TE3(T) and read off f̂n(t) by selecting
appropriate entry in T̂.

Algorithmic comparison: tSSA vs. mSSA vs. ME. We now provide a unified view of tSSA,
mSSA, and “vanilla” ME (which we describe below) to do time series imputation. All
three methods have two key steps: (i) data transformation – converting the observations
Xn(t) into a particular data representation/structure; (ii) de-noising– applying some form
of matrix/tensor estimation to de-noise the constructed data representation.

• tSSA – using Xn(t), create the Page tensor T ∈ RN×L×T /L as in (5.8); apply TE3(T) to
get T̂ (e.g. using the method in Cai et al. (2021)); read off f̂n(t) by selecting appropriate
entry in T̂.

• mSSA – using Xn(t), create the stacked Page matrix SP((X1, . . . , XN ), T , L) ∈
RL×(N xT /L) as detailed in Section 5.1.1; apply TE2(SP((X1, . . . , XN ), T , L)) to get
ŜP((X1, . . . , XN ), T , L) (where we use HSVT for TE2(·)); read off f̂n(t) by selecting
appropriate entry in ŜP((X1, . . . , XN ), T , L).

• ME – using Xn(t), create X ∈ RN×T , where Xnt is equal to Xn(t); apply TE2(X ) (e.g.
using HSVT as in mSSA) to get X̂ ; read off f̂n(t) by selecting appropriate entry in X̂ .

This perspective also suggests that one can use any “blackbox” matrix estimation routine
to de-noise the constructed stacked Page matrix in mSSA; HSVT is one such choice that
we analyze.

Theoretical comparison: tSSA vs. mSSA vs. ME. We now do a theoretical comparison
of the relative effectiveness of tSSA, mSSA, and ME in imputing a multivariate time series
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Xn(t) for n ∈ [N ], t ∈ [T ], as we vary N and T . To that end, let ImpErr(N,T ; tSSA),
ImpErr(N,T ; mSSA), and ImpErr(N,T ; ME) denote the imputation error for tSSA, mSSA,
and ME, respectively.

Proposition 13. For tSSA and mSSA, pick hyper-parameter L =
√
T, L =

√
min(N,T )T ,

respectively. Let Property 5.7.4 hold. Then,

(i) T = o(N): ImpErr(N,T ; tSSA), ImpErr(N,T ; mSSA) = Θ̃(ImpErr(N,T ; ME));
(ii) T 1/3 = o(N), N = o(T ): ImpErr(N,T ; tSSA) = õ(ImpErr(N,T ; mSSA)),

ImpErr(N,T ; mSSA) = õ(ImpErr(N,T ; ME);
(iii) N = o(T 1/3): ImpErr(N,T ; mSSA) = õ(ImpErr(N,T ; tSSA)), ImpErr(N,T ; tSSA) =

õ(ImpErr(N,T ; ME)),

where õ(·), Θ̃(·) suppresses dependence on noise parameters, CP-rank, poly-logarithmic
factors.

We note given Property 5.7.4, L =
√
T is optimal for tSSA and L =

√
min(N,T )T is

optimal for mSSA. See Figure 5.2 in Section 5.1 for a graphical depiction of the different
regimes in Proposition 13. Proofs of Proposition 12 and 13 below can be found in
Appendix 5.20.

Application to Time-varying Recommendation Systems In Appendix 5.11, we discuss
the extension of our spatio-temporal model and tSSA to time-varying recommendation
systems.

■ 5.8 Conclusion

We provide theoretical justification of a practical, simple variant of mSSA, a method
heavily used in practice but with limited theoretical understanding. We show how to
extend mSSA to estimate time-varying variance and introduce a tensor variant, tSSA,
which builds upon recent advancements in tensor estimation. We hope this work motivates
future inquiry into the connections between the classical field of time series analysis and
the modern, growing field of matrix/tensor estimation.
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■ 5.9 Page vs. Hankel mSSA

This section discusses the benefits and drawbacks of using the Page matrix representation,
as we propose in our variant, instead of the Hankel representation used in the original
mSSA. Recall the key steps of the original SSA method in Section 5.2. The extension to
mSSA is done by stacking the Hankel matrices induced by each of the N time series either
column-wise (horizontal mSSA) or row-wise (vertical mSSA) Hassani and Mahmoudvand
(2018). In this section, we will use mSSA to denote our mSSA variant, and hSSA/vSSA to
denote the original horizontal/vertical mSSA. In what follows, we will compare our mSSA
variant with hSSA/vSSA in terms of their: (i) theoretical analysis; (ii) computational
complexity; and (iii) empirical performance.

Theoretical analysis. We re-emphasize that to the best of our knowledge, the theoretical
analysis of the mSSA algorithm, both hSSA and vSSA, have been absent from the
literature, despite their popularity. We do a comprehensive theoretical analysis of the
variant of mSSA we propose. By utilizing the Page matrix, it allows us to invoke results
from random matrix theory to prove our imputation and forecasting results. However,
extending our analysis to the Hankel matrix representation is challenging as the Hankel
matrix has repeated entries of the same time series observation. This leads to correlation
in the noise in the observation of the entries of the Hankel matrix, which prevents us from
invoking the results from random matrix theory in a straightforward way. The Page matrix
representation does not have repeated entries of the same observation, and thus allows
us to circumvent this issue in our theoretical analysis.

Computational complexity. Our mSSA variant is computationally far more efficient than
both hSSA and vSSA. This is because the Page matrix representation of a multivariate
time series with N time series and T time steps is a matrix of dimension

√
NT ×

√
NT

(with L =
√
NT )., i.e., it has a total of O(NT ) entries. In contrast, the Hankel matrix

representation is of dimension T /4× 3NT/4 for hSSA and NT/4× 3T /4 for vSSA (we
set the parameter L to T /4 as recommended in Hassani and Mahmoudvand (2018)), i.e.,
both variants of the Hankel matrix have O(NT 2) entries. This makes computing the SVD
(the most computationally intensive step of mSSA) prohibitive for hSSA and mSSA even
for the standard time series benchmarks we consider in Section 5.6.

To empirically demonstrate the computational efficiency of our variant of mSSA, we
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compare its training time to that of hSSA and vSSA. Specifically, we measure the training
time for mSSA, hSSA, and vSSA as we increase the number of time steps T ∈ [400, 10000].
We perform this experiment on two datasets: (i) the synthetic dataset; (ii) a subset of
the electricity dataset, where we choose only 50 of the available 370 time series. Both
datasets are described in details in Appendix 5.10. Figure 5.8 shows that in both datasets,
the training time of both hSSA and vSSA can be as 600-1000x as high as the training
time of our mSSA variant as we increase T .
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Figure 5.8: The training time of the original mSSA variants (hSSA in the orange dotted line and
vSSA in the green dotted line) are orders of magnitude higher than that of the mSSA variant we
propose (blue solid line).

Empirical performance. Here, we compare the forecasting performance of mSSA to that
of hSSA and vSSA. We report performance in terms of the NRMSE of the three methods
as we increase the number of time steps T ∈ [400, 10000] in the aforementioned synthetic
and electricity dataset. The goal in the synthetic dataset is to predict the next 50 time
steps using one step ahead forecasts, while the goal in the electricity dataset is to
predict the next three days using day-ahead forecasts. For hSSA and vSSA, we choose
L = T /4 as recommended in Hassani and Mahmoudvand (2018); and for mSSA, we choose
L = ⌊

√
NT⌋. For all three methods, we choose the number of retained singular values

based on the thresholding procedure outlined in Donoho and Gavish (2013).

Figures 5.9 shows the performance of the three methods in both datasets. We find that
initially, with few data points (T < 600 in the synthetic data and T < 4000 in the
electricity data), both hSSA and vSSA outperform mSSA. As we increase T , mSSA
performance significantly improves and eventually outperforms vSSA. In the electricity
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dataset, mSSA performs similar to hSSA for T = 10000. These experiments suggest that if
only a few observations were available, hSSA and vSSA might provide better performance.
However, if the number of observations were relatively large, then the performance of
mSSA is superior to vSSA and relatively similar to hSSA.
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Figure 5.9: The forecasting error of the original mSSA variants (hSSA in the orange dotted
line and vSSA in the green dotted line) and the proposed mSSA variant (blue solid line) as we
increase T .

Importantly, the electricity dataset experiment illustrates a critical advantage of our mSSA
variant. Specifically, when T is large such that running hSSA or vSSA is computationally
infeasible, then one can achieve better accuracy using mSSA. For example, while we could
not run the hSSA and vSSA on the electricity dataset with T = 20000 due to memory
constraints, we were able to run mSSA and achieve a lower NRMSE. This suggests that
our mSSA variant is the more practical mSSA algorithm when it comes to efficiently
utilizing large multivariate time series.

■ 5.10 Experiment Details

In Appendix 5.10.1, we describe the datasets utilized. In Appendix 5.10.2, we describe the
various algorithms we compare with as well as the choice of hyper-parameters used for
each of them.
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■ 5.10.1 Datasets

We use four real-world datasets and one synthetic dataset. The description and prepro-
cessing we do for each of these datasets are as follows.

Electricity Dataset. This is a public dataset obtained from the UCI repository which
shows the 15-minutes electricity load of 370 households Trindade (2014). As was done
in Yu et al. (2016),Sen et al. (2019),Salinas et al. (2019), we aggregate the data into
hourly intervals and use the first 25824 time-points for training, the next 288 points for
validation, and the last 168 points for testing in the forecasting experiments. Specifically,
in our testing period, we do 24-hour ahead forecasts for the next seven days (i.e. 24-step
ahead forecast). See Table 5.3 for more details.

Traffic Dataset. This public dataset obtained from the UCI repository shows the
occupancy rate of traffic lanes in San Francisco Trindade (2014). The data is sampled
every 15 minutes but to be consistent with previous work in Yu et al. (2016), Sen et al.
(2019), we aggregate the data into hourly data and use the first 10248 time-points for
training, the next 288 points for validation, and the last 168 points for testing in the
forecasting experiments. Specifically, in our testing period, we do 24-hour ahead forecasts
for the next seven days (i.e. 24-step ahead forecast). See Table 5.3 for more details.

Financial Dataset. This dataset is obtained from the Wharton Research Data Services
(WRDS) and contains the average daily stocks prices of 839 companies from October 2004
till November 2019 WRDS (2021). The dataset was preprocessed to remove stocks with
any null values, or those with an average price below 30$ across the aforementioned period.
This was simply done to constrain the number of time series for ease of experimentation
and we end up with 839 time series (i.e. stock prices of listed companies) each with 3993
readings of daily stock prices. In our forecasting experiments, we train on the first 3693
time points, validate on the next 120 time points, while for testing we consider the task
of predicting 180 time-points ahead one point at a time. That is, the goal here is to do
one-day ahead forecasts for the next 180 days (i.e. 1-step ahead forecast). We choose to
do so as this is a standard goal in finance. See Table 5.3 for more details.

M5 Dataset. This public dataset obtained from Kaggle’s M5 Forecasting competition
include daily sales data of 30490 items across different Walmart stores for 1941 days
Makridakis et al. (2020). The dataset was preprocessed to only include items that has
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more than zero sales in at least 500 days. For forecasting, as is the goal in the Kaggle
competition, we consider the task of predicting the sales for the next 28 days (i.e. 28-step
ahead forecast). We use the first 1829 points for training, the next 84 points for cross
validation, and the last 28 points for testing.

Synthetic Dataset. We generate the observation tensor X ∈ Rn×m×T by first randomly
generating the two matrices U ∈ Rr×n = [u1, . . . , un] and V ∈ Rr×m = [v1, . . . , vm]; we do
so by randomly sampling each coordinate of U,V independently from a standard normal.
Then, we generate r mixtures of harmonics where each mixture gk (t), k ∈ [r], is generated
as: gk (t) =

∑4
h=1 αh cos(ωht/T ) where the parameters αh, ωh are selected uniformly at

randomly from the ranges [−1, 10] and [1, 1000], respectively. Then each value in the
observation tensor is constructed as follows: Xi,j (t) =

∑r
k=1 uikvjkgk (t), where r is the

tensor rank, i ∈ [n], j ∈ [m]. In our experiment, we select n = 5, m = 10, T = 15000, and
r = 4. This gives us N = n x m = 50 time series each with 15000 observations per time
series. In the forecasting experiments, we use the first 13700 points for training, the next
300 points for validation, while for testing, we do 10-step ahead forecasts for the final
1000 points. See Table 5.3 for more details.

Table 5.3: Dataset and training/validation/test split details.

Dataset No.time
series

Observations
per time series

Forecast
horizon (h)

Training
period

No. validation
windows Wval

Validation
period

No. test
windows

Test
period

Electricity 370 26136 24 1 to 25824 2 25825 to 25968 7 25969 to 26136
Traffic 963 10560 24 1 to 10248 2 10249 to 10392 7 10393 to 10560
Synthetic 50 15000 10 1 to 13700 10 13701 to 14000 100 14001 to 15000
Financial 839 3993 1 1 to 3693 40 3694 to 3813 180 3814 to 3993
M5 15678 1941 28 1 to 1829 1 1830 to 1913 1 1914 to 1941

■ 5.10.2 Algorithms.

In this section, we describe the algorithms used throughout the experiments in more detail
and the hyper-parameters/implementation used for each method.

mSSA & SSA. Note that since the SSA’s variant described in Agarwal et al. (2018) is
a special case of our proposed mSSA algorithm, we use our mSSA’s implementation to
perform the SSA experiments; key difference in SSA is that we do not “stack” the various
Page matrices induced by each time series. For all experiments we choose the parameters
through the cross validation process detailed in Appendix 5.10.3, where we perform a grid
search for the following parameters:
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1. The number of retained singular values, k. This parameter is chosen using one of the
following data-driven methods: (i) we choose k based on the thresholding procedure
outlined in Donoho and Gavish (2013), where the threshold is determined by the
median of the singular values and the shape of the matrix; (ii) we choose k as the
minimum number of singular values capturing > 90% of its spectral energy; (iii) we
choose a constant low rank, specifically k = 3.

2. The shape of the Page matrix. For mSSA, we vary the shape of the Page matrix
by choosing L ∈ {500, 1000, 2000, 3000} for the electricity and Traffic datasets,
L ∈ {500, 700, 800} for the synthetic dataset, L ∈ {250, 500, 1000, 1500} for the
financial dataset, and L ∈ {10, 50, 100, 500} for the M5 dataset . For SSA, we choose
L ∈ {50, 100, 150} in the electricity and Traffic datasets, L ∈ {30, 50, 100} in the
synthetic dataset, L ∈ {20, 30, 50} in the financial dataset, and L ∈ {5, 10, 20, 40}
in the M5 dataset.

3. Missing values initialization. Initializing the missing values is done according to one
of two methods: (i) set the missing values to zero; (ii) perform forward filling where
each missing value is replaced by the nearest preceding observation, followed by
backward filling to accommodate the situation when the first observation is missing.

DeepAR. We use the “DeepAREstimator” algorithm provided by the GluonTS package.
We choose the parameters through a grid search for the following parameters:

1. Context length. This parameter determines the number of steps to unroll the RNN
for before computing predictions. We choose this from the set {h (default), 2h, 3h},
where h is the prediction horizon.

2. Number of Layers. This parameter determines the number of RNN layers. We
choose this from the set {2 (default), 3}.

TRMF. We use the implementation provided by the authors in the Github repository
associated with the paper (Yu et al. (2016)). We choose the parameters through a grid
search, as suggested by the authors in their codebase, for the following parameters:

1. Matrix rank k . This parameter represents the chosen rank for the T ×N time series
matrix, we choose k from the set {5, 10, 20, 40, 60}.

2. Regularization parameters λf , λx , λw . We choose these parameters from
{0.05, 0.5, 5, 50} as suggested in the authors repository.

For the lag indices , we include the last day and the same weekday in the last week for
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the traffic and electricity data, the last 30 points for the financial and synthetic dataset,
and the last 10 points for the M5 dataset.

LSTM. Across all datasets, we use an LSTM network with H ∈ {2, 3, 4} hidden layers
each, with 45 neurons per layer, as is done in Sen et al. (2019). We use the Keras
implementation of LSTM. As with other methods’ parameters, H is chosen via cross
validation.

Prophet. We used Prophet’s Python library with the parameters selected using a grid
search of the following parameters as suggested in Facebook (2020):

1. Changepoint prior scale. This parameter determines how much the trend changes at
the detected trend changepoints. We choose this parameter from {0.001, 0.05, 0.2}.

2. Seasonality prior scale. This parameter controls the magnitude of the seasonality.
We choose this parameter from {0.01, 10}.

3. Seasonality Mode. Which is chosen to be either ’additive‘ or ’multiplicative‘.

■ 5.10.3 Parameters Selection

In all experiments, we choose the hyperparameters for out method and for the baselines by
using cross-validation. Below, we detail the procedure for both imputation and forecasting
experiments.

Imputation Experiments. To select the parameters in our imputation experiments, we
additionally mask 10% of the observed data uniformly at random. Then, we evaluate the
performance of each parameter choice in recovering these additionally masked observations.
This process is repeated 3 times, and the choice of parameters that achieves the best
performance (in NRMSE) across these runs is selected. In our results, we report the
accuracy of the selected parameters in recovering the original missing values.

Forecasting Experiments. For parameters selection in the forecasting experiments,
we use cross-validation on a rolling basis as typically used in time-series forecasting
models Hyndman and Athanasopoulos (2018). In this procedure, there are multiple
validation sets. For each validation set, we train the model only on previous observations.
That is, no future observations can be used in training the model, which will occur when
a typical cross-validation procedure is followed for time series data. In our experiments,
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we start with a subset of the data used for training, then we forecast the first validation
set using h-step ahead forecasts for Wval windows , where the horizon h and the number
of validation windows Wval are detailed in Table 5.3. We do this for three validation
sets, each of length h ×Wval, and select the choice of parameters that achieves the best
performance (in NRMSE) for evaluation on the test set. When evaluating on the test set,
both the training and validation periods are used for training.

■ 5.11 Time-varying Recommendation Systems

In Section 5.7.2, we considered the setting where the N × T matrix M induced by the
latent time series f1(·), . . . , fN (·) is low-rank; in particular, Property 5.3.1 captures this
spatial structure across these N time series. However, in many settings there is additional
spatial structure across the N time series.

Recommendation systems – time-varying matrices/tensors. For example, in recommenda-
tion systems, for each t ∈ T , there is a N1 ×N2 matrix, M (t) ∈ RN1×N2 of interest. The
n1-th row and n2-th column of M (t) denotes the latent rating user n1 has for product n2,
i.e., M (t)

n1,n2 denotes the value of the latent time series fn1,n2(·) at time step t. To capture
the latent structure across users and products, one typically assumes that each M (t) is
low-rank. More generally, at each time step t, M (t) ∈ RN1×N2,...,×Nd could be an order-d
tensor. That is, M (t)

n1,...,nd denotes the value of the latent time series fn1,...,nd (·) at time step
t for n1, . . . , nd ∈ [N1]× . . . × [Nd]. For example, if d = 3, M (t) might represent the t-th
measurement for a collection of (x, y, z)-spatial coordinates. Let N ∈ RN1×N2,...,×Nd×T

denote the d+ 1 order tensor induced by viewing each order-d tensor M (t) as the t-th
‘slice’ of N , for t ∈ [T ]. Again, to capture the spatial and temporal structure of these latent
time series, we posit the following spatio-temporal model for N , which is a higher-order
analog of the model assumed in Property 5.3.1.

Property 5.11.1. Let N have CP-rank at most R. That is, for any n1, . . . , nd ∈ [N1]×
. . . × [Nd]

Nn1,...,nd,t =
R∑

r=1
Un1,r . . . Und,r Wrt ,

where the factorization is such that |Un1,r |, . . . |Und,r |≤ Γ1, |Wrt |≤ Γ2 for constants
Γ1,Γ2 > 0.
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As before, to explicitly model the temporal structure, we continue to assume Property
5.3.2 holds for the latent time factors Wr· for r ∈ [R ].

Order-d + 2 Page tensor representation. We now consider the following order-d + 2
Page tensor representation of N . In particular, given the hyper-parameter L ≥ 1, define
HT ∈ RN1×...×Nd×T/L×L such that for n1, . . . , nd ∈ [N1]× . . . × [Nd], ℓ ∈ [L], s ∈ [T /L],

HTn1,...,nd,ℓ,s = fn1,...,nd ((s − 1)× L+ ℓ).

The corresponding observation tensor, HT ∈ (R ∪ {⋆})N1×...×Nd×T/L×L, is

HTn1,...,nd,ℓ,s = Xn1,...,nd ((s − 1)× L+ ℓ). (5.9)

Recall from (5.1) that Xn1,...,nd (t) is the noisy, missing observation we get of fn1,...,nd (t).
HT and HT then have the following property:

Proposition 14. Let Properties 5.11.1, 5.3.2, and 5.4.1 hold. Then, for any 1 ≤ L ≤
√
T ,

HT has CP-rank at most R xG. Further, all entries of HT are independent random
variables with each entry observed with probability ρ ∈ (0, 1], and E[HT] = ρHT.

Analogous to Proposition 12, Proposition 14 also establishes that order-d+2 Page tensor
representation of the various latent time series fn1,...,nd (·) has CP-rank that continues to
be bounded by R xG. Proof of Proposition 14 can be found in Appendix 5.20.

Higher-order tensor singular spectrum analysis (htSSA). Proposition 14 motivates the
following algorithm, which exploits the further spatial structure amongst the N time series.
We now define the “meta” htSSA algorithm. The two algorithmic hyper-parameters are
L ≥ 1 (defined in (5.8)) and TEd+2 (the order-d + 2 tensor estimation algorithm one
chooses). First, using the observations Xn1,...,nd (t) for n1, . . . , nd ∈ [N1]×. . .× [Nd], t ∈ [T ]
we construct the higher-order Page tensor HT as in (5.9). Second, we obtain ĤT as the
output of TEd+2(HT), and read off f̂n1,...,nd (t) by selecting the appropriate entry in ĤT.

Relative effectiveness of mSSA, htSSA, and tensor estimation (TE). Again, for ease
of exposition, we consider the case where ρ = 1. We now briefly discuss the relative
effectiveness of htSSA, mSSA,and “vanilla” tensor estimation (TE) in imputing Xn1,...,nd (·)
to estimate fn1,...,nd (·). mSSA and htSSA have been previously described. In TE, one
directly de-noises the original order-d + 1 tensor induced by the noisy observations,
which we denote X ∈ RN1×N2,...,×Nd×T , where Xn1,...,nd,t = Xn1,...,nd (t). In particular, one
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produces an estimate of N̂ = TEd+1(X ), and then produces the estimates f̂n1,...,nd (t) by
reading off the appropriate entry of N̂ . Let ImpErr(N,T ; htSSA), ImpErr(N,T ; mSSA),
and ImpErr(N,T ; TE) denote the imputation error for htSSA, mSSA, and TE, respectively.
Now if we assume Property 5.7.4 holds, we have

ImpErr(N,T ; htSSA) = Θ̃




1

min
(
N1, . . . , Nd,

√
T
)⌈ d+2

2 ⌉



 ,

ImpErr(N,T ; mSSA) = Θ̃
(

1√
min(N,T )T

)
,

ImpErr(N,T ; TE) = Θ̃
(

1
min (N1, . . . , Nd, T )⌈

d+1
2 ⌉

)
.

Then just as was done in the proof of Proposition 13, for any given d, one can reason
about the relative effectiveness of htSSA, mSSA, and TE for different asymptotic regimes
of the relative ratio of N and T .

■ 5.12 Proof of Proposition 6

Below, we present the proof of Proposition 6. First we define the stacked Hankel matrix
of N time series over T time steps. Precisely, given N latent time series f1, . . . , fN ,
consider the stacked Hankel matrix induced by each of them over T time steps, [T ],
defined as follows. It is SH ∈ R⌊T /2⌋×N⌊T /2⌋ where its entry in row i ∈ [⌊T /2⌋] and column
j ∈ [N⌊T /2⌋], SHij , is given by

SHij = fn(i,j)(i+ (j mod ⌊T /2⌋)− 1), where n(i, j) =
⌈ j
⌊T /2⌋

⌉
.

We now establish Proposition 15, which immediately implies Proposition 6 – the stacked
Page matrix can be viewed as a sub-matrix of SH, by selecting the appropriate columns.

Proposition 15. Let Properties 5.3.1 and 5.5.1 hold for N latent time series of interest,
f1, . . . , fN . Then for any T ≥ 1, the stacked Hankel Matrix of these N time series has
ε′-approximate rank R xG with ε′ = RΓ1ε.

Proof. We have N latent time series f1, . . . , fn satisfying Properties 5.3.1 and 5.5.1.
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Consider their stacked Hankel matrix over [T ], SH ∈ R⌊T /2⌋×N⌊T /2⌋. By definition for
i ∈ [⌊T /2⌋] and j = (n − 1) x ⌊T /2⌋+ j ′ for j ′ ∈ [⌊T /2⌋], we have

SHij ′ = fn(i+ j ′ − 1).

That is,

SHij = fn(i+ j ′ − 1)

=
R∑

r=1
UnrWr(i+j ′−1). (5.10)

Let H(r) ∈ R⌊T /2⌋×⌊T /2⌋ be the Hankel matrix associated with Wr· over [T ]. Due to Property
5.5.1, there exists a low-rank matrix M(r) ∈ R⌊T /2⌋×⌊T /2⌋ such that (a) rank(M(r)) ≤ G,
(b) H(r)−M(r)∞≤ ε. That is, for any i, j ′ ∈ [⌊T /2⌋], we have that M(r)ij ′ =

∑G
g=1 arigbrj ′g

for some ari·, brj ′· ∈ RG . Therefore, for any i, j ′ ∈ [⌊T /2⌋], we have that

Wr(i+j ′−1) = H(r)ij ′ = M(r)ij ′ + (H(r)ij ′ −M(r)ij ′)

=
G∑

g=1
arigbrj ′g + (H(r)ij ′ −M(r)ij ′). (5.11)

From (5.10) and (5.11), we conclude that

SHij =
R∑

r=1

G∑

g=1
Unrarigbrj ′g +

R∑

r=1
Unr(H(r)ij ′ −M(r)ij ′)

=
∑

(r,g)∈[R ]×[G]
arig x (Unrbrj ′g) +

R∑

r=1
Unr(H(r)ij ′ −M(r)ij ′).

Define matrix M ∈ R⌊T /2⌋×N⌊T /2⌋ with its entry for row i ∈ [⌊T /2⌋] and column j =
(n − 1) x ⌊T /2⌋+ j ′ for j ′ ∈ [⌊T /2⌋] given by

Mij =
∑

(r,g)∈[R ]×[G]
arig x (Unrbrj ′g)

=
∑

(r,g)∈[R ]×[G]
αi(r,g)βj(r,g),
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where αi(r,g) = arig and βj(r,g) = Unrbrj ′g. Further,

|SHij −Mij | ≤
R∑

r=1
|Unr ||(H(r)ij ′ −M(r)ij ′)|

≤
R∑

r=1
Γ1H(r)−M(r)∞ ≤ RΓ1ε.

That is, the stacked Hankel matrix SH of N time series of [T ] has ε′-approximate rank
G xR with ε′ = RΓ1ε. This completes the proof. ■

■ 5.13 Proofs For Section 5.5

■ 5.13.1 Proof of Proposition 7

Proof. Let f1, f2 have a (G1, ε1) and (G2, ε2)-Hankel representation, respectively. For any
T ≥ 1, let H1,H2 ∈ R⌊T /2⌋×⌊T /2⌋ be the Hankel matrices of f1, f2, respectively, over the
time interval [T ]. By definition, there exists matrices M1,M2 ∈ R⌊T /2⌋×⌊T /2⌋ such that
rank(M1) ≤ G1, M1 −H1∞≤ ε1 and rank(M2) ≤ G2, M2 −H2∞≤ ε2.

Component-wise addition. Note the Hankel matrix of f1 + f2 over [T ] is H1 + H2. Then,
matrix M = M1 + M2 has rank at most G1 +G2 since for any two matrices A and B, it is
the case that rank(A + B) ≤ rank(A) + rank(B). Further, H1 + H2− (M1 + M2)∞≤ ε1 + ε2.
Therefore it follows that f1 + f2 has (G1 + G2, ε1 + ε2)-Hankel representation.

Component-wise multiplication. For f1 ◦ f2, its Hankel over [T ] is given by H1 ◦ H2

where we abuse notation of ◦ in the context of matrices as the Hadamard product of
matrices. Let M = M1 ◦M2. Then rank(M) ≤ G1 xG2 since for any two matrices A and
B, rank(A ◦ B) ≤ rank(A)rank(B). Now

H1 ◦H2 −M1 ◦M2∞ ≤ H1 ◦H2 −H1 ◦M2∞+H1 ◦M2 −M1 ◦M2∞

≤ H1∞H2 −M2∞+M2∞H1 −M1∞

≤ f1∞ε2 + (M2 −H2∞+H2∞)ε1
≤ f1∞ε2 + (f2∞+ε2)ε1
= f1∞ε2 + f2∞ε1 + ε1ε2 ≤ 3 max(ε1, ε2) max(f1∞, f2∞).
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This completes the proof of Proposition 7. ■

■ 5.13.2 Proof of Proposition 8

Proof. Proof is immediate from Definitions 5.5.2 and 5.5.3. ■

■ 5.13.3 Proof of Proposition 9

Helper Lemmas for Proposition 9

We begin by stating some classic results from Fourier Analysis. To do so, we introduce
some notation. Throughout, we have R > 0.

C [0, R ] and L2[0, R ] functions. C [0, R ] is the set of real-valued, continuous functions
defined on [0, R ]. L2[0, R ] is the set of square integrable functions defined on [0, R ], i.e.
∫ R
0 f2(t)dt ≤ ∞

Inner Product of functions in L2[0, R ]. L2[0, R ] is a space endowed with inner product
defined as ⟨f , g⟩ := 1

R
∫ R
0 f (t)g(t)dt, and associated norm as

∥∥f
∥∥ :=

√
1
R
∫ R
0 f2(t)dt.

Fourier Representation of functions in L2[0, R ]. For f ∈ L2[0, R ], define its G ≥ 1-order
Fourier representation, F (f , G) ∈ L2[0, R ] as

F (f , G)(t) = a0 +
G∑

g=1
(ag cos(2πgt/R ) + bg cos(2πgt/R )), t ∈ [0, R ], (5.12)

where a0, ag, bg with g ∈ [G] are called the Fourier coefficients of f , defined as

a0 := ⟨f , 1⟩ = 1
R

∫ R

0
f (t)dt,

ag := ⟨f , cos(2πgt/R )⟩ = 1
R

∫ R

0
f (t) cos(2πgt/R )dt,

bg := ⟨f , sin(2πgt/R )⟩ = 1
R

∫ R

0
f (t) sin(2πgt/R )dt.

We now state a classic result from Fourier analysis.
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Theorem 5.13.1 (Grafakos (2008)). Given k ≥ 1, R > 0, let f ∈ C k (R,PER). Then, for
any t ∈ [0, R ] (or more generally t ∈ R),

lim
G→∞

F (f , G)(t)→ f (t).

We next argue that if f ∈ C k (R,PER), then its Fourier coefficients decay rapidly.

Lemma 5.13.1. Given k ≥ 1, R > 0, let f ∈ C k (R,PER). Then, for j ∈ [k ], the G-
order Fourier coefficient of f (j), the j-th derivative of f , recursively satisfy the following
relationship: for g ∈ [G],

a(j)
g = −

(2πg
R

)
b(j−1)
g , b(j)

g =
(2πg
R

)
a(j−1)
g . (5.13)

Proof. We establish (5.13) for a(1)
g , g ∈ [G]. Notice that an identical argument applies to

establish (5.13) for any a(j)
g , b(j)

g for j ∈ [k ] and g ∈ [G].

a(1)
g = ⟨f (1), cos(2πgt/R )⟩ = 1

R

∫ R

0
f (1)(t) cos(2πgt/R )dt

(a)
= 1
R

([
f (t) cos(2πgt/R )

]R
0
− 2πg

R

[ 1
R

∫ R

0
f (t) sin(2πgt/R )dt

])

= −
(2πg
R

)
b(0)
g .

(a) follows by integration by parts. ■

Completing Proof of Proposition 9

Proof. For G ∈ N, let F (f , G) be defined as in (5.12). Then for t ∈ R

|f (t)−F (f , G)(t)|
(a)
=
∣∣∣
∞∑

g=G+1
(ag cos(2πgt/R ) + bg cos(2πgt/R ))

∣∣∣

≤
∞∑

g=G+1
|ag|+|bg|

(b)
≤

∞∑

g=G+1

( R
2πg

)k(
|a(k)
g |+|b(k)

g |
)
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(c)
≤
√

2
( R

2π

)k
√√√√

∞∑

g=G+1

(1
g

)2k
√√√√

∞∑

g=G+1

(
|a(k)
g |2+|b(k)

g |2
)

(d)
≤
√

2
( R

2π

)k 1
Gk−0.5

√√√√
∞∑

g=G+1

(
|a(k)
g |2+|b(k)

g |2
)

(e)
≤
√

2
( R

2π

)k
∥∥f (k)

∥∥
Gk−0.5

= C (k, R )
∥∥f (k)

∥∥
Gk−0.5 ,

where C (k, R) is a constant that depends only on k and R ; (a) follows from Theorem
5.13.1; (b) follows from Lemma 5.13.1; (c) follows from Cauchy-Schwarz inequality and
fact that (α + β)2 ≤ 2(α2 + β2) for any α, β ∈ R; (d)

∑∞
g=G+1 g−2k ≤

∫∞
G x−2kdx which

can be bounded as G−2k+1/(2k − 1) which is at most G−2k+1 since k ≥ 1; (e) follows
from Bessel’s inequality, i.e.

∥∥f (k)
∥∥2 ≥

∑∞
g=0(|a

(k)
g |2+|b(k)

g |2).

Thus, for any t ∈ R, we have a uniform error bound for f being approximated by F (f , G)
which is a sum of 2G harmonics. Noting 2G harmonics can be represented by an order-4G
LRF (by Proposition 3),we complete the proof. ■

■ 5.13.4 Proof of Proposition 10

This analysis is adapted from Xu (2017a).

Proof. Step 1: Partitioning the space [0, 1)K . Consider an equal partition of [0, 1)K .
Precisely, for any k ∈ N, we partition the the set [0, 1) into 1/k half-open intervals of
length 1/k , i.e, [0, 1) = ∪ki=1 [(i − 1)/k, i/k) . It follows that [0, 1)K can be partitioned into
kK cubes of forms ⊗Kj=1

[
(ij − 1)/k, ij /k

)
with ij ∈ [k ]. Let Ek be such a partition with

I1, I2, . . . , IkK denoting all such cubes and z1, z2, . . . , zkK ∈ RK denoting the centers of
those cubes.

Step 2: Taylor Expansion of g(·, ω). Consider a fixed ω. To reduce notational overload,
we suppress dependence of g on ω, and abuse notation by using g(·) = g(·, ω) in what
follows.
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For every Ii with 1 ≤ i ≤ kK , define PIi,ℓ (x) as the degree-ℓ Taylor’s series expansion of
g(x) at point zi:

PIi,ℓ (x) =
∑

κ:|κ|≤ℓ

1
κ!

(x − zi)κ∇κg(zi), (5.14)

where κ = (κ1, . . . , κd) is a multi-index with κ!=
∏K
i=1 κi!, and ∇kg(zi) is the partial

derivative defined in Section 5.5.2. Note similar to g, PIi,ℓ (x) really refers to PIi,ℓ (x, ω).

Now we define a degree-ℓ piecewise polynomial

PEk ,ℓ (x) =
kK∑

i=1
PIi,ℓ (x)1(x ∈ Ii).

For the remainder of the proof, let ℓ = ⌊α⌋ (recall ⌊α⌋ refers to the largest integer strictly
smaller than α). Since f ∈ H(α, L), it follows that

sup
x∈[0,1)K

|g(x)− PEk ,ℓ (x)| = max
1≤i≤kK

sup
x∈Ii
|g(x)− PIi,ℓ (x)|

(a)
= max

1≤i≤kK
sup
x∈Ii

∣∣∣∣∣∣

∑

κ:|κ|≤ℓ−1

∇κg(zi)
κ! (x − zi)κ +

∑

κ:|κ|=ℓ

∇κg(z̃i)
κ! (x − zi)ℓ − PIi,ℓ (x)

∣∣∣∣∣∣

(b)
= max

1≤i≤kK
sup
x∈Ii

∣∣∣∣∣∣

∑

κ:|κ|=ℓ

∇κg(z̃i)
κ! (x − zi)ℓ −

∑

κ:|κ|=ℓ

∇κg(zi)
κ! (x − zi)ℓ

∣∣∣∣∣∣

= max
1≤i≤kK

sup
x∈Ii

∣∣∣∣∣∣

∑

κ:|κ|=ℓ

∇κg(z̃i)−∇κg(zi)
κ! (x − zi)ℓ

∣∣∣∣∣∣
(c)
≤ max

1≤i≤kK
sup
x∈Ii

x − ziℓ∞sup
x∈Ii

∑

κ:|κ|=ℓ

1
κ! |∇κg(z̃i)−∇κg(zi)|

(d)
≤ Lk−α . (5.15)

where (a) follows from multivariate version of Taylor’s theorem (and using the Lagrange
form for the remainder) and z̃i ∈ [0, 1)K is a vector that can be represented as zi + cx for
c ∈ (0, 1); (b) follows from (5.14); (c) follows from Holder’s inequality; (d) follows from
Definition 5.5.5.
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Step 3: Construct Low-Rank Approximation of Time Series Hankel Using PEk ,ℓ . Recall
the Hankel matrix, H ∈ R⌊T /2⌋×⌊T /2⌋ induced by the original time series over [T ], where
Hts = g(θt , ωs), t, s ∈ [⌊T /2⌋] with g(·, ω) ∈ H(α, L) for any ω. We now construct a
low-rank approximation of it using PEk ,ℓ = PEk ,ℓ (·, ω). Define H̃ ∈ R⌊T /2⌋×⌊T /2⌋, where
H̃ts = PEk ,ℓ (θt , ωs), t, s ∈ [⌊T /2⌋].

By (5.15), we have that for all t, s ∈ [⌊T /2⌋],
∣∣∣Hts − H̃ts

∣∣∣ ≤ Lk−α .

It remains to bound the rank of H̃ . Note that since PEk ,ℓ (·, ω) is a piecewise polynomial
of degree ℓ = ⌊α⌋ for any given ω, it has the following decomposition: for t, s ∈ [⌊T /2⌋],

H̃ts = PEk ,ℓ (θt , ωs) =
kK∑

i=1
⟨Φ(θt), βIi,s⟩1(θt ∈ Ii)

where for any θ ∈ RK ,

Φ(θ) =
(
1, θ1, . . . , θK , . . . , θℓ1, . . . , θℓK

)T
,

the vector of all monomials of degree less than or equal to ℓ , and βIi,s is a vector collecting
the corresponding coefficients. The number of such monomials is easily show to be equal
to C (α,K ) :=

∑⌊α⌋
i=1
(i+K−1

i
)
. That is, H̃ts = uTt vs where ut , vs are of dimension at most

kKC (α,K ) for each t, s ∈ [⌊T /2⌋]. That is, H̃ has rank at most kKC (α,K ). Setting
k =

⌈1
ε

⌉
completes the proof. ■

■ 5.14 Helper Lemmas

We recall known concentration and perturbation inequalities that will be useful throughout.

Theorem 5.14.1 (Bernstein’s Inequality Bernstein (1946)). Suppose that X1, . . . , Xn are
independent random variables with zero mean, and M is a constant such that |Xi| ≤ M
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with probability one for each i. Let S :=
∑n

i=1 Xi and v := Var(S). Then for any t ≥ 0,

P(|S| ≥ t) ≤ 2 exp
(
− 3t2

6v + 2Mt

)
.

Theorem 5.14.2 (Norm of matrices with sub-gaussian entries Vershynin (2010)). Let A
be an m × n random matrix whose entries Aij are independent, mean zero, sub-gaussian
random variables. Then, for any t > 0, we have

∥∥A
∥∥ ≤ CK (

√
m+
√
n+ t)

with probability at least 1− 2 exp
(
−t2

)
. Here, K = maxi,j

∥∥Aij
∥∥
ψ2

.

Lemma 5.14.1 (Maximum of sequence of random variables Vershynin (2010)). Let X1,
X2, . . . , Xn be a sequence of random variables, which are not necessarily independent,
and satisfy E[X2p

i ]
1
2p ≤ Kp β

2 for some K, β > 0 and all i. Then, for every n ≥ 2,

E max
i≤n
|Xi| ≤ CK log

β
2 (n).

We note that Lemma 5.14.1 implies that if X1, . . . , Xn are ψα random variables with
Xiψα≤ Kα for all i ∈ [n], then

E max
i≤n
|Xi| ≤ CKα log

1
α (n).

Lemma 5.14.2 (Modified Hoeffding Inequality Agarwal et al. (2021d) ). Let X ∈ Rn

be random vector with independent mean-zero sub-Gaussian random coordinates with
Xiψ2≤ K. Let a ∈ Rn be another random vector that satisfies a2≤ b almost surely for
some constant b ≥ 0. Then for all t ≥ 0,

P
(∣∣∣

n∑

i=1
aiXi

∣∣∣ ≥ t
)
≤ 2 exp

(
− ct2

K 2b2

)
,

where c > 0 is a universal constant.

Lemma 5.14.3 (Modified Hanson-Wright Inequality Agarwal et al. (2021d) ). Let X ∈ Rn

be a random vector with independent mean-zero sub-Gaussian coordinates with Xiψ2≤ K.
Let A ∈ Rn×n be a random matrix satisfying A2≤ a and A2

F ≤ b almost surely for some
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a, b ≥ 0. Then for any t ≥ 0,

P
(∣∣∣XTAX − E[XTAX ]

∣∣∣ ≥ t
)
≤ 2 · exp

(
− cmin

( t2

K 4b,
t

K 2a

))
.

Lemma 5.14.4 (Weyl’s inequality). Given A,B ∈ Rm×n, let σi and σ̂i be the i-th singular
values of A and B, respectively, in decreasing order and repeated by multiplicities. Then
for all i ∈ [m ∧ n],

|σi − σ̂i| ≤
∥∥A− B

∥∥
2 .

■ 5.15 Matrix Estimation via HSVT

This section describes and analyzes a well-known matrix estimation method, Hard Singular
Value Thresholding (HSVT). While the analysis utilizes known arguments from the
literature, we need to adapt it for the setting where the underlying ‘signal’ is only
approximately low-rank.

■ 5.15.1 Setup, Notations

Setup. Given a deterministic matrix M ∈ Rq×p with p, q ∈ N and q ≤ p, a random matrix
Y ∈ Rq×p is such that all of its entries, Yij , i ∈ [q], j ∈ [p] are mutually independent
and for any given i ∈ [q], j ∈ [p],

Yij =





Mij + εij w.p. ρ, (i.e. observed)

0 w.p. 1− ρ, (i.e. not observed)

for some ρ ∈ (0, 1] with εij are independent random variables with E[εij ] = 0 and∥∥εij
∥∥
ψ2
≤ σ . Given this, we have E[Y ] = ρM . Defineff

ρ̂ = max
(
1/(q p), (

q∑

i=1

p∑

j=1
1(Yij is obs.))/(q p)

)
.

Goal of Matrix Estimation. The goal of matrix estimation is to produce an estimate



292 CHAPTER 5. ON MULTIVARIATE SINGULAR SPECTRUM ANALYSIS

M̂ from observation Y so that M̂ is close to M . In particular, we will be interested in
bounding the error between M̂ and M using the following metric: M̂ −M2,∞.

■ 5.15.2 Matrix Estimation using HSVT

Hard Singular Value Thresholding (HSVT) Map. We define the HSVT map. For
any q, p ∈ N, consider a matrix B ∈ Rq×p such that B =

∑q∧p
i=1 σi(B)xiyTi . Here for

i ∈ [q ∧ p], σi(B) is the ith largest singular value of B and xi, yi are the corresponding
left and right singular vectors respectively. Then, for given any λ > 0, we define the map
HSVTλ : Rq×p → Rq×p, which simply shaves off the singular values of the input matrix
that are below the threshold λ. Precisely,

HSVTλ(B) =
q∧p∑

i=1
σi(B)1(σi(B) ≥ λ)xiyTi .

Matrix Estimating using HSVT map. We define a matrix estimation method using the
HSVT map that is utilized by mSSA for imputation. Precisely, we estimate M from Y as
follows: given parameter k ≥ 1,

M̂ = 1
ρ̂HSVTλk (Y ). (5.16)

where λk = σk (Y ), i,e. the kth largest singular value of Y .

■ 5.15.3 A Useful Linear Operator

We define a linear map associated to HSVT. For a specific choice of λ ≥ 0, define
φB
λ : Rp → Rp as follows: for any vector w ∈ Rp (i.e. w ∈ Rp×1),

φB
λ (w) =

q∧p∑

i=1
1(σi(B) ≥ λ)yiyTi w. (5.17)

Note that φB
λ is a linear operator and it depends on the tuple (B, λ); more precisely, the

singular values and the right singular vectors of B, as well as the threshold λ. If λ = 0,
then we will adopt the shorthand notation: φB = φB

0 . The following is a simple, but
curious relationship between φB

λ and HSVTλ that will be useful subsequently.
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Lemma 5.15.1 (Lemma 35 of Agarwal et al. (2019b, 2021e)). Let B ∈ Rq×p and λ ≥ 0
be given. Then for any j ∈ [q],

φB
λ (BT

j· ) = HSVTλ(B)Tj· ,

where Bj· ∈ R1×p represents the jth row of B, and HSVTλ(B)j· ∈ R1×p represents the
jth row of the matrix obtained after applying HSVT over B with threshold λ.

Proof. By (5.17), the orthonormality of the right singular vectors and noting BT
j· = BTej

with ej ∈ Rp with jth entry 1 and everything else 0, we have

φB
λ (BT

j· ) =
q∧p∑

i=1
1(σi(B) ≥ λ)yiyTi BT

j· =
q∧p∑

i=1
1(σi(B) ≥ λ)yiyTi BTej

=
q∧p∑

i=1
1(σi(B) ≥ λ)yiyTi (

q∧p∑

i′=1
σi′(B)xi′yTi′ )

Tej =
q∧p∑

i,i′=1
σi′(B)1(σi(B) ≥ λ)yiyTi yi′xTi′ ej

=
q∧p∑

i,i′=1
σi′(B)1(σi(B) ≥ λ)yiδii′xTi′ ej =

q∧p∑

i=1
σi(B)1(σi(B) ≥ λ)yixTi ej

= HSVTλ(B)Tej = HSVTλ(B)Tj· .

■

■ 5.15.4 HSVT based Matrix Estimation: A Deterministic Bound

We state the following result about property of the estimator.

Lemma 5.15.2. For k ≥ 1, let M = Mk +Ek with rank(Mk ) = k. Let ε = max(ρ̂/ρ, ρ/ρ̂) ≥
1. Then, the HSVT estimate M̂ with parameter k is such that for all j ∈ [q],

M̂T
j· −MT

j·
2
2 ≤

2Y − ρM2
2+2ρ2Ek

2
2

(σk (ρMk ))2
(
2
∥∥∥[Mk ]Tj·

∥∥∥
2

2
+

4ε2(Y T
j· − ρMT

j· 2)
2

ρ2

)

+ 4ε2

ρ2

∥∥∥φMk (Y T
j· − ρMT

j· )
∥∥∥

2

2
+ 2(ε − 1)2MT

j·
2
2+2

∥∥∥[Ek ]Tj·
∥∥∥

2

2
. (5.18)

Proof. We prove our lemma in four steps.
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Step 1. Decomposing M̂T
j· −MT

j· in two terms. Fix a row index j ∈ [q]. Let λk be the
kth largest singular value of Y , as used by HSVT algorithm with parameter k ≥ 1.

M̂T
j· −MT

j· =
(

M̂T
j· − φY

λk (M
T
j· )
)

+
(
φY
λk (M

T
j· )−MT

j·

)
.

By definition per (5.17), φY
λk : Rp → Rp is the projection operator onto span{u1, . . . , uk},

the span of top k right singular vectors of Y , denoted as u1, . . . , uk . Therefore,

φY
λk (M

T
j· )−MT

j· ∈ span{u1, . . . , uk}⊥.

By design, rank(M̂) = k . Therefore, by Lemma 5.15.1

M̂j· − φY
λk (M

T
j· ) = 1

ρ̂φ
Y
λk (Y

T
j· )− φY

λk (M
T
j· ) ∈ span{u1, . . . , uk}.

Therefore, ⟨M̂T
j· − φY

λk (M
T
j· ), φY

λk (M
T
j· )−MT

j· ⟩ = 0, and hence

∥∥∥M̂T
j· −MT

j·

∥∥∥
2

2
=
∥∥∥M̂T

j· − φY
λk (M

T
j· )
∥∥∥

2

2
+
∥∥∥φY

λk (M
T
j· )−MT

j·

∥∥∥
2

2
(5.19)

by the Pythagorean theorem.

Step 2. Bounding Term 1. Term 1 is
∥∥∥M̂T

j· −φY
λk (M

T
j· )
∥∥∥

2
We begin by bounding the first

term on the right hand side of (5.19). By Lemma 5.15.1,

M̂j· − φY
λk (M

T
j· ) = 1

ρ̂φ
Y
λk (Y

T
j· )− φY

λk (M
T
j· ) = φY

λk

(1
ρ̂Y T

j· −MT
j·

)

= 1
ρ̂φ

Y
λk (Y

T
j· − ρMT

j· ) + ρ − ρ̂
ρ̂ φY

λk (M
T
j· ).

Using the Parallelogram Law (or, equivalently, combining Cauchy-Schwartz and AM-GM
inequalities), we obtain

∥∥∥M̂T
j· − φY

λk (Mj·)T
∥∥∥

2

2
=
∥∥∥∥

1
ρ̂φ

Y
λk (M

T
j· − ρMT

j· ) + ρ − ρ̂
ρ̂ φY

λk (M
T
j· )
∥∥∥∥

2

2

≤ 2
∥∥∥∥

1
ρ̂φ

Y
λk (Y

T
j· − ρMT

j· )
∥∥∥∥

2

2
+ 2

∥∥∥∥
ρ − ρ̂
ρ̂ φY

λk (M
T
j· )
∥∥∥∥

2

2

≤ 2
ρ̂2

∥∥∥φY
λk (Y

T
j· − ρMT

j· )
∥∥∥

2

2
+ 2
(ρ − ρ̂

ρ̂

)2
MT
j·

2
2
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≤ 2ε2

ρ2

∥∥∥φY
λk (Y

T
j· − ρMT

j· )
∥∥∥

2

2
+ 2(ε − 1)2MT

j·
2
2. (5.20)

From definition of ε, 1
ρ̂ ≤

ε
ρ and

(
ρ−ρ̂
ρ̂

)2
≤ (ε − 1)2. The first term of (5.20) can be

decomposed as,

∥∥∥φY
λk (Y

T
j· − ρMT

j· )
∥∥∥

2

2

≤ 2
∥∥∥φY

λk (Y
T
j· − ρMT

j· )− φMk (Y T
j· − ρMT

j· )
∥∥∥

2

2
+ 2

∥∥∥φMk (Y T
j· − ρMT

j· )
∥∥∥

2

2
. (5.21)

In above, we have used notation φMk = φMk
0 . Given that Mk is rank k matrix, φMk :

Rp → Rp is the projection operator mapping any element in Rp to the projection onto
the subspace spanned by {µ1, . . . , µk}, where µ1, . . . , µk ∈ Rp are the k non-trivial right
singular vectors of Mk . Similarly, by definition φY

λk is a map Rp → Rp mapping any
element in Rp to its projection onto the subspace spanned by {u1, . . . , uk}, the top k
right singular vectors of Y –this can be seen by noting λk = σk (Y ) is the k-th top singular
value of Y . Recall σj (Y ), j ∈ [q ∧ p] is the jth largest singular value of Y .

Next, we bound the first term on the right hand side of (5.21). To that end, by Wedin
sin Θ Theorem (see Davis and Kahan (1970); Wedin (1972)) and recalling rank(Mk ) = k ,

∥∥φY
λk − φ

Mk
∥∥

2 ≤
Y − ρMk2
σk (ρMk )

≤ Y − ρM2
σk (ρMk )

+ ρM −Mk2
σk (ρMk )

≤ Y − ρM2
σk (ρMk )

+ ρEk2
σk (ρMk )

. (5.22)

Then it follows that
∥∥∥φY

λk (Y
T
j· − ρMT

j· )− φMk (Y T
j· − ρMT

j· )
∥∥∥

2
≤ φY

λk − φ
Mk 2Y T

j· − ρMT
j· 2

≤
(Y − ρM2+ρEk2)(Y T

j· − ρMT
j· 2)

σk (ρMk )
. (5.23)

Using (5.21) and (5.23) in (5.20),

∥∥∥M̂j· − φY
λk (M

T
j· )
∥∥∥

2

2
≤ 4ε2

ρ2
(Y − ρM2+ρEk2)2(Y T

j· − ρMT
j· 2)

2

(σk (ρMk ))2
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+ 4ε2

ρ2

∥∥∥φMk (Y T
j· − ρMT

j· )
∥∥∥

2

2
+ 2(ε − 1)2MT

j·
2
2. (5.24)

Step 3. Bounding Term 2. Term 2 is
∥∥∥φY

λk (M
T
j· ) −MT

j·

∥∥∥
2

2
Recall M = Mk + Ek and

using (5.22),

∥∥∥φY
λk (M

T
j· )−MT

j·

∥∥∥
2

2
=
∥∥∥φY

λk ([Mk ]Tj· + [Ek ]Tj· )− [Mk ]Tj· − [Ek ]Tj·
∥∥∥

2

2

≤ 2
∥∥∥φY

λk ([Mk ]Tj· )− [Mk ]Tj·
∥∥∥

2

2
+ 2
∥∥∥φY

λk ([Ek ]Tj· )− [Ek ]Tj·
∥∥∥

2

2

= 2
∥∥∥φY

λk ([Mk ]Tj· )− φ
Mk
λk ([Mk ]Tj· )

∥∥∥
2

2
+ 2
∥∥∥φY

λk ([Ek ]Tj· )− [Ek ]Tj·
∥∥∥

2

2

≤ 2
∥∥∥φY

λk − φ
Mk
λk

∥∥∥
2

2

∥∥∥[Mk ]Tj·
∥∥∥

2

2
+ 2
∥∥∥[Ek ]Tj·

∥∥∥
2

2

≤ 2(Y − ρM2+ρEk )2

(σk (ρMk ))2
∥∥∥[Mk ]Tj·

∥∥∥
2

2
+ 2
∥∥∥[Ek ]Tj·

∥∥∥
2

2
. (5.25)

Step 4. Putting everything together. Inserting (5.24) and (5.25) back to (5.19), we have
that for each j ∈ [q],

∥∥∥M̂T
j· −MT

j·

∥∥∥
2

2
≤ 2(Y − ρM2+ρEk2)2

(σk (ρMk ))2
∥∥∥[Mk ]Tj·

∥∥∥
2

2
+ 2
∥∥∥[Ek ]Tj·

∥∥∥
2

2

+ 4ε2

ρ2
(Y − ρM2+ρEk2)2(Y T

j· − ρMT
j· 2)

2

(σk (ρMk ))2

+ 4ε2

ρ2

∥∥∥φMk (Y T
j· − ρMT

j· )
∥∥∥

2

2
+ 2(ε − 1)2MT

j·
2
2

≤
2Y − ρM2

2+2ρ2Ek
2
2

(σk (ρMk ))2
(
2
∥∥∥[Mk ]Tj·

∥∥∥
2

2
+

4ε2(Y T
j· − ρMT

j· 2)
2

ρ2

)

+ 4ε2

ρ2

∥∥∥φMk (Y T
j· − ρMT

j· )
∥∥∥

2

2
+ 2(ε − 1)2MT

j·
2
2+2

∥∥∥[Ek ]Tj·
∥∥∥

2

2
,

where we used (a+ b)2 ≤ 2a2 + 2b2. This completes the proof. ■
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■ 5.15.5 HSVT based Matrix Estimation: Deterministic To High-
Probability

Next, we convert the bound obtained in Lemma 5.15.2 to a bound in expectation (as
well as one in high-probability) for our metric of interest: M̂ −M2,∞. In particular, we
establish

Theorem 5.15.1. For k ≥ 1, let M = Mk + Ek with rank(Mk ) = k. Let ε = Ek∞ and
Γ = Mk∞. Let ρ ≥ C log(qp)/q for C large enough and q ≤ p. Then, the HSVT estimate
M̂ with parameter k is such that

E[ max
j∈[q]

1
pM̂T

j· −MT
j·

2
2] ≤

p(Cσ2 + ρ2εq)
ρ2σk (Mk )2

(
Γ2 + σ2

ρ2

)
+ Cσ2k logp

pρ2 + C (Γ + ε)2
p + 2ε2 + C

(pq)2 .

Proof. We start by identifying certain high probability events. Subsequently, using these
events and Lemma 5.15.2, we shall conclude the proof.

High Probability Events. For some positive absolute constant C > 0, define

E1 :=
{
|ρ̂ − ρ| ≤ ρ/20

}
,

E2 :=
{∥∥Y − ρM

∥∥
2 ≤ Cσ

√p
}
, (5.26)

E3 :=
{∥∥Y − ρM

∥∥
∞,2 ,

∥∥Y − ρM
∥∥

2,∞ ≤ Cσ
√p
}
, (5.27)

E4 :=
{

max
j∈[q]

∥∥∥φB
σk (B)

(
Y T
j· − ρMT

j·

)∥∥∥
2

2
≤ Cσ2k log(p)

}
, (5.28)

E5 :=
{(

1−

√
20 log(qp)
ρqp

)
ρ ≤ ρ̂ ≤ 1

1−
√

20 log(qp)
ρqp

ρ
}
.

In (5.28) above, B ∈ Rq×p is a deterministic matrix. Let the singular value decomposition
of B be given as B =

∑q
i=1 σi(B)xiyTi , where σi(B) are the singular vectors of B in

decreasing order and xi, yi are the left and right singular vectors respectively. Recall the
definition of φB

λ in (5.17). In particular, we choose λ = σk (B), the kth singular value of
B in (5.28). As a result, in effect, we are bounding norm of projection of random vector
Yj· − ρMj· for any given deterministic subspace of Rp of dimension k .
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Lemma 5.15.3. For some positive constant c1 > 0 and C > 0 large enough in definitions
of E1, . . . , E5,

P(E1) ≥ 1− 2e−c1pqρ − (1− ρ)pq,

P(E2) ≥ 1− 2e−p,

P(E3) ≥ 1− 2e−p, (5.29)

P(E4) ≥ 1− 2
(qp)10 .

P(E5) ≥ 1− 2
(qp)10 .

Proof. We bound the probability of events E1, . . . , E5 in that order.

Bounding E1. Let

ρ̂0 = (
q∑

i=1

p∑

j=1
1(Yij is obs.))/(q p).

That is, ρ̂ = max(ρ̂0, 1/(pq)) and E[ρ̂0] = ρ. We define the event E6 := {ρ̂0 = ρ̂}. Thus,
we have that

P(Ec1 ) = P(Ec1 ∩ E6) + P(Ec1 ∩ Ec6 )

= P(|ρ̂0 − ρ| ≥ ρ/20) + P(Ec1 ∩ Ec6 )

≤ P(|ρ̂0 − ρ| ≥ ρ/20) + P(Ec6 )

= P(|ρ̂0 − ρ| ≥ ρ/20) + (1− ρ)qp,

where the final equality follows by the independence of observations assumption and the
fact that ρ̂0 ̸= ρ̂ only if we do not have any observations. By Bernstein’s Inequality, we
have that

P(|ρ̂0 − ρ| ≥ ρ/20) ≥ 1− 2e−c1ρqp.

Bounding E2. To start with, E[Y ] = ρM . For any i ∈ [q], j ∈ [p], the Yij are independent,
0 with probability 1 − ρ and with probability ρ equal to Mij + εij with

∥∥εij
∥∥
ψ2
≤ σ .

Therefore, it follows that Yij − ρMij ψ2≤ C ′σ for a constant C ′ > 0. Since q ≤ p, using
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Theorem 5.14.2 it follows that for an appropriately large constant C > 0,

P(E2) ≥ 1− 2e−p.

Bounding E3. Recall that we assume q ≤ p. Observe that for any matrix A ∈ Rq×p,
A∞,2, A2,∞≤ A2. Thus using the argument to bound E2, we have (5.29).

Bounding E4. Consider for j ∈ [q],

∥∥∥φB
σk (B)

(
Y T
j· − ρMT

j·

)∥∥∥
2

2
=

k∑

i=1

∥∥∥yiyTi (Y T
j· − ρMT

j· )
∥∥∥

2

2
≤

k∑

i=1

(
yTi (Y T

j· − ρMT
j· )
)2

2
=

k∑

i=1
Z 2
i ,

where Zi = yTi (Y T
j· − ρMT

j· ). By definition of the ψ2 norm of a random variable and since
yi is unit norm vector that is deterministic (and hence independent the of random vector
Y T
j· − pMT

j· ), it follows that

∥∥Zi
∥∥
ψ2

=
∥∥∥yTi (Yj· − pMj·)

∥∥∥
ψ2
≤
∥∥(Yj· − pMj·)

∥∥
ψ2
.

Since the coordinates of Y T
j· − ρMT

j· are mean-zero and independent, with ψ2 norm
bounded by

√
Cσ for some absolute constant C > 0, using arguments from Agarwal et al.

(2019b, 2021e), it follows that

P
( k∑

i=1
Z 2
i > t

)
≤ 2k exp

(
− t
kCσ2

)
.

Therefore, for choice of t = Cσ2k logp with large enough constant C > 0, q ≤ p, and
taking a union bound over all j ∈ [p], we have that

P
(
Ec4
)
≤ 2

(qp)10 .
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Bounding E5. Recall the definition of ρ̂. By the binomial Chernoff bound, for ε > 1,

P
(
ρ̂ > ερ

)
≤ exp

(
− (ε − 1)2

ε + 1 qpρ
)
, and

P
(
ρ̂ < 1

ερ
)
≤ exp

(
− (ε − 1)2

2ε2 qpρ
)
.

By the union bound,

P
(1
ερ ≤ ρ̂ ≤ ρε

)
≥ 1− P

(
ρ̂ > ερ

)
− P

(
ρ̂ < 1

ερ
)
.

Noticing ε + 1 < 2ε < 2ε2 for all ε > 1, and substituting ε =
(
1−

√
20 log(qp)
qpρ

)−1

completes the proof. ■

The following are immediate corollaries of the above stated bounds.

Corollary 5.15.1. Let E := E1 ∩ E2. Then, for ρ ≥ C log(qp)/q,

P(Ec) ≤ C1e−c2p,

where C1 and c2 are positive constants.

Corollary 5.15.2. Let E := E2 ∩ E3 ∩ E4 ∩ E5. Then,

P(Ec) ≤ C1
(qp)10 ,

where C1 is an absolute positive constant.

Probabilistic Bound for HSVT based Matrix Estimation. Recall ε = Ek∞. Then
Ek

2
F≤ εqp. And Ek

2
2≤ Ek

2
F≤ εqp. Let ρ ≥ C log(qp)/q for C large enough and

recall q ≤ p. Further, recall Γ = Mk∞; thus, M∞≤ Γ + ε. Then [Mk ]Tj·2≤ Γ√p and
[M ]Tj·2≤ (Γ + ε)√p.

Define E = E1 ∩ E2 ∩ E3 ∩ E4 ∩ E5. Then, from Corollaries 5.15.1 and 5.15.2, we have
that P(Ec) ≤ C1

(qp)10 for large enough constant C1 > 0.

Under E5, we have ε = max(ρ̂/ρ, ρ/ρ̂) ≤
(
1−

√
20 log(qp)
qpρ

)−1
. Under this choice of
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ε and using ρ ≥ C log(qp)/q, we have that for C large enough, ε ≤ C and (ε−1)2 ≤ C/p.

Given this setup, under event E , Lemma 5.15.2 leads to the following: for all j ∈ [q] and
with appropriately (re-defined) large enough constant C > 0,

M̂T
j· −MT

j·
2
2 ≤ C

σ2p+ ρ2εqp
ρ2σk (Mk )2

(
pΓ2 + σ2p

ρ2

)

+ Cσ2k logp
ρ2 + C (Γ + ε)2 + 2pε2. (5.30)

That is, under event E ,

max
j∈[q]

1
pM̂T

j· −MT
j·

2
2 ≤ C

p(σ2 + ρ2εq)
ρ2σk (Mk )2

(
Γ2 + σ2

ρ2

)
+ Cσ2k logp

pρ2 + C (Γ + ε)2
p + 2ε2.(5.31)

For any random variable X and event A, such that under event A, X ≤ B and P(Ac) ≤ δ ,
we have

E[X ] = E[X1(A)] + E[X1(Ac)]

≤ E[X1(A)] + E[X2]
1
2 P(Ac)

1
2

≤ B + E[X2]
1
2 δ

1
2 . (5.32)

We shall use this reasoning above to bound E[ maxj∈[q]
1
pM̂T

j· − MT
j·

2
2]: let X =

maxj∈[q]
1
pM̂T

j· −MT
j·

2
2 and A = E ; B is given by right hand side of (5.31), δ = C1

(qp)10 ; the
only missing quantity that remains to be bounded is E[X2]. We do that next.

To begin with, for any j ∈ [q],
∥∥∥M̂T

j· −MT
j·

∥∥∥
2
≤
∥∥∥M̂T

j·

∥∥∥
2
+
∥∥∥MT

j·

∥∥∥
2

(5.33)

by triangle inequality. As stated earlier, [M ]Tj·2≤ (Γ + ε)√p. Next, we bound
∥∥∥M̂j·

∥∥∥
T

2
.

From (5.16), the fact that ρ̂ ≥ 1/(qp), and Lemma 5.15.1, we have

M̂T
j· 2 = 1

ρ̂HSVTλk (Y )Tj·2

≤ q pφY
λk (Y

T
j· )2

≤ q pφY
λk 2Y T

j· 2



302 CHAPTER 5. ON MULTIVARIATE SINGULAR SPECTRUM ANALYSIS

≤ q pY T
j· 2, (5.34)

where we used the fact that φY
λk is a projection operator and hence φY

λk 2= 1. Note that
Yij = Bij x (Mij + εij ), where Bij is an independent Bernoulli variable with P(Bij = 1) = ρ
representing whether (Mij + εij is observed or not. Therefore, |Yij |= |Bij | x |Mij + εij |≤
(Γ + ε) + |εij |. Therefore, from (5.33) and (5.34),

max
j∈[q]

∥∥∥M̂T
j· −MT

j·

∥∥∥
2
≤ (Γ + ε)√p+ qp( max

j∈[q]
Y T
j· 2)

≤ (Γ + ε)√p+ qp x√p( max
i∈[p],j∈[q]

|Yij |)

≤ 2qp
3
2 (Γ + ε + max

i∈[p],j∈[q]
|εij |). (5.35)

Using (a+ b)2 ≤ 2a2 + 2b2 twice, we have (a+ b)4 ≤ 8(a4 + b4). Therefore, from (5.36)

max
j∈[q]

∥∥∥M̂T
j· −MT

j·

∥∥∥
4

2
≤ 16q4p6((Γ + ε)4 + max

i∈[p],j∈[q]
|εij |4). (5.36)

Recall E[εij ] = 0,
∥∥εij

∥∥
ψ2
≤ σ and εij are independent across i, j . A property of ψ2-random

variables is that |ηij |θ is a ψ2/θ-random variable for θ ≥ 1. With choice of θ = 4, we have

E[ max
ij

∣∣εij
∣∣4] ≤ C ′σ4 log2(qp), (5.37)

for some C ′ > 0 by Lemma 5.14.1. From (5.34), (5.36), and (5.37), we have that

(
E[ max

j∈[q]

1
p2

∥∥∥M̂T
j· −MT

j·

∥∥∥
4

2
]
) 1

2 ≤ 4q2p2((Γ + ε)4 + C ′σ4 log2(qp))
1
2 . (5.38)

Finally, using (5.31), (5.32) and (5.38), we conclude

E[ max
j∈[q]

1
pM̂T

j· −MT
j·

2
2] ≤

p(Cσ2 + ρ2εq)
ρ2σk (Mk )2

(
Γ2 + σ2

ρ2

)
+ Cσ2k logp

pρ2 + C (Γ + ε)2
p + 2ε2 + C

(pq)2 .

This completes the proof of Theorem 5.15.1. ■
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■ 5.16 Proof of Theorem 5.5.1

The proof of Theorem 5.5.1 will utilize Theorem 5.15.1. To begin with, given N time series
with observations over [T ], the mSSA algorithm as described in Section 5.1.1 constructs the
L×(NT/L) stacked page matrix SP((X1, . . . , XN ), T , L) with L =

√
min(N,T )T , i.e. L ≤ T .

As per the model described by (5.1) and Section 5.3, it follows that each entry of
SP((X1, . . . , XN ), T , L) is an independent random variable; it is observed with probability
ρ ∈ (0, 1] independently and when it is observed, its equal to value of the latent time
series plus zero-mean sub-Gaussian noise. In particular,

E[SP((X1, . . . , XN ), T , L)] = ρSP((f1, . . . , fN ), T , L),

where SP((f1, . . . , fN ), T , L) ∈ RL×(NT/L) with entry in row ℓ ∈ [L] and column
(n− 1) xT /L+ j equal to fn(ℓ + (j − 1) x L). Further, when entry in row ℓ ∈ [L] and column
(n − 1) xT /L + j in SP((X1, . . . , XN ), T , L) is observed, i.e. Xn(ℓ + (j − 1) x L) ̸= ⋆, it is
equal to fn(ℓ + (j − 1) x L) + ηn(ℓ + (j − 1) x L) where ηn(·) are independent, zero-mean
sub-Gaussian variables with ηn(·)ψ2≤ γ as per the Property 5.4.1.

Under Properties 5.3.1 and 5.5.1, as a direct implication of Proposition 15,
SP((f1, . . . , fN ), T , L) has ε′-rank at most R xG with ε′ = RΓ1ε. That is, there exist
rank k ≤ R xG matrix Mk ∈ RL×(NT/L) so that

SP((f1, . . . , fN ), T , L) = Mk + Ek ,

where Ek∞≤ ε′. Due to Property 5.3.1, it follows that Mk∞≤ RΓ1Γ2 + ε′. Under
Property 5.5.2, we have σk (Mk ) ≥ c

√
NT/
√
k for some constant c > 0.

Define

Γ = RΓ1Γ2 + ε′ = RΓ1(Γ2 + ε).

Recall from Section 5.1.1, the elements of the imputed multivariate time
series are simply the entries of the matrix ŜP((X1, . . . , XN ), T , L) where
ŜP((X1, . . . , XN ), T , L) = 1

ρ̂HSVTk (SP((X1, . . . , XN ), T , L)). That is, imputation in
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mSSA is carried out by applying HSVT to the stacked page matrix SP((X1, . . . , XN ), T , L).

All in all, the above description precisely meets the setup of Theorem 5.15.1. To apply
Theorem 5.15.1, we require ρ ≥ C log(NT )/

√
NT for C > 0 large enough. Note that

the number of columns in ŜP((X1, . . . , XN ), T , L) is equal to NT/L for L =
√

min(N,T )T
– for this choice of L, note that NT/L ≥ L. Using σ2

k (Mk ) ≥ cNT /k , for some absolute
constant = c ≥ 0, and using Theorem 5.15.1, we obtain

E[ 1
(NT/L) ŜP((X1, . . . , XN ), T , L)− SP((f1, . . . , fN ), T , L)22,∞] (5.39)

≤ k(NT/L)(Cγ2 + ρ2ε′L)
ρ2c2NT

(
Γ2 + γ2

ρ2

)
+ Cγ2k logNT

(NT/L)ρ2 + C (Γ + ε′)2
(NT/L) + 2(ε′)2 + C

(NT )2

Recall that k ≤ R xG, ε′ = RΓ1ε, and Γ = RΓ1(Γ2 + ε). Hence, simplifying (5.39), we
obtain that

E[ 1
(NT/L) ŜP((X1, . . . , XN ), T , L)− SP((f1, . . . , fN ), T , L)22,∞]

≤ C̃
(
RG(1 + ρ2RεL)

ρ2L

(
R2(1 + ε2) + 1

ρ2

)
+ RG logNT

(NT/L)ρ2 + (R (1 + ε))2
(NT/L) + (Rε)2

)

≤ C̃
(
R3G logNT

ρ4L + R4G(ε + ε2 + ε3)
ρ2

)
, (5.40)

where C̃ = C (c,Γ1,Γ2, γ) is a positive constant dependent on model parameters including
Γ1,Γ2, γ.

It can be easily verified that for any matrix, A ∈ Rm×n,

1
mn

∥∥A
∥∥2
F ≤

1
n
∥∥A
∥∥2
∞,2 . (5.41)

Further, there is a one-to-one mapping of f̂n(·) (resp. fn(·)) to the entries of
ŜP((X1, . . . , XN ), T , L) (resp. SP((f1, . . . , fN ), T , L)). Hence,

ImpErr(N,T ) = E[ 1
NT ŜP((X1, . . . , XN ), T , L)− SP((f1, . . . , fN ), T , L)2F ] (5.42)
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Therefore, from (5.40), (5.41), and (5.42) it follows that

ImpErr(N,T ) ≤ C (c,Γ1,Γ2, γ)
(
R3G logNT

ρ4L + R4G(ε + ε2 + ε3)
ρ2

)

This completes the proof of Theorem 5.5.1.

■ 5.17 Proof of Theorem 5.5.2

The forecasting algorithm, as described in Section 5.1.1, computes a linear model between
the recent past and immediate future to forecast. We shall bound the forecasting error,
ForErr(N,T , L) as defined in (5.6). We start with some setup and notations, followed
by a key proposition that establishes the existence of a linear model under the setup
of Theorem 5.5.2, and then conclude with a detailed analysis of noisy, mis-specified
least-squares.

Setup, Notations. For L ≥ 1, k ≥ 1, for ease of notations, we define

◦ SP(X ) = SP((X1, . . . , XN ), T , L) ∈ RL×(NT/L),

◦ SP(f ) = SP((f1, . . . , fN ), T , L) ∈ RL×(NT/L),

◦ SP′(X ) ∈ R(L−1)×(NT/L) as the top L − 1 rows of SP((X1, . . . , XN ), T , L),

◦ SP′(f ) ∈ R(L−1)×(NT/L) as the top L − 1 rows of SP((f1, . . . , fN ), T , L).

It is worth noting that E[SP(X )] = ρSP(f ) and hence

SPL·(X )T = ρSPL·(f )T + η, (5.43)

where η ∈ R(NT )/L is a random vector with each component being independent, zero-mean
with its distribution given as: it is 0 with probability 1− ρ and with probability ρ, due
to Property 5.4.1, it equals a zero-mean sub-Gaussian random variable with ·ψ2≤ γ.
Therefore, using arguments in Agarwal et al. (2019b, 2021e), each component of η is an
independent, zero-mean random variable with ·ψ2 bounded above by C ′(γ2 + RΓ1Γ2) for
some absolute constant C ′ > 0. Let K = C ′(γ2 + RΓ1Γ2) and hence each component of η
has ·ψ2 bounded by K .
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Now, recall that for forecasting, we first apply the imputation algorithm (i.e. HSVT) to
SP((X1, . . . , XN ), T , L) by replacing ⋆s, i.e. missing observations by 0 as well as setting
all the entries in the last row equal to 0. Equivalently, the imputation algorithm is applied
to SP′(X ) after setting all missing values to 0. Let ŜP′ ∈ RL−1×(NT/L) be the estimate
produced from the imputation algorithm applied to SP′(X ). Under the setup of Theorem
5.5.1, by following arguments identical to that of Theorems 5.15.1 and 5.5.1–in particular,
refer to (5.40)–it follows that by selecting the right choice of k ≤ R xG, we have

E
[ 1
(NT/L) ŜP′ − SP′(f )22,∞

]
≤ C̃

(
R3G logNT

ρ4L + R4G(ε + ε2 + ε3)
ρ2

)
, (5.44)

where C̃ = C (c,Γ1,Γ2, γ) > 0 is a constant dependent on c,Γ1,Γ2, γ.

Now, the mSSA forecasting algorithm finds β̂ = β̂((X1, . . . , XN ), T L; k), by solving the
following Ordinary Least Squares (OLS):

β̂ ∈ minimize 1
ρ̂SP(X )L· − ŜP′

T
β2

2 over β ∈ RL−1. (5.45)

And subsequently, ŜP′
T
β̂ is used as the estimate for SP(f )L· ∈ RNT/L, the Lth row of the

latent SP(f ). The goal is to bound the forecasting error ForErr(N,T , L), which is given by

ForErr(N,T , L) = E
[ 1
(NT/L)SP(f )L· − ŜP′

T
β̂2

2

]
.

Therefore, our interest is in bounding E[SPL·(f )− ŜP′
T
β̂2

2].

Now, we recall from Proposition 11 that there exists β∗ ∈ RL−1, such that

SP(f )TL· − SP′(f )Tβ∗∞≤ C2ε,

where C2 := RΓ1(1 + β∗1).

Bounding E[SPL·(f )− ŜP′
T
β̂2

2]. By (5.45) and (5.43)

1
ρ̂SP(X )L· − ŜP′

T
β̂2

2 ≤
1
ρ̂SP(X )L· − ŜP′

T
β∗22
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= ρ
ρ̂SP(f )L· + η − ŜP′

T
β∗22

= ρ
ρ̂SP(f )L· − ŜP′

T
β∗22+η2

2+2ηT (ρρ̂SP(f )L· − ŜP′
T
β∗). (5.46)

Also,

1
ρ̂SP(X )L· − ŜP′

T
β̂2

2 = ρ
ρ̂SP(f )L· + η − ŜP′

T
β̂2

2

= ρ
ρ̂SP(f )L· − ŜP′

T
β̂2

2+η2
2+2ηT (ρρ̂SP(f )L· − ŜP′

T
β̂). (5.47)

From (5.46) and (5.47)

E[ρρ̂SP(f )L· − ŜP′
T
β̂2

2] (5.48)

≤ E[ρρ̂SP(f )L· − ŜP′
T
β∗22] + 2E[ηT ŜP′

T
(β∗ − β̂)]

η is independent of ŜP′, β∗, and ρ̂; E[η] = 0; thus, we have that

E[ηT ŜP′
T
β∗] = 0. (5.49)

By (5.45), we have β̂ = ŜP′
T ,† 1

ρ̂SP(X )L·, where ŜP′
T ,†

is pseudo-inverse of ŜP′
T

. That
is,

β̂ = ŜP′
T ,† ρ

ρ̂SP(f )L· +
1
ρ̂ ŜP′

T ,†
η. (5.50)

Using cyclic and linearity of Trace operator; the independence properties of η; and (5.50);
we have

E[ηT ŜP′
T
β̂] = E[ηT ŜP′

T
ŜP′

T ,† ρ
ρ̂SP(f )L·] + E[ 1ρ̂ η

T ŜP′
T
ŜP′

T ,†
η]

= E[η]TE[ŜP′
T
ŜP′

T ,† ρ
ρ̂ ]SP(f )L· + E[ 1ρ̂ Tr

(
ηT ŜP′

T
ŜP′

T ,†
η
)

]

= E[ 1ρ̂ Tr
(

ŜP′
T
ŜP′

T ,†
ηηT

)
]

= Tr (E[ 1ρ̂ ŜP′
T
ŜP′

T ,†
]E[ηηT ])

≤ C (γ)k/ρ, (5.51)
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where C (γ) is a function only of γ. To see the last inequality, we use various facts.
First, by the definition of the HSVT algorithm ŜP′

T
has rank at most k . Second, let

ŜP′
T

= USV T be the singular value decomposition of ŜP′
T

, we have

ŜP′
T
ŜP′

T ,†
= USV TV S†UT

= UĨUT ,

That is, 1
ρ̂ ŜP′

T
ŜP′

T ,†
is a positive semi-definite matrix and Tr

(
1
ρ̂ ŜP′

T
ŜP′

T ,†
)
≤ k/ρ̂.

The matrix E[ηηT ] is diagonal with all the non-zero entries on diagonal (variance of
components of η) bounded above by a constant that depends on γ. For a positive
semi-definite matrix A and positive semi-definite diagonal matrix B, Tr(AB) ≤ B2Tr(A).
For ρ ≥ C log(NT )/

√
NT for large enough C , one can verfiy that E[1/ρ̂] ≤ 2/ρ. This

completes the justification of the last step of (5.51).

Now consider the term ρ
ρ̂SP(f )L· − ŜP′

T
β∗22. Note,

ρ
ρ̂SP(f )L· − ŜP′

T
β∗22=(SP(f )L· − ŜP′

T
β∗) + (ρ − ρ̂

ρ̂
)SP(f )L·22

≤ 2(SP(f )L· − ŜP′
T
β∗)22+2ρ − ρ̂ρ̂ SP(f )L·22. (5.52)

We will bound the two terms on the r.h.s of (5.52) separately. We now consider the first
term.

SP(f )L· − ŜP′
T
β∗22 ≤ 2SP(f )L· − SP′(f )Tβ∗22+2SP′(f )Tβ∗ − ŜP′

T
β∗22. (5.53)

By Proposition 11

SP(f )L· − SP′(f )Tβ∗2 ≤ SP(f )L· − SP′(f )Tβ∗∞
√
NT/L ≤ C2ε

√
NT/L, (5.54)

where we used the fact that for any v ∈ Rp, v2≤ v∞
√p. And,

SP′(f )Tβ∗ − ŜP′
T
β∗2 = (SP′(f )− ŜP′)Tβ∗2 ≤ SP′(f )− ŜP′2,∞β∗1, (5.55)

where we used the fact that for any A ∈ Rq×p, v ∈ Rp, Av2≤ AT 2,∞v1. Finally, note that

SP(f )L· − ŜP′
T
β̂2

2 ≤ 2ρρ̂SP(f )L· − ŜP′
T
β̂2

2+2ρ − ρ̂ρ̂ SP(f )L·22. (5.56)
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Using (5.48), (5.95), (5.51), (5.52),(5.53), (5.54), (5.55), and the bound in (5.56), we obtain

E[SP(f )L· − ŜP′
T
β̂2

2] (5.57)

≤ 4C (γ)k/ρ + 6E[ρ − ρ̂ρ̂ SP(f )L·22] + 2C2ε2(NT/L) + 2β∗21SP′(f )− ŜP′22,∞.

Note that SP(f )∞≤ RΓ1Γ2. Hence, SP(f )L·22≤ C (Γ1,Γ2)R2(NT/L), for large enough
constant C (Γ1,Γ2) that may depend on Γ1,Γ2. Using the bounds derived in Lemma 5.15.3,
one can verify that E[(ρ−ρ̂ρ̂ )2] ≤ C/(NT/L) for large enough positive constant C . Therefore,
we have that

6E[ρ − ρ̂ρ̂ SP(f )L·22] ≤ C (Γ1,Γ2)R2 (5.58)

Using (5.44), (5.58), and the bound in (5.57); diving by 1/(NT/L) on both sides; and
noting k ≤ R xG, we obtain

E[ 1
(NT/L)SP(f )L· − ŜP′

T
β̂2

2]

≤ C (c, γ,Γ1,Γ2)
(

RG
ρ(NT/L) + R2

(NT/L) + R (1 + β∗1)ε2 + β∗21
(
R3G logNT

ρ4L + R4G(ε + ε2 + ε3)
ρ2

))

≤ C (c, γ,Γ1,Γ2)
(

max(1, β∗1, β∗21)
(
R3G logNT

ρ4L + R4G(ε + ε2 + ε3)
ρ2

))
(5.59)

Letting L =
√

min(N,T )T , using (5.59), and noting that

ForErr(N,T , L) = E[ 1
(NT/L)SP(f )L· − ŜP′

T
β̂2

2]

completes the proof of Theorem 5.5.2.

■ 5.17.1 Proof of Proposition 11

For this proof, we utilize a modified version of the stacked Hankel matrix defined in
Appendix 5.12. Define the modified Hankel matrix for time series fn, for n ∈ [N ], as
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H̃(n) ∈ RT×2T , where for i ∈ [T ], j ∈ [2T ], we have

H̃(n)ij = fn(i+ j − 1− T ).

Define S̃H ∈ RT×NT as the column wise concatenation of the matrices H̃(n) for n ∈ [N ],
i.e., S̃H := [H̃(1), . . . , H̃(N)]. By a straightforward modification of the proof of Proposition
15, we have S̃H has ε′-rank bounded by R xG with ε′ = RΓ1ε. That is, there exists a
matrix M ∈ RT×NT such that,

rank(M) ≤ RG, S̃H−M∞≤ ε′

Since rank(M) ≤ RG, it must be the case that within the last RG rows of M, there exists
at least one row, which we denote as r∗, that can be written as a linear combination of at
most RG rows above it, which we denote as r1, . . . , rRG . Specifically there exists a vector
θ := (θ1, . . . , θRG) ∈ RRG such that

Mr∗,· =
RG∑

ℓ=1
θℓMrℓ ,·

Hence for j ∈ [2T ],

∣∣∣∣S̃Hr∗,j −
RG∑

ℓ=1
θℓ S̃Hrℓ ,j

∣∣∣∣

=
∣∣∣∣S̃Hr∗,j ±Mr∗,j −

RG∑

ℓ=1
θℓ S̃Hrℓ ,j ±

RG∑

ℓ=1
θℓMrℓ ,t

∣∣∣∣

≤
∣∣∣∣S̃Hr∗,j −Mr∗,j

∣∣∣∣ +
∣∣∣∣
RG∑

ℓ=1
θℓ S̃Hrℓ ,j −

RG∑

ℓ=1
θℓMrℓ ,t

∣∣∣∣ +
∣∣∣∣Mr∗,j −

RG∑

ℓ=1
θℓMrℓ ,t

∣∣∣∣

=
∣∣∣∣S̃Hr∗,j −Mr∗,j

∣∣∣∣ +
∣∣∣∣
RG∑

ℓ=1
θℓ (S̃Hrℓ ,j −Mrℓ ,t)

∣∣∣∣

≤ ε′ + θ1S̃Hrℓ ,j −Mrℓ ,t∞

≤ RΓ1(1 + θ1)ε. (5.60)

Observe that every entry of SP(f )L· appears within S̃Hr∗,·; this can be seen by noting
that S̃H is skew-symmetric and thus every entry in the last row of S̃H appears along the
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appropriate diagonal. Using this skew-symmetric property of S̃H and (5.60), it implies
that by appropriately selecting entries in S̃H, there exists β∗ ∈ RL−1,

SP(f )TL· − SP′(f )Tβ∗∞≤ RΓ1(1 + β1)ε,

where the non-zero entries in β∗ correspond to the entries of θ. Noting that θ ∈ RRG

implies β∗0≤ RG. This completes the proof.

■ 5.18 Proof of Theorem 5.4.3

Notation. For integers t1 < t2 where t2 − t1 + 1 ≥ L, let SP((X1, . . . , XN ), t1 : t2, L)
represents the stacked page matrix constructed using the contiguous observations
Xn(t1), . . . , Xn(t2), ∀n ∈ [N ]. Throughout, we use the following notations:

• SP0(X ) = SP((X1, . . . , XN ), 1 : T , L) ∈ RL×(NT/L), with zeros replacing missing
values.

• SP1(X ) = SP((X1, . . . , XN ), T + 1 : T + T1, L) ∈ RL×(NT1/L), with zeros replacing
missing values.

• SP0(f ) = SP((f1, . . . , fN ), 1 : T , L) ∈ RL×(NT/L).

• SP1(f ) = SP((f1, . . . , fN ), T + 1 : T + T1, L) ∈ RL×(NT1/L).

• SP1(η) = SP((η1, . . . , ηN ), T + 1 : T + T1, L) ∈ RL×(NT1/L).

• SP′0(X ) ∈ R(L−1)×(NT/L) as the top L−1 rows of SP0(X ). Let SP′1(X ),SP′0(f ), SP′1(f )
and SP′1(η) be defined analogously.

• ρ̂ := (max(1,
∑L−1

i=1
∑NT/L

j=1 1(SP0(X )ij ̸= ⋆)))/(NT −NT/L)

Recall that we are interested in bounding the following out-of-sample prediction error:

TestForErr(N,T , T1, L) = L
NT1

N∑

n=1

T1/L∑

m′=1
E[(fn(T + L xm′)− f̄n(T + L xm′))2].

Where the forecasted estimate f̄n(·), n ∈ [N ] are produced by the algorithm detailed in
Section 5.1.1.
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Based on the algorithm, we can write TestForErr(N,T , T1, L) as follows:

TestForErr(N,T , T1, L) = 1
(NT1/L)

E
[1
ρ̂SP′1(X )T β̂ − SP1(f )TL·22

]

= 1
(NT1/L)

E
[1
ρ̂SP′1(X )T β̂ − SP′1(f )

Tβ∗22
]
.

Before bounding this term, we introduce the following important notation. For i ∈ {0, 1},
let UiΣiV T

i denote the Singular Value Decomposition (SVD) of SP′i(f ). Also, let ŨiΣ̃iṼ T
i

denote the top k singular components of the SVD of SP′i(X ), while Ũ⊥i Σ̃⊥i (Ṽ⊥i )T denote
the remaining L − k − 1 components such that SP′i(X ) = ŨiΣ̃iṼ T

i + Ũ⊥i Σ̃⊥i (Ṽ⊥i )T . Finally,
let V⊥i and U⊥i be matrices of orthornormal basis vectors that span the null space of
SP′i(f ) and SP′i(f )T , respectively. Further, let ŜP′i be the HSVT estimate of SP′i(f ). That
is ŜP′i = 1

ρ̂ ŨiΣ̃iṼ T
i . Also, let ŜP′i

⊥
= 1

ρ̂ Ũ⊥i Σ̃⊥i (Ṽ⊥i )T .

We start the proof by providing a deterministic upper bound for out-of-sample error.

Deterministic Bound. Due to triangle inequality, we have

1
ρ̂SP′1(X )T β̂ − SP′1(f )

Tβ∗22 = 1
ρ̂SP′1(X )T β̂ − SP′1(f )

Tβ∗ + ŜP′1
T
β̂ − ŜP′1

T
β̂2

2

≤ 21
ρ̂SP′1(X )T β̂ − ŜP′1

T
β̂2

2+2ŜP′1
T
β̂ − SP′1(f )

Tβ∗22.

Next, we proceed to bound each of the two terms on the right hand side.

First term: 1
ρ̂SP′1(X )T β̂ − ŜP′1

T
β̂2

2.

1
ρ̂SP′1(X )T β̂ − ŜP′1

T
β̂2

2 = (ŜP′1
⊥
)T β̂2

2 (5.61)

= 1
ρ̂ Ṽ⊥1 Σ̃⊥1 (Ũ⊥1 )T β̂2

2

≤ 1
ρ̂ Σ̃⊥1 2

2(Ũ⊥1 )T β̂2
2.
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Note that Σ̃⊥1 2 equals the (k + 1)-th singular value of SP′1(X ). Recall that E[SP′1(X )] =
ρSP′1(f ) and hence

SP′1(X ) = ρSP′1(f ) + ı1, (5.62)

where ı1 ∈ R(L−1)×(NT1)/L is a random matrix with zero-mean i.i.d. entries where each entry
is 0 with probability 1− ρ and equals a zero-mean sub-Gaussian random variable with
·ψ2≤ γ with probability ρ (due to Property 5.4.1). Next, we show that each component of
ı1 is an independent, zero-mean random variable with ·ψ2 bounded above by C ′(γ+RΓ1Γ2)
for some absolute constant C ′ > 0. Let ζij for i ∈ [L − 1] and j ∈ [NT/L] denotes the
ij-th entry in ı1. Further, let Pij ∈ {0, 1} denotes the random mask which takes the value
1 with probability ρ such that SP′1(X )ij = Pij (SP′1(f )ij + SP′1(η)ij ). Then, we have

ζij ψ2 = SP′1(X )ij − ρSP′1(f )ij ψ2

= PijSP′1(f )ij + PijSP′1(η)ij − ρSP′1(f )ij ψ2

≤ PijSP′1(η)ij ψ2+PijSP′1(f )ij − ρSP′1(f )ij ψ2

≤ Cγ + SP′1(f )ijPij − ρψ2

≤ C ′(γ + RΓ1Γ2),

where C, C ′ > 0 are absolute constants. The first inequality is due to triangle inequality,
and the last follows since Pij − ρ is a random variable bounded between [−ρ, 1− ρ] and
SP′1(f )ij is bounded by RΓ1Γ2. With a similar argument, we can also write

SP′0(X ) = ρSP′0(f ) + ı0,

where each component of ı0 is again an independent, zero-mean random variable with
·ψ2 bounded above by C ′(γ + RΓ1Γ2). Now, recalling that SP′1(X ) = ρSP′1(f ) + ı1 and
using Weyl’s inequality (see Lemma 5.14.4), we can bound the (k + 1)-th singular value
of SP′1(X ) by the largest singular value of ı1. That is,

Σ̃⊥1 2
2 ≤ ı12

2. (5.63)

Next, we bound the term (Ũ⊥1 )T β̂2
2.
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(Ũ⊥1 )T β̂2
2 = Ũ⊥1 (Ũ⊥1 )T β̂ 2

2 (5.64)

= Ũ⊥1 (Ũ⊥1 )Tβ∗ + Ũ⊥1 (Ũ⊥1 )T (β̂ − β∗)22
≤ 2Ũ⊥1 (Ũ⊥1 )Tβ∗22+2Ũ⊥1 (Ũ⊥1 )T (β̂ − β∗)22
≤ 2Ũ⊥1 (Ũ⊥1 )Tβ∗22+2β̂ − β∗22.

First, consider

Ũ⊥1 (Ũ⊥1 )Tβ∗2 = Ũ⊥1 (Ũ⊥1 )TU1(U1)Tβ∗2 (5.65)

≤
∥∥∥U⊥1 (U⊥1 )TU1(U1)Tβ∗

∥∥∥
2
+
∥∥∥
(

Ũ⊥1 (Ũ⊥1 )TU1(U1)T − U⊥1 (U⊥1 )TU1(U1)T
)
β∗
∥∥∥

2

≤
∥∥∥
(

Ũ⊥1 (Ũ⊥1 )T − U⊥1 (U⊥1 )T
)
β∗
∥∥∥

2

≤
∥∥∥Ũ⊥1 (Ũ⊥1 )T − U⊥1 (U⊥1 )T

∥∥∥
2

∥∥β∗
∥∥

2

=
∥∥∥Ũ1ŨT

1 − U1UT
1

∥∥∥
2

∥∥β∗
∥∥

2 .

Where in the first equality we use the fact that β∗ = U1(U1)Tβ∗, i.e., β∗ lives in the
column space of SP′1(f ) (Property 5.4.4). Next, by Wedin sinΘ Theorem (see Davis and
Kahan (1970); Wedin (1972)) we bound

∥∥∥Ũ1ŨT
1 − U1UT

1

∥∥∥
2

as follows:

∥∥∥Ũ1ŨT
1 − U1UT

1

∥∥∥
2

∥∥β∗
∥∥

2 ≤
SP′1(X )− ρSP′1(f )2

σk (ρSP′1(f ))
∥∥β∗

∥∥
2

= ı12
σk (ρSP′1(f ))

∥∥β∗
∥∥

2 . (5.66)

For β̂ − β∗2, we have:

β̂ − β∗22 = Ũ⊥0 (Ũ⊥0 )T (β̂ − β∗) + Ũ0(Ũ0)T (β̂ − β∗)22
= Ũ⊥0 (Ũ⊥0 )T (β̂ − β∗)22+Ũ0(Ũ0)T (β̂ − β∗)22
= Ũ⊥0 (Ũ⊥0 )T (β̂ − β∗)22+ŨT

0 (β̂ − β∗)22
= Ũ⊥0 (Ũ⊥0 )T (β∗)22+ŨT

0 (β̂ − β∗)22. (5.67)
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Note that the last equality follow from the fact that β̂ = ŜP′0
T ,† 1

ρ̂SP0(X )L· =

Ũ0(Σ̃0)† Ṽ TSP0(X )L·, where ŜP′0
T ,†

is the pseudoinverse of ŜP′0
T

, and thus (Ũ⊥0 )T β̂ = 0.
The first term in (5.67) can be bounded using the same argument in (5.65) and (5.66),
where we utilize the fact that β∗ = U0(U0)Tβ∗ and Wedin sin Θ Theorem to get

Ũ⊥0 (Ũ⊥0 )Tβ∗2 ≤
ı02

σk (ρSP′0(f ))
∥∥β∗

∥∥
2 . (5.68)

What is left is bounding ŨT
0 (β̂ − β∗)22. To that end, first consider

ŜP′0
T
(β̂ − β∗)22 ≤ 2ŜP′0

T
β̂ − SP′0(f )Tβ∗22+2SP′0(f )Tβ∗ − ŜP′0

T
β∗22

≤ 2ŜP′0
T
β̂ − SP′0(f )Tβ∗22+2SP′0(f )− ŜP′02

2,∞β∗21. (5.69)

Also, consider

ŜP′0
T
(β̂ − β∗)22 = (β̂ − β∗)T 1

ρ̂2 Ũ0Σ̃2
0ŨT (β̂ − β∗)

≥ σk (ŜP′0)2ŨT
0 (β̂ − β∗)22. (5.70)

From (5.70) and (5.69) we get,

ŨT
0 (β̂ − β∗)22≤

2
σk (ŜP′0)2

(ŜP′0
T
β̂ − SP′0(f )Tβ∗22+SP′0(f )− ŜP′02

2,∞β∗21). (5.71)

Note that, similar to argument in (5.62), SP0(X )L· = ρSP0(f )L·+ ζL0 , where ζL0 is a vector

of i.i.d. entries with ·ψ2≤ C ′(γ + RΓ1Γ2). Then the term ŜP′0
T
β̂ − SP′0(f )Tβ∗22 can be

bounded as follows

ŜP′0
T
β̂ − 1

ρSP0(X )L·22

=ŜP′0
T
β̂ − SP0(f )L· −

1
ρζ

L
0

2
2
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=ŜP′0
T
β̂ − SP′0(f )Tβ∗22+

1
ρζ

L
0

2
2−

2
ρ (ŜP′0

T
β̂ − SP′0(f )Tβ∗)T ζL0 . (5.72)

Also, we have

ŜP′0
T
β̂ − 1

ρSP0(X )L·22

≤ŜP′0
T
β∗ − 1

ρSP0(X )L·22

=(ŜP′0
T
− SP′0(f )T )β∗ − 1

ρζ
L
0

2
2

=(ŜP′0
T
− SP′0(f )T )β∗22+

1
ρζ

L
0

2
2−

2
ρ

(
(ŜP′0

T
− SP′0(f )T )β∗

)T
ζL0 . (5.73)

From (5.72) and (5.73) we have,

ŜP′0
T
β̂ − SP′0(f )Tβ∗22≤ (ŜP′0

T
− SP′0(f )T )β∗22+

2
ρ

(
(ŜP′0

T
)(β̂ − β∗)

)T
ζL0 (5.74)

≤ ŜP′0 − SP′0(f )22,∞β∗21+
2
ρ

(
(ŜP′0

T
)(β̂ − β∗)

)T
ζL0 .

Finally, from (5.71) and (5.74) we get

ŨT
0 (β̂ − β∗)22 ≤

4
σk (ŜP′0)2

(
SP′0(f )− ŜP′02

2,∞β∗21+
1
ρ

(
(ŜP′0

T
)(β̂ − β∗)

)T
ζL0

)
.(5.75)

From (5.67), (5.68), and (5.75) we have

β̂ − β∗22 ≤
ı02

2
σk (ρSP′0(f ))2

∥∥β∗
∥∥2

2 (5.76)

+ 4
σk (ŜP′0)2

(
SP′0(f )− ŜP′02

2,∞β∗21+
1
ρ

(
(ŜP′0

T
)(β̂ − β∗)

)T
ζL0

)
.
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For ease of exposition, let

∆1 := SP′0(f )− ŜP′02
2,∞β∗21+

1
ρ

(
ŜP′0

T
(β̂ − β∗)

)T
ζL0

∆2 := ı02
2

σk (ρSP′0(f ))2
∥∥β∗

∥∥2
2 + 4

σk (ŜP′0)2
(∆1). (5.77)

Using this definition, (5.61), (5.63), (5.64), (5.66), and (5.76), we have

1
ρ̂SP′1(X )T β̂ − ŜP′1

T
β̂2

2 ≤
1
ρ̂ ı12

2

(
2ı12

2
∥∥β∗

∥∥2
2

σk (ρSP′1(f ))2
+ 2∆2

)
. (5.78)

Second term: SP′1(f )
Tβ∗ − ŜP′1

T
β̂2

2. To bound the second term, we follow a similar proof
to that shown in Agarwal et al. (2021d).

SP′1(f )
Tβ∗ − ŜP′1

T
β̂2

2 = SP′1(f )
Tβ∗ + ŜP′1

T
β∗ − ŜP′1

T
β∗ − ŜP′1

T
β̂2

2 (5.79)

≤ 2(SP′1(f )− ŜP′1)Tβ∗22+2ŜP′1
T
(β∗ − β̂)22.

Next, we bound the two terms on the right hand side. First, we bound (SP′1(f )− ŜP′1)Tβ∗22
as follows.

(SP′1(f )− ŜP′1)Tβ∗22≤ SP′1(f )− ŜP′12
2,∞β∗21. (5.80)

Next, we bound the second term ŜP′1
T
(β∗ − β̂)22.

ŜP′1
T
(β∗ − β̂)22 ≤

1
ρ̂2 (Ṽ1Σ̃1ŨT

1 + ρSP′1(f )
T − ρSP′1(f )

T )(β∗ − β̂)22

≤ 2
ρ̂2 (Ṽ1Σ̃1ŨT

1 − ρSP′1(f )
T )(β∗ − β̂)22+

2ρ2

ρ̂2 SP′1(f )
T (β∗ − β̂)22
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≤ 2
ρ̂2 Ṽ1Σ̃1ŨT

1 − ρSP′1(f )
T 2

2(β∗ − β̂)22+
2ρ2

ρ̂2 SP′1(f )
T (β∗ − β̂)22.

Further, note that

Ṽ1Σ̃1ŨT
1 − ρSP′1(f )

T 2
2 ≤ 2Ṽ1Σ̃1ŨT

1 − SP′1(X )T 2
2+2SP′1(X )T − ρSP′1(f )

T 2
2

≤ 4SP′1(X )T − ρSP′1(f )
T 2

2= 4ı12
2.

Where the last inequality follows from the fact that Ṽ1Σ̃1ŨT
1 − SP′1(X )T 2 is the k + 1-th

singular value of SP′1(X ) and hence is bounded by SP′1(X )T − ρSP′1(f )
T

2 using Weyl’s
inequality. Therefore,

ŜP′1
T
(β∗ − β̂)22 ≤

8
ρ̂2 ı12

2β∗ − β̂2
2+

2ρ2

ρ̂2 SP′1(f )
T (β∗ − β̂)22. (5.81)

Next, we bound SP′1(f )
T (β∗ − β̂)22. Recall that U0 span the column space of SP′1(f ). Thus

SP′1(f )
T = SP′1(f )

TU0UT
0 , therefore,

SP′1(f )
T (β∗ − β̂)22 = SP′1(f )

TU0UT
0 (β∗ − β̂)22 (5.82)

≤ SP′1(f )22U0UT
0 (β∗ − β̂)22.

Recall that Ũ0 denote the top k left singular vectors of SP′0(x), and consider

U0UT
0 (β∗ − β̂)22 = (U0UT

0 + Ũ0ŨT
0 − Ũ0ŨT

0 )(β∗ − β̂)22 (5.83)

≤ 2U0UT
0 − Ũ0ŨT

0
2
2β∗ − β̂2

2+2Ũ0ŨT
0 (β∗ − β̂)22.

Using (5.83), (5.75) and Wedin sin Θ Theorem, we obtain,

U0UT
0 (β∗ − β̂)22 ≤

2ı02
2

σk (ρSP′0(f ))2
β∗ − β̂2

2 (5.84)

+ 8
σk (ŜP′0)2

(
SP′0(f )− ŜP′02

2,∞β∗21+
1
ρ

(
ŜP′0

T
(β̂ − β∗)

)T
ζL0

)
.

Using (5.82) and (5.84), we have
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SP′1(f )
T (β∗ − β̂)22 ≤ SP′1(f )22

2ı02
2

σk (ρSP′0(f ))2
β∗ − β̂2

2 (5.85)

+ 8SP′1(f )22
σk (ŜP′0)2

(
SP′0(f )− ŜP′02

2,∞β∗21+
1
ρ

(
ŜP′0

T
(β̂ − β∗)

)T
ζL0

)
.

Finally, using (5.85) and (5.81), we have

ŜP′1
T
(β∗ − β̂)22 ≤

8
ρ̂2 ı12

2β∗ − β̂2
2 (5.86)

+ 4
ρ̂2

ı02
2SP′1(f )22

σk (SP′0(f ))2
β∗ − β̂2

2

+ 16ρ2

ρ̂2
SP′1(f )22
σk (ŜP′0)2

(
SP′0(f )− ŜP′02

2,∞β∗21+
1
ρ

(
ŜP′0

T
(β̂ − β∗)

)T
ζL0

)
.

Finally, combining (5.86), (5.80), (5.79), and (5.77) yields,

SP′1(f )
Tβ∗ − ŜP′1

T
β̂2

2 ≤ CSP′1(f )− ŜP′12
2,∞β∗21+

C
ρ̂2 ı12

2∆2

+ C
ρ̂2

ı02
2SP′1(f )22

σk (SP′0(f ))2
∆2 + Cρ2

ρ̂2
SP′1(f )22∆1

σk (ŜP′0)2
. (5.87)

Combining. Incorporating the two bounds in (5.78) and (5.87) yields,

1
ρ̂SP′1(X )T β̂ − SP′1(f )

Tβ∗22 ≤ C
1
ρ̂ ı12

2

(
ı12

2
∥∥β∗

∥∥2
2

σk (ρSP′1(f ))2
+ ∆2

)

+ CSP′1(f )− ŜP′12
2,∞β∗21

+ C
ρ̂2

ı02
2SP′1(f )22

σk (SP′0(f ))2
∆2 + Cρ2

ρ̂2
SP′1(f )22∆1

σk (ŜP′0)2
. (5.88)

For some absolute constant C > 0.
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High Probability Bound. We start by defining the following high probability events.
Let C (Γ1,Γ2, γ) be a positive constant dependent on model parameters Γ1,Γ2, γ, and let
C > 0 be some positive absolute constant, define

Ē1 :=
{∥∥ı0

∥∥
2 ≤ C (γ + RΓ1Γ2)

√
NT/L

}
,

Ē2 :=
{∥∥ı1

∥∥
2 ≤ C (γ + RΓ1Γ2)

√
NT1/L

}
,

Ē3 :=
{(

1−

√
20 log(NT )
ρNT

)
ρ ≤ ρ̂ ≤ 1

1−
√

20 log(NT )
ρNT

ρ
}
,

Ē4 :=
{

SP′0(f )− ŜP′02
2,∞≤ C (γ,Γ1,Γ2)

(
(NT )2R2

ρ4σk (SP′0(f ))2L2 + kR2 logNT/L
ρ2

)}
, (5.89)

Ē5 :=
{

SP′1(f )− ŜP′12
2,∞≤ C (γ,Γ1,Γ2)

(
(NT1)2R2

ρ4σk (SP′1(f ))2L2 + kR2 logNT1/L
ρ2 + R2T1

T

)}
.

(5.90)

Using Theorem 5.14.2, we have the following,

P(Ē1) ≥ 1− 2 exp
(
−NT
L

)
,

P(Ē2) ≥ 1− 2 exp
(
−NT1
L

)
.

Further by Lemma 5.15.3, P(Ē3) ≥ 1− 2
(NT )10 . Finally, the probabilities of Ē4 and Ē5 are

bounded as we show next.

Lemma 5.18.1. Let Ē4 and Ē5 be defined as in (5.89) and (5.90). Then, for a constant
C > 0,

P(Ē4) ≥ 1− C
(NT )10 ,

P(Ē5) ≥ 1− C
(NT1)10 −

C
(NT )10 .

Proof. Bounding Ē4 and Ē5. P(Ē4) and P(Ē5) can be bounded using a direct utilization
of Lemma 5.15.2 and the high probability events defined in Appendix 5.15.5. Starting with
Ē4, using (5.30), and recalling that in this theorem setup ε = 0,Γ = RΓ1Γ2 (Property
5.3.1 and Property 5.3.2) and σ = γ (Property 5.4.1), we have that with probability
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1− C
(NT )10 ,

SP′0(f )− ŜP′02
2,∞ ≤ C

γ2(NT )2

ρ2σk (SP′0(f ))2L2

(
(RΓ1Γ2)2 + γ2

ρ2

)
+ Cγ2k logNT/L

ρ2 + C (RΓ1Γ2)2

≤ C (γ,Γ1,Γ2)
(

(NT )2R2

ρ4σk (SP′0(f ))2L2 + kR2 logNT/L
ρ2

)
.

A similar argument can be used for Ē5, while noting that the term C
(NT )10 shows up due to

utilizing the estimate ρ̂, which is estimated from the first T observations. Precisely, we
get the following,

SP′1(f )− ŜP′12
2,∞ ≤ C

γ2(NT1)2

ρ2σk (SP′1(f ))2L2

(
(RΓ1Γ2)2 + γ2

ρ2

)
+ Cγ2k log(NT1/L)

ρ2 + C (RΓ1Γ2)2T1
T

≤ C (γ,Γ1,Γ2)
(

(NT1)2R2

ρ4σk (SP′1(f ))2L2 + R2k log(NT1/L)
ρ2 + R2T1

T

)
.

■

Now, given these events, we will provide the high probability bound. Let Ē := Ē1 ∩ Ē2 ∩
Ē3 ∩ Ē4 ∩ Ē5.

P(Ēc) ≤ C0
(NT )10 + C1

(NT1)10 , (5.91)

for some absolute constants C0, C1 > 0. Note that under event Ē3, we have that
ρ̂ ≥ ρ

(
1 −

√
20 log(NT )
ρNT

)
. By further using the assumption ρ ≥ C log(NT )/

√
NT for a

sufficiently large C we have that ρ̂ ≥ C ′ρ and (ρ̂−ρ)2
ρ̂2 ≤ C√

NT . Now, recall ∆1 and ∆2

definition in (5.77). Under event Ē , we can bound ∆1 as follows,

∆1 = ŜP′0 − SP′0(f )22,∞β∗21+
1
ρ

(
ŜP′0

T
(β̂ − β∗)

)T
ζL0
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≤ C (γ,Γ1,Γ2)β∗21
(

(NT )2R2

ρ4σk (SP′0(f ))2L2 + kR2 log(NT/L)
ρ2

)
+ 1
ρ

(
ŜP′0

T
(β̂ − β∗)

)T
ζL0 .

Similarly, under event Ē , we can bound ∆2 as follows,

∆2 ≤ C (γ,Γ1,Γ2)β∗21

(
NTR2

Lσk (ρSP′0(f ))2
+ 1
σk (ŜP′0)2

(
(NT )2R2

ρ4σk (SP′0(f ))2L2 + kR2 logNT/L
ρ2

))

+ C
ρσk (ŜP′0)2

((
ŜP′0

T
(β̂ − β∗)

)T
ζL0

)
.

Further, using Weyl’s inequality (see Lemma 5.14.4), we can bound |σk (ŜP′0)−σk (SP′0(f ))|
as follows,

|σk (ŜP′0)− σk (ρSP′0(f ))| =
1
ρ̂ |σk (Σ̃0)− ρ̂σk (SP′0(f ))|

≤ 1
ρ̂ |σk (Σ̃0)− ρσk (SP′0(f ))|+

|ρ̂ − ρ|
ρ̂ σk (SP′0(f ))

≤ ı02
ρ̂ + |ρ̂ − ρ|ρ̂ σk (SP′0(f ))

Under Ē , and using property 5.4.2, we have that with probability of at least 1− 1
(NT )10 ,

|σk (ŜP′0)− σk (SP′0(f ))|
σk (SP′0(f ))

≤ C (γ + RΓ1Γ2)
√
NT/L

ρσk (SP′0(f ))
+ |ρ̂ − ρ|ρ̂

≤ C (γ + RΓ1Γ2)
√
k

ρ
√
L

+ C√
NT

.

Using ρ ≥ C (γ + RΓ1Γ2)
√

k
L we get 1

σk (ŜP′0)2
≤ C

σk (SP′0(f ))2
. Using property 5.4.2, we get

the following bounds for ∆1 and ∆2,

∆1 ≤ C (γ,Γ1,Γ2, c)β∗21kR2
(
NT
L2ρ4 + log(NT/L)

ρ2

)
+ 1
ρ

(
ŜP′0

T
(β̂ − β∗)

)T
ζL0 .(5.92)
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∆2 ≤ C (γ,Γ1,Γ2, c)β∗21

(
kR2

Lρ2 + k2R2

NT

(
NT
L2ρ4 + log(NT/L)

ρ2

))
(5.93)

+ Ck
ρNT

((
ŜP′0

T
(β̂ − β∗)

)T
ζL0

)

≤ C (γ,Γ1,Γ2, c)β∗21k2R2

(
1
Lρ2 + log(NT/L)

L

)

+ Ck
ρNT

((
ŜP′0

T
(β̂ − β∗)

)T
ζL0

)
,

where ρ ≥ C (γ+RΓ1Γ2)
√

k
L is used to obtain the last inequality. Finally, using properties

5.4.2 and 5.4.3, ρ̂ ≥ C ′ρ, and (5.88), (5.92), and (5.93), we have under event Ē ,

1
ρ̂SP′1(X )T β̂ − SP′1(f )

Tβ∗22 ≤ C (γ,Γ1,Γ2, c)
(
k3NT1R6

L2ρ4 + RT1
T

)
β∗21 (5.94)

+ C (γ,Γ1,Γ2, c)
(
k3R6 log(NT/L)

ρ2 (NT1
L2 + T1

T ) + kR2 log(NT1/L)
ρ2

)
β∗21

+ C (γ,Γ1,Γ2, c)
R4k2T1
Tρ3

(
ŜP′0

T
(β̂ − β∗)

)T
ζL0 .

Expectation Bound. We get the bound in expectation using the high probability bound
above, and by assuming that our forecast is bounded such that |f̄n(T + L xm′)|≤ RΓ1Γ2

for m′ ∈ [T1/L]. Specifically, we have using (5.94) and (5.91),

TestForErr(N,T , T1, L) = 1
(NT1/L)

E

[∥∥∥∥
1
ρ̂SP′1(X )T β̂ − SP′1(f )

Tβ∗
∥∥∥∥

2

2

]

≤ 1
(NT1/L)

E

[∥∥∥∥
1
ρ̂SP′1(X )T β̂ − SP′1(f )

Tβ∗
∥∥∥∥

2

2

∣∣∣∣∣Ē
]

+ CR2Γ2
1Γ2

2
(N min(T , T1))10

≤ L
NT1

C (γ,Γ1,Γ2, c)
((

k3NT1R6

L2ρ4 + RT1
T

)
β∗21

+
(
k3R6 log(NT/L)

ρ2

(
NT1
L2 + T1

T

)
+ kR2 log(NT1/L)

ρ2

)
β∗21
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+ R4k2T1
Tρ3 E

[(
ŜP′0

T
(β̂ − β∗)

)T
ζL0
∣∣∣Ē
])

+ CR2Γ2
1Γ2

2
(N min(T , T1))10 .

Noting that the E[ζL0 |Ē ] = 0, and ζL0 is independent of ŜP′0, ρ̂, β∗ and the event Ē ; we
have

E
[(

ŜP′0
T
β∗
)T

ζL0
]

= 0. (5.95)

By (5.3), we have β̂ = Ũ0(Σ̃0)† Ṽ TSP0(X )L·. That is,

β̂ = Ũ0(Σ̃0)† Ṽ TρSP0(f )L· + Ũ0(Σ̃0)† Ṽ T ζL0 . (5.96)

Using cyclic and linearity of Trace operator; the independence properties of ζL0 ; and (5.96);
we have

E
[(

ŜP′0
T
β̂
)T

ζL0
]

(5.97)

= E
[(

ŜP′0
T

Ũ0(Σ̃0)† Ṽ TρSP0(f )L·
)T

ζL0
]

+ E
[ (

Ṽ0Ṽ T ζL0
)T

ζL0
]

= E[Tr
(
(ζL0 )T Ṽ0Ṽ T ζL0

)
]

= Tr (E[Ṽ0Ṽ T ]E[ζL0 (ζL0 )T ])

≤ C (γ + Γ1Γ2R )2k.

Where to obtain the last inequality we use the trace property Tr(AB) ≤ B2Tr(A) for
positive semi-definite matrices A,B, and that rank of ŜP′0 is k. Finally, using (5.97), and
recalling that T1 ≥ L and L ≤ T we get,

TestForErr(N,T , T1, L) ≤
L

NT1
C (γ,Γ1,Γ2, c)

((
R6k3NT1
L2ρ4 + RT1

T

)
β∗21

+
(
R6k3 log(NT/L)

ρ2

(
NT1
L2 + T1

T

)
+ R2k log(NT1/L)

ρ2

)
β∗21+

R6k3T1
Tρ3

)
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+ CR2Γ2
1Γ2

2
(NL)10

≤ L
NT1

C (γ,Γ1,Γ2, c) max(1, β∗21)
(
R6k3NT1
L2ρ4 + R6k3T1

Tρ3

+ R6k3 log(NT )
ρ2

(
NT1
L2 + T1

T

)
+ R2k log(NT1)

ρ2 + R2

(NL)10

)

≤ L
NT1

C (γ,Γ1,Γ2, c) max(1, β∗21)
(
R6k3 log(NT )

ρ4

(
NT1
L2 + T1

T

)
+ R2k log(NT1)

ρ2

)
.

Then, with L =
√

min(N,T )T , we get,

TestForErr(N,T , T1, L)

≤
√

min(N,T )T
NT1

C (γ,Γ1,Γ2, c) max(1, β∗21)
(
R6k3 log(NT )

ρ4

(
NT1

T min(N,T ) + T1
T

)
+ R2k log(NT1)

ρ2

)

≤ T
T1

√
min(N,T )T
NT C (γ,Γ1,Γ2, c) max(1, β∗21)

(
R6k3 log(NT )

ρ4

(
NT1

T min(N,T ) + T1
T

)
+ R2k log(NT1)

ρ2

)

≤
√

min(N,T )T
NT C (γ,Γ1,Γ2, c) max(1, β∗21)

(
R6k3 log(NT )

ρ4

(
N

min(N,T ) + 1
)

+ TR2k log(NT1)
T1ρ2

)

≤ C (γ,Γ1,Γ2, c) max(1, β∗21)
(
R6k3 log(N max(T , T1))

ρ4
√

min(N,T )T

(
max(1, NT ) + T

T1

))
.

Choosing k = RG completes the proof.

■ 5.19 Proof of Theorem 5.7.1

Setup, Notations. For L ≥ 1, k ≥ 1, for ease of notations, we define

◦ SP(X ) = SP((X1, . . . , XN ), T , L) ∈ RL×(NT/L),

◦ SP(X2) = SP((X2
1 , . . . , X2

N ), T , L) ∈ RL×(NT/L),

◦ SP(f ) = SP((f1, . . . , fN ), T , L) ∈ RL×(NT/L),
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◦ SP(f2) = SP((f21 , . . . , f2N ), T , L) ∈ RL×(NT/L),

◦ SP(σ2) = SP((σ2
1 , . . . , σ2

N ), T , L) ∈ RL×(NT/L),

◦ SP(f2 + σ2) = SP(f2) + SP(σ2).

Recalling that ρ = 1, we note that

E[SP(X )] = SP(f ), E[SP(X2)] = SP(f2 + σ2).

Further, from the definition of the variance estimation algorithm, we recall

ŜP(f ) := ŜP((X1, . . . , XN ), T , L) = 1
ρ̂HSVTk (SP((X1, . . . , XN ), T , L))

ŜP(f2 + σ2) := ŜP((X2
1 , . . . , X2

N ), T , L) = 1
ρ̂HSVTk (SP((X2

1 , . . . , X2
N ), T , L))

We denote

◦ ŜP(f2) = ŜP(f ) ◦ ŜP(f )

◦ ŜP(σ2) = max
(
ŜP(f2 + σ2)− ŜP(f2),0

)
,

where 0 ∈ RL×(NT/L) is a matrix of all zeroes, and we apply the max(·) above entry-wise.
We remind the reader the output of the variance estimation algorithm is ŜP(σ2). Thus,
we have

1
NT

N∑

n=1

T∑

t=1
(σn(t)2 − σ̂2

n (t))2 = 1
NT SP(σ2)− ŜP(σ2)2F .

Initial Decomposition. Note that since σ2
n (t) ≥ 0 for n ∈ [N ] and t ∈ [T ], we have that

1
NT SP(σ2)− ŜP(σ2)2F

≤ 1
NT SP(σ2)− (ŜP(f2 + σ2)− ŜP(f2))2F

= 1
NT SP(f2 + σ2)− SP(f2)− (ŜP(f2 + σ2)− ŜP(f2)2F

≤ 2
NT SP(f2 + σ2)− ŜP(f2 + σ2)2F+ 2

NT SP(f2)− ŜP(f2)2F (5.98)

We bound the two terms on the r.h.s of (5.98) separately.
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Bounding E[SP(f2)− ŜP(f2)2F ].

SP(f2)− ŜP(f2)2F =
N∑

n=1

T∑

t=1

(
f2n (t)− f̂2n (t)

)2

=
N∑

n=1

T∑

t=1

(
fn(t)− f̂n(t)

)2(
fn(t) + f̂n(t)

)2

≤
[

max
n∈[N ],t∈[T ]

(
fn(t) + f̂n(t)

)2
][ N∑

n=1

T∑

t=1

(
fn(t)− f̂n(t)

)2
]

(a)
≤ C (Γ1,Γ2,Γ3)R2

[ N∑

n=1

T∑

t=1

(
fn(t)− f̂n(t)

)2
]

= C (Γ1,Γ2,Γ3)R2
∥∥∥SP(f )− ŜP(f )

∥∥∥
2

F
(5.99)

Bounding SP(f2+σ2)−ŜP(f2+σ2)2F . To bound SP(f2+σ2)−ŜP(f2+σ2)2F , we modify the
proof of Theorem 5.5.1 in a straightforward manner. The need for the modification is that
Theorem 5.5.1 was proven for the case where the coordinate wise noise, ηn(t) = Xn(t)−fn(t)
are independent sub-gaussian random variables, and ηψ2≤ γ. However, one can verify
that X2

n (t)− f2n (t)− σ2
n (t) is a sub-exponential random variable with ·ψ1 norm bounded as

∥∥∥X2
n (t)− f2n (t)− σ2

n (t)
∥∥∥
ψ1
≤
∥∥∥X2

n (t)
∥∥∥
ψ1

=
∥∥∥f2n (t) + 2fn(t)ηn(t) + η2

n(t)
∥∥∥
ψ1

≤ 2
∥∥∥f2n (t)

∥∥∥
ψ1

+ 2
∥∥∥η2

n(t)
∥∥∥
ψ1

= 2
∥∥fn(t)

∥∥2
ψ2

+ 2
∥∥ηn(t)

∥∥2
ψ2

≤ C (Γ1,Γ2)R2 + 2γ2

≤ C (Γ1,Γ2, γ)R2,

where we have use the standard facts that for a random variable A, A − E[A]ψ1≤ Aψ1 and
A2

ψ1= A2
ψ2

.

Further, note that by using Properties 5.3.1, 5.3.2, 5.7.1, and 5.7.2, and a straightforward
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modification of Proposition 15, we have

rank(SP(f2 + σ2)) ≤ rank(SP(f2)) + rank(SP(σ2))

≤ (RG)2 + (R ′G′),

where we have used that for any two matrices A,B, we have rank(A ◦ A) ≤ rank(A)2,
where ◦ denotes Hadamard product, and rank(A + B) ≤ rank(A) + rank(B). We define
k̃ := (RG)2 + (R ′G′).

Modified Theorem 5.5.1. Below, we state the modified version of Theorem 5.5.1 to get our
desired result.

Lemma 5.19.1 (Imputation Error). Let the conditions of Theorem 5.7.1 hold. Then,

E[ max
j∈[L]

1
(NT/L)SP(f2 + σ2)TL,· − ŜP(f2 + σ2)TL,·22]

≤ C (Γ1,Γ2,Γ′1,Γ′2, γ, R, R ′)
(

(G2 + G′) log2NT
L .

)
,

where C (Γ1,Γ2,Γ′1,Γ′2, γ, R, R ′) is a term that depends only polynomially on Γ1, Γ2, Γ′1,
Γ′2, γ, R, R ′.

Proof. To reduce redundancy, we provide an overview of the argument needed for this
proof, focusing only the parts of the arguments made in Theorem 5.5.1 that need to be
modified. For ease of exposition, we let C̃ = C (Γ1,Γ2,Γ′1,Γ′2, γ, R, R ′). We being by
matching notation with that used in Theorem 5.5.1; in particular with respect to ρ, k, ε,Γ.
Under the setup of Theorem 5.7.1, we have ρ = 1, k = k̃ , ε = 0, Γ ≤ C̃ Further, recall
the definition of Y ,M, p, q, σ from Appendix 5.15.1. We will now use Y = SP(X2), and
M = SP(f2 + σ2)), σ = γ, p = (NT/L), q = L. One can verify that there is only required
change to the proof of Theorem 5.5.1; in particular, in the argument made to prove Theorem
5.15.1, we need to re-define events E2, E3, E4 in (5.26), (5.27), (5.28) for the case where
(Y −M)ij is mean-zero sub-exponential. Using the result from Agarwal et al. (2019b,
2021e), which bounds the operator norm of a matrix with sub-exponential mean-zero
entries, we have with probability at least 1− 1/((NT )10)

Y −M2≤ C̃
√

(NT/L) log2NT (5.100)

As a result (5.100), and standard concentration inequalities for sub-exponential random
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variables, we have the modified events, Ẽ2, Ẽ3, Ẽ4.

Ẽ2 :=
{∥∥Y − ρM

∥∥
2 ≤ C̃

√
(NT/L) log2NT

}
,

Ẽ3 :=
{∥∥Y − ρM

∥∥
∞,2 ,

∥∥Y − ρM
∥∥

2,∞ ≤ C̃
√

(NT/L) log2NT
}
,

Ẽ4 :=
{

max
j∈[q]

∥∥∥φB
σk (B)

(
Y T
j· − ρMT

j·

)∥∥∥
2

2
≤ C̃k̃ log2(NT/L)

}
,

Using these modified events in the proofs of Theorem 5.15.1 and Theorem 5.5.1, and
appropriately simplifying leads to the desired result. ■

By Lemma 5.19.1 and (5.41), we have that

1
NT E[SP(f2 + σ2)− ŜP(f2 + σ2)2F ≤ E[ max

j∈[L]

1
(NT/L)SP(f2 + σ2)TL,· − ŜP(f2 + σ2)TL,·22]

≤ C (Γ1,Γ2,Γ′1,Γ′2, γ, R, R ′)
(

(G2 + G′) log2NT
L .

)
.

(5.101)

Completing proof. Substituting (5.99) and (5.101) into (5.98) and letting L =√
min(N,T )T

1
NT SP(σ2)− ŜP(σ2)2F≤ C (Γ1,Γ2,Γ3,Γ′1,Γ′2, γ, R, R ′)

(
(G2 + G′) log2NT√

min(N,T )T
.
)
.

This completes the proof.

■ 5.20 tSSA Proofs

■ 5.20.1 Proof of Proposition 12

Consider n ∈ [N ], ℓ ∈ [L], s ∈ [T /L]. By Property 5.3.1,

Tnℓs = fn((s − 1)× L+ ℓ)

=
R∑

r=1
UnrWr((s−1)×L+ℓ). (5.102)
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The Hankel matrix induced by time series Wr· has rank at most G as per Property 5.3.2.
The Page matrix associated with it is of dimension L × T /L with entry in its ℓ-th row
and s-th column equal to Wr((s−1)×L+ℓ). Since this Page matrix can be viewed as a
sub-matrix of the Hankel matrix, it has rank at most G as well. That is, there exists
vectors wr

ℓ·, v rs· ∈ RG such that

Wr((s−1)×L+ℓ) =
G∑

g=1
wr
ℓgv rsg. (5.103)

From (5.102) and (5.103), it follows that

Tnℓs =
R∑

r=1
Unr
( G∑

g=1
wr
ℓgv rsg

)

=
∑

r∈[R ],g∈[G]
Unrwr

ℓgv rsg

=
∑

r∈[R ],g∈[G]
an (r,g)bℓ (r,g)cs (r,g), (5.104)

where an (r,g) = Unr , bℓ (r,g) = wr
ℓg and cs (r,g) = v rsg. Thus (5.104) implies that T has

CP-rank at most R xG.

By the setup and model definition, it follows Tnℓs = Xn((s − 1) × L + ℓ). And Xn((s −
1)× L+ ℓ) = ⋆ with probability 1− ρ and fn((s − 1)× L+ ℓ) + ηn((s − 1)× L+ ℓ) with
probability ρ, where ηn((s − 1) × L + ℓ) are independent and zero-mean. Therefore, it
follows that the entries of T are independent and

E[Tnℓs] = E[Xn((s − 1)× L+ ℓ)]

= ρfn((s − 1)× L+ ℓ)

= ρTnℓs.

That is, E[T] = ρT. This concludes the proof.
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■ 5.20.2 Proof of Proposition 13

From Property 5.7.4, and our choice of parameter L for mSSA (L =
√

min(N,T )T ) and
tSSA (L =

√
T ), we have that

ImpErr(N,T ; tSSA) = Θ̃




1

min
(
N,
√
T
)2



 = Θ̃
(

1
min

(
N2, T

)
)
, (5.105)

ImpErr(N,T ; mSSA) = Θ̃
(

1√
min(N,T )T

)
, (5.106)

ImpErr(N,T ; ME) = Θ̃
(

1
min (N,T )

)
. (5.107)

We proceed in cases.

Case 1: T = o(N). In this case, from (5.105), (5.106), and (5.107), we have

ImpErr(N,T ; tSSA), ImpErr(N,T ; mSSA), ImpErr(N,T ; ME) = Θ̃
(

1
T

)

Case 2: N = o(T ). In this case, from (5.105), (5.106), and (5.107), we have

ImpErr(N,T ; tSSA) = Θ̃
(

1
N2

)
, (5.108)

ImpErr(N,T ; mSSA) = Θ̃
(

1√
NT

)
, (5.109)

ImpErr(N,T ; ME) = Θ̃
(

1
N

)
.

In this case, we have

ImpErr(N,T ; tSSA), ImpErr(N,T ; mSSA) = õ(ImpErr(N,T ; ME)).

It remains to compare the relative performance of tSSA and mSSA for the regime N = o(T ).
Towards this, note from (5.108) and (5.109) that

ImpErr(N,T ; tSSA) = õ(ImpErr(N,T ; mSSA))
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⇐⇒ 1
N2 = õ( 1√

NT
)

⇐⇒ T 1/3 = o(N)

This completes the proof.

■ 5.20.3 Proof of Proposition 14

Proposition 16. Let Properties 5.11.1, 5.3.2, and 5.4.1 hold. Then, for any 1 ≤ L ≤
√
T ,

HT has CP-rank at most R xG. Further, all entries of HT are independent random
variables with each entry observed with probability ρ ∈ (0, 1], and E[HT] = ρHT.

Consider n1, . . . , nd ∈ [N1]× . . . × [Nd], ℓ ∈ [L], s ∈ [T /L]. By Property 5.11.1,

HTn1,...,nd,ℓ,s = fn1,...,nd ((s − 1)× L+ ℓ)

=
R∑

r=1
Un1,r . . . Und,r Wr,((s−1)×L+ℓ),

The rest of the proof follows in a similar fashion to that of Proposition 12.
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